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Preface

With the dramatic attention drawn by the problems of network economics in
wireless communications and networking research community, many economic
theories have been applied. Being rewarded with the 2016 and 2014 Nobel Prize of
economic science, contract theory has been introduced to this area after the wide
researches in game theory, auction theory, and pricing strategy. In this book, we are
intend to provide a pure mathematical and economics-oriented approach for
introducing contract theoretical concepts, in which we integrate the notions from
contract theory and wireless engineering, while emphasizing on how contract
theory can be applied in wireless networks. Furthermore, we plan to describe the
details and challenges of modeling, analyzing, and designing contract theoretical
approaches for communication and networking problems. We believe engineers and
researchers in the wireless communication community who are interested in the
state-of-the-art research on incentive mechanism and pricing schemes design,
resource sharing and trading, cooperation, and networking for a wide range of
wireless communication applications will find it useful.

Houston, TX, USA Yanru Zhang
November 2016 Zhu Han
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Chapter 1
Background Introduction

1.1 Introduction

Owing to the wide adoption of smart devices and fast development of the Inter-
net, various applications and services have been introduced to bring convenience to
every aspect of our daily lives; at the same time, this has brought great changes and
new challenges to the design and operation of wireless networks. First, the intro-
duction of resource demanding mobile services such as Facebook and YouTube has
exponentially raised the desire for wireless access (Sesia et al. 2009). Moreover, the
embedding of advanced sensors in mobile devices has led to the dramatic growth of
a wide range of location-based services.

On the one hand, one can deal with the network capacity crunch by utilizing
various forms of cooperation in heterogeneous wireless networking scenarios. Tech-
nologies such as device-to-device (D2D) communications, cognitive radio (CR), and
small cells are being developed to off-load the cellular traffic and increase the energy
and spectrum efficiency. On the other hand, fast develop in the Internet of things
increases the need for cooperations from different aspects, as well. For example, an
attractive solution for location-based data crunch is to do mobile crowdsourcing, in
which a large group of users (with sensors embedded smart devices) cooperate to
collect and transmit data regularly for the service provider. Other forms of cooper-
ations can be found in mobile cloud computing, virtualized network, etc. In both
wireless networks and Internet, it is necessary to ensure the cooperation from third
parties, e.g., D2D devices, small cells, and users.

However, there lies a conflict when participating in such activities, as third parties
do consume their resources, such as battery capacity and computingpower (Zhao et al.
2014). Such a conflict results in reluctance from third parties to participate, which is
a major impediment to the development of practically attractive traffic offloading and
mobile crowdsourcing solutions. Therefore, to successfully achieve the benefits, there
is a need to develop effective incentive mechanism designs for wireless networks, in
order to incentivize third-party participation and improve overall operational quality.

© Springer International Publishing AG 2017
Y. Zhang and Z. Han, Contract Theory for Wireless Networks,
Wireless Networks, DOI 10.1007/978-3-319-53288-2_1
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2 1 Background Introduction

Contract theory is widely used in real-world economics with asymmetric infor-
mation to design contracts between employer/seller(s) and employee/buyer(s) by
introducing cooperation (Bolton and Dewatripont 2004). The information asymme-
try usually refers to the fact that the employer/seller(s) does not know exactly the
characteristics of the employee/buyer(s). By using contract theory-based models,
the employer/seller(s) can overcome this asymmetric information and efficiently
incentivize its employee/buyer(s) by offering a contract which includes a given per-
formance/item and a corresponding reward/price.

Contract theory was first introduced in 1960s and has been well developed over
decades.With the property of been practical in real-world economics, contract theory
has been successfully applied in industrial economics and public economics, such as
banking, telecommunications, and agriculture. The importance of contract theory has
been well recognized recently. In 2014, French economist Jean Tirole was awarded
with the Nobel Prize in Economic Sciences for he has developed deep analytical
results about the essential nature of imperfect competition and contracting under
asymmetric information. Two years later, Nobel Prize in Economic Sciences 2016
was awarded jointly to Oliver Hart and Bengt Holmström “for their contributions to
contract theory.”

Due to the properties such as inducing cooperation and dealing with asym-
metric information, we envision that there is a great potential to utilize concepts
from contract theory to ensure cooperation and assist in the design of incentive
mechanisms in wireless networks. In wireless networks, the employer/seller(s) and
employee/buyer(s) can be of different roles depending on the scenario under consid-
eration. An employer/seller(s) can be a base station (BS), service provider (SP), and
authorized spectrum owner. An employee/buyer(s) can be a small cell, smart device,
user, or some other third party that is not part of the current traditional cellular net-
work architecture. Well-designed contracts provide incentives for the contracting
parties to exploit the prospective gains from cooperation. The adoption of contract
theory for incentive mechanism design in future wireless networks is illustrated in
Fig. 1.1.

In this book, we mainly focus our research on how to provide the necessary
incentives to motivate third parties’ participation in those newly introduced wireless
networks and Internet, such as heterogeneous network, mobile crowdsourcing, cloud
computing, and virtualized network.We are going to use contract theory to formulate
the incentivemechanisms forwireless networks. For each class of the typical contract
models, we provide the basic concepts, classification, andmodels in Sect. 1.2, as well
as comparisons with other economical methods. Beyond providing a self-contained
survey on classical contract theory concepts, we will further study in Sect. 1.3 the
design of incentive mechanisms, especially the reward design in a contract. We then
emphasize both analytical techniques and novel application scenarios in Sect. 1.4.
Finally, we give summary of this chapter and the main organization of this book in
Sect. 1.5.
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Fig. 1.1 General model for cooperation in wireless networks: (1) offloading data traffic through
heterogeneous networks (small cell, cognitive radio, and D2D communication) and (2) uploading
location-based data through mobile crowdsourcing

1.2 Contract Theory: Fundamentals and Classification

1.2.1 Basic Contract Concepts

Contract theory has been highly successful and active research area in economics,
finance,management, and corporate law for decades. Contract theory allows studying
the interaction between employer(s) and employee(s). Theperformance of employees
tends to be better when they work harder, and the probability of a bad performance
will be lower if employees place more dedication or focus on the work. By contrast,
on the other hand, if an employee’s compensation is independent of its performance,
the employee will be less likely to put efforts into the work (Bolton and Dewatripont
2004). The design of incentive mechanism plays an important role in addressing the
problem of employee incentives.

In contract theory, the solution we need to obtain is a menu of contract for
employee, and the object is maximizing the employer’s payoff or utility. In most
cases, the problem is usually formulated as maximizing an objective function which
represents the employer’s payoff, subject to the incentive compatibility constraint
that the employee’s expected payoff is maximized when signing the contract and
the individual rationality constraint that the employee’s payoff under this contract is
larger than or equal to its reservation payoff when not participating.



4 1 Background Introduction

1.2.2 Classification

1.2.2.1 Adverse Selection

The adverse selection problem and the information about some relevant character-
istics of the employees, such as their distaste for certain tasks and their level of
competence/productivity, are hidden from the employer. One of the most common
problems in adverse selection is the screening problem, in which the contract is
offered by the uninformed party, i.e., the employer. The uninformed party typically
responds to adverse selection by the revelation principle which forces the informed
party to select contract that fits its true status. When a contract is offered by the
uninformed party, it is called the screening problem. Otherwise, if the contract is
offered by the informed party, it is called the signaling problem.

In the screening problem, it is the employer whomakes the contract offer and tries
to screen the information hold by the employee. Based on the revelation principle, the
employer can offer multiple employment contracts (q, r) destined to different skill-
level employees, where q is the employee’s outcome wanted by the employer, and
r is the reward paid to the employee by the employer if the given target is achieved.
The outcome can be a duration of work time, a required performance, or some other
outcomes that the employer wants from the employee.

In the signaling problem, the employee attempts to signal the employer its capa-
bility through the type of action it takes, which consists of the part of the contract.
According to the revelation principle, the employee can make a contract offer as
(a, r), where a is the action or effort taken by the employee before entering the
labor market, which serves as a signal to reveal its productivity, and r is the reward
the employee wants from the employer. The action or effort can be the employee’s
education level, past working experiences, or even financial status.

Most of the adverse selection models have the following system model. Assume
there are n different types, θi , i ∈ {1, . . . , n}, of employees, where the type represents
their level of capability, competence, or etc. There exists an information asymmetry
that the employer does not know the exact type of employee, but only the probability
λi of facing a type θi employee.

The employer has the expected utility function

U =
n∑

i=1

λi (qi − ri ) , (1.1)

which is the employer’s received outcome from the employee minus the reward it
has to pay. The employee has the utility function

V = θi v(ri ) − qi , (1.2)

which is the employee’s evaluation toward the reward received from the employer
minus the cost of the outcome.
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The problem of adverse selection is usually formulated as follows.

max
(q,r)

n∑

i=1

λi (qi − cri ) , (1.3)

s.t.

(I R) θi v(ri ) − qi ≥ 0,

(IC) θi v(ri ) − qi ≥ θi v(r j ) − q j ,

i, j ∈ {1, . . . , n}, i �= j.

The employer’s utility is maximized, under two constraints: individual rationality
(IR) and incentive compatible (IC). The IR constraints mean the contract must ensure
a nonnegative utility for all types of employees. The IC constraint guarantees the
employee can only receive the highest utility when selecting the contract designed
specifically for their own types. The model presented here is the discrete-type case
which is also the most commonly seen one. The model can also be extended to the
continuous type case which can fit into more general cases.

1.2.2.2 Moral Hazard

The problem of moral hazard refers to situations where the employee’s actions are
hidden from the employer: whether they work or not, how hard they work, how
careful they are. In contrast to adverse selection, the informational asymmetries in
moral hazard arise after the contract has been signed. In moral hazard, the contract
is a menu of action–reward bundle (a, r), where a is the action or effort exerted
by the employee after being hired, and r is the reward paid to the employee by the
employer.

The basic model of moral hazard problem is as follows. The employer offers a
compensation package r to an employee, which is a combination of a fixed salary t
and a performance-related bonus s. The employee’s performance q can be defined
according to the application. Duringwork time, the employee’s effort can be regarded
as taking an action a, while there is asymmetric information that the effort a is
hidden from the employer who can only observe the performance q. Due to some
measurement errors, the performance q is slightly different from the actual effort
exerted by the user. Therefore, the performance of the user is a noisy signal of its
effort. Thus, we assume that the performance q to be normally distributed with mean
a and variance σ2

q :
q = a + εq , (1.4)

where εq ∼ N (μq ,σ
2
q), and μ is the mean. One simple form for the bonus is the

linear form. By restricting the compensation package offered by the principal in the
linear form, the compensation package r the employee receives from working for
the employer can be written as
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r = t + sq, (1.5)

where t denotes the fixed compensation salary independent of performance, and s is
the fraction of reward related to the employee’s performance q.

The employee is usually assumed to have a constant absolute risk averse (CARA)
risk preferences, which means the employee has a constant attitude toward risk as its
income increases. Thus, employee’s utility is represented by a negative exponential
utility form:

u(w, a) = −e−η[r−ψ(a)], (1.6)

where η > 0 is the employee’s coefficient of absolute risk aversion (η = −u′′/u′). A
larger value of η > 0 means less incentive for the employee to implement an effort.
ψ(a) is the incurring cost in providing the effort a for the employer. The cost function
can be assumed to be quadratic, or others according to different applications,

ψ(a) = 1

2
ca2. (1.7)

The utility of the employer is the evaluation of the working outcome q minus the
compensation package r to the employee,

V (r, a) = E(q − r), (1.8)

where E(·) is the evaluation function follows E(0) = 0, E ′(·) > 0, and E ′′(·) ≥ 0
if the principal is assumed to be risk neutral, i.e., E ′′(·) = 0. Thus, the utility of the
employer can be simplified as

U (r, a) = q − r = (1 − s)a − t. (1.9)

The problem of moral hazard is usually formulated as follows.

max
a,t,s

U (r, a), (1.10)

s.t. (IC) a∗ ∈ argmax
a

V (r, a),

(I R) V (r, a) ≥ V (r).

The employer’s utility is also maximized under the IC and IR constraints. The IR
constraint means the contract must ensure the employee receives a higher utility than
when not participated in. The IC constraint guarantees the employee can maximize
its own utility when selecting the right amount of effort.
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1.2.2.3 Mixed

In practice, it is usually hard to decide which of the two problems is more important,
i.e., to figure out whether it is amoral hazard problem or adverse selection problem.
Indeed, most incentive problems are the combinations of moral hazard and adverse
selection.

1.2.3 Models

1.2.3.1 Bilateral or Multilateral

Bilateral contracting is the basic one-to-one contractingmodel, inwhich there are one
employer and one employee trading with each other for goods or services. However,
in the multilateral case, it is usually an one-to-many contracting scenario, in which
there is one employer tradingwithmultiple employees. Despite the increased number
of participants in the multilateral contracting than in the bilateral one, the interac-
tions among the employees/buyers, such as competition and cooperation, make the
multilateral contracting model more complex and show the potential of solving more
sophisticated problems.

1.2.3.2 One-Dimension or Multi-dimension

Only one characteristic or task is considered in the one-dimensional contracting
model. For example, the employer evaluates only one capability of the employee in
the one-dimensional adverse selection model, and there is only one task assigned
by the employer to the employee in the one-dimensional moral hazard model. In
contrast, the employer evaluates multi-dimensional characteristics of the employee
or assigns multiple tasks to the employee in the multi-dimensional contracting sce-
nario. For example, the action a in the one-dimensional moral hazard model can be
extended to a = (a1, . . . , an), n ≥ 2.Meanwhile, the observed performance becomes
q = (q1, . . . , qn), as well as the bonus s = (s1, . . . , sn). As the extension of one-
dimensional contracting, multi-dimensional contracting model can also be analyzed
by adapting the similar methods for one-dimensional ones.

1.2.3.3 Static or Repeated

Static contracting refers to the one-shot trading between the two parties, in which
the employer usually offers a take-it or leave-it contract, and the employee(s) choose
to accept or reject it. Every signing of a contract will be regarded as a new one;
i.e., previous trading histories will not affect the signing of the next one. While
trading histories affect the next contract in the repeated contracting scenario, repeated
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contracting needs to solve the issues that arise with the design and renegotiation
of long-term employment contracts, due to the inability of contracting parties to
commit to or enforce long-term contractual agreements. Repeated iteration between
contracting parties opens up new incentive issues and thus increases the complexity
than in the static contracting.

1.2.3.4 Complete or Incomplete

In complete contract, legal consequences of every possible state of the world are
specified at the stage of signing the contract. In reality, there might be situations
when the trading parties are unable to write complete contracts at the stage of signing
contract, because either it is impossibly complex for the parties to fulfill an agreement
tomake their contract complete or it is too costly to do so. Such an inability to describe
future uncertainty is a binding constraint in designing the contract.

1.2.4 Comparisons

1.2.4.1 Market Equilibrium

In the market equilibrium, participants pay their own strategy in regard to the other’s
actions in each iteration and then finally reach the equilibrium. While similar to the
repeated long-term contracting scenario in contract theory, participants dynamically
change their strategy as if they are playing a game. After repeated interactions and
renegotiations, both parties can reach an agreement. Thus, we see that the market
equilibrium is the repeated contracting case in contract theory, and different scenarios
can fit either into the problem of adverse selection or moral hazard.

1.2.4.2 Auction Theory

In auction theory, there is one seller with an item to sell and multiple bidders with
reservation prices competing for it. Meanwhile, in the multilateral adverse selection,
there are one seller and multiple buyers with their own private information which is
the same case as the bidder’s reservation prices during the auction. Thus, we see that
auction theory is the multilateral adverse selection contracting problem in contract
theory.

1.2.4.3 Pricing Strategy

The problems that pricing strategy and contract theory can solve have some overlaps.
They two are similar to each other in the sense that they can adjust the price/reward to
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sell a product or service at the seller/employer’smaximal profitability. However, pric-
ing strategy and contract theory’s major focuses differ from each other, since pricing
strategy mainly focuses on the relation between pricing and marketing, which can
be used to beat the business competitors. While contract theory places the emphasis
on studying the interactions between employers and employees, which is helpful for
regulators to design incentive mechanisms.

From the three economicmodels, we can see, first, market equilibrium and auction
theory, as the special cases of contract theory, have already been widely studied.
Second, pricing strategy shows a different research direction as contract theory.
To design efficient incentive mechanism, contract theory seems to be an excellent
approach and has many unexplored areas to reveal.

1.3 Contract Theory: Reward Design

In contract theory, the objective is to motivate employees by offering a reward, in
trading with a level/quality of service, outcome, performance, or target. Thus, we
see that the reward determines whether the employee can be fully motivated by
the incentive mechanism. Given the large number of models in contract theory, the
reward design varies in different contracting scenarios. The design and classification
of reward are illustrated in Fig. 1.2 and will be discussed in detail in this section.

1.3.1 Dimension of Rewards

From Sect. 1.2.3.2, we know that there can be one- or multi-dimensional contract-
theoretic models, depending on how many aspects of capability do the employer
evaluate the employee, or how many tasks does the employer assign the employee.
Most existing literature on incentive mechanism design in wireless networks adopts
the one-dimensional rewardmodel.One example is the reimbursing schemeproposed
by Gao et al. (2014b), which is an usage-based reward design to motivate subscribers
to operate as mobile Wi-fi hot spots to provide Internet connectivity for others.

One-dimensional model becomes inefficient when employees are required to have
multiple capabilities or supposed toworkon several tasks. First, the employee’s action
set becomes richer thanwhat the one-dimensionalmodel has described. Second, there
is a risk that one-dimensional rewardwill induce employees to overwhelmingly focus
on the part that will be rewarded and to neglect the other components. Taking Yelp
for an example, which is a popular mobile crowdsourcing app in North American
used to locate and review restaurants/bars, Yelp users who act as employees do not
only make location-based check-ins, upload photographs, and write reviews of the
restaurants and bars, but they are also encouraged to invite new friends to sign up.
For example, if Yelp only rewards users on the number of reviews, the quality of a
review such as length, correctness, and objectiveness will not be considered.
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Fig. 1.2 Designing of reward in a contract

Given different aspects of capability ormultiple tasks to evaluate, by assigning dif-
ferent weights of rewards in multiple dimensions, the employer can drive employee’s
incentive on perusing certain capabilities or tasks, which can affect the employer’s
utility, in return. One current application of multi-dimensional reward is fromKarma
(2012), where Karma is an Internet service provider based in the USA. Karma pro-
vides 100 MB to new guest users for free and reward users who bring in more users
by wirelessly advertising the service.

Thus, in certain scenarios, one-dimensional reward needs to be modified into
multi-dimensional ones, so that the employer can drive employee’s incentives by
assigning different reward weights on different tasks. Regardless of the dimension
that the reward design chooses, a qualified mechanism must reward employee’s
effort in a comprehensive way. On the one hand, for simple cases where an one-
dimensional reward is sufficient to drive employee’s motivation, a multi-dimensional
reward mechanism costs extra effort and resource to design. On the other hand, for
complicated tasks, the reward design must be adjusted to multi-dimension, so that
employee’s incentive can be well maintained and driven. In reward design, there
is a trade-off between completion and efficiency, and thus, we should model the
dimension of the reward according to the actual scenario under consideration.
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1.3.2 Rewards on Absolute Performance or Relative
Performance

The problem of how can the reward be decided in accordance with the employee’s
performance also needs attention. Referring to the reward designs in job markets,
sports, and games, generally there are two methods one can refer to: evaluate the
employee’s absolute performance or the relative performance.

• Absolute performance-related reward: The reward is positively related with the
employee’s absolute performance.

• Relative performance-related reward: The reward is given based on the ranks
that the employees achieved by listing the multiple employees’ performance in an
ascending or descending order.

Absolute performance-related reward is a widely accepted incentive mechanism
in real economics as it captures the fundamental aspect of providing necessary and
efficient incentives for employees. Piece rate, efficiency wages, and stock options
are widely used forms of absolute performance reward in the job market. Despite the
usage-based reward in (Gao et al. 2014b) mentioned previously, the work in (Luo
et al. 2014) also derives the performance and reward-dependent function to attract a
high amount of sensing data from participating users in wireless networks. Another
example is (Guo et al. 2015), in which incentive mechanism has been developed to
encourage the cooperation of mobile terminals (MTs) in wireless cellular networks
to reduce the energy consumption of the other MTs. TheMTwho contributes to help
will receive a price consistent with its transmitting data rate.

However, there are two disadvantages of the absolute performance-related reward.
First, in order to pay less reward, the employer has a strong incentive to cheat by claim-
ing that employees had poor performances. Second, this mechanism is vulnerable to
common shock which is originally used to denote macroeconomic conditions such as
economic boost or depression (Green and Stokey 1983). If there is a positive/negative
mean that affects employees’ performances at the employer’s observation, then it will
lead to an abnormal increase/decrease of reward in the end.

While it has been proven that the relative performance-related reward design can
filter out this common shock problem (Green and Stokey 1983),winners receive the
amount of reward based on the rank they achieved, which is easy to measure and
hard to manipulate (Bolton and Dewatripont 2004). In addition, the employer has no
incentive to cheat as it has to offer the fixed amount of rewards no matter who wins.
Tournament is the most widely known form of reward for the relative performance,
in which the one with better performance ranks higher and rewarded more. Besides,
there are two other special forms of ROT: the multiple winners (MW) and winner-
take-all (WTA). In theMW tournament, several topwinners share the reward equally,
while in the WTA tournament, the entire reward is awarded to the highest ranked
user, which is a special case of MW with only one winner.
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1.3.3 Reward in Bilateral or Multilateral Contracting

Despite the previous aspects, different trading scenarios also affect the design of an
incentive mechanism, i.e., the reward. Next, we are going to talk about how to design
reward in bilateral and multilateral contracting scenarios.

1.3.3.1 Contract with Single Employee

When the employer signs a contract with a single employee, we can design the
reward by considering only the single employee’s absolute performance instead of
the others. Examples in wireless networks are the previously mentioned three works
(Gao et al. 2014b; Luo et al. 2014; Guo et al. 2015). However, even though there is
no other employee to compete with the employee, the relative performance-related
reward can still be applied. One common form of the relative performance-related
reward for a single employee is to set up a specific threshold and a reward of the
targeted performance. If the employee’s absolute performance can achieve the given
threshold, a fixed reward will be given to the employee. Otherwise, the employee
cannot receive the reward. In fact, we can regard it as the employee competes with
the threshold.

1.3.3.2 Contract with Multi-employee

When the employer designs the contract toward multiple employees, the absolute
performance-related reward still works quite well and is a widely accepted method
in real economics. Furthermore, there are some other forms of absolute performance-
related rewards. One widely adopted method is to group employees first and then
reward employees by their aggregated performance in each group. There is a short-
coming with this incentive mechanism, i.e., there is a risk of free riding of some
employees on the other employees’ efforts.Usually, the absolute performance-related
reward design is more commonly seen in contracting with multi-employee. The
employees can compete with each other as in a tournament and have the incentives
for higher rewards by performing better.

1.4 Applications in Wireless Networks

In this section, we are going to introduce several applications of contract theory
models in wireless networks. To be consistent with the classification of contract
theory problems in Sect. 1.2.2, the following three subsections are wireless network
applications of models from adverse selection, moral hazard, and a mixed of the
two, respectively.
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1.4.1 Adverse Selection

The applications of bilateral, one-dimensional, and static adverse selection in wire-
less networks are the most widely seen models. This model is first used to solve
the problem of spectrum sharing in cognitive radio network (CRN) by Gao et al.
(2011). In this work, a primary user (PU) acts as an employer who sets the spectrum
trading contract as (qualities, prices), and the second users (SUs) act as an employee
to choose which one for purchasing. Another application for CRNs can be found in
Gao et al. (2014a), in which the authors also model the PU and SUs as the employer
and employees, respectively. Then, design the (performance, reward) in contract as
(relaying power, spectrum accessing time).

With the same model, a different application area is by Duan et al. (2012) in
designing incentive mechanisms for smartphone users’ collaboration on both in data
acquisition and in distributed computing. TheSP acts as an employer, and smartphone
users will be employees. Rewards will be paid according to the amount of data users
have collected and the distributed computing load users have taken. In the OFDM-
based cooperative communication system, Hasan and Bhargava (2013) uses contract
theory to tackle the source node’s relay selection problem. The offers/contracts con-
sist of a menu of desired signal-to-noise ratios (SNRs) at the destination and corre-
sponding payments. In Chap.2, we will apply the adverse selectionmodel in cellular
traffic offloading through D2D communication, by offering rewards to encourage
content owners to participate and cooperate with other devices via D2D. We will
model the BS as employer and D2D user as employee and solve contract bundle
with a required performance and an absolute performance-related reward. The per-
formance is defined as a certain data rate that the UE must provide during the D2D
communication.

1.4.2 Moral Hazard

Compared to the wide adoption of the adverse selection problem, the moral hazard
problem has hardly been applied in wireless networks by now. However, having
seen a great potential of this model, we have done some preliminary applications of
moral hazard in the area of mobile crowdsourcing. As mentioned in the beginning of
this chapter, many users hesitate to participate in mobile crowdsourcing with certain
concerns, which results in a serious impediment to the exploitation of location-based
services. By adopting themoral hazard, the incentive mechanism can be designed by
regarding the SP “employs” users to upload location-based data and reward them by
their performance. Thus, the first application we are going to talk about in Chap.3 is
a basic moral hazard model which only considers a single user and single lateral in
mobile crowdsourcing. Then, in the next Chap.4, we consider the general case of a
large group of users as employees, and thus, the multilateral moral hazard model is
applied. In particular, we consider the mobile users competing in the crowdsourcing

http://dx.doi.org/10.1007/978-3-319-53288-2_2
http://dx.doi.org/10.1007/978-3-319-53288-2_3
http://dx.doi.org/10.1007/978-3-319-53288-2_4
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to win reward as in a tournament, and they are rewarded by their rank orders, i.e.,
relative performance in the mobile sourcing activity.

Besides mobile crowdsourcing, we have also studied the area of mobile cloud
computing and moved forward to the multi-dimensional model for further perfor-
mance improvement. In particular, we focus on the newly introduced concept of fog
computing which aims at providing time-sensitive data services with low latency,
location awareness to end users. One key feature of this model is the designing of a
payment plan from the network operator (NO) to fog nodes (FNs) for the rental of
their computing resources, such as computation capacity, spectrum, and transmis-
sion power. To better solve the problem of how to design the efficient payment plan
to maximize the NO’s revenue while maintaining FN’s incentive to cooperate, we
propose a multi-dimensional moral hazard model which considers the FNs’ charac-
teristics such as location, computation capacity, storage, and transmission bandwidth
in Chap.5.

1.4.3 Mixed Problem

Given the applications of the twobasic problems:adverse selection andmoral hazard,
we can proceed to themixed problem inwireless networks when both of the twowere
present. The mix problem can also be found in spectrum trading between the PU and
SU in CRNs, or infrastructure provider (InP) and SP in virtualizedwireless networks.
The problem of adverse selection arises since the PU/InP may not be fully aware
of the SU/SP’s capability in utilizing the spectrum to generate revenue, i.e., what is
the SU/SP’s probability of successfully making a profit from the service it provides.
Moreover, there is a problem of moral hazard as the PU/InP neither knows how
much effort the SU/SP will put into running its “business.” Thus, spectrum trading
that involves both adverse selection and moral hazard can be solved by designing a
financing contract, as when we buy a car or a house. The main problem that needs to
solve is how to design the down payment and installment payment in the financing
contract, and the detail work can be found in Chap.6.

1.4.3.1 Incomplete Contracts in Wireless Networks

The previous problems described are all solved by complete contracts, while in
wireless networks, there are also problems that are in need of designing incom-
plete contracts to solve. One typical example of incomplete contract in economy is
relationship-specific investments. In virtualized wireless network, the complemen-
tary relationship between infrastructure provider (InP) and service provider (SP) is
usually a long-term supply contract, and details of trades are left to be specified in
the future. Thus, the returns of the InP and SP depend on their bargaining positions,
ex post, and investments, ex ante. As a result, the InP and SP may hesitate to have
specific investment, since it may put them at risk of no return. The problems of

http://dx.doi.org/10.1007/978-3-319-53288-2_5
http://dx.doi.org/10.1007/978-3-319-53288-2_6
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determining how the ownership of the resources affects the InP and SP’s incentives
to invest and how to choose the most efficient investments in an MVN are studied in
Chap.7.

1.5 Summary

In this chapter, we have provided the fundamental concepts of contract theory and
introduced the potential applications for each class of the typical contract problems:
adverse selection and moral hazard. Specially, we have investigated the design of
reward, which is the most critical element in an incentive mechanism design. We
have also provided a detailed description on how to use such contract-theoretic tools
in several wireless applications, such as spectrum trading in cognitive radio network,
D2D communication, mobile crowdsourcing, fog computing, and virtualized net-
work. From those works, we have seen contract theory as a useful framework to
design incentive mechanisms to motivate the third party’s participation in emerg-
ing wireless networks. In the end, the future research directions for contract theory
applications in wireless networks are discussed, including the promising areas and
potential techniques from contract theory. In a nutshell, this chapter is expected to
provide an accessible and holistic introduction on the use of new techniques from
contract theory to address incentive problems in emerging wireless networks.

The rest of the book will go further into each application for detail modeling and
analysis. The organization of this book is as follows. The first application in Chap.2
will be the adverse selection problem in D2D communication. Then, the moral
hazard problem in mobile crowdsourcing and fog computing will be described in
Chaps. 3, 4, and 5, with each chapter provides the single-user single-reward model,
multi-user single-reward model, and single-user multi-reward model, respectively.
After discussing the applications of the two basic problems, we proceed to the mixed
problem of spectrum trading in cognitive radio network in Chap.6. After discussing
those complete contract cases, we will give one application of incomplete contract
in Chap.7 which is aiming at giving efficient investments in a mobile virtualized net-
work. Finally, conclusions and some possible future works are mentioned in Chap. 8.
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Chapter 2
Incentive Mechanisms for Device-to-Device
Communications in Cellular Networks
with Adverse Selection

2.1 Introduction

The proliferation of highly capable mobile devices, such as smartphones and tablets,
coupled with the introduction of resource demanding mobile services has expo-
nentially increased the demand for wireless access Sesia et al. (2009). A tremendous
amount of mobile data, especially mobile video traffic, is rapidly straining the capac-
ity of current wireless cellular networks (Cisco 2011). Consequently, novel wireless
networking paradigm is needed to meet the challenges of this unprecedented growth
in the demand for the wireless spectrum (Camps-Mur et al. 2013).

To deal with this wireless capacity crunch, device-to-device (D2D) communica-
tion underlaid over cellular network has recently been proposed as a means to boost
the overall wireless network capacity (Xu et al. 2014). D2D communication bene-
fits from the fact that two user equipments (UEs) in proximity of one another can
establish a direct communication link over the licensed band while bypassing the
cellular infrastructure such as the base stations (BSs). One common form of D2D
communication is the network-controlled one in which the BS manages the switch-
ing between direct and cellular links (Min et al. 2011a). Due to the proximity of the
involved users, if well-designed, D2D communication can dramatically improve the
wireless network capacity while reducing energy consumption (Quek et al. 2013). It
can also assist in off-loading the cellular traffic from the BSs while extending their
coverage (Yaacoub 2014).

If UEs’ resource blocks (RBs) can be shared, local users will be able to exchange
data (Song et al. 2014). For example, the BS can send a frequently requested content
to a number of devices who, in turn, can utilize D2D communication to spread the
content to other interested users (Qualcomm 2012). By doing so, within a certain
geographical area, instead of servicing a request multiple times, the BS would only
transmit contentswhich are not locally available. In this case, theBS’s traffic is signif-
icantly reduced, and thus, the cellular network capacity is increased. To successfully
achieve this goal, one main design challenge is to incentivize content owners to par-
ticipate and cooperate with other devices via D2D. If most users are unwilling to
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provide their contents via D2D communication, then the BS will still need to serve
the users via the conventional cellular network. Consequently, it is unable to increase
the network capacity. Clearly, the willingness of users to participate and share data
is of great importance to reap the benefits of D2D over cellular in terms of improved
capacity and traffic off-load.

Indeed, it is necessary to introduce effective incentive mechanisms that can
encourage users to participate in content sharing. In order to provide incentives,
the BS can offer rewards to users’ UEs for the usage of their resources (storage,
power, time, etc.) as well as for potential privacy risks arising from D2D, since UEs’
RBs are open to the BS. For example, if the user is willing to share its content and
assists the BS to transmit the data, the BS will offer a reward to compensate for this
user’s participation. The reward can be in the form of monetary remuneration or free
data among others (Golrezaei et al. 2013).

Intuitively, a well-designed incentive mechanism should reward UEs based on
their contributions: devices that contributemoremust get higher rewards than devices
with less contributions. Users with high preference toward participation will be more
likely to contribute. However, each user will attempt to harness as much reward as
possible by claiming that it is a high preference user, which brings difficulty to the BS
in reward design. This problem is exacerbated by information asymmetry—the BSs
may not be aware of the actual preference, which is naturally known by the users.
To this end, our main goal is to propose an incentive mechanism by overcoming this
information asymmetry in a D2D network as shown in Fig. 2.1.

In this respect, there is a need to design a mechanism in which UEs will be
rewarded in accordancewith their preference. Contract theory, a powerful framework

Fig. 2.1 The reward
assignment problem faced by
the BS
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from microeconomics, provides a useful set of tools for modeling incentive mech-
anisms under information asymmetry (Werin and Wijkander 1992). Using contract
theory, one can analyze the interactions between an employer who is trying to offer
proper contracts and employees whose skills are not known a priori (Bolton and
Dewatripont 2004). A contract is essentially a certain reward that will be given to
the employee in return for its services. In a D2D context, this contractual situation
can be used to study the interactions between BSs, acting as employers and, UEs,
acting as devices whose preferences are unknown to the BSs. Here, the contract will
represent the rewards provided by the BS to a certain D2D-capable UEwho will pro-
vide the required resources and quality-of-service via D2D participation. The main
advantages of adopting contract theory in a D2D scenario include the following: (1)
ability to incorporate semi-distributed network control in which the BS can control
the D2D communication links; (2) notions such as self-revealing contracts suitable to
handle information asymmetry, and (3) ability to devise optimal reward and incentive
mechanisms that can induce cooperation between UEs.

The main contribution of this chapter is to leverage the use of contract theory for
introducing D2D incentive mechanisms under information asymmetry. In particular,
we view the D2D sharing problem, as a contract-theoretical model in which the
BS hires the UEs as employees to fulfill the content transmission task. The BS, as
an employer, offers contracts to the UEs that specify different performance-reward
combinations for different UE preferences. The UEs, as employees, select contracts
that are the best fit to their own preferences.Under this scenario, theBS can efficiently
reward the users according to their performance and thusmotivate users to participate
in D2D communication.

For the studied D2D contract model, we provide the necessary and sufficient con-
ditions for contract feasibility. Here, contract feasibility implies that when users join
in, they receive the reward that covers their cost and in accordance with their true
preference. In addition, we study and analyze the problem under two key scenarios:
the discrete (finite) type and continuum (infinite) type. To implement the proposed
contract-theoretical D2D model, we propose a novel algorithm that can allow the
BS and UEs to interact and then optimize the network capacity while guaranteeing a
desired network quality-of-service (QoS). Simulation results show that the proposed
contract-theoretical model can guarantee UEs receive positive payoffs and compati-
ble incentives. We also study the system performance when the contract-theoretical
model is implemented in a D2D-underlaid cellular network. The optimal contract
gives the highest BS utility and social welfare as shown in the simulations. By vary-
ing the cellular network size, maximum D2D communication distance, and UE-type
numbers, we see the physical layer parameters’ impacts on the system performance.

The rest of this chapter is organized as follows. Section2.2 provides a detailed lit-
erature survey. The systemmodel is provided in Sect. 2.3. The optimal contract solu-
tion of discrete-type case is presented in Sect. 2.4, followed by the optimal contract
solution in continuum-type scenario. The simulation results are shown in Sect. 2.5.
Finally, summaries for this chapter are given in Sect. 2.6.
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2.2 Related Work

D2D communication has been subject to many recent research works such as in
(Min et al. 2011c; Yu et al. 2011). Due to the shared resources between direct D2D
communication and traditional infrastructure-based communication, new resource
allocation techniques are needed for D2D deployment (Zulhasnine et al. 2010). One
major challenge in D2D is interferencemanagement (Song et al. 2014). The common
mechanism is to limit maximum transmit power of D2D transmitter so as not to
generate harmful interference from D2D systems to cellular networks (Min et al.
2011b).

Some interference management strategies are also proposed to enhance the over-
all capacity of cellular networks and D2D system. For example, the work in (Tan-
bourgi et al. 2014) introduces the idea of cooperative interference cancellation (CIC)
between close-by UEs using D2D communications for improving the throughput
of cellular networks in the downlink (DL) period. Another work in (Zhang et al.
2013) formulates the interference betweendifferentD2Dand cellular communication
links as an interference-aware graph and proposes an interference-aware graph-based
resource-sharing algorithm. Several works study the use of D2D communication as
a means to optimize resource usage and maintain an efficient coexistence between
the D2D services and main cellular network (Xing et al. 2009).

Despite the large body of work on interference management and resource alloca-
tion in D2D communication, to our knowledge, few existing works have addressed to
the problemof providing incentives for users to participate in cellularD2D.Moreover,
using contract theory for network-controlled D2D has not been studied in existing
works.

Here, we note that the contract theory has been used in areas such as mobile cloud
computing and cognitive radio. For instance, in (Knapper et al. 2011), the authors
study the use of contract theory as a means to optimize the economic revenues of
a cloud server in a mobile cloud computing environment. Existing works such as
(Gao et al. 2011, 2013), and (Duan et al. 2014a) focus on the efficiency of resource
allocation in cognitive radio networks. The work in (Jin et al. 2012) introduces the
concept of insurance into the model, in which if the primary owner (PO) cannot
provide the channel purchased by a secondary user (SU), PO needs to pay a certain
amount of indemnity to the SU. In (Gao et al. 2014), the authors develop a contract-
theoretical mechanism to model the possibility of secondary users relaying data for
primary users to improve data rates. The work in Duan et al. (2014b) develops the
incentive compatible contracts to encourage users to participate in data acquisition
and distributed computing programs.

However, potential interference caused by resource sharing makes it difficult to
implement existing contract-theoretical models directly into the D2D underlaid cel-
lular network. In summary, while resource allocation and interference management
in D2D communication have been widely studied, no literature has investigated the
problem of providing incentives for users to engage in D2D underlaid cellular net-
works using contract theory as proposed here.
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2.3 System Model

Consider a cellular network with one BS, several cellular UEs, and D2D UE pairs.
In each UE pair, there is one content requester (receiver) and one candidate content
provider (transmitter). The UE receivers can receive data from the BS, or from
their corresponding UE transmitters through D2D communications. In order to off-
load traffic from the network’s infrastructure, the BS will offer a contract that can
effectively motivate the content provider to use, when possible, D2D communication
to deliver the content.

The UEs are heterogeneous with different preference toward joining D2D com-
munication, in terms of personal favor, battery level, and storage capacity. Naturally,
there is an information asymmetry between the BS and the UE. The UE is aware
of its own preference while the BS may not have that information. Thus, to over-
come the information asymmetry, the BS will specify a performance-reward bundle
contract (T (R), R), where T is the reward to the UE, R is the D2D performance
required from the UE, and T (R) is a strictly increasing function of R. Intuitively,
better performance should be rewardedmore and vice versa, which is called incentive
compatible.

2.3.1 Transmission Data Rate

The performance R is measured by the UE’s transmission data rate. We consider
the uplink (UL) scenario since UL resource sharing in D2D communications only
affects the BS, and the incurred interference can be mitigated by BS coordination
(Feng et al. 2013).

The transmission data rate is related to the signal to interference plus noise ratio
(SINR). In a cellular network with D2D underlaid, the receiver suffers interference
from cellular and D2D communications due to resource sharing. When D2D com-
munication is in the UL band, the source UE transmits data to the destination UEs
using the uplink band of the cellular band. The interference comes from the other
UEs (both cellular UE and D2D UE) (Xu et al. 2012). Thus, the transmission data
rate of a D2D UE i in the UL band with co-channel interference is given by

Ri = W log2

(
1 + Pi |hir |2

Pc|hcr |2 + ∑
i ′ Pi ′ |hi ′r |2 + N0

)
, (2.1)

where i ′ is the UE with i ′ �= i , Pc, Pi and Pi ′ are the transmit powers of the cellular
transmitter UE c and D2D transmitters UE i and i ′, respectively, hcr , hir and hi ′r are
the channel gain between D2D receiver and cellular transmitter c and D2D transmit-
ters i and i ′, respectively, N0 is the additive white Gaussian noise (AWGN),W is the
channel bandwidth. Hereinafter, without loss of generality, we assume that W = 1.∑

i ′ Pi ′h
2
i ′r represents the interference from the other D2D pairs that share spectrum

resources with link UE pair i .
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2.3.2 User Equipment Type

We define the UE type to be a representation of each UE’s preference toward joining
D2D communication. Given a fixed reward, a high-type UE will be more eager to
contribute in the transmission and provide a high data rate. Naturally, high-type UEs
are more preferred by the BS and will receive more reward. Here, we consider that
the number of UE types belong to discrete, finite space. In Sect. 2.4.2.2, we will
extend the results to the continuum case.

Definition 2.1 There are N D2DUE pairs in a D2D underlaid cellular network. The
UEs’ preferences are sorted in an ascending order and classified into N types: type-1,
. . ., type-i, . . ., and type-N. The type of UE includes properties such as the privacy
concern, battery remain, and the willingness to share data. θi denotes the type of UE
and follows

θ1 < · · · < θi < · · · < θN , i ∈ {1, · · · , N }. (2.2)

A higher θ implies more willingness to participate and contribute to the D2D
communication. Here, we write the contract designed for type-i UE as (Ti , Ri ). The
BS does not know the type of UE; however, it has knowledge of the probability that
a UE belongs to type-i, which is represented by λi , with

∑N
i=i λi = 1.

Instead of offering the same contract to all UEs, the BSwill offer different contract
bundles according UE-type θ. The UEs are free to accept or decline any type of
contracts. If the UE declines to receive any contract, we assume that the UE signs
a contract of (T (0), 0), where T (0) = 0. In the following subsections, we will give
the utility function of the BS and UEs based on the signed contract.

2.3.3 Base Station Model

For a BS that employs a type-iUE as aD2D content provider, a proper utility function
can be defined as the increased data rate by establishing a D2D communication

UBS(i) = Ri − cTi , (2.3)

where c > 0 is the BS’s unit cost, Ri is the required transmission rate UE must
provide, and Ti is the reward the BS needs to pay in the contract bundle (Ti , Ri ).
Here, we assume that the reward to the UE is a certain amount of free data. The utility
of the BS is the transmission data rate gained from D2D communication, minus the
reward to UEs. For D2D communication to be beneficial for the BS, it is clear from
(2.3) that we must have Ri − cTi ≥ 0. Otherwise, the BS will choose not to underlay
D2D communication.
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As there are N types of UE pairs, each with a probability λi , the expected utility
of the BS can be represented by

UBS =
N∑

i=1

λi (Ri − cTi ) . (2.4)

2.3.4 User Equipment Model

The utility function of a type-iUE employed based on a contract (Ti , Ri ) during D2D
communication is

UUE(i) = θi v(Ti ) − c′Ri , (2.5)

where v(Ti ) is the evaluation function regarding the rewards, which is a strictly
increasing concave function of T , where v(0) = 0, v′(T ) > 0, and v′′(T ) < 0 for all
T , and c′ is the UE’s unit energy cost on providing the required transmission rate.
For simplicity, we assume c′ = 1. The utility of a UE is the received rewards minus
the cost in terms of power consumption. Given the utility function in (2.5), the UE
chooses the bundle that maximizes its own payoff.

2.3.5 Social Welfare

The network social welfare is the summation of the BS and UEs’ utilities. As the
number of D2D UE transmitters and number of UE types are all equal to N , the
number of UE belongs to each type is 1. Assume that the distribution of the UE type
is uniform, then summing up (2.3) and (2.5) from 1 to N , we have

� =
N∑

i=1

[UBS(i) +UUE(i)] =
N∑

i=1

[θi v(Ti ) − cTi ]. (2.6)

The transmission data rate is the internal transfer between the BS and UE and is
canceled out.

2.4 Proposed Solution

In this section, we solve the BS’s network capacity maximization problem. First, we
will derive the necessary constraints that support the feasibility of the contract. Then,
we will formulate the optimization problem and extend to the continuum-type case.
Finally, we propose an algorithm for practical implementation.
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2.4.1 Conditions for Contract Feasibility

To ensure that the UE has an incentive to off-load BS traffic via D2D communication,
the contract that a UE selects needs to satisfy the following constraint.

Definition 2.2 Individual Rationality (IR): The contract that a UE selects should
guarantee that UUE(i) is nonnegative,

UUE(i) = θi v(Ti ) − Ri ≥ 0, i ∈ {1, · · · , N }. (2.7)

To motivate a UE’s participation, the received reward must compensate its power
consumption during D2D communication. If UUE(i) < 0, the UE will choose not to
establish the D2D communication. This case can be formally captured by the case
in which the UE signs the contract of (T (0), 0).

If a type-i UE selects the contract (Tj , R j ) intended for type-j UE, the utility that
the type-i UE receives is

U ′
UE(i) = θi v(Tj ) − R j , i, j ∈ {1, · · · , N }, i �= j. (2.8)

As we previously discussed, we want to design a contract such that type-i UE
would prefer the (Ti , Ri ) contract over all the other options. In other words, a type-i
UE receives the maximum utility when selecting contract (Ti , Ri ). The contract is
thus known to be as a self-revealing contract if and only if the following constraint
is satisfied.

Definition 2.3 Incentive Compatible (IC): UEs must prefer the contract designed
specifically for their own types, i.e.,

θi v(Ti ) − Ri ≥ θi v(Tj ) − R j , i, j ∈ {1, · · · , N }, i �= j. (2.9)

The IR and IC constraints are the basic conditions needed to ensure the incentive
compatibility of a contract. Beyond the IR and IC constraints, there are several more
conditions that must be satisfied.

Lemma 2.1 For any feasible contract (T, R), Ti > Tj if and only if θi > θ j , and
Ti = Tj if and only if θi = θ j .

Proof We prove this lemma by using the IC constraint in (2.9). First, we prove the
sufficiency: If θi > θ j , then Ti > Tj .

According to the IC constraint, we have

θi v(Ti ) − Ri ≥ θi v(Tj ) − R j and (2.10)

θ j v(Tj ) − R j ≥ θ j v(Ti ) − Ri , (2.11)

with i, j ∈ {1, · · · , N }, i �= j . We add the two inequalities together to get
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θi v(Ti ) + θ j v(Tj ) ≥ θi v(Tj ) + θ j v(Ti ), (2.12)

θi v(Ti ) − θ j v(Ti ) ≥ θi v(Tj ) − θ j v(Tj ),

v(Ti )(θi − θ j ) ≥ v(Tj )(θi − θ j ).

As θi > θ j , we must have θi − θ j > 0. Divide both sides of the inequality, we have
v(Ti ) > v(Tj ). From the definition of v(T ), we know that v is a strictly increasing
function of T . As v(Ti ) > v(Tj ) holds, we must have Ti > Tj .

Next, we prove the necessity: if Ti > Tj , then θi > θ j . Similar to the first case, we
start with the IC constraint in (2.10)–(2.12). Using a similar process, we can obtain

θi [v(Ti ) − v(Tj )] ≥ θ j [v(Ti ) − v(Tj )]. (2.13)

As Ti > Tj > 0 and v(T ) is strictly increasing with T , we must have v(Ti ) > v(Tj )

and v(Ti )−v(Tj ) > 0. Thus, by dividing both sides of the inequality, we get θi > θ j .
As a result, we have proved that θi > θ j if and only if Ti > Tj .

Using the same process, we can easily prove that Ti = Tj if and only if θi = θ j .

From Lemma 2.1, we know that if θ j < θi , then Tj < Ti must hold. Thus, a UE of
high type should receive more reward than a UE of low type. If two UEs receive the
same reward, theymust belong to the same type and vice versa. Given our assumption
inDefinition 2.1 that θ1 < · · · < θi < · · · < θN , we have T1 < · · · < Ti < · · · < TN .
Indeed, we can give a definition of this property.

Definition 2.4 Monotonicity: For any feasible contract (T, R), the reward T follows

0 ≤ T1 < · · · < Ti < · · · < TN . (2.14)

Monotonicity implies that the UEs of higher type, i.e., with higher preference
toward participation. From the property in monotonicity, we can have the following
proposition.

Proposition 2.1 As a strictly increasing function of T , the contribution R satisfies
the following condition intuitively

0 ≤ R1 < · · · < Ri < · · · < RN . (2.15)

Proposition 2.1 shows that an incentive compatible contract requires a high per-
formance of UE if it receives a high reward and vice versa.

Lemma 2.2 For any feasible contract (T, R), the utility of each type of users must
satisfy

0 ≤ UUE(1) < · · · < UUE(i) < · · · < UUE(N ). (2.16)

Proof From Definition 2.4 and Proposition 2.1, we know that UEs who ask for more
rewards must be able to provide larger transmitting rates, i.e., the two constraints
Ti > Tj and Ri > R j are imposed together. If θi > θ j , we have
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UUE(i) = θi v(Ti ) − Ri ≥ θi v(Tj ) − R j (IC) (2.17)

> θ j v(Tj ) − R j = UUE( j).

Now, we have UUE(i) > UUE( j) when θi > θ j . As θ1 < · · · < θi < · · · < θN , then
0 ≤ UUE(1) < · · · < UUE(i) < · · · < UUE(N ).

Thus, higher type UEs receive more utility than the UEs whose types are lower.
From the IC constraint and the two lemmas that we proved, we can easily deduce
the following. If a high-type UE selects the contract designed for a low-type UE,
even though a smaller transmission data rate is required from the BS, less reward
received will deteriorate UE’s utility. Moreover, if a lower type UE selects a contract
intended for a high-type UE, the gain in terms of rewards cannot compensate the
cost in power consumption for the high transmission data rate, and thus, the cost
surpasses the gain. The UE can receive the maximum utility if and only if it selects
the contract that best fit into its preference. Thus, we can guarantee that the contract
is self reveal.

2.4.2 Optimal Contract

Given the contract feasibility constraints, we will formulate the system optimization
problem in both discrete-type case and continuum-type case in this subsection.

2.4.2.1 Case of Discrete Type

Under the information asymmetry, the only information available at the BS is the
probability λi with which a certain UE might belong to type θi . Our main focus is to
maximize the utility of the BS, which represents the increased data rate when D2D
communication is underlaid. Therefore, the problem can be posed as the following
maximization

max
(T,R)

N∑

i=1

λi (Ri − cTi ) , (2.18)

s.t.

(a) θi v(Ti ) − Ri ≥ 0,

(b) θi v(Ti ) − Ri ≥ θi v(Tj ) − R j ,

(c) 0 ≤ T1 < · · · < Ti < · · · < TN ,

i, j ∈ {1, · · · , N }, i �= j.
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(a) and (b) represent the IR and IC constraints, respectively, and (c) represents the
monotonicity condition. This problem is not a convex optimization problem; how-
ever, we can perform the following steps to find a solution:

Step 1: Reduce IR constraints. From (2.18), we can see that in total there are N
IR constraints be satisfied. However, from Definition 2.1 we know that θ1 < · · · <

θi < · · · < θN . By using IC constraints, we have

θi v(Ti ) − Ri ≥ θi v(T1) − R1 ≥ θ1v(T1) − R1 ≥ 0. (2.19)

Thus, if the IR constraint of type-1 user is satisfied, the other IR constraints will
automatically hold. Therefore, we only need to keep the first IR constraints and
reduce the others.

Step 2: Reduce IC constraints. The IC constraints between type-i and type-j,
j ∈ {1, · · · , i − 1} are called downward incentive constraints (DICs). In particular,
the IC constraint between type-i and type-(i-1) is called local downward incentive
constraints (LDICs). Similarly, the IC constraints between type-i and type-j, j ∈
{i +1, · · · , N } are called upward incentive constraints (UICs), and the IC constraint
between type-i and type-(i+1) is called local upward incentive constraints (LUICs).
First, we prove that DICs can be reduced.

Proof As the number of users is N in our model, there exist N (N −1) IC constraints
in total. Here, we consider three types of users which follows θi−1 < θi < θi+1.
Then, we have the following two LDICs

θi+1v(Ti+1) − Ri+1 ≥ θi+1v(Ti ) − Ri and (2.20)

θi v(Ti ) − Ri ≥ θi v(Ti−1) − Ri−1. (2.21)

In Lemma 2.1, we have shown that Ti ≥ Tj whenever θi ≥ θ j > 0, the second
inequality becomes

θi+1[v(Ti ) − v(Ti−1)] ≥ θi [v(Ti ) − v(Ti−1)] ≥ Ri − Ri−1 and (2.22)

θi+1v(Ti+1) − Ri+1 ≥ θi+1v(Ti ) − Ri ≥ θi+1v(Ti−1) − Ri−1. (2.23)

Thus, we have

θi+1v(Ti+1) − Ri+1 ≥ θi+1v(Ti−1) − Ri−1. (2.24)

Therefore, if for type-i UE the LDIC holds, the incentive constraint with respect to
type-(i-1) UE holds. This process can be extended downward from type i − 1 to 1
UEs prove that all the DICs hold,
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θi+1v(Ti+1) − Ri+1 ≥ θi+1v(Ti−1) − Ri−1 (2.25)

≥ · · ·
≥ θi+1v(T1) − R1,

N > i ≥ 1.

Thus, we have completed the proof that with the LDIC constraint, all the DICs hold,
that is,

θi v(Ti ) − Ri ≥ θi v(Tj ) − R j , N ≥ i > j ≥ 1. (2.26)

Second, we prove all the UICs can be reduced.

Proof From the IC constraint, we have the following two LUICs:

θi−1v(Ti−1) − Ri−1 ≥ θi−1v(Ti ) − Ri and (2.27)

θi v(Ti ) − Ri ≥ θi v(Ti+1) − Ri+1. (2.28)

In Lemma 2.1 we have shown that Ti ≥ Tj whenever θi ≥ θ j > 0, the second
inequality can be derived as

Ri+1 − Ri ≥ θi (v(Ti+1) − v(Ti )) ≥ θi−1(v(Ti+1) − v(Ti )) and (2.29)

θi−1v(Ti−1) − Ri−1 ≥ θi−1v(Ti ) − Ri ≥ θi−1v(Ti+1) − Ri+1. (2.30)

Thus, we have

θi−1v(Ti−1) − Ri−1 ≥ θi−1v(Ti+1) − Ri+1. (2.31)

Therefore, if for t ype− (i − 1) UE, the incentive constraint with respect to t ype− i
UE holds, then all UICs are also satisfied. This process can be extended upward from
t ype i + 1 to N UEs prove that all the UICs hold,

θi−1v(Ti−1) − Ri−1 ≥ θi−1v(Ti+1) − Ri+1 (2.32)

≥ · · ·
≥ θi−1v(TN ) − RN ,

N ≥ i > 1.

Thus, we have complete the proof that with the LUIC constraint, all the UICs hold,
that is

θi v(Ti ) − Ri ≥ θi v(Tj ) − R j , 1 ≤ i < j ≤ N . (2.33)
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Indeed, with the monotonicity condition Ti−1 < Ti , the LDIC,

θi v(Ti ) − Ri ≥ θi v(Ti−1) − Ri−1, (2.34)

can easily imply that the LUIC,

θi−1v(Ti ) − Ri ≤ θi−1v(Ti−1) − Ri−1, (2.35)

can be satisfied and thus can be reduced. Thus, we have proved that, with the LDIC,
all the UICs are reduced.

Step 3: Solve the optimization problem with reduced constraints. Thus, we can
reduce the set of UICs and DICs, and only the set of LDICs and monotonicity
condition are binding. Therefore, the optimization problem reduces to

max
(T,R)

N∑

i=1

λi (Ri − cTi ) , (2.36)

s.t.

(a) θ1v(T1) − R1 = 0,

(b) θi v(Ti ) − Ri = θi v(Ti−1) − Ri−1,

(c) 0 ≤ T1 < · · · < Ti < · · · < TN ,

i ∈ {1, · · · , N }.

To solve this problem, we can first formulate and solve the relaxed problem
without the monotonicity condition and then consider the standard procedure of the
Lagrangian multiplier. Then, we check whether the solution to this relaxed problem
satisfies the monotonicity condition or not (Bolton and Dewatripont 2004).

The optimal contract solved by this optimization problem will give zeros utility
for the lowest type of UEs. If N = 2, there are only two types of UEs, the high-type
and the low type. By solving this optimization problem, the low-type UEs will obtain
a zero utility contract and the high-type UEs can receive a positive utility. In general
cases when N > 2, a similar conclusion is also provided in (Bolton and Dewatripont
2004; Gao et al. 2011, 2014), all types of UEs will get a positive utility except the
lowest type UE who will get a zero utility.

2.4.2.2 Case of Continuum Type

In the previous case, there are N types of UEs from θ1 to θN . In practice, the number
of UEs types can be infinite. In this subsection, we will give an analysis about the
continuum-type case with type θ which has the probability density function (PDF)
f (θ) (with cumulative distribution function (CDF) F(θ) on the interval [θ, θ]. The
contract that a BS offers to the UE is written as [T (θ), R(θ)]. T is monotonously
increasing in R as in the discrete case. If no trading happens between the BS and the
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UE, the contract is set as T (θ) = 0 and R(θ) = 0. Similar to the discrete-type case,
we can write the BS’s optimization problem as follows.

max
{T (θ),R(θ)}

∫ θ

θ

[R(θ) − cT (θ)] f (θ)dθ, (2.37)

s.t.

(a) θv[T (θ)] − R(θ) ≥ 0,

(b) θv[T (θ)] − R(θ) ≥ θv[T (θ̂)] − R(θ̂),

θ, θ̂ ∈ [θ, θ].

Condition (a) is the IR constraints and (b) represents the IC constraints. To solve this
continuum-type case problem, we follow a similar process as the discrete-type case
and begin by reducing the IR and IC constraints.

Step 1: Reduce IR constraints. We first reduce the number of IR constraints as did
in the discrete case. Since the IC constraints hold, we have

θv[T (θ)] − R(θ) ≥ θv[T (θ)] − R(θ) (2.38)

≥ θv[T (θ)] − R(θ).

Thus, if the IR constraint of θ is satisfied, the IR constraints for all the other values
of θ will automatically hold. Therefore, replace the IR constraints by

θv[T (θ)] − R(θ) ≥ 0. (2.39)

Step 2: Reduce IC constraints. To reduce the IC constraints, we give Lemma 2.3
that using two other constraints to replace all IC constraints (Bolton and Dewatripont
2004).

Lemma 2.3 The IC constraint is equivalent to the following two conditions:

1. Monotonicity
dT (θ)

dθ
≥ 0. (2.40)

2. Local incentive compatibility

θv′[T (θ)]dT (θ)

dθ
= R′(θ), θ ∈ [θ, θ]. (2.41)

Proof The monotonicity can be easily derived following the steps in Lemma 2.1
and Definition 2.4. The local incentive compatibility can be proved by contradiction.
Suppose we have the monotonicity and local incentive compatibility, and the IC
constraint cannot be held. Then, with at least one θ̂ violates the IC constraint

0 ≤ θv[T (θ)] − R(θ) < θv[T (θ̂)] − R(θ̂). (2.42)
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Integrating it from θ to θ̂, we get

∫ θ̂

θ

[
θv′[T (x)]dT (x)

dx
− R′(x)

]
dx > 0. (2.43)

From the local incentive compatibility, we know
∫ θ̂

θ

[
xv′[T (x)] dT (x)

dx − R′(x)
]
dx =

0. If θ < x < θ̂, from the monotonicity we have θ dv(T (x))
dx ≤ x dv(T (x))

dx . Therefore,

∫ θ̂

θ

[
θv′[T (x)]dT (x)

dx
− R′(x)

]
dx < 0. (2.44)

Thus, we see a contradiction. Similarly, if θ > θ̂, we can also get a contradiction.
Thus, the two conditions, monotonicity and local incentive compatibility, can guar-
antee the UE’s incentive compatible constraints.

Step 3: Optimization problem with reduced constraints. Finally, the BS’s opti-
mization problem can be written as

max
(T (θ),R(θ))

∫ θ

θ

[R(θ) − cT (θ)] f (θ)dθ, (2.45)

s.t.

(a) θv[T (θ)] − R(θ) ≥ 0,

(b) θv′[T (θ)]dT (θ)

dθ
= R′(θ),

(c)
dT (θ)

dθ
≥ 0,

θ ∈ [θ, θ].

Similar to the discrete-type case problem, constraints (a) and (b) represent the IR
and IC constraints, and constraint (c) is the monotonicity condition. The procedure
for solving this problem is also similar to the discrete-type case problem. First ignore
themonotonicity condition and solve the relaxed problemwith constraints (a) and (b).
Then, check whether the solution to this relaxed problem satisfies the monotonicity
condition or not.

2.4.3 Practical Implementation

By solving the proposed problem, we could provide UEs with the optimal contract
that can incentivize them to participate in D2D communication. To implement the
proposed approach in a practicalD2Dnetwork,we can follow the next steps. From the
system model, we have the initial information such as the cellular network radius S,



32 2 Incentive Mechanisms for Device-to-Device Communications …

the cellular users’ transmit power Pc, the number of UE types N , and the probability
λi that UE belongs to θi . With those initial values, the BS can obtain the optimal
contract (T, R). Once there are UEs requesting contents, the BS acts in the following
stages.

In the first stage, when the BS receives UEs’ requests for contents, the BS will
detect if the contents are locally accessible in other UEs within the maximum D2D
communication distance L . If the content is locally available, then the BSwill broad-
cast the optimal contracts to the candidate content providers. By evaluating the con-
tracts, UEs will send feedback signals to indicate whether they are willing to partic-
ipate in according to the estimated utility. After getting feedback from UEs, the BS
will sign the contract with the UE that accepts it. If all UEs reject the contract, the
BS will serve the content requester directly, which is the same procedure as if the
content is not locally accessible.

After signing the contract, the employed UE will set up the D2D communication
and forward the content to the content requester. The BS will stand by to watch the
communication by sending control signals and also receiving feedback signals from
UEs. If the transmission is successful, the BS rewards the involved UEs based on
their contract. Otherwise, if the transmission failed, the BS serves the user directly
and the “employed” UE will not receive the reward. The proposed D2D communi-
cation algorithm is summarized in Algorithm 1. This algorithm gives the practical
implementation steps of the theoretical model.

2.5 Simulation Results and Analysis

In this part, wewill first evaluate the feasibility of the proposed contract and then ana-
lyze the system performance when D2D communication is underlaid in the cellular
network.

First of all, we donate the optimal contract solved in the previous section by infor-
mation asymmetry. For comparison purposes, we introduce another two incentive
mechanisms. The first one is the optimal contract under no information asymmetry
(i.e., the BS is aware of the types of UEs), which is the optimal outcome that we can
achieve and serve as the upper bound. The second contract is the linear pricingwhich
is also under the information asymmetry that the BS has no acknowledgment of the
UE type. In this linear pricing mechanism, the BS will only specify a unit price P
for data rate, and the UEs will request the amount of reward T which corresponding
to a certain amount of data rate, to maximize their own utilities.

We assume N = 20 and give the simulation with 20 types of UEs. For simplicity,
we consider a uniform distribution of UE type, i.e., λi = 1/N . We set the unit
payment cost of the BS c = 0.01. The main parameters of the D2D underlaid
cellular network are shown in Table2.1.
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Table 2.1 Physical layer parameters

Parameter Value

Cellular area radius 500 m

Maximum D2D distance 30 m

number of UE types 20

Noise spectral density −174 dBm/Hz

Noise figure 9 dB at device

Antenna gains BS: 14 dBi; device: 0 dBi

Transmit power BS: 46 dBm; device: 23 dBm

2.5.1 Contract Feasibility

2.5.1.1 Monotonicity

In Fig. 2.2a, b, we compare the required transmission data rate and reward of different
type UEs to show the monotonicity of the contract.

In Fig. 2.2a, we see that required transmission data rate increases with the UE
type, which is consistent with our system model. The difference among the three
mechanisms is that the required data rate under no information asymmetry and linear
pricing is linear function of type and is a concave function of type under information
asymmetry. Among the three mechanisms, the no information asymmetry contract
requires the highest data rate from the UE, followed by the optimal contract under
information asymmetry. The lowest data rate is required under the linear pricing
contract. Similarly, the reward shown in Fig. 2.2b also proves our assumption that
reward T is a strictly increasing function of UE type.
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2.5.1.2 Incentive Compatibility

In Fig. 2.3, we evaluate the incentive compatibility of our proposed contract, the
optimal scheme. We show the utilities of type-5, type-10, and type-15 UEs when
selecting all the contracts offered by the BS. The utility of each user is a concave
function. Each UE can achieve their maximum utility if and only if it selects the type
of contract that is intended for its own type, as shown clearly in Fig. 2.3. Thus, by
designing a contract in this form, the type of an UE will be automatically revealed
to the BS after its selection. In other words, the optimal contract under information
asymmetry enables that the BS breaks the information asymmetry and retrieves the
information related to UE type.

Moreover, Fig. 2.3 shows that when the three types of users select the same con-
tracts, their utilities follow the inequality u5 < u10 < u15. This corroborates the
result shown by the (2.16) in Lemma 2.2: the higher the type of the UE, the larger
the utility it can receive when selecting the same contract.

2.5.2 System Performance

To evaluate the performance of the D2D underlaid cellular network, we try to see
the impacts of different parameters on the utility of BS, UE, and social welfare.
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2.5.2.1 The UE Type

First, we take a close look at the three values of different types of UEs in Fig. 2.4.
The three figures show the monotonicity of the contract that the higher the UE type,
the larger the utility it will bring to the BS and UE, as well as the social welfare.

Figure2.4a shows that the BS achieves the highest utility when there is no infor-
mation asymmetry, since the BS has full knowledge of UE types. Nonetheless, we
can see that the proposed solution with information asymmetry yields a utility for
the BS that outperforms the linear pricing case. Here, we note that even though
the optimal contract under information asymmetry can force the UEs to reveal their
types, the exact value of the UE type is still unavailable to the BS. Thus, the BS can
only achieve a near-optimal utility under information asymmetry, which is always
upper bounded by the no information asymmetry case. The linear pricingmechanism
does not place any restriction on the UEs choice of contract and less information is
retrieved, which prevents the BS from obtaining more utility.

In Fig. 2.4b, we compare 20 types of UEs’ utilities. These results proved the
monotonicity of the contract that the higher the type of UE, the larger the utility it
can receive under information asymmetry. All the types ofUEs enjoy a positive utility
except the lowest type (i.e., type-1) UE, which is consistent with our conclusion in
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Sect. 2.4.2.2. However, the UE’s utility remains 0 disregarding the type of UE under
no information asymmetry. This is due to the fact that when the BS is available at
the UE’s type, it will adjust the contract to maximize its own utility while leave the
UE a 0 utility. Overall, we see that linear pricing gives the UEs the highest utility,
followed by the optimal contract under information asymmetry, then the ideal case
with no information asymmetry. However, for some of the high-type UEs can obtain
higher utility from the optimal contract under information asymmetry than the linear
pricing.

In Fig. 2.4c, we see that the social welfare shows similar performance with that
of the BS. One interesting point is that, the social welfare of the highest type UE has
the same value under no information asymmetry and information asymmetry. This
is in accordance with the conclusion we made in Sect. 2.4.2.2 that the highest type
UE will result in an efficient trading as if there is no information asymmetry. For
other high-type UEs under no information asymmetry, they also have close optimal
efficient trading with the BS. The linear pricing mechanism gives the lowest social
welfare (i.e., trading efficiency) since no information retrieving strategy has been
applied.

2.5.2.2 The Cellular Network Size

In a small-sized network, cellular communication will generate severe interference
on D2D communication, which will decrease the transmission data rate of UEs. The
interference will decrease as the size of network increases. In Fig. 2.5, we show the
impact of network size on the system’s performance.

In Fig. 2.5a, b, we show the utility of the BS and UEs when the cellular network
size varies, when the transmission power and the antenna gain of the BS are fixed.
As the size of cellular decreases, D2D UE pairs and cellular UEs are located in a
more dense area, and suffering from a larger interference from other cellular and
D2D UEs. Thus, the transmission data rate decreases, as well as the rewards. As a
result, the utilities of the BS and UE also decrease.

FromFig. 2.5a, we see that the utility of BS achieves themaximumutility under no
information asymmetry, followed by the optimal contract under information asym-
metry. The linear pricing gives theworst utility to theBSwhich compares to the other
two. The utility of the UE has one similar property as Fig. 2.4b that the UE utility
under no information asymmetry remains 0. The UE achieves the maximum utility
by the linear pricing, followed by the optimal contract under information asymme-
try. The UEs benefit from the information asymmetry, while the BS can increase its
utility by removing the information asymmetry.

From Fig. 2.5c, we can also see the differences in the social welfare under the
three different contracts. Social welfare under no information asymmetry achieves
the highest among the other two.As theBS is informed of theUE type, the transaction
achieves the highest efficiency, then followed by the optimal contract achieved under
information asymmetry. The linear pricing presents the worst efficiency. The opti-
mal contract achieved under information asymmetry achieves a near-optimal social
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Fig. 2.5 The system performance when the size of cellular network varies

welfare, as it breaks the information asymmetry when the UEs select contracts, their
types are revealed to the BS automatically. The linear pricing does not account for
any type of information and thus has the lowest social welfare.

2.5.2.3 The Maximum D2D Communication Distance

When the size of the cellular network and the BS transmission power are fixed,
the interference from cellular communication will be in a certain range. Under this
condition, we change the maximum transmission distance of D2D pairs, to see the
effects on system performance, in Fig. 2.6.

For the utility of the BS and UEs, Fig. 2.6a, b still exhibit similar properties
as shown in Fig. 2.5a, b. The utility that the BS receives is maximized under no
information asymmetry, followed by information asymmetry and linear pricing. The
UE achieves the maximum utility under linear pricing, followed by information
asymmetry and no information asymmetrywhich equals to 0 all the time. The highest
social welfare is achieved under no information asymmetry, information asymmetry
is the second, and linear pricing results in the worst social welfare.
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Fig. 2.6 The system performance when the maximum D2D communication distance varies

2.5.2.4 The Number of UE Types

In Fig. 2.7, we study the system performancewhen the number of UE types increases,
while the other parameters are fixed. An increase in the number of types will auto-
matically yield an increase in the total number of UEs pairs. Thus, the utilities of the
BS and UE and the social welfare will also increase.

Similar to the conclusions drawn from the Figs. 2.5 and 2.6, the BS has the highest
utility under no information asymmetry. The optimal contract under information
asymmetry gives the second highest BS utility. The linear pricing still gives the worst
utility to the BS. The linear pricing gives the highest UE utility, the optimal contract
under information asymmetry gives the second highest one, and the no information
asymmetry remains 0. The case under no information asymmetry achieves the highest
socialwelfare among all schemes. Theoptimal contract under information asymmetry
yields the second highest social welfare. The linear pricing still achieves the lowest
efficiency in social welfare.
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Fig. 2.7 The system performance when the number of UE types varies

2.6 Summary

In this chapter, we have proposed an adverse selection model for addressing the
problem of incentivizing UEs to participate in D2D communication underlaid over
a cellular system. Under the case with information asymmetry in which the UEs’
preferences are not available at the BS, we have proposed a self-revealingmechanism
based on the framework of contract theory.We have considered the type of UEs under
two different scenarios, the discrete-type case and continuum-type case. Simulation
results have shown that our proposed approach can potentially incentivize UEs to
participate in D2D communication. Furthermore, the optimal contract under infor-
mation asymmetry has been proved to obtain the performance close to the ideal case
with no information asymmetry, and higher than the linear pricing when not trying
to retrieve any information at all. As there are many literatures have also covered
the adverse selection problem in wireless networks, we will start to talk about other
contract-theoretical models, such as moral hazard, mixed problem, and incomplete
contract, which are less covered in the previous literature from the next chapter.
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Chapter 3
Incentive Mechanism in Crowdsourcing
with Moral Hazard

3.1 Introduction

From this chapter, we will discuss several applications of the moral hazard prob-
lem by adopting different models. One fundamental model will be given in this
chapter as an introductory. Then, two extensions will be discussed sequentially.
Nowadays, people are used to access various sophisticated location-based services
(e.g., Foursquare andYelp) from their smartphones throughwireless access networks.
Most location-based services require user to regularly transmit data to the principal,
which is obtained by the embedded sensor in smartphone. One brief illustration of
crowdsourcing is shown in Fig. 3.1, in which the smartphone users regularly transmit
data to the principal. Once the data is processed by the principal, the location-based
service is provided to the users for free. One well-known application is the live auto
traffic map offered by Google. Smartphone users transmit traffic information which
includes the time, location, and velocity to Google. Google collects those data and
processes necessary data analysis before providing the free live traffic map to the
users (Angmin and Valentino-Devries 2011).

With the drastic growth in the global location-based service market, as well as
the rapid development of big data technology, more data as well as user participa-
tion are required to support more sophisticated services. While participating in a
crowdsourcing activity, smartphone users consume their own resources such as bat-
tery and computing power. In addition, users expose their locations with potential
privacy threats (Zhao et al. 2014). Many users are hesitated to participate in with
those concerns, which become one of the serious impediments to the development
of location-based services. Thus, necessary incentive mechanisms that motivate the
users to participate are needed to address the new demands.

Many researches have already noticed that there is an urgent need to alleviate the
conflict by introducing an incentive mechanism to the users. The plan proposed by
Karma (2012) is to reward users with a fixed reward for the first time of participating
in, while the problem of this mechanism is lacking of continuous incentive for users
to stay actively after receiving the opening reward (Gao et al. 2014). Inspired by
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Fig. 3.1 An illustration of crowdsourcing

the effort-based reward from the labor market, several works have been proposed
to address this problem by providing a reward-performance consistent contract. The
work in Luo et al. (2014) derives the optimal contribution-dependent price function
that induces the maximum profit for the principal, while strictly maintaining the
incentive for users to participate in the Bayesian game equilibrium. Similarly, based
on contract theory, Duan et al. (2012) offers an effort-based contract for users to
select the amount of work they would like to accomplish voluntarily.

In this chapter, we adopt the performance-related contract to incentivize users
to turn on their sensors and allow data collecting for the principal. We assume that
the principal will offer a compensation package based on the performance that user
achieves. The performance can bemeasured by the quantity, quality, or importance of
the data. From the principal’s aspect, it makes profit by extracting useful information
from the collected data and by selling advertisements embedded in the location-
based service, while the principal also incurs a cost such as the rewards for users
and the operation cost. Thus, the principal needs to find a proper mechanism that can
maximize its own benefit, while at the same time ensures the users receive necessary
incentives for participation.

The moral hazard model of contract theory provides us a useful tool to design
such a mechanism, which aims at solving the employees’ incentive problems when
performing a task.Moral hazard ariseswhen employees are not taking the full respon-
sibilities for their tasks, and they are intending to shirk and act less carefully during
work (Werin and Wijkander 1992). In our model, the principal is facing the moral
hazard of the users. Users like to enjoy the location-based service provided by the
principal, but dislike exposing their location and collecting location-based informa-
tion for the principal.
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Indeed, the moral hazard model can be adopted fluently in the crowdsourcing
activity. First, the principal can specify a performance-related compensation package
to the user. Based on the compensation scheme, the user will then maximize its own
utility by deciding how much effort it will contribute to the crowdsourcing process.
The key point is to find out the compensation package that satisfies both the principal
and the user. In a nutshell, we need to design a compensation package in which the
users will select the amount of effort in accordance with the compensation received
from the principal, and the principal’s utility is maximized.

The main contributions of this chapter are as follows: First, we adopt a
performance-related compensation package to provide userswith a continuous incen-
tive to participate in crowdsourcing activity. Second, we propose a novel approach to
solve the optimal compensation package using the framework ofmoral hazard, which
is rooted in economic research. Last, through simulations, we provide a thorough
study of the key parameters’ influences on the compensation package. In addition,
we propose three other mechanisms to serve as the comparisons, which prove the
effectiveness of the proposed mechanism and show that the users obtain continuous
incentives to participate in crowdsourcing.

The remainder of this chapter is organized as follows: First, we will introduce the
network model in Sect. 3.2. Then, the problem formulation is described in Sect. 3.3,
andwepropose the solution of the optimization problem.The performance evaluation
is conducted in Sect. 3.4. Finally, Sect. 3.5 gives the summary of this chapter.

3.2 System Model

We consider a user who participates in a crowdsourcing activity initiated by a prin-
cipal. In this section, we will first construct the compensation package offered by
the principal, and then give the utility functions of both the user and principal before
proceeding to the solution of the optimal compensation package.

3.2.1 Utility of User

Inspired by the manager’s compensation package in industry, which comprises a
fixed salary, a bonus related to the firm’s profits in the current year, and stock options
related compensation based on the firm’s share price (Bebchuk et al. 2002), we define
the compensation package w in a crowdsourcing activity as a combination of a fixed
salary t , a short-term bonus, and a long-term bonus. The short-term bonus is the
reward related to the user’s current performance which can be referred to the qual-
ity of the received data q (e.g., quantity, quality, correlativeness, and importance of
the data). The long-term bonus can be regarded as the user’s benefit from using the
location-based service provided by the principal for free, and this benefit is highly
correlated with the quality of the location-based service p (e.g., update frequency,
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effectiveness, reliability, popularity, privacy, and security of the service). Thus, we
can also regard the quality of location-based service as the performance of the prin-
cipal.

When user helps to collect useful data for the principal, we regarded it as the
user is making an effort a ∈ A, while the effort a is hidden from the principal who
can only observe the performance q, i.e., the quality of the received data. Due to
some measurement errors, the quality of received data q is slightly different from the
actual effort exerted by the user. Therefore, the performance of the user is a noisy
signal of its effort. Thus, we assume that the quality of received data q to be normally
distributed with mean a and variance σ 2

q :

q = a + εq , (3.1)

where εq ∼ N (0, σ 2
q ).

Similarly, as the effort the user takes in the crowdsourcing is one significant
feature that determines the quality of location-based service, we take the quality of
location-based service p to be normally distributed with mean a and variance σ 2

p :

p = a + εp, (3.2)

where εp is a normally distributed random variable εp ∼ N (0, σ 2
p). As the user’s

evaluation of the quality of the location-based service varies from person to person,
a positive or negative εp can be regarded as the user’s personal favor toward the
location-based service.

Without loss of generosity, we assume that both the short- and long-term bonuses
are linear contracts with the qualities of the received data and location-based service.
By restricting the compensation package offered by the principal in the linear form,
the compensation package w the user receives by participating in the crowdsourcing
activity can be written as

w = t + sq + f p, (3.3)

where t denotes the fixed compensation salary (independent of performance), s
denotes the fraction of reward related to the user’s performance q, and f is the
fraction of reward related to the principal’s performance p. Therefore, sq repre-
sents the short-term bonus (performance-related component of compensation) and
f p means the long-term bonus from experiencing the free location-based service.
As the popularity of a location-based service depends onmany aspects such as the

market and app design, the qualities of receiving data q and location-based service p
behave differently.While they are likely to be correlated randomvariables, the quality
of the received data provides one of the solid supports for the success of a location-
based service. Therefore, we let σqp denote the covariance of q and p. In practice,
we rarely meet the situation where a high quality of the receiving data q corresponds
to a low quality of location-based service p. In other words, the two variables q
and p cannot be negatively correlated. Thus, we assume that the covariance σqp is a
nonnegative value, with σqp ≥ 0.
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In this model, we assume that the user has constant absolute risk averse (CARA)
risk preferences, which means the user has a constant attitude toward risk as its
income increases. Thus, user utility is represented by a negative exponential utility
form:

u(w, a) = −e−η[w−ψ(a)], (3.4)

where η > 0 is the user’s coefficient of absolute risk aversion (η = −u′′/u′). A
larger value of η > 0 means less incentive for the user to implement an effort. ψ(a)

is the incurring cost in providing the effort a for the principal. For simplicity, the
cost function is assumed to be quadratic:

ψ(a) = 1

2
ca2. (3.5)

The utility and cost of the user are measured in such monetary units that they are
consistent with the compensation from the principal.

3.2.2 Utility of Principal

In this model, we regard the principal as a “buy and hold” investor, who cares only
about the direct performance of the user (Tirole 1993). That is, the principal is not
concerned about its profit from the location-based service in the secondary market
(e.g., advertisement selling). Therefore, the utility of the principal is not directly
concerned about the quality of the location-based service p. Thus, we define the
utility of the principal as the evaluation of the quality of received data q minus the
compensation package w to the user. Thus, the principal’s utility is written as

V (w, a) = E(q − w), (3.6)

where E(·) is the evaluation function that follows E(0) = 0, E ′(·) > 0, and
E ′′(·) ≥ 0.

Different from the user who has CARA risk preferences, the principal here is
assumed to be risk neutral, i.e., E ′′(·) = 0. Thus, the utility of the principal can be
simplified as

V (w, a) = q − w = (1 − s − f )a − t. (3.7)

3.3 Problem Formulation

With utility definitions of the user and principal, we can solve the principal’s util-
ity maximization problem while providing the user with necessary incentives. The
principal’s problem can be written as
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max
a,t,s, f

V (w, a), (3.8)

s.t. (a) a∗ ∈ argmax
a

u(w, a),

(b) u(w, a) ≥ u(w),

where u(w) is the reservation utility of the user when not taking any effort (a = 0)
in the crowdsourcing. The principal maximizes its own utility under the incentive
compatible (IC) constraint (a) that the user selects the optimal effort that maximizes
its own utility, and the individual rationality (IR) constraint (b) that user receives no
less than its reservation utility.

Maximizing the user’s expected utility u(w, a) is equivalent to maximizing

u(w, a) = −e−η[t+s(a+εq )+ f (a+εp)− 1
2 ca

2], (3.9)

= −e−η(t+sa+ f a− 1
2 ca

2)e−η(sεq+ f εp).

In (3.9), the first part of the utility function is a constant value, while the second
part which includes random variables εq and εp needs further simplification. From
(Bolton and Dewatripont 2004), we see that

eγ ε = e
γ 2σ2

2 , (3.10)

where γ is a constant and ε is a normally distributed random variable with ε ∼
N (0, σ 2). As we have mentioned previously, there are εq ∼ N (0, σ 2

q ) and εp ∼
N (0, σ 2

p). We can assume a new random variable ε′ = sεq + f εp. The new variable
ε′ still follows the normal distribution N (0, σ ′2). The variance σ ′2 of ε′ can be derived
as follows:

Var(ε′) = Var(sεq + f εp), (3.11)

= Var(sεq) + Var( f εp) + 2Cov(sεq , f εp),

= s2σ 2
q + f 2σ 2

p + 2s f σqp.

Thus, implementing (3.10) and (3.11) into (3.9), we have

u(w, a) = −e−η(t+sa+ f a− 1
2 ca

2)+ 1
2 η(s2σ 2

q +2s f σqp+ f 2σ 2
p ). (3.12)

With the definition of the principal’s utility function in (3.7), we can rewrite the
principal and user’s objectives in terms of their certainty equivalent wealth and thus
obtain the following simple representation of the principal’s problem:
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max
a,t,s, f

(1 − s − f )a − t, (3.13)

s.t. (a) a ∈ argmax
a

[(s + f )a + t − 1

2
ca2 − 1

2
η(s2σ 2

q + 2s f σqp + f 2σ 2
p)],

(b) [(s + f )a + t − 1

2
ca2 − 1

2
η(s2σ 2

q + 2s f σqp + f 2σ 2
p)] ≥ w,

where w denotes the reservation compensation of the user when not participating in
the crowdsourcing activity.

This problem can be solved by using the first-order approach. In the first step, we
take the first derivative of the user’s utility function regarding a and set it u′(w, a) =
0. Then, we obtain the optimal effort a∗

a∗ = s + f

c
. (3.14)

Accordingly, we substitute the IR constraint with the optimal action a∗ and sim-
plify the owner’s problem to

max
t,s, f

(1 − s − f )
s + f

c
− t, (3.15)

s.t. (a) [(s + f )
s + f

c
+ t − 1

2
c

(
s + f

c

)2
− 1

2
η(s2σ 2

q + 2s f σqp + f 2σ 2
p)] = w.

Substituting for the value of t in the IR constraint andmaximizingwith respect to s
and f , we then have the fraction of reward s∗ related to performance and the fraction
of benefit f ∗ from the location-based service in the optimal linear compensation
package as follows:

s∗ = σ 2
P − σqp

σ 2
q + 2σqp + σ 2

p

1

1 + ηcΩ
, (3.16)

f ∗ = σ 2
q − σqp

σ 2
q + 2σqp + σ 2

p

1

1 + ηcΩ
, (3.17)

where

Ω = σ 2
q σ 2

p − σ 2
qp

σ 2
q + 2σqp + σ 2

p

. (3.18)

Representing t by w, s, and f , we obtain the fixed salary t in the optimal linear
compensation package as follows:

t∗ = w + 1

2
η(s2σ 2

q + 2s f σqp + f 2σ 2
p) + 1

2
c

(
s + f

c

)2

− (s + f )
s + f

c
. (3.19)
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These expressions determine how the user’s compensation package varies as a
function of the underlying environment in which the crowdsourcing activity goes on.
Specifically, the compensation package can be directly tied to the stochastic structure
of the qualities of received data and location-based service which are related to the
user’s effort.

3.4 Simulation Results and Analysis

In this section,wewill first give an analysis about the compensation package obtained
in the previous section by varying the parameters such as the cost coefficient, standard
deviation, covariance, and risk averse degree. Then, we will conduct a comparison
among several compensation packages in different scenarios. In the simulation setup,
we assume that the reservation salary of the user w = 0 when not participating in
the crowdsourcing (a = 0). We notice that, in the optimal compensation package we
have derived, no matter how those parameters change, the user’s utility will remain
the same. As the principal tries to maximize its own utility, it restricts the user’s
utility as small as possible, as long as the user can be incentivized to participate
in the crowdsourcing. Thus, the optimal compensation package will bring user the
utility the same as the reservation utility −e−ηw, which in our case is −1 as we set
w = 0.

3.4.1 Optimal Compensation Package Analysis

In Fig. 3.2, we investigate the impacts of covariance σqp on the compensation pack-
age, while fixing the standard deviations σq and σp, cost coefficient c, and risk averse
degree η. The simulation results show that as the covariance σqp increases, the opti-
mal effort a, compensation package w, and the principal’s utility are all decreasing.
Meanwhile, we see that the fixed salary t , short-term bonus sq, and long-term bonus
f p in the compensation package are decreasing as well. This result is because as
the relationship between the qualities of received data and the location-based ser-
vice becomes more volatile, it becomes harder to predict them both when implying
an effort. Thus, the user becomes more reluctant to participate in the crowdsourc-
ing. Therefore, the principal receives less utility and compensates the user with less
reward.

In Fig. 3.3, we are planning to see the standard deviations of the two bonus items’
influences on the compensation package. In Fig. 3.3a, d, we plot the optimal effort
and principal’s utility for both cases in the same figure, as the two bonus items have
a symmetrical form in the expressions we derived in the previous section. Thus, as
either σq and σp increases, the optimal effort and principal’s utility have the same
value. Similarly, we see that the values of the compensation package w in Fig. 3.3b,
c are same when either of the two standard deviation varies.
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Fig. 3.2 Compensation package as the covariance σqp varies

From Fig. 3.3, we see that as each standard deviation (σq or σp) increases, the
optimal effort a, compensation package w, and the principal’s utility are decreasing.
However, if we look inside the compensation package, the three bonus items show
different properties. In Fig. 3.3b, we see that as the quality of location-based ser-
vice’s standard deviation σp increases, only the long-term bonus f p decreases with
the compensation package w, while the fixed salary t and the short-term bonus sq
are increasing. This situation is because as the principal’s quality of location-based
service becomes more volatile (σp increases), the user’s benefit from the service
decreases ( f p becomes smaller), but the share from the fixed salary and transmitted
data increases (t and sq increase).

Figure3.3c shows similar properties as Fig. 3.3b. However, the two term bonus
items sq and f p show the opposite behavior compared to the previous case. As
σq increases, i.e., the quality of received data becomes more volatile, the user’s
compensation from the long-term bonus f p and the fixed salary t is increasing at
the same time, while the short-term bonus sq in user’s compensation package goes
down.

From both Fig. 3.3b, c, we have learned that as the user’s utility remains the same
in all situations, the compensation package offered to the user will mostly rely on
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Fig. 3.3 Compensation package as the quality of received data or location-based service’s standard
deviation σq/σp varies

the part that is more stable, such as the fixed salary in both cases, while lowering the
proportion of bonus from the less predictable part. By this mechanism, the risk of
losing user’s incentive in all kinds of situations can be canceled.

3.4.2 Compensation Package Comparison

In this subsection, we will propose another three incentive mechanisms as the com-
parisons with the compensation package in the previous section. For the incentive
mechanism in the previous section, we have assumed that the compensation package
includes three parts: the fixed salary t , the share of bonus based on current perfor-
mance sq, and the share of bonus from long-term service f p. As we assume that the
quality of received data and location-based service is the positively correlated, we
give a notation of our mechanism as Positive Covariance. The other three mecha-
nisms will be generally based on our current model, while different from each other
in the construction of their compensation packages.
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3.4.2.1 Independent

This mechanism is the special case of the Positive Covariance, as we assume that
the two variables εq and εp are independently distributed, in which case, σqp = 0.
Following the similar process in Sect. 3.3, the optimal effort a∗ in this case is the
same as the Positive Covariance in (3.14), and we obtain the expressions for f ∗, s∗,
and t∗ as

s∗ = σ 2
p

σ 2
q + σ 2

p + ηcσ 2
pσ

2
q

, (3.20)

f ∗ = σ 2
q

σ 2
q + σ 2

p + ηcσ 2
pσ

2
q

, (3.21)

t∗ = w + 1

2
η(s2σ 2

q + f 2σ 2
p) + 1

2
c

(
s + f

c

)2

− (s + f )
s + f

c
. (3.22)

3.4.2.2 Single Bonus

In this case, we consider a compensation package which only includes the fixed
salary t and short-term bonus sq, without the long-term bonus f p. We can regard
this case as a company which does not directly provide the users with the location-
based service based on their crowdsourcing activity. In this case, the optimal effort
a∗, s∗, and t∗ will be

a∗ = s

c
, (3.23)

s∗ = 1

1 + ηcσ 2
q

, (3.24)

t∗ = w + 1

2
η(s2σ 2

q ) + 1

2
c
( s
c

)2 − s2

c
. (3.25)

3.4.2.3 Opening Reward

The last mechanism is the simplest case in which the compensation package only
contains a fixed salary t . We can regard this mechanism as a company which will
offer each user an opening reward as the Karma we have mentioned in Sect. 3.1,
while not caring about user’s future effort. In this case, the optimal effort a∗ and
opening reward t∗ have the form of

a∗ = 1

c
, (3.26)
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Fig. 3.4 Principal’s utility as
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t∗ = w + 1

2c
. (3.27)

3.4.2.4 Comparisons

In Fig. 3.4, we compare the principal’s utility from the four incentive mechanisms
as we vary the cost coefficient c. From the simulation results, we see that as the cost
coefficient c increases, the principal’s utility is decreasing as well. The reason for
this phenomenon is because larger cost coefficient c means higher unit cost when
implying an effort. Therefore, the user is less likely to participate in the crowdsourcing
activity. With less data collected from the users, the principal’s utility will decrease
for sure. In addition, from Fig. 3.4, we see that the principal obtains the largest
utility in the Opening Reward case, followed by the Independent one. The Positive
Covariance mechanism proposed by us brings the third high utility to the principal,
while the Single Bonus gives the least utility.

In Fig. 3.5, we analyze the impact of user’s risk averse degree η on the principal’s
utility. As the principal’s utility V = a − t in the Opening Reward is indepen-
dent of the risk averse degree η, we only compare the results from the other three
mechanisms. We see that the principal’s utility is decreasing as the user’s risk averse
degree η increases. This result is intuitive as a larger η means the user becomes more
conservative and sensitive to risk, thus less likely to participate in. With less effort
obtained from the user, the principal’s utility will certainly decrease. From Fig. 3.5,
we also obtain the similar ranking of the principal’s utility as in the previous figure:
The Independent case brings higher utility than the Positive Covariance one, and the
Single Bonus one brings the smallest utility for the principal.
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Fig. 3.5 Principal’s utility
as risk averse degree η varies
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The reason for the performance ranking of the four mechanisms in Figs. 3.4 and
3.5 is as follows: The Independentmechanism is the ideal case of thePositive Covari-
ance, inwhich less noise is occurredwhenpredicting theoutcome.Thus, higher utility
is obtained than the general case—Positive Covariance, while the Single Bonus only
rewards user with the current performance without providing the free location-based
service. Thus, the users have fewer incentives to participate in. In return, less utility
is obtained by the principal. For the result of the Opening Reward case, it seems
unreasonable at the first sight. As it brings the principal higher utility than the other
three mechanisms. While we notice that theOpening Reward is a “once-for-all” deal
which does not provide continuous incentives for the users, i.e., after the users have
fulfilled their duty and received the reward, they are more likely to stop participating
in crowdsourcing.

3.5 Summary

In this chapter, we have proposed a performance-related compensation package for
addressing the problem of incentivizing users to participate in crowdsourcing. We
have included short- and long-term bonuses which relate to the quality of the received
data from user and the quality of the location-based service provided by the principal,
together with the fixed salary in the compensation package. In addition, we have
proposed another three incentive mechanisms in special cases to compare with the
proposed model. Through extensive simulations, we have given the analysis of the
compensation results and shown that the users can be motivated by our proposed
method.With this brief understanding ofmoral hazard model, we will move forward
to more complicated models in the following chapters by extending the model to
multi-user and multi-dimensional ones.
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Chapter 4
Tournament-Based Incentive Mechanism
Designs for Mobile Crowdsourcing

4.1 Introduction

In the previous chapter, the moral hazard problem in mobile crowdsourcing is be-
tween one employer (the principal) and one employee (the user). In this chapter, we
will consider a more complicated model with multiple number of users, which better
meets the requirement of reality. As a large number of users are needed to support the
crowdsourcing activity. Nowadays, people can access various sophisticated location-
based services (e.g., Google Maps with traffic information) using their smartphones
through wireless access networks. With the drastic growth in the location-based ser-
vice market, as well as the rapid development of big data technologies, more data as
well as user participation are required to support more sophisticated services. There
are mobile applications available that can detect Wi-fi hot spot within a certain dis-
tance of the user’s current location. Smartphone users help collect the Wi-fi hot spot
information that includes the location and router name for the service provider which
is denoted as principal hereafter.However,when participating in such crowdsourcing,
users consume their resources such as battery and computing capacity (Zhao et al.
2014). Therefore, many users hesitate to participate which is a major impediment to
the growth of mobile crowdsourcing (Angmin and Valentino-Devries 2011). Thus,
incentive mechanism designs are in critical need to motivate the users to participate.

In the literature, it has already been noticed that there is an urgent need to alleviate
the conflict by introducing incentive mechanism for users. Inspired by the effort-
based reward from the labormarket, several works have been proposed to address this
problem by providing users with the reward that is consistent with their performance.
Examples are the works in Luo et al. (2014) and Duan et al. (2012), as well as one
of our previous works (Zhang et al. 2015). The previous mentioned works capture
the fundamental aspect of providing necessary incentive for user to participate in
crowdsourcing. Yet, they mainly assume that the principal employs only one user
and rewards it on the basis of the absolute performance.

However, when rewarding users based on the absolute performance, the principal
has a strong incentive to cheat by claiming that users had poor performances that
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deserve low rewards, so that the principal can pay less (Bolton and Dewatripont
2004). Another example is that when there is a positive mean measurement error
at user’s performance, every user’s performance will result in an increase at the
principal’s observation. We name this case that affects both sides as common shock,
which can be either positive or negative to user performance and reward. If both users
and principal are aware of this common shock, we can regard the trading between
them as trading with full information. However, in the general case, this common
shock is unobservable to either side or both sides. While incentive mechanism based
on the absolute performance can be easily affected, the tournament design can filter
out this common shock problem.

One obvious advantage of rank-order tournament over absolute performance re-
wards is that ordinal ranking is easy to measure and hard to manipulate (Bolton and
Dewatripont 2004). In a tournament, the principal has to offer the fixed amount of
rewards no matter who wins. In this chapter, we will propose a multi-user design
that rewards users’ performance in crowdsourcing by a tournament reward structure
based on the rank order. A brief illustration of crowdsourcing tournament rewarding
mechanism is shown in Fig. 4.1. After obtaining the data from the users, the principal
will generate an ascending list regarding user’s performance. Here, user 1 achieves
the highest performance and will be rewarded the highest amount reward 4, while
user 2 performs worst with the smallest amount of reward 1.

The main contributions to this chapter are as follows: First, we solve the incen-
tive problem in crowdsourcing by offering user reward based on their performance.

Fig. 4.1 Crowdsourcing incentive mechanism by tournament
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Second, we consider a tournament structure incentive mechanism that rewards users
by their rank orders which can overcome the common shock problem. Third, in the
simulation part, we introduce another well-known tournament mechanism for com-
parison purposes in order to demonstrate the effectiveness of tournamentmechanisms
to improve the principal’s utility. The proposed mechanisms allow the principal to
successfully maximize the utilities and the users to obtain continuous incentives to
participate in mobile crowdsourcing.

The remainder of this chapter is organized as follows. First, we will introduce the
network model in Sect. 4.2. Then, the design of tournament is described in Sect. 4.3,
in which we also give the analysis of the optimal contract with full information. The
performance evaluation is conducted in Sect. 4.4. Finally, summaries are given in
Sect. 4.5.

4.2 System Model

We refer to the model in Lazear and Rosen (1981) and consider a crowdsourcing
network in which one risk-neutral principal employs a fixed group of identical risk
averse users, i = 1, . . . , n, to collect data. The principal rewards users based on
their relative performances which can be referred to the quality of the received data
(e.g., quantity, correctness, and importance). In a n-user tournament, the users’ per-
formances are sorted in an ascending order, and fixed prizes (W1,W2, . . . ,Wn) are
rewarded. We use the numbering conventional in the study of order statistics: “First
place” is the lowest performance, and W1 is the prize received by the user with the
lowest performance.

4.2.1 Common Shock Problem

When users help to collect data for the principal, the user exerts an effort a. Note
that the user’s effort a is a hidden information, since the principal can only observe
the performance level q of the users, i.e., the quality of the received data. Therefore,
the performance of user i , qi , depends stochastically on the user’s effort level, ai . In
particular,

qi = zi + ε, (4.1)

where ε is a random variable representing the common shock that affects all of the
users and zi is a randomvariablewhose distributiondepends onai .Due to the common
shock, such as the measurement error of the principal as mentioned previously, the
quality of received data qi cannot reflect the user’s actual performance or effort
exactly. Therefore, the performance of the user is a noisy signal of its effort.

Let G denote the distribution function for the common shock (μ,σ2), where σ2

is the variance. We assume that ε has zero mean when no common shock presents:
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∫
εdG(μ,σ2) = 0. (4.2)

By this assumption, regardless of its assessment of ε, every user believes that its
performance and that of every other user have the same mean if they take the same
effort.

4.2.2 Rank-Order Statistic

Let F(zi ; ai ) denote the cumulative distribution function (CDF) for zi , given ai .
F(zi ; ai ) has a continuous probability distribution function (PDF) f (zi ; ai ) which
is positive everywhere and continuously differentiable in ai . Since the users are
identical ex ante, F does not depend on i . The value of zi is not known to the user
until its choice of ai is made. We assume that zi and (μ,σ2) are independent, since
the term zi is independently and identically distributed for every common value of
ai and qi .

Assume that the principal observes only the performance levels of the users,
q = (q1, q2, . . . , qn), but cannot directly observe the users’ effort levels. Under the
tournament, user i’s reward depends only on the rank order of qi in q, instead of the
performance level qi . Since each user’s performance is given by qi = zi + ε, we
can easily obtain zi ≥ z j from qi ≥ q j . That is, the rank order of the performances
depends only on zi and not ε. Therefore, the realization of (μ,σ2) does not affect the
game played by the users, and the equilibrium effort level will be independent of σ2.
Hence, we can analyze the game in terms of just zi . In a n-user tournament, user i
wins prize Wj if and only if zi is the j th-order statistic of (z1, . . . , zn). The density
function φ jn(z; a) for the j th-order statistic in a sample of size n drawn from the
distribution F(z; a) is Green and Stokey (1983)

(n − 1)!
(n − j)!( j − 1)! f (z; a)F

j−1(z; a)[1 − F(z; a)]n− j . (4.3)

This density function denotes that the user i’s performance outperforms j − 1
number of users and falls behind n − j number of users.

4.2.3 Utility of the Users

The realized performance of each user then is a stochastic function of its effort and the
value of the common shock. Here, we consider the user’s reward from the principal’s
prize in terms of utility. It is also convenient to think of the cost of exerting effort in
terms of utility. The preferences of each user i over the prize, Wi , and the exerted
effort, ai , are represented by the utility function
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Ut (Wi , ai ) = u(Wi ) − γ(ai ), (4.4)

Wi ≥ 0, ai ≥ 0, i = 1, . . . , n,

where u is a strictly increasing and strictly concave function of Wi , and γ is strictly
increasing and strictly convex with ai . The user’s utility is obtained from the prize
minus the exerting effort.

For convenience, the principal can construct the user’s reward function in terms
of utility w = (w1,w2, . . . ,wn) by defining wi = u(Wi ), ∀i . We have the user’s
expected utility as the expected value of rewards minus the cost,

Ut (w, a) =
n∑

j=1

wj P(rank = j) − γ(a), (4.5)

where P(rank = j) is the probability that the user is in the j th place among all
n users at the measured performance level q = z + ε. Given the density function
φ jn(z; a), the probability can be obtained by an integration of the density function
φ jn(z; a). Thus, the user’s utility function can be written as

Ut (w, a) =
n∑

j=1

wj

∫
φ jn(z; a)dz − γ(a). (4.6)

In the symmetric equilibrium, all users spend the same amount of effort ā and
expect an equal probability 1/n of reaching any of the n ranks. Given the effort
choice of ā, we can derive the users’ expected utility from (4.6) as

Ut (w, ā) = 1

n

n∑

j=1

wj − γ(ā). (4.7)

4.2.4 Utility of the Principal

The principal’s problem is to design a reward structure for the n-users.We assume that
the principal is constrained to offer a fixed minimum level of expected utility to each
user, so that we can judge the relative performance of tournaments by examining the
expected utility of the principal. The risk-neutral principal’s objective is to maximize
the summation of all the users’ performances minus the total prizes to the users:

Vt (W, a) = E

[
n∑

i=1

(qi − Wi )

]
. (4.8)
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Given that the performance q follows a conditional distribution f (q − ε, a) and
under a common shock, the principal’s expected utility can be written as:

Vt (w, a) =
∫ ∫

q f (q − ε, a)dG(ε,σ2)dq −
n∑

j=1

Wj , (4.9)

=
∫

z f (z, a)dz −
n∑

j=1

Wj , (4.10)

where (4.9) is result from our previous conclusion that z is independent from the
common shock (ε,σ2), and thus, we can simply replace q with z.

4.3 Problem Formulation

4.3.1 Optimization Problem

Given the number of users n that participate in this crowdsourcing, the principal’s
problem is to design (w, ā) to maximize (4.9) subject to the two constraints that ā is
an optimal decision rule for the user given w and that the expected utility of the user
is at least ū, i.e.,

max
(w,ā)

∫
z f (z, a)dz −

n∑

j=1

Wj , (4.11)

s.t.

(a) ā = argmax
a

n∑

j=1

wj

∫
φ jn(z; a)dz − γ(a),

(b)
1

n

n∑

j=1

wj − γ(ā) ≥ ū.

where (a) is the incentive compatible (IC) constraint; it represents that given any
reward structure, the problem facing each user is to choose a level of effort that
maximizes own utility. We can solve the optimal effort by taking the first derivative
of the IC constraint, which is given by

n∑

j=1

wj
∂P(rank = j)

∂a
− γ′(a) = 0. (4.12)

where (b) is the individual rationality (IR) constraint; it provides the necessary
incentive for users to participate.Wemust have the utility no less than the reservation
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utility when a user is not taking any effort (a = 0). Here, we denote St (n) as the
set of feasible n-user tournaments that satisfy the IC and IR constraints. The set of
feasible tournaments is always non-empty, since it always contains the “no incentive”
tournament, [(ū, ū, . . . , ū), 0] ∈ St (n), for all n. The utility per user to the principal
under this tournament is V̄ .

From the problem formulation, we see that the optimal tournament depends on the
number of users n and the distribution function F , but not on the distribution function
G. In other words, tournament approach is robust against the lack of information or
lack of agreement about G.

4.3.2 Tournament Design

To obtain the tournament, we can derive from the optimal contract that rewards user
based on the absolute performance with full information. First, we will formulate
the optimal contract problem with full information. Then, we will show that we can
design the tournament by step functions to approximate the optimal contract.

4.3.2.1 Optimal Contract Under Full Information

In the optimal contract, the principal rewards users based on the absolute perfor-
mance. We define the reward R(q) as a linear and increasing function of q. Thus, the
utility user obtained from the reward is u(R(q)) and denoted as v(q) for simplicity.
The contract the principal offered to user is (v, A), where A is the effort. In this full
information case, G is given by ε = 0 with probability 1; i.e., the principal knows ε.

Thus, the user i’s utility under contract is represented by

Uc(vi , ai ) = v(qi ) − γ(ai ), (4.13)

qi ≥ 0, ai ≥ 0, i = 1, . . . , n,

where v is also a strictly increasing and concave function as u. As we can see, v(qi )
is a piecewise continuous utility function which related to the quantity of qi instead
of its rank. As noted above, F(z; a) denotes the conditional distribution function for
z given a, and f (z; a) is the continuous density function of F(z; a). As ε = 0 with
probability 1, we can rewrite the user’s expected utility function as

Uc(v, a) =
∫

v(z) f (z; a)dz − γ(a), (4.14)

which is positive everywhere and continuously differentiable in a.
Followed by user’s expected utility function in contract, the principal’s expected

utility can be written as
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Vc(v, a) = E

[
n∑

i=1

(qi − R(qi ))

]
, (4.15)

whereγ[v(qi )] is the cost utility functionwhich is also a strictly increasing and strictly
convex function of the utility provided to user, as in the tournament. Similarly, the
expected utility of the principal of the contract (v, a) is

Vc(v, a) =
∫

{z − R(z)} f (z; a)dz. (4.16)

With the user and principal’s utility functions,we can formulate the contractwhich
rewards user by their absolute performance as

max
(v,A)

∫
{z − R(z)} f (z; a)dz, (4.17)

s.t.

(a) A = argmax
a

∫
v(z) f (z; a)dz − γ(a),

(b)
∫

v(z) f (z; A)dz − γ(A) ≥ ū.

Similar to the tournament, (a) is the IC constraint and (b) is the IR constraint.
The principal’s problem is to choose (v, A) to maximize its expected utility subject
to the two constraints that A is the optimal decision rule for the user given v and
that the expected utility of the user is at least ū. Here, we denote Sc as the set of
feasible contracts that satisfy the IC and IR constraints. From Green and Stokey
(1983), the piecewise continuous utility function and the user’s optimal effort can be
approximated arbitrarily closely by a step function, if there are enough steps.

4.3.2.2 Tournament by Approximation

Next, we will show that given a feasible contract (v, A) ∈ Sc, we can approximate
the optimal contract by constructing a sequence of contracts (wni , ān), where wni is
a step function with n steps and ān is a constant function.

The first thing we need to do is to approximate the continuous utility function v(z)
by a step function. We notice that the probability that a user achieves a specific rank
is equal to the probability that the user’s performance level falls into a corresponding
interval of the CDF. Thus, given a specific rank, we can find the effort value qni by
the inverse CDF of F(qni ; A) = i/(n + 1) (Green and Stokey 1983). Then, we can
define ŵni by

ŵni = v(qni ), i = 1, . . . , n. (4.18)
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Thus, we can replace the wj in (4.11) with this approximation ŵni . The optimal
effort under tournament can be solved by

ān = argmax
a

n∑

i=1

ŵni

∫
φin(z; A)dz − γ(A). (4.19)

Again, we calculate the error term ēn in this tournament design and have

ēn = ū + γ(ān) − 1

n

n∑

i=1

ŵni . (4.20)

Finally, the utility in tournament is obtained by adding up the approximated ŵni

and error ēn:

wni = ŵni + ēn, i = 1, . . . , n. (4.21)

By now, we have the tournament (wni , ān) that is close to the optimal contract
with full information.

Each of these step function contracts can be approximated arbitrarily close by a
tournament with a sufficiently large number of users. Hence, the principal’s expected
utility is approximately unchanged. Moreover, the tournament’s efficiency is unaf-
fected by changes in G (the distribution of ε and the user’s information about ε), so
that the same tournament’s utility remains arbitrarily close to the full information
utility for any G as well as if the users can observe ε directly.

4.4 Simulation Results and Analysis

In this section, we will give numerical simulations to illustrate our results. First, we
will give the specific form of the utility and cost functions we have defined in the
system model. Then, we will show the tournament we obtained by the step function.
Finally, we will analyze the system performance by varying different parameters and
do a comparison with other incentive mechanisms.

4.4.1 Simulation Setup

We assume that the conditional distribution follows the logistic distribution as Kalra
and Shi (2001). The logistic distribution is a symmetric and bell-shaped distribution,
like the frequently used normal distribution. The PDF of a logistical distribution is



66 4 Tournament-Based Incentive Mechanism Designs for Mobile Crowdsourcing

f (z; a) = exp(− z−a
β
)

β[1 + exp(− z−a
β
)]2 , (4.22)

and the CDF is

F(z; a) = 1

1 + exp(− z−a
β
)
, (4.23)

where β is the coefficient related to the variance of logistic distribution, which is
π2β2/3. As β is positively correlated with the variance, we will use β to denote the
variance in the sequel. With the PDF and CDF of logistic distribution, we can derive
the partial derivative of the probability for the j th-order statistic with respect to effort
a, as

∂P(rank = j)

∂a
= 2 j − n − 1

β[n(n + 1)] . (4.24)

Proof To obtain the simplified form of ∂P(rank= j)
∂a which is first derivative of the

the probability of ranking j , we can make use of convenient form of the logistic
distribution by the following procedures. First, we take the first derivative of the
probability of ranking j with respect to effort result z and rewrite ∂P(rank= j)

∂a as

∂P(rank = j)

∂a
(4.25)

=
∫

(n − 1)!
(n − j)!( j − 1)! {(n − j)[1 − F(z; a)]n− j (− f (z; a))F j−1(z; a) f (z; a)

+ [1 − F(z; a)]n− j ( j − 1)F j−2(z; a) f 2(z; a)}dz,
=

∫
(n − 1)!

(n − j)!( j − 1)! [1 − F(z; a)]n− j−1F j−2(z; a) f 2(z; a)[( j − 1)

− (n − 1)F(z; a)]dz,
= (n − 1)!
(n − j)!( j − 1)! {( j − 1)

∫
[1 − F(z; a)]n− j−1F j−2(z; a) f 2(z; a)dz

− (n − 1)
∫

[1 − F(z; a)]n− j−1F j−1(z; a) f 2(z; a)dz}.

Taking the specific form of the logistic distribution into ψ( j), we have

∂P(rank = j)

∂a
(4.26)

= (n − 1)!
(n − j)!( j − 1)!

{( j − 1)
∫ exp(− x

β
)n− j−1+2

[1 + exp(− x
β
)]n− j−1+ j−2+4

dz
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− (n − 1)
∫ exp(− x

β
)n− j−1+2

[1 + exp(− x
β
)]n− j−1+ j−1+4

dz},

= (n − 1)!
(n − j)!( j − 1)! {( j − 1)

∫ exp(− x
β
)n− j+1

[1 + exp(− x
β
)](n−1)+2

dz

− (n − 1)
∫ exp(− x

β
)n− j+1

[1 + exp(− x
β
)]n+2

dz},

For the logistic distribution, there is a property that

∫ exp(− x
β
)k

[1 + exp(− x
β
)]n+2

dx = (k − 1)!(n − k + 1)!
(n + 1)! β, (4.27)

when k ≥ 2. With this property, we can simplify an integration to a fraction. Thus,
we are able to simplify ψ( j) as follows:

∂P(rank = j)

∂a
= (4.28)

= (n − 1)!
(n − j)!( j − 1)! {

( j − 1)

β

(n − j + 1 − 1)![n − 1 − (n − j + 1) + 1]!
(n − 1 + 1)! β

− (n − 1)

β

(n − j + 1 − 1)![n − (n − j + 1) + 1]!
(n + 1)! β},

= (n − 1)!
(n − j)!( j − 1)! {

( j − 1)

β

(n − j)!( j − 1)!
n! β − (n − 1)

β

(n − j)! j !
(n + 1)! β},

= 2 j − n − 1

β[n(n + 1)] .

Now, we obtain the simplified form of the partial derivative ∂P(rank= j)
∂a . �

According to (4.12), we must have 2 j − n − 1 > 0. Thus, the maximum number
of reward recipients will not be more than half of the participate users. The reward
recipients should be the users whose rank is higher than (n + 1)/2, while the users
whose rank is lower than (n + 1)/2 will only receive a zero reward.

In the system model, we have defined the evaluation function u as a concave
function. Here, we set up the evaluation function u in a form of power function as

u(W ) = W ρ

ρ
, (4.29)

where ρ is the power coefficient and 0 < ρ < 1. Here, we further define the user’s
risk averse degree as

η = − u′

u′′ = 1 − ρ

W
. (4.30)
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Under the same amount of reward, the larger the ρ and η, the more conservative
and sensitive is user toward risk, and vice versa. ρ and η are negatively correlated
with each other. When ρ = 1, the user is risk neutral. For simplicity, we define the
reward function as R(q) = q. Thus, the utility function in the optimal contract case
becomes

v(q) = u[R(q)] = u(q) = qρ

ρ
. (4.31)

Furthermore, we have defined the cost function in the system model as a convex
function. Thus, we set up the cost function γ in a quadratic form as

γ(a) = 1

2
a2. (4.32)

We assume that the reservation utility, when the user does not participate in the
crowdsourcing, is ū = 0.

4.4.2 Reward by Tournament

In Fig. 4.2, we follow the steps in Sect. 4.3 to approximate the optimal contract by
tournament with 19 users participate in, with x-axis representing the rank of the users
in an ascending order.Aswe can see, the reward obtained by the tournament is close to
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the reward from the optimal contract with full information. If we increase the number
of users to infinity, the tournament can approximate the optimal contract arbitrarily
close. In addition, we see that only users rank is larger or equal to 14 received a
positive reward, which is consistent with our conclusion previously that no more
than half of the users should be rewarded. Another observation from Fig. 4.2 is that
the higher the user rank, the larger the spread is, that is, Wj − Wj−1 < Wj+1 − Wj .
This result is due to the power function form of the evaluation function u. If we
change the evaluation function u to a log function, the spread will be the same for
all ranks. While if the evaluation function u follows the exponential form, the spread
will become smaller for higher ranks.

4.4.3 Comparison

In this part, we are going to analyze user and principal’s utilities by varying different
parameters in the tournament. In the tournament we have proposed, there are many
winners and the amount of reward is based on the relative rank achieved, with larger
amounts rewarded to higher ranks. We refer to this as the rank-order tournament
(ROT).Wewill compare the results from the ROTwith that from the optimal contract
with full information and another special cases of ROT: the Multiple-Winners (MW)
in which several top winners share the reward equally and the optimal number of
winners can be determined from (4.12).

From Figs. 4.3a–4.5a, we show the utility per user when varying different para-
meters, and from Figs. 4.3b–4.5b, we show the utility of the principal. The figures
show that the factors impacting the design of the contest include the number of users
for whom the contest is conducted, the degree of performance uncertainty in the en-
vironment (i.e., the strength of the relation between effort and performance realized),
and the user’s risk averse degree toward the crowdsourcing activity.
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4.4.3.1 Number of Users

When the number of users n increases, the marginal change in the probability of
achieving any rank decreases. Consequently, with increases in the pool of players, the
user will be less likely to induce higher effort levels and less incentive to participate.
Thus, we see the user’s utility in Fig. 4.3a decreases with the increase of n. However,
with more users participating in the crowdsourcing, even though the effort exerted
from each user decreases, the summation of the data collected with more number of
users increases. As a result, the principal’s utility increases as we see from Fig. 4.3b.

4.4.3.2 Variance

The variance β denotes the relation between effort levels exerted by the user and the
performance observed by the principal. As β increases, it indicates a weaker relation
between effort levels and the expected rank achieved. As a result, the users are likely
to exert lower levels of effort for the increase in uncertainty and thus a lower cost of
participation. While the optimal contract and tournament designs are independent of
the uncertainty, greater uncertainty makes users more likely to get enough incentives
to participate. As we see from Fig. 4.4a, the user’s utility is increasing as the variance
increases. With the decrease in optimal effort, less data is obtained from the user,
and the principal’s utility will certainly decrease. Therefore, Fig. 4.4b indicates that
the principal’s utility is decreasing as the variance increases.

4.4.3.3 Risk Averse Degree

From the definition of risk averse degree, we see that when η increases, users become
more conservative and sensitive to risk, thus less likely to participate in. With less
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effort obtained from the user, the principal’s utility will certainly decrease. Thus,
we see from Fig. 4.5a, b that the user and principal’s utilities decrease with the risk
averse degree η.

Overall, we see that the optimal contract serves as the upper bound of the princi-
pal’s utility, and the lower bound of the user’s utility for the other two tournament
mechanisms in most of the cases. This is intuitive since the optimal contract solves
the optimal contract based on the absolute performance. While in tournament, we
only have a limited number of users in the simulation. Thus, tournaments lose ac-
curacy during the approximation. The optimal contract provides the principal with a
maximum utility while extracting as much utility from the users as possible.

From Figs. 4.3 and 4.5, we also see that the MW outperforms ROT in many cases.
In addition, MW outperforms both the optimal contract and ROTwhen users are risk
neutral as shown in Fig. 4.5a, b. The reasons for both results can be inspired from the
conclusions drawn in Kalra and Shi (2001). First, when the number of participating
users is small,MW is a better mechanism rather than ROT and is easier to implement.
Here we only consider no more than 10 participating users due to the computation
capacity of our computer. With such a small group of users in our simulation, we see
MW outperforms ROT in all simulation results. Second, when users are risk neutral,
it is optimal to give the entire reward to the highest rank user, which is a special
case of MW, rather than offering contract with positive spread in ROT and optimal
contract.

4.5 Summary

In this chapter, by using the multi-usermoral hazard model, we have investigated the
problem of providing incentives for users to participate in mobile crowdsourcing by
applying the rank-order tournament as the incentive mechanism. We have solved the
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rank-order tournament by approximating the absolute performance-based optimal
contract with full information using step functions. Finally, we use the numerical
results to show the tournament design and compare the user’s and principal’s utilities
under the optimal contract and different tournament mechanisms. We have shown
that by using the tournament, the principal successfullymaximizes utilities regardless
of common shock. The principal’s utility benefits from large number of users, but
deteriorates into weaker relationship between exerted and observed effort levels, and
higher risk aversion of users. After discussing this multi-user moral hazard model,
we will give another extension of the fundamental case, in which a multi-dimension
reward will be given to evaluate an employee’s performance.
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Chapter 5
Multi-dimensional Payment Plan in Fog
Computing with Moral Hazard

5.1 Introduction

In the previous two chapters, we have discussed two applications by using different
moral hazard models. In this chapter, a multi-dimension reward model will be given
to design-efficient payment plan in wireless networks. The rapid developments of
cloud computing have brought a centralized solution to application developers and
content providers. Despite its widely known conveniences and advantages, cloud
computing also suffers from certain limitations such as high latency and delay due
to long distance between end users and servers (Bonomi et al. 2012). The emerging
trends in networking such as large distributed sensor networks, industrial automation,
and high-speed transportation need location-dependent fast processing and cannot
be satisfied by the current service form by cloud computing (Barbarossa et al. 2014).

With the motivation of placing the services as close as possible to end users,
researchers have proposed a new cloud system called fog computing. In this model,
fog nodes (FNs) such as end user devices, access points, edge routers and switches
are deployed at or very close to the edge of network, and with functionalities such as
converged computing, processing, management, networking, storage, physical, and
cyber security (Patel et al. 2014). Technically, fog computing is similar to cloud com-
puting in the sense that both are made up of virtual systems providing the flexibility
of on-demand provisioning of compute, storage, and network resources. However,
fog computing has several advantages over cloud computing in the sense of a signifi-
cant reduction in data movement across the network resulting in reduced congestion,
cost and latency, and elimination of bottlenecks resulting from centralized comput-
ing systems, improved security of encrypted data as it stays closer to the end user
reducing exposure to hostile elements, and improved scalability arising from virtual-
ized systems (Cisco 2015b). By opening the access to fog computing nodes, service
providers (SPs) can rapidly deploy certain applications and services to improve the
quality of service (QoS) toward end users. This environment can also create a new
value chain comprising NOs, InPs, SPs, and end users.
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Fig. 5.1 An illustration of fog computing system

Referring to one brief model of fog computing in Fig. 5.1, there are variety of end
users from the areas such as smart grid, industry, vehicular networks, transportation
system, and public safety department that require real-time computing services. By
subscribing to specific SPs whom subscribed to the network operator (NO) to obtain
access to physical resources, end users are allowed to access computing resources in
both the fog and the cloud, with fog close to end users while cloud locates far away.
Within this network, end users directly communicate with FN for real-time control
and analytic, while the FNs only send periodic data summaries to the cloud for further
aggregation and procession. Usually, the cloud and fog are managed by the NO, who
rents the cloud center and fog nodes from infrastructure providers (InPs).

The NO is aiming at maximizing its revenue by efficiently managing and coor-
dinating the computing resources in both fog and cloud. To fully utilize the fog
computing with minimal rent while ensuring the FNs receive nonnegative revenue,
appropriate payment plan is needed to enable theNO and FNs to play complementary
roles within their respective business models, and allow all players to benefit from
greater cooperation. Inspired by the effort-based reward from the labor market where
employers pays its employees based on their work load, we propose a payment plan
in fog computing such that the FNs receive their rental in accordance with the quan-
tities of computing resources and the quality of service (QoS) they provide to the
NO. The computing resources include the transmission bandwidth, power, compu-
tation capability (CPU speed), storage size, and a FN’s proximity toward end users.
Meanwhile, the QoS can be referred to latency and delay during data transmission
and processing, as well as security (Sardellitti et al. 2015).

Based on this motivation, we aim at offering a contract that considers different
aspects of the computing resources provided by FNs to end users and assigns different
payment weights in order to maximize the revenue of NO. Fortunately, the moral
hazard model of contract theory provides us a useful tool to design such a payment
plan that can solve the NO’s revenue maximization problems in fog computing when
the FN’s performance inQoS is affected bymultiple aspects (Bolton andDewatripont
2004). From the NO’s perspective, it “employs” the FNs to perform computing tasks
and offers them QoS-consistent payment by multi-dimension measurements. Inside
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this value chain, the NO tries to guarantee the fog computing QoS with minimal
payment, while ensuring the FNs have necessary incentives to cooperate. Thus, to
maximize the NO’s revenue, the NO needs to find an optimal payment plan that can
properly pay the infrastructure rent to FNs (Werin and Wijkander 1992).

The main contributions to this chapter are summarized as follows. First, we pro-
pose a QoS-consistent contract that considers the quantities of resources provided
by FNs with multiple aspects. The contract characterizes the general situation in the
real world and provides a comprehensive payment plan to the FNs for using those
resources. Second, we formulate NO’s revenue maximization problem, as well as
provide the FNs with the necessary incentive to cooperate in fog computing. Third,
through simulations, we reveal different parameter’s impacts on the optimal payment
plan and compare the NO utility under six different payment plans. Our results show
that by using the proposed payment plan, the NO successfully maximizes the utilities
and the FNs obtain the continuous incentives to participate in the fog computing.

The remainder of this chapter is organized as follows. First, we will introduce the
network model in Sect. 5.2. Then, the problem formulation is described in Sect. 5.3.
The performance evaluation is conducted in Sect. 5.4. Finally, Sect. 5.5 summarizes
this chapter.

5.2 System Model

In this section,we consider amonopolymarketwith oneNO tradingwith one FN.The
NO–FNmutual benefit model is introduced first by constructing themulti-dimension
payment plan offered by the NO. Then, we will give the utility functions of both the
FN and the NO before proceeding to the solution of the optimal contract. We assume
that the NO considers n aspects of the computing resources provided by FN and will
pay the rent based on the QoS of the different aspects.

5.2.1 Operation Cost

In fog computing, the FN encounters both capital expenditure (CapEx) and opera-
tional expenditure (OpEx) to provide heterogeneous resources. CapEx is the promi-
nent investment which includes the cost of purchasing and installing equipment
such as routers, switches, access points, backhaul aggregators, and the cost of using
licensed spectrum issued by the authorities (Cisco 2015a). Meanwhile, the OpEx
includes the energy consumption due to signal processing, execution, and data trans-
mission. We assume that the CapEx is fixed, while the OpEx is usage based.

The FN’s heterogeneous resources are often measured in disparate scales or units.
It has been proved that those measurements can be mapped into one single unit, such
as time (Nishio et al. 2013). Thus, by mapping and normalization, we can represent
a FN’s contribution to resources such as bandwidth, CPU, and transmission power
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by a vector a = (a1, . . . , an), n ≥ 1 for one computing task. After such mapping,
each ai has the same scale or unit and represents one resource type. Such mapping is
based on the knowledge that the bandwidth and CPU speed affect the transmission
and processing time, respectively. Due to the context aware and location-dependent
properties of fog computing, the size of data being processed and the geographic
distance between FN and end users also have the impacts on data processing and
transmission latency. There are many other aspects that affect the QoS of fog com-
puting that we have not listed in Fig. 5.2, such as transmission power, which can also
be mapped to transmission latency.

When providing those resources, the FN’s cost incurred is defined in a quadratic
form,

ψ(a) = 1

2
aTCa, (5.1)

where C is a symmetric n × n matrix with the form of

C =
⎡

⎢⎣
c11 · · · c1n
...

. . .
...

cn1 · · · cnn

⎤

⎥⎦ . (5.2)

The diagonal element cii ofC reflects the FN’s resource-specific cost coefficient, and
the off-diagonal elements ci j represent the cost relationship between two resources
i and j .

The sign of ci j indicates technologically substitute, complementary, independent
between two resources i and j , if ci j > 0,< 0,= 0, respectively. If two resources are
technologically substitute, raising the quantity of one resource raises the marginal
cost of the effort on the other resources. The example of technologically substitute is
the relationship between geographic distance and transmission power. To achieve the
same data rate at the end user, longer distance requires a higher transmission power
consumption. In contrast, raising the quantity on one resource decreases themarginal
cost of the other resource if they are technologically complementary. One example is
about the relationship between bandwidth and transmission power. Given the same
data package size and transmission distance, the larger bandwidth can achieve the
same data rate at receiver with lower transmission power. In this example, high
quality in one resource eases the cost in the other and thus called technologically
complementary. For technologically independent resources, their operation cost is
not dependent on the quantity of other resources. There are many technologically
independent examples in fog computing, such as the relationships between transmis-
sion bandwidth and CPU speed, geographic distance and data size.

In order to lower themathematical complexity, we only solve the caseswithout the
technologically complementary in this chapter. Thus, the operation cost coefficient
matrix is a positive semi-definite matrix with every element in C is nonnegative.
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5.2.2 QoS Measurement

The resources such as CPU speed, transmission bandwidth, and power can be easily
specified by the FN, and the end user-related parameters such as geographic distance
and data size can also be quantified easily, while the measurement of QoS cannot
be that accurate. Though those measurements can be mapped onto a timescale that
follow the procedure in Nishio et al. (2013), error may come from the design failure
of the measurement system.

Given the actual resources provided by FN is a, which is hidden from the NO, the
FN’s QoS can be observed as a vector of QoS q = (q1, . . . , qn), n ≥ 1, which can be
regarded as the FN’s performance in latency reduction. Due to the aforementioned
different measurability on QoS, the received information q varies. Therefore, the
performance of the FN is a noisy signal of the resources it has provided:

q = a + ε, (5.3)

where the random component ε = (ε1, . . . , εn), n ≥ 1, is assumed to be normally
distributed with mean zero and covariance matrix �. Thus, the FN’s performance
follows the distribution of q ∼ N (a, �).

The variance � is a symmetric n × n covariance matrix with the form of

� =
⎡

⎢⎣
σ 2
1 · · · σ1n
...

. . .
...

σn1 · · · σ 2
n

⎤

⎥⎦ , (5.4)

where σ 2
i denotes the variance of εi , and σi j is the covariance of εi and ε j . The

variance denotes the difficulty in guaranteeing the correctness of measuring the QoS
and also reflects the resource quantity difference observed at the FN and NO sides.
If the variance is large, the measurability of the QoS is difficult, and there is a high
probability that the FN’s performance is poorly measured and far away from the true
amount of resource the FN has provided. If the QoS is easy to measure, the variance
will be small or even zero. For example, the data size is an independent measure with
variance 0, aswell as the geographic distance.While the data processing timedepends
not only on the data size but also on the complexity of algorithm, which has a large
variance, the covariance of twomeasurements exists because themeasurement of one
resource may affect the measurement of the others; for example, the transmission
time is affected by both bandwidth and power.

5.2.3 Payment Plan

Inspired by themanager’s reward package in industry, which comprises a fixed salary,
a bonus related to the firm’s profits, and stock option-related reward based on the
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Fig. 5.2 The multi-dimension resource quantity and QoS-consistent payment contract

firm’s share price (Bebchuk et al. 2002), we define the FN’s payment plan w in fog
computing as a linear combination of a fixed salary and QoS-related payments. By
restricting the payment plan offered by the NO in the linear form, the payment plan
w FN receives by participating in the fog computing can be written as

w = t + sT q, (5.5)

where t denotes the fixed salary, which is a constant independent of QoS and regarded
as the subscribing fee to complement the FN’s CapEx. s = (s1, . . . , sn), n ≥ 1, is the
payment related to the QoS q. As q is a random variable which follows q ∼ N (a, �),
the payment planw is also a randomvariablewith amean of t + sT a. From the scaling
property of covariance, we know that Var(sT q) = sT�s. Thus, the payment plan
follows the distribution w ∼ N (t + sT a, sT�s).

At this point, we can propose the contract that is offered by the NO as (a, t, s),
where a and s are n × 1 vectors, and t is a constant value. Under this contract,
the NO offers the FN a payment plan, which includes a fixed salary t , and n QoS-
related payments (s1, . . . , sn). Figure5.2 illustrates how this contract works. The FN
provides the quantity ai for resource i in the computing task, which is observed as a
QoS qi by the NO. The NO then offers a payment si related to qi .

5.2.4 Utility of Fog Node

In this model, we assume that the FN has constant absolute risk averse (CARA) risk
preferences, which means the FN has a constant attitude toward risk as its income
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increases. Such a risk preference comes from the FN’s concern about its security
issue when opening access for end users. Thus, FN utility is represented by a negative
exponential utility form (Norstad 1999),

u(a, t, s) = −e−η[w−ψ(a)], (5.6)

where η > 0 is the FN’s degree of absolute risk aversion

η = −u′′

u′ , (5.7)

where u is the FN’s utility function. A larger value of η means more incentive for
the FN to provide more resources for the computing task. The utility and operation
cost of the FN are measured in such monetary units that they are consistent with the
payment from the NO.

From(5.6),we see that theFN’s utility is a strictly increasing and concave function.
For lower computation complexity, we can make use of the exponential form of the
utility function and use certainty equivalent as a monotonic transformation of the
FN’s expected exponential utility function (Investopedia 2003).

Proposition 5.1 The FN’s utility can be equally represented by certainty equivalent:

CEu = t + sT a − 1

2
aTCa − 1

2
ηsT�s. (5.8)

From the certainty equivalent, we see the utility consists of the expected payment
minus the operation cost and measurement cost.

Proof Wehave the FN’s utility function in (5.6) as u = − exp{−η[w − ψ(a)]}. From
Sect. 5.2, we know that w ∼ N (t + sT a, sT�s). As the user incurs an operation cost
ψ , the actual income w′ has the distribution

w′ = w − ψ(a) ∼ N (t + sT a − 1

2
aTCa, sT�s). (5.9)

Letμ denotes t + sT a − 1
2a

TCa and σ 2 denotes sT�s, and we have w′ ∼ N (μ, σ 2)

for simplification. The corresponding density function for w′ is

f (w′) = 1

σ
√
2π

exp

[
− (w′ − μ)2

2σ 2

]
. (5.10)

The corresponding expected exponential utility function is
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E[u(w′)] = −E[exp(−ηw′)] (5.11)

= −
∫ +∞

−∞
exp(−ηw′) f (w′)dw′

= −
∫ +∞

−∞
exp(−ηw′)

1

σ
√
2π

exp

[
− (w′ − μ)2

2σ 2

]
dw′

= −
∫ +∞

−∞
1

σ
√
2π

exp

[
−ηw′ − (w′ − μ)2

2σ 2

]
dw′.

For the exponential part, we see that

−ηw′ − (w′ − μ)2

2σ 2
= −ηw′ − (w′ − μ)2

2σ 2
+ ημ − ημ + η2σ 2

2
− η2σ 2

2
(5.12)

= −
[
ηw′ + (w′ − μ)2

2σ 2
− ημ + η2σ 2

2

]
− ημ + η2σ 2

2

= −1

2

[
(w′ − μ)2

σ 2
+ 2η(w − μ) + η2σ 2

]
− ημ + η2σ 2

2

= − 1

2σ 2
[(w′ − μ) + ησ 2]2 − ημ + η2σ 2

2
.

Thus, the expected exponential utility function becomes

E[u(w′)] = −
∫ +∞
−∞

1

σ
√
2π

exp

[
−ηw′ − (w′ − μ)2

2σ 2

]
dw′ (5.13)

= −
∫ +∞
−∞

1

σ
√
2π

exp[− 1

2σ 2 [(w′ − μ) + ησ 2]2 − ημ + η2σ 2

2
]dw′

= − exp

(
−ημ + η2σ 2

2

)∫ +∞
−∞

1

σ
√
2π

exp[− 1

2σ 2 [(w′ − μ) + ησ 2]2]dw′.

As the integration part is the density function of a random variable following a
normal distribution with a mean of μ − ηs2 and variance σ 2, we have

∫ +∞

−∞
1

σ
√
2π

exp

[
− 1

2σ 2
[(w′ − μ) + ησ 2]2

]
dw′ = 1 (5.14)
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Therefore, we have

E[u(w′)] = exp

(
−ημ + η2σ 2

2

)
= exp

[
−η

(
μ − ησ 2

2

)]
. (5.15)

Therefore, CE represents the same preference as E[u], and the certainty equiva-
lent is a monotonic transformation of the user’s expected exponential utility function
u. �

5.2.5 Utility of Network Operator

Here, we define the utility of the NO as the expected gross benefits of V (a) minus
the payment plan w to the FN. Thus, the NO’s expected utility is written as

U (a, t, s) = V (a) − w, (5.16)

where V (·) is the evaluation function which follows V (0) = 0 and V ′(·) > 0. Dif-
ferent from the FN who has CARA risk preferences, the NO here is assumed to be
risk neutral, i.e., V ′′(·) = 0. Thus, the expected profit of the NO can be simplified to

U (a, t, s) = βT a − w, (5.17)

where β = (β1, . . . , βn), n ≥ 1, characterizes the marginal effect of the FN’s contri-
bution a to the NO’s utility V (a). Similar to the definition of FN’s certainty equiva-
lent, we can derive the NO’s certainty equivalent as

CEp = E[βT a − w], (5.18)

= βT a − sT a − t.

5.2.6 Social Welfare

With the definitions of both FN’s and NO’s utility functions and certainty equivalent
payoffs, we can have social welfare defined as their joint surplus, i.e., the summation
of FN’s and NO’s equivalent certainty:

R = CEu + CEp, (5.19)

= βT a − 1

2
aTCa − 1

2
ηsT�s.
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The socialwelfare is the resource provided by the FNminus the operation cost and the
cost incurred by inaccurate measurement. Notice that this expression is independent
of the fixed salary t , which serves as an intercept term in the contract. Thus, the fixed
salary t can only be used to allocate the total certainty equivalent between the two
parties (Holmstrom and Milgrom 1991).

5.3 Problem Formulation

With the system model, we can formulate the NO’s utility maximization problem
while providing the FN necessary incentives to cooperate. The NO’s problem can be
written as

max
a,t,s

U (a∗, t, s), (5.20)

s.t. (a) a∗ ∈ argmax
a

u(a, t, s),

(b) u(a∗, t, s) ≥ u(w),

where u(w) is the reservation utility of the FN when not providing any resource
(a = 0) in the fog computing. The NO maximizes its own utility under the incentive
compatible (IC) constraint (a) that the FN provides the optimal amount of resource
a∗ maximizing its own utility, and the individual rationality (IR) constraint (b) that
the utility FN received is no less than its reservation utility.

Under the assumption of stochastic dependent, the error terms are stochastically
interacted, i.e., σi j 	= 0. For technologically dependent, we mean that the activities
are technologically correlatedwith each other, i.e., ci j > 0 andC is a positive-definite
matrix. We solve this multi-dimensional problem by using the certainty equivalent
model with the following simple reformulation of the NO’s problem:

max
a,t,s

βT a − sT a − t, (5.21)

s.t. (a) a∗ ∈ argmax
a

[t + sT a − 1

2
aTCa − 1

2
ηsT�s],

(b) t + sT a − 1

2
aTCa − 1

2
ηsT�s ≥ w,

where w also denotes the reservation utility of the FN when not participating in the
fog computing. The IC constraint represents the rationality of the FNs choice of
contribution. The IR constraint in (b) ensures that the NO cannot force the FN into
accepting the contract.

We first solve the optimal effort by reducing the IC constraint. The FN’s certainty
equivalent is concave, since its second-order derivativewith respect to a is a negative-
definite matrix −C . Thus, the optimal effort can be determined by taking the first-
order derivative of the FN’s certainty equivalent regarding a and set u′(a, t, s) = 0.
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In the matrix differentiation, if we define α = aTCa, as C is a symmetric matrix,
we have ∂α/∂a = 2aTC (Barzel 1982). Since C is symmetric positive definite, its
inverse is existent. Thus, through numerical derivations, we finally have a = C−1s
in this multi-dimension case. Accordingly, we substitute the IR constraint in (b) with
the optimal amount of resource a∗ and simplify the NO’s problem to

max
a,t,s

βTC−1s − sTC−1s − t, (5.22)

s.t. (a) t + sTC−1s − 1

2
(C−1s)TC(C−1s) − 1

2
ηsT�s = w.

Substituting the value of t in the IR constraint to the objective and differentiating
the objective function with respect to s, we have the QoS-related payment s∗ in the
optimal multi-dimension payment plan as:

s∗ = (C−1 + η�)−1C−1β = (I + ηC�)−1β. (5.23)

With s∗, we have the optimal amount of computing resource in the multi-resource
case as

a∗ = C−1(I + ηC�)−1β. (5.24)

Representing t by w, s∗, and a∗, we obtain the fixed payment t in the optimal linear
payment plan as:

t∗ = w + 1

2
sT (η� − C−1)s, (5.25)

= w + 1

2

[
(I + ηC�)−1β

]T
(η� − C−1)

[
(I + ηC�)−1β

]
.

Using the s∗ in (5.23), we can indeed determine how the optimal payment plan
varies with the accuracy of QoS measures for each resource and the operation cost
coefficient of each resource. For example, when two resources are technologically
substitution ci j > 0, if the measurability of resource i worsens, that is, σ 2

i increases,
then, as is intuitive, s∗

j goes up, but s
∗
i goes down. Thus, there is a measurement

complementarity between s∗
i and s∗

j in the presence of technologically substitute
problems (Bolton and Dewatripont 2004).

5.4 Simulation Results and Analysis

In this section, wewill first give a detailed analysis of how theNO’s utility changes by
varying the parameters such as the operation cost coefficients and measurement error
covariance. Meanwhile, we will conduct a comparison of the NO’s utility among
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different payment plans. To set up the simulation, we assume that the reservation
payment of the FN is w = 0 when not cooperating in the fog computing (a = 0).
The reason we do not consider the FN’s utility is that from the optimal payment
plan we have derived, no matter how those parameters change, the FN’s utility will
remain the same. The optimal payment plan will bring FN the utility the same as the
reservation utility −e−ηw, which in our case is −1 as we set w = 0.

In the previous section, we have solved the optimal payment plan when the mea-
surement errors are stochastic dependent and the resource types are technologically
dependent. As this multi-dimension case is the most general case in reality, we name
this mechanism by General. For comparison, we propose 5 more payment plans.
The first one is the optimal payment plan when the measurement error and resource
type are independent, and thus, we name it by Independent. The second payment
plan is called Single Bonus that is the payment plan obtained in the one-dimension
case. In this one-dimension case, we can regard the NO payments FN on the QoS of a
single one resource type, for example, measuring the data processing latency by only
taking the CPU speed into account. The third and forth ones are special cases of the
General: One is stochastic independent but technologically dependent, and the other
one is technologically independent but stochastic dependent, which are named by
Stochastic Independent and Technologically Independent, respectively. The last one
is called Opening Reward, which is the payment plan only contains a fixed salary
t . We can regard this mechanism as the NO offers the FN a one-time payment at
subscription. But this Opening Reward mechanism does not care about FN’s future
service quality.

In Fig. 5.3, we compare the NO’s utility from the six payment plans as we vary the
resource-specific operation cost coefficient cii . From the simulation results, we see
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Fig. 5.3 The NO’s utility as cost coefficient cii varies
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that as the cost coefficient cii increases, the NO’s utility is decreasing in contrast. The
reason for this phenomenon is that a larger cost coefficient cii means more operation
cost when providing such a resource. Therefore, the FN is less likely to contribute
in the fog computing. With less computing resources provided by the FN, the QoS
will decrease and the NO’s utility will certainly decrease. In addition, from Fig. 5.3,
we see that the NO obtains the largest utility in the Opening Reward case. Followed
by the Independent, Stochastic Independent, and Technologically Independent, the
General case proposed by us brings the fifth highest utility to the NO, while the
Single Bonus gives the least utility.

In Fig. 5.4, we analyze the impact of FN’s risk averse degree η on the NO’s utility.
As the NO’s utility V = a − t in the Opening Reward is independent of the risk
averse degree η, we cannot see any change in the NO’s utility. For the other five
payment plans, we see that the NO’s utility is decreasing as the FN’s risk averse
degree η increases. This result is intuitive as a larger η means the FN becomes more
conservative and sensitive to risk, thus less likely to open access to end users. With
fewer resources obtained from the FN, the NO’s utility will certainly decrease. From
Fig. 5.4, we also obtain the similar ranking of the NO’s utility as in the previous
figure: The Independent case brings higher utility than the Stochastic Independent,
Technologically Independent, and General one, and the Single Bonus one brings the
smallest utility for the NO.

In Fig. 5.5, we increase the variance σ 2
i to see how the NO’s utility varies. Similar

to the previous case, the NO’s utility V = a − t in the Opening Reward is indepen-
dent of the covariance matrix. Thus, we cannot see any change in the NO’s utility.
For the other payment plans, the NO’s utility is decreasing in the variance, which
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is in accordance with our conclusion in the previous section. The variance σ 2
i of

measurement error denotes the relationship between the resources provided by the
FN and the QoS observed by the NO. As σ 2

i increases, it indicates a weaker relation-
ship between resource quantity and the expected QoS achieved. As a result, the FN
is likely to provide less amount of resource with increases in uncertainty and thus
a lower cost of cooperation. With the decrease in computing resources, the QoS is
lowered and the NO’s utility will certainly decrease. From Fig. 5.5, we also obtain
the similar ranking of the NO’s utility as in the previous figure: The Independent
case brings higher utility than Stochastic Independent, followed by Technologically
Independent and General one, and the Single Bonus one brings the lowest utility for
the NO.

The reason for the quality ranking of the six payment plans shown in Figs. 5.3, 5.4,
and 5.5 is as follows. The Independent payment plan is the ideal case of the General
multi-dimension case. As lessmeasurement cost is occurredwhen predicting theQoS
and less operation cost is encountered due to technology substitution, a higher utility
is obtained than the other payment plans. The Stochastic Independent and Techno-
logically Independent are partial independent cases of the General multi-dimension
one; thus, the NO’s utility lies between the Independent and General. But as we
have assigned larger values for the covariance matrix of the measurement error than
the operation cost coefficient matrix, more computing resources will be provided
in the Stochastic Independent than in the Technologically Independent. Therefore,
the NO’s utility is higher in the Stochastic Independent than in the Technologically
Independent case. While the Single Bonus provides the FN with payment that eval-
uates only one type of resource, thus less incentive is induced and lower utility is
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received. As a result, the FNs have less incentive to provide computing resources. In
return, less utility is obtained by the NO. For the result of the Opening Reward case,
it seems unreasonable at the first sight, as it brings the NO the highest utility than
the other payment plans. While we notice that Opening Payment is a “once-for-all”
deal which does not provide continuous incentives for the FNs, i.e., after the FN has
finished the computing task and received the payment, it is likely to stop cooperating
in the future.

5.5 Summary

In this chapter, we have investigated the problem of maximizing NO’s revenue by
efficiently allocating FNs’ computation resources in fog computing. The optimal
payment plan is solved by paying the rent of FN’s computing resources from a
multi-dimension evaluation while ensuring the FN’s cooperation. Furthermore, we
use the numerical results to analyze the optimal payment plan by varying different
parameters. In addition, we compare the NOs’ utility under the six different payment
plans and show that the NO’s utility deteriorates into large operation cost coefficient,
higher risk aversion of FNs, and large measurement error variance. By this end,
we have provided applications with adverse selection only or moral hazard only in
wireless networks. In the next chapter, we will consider one application in cognitive
radio network that has both adverse selection and moral hazard problems.
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Chapter 6
Financing Contract with Adverse Selection
and Moral Hazard for Spectrum Trading
in Cognitive Radio Networks

6.1 Introduction

After discussing the applications of the two basic problems, adverse selection and
moral hazard, we now proceed to the mixed problem in wireless networks when both
are present. The recent popularity of handheld mobile devices, such as smartphones,
enables the interconnectivity among mobile users without the support of Internet
infrastructure. With the wide use of such applications, the data outburst leads to a
booming growth of various wireless networks and a dramatic increase in demand
for radio spectrum (Letaief and Zhang 2009). However, we are currently in the
exhaustion of the available spectrum. Thus, cognitive radio (CR) has emerged as a
new design paradigm as its opportunistic access to the vacant licensed frequency
bands, which releases the spectrum from shackles of authorized licenses and, at the
same time, improves the spectrum utilization efficiency (Kim and Shin 2008).

Cognitive radio networks (CRNs) are designed based on the concept of dynamic
spectrum sharing where CR users can opportunistically access the licensed spectrum
(Hossain et al. 2009). In a CRN, the primary users (PUs) are licensed users to uti-
lize the frequency band, the secondary users (SUs) can only utilize those spectrum
resources when the PUs are vacant. Whenever the PUs are back, the SUs must vacate
the frequency band immediately to guarantee the PUs’ quality of service (QoS) (Zhu
and Yum 2007). In other words, in a CRN, the PUs have higher priority to use the
frequency bands than the SUs. The SU can be regarded as a radio which is capable
of changing its transmitter parameters and transmitting/operating frequency based
on its interaction with the environment (Brodersen et al. 2004).

In CRNs, the problems of spectrum sensing and resource allocation have been
extensively studied in previous works such as Wang et al. (2010a). In this work, we
will focus on the economic aspect of spectrum trading between PU and SU, which
achieves SU’s dynamic spectrum accessing/sharing and creates more economically
benefits for the PU. The idea of the market-driven structure has initiated the spectrum
trading model in CRNs and promoted a lot of interesting researches on the design
of trading mechanisms. Through spectrum trading, PUs can sell/lease their vacant
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spectrum for monetary gains, and SUs can purchase/rent the available licensed spec-
trum if they are in need of radio resources to support their traffic demands (Gao et al.
2011).

However, most mechanisms such as Pan et al. (2012) are designed for the one-
shot trading problem. Different from the previous studies, we consider offering a
contract-based mechanism that allows the SU to do a financing, as we do for a house
or a car (Laffont and Tirole 1988). That is, the SU only needs to pay part of the total
amount at the point of signing the contract, known as the down payment. Then, the
spectrum can be released to the SU by the PU. Successively, the SU can utilize the
spectrum to transmit package and generate revenue. Afterward, the SU pays the rest
of the loan, known as the installment payment.

To obtain the optimal contract, the PU must consider the SU’s current and future
financial status (Scott 2014). When the SU utilizes the spectrum to generate revenue,
however, the PU may not have the knowledge of the SU’s capability, i.e., what is the
SU’s probability of successful making profit, in which case the problem of adverse
selection arises (Akerlof 1995).Moreover, the PU neither knows howmuch effort the
SU exerts, where the problem ofmoral hazard arises (Roland 2000). Thus, wemodel
the spectrum trading by a contract theoretical model which involves both adverse
selection and moral hazard problems as shown in Fig. 6.1.

The main contributions of this chapter are as follows.

• Afinancing contract for spectrum trading is proposed, instead of a one-shot trading.
• The innovativemodel of the financing contract that involves both adverse selection
and moral hazard problems is considered.

• The solutions to the problems under three different scenarios, i.e., the general case
where both adverse selection andmoral hazard are present, the two extreme cases
where only adverse selection or moral hazard is present.

• The analysis of how adverse selection and moral hazard affect the SU’s activity
and PU’s contract design is provided.

• Numerical results that are provided to compare the optimal contracts under the
three scenarios and to study the key parameters’ influences on the PU’s and SU’s
payoffs.

Fig. 6.1 The problems of adverse selection and moral hazard in financing contract design
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The remainder of this chapter is organized as follows. First, we will introduce the
system model in Sect. 6.3. Then, a literature review of spectrum trading and contract
theory application in wireless networks is conducted in Sect. 6.2. Next, the system
model is described in Sect. 6.3, and we formulated the PU’s payoff maximization
problems under the three scenarios in Sect. 6.4. The performance evaluation is con-
ducted in Sect. 6.5. Finally, Sect. 6.6 summarizes the chapter.

6.2 Related Works

Spectrum trading in CRNs has been extensively studied by using game theory (Han
et al. 2011). Different game theoretical models have been adopted, such as potential
game (Nie and Comaniciu 2005), evolutionary game, non-cooperative game (Niyato
et al. 2009), and Stackelberg game (Xie et al. 2012). Despite game theory, auction
theory is another popular method to solve the spectrum trading problem. Despite
game theory, auction theory is another popular method to solve the spectrum trading
problem, such as double auction adopted inZhou andZheng (2009). The fundamental
one-shot auction has been extended to real-time fast auction algorithms by Gandhi
et al. (2007) and performance-related auction by Wang et al. (2010b). Although
one-shot auction-based spectrum trading has been extensively studied, there is a few
works that has tangled the non-cash auction.

Contract theory has recently emerged into spectrum trading by some peer works.
As far as we know, contract theory is first used to solve the problem of spectrum
sharing in cognitive radio network (CRN) by Gao et al. (2011). In this work, a
primary user (PU) acts as a seller who sets the spectrum trading contract as (qualities,
prices), and the second users (SUs) act as a buyer to choose a contract to sign.
Another application in CRNs can be found in Duan et al. (2014), in which the authors
model the PU and SUs as employer and employees, respectively. Then designing the
(performance, reward) in contract as (relaying power, spectrum accessing time), so
that SUs will be rewarded with certain spectrum assessing time if they satisfied the
relaying power requirement of the PU.

Despite the previous two works that applied contract theory into spectrum trad-
ing, some other areas have also been explored. Duan et al. (2012) designed incentive
mechanisms for smartphone users’ collaboration on both in data acquisition and
distributed computing. The SP acts as an employer and smartphone users will be
employees. Rewards will be paid according to the amount of data collected and
distributed computing users made. In the OFDM-based cooperative communication
system, (Hasan and Bhargava 2013) used contract theory to tackle the source node’s
relay selection problem. The offers/contracts consist of a menu of desired signal-to-
noise ratios (SNRs) at the destination and corresponding payments. In our previous
work (Zhang et al. 2015b), we applied the adverse selectionmodel in cellular traffic
off-loading through D2D communication, by offering rewards to encourage con-
tent owners to participate and cooperate with other devices via D2D. We modeled
the BS as employer and D2D user as employee and solved contract bundle with a
required performance and an absolute performance-related reward. The performance
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is defined as a certain data rate that the UE must provide during the D2D communi-
cation.

However, all of the above works fall into the applications of adverse selection
problems in wireless networks. Compared to the wide adoption of the adverse selec-
tion problem, themoral hazard problem has hardly been applied inwireless networks
by now. However, having seen a great potential of this model, we have done some
preliminary applications in mobile crowdsourcing. As mentioned in the beginning of
this survey, many users hesitate to participate in mobile crowdsourcing with certain
concerns, which results in serious impediment to the exploitation of location-based
services. By adopting themoral hazard, the incentive mechanism can be designed by
regarding the SP “employs” a large group of users to upload location-based data and
reward them by their performance. Thus, with the large group of users as employees,
the multilateral moral hazard model can be applied. In another work of ours (Zhang
et al. 2015a), we consider the mobile users competing in the crowdsourcing to win
reward as in a tournament, and they are rewarded by their rank orders, i.e., relative
performance.

As we see, the literature in contract theory applied wireless networks, either
adverse selection or moral hazard is considered when modeling the problem. In
practice, however, it is usually hard to decide which of the two problems is more
important, i.e., to figure out if it is a moral hazard problem or an adverse selection
problem (Edward and Prescott 1984). Indeed, most incentive problems in practice
are the combinations of moral hazard and adverse selection.

6.3 System Model

Based on the earliest model in Laffont and Tirole (1988), we consider the spectrum
trading between one PU and one SU in one CRN. The contract can be extended to
other SUs in the same CRN. Both the PU and SU are risk-neutral which means they
have no preference between saving and consuming. The PU’s spectrum is vacant, and
the PU cannot generate any revenue from the vacant spectrum unless selling/leasing
to the SU.

The PU offers a financing plan (ti , ri ) to the SU to pay for utilizing the spectrum,
where ti is a down payment and ri is an installment payment to be paid from future
revenues generated. The problem that the PU needs to solve is to find the optimal
contract that can maximize its expected return from the spectrum trading by deciding
how much down payment, and how much installment payment the SU needs to pay.

The SU makes use of the spectrum to run its own “business,” which can only
result in a success (receive a revenue of R ≥ ri ≥ 0) or failure (receive a revenue
of 0), i.e., the revenue realizations: X ∈ {0, R}. The SU may be more or less able at
utilizing this vacant spectrum, whose capability may belong to two different types
θ ∈ {θL , θH } with θL < θH , which donate lower or higher capability to generate
revenue, respectively. The PU may not be able to observe the SU’s capability type,
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but with a priori that the SU has a high-capability θH with probability β ∈ [0, 1] and
a low-capability θL with probability (1 − β).

The SU’s capability θ can be translated into the probability of getting the high
revenue R. Besides the capability, the SUcan also increase its efforts e (e.g., transmis-
sion power) to raise the probability of getting R. Thus, we define the SU’s probability
of generating high revenues R as θe ∈ (0, 1). In addition, we assume that the SU’s
operation cost ψ on the spectrum is a convex function of effort e, which is

ψ(e) ≡ c

2
e2, (6.1)

where c is the cost coefficient. To ensure that the probability 0 < θe < 1, we take c
to be large enough that the SU would never want to choose a level of effort e such
that θe ≥ 1.

We assume that there is no installment payment if the SU cannot generate revenue
from utilizing the spectrum, i.e., ri = 0 if X = 0. The installment payment ri is made
only when X = R. Thus, the expected payoff of SUwith capability θi under contract
(ti , ri ) then takes the form of

USUi = θi ei (R − ri ) − ti − c

2
e2i , i ∈ {L , H}. (6.2)

The revenue R minus installment payment ri is the SU’s income. The SU’s expected
payoff is the expected income minus the down payment and cost of operation.

Similarly, we define the expected payoff of the PU as

UPU =
∑

i

βi (ti + θi ei ri ), i ∈ {L , H}, (6.3)

= β[tH + θHeHrH ] + (1 − β)[tL + θLeLrL ].

The PU’s expected payoff is the summation of the down payment and expected
installment payment.

6.4 Problem Formulation

In this section, we will solve the PU’s problem by considering three scenarios, i.e.,
the general case where both moral hazard and adverse selection are present, the two
extreme cases where only moral hazard or adverse selection is present, respectively
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6.4.1 PU’s Payoff Maximization Problem

The PU’s problem payoff maximization problem is

max
(ti ,ri )

β[tH + θHeHrH ] + (1 − β)[tL + θLeLrL ], (6.4)

s.t.

(IC) θi ei (R − ri ) − ti − c

2
e2i ≥ θi e

′
i (R − r j ) − t j − c

2
e′2
i ,

(I R) θi ei (R − ri ) − ti − c

2
e2i ≥ 0,

∀ j �= i, i, j ∈ {L , H},

where e′
i is the effort of θi SUwhen selecting contract (t j , r j ). The ICconstraint stands

for incentive compatibility, which means the SU can only maximize its expected
payoff by selecting the financing contract that fits its own capability. The IR constraint
stands for individual rationality, which provides the SU necessary incentives to sign
the contract.

Taking the first derivative of SU’s expected payoff with respect to effort e, we
have the SU’s optimal choice of effort e∗ under the contract (t, r) as

e∗
i = 1

c
θi (R − ri ), i ∈ {L , H}. (6.5)

Similarly, we have e′
i∗ = 1

c θi (R − r j ). As we can see from this equation, the SU’s
optimal choice of effort e∗

i is independent of ti but is decreasing in ri . In other words,
the SU will have fewer incentives to put more effort in utilizing the spectrum, if it
must share more of the generated revenue, regardless of the amount of the down
payment ti . The decrease of effort e directly affects the probability of successfully
generating revenue R. Thus, it is critical to balance the trade-off between providing
necessary incentives for the SU and request more installment payment from the SU.

Replacing SU’s choice of effort ei and e′
i in (6.4), we have the PU’s problem in

the following form.

max
(ti ,ri )

β[tH + 1

c
θ2
H (R − rH )rH ] + (1 − β)[tL + 1

c
θ2
L(R − rL)rL ], (6.6)

s.t. (IC)
1

2c
[θi (R − ri )]2 − ti ≥ 1

2c
[θi (R − r j )]2 − t j ,

(I R)
1

2c
[θi (R − ri )]2 − ti ≥ 0,

∀ j �= i, i, j ∈ {L , H}.

In this problem, it is not possible to decide on a priority which of the two incentive
problems is themore important, i.e., to disentangle themoral hazard from the adverse
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selection dimension. In the following section, we will detail the respective roles
of moral hazard and adverse selection and the implications of their simultaneous
presence.Aswe shall see, the designof the optimal financing contract for this problem
depends on whether only the adverse selection or the moral hazard (or both) is
explicitly taken into account.

6.4.2 Optimal Contract with Moral Hazard only

Suppose that the PU is able to observe the SU’s financial status, so that the adverse
selection problem is removed, and the only remaining incentive problem is moral
hazard. Then, the PU’s problem can be treated separately for different capability SU
and reduces to

max
(ti ,ri )

ti + 1

c
θ2
i (R − ri )ri , (6.7)

s.t. (I R)
1

2c
[θi (R − ri )]2 − ti ≥ 0,

i ∈ {L , H}.

Since the IR constraint is binding, the problem becomes

max
ri

1

2c
[θi (R − ri )]2 + 1

c
θ2
i (R − ri )ri . (6.8)

After simplification, the problem is equivalent to

max
ri

1

2c
θ2
i (R2 − r2i ). (6.9)

The solution for this maximization problem is rH = rL = 0 and ti = 1
2c θ

2
i R

2. As
there is no adverse selection present, the PU only needs to minimize the negative
effect of moral hazard. To avoid the moral hazard problem, it is optimal for the PU
to sell the spectrum for cash only and not keep any financing participation in. The
only reason why the PUmight want to keep some financing participation in this pure
moral hazard case is that the SU may be financially constrained and may not have
all the cash available for the down payment.

6.4.3 Optimal Contract with Adverse Selection only

Suppose now that the SU’s effort level is fixed at some level ê, but the PU cannot
observe the SU’s financial status. The PU’s problem is then reduced to
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max
(ti ,ri )

β[tH + θH êrH ] + (1 − β)[tL + θL êrL ], (6.10)

s.t. (IC) θi ê(R − ri ) − ti ≥ θi ê(R − r j ) − t j ,

(I R) θi ê(R − ri ) − ti − c

2
ê2 ≥ 0,

∀ j �= i, i, j ∈ {L , H}.

This problem also has a simple solution: rH = rL = R and ti = − 1
2 ĉe

2 < 0.
Intuitively, the down payment should be larger than or equal to 0. However, in this
optimal contract, the SU has a negative down payment, i.e., the PU has to pay 1

2 ĉe
2

to the SU instead. This result is due to the fact that the PU asks for 100% of the future
return from the SU. In order to hold the IR constraint, a down payment from the PU
to the SU is necessary.

6.4.4 Optimal Contract with both Adverse Selection
and Moral Hazard

The simplicity of the preceding solutions is of course driven by the extreme nature of
the setup. However, neither extreme formulation is an adequate representation of the
basic problem in practice and that it is necessary to allow for both types of incentive
problems to have a plausible description of the spectrum trading in practice. Not sur-
prisingly, the optimal menu of contracts where both types of incentive problems are
present is some combination of the two extreme solutions that we have highlighted.

Solving the problemof the PUcan be done by relying on the pure adverse selection
methodology detailed in Bolton and Dewatripont (2004). Specifically, the analysis
shows that only the IR constraint of the θL SU and the IC constraint of the θH SUwill
be binding. Indeed, first, when the θL SU earns nonnegative rents, so will the θH SU,
who can always mimic the θL SU. Second in the symmetric information scenario,
that is, pure moral hazard optimum, the PU manages to leave the θH SU with no
rents, but this outcome is what would induce the SU to mimic the θL SU. Therefore,
the PU has to solve

max
(ti ,ri )

{β[tH + 1

c
θ2
H (R − rH )rH ] + (1 − β)[tL + 1

c
θ2
L(R − rL)rL ]}, (6.11)

s.t.

(IC)
1

2c
[θH (R − rH )]2 − tH = 1

2c
[θH (R − rL)]2 − tL ,

(I R)
1

2c
[θL(R − rL)]2 − tL = 0.
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Using the two binding constraints to eliminate tH and tL from the objective func-
tion, we obtain the usual efficiency-at-the-top condition rH = 0 (as in the puremoral
hazard case).

The first-order condition with respect to rL involves the usual trade-off between
surplus extraction from the θL SU and informational rent concession to the θH SU
and leads to

rL = β(θ2
H − θ2

L)R

β(θ2
H − θ2

L) + (1 − β)θ2
L

, (6.12)

which is bigger than 0.
By taking rL and rH into the constraints IC and IR in (11), we obtain the down

payments in this general case, which are

tL = 1

2c
[θL(R − rL)]2, (6.13)

tH = tL + 1

2c
θ2
H [(R − rH )2 − (R − rL)

2]. (6.14)

The optimal menu of contracts is thus such that there is no effort-supply distortion
for the high-capability SU because it is a 100% residual claimant. But there is a
downward effort distortion for the low-capability SU that serves the purpose of
reducing the informational rent of the high-capability SU.The extent of the distortion,
measured by the size of rL , depends on the size of the ability differential (θ2

H − θ2
L)

and on the PU’s prior β: The more confident the PU is that it faces a high-SU type,
the larger is its stake rL and the larger is the down payment tH .

6.5 Simulation Results and Analysis

In this section, we will first give an analysis about the financing contract when both
adverse selection andmoral hazard are present by varying the parameters such as the
cost coefficient, revenue, and the SU’s probability of being θH . For the two extreme
cases where only adverse selection or moral hazard is present, the results can be
predicted from the general case. Then, we will conduct comparisons among the PU’s
and SU’s payoffs, and social welfare among the three scenarios we have proposed.
In the simulation setup, we assume that θH = 2 and θL = 1. We set c = 10 as a high
value so that we can guarantee θHe < 1 always holds.

6.5.1 Financing Contract Analysis

In Fig. 6.2, we show the financing contract for θH SU when both adverse selection
and moral hazard are present. We see that, with the varying of the three parameters,
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Fig. 6.2 The financing contract for θH SU as parameters vary

the installment payment rH remains 0, as we have stated in the previous section.
When the PU knows it is facing a SU with enough cash in hand, it will ask the SU to
pay the total amount money when signing the contract, but no installment payment
afterward.

From Fig. 6.2a, we see that as the cost coefficient c increases, the down payment
(i.e., the price of the spectrum) decreases. This result is intuitive in the sense that
when the SU’s cost of generating revenue by utilizing the spectrum increases, the
SU will be less likely to participate. Thus, the PU must lower its price to attract SU’s
participation. Otherwise, the vacant spectrum is wasted and 0 payoff is obtained by
the PU.

In Fig. 6.2b, we see that as the SU’s revenue R by “running” on the PU’s spectrum
increases, the cash payment required from the PU increases. This result is also easy
to see as if the spectrum can bring more revenue for the SU, the spectrum’s value is
higher. Thus, the PU would definitely assign a higher price for the spectrum.

Figure6.2c shows when the PU’s probability of trading with a θH SU increases,
it will also raise the spectrum’s price. As we have defined in the system model, the
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Fig. 6.3 The financing contract for θL SU as parameters vary

SU’s successful probability of obtaining a revenue is θe. Therefore, under the same
effort e, the highly capable SUwill bring larger expected revenue than low-capability
SU, as θH > θL . Thus, similar to Fig. 6.2b, the PU will raise the price as the value
of spectrum increases.

Figure6.3 is similar to Fig. 6.2, as we are showing the financing contract for the
θL SU, while different from Fig. 6.2 is that the PU asks for both cash and installment
payment from the low-capability SU, instead of only down payment when the SU
is high capable. This result is intuitive in the sense that the low-capability SU has
limited cash at hand for the trading. Thus, the PU will only ask for a small amount
of down payment first, while most of the money is paid after the SU has generated
revenue from using the spectrum as we have stated in the previous section.

From Fig. 6.3a, we see that as the cost coefficient c increases, both the down and
installment payments decrease. The reason for this result is the same as shown in
Fig. 6.2a that the PU must lower its price to attract SU’s participation.

In Fig. 6.3b, we see that as the SU’s revenue R by running on the PU’s spectrum
increases, both the down and installment payment asked from the PU increase. The
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reason for this result is the same as shown in Fig. 6.2b that as the spectrum’s value
grows higher, the PU would definitely ask for a higher price.

Figure6.3c shows the optimal contract when the PU’s probability of trading with
a θL SU increases. As the PU becomes more certain that it is trading with a low-
capability SU with less cash in hand, it will lower the cash payment first, but ask
for more installment payment instead, which is the SU’s price of paying less cash at
first.

6.5.2 System Performance

From Figs. 6.4, 6.5, and 6.6, we compare the system performance under the three
scenarios we have proposed: moral hazard only, adverse selection only, and when
both are present. In the following part, we will give a detailed analysis of the cost
coefficient c, revenue R, and distribution β’s effects on the system performance.
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Fig. 6.5 The system performance as the revenue R varies

6.5.2.1 Cost Coefficient

In Fig. 6.4, we vary the value of the cost coefficient c to see the effects on the PU’s and
SU’s payoffs, and the social welfare of the three scenarios. We can see that PU’s and
SU’s payoffs and social welfare decrease as the cost coefficient increases, except the
SU’s payoff under moral hazard only and adverse selection only scenarios. Under
those two extreme cases, the PU has the full acknowledgment of either the SU’s cash
in hand or the effort put into using the spectrum. Thus, the PU can extract as much
revenue as possible from the SU, which leaves the SU with 0 payoff. The reason for
the decreasing of payoffs and social welfare is similar to the analysis we gave for
Figs. 6.2a and 6.3a that as the cost increasing, the price for the spectrumwill decrease
to attract SU. As a result, the payoffs of the PU and SU, together with social welfare,
will decrease.
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Fig. 6.6 The system performance as the θH SU probability β varies

6.5.2.2 Revenue

In Fig. 6.5, we try to see the PU and SU’s payoffs, and the social welfare when
the revenue R can be generated from using the spectrum increases. We see that the
payoffs and social welfare increase with the revenue except the SU’s payoff under
moral hazard only and adverse selection only scenarios. The increase of payoffs and
social welfare with the revenue R is easy to understand as we have explained in the
previous paragraph that the PU will extract all the information rent from the SU.

6.5.2.3 Distribution

In Fig. 6.6, we see that PU’s payoff and the social welfare increase as β gets larger.
The reason for this result is the same as we have explained for Figs. 6.2c and 6.3c,
as the PU will ask for more money if it believes that it is facing a high-capability
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SU. However, the increase of β has a negative effect on the SU’s payoff as the PU is
trying to extract revenue from the SU.

Overall, from Figs. 6.4, 6.5, and 6.6, we see that the two extreme cases serve as
the upper and lower bounds, respectively. The PU’s payoff in the general case where
bothmoral hazard and adverse selection present lies between the two extreme cases.

6.6 Summary

In this chapter, we have proposed a financing contract to address the problem of
spectrum trading in a cognitive radio network. We have modeled the problem by
considering both the adverse selection and moral hazard of the SU. In addition, we
have analyzed three scenarios, i.e., two extreme cases where only adverse selection
or moral hazard is present, and the general case where both are present. Through
simulations, we have shown different parameters’ effects on the system performance,
and that the two extreme cases serve as the upper and lower bounds for the general
case with both problems present. By this end, we have provided five applications of
complete contracts in wireless networks. In the next chapter, we will move forward
to the incomplete contract application in mobile, virtualized network.
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Chapter 7
Complementary Investment of Infrastructure
and Service Providers in Wireless Network
Virtualization

7.1 Introduction

The contract theoretical models adopted previously are all belong to the complete
contract. While in wireless networks, there are also problems that are in need of
designing incomplete contracts to solve. We will give one example of incomplete
contract in virtualized network, which is about relationship-specific investment. The
rapid evolution of information and communication technologies and infrastructure
has been a key motivator for reducing the cost of wireless network deployment and
operation. The premise of creating “virtual” resources, such as infrastructure and
spectrum resources, that can be shared led to the emergence of the notion of wireless
network virtualization (Liang and Yu 2015b). One widely adopted mobile virtual
network (MVN) framework is the two-level business model shown in Fig. 7.1. In this
model, infrastructure providers (InPs) deliver physical wireless network resources,
such as towers, base stations, and radio spectrum.Meanwhile, service providers (SPs)
act as mobile virtual network operators (MVNOs) who operate, program, and lease
the virtual resources while also offering end-to-end service to end users (Liang and
Yu 2015a).

For both InPs and SPs, the main investments include capital expenditure (CapEx)
and operational expenditure (OpEx), which are used to implement the network
infrastructure and support its operation (Bari et al. 2013). CapEx is the prominent
investment of an InP, and it includes the cost of purchasing and installing equipment
such as base stations, backhaul aggregators, radio network controller, core network
(CN), and the cost of using licensed spectrum issued by the authorities (Celentano
2015). An InP’s OpEx includes energy charge, human resources that are employed
in site and backhaul lease, operation, and maintenance. Similarly, an SP will incur
CapEx and OpEx when executing the virtualization process, initializing and main-
taining the end-to-end services for end users (Chase and Niyato 2015).

In real scenarios, the InPs and SPs usually sign a long-term supply contract on a
base price and subject to price adjustment according to the future market. Indeed, in
anMVN, the InP and SPmust work together to reap the benefits of their investments.

© Springer International Publishing AG 2017
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Fig. 7.1 Two-level framework of mobile virtual networks

On the one hand, the InP provides the physical wireless network that enables the SP
to serve end users. On the other hand, the SP pays the InP for providing the platform
to transmit its data. Such a relationship between InP and SP will be referred to as a
complementary relationship hereinafter.

The number of users attracted by SPs and the amount of mobile data traffic served
by InPs are the two main factors that drive the expansion of the MVN concept.
However, any upgrade and expansion of MVNs will require further investments. For
example, to increase the coverage and capacity of the physical wireless network,
the InP must acquire more bandwidth and more capable equipment, which increases
both CapEx and OpEx. If the SP plans to expand its market and attract more users,
investment in human capital may be needed as well to develop new online services.

Due to the complementary relation between SP and InP, their bargaining positions
and future returns dependnot only on themarket, but also on the investments theyhave
made ex ante. For example, seeing that there is a growingmarket ofLTE, one InPplans
to spend vast sums in customizing its radio access network to fit the special needs of
an SP who is a telecom carrier. This customized investment will increase the InP’s
efficiency in trading with this specific SP. However, the radio access technologies
in wireless networks are different and often incompatible between operators. Thus,
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the InP will reduce the opportunities that it can create with other SPs, ex post. In
contrast, if the InP anticipates such a weak negotiation position, it may refrain from
making such SP-specific investments even if they are efficient. Similar decisions are
hard to make for the SP to initiate new online services for users.

Clearly, to achieve high efficiency of an MVN, the ex ante investments in SP and
InP are critical. To solve this network efficiency problem, we need to answer the
questions such as when the physical and virtual resources are owned by different
parties, how much should the InP and SP invest in the network expansion? If the
ownerships of the key resources in MVN can be integrated into one, what is the
optimal investment policy? The main contribution of this chapter is to study the
problem of how the ownerships of resources affect the investment efficiency in an
MVN and answer the raised questions. The trading between InP and SP shows
the property of a complementary relation. The developed model is generic enough
to accommodate multiple SPs and InPs, as well as multiple physical and virtual
resources. Subsequently, for the special case in which there are only single SP and
InP,we provide a detailed analysis of cases inwhich the physical and virtual resources
are owned separately or integrated. Last but not least, we investigate the parameters
that influence the efficiency of investment through simulations.

The rest of this chapter is organized as follows. First, we will introduce the mobile
virtual network complementary investment model in Sect. 7.2. Then, problem formu-
lation for the general case is described in Sect. 7.3, in which we place the emphasis
on the analysis of the special case where the number of physical resources, virtual
resources, InPs, and SPs in theMVNare all equal to one. The performance evaluation
is conducted in Sect. 7.4. Finally, summary is given in Sect. 7.5.

7.2 System Model

Consider an MVN composed of a set of InPs represented by J and a set of SPs
denoted asK . The InPs own multiple physical resources such as the licensed spec-
trum, sites (towers and antennas), base stations (macrocell, small cell), access points,
CN elements (gateway, switchers, routers). The virtual resources owned by SPs
include all the virtual entities sliced by each element in the physical wireless net-
work. This model is aligned with the field of property ownership theory discussed in
Hart and Moore (1990).

All InPs and SPs are assumed to be risk neutral and pool together as a set of
I agents, S = J ∪ K , and each agent is denoted by i = 1, . . . , I . Any subset of
agents is denoted as S ⊆ S . Furthermore, the set of all physical and virtual resources
that are available in the MVN is denoted by A with N resources (a1, a2, . . . , aN ),
with the subset of resources A ⊆ A .

As previously discussed, wemodel the InPs and SPs in theMVNas being engaged
in a complementary relation. The InPs and SPs’ investments include expenditures in
capital and human resources that are more or less specific to the resources inA and
thus affect the InPs and SPs’ productivity and bargaining position in the future. An
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agent can choose what type of investment to make (or type of service to provide). As
a simplification, we restrict our attention to the case in which the types of services
offered by the InPs and SPs are fixed; they choose only what level of service to
provide. For example, InPs invest to expand their network capacity and coverage,
which can include wider spectrum bandwidth and larger antenna gain.

For expanding an MVN, the investments of the InPs and SPs can be viewed as a
two-stage problem. In the first stage, each agent i makes ex ante investment xi on
its resources at a cost ψi (xi ). Then, in the second stage, the trade among a subset
of InPs and SPs S ⊆ S combined with the subset of resources A ⊆ A begins, and
a revenue V (S, A, x) is generated, where x = (x1, x2, . . . , xI ) denotes the vector of
all InPs and SPs’ ex ante investments. Since each agent only chooses how much to
invest, we suppose that xi is a scalar in the range [0, x̄i ].

7.2.1 Cost and Revenue Functions

7.2.1.1 Cost

The InPs and SPs will incur monetary costs when making such investments. For
different types of investments, the cost functions ψi (xi ) can differ. Here, we assume
that the cost function ψi is twice differentiable and strictly increasing and strictly
convex with respect to the investment xi , i.e., ψ ′

i (xi ) ≥ 0 and ψi (xi ) = 0. If xi >

0, then ψ ′
i (xi ) > 0 and ψ ′′

i (xi ) > 0 for xi ∈ (0, x̄i ), with limxi→0 ψ ′
i (xi ) = 0 and

limxi→x̄i ψ
′
i (xi ) = ∞.

7.2.1.2 Revenue

Consider a coalition of InPs and SPs in a subset of Swho control a subset of resources
A. The revenueV (S, A, x)obtained from the tradingwithin this coalition is also twice
differentiable, strictly increasing, and measured in monetary terms. But V (S, A, x)
is concave in xi instead of convex as the cost functions. There are two constraints on
V (S, A, x)

∂V (S, A, x)
∂xi

= 0, if i /∈ S, (7.1)

∂2V (S, A, x)
∂xi∂x j

≥ 0, ∀ j 
= i, (7.2)

where (7.1) implies that the InP and SP’s marginal investment affects only the value
of coalitions of which it is a member and (7.2) denotes the complementary relation
of the investment, that is, if an InP invests to upgrade its physical wireless network
capacity, the SPs can also benefit from that.
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7.2.2 Shapley Value

In this general setup with I InPs and SPs in a MVN, the main difficulty is to nego-
tiate how the revenue of the trade gets determined, in other words how the ex post
revenue V (S, A, x) gets divided up among the InPs and SPs in the coalition. In
Shapley (1953), the proposed solution is to assume that the outcome of multilateral
negotiations is divided according to the Shapley value.

When a coalition of InPs and SPs S decides to form anMVN, they agree to pool all
the physical and virtual resources owned by any of the members. Then, the mapping
ω(S) from S to A denotes the subset of resources owned by the subset of agents
S (Grossman and Hart 1986). As done in Bolton and Whinston (1993), we assumed
that each resource can be controlled by at most one of the coalitions of agents S, or
its complementS \S. In addition, we assume that the resources controlled by some
subset S′ ⊆ S must also be controlled by the whole coalition S. Thus, we have the
following properties for the mapping ω(S):

ω(S) ∩ ω(S \ S) = ∅, (7.3)

ω(S′) ⊆ ω(S), (7.4)

ω(∅) = ∅. (7.5)

The Shapley value assigns a revenue to an agent i possibly involved in a transaction
with S agents who together own or control ω(S) resources. We give the formal
definition of Shapley value as follows:

Definition 7.1 Given an ownership allocation ω(S), a vector of ex ante invest-
ments x , and the associated ex post revenue for any given coalition of agents S,
V (S, ω(S), x), the Shapley value specifies the following expected ex post revenue
for any agent i :

Bi (ω, x) =
∑

S|i∈S
p(S)[V (S, ω(S), x) − V (S \ i, ω(S \ i), x)], (7.6)

where

p(S) = (s − 1)!(I − s)!
I ! , (7.7)

and s = |S| is the number of agents in S.

To summarize, the Shapley value is an expected revenue, where the expectations
are taken over all possible subcoalitions S that agent i might join ex post. That is,
each agent looks at ex post coalition formation like a random process where any order
in which coalitions get formed is equally likely (Bolton and Dewatripont 2004). It
is for this reason that the probability distribution p(S) is as specified in (7.7). Given
any ex post realization of a coalition, S, the Shapley value assigns to each agent i
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in the coalition the difference in surplus obtained with the entire group S and with
the coalition excluding agent i . In other words, the Shapley value assigns to each
agent i the expected contribution of that agent to the overall ex post revenue obtained
through multilateral trade between all agents.

7.2.3 Investment Surplus

Given the Shapley value as the expected revenue and the cost of InP and SP’s invest-
ments, we have the surplus of each agent’s investment:

Ri (S, ω(S), x) = Bi (ω, x) − ψi (xi ). (7.8)

7.3 Problem Formulation

Given the InPs and SPs’ revenue and cost functions of investment inMVNexpansion,
we are about to see what is the optimal investment level when they are chosen non-
cooperatively by formulating the InPs and SPs’ surplus maximization problem in
this section. We will first give the general results where there are multiple resources,
as well as multiple InPs and SPs. Next, we will give the representative case, where
there are only one InP and SP, with only one physical resource and virtual resource.
In this example, we will give additional analysis on how the ownerships of those
resources affect the investment incentives of the InP and SP in a MVN.

7.3.1 General Case

Within one coalition S of multiple InPs and SPs, member chooses the investment xi
non-cooperatively to maximize their respective expected surplus:

max
xi

Bi (ω, x) − ψi (xi ). (7.9)

The optimal investment x∗
i is characterized by the first-order conditions of (7.9):

∂Bi (ω, x)
∂xi

=
∑

S|i∈S
p(S)

∂V (S, ω(S), x)
∂xi

, (7.10)

= ψ ′
i (xi ).
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Different coalitions of InPs and SPs will result in different optimal investment
levels, because different ownerships of the physical and virtual resources affect the
incentives of the InPs andSPs in investment.Next,we are going to see how theoptimal
investment levels are affected when the physical resource and virtual resource are
owned separately or together by InP and SP.

7.3.2 Single Provider and Single Resource

Consider a two-level business model for MVNs in which we have only one SP
operating on one virtual resource and a single InP working on one physical resource.
Thus, we have I = 2 and A = {a1, a2} and denote the InP as agent 1 and the SP as
agent 2. Each agent can make ex ante investments xi in a first stage, and the trade
between the InP and SP takes place in a second stage.

In general, we can have three different scenarios: non-integration, InP integration,
and SP integration (Bolton and Whinston 1993). Non-integration means the owner-
ships of the physical and virtual resources are separated, physical resource is under
the control of InP, and virtual resource is controlled by SP. InP integration means that
the InP is the owner of both physical and virtual resources and SP can only operate
and use the virtual resource under the allowance of the InP. In contrast, the SP has
the ownership of both physical and virtual resources under the SP integration, and
InP has limited access to the physical resource.

Based on this interpretation, we can set up the system model as follows:
Non-integration: ω(1) = {a1}, ω(2) = {a2};
InP integration: ω(1) = ∅, ω(2) = {a1, a2};
SP integration: ω(1) = {a1, a2}, ω(2) = ∅.

7.3.3 Non-integration

Due to the complementary relation between InP and SP, it is intuitive to see that
no ex post revenue can be generated without combining the physical and virtual
resources together in an MVN. Then, under non-integration, the ex post revenue that
is generated by a single InP or SP is as follows:

V ({1}, a1, x) = V ({2}, a2, x) = 0, (7.11)

where x = (x1, x2).
If, however, both InP and SP form a coalition by trading access to their respective

resources, they generate a strictly positive revenue:

V ({1, 2}, {a1, a2}, x) = V (x) > 0, (7.12)
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where V (x) is the maximum revenue obtain by V (S, ω(S), x). Since there are
only two equally likely orderings of coalition formation, {1, 2} and {2, 1}, we have
p({1, 2}) = p({2, 1}) = 1

2 . Under non-integration, the Shapley value then assigns an
expected revenue to the InP and SP as

B1(N I |x) = B2(N I |x) = 1

2
V (x), (7.13)

where N I stands for non-integration.
Based on our assumptions that V (S, ω(S), x) is strictly increasing and concave

in x = (x1, x2) and the investment cost functions ψi (xi ) are strictly increasing and
convex in xi , the InP and SP choose their ex ante investment non-cooperatively to
maximize their respective expected revenue:

max
xi

1

2
V (x) − ψi (xi ). (7.14)

Due to the concavity of the objective function, these equilibrium investment levels
can be obtained from the first-order conditions of each party’s optimization problem:

1

2

∂V (x1, x2)

∂xi
= ψ ′

i (xi ). (7.15)

Thus, under non-integration, the equilibrium investment levels (xN I
1 , xN I

2 ) are given
by

1

2

V (xN I
1 , xN I

2 )

∂x1
= ψ ′

1(x
N I
1 ), (7.16)

1

2

V (xN I
1 , xN I

2 )

∂x2
= ψ ′

2(x
N I
2 ). (7.17)

7.3.4 Infrastructure Integration

Under InP integration, the InP owns both the physical and virtual resources in the
MVN, and the SP can only operate the virtual resource with the InP’s permission.
Then, it is possible for the InP to generate an ex post revenue on its own, since the
resources it owns are sufficient to run as a complete MVN. Nevertheless, the SP
cannot generate any revenue on its own, as under non-integration. So we still have
(7.12), as well as

V ({2},∅, x) = 0. (7.18)

When the InP operates both physical and virtual resources, the ex post revenue that
can be generated with only InP is as follows:



7.3 Problem Formulation 113

V ({1}, a1, a2, x) = Φ1(x1), (7.19)

where Φ1(x1) is the InP’s revenue function obtained from V (S, ω(S), x). Due to
the complementary relation with SP, it is plausible that the InP might be able to
make higher revenue by hiring the SP to operate the virtual resource. Thus, the
revenue InP obtains by itself is lower than the case when it cooperates with SP, i.e.,
Φ1(x1) < V (x).

The Shapley value under InP integration is then given by

B1(I nP I |x) = 1

2
[V (x) − Φ1(x1)] + Φ1(x1), (7.20)

B2(I nP I |x) = 1

2
[V (x) − Φ1(x1)]. (7.21)

Thus, under InP integration, the equilibrium investments (x InP I
1 , x InP I

2 ) are given by

1

2

V (x InP I
1 , x InP I

2 )

∂x1
+ 1

2
Φ ′

1(x
InP I
1 ) = ψ ′

1(x
InP I
1 ), (7.22)

1

2

V (x InP I
1 , x InP I

2 )

∂x2
= ψ ′

2(x
InP I
2 ). (7.23)

7.3.5 Service Provider Integration

Indeed, the SP integration is the mirror image of InP integration, so that the Shapley
value under SP integration becomes

B1(SP I |x) = 1

2
[V (x) − Φ2(x2)], (7.24)

B2(SP I |x) = 1

2
[V (x) − Φ2(x2)] + Φ2(x2), (7.25)

where Φ2(x2) is the SP’s revenue function obtained from V (S, ω(S), x) and is also
lower than the case when it cooperates with InP. Thus, under SP integration, the
equilibrium investment levels (x SP I

1 , x SP I
2 ) are given by

1

2

V (x SP I
1 , x SP I

2 )

∂x1
= ψ ′

1(x
SP I
1 ), (7.26)

1

2

V (x SP I
1 , x SP I
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+ 1

2
Φ ′

2(x
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2 ) = ψ ′

2(x
SP I
2 ). (7.27)
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7.3.6 Summary

When the InP and SP are not integrated, any party can make the ex ante investments
according to the equilibrium obtained from the optimization problem. If the own-
ership of both resources is integrated, for example, under InP integration where the
InP is the sole owner of both the physical and virtual resources, then its ex post-
negotiating position with the SP is less affected by specific investments. The InP
would of course be inclined to make any ex ante-specific investments that are effi-
cient. But as the InP is the sole owner of both resources, the SP is now the InP’s
employee, and the SP would have less incentive to invest than under non-integration.

In summary, the ownership allocation affects the InP and SP’s incentives in spe-
cific investments. If investments in customized infrastructures are most valuable,
then it makes sense for the InP to own physical resources and the SP’s business. If
investments in virtual resource operation and end-to-end service are most valuable,
then it makes sense for the SP to own the virtual resource and the physical resource.
Finally, if both types of investment are important, it may be best to separate their
business.

7.4 Simulation Results and Analysis

In this section, we will give numerical simulations to illustrate how the InP and SP’s
incentives to invest are affected by the ownership of resources. First, we will give
the specific form of the revenue and cost functions we have defined in the system
model. Then, we will show the InP and SP’s optimal investment level and surplus
by varying the cost coefficient and marginal return and do a comparison between
InP and SP when resources are under different ownerships, i.e., non-integration, InP
integration, and SP integration.

7.4.1 Simulation Setup

In the system model, we have defined the revenue function V as a concave function.
Here, we choose a logarithmic function for the revenue V as follows:

V (x) = logn(1 +
N∑

i=1

xi ). (7.28)

The InP and SP’s solo revenue function under integration is

Φi (xi ) = logn(1 + xi ). (7.29)
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Clearly, Φi (xi ) < V (x) is satisfied. The partial derivative Φ ′
i (xi ) is the marginal

return of each investment. By varying the index n, we can change the marginal
return of different investments.

Furthermore, we have defined the cost function in the system model as a convex
function. Here, we set up the cost function ψi in a quadratic form as

ψi (xi ) = 1

2
ai x

2
i , (7.30)

where ai is the cost coefficient of each investment. From the previous section, we see
that theSP integration is themirror imageof the InP integration. In order to distinguish
the investment and surplus of InP and SP, we assign a higher cost coefficient a1 to
InP than that of SP (a2).

7.4.2 Cost Coefficient

In Figs. 7.2 and 7.3, we study the cost coefficient’s impact on the optimal investment
level and surplus and do comparisons between InP and SP under different ownership
scenarios. From the simulation results, we can see that as the magnification of the
cost coefficient ai increases, the investment and surplus also decrease. The reason for
this phenomenon is that a larger cost coefficient ai means more cost when making an
investment. In such a case, both InP and SP are less likely to invest in theMVN.With
less investment, the network capacity will decrease, and the InP and SP’s surplus will
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Fig. 7.3 The impact of the cost coefficient on surplus

certainly decrease. Furthermore, from Fig. 7.2, we see that the InP invests more in
physical resources under InP integration, and the SP invests more in virtual resources
under SP integration. In contrast, the physical resource receives the least investment
under SP integration, and virtual resource receives the least investment under InP
integration.

7.4.3 Marginal Return

In Figs. 7.4 and 7.5, we study how the marginal return affects the InP and SP’s
investment and surplus while fixing the cost coefficient. From Fig.7.4, we can see
that as the index n increases, the investments increase under integration, but decrease
under non-integration. The reason is that when 0 < Φ ′

i (xi ) < ∂V (x)/∂xi , integration
always induces higher incentives for the InP and SP than non-integration. From
Fig. 7.5, we can see that both InP and SP result in a decrease of surplus whenmarginal
return increases. This result is due to that when the marginal return Φ ′

i (xi ) is large,
either form of integration will result in overinvestment. In the case of InP integration
and SP integration, the overinvestments result in undesirable surpluses for SP and InP,
respectively. Similar to the previous result, we see that the InPs have less incentive
to invest under non-integration or under SP integration than when itself owns the
integrated MVN. The same is for the SP.
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7.5 Summary

In this chapter, we have given one application of incomplete contract in relationship-
specific investment by considering the problem of how to efficiently make invest-
ments to expand MVN capacity and coverage under the complementary relation
between InPs and SPs. We not only gave the general model and solution when there
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are multiple physical and virtual resources in the MVN and the InPs and SPs that
own and operate them. We but also analyzed the problem of how the ownership of
physical and virtual resources affects the InP and SP’s incentives in investment, espe-
cially in the case when they are owned separately or integrated. Using simulations,
we have shown that the ownership and marginal return of resources affect InP and
SP’s incentives to invest and surpluses.

References

Bari M, Boutaba R, Esteves R, Granville L, Podlesny M, Rabbani M, Zhang Q, Zhani M (2013)
Data center network virtualization: a survey. IEEE Commun Surv Tutorials 15(2):909–928

Bolton P, Dewatripont M (2004) Contract theory. The MIT Press, Cambridge, MA
Bolton P, Whinston MD (1993) Incomplete contracts, vertical integration, and supply assurance.
Rev Econ Stud 60(1):121–148

Celentano J (2015) U.S. wireless CapEx looking up. http://www.aglmediagroup.com/u-s-wireless-
capital-expenditures-looking-up/

Chase J, Niyato D (2015) Joint optimization of resource provisioning in cloud computing. IEEE
Trans Serv Comput (99):1–1

Grossman SJ, Hart OD (1986) The costs and benefits of ownership: a theory of vertical and lateral
integration. J Polit Econ 94(4):691–719

Hart O, Moore J (1990) Property rights and the nature of the firm. J Polit Econ 98(6):1119–1158
Liang C, Yu F (2015a) Wireless network virtualization: a survey, some research issues and chal-
lenges. IEEE Commun Surv Tutorials 17(1):358–380

Liang C, Yu F (2015b) Wireless virtualization for next generation mobile cellular networks. IEEE
Wireless Commun 22(1):61–69

Shapley LS (1953) Stochastic games. Proc Nat Acad Sci USA 39(10):1095–1100

http://www.aglmediagroup.com/u-s-wireless-capital-expenditures-looking-up/
http://www.aglmediagroup.com/u-s-wireless-capital-expenditures-looking-up/


Chapter 8
Conclusion and Future Works

8.1 Conclusion Remarks

In this book, we have provided the contract theory framework for wireless network-
ing, which has been sequentially awarded with the Nobel Prize in economics science
for 2014 and 2016. Contract theory is highly evaluated due to its effectiveness in
market power and regulation—specifically how to regulate oligopolies in situations
with asymmetric information, i.e., when regulators do not know everything about
how firms are operating. Meanwhile, contract theory itself is an efficient tool in deal-
ing with asymmetric information between employer/seller(s) and employee/buyer(s)
by introducing cooperation. Such a framework for designing regulations has been
applied to a number of industries, from banking to telecommunications. Given the
properties of wireless networks, which encounter many situations of asymmetric
information and the need for cooperation, contract theory is an excellent tool by
modeling the employer/seller(s) and employee/buyer(s) as different roles depending
on the scenario under consideration.

This book provides a theoretical research between wireless communications, net-
working, and economics, inwhich different contract theorymodels have been applied
in various wireless networks scenarios. We start with the fundamental concepts of
contract theory and introduced the potential applications for each class of the typical
contract problems: adverse selection,moral hazard, and the mixed of them two. Spe-
cially, we have investigated the design of reward, which is themost critical element in
an incentive mechanism design. We have also provided a detailed description of the
potential of using such contract-theoretic tools in several wireless applications, such
as spectrum trading cognitive radio network, relay selection, distributed computing,
D2D communication, and mobile crowdsourcing.

In the first application, the problem of pure adverse selection is studied to solve the
incentive problem of encouraging cellular UEs to participate in D2D communication
underlaid cellular network. Given the information asymmetry that the UEs’ prefer-
ences are unobservable to the BS, we have proposed a self-revealing mechanism
that forces UEs to select the contracts that are in consistent with their preferences.
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Simulation results have shown that the proposed approach outperforms the linear
pricing which does not try to retrieve any information at all, but cannot compete with
the optimal contract with no information asymmetry.

Next, the problem of pure moral hazard is studied to investigate the issue of
providing incentives for smart device users to participate in mobile crowdsourcing
and designing optimal payment plan for fog nodes to cooperate in fog computing.
In particular, not only we have solved the problem in the basic one-dimensional
and one-user case, but also we extend the model into multi-dimensional and multi-
user cases. The basic one-dimensional and one-user model is first applied in mobile
crowdsourcing, in which one user is awarded by the principal’s evaluation from a
single aspect. Then, we extended the case into themulti-user one, where the principal
rewards users based on the rank of their performance as in a tournament. The optimal
contract is solved as a fixed list of prizes. The optimal contract is solved as a bundle
of reward and effort. The last application of moral hazard is in fog computing,
in which a multi-dimensional model is applied to solve the optimal payment plan
while ensuring the FN’s cooperation. In the three applications, the numerical results
showed the comparisons between the utilities in the optimal contracts and other
different incentive mechanisms and analyzed that the principal’s utility varies with
different parameters such as operation cost coefficient, risk aversion degree, and
measurement error variance.

Furthermore, the mixed problem of both the adverse selection and moral hazard
problem is studied to address the problem of spectrum trading in a cognitive radio
network. The unobservable of SU’s capability in generating revenue from utilizing
the spectrum is modeled as adverse selection and the unobservable of SU’s effort
putting into utilizing the spectrum is modeled as moral hazard. The three different
problems, i.e., two extreme cases where only adverse selection or moral hazard
is present and the general case where both are present, are solved and analyzed.
Through extensive simulations, we have also shown different parameters’ effects on
the system performance and showed that the two extreme cases serve as the upper
and lower bound for the general case where both problems are present.

Finally,wemake progress toward the incomplete contract by studying the problem
of how to efficiently make investments to expand MVN capacity and coverage under
the complementary relation of InPs and SPs. We not only gave the general model
and solution when there are multiple physical and virtual resources in the MVN
and the InPs and SPs that own and operate them. We also analyzed the problem
of how the ownership of physical and virtual resources affects the InP and SP’s
incentives in investment, especially in the case when they are owned separately or
integrated. Using simulations, we have shown that the ownership andmarginal return
of resources affect InP and SP’s incentives to invest and surpluses.

From those works, we have seen contract theory as a useful framework to design
incentive mechanisms to motivate the third party’s cooperation in emerging wireless
networks, such as heterogeneous networks, D2D communication, mobile crowd-
souring, mobile cloud computing, and cognitive radio networks. In a nutshell, this
book is expected to provide an accessible and holistic survey on the use of new
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techniques from contract theory to address the future of network economics area,
and have a long-term effect on problems such as incentive mechanism and pricing
schemes design, resource sharing and trading.

8.2 Future Work

Under the background of rapid development wireless networks and the proliferation
of highly capable mobile devices, cooperations in wireless networks are and will
be in highly demand in numerous areas. Incentive mechanism design is to ensure
that cooperation falls into the emerging world-class high-impact theoretical research
between wireless communications, networking, and economics. Thus, we see there
is a huge potential to do further research in incentive mechanism design and use
contract theory to solve cooperation problems in wireless networks. The following
is research directions that can be further explored in this area of research.

• Exploring emerging wireless network applications: There are many areas in wire-
less networks where the cooperation among different parties is extremely needed.
Some interesting areas where cooperation is called upon to play a key role include
wireless network virtualization, cloud radio access networks, physical layer secu-
rity, multimedia distribution in ultra-dense networks, and load management in
wireless networks with machine-to-machine communications.

• Exploring new contract theory models: First, current applications in wireless net-
works do all belong to the static basic and extended models in multi-dimensional
and multi-lateral adverse selection and moral hazard models. In the future works,
we can extend the static models into repeated contracting and incomplete con-
tracting ones, which show great potential in modeling more sophisticated inter-
play between different parties. Second, contract theory can be utilized to address
wireless networking problems other than cooperation incentives. There are other
models in contract theory that provide potential techniques, e.g., utilizing insur-
ance design and audition in mobile cloud computing or using system hierarchy
efficiency in infrastructure deployment.

• Exploring the connection between wireless physical meanings and economic fac-
tors: By applying thismicroeconomicmodel intowireless networks, it is important
to well model and define the economic parameters with appropriate wireless com-
munication network physical meanings, since the ultimate goal of using contract
theory here is to respond to the technical problems in wireless networks. With-
out properly characterizing the wireless network system, the solution will be less
meaningful and infeasible to apply.
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