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Preface

Connectivity is one of the most fundamental properties, if not the most fundamental
property, of communication networks. A communication network is said to be
connected if there is a path from any node to any other node in the network. A
communication network is essentially an organized collection of communication
links between pairs of devices, ultimately serving to allow information exchange
between human beings, between human and machine, and between machine and
machine. It is the way the communication devices are deployed and collection of
communication links is organized that gives rise to the connectivity properties of a
communication network.

This book introduces a number of recent developments dealing with connectivity
of communication networks, ranging from connectivity of large static networks and
connectivity of highly dynamic networks to connectivity of small- to medium-sized
networks. A fundamental problem being studied in this book is, the conditions
under which a network with nodes randomly deployed and connections between
nodes established following a prescribed connection model becomes connected.
Any communication network is used to transport information from some nodes in
the network to some other nodes. Therefore, connectivity studies play an important
role in the design, deployment, and management of a network. Furthermore,
in wireless networks, a direct connection can only occur between two nearby
nodes. Therefore, connectivity of a network conveys topological information of the
network, which can be used to infer topology-related information such as location
of nodes and boundary of the network. This book also introduces some applications
of connectivity studies in network optimization, in network localization, and in
estimating distances between nodes.

This book is organized into 14 chapters. Chapter 1 provides an overview of
the fundamental concepts, models, tools, and methodologies used for connectivity
studies. The rest of the chapters can be divided into four parts: Part (Chaps. 2–7),
connectivity of large static networks; Part (Chaps. 8–10), connectivity of highly
dynamic networks; Part (Chaps. 11–13), connectivity of small- to medium-sized
networks; and Part (Chap. 14), applications of connectivity studies.

v



vi Preface

Part deals with connectivity of large wireless networks with stationary nodes.
Considering a large network with nodes distributed in a region following either
uniform or Poisson distribution and a pair of nodes directly connected following
some prescribed connection model independent of other pairs of nodes, we first
study the sufficient and necessary condition for the network to be connected. This
study reveals that a connected network is a very demanding requirement in the sense
that as the number of nodes in the network increases, every node has to increase its
transmission power or equivalently transmission range, in order to keep the network
connected. This observation motivates us to further study whether less stringent
requirement suffices if we can tolerate a small percentage of disconnected nodes.
This study leads to an interesting finding that indeed if, instead of requiring all
nodes to be connected via a multi-hop path, only a large fraction of nodes need to
be connected where this fraction can be any positive number smaller than one, a
significantly less amount of transmission power or transmission range is required.
Furthermore, we study the conditions required for a stationary network to percolate.
In an infinite network, the network is said to percolate if there exists a component
of infinite size in the network, where a component is a maximal set of nodes
in the network such that there is a path between every pair of nodes in the set.
In Part , we also study the well-known phase transition phenomenon in network
connectivity. Informally, a phase transition is defined as a phenomenon where a
small change in the local parameters of a system results in an abrupt change in
the macroscopic behavior of the system. Our particular interest in this book is
studying the changes in the transmission range or transmission power required to
transform an almost disconnected network to an almost connected network. Finally,
in a wireless network, the presence of interference among nodes challenges the
assumption used in the early studies on the independence of connections. This
motivates us to further study the network connectivity in the presence of interference
where we use the widely deployed carrier sense multiple access wireless networks
as the subject of our study.

Part focuses on the study of connectivity of large highly dynamic networks.
In dynamic networks with mobile nodes, it is possible that two nodes may never
be part of the same connected component but they are still able to communicate
with each other within a finite time interval. This occurs because a mobile node can
carry information over a physical distance as it moves and transmits the information
to another node when new connection opportunities arise. Therefore, information
propagates in dynamic networks via a combination of wireless communications and
node mobility. Consequently, connectivity in a dynamic network should be more
broadly defined as a node is connected to another node if information from the first
node can propagate to the second node within a prescribed amount of time. In this
part of the book, we study information propagation process in one-dimensional and
two-dimensional networks with vehicular networks and mobile ad hoc networks
being used as two major examples of dynamic networks in the study.

Part deals with connectivity of small- to medium-sized networks. The study
of large networks is mainly based on asymptotic analysis, and many conclusions
obtained are applicable to networks with a sufficiently large number of nodes only.



Preface vii

In many real communication networks that we may encounter, the number of nodes
in the network is not necessarily large that warrants the use of asymptotic analysis.
Therefore, the third part of this book is dedicated to studying connectivity of small-
to medium-sized networks. Our study in this part focuses on the analysis of three
related probabilistic measures:

1. Pr .k/, the probability that a randomly selected node is k-hops apart from another
randomly selected node, i.e., the length of the shortest path from the first node to
the second node, measured by the number of hops, is k

2. Pr .kjx/, the probability that a node at a displacement x apart from another node
is connected to that node in exactly k-hops

3. Pr .xjk/, the spatial distribution of the nodes k-hops apart from another desig-
nated node.

These three probabilities are grossly referred to as the probabilities of k-hop
connection or hop count statistics. The analysis on the probabilities of k-hop
connection plays a foundational role in our understanding of connectivity of small-
to medium-sized networks. We study the probabilities of k-hop connection in both
one-dimensional and two-dimensional networks. Furthermore, as we go deeper
in connectivity studies, it becomes clear that existing tools used for connectivity
studies fall short of answering an important category of problems: how to measure
the quality of connectivity of a wireless network which has a realistic number of
nodes, not necessarily large enough to warrant the use of asymptotic analysis,
and has unreliable connections, reflecting the inherent unreliable characteristics of
wireless communications. This motivates us to propose a new measure of network
connectivity which, compared with existing well-known connectivity measures
derived from the algebraic graph theory concentrating on describing the connectivity
between nodes with directed connections, focuses more on the characterization of
the quality of end-to-end connections in the network.

Part introduces some applications of connectivity studies. Among the broad
range of applications of connectivity studies, we give three examples on the
analysis of key performance measures of vehicular networks and its subsequent
use in network design and optimization, on the use of connectivity information to
estimate the distance between a pair of neighboring nodes, and on connectivity-
based wireless localization algorithms.

The target audience for this book includes professionals who are designers
and/or planners of communication networks, researchers (academics and graduate
students), and those who would like to learn about the field. The format and flow of
information have been organized such that it can be used as a textbook for graduate
courses and research-oriented courses that deal with the design and analysis of
communication networks.

Sydney, NSW, Australia Guoqiang Mao
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Chapter 1
Introduction

Abstract This chapter provides an overview of the fundamental concepts, models,
tools, and methodologies used for connectivity studies. We start with an introduction
to the major connection models used to describe the establishment of communica-
tion links between devices or nodes. These include the Erdős–Rényi connection
model, the unit disk connection model, the log-normal connection model, the
random connection model, and the SINR connection model. The relationship of
these models and their impact on connectivity studies are discussed. Next, we cover
the network models that have been widely used to capture the spatial distribution of
nodes. Particularly, the dense network model, the extended network model, and the
infinite network model are discussed. Finally, we briefly introduce the main tools
and methodologies used for connectivity studies, including Continuum percolation
theory, branching process, and algebraic graph theory, and present the main results,
established using these tools, on network connectivity.

This chapter provides an overview of the fundamental concepts, models, tools, and
methodologies used for connectivity studies. We shall start with an introduction to
the major connection models used to describe the establishment of communication
links between devices or nodes. Next, we shall cover the network models that
have been widely used to capture the spatial distribution of nodes. Finally, we
briefly introduce the main tools and methodologies used for connectivity studies
and present the main results, established using these tools, on network connectivity.

1.1 Connection Models

A network can be conveniently represented by a graphic model by using one vertex
in the graph to uniquely represent a node in the network and using one edge in the
graph to uniquely represent a link in the network, and the converse. The obtained
graph is called the underlying graph of the network. Properties of a network can
be investigated by studying its underlying graph. The two terms “network” and its
“underlying graph” are used almost interchangeably in this book. When we need
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2 1 Introduction

to refer to the location of network nodes, we prefer the term “network”; when the
properties of the network can be studied using its underlying graph and without
consideration of the nodes’ location, we prefer the term “graph.”

There are five models that are widely used to describe the establishment of an
edge between a pair of vertices. In these models, the edges may be directional or
undirectional.

1.1.1 Erdős–Rényi Connection Model

There are two closely related variants of the Erdős–Rényi connection model that
are widely used for generating random graphs: the G .n;m/ model and the G .n; p/
model.

In the G .n;m/model, a graph is chosen uniformly at random from the collection
of all graphs that have n vertices and m edges. Consider the G.4; 3/ model for
example. There are a maximum of six possible edges between vertices and the total
number of graphs with four vertices and three edges are 20. Each of these 20 graphs
is included with probability 1=20.

In the G .n; p/ model, a graph is constructed by connecting vertices randomly.
Each edge is included in the graph with probability p, independent of every other

edge. It follows that the expected number of edges in G .n; p/ is

�
n
2

�
p and

the number of edges in G .n; p/ is a binomially distributed random integer with

parameters

�
n
2

�
and p.

The random graph whose edges are established following the Erdős–Rényi con-
nection model is known as the Erdős–Rényi graph. The study of the Erdős–Rényi
graphs was pioneered by two Hungarian mathematicians Paul Erdős and Alfréd
Rényi. They established many properties of the Erdős–Rényi graph. Particu-
larly, when the model parameters are chosen properly, many properties of the
Erdős–Rényi graph arise with very high probability. The Erdős–Rényi graphs were
however abstract mathematical objects. Particularly, the establishment of edges does
not depend on the geometric positions of vertices—a phenomenon that is contrary
to common practice in a communication network. In a communication network,
particularly in a wireless network, the existence of an edge between a pair of vertices
almost invariably depends on the Euclidean distance between the vertices. Because
of this lack of geometric component in the Erdős–Rényi connection model, the
Erdős–Rényi connection model does not fit into the framework of this book and
hence the treatment of the Erdős–Rényi (ER) connection model is left out. Readers
are referred to [28, 111] for a complete treatment of the Erdős–Rényi connection
model of random graphs and its more recent extensions.
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1.1.2 Unit Disk Connection Model

In the unit disk connection model, there is a link between a pair of nodes, say nodes
i and j, if and only if their Euclidean distance is smaller than or equal to a given
threshold:

��xi � xj

�� � r (1.1.1)

where xi and xj are the coordinates of nodes i and j respectively, the parameter r is
known as the transmission range of the node and kk denotes the Euclidean norm.
When investigating how certain property of a network scales with an increase of the
number of nodes in the network, parameter r is often written as r .n/ to emphasize
the dependence on n where parameter n denotes number of nodes.

Compared with the Erdős–Rényi connection model, the unit disk connection
model grossly captures the geometric aspect in a communication network that when
a pair of nodes is closer to each other, it is easier to establish a link between
them. Therefore, the unit disk connection model is more popularly used than the
Erdős–Rényi connection model in studying communication networks.

The unit disk connection model is a simple connection model that may help to
simplify the analysis. However its limitation is also quite obvious: no real antenna
has an antenna pattern resembling that of the disk connection model. Therefore, the
log-normal connection model, which is more realistic than the unit disk connection
model, has accordingly been considered for modeling connections between nodes.

1.1.3 Log-Normal Connection Model

Let Pt be the transmission power of a transmitting node i in dB unit. As the signal
propagates towards a receiving node j, the signal strength will attenuate with the
propagation distance. Let PL

�
xi; xj

�
be the path loss from node i to node j in dB

unit where xi and xj are the coordinate vectors of node i and node j respectively.
Thus the received signal strength at node j in dB unit, denoted by Pr

�
xi ! xj

�
, can

be written as

Pr
�
xi ! xj

� D Pt � PL
�
xi; xj

�
(1.1.2)

The model in (1.1.2) does not consider the surrounding environmental obstacles
which may have vastly different effects at two different location at the same
Euclidean distance from the transmitting node. In reality, the measured received
signal strength at the receiving node j can be very different from the average value
predicted in (1.1.2). A random component, denoted by Z, has to be incorporated
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into (1.1.2) to account for the impact of shadowing caused by obstacles affecting the
wave propagation, sometimes referred to as shadow fading. When shadow fading is
considered, (1.1.2) becomes

Pr
�
xi ! xj

� D Pt � PL
�
xi; xj

�C Z (1.1.3)

When the received signal strength Pr
�
xi ! xj

�
at the receiving node j is greater than

or equal to a given threshold Pth, we say that node j is directly connected to node i.
In the log-normal connection model, the path loss is assumed to follow a log-

normal model [22, 153, 172]:

PL
�
xi; xj

� D PL0.d0/C 10˛ log10
xij

d0
(1.1.4)

where PL0.d0/ is the reference path loss in dB unit at a reference distance d0, xij

is the Euclidean distance between nodes i and j, and ˛ is the path loss exponent
which indicates the rate at which the received signal strength decreases with
distance. The reference path loss PL0.d0/ is calculated using the free space Friis
equation or obtained through field measurements at distance d0 [172], and are
usually assumed to be known constants [140, 162]. The value of ˛ depends on
the environment and terrain structure and can vary between 2 in free space and 6 in
heavily built urban areas [172].

Considering the shadowing effect, the wireless received signal strength
Pr
�
xi ! xj

�
(in dB unit) at the receiving node j from the transmitting node i

can be modeled by a log-normal shadowing model:

Pr
�
xi ! xj

� D Pt � PL0.d0/ � 10˛ log10
xij

d0
C Z� (1.1.5)

where Z� is a zero-mean Gaussian random variable (in dB) with standard deviation
� (also in dB unit). The value of � is usually larger than zero and can be as high as
12 dB [172]. Node j is directly connected to node i if and only if Pr

�
xi ! xj

� � Pth.
Note that Pr

�
xi ! xj

�
in (1.1.5) is a random variable. Using (1.1.5), the

probability that node j is directly connected to node i, denoted as P.xi ! xj/, is
given by

P.xij/ D Pr
�
Pr
�
xi ! xj

� � Pth
� D

Z 1

10˛ log10
xij
r0

1p
2��

e� z2

2�2 dz; (1.1.6)

where

r0 D d0 � 10 Pt�PL0.d0/�Pth
10˛ (1.1.7)

has the meaning of being the transmission range in the absence of shadowing (i.e.,
� D 0).
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When the shadow fading Z� between a transmitter and a receiver is dependent
of that of another distinct transmitter-receiver pair, the connections between distinct
pairs of transmitter and receivers are also independent.

When � D 0, the log-normal connection model reduces to a unit disk connection
model with a transmission range equal to r0. When � > 0, the received power
Pr
�
xi ! xj

�
is determined by both the deterministic function of the Euclidean

distance xij and the random shadowing component Z� . The transmission area of
a node is no longer a circular area.

As a consequence of the reciprocity theorem of electromagnetic field, the antenna
patterns of a node are the same whether the antenna is transmitting or receiving.
Therefore, under the additional assumption that the propagation path from node i
to node j and the propagation path from node j to node i are symmetric, it can be
obtained that if node j is connected to node j when node j is transmitting at power Pt,
node i is also connected to node j when node i is transmitting at the same power Pt.
That is, the link between node i and node j becomes undirectional.

1.1.4 Random Connection Model

A more general model than the unit disk connection model and the log-normal
connection model is the random connection model. Under the random connection
model, a pair of nodes at xi and xj are directly connected, or equivalently a link
exists between the two nodes, with probability g

�
xi � xj

�
, where g W <d ! Œ0; 1�,

independent of the event that another pair of nodes are directly connected.
The function g is usually required to satisfy the following properties of nonin-

creasing monotonicity, integral boundedness, and rotational invariance [71, 143,
Chapter 6]:

g .x/ � g .y/ whenever kxk � kyk (1.1.8)

0 <
R

<d g.x/dx < 1 (1.1.9)

g .x/ D g .y/ whenever kxk D kyk (1.1.10)

It is obvious that the random connection model incorporates the unit disk
connection model and the log-normal connection model as its two special cases.
When g.x/ D 1 for kxk � r and g.x/ D 0 for kxk > r, the random connection
model reduces to the unit disk model; when

g.x/ D
Z 1

10˛ log10
kxk
r0

1p
2��

e� z2

2�2 dz

the random connection model becomes the log-normal connection model.
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1.1.5 SINR Connection Model

In the four connection models introduced in the previous subsections, it is either
explicitly or implicitly considered that the existence of a connection between a pair
of nodes and the existence of a connection between another distinct pair of nodes
are independent. This independent connection assumption greatly simplifies the
analysis of the resulting network. The independence assumption can be justified in a
wireless network with a small to medium amount of traffic load where the impact of
interference on connections is often small and negligible. In a wireless network with
a heavy traffic load and a large number of simultaneous transmissions, however, the
impact of interference has to be considered and consequently, the connections may
no longer be independent.

Specifically, due to the nature of wireless communications, signals transmitted
at the same time and using the same frequency band will mutually interfere with
each other. The SINR (signal to interference plus noise) connection model has
been widely used to capture the impact of interference [57, 91, 94]. Under the
SINR connection model, the existence of a directed link between a pair of nodes is
determined by the strength of the received signal from the desired transmitter, the
interference caused by other concurrent transmissions, and the background noise.
Let Pi be the transmission power of node i in decimal unit and let xk; k 2 � , be
the location of node k, where � represents the set of indices of all nodes in the
network. A node j can successfully receive the transmitted signal from a node i (i.e.,
node j is directly connected to node i) if and only if the SINR at xj, denoted by
SINR

�
xi ! xj

�
, is above a prescribed threshold ˇ, i.e.,

SINR
�
xi ! xj

� D Pi`
�
xi; xj

�

N0 C �
P

k2Ti

Pk`
�
xk; xj

� � ˇ (1.1.11)

where `
�
xi; xj

�
denotes the power attenuation from node i to node j and includes

both the path loss and the shadow fading, Ti � � denotes the subset of nodes
that are simultaneously transmitting as node i and using the same frequency band,
N0 is the background noise power. The coefficient 0 � � � 1 is the inverse of
the processing gain of the system and it weighs the impact of interference. In a
broadband system using CDMA (code division multiple access), � depends on the
orthogonality between codes used during concurrent transmissions and is smaller
than 1; in a narrow-band system, � is equal to 1 [57, 94].

Similarly, node i can receive from node j (i.e., node i is directly connected to
node j) if and only if

SINR
�
xj ! xi

� D P`
�
xj; xi

�

N0 C �
P

k2Tj

Pk` .xk; xi/
� ˇ (1.1.12)

Therefore, node i and node j are directly connected, i.e., an undirectional link exists
between node i and node j, if and only if both (1.1.11) and (1.1.12) are satisfied.
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It is evident from (1.1.11) and (1.1.12) that in the SINR connection model, the
existence of a connection from a node to another node not only depends on the
transmission power and the power attenuation of this node pair but also depends on
the activity, transmission power, and power attenuation of other nodes. Therefore,
connections between nodes are no longer independent.

1.2 Network Models

As revealed in the connection models introduced in the previous subsection, the
establishment of links between a pair of nodes often depend on the location of nodes.
In this subsection, we continue to discuss several network models that are widely
used to describe the location of nodes.

It is natural to model nodes in the network by a point process where a node in the
network is uniquely represented by a point. This abstraction allows us to omit the
impact of some physical details such as the size and shape of network devices and
focuses on the topological aspects of the network. We make use of two categories
of point processes: deterministic point process and random point process. In the
first category, points are deterministically placed in a given region, resembling the
placement of network devices in a specific deployment area. In the second category,
points are randomly placed in a given region. The second category is particularly
useful to capture some irregular and random aspects of the network, such as location
of mobile phone users, location of unplanned wireless access points, or irregular
location of cellular base stations, that are better described by statistical laws. In the
second category of the point process, it is of particular interest to study properties of
the network when the scale of the network becomes sufficiently large. A large part
of the book is dedicated to studying the random point process.

We now define some concepts that are used later in the book.

Definition 1 (Homogeneous Poisson Point Process) A random set of points X
deployed in A � <2 is said to be a homogeneous Poisson point process on A with
density � > 0 if it satisfies the conditions

(1) for mutually disjoint domains of A, A1; : : : ;Ak, the random variables
X .A1/ ; : : : ;X .Ak/ are mutually independent, where X

�
Aj
�

denotes the random
number of points of X inside Aj, j D 1; : : : ; k;

(2) for any bounded area D � A, we have that for every m � 0

Pr .X .D/ D m/ D e��jDj .� jDj/m
mŠ

(1.2.1)

where jDj denotes the size of the area D.

Note that for any area of unit size D � A, we have E .X .D// D � and the density
of the homogeneous Poisson point process corresponds to the expected number of
points of the process in the unit area.
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A homogeneous Poisson point process on A can be constructed by first drawing a
random number of points from a Poisson distribution with parameter � jAj and then
distributing the points uniformly and independently over A.

A point process is called a stationary point process if the distribution of points in
a given region of the plane is invariant under any translation of the region to another
location of the plane. A homogeneous Poisson point process is a stationary point
process. In contrast, an inhomogeneous Poisson point process, which is defined
below, is a nonstationary point process.

Definition 2 (Inhomogeneous Poisson Point Process) A random set of points X
deployed in A � <2 is said to be an inhomogeneous Poisson point process on A
with density function � .x/ W x 2 A ! Œ0;1/ if it satisfies the conditions

(1) for mutually disjoint domains of A, A1; : : : ;Ak, the random variables
X .A1/ ; : : : ;X .Ak/ are mutually independent, where X

�
Aj
�

denotes the random
number of points of X inside Aj, j D 1; : : : ; k;

(2) for any bounded area D � A, we have that for every m � 0

Pr .X .D/ D m/ D e� R
D �.x/dx

	R
D � .x/ dx


m

mŠ
(1.2.2)

The following theorem, known as the independent thinning theorem, relates an
inhomogeneous Poisson point process to a homogeneous Poisson point process:

Theorem 3 Consider a homogeneous Poisson point process X on A � <2 with
density �. Removing each point in X with probability 1�p .x/, independently of other
points in X, where x 2 A is the location of the point, there results an inhomogeneous
Poisson point process on A � <2 with density �p .x/.

Proof Denote the remaining point process after the removal of points in X by X0.
First note that for arbitrary disjoint domains of A: A1; : : : ;Ak, the independence of
the random variables X0 .A1/ ; : : : ;X0 .Ak/ follows readily from the facts that X is a
homogeneous point process and that each point in X is removed independently of
other points in X.

Now we consider the distribution of points in X0 in an arbitrary bounded area
D � A. Since X is a homogeneous Poisson point process with density �, X .D/ is a
Poissonly distributed random variable with mean � jDj. Further note that a randomly

chosen point of X in D is removed with probability
R

D 1�p.x/dx
jDj D 1�

R
D p.x/dx

jDj . As an
easy consequence of the total probability theorem, it can be obtained that

Pr
�
X0 .D/ D k

� D
1X

mDk

 
m
k

!�R
D p .x/ dx

jDj
�k �

1 �
R

D p .x/ dx

jDj
�m�k

Pr .X .D/ D m/

D
1X

mDk

 
m
k

!�R
D p .x/ dx

jDj
�k �

1 �
R

D p .x/ dx

jDj
�m�k

e��jDj .� jDj/m
mŠ
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D
�R

D �p .x/ dx
�k

kŠ
e��jDj

1X
mDk

�
� jDj � R

D �p .x/ dx
�m�k

.m � k/Š

D
�R

D �p .x/ dx
�k

kŠ
e� R

D �p.x/dx

That is, X0 .D/ is a Poissonly distributed random variable with mean
R

D �p .x/ dx.
This completes the proof. ut

Using Theorem 3, an inhomogeneous Poisson point process on A with density
function � .x/ W x 2 A ! Œ0;1/ can be constructed by first constructing a homo-
geneous Poisson point process with density maxx2A � .x/ and then removing each
point in the homogeneous Poisson point process independently with probability
1 � �.y/

maxx2A �.x/
where y is the location of the point.

A useful property of the Poisson point process is that conditioned on the event
that there is a point at x 2 <2, due to the independence property of the Poisson
point process, the probabilistic structure of the conditioned process is identical to
that of the original process, apart from the given point at x. The distribution of
an independent Poisson point process with a given point at x is called the Palm
distribution of the Poisson point process.

Another property of the Poisson point process is that the superposition of two
independent Poisson point processes with density �1 and �2 respectively is a Poisson
point process with density �1 C �2.

Definition 4 (Uniform Point Process) A random set of points X with jXj D n is
said to be a uniform point process on a bounded area A with parameter n if these n
points are uniformly and independently distributed on A.

From the above definitions of the Poisson point process and the uniform point pro-
cess, we can find a close relationship between the two point process: a homogeneous
Poisson point process X on A, conditional on X .A/ D n, becomes a uniform point
process on A with parameter n. In the following paragraph, we further demonstrate
that the number of points of a uniform point process with parameter n on A � <2

and located in a domain D � A of fixed size converges in distribution to the number
of points in the same domain of a homogeneous Poisson point process on A with
constant density �, as A grows toward <2 while keeping n

jAj D �.

Consider a uniform point process with parameter n on A as A grows towards <2

and n grows with A such that n
jAj D �. We ignore the granularity caused by that � jAj

may not be an integer in our discussion, which is of minor consequence and can be
readily handled. The probability mass function of the number of points X .D/ in a
domain D � A of a fixed size is given by

Pr .X .D/ D m/ D
�

n
m

�� jDj
jAj
�m �

1 � jDj
jAj
�n�m
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As A grows towards <2 and using the equality n
jAj D �, it can be shown that for any

fixed integer m,

lim
jAj!1

Pr .X .D/ D m/ D lim
jAj!1

�
n
m

�� jDj
jAj
�m �

1 � jDj
jAj
�n�m

D lim
n!1

n .n � 1/ � � � .n � m/

mŠ

�
� jDj

n

�m �
1 � � jDj

n

�n�m

D lim
n!1

n .n � 1/ � � � .n � m/

mŠnm
.� jDj/m

�
1 � � jDj

n

�n�m

D lim
n!1

1

mŠ
.� jDj/m

�
1 � � jDj

n

�n �
1 � � jDj

n

��m

D .� jDj/m
mŠ

lim
n!1

�
1 � � jDj

n

�n

D .� jDj/m
mŠ

e��jDj

That is, as A grows towards <2, the distribution of X .D/ converges to a Poisson
distribution with parameter � jDj.

Because of the close connections between a uniform point process and a Poisson
point process, in large networks, results established assuming a uniform point
process are often applicable to a Poisson point process of the same density. However
there are two important differences between the Poisson point process and the
uniform point process. Firstly, for a Poisson point process, the random variables
X .A1/ ; : : : ;X .Ak/ are mutually independent for mutually disjoint domains of A,
A1; : : : ;Ak, whereas the random variables X .A1/ ; : : : ;X .Ak/ are not independent
for a uniform point process. Secondly, for a Poisson point process, X .A/ is a random
variable with a Poisson distribution whereas for a uniform point process X .A/ is a
constant. Therefore, extra caution needs to be taken when the aforementioned two
differences have a significant impact on the network properties under investigation.

Now we introduce three related but logically distinct network models that have
been widely used in studying properties of large networks. The first model, often
referred to as the dense network model, considers that the network is deployed in a
finite area with a sufficiently large node density. The second model, often referred
to as the extended network model, considers that the node density is fixed and the
network area is sufficiently large. The third model, referred to as the infinite network
model, has its origin in continuum percolation theory [143]. It considers a network
deployed in an infinite area, i.e., <2 in two dimensions, and analyzes properties of
the network as the node density becomes sufficiently large.

In the following, we give the formal definitions of the three network models
in terms of the Poisson point process and the random connection model. These
definitions can be easily amended to suit another point process and connection
model.
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Definition 5 (Dense Network Model) Let G
�
X�; gf .�/;A

�
be a network with

nodes Poissonly distributed on a unit square A ,
	� 1

2
; 1
2


2
with density � and a

pair of nodes separated by a displacement x are directly connected with probability

gf .�/ .x/ , g
�

x
f .�/

�
, independent of the event that another distinct pair of nodes are

directly connected. Here, X� denotes the vertex set in G
�
X�; gf .�/;A

�
and f .�/ is a

function of �.

Definition 6 (Extended Network Model) Let G
�
X1; gf .�/;Ap

�

�
be a network

with nodes Poissonly distributed on a square Ap
� ,

h
�

p
�

2
;

p
�

2

i2
with density

1 and a pair of nodes separated by a displacement x are directly connected with
probability gf .�/ .x/, independent of the event that another distinct pair of nodes are

directly connected. Here, X1 denotes the vertex set in G
�
X1; gf .�/;Ap

�

�
.

Definition 7 (Infinite Network Model) Let G
�
X�; g;<2

�
be a network with nodes

Poissonly distributed on <2 with density � and a pair of nodes separated by a
Euclidean distance x are directly connected with probability g .x/, independent of
the event that another distinct pair of nodes are directly connected. Here, X� denotes
the vertex set in G

�
X�; g;<2

�
.

The above three network models are often studied in the asymptotic regime
as � ! 1. The function f .�/ determines the scaling law that the connection
function should follow in order for the network to acquire a certain property, e.g.,
connectivity, asymptotically as � ! 1. For the special case of g .x/ D 1 for
kxk � 1 and g .x/ D 0 otherwise, gf .�/ .x/ becomes a unit disk connection model
with a transmission range of f .�/. That is, a pair of nodes are directly connected if
and only if their Euclidean distance is smaller than or equal to f .�/.

1.3 Graph Theoretic Tools for Connectivity Analysis

In this section, we introduce several graph theoretic tools and results established
using these tools that are widely used in studying network connectivity.

1.3.1 Continuum Percolation Theory

Continuum percolation is an extension of its predecessor, discrete percolation, into
continuous space. More specifically, discrete percolation studies point processes
where the points are located on an integer lattice where continuum percolation
studies point processes where the points are randomly placed in some continuous
space. Two widely studied models in continuum percolation are the Poisson Boolean
model and the Poisson random connection model.
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A Poisson Boolean model, denoted by G
�
X�;Y;<2

�
, is defined by a Poisson

point process of density � on <2 and a nonnegative random variable Y . Unless
otherwise specified, we assume that E

�
Y2
�
< 1. Each point of X� is the center

of a disk with a random radius and the radii corresponding to different points are
independently and identically distributed following the distribution of Y . The radii
are also independent of X�. The union of the disks forms the Poisson Boolean
model. In this way, the plane <2 is partitioned into two regions: the occupied region,
which is the region covered by at least one disk, and the vacant region, which is
the complement of the occupied region. A region is said to be connected if any
two points in the region can be connected by a line entirely contained within the
region. A maximal connected subregion of the occupied region is called a connected
occupied region. Two points in X� are said to be connected if they are in the same
connected occupied region. A component is defined as a maximal subset of points
in X� such that all points in the subset are in the same connected occupied region.
A main focus of continuum percolation is studying the conditions under which there
exist components of infinite order. The order of a component is the number of points
of X� in the component or the cardinality of the component.

In the special case of Y D c, i.e., Y is a deterministic constant equal to c,
G
�
X�; c;<2

�
has the same connectivity property as a network defined by a Poisson

point process X� of density � on <2 and a unit disk connection model with a
transmission range of 2c.

A Poisson random connection model, denoted by G
�
X�; g;<2

�
, is defined by a

Poisson point process X of density � on <2 and a connection function g W <2 !
Œ0; 1�. Two points in X� are said to be connected if there is a path connecting them.
A path between a pair of points is a sequence of distinct edges where the first edge
starts at one point, the last edge ends at the other point and the starting point of
each intermediate edge is the ending point of its preceding edge. A component of
G
�
X�; g;<2

�
is a maximal set of points in X� where there is a path between any

point in the set to any other point in the set.
Next we introduce several important results in continuum percolation theory. We

refer readers to [143] for proofs of the results.

Theorem 8 Let G
�
X�;Y;<2

�
be a Poisson Boolean model with Y satisfying

E
�
Y2
�
< 1. There exists �0 > 0 such that the expected number of disks in

the connected occupied region W, which contains the origin, is finite whenever
0 < � < �0, if and only if

E
�
Y4
�
< 1

The fact that only a connected occupied region containing the origin is considered
here is of no importance. Due to the stationarity of the homogeneous Poisson point
process and the independence of the radii, different points of the plane cannot be
distinguished probabilistically.
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Theorem 9 For a Poisson Boolean model G
�
X�;Y;<2

�
, if E

�
Y3
�
< 1, there

exists 0 < �0 such that for all 0 < � < �0, the probability that the number of
disks in any connected occupied region is finite is equal to 1.

The Poisson Boolean model G
�
X�;Y;<2

�
is said to be in the subcritical phase

if the connected occupied region containing the origin contains a finite number
of points in X� almost surely; and is said to be in the supercritical phase if the
connected occupied region containing the origin contains an infinite number of
Poisson points in X� with a positive probability. An event � is said to occur almost
surely if its probability is equal to one. An event �z depending on z is said to occur
asymptotically almost surely if its probability tends to one as z ! 1. There are also
two other phases in the Poisson Boolean model: the expected number of Poisson
points in the connected occupied region W containing the origin is finite and the
expected number of Poisson points in the connected occupied region W containing
the origin is infinite. To formalize the phase transition between the phases, we define
the critical densities:

�N , inf
˚
� W Pr

�
X� .W/ D 1�

> 0
�

(1.3.1)

and

�E , inf
˚
� W E

�
X� .W/

� D 1�
(1.3.2)

Critical densities can also be defined in terms of the Lebesgue measure ` .W/ of W:

�H , inf f� W Pr .` .W/ D 1/ > 0g (1.3.3)

and

�T , inf f� W E .` .W// D 1g (1.3.4)

It can be readily established that the critical densities �N , �E, �H and �T depend on
the distribution of Y . To emphasize this dependence and avoid confusion, sometimes
we also write �N .Y/, �E .Y/, �H .Y/ and �T .Y/ for �N , �E, �H and �T respectively.

The following theorem establishes that the notion of the size of the component or
the Lebesgue measure of the connected occupied region does not affect the critical
densities when Y is bounded:

Theorem 10 For a Poisson Boolean model G
�
X�;Y;<2

�
with 0 < � � R, almost

surely for some R > 0, we have

�N .Y/ D �H .Y/

and

�E .Y/ D �T .Y/
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The following theorem further establishes that the critical densities �N and �E are
equal.

Theorem 11 For a Poisson Boolean model G
�
X�;Y;<2

�
with 0 < � � R, almost

surely for some R > 0, we have �E .Y/ D �N .Y/.

In the supercritical regime, i.e., when � > �N , unbounded components, i.e.,
components with an unbounded order, exist with a positive probability and that the
number of such components is an almost sure constant (infinity is allowed). The
following theorem establishes a stronger result that in a Poisson Boolean model,
there can be at most one unbounded component almost surely.

Theorem 12 In a Poisson Boolean model G
�
X�;Y;<2

�
, there can be at most one

unbounded component almost surely.

The above result on the uniqueness of the unbounded component can be extended
to Boolean models driven by arbitrary point processes.

Denote by 	Y .�/ D 	 .�/ the probability that the origin is within an unbounded
connected occupied region. The function 	 is called the percolation function. It can
be readily established using the coupling technique introduced in the next subsection
that 	 .�/ is a nondecreasing function of �.

1.3.1.1 Coupling and Scaling Technique

Coupling and scaling are two important techniques that have been widely used in the
theory of continuum percolation. It is however quite challenging to give a clear and
concise definition of the two techniques. In this subsection, we use several examples
to illustrate the use of the two techniques.

Scaling can be used to expand or shrink the distances between all pairs of
nodes by a common factor such that the original graph and the new graph has
the same graphical properties. For example, let G

�
X�; g;A1

�
be a network with

nodes Poissonly distributed on a unit square A1 with density � where a pair of
nodes are directly connected with probability g .x/, independent of other pairs
of nodes, and x is the Euclidean distance between the two nodes. By expanding
the Euclidean distance between all node pairs by a common factor

p
�, one

obtains another network G
�
X1; gp

�;Ap
�

�
where G

�
X1; gp

�;Ap
�

�
is a network

with nodes Poissonly distributed on a square of size � and a pair of nodes are

directly connected with probability gp
� .x/ , g

�
xp
�

�
where x is the Euclidean

distance between the nodes in the new network. Obviously, such scaling operation
does not change the graphical properties of the network. Therefore, G

�
X�; g;A1

�

and G
�
X1; gp

�;Ap
�

�
have the same graphical properties. By using the scaling

technique, one can apply results obtained from a network on a unit area to a network
on an area of an arbitrary size.
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Coupling is used to establish the connection between two networks such that if
one network has a certain property, the second network also has the same property.
It is often the case that one network is easier to analyze than the other network.
By proving that the property of interest holds in the network easier to analyze and
using the coupling technique, the conclusion follows that the property also holds in
the network that is harder to analyze. In this way, the analysis can often be greatly
simplified. In the following paragraphs, we give an example to illustrate the use of
the coupling technique.

Let G
�
X�; g;A1

�
be the same network as defined previously. Let GT �X�; g;AT

1

�
be a network with nodes Poissonly distributed on a unit torus AT

1 with density �
where a pair of nodes are directly connected with probability g

�
xT
�
, independent

of other pair of nodes. Here xT is the toroidal distance between the two nodes. The
two networks are essentially the same except that one network is on a unit square
and the other is on a unit torus. The torus that is commonly discussed in random
geometric graph theory and continuum percolation theory is essentially the same as
a square except that the distance between two points on a torus is defined by their

toroidal distance, instead of Euclidean distance. For a unit torus AT
1 D 	� 1

2
; 1
2


2
, the

toroidal distance between two points x1; x2 2 AT
1 is given by [165, p. 13]:

kx1 � x2kT , min
˚kx1 C z � x2k W z 2 Z

2
�

(1.3.5)

where Z2 is a two-dimensional integer set. The use of toroidal distance allows nodes
located near the boundary to have the same number of connections probabilistically
as a node located near the center. Therefore, it allows the removal of the boundary
effect that is present in a square. The consideration of a torus often implies that
there is no need to consider special cases occurring near the boundary of the region
and that events inside the region do not depend on the particular location inside the
region. This often simplifies the analysis.

Let W be the number of isolated nodes in G
�
X�; g;A1

�
and WT be the number of

isolated nodes in GT �X�; g;AT
1

�
. Both W and WT are random variables. A node

is called an isolated node if it is not directly connected to any other node in
the network. Further note that the number of isolated nodes in a network is a
nonincreasing function of the number of connections in the network. That is, given
a network, increasing the number of connections in the network will result in the
number of isolated nodes either decrease or remain the same. The following property
regarding W and WT can be established using the coupling technique:

Theorem 13 WT �st W.

Proof Given a random instance of GT �X�; g;AT
1

�
, removing each connection

in GT �X�; g;AT
1

�
independently with probability g.x/

g.xT/
where x and xT are the

Euclidean distance and the toroidal distance between the corresponding pair of
nodes respectively. Recall that, as mentioned in Sect. 1.1.4, g is a monotonically
nonincreasing function of x. Further note that the toroidal distance between a pair of
nodes is always less than or equal to their Euclidean distance. Therefore, g.x/

g.xT/
is less
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than or equal to 1. In the resulting network, a pair of nodes are directly connected
with probability g .x/. Thus an instance of G

�
X�; g;A1

�
is obtained. Conversely, an

instance of GT �X�; g;AT
1

�
can also be obtained from an instance of G

�
X�; g;A1

�
by

adding connections to the corresponding instance of G
�
X�; g;A1

�
.

Further using the property that the number of isolated nodes is a nonincreasing
function of the number of connections in the network, the conclusion follows. ut
In Theorem 13, the symbol �st means less than or equal to in stochastic order. For
two real random variables A and B, we say that A �st B if Pr .A < x/ � Pr .B < x/
for all x 2 .�1;1/. The following conclusion readily follows from Theorem 13.

Corollary 14 If GT �X�; g;AT
1

�
has no isolated nodes almost surely, G

�
X�; g;A1

�
also has no isolated nodes almost surely.

Recall that an event is said to occur almost surely if its probability is equal to 1.
Further note that G

�
X�; g;A1

�
has no isolated nodes is a necessary condition

for G
�
X�; g;A1

�
to be a connected network. Therefore, by analyzing the conditions

for the number of isolated nodes in GT �X�; g;AT
1

�
equal 0, a necessary condition

for G
�
X�; g;A1

�
to be connected can be obtained. In this way, one can avoid the

intricate analysis analyzing special situations that occur when nodes are located
near the border of G

�
X�; g;A1

�
, which results in much simpler analysis.

Coupling and scaling techniques will be used a number of times later in the book.

1.3.2 Branching Process

Branching process is another important tool that has been widely used in graph
theoretic analysis. Generally speaking, a branching process is a process that models
the evolution of a population from generation to generation where each member in
the earlier generation produces a random number of members in the next generation.
The member that produces members in the next generation is called parent of
these members in the next generation and the members produced are called its
children. The parent is also a child of the member that produces it in the immediately
preceding generation, and so on.

In its simplest form, the number of children produced by a parent is distributed
according to a fixed probability distribution that does not vary from member to
member. Furthermore, the number of children of a parent is independent of that of
another parent in both the same generation and a different generation.

A central question in the theory of branching process is the probability of
extinction, where no members exist after some finite number of generations. Let Zn

be the random number of members in the n-th generation and let Xi;n be the random
number of children in the n-th generation produced by the i-th parent in the n � 1-
th generation. Figure 1.1 gives an illustration of the branching process. It can be
readily shown using the independence property of the number of children produced
by each parent that starting with a member in generation zero, the expected number
of members in generation n, conditioned on Zn�1 D k, is given by
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Fig. 1.1 An illustration of
the branching process

Z0 = 1

Z1 = 4

Z2 = 10

...

E .ZnjZn�1 D k/ D
kX

iD1
E .Xi;n/ D k
 (1.3.6)

where 
 is the expected number of children of each parent. The member in
generation zero is known as the root of the branching process. It can be further
shown using Baye’s formula that E .Zn/ D 
n. It follows that if 
 < 1, then the
expected number of members in the n-th generation reduces rapidly to zero with
the increase of n. Using Markov’s inequality, this implies that the branching process
becomes extinct with probability 1. If 
 > 1, the probability of extinction is less
than 1 but no necessarily zero. For example, consider a branching process where
each parent generates 0 or 10 children with an equal probability. It can be easily
shown that with a nonzero probability, the branching process may become extinct in
a finite number of generations. When 
 D 1, then extinction occurs with probability
1 unless each member always has exactly one child.

A well-known branching process is the Galton–Watson process. In the Galton–
Watson process, Xi;ns are independently and identically distributed random non-
negative integers for all n 2 ZC and i 2D f1; : : : ;Zn�1g, where ZC denotes the
set of positive integers. Then, the recurrence equation describing the evolution of
population of each generation is given by:

ZnC1 D
ZnX

iD1
Xi;n with Z0 D 1 (1.3.7)

The ultimate extinction probability is given by

lim
n!1 Pr .Zn D 0/ (1.3.8)

The process can be analyzed using the probability generating function. The
probability generating function of a discrete random variable is a power series
representation of the probability mass function of the random variable. Particularly,
let pk be the probability that a parent generates k children. When p0 D 0, the process
becomes trivial to analyze as the extinction probability can be easily shown to be 0.
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Therefore, we focus on nontrivial cases where p0 > 0. The probability generating
function for pi is given by

h .z/ D p0 C p1z C p2z
2 C � � �

Let qn be the probability that the process becomes extinct by the n-th generation.
Obviously, q0 D 0 and 0 D q0 � q1 � q2 � � � � 1. If there are k members in the
first generation, using the property that the number of children produced by each
parent is independent, the probability that the process becomes extinct in the n C 1-
th generation is given by .qn/

k. It follows that

qnC1 D p0 C p1qn C � � � C pk .qn/
k C � � � (1.3.9)

Since qn is bounded and nonincreasing in n, the limit limn!1 qn exists. Letting
q , limn!1 qn, the following equation regarding q must hold:

q D h .q/ (1.3.10)

By solving the above equation, the value of q can be obtained.
For the special case that Xi;n are independently and identically distributed

following a Poisson distribution with mean � for all n 2 ZC and i 2 f1; : : : ;Zn�1g,
it can be shown that its probability generating function is given by

h .z/ D e�� C �e��z C �2

2Š
e��z2 C � � �

D
�
1C �z C �2

2Š
z2 C � � �

�
e��

D e.z�1/� (1.3.11)

The extinction probability is the solution to the following equation

p D e.p�1/� (1.3.12)

and it can be further shown that

q D W
���e���

�� (1.3.13)

where W .�/ is the Lambert W function [47].
The connection between the above branching process and continuum percolation

theory can be readily established. Consider a random network on <2. Place a
node at the origin and designate that node as the root of the branching process.
Nodes directly connected to the node at the origin form the members of the first
generation of the branching process. Nodes directly connected to any node in the
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n-th generation, excluding those nodes already included in the earlier generations,
form the nC1-th generation. In this way, an associated branching process model can
be established. It can be shown that the probability that the branching process does
not become extinct, i.e., 1� q, is equal to the probability that the origin is within an
unbounded connected occupied region or equivalently an unbounded component,
i.e., the percolation probability, which is a main metric of interest in continuum
percolation theory. In the later chapters, we shall use the branching process to study
network connectivity.

1.3.3 Algebraic Graph Theory

Algebraic graph theory studies the topological properties of graphs using algebraic
methods and it provides another important class of tools widely used in graph
theoretic analysis. Algebraic graph theory has been mainly used to study graphs
of finite size.

Consider a network with a set of n nodes. Its properties can be studied using its
underlying graph G .V;E/, where V , fv1; : : : ; vng denotes the vertex set and E
denotes the edge set. The underlying graph is obtained by representing each node in
the network uniquely using a vertex and the converse. An edge exists between two
vertices if and only if there is a direct connection (or link) between the associated
nodes. We limit our discussions to a simple graph (network) where there is at most
one edge (link) between a pair of vertices (nodes) and an undirected graph whose
edges are undirectional.

Define an adjacency matrix AG of the graph G .V;E/ to be a symmetric n � n
matrix whose .i; j/th ; i ¤ j; entry is equal to one if there is an edge between vi

and vj and is equal to zero otherwise. The diagonal entries of AG are all equal
to zero. The eigenvalues of the graph G .V;E/ are defined to be the eigenvalues
of AG. The network connectivity information, e.g., connectivity and k-connectivity,
is entirely contained in its adjacency matrix. Many interesting connectivity and
topological properties of the network can be obtained by studying the eigenvalues
of its underlying graph. Furthermore, define the Laplacian matrix of a graph G to be

LG , D � AG (1.3.14)

where D is a diagonal matrix with degrees of vertices in G on the diagonal where
the degree of a vertex is the number of edges incident on it. Substantial results have
been established in algebraic graph theory by studying the adjacency matrix and
the Laplacian matrix of the graph. In the following paragraphs, we provide a brief
summary of the main results related to network connectivity study.

We first give some formal definitions of the concepts and terms. Some of the
definitions are not used in this chapter but it may be beneficial to put these definitions
in a central place for later use in the book.
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Definition 15 A walk of length ` between two vertices vi and vj is a sequence of
` edges (not necessarily distinct) where the first edge starts at vi, the last edge ends
at vj and the starting vertex of each intermediate edge is the ending vertex of its
preceding edge.

Definition 16 A path of length l is a walk of length l where all the edges are distinct.

Definition 17 A graph is connected if there is a path between any two distinct
vertices.

Definition 18 The distance between two vertices is the length of the shortest path,
measured by the number of hops, between them.

Definition 19 The diameter of a connected graph is the largest distance between
any two vertices of the graph.

Definition 20 A cycle of length l is a path of length l where the starting vertex and
the ending vertex are the same.

Definition 21 A tree is a connected graph with no cycles.

Definition 22 A graph G0 .V 0;E0/ is called a subgraph of G .V;E/ if V 0 � V and
E0 � E and G .V;E/ is called a supergraph of G0 .V 0;E0/ .

Definition 23 If G0 .V 0;E0/ is a subgraph of G .V;E/ and E0 contains all edges in
E with endpoints in V 0, G0 .V 0;E0/ is called an induced subgraph of G .V;E/.

Definition 24 A spanning subgraph G0 .V 0;E0/ of a connected graph G .V;E/ is a
subgraph where V 0 D V and G0 .V 0;E0/ is a connected graph.

Definition 25 A spanning tree of a connected graph G .V;E/ is a spanning
subgraph, which is a tree.

Definition 26 Two vertices are called adjacent if they are directly connected by
an edge. Two graphs G and H are said to be isomorphic, if there is a one-to-one
mapping, called an isomorphism, between the vertices of the two graphs such that
two vertices are adjacent in G if and only if their corresponding vertices are adjacent
in H.

Definition 27 A vertex is called isolated if there is no edge incident on it.

Definition 28 The complement of a graph G .V;E/, denoted by G
�
V; NE�, is a graph

with the same vertex set as G .V;E/ and an edge exists in NE if and only if the edge
is not in E.

Definition 29 A bipartite graph (or bigraph) G .V;E/ is a graph whose vertex set
V can be partitioned into two disjoint sets V1 and V2 such that every edge in E is
between a vertex in V1 and a vertex in V2.

Definition 30 A graph is called k edge connected if it remains connected whenever
fewer than k edges are removed.
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Definition 31 A graph is called k vertex connected if it remains connected when-
ever fewer than k vertices are removed. We often call a k vertex connected graph
simply a k connected graph. A k connected graph is also k edge connected.

Definition 32 The algebraic connectivity of a graph G .V;E/ is the second-smallest
eigenvalue of LG.

Now we introduce some results established in algebraic graph theory that are most
related to the connectivity analysis. For results that are easy to prove, we include
their proof; otherwise we refer interested readers to the classical books of Biggs
[25] and Godsil and Royle [80] for a proof.

Theorem 33 The number of walks of length l between vertices vi and vj in G .V;E/
is equal to

�
Al

G

�
ij, i.e., the .i; j/ entry of Al

G.

Proof We prove the theorem by recursion. When l D 1, the theorem is obviously
correct. When l D 2,

�
A2G
�

ij D
nX

mD1
aimamj

where aim is the .i;m/ entry of AG. Noting that aii is equal to 0 for i 2 f1; : : : ; ng,�
A2G
�

ij is therefore the total number of walks of length 2 between vi and vj via a third
vertex.

Assuming that the theorem is correct for l D k, let us now consider the case when
l D k C 1. It can be shown that

�
AkC1

G

�
ij D

nX
mD1

aim
�
Ak

G

�
mj

Since
�
Ak

G

�
mj is the total number of walks of length k between vertex vj and a third

vertex vm and further noting that aii D 0 for i 2 f1; : : : ; ng, it is easy to establish
that

�
AkC1

G

�
ij is the total number of walks of length k C 1 between vi and vj via a

third distinct vertex vm where m ¤ i; j. The result can then be established. ut
The following results can be established as an easy consequence of Theorem 33.

Corollary 34 The number of walks of length smaller than or equal to l between
vertices vi and vj in G .V;E/ is equal to

	
.AG C I/l � I



ij, where

	
.AG C I/l � I



ij is

the .i; j/ entry of
	
.AG C I/l � I



and I is the identity matrix.

Corollary 35 The graph G .V;E/ is a connected graph if and only if .AG C I/n � 1

where n D jVj, i.e., each entry of the matrix .AG C I/n is greater than or equal to 1.

Next we introduce some other important results closely related to the connectivity
analysis.

Theorem 36 The eigenvalues of a graph are real numbers.
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Theorem 37 Let 
1 � : : : � 
n be the eigenvalues of a graph G .V;E/.
If 
1 D 
2, then G .V;E/ is disconnected. If 
1 D �
n and G .V;E/ is not empty,
then at least one connected component of G .V;E/ is nonempty and bipartite.

Theorem 38 If the number of distinct eigenvalues of G .V;E/ is r, then G .V;E/
has a diameter of at most r � 1.

Theorem 39 The algebraic connectivity of a graph G .V;E/ is greater than 0 if
and only if G .V;E/ is a connected graph.

1.4 Notes and Further Readings

This chapter introduced several widely used connection models, network models,
and graph theoretic tools for connectivity analysis, which lay the foundation for
later studies. Several main results related to network connectivity study established
using continuum percolation theory, branching process, and algebraic graph theory
respectively were presented. For readers who are interested in a deeper investigation
into these areas, we refer them to the classical book of Meester and Roy [143] for
continuum percolation, to the book of Harris [98] for branching process, and to
the books of Biggs [25] and Godsil and Royle [80] for algebraic graph theory.
Furthermore, a concise summary of the main results established in graph theory can
also be found in [86, 101] with the latter book [101] more focused on algebraic
graph theory.
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Chapter 2
Large Network Models and Their Implications

Abstract Connectivity of large wireless networks has been a primary concern
for which asymptotic analysis is a useful tool. Three related but logically distinct
network models are often considered in asymptotic analyses, viz., the dense
network model, the extended network model, and the infinite network model, which
considers respectively a network deployed in a fixed finite area with a sufficiently
large node density, a network deployed in a sufficiently large area with a fixed node
density, and a network deployed in an infinite plane with a sufficiently large node
density. The infinite network model originated from continuum percolation theory
and asymptotic results obtained from the infinite network model have often been
applied to the dense and extended networks indiscriminately. In this chapter, through
two case studies related to network connectivity on the expected number of isolated
nodes and on the vanishing of components of finite order k > 1 respectively, we
demonstrate some subtle but important differences between the infinite network
model and the dense and extended network models. Therefore, extra scrutiny has
to be used in order for the results obtained from the infinite network model to
be applicable to the dense and extended network models. Asymptotic results are
also established on the expected number of isolated nodes, the vanishingly small
impact of the boundary effect on the number of isolated nodes and the vanishing of
components of finite order k > 1 in the dense and extended network models using a
general random connection model.

Connectivity of large networks as the number of nodes or node density in the
network becomes sufficiently large has been a primary concern in the study of
network connectivity. Asymptotic analysis, valid when the number of nodes in
the network is large enough, is useful for understanding characteristics of these
networks.

Three related but logically distinct network models, i.e., the dense network
model, the extended network model, and the infinite network model defined in
Sect. 1.2, have been widely used in the asymptotic analysis of large networks. The
dense network model considers that the network is deployed in a finite area with
a sufficiently large node density. The extended network model considers that the
node density is fixed and the network area is sufficiently large. The infinite network
model has its origin in continuum percolation theory [143]. It considers a network
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26 2 Large Network Models and Their Implications

deployed in an infinite area, i.e., <2 in two dimensions, and analyzes properties of
the network as the node density becomes sufficiently large. Due to the relatively
longer history of research into continuum percolation theory, relatively abundant
results in that area, and the close connections between the infinite network model
and the dense and extended network models, results obtained in the infinite network
model are often applied straightforwardly to the dense and extended models.

In this chapter, through two case studies on key events related to the network
connectivity, i.e., the expected number of isolated nodes and the vanishing of
components of fixed and finite order k > 1 (recall that the order of a component
refers to the number of nodes in the component), and using a random connection
model, we demonstrate some subtle but important differences between the infinite
network model and the dense and extended network models due to the truncation
effect, to be explained in the following paragraphs. Therefore, results obtained from
an infinite network model cannot be directly applied to the dense and extended
networks. Instead, some careful analysis of the impact of the truncation effect is
required.

Here we give a detailed explanation of the above comments using a unit
disk connection model as an example. In this chapter, we consider Poisson node
distribution only and the conclusions obtained apply to uniform node distribution
too. We refer readers to Sect. 1.1.1 for a discussion on the differences between
the uniform node distribution and the Poisson node distribution. As introduced in
Sect. 1.1, under the unit disk connection model, two nodes are directly connected
if and only if their Euclidean distance is smaller than or equal to a given threshold
r .�/, a parameter which is often taken as a function of a further parameter �, to
be defined shortly, under the dense and extended network models. The parameter
r .�/ is termed the transmission range. The dense and extended network models
that are often considered assume respectively (a) nodes are Poissonly distributed in

a unit area, say a square, with density � and r .�/ D
q

log �Cc
��

(the dense network

model); (b) nodes are Poissonly distributed on a square
p
� � p

� with density 1

and r .�/ D
q

log �Cc
�

(the extended network model). The parameter c may be either
a constant; or it can depend on �, in which case c D o .log �/ (refer to Appendix
for a definition of Landau’s order notation). The corresponding infinite network
model considers that nodes are Poissonly distributed in <2 with density � and a pair
of nodes are directly connected if and only if their Euclidean distance is smaller
than or equal to r, which does not depend on �. The dense network model can
be converted into the extended network model by using the scaling technique, more
specifically scaling the Euclidean distances between all pairs of nodes by a common
factor of

p
� while maintaining their connections, and the converse. Therefore, the

dense network model and the extended network model are equivalent in the analysis
of connectivity. In the extended network model, as � ! 1, the network area
approaches <2 and the average node degree, i.e., the average number of directly
connected neighbors of a randomly chosen node, approaches infinity following
‚.log �/. That is, a node has more and more connections as � ! 1. This resembles
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the situation that occurs in the infinite network model as � ! 1. This close
connection between the infinite network model and the dense and extended network
models creates the illusion that as � ! 1, results obtained in the infinite network
model can be applied directly to the dense and extended models, e.g., those dealing
with the vanishing of isolated nodes, the uniqueness of the component of infinite
order, the vanishing of components of finite order k > 1.

Starting from the dense network model, however, if we scale the Euclidean

distances between all pairs of nodes by a factor 1=
q

log �Cc
��

, there results a network

on a square 1=
q

log �Cc
��

� 1=
q

log �Cc
��

with node density log �Cc
�

, where log �Cc
�

! 1
as � ! 1, and a pair of nodes are directly connected if and only if their Euclidean
distance is smaller than or equal to r D 1. Note that the transmission range r is
equal to 1 and does not depend on the node density. This latter network model
is also equivalent to the dense and extended network models in the connectivity
analysis. On the other hand, this latter network can also be obtained from an infinite
network on <2 with node density log �Cc

�
and r D 1 by removing all nodes and

the associated connections outside a square of 1=
q

log �Cc
��

� 1=
q

log �Cc
��

in <2. We

term the effect associated with the above removal operation as the truncation effect.
From the above discussion, it is clear that a prerequisite for the results obtained
in the infinite network model to be applicable to the dense or extended network
model is that the impact of the truncation effect on the property of interest must be
vanishingly small as � ! 1.

In this chapter, through two case studies, one on the expected number of isolated
nodes and the other on the vanishing of components of fixed and finite order k > 1,
using a random connection model, we show however that ensuring the impact
of the truncation effect is vanishingly small either requires imposing a stronger
requirement on the connection function or needs some nontrivial analysis to rule out
the possibility of occurrence of some events associated with the truncation effect.
Therefore, results obtained assuming an infinite network model cannot be applied
directly to the dense and extended network models. In particular, we show that in
order for the impact of the truncation effect on the number of isolated nodes to
be vanishingly small, a stronger requirement on the connection function (than the
usual requirements of rotational invariance, integral boundedness and nonincreasing
monotonicity) needs to be imposed. We further show that some nontrivial analysis is
required to rule out the possibility of occurrence of some events associated with the
truncation effect in order to establish the result on the vanishing of components of
components of fixed and finite order k > 1 in the dense and extended network
models. For example, an infinite component in <2 may, after truncation, yield
multiple components of extremely large order, finite components of fixed order

k > 1 and isolated nodes in a square of 1=
q

log �Cc
��

� 1=
q

log �Cc
��

, where these

components are only connected via nodes and associated connections in the infinite

component but outside the square of 1=
q

log �Cc
��

� 1=
q

log �Cc
��

. Thus the dense and

extended networks may still possibly have finite components of order k > 1 even
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though the infinite network can be shown to asymptotically almost surely have no
such finite components as � ! 1. Recall that an event � is said to occur almost
surely (a.s.) if its probability is equal to 1 and an event �z depending on z is said to
occur asymptotically almost surely (a.a.s.) if its probability tends to one as z ! 1.
Note that it is trivial to show that for any finite �, almost surely there is no infinite
component in a network whose nodes are Poissonly distributed with density log �Cc

�

on a square of 1=
q

log �Cc
��

� 1=
q

log �Cc
��

. Therefore, we use the term components

of extremely large order to refer to those components whose order may become
asymptotically infinite as � ! 1.

In this chapter, we also establish asymptotic results on the expected number of
isolated nodes, the vanishingly small impact of the boundary effect on the number
of isolated nodes and the vanishing of components of finite order k > 1 in the dense
and extended network models using the random connection model. These results
form key steps in establishing the sufficient and necessary condition for a large
network to be asymptotically almost surely connected assuming the general random
connection model, a problem to be tackled in the next chapter.

2.1 Comparative Outline of Three Large Network Models

In this section we intuitively explain the difference between the three widely used
large network models: infinite network model, dense network model, and extended
network model. From that, the concept of truncation effect will be defined and its
different implications on analysis using the three models will be discussed.

Let g W <C ! Œ0; 1� be a function satisfying the conditions of nonincreasing
monotonicity and integral boundedness:

g .x/ � g .y/ whenever x � y (2.1.1)

0 <

Z

<2

g .kxk/ dx < 1 (2.1.2)

where kxk denotes the Euclidean norm of x. The function g is the connection
function of the random connection model introduced in Sect. 1.1. Furthermore, the
requirement of rotational invariance on the connection function in the random con-
nection model has been met implicitly by letting g be a function of a scalar, typically
representing the Euclidean distance between the two nodes being considered.

Using the integral boundedness condition on g and the nonincreasing monotonic-
ity of g, it can be shown that

Z

<2

g .kxk/ dx D lim
z!1

Z z

0

2�xg .x/ dx

and

lim
z!1

Z 1

z
2�xg .x/ dx D 0
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The above equation, together with the following derivations

lim
z!1

Z 1

z
2�xg .x/ dx

� lim
z!1

Z 2z

z
2�xg .x/ dx

� lim
z!1

Z 2z

z
2�xg .2z/ dx

D lim
z!1 3�z2g .2z/

allows us to conclude that

g .x/ D ox

�
1

x2

�
(2.1.3)

From time to time, we may require g to satisfy the more restrictive requirement
that

g .x/ D ox

�
1

x2 log2 x

�
(2.1.4)

and (2.1.1). We shall show later that the more restrictive requirement on g is required
for the impact of the truncation effect to be vanishingly small as � ! 1. When we
do impose such additional constraint, we shall specify it clearly. It is obvious that
conditions (2.1.1) and (2.1.2) imply (2.1.3) while condition (2.1.4) implies (2.1.2)
and (2.1.3).

In the following analysis, we shall only use (2.1.1) and (2.1.4) (instead of (2.1.1)
and (2.1.2)) when necessary. This helps to identify which part of the analysis relies
on the more restrictive requirement on g. In our analysis, we assume that g has
infinite support when necessary. Our results however apply to the situation when g
has bounded support, which forms a special case and only makes the analysis easier.

Furthermore, define

r� ,
s

log �C b

C�
(2.1.5)

for some nonnegative value �, where

0 < C D
Z

<2

g .kxk/ dx < 1 (2.1.6)

and b is a constant (C1 is allowed).
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Following the definitions of the dense network model, the extended network
model and the infinite network model in Sect. 1.1, we denote the three corresponding

models considered in this chapter by G
�
X�; gr� ;A

�
, G

�
X1; gq log �Cb

C

;Ap
�

�
and

G
�
X�; g;<2

�
. Recall that A and Ap

� are respectively a unit square
	� 1

2
; 1
2


2
and

a square of size �:
h
�

p
�

2
;

p
�

2

i2
. We further define a fourth network model in the

following and the motivation for defining the new model appears shortly later.

Definition 40 Let G
�
X log �Cb

C
; g;A 1

r�

�
be a network with nodes Poissonly dis-

tributed on a square A 1
r�

,
h
� 1
2r�
; 1
2r�

i2
with density log �Cb

C and a pair of nodes

separated by a Euclidean distance x are directly connected with probability g .x/,
independent of the event that another distinct pair of nodes are directly connected.

X log �Cb
C

denotes the vertex set in G
�
X log �Cb

C
; g;A 1

r�

�
.

With minor abuse of the terminology, we use A (respectively Ap
�, A 1

r�
) to denote

both the square itself and the size of the square, and in the latter case, A D 1

(respectively Ap
� D �, A 1

r�
D 1

r2�
).

The reason for choosing this particular form of r� and the above network models
is to avoid triviality in the analysis and to make the analysis compatible with those
obtained assuming a unit disk connection model. Particularly, when g takes the
form that g.x/ D 1 for x � 1 and g.x/ D 0 for x > 1, it can be shown that
G
�
X�; gr� ;A

�
reduces to the dense network model assuming a unit disk connection

model discussed in [71, 92, 165] where C D � and r� corresponds to the critical

transmission range for connectivity; G
�
X1; gq log �Cb

C

;Ap
�

�
reduces to the extended

network model assuming a unit disk connection model considered in [69, 71,
Chapter 3.3.2]. Thus the above model easily incorporates the unit disk connection
model as a special case. A similar conclusion can also be drawn for the log-normal
connection model.

Now we establish the relationship between the three network models

G
�
X�; gr� ;A

�
, G

�
X1; gq log �Cb

C

;Ap
�

�
, and G

�
X log �Cb

C
; g;A 1

r�

�
on finite and

then asymptotically infinite regions respectively using the scaling and coupling
technique. Given an instance of G

�
X�; gr� ;A

�
, if we scale the Euclidean distances

between all pairs of nodes by a factor of
p
� while maintaining their connections,

there results a random network where nodes are Poissonly distributed on a
square Ap

� with density 1 and a pair of nodes separated by a Euclidean
distance x are directly connected with probability gq log �Cb

�

.x/, i.e., an instance

of G
�
X1; gq log �Cb

C

;Ap
�

�
. All connectivity properties, e.g., connectivity, number of

isolated nodes, number of components of a specified order, that hold in the instance
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of G
�
X�; gr� ;A

�
are also valid for the associated instance in G

�
X1; gq log �Cb

C

;Ap
�

�
.

To be more precise, the underlying graphs of these two network instances are
isomorphic. Similarly, if we shrink the Euclidean distances between all pairs of

nodes in a network, which is an instance of G
�
X1; gq log �Cb

C

;Ap
�

�
, by a factor of

1p
�
, there results an instance of G

�
X�; gr� ;A

�
and the two networks again have the

same connectivity property. Therefore, G
�
X�; gr� ;A

�
and G

�
X1; gq log �Cb

C

;Ap
�

�

are equivalent in that any connectivity property that holds in one model will
necessarily hold in the other. Similarly, it can also be shown that G

�
X�; gr� ;A

�
and

G
�
X log �Cb

C
; g;A 1

r�

�
are equivalent in their connectivity properties. Therefore, in this

chapter we only chose one model, i.e., G
�
X log �Cb

C
; g;A 1

r�

�
, to discuss connectivity

properties of finite and asymptotically infinite networks. The reason for choosing
this network model is that under the model, a pair of nodes are directly connected
following g, in the same way as nodes in the infinite network model G

�
X�; g;<2

�
are directly connected. This facilitates the discussion and comparison between the
finite (asymptotically infinite) network model and the infinite network model, which
is a key focus of the chapter.

Furthermore, we point out that the above discussion on the equivalence of

network models G
�
X�; gr� ;A

�
, G

�
X1; gq log �Cb

C

;Ap
�

�
and G

�
X log �Cb

C
; g;A 1

r�

�
is

only valid for the random connection model, including the unit disk connection
model and the log-normal connection model as its two special cases. For the
other widely used model, i.e., the SINR connection model defined in Sect. 1.1.5,
under some special circumstances, e.g., the background noise is negligible and
the attenuation function is a power law function, the three network models are
equivalent; otherwise under more general conditions, the three models are not
equivalent. However the key observation revealed in our analysis, i.e., results
obtained from an infinite network model do not necessarily apply to the dense and
extended network models, also holds for the SINR connection model.

2.2 Estimating the Number of Isolated Nodes

In this section we comparatively study the expected number of isolated nodes in

G
�
X log �Cb

C
; g;A 1

r�

�
and the expected number of isolated nodes in its counterpart in

an infinite network, i.e., a region with the same area as A 1
r�

in an infinite network

on <2 and with the same node density log �Cb
C and connection function g. Through

the study, we show that under certain conditions, the impact of the truncation effect
on the expected number of isolated nodes is non-negligible or may even be the
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dominant factor. The number of isolated nodes is a key parameter in the analysis of
network connectivity. A necessary condition for a network to be connected is that
the network has no isolated node. Such a necessary condition has been shown to
be also a sufficient condition for a connected network as � ! 1 under a unit disk
connection model [165] and this is also true for a random connection model, as
shown later in Chap. 3.

2.2.1 Expected Number of Isolated Nodes in an Asymptotically
Infinite Network

In this subsection we analyze the expected number of isolated nodes in

G
�
X log �Cb

C
; g;A 1

r�

�
. For an arbitrary node in G

�
X log �Cb

C
; g;A 1

r�

�
at location y 2 A 1

r�
,

it can be shown using the property that nodes are Poissonly distributed with density
log �Cb

C that the probability that a node at y 2 A 1
r�

, if exists, is isolated is given by

(following the equation, explanations are given):

Pr
�
Iy D 1

� D lim
dAx!0

Y
dAx�A 1

r�

�
1 � log �C b

C
dAxg .kx � yk/



D lim
dAx!0

e

P
dAx�A 1

r�

log
�
1� log �Cb

C g.kx�yk/dAx

�

D lim
dAx!0

e

P
dAx�A 1

r�

� log �Cb
C g.kx�yk/dAx

D e
� R

A 1
r�

log �Cb
C g.kx�yk/dx

(2.2.1)

where Iy is an indicator random variable: Iy D 1 if the node at y, if exists, is isolated
and Iy D 0 otherwise. The term dAx is a differential area in A 1

r�
and x 2 dAx. In

the first step, log �Cb
C dAx is the probability that there is a node in the differential area

dAx � A 1
r�

. The probability that there are more than one nodes in dAx is negligibly

small. Since dAx is a differential area, the actual location of the node in dAx does not
matter and is assumed to be x. The term log �Cb

C dAxg .kx � yk/ is the probability that
there exists a node in dAx � A 1

r�
and that node is directly connected to the node at

y. With a little abuse of the terminology, we use dAx to denote both the differential
area itself and the size of the area. In the third step, the equality limx!0

log.1�x/
�x D 1

is used.
Denote by W the number of isolated nodes in an instance of G

�
X log �Cb

C
; g;A 1

r�

�
.

It then follows that the expected number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
is
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given by

E .W/ D
Z

A 1
r�

log �C b

C
e

� R
A 1

r�

log �Cb
C g.kx�yk/dx

dy (2.2.2)

On the basis of (2.2.2), the following theorem can be obtained.

Theorem 41 The expected number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
is

R
A 1

r�

log �Cb
C e

� R
A 1

r�

log �Cb
C g.kx�yk/dx

dy. For g satisfying both (2.1.1) and (2.1.4), the

expected number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
converges asymptotically

to e�b as � ! 1.

The rest of this subsection is dedicated to the proof of Theorem 41.

We analyze E .W/ as � ! 1. Denote by D
�

y; r�"
�

�
a disk centered at y 2 A 1

r�

and with a radius r�"
� , where " is a small positive constant and " < 1

4
. Denote by

B
�

A 1
r�

�
� A 1

r�
an area within r�"

� of the border of A 1
r�

; denote by `A 1
r�

� A 1
r�

a

rectangular area of size r�"
� �

�
r�1
� � 2r�"

�

�
within r�"

� of one side of A 1
r�

, away from

the corners of A 1
r�

by r�"
� , and there are four such areas; let †A 1

r�
� A 1

r�
denote a

square of size r�"
� � r�"

� at the four corners of A 1
r�

. Figure 2.1 illustrates these areas.

Fig. 2.1 An illustration of
the boundary areas of A 1

r�
.

The areas †A 1
r�

, `A 1
r�

are

self-explanatory and B
�

A 1
r�

�

is the shaded area in the
figure

r−ε
ρ

r−1
ρ

�A 1
rρ

�A 1
rρ

�A 1
rρ

�A 1
rρ

∠A 1
rρ

∠A 1
rρ

∠A 1
rρ

∠A 1
rρ

A 1
rρ
\B

(
A 1

rρ

)
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It follows from (2.2.2) that

lim
�!1 E .W/

D lim
�!1

Z

A 1
r�

log �C b

C
e

� R
A 1

r�

log �Cb
C g.kx�yk/dx

dy

D lim
�!1 �r2�

Z

A 1
r�

nB

�
A 1

r�

� e
��r2�

R
A 1

r�

g.kx�yk/dx

dy

C lim
�!1 4�r2�

Z

`A 1
r�

e
��r2�

R
A 1

r�

g.kx�yk/dx

dy

C lim
�!1 4�r2�

Z

†A 1
r�

e
��r2�

R
A 1

r�

g.kx�yk/dx

dy (2.2.3)

The three summands in (2.2.3) represent respectively the expected number of

isolated nodes in the central area A 1
r�

nB
�

A 1
r�

�
, in the boundary area along the four

sides of A 1
r�

and in the four corners of A 1
r�

. In the following analysis, we shall show

that for g satisfying both (2.1.1) and (2.1.4), the first term approaches e�b as � ! 1,
and the second and the third terms approach 0 as � ! 1.

Consider the first summand in (2.2.3). Using the definition of r� in (2.1.5), first

it can be shown that for any y 2 A 1
r�

nB
�

A 1
r�

�
(see Fig. 2.1 for an illustration of the

region A 1
r�

nB
�

A 1
r�

�
):

lim
�!1 �e

��r2�
R

D.y;r�"� /
g.kx�yk/dx

D lim
�!1 �e

��r2�

�R
<2 g.kx�yk/dx�R

<2nD.y;r�"� /
g.kx�yk/dx

�

D lim
�!1 �e

��r2�

�
C�R

<2nD.y;r�"� /
g.kx�yk/dx

�

D lim
�!1 e�be

�r2�
R

<2nD.y;r�"� /
g.kx�yk/dx

D e�b lim
�!1 e

log �Cb
C

R1

r�"�
2�rg.r/dr

(2.2.4)
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It can be shown further using (2.1.5) that (following the equation, detailed
explanations are given):

lim
�!1

log �C b

C

Z 1

r�"
�

2�rg .r/ dr

D lim
�!1

R1
r�"
�
2�rg .r/ dr

C
log �Cb

D lim
�!1

�2�r�"
� g

�
r�"
�

� �
� "
2
r�"�2
�

1�.log �Cb/
C�2

�

� C
�.log �Cb/2

D lim
�!1�" .log �C b/2 r�2"�2

� g
�

r�"
�

� log �C b � 1
C�

D lim
�!1�" .log �C b/2 r�2"

� g
�

r�"
�

�
(2.2.5)

D lim
�!1�" .log �C b/2 r�2"

� o�

0
@ 1

r�2"
� log2

�
r�2"
�

�
1
A (2.2.6)

D lim
�!1

�
�" .log �C b/2

o�

�
1

2"2 .log .log �C b/ � log C � log �/2

��

D 0 (2.2.7)

where L’Hospital’s rule is used in the second step of the above equation, and g .x/ D
ox

�
1

x2 log2 x

�
is used from (2.2.5) to (2.2.6). As a result of (2.2.4) and (2.2.7)

lim
�!1 �e

��r2�
R

D.y;r�"� /
g.kx�yk/dx D e�b (2.2.8)

It follows that (see Fig. 2.1 for an illustration of the region A 1
r�

nB
�

A 1
r�

�
, which

is unshaded in the figure.)

lim
�!1 �r2�

Z

A 1
r�

nB

�
A 1

r�

� e
��r2�

R
A 1

r�

g.kx�yk/dx

dy

� lim
�!1 �r2�

Z

A 1
r�

nB

�
A 1

r�

� e
��r2�

R
D.y;r�"� /

g.kx�yk/dx
dy
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D lim
�!1

�
�e

��r2�
R

D.0;r�"� /
g.kxk/dx

�0
@r2�

Z

A 1
r�

nB

�
A 1

r�

� dy

1
A

D e�b

and

lim
�!1 �r2�

Z

A 1
r�

nB

�
A 1

r�

� e
��r2�

R
A 1

r�

g.kx�yk/dx

dy

� lim
�!1 �r2�

Z

A 1
r�

nB

�
A 1

r�

� e��r2�
R

<2 g.kx�yk/dxdy

D e�b

Therefore,

lim
�!1 �r2�

Z

A 1
r�
=B

�
A 1

r�

� e
��r2�

R
A 1

r�

g.kx�yk/dx

dy D e�b (2.2.9)

For the second term in (2.2.3), an illustration of the boundary area for y 2 `A 1
r�

is shown in Fig. 2.2.

Define Ly ,
�

A 1
r�

\ D
�

y; r�"
�

��
nDy (i.e., the shaded area in Fig. 2.2b). The

symbols Dy, Cy, ly, and Ry are defined in Fig. 2.2. It can be shown that

4 lim
�!1 �r2�

Z

`A 1
r�

e
��r2�

R
A 1

r�

g.kx�yk/dx

dy

� 4 lim
�!1 r2�

Z

`A 1
r�

�e
��r2�

R
A 1

r�
\D.y;r�"� /

g.kx�yk/dx

dy

D 4 lim
�!1 r2�

Z

`A 1
r�

�e��r2�

�R
Dy g.kx�yk/dxCRLy g.kx�yk/dx

�
dy

D 4 lim
�!1

��
�
1
2 e

� 1
2 �r2�

R
D.0;r�"� /

g.kxk/dx
�

0
@� 1

2 r2�

Z

`A 1
r�

e��r2�
R

Ly g.kx�yk/dxdy

1
A
1
A (2.2.10)
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Border of A 1
rρ

yly

r−ε
ρ

Ry

Cy

Dy

Border of A 1
rρ

yly

r−ε
ρ

DyLy

a b

Fig. 2.2 An illustration of the boundary area for y 2 `A 1
r�

. The figure is drawn for y located near

the left border of A 1
r�

. The situations for y near the top, bottom, and right borders of A 1
r�

can be

drawn analogously. D
�

y; r�"
�

�
is a disk centered at y and has a radius r�"

� . ly is the distance between

y and the border of A 1
r�

. Dy is a half disk centered at y, with a radius r�"
� and on the right side of y.

Cy is a half disk centered at y, with a radius ly and on the left side of y. Ry � A 1
r�

\ D
�

y; r�"
�

�
is

a rectangle of ly � 2
q

r�2"
� � l2y on the left side of y. Ly D

�
A 1

r�
\ D

�
y; r�"

�

��
nDy is the shaded

area in sub-figure b

For the first term �
1
2 e

� 1
2 �r2�

R
D.0;r�"� /

g.kxk/dx
in (2.2.10), it can be shown that

lim
�!1 �

1
2 e

� 1
2 �r2�

R
D.0;r�"� /

g.kxk/dx

D lim
�!1 �

1
2 e

� 1
2 �r2�

�R
<2 g.kxk/dx�R

<2nD.0;r�"� /
g.kxk/dx

�

D lim
�!1 �

1
2 e� 1

2 �r2�Ce
1
2 �r2�

R
<2nD.0;r�"� /

g.kxk/dx

D e� b
2 (2.2.11)

where (2.2.7) is used in reaching (2.2.11).
Let � be a positive constant and 1

2
> � > "

2
. Let 4 be a positive constant

such that

Z 4

0

2�xg .x/ dx D �2C (2.2.12)
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The existence of such a positive constant 4 can be validated by using (2.1.6) and
noting that 2� < 1. Using the nonincreasing monotonicity of g, it can also be shown
that g .4/ > 0; otherwise it can be shown that

R4
0
2�xg .x/ dx D C which implies

� D 1
2
. This constitutes a contradiction with the requirement that 1

2
> � > "

2
.

Therefore, g .4/ > 0. In the following analysis, it is assumed that � is sufficiently
large such that r�"

� � 24.
For the second term in (2.2.10), it can be shown that

lim
�!1 �

1
2 r2�

Z

`A 1
r�

e��r2�
R

Ly g.kx�yk/dxdy

D lim
�!1

�
�
1
2 r2�

�
r�1
� � 2r�"

�

�

�
Z r�"

�

0

e��r2�
R

Ly g.kx�yk/dxdy

!
(2.2.13)

� lim
�!1 �

1
2 r�

Z r�"
�

0

e��r2�
R

Ly g.kx�yk/dxdy

D lim
�!1

r
log �C b

C

Z r�"
�

0

e��r2�
R

Ly g.kx�yk/dxdy

D lim
�!1

r
log �C b

C

 Z 4

0

e��r2�
R

Ly g.kx�yk/dxdy

C
Z r�"

�

4
e��r2�

R
Ly g.kx�yk/dxdy

!
(2.2.14)

where in (2.2.13) y represents a (any) point in `A� at a Euclidean distance y 2
Œ0; r�"

� � apart from the border of A�. Define � , log �Cb
C for convenience, it can be

further shown that in (2.2.14)

lim
�!1

p
�

Z r�"
�

4
e��r2�

R
Ly g.kx�yk/dxdy

� lim
�!1

p
�

Z r�"
�

4
e��r2�

R
Cy g.kx�yk/dxdy

D lim
�!1

p
�

Z r�"
�

4
e� 1

2 �r2�
R y
0 2�xg.x/dxdy

D lim
�!1

p
�

Z r�"
�

4
e� 1

2 �r2�

�R4
0 2�xg.x/dxCR y

4
2�xg.x/dx

�
dy
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� lim
�!1

p
�

Z r�"
�

4
e� 1

2 �r2�
R4
0 2�xg.x/dxdy

D lim
�!1

p
�

Z r�"
�

4
e��.log �Cb/dy (2.2.15)

D lim
�!1

p
�

 
e��b���

 �
log �C b

C�

�� "
2

� 4
!!

D 0 (2.2.16)

where (2.2.12) is used in reaching (2.2.15), and � > "
2

is used in reaching (2.2.16).
It can also be shown that for the other term in (2.2.14),

lim
�!1

r
log �C b

C

Z 4

0

e��r2�
R

Ly g.kx�yk/dxdy

� lim
�!1

p
�

Z 4

0

e��r2�
R

Ry g.kx�yk/dxdy (2.2.17)

D lim
�!1

p
�

Z 4

0

e��r2�2
R y
0

R
p

r�2"� �x2

0 g.
p

x2Cz2/dzdxdy

� lim
�!1

p
�

Z 4

0

e��r2�2
R y
0

R r�"� �x
0 g.

p
x2Cz2/dzdxdy (2.2.18)

� lim
�!1

p
�

Z 4

0

e��r2�2
R y
0

R r�"� �4

0 g.
p

x2Cz2/dzdxdy (2.2.19)

� lim
�!1

p
�

Z 4

0

e��r2�2
R y
0

R r�"� �4

0 g.zC4/dzdxdy (2.2.20)

D lim
�!1

p
�

Z 4

0

e��r2�2y
R r�"� �4

0 g.zC4/dzdy (2.2.21)

where (2.2.18) is obtained by noting that r�2"
� � x2 �

�
r�"
� � x

�2
for r�"

� � x (note

that for � sufficiently large, r�"
� > 4 � y � x), (2.2.19) is obtained by noting

that x � 4 and (2.2.20) is obtained by noting that y � 4 and the nonincreasing
monotonicity of g.

Let � be sufficiently large such that r�"
� � 24 and also note that g .4/ > 0.

Therefore, ˇ ,
R4
0

g .z C 4/ dz is a positive constant and ˇ > 0. It then follows
from (2.2.21) that
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lim
�!1

r
log �C b

C

Z 4

0

e��r2�
R

Ly g.kx�yk/dxdy

� lim
�!1

r
log �C b

C

Z 4

0

e��r2�2ˇydy

D lim
�!1

r
log �C b

C
� 1 � e��r2�2ˇ4

�r2�2ˇ

D lim
�!1

r
log �C b

C
� 1 � e�2ˇ4 log �Cb

C

2ˇ
log �Cb

C

D 0 (2.2.22)

As a result of (2.2.16) and (2.2.22), both terms on the right-hand side of (2.2.14)
go to zero. It follows that

lim
�!1 �

1
2 r2�

Z

`A�

e��r2�
R

Ly g.kx�yk/dxdy D 0

The above equation, together with (2.2.10) and (2.2.11), leads to the conclusion that

4 lim
�!1 �r2�

Z

`A�

e��r2�
R

A� g.kx�yk/dxdy D 0 (2.2.23)

i.e., the second term in (2.2.3) approaches 0 as � ! 1.
For the third term in (2.2.3), it can be shown that

4 lim
�!1 �r2�

Z

†A 1
r�

e
��r2�

R
A 1

r�

g.kx�yk/dx

dy

� 4 lim
�!1 �r2�

Z

†A 1
r�

e
��r2�

R
A 1

r�
\D.y;r�"� /

g.kx�yk/dx

dy

� 4 lim
�!1 �r2�

Z

†A 1
r�

e
� 1
4 �r2�

R
D.y;r�"� /

g.kx�yk/dx
dy

D 4 lim
�!1

�
r�"
�

�2
r2��e

� 1
4 �r2�

R
D.y;r�"� /

g.kx�yk/dx

D 4 lim
�!1 r2�2"� �e

� 1
4 �r2�

�
C�R

<2nD.y;r�"� /
g.kx�yk/dx

�

D 4 lim
�!1

�
log �C b

C�

�1�"
�e� 1

4
.log �Cb/ (2.2.24)

D 4C�1C"e� 1
4 b lim
�!1

.log �C b/1�"

�
1
4�"

D 0 (2.2.25)
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where the second step results by noting that for any y 2 †A 1
r�

, A� \ D
�

y; r�"
�

�

covers at least one quarter of D
�

y; r�"
�

�
, (2.2.7) is used in reaching (2.2.24), and

" < 1
4

is used in the final step.
As a result of (2.2.3), (2.2.9), (2.2.23), and (2.2.25):

lim
�!1 E .W/ D e�b (2.2.26)

Hence Theorem 41 is proved.

2.2.2 Impact of Boundary Effect on the Number of Isolated
Nodes

Before we proceed to the comparison of the expected number of isolated nodes

in G
�
X log �Cb

C
; g;A 1

r�

�
and the expected number in its counterpart in an infinite

network, we first examine the impact of boundary effect on the number of isolated

nodes in G
�
X log �Cb

C
; g;A 1

r�

�
. Boundary effect is a common concern in the analysis

of network connectivity. The analysis of the impact of the boundary effect is done

by comparing the number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
and that in a

network with nodes Poissonly distributed on a torus AT
1

r�

,
h
� 1
2r�
; 1
2r�

i2
with node

density log �Cb
C and where a pair of nodes separated by a toroidal distance xT are

directly connected with probability g
�
xT
�
, independent of the event that another

distinct pair of nodes are directly connected. Denote the network on a torus by

GT

�
X log �Cb

C
; g;AT

1
r�

�
. The following lemma can be established.

Lemma 42 The expected number of isolated nodes in GT

�
X log �Cb

C
; g;AT

1
r�

�
is

�e
� R

A 1
r�

log �Cb
C g.kxk/dx

. For g satisfying both (2.1.1) and (2.1.4), the expected number

of isolated nodes in GT
�
X log �Cb

C
; g;A 1

r�

�
converges to e�b as � ! 1.

Proof As discussed in Sect. 1.3.1, the torus that is commonly discussed in random
geometric graph theory is essentially the same as a square except that the distance
between two points on a torus is defined by their toroidal distance, instead of
Euclidean distance. From now on, whenever the difference between a torus and
a square affects the parameter being discussed, we use superscript T to mark the
parameter in a torus.
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We note the following relation between toroidal distance and Euclidean distance
on a square area centered at the origin:

kx1 � x2kT � kx1 � x2k (2.2.27)

kxkT D kxk (2.2.28)

which will be used in the later analysis.

It can then be shown that for an arbitrary node in GT

�
X log �Cb

C
; g;AT

1
r�

�
at location

y, the probability that the node is isolated is given by:

Pr
�
IT
y D 1

� D e
� R

AT
1

r�

log �Cb
C g.kx�ykT/dx

D e
� R

AT
1

r�

log �Cb
C g.kxkT/dx

D e
� R

A 1
r�

log �Cb
C g.kxk/dx

where in the second step, the property of a torus that the probability that an arbitrary
node at location y is isolated is equal to the probability that a node at the origin is
isolated is used; in the third step (2.2.28) is used.

Thus the expected number of isolated nodes in GT

�
X log �Cb

C
; g;AT

1
r�

�
is given by

E
�
WT

�

D
Z

A 1
r�

log �C b

C
e

� R
A 1

r�

log �Cb
C g.kxk/dx

dy (2.2.29)

D 1

r2�

log �C b

C
e

� R
A 1

r�

log �Cb
C g.kxk/dx

(2.2.30)

D �e
� R

A 1
r�

log �Cb
C g.kxk/dx

(2.2.31)

First, it can be shown using (2.1.6) that for g satisfying (2.1.4)

lim
�!1 �e

� R
D.0;r�"� /

log �Cb
C g.kxk/dx

D lim
�!1 �e

� log �Cb
C

�
C�R

<2nD.0;r�"� /
g.kxk/dx

�



2.2 Estimating the Number of Isolated Nodes 43

D e�b lim
�!1 e

log �Cb
C

R1

r�"�
2�xg.x/dx

D e�b (2.2.32)

where D .0; x/ denotes a disk centered at the origin and with a radius x, " is a small
positive constant, and the last step results because

lim
�!1

R1
r�"
�
2�xg .x/ dx

1
log �Cb

D lim
�!1

�"r�"
� g

�
r�"
�

�
r�"�2
�

log �Cb�1
C�2

1

�.log �Cb/2

(2.2.33)

D lim
�!1�" .log �C b/2 r�2"

� o�

0
@ 1

r�2"
� log2

�
r�2"
�

�
1
A

D 0

where L’Hospital’s rule is used in reaching (2.2.33) and in the third step g .x/ D
ox

�
1

x2 log2 x

�
is used. Note that by the definition of C in (2.1.6),

�e� R
<2

log �Cb
C g.kxk/dx D e�b (2.2.34)

and

�e� R
<2

log �Cb
C g.kxk/dx

� �e
� R

A 1
r�

log �Cb
C g.kxk/dx

� �e
� R

D.0;r�"� /
log �Cb

C g.kxk/dx
(2.2.35)

As a result of (2.2.29), (2.2.32), (2.2.34), and (2.2.35)

lim
�!1 E

�
WT

� D e�b (2.2.36)

ut
On the basis of Theorem 41 and Lemma 42, and using the coupling technique, the
following lemma can be obtained.
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Lemma 43 For g satisfying both (2.1.1) and (2.1.4), the number of isolated nodes

in G
�
X log �Cb

C
; g;A 1

r�

�
due to the boundary effect is asymptotically almost surely 0

as � ! 1.

Proof Comparing Theorem 41 and Lemma 42, it is noted that the expected numbers
of isolated nodes on a torus and on a square respectively asymptotically converge
to the same nonzero finite constant e�b as � ! 1. Now we use the coupling
technique [143] to construct the connection between W and WT , the number of

isolated nodes in the corresponding instance of GT
�
X log �Cb

C
; g;A 1

r�

�
. Consider an

instance of GT

�
X log �Cb

C
; g;AT

1
r�

�
. The number of isolated nodes in that network

is WT , which depends on �. Remove each connection of the above network with
probability 1 � g.x/

g.xT/
, independent of the event that another connection is removed,

where x is the Euclidean distance between the two endpoints of the connection and
xT is the corresponding toroidal distance. Due to xT � x (see (2.2.27)) and the
nonincreasing property of g, 0 � 1 � g.x/

g.xT/
� 1. Further note that only connections

between nodes near the boundary with xT < x will be affected, i.e., when x D xT

the removal probability is zero. Denote the number of newly appearing isolated
nodes by WE. WE has the meaning of being the number of isolated nodes due to
the boundary effect. It is straightforward to show that WE is a nonnegative random
integer, depending on �. Furthermore, such a connection removal process results a
random network with nodes Poissonly distributed with density log �Cb

C where a pair
of nodes separated by a Euclidean distance x are directly connected with probability
g .x/, i.e., a random network on a square with the boundary effect included. The
following equation results as a consequence of the above discussion:

W D WE C WT

Using Theorem 41, Lemma 42, and the above equation, it can be shown that

lim
�!1 E

�
WE

� D lim
�!1 E

�
W � WT

� D 0

Due to the nonnegativity of WE:

lim
�!1 Pr

�
WE D 0

� D 1

ut
Remark 44 Note that for g not satisfying (2.1.4), E .W/ and E

�
WT

�
are not

necessarily convergent as � ! 1. Particularly, using the same analysis in
the previous two subsections (see also (2.2.42) in Sect. 2.2.4 below), it can be

shown that when g .x/ D !x

�
1

x2 log2 x

�
, both lim�!1 E .W/ and lim�!1 E

�
WT

�
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are unbounded. When g .x/ D ‚x

�
1

x2 log2 x

�
, lim�!1 E .W/ and lim�!1 E

�
WT

�
start to depend on the asymptotic behavior of g and is only convergent when
limx!1 g .x/ x2 log2 x D a, where 0 < a < 1 is a positive constant. In that case,
it can be shown that lim�!1 E .W/ and lim�!1 E

�
WT

�
converge to e�bC 4�

C a. For
lim�!1 E

�
WT

�
the above result can be established by first choosing a small positive

constant 4" and then letting � be sufficiently large such that D
�
0; 1

2
r�1�4"
�

�

contains A 1
r�

, where D .x; r/ denotes a disk centered at x and with a radius r. An

upper and lower bound on E
�
WT

�
can then be established by noting that

lim
�!1 �e

� R
D.0; 12 r�1�4"

� /
log �Cb

C g.kxk/dx

� lim
�!1 E

�
WT

� D �e
� R

A 1
r�

log �Cb
C g.kxk/dx

� lim
�!1 �e

� R
D.0; 12 r�1� /

log �Cb
C g.kxk/dx

Following the exactly same procedure as that in (2.2.32) and (2.2.33) and finally
letting 4" ! 0, the result for lim�!1 E

�
WT

�
can be obtained. The result for

lim�!1 E .W/ can be obtained following a similar procedure as that in Sect. 2.2.1.

2.2.3 The Number of Isolated Nodes in a Region A 1
r�

of an Infinite Network with Node Density log �Cb
C

In this section, we consider the number of isolated nodes in the counterpart of

G
�
X log �Cb

C
; g;A 1

r�

�
in an infinite network. Specifically, for a meaningful comparison

with the number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
, we consider the number

of isolated nodes, denoted by W1 (with superscript 1 marking the parameter in an
infinite network), in a square A 1

r�
of an infinite network on <2 with Poissonly dis-

tributed node at density log �Cb
C . Denote the infinite network by G

�
X log �Cb

C
; g;<2

�
.

For g satisfying (2.1.2), a randomly chosen node in G
�
X log �Cb

C
; g;<2

�
, at location

y 2 A 1
r�

, is isolated with probability

Pr
�
I1
y D 1

� D e� R
<2

log �Cb
C g.kx�yk/dx D 1

�
e�b (2.2.37)
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where (2.1.2) is used in the above equation. Therefore,

E .W1/ D
Z

A 1
r�

log �C b

C
� 1

�
e�bdy

D log �C b

C
� 1

�
e�b �

�
1

r�

�2

D e�b (2.2.38)

The last line follows by (2.1.5).
The above result is summarized in the following lemma:

Lemma 45 For g satisfying (2.1.2), the expected number of isolated nodes in a

region A 1
r�

of G
�
X log �Cb

C
; g;<2

�
is e�b.

Remark 46 Indeed only the integral boundedness requirement on g in (2.1.2)
is required for Lemma 45. However such difference does not affect the latter
discussion on the key focus of the chapter, i.e., the truncation effect may have a
non-negligible impact on the number of isolated nodes. Therefore, we choose to
omit such difference to focus on the main idea.

2.2.4 A Comparison of the Expected Number of Isolated Nodes

in G
�
X log �Cb

C
; g; A 1

r�

�
and in Its Counterpart in an

Infinite Network

Comparing Theorem 41 and Lemma 45, we note that:

(1) The expected number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
only converges

asymptotically to e�b as � ! 1 whereas the expected number of isolated nodes

in an area of the same size in G
�
X log �Cb

C
; g;<2

�
is always e�b no matter which

value � takes.

(2) The expected number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
converges asymp-

totically to e�b for g satisfying both (2.1.1) and (2.1.4) whereas the expected

number of isolated nodes in an area of the same size in G
�
X log �Cb

C
; g;<2

�
is

e�b for g satisfying (2.1.2) only.

In the following we examine the reason behind the differences.
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Using (2.2.1), (2.2.2), (2.2.37), and (2.2.38), it can be shown that

E .W/

E .W1/

D eb
Z

A 1
r�

log �C b

C
e

� R
A 1

r�

log �Cb
C g.kx�yk/dx

dy

D eb
Z

A 1
r�

log �C b

C
exp

�
�
Z

<2

log �C b

C
g .kx � yk/ dx

C
Z

<2nA 1
r�

log �C b

C
g .kx � yk/ dx

1
A dy

D
Z

A 1
r�

log �C b

C�
e

R
<2nA 1

r�

log �Cb
C g.kx�yk/dx

dy (2.2.39)

It is trivial to show that the value in (2.2.39) is always greater than 1 for g with
infinite support. That is, for any g with infinite support, the expected number of

isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
is strictly larger than the expected number of

isolated nodes in an area A 1
r�

of G
�
X log �Cb

C
; g;<2

�
. Furthermore, it can be shown

that the value in (2.2.39) accounts for the cumulative effect of nodes outside A 1
r�

in

G
�
X log �Cb

C
; g;<2

�
and the associated connections between these nodes and nodes

inside A 1
r�

on reducing the expected number of isolated nodes in A 1
r�

. Because

G
�
X log �Cb

C
; g;A 1

r�

�
can be obtained from G

�
X log �Cb

C
; g;<2

�
by removing all these

nodes and associated connections outside an area of A 1
r�

in G
�
X log �Cb

C
; g;<2

�
, we

term this distinction the truncation effect. Theorem 41 and Lemma 45 show that
when g satisfies both (2.1.1) and (2.1.4) (i.e., g has to decrease fast enough), the
impact of the truncation effect on isolated nodes becomes vanishingly small as
� ! 1.

Based on the above discussion, the following theorem can be established:

Theorem 47 For g satisfying (2.1.2), the expected number of isolated nodes in an

area of A 1
r�

in G
�
X log �Cb

C
; g;<2

�
is e�b. Removing all nodes of G

�
X log �Cb

C
; g;<2

�

outside A 1
r�

and the associated connections, there results G
�
X log �Cb

C
; g;A 1

r�

�
. The

expected number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
converges to e�b if g

satisfies both (2.1.1) and (2.1.4). The more restrictive requirement on g is a sufficient
condition for the impact of the truncation effect associated with the above removal

operations on the number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
to be vanishingly

small as � ! 1.



48 2 Large Network Models and Their Implications

In the following, we show that the more restrictive requirement on g in (2.1.4)
(compared with (2.1.1) and (2.1.2)) is also necessary for the impact of the truncation
effect to become vanishingly small as � ! 1. Specifically, consider the case
when (2.1.4) is not satisfied. Let

f .x/ , g .x/ x2 log2 x (2.2.40)

Condition (2.1.4) not being satisfied means

lim
x!1 f .x/ ¤ 0 (2.2.41)

i.e., limx!1 f .x/ may equal to a positive constant, 1, or does not exist (e.g., f .x/
is a periodic function of x).

It can be shown that (following the equation, detailed explanations are given and
see also (2.2.29))

lim
�!1 E .W/

� lim
�!1 E

�
WT

�

D lim
�!1 �e

� R
A 1

r�

log �Cb
C g.kxk/dx

� lim
�!1 �e

� R
D.0; 12 r�1� /

log �Cb
C g.kxk/dx

D e�b lim
�!1 e

R
<2nD.0; 12 r�1� /

log �Cb
C g.kxk/dx

D e�bC 4�
C limx!1 f .x/ (2.2.42)

where the last step results because of the following derivations:

Z

<2nD.0; 12 r�1
� /

log �C b

C
g .kxk/ dx

D lim
�!1

Z 1
1
2 r�1
�

log �C b

C
2�xg .x/ dx

D lim
�!1

�
2

r�4
� g

�
1
2
r�1
�

�
log �Cb�1

C�2

C
�.log �Cb/2

D lim
�!1

�

2C
.log �C b/2 r�2

� g

�
1

2
r�1
�

�
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D lim
�!1

�

2C
.log �C b/2 r�2

�

f
�
1
2
r�1
�

�

1
4
r�2
� log2

�
1
2
r�1
�

�

D lim
�!1

2� .log �C b/2 f
�
1
2
r�1
�

�

C
�
log 1

2
� 1

2
log .log �C b/C 1

2
log �C 1

2
log C

�2

D 4�

C
lim
�!1 f

�
1

2
r�1
�

�

D 4�

C
lim

x!1 f .x/

where in the second step, L’Hospital’s rule with C
log �Cb being the denominator andR1

1
2 r�1
�
2�xg .x/ dx being the numerator is used; in the third step, (2.2.40) is used.

Remark 48 Equation (2.2.42) shows also that lim�!1 E
�
WT

� � e�bC 4�
C limx!1 f .x/

where E
�
WT

�
is the expected number of isolated nodes on a torus, which does

not include the contribution of the boundary effect to the number of isolated
nodes. Note also that the expected number of isolated nodes in an area of A 1

r�
in

G
�
X log �Cb

C
; g;<2

�
is e�b. Therefore, the term e

4�
C limx!1 f .x/ is entirely attributable

to the truncation effect.

Note that f .x/ is a nonnegative function for x > 1. It is obvious from (2.2.42) that
unless limx!1 f .x/ D 0, i.e., (2.1.4) is satisfied, the expected number of isolated

node in G
�
X log �Cb

C
; g;A 1

r�

�
will be larger than the expected number of isolated

nodes in an area of A 1
r�

in G
�
X log �Cb

C
; g;<2

�
. That is, the impact of the truncation

effect on the number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
will not be vanishingly

small as � ! 1. In particular, it can be shown that for g .x/ D ‚x

�
1

x2 log2 x

�
, the

impact of the truncation effect is non-negligible or even dominant in determining

the number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
. Using (2.2.42), it can also be

shown that for g .x/ D !x

�
1

x2 log2 x

�
, lim�!1 E .W/ is unbounded, i.e., connectivity

cannot be achieved for g .x/ D !x

�
1

x2 log2 x

�
even if (2.1.1) and (2.1.2) are satisfied.

The above discussion leads to the following conclusion:

Theorem 49 The more restrictive requirement on g that it satisfies (2.1.4) is a
necessary condition for the impact of the truncation effect on the number of isolated

nodes in G
�
X log �Cb

C
; g;A 1

r�

�
to be vanishingly small as � ! 1. Furthermore, for

g .x/ D ‚x

�
1

x2 log2 x

�
, the impact of the truncation effect is non-negligible or even
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dominant in determining the number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
; and

for g .x/ D !x

�
1

x2 log2 x

�
, the truncation effect is the dominant factor in determining

the number of isolated nodes in G
�
X log �Cb

C
; g;A 1

r�

�
.

Noting that the number of isolated nodes in a network is a nonnegative integer, the
following result can be obtained as an easy consequence of Theorem 47 (see also
[139]). Note that in formulating this result, we drop the assumption that b, originally
introduced in (2.1.5), is a constant, and allow it instead to be �-dependent.

Corollary 50 For g satisfying both (2.1.1) and (2.1.4), a necessary condition for

G
�
X log �Cb

C
; g;A 1

r�

�
to be asymptotically almost surely (as � ! 1) connected is

b ! 1.

Remark 51 As pointed out in [143, p. 151], the three requirements on g in the
random connection model, i.e., rotational invariance, nonincreasing monotonicity,
and integral boundedness, are not equally important. Particularly, rotational invari-
ance and nonincreasing monotonicity are required only to simplify the analysis such
that “the notation and formulae will be somewhat simpler.” Similarly, we expect
the results obtained in this section and in the next section requiring nonincreasing
monotonicity in (2.1.1) are also valid when the condition in (2.1.1) is removed.
These however require more complicated handling of g .x/, particularly when x is
sufficiently large.

2.3 Vanishing of Finite Components with More Than One
Nodes

In this section we consider the events of the asymptotic vanishing of components

of fixed and finite order k > 1 in the infinite network G
�
X log �Cb

C
; g;<2

�
and in

G
�
X log �Cb

C
; g;A 1

r�

�
respectively as � ! 1.

In [143, Theorem 6.4], it was shown that as � ! 1 (and log �Cb
C ! 1) the

probability for a node to be isolated given that its component is finite converges

to 1. In other words, as � ! 1, asymptotically almost surely G
�
X log �Cb

C
; g;<2

�

has only isolated nodes and components of infinite order, and components of fixed
and finite order k > 1 asymptotically vanish. In the following we show that

due to the truncation effect, the above result obtained in G
�
X log �Cb

C
; g;<2

�
does

not carry over to the conclusion that as � ! 1, asymptotically almost surely

G
�
X log �Cb

C
; g;A 1

r�

�
has only isolated nodes and infinite components too, without

further analysis on the impact of the truncation effect. Specifically, an infinite
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component in G
�
X log �Cb

C
; g;<2

�
may possibly consist of components of extremely

large order, components of fixed and finite order k > 1 and isolated nodes involving
nodes and connections entirely contained inside A 1

r�
, where these components are

only connected to each other via nodes and connections outside A 1
r�

. Note that for

any finite �, almost surely there is no infinite component in G
�
X log �Cb

C
; g;A 1

r�

�
.

Therefore, we use the term component of extremely large order to refer to a
component whose order may become asymptotically infinite as � ! 1. As the
nodes and associated connections outside A 1

r�
are removed, the infinite component

in <2 may possibly leave components of extremely large order, components of
finite order k > 1 and isolated nodes in A 1

r�
. As such, vanishing of components

of finite order k > 1 in G
�
X log �Cb

C
; g;<2

�
as � ! 1 does not necessarily carry the

conclusion that components of finite order k > 1 in G
�
X log �Cb

C
; g;A 1

r�

�
also vanish

as � ! 1, even when A 1
r�

approaches <2 as � ! 1. An example is illustrated in

Fig. 2.3.
We further point out that many other topologies, particularly under a random

connection model where even a pair of nodes separated by a large distance may
have a nonzero probability to be directly connected, can be drawn for an infinite
component in <2, where after removing all nodes and associated connections of the
infinite component outside A 1

r�
, the infinite component leaves components of finite

order k > 1 inside A 1
r�

, even when A 1
r�

grows as � ! 1. We emphasize that we are

not hinting that the topology of the infinite component shown in Fig. 2.3 is likely

to occur in G
�
X log �Cb

C
; g;<2

�
as � ! 1, but neither can such a possibility be

precluded. Therefore, a conclusion cannot be drawn straightforwardly from [143,
Theorem 6.4] that asymptotically almost surely components of finite order k > 1

in G
�
X log �Cb

C
; g;A 1

r�

�
vanish as � ! 1. Instead, some sophisticated analysis is

required to establish such a conclusion in G
�
X log �Cb

C
; g;A 1

r�

�
.

We present such a result for the vanishing of components of finite order k > 1 in

G
�
X log �Cb

C
; g;A 1

r�

�
as � ! 1 to fill this theoretical gap:

Theorem 52 For g satisfying (2.1.1) and (2.1.4), asymptotically almost surely there

is no component of finite order k > 1 in G
�
X log �Cb

C
; g;A 1

r�

�
.

The rest of this section is dedicated to the proof of Theorem 52.

For convenience, let � be the node density in G
�
X log �Cb

C
; g;A 1

r�

�
where � ,

�r2� D log �Cb
C . Using the above notations, G

�
X log �Cb

C
; g;A 1

r�

�
can be written as

G
�
X�; g;A 1

r�

�
.
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Fig. 2.3 An illustration that an infinite component in <2 may leave components of extremely large
order, components of finite order k > 1, and isolated nodes in a finite (or asymptotically infinite)
region in <2 when nodes and connections outside the finite (asymptotically infinite) region is
removed. The figure uses the unit disk connection model as a special case for easy illustration.
Each ball has a radius of half of the transmission range and is centered at a node. Two adjacent
balls overlap if and only if the associated nodes are directly connected. The figure shows an
infinite component with nodes organized in a tree structure. The square area represents the finite
(asymptotically infinite) region. Even as the square grows to include more and more nodes of the
infinite component, it is still possible for the square to have components of finite order k > 1 when
nodes and connections outside the square are removed

Note that for any finite � the total number of nodes in G
�
X�; g;A 1

r�

�
, hence the

total number of components in G
�
X�; g;A 1

r�

�
, is almost surely finite. Denote by �k

the (random) number of components of order k in an instance of G
�
X�; g;A 1

r�

�
. It

then suffices to show that for an arbitrarily large positive integer M:

lim
�!1 Pr

 
MX

kD2
�k D 0

!
D 1 (2.3.1)
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The following symbols and notations are used:
Denote by g1 .x1; x2; : : : ; xk/ the probability that a set of k nodes at nonrandom

positions x1, x2, : : :, xk 2 A 1
r�

forms a connected component.

Denote by g2 .yI x1; x2; : : : ; xk/ the probability that a node at nonrandom position
y is connected to at least one node in fx1; x2; : : : ; xkg. It can be shown that

g2 .yI x1; x2; : : : ; xk/ D 1 �
kY

iD1
.1 � g .ky � xik// (2.3.2)

and

g2 .yI x1; x2; : : : ; xk/ � g2 .yI x1; x2; : : : ; xi/ for 1 � i � k (2.3.3)

As an easy consequence of the union bound,

g2 .yI x1; x2; : : : ; xk/ �
kX

iD1
g .ky � xik/ (2.3.4)

Using the monotonicity and positive integral boundedness properties of g
in (2.1.1) and (2.1.4), it can be shown that there exists a positive constant r such that
g .r�/

�
1 � g

�
rC�� > 0 where g .r�/ , limx!r� g .x/ and g

�
rC� , limx!rC g .x/.

If g is a continuous function, then g .r�/ D g
�
rC�; if g is a discontinuous

function, e.g., a unit disk connection model, by choosing r to be the transmission
range, g .r�/

�
1 � g

�
rC�� D 1. For convenience in notations, we use ˇ for

g .r�/
�
1 � g

�
rC��, i.e.,

ˇ , g .r�/
�
1 � g

�
rC�� (2.3.5)

Denote by @A 1
r�

the border of A 1
r�

. Denote by `A 1
r�

� A 1
r�

a rectangular area of

size
�
1
r�

� 2r
�

� r along one side of the border of A 1
r�

, within a distance r of the

border and away from the four corners of A 1
r�

by at least r. There are four such areas

in A 1
r�

. Denote by †A 1
r�

� A 1
r�

a square area of size r � r located at a corner of A 1
r�

.

There are four such corner squares in A 1
r�

. Denote by Bd

�
A 1

r�

�
� A 1

r�
a boundary

area within a distance d of the border of A 1
r�

. Note the difference of the definitions

of those symbols from those used Sect. 2.2 and particularly Fig. 2.1.
Let D .x; d/ � <2 represents a disk centered at x 2 A 1

r�
and with a radius d.

We first establish some preliminary results that will be used in the proof.

Lemma 53 In G
�
X�; g;A 1

r�

�
, the expected number of components of order k is

given by

E .�k/ D �k

kŠ

Z
�

A 1
r�

�k g1 .x1; x2; : : : ; xk/ e
��

R
A 1

r�

g2.yIx1;x2;:::;xk/dy

d .x1 � � � xk/ (2.3.6)
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Proof It can be shown that for any n � k:

E .�k jjX�j D n / D

 
n
k

!

�
A 1

r�

�n

Z
 

A 1
r�

!n g1 .x1; x2; : : : ; xk/

nY
iDkC1

.1� g2 .xiI x1; x2; : : : ; xk// d .x1 � � � xn/

(2.3.7)

In (2.3.7),

�
n
k

�
is the number of distinct sets of k nodes drawn from a total of

n nodes and the rest term represents the probability of the event that a randomly
chosen set of k nodes forms a component of order k. From (2.3.7), it follows that

E .�k/

D
1X

nDk

E .�k jjX�j D n /

�
�A 1

r�

�n

nŠ
e

��A 1
r�

D
1X

nDk

�
�A 1

r�

�n

nŠ
e

��A 1
r�

 
n
k

!

�
A 1

r�

�n

Z
�

A 1
r�

�n g1 .x1; x2; : : : ; xk/

nY
iDkC1

.1� g2 .xiI x1; x2; : : : ; xk//

� d .x1 � � � xn/

D
1X

nDk

�n

nŠ
e

��A 1
r�

 
n
k

!Z
�

A 1
r�

�k g1 .x1; x2; : : : ; xk/

0
@
Z

A 1
r�

1� g2 .yI x1; x2; : : : ; xk/ dy

1
A

n�k

� d .x1 � � � xk/

D
Z
�

A 1
r�

�k g1 .x1; x2; : : : ; xk/

0
@

1X
nDk

�n

nŠ
e��A�

 
n
k

!0
@
Z

A 1
r�

1� g2 .yI x1; x2; : : : ; xk/ dy

1
A

n�k1
A

� d .x1 � � � xk/

D �k

kŠ

Z
�

A 1
r�

�k g1 .x1; x2; : : : ; xk/

0
BBB@

1X
nDk

�
�

�R
A 1

r�

1� g2 .yI x1; x2; : : : ; xk/ dy

��n�k

.n � k/Š
e

��A 1
r�

1
CCCA

� d .x1 � � � xk/

D �k

kŠ

Z
�

A 1
r�

�k g1 .x1; x2; : : : ; xk/ e
��

R
A 1

r�

g2.yIx1;x2;:::;xk/dy

d .x1 � � � xk/

ut
A similar technique as that used in the proof of Proposition 6.2 in [143], originally
due to Penrose [163], was used in the proof of Lemma 53 .

The following lemma is also used in the analysis of E .�k/.



2.3 Vanishing of Finite Components with More Than One Nodes 55

Lemma 54 A sufficient and necessary condition for a given set of nodes to form a
single connected component is that there exists an ordering of the nodes, which can
start from any node in the set, such that each node appearing later in the order is
connected to at least one node appearing earlier in the order.

The proof is trivial and omitted.
Using Lemma 54, the following result can be established:

Lemma 55 Let �k denote the set f1; : : : ; kg. The function g1 .x1; x2; : : : ; xk/ satis-
fies the following inequality

g1 .x1; x2; : : : ; xk/

�
X

i22�knf1g;i32�knf1;i2g;��� ;ik2�knf1;i2;:::;ik�1g
g2 .xi2 I x1/ g2 .xi3 I x1; xi2 / � � �

g2 .xik I x1; xi2 ; : : : ; xik�1 /

Proof Without loss of generality, we assume that such ordering described in
Lemma 54 starts from x1 2 fx1; x2; : : : ; xkg. Denote by �.1;i2;:::;ik/ the event that
.x1; xi2 ; : : : ; xik/ is one of such an ordering described in Lemma 54, where i2 2
�kn f1g ; i3 2 �kn f1; i2g ; � � � ; ik 2 �kn f1; i2; : : : ; ik�1g. Using Lemma 54, it can be
shown that

Pr
�
�.1;i2;:::;ik�1/

� D g2 .xi2 I x1/ g2 .xi3 I x1; xi2 / � � � g2 .xik I x1; xi2 ; : : : ; xik�1 /

Then, it follows that

g1 .x1; x2; : : : ; xk/ D Pr
�[i22�knf1g;i32�knf1;i2g;��� ;ik2�knf1;i2;:::;ik�1g�.1;i2;:::;ik/

�

As an easy consequence of the above equation and the union bound:

g1 .x1; x2; : : : ; xk/

�
X

i22�knf1g;i32�knf1;i2g;��� ;ik2�knf1;i2;:::;ik�1g
g2 .xi2 I x1/ g2 .xi3 I x1; xi2 / � � �

g2 .xik I x1; xi2 ; : : : ; xik�1 /

ut
The following geometric results are also used in the proof of Theorem 52.

Lemma 56 Consider two points x1; x2 2 A 1
r�

and let z , kx2 � x1k. For a positive

constant c1 D p
3r and z � r

jD .x1; r/ nD .x2; r/j � c1z

where jD .x1; r/ nD .x2; r/j denotes the area of D .x1; r/ nD .x2; r/.
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Proof First it can be shown that for z � 2r

jD .x1; r/ nD .x2; r/j D �r2

and for z < 2r

f .z/

, jD .x2; r/ nD .x1; r/j

D �r2 � 2r2 arcsin

 r
1 � z2

4r2

!
C zr

r
1 � z2

4r2

Furthermore, it can be shown that

df .z/

dz
D 2r

r
1 � z2

4r2

Therefore, f .z/ is an increasing function of z for z < 2r and df .z/
dz � p

3r for z � r.

It then follows from f .0/ D 0 that f .z/ � p
3rz for z � r. ut

Lemma 57 Consider two points x1 2 `A 1
r�

and x2 2 A 1
r�

\ D .x1; r/ and let z ,
kx2 � x1k. When � .x2/ � � .x1/,

ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ � c1

2
z

When � .x2/ > � .x1/, for any positive constant c2, there exists a positive constant
z0 < r such that for all z � z0

ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ � .r � c2/ z � r � j� .x2/ � � .x1/j

where � .x1/ (� .x2/) represents the shortest Euclidean distance between x1 (x2)
and a border of A 1

r�
that is adjacent to `A 1

r�
(i.e., @A 1

r�
\ `A 1

r�
, see Fig. 2.4 for an

illustration of � .x2/ where � .x1/ D 0 in the figure).

Proof The first part of the lemma can be easily proved by noting that when � .x2/ �
� .x1/,

ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ � 1

2
jD .x1; r/ nD .x2; r/j

and the lemma can then be proved using Lemma 56.
Now let us focus on the situation when � .x2/ > � .x1/. It can be easily shown

(see also Fig. 2.4) that when changing the value of � .x1/while keeping x2�x1 fixed

(i.e., x2 has the same displacement as x1),
ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ is minimized

as � .x1/ D 0 (i.e., x1 2 `A 1
r�

\ @A 1
r�

) and .r � c2/ z � r � j� .x2/ � � .x1/j remains

constant. Therefore, we focus on the worst case when x1 2 `A 1
r�

\ @A 1
r�

. When

x1 2 `A 1
r�

\ @A 1
r�

, j� .x2/ � � .x1/j D � .x2/.
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Fig. 2.4 An illustration of
ˇ̌
ˇA 1

r�
\ D .x2; r/ =D .x1; r/

ˇ̌
ˇ for x1 2 `A 1

r�
\ @A 1

r�
and x2 2 A 1

r�
\

D .x1; r/. Note that A1 is the upper part of A� \ D .x1; r/ nD .x2; r/ above the line connecting x1
and x2. Depending on the relative positions of x1 and x2, A� \D .x1; r/ nD .x2; r/may also contain
a nonempty region below the line connecting x1 and x2

Figure 2.4 shows A 1
r�

\ D .x1; r/ nD .x2; r/ for x1 2 `A 1
r�

\ @A 1
r�

and x2 2 A 1
r�

\
D .x1; r/. It can be shown that under the above conditions for x1 and x2 (see Fig. 2.4
for definitions of ˛ and A1 and some detailed but straightforward geometric analysis
omitted in the following equation)

ˇ̌
A� \ D .x1; r/ nD .x2; r/

ˇ̌

� jA1j
D h .z; ˛/

, �r2

4
� r2 arccos

z

2r
C 1

2
zr

r
1 � z2

4r2
C r2

2
arccos

z cos˛

r

� 1

2
zr

r
1 � z2

r2
cos2 ˛ cos˛ C 1

2
z2 sin˛ cos˛
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Note that h .0; ˛/ D 0,

@h .z; ˛/

@z

ˇ̌
ˇ̌
zD0

D r .1 � cos˛/

and cos˛ D �.x2/
z . Therefore,

lim
z!0C

h .z; ˛/ � h .0; ˛/

z
D r .1 � cos˛/

i.e., for a given positive constant c2, there exists z˛ > 0 depending on ˛ such that
for all 0 � z � z˛

h .z; ˛/ � .r .1 � cos˛/ � c2/ z

The proof is completed by choosing z0 D min0�˛� �
2

z˛ and using cos˛ D �.x2/
z . ut

On the basis of the above preliminary results, we are now ready to start the proof of
Theorem 52.

Let ı be a positive constant and ı � r
2
. As a consequence of Lemma 53, it can be

shown that

E .�k/

D �k

kŠ

Z
�

A 1
r�

�k�1

Z

A 1
r�

g1 .x1; x2; : : : ; xk/ e
�� RA 1

r�

g2.yIx1;x2;:::;xk/dy

dx1d .x2 � � � xk/

D �k

kŠ

Z

A 1
r�

Z
�

A 1
r�

�k�1

\.D.x1;ı//k�1
g1 .x1; x2; : : : ; xk/ e

�� RA 1
r�

g2.yIx1;x2;:::;xk/dy

d .x2 � � � xk/ dx1

C �k

kŠ

Z

A 1
r�

Z
�

A 1
r�

�k�1

n.D.x1;ı//k�1
g1 .x1; x2; : : : ; xk/ e

�� RA 1
r�

g2.yIx1;x2;:::;xk/dy

d .x2 � � � xk/ dx1 (2.3.8)

Denote by E .�k;1/ and E .�k;2/ the two summands in (2.3.8) respectively. In
the following analysis, we shall show that by choosing ı to be sufficiently small,
lim�!1

P1
kD2 E .�k:1/ D 0 and lim�!1

PM
kD2 E .�k;2/ D 0.

P1
kD2 E .�k:1/ has the

meaning of being the expected total number of components of finite orders 1 >
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k > 1, where all other nodes of the component are located within a ı neighborhood
of a randomly designated node (i.e., x1 in (2.3.8)). lim�!1

P1
kD2 E .�k:1/ D 0

implies lim�!1
PM

kD2 E .�k:1/ D 0.
PM

kD2 E .�k;2/ D 0 has the meaning of being
the expected total number of components of finite orders M � k > 1 where at least
one of the nodes forming the component is located outside a ı neighborhood of a
randomly designated node (i.e., x1 in (2.3.8)) in the component.

An Analysis of the First Term in (2.3.8)

Denote by Di
ı �

�
A 1

r�

�k�1
the set

n
.x2; : : : ; xk/ 2

�
A 1

r�

�k�1 \ .D .x1; ı//
k�1 W

kxi � x1k � maxj2f2;:::kg;j¤i

��xj � x1
�� o, i 2 f2; : : : kg. Using (2.3.3) and the

definition of Di
ı , it can be shown that

E .�k;1/

, �k

kŠ

Z

A�

Z
�

A 1
r�

�k�1

\.D.x1;ı//k�1
g1 .x1; x2; : : : ; xk/ e

�� RA 1
r�

g2.yIx1;x2;:::;xk/dy

d .x2 � � � xk/ dx1

D
kX

iD2

�k

kŠ

Z

A 1
r�

Z

Di
ı

g1 .x1; x2; : : : ; xk/ e
�� RA 1

r�

g2.yIx1;x2;:::;xk/dy

d .x2 � � � xk/ dx1

� �k

.k � 2/Šk
Z

A 1
r�

Z

D2ı

g1 .x1; x2; : : : ; xk/ e
�� RA 1

r�

g2.yIx1;x2/dy

d .x2 � � � xk/ dx1

� �k

.k � 2/Šk
Z

A 1
r�

Z

D2ı

e
�� RA 1

r�

g2.yIx1;x2/dy

d .x2 � � � xk/ dx1

� �k

.k � 2/Šk
Z

A 1
r�

Z

A 1
r�

\D.x1;ı/

�
� kx2 � x1k2

�k�2
e

�� RA 1
r�

g2.yIx1;x2/dy

dx2dx1 (2.3.9)
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As a result of the following inequality:

1X
kD2

�k
�
� kx2 � x1k2

�k�2

.k � 2/Šk

D �2

0
B@

1X
kD0

�k
�
� kx2 � x1k2

�k

kŠ .k C 2/

1
CA

� �2

0
B@

1X
kD0

�k
�
� kx2 � x1k2

�k

kŠ
e���kx2�x1k2

1
CA e��kx2�x1k2

D �2e��kx2�x1k2

it follows from (2.3.9) that

1X
kD2

E
�
�k;1

�

� �2
Z

A 1
r�

Z

A 1
r�

\D.x1;ı/
e

��

0
@R

A 1
r�

g2.yIx1;x2/dy��kx2�x1k
2

1
A

dx2dx1

D �2
Z

A 1
r�

Z

A 1
r�

\D.x1;ı/
e

��

0
@R

A 1
r�

g.ky�x2k/dyC
R

A 1
r�

g.ky�x1k/.1�g.ky�x2k//dy��kx2�x1k
2

1
A

dx2dx1

� �2
Z

A 1
r�

Z

A 1
r�

\D.x1;ı/

e
��

0
@R

A 1
r�

g.ky�x2k/dyC
R

A 1
r�

\D.x1;r/nD.x2;r/
g.ky�x1k/.1�g.ky�x2k//dy��kx2�x1k

2

1
A

dx2dx1 (2.3.10)

� �2
Z

A 1
r�

Z

A 1
r�

\D.x1;ı/

e
��

0
@R

A 1
r�

g.ky�x2k/dyCg.r�/.1�g.rC//
ˇ̌
ˇ̌A 1

r�
\D.x1;r/nD.x2;r/

ˇ̌
ˇ̌��kx2�x1k

2

1
A

dx2dx1 (2.3.11)

where in (2.3.10) the parameter r > 0 is chosen such that g .r�/
�
1�g

�
rC�� > 0.

For convenience, use ˇ for g .r�/
�
1 � g

�
rC�� as defined in (2.3.5). It follows

from (2.3.11) that
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1X
kD2

E
�
�k;1

�

� �2
Z

Br

�
A 1

r�

�
Z

A 1
r�

\D.x1;ı/
e

��
0
@R

A 1
r�

g.ky�x2k/dyCˇ
ˇ̌
ˇ̌A 1

r�
\D.x1;r/nD.x2;r/

ˇ̌
ˇ̌��kx2�x1k2

1
A

dx2dx1

C �2
Z

A 1
r�

nBr

�
A 1

r�

�
Z

A 1
r�

\D.x1;ı/
e

��
0
@R

A 1
r�

g.ky�x2k/dyCˇ
ˇ̌
ˇ̌A 1

r�
\D.x1;r/nD.x2;r/

ˇ̌
ˇ̌��kx2�x1k2

1
A

dx2dx1 (2.3.12)

For the first summand in the above equation, it can be shown that

�2
Z

Br

�
A 1

r�

�
Z

A 1
r�

\D.x1;ı/
e

��
0
@R

A 1
r�

g.ky�x2k/dyCˇ
ˇ̌
ˇ̌A 1

r�
\D.x1;r/nD.x2;r/

ˇ̌
ˇ̌��kx2�x1k2

1
A

dx2dx1

D 4�2
Z

`A 1
r�

Z

A 1
r�

\D.x1;ı/
e

��
0
@R

A 1
r�

g.ky�x2k/dyCˇ
ˇ̌
ˇ̌A 1

r�
\D.x1;r/nD.x2;r/

ˇ̌
ˇ̌��kx2�x1k2

1
A

dx2dx1

C 4�2
Z

†A 1
r�

Z

A 1
r�

\D.x1;ı/
e

��
0
@R

A 1
r�

g.ky�x2k/dyCˇ
ˇ̌
ˇ̌A 1

r�
\D.x1;r/nD.x2;r/

ˇ̌
ˇ̌��kx2�x1k2

1
A

dx2dx1

(2.3.13)

Denote by � .x/ the shortest Euclidean distance between a point x 2 `rCıA 1
r�

and

a border of A 1
r�

adjacent to `rCıA 1
r�

(i.e., @A 1
r�

\ `rCıA 1
r�

), where `rCıA 1
r�

denotes

a boundary rectangular area of size
�

r�1
� � 2 .r � ı/

�
� .r C ı/ within r C ı of

the border of A 1
r�

and away from the corners of A 1
r�

by at least r � ı. Denote by

B�.x2/
�

A 1
r�

�
� A� a boundary area

n
x 2 `rCıA 1

r�
W � .x/ � � .x2/

o
, and denote by

R .x2; 2r/ a rectangular area of size 2r � � .x2/ located between x2 and @A 1
r�

with

x2 at the center of one side of R .x2; 2r/. See Fig. 2.5 for an illustration of the areas
defined above.

We first evaluate the term:
R

B�.x2/

�
A 1

r�

� g .ky � x2k/ dy C ˇ
ˇ̌
A 1

r�
\ D .x1; r/ n

D .x2; r/
ˇ̌
. It can be shown that for x1 2 `A 1

r�
and x2 2 A 1

r�
\ D .x1; ı/, when
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Fig. 2.5 An illustration of
the areas `rCıA 1

r�
,

B�.x2/
�

A 1
r�

�
and R .x2; 2r/.

The shaded area is
B�.x2/

�
A 1

r�

�

�r+δA 1
rρ

r−1
ρ

r − δ

r + δ

x2
γ (x2)

Bγ(x2)

(
A 1

rρ

)

R (x2, 2r)
2r

r − δ

∂A 1
rρ

� .x2/ � � .x1/:

Z

B�.x2/

�
A 1

r�

� g .ky � x2k/ dy

�
Z

B�.x2/

�
A 1

r�

�
\R.x2;2r/

g .ky � x2k/ dy

�
Z r

0

Z �.x2/

0

g
�p

x2 C y2
�

dxdy
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�
Z r

0

Z j�.x2/��.x1/j

0

g
�p

x2 C y2
�

dxdy

�
Z r

0

Z j�.x2/��.x1/j

0

g

 r� r

2

�2 C y2

!
dxdy (2.3.14)

D c3 j� .x2/ � � .x1/j

where in (2.3.14), the nonincreasing monotonicity condition on g and that

j� .x2/ � � .x1/j � kx2 � x1k � ı � r
2

is used, and c3 ,
R r
0

g

�q�
r
2

�2 C y2
�

dy.

Since g .r�/
�
1 � g

�
rC�� > 0, it follows from the nonincreasing monotonicity

condition on g that g
�

r
2

�
> 0 and c3 is a positive constant, i.e., c3 > 0.

Choose c2 to be sufficiently small such that c4 , c3
ˇ

� c2 > 0 and choose ı to be
sufficiently small such that ı � z0. Using (2.3.14) and Lemma 57, it follows that

Z

B�.x2/

�
A 1

r�

� g .ky � x2k/ dy C ˇ
ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ

� c3 j� .x2/ � � .x1/j C ˇ ..r � c2/ kx2 � x1k � r � j� .x2/ � � .x1/j/

D ˇ

�
.r � c2/ �

�
r � c3

ˇ

�
� j� .x2/ � � .x1/j

kx2 � x1k
�

kx2 � x1k

Note that j�.x2/��.x1/j
kx2�x1k � 1, therefore,

.r � c2/ �
�

r � c3
ˇ

�
� j� .x2/ � � .x1/j

kx2 � x1k � c3
ˇ

� c2

Z

B�.x2/

�
A 1

r�

� g .ky � x2k/ dy C ˇ
ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ

� ˇc4 kx2 � x1k (2.3.15)

When � .x2/ < � .x1/, using Lemma 57

Z

B�.x2/

�
A 1

r�

� g .ky � x2k/ dy C ˇ
ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ

� ˇ
ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ

� ˇ
c1
2

kx2 � x1k (2.3.16)
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Let c5 , min
˚ c1
2
; c4
�
. It follows from (2.3.15) and (2.3.16) that

Z

B�.x2/

�
A 1

r�

� g .ky � x2k/ dy C ˇ
ˇ̌
ˇA 1

r�
\ D .x1; r/ nD .x2; r/

ˇ̌
ˇ

� ˇc5 kx2 � x1k

Choose ı to be sufficiently small such that �ı � 1
2
c5ˇ and also ı � z0. Note also

that for x2 2 A 1
r�

\ D .x1; ı/, kx2 � x1k � ı. Then, it follows that

4�2
Z

`A 1
r�

Z

A 1
r�

\D.x1;ı/
e

��
0
@R

A 1
r�

g.ky�x2k/dyCˇ
ˇ̌
ˇ̌A 1

r�
\D.x1;r/nD.x2;r/

ˇ̌
ˇ̌��kx2�x1k2

1
A

dx2dx1

� 4�2
Z

`A 1
r�

Z

A 1
r�

\D.x1;ı/
e

��

0
BBB@
R

A 1
r�

nB
�.x2/

0
@A 1

r�

1
A

g.ky�x2k/dyC 1
2 c5ˇkx2�x1k

1
CCCA

dx2dx1

� 4�2
Z

`rCıA 1
r�

Z

A 1
r�

\D.x2;ı/
e

��

0
BBB@
R

A 1
r�

nB
�.x2/

0
@A 1

r�

1
A

g.ky�x2k/dyC 1
2 c5ˇkx2�x1k

1
CCCA

dx1dx2

� 4�2
Z ı

0

e�� 12 c5ˇx2�xdx
Z

`rCıA 1
r�

e

�� R
A 1

r�
nB
�.x2/

0
@A 1

r�

1
A

g.ky�x2k/dy

dx2

D 32�
1 � e�� 12 c5ˇı

�
1C �1

2
c5ˇı

�

.c5ˇ/
2

Z

`rCıA 1
r�

e

�� R
A 1

r�
nB
�.x2/

0
@A 1

r�

1
A

g.ky�x2k/dy

dx2

We further divide `rCıA 1
r�

into two parts: one rectangular area of size�
r�1
� � 2r�"

�

�
� .r C ı/ in the center of `rCıA 1

r�
, denoted by `1rCıA 1

r�
, and the

other area `2rCıA� D `rCıA 1
r�

n`1rCıA 1
r�

. It can be shown that

lim
�!1

Z

`1rCı
A 1

r�

e

�� R
A 1

r�
nB
�.x2/

0
@A 1

r�

1
A

g.ky�x2k/dy

dx2

� lim
�!1

Z

`1rCı
A 1

r�

e

�� R
A 1

r�
nB
�.x2/

0
@A 1

r�

1
A\D.x2;r

�"
� /

g.ky�x2k/dy

dx2
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D lim
�!1

�
r�1
� � 2r�"

�

�
� .r C ı/ e

� 1
2 �
R

D.0;r�"� /
g.kyk/dy

D 0 (2.3.17)

where the last step results due to (2.2.11), which showed that for g satisfying

both (2.1.1) and (2.1.4), lim�!1 �
1
2 e

� 1
2 �r2�

R
D.0;r�"� /

g.kxk/dx D e� b
2 . Then, the result

follows readily from the definition of r� in (2.1.5). Note that the result in (2.3.17)
cannot be obtained for g satisfying (1.1.8) and (1.1.9) only.

Using similar steps that resulted in (2.2.25), it can be shown that

lim
�!1

Z

`2rCı
A 1

r�

e

�� R
A 1

r�
nB
�.x2/

0
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A
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The above equation, together with (2.3.17), allows us to conclude that the first term
in (2.3.13) converges to 0 as � ! 1:
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1
A

dx2dx1 D 0 (2.3.18)

Now let us consider the second term in (2.3.13). First it can be shown that

Z

A 1
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Z

A 1
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\D.x2;r�"
� /

g .ky � x2k/ dy

and for any x2 2 A 1
r�

, A 1
r�

\D
�

x2; r�"
�

�
contains at least one quarter of D

�
x2; r�"

�

�
.

Furthermore, since

lim
�!1

Z
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� /

g .ky � x2k/ dy D C

there exists a �0 such that for � � �0 and any positive constant � < 1

Z
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� /

g .ky � x2k/ dy � �C
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As a result of the above discussions, it can be shown that for sufficiently large � � �0
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e��. 14 �C��kx2�x1k2/dx2dx1

� 4�2�ı2r2e��. 14 �C��ı2/ (2.3.19)

where by choosing ı < 1
4�
�C, the above equation can be easily shown as converging

to 0 as � ! 1.
In summary, using (2.3.13), (2.3.18), and (2.3.19), it can be shown that for ı <

min
˚
1
4�
�C; r

2
; 1
2�

c5ˇ; z0
�
, for the first term in (2.3.12), we have
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For the second term in (2.3.12), using Lemma 56, it can be shown that
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In Theorem 41, we have established that
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Therefore, it follows straightforwardly that for ı < ˇ
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Using (2.3.11), (2.3.12), (2.3.20), and (2.3.21), we are able to conclude that by
choosing ı to be a positive constant such that

ı < min

�
1

4�
�C;

r

2
;
1

2�
c5ˇ; ˇ

p
3r=�; z0

�

lim
�!1

1X
kD2

E .�k;1/ D 0 (2.3.22)

An Analysis of the Second Term in (2.3.8)

Now let us consider the second term in (2.3.8), i.e.,

E .�k;2/

D �k
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A 1
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Z
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A 1
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For .x2 � � � xk/ 2
�

A 1
r�

�k�1 n .D .x1; ı//k�1, there is at least one node in fx2 � � � xkg
outside a Euclidean distance ı of x1 and belonging to A 1

r�
nD .x1; ı/. Without losing

generality, let that node be xj 2 A 1
r�

nD .x1; ı/, where j 2 �k= f1g.

Let †A 1
r�

� A 1
r�

be a square area of size r � r located at a corner of A 1
r�

and

let †A 1
r�

� A 1
r�

be an area in A 1
r�

excluding the four corner squares †A 1
r�

. It is

straightforward from the proofs of Lemmas 57 and 56 that for x1 2 †A 1
r�

and
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nD .x1; ı/, i.e.,
��xj � x1

�� � ı, there exists a positive constant c6 > 0,

depending on ı, such that
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Using the above inequality and (2.3.3), it follows that
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Therefore,
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where a renumbering of the nodes occurred in the last step of the above
equation. First using Lemma 55, and then using (2.3.4) and the inequality thatR
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��� dxi � C, it can be shown that

�k

kŠ

Z
�

A 1
r�

�k g1 .x1; x2; : : : ; xk/ e
�� RA 1

r�

g.ky�x1k/dy��ˇc6

d .x1x2 � � � xk/

� �k

kŠ

Z
�

A 1
r�

�k

X
i22�knf1g;��� ;ik2�knf1;i2;:::;ik�1g

g2 .xi2 I x1/ � � � g2 .xik I x1; xi2 ; : : : ; xik�1 /

� e
�� RA 1

r�

g.ky�x1k/dy��ˇc6

d .xik � � � xi2x1/

� �kCk�1

kŠ
.k � 1/Š .k � 1/Š

Z

A 1
r�

e
�� RA 1

r�

g.ky�x1k/dy��ˇc6

dx1

D .k � 1/Š
k

e� bˇc6
C � .log �C b/k�1

�
ˇc6
C

� �
Z

A 1
r�

e�� RA� g.ky�x1k/dydx1 (2.3.24)

Using Theorem 41, (2.3.23), and (2.3.24), it follows that
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Using similar steps as those leading to (2.3.24), it can be shown that
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Using similar steps that resulted in (2.3.19), it can be shown that
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The combination of (2.3.25) and (2.3.26) allows us to conclude that

lim
�!1 E .�k;2/ D 0

It follows that for any fixed but arbitrarily large integer M

lim
�!1

MX
kD2

E .�k;2/ D 0 (2.3.27)

Finally, from (2.3.22) and (2.3.27), we conclude that
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E .�k/ D 0

!
D 0

Noting that �k is a nonnegative integer, therefore,

lim
�!1 Pr

 
MX

kD2
�k D 0

!
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Hence Theorem 52 is proved.

Remark 58 Theorem 52 gives a sufficient condition on g required for the num-

ber of components of fixed and finite order k > 1 in G
�
X log �Cb

C
; g;A 1

r�

�
to

be vanishingly small as � ! 1. It is also interesting to obtain a necessary
condition on g required for the number of components of fixed and finite order

k > 1 in G
�
X log �Cb

C
; g;A 1

r�

�
to be vanishingly small. The technique used in the

proof of Theorem 52 however cannot answer the above question on a necessary
condition on g. More specifically, denote by �k the (random) number of com-

ponents of order k in an instance of G
�
X�; g;A 1

r�

�
and let M be an arbitrarily

large positive integer M. The proof of Theorem 52 is based on an analysis

of E
�PM

kD2 �k

�
. By showing that lim�!1 E

�PM
kD2 �k

�
D 0, it follows that
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lim�!1 Pr
�PM

kD2 �k D 0
�

D 1. However lim�!1 E
�PM

kD2 �k

�
D 0 is only a

sufficient condition for lim�!1 Pr
�PM

kD2 �k D 0
�

D 1, not a necessary condition.

In the next chapter, we shall develop a technique to obtain a tight necessary
condition on g required for the number of components of fixed and finite order

k > 1 in G
�
X log �Cb

C
; g;A 1

r�

�
to be vanishingly small.

2.4 Notes and Further Readings

In this chapter, we discussed three widely used network models, including the dense

network model G
�
X�; gr� ;A

�
, the extended network model G

�
X1; gq log �Cb

C

;Ap
�

�
,

and the infinite network model G
�
X�; g;<2

�
, and their implications on the connec-

tivity analysis. Using the scaling and coupling technique, it is shown that the dense
network model and the extended network model are equivalent in their connectivity

properties and they are also equivalent to the network model G
�
X log �Cb

C
; g;A 1

r�

�
,

which can be obtained from the infinite network model G
�
X log �Cb

C
; g;<2

�
by

removing all nodes and associated connections outside the area A 1
r�

of G
�
X�; g;<2

�
.

Define the effect associated with the above removal operation as the truncation
effect. A prerequisite for any (asymptotic) conclusion obtained in the infinite
network model to be applicable to the dense and extended network models is that
the impact of the truncation effect must be vanishingly small on the parameter
concerned as � ! 1—a conclusion that often needs nontrivial analysis to establish.
We then conducted two case studies using a random connection model, on the
expected number of isolated nodes and on the vanishing of components of fixed
and finite order k > 1 respectively, with a focus on examining the impact of
the truncation effect and showed that the connection function g has to decrease
sufficiently fast in order for the truncation effect to have a vanishingly small impact.

Extensive research has been done on connectivity problems using the well-known
random geometric graph and the unit disk connection model [164, 165]. In [167],
Philips et al. proved that the average node degree must grow logarithmically with the
area of the network to ensure that the network is connected, where nodes are placed
randomly on a square according to a Poisson point process with a known density
in <2. This result by Philips et al. actually provides a necessary condition on the
average node degree required for connectivity. In [193], Xue et al. showed that in a
network with a total of n nodes randomly and uniformly distributed on a unit square
in <2, if each node is connected to c log n nearest neighbors with c � 0:074 then the
resulting random network is asymptotically almost surely disconnected as n ! 1;
and if each node is connected to c log n nearest neighbors with c � 5:1774 then
the network is asymptotically almost surely connected as n ! 1. In [12], Balister
et al. advanced the results in [193] and improved the lower and upper bounds to
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0:3043 log n and 0:5139 log n respectively. In a more recent work [13], Balister
et al. achieved much improved results by showing that there exists a constant ccrit

such that if each node is connected to bc log nc nearest neighbors with c < ccrit

then the network is asymptotically almost surely disconnected as n ! 1, and
if each node is connected to bc log nc nearest neighbors with c > ccrit then the
network is asymptotically almost surely connected as n ! 1. Here, bxc means the
largest integer that is smaller than or equal to x. In both [12] and [13], the authors
considered nodes randomly distributed following a Poisson point process of density
one on a square of area n in <2. In [173], Ravelomanana investigated the critical
transmission range for connectivity in three-dimensional wireless sensor networks
and derived similar results to the two-dimensional results in [92].

The log-normal connection model, which is more realistic than the unit disk
connection model, has also been considered for investigating network connectivity
in [20, 21, 100, 145, 146, 160]. In [20, 21, 100, 145, 146, 160], the authors
investigated from different perspectives the necessary condition for a network with
nodes uniformly or Poissonly distributed in a bounded area in <2 and a pair of nodes
are directly connected following the log-normal connection model to be connected.

Other work in the area include [57, 81, 119, 129], which studied from the
percolation perspective, the impact of mutual interference caused by simultaneous
transmissions, the impact of physical layer cooperative transmissions, the impact of
directional antennas, and the impact of unreliable links on connectivity respectively.



Chapter 3
Connectivity of Large Wireless Networks:
Sufficient and Necessary Conditions

Abstract This chapter studies the sufficient and necessary condition for a large
wireless network to be asymptotically almost surely connected. Consider a dense
network model, we show that as the node density approaches infinity, (a) the
distribution of the number of isolated nodes converges to a Poisson distribution;
(b) asymptotically almost surely (a.a.s.) there is no component of fixed and finite
order k > 1; (c) a.a.s. the number of components with an unbounded order is one.
Therefore, as the node density approaches infinity, the network a.a.s. contains a
unique unbounded component and isolated nodes only; a sufficient and necessary
condition for the network to be a.a.s. connected is that there is no isolated node in the
network. These results, established assuming a general random connection model,
readily incorporate existing results established assuming the unit disk connection
model and the fewer results assuming the log-normal connection model as its special
cases.

In this chapter, we investigate the sufficient and necessary condition for a large
wireless network to be asymptotically almost surely (a.a.s.) connected.

More specifically, we consider a network where all nodes are distributed on a
unit square A , Œ� 1

2
; 1
2
�2 following a Poisson distribution with known density �

and a pair of nodes are directly connected following a random connection model,
viz., a pair of nodes separated by a Euclidean distance x are directly connected with
probability gr� .x/ , g.x=r�/, where g W Œ0;1/ ! Œ0; 1�, independent of the event
that another pair of nodes are directly connected. Here

r� D
s

log �C b

C�
(3.0.1)

and b is a constant. The reason for choosing this particular form of r� is that
the analysis becomes nontrivial when b is a constant. Other forms of r� can be
accommodated by dropping the assumption that b is constant, i.e., b becomes a
function of �, and allowing b ! 1 or b ! �1 as � ! 1. The results are rapidly
attainable, and we discuss these situations separately in Sects. 3.2 and 3.2.2.

© Springer International Publishing AG 2017
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Same as in Chap. 2, the connection function g is required to satisfy the following
properties of monotonicity, integral boundedness and rotational invariance:

g .x/ � g .y/ whenever x � y (3.0.2)

0 < C ,
R

<2 g.kxk/dx < 1 (3.0.3)

As shown in Sect. 2.1, (3.0.2) and (3.0.3) allow us to conclude that

g .x/ D ox.1=x2/ (3.0.4)

However, we require g to satisfy the more restrictive requirement that

g .x/ D ox.1=.x
2 log2 x// (3.0.5)

As discussed in Chap. 2, the more restrictive requirement is required to ensure
that the impact of the truncation effect on connectivity is asymptotically vanishingly
small as � ! 1.

For convenience we also assume that g has infinite support when necessary. Our
results however apply to the situation when g has bounded support, which forms a
special case and actually makes the analysis easier.

Denote the above network by G
�
X�; gr� ;A

�
. The results established for

G
�
X�; gr� ;A

�
on a unit square can be readily extended to networks of other

size using the coupling and scaling technique. The results are also applicable
for networks employing other connection models such as the unit disk connection
model and the log-normal connection model, which form special cases of the
random connection model.

Several results will be established when we investigate the sufficient and
necessary condition for G

�
X�; gr� ;A

�
to be asymptotically almost surely connected

as � ! 1. First, using the Chen-Stein technique [7, 15], to be introduced later
in the chapter, we show that the distribution of the number of isolated nodes in
G
�
X�; gr� ;A

�
asymptotically converges to a Poisson distribution as � ! 1. This

result readily leads to a necessary condition for G
�
X�; gr� ;A

�
to be asymptotically

almost surely connected as � ! 1. Secondly, we show that as � ! 1, the
number of components in G

�
X�; gr� ;A

�
of unbounded order converges to one. This

result, together with the result in Chap. 2 that the number of components of finite
order k > 1 in G

�
X�; gr� ;A

�
asymptotically vanishes as � ! 1, allows us to

conclude that as � ! 1, asymptotically almost surely there are only a unique
unbounded component and isolated nodes in G

�
X�; gr� ;A

�
. The above results allow

us to establish that the sufficient and necessary condition for G
�
X�; gr� ;A

�
to be

asymptotically almost surely connected is that there is no isolated node in the
network. On that basis, we obtain the asymptotic probability that G

�
X�; gr� ;A

�
forms a connected network as � ! 1 and the sufficient and necessary condition
for G

�
X�; gr� ;A

�
to be asymptotically almost surely connected.
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3.1 Connectivity of Large Wireless Networks: The Unit Disk
Connection Model

Before we delve into the study of connectivity of G
�
X�; gr� ;A

�
, in this section, we

first give an introduction to the work of Gupta and Kumar [92] on connectivity
of large wireless networks assuming the unit disk connection model. Specifically,
in [92] Gupta and Kumar considered a network with n nodes independently and
identically distributed on a disk of unit area, denoted by D, following a uniform
distribution, where a pair of nodes are directly connected if and only if their
Euclidean distance is smaller than or equal to r .n/, known as the transmission

range. Let r .n/ D
q

log.n/Cc.n/
�n . They showed that as n ! 1, the above network

is asymptotically almost surely connected if and only if c .n/ ! 1. The work of
Gupta and Kumar [92] is among the earliest works that studied connectivity of large
wireless networks. The techniques used in their work have influenced many later
studies including ours. Therefore, in this section, we introduce the main techniques
used in their study.

In this section, we ignore the impact of the boundary effect which arises when
nodes are located near the boundary of D to focus on the main ideas. For readers
interested in techniques to handle the boundary effect, we refer to Appendix of [92]
and Chap. 2.

Denote the network studied by Gupta and Kumar [92] by G .n; r .n//. In
[92], they first studied a lower bound on the probability that there is at least one
isolated node in G .n; r .n//. A necessary condition on r .n/ for G .n; r .n// to be
asymptotically almost surely connected is that the probability of having at least
one isolated node approaches 0. In this way, a necessary condition on r .n/ for
G .n; r .n// to be asymptotically almost surely connected is obtained. Secondly,
they studied an upper bound on the probability that a network with nodes Poissonly
distributed on D with node density n and transmission range r .n/ has no isolated
node. Denote the network with Poisson node distribution by GPoisson .n; r .n//. In
continuum percolation theory, it has been established that in an infinite network
with node density n and transmission range r .n/, as n ! 1, the infinite network
asymptotically almost surely has only a giant component of an infinite order and
isolated nodes. For a finite (asymptotically infinite) network assuming a unit disk
connection model, a similar result has also been established in [165, Chapter 10].
Applying the above results and showing that the difference between G .n; r .n//
and GPoisson .n; r .n// is negligible for large n, it was concluded that as n ! 1,
G .n; r .n// has only a component of extremely large order and isolated nodes.
Therefore, when the isolated nodes vanish, the network becomes connected. On
that basis, a sufficient condition on r .n/ for G .n; r .n// to be asymptotically almost
surely connected results.

In the rest of this section, we introduce in greater details the techniques used in
[92] to establish the key results summarized in the previous paragraphs.

We start with the analysis of the probability that there is at least one isolated node
in G .n; r .n//. For brevity, we use Piso .G/ to denote the probability that the graph G
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has at least one isolated node and use Pd .G/ to denote the probability that the graph
G is disconnected. Denote by vi, i 2 f1; : : : ; ng the i-th node in G .n; r .n//. It can
be established that

Piso .G .n; r .n///

D Pr
�[n

iD1 fvi is an isolated nodeg�

�
nX

iD1
Pr .fvi is an isolated nodeg/ �

nX
iD1

X

j¤i

Pr
�˚
vi and vj are isolated

��
(3.1.1)

For the two terms in (3.1.1), neglecting the boundary effect and noting that the nodes
are on a disk of unit area, it can be further established using some straightforward
geometric analysis taking into account that vi may be at a distance between r .n/
and 2r .n/ from vj:

Pr .fvi is an isolated nodeg/ D �
1 � �r2 .n/

�n�1
(3.1.2)

Pr
�˚
vi and vj are isolated

��

D �
4�r2 .n/ � �r2 .n/

� �
1 � 5

4
�r2 .n/

�n�2

C �
1 � 4�r2 .n/

� �
1 � 2�r2 .n/

�n�2
(3.1.3)

Putting (3.1.2) and (3.1.3) into (3.1.1), there results

Piso .G .n; r .n///

� n
�
1 � �r2 .n/

�n�1 � n .n � 1/

�
"
3�r2 .n/

�
1 � 5

4
�r2 .n/

�n�2
C
�
1 � 4�r2 .n/

� �
1 � 2�r2 .n/

�n�2
#

(3.1.4)

Further using the following two bounds

Lemma 59 ( [92, Lemma 2.1]) For any p 2 Œ0; 1�, .1 � p/ � e�p. For any given
	 � 1, there exists p0 2 Œ0; 1�, such that

e�	p � 1 � p; for all 0 � p � p0

If 	 > 1, then p0 > 0.

Lemma 60 ( [92, Lemma 2.2]) If �r2 .n/ D log nCc.n/
n , then for any fixed 	 < 1

and for all sufficiently large n

n
�
1 � �r2 .n/

�n�1 � 	e�c.n/
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and noting that �r2 .n/ D log nCc.n/
n , it can be obtained that for any fixed 	 < 1 and

" > 0,

Piso .G .n; r .n///

� 	e�c.n/ � n .n � 1/
�
3�r2 .n/ e� 5

4
.n�2/�r2.n/ C e�2.n�2/�r2.n/

�

� 	e�c.n/ � .1C "/ e�2c.n/

It follows that as n ! 1, a necessary condition for Piso .G .n; r .n/// ! 0 is that
c .n/ ! 1.

The above discussion can be summarized into the following theorem.

Theorem 61 As n ! 1, G .n; r .n// is asymptotically almost surely connected
only if c .n/ ! 1.

We now move on to study the sufficient condition for G .n; r .n// to be asymptoti-
cally almost surely connected. The following result can be first established:

Lemma 62 If �r2 .n/ D log nCc.n/
n , then

lim sup
n!1

Piso
�
GPoisson .n; r .n//

� � e�c

where c D limn!1 c .n/.

Proof The number of nodes in GPoisson .n; r .n// is Poisson distributed with mean n.
Let W .k/ be the random number of isolated nodes in G .k; r .n//, it follows that

Piso
�
GPoisson .n; r .n//

�

D
1X

kD1

nk

kŠ
e�nPiso .G .k; r .n///

�
1X

kD1

nk

kŠ
e�nE ŒW .k/�

D
1X

kD1

nk

kŠ
e�nk

�
1 � �r2 .n/

�k�1

D n
1X

kD0

nk

kŠ
e�n

�
1 � �r2 .n/

�k

D ne�n�r2.n/

D e�c.n/

The result follows. ut



78 3 Connectivity of Large Wireless Networks: Sufficient and Necessary Conditions

Using Lemma 62, together with the result in continuum percolation theory and
random geometric graph theory that in an infinite network with node density n and
transmission range r .n/, as n ! 1, the infinite network asymptotically almost
surely has only a giant component of an infinite order and isolated nodes, it was
concluded in [92] that for any " > 0 and for any sufficiently large n,

Pd
�
GPoisson .n; r .n//

� � .1C "/Piso
�
GPoisson .n; r .n//

�
(3.1.5)

Noting the connection that

Pd
�
GPoisson .n; r .n//

� D
1X

kD1
Pd .G .k; r .n///

nk

kŠ
e�n (3.1.6)

When a new node, say vk, is added into G .k � 1; r .n//, the new node can
be either a) an isolated node; b) or falling into the transmission range of a node
in G .k � 1; r .n//, which potentially converts G .k � 1; r .n// from a disconnected
network to a connected network. Therefore, the following inequality can be
established:

Pd .G .k; r .n///

� Pr .fvk is isolated in G .k; r .n//g/C Pd .G .k � 1; r .n/// (3.1.7)

By recursion, it can be further obtained that

Pd .G .n; r .n///

�
nX

kDjC1
Pr .fvk is isolated in G .k; r .n//g/C Pd .G .j; r .n///

D
nX

kDjC1

�
1 � �r2 .n/

�k�1 C Pd .G .j; r .n///

�
�
1 � �r2 .n/

�j

�r2 .n/
C Pd .G .j; r .n/// (3.1.8)

Substituting (3.1.8) into (3.1.6) and using the relationship that, for all " > 0 and
sufficiently large n,

Pn
jD1 e�n nj

jŠ � �
1
2

� "� in the last step, it can be obtained that

Pd
�
GPoisson .n; r .n//

�

� Pd .G .n; r .n///
nX

jD1
e�n nj

jŠ
�

n�1X
jD1

�
1 � �r2 .n/

�j�1

�r2 .n/
e�n nj

jŠ

� Pd .G .n; r .n///

�
1

2
� "

�
� e�n�r2.n/

�r2 .n/
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Further using (3.1.7), it can be obtained that

Pd .G .n; r .n/// � 2 .1C 4"/

"
Piso

�
GPoisson .n; r .n//

�C e�n�r2.n/

�r2 .n/

#

Using the relationship that �r2 .n/ D log nCc.n/
n and Lemma 62, it can be shown that

for any fixed " > 0, the following inequality holds for all sufficiently large n

Pd .G .n; r .n/// � 2 .1C 4"/

"
e�c.n/ C e�c.n/

log n C c .n/

#

Since " > 0 is arbitrary, it follows that

lim sup
n!1

Pd .G .n; r .n/// � 2e�c

As an easy consequence of the above inequality,

lim inf
n!1 Pr .fG .n; r .n// is connectedg/ � 1 � 2e�c

Thus, a sufficient condition for G .n; r .n// to be asymptotically almost surely
connected results. The above discussion can be formally summarized into the
following theorem.

Theorem 63 As n ! 1, G .n; r .n// is asymptotically almost surely connected for
�r2 .n/ D log nCc.n/

n if c .n/ ! 1.

Combining Theorems 61 and 63, a sufficient and necessary condition for G .n; r .n//
to be asymptotically almost surely connected is obtained:

Theorem 64 Graph G .n; r .n// with �r2 .n/ D log nCc.n/
n is asymptotically almost

surely connected as n ! 1 if and only if c .n/ ! 1.

3.2 Connectivity of Large Networks: The Random
Connection Model

In the last section, we introduced the work of Gupta and Kumar [92] on the
sufficient and necessary condition on the transmission range required for a network
with uniformly distributed nodes and assuming the unit disk connection model
to be asymptotically almost surely connected. Now we return to the main focus
of this chapter and study the sufficient and necessary condition for the network
G
�
X�; gr� ;A

�
to be asymptotically almost surely connected as � ! 1. We start

with the necessary condition.
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3.2.1 Necessary Condition for Almost Sure Connectivity

As an intermediate step to obtaining the main result, we first and temporarily
consider a network with the same node distribution and connection model as
G
�
X�; gr� ;A

�
however with nodes deployed on a unit torus AT , Œ� 1

2
; 1
2
�2. Denote

the network on the torus by GT
�
X�; gr� ;A

�
. We show that as � ! 1, the

distribution of the number of isolated nodes in GT
�
X�; gr� ;A

�
, denoted by WT ,

asymptotically converges to a Poisson distribution with mean e�b. We then extend
the above result to G

�
X�; gr� ;A

�
. On that basis, we obtain a necessary condition for

G
�
X�; gr� ;A

�
to be asymptotically almost surely connected as � ! 1.

3.2.1.1 Distribution of the Number of Isolated Nodes on a Torus

In this subsection, we analyze the distribution of the number of isolated nodes in
GT
�
X�; gr� ;A

�
.

The use of a toroidal rather than planar region as a tool in analyzing network
properties is well known and has also been used previously in Chaps. 1 and 2. In this
section, whenever the difference between a torus and a square affects the parameter
being discussed, we use superscript T to mark the parameter in a torus while the
unmarked parameter is associated with a square.

We note the following relation between toroidal distance and Euclidean distance
on a square area centered at the origin:

kx1 � x2kT � kx1 � x2k and kxkT D kxk (3.2.1)

which will be used in the later analysis.
The main result of this subsection is given in Theorem 65.

Theorem 65 The distribution of the number of isolated nodes in GT
�
X�; gr� ;A

�
converges to a Poisson distribution with mean e�b as � ! 1.

The rest of this subsection is dedicated to the proof of Theorem 65.
Our proof relies on the use of the Chen-Stein bound [7, 15]. We first establish

some preliminary results that allow us to use the Chen-Stein bound for the analysis
of number of isolated nodes in GT

�
X�; gr� ;A

�
.

Divide the unit torus into m2 nonoverlapping squares each with size 1
m2

. Denote
the ithm square by Aim . Define two sets of indicator random variables JT

im
and IT

im
with

im 2 �m , f1; : : :m2g, where JT
im

D 1 if and only if there exists exactly one node
in Aim , otherwise JT

im
D 0; IT

im
D 1 if and only if there is exactly one node in

Aim and that node is isolated, IT
im

D 0 otherwise. Obviously JT
im

is independent of
JT

jm
; jm 2 �mn fimg. Denote the center of AT

im
by xim and without loss of generality we

assume that when JT
im

D 1, the associated node in Aim is at xim . As we are mainly
concerned with the case that m ! 1, i.e., the size of the square is vanishingly
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small, the actual position of the node in the square is not important. Observe that
for any fixed m, the values of Pr

�
IT
im

D 1
�

and Pr
�
JT

im
D 1

�
do not depend on the

particular index im on a torus. However both the set of indices �m and a particular
index im depend on m. As m changes, the square associated with IT

im
and JT

im
also

changes.

Remark 66 Here we are only interested in the limiting values of various parameters
associated with a sub-square as m ! 1. Also because of the consideration
of a torus, the value of a particular index im does not affect the discussion of
the associated parameters, i.e., these parameters IT

im
and JT

im
do not depend on

im. Therefore, in the following, we omit some straightforward discussions on the
convergence of various parameters, e.g., im, xim , IT

im
and JT

im
, as m ! 1.

Without causing ambiguity, we drop the explicit dependence on m in our nota-
tions for convenience. As an easy consequence of the Poisson node distribution,
Pr.JT

i D 1/ 	m �=m2. Using [143, Proposition 1.3], Pr.IT
i D 1/ D Pr.IT

i D 1j
JT

i D 1/Pr.JT
i D 1/ and the property of a torus (see also Lemma 42), it can be

shown that

Pr.IT
i D 1/ 	m

�

m2
e

� R
A �g. kx�xikT

r�
/dx

D �

m2
e

� R
A �g. kxkT

r�
/dx

(3.2.2)

Now consider the event IT
i IT

j D 1; i ¤ j, conditioned on the event that JT
i JT

j D 1,
meaning that both nodes having been placed inside Ai and Aj, respectively, are
isolated. Following the same steps leading to (3.2.2), it can be shown that

lim
m!1 Pr.IT

i IT
j D 1jJT

i JT
j D 1/

D .1 � g.

��xi � xj

��T

r�
// exp

"
�
Z

A
�.g.

kx � xikT

r�
/

C g.

��x � xj

��T

r�
/ � g.

kx � xikT

r�
/g.

��x � xj

��T

r�
/

!
dx

#
(3.2.3)

where the term .1�g.kxi�xjkT

r�
// is due to the requirement that the two nodes located

inside Ai and Aj cannot be directly connected given that they are both isolated nodes.
Observe also that Pr.IT

i IT
j D 1/ D Pr.JT

i JT
j D 1/Pr.IT

j IT
j D 1jJT

i JT
j D 1/. Using the

above equation, (3.2.2) and (3.2.3), it can be established that

Pr.IT
i IT

j D 1/

Pr.IT
i D 1/Pr.IT

j D 1/

	m.1 � g.

��xi � xj

��T

r�
//e

R
A �g. kx�xikT

r�
/g.

kx�xjkT

r�
/dx

(3.2.4)
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Now we are ready to use the Chen-Stein bound to prove Theorem 65. Particularly,
we shall show using the Chen-Stein bound that

WT D lim
m!1

X
i2�m

IT
i (3.2.5)

asymptotically converges to a Poisson distribution with mean e�b as � ! 1.
The following theorem gives a formal statement of the Chen-Stein bound:

Theorem 67 ( [15, Theorem 1.A]) For a set of indicator random variables Ii; i 2
� , define W ,

P
i2� Ii, pi , E .Ii/ and � , E .W/. For any choice of the index set

�s;i � � and �s;i \ fig D f;g,

dTV.L .W/ ;Po .�//

�
X
i2�
Œ.p2i C piE.

X
j2�s;i

Ij//�min.1;
1

�
/

C
X
i2�

E.Ii

X
j2�s;i

Ij/min.1;
1

�
/

C
X
i2�

EjEfIij.Ij; j 2 �w;i/g � pij min.1;
1

�
/

where L .W/ denotes the distribution of W, Po .�/ denotes a Poisson distribution
with mean �, �w;i D �n f�s;i [ figg and dTV denotes the total variation distance.
The total variation distance between two probability distributions ˛ and ˇ on Z

C is
given by dTV .˛; ˇ/ , sup

˚j˛ .A/ � ˇ .A/j W A � Z
C�.

For convenience, we separate the bound in Theorem 67 into three terms
b1 min.1; 1

�
/, b2 min.1; 1

�
/ and b3 min.1; 1

�
/ where

b1 ,
X
i2�

2
4.p2i C piE.

X
j2�s;i

Ij//

3
5 (3.2.6)

b2 ,
X
i2�

E

0
@Ii

X
j2�s;i

Ij

1
A (3.2.7)

b3 ,
X
i2�

E
ˇ̌
E
˚
Iij
�
Ij; j 2 �w;i

�� � pi

ˇ̌
(3.2.8)
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The set of indices �s;i is often chosen to contain all those j, other than i, for which
Ij is “strongly” dependent on Ii, and the set �w;i often contains all other indices apart
from i for which Ij is at most “weakly” dependent on Ii.

Remark 68 A main challenge in using the Chen-Stein bound to prove Theorem 65 is
that under the random connection model, the two events Ii and Ij may be correlated
even when xi and xj are separated by a very large Euclidean distance. Therefore,
the dependence structure is global, which significantly increases the complexity
of the analysis. In comparison, in applications where the dependence structure is
local, by a suitable choice of �s;i, the b3 term can be easily made to be 0 and the
evaluation of the b1 and b2 terms involves the computation of the first two moments
of W only, which can often be achieved relatively easily. An example is a random
geometric network under the unit disk model. If �s;i is chosen to be a neighborhood
of i containing indices of all nodes whose Euclidean distance to node i is less than or
equal to twice the transmission range, the b3 term is easily shown to be 0. It can then
be readily shown that the b1 and b2 terms approach 0 as the neighborhood size of a
node becomes vanishingly small compared to the overall network size as � ! 1
[70]. However this is certainly not the case for the random connection model.

Remark 69 The key idea involved using the Chen-Stein bound to prove Theorem 65
is constructing a neighborhood of a node, i.e., �s;i in Theorem 67, such that a) the
size of the neighborhood becomes vanishingly small compared with A as � ! 1.
This is required for the b1 and b2 terms to approach 0 as � ! 1; b) asymptotically
almost surely the neighborhood contains all nodes that may have a direct connection
with the node. This is required for the b3 term to approach 0 as � ! 1. Such a
neighborhood is defined in the next paragraph.

Let DT .xi; r/ , fx 2 A W kx � xikT � rg and when xi is not within distance
r of the border of A, DT .xi; r/ becomes the same as D .xi; r/ where D .xi; r/ ,
fx 2 A W kx � xik � rg. Further define the neighborhood of an index i 2 � as

�s;i , fj W xj 2 DT
�

xi; 2r1��

�
gnfig and define the non-neighborhood of the index i

as �w;i , fj W xj … DT.xi; 2r1�� /g where  is a small positive constant and  2 .0; 1
2
/.

It can be shown that

j�s;ij D m24�r2�2� C om.m
24�r2�2� / (3.2.9)

Note that in Theorem 67, pi D E.IT
i / and E.IT

i / has been given in (3.2.2).
Furthermore, as an easy consequence of (3.2.5) and Lemma 42 which showed that

lim
�!1 E.WT/ D lim

�!1 �e
� R

A �g. kxkT

r�
/dx D e�b (3.2.10)

lim�!1 limm!1 � D e�b.
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Using (3.2.2), pi D E.IT
i / and (3.2.10), it follows that

lim
m!1 m2pi D �e

� R
A �g. kxkT

r�
/dx

(3.2.11)

lim
�!1 lim

m!1 m2pi D e�b (3.2.12)

Next we shall evaluate the b1, b2, and b3 terms in the following three subsections
separately and show that all three terms converge to 0 as � ! 1.

3.2.1.2 An Evaluation of the b1 Term

It can be shown that (following the equation, detailed explanations are given)

lim
�!1 lim

m!1
X
i2�
.p2i C piE.

X
j2�s;i

IT
j //

D lim
�!1 lim

m!1 m2piE

0
@ X

j2�s;i[fig
IT
j

1
A

D lim
�!1 lim

m!1.m
2pi/

24�r2�2� (3.2.13)

D lim
�!1 4�

 
�e

� R
A �g. kx�xikT

r�
/dx

!2 �
log �C b

C�

�1�
(3.2.14)

D 4�e�2b lim
�!1.

log �C b

C�
/1� D 0 (3.2.15)

where (3.2.9) is used in obtaining (3.2.13); (3.0.1) and (3.2.11) are used in obtain-
ing (3.2.14); and (3.2.10) and (3.2.12) are used in obtaining (3.2.15). Therefore,
lim�!1 limm!1 b1 D 0.

3.2.1.3 An Evaluation of the b2 Term

For the b2 term, assume that � is sufficiently large such that 1
2r�

>> 2r�
� and let

A 1
r�

D Œ� 1
2r�
; 1
2r�
�2. Using (3.2.3) in the first step; and first using some translation

and scaling operations and then using (3.2.1) in the last step, (3.2.16) can be
obtained:

lim
m!1

X
i2�

E

0
@IT

i

X
j2�s;i

IT
j

1
A

D lim
m!1

�2

m2

X
j2�s;i

f.1 � g

 ����
xi � xj

r�

����
T
!

expŒ�
Z

A
�.g

 ����
x � xi

r�

����
T
!
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C g.

����
x � xj

r�

����
T

/ � g.

����
x � xi

r�

����
T

/g.

����
x � xj

r�

����
T

//�/gdx

D �2
Z

DT.xi;2r1�� /
f.1 � g.

kxi � ykT

r�
// expŒ�

Z

A
�.g

 ����
x � xi

r�

����
T
!

C g.

����
x � y

r�

����
T

/ � g.

����
x � xi

r�

����
T

/g.

����
x � y

r�

����
T

//dx�gdy

D �2r2�

Z

D.0;2r�
� /

f.1 � g.kykT// expŒ��r2�

Z

A 1
r�

.g.kxkT/

C g.kx � ykT/ � g.kxkT/g.kx � ykT//dx�gdy (3.2.16)

Letting � , log �Cb
C for convenience, noting that (using (3.2.1) and (3.0.3))

lim
�!1

Z

A 1
r�

g.kxkT/dx D lim
�!1

Z

A 1
r�

g.kx � ykT/dx D C

and that 1�g.kykT/ � 1, it can further be shown following (3.2.16) that as � ! 1,

lim
�!1 lim

m!1
X
i2�

E.IT
i

X
j2�s;i

IT
j /

� e�2b lim
�!1

�

�

Z

D.0;2r�
� /

e
�
R

A 1
r�

g.kxkT /g.kx�ykT /dx

dy (3.2.17)

In the following paragraphs, we shall show that the right-hand side of (3.2.17)
converges to 0 as � ! 1. Using (3.0.2) and (3.0.3), we assert that there exists a
positive constant r such that g .r�/ .1 � g

�
rC�/ > 0 where g .r�/ , limx!r� g .x/

and g
�
rC� , limx!rC g .x/. Indeed if g is a continuous function, any positive

constant r with g .r/ > 0 satisfies the requirement; if g is a discontinuous
function, e.g., a unit disk model, by choosing r to be the transmission range,
g .r�/

�
1 � g

�
rC�� D 1.

In the following discussion we assume that � is sufficiently large such that
1
2r�

>> 2r�
� >> r. It can be shown using (3.0.2), (3.0.3) and (3.2.1) that for

y 2 D.0; 2r�
� /,

Z

A 1
r�

g
�
kxkT

�
g
�
kx � ykT

�
dx

�
Z

<2

g .kxk/ g .kx � yk/ dx
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D C �
Z

<2

g .kxk/ .1 � g .kx � yk///dx

� C �
Z

D.0;r/nD.y;r/
g .kxk/ .1 � g .kx � yk// dx

� C � g .r�/
�
1 � g

�
rC�� jD.0; r/nD.y; r/j (3.2.18)

Let f .x/ , �r2 � 2r2 arcsin.
p
1 � x2=.4r2// C rx

p
1 � x2=.4r2/. Using some

straightforward geometric analysis, it can be shown that

• when kyk > 2r, jD.0; r/nD.y; r/j D �r2; and
• when kyk � 2r, jD.0; r/nD.y; r/j D f .kyk/.
Furthermore, using the definition of f .x/, it can be shown that

• when kyk � r, jD.0; r/nD.y; r/j � p
3r kyk; and

• when kyk > r, jD.0; r/nD.y; r/j � .�
3

C
p
3
2
/r2.

For convenience, let c1 , g .r�/ .1 � g
�
rC�/p3r and c2 , g .r�/ .1 �

g
�
rC�/

�
�
3

C
p
3
2

�
r2. Noting that g .r�/ .1 � g

�
rC�/ > 0, c1 and c2 are positive

constants, independent of both y and �.
As a result of (3.2.18) and the above inequalities on jD.0; r/nD.y; r/j, it

follows that

lim
�!1

�

�

Z

D.0;2r�
� /

e
�
R

A 1
r�

g.kxkT/g.kx�ykT/dx

dy

� lim
�!1

�

�

Z

D.0;r/
e�.C�c1kyk/dy

C lim
�!1

�

�

Z

D.0;2r�
� /nD.0;r/

e�.C�c2/dy (3.2.19)

For the first summand in the above equation, it can be shown that:

lim
�!1

�

�

Z

D.0;r/
e�.C�c1kyk/dy

D lim
�!1

log �C b

C�

Z r

0

2�ye
log �Cb

C .C�c1y/dy (3.2.20)

D 0 (3.2.21)

For the second summand in (3.2.19), by choosing " < c2
C and using (3.0.1), it

follows that
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lim
�!1

�

�

Z

D.0;2r�
� /nD.0;r/

e�.C�c2/dy

D lim
�!1

eb.1� c2
C /

C
� log �C b

�
c2
C

� �.4r�2
� � r2/ (3.2.22)

D 0 (3.2.23)

Combining (3.2.19), (3.2.20), and (3.2.22), it follows that

lim
�!1

�

�

Z

D.0;2r�
� /

e
�
R

A 1
r�

g.kxkT /g.kx�ykT /dx

dy D 0 (3.2.24)

As a result of (3.2.17) and the above equation: lim�!1 limm!1 b2 D 0.

3.2.1.4 An Evaluation of the b3 Term

We first obtain an analytical expression of the term EfIij.Ij; j 2 �w;i/g in b3. Using
the same procedure that results in (3.2.4), it can be obtained that (for convenience

we use gi for g. kx�xikT

r�
/ and use gij for g.kxi�xjkT

r�
/ in the following equation):

lim
m!1

Pr.IT
i D 1; IT

j D 1; IT
k D 0/

Pr.IT
i D 1/Pr.IT

j D 1; IT
k D 0/

D lim
m!1

Pr.IT
i D 1; IT

j D 1/ � Pr.IT
i D 1; IT

j D 1; IT
k D 1/

Pr.IT
i D 1/.Pr.IT

j D 1/ � Pr.IT
j D 1; IT

k D 1//

	m
�
1 � gij

�
e
R

A �gigjdx

� 1 � �

m2
.1 � gik/.1 � gkj/e� R

A �.gk�gigk�gkgjCgigjgk/dx

1 � �

m2
.1 � gkj/e� R

A �.gk�gkgj/dx
(3.2.25)

Using (3.0.2), (3.0.3), (3.0.4), and (3.2.1), it can be shown that when j 2 �w;i (or

equivalently
��xi � xj

��T
> 2r1�"� ), the integrals of some higher order terms inside

the exponential function in (3.2.25) satisfy:

Z

A
�g.

kx � xikT

r�
/g.

��x � xj

��T

r�
/dx

D
Z

DT .xi;r1�"� /

�g.
kx � xikT

r�
/g.

��x � xj

��T

r�
/dx
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C
Z

AnDT .xi;r1�"� /

�g.
kx � xikT

r�
/g.

��x � xj

��T

r�
/dx

� 2C�r2�g.r
�"
� / 	� o� .1/

Note also that gik D g. kxi�xkkT

r�
/ D o� .1/ for k 2 �w;i. Using the above equations

and (3.2.4), it can be further shown following (3.2.25) that when j; k 2 �w;i.

lim
�!1 lim

m!1
Pr.IT

i D 1; IT
j D 1; IT

k D 0/

Pr.IT
i D 1/Pr.IT

j D 1; IT
k D 0/

D lim
�!1 lim

m!1
Pr.IT

i D 1; IT
j D 1/

Pr.IT
i D 1/Pr.IT

j D 1/
(3.2.26)

Equation (3.2.26) shows that the impact of those events, whose associated indicator
random variables IT

k D 0; k 2 �w;i, on the event IT
i D 1 is asymptotically

vanishingly small, hence can be ignored. Denote by �i a random set of indices
containing all indices j where j 2 �w;i and Ij D 1, i.e., the node in question is

also isolated. Denote by �i an instance of �i. Define n , j�ij. Following the same
procedure that results in (3.2.26), it can be established that (with some verbose but
straightforward discussions omitted)

lim
�!1 lim

m!1
EfIT

i j.IT
j ; j 2 �w;i/g
�

m2

D lim
�!1 lim

m!1
EfIT

i j.IT
j D 1; j 2 �i/g

�

m2

D lim
�!1 EŒe

� R
A �g. kx�xikT

r�
/
Q

j2�i
.1�g.

kx�xjkT

r�
//dx

�
Y
j2�i

.1 � g.

��xi � xj

��T

r�
//� (3.2.27)

Equation (3.2.27) gives an analytical expression of the term EfIT
i j.IT

j ; j 2 �w;i/g.
To solve the challenges associated with handling the absolute value term in b3,

viz.,
ˇ̌
ˇEfIT

i j.IT
j ; j 2 �w;i/g � pi

ˇ̌
ˇ, we further obtain an upper and a lower bound of

IT
i j.IT

j ; j 2 �w;i/, which allows us to remove the absolute value sign in the further
analysis of b3.

Note that xi and xj; j 2 �w;i are separated by a distance not smaller than 2r�
� .

Using (3.0.2), a lower bound on the value inside the expectation operator in (3.2.27)
is given by

BL;i , .1 � g.2r�
� //

ne
� R

A �g. kx�xikT

r�
/dx

(3.2.28)
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An upper bound on the value inside the expectation operator in (3.2.27) is given by

BU;i , e
� R

A �g. kx�xikT

r�
/
Q

j2�i
.1�g.

kx�xjkT

r�
//dx

(3.2.29)

Using pi D E.IT
i / and (3.2.2), it can be shown that

BU;i � lim
m!1

m2pi

�
� BL;i (3.2.30)

Let us consider EjEfIij.Ij; j 2 �w;i/g � pij now. From (3.2.27), (3.2.28), (3.2.29),
and (3.2.30), it is clear that

lim
�!1 lim

m!1
X
i2�

E
ˇ̌
EfIT

i j.IT
j ; j 2 �w;i/g � pi

ˇ̌

2
�
0;max

�
lim
�!1 lim

m!1 m2pi � �E.BL;i/;

lim
�!1 lim

m!1 �E.BU;i/ � m2pi

�
(3.2.31)

In the following, we shall show that both terms limm!1 m2pi � �E.BL;i/ and
limm!1 �E.BU;i/ � m2pi in (3.2.31) approach 0 as � ! 1. First it can be shown
following (3.2.28) that

lim
m!1 �E.BL;i/

� lim
m!1 �E

"
.1 � ng.2r�

� //e
� R

A �g. kx�xikT

r�
/dx

#

D lim
m!1 �.1 � E .n/ g.2r�

� //e
� R

A �g. kx�xikT

r�
/dx

(3.2.32)

where limm!1 E .n/ is the expected number of isolated nodes in AnD.xi; 2r1�� /.
In the first step of the above equation, the inequality .1 � x/n � 1 � nx for
0 � x � 1 and n � 0 is used. When � ! 1, r1�� ! 0 and r�

� !
1, lim�!1 limm!1 E .n/ D lim�!1 E

�
WT

� D e�b is a bounded value and

lim�!1 limm!1 g
�
2r�
�

�
! 0, which is an immediate outcome of (3.0.4).

Using (3.2.11), it then follows that

lim
�!1 lim

m!1
�E .BL;i/

m2pi
� lim

�!1 lim
m!1.1 � E .n/ g.2r�

� // D 1
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Together with (3.2.12) and (3.2.30), we conclude that

lim
�!1 lim

m!1 m2pi � �E .BL;i/ D 0 (3.2.33)

Now let us consider the second term limm!1 �E .BU;i/ � m2pi, it can be
observed that

lim
m!1 E .BU;i/

� E

2
4e

� R
D.xi ;r

1�
� /

�g. kx�xikT

r�
/
Q

j2�i
.1�g.

kx�xjkT

r�
//dx

3
5

� lim
m!1 E

"
e

� R
D.xi ;r

1�
� /

�g. kx�xikT

r�
/
Q

j2�i
.1�g.

r1��
r�

//dx

#

D lim
m!1 E

"
e

�.1�g.r�
� //n

R
D.xi ;r

1�
� /

�g. kx�xikT

r�
/dx

#

� lim
m!1 E

"
e

�.1�ng.r�
� //

R
D.xi ;r

1�
� /

�g. kx�xikT

r�
/dx

#
(3.2.34)

where in the second step, the nonincreasing monotonicity of g, and the fact that xj

is located in AnD.xi; 2r1�� / and x is located in D.xi; r1�� /, therefore
��x � xj

��T �
r1�� is used. It can be further demonstrated that the term

R
D.xi;r1�� /

�g. kx�xik
r�

/dx
in (3.2.34) has the following property:

� ."; �/ ,
Z

D.xi;r1�� /

�g.
kx � xikT

r�
/dx

D �r2�

Z

D.
xi
r�
;r�
� /

g.
��x � xi=r�

��T
/dx

� C�r2� D log �C b (3.2.35)

For the other term ng.r�
� / in (3.2.34), choosing a positive constant ı < 2 and

using Markov’s inequality, it can be shown that Pr
�

n � r�ı
�

�
6 rı�E .n/. Therefore,

lim
�!1 lim

m!1 Pr
�

ng.r�
� /�."; �/ � r�ı

� g.r�
� /�."; �//

�

� lim
�!1 lim

m!1 rı�E .n/

where lim�!1 r�ı
� g.r�

� /�."; �/ D 0 due to (3.0.4), (3.2.35) and ı < 2,
lim�!1 rB

� D 0 for any positive constant B, and lim�!1 limm!1 rı�E .n/ D 0
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due to that lim�!1 limm!1 E .n/ D lim�!1 E.WT/ D e�b is a bounded value
and that lim�!1 rı� D 0. Therefore,

lim
�!1 lim

m!1 Pr
�

ng.r�
� /�."; �/ D 0

�
D 1 (3.2.36)

As a result of (3.2.1), (3.2.34), (3.2.35), and (3.2.36):

lim
�!1 lim

m!1 �E.BU;i/

� lim
�!1 lim

m!1 �E

"
e

� R
D.xi ;r

1�
� /

�g. kx�xikT

r�
/dx

#

D lim
�!1 �e

� R
D.0;r1�"� /

�g. kxk
r�
/dx

D lim
�!1 �e

��r2�.C�R
<2nD.0;r�"� / g.kxk/dx/

D e�b lim
�!1 e

�r2�
R

<2nD.0;r�"� / g.kxk/dx

D e�b (3.2.37)

where the last step results because

lim
�!1 �r2�

Z

<2nD.0;r�"
� /

g .kxk/ dx

D lim
�!1

R1
r�"
�
2�xg .x/ dx

C
log �Cb

D lim
�!1

�"r�"
� g.r�"

� /r
�"�2
�

log �Cb�1
C�2

C
�.log �Cb/2

(3.2.38)

D lim
�!1

�"

C
.log �C b/2 r�2"

� o�

 
1

r�2"
� log2.r�2"

� /

!

D 0 (3.2.39)

where L’Hospital’s rule is used in reaching (3.2.38) and in the third step (3.0.5) is
used. Using (3.2.12), (3.2.30), and (3.2.37), it can be shown that

lim
�!1 lim

m!1 �E.BU;i/ � m2pi D 0 (3.2.40)

As a result of (3.2.31), (3.2.33), and (3.2.40), lim�!1 limm!1 b3 D 0.
A combination of the analysis in Sects. 3.2.1.2, 3.2.1.3, and 3.2.1.4 completes

this proof.
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3.2.1.5 Distribution of the Number of Isolated Nodes on a Square

We now consider the asymptotic distribution of the number of isolated nodes in
G
�
X�; gr� ;A

�
.

Let W be the number of isolated nodes in G
�
X�; gr� ;A

�
and WE be the number

of isolated nodes in G
�
X�; gr� ;A

�
due to the boundary effect. It has been shown

in Chap. 2 using the coupling technique that W D WE C WT . Using the above
equation, Theorem 65, Lemma 43, which showed that lim�!1 Pr.WE D 0/ D 1,
and Slutsky’s theorem [84] which establishes the convergence of W, the following
result on the asymptotic distribution of W can be readily obtained. Note that

let G
�
X�; g;A 1

r�

�
be a network with nodes Poissonly distributed on a square

A 1
r�

D Œ� 1
2r�
; 1
2r�
�2 with density � D .log � C b/=C and a pair of nodes

separated by a Euclidean distance x are directly connected with probability g.x/,

independent of other connections. Results in Chap. 2 are derived for G
�
X�; g;A 1

r�

�
.

By proper scaling, it is straightforward to extend the results for G
�
X�; g;A 1

r�

�
to

G
�
X�; gr� ;A

�
. Therefore, we ignore the difference.

Theorem 70 The distribution of the number of isolated nodes in G
�
X�; gr� ;A

�
converges to a Poisson distribution with mean e�b as � ! 1.

Corollary 71 follows immediately from Theorem 70.

Corollary 71 As � ! 1, the probability that there is no isolated node in
G
�
X�; gr� ;A

�
converges to e�e�b

.

Now we relax requirement that b is a constant to obtain a necessary condition for
G
�
X�; gr� ;A

�
to be asymptotically almost surely connected. Specifically, consider

the situation when b ! �1 or b ! 1 as � ! 1. Note that the property
that the network G

�
X�; gr� ;A

�
has no isolated node is an increasing property. For

an arbitrary network, a particular property is termed increasing if the property is
preserved when more connections (edges) are added into the network. Using a
coupling technique similar to that used in [71, Chapter 2] and with a few simple
steps (omitted), the following theorem and corollary can be obtained:

Theorem 72 In G
�
X�; gr� ;A

�
, if b ! 1 as � ! 1, asymptotically almost surely

there is no isolated node in the network; if b ! �1 as � ! 1, asymptotically
almost surely the network has at least one isolated node.

Corollary 73 b ! 1 is a necessary condition for G
�
X�; gr� ;A

�
to be asymptoti-

cally almost surely connected as � ! 1.
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3.2.2 Sufficient Condition for Almost Sure Connectivity

In this subsection, we continue to investigate the sufficient condition for
G
�
X�; gr� ;A

�
to be asymptotically almost surely connected. In Chap. 2, we

showed that vanishing of components of finite order k > 1 in G
�
X�; g;<2

�
as

� ! 1 (as shown in [143, Theorems 6.3]) does not necessarily carry over to
the conclusion that components of finite order k > 1 in G

�
X�; gr� ;A

�
also vanish

as � ! 1, contrary perhaps to intuition. Then, we presented a result for the
vanishing of components of finite order k > 1 in G

�
X�; gr� ;A

�
as � ! 1 to fill this

theoretical gap. On the basis of the above results, we shall further demonstrate in this
subsection that asymptotically almost surely the number of unbounded components
in G

�
X�; gr� ;A

�
is one as � ! 1. A sufficient condition for G

�
X�; gr� ;A

�
to be

asymptotically almost surely connected readily follows.
In [143, Theorem 6.3], it was shown that there can be at most one unbounded

component in G
�
X�; g;<2

�
. However due to the truncation effect introduced in

Chap. 2, it appears difficult to establish such a conclusion using [143, Theorem 6.3].
Indeed, differently from G

�
X�; g;<2

�
in which an unbounded component may exist

for a finite �, it can be easily shown that for any finite �, Pr
�ˇ̌
X�
ˇ̌
< 1� D 1, i.e.,

the total number of nodes in G
�
X�; gr� ;A

�
is almost surely finite. It then follows that

for any finite � almost surely there is no unbounded component in G
�
X�; gr� ;A

�
.

In this chapter, we solve the above conceptual difficulty involving use of
the term “unbounded component” by considering the number of components in
G
�
X�; gr� ;A

�
of order greater than M, denoted by �>M , where M is an arbitrarily

large positive integer. We then show that limM!1 lim�!1 Pr.�>M D 1/ D 1. The
analytical result is summarized in the following theorem:

Theorem 74 As � ! 1, asymptotically almost surely the number of unbounded
components in G

�
X�; gr� ;A

�
is one.

In the following paragraphs, we prove Theorem 74. For notational convenience, we

prove the result for G
�
X�; g;A 1

r�

�
and the result is equally valid for G

�
X�; gr� ;A

�
.

The proof is based on analyzing the number of components in G
�
X�; g;A 1

r�

�
of

order greater than some integer M as � ! 1. Specifically we shall show that
limM!1 lim�!1 Pr.�>M D 1/ D 1.

A direct analysis of Pr.�>M D 1/ can be difficult. We first analyze E.�>M/

and then use the result on E.�>M/ to establish the desired asymptotic result on
Pr.�>M D 1/.

Denote by g1 .x1; : : : ; xk/ the probability that a set of k nodes at nonrandom
positions x1, : : :, xk 2 A 1

r�
forms a connected component where nodes are connected

randomly and independently following the connection function g. Denote by
g2 .yI x1; x2; : : : ; xk/ the probability that a node at nonrandom position y is connected
to at least one node in fx1; x2; : : : ; xkg. As an easy consequence of Lemma 53, which
showed that the expected number of components of order k, denoted by �k , in
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G
�
X�; g;A 1

r�

�
is given by

E .�k/ D �k

kŠ

Z

.A 1
r�
/k

g1.x1; : : : ; xk/e
�� RA 1

r�

g2.yIx1;:::;xk/dy

d.x1 � � � xk/

it follows that

E .�>M/

D
1X

kDMC1

�k

kŠ

Z

.A 1
r�
/k

 
g1.x1; : : : ; xk/e

�� RA 1
r�

g2.yIx1;:::;xk/dy
!

d.x1 � � � xk/

�
1X

kDMC1

�k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

g2.yIx1;:::;xk/dy

d.x1 � � � xk/

D
1X

kD1

�k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

g2.yIx1;:::;xk/dy

d.x1 � � � xk/

�
MX

kD1

�k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

g2.yIx1;:::;xk/dy

d.x1 � � � xk/ (3.2.41)

In the following we shall show that as � ! 1, the first term in (3.2.41) converges
to ee�b

, and the second term in (3.2.41) after the “�” sign is lower-bounded byPM
kD1

.e�b/k

kŠ . The conclusion then follows that E.�>M/ converge to 1 as � ! 1 and
M ! 1.

Let us consider the first term in (3.2.41) now. Let

ˆ , �

Z

A 1
r�

.1 � g2.yI x1; : : : xk// dy (3.2.42)

for convenience. It can be shown that

lim
�!1

1X
kD1

�k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

g2.yIx1;:::xk/dy

d.x1; : : : xk/

D lim
�!1

1X
kD1

�k

kŠ
e��

Z

.A 1
r�
/k

eˆd.x1; : : : xk/

D lim
�!1

1X
kD1

�k

kŠ
e��

Z

.A 1
r�
/k

1X
nD0

ˆn

nŠ
d.x1; : : : xk/

D
1X

nD0

1

nŠ
lim
�!1

1X
kD1

�k

kŠ
e��

Z

.A 1
r�
/k
ˆnd.x1; : : : xk/ (3.2.43)
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Next we shall show that in (3.2.43), lim�!1
P1

kD1 �
k

kŠ e
�� R

.A 1
r�
/k
ˆnd.x1; : : : xk/

D .e�b/n. Given this result, conclusion readily follows from (3.2.43) that the first
term in (3.2.41) converges to ee�b

.
A direct computation of the term lim�!1

P1
kD1 �

k

kŠ e
�� R

.A 1
r�
/k
ˆnd.x1; : : : xk/

turns out to be very difficult. To resolve the difficulty, we construct a ran-
dom integer X, depending on �, such that on one hand, the probability mass
function of X has an analytical form that can be easily related to the termP1

kD1 �
k

kŠ e
�� R

.A 1
r�
/k
ˆnd.x1; : : : xk/; and on the other hand using the Chen-Stein

bound we are familiar with, the probability mass function can be shown to converge
to a Poisson distribution as � ! 1. In this way, we are able to compute the above
term using the intermediate random integer X. In the following, we give details of
the analysis.

We first construct the random integer X described in the last paragraph and
demonstrate its properties related to our analysis.

Consider an additional independent Poisson point process X 0
� with nodes Pois-

sonly distributed on A 1
r�

and with density �, being added to G
�
X�; g;A 1

r�

�
.

Furthermore, nodes in X 0
� are connected with nodes in X� following g indepen-

dently, i.e., a node in X 0
� and a node in X� separated by a Euclidean distance x are

connected with probability g .x/, independent of any other connection.
Let X be the number of nodes in X 0

� that are not directly connected to any node
in X�. It is evident that, conditioned on X� D .x1; : : : xk/ where x1; : : : xk 2 A 1

r�
and

jX�j > 0, a randomly chosen node in X 0
� at location y is not directly connected to

any node in X� with probability 1 � g2.yI x1; : : : ; xk/ , which is determined by its
location only. It readily follows that the conditional distribution of X, i.e., XjX� D
.x1; : : : xk/, is Poisson with mean �

R
A 1

r�

Œ1 � g2.yI x1; : : : ; xk/�dy. As a result of the

above discussion:

Pr .X D mjX� D .x1; : : : xk// D ˆm

mŠ
e�ˆ (3.2.44)

Obviously when X� D ;, Pr.X D mjX� D ;/ D Pr.jX 0
�j D m/. Therefore, the

unconditional distribution of X is given by:

Pr .X D m/

D
1X

kD1

�k

kŠ
e��

Z

.A 1
r�
/k

ˆm

mŠ
e�ˆd.x1; : : : xk/C �m

mŠ
e�2� (3.2.45)

Note that as � ! 1, the term �m

mŠ e
�2� in (3.2.45), which is associated with

X� D ;, becomes vanishingly small. Further note that
P1

mD0
�m

mŠ e
�2� D e�� ! 0 as

� ! 1, i.e., as � ! 1 even the cumulative contribution of X is negligibly small.
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If we define g2 .yI ;/ , 0 for completeness, we can also write (3.2.45) as

Pr .X D m/ D
1X

kD0

�k

kŠ
e��

Z

.A 1
r�
/k

ˆm

mŠ
e�ˆd.x1; : : : xk/ (3.2.46)

Using (3.2.46), it can be readily shown that

E .X/

D
1X

mD0
m Pr .X D m/ (3.2.47)

D
1X

kD0

�k

kŠ
e��

Z

.A 1
r�
/k
ˆd.x1; : : : xk/

D
1X

kD0

�k

kŠ
e��f�

Z

A 1
r�

f
Z

A 1
r�

Œ1 � g.kx � yk/�dxgkdyg

D �

Z

A 1
r�

e
�� RA 1

r�

g.kx�yk/dx

dy (3.2.48)

Comparing the above equation with Theorem 41, the conclusion follows that the

above value is equal to the expected number of isolated nodes in G
�
X�; g;A 1

r�

�
,

denoted by W. It then follows from Theorem 41 that lim�!1 E .X/ D e�b. In fact,
a stronger result that the distributions of X and W converge to the same Poisson
distribution as � ! 1 can be established:

Lemma 75 As � ! 1, the distribution of X converges to a Poisson distribution
with mean e�b, i.e., the total variation distance between the distribution of X and a
Poisson distribution with mean e�b reduces to 0 as � ! 1.

Lemma 75 can be proved using exactly the same steps as those used in proving
Theorem 70. Therefore, the proof is omitted.

As a result of Lemma 75, for an arbitrary set of nonnegative integers, denoted
by � ,

lim
�!1

X
m2�

Pr.X D m/ D
X
m2�

.e�b/m

mŠ
e�e�b

(3.2.49)

Now we are ready to continue our analysis on lim�!1
P1

kD1 �
k

kŠ e
�� R

.A 1
r�
/k
ˆn

d.x1; : : : xk/. Using (3.2.45) first and then using (3.2.49), it can be shown that for
any positive integer n:
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lim
�!1

1X
kD1

�k

kŠ
e��

Z

.A 1
r�
/k
ˆnd.x1; : : : xk/

D lim
�!1

1X
kD1

�k

kŠ
e��

Z

.A 1
r�
/k

1X
mD0

ˆnˆ
m

mŠ
e�ˆd.x1; : : : xk/

D
1X

mD0

1

mŠ
lim
�!1

1X
kD1

�k

kŠ
e��

Z

.A 1
r�
/k
ˆnCme�ˆd.x1; : : : xk/

D
1X

mD0

1

mŠ
lim
�!1.Pr .X D n C m/ � �.nCm/

.n C m/Š
e�2�/.n C m/Š

D
1X

mD0

.e�b/nCm

mŠ
e�e�b

D .e�b/n

Using the above equation, it follows from (3.2.43) that

lim
�!1

1X
kD1

�k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

g2.yIx1;:::xk/dy

d.x1; : : : xk/

D
1X

nD0

.e�b/n

nŠ
(3.2.50)

D ee�b
(3.2.51)

This deals with the first term on the right of (3.2.41). Now we continue with the
analysis of the second term in (3.2.41). As an easy consequence of the union bound,
g2 .yI x1; x2; : : : ; xk/ � Pk

iD1 g .ky � xik/, it can then be shown that

�k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

g2.yIx1;:::xk/dy

d.x1 � � � xk/

� �k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

Pk
iD1 g.ky�xik/dy

d.x1 � � � xk/

D
.�
R

A 1
r�

e
�� RA 1

r�

g.kx�yk/dy

dx/k

kŠ
(3.2.52)
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Using Theorem 41, it can be further shown that

lim
�!1

�k

kŠ

Z

.A 1
r�
/k

e
�� RA 1

r�

g2.yIx1;:::xk/dy

d.x1 � � � xk/

� .e�b/k

kŠ
(3.2.53)

Note that (3.2.53) can also be obtained from Jensen’s inequality.
Combining (3.2.41), (3.2.50), and (3.2.53), it follows that

lim
�!1 E.�>M/ � ee�b �

MX
kD1

.e�b/k

kŠ
D 1C .�M/

MC1

.M C 1/Š
(3.2.54)

where in the last step Taylor’s theorem is used, �M is a number depending on M and
0 � �M � e�b.

In Theorems 70 and 52, we have established, respectively, that the asymptotic

distribution of the number of isolated nodes in G
�
X�; g;A 1

r�

�
is Poisson with mean

e�b and the number of components in G
�
X�; g;A 1

r�

�
of order within Œ2;M� vanishes

as � ! 1. As a consequence of the above two results,

lim
�!1 Pr.�>M � 1/ D 1 and lim

�!1 Pr.�>M D 0/ D 0 (3.2.55)

Further note that

E.�>M/ D
1X

mD1
m Pr.�>M D m/

� Pr.�>M D 1/C 2

1X
mD2

Pr.�>M D m/

D Pr.�>M D 1/C 2 .1 � Pr.�>M D 1/ � Pr.�>M D 0// (3.2.56)

Combining the three equations (3.2.54), (3.2.55), and (3.2.56):

lim
�!1 Pr.�>M D 1/ � 1 � .�M/

MC1

.M C 1/Š
(3.2.57)

As an easy consequence of the above equation:

lim
M!1 lim

�!1 Pr .�>M D 1/ D 1

This completes the proof of Theorem 74.
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Remark 76 Proof of the type of results in Theorem 74 usually requires some
complicated geometric analysis. Particularly the proof of Lemma 75, which forms
a foundation of the proof of Theorem 74, needs sophisticated geometric analysis. In
this subsection, we omitted the proof of Lemma 75 because the proof is exactly the
same as the proof of Theorem 70, which in turn relies on some results established
in Chap. 2. We refer interested readers to the proof of Theorem 41 for techniques
on handling geometric obstacles involved in analyzing the boundary effect and to
the proof of Theorem 52 for techniques on handling geometric obstacles involved
in analyzing the number of components in G

�
X�; gr� ;A

�
.

An implication of Theorem 74 is that for an arbitrarily small positive constant ",
there exists large positive constants M0 and �0 such that for all M > M0 and � > �0,
Pr.�>M D 1/ > 1 � ". From (3.2.57), it can further be concluded that for a fixed
positive integer M and an arbitrarily small positive constant ", there exists �0 such
that for all � > �0,

Pr.�>M D 1/ > 1 � e�.MC1/b

.M C 1/Š
� " (3.2.58)

The following corollary can therefore be obtained from Theorems 52 and 74:

Corollary 77 As � ! 1, asymptotically almost surely G
�
X�; gr� ;A

�
forms a

connected network if and only if there is no isolated node in it.

Proof Let � be the total number of components in G
�
X�; gr� ;A

�
. It is clear that

� D �1 CPM
kD2 �k C �>M , where �k is the number of components of order k. Noting

that � D 1 if and only if G
�
X�; gr� ;A

�
forms a connected network, it suffices to

show that lim�!1 Pr .� D 1j�1 D 0/ D 1. We observe that

Pr .� D 1; �1 D 0/

� Pr.�1 D 0;

MX
kD2

�k D 0; �>M D 1/

D Pr.�1 D 0/ � .Pr.
MX

kD2
�k D 0/C Pr.�>M D 1// (3.2.59)

where in (3.2.59) �>M D 1 represents the complement of the event �>M D 1

and (3.2.59) results as a consequence of the union bound. Further note that (3.2.59)
is valid for any value of M and that Pr .�1 D 0/ converges to a nonzero constant
e�e�b

as � ! 1 (Theorem 70). Using the above results, Theorem 52 which showed
that lim�!1 Pr.

PM
kD2 �k D 0/ D 1, and (3.2.58), and following a few simple

steps (omitted), it can be shown that for an arbitrarily small positive constant ",
by choosing M to be sufficiently large, there exists �0 such that for all � > �0,
Pr .� D 1j�1 D 0/ > 1 � ". ut
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As an easy consequence of Theorem 70 and Corollary 77, the following theorem
can be established:

Theorem 78 As � ! 1, the probability that G
�
X�; gr� ;A

�
forms a connected

network converges to e�e�b
.

Using the above theorem and a similar analysis as that leading to Theorem 72 and
Corollary 73, the following theorem on the sufficient and necessary condition for
G
�
X�; gr� ;A

�
to be asymptotically almost surely connected can be obtained:

Theorem 79 As � ! 1, G
�
X�; gr� ;A

�
is asymptotically almost surely connected

if and only if b ! 1; G
�
X�; gr� ;A

�
is asymptotically almost surely disconnected if

and only if b ! �1.

3.3 Special Cases of the Network Model and the Random
Connection Model

In the previous section, we established the sufficient and necessary condition
required for G

�
X�; gr� ;A

�
to be asymptotically almost surely connected as � ! 1.

The results are established for a network with nodes Poissonly distributed on a
unit square following a general random connection model. Using the scaling and
coupling technique, the results can be readily extended to a network of any other
size. Furthermore, as discussed in Sect. 1.2, although uniform point process and
Poisson point process are two conceptually distinct point processes, their difference
is often negligible for a sufficient large value of �. Therefore, the results obtained
using G

�
X�; gr� ;A

�
with Poisson node distribution can be applied to a network

with a total of � jAj nodes independently, identically and uniformly distributed on
A where a pair of nodes are directly connected following the random connection
function gr� , independent of other pairs of nodes. Techniques to extend results
obtained assuming a Poisson point process to a uniform point process, and the
converse, are well known and have also been briefly discussed in Sect. 1.2.

The results in the previous section are established for a unit square. However they
should also be applicable for a network area of any other shape, e.g., a disk of unit
area, although some complicated geometrical analysis may be required to handle
the boundary effect when nodes are located in a network area of a different shape.
Generally, we expect the results to be valid for a network area of any other shape as
long as the ratio of the size of the boundary area to the total network area becomes
vanishingly small as � ! 1. For nodes directly connected following the random
connection function gr� , the size of the boundary area is given by the product of the
length of the border and r�.

The random connection model includes many other models such as the unit
disk connection model and the log-normal connection model as its special cases.
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Particularly, letting gr� be such that

gr� .x/ D g

�
x

r�

�
D
�
1 if x � r�
0 if x > r�

G
�
X�; gr� ;A

�
reduces to the same network considered in [92] assuming the unit

disk connection model with a transmission range of r�. On the other hand, letting

g .x/ D
Z 1

10˛ log10
x

r0

1p
2��

e� z2

2�2 dz (3.3.1)

where r0 and � are the parameters of the log-normal connection model introduced in
Sect. 1.1.3, the results established for G

�
X�; gr� ;A

�
can be applied to the log-normal

connection model too. There are also other interesting extensions of the connection
model, e.g., those taking into account Rayleigh or Rician fading, those considering
propagation models other than the log-normal model, and those considering the
directionality of the antenna pattern [172] etc., the random connection model is
general enough to include these models as its special cases.

However, the results on G
�
X�; gr� ;A

�
however critically rely on the assumption

that the random events underpinning generation of a connection are independent,
which is not necessarily true in some real networks due to channel correlation
and interference. Particularly, the presence of interference makes the connection
between a pair of nodes dependent on the location and activities of other nearby
nodes. The connection model that captures the impact of interference is known as
the SINR connection model, which has been introduced earlier in Sect. 1.1.5. In
the latter part of this book, we shall introduce techniques for connectivity analysis
assuming the SINR connection model. The major obstacle in dealing with the
impact of channel correlation is that there is no widely accepted model in the
wireless communication community capturing the impact of channel correlation
on connections. Thus, the results obtained assuming the random connection model
cannot be readily extended to the SINR connection model or to a model where the
connections are correlated.

3.4 Notes and Further Readings

Following the seminal work of Penrose [164, 165] and Gupta and Kumar [92] on the
asymptotic connectivity of large random networks with Poisson node distribution
and assuming the unit disk connection model, there is general expectation that there
is a range of connection models to which the above results [92, 164, 165] obtained
assuming the unit disk connection model can carry over. However, for quite a long
time, both the asymptotic laws that the network should follow and the conditions on
the connection function required for the network to be asymptotically almost surely
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connected under a more general setting have been unknown. In this chapter, we
filled in the gap by providing the sufficient and necessary condition for a network
with nodes Poissonly distributed on a unit square and following a general random
connection model to be asymptotically almost surely connected as � ! 1. The
conditions on the connection function required in order for the above network to be
asymptotically almost surely connected were also provided. Therefore, the results
bring models addressed by theoretical research closer to reality.

Some work exists on the analysis of the asymptotic distribution of the number of
isolated nodes [70, 71, 165, 197] assuming the unit disk connection model. In [197],
Yi et al. considered a total of n nodes distributed independently and uniformly on a
unit-area disk and each node may be active independently with some probability p.
A node is considered to be isolated if it is not directly connected to any of the
active nodes. Using some complicated geometric analysis, they showed that if all
nodes have a maximum transmission range r.n/ D p

.log n C �/ =.�pn/ for some
constant � , the total number of isolated nodes is asymptotically Poissonly distributed
with mean e�� . In [70, 71], Franceschetti et al. derived essentially the same result
using the Chen-Stein technique. A similar result can also be found in the earlier
work of Penrose [165] in a continuum percolation setting.



Chapter 4
Giant Component in Large Wireless Networks

Abstract In this chapter, we study the giant component, the largest component
containing a nonvanishing fraction of nodes, in large wireless networks in both one-
dimensional and two-dimensional space. Specifically, consider a network with a
total of n nodes randomly, independently, and uniformly distributed in a unit interval
or unit square. For one-dimensional networks, we derive a closed-form analytical
formula for calculating the probability of having a giant component of order above
pn with any fixed 0:5 < p � 1. The asymptotic behavior of one-dimensional
network having a giant component is then investigated, which is distinctly different
from its two-dimensional counterpart. For two-dimensional networks, we derive an
asymptotic analytical upper bound on the minimum transmission range at which the
probability of having a giant component of order above qn for any fixed 0 < q < 1
tends to one as n ! 1. Using the result, we show that significant energy savings
can be achieved if we only require a large percentage of nodes (e.g., 95%, 99%) to
be connected rather than requiring all nodes to be connected. That is, with a slightly
relaxed requirement on connectivity, substantial energy savings can be achieved for
a large network. For one-dimensional space, we study the network assuming the
unit disk connection model. For two-dimensional space, we first consider the unit
disk connection model and then discuss how results obtained assuming the unit disk
connection model can be extended to more general connection models.

In the last chapter, we studied connectivity of G
�
X�; gr� ;A

�
as � ! 1 and showed

that the network is asymptotically almost surely connected if and only if b ! 1,
where gr� .x/ D g.x=r�/, r� D p

.log �C b/=.C�/ and C D R
<2 g.kxk/dx. The

average node degree of G
�
X�; gr� ;A

�
, i.e., the average number of directly connected

neighbors per node, is given by:

Z

A
�gr� .kxk/dx

D
Z

A
�g.

kxk
r�
/dx

D
Z

A 1
r�

�g.kyk/ �r�
�2

dy
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where A 1
r�

is a square of size
�
1
r�

�2
. Noting that b D o .log �/, it readily follows

from the above equation that as � ! 1

lim
�!1

R
A �gr� .kxk/dx

log �
D 1 (4.0.1)

Equation (4.0.1) implies that as the network becomes larger and larger (to be
more precise, the average number of nodes � in the network increases as � ! 1),
the average node degree has to increase following 	 log �, i.e., every node has to
directly connect to more and more other nodes, in order to maintain the network
connected. With the increased requirement on the average node degree, every node
has to transmit at a higher and higher transmission power, which in turn causes more
and more interference in the network. Therefore, connectivity of a large network is
a very demanding requirement.

The above observation motivates us to inquire whether in some applications,
we can tolerate a (small) fraction of nodes to be disconnected from other nodes
in the network; and whether there is any benefit in terms of reduced requirement
on transmission range or power if we allow a (small) fraction of nodes to be
disconnected?

For the first query, we note that in many applications, it is unnecessary for all
nodes to be connected to each other all the time [26]. Examples of such applications
include a wireless sensor network used for habitat monitoring [104, 112], or
environmental monitoring [105, 161], and a mobile ad hoc network in which users
can tolerate short off-service intervals [117, 199], etc.

In environmental monitoring, there are scenarios where the size of the monitored
phenomenon is very large (e.g., rain clouds), or the parameters (e.g., temperature,
humidity) being monitored change slowly both in space and in time. When the
number of nodes used for monitoring the phenomenon or measuring the parameters
is very large, having a few disconnected nodes will not cause statistically significant
change in the monitored parameters. An example of such applications is a wireless
sensor network deployed underneath the Briksdalsbreen glacier in Norway to
monitor the pressure, humidity, and temperature of ice in order to understand glacier
dynamics in response to climate change [161].

In habitat monitoring, there are scenarios where the number of objects (e.g.,
zebras, cane toads) being monitored is large and these objects are distributed
randomly and almost independently in the surveyed region. Having a few nodes
disconnected or lost may not significantly affect the accuracy of the monitored
parameter, e.g., the size or the density of the population. Examples of such
applications include the experiment reported in [104] where a wireless acoustic
sensor network was used to monitor the population distribution of invasive cane
toads in northern Australia. In this application, having a few nodes disconnected
has little impact on the accuracy of the estimated population distribution.

Furthermore, in many mobile ad hoc networks, having a number of nodes
temporarily disconnected is also not critical as long as users can tolerate short off-
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Simulation results under unit disk communication model

Fig. 4.1 Simulation results for the average value of the ratio r0:95=r1 as a function of the number
of nodes n in the network where r1 is the transmission range required for a connected network and
r0:95 is the transmission range required for 95% of nodes to be connected. The ratio shown is the
average value and each average value is obtained over 2000 random topologies where a total of n
nodes are uniformly, randomly, and independently distributed on a unit square

service intervals. For example, in a campus-wide wireless network, students and
staff can share information using wireless devices (e.g., laptops, smartphones, and
iPads) around campus [199]. When a wireless device loses its wireless connection
temporarily, it can store the data and complete the work after getting the connection
later.

For the second query, we conduct simulations which show that by allowing a
small percentage of nodes to be disconnected (versus requiring all nodes to be
connected), much less transmission power or range is required. As an example,
Fig. 4.1 shows simulation results comparing the transmission range required for
all nodes to be connected with the transmission range required for 95% of nodes
to be connected in a network of n nodes randomly, independently, and uniformly
distributed on a unit square assuming the unit disk connection model.

As shown in Fig. 4.1, the ratio of the transmission range required for 95% nodes
to be connected to that for a connected network decreases with an increase in the
total number of nodes in the network. When the number of nodes is 1000, the
transmission range required for 95% nodes to be connected is 24% less than that
required for a connected network. Based on a conservative estimate that the required
transmission power increases with the square of the required transmission range
(see Sect. 1.1.3 for a discussion on how power attenuates with distance), this means
a power saving of at least 42%. In addition, the ratio decreases further as the total
number of nodes n increases. As we shall show later in Sect. 4.2, the ratio will go
to zero when n ! 1. This means that the power saving is even more significant
in a network with a larger number of nodes. Since many real applications do not
require all nodes to be connected, it is appropriate to consider slightly relaxing the
connectivity requirement, i.e., requiring most nodes (e.g., 95%) to be connected
rather than requiring all nodes to be connected, in order to achieve significant
savings in power consumption. It is therefore both important and interesting to
investigate the largest connected component containing a nonvanishing fraction of
nodes, termed the giant component [100, 165].
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Motivated by the above observations and simulation studies, in this chapter, we
investigate the conditions for having a giant component of order above a given
fraction of nodes in both one- and two-dimensional spaces. For two-dimensional
space, we first consider the unit disk connection model and then discuss how results
obtained assuming the unit disk connection model can be extended to more general
connection models.

4.1 Giant Component in One-Dimensional Networks

In this section, we investigate the probability of having a giant component of order
above pn in a network of n nodes on a unit interval for any fixed 0:5 < p � 1 in
one-dimensional space assuming a unit disk connection model with a transmission
range r. Denote the probability by P.n; r; p/. We first analyze the situation of finite
n and then extend to the case of infinite n.

4.1.1 Giant Component in a Finite Network

The main result of this subsection on the probability P.n; r; p/ for a finite network
of n nodes is given in the following theorem.

Theorem 80 Consider a one-dimensional random network G1.Xn; r/ with a total
of n nodes deployed on a unit interval Œ0; 1� and assuming a unit disk connection
model with a transmission range of r. Denote the network by G1.Xn; r/. Let p be a
fixed real number in .0:5; 1�. Let P.n; r; p/ be the probability that G1.Xn; r/ has a
giant component of order above pn. Then,

P.n; r; p/

D
n�1X

iDdnpe

2
42

minfi;b 1r c�1gX
jD0

 
i

j

!
.�1/j.1 � .j C 1/r/n

C.n � i C 1/

minfi�1;b 1r c�2gX
jD0

 
i � 1

j

!
.�1/j.1 � .j C 2/r/n

3
5

C
minfn�1;b 1r cgX

jD0

 
n � 1

j

!
.�1/j.1 � jr/n (4.1.1)

The rest of this subsection is dedicated to the proof of Theorem 80. The following
three lemmas, viz., Lemma 81, Lemma 82, and Lemma 83, are required for the
proof. Lemma 82 and Lemma 83 are used to prove Theorem 80; Lemma 81 is used
to derive Lemma 82 and Lemma 83.
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Fig. 4.2 An illustration of the event F1
k

Lemma 81 ( [79, Lemma 1]) Let Œx; x C y� be a subinterval of length y entirely
contained within a unit interval Œ0; 1�. Let two of k given vertices be placed on the
borders of this subinterval. Let P.k; y; r/ be the probability that the remaining k � 2
vertices placed independently, randomly, and uniformly on Œ0; 1� are inside Œx; xCy�
and the k vertices form a connected subgraph of length y. Then,

P.k; y; r/ D
minfk�1;by=rcgX

jD0

 
k � 1

j

!
.�1/j.y � jr/k�2 (4.1.2)

Lemma 82 Denote by F1
k the event that there exists a connected subgraph with

exactly k (k < n) vertices in G1.Xn; r/ and both endpoints of this subgraph are not
within distance r from the borders of the unit interval, and none of the remaining
n � k vertices is connected to this subgraph (refer to Fig. 4.2 for an illustration of
the event.). Then

Pr
�
F1

k

� D .n � k C 1/

minfk�1;b 1r c�2gX
jD0

 
k � 1

j

!
.�1/j.1 � .j C 2/r/n (4.1.3)

Proof There are
�n

k

�
distinct combinations for selecting k vertices from a total of n

vertices. Consider a subinterval Œx; x C y�, where x and x C y are the positions of the
left border and the right border, respectively. For any given k vertices, there are

�k
2

�
different combinations for selecting 2 vertices as endpoints, and two permutations
of each selection in placing them on the borders of Œx; xCy�. The probability that the
remaining k�2 vertices placed randomly and uniformly on Œ0; 1� are inside Œx; xCy�
and the k vertices form a connected subgraph is given by (4.1.2). Therefore,

Pr
�
F1

k

� D 2

 
n

k

!
�
 

k

2

!Z 1�2r

0

�Z 1�r�y

r
dx

�
P.k; y; r/.1 � y � 2r/n�kdy

D 2

 
n

k

!
�
 

k

2

!Z 1�2r

0

P.k; y; r/.1 � y � 2r/n�kC1dy (4.1.4)
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Partitioning the integration interval Œ0; 1�2r� into subintervals, i.e., Œ0; r/, Œr; 2r/,. . . ,
and using Lemma 81, (4.1.4) becomes

Pr
�
F1

k

� D 2

 
n

k

!
�
 

k

2

! b 1r c�3X
iD0

Z .iC1/r

ir
.1 � y � 2r/n�kC1

�
2
4

L.i/X
jD0

 
k � 1

j

!
.�1/j.y � jr/k�2

3
5 dy

C 2

 
n

k

!
�
 

k

2

!Z 1�2r

b 1r cr�2r
.1 � y � 2r/n�kC1

�
2
4

L.i/X
jD0

 
k � 1

j

!
.�1/j.y � jr/k�2

3
5 dy (4.1.5)

where L.i/ D minfk � 1; ig. Taking the inner sums outside the integrals and letting
L0 D minfk � 1; b1=rc � 2g, (4.1.5) becomes

Pr
�
F1

k

� D 2

 
n

k

!
�
 

k

2

!
L0X

jD0

�
k � 1

j

�
.�1/j

�
�Z 1�2r

jr
.y � jr/k�2.1 � y � 2r/n�kC1dy



D 2

 
n

k

!
�
 

k

2

!
L0X

jD0

�
k � 1

j

�
.�1/j

� .1 � jr � 2r/n
Z 1

0

tk�2.1 � t/n�kC1dt (4.1.6)

Note that the integral on the right-hand side of (4.1.6) is the Beta Function.
Therefore, it follows

Z 1

0

tk�2.1 � t/n�kC1dt D .k � 2/Š.n � k C 1/Š

nŠ
(4.1.7)

Inserting (4.1.7) into (4.1.6), (4.1.3) can be readily obtained. ut
Lemma 83 Let F2

k be the event that there exists a connected subgraph with exactly
k (k < n) vertices in G1.Xn; r/ and the leftmost vertex of the subgraph is located
within distance r from the left border of the unit interval and the remaining n �
k vertices are all located on the right side of this subgraph and none of them is
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Fig. 4.3 An illustration of the event F2
k

connected to this subgraph (refer to Fig. 4.3). Then,

Pr
�
F2

k

� D
minfk;b 1r c�1gX

jD0

 
k

j

!
.�1/j Œ1 � .j C 1/r�n (4.1.8)

Proof Similar to the proof of Lemma 82, we have

Pr
�
F2

k

�

D 2

 
n

k

!
�
 

k

2

!Z 1�r

0

�Z X

0

P.k; y; r/.1 � y � x � r/n�kdx


dy (4.1.9)

where X D minfr; 1 � r � yg. After some simplifications, we have

Pr
�
F2

k

�

D 2

 
n

k

!
�
 

k

2

!Z 1�r

0

P.k; y; r/
.1 � r � y/n�kC1

n � k C 1
dy

� 2
 

n

k

!
�
 

k

2

!Z 1�2r

0

P.k; y; r/
.1 � 2r � y/n�kC1

n � k C 1
dy

Partitioning the integration interval into subintervals, i.e., Œ0; r/, Œr; 2r/; : : :, and
using the same method as that used in the proof of Lemma 82, we have

Pr
�
F2

k

� D
minfk�1;b 1r c�1gX

jD0

 
k � 1

j

!
.�1/j.1 � .j C 1/r/n

�
minfk�1;b 1r c�2gX

jD0

 
k � 1

j

!
.�1/j.1 � .j C 2/r/n (4.1.10)

Combining the two sums in (4.1.10), the result follows. ut
Now we are able to prove Theorem 80 using results established in Lemmas 82
and 83.
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Recall that L.G1.Xn; r// is the order of the giant component in G1.Xn; r/. It is
clear that

P.n; r; p/ D
nX

iDdnpe
Pr .L.G1.Xn; r// D i/

D
n�1X

iDdnpe
Pr .L.G1.Xn; r// D i/C Pr .L.G1.Xn; r// D n/

P.n; r; p/ can then be obtained by combining the following two calculations:

(1) Pr .L.G1.Xn; r// D n/. This probability is actually the probability that the
network G1.Xn; r/ is connected, denoted as Pcon. It is given by Corollary 1 in
[79] as

Pcon D
minfn�1;b1=rcgX

jD0

 
n � 1

j

!
.�1/j.1 � jr/n (4.1.11)

(2) Pr .L.G1.Xn; r// D i/ for dnpe � i < n. This probability is equal to the
probability that there exists a connected subgraph with exactly i, dnpe � i < n,
vertices and none of the remaining n � i vertices is connected to this subgraph.
There are three different sub-cases in which this event may happen.

(a) Both endpoints of this subgraph are not within a distance r from the borders
of the unit interval. Lemma 82 provides the probability for this case.

(b) The left (right) endpoint of this subgraph is within a distance r from the left
(right) border of the unit interval. Lemma 83 provides the probability for
this case.

(c) Both endpoints of this subgraph are within distance r from the borders of
the unit interval. This can only happen when i D n, but here we require
i < n. Hence, the probability of this case is zero.

Note that in Theorem 80, it is required that p > 0:5. In Lemmas 82 and 83, the
connected subgraph with exactly i vertices is not necessarily the largest connected
subgraph in which we are interested. To ensure that the connected subgraph with
exactly i vertices is the largest connected subgraph, it suffices that we restrict
p > 0:5.

Finally, the formula for the probability P.n; r; p/ as a key result of this subsection
can be readily derived as

P.n; r; p/ D
n�1X

iDdnpe

	
2PrfF2

i g C PrfF1
i g
C Pcon (4.1.12)

Substituting (4.1.3), (4.1.8), and (4.1.11) into (4.1.12), we can obtain (4.1.1).
This completes the proof of Theorem 80.
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4.1.2 Giant Component in Asymptotically Infinite Networks

In this subsection, we investigate the asymptotic behavior of the giant component
by studying the probability P.n; r; p/ as n ! 1. We assume that the transmission
range r is a function of n. We investigate the property of a one-dimensional network
having a giant component when r falls into three different related ranges: 1) when
n.1 � r/n ! e�c as n ! 1, 2) when n.1 � 2r/n ! 0 and n.1 � r/n ! 1 as
n ! 1, and 3) when n.1 � 2r/n ! e�c and n.1 � r/n ! 1 as n ! 1.

4.1.2.1 When n.1 � r/n ! e�c as n ! 1

The following three lemmas are used in our analysis.

Lemma 84 If n.1 � r/n ! e�c as n ! 1, then

r ! 0; rn ! 1; .1 � r/n ! e�rn; as n ! 1

Proof Note that when n.1 � r/n ! e�c, we have r ! 0 as n ! 1. Otherwise
n.1 � r/n will tend to zero as n ! 1.

Since r ! 0 as n ! 1, we have 1
r ! 1. It follows that

.1 � r/n D .1 � r/
1
r �r�n 	 e�rn; as n ! 1

Using the above equation, it can be readily obtained that when n.1 � r/n ! e�c

as n ! 1, ne�rn ! e�c as n ! 1. Consequently,

rn ! log n C c ! 1; as n ! 1
The result follows. ut
Lemma 85 For any y > 0 and any fixed b > 0,

lim
y!0

y

1 � e�y
D 1 and lim

y!1
y

eby
D 0

Lemma 85 can be readily proved using L’Hospital’s rule. Thus the proof is omitted.

Lemma 86 Given a geometric progression Aa D a, a2, a3; : : : ; ai; : : : with a > 0
and a ¤ 1. For any two fixed integers m, l (0 � m < l),

S.Aa;m; l/ ,
lX

iDm

iai D mam � lalC1

1 � a
C amC1.1 � al�m/

.1 � a/2

Proof Using the definition of S.Aa;m; l/, we have

a � S.Aa;m; l/ D
lX

iDm

iaiC1:
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Since a ¤ 1, we have

S.Aa;m; l/ � a � S.Aa;m; l/ D mam � lalC1 C
lX

iDmC1
ai (4.1.13)

Solving (4.1.13), the result follows. ut
Using Theorem 80, Lemmas 84, 85, and 86, the following theorem on P.n; r; p/ as
n ! 1 can be established.

Theorem 87 Adopt the same assumptions as in Theorem 80. If n.1� r/n ! e�c as
n ! 1, or equivalently if r D log nCcCo.1/

n ,

lim
n!1 P.n; r; p/ D e�pe�c C .1 � p/e�ce�pe�c

(4.1.14)

In addition, asymptotically almost surely there are only components whose orders
are ‚.n/.

Proof In (4.1.1), for any integer i satisfying dnpe � i � n � 1, we have i D ‚.n/.
Further using Lemma 84, we have r ! 0 and nr ! 1 as n ! 1. Hence,�
1
r

˘ ! 1 and
�
1
r

˘ D o.n/ as n ! 1. Thus, we have
�
1
r

˘ D o.i/, and for a
sufficiently large n, min

˚
i;
�
1
r

˘ � 1� D �
1
r

˘�1 and min
˚
i � 1; � 1r

˘ � 2� D �
1
r

˘�2.
Define S1.i/, S2.i/ as the first and the second sub-sum in the first sum of (4.1.1),

respectively, i.e.,

S1.i/ , 2

b 1r c�1X
jD0

 
i

j

!
.�1/j.1 � .j C 1/r/n (4.1.15)

S2.i/ , .n � i C 1/

b 1r c�2X
jD0

 
i � 1

j

!
.�1/j.1 � .j C 2/r/n (4.1.16)

First, let us consider the term S1.i/. It is clear that for any integer j satisfying
0 � j � �

1
r

˘ � 1, j D o.i/ and 0 � 1 � .j C 1/r < 1.
When .j C 1/r ! 0 as n ! 1, e.g., j D 0; 1; 2, we have

 
i

j

!
.�1/j.1 � .j C 1/r/n

D i � .i � 1/ : : : .i � j C 1/

jŠ
.�1/j.1 � .j C 1/r/n

	 ij

jŠ
.�1/je�.jC1/rn D e�rn .�1/j.ie�rn/j

jŠ
; as n ! 1
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Define an integer set J1 as

J1 ,
�

j W j 2 N [ f0g; 0 � j � b1
r

c � 1; .j C 1/r ! 0

�

where N denotes the set of natural numbers. It follows that

2
X
j2J1

 
i

j

!
.�1/j.1 � .j C 1/r/n

	 2
X
j2J1

e�rn .�1/j.ie�rn/j

jŠ

D 2e�rn
X
j2J1

.�1/j.ie�rn/j

jŠ

	 2e�rn � exp .�ie�rn/ ; as n ! 1 (4.1.17)

When .j C 1/r ¹ 0 as n ! 1, e.g., j D �
1
r

˘ � 1, j D �
1
r

˘ � 2, define t D t.j/
such that 1t D 1� .j C 1/r. It can be shown that t > 1 and t ¹ 1 as n ! 1. Hence,
we have

n � i �
 

i

j

!
.�1/j.1 � .j C 1/r/n

	 n � i � ij

jŠ
.�1/j

�
1

t

�n

D o.1/; as n ! 1

Define an integer set J2 as

J2 ,
�

j W j 2 N [ f0g; 0 � j � b1
r

c � 1; .j C 1/r ¹ 0

�

It can be shown that

lim
n!1

0
@2n

X
j2J2

 
i

j

!
.�1/j.1 � .j C 1/r/n

1
A

It follows from the above equation that

2
X
j2J2

 
i

j

!
.�1/j.1 � .j C 1/r/n D o

�
1

n

�
; as n ! 1 (4.1.18)



114 4 Giant Component in Large Wireless Networks

Using (4.1.17) and (4.1.18), the first sub-sum S1.i/ can be calculated as

S1.i/ D 2
X
j2J1

 
i

j

!
.�1/j.1 � .j C 1/r/n

C 2
X
j2J2

 
i

j

!
.�1/j.1 � .j C 1/r/n

	 2e�rn exp .�ie�rn/C o

�
1

n

�
; as n ! 1 (4.1.19)

Because np � dnpe < np C 1, dnpe
np ! 1 as n ! 1. From (4.1.19), we have

lim
n!1

n�1X
iDdnpe

S1.i/

D lim
n!1

n�1X
iDnp

S1.i/

D 2 lim
n!1

2
4e�rn �

n�1X
iDnp

.exp .�e�rn//i

3
5

D 2 lim
n!1

e�rn

1 � exp .�e�rn/
� lim

n!1 Œexp .�pne�rn/ .1 � exp .�.1 � p/ne�rn//�

By Lemma 84, we have ne�rn ! e�c and e�rn ! 0. Further using the fact e�rn ! 0

and Lemma 85, the first term in the last equation can be shown to approach 1. Thus,
we have

lim
n!1

n�1X
iDdnpe

S1.i/ D 2e�pe�c �
1 � e�.1�p/e�c�

(4.1.20)

Secondly, using the same approach as that used in analyzing S1 .i/, we can obtain
the second sub-sum S2.i/:

S2.i/

D .n � i C 1/
X

j2J0
1

 
i � 1

j

!
.�1/j.1 � .j C 2/r/n C o

�
1

n

�

	 .n � i C 1/e�2rne�.i�1/e�rn C o

�
1

n

�
; as n ! 1 (4.1.21)
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where J0
1 is defined as

J0
1 ,

�
j W j 2 N [ f0g; 0 � j � b1

r
c � 2; .j C 2/r ! 0

�

Hence, in the same way as that used in deriving limn!1
Pn�1

iDdnpe S1.i/,
using (4.1.21), Lemma 85 and Lemma 86, we have

lim
n!1

n�1X
iDdnpe

S2.i/

D lim
n!1

n�1X
iDnp

S2.i/

D lim
n!1

n�1X
iDnp

�
.n � i C 1/e�2rne�.i�1/e�rn C o

�
1

n

��

D e�ce�pe�c �
1 � e�.1�p/e�c� � pe�ce�pe�c

C e�ce�e�c � e�pe�c �
1 � e�.1�p/e�c�

(4.1.22)

Thirdly, the second sum of (4.1.1) can also be obtained in the same way, i.e.,

minfn�1;b 1r cgX
jD0

 
n � 1

j

!
.�1/j.1 � jr/n

	 exp .�.n � 1/e�rn/ 	 e�e�c
; as n ! 1 (4.1.23)

From (4.1.1) and the definitions of S1.i/ and S2.i/, we have

lim
n!1 P.n; r; p/ D lim

n!1

n�1X
iDdnpe

.S1.i/C S2.i//

C lim
n!1

minfn�1;b 1r cgX
jD0

 
n � 1

j

!
.�1/j.1 � jr/n (4.1.24)

Substituting (4.1.20), (4.1.22), and (4.1.23) into (4.1.24), we can readily
obtain (4.1.14).

Next, we shall prove that asymptotically almost surely there are only components
whose orders are ‚.n/ when r D log nCcCo.1/

n .
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For components whose orders are asymptotically infinite and are o.n/ (e.g.,
log n), in a similar way as that used in the above analysis, we can obtain that the
probability of having such components tends to zero as n ! 1.

For components of finite order, let z be any fixed positive integer. In the same
way as described in the proof of Theorem 80, the probability that G1.Xn; r/ has a
component containing exactly z vertices, denoted as P.n; r; z/, can be calculated as

P.n; r; z/ D 2Pr
�
F2

z

�C Pr
�
F1

z

�

Hence, by Lemma 82, Lemma 83, and Lemma 84, we have

P.n; r; z/ 	 2

zX
jD0

 
z

j

!
.�1/je�.jC1/rn C n

z�1X
jD0

 
z � 1

j

!
.�1/je�.jC2/rn

D 2e�rn .1 � e�rn/z C ne�2rn .1 � e�rn/z�1

D o.1/; as n ! 1 (4.1.25)

Since z is an arbitrary but fixed positive integer, (4.1.25) implies that as n ! 1,
almost surely there is no finite component.

For isolated vertices, let I denote the number of isolated vertices in G1.Xn; r/,
then the expected value of I can be obtained as

E.I/ 	 n.1 � 2r/n�1 	 ne�2r.n�1/ D o.1/; as n ! 1

Using Markov’s inequality and noting that I can only be a nonnegative integer, we
have

Pr .I � 1/ � E.I/ D o.1/; as n ! 1; (4.1.26)

Hence, as n ! 1, almost surely no isolated vertex exists. ut

4.1.2.2 When n.1 � 2r/n ! 0 and n.1 � r/n ! 1 as n ! 1

Following the same procedure as that leading to Theorem 87, the following result on
P.n; r; p/ when n.1 � 2r/n ! 0 and n.1 � r/n ! 1 as n ! 1 can be established:

Theorem 88 Adopt the same assumptions as in Theorem 80. If n.1 � 2r/n ! 0

and n.1 � r/n ! 1 as n ! 1, then limn!1 P.n; r; p/ D 0. Furthermore, there is
almost surely no isolated vertex or finite component as n ! 1.

The proof is omitted.
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4.1.2.3 When n.1 � 2r/n ! e�c and n.1 � r/n ! 1 as n ! 1

When n.1 � 2r/n ! e�c and n.1 � r/n ! 1 as n ! 1, the following theorem on
components of different sizes can be established:

Theorem 89 Adopt the same assumptions as in Theorem 1. If n.1 � 2r/n ! e�c

as n ! 1, or equivalently if r D log nCcCo.1/
2n , then limn!1 P.n; r; p/ D 0.

Furthermore, there is almost surely a nonvanishing probability of having isolated
vertices and finite components.

Proof Similar to the proof of Theorem 87, it can be obtained that P.n; r; p/ ! 0 as
n ! 1.

For isolated vertices, let I denote the number of isolated vertices in G1.Xn; r/.
Then

Pr .I > 0/ � Pr .I D 1/

	
 

n

1

!
� .1 � 2r/n�1 � �1 � .1 � 2r/n�1�n�1

	 ne�2rn � exp.�ne�2rn/

	 e�c exp.�e�c/; as n ! 1

For finite components, let z be any fixed positive integer. In the same way as
shown in the proof of Theorem 80, we have

P.n; r; z/ 	 2e�rn .1 � e�rn/z C ne�2rn .1 � e�rn/z�1

	 2 � 0 � 1C e�c � 1 D e�c; as n ! 1

The result follows. ut
Remark 90 The above analysis reveals an interesting finding that is different from
higher dimensional networks (e.g., d D 2 for d-dimensional networks). For d � 2,
if nrd ! 1 as n ! 1, almost surely the network only consists of isolated nodes
and a unique giant component as n ! 1. In addition, when the last isolated node
vanishes, the network becomes connected almost surely. However, for d D 1, there
may be multiple giant components (Theorem 87); and when the last isolated vertex
vanishes, the network may still be disconnected (Theorem 88).
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4.2 Securing a Giant Component with the Unit Disk
Connection Model

For two-dimensional wireless networks, it is difficult to obtain an analytical formula
comparable to the one-dimensional case for finite networks. In this section, we shall
derive an asymptotic analytical upper bound on the minimum transmission range at
which the probability of having a giant component of order above qn tends to one
as n ! 1, where q is any fixed real number in .0; 1/. In what follows, let rq denote
this minimum transmission range.

We shall use Poissonization and de-Poissonization techniques to derive our
main results for two-dimensional networks. Poissonization and de-Poissonization
are key techniques in the analysis of random geometric graphs [165] that allow
one to extend results obtained assuming Poisson node distribution to uniform node
distribution and the converse. Let fX1;X2;X3; : : :g be a set of points randomly,
independently, and uniformly distributed on a unit square Œ� 1

2
; 1
2
�2 in <2. Given � >

0, let N� be a Poisson random variable with mean �, independent of fX1;X2;X3; : : :g,
and let

P�;1 , fX1;X2; : : : ;XN�g (4.2.1)

Then, P�;1 is a Poisson point process on the unit square where the subscript 1
emphasizes that these points are on a unit square. Consider a graph with a vertex
set P�;1 and any two vertices are directly connected if and only if their Euclidean
distance is smaller than or equal to r, i.e., assuming a unit disk connection model
with a transmission range r. Denote the two-dimensional graph by G2.P�;1; r/.
Furthermore, let

Xn , fX1;X2; : : : ;Xng

In this section, we shall start by presenting results on a graph with vertex set P�;1,
and on that basis derive results on a graph with vertex set Xn.

We shall frequently use the following bound.

Lemma 91 ( [92]) For any x 2 Œ0; 1�, .1 � x/ � e�x.

Our main result for the upper bound on the minimum transmission range rq is given
in the following theorem.

Theorem 92 Consider G2.Xn; r/ in <2. Let q be any fixed real number within
.0; 1/. Let c be any fixed real number. Let f .n/ be a function of n satisfying

f .n/ > 0; lim
n!1 f .n/ D 1 and f .n/ D o .log n/ (4.2.2)
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If �r2 D f .n/Cc
n , then

lim
n!1 Pr .L .G2.Xn; r// � qn/ D 1 (4.2.3)

where L .G2.Xn; r// denotes the order of the largest component in G2.Xn; r/.

The rest of this section is dedicated to the proof of Theorem 92.

Remark 93 At the first glance, the above result appears abnormal as it suggests the
probability of having a giant component of order qn as n ! 1 is independent of q.
Here we offer the following intuitive explanation for the result. It is well known
that the width of the phase transition region of the transmission range from an
almost disconnected network to an almost connected network approaches zero as
n ! 1 ([97], see also Chap. 6 for a discussion on the phase transition region). This
means at large n, the probability of having a connected network as a function of r
is almost like a step function such that at a certain value of r (termed the critical
transmission range), a small variation in r causes a large change in the probability.
The above result indicates that the same phase transition phenomenon may also be
observed for the probability of having a giant component. Note that the average node
degree of G2.Xn; r/ is equal to f .n/ C c. Consider a graph with nodes Poissonly
distributed in <2 with density f .n/Cc

�
and assuming a unit disk connection model

with a transmission range 1, denoting the graph by G2.P�;<2 ; 1/ where � D f .n/Cc
�

.
A refined set of conditions of f .n/Cc in (4.2.2) that distinguishes the different values
of q can be obtained by utilizing the connection between G2.Xn; r/ and G2.P�;<2 ; 1/

through coupling and scaling. Specifically, let �c be the critical density of a network
with nodes Poissonly distributed with density � in <2 and assuming a unit disk
connection model with a transmission range 1, and let p1 .�/ be the corresponding
percolation probability. It has been shown [165, Chapter 10] that when � < �c,
as s ! 1 there is no giant component in G2.P�;s2 ; 1/ where P�;s is the restriction
of P�;<2 to a square of side s; when � � �c, the order of the largest component
in G2.P�;s2 ; 1/ converges in probability to �s2p1 .�/ as s ! 1 and that giant
component is unique.

In order to prove Theorem 92, we make use of some results from random geometric
graph theory [165]. Specifically, consider a graph where nodes are distributed
following a homogeneous Poisson point process of density � on a square of side
s and two nodes are connected directly if and only if their Euclidean distance is at
most 1. Denote the graph by G2.P�;s2 ; 1/. Let L

�
G2.P�;s2 ; 1/

�
be the order of the

largest component in G2.P�;s2 ; 1/ and let p1 .�/ be the percolation probability of
G2.P�;<2 ; 1/. It has been shown [165, Theorem 10.9] that as s ! 1,

s�2L
�
G2.P�;s2 ; 1/

� p! �p1 .�/ (4.2.4)
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where
p! denotes convergence in probability. When � < �c, p1 .�/ D 0. Further

note that p1 .�/ ! 1 as � ! 1 [165, Proposition 9.21]. Using these results, the
following lemma can be established:

Lemma 94 Consider G2.Pm.n/;1; r/, where m.n/ D bn � n
3
4 c. Let q be any fixed

real number within .0; 1/. Let c be any fixed real number. Let f .n/ be a function of n
satisfying (4.2.2). If �r2 D f .n/Cc

n , then as n ! 1

lim
n!1 Pr

�
L.G2.Pm.n/;1; r// � qn

� D 1 (4.2.5)

Proof Using the scaling technique, a coupling between the two graphs

G2

�
Pm.n/;1; r

�
and G2

�
Pm.n/r2; 1

r2
; 1
�

can be readily established. Further noting

that m.n/r2 D bn�n
3
4 c

�n .f .n/C c/ ! 1 as n ! 1 and 1
r2

D �n
f .n/Cc ! 1 as

n ! 1, the result follows. ut
Now, we prove Theorem 92 using the de-Poissonization technique and Lemma 94.

Let m.n/ D bn � n
3
4 c. Define Y.Pm.n/;1; r/ and Y.Xn; r/ as

Y.Pm.n/;1; r/ , Pr
�
L.G2.Pm.n/; r// < qn

�

Y.Xn; r/ , Pr .L.G2.Xn; r// < qn/

Because m.n/ D bn � n
3
4 c, we have Y.Pm.n/;1; r/ ! 0 as n ! 1 by Lemma 94.

It can be further shown that

Y.Pm.n/;1; r/ D
1X

jD0

.m.n//j

jŠ
e�m.n/Y.Xj; r/

�
X

bn�2n
3
4 c�j�n

.m.n//j

jŠ
e�m.n/Y.Xj; r/ (4.2.6)

Let E.Xn;Xj/ denote the event that in G2.Xn; r/, all nodes in Xn nXj are not directly
connected to any node in Xj. Then, for a fixed range r and any integer j satisfying
0 < j < n, using Lemma 91, we have

Y.Xn; r/ � Pr
�
E.Xn;Xj/

�C Y.Xj; r/

�
"�
1 � 1

4
�r2

�j
#n�j

C Y.Xj; r/

� e�j 14 �r2.n�j/ C Y.Xj; r/ (4.2.7)
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Substituting (4.2.7) into (4.2.6), it can be obtained that

Y.Pm.n/; r/

�
X

bn�2n
3
4 c�j�n

.m.n//j

jŠ
e�m.n/

h
Y.Xn; r/ � e�j 14 �r2.n�j/

i

D Y.Xn; r/
X

bn�2n
3
4 c�j�n

.m.n//j

jŠ
e�m.n/ �

X

bn�2n
3
4 c�j�n

.m.n//j

jŠ
e�m.n/e�j 14 �r2.n�j/

� Y.Xn; r/
X

bn�2n
3
4 c�j�n

.m.n//j

jŠ
e�m.n/ � e

1
4 �r2bn�2n

3
4 c
�

n�bn�2n
3
4 c
�

(4.2.8)

Using Chebyshev’s inequality,

1 �
X

bn�2n
3
4 c�j�n

.m.n//j

jŠ
e�m.n/ � n� 1

2

It follows from (4.2.8) and Lemma 94 that limn!1 Pr .L .G2.Xn; r// � qn/ D 1.
This completes the proof of Theorem 92.

Remark 95 Let r1 denote the minimum transmission range above which a network

is connected with probability one as n ! 1. Using Theorem 79,
q

log nCc0

n� is a

lower bound of r1 where c0 is any fixed real number. By Theorem 92,
q

f .n/Cc
n� is an

upper bound of rq. Hence, we have

lim
n!1

rq

r1
� lim

n!1

q
f .n/Cc

n�q
log nCc0

n�

D lim
n!1

s
f .n/C c

log n C c0 D 0:

The implication of the above result is that when n ! 1, the transmission
range required for having a giant component is vanishingly small compared to
the transmission range for a connected network. Therefore, in a large network, a
significant energy saving can be achieved by requiring most nodes, instead of all
nodes, to be connected. Furthermore, in a network where almost (but not) all nodes
are connected, a large leap in the transmission range may be required to connect the
remaining few nodes and the transmission range required for a large network to be
connected is dominated by these few nodes, i.e., rare events.
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4.3 Extension into More General Connection Models

In the last section, assuming the unit disk connection model, we established the
result that in a two-dimensional network with a total of n nodes distributed on a unit
square, as n ! 1, the transmission range required for having a giant component
with at least q percentage of nodes is vanishingly small compared with that required
for having a connected network. This result established assuming the unit disk
connection model can be extended into more general connection models.

Let us consider a random connection function g and some value 0 < p < 1.
Define gp by gp .x/ D pg

�p
px
�

and gp is a scaled version of g in the sense that
the probabilities are reduced by a factor of p but the function is spatially stretched
such that

R
<2 gp .x/ dx D R

<2 g .x/ dx. Let G
�
X�; g;<2

�
be a network with nodes

Poissonly distributed on <2 with density � and nodes are connected following the
random connection model with a connection function g. Denote by G

�
X�; gp;<2

�
the same network as G

�
X�; g;<2

�
except that nodes are connected following the

random connection model with a connection function gp. Obviously, the expected
number of connection per node, i.e., the average node degree, is the same in
G
�
X�; g;<2

�
and G

�
X�; gp;<2

�
. Let �c .g/ be the critical density for G

�
X�; g;<2

�
to percolate and let �c

�
gp
�

be the critical density for G
�
X�; gp;<2

�
. The following

theorem was established in [71] using the coupling technique and the fact that site
percolation is easier to achieve than bond percolation [71, Theorem 2.2.7]:

Theorem 96 ([71, Theorem 2.5.2]) For a random connection model with a
connection function g and 0 < p < 1, we have

�c .g/ � �c
�
gp
�

(4.3.1)

Broadly speaking, Theorem 96 implies that when stretching the connection function
while maintaining the average node degree constant, or equivalently replacing some
short-distance links by the same number of long-distance links, it becomes easier
for the network to become connected or form a giant component. In this sense, the
unit disk connection model constitutes the worst case in the connection model for
forming a connected network or a giant component.

Let gu be a connection function corresponding to a unit disk connection model
such that gu .x/ D 1 if and only if kxk � r and gu .x/ D 0 otherwise. Using
the same approach as that in the proof of Theorem 96 and the de-Poissonization
technique used in Sect. 4.2, it is straightforward to conclude that as n ! 1, if a
network with n nodes on a unit square and assuming the connection function gu

has a giant component with q percentage of nodes asymptotically almost surely,
the same network with connection function gu;p D pgu

�p
px
�

also has a giant
component with q percentage of nodes asymptotically almost surely. Further using
the results established in Chap. 3 on the sufficient and necessary condition for a
network assuming a general random connection model to be asymptotically almost
surely connected, the conclusion readily follows that the results established in last
section assuming the unit disk connection model can be extended to a more general
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connection model with connection function gu;p D pgu
�p

px
�

where 0 < p < 1.
Indeed, using the same methodology, the results can be further extended to a
general random connection model satisfying the three conditions of nonincreasing
monotonicity, integral boundedness, and rotational invariance in (1.1.8), (1.1.9)
and (1.1.10) only.

4.4 Notes and Further Readings

In this chapter, we investigated the order of the giant component in large wireless
networks. In one-dimensional networks, we derived a closed-form formula for
calculating the probability P.n; r; p/ that a network has a giant component of order
above pn with any fixed 0:5 < p � 1. We also studied the asymptotic behavior
of one-dimensional networks as n ! 1. Interesting results were found on the
asymptotic behavior of one-dimensional networks having a giant component, which
is distinctly different from its two-dimensional counterparts. In two-dimensional
networks, we derived an asymptotic analytical upper bound on the minimum
transmission range rq required for having a giant component of order above qn,
where q is any fixed real number in .0; 1/. We showed that the ratio of rq to r1, the
transmission range required for a connected network, approaches 0 as n ! 1. This
indicates that a significant energy saving may be achieved if we only require a giant
component rather than a connected network, especially for a network with a large
number of nodes.

The concept of the giant component has been extensively investigated in the
literature for Bernoulli random graphs [27], and an analytical formula relating the
giant component size, where the giant component size is the ratio of the number
of nodes in the giant component to the total number of nodes, and the average
node degree has been found [27, 150]. However, the Bernoulli random graph is
not suitable for modeling wireless networks (see discussions in Sect. 1.1). Hence,
it is inappropriate to apply the results on the giant component size obtained from
Bernoulli random graphs directly to wireless networks.

In [100], Hekmat et al. investigated the giant component size in a log-normal
shadowing environment, where a total of n nodes are randomly and uniformly dis-
tributed on a square and nodes are connected following the log-normal connection
model. Based on the analytical results obtained from Bernoulli random graphs,
the authors proposed an empirical formula relating the giant component size and
the average node degree in random geometric graphs. In [156], Németh et al.
investigated the giant component size by using a fractal propagation model where
the probability of having a link between two nodes is determined by their Euclidean
distance and two nonnegative constants. They found that the giant component size
can be characterized by a single parameter, viz., the average node degree. However,
both papers investigated the giant component size empirically.
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In [170], Raghavan et al. investigated the phase transition behaviors for the
emergence of a giant component in large wireless networks using the same network
model as that considered in this chapter. The authors proposed an empirical formula
for the critical transmission range at which the network has a giant component with
a high probability, and they showed that the critical range is approximately inversely
proportional to

p
n.

In [31], Bradonjić et al. studied the giant component using a network model
based on a geographical threshold graph which is almost the same as the random
geometric graph except that the existence of a link between any two nodes is
determined not only by their Euclidean distance but also by the node weights
assigned to them. The authors derived the conditions for the absence and existence
of a giant component.



Chapter 5
Critical Density for Percolation

Abstract In this chapter we investigate the critical node density required to ensure
that an arbitrary node in a large wireless network is connected (via multi-hop paths)
to infinitely many other nodes with a positive probability, known as the percolation
probability. A network is said to percolate if there exists a component of infinite
order in the network. Specifically, assuming the infinite network model and the
random connection model, we first obtain an upper and a lower bounds for the
critical density. Then, we compare the bounds with other existing bounds in the
literature under the unit disk connection model and the log-normal connection
model, which are special cases of the random connection model. Percolation is an
important subject in the study of connectivity of large random networks.

In this chapter we study the critical node density required to ensure that an arbitrary
node in a large wireless network is connected (via multi-hop paths) to infinitely
many other nodes with a positive probability. This probability is known as the
percolation probability, which has been formally defined in Sect. 1.3.1. Specifically,
we consider a network where nodes are distributed in <d (d D 2; 3) following
a homogeneous Poisson point process with known and finite density � and nodes
are directly connected following the random connection model with a connection
function g satisfying the three conditions of rotational and translational invariance,
nonincreasing monotonicity and integral boundedness. Denote the network by
G
�
X�; g;<d

�
. We first obtain analytically an upper and a lower bounds for the

critical density. Then, we compare the bounds with other existing bounds in the
literature under the unit disk connection model and the log-normal connection
model, respectively.

Denote by X�;x0 a homogeneous Poisson point process X� on the d-dimensional
Euclidean space <d with an additional node at x0 2 R

d. Denote by G
�
X�;x0 ; g;<d

�
the Poisson random network with node set X�;x0 . Let W be the set of nodes in
G
�
X�;x0 ; g;<d

�
connected (by multi-hop paths) to the node at x0. Denote by jWj

the number of nodes in W . Then the percolation probability is defined by

	.�/ D Pr .jWj D 1/ (5.0.1)

which is the probability that W contains an infinite number of nodes.
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The fact that the location of the chosen node in the definition of W is specified to
be at x0 2 R

d is of no importance: due to the stationarity property of a homogeneous
Poisson point process, the node can be anywhere in <d. Also as pointed out by the
Palm theory [165] on the other hand, assuming a node at x0 does not prevent the
distribution of the rest of the nodes to be maintained the same as X�. Evidently
from the definition of the percolation probability, 	.�/ > 0means that an arbitrarily
chosen node is connected to an infinite number of nodes with a positive probability.
It can be shown that 	.�/ displays the following phase transition phenomenon for
d D 2; 3.

Theorem 97 ( [143, Theorem 6.1]) For G
�
X�;x0 ; g;<d

�
with d D 2; 3, there exists

a critical density 0 < �c < 1 such that 	.�/ D 0 for � < �c and 	.�/ > 0 for
� > �c.

Theorem 97 implies that for G
�
X�;x0 ; g;<d

�
there exists a critical density above

which an arbitrarily chosen node is connected to an infinite number of other nodes
via multi-hop paths with a positive probability, and below which the node is almost
surely connected to finite number of other nodes only.

The exact value of the critical density is however difficult to obtain [60, 94,
118, 119]. In this chapter we are motivated to obtain an upper and a lower bound
for the critical density in G

�
X�;x0 ; g;<d

�
. The lower bound for the critical density

is obtained using a Galton-Watson branching process ( [71], see also Sect. 1.3.2)
and the upper bound is obtained by relating the problem to that of site percolation
on a lattice [29]. We then consider two special cases of the random connection
model, viz., the unit disk connection model and the log-normal connection model,
and obtain specific bounds under both models.

Recall that in the unit disk connection model, two nodes located at x and y,
respectively, are directly connected if and only if their Euclidean distance is less
than or equal to the transmission range r. The associated connection function for a
unit disk connection model can be written as

g .x � y/ D
(
1 if kx � yk � r;

0 otherwise:
(5.0.2)

In the log-normal connection model, the two nodes are directly connected with
probability

g .x � y/ D Q

�
10˛

�
log10

kx � yk
r

�
(5.0.3)

where Q.y/ D 1p
2�

R1
y exp.� z2

2
/dz is the tail probability of the standard normal

distribution, ˛ is the path loss exponent, �2 is the shadowing variance, r is the
transmission range ignoring shadowing effect (i.e., � D 0). The log-normal
connection model reduces to the unit disk connection model when � D 0.
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5.1 A Lower Bound for the Critical Density

In this section, we derive a lower bound of the critical density �c in G
�
X�; g;<d

�
(d D 2; 3) using a Galton-Watson branching process [71].

The following lemma is used in obtaining the lower bound.

Lemma 98 Consider G
�
X�;x0 ; g;<d

�
for d D 2; 3 and denote by X0 the node at x0.

A node Y 2 X�;x0 is called a k-hop node if the length of the shortest path between Y
and X0, measured by the number of hops, is k. Let Nk be the total number of k-hop
nodes. Then for all k, E ŒNk� is finite, with

E ŒN1� D
Z

<d
�g.y � x0/dy D

Z

<d

Z

<d
h1.y; z/dzdy (5.1.1)

where

h1.y; z/ D �g.y � z/�.z � x0/ (5.1.2)

�.:/ is the Dirac delta function; and

E ŒNk� �
Z

<d

Z

<d
hk.y; z/dzdy (5.1.3)

for k � 2 where

hk.y; z/ D
Z

<d
�g.y � z/ .1 � g.y � w// hk�1.z;w/dw (5.1.4)

Proof This proof consists of two parts. First we derive (5.1.1) and (5.1.3), and then
we prove that E ŒNk� is finite. The derivation of (5.1.1) and (5.1.3) is based on the
use of the Galton-Watson branching process, which have been introduced earlier
in Sect. 1.3.2. Particularly, the k-hop nodes can be considered as the members of
the k-th generation in the Galton-Watson branching process, with node X0 being
considered as the root of the branching process. The distribution of the k-hop nodes
is then obtained by evaluating the impact from the previous two hops, i.e., .k � 1/-
hop nodes and .k � 2/-hop nodes. Using this approach, the expected number of
1-hop nodes and an upper bound of the expected number of k-hop nodes are then
derived. The detailed derivations are outlined in the next several paragraphs.

Imagine we partition the <d space (d D 2; 3) into small and nonoverlapping
d-cubes of side length �. Assume that one of the d-cubes is centered at x0. Then,
we have a collection of d-cubes centered at Dd D ˚

x0 C .v ��/ W v 2 Z
d
�

where
Z

d is the integer set in the d-dimensional space. Denote by Bx the d-cube centered

at x. The Lebesgue measure of Bx is ıx
�D jBxj D �d. Since nodes are Poissonly

distributed in <d, for a sufficiently small �, the probability that there exists exactly
one node within Bx is p1.Bx/ D �ıx C o.ıx/ where o.ıx/ denotes a quantity which,
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for small ıx, is of lower order than ıx, i.e., limıx!0
o.ıx/
ıx D 0. The probability that

there are more than one nodes in Bx is o.ıx/. Let Ik
x be the indicator random variable

of the event that there exists exactly one node within the d-cube Bx and the node is
a k-hop node. Using the monotone convergence theorem, we have that

E ŒNk� D lim
�!0

X
x2Ddnfx0g

E
	
Ik
x


 D lim
�!0

X
x2Ddnfx0g

Pr
�
Ik
x D 1

�
(5.1.5)

and the limit exists. Similarly, let Jx be the indicator random variable of the event
that there exists exactly one node within Bx. Without loss of generality, we assume
that when Jx D 1 or Ik

x D 1, the node within Bx is located at x. The difference
between the actual location of the node within Bx and x becomes negligibly small
as � ! 0. Let Hx;y be the indicator random variable of the event that a node at x
and another node at y, if exist, are directly connected.

The probability that a 1-hop node exists in By is

Pr
�
I1y D 1

� D Pr
�
Jy D 1;Hy;x0 D 1

�

Dg.y � x0/ Œ�ıy C o.ıy/� (5.1.6)

Using (5.1.5) and (5.1.6), we obtain

E ŒN1� D lim
�!0

X
y2Ddnfx0g

Pr
�
I1y D 1

� D
Z

<d
�g.y � x0/dy (5.1.7)

which is (5.1.1).
A node is a 2-hop node if it is directly connected to at least one of the 1-hop

nodes but not directly connected to the node at x0. By applying the union bound and
with some arithmetic steps, we obtain

E ŒN2�

D lim
�!0

X
y2Ddnfx0g

Pr
�

I2y D 1
�

� lim
�!0

X
y2Ddnfx0g

X
z2Ddnfy;x0g

�
Pr
�
I1z D 1

�
Pr
�

Jy D 1;Hy;z D 1;Hy;x0 D 0
ˇ̌
I1z D 1

��

D lim
�!0

X
y2Ddnfx0g

X
z2Ddnfy;x0g

Œg.z � x0/ .�ız C o.ız// g.y � z/ .1� g.y � x0// .�ıy C o.ıy//�

D
Z

<d

Z

<d
�2g.y � z/ Œ1� g.y � x0/� g.z � x0/dzdy (5.1.8)

where the first step in the above equations results from the following analysis. Note
that if a node Y is a 2-hop node, then it is not directly connected to the node at x0
but directly connected to at least one 1-hop node. Hence for any positive integer n1,
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we have

Pr

 
I2y D 1;

n1\
iD1

˚
I1zi

D 1
�
ˇ̌
ˇ̌
ˇN1 D n1

!

D Pr

 
Jy D 1;Hy;x0 D 0;

n1[
iD1

˚
Hy;zi D 1

�
;

n1\
iD1

˚
I1zi

D 1
�
ˇ̌
ˇ̌
ˇN1 D n1

!

�
n1X

jD1
Pr

 
Jy D 1;Hy;x0 D 0;Hy;zj D 1;

n1\
iD1

˚
I1zi

D 1
�
ˇ̌
ˇ̌
ˇN1 D n1

!
(5.1.9)

where the last step results due to the union bound. The conditional probability
Pr
�

I2y D 1
ˇ̌
N1 D n1

�
is then obtained as follows, where (5.1.9) is used in the second

step below and the third step results by moving the summation on j and zj to the
outermost:

Pr
�

I2y D 1

ˇ̌
ˇN1 D n1

�

D 1

n1Š

X

z1;��� ;zn12D
dnfy;x0g

zm¤zn for m¤n

Pr

 
I2y D 1;

n1\
iD1

˚
I1zi

D 1
�
ˇ̌
ˇ̌
ˇN1 D n1

!

� 1

n1Š

X

z1;��� ;zn12D
dnfy;x0g

zm¤zn for m¤n

n1X
jD1

Pr
�
Jy D 1;Hy;x0 D 0;

Hy;zj D 1;

n1\
iD1

I1zi
D 1

ˇ̌
ˇ̌
ˇN1 D n1

!

D 1

n1Š

n1X
jD1

X
zj2Ddnfy;x0g

� X

z1;��� ;zj�1;zjC1;��� ;zn12D
dnfy;x0;zjg

zm¤zn for m¤n

Pr
�
Jy D 1;

Hy;x0 D 0;Hy;zj D 1;

n1\
iD1

I1zi
D 1

ˇ̌
ˇ̌
ˇN1 D n1

!!

D 1

n1Š

n1X
jD1

X
zj2Ddnfy;x0g

�
.n1 � 1/ŠPr

�
Jy D 1;Hy;x0 D 0;Hy;zj D 1; I1zj

D 1

ˇ̌
ˇN1 D n1

��

D X
z2Ddnfy;x0g

�
Pr
�

Jy D 1;Hy;x0 D 0;Hy;z D 1
ˇ̌
I1z D 1;N1 D n1

�
Pr
�

I1z D 1
ˇ̌
N1 D n1

��

(5.1.10)
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Since

Pr
�

I1z D 1
ˇ̌
N1 D n1

� D Pr
�
I1z D 1;N1 D n1

�

Pr .N1 D n1/
(5.1.11)

and

1X
n1D1

Pr
�
I1z D 1;N1 D n1

� D Pr
�
I1z D 1

�
; (5.1.12)

using (5.1.10), (5.1.11), and (5.1.12), we obtain

Pr
�
I2y D 1

�

D
1X

n1D1

�
Pr
�

I2y D 1
ˇ̌
N1 D n1

�
Pr .N1 D n1/

�

�
X

z2Ddnfy;x0g

�
Pr
�

Jy D 1;Hy;x0 D 0;Hy;z D 1
ˇ̌
I1z D 1

�
Pr
�
I1z D 1

��
(5.1.13)

Hence we obtain the result in the first step of (5.1.8).
This proves (5.1.3) for k D 2.
From (5.1.2), h1.y; z/ has the meaning of being the probability that the node at

y is directly connected to the node at x0. That is, the node at y is a 1-hop node.
Applying (5.1.2) into (5.1.4), it can be shown that h2.y; z/ is the probability that the
node at y is directly connected to the 1-hop node at z but not directly connected to
the node at x0. That is, the node at y is a 2-hop node and the node at z is a 1-hop
node. For k D 3, we have that h3.y; z/ is the probability that the node at y is directly
connected to the 2-hop node at z but not directly connected to the 1-hop node at w.
That is, the node at y is a “potential” 3-hop node as we do not specify whether or
not the node at y is directly connected to the node at x0. Therefore, h3.y; z/ is an
upper bound on the probability that there exists a 3-hop node at y and a 2-hop node
at z and the two nodes are directly connected. By recursion, hk.y; z/ forms an upper
bound on the probability that there exists a k-hop node at y and a .k � 1/-hop node
at z and the two nodes are directly connected. Note that a node is a k-hop node if
and only if it is directly connected to at least one .k � 1/-hop node and not directly
connected to any of the i-hop nodes where i < k � 1. Therefore, using the union
bound (with some arithmetic steps omitted) and only considering the .k � 1/-hop
nodes and .k � 2/-hop nodes, we obtain

E ŒNk� D lim
�!0

X

y2Ddnfx0g
Pr
�

Ik
y D 1

�
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� lim
�!0

X

y2Ddnfx0g

X

z;w2Ddnfy;x0g
z¤w

�
Pr
�

JyD1;Hy;zD1;Hy;wD0ˇ̌ Ik�1
z D 1; Ik�2

w D 1;Hz;w D 1
�

Pr
�

Ik�1
z D 1; Ik�2

w D 1;Hz;w D 1
� �

(5.1.14)

� lim
�!0

X

y2Ddnfx0g

X

z;w2Ddnfy;x0g
z¤w

Œg.y � z/ .1 � g.y � w// .�ıy C o.ıy// hk�1.z;w/� ıwız

D
Z

Rd

Z

Rd
hk.y; z/dzdy (5.1.15)

where inequality (5.1.14) results from the following analysis. An upper bound for
the probability that a k-hop node exists within By conditioned on the event that
fNk�2 D nk�2g can be obtained as follows.

Pr
�

Ik
y D 1

ˇ̌
Nk�2 D nk�2

�
(5.1.16)

D 1

nk�2Š
X

w1;��� ;wnk�22Ddnfy;x0g
wm¤wn for m¤n

Pr

 
Ik
y D 1;

nk�2\
iD1

Ik�2
wi

D 1

ˇ̌
ˇ̌
ˇNk�2 D nk�2

!

By generalizing the derivation of (5.1.13), it can be shown that

Pr

 
Ik
y D 1;

nk�2\
iD1

Ik�2
wi

D 1

ˇ̌
ˇ̌
ˇNk�2 D nk�2

!

� X
z2Ddnfy;x0g

Pr

 
Jy D 1;

nk�2\
iD1

Hy;wi D 0;Hy;z D 1;

nk�2[
iD1

Hz;wi D 1; Ik�1
z D 1;

nk�2\
iD1

Ik�2
wi

D 1

ˇ̌
ˇ̌
ˇNk�2 D nk�2

!

�
nk�2X
jD1

X
z2Ddnfy;x0g

Pr

 
Jy D 1;Hy;wj D 0;Hy;z D 1;Hz;wj D 1; Ik�1

z D 1;

nk�2\
iD1

Ik�2
wi

D 1

ˇ̌
ˇ̌
ˇNk�2 D nk�2

!

D
nk�2X
jD1

X
z2Ddnfy;x0g

�
Pr
�

Jy D 1;Hy;wj D 0;Hy;z D 1
ˇ̌
Hz;wj D 1; Ik�1

z D 1; Ik�2
wj

D 1;Nk�2 D nk�2

�

� Pr

 
Hz;wj D 1; Ik�1

z D 1;

nk�2\
iD1

Ik�2
wi

D 1

ˇ̌
ˇ̌
ˇNk�2 D nk�2

!!
(5.1.17)

Note that for any integer 1 � j � nk�2,

X

w1;��� ;wj;wjC1;��� ;wnk�22D
dnfy;x0;z;wjg

wm¤wn for m¤n

Pr

 
Hz;wj D 1; Ik�1

z D 1;

nk�2\
iD1

Ik�2
wi

D 1

ˇ̌
ˇ̌
ˇNk�2 D nk�2

!

D .nk�2 � 1/ŠPr
�

Hz;wj D 1; Ik�1
z D 1; Ik�2

wj
D 1

ˇ̌
ˇNk�2 D nk�2

�
(5.1.18)
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Substituting (5.1.17) and (5.1.18) into (5.1.16),

Pr
�

Ik
y D 1

ˇ̌
ˇNk�2 D nk�2

�

� 1

nk�2Š

nk�2X
jD1

X

z;wj2D
dnfy;x0g

z¤wj

�
Pr
�

J0y D 1;Hy;wj D 0;Hy;z D 1

ˇ̌
ˇHz;wj D 1;

Ik�1
z D 1; Ik�2

wj
D 1;Nk�2 D nk�2

�

�.nk�2 � 1/ŠPr
�

Hz;wj D 1; Ik�1
z D 1; Ik�2

wj
D 1

ˇ̌
ˇNk�2 D nk�2

��

D X

z;w2D
dnfy;x0g

z¤w

�
Pr
�

Jy D 1;Hy;w D 0;Hy;z D 1
ˇ̌
Hz;w D 1; Ik�1

z D 1; Ik�2
w D 1;Nk�2 D nk�2

�

� Pr
�

Hz;w D 1; Ik�1
z D 1; Ik�2

w D 1
ˇ̌
Nk�2 D nk�2

��
(5.1.19)

Since

Pr
�

Hz;w D 1; Ik�1
z D 1; Ik�2

w D 1
ˇ̌
Nk�2 D nk�2

�

D Pr
�
Hz;w D 1; Ik�1

z D 1; Ik�2
w D 1;Nk�2 D nk�2

�

Pr .Nk�2 D nk�2/
(5.1.20)

and

1X
nk�2D1

Pr
�
Hz;w D 1; Ik�1

z D 1; Ik�2
w D 1;Nk�2 D nk�2

�

D Pr
�
Hz;w D 1; Ik�1

z D 1; Ik�2
w D 1

�
(5.1.21)

using (5.1.19), (5.1.20) and (5.1.21), we obtain

Pr
�
Ik
y D 1

�

D
1X

nk�2D1

�
Pr
�

Ik
y D 1

ˇ̌
Nk�2 D nk�2

�
Pr .Nk�2 D nk�2/

�

�
X

z;w2Ddnfy;x0g
z¤w

�
Pr
�
Jy D 1;Hy;w D 0;Hy;z D 1

ˇ̌
Hz;w D 1; Ik�1

z D 1; Ik�2
w D 1

�

� Pr
�
Hz;w D 1; Ik�1

z D 1; Ik�2
w D 1

��
(5.1.22)

Hence we obtain inequality (5.1.14).
Now (5.1.3) is proved for general k.
Next, we prove that E ŒNk� is finite by showing that the integral

R
<d

R
<d hk.y; z/

dzdy at the right-hand side of (5.1.3) is finite using mathematical induction. For
k D 1, we have
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E ŒN1� D
Z

<d

Z

<d
h1.y; z/dzdy D

Z

<d
�g.y � x0/dy < 1

due to the integral boundedness of the connection function g. SupposingR
<d

R
<d hk�1.y; z/dzdy < 1 and then using (5.1.3), it can be shown that

E ŒNk�

�
Z

<d

Z

<d
hk.y; z/dzdy

D
Z

<d

Z

<d

Z

<d
�g.y � z/ Œ1 � g.y � w/� hk�1.z;w/dwdzdy

�
Z

<d

Z

<d

Z

<d
�g.y � z/hk�1.z;w/dwdzdy

D
Z

<d

�Z

<d
�g.y � z/dy

 �Z

<d
hk�1.z;w/dw


dz

D
�Z

<d
�g.y/dy


�
Z

<d

Z

<d
hk�1.z;w/dwdz

< 1

This completes the proof of the lemma. ut
On the basis of Lemma 98, the following theorem on a lower bound for �c can be
obtained.

Theorem 99 For G
�
X�;x0 ; g;<d

�
with d D 2; 3 the critical density �c is lower

bounded by

�c � sup
m2ZC

�
m

q
1=fsup.m/

�
(5.1.23)

where

fsup.m/ D sup
ymC1;ymC22<d

( Z

<d
� � �
Z

<d

"
mY

iD1

	
g.yi�yiC1/

�
1�g.yi�yiC2/

�

dy1 � � � dym

)

(5.1.24)

Proof From (5.1.4), we have

hk.y1; y2/

D
Z

<d
�g.y1 � y2/Œ1 � g.y1 � y3/�hk�1.y2; y3/dy3

D
Z

<d
� � �
Z

<d

mY
iD1

	
�g.yi � yiC1/

�
1 � g.yi � yiC2/

�

hk�m.ymC1; ymC1/dy3 � � � dymC2

(5.1.25)
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for any integer 1 � m < k. Using (5.1.24) and (5.1.25), it can be shown that

Z

<d

Z

<d
hk.y; z/dydz

� �mfsup.m/
Z

<d

Z

<d
hk�m.y; z/dydz (5.1.26)

for any integer 1 � m < k. Applying (5.1.26) recursively into itself and
using (5.1.3), we obtain

EŒNk� � 	
�mfsup.m/


b k
m c Z

<d

Z

<d
hi.y; z/dydz (5.1.27)

where i D k � �
k
m

˘
m and bxc is the largest integer smaller than or equal to x. SinceR

<d

R
<d hi.y; z/dydz < 1 for any positive integer i (refer to the proof of Lemma 98),

and E ŒjWj� D P1
kD1 E ŒNk�, (5.1.27) implies that E ŒjWj� is finite if �mfsup.m/ < 1.

Given the fact that E ŒjWj� is finite implies 	.�/ D 0 (see [143, Theorem 6.1]
or Sect. 1.3.1), we have �c � m

p
1=fsup.m/ for all positive integer m. The result

follows. ut
Alternatively, Theorem 99 can be rewritten as follows.

Theorem 100 For G
�
X�;x0 ; g;<d

�
with d D 2; 3 the critical density �c is lower

bounded by

�c � sup
m2ZC

�
m

q
1=fsup.m/

�
D lim

m!1

�
m

q
1=fsup.m/

�
(5.1.28)

where fsup.m/ is given in (5.1.24).

The proof of Theorem 100 relies on the following lemma from [107].

Lemma 101 ( [107, Lemma 2.1]) Let .an/n2N be a sequence of elements of RC [
f1g such that

anCm � anam for all n;m 2 N

If a1 < 1, then an < 1 for all n 2 N, the sequence
�

a1=n
n

�
n2N is convergent and

lim
n!1 a1=n

n � a1=m
m for each m 2 N

On the basis of Lemma 101, we can prove Theorem 100 as follows.
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Proof From (5.1.24), we have for all n;m 2 Z
C,

fsup.m C n/

D sup
ymCnC1;ymCnC22<d

8
<
:
Z

<d
� � �
Z

<d

mCnY
iD1

g.yi � yiC1/
�
1� g.yi � yiC2/

�
dy1 � � � dymCn

9
=
;

D sup
ymCnC1;ymCnC22<d

( Z

<d
� � �
Z

<d

"Z

<d
� � �
Z

<d

mY
iD1

g.yi�yiC1/
�
1�g.yi�yiC2/

�
dy1 � � � dym

#

mCnY
iDmC1

g.yi � yiC1/
�
1� g.yi � yiC2/

�
dymC1 � � � dymCn

)

� sup
ymC1;ymC22<d

( Z

<d
� � �
Z

<d

mY
iD1

g.yi � yiC1/
�
1� g.yi � yiC2/

�
dy1 � � � dym

)

� sup
ymCnC1;ymCnC22<d

8<
:
Z

<d
� � �
Z

<d

mCnY
iDmC1

g.yi�yiC1/
�
1�g.yi�yiC2/

�
dymC1 � � � dymCn

9=
;

(5.1.29)

D fsup.m/fsup.n/ (5.1.30)

where (5.1.29) follows from the monotonicity of the integral. Furthermore,

fsup.1/ D sup
y2;y32<d

�Z

<d
g.y1 � y2/ .1 � g.y1 � y3// dy1

�

D sup
y32<d

�Z

<d
g.y1/ .1 � g.y1 � y3// dy1

�

�
Z

<d
g.y/dy < 1 (5.1.31)

Equations (5.1.30), (5.1.31) and Lemma 101 together show that the sequence�
m
p

fsup.m/
�

m2ZC is convergent and

lim
m!1

m

q
fsup.m/ � n

q
fsup.n/ for each n 2 Z

C

, lim
m!1

m

q
fsup.m/ D inf

n2ZC

�
n

q
fsup.n/

�
(5.1.32)

With (5.1.32) and Theorem 99, the result follows. ut
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Remark 102 Although we consider G
�
X�;x0 ; g;<d

�
with d D 2; 3 in Lemma 98,

Theorems 99 and 100, it can be seen from their proofs that they are applicable to
an arbitrary integer d. However this is not the case for Theorems 103 and 105 in
Sect. 5.2.

5.1.1 Application of the Lower Bound on the Critical Density
to the Unit Disk Connection Model and the Log-Normal
Connection Model

In this subsection, we compare our lower bound with existing results in the literature
obtained assuming the unit disk connection model and the log-normal connection
model, which are two special cases of the random connection model.

To obtain the lower bound under the unit disk connection model, we apply (5.0.2)
into (5.1.24) and obtain

fsup.1/ D sup
y2;y32<d

�Z

<d
g.y1 � y2/ .1 � g.y1 � y3// dy1

�

D
Z

ky1k�r
dy1 D Vdrd (5.1.33)

where Vd D �d=2

�. d
2C1/ is the volume of .d � 1/-dimensional sphere with unit radius

and �.:/ is the gamma function. Similarly,

fsup.2/ D sup
y3;y42<d

�Z

<d

Z

<d
g.y1�y2/ .1 � g.y1�y3// g.y2�y3/ .1�g.y2�y4// dy1dy2

� )

D
Z

ky2k�r

Z

ky1�y2k�r;ky1k>r
dy1dy2 (5.1.34)

For d D 2, (5.1.34) can be simplified to

fsup.2/ D
Z r

0

�Z r

r�u
2v arccos.

r2 � u2 � v2
2uv

/dv

�
2�udu (5.1.35)

which is obtained using elementary geometric calculations for finding an arc length,
as illustrated in Fig. 5.1.

For d D 3, (5.1.34) can be simplified to

fsup.2/ D
Z r

0

�Z r

r�u
2�v2

�
1 � r2 � u2 � v2

2uv

�
dv


4�u2du (5.1.36)
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Fig. 5.1 An illustration of arc length calculation related to fsup.2/ in <2 under the unit disk
connection model

which follows from elementary geometric calculations for finding the curved surface
area of a spherical cap [130], as illustrated in Fig. 5.2.

Using a similar approach as that in (5.1.35) and (5.1.36), we can extend and
generalize the calculation of fsup.m/ under the unit disk connection model for m � 3,
i.e., considering kyi � yiC1k � r and kyi � yiC2k > r (for all 1 � i � m � 2) for the
integrations in (5.1.24). Then, we obtain a lower bound for �c using Theorem 99.
The result is shown with other existing results in the literature in Figs. 5.3 and 5.4.

Figure 5.3 shows that our lower bound in <2 is as tight as the lower bound
obtained by Meester and Roy [143]. The lower bounds reported by Kong and
Yeh [118], and Gu and Hong [88] are tighter than our lower bound, however their
results are valid for the unit disk connection model only. In this chapter we consider
the random connection model which is applicable to broader class of connection
models, including the unit disk connection model. On the other hand, Fig. 5.4 also
shows that our lower bound in <3 is not as tight as the bound obtained by Kong
and Yeh [118] (though it is within 6%). The tightness of our lower bound largely
depends on how the distribution of the k-hop nodes is obtained. When we obtain
the distribution of the k-hop nodes through the technique in Lemma 98, we only
considered the impact of the previous two hops, i.e., .k � 1/-hop nodes and .k � 2/-
hop nodes, on the distribution of the k-hop nodes. The impact of nodes three or
more hops away is not taken into account. The tightness of our lower bound is
therefore sacrificed for simplicity. A tighter lower bound can be obtained if we take
into account the impact of nodes three or more hops away. However it will involve
more intricate analysis.

To obtain the lower bound under the log-normal connection model, we first
apply (5.0.3) into (5.1.24). Then, the lower bound under the log-normal connection
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Fig. 5.2 An illustration of the surface area calculation of a spherical cap related to fsup.2/ in <3

under the unit disk connection model (two-dimensional view)
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Fig. 5.3 Lower bounds for �c in <2 under the unit disk connection model with r D 2
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Fig. 5.4 Lower bounds for �c in <3 under the unit disk connection model with r D 2

model can be calculated by using a similar approach as that used in obtaining
the lower bound under the unit disk connection model, which involves converting
(5.1.24) from Cartesian coordinate system to Polar coordinate system in <2 or
Spherical coordinate system in <3. Due to its complexity, the end form of the
equation is omitted here. Instead, the results are plotted in Figs. 5.5 and 5.6 but
with no comparison to bounds from another method, since we know of none. Note
that in order to have a fairer comparison between lower bounds under the log-
normal model with different shadowing variance, the results in Figs. 5.5 and 5.6
have been normalized so that the average node degree is preserved while changing
the shadowing variance, similarly for Figs. 5.10 and 5.11 in the next section.

5.2 An Upper Bound for the Critical Density

In this section, we derive an upper bound of the critical density �c in G
�
X�; g;<d

�
(d D 2; 3) by coupling the problem to that of site percolation on a lattice [29].
First, we consider the problem in <2 as follows. Let us partition the <2 plane into
nonoverlapping hexagons, where the Euclidean distance between the centers of two
neighboring hexagons is a constant a > 0. We further partition each hexagon into
six nonoverlapping equilateral triangles. As shown in Fig. 5.7, the hexagon labeled
H2 is partitioned into six triangles.

Consider a hexagon, e.g., H2 in Fig. 5.7, and an equilateral triangle, e.g., T2;2, in
the hexagon, there is exactly one hexagon side that is located directly opposite to
the triangle. Centered at the middle point of that hexagon side, i.e., M2;2, we draw
a circle with a radius a and obtain its intersectional area with the triangle, i.e., S2;2.
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Fig. 5.5 Our lower bounds for �c in <2 under the log-normal model with different shadowing
variances

Fig. 5.6 Our lower bounds for �c in <3 under the log-normal model with different shadowing
variances

Repeat the action for the other five equilateral triangles in the hexagon. Merging the
six intersectional areas, we obtain a flower-shaped cell within the hexagon, i.e., A2.

Next, we want to obtain a lower bound on the probability that any two nodes
inside two neighboring flower-shaped cells are directly connected. Consider two
neighboring flower-shaped cells, e.g., A4 and A5 in Fig. 5.7, and two nodes Y and
Z (one in each cell). Among the six intersectional areas in A4, consider that node
Y is located in the intersectional area furthest to A5, i.e., S4;3 in A4. Denote by b
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Fig. 5.7 An illustration of the hexagons and the flower-shaped cell in each hexagon. The partition
of each hexagon into six nonoverlapping equilateral triangles and construction of an intersectional
area inside each triangle are illustrated in hexagon H2. An example of how the distance b is defined
for a node is shown in flower-shaped cell A4

the Euclidean distance between the node and the middle point, i.e., M4;3, of the
hexagon side shared by A4 and A5. Then, we have b 2 Œ a

2
; a�. Consider that node Z

is located anywhere within A5 and denote by c the Euclidean distance between Z and
the middle point M4;3. Due to the triangular inequality, the distance between Y and
Z is less than or equal to b C c. Since c � a, it can be easily shown that the distance
between Y and a node in A5 is at most b C a. Let fa.b/ be the probability density
function of the above defined distance b. Using elementary geometric calculations,

fa.b/ D 12b

jA.a/j
��
6

� arcsin.
a

4b
/
�

(5.2.1)

where jA.a/j is the area of a flower-shaped cell and is given by

jA.a/j D 6a2
�
! � 1

2
sin.!/

�
(5.2.2)

with ! D �
6

� arcsin. 1
4
/ (see also Fig. 5.7). Due to the nonincreasing monotonicity

of g, the probability that Y is directly connected to any node in A0 is lower
bounded by g ..b C a/ u/ where u is a vector of unit size. Due to the rotational
invariance property of g, the direction of u does not affect g ..b C a/u/. Therefore,
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the probability that any two nodes inside two neighboring flower-shaped cells are
directly connected, denoted by Np.a/ , satisfies the following condition:

Np.a/ �
Z a

a=2
g ..b C a/ u/ fa.b/db

�D Op.a/ (5.2.3)

Now, starting with the flower-shaped cell A0 with a node X0 located anywhere
within it, we examine the connections between X0 and the nodes in the six
neighboring flower-shaped cells, A1;A2; � � � ;A6 (see Fig. 5.7). We say Ai, 1 � i � 6,
is “occupied” if and only if there exists at least one node in Ai and X0 is directly
connected to at least one of the nodes in Ai. The probability that Ai (with size jA.a/j)
is “occupied,” denoted by p, is then

p >
1X

mD1

�
.� jA.a/j/m exp.�� jA.a/j/

mŠ
� Œ1 � .1 � Op.a//m�



D
�
1 � e��jA.a/j� � e��jA.a/jOp.a/ h1 � e��jA.a/j.1�Op.a//i

D1 � e��jA.a/jOp.a/ (5.2.4)

Note that the events that neighboring flower-shaped cells are “occupied” are
independent. Next, for each Ai marked as “occupied,” we focus on a node Xi in
Ai which is directly connected to X0 and examine the direct connections from Xi to
other nodes in the neighboring flower-shaped cells that have not been considered
before. The process continues in a similar way until every flower-shaped cell is
marked to be either “occupied” or “empty.”

Following from the above marking process, it can be seen that Pr .jWj D 1/ >

0 if the probability that there are infinite number of flower-shaped cells, which are
marked as “occupied,” is positive. We say that the flower-shaped cells percolate
if there are infinite number of flower-shaped cells marked as “occupied”. Imagine
we replace each flower-shaped cell by a vertex and draw an edge between two
neighboring vertices. Then, the vertices form an equilateral triangular lattice. If the
vertices inherit the status of respective flower-shaped cells, i.e., a vertex is marked
as “occupied” if and only if the corresponding flower-shaped cell is marked as
“occupied,” then the site percolation on the accompanying equilateral triangular
lattice implies the percolation of the flower-shaped cells, and the converse. Hence,
the flower-shaped cells percolates if p > 0:5 [29, p. 132]. That is, Pr .jWj D 1/ >

0 if

1 � e��jA.a/jOp.a/ > 0:5 , � >
loge.2/

jA.a/j Op.a/ (5.2.5)

Indeed, Pr .jWj D 1/ > 0 if (5.2.5) holds for any value of a. The above analysis
can be summarized into the following theorem.
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Theorem 103 For G
�
X�; g;<2

�
the critical density �c is upper bounded by

�c � inf
a2RC

(
loge.2/

12
R a

a=2 bNg.b C a/
�
�
6

� arcsin. a
4b /
�

db

)
(5.2.6)

Remark 104 In Theorem 103, we obtained an upper bound for �c using the
probability density function of b which is given in (5.2.1). Note that (5.2.1) is
obtained by considering a node located in just one of the six intersectional areas in a
flower-shaped cell. Particularly, the chosen intersectional area is the one which will
maximize the distance b. An improved upper bound can be obtained by considering
the situation that the node can be located in any intersectional area within the flower-
shaped cell. However, due to the difficulty in computing the probability density
function of b, no closed form can be obtained for the upper bound. Therefore, we
continue to use the existing approach to obtain an upper bound in R

2 and later in
R
3. In Fig. 5.10, the improved upper bound is plotted numerically.

To extend the above analysis for <2 to <3, we first partition the <3 space into
nonoverlapping rhombic dodecahedra. The logic behind the transformation from
hexagons in <2 to rhombic dodecahedra in <3 is related to the close-packing of
equal-radius .d � 1/-spheres in <d. In <2, the hexagon is the shape of the Voronoi
cells constructed from the equilateral triangular lattice [9], which delivers the
densest arrangement of equal-radius disks in <2 [46, p. 6]. In <3, the rhombic
dodecahedron is the shape of the Voronoi cells constructed from the face-centered
cubic lattice [46, p. 34], which delivers one of the densest possible arrangements
of equal-radius spheres in <3 [9]. Refer to Figs. 5.8 and 5.9 for a visualization of
the face-centered cubic packing of equal-radius spheres and rhombic dodecahedron
and the shape of the associated Voronoi cells.

Using a similar approach in <2, we then construct a three-dimensional flower-
shaped cell within each rhombic dodecahedron so that the maximum Euclidean
distance between any pair of nodes within two neighboring flower-shaped cells
is 2a, where a is the distance between the centers of two neighboring rhombic
dodecahedra. Based on the constructed flower-shaped cells, we can rewrite (5.2.1)
into

Fig. 5.8 Face-centered cubic
packing of equal spheres
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Fig. 5.9 Rhombic
dodecahedron as the shape of
the Voronoi cells

fa.b/

D 48b2

jV.a/j
Z �

2

	min

sin.	/

 
�

4
� arcsin.

a=2C p
2b cos.	/p

2b sin.	/
/

!
d	 (5.2.7)

where 	min D �
2

� arcsin. 1p
3
/C arcsin. a

2
p
3b
/ and jV.a/j is the volume of a three-

dimensional flower-shaped cell. Substituting (5.2.7) into (5.2.3), and bearing in
mind that the site percolation on the face-centered cubic lattice (where the critical
probability is approximately 0:199 [134]) implies the site percolation of the flower-
shaped cells, we obtain the follow theorem.

Theorem 105 For G
�
X�; g;<3

�
the critical density �c is upper bounded by

�c � inf
a2RC

(
� loge.0:801/R a

a
2

g ..b C a/ u/ Nfa.b/db

)
(5.2.8)

where

Nfa.b/ D 48b2
Z �=2

	min

sin.	/

 
�

4
� arcsin

 
a=2C p

2b cos.	/p
2b sin.	/

!!
d	;

and 	min D �
2

� arcsin. 1p
3
/C arcsin. a

2
p
3b
/.
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5.2.1 Application of the Upper Bound on the Critical Density
to the Unit Disk Connection Model and the Log-Normal
Connection Model

To evaluate the tightness of our upper bound, we compare our result with existing
upper bounds in the literature obtained under the unit disk connection model [88,
143, 167] and the log-normal connection model [131].

To obtain the upper bound in <2 under the unit disk connection model, first
let �.r/upper be the upper bound for �c under the unit disk connection model with a
transmission range r. Applying (5.0.2) into (5.2.6), it can be shown that the infimum
is achieved at a D 1

2
r. That is,

�.r/upper D loge.2/

jA.r=2/j D loge.2/
3
2
r2
�
! � 1

2
sin.!/

� (5.2.9)

with ! D �
6

� arcsin. 1
4
/. Then (5.2.6) reduces to the upper bound obtained in

[88, 143]. As a specific example with r D 2, we have �.2/upper 
 0:843 and it is shown
in Fig. 5.10 (as the log-normal connection model with � D 0). On the other hand, it
means that our upper bound is not as tight as the upper bound obtained by Philips
et al. [167] (0:8376 for r D 2). In our approach to obtaining the upper bound, the
constructed flower-shaped cells must lie inside the corresponding hexagons. Then,
we consider the nodes that fall inside each flower-shaped cell. In contrast, Philips

0.5
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Li & Yang
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Improved results (suggested in Remark 104)
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Fig. 5.10 Upper bounds for �c in <2 under the log-normal connection model with different
shadowing variances and r D 2, ˛ D 2. Note that the log-normal connection model reduces
to the unit disk connection model when � D 0
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et al. [167] allow some portion of each flower-shaped cell to exceed the boundary
of the corresponding hexagon. Then they consider those nodes that fall inside both
flower-shaped cell and the corresponding hexagon. The ratio of flower-shaped cell
size to hexagon size is adjusted to obtain the tightest upper bound. The approach
used in [167] can be adapted into our analysis to achieve a tighter upper bound.
However, it will involve more intricate analysis.

The upper bound in <2 under the log-normal connection model can be calculated
by substituting (5.0.3) into (5.2.6). The end form of the equation is omitted due to its
complexity. To compare our result with other upper bounds in the literature [131],
first let

�upper.g/ D inf
a2RC

(
loge.2/

12
R a

a=2 bNg.b C a/
�
�
6

� arcsin. a
4b /
�

db

)
(5.2.10)

be the upper bound for �c given by (5.2.6). From (5.2.10),

�upper.g/ � inf
a2RC

�
loge.2/

jA.a/j g .2au/

�

D inf
a2RC

�
loge.2/

jA.a=2/j g .au/

�
D inf

a2RC

(
�
.1/
upper

a2g .au/

)
(5.2.11)

where �.1/upper is given by (5.2.9) with r D 1. Note that the right-hand side of (5.2.11)
was reported by Li and Yang [131] but only for the log-normal connection model.
The derivation of (5.2.11) shows that Theorem 103 provides a tighter upper bound
than that in [131] (see Fig. 5.10 for an illustration).

To the best of our knowledge, no upper bound has been obtained in <3 under
either the unit disk connection model or the log-normal connection model. An
illustration of the upper bound in Theorem 105 is shown in Fig. 5.11.

5.3 Notes and Further Reading

In this chapter we investigated the analytical bounds for the critical density in large
wireless networks where nodes are Poissonly distributed in <d (d D 2; 3) and
connections are established following the random connection model. We obtained a
lower bound for the critical density using a Galton-Watson branching process and
an upper bound by coupling the problem to that of site percolation on a lattice.
For both the upper and the lower bound, results for the unit disk connection model
and the log-normal connection model are provided as special cases of the random
connection model.
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Fig. 5.11 Upper bounds for �c in <3 under the log-normal connection model with different
shadowing variances and r D 2, ˛ D 2. Note that the log-normal connection model reduces
to the unit disk connection model when � D 0

Some bounds for the critical density have been given in the literature and mostly
for the unit disk connection model [88, 118, 143, 167] in <2. Since these results in
<2 were obtained with different transmission ranges, we rescale the results using the
scaling technique to a common transmission range of 2, and report them as follows:
a well-known set of analytical lower and upper bounds for the critical density was
given by Meester and Roy [143], i.e., the critical density should lie between 0:174
and 0:843. Philips et al. [167] obtained the same lower bound as that in [143]
but a slightly tighter upper bound (0:8376). On the other hand, Gu and Hong [88]
reported the same upper bound as in [143] but a tighter lower bound (0:2553). Kong
and Yeh [118] obtained another lower bound (0:1925) for the critical density. No
upper bound was obtained in [118]. Note that a lower bound in <2 under the unit
disk model is also reported in [118].

Limited work was reported under connection models other than the unit disk
connection model. In [119], Kong and Yeh extended the unit disk connection
model to a unit disk connection model with unreliable links. In the new model,
two nodes are no longer directly connected with probability 1 but with some lesser
probability, provided their Euclidean distance is within the transmission range. The
lower bound obtained is comparable with their earlier result obtained under the unit
disk connection model [118]. In <2 and under the log-normal connection model, Li
and Yang [131] obtained analytically an upper bound for the critical density. Note
that the connection models considered in [119] and [131] are special cases of the
random connection model considered in this chapter.



Chapter 6
Phase Transitions in Large Networks

Abstract In this chapter, we study the phase transition behavior of k-connectivity
(k D 1; 2; : : :) in large wireless networks where a total of n nodes are randomly
and independently distributed following a uniform distribution in a unit cube Œ0; 1�d

(d D 1; 2; 3), and each node has an identical transmission range r.n/. It has
been shown that the phase transition of k-connectivity becomes sharper as the
total number of nodes n increases. In this chapter, we investigate how fast such
phase transition happens, and derive a general formula for the phase transition
width of k-connectivity for large enough n and for any fixed positive integer
k in d-dimensional space by resorting to a Poisson approximation for the node
placement. The results in this chapter are important for understanding the phase
transition phenomenon in network connectivity.

In this chapter, we study the phase transition phenomenon in connectivity of large
wireless networks.

We illustrate the concept of phase transition first using an example of rainfall.
Before the rain starts, the ground is completely dry. When a raindrop falls, the
ground soaks up the water and a wet patch is formed around the point where the rain-
drop falls. When the first raindrops fall, we see small wet regions inside a large
dry ground. As the rain continues, more raindrops fall and the wet regions grow.
This process continues until at a certain point so many raindrops have reached the
ground to the extent that the ground suddenly changes from dry ground with a few
wet regions into wet ground with a few dry islands. Similarly, consider a second
example of an infinite plane covered by disks. The infinite plane is initially empty.
Then, we throw in disks where the centers of the disks are Poisson point process
with a given density and the radius of the disks are a constant resembling that of
the unit disk connection model. A point in the infinite plane is occupied if it is
inside one of the disks, otherwise it is empty. When the density of the disks is low,
the plane is largely empty with a few disconnected occupied regions. As the density
increases, more and more regions of the plane become occupied until when the
density reaches a certain threshold, the plane suddenly transforms from an empty
plane with a few occupied regions into an occupied plane with a few empty regions.
Informally, a phase transition is defined as a phenomenon where a small change
in the local parameters of a system results in an abrupt change in the macroscopic
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behavior of the system. Phase transitions are common in nature and used today in
many technologies, for example, the transition of water from gas to liquid and then
to ice as the temperature drops.

In an infinite network, such phase transition can occur abruptly while in a
finite network, the phase transition is more gradual. Obviously, one also expects
the behavior that can be observed at the infinite scale to be a good indication of
what happens when we consider finite models that grow larger and larger in size.
We shall see that this is indeed the case when considering scaling properties of finite
networks.

In this chapter, we are particularly interested in studying the phase transition that
occurs when a large wireless network transits from an almost disconnected network
to an almost connected network, to be defined more precisely shortly later.

Next we recall some definitions and concepts on network connectivity that will
be used later in the chapter. A network is said to be k-vertex connected (k-connected
for simplicity) if and only if for any pair of two nodes there exist at least k mutually
independent paths connecting them, i.e., these paths do not share a common node
except for the beginning and the end of the path (refer to Fig. 6.1 for an illustration).
Equivalently, a connected network is k-connected if and only if there is no set of
k � 1 nodes whose removal will make the network trivial or disconnected. In other
words, a k-connected network is able to sustain the failure of k�1 nodes. A network
is said to be k-edge connected if and only if for any pair of two nodes there exist at
least k mutually independent edge disjoint paths connecting them. Throughout this
chapter, we use the term k-connectivity as shorthand for k-vertex connectivity.

Assuming a unit disk connection model and for a finite network of n nodes
randomly and uniformly distributed in a finite region, it has been shown that there
exists a threshold of the transmission range above which the network is k-connected
with a high probability; and there also exists a threshold of transmission range
below which the network is k-connected with a low probability, i.e., the network
is more likely not k-connected. The difference between the two thresholds defines
the so-called phase transition width. Intuitively, the phase transition width gives
an indication on how easy or difficult it is to transform a network that is not
k-connected into a k-connected network. It has been shown that the phase transition
width becomes sharper as the total number of nodes n increases [19, 97, 121, 122].

Fig. 6.1 An illustration of a k-connected network. Note that 1-connectivity has the same meaning
as connectivity
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Fig. 6.2 An illustration of the phase transition behavior of 1-connectivity in 2-dimensional
networks through simulations. Consider a network with a total of n nodes randomly and uniformly
distributed on a unit square and a pair of nodes in the network are directly connected following a
unit disk connection model with a transmission range of r .n/. The probability that the network is
1-connected transits from nearly zero to nearly one over a small range of values of the transmission
range r.n/, and the transition becomes steeper as the number of nodes n increases

When n approaches infinity, the phase transition width approaches zero and the
two aforementioned thresholds will converge to the same value. As an example,
Fig. 6.2 shows the phase transition behavior of 1-connectivity in two-dimensional
networks through simulations. As shown in the figure, when the total number of
nodes n is large (e.g., n D 1000), it takes a small increase in the transmission
range to transform a disconnected network into a connected network. A good
understanding of such a phase transition phenomenon is of practical importance for
the design of large wireless networks and is also of theoretical significance in the
study of network connectivity. For higher dimensional networks (i.e., d D 2; 3),
all the analytical results hitherto derived on the critical transmission range, at
which the network is connected or k-connected, are valid for large networks only
[92, 173, 185]. For an infinite network with an infinite number of nodes, the phase
transition from not being k-connected to being k-connected occurs at a precise
transmission range, termed the critical transmission range, and the phase transition
width is zero. However, in practice, the total number of nodes in the network is finite.
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Fig. 6.3 An illustration of a network in d-dimensional space (d D 1; 2; 3). A total of n nodes
are randomly and independently distributed in a unit cube Œ0; 1�d following a uniform distribution.
Each node has an identical transmission range r.n/, and any two nodes can communicate with each
other if and only if their Euclidean distance is at most r.n/

So for large but not infinite networks it is crucial to study not just the critical
transmission range itself, but the width of the phase transition region, since the
phase transition from not being k-connected to being k-connected no longer occurs
abruptly.

The central aim of this chapter is to investigate analytically how quickly the
phase transition of k-connectivity happens in a large wireless network. Specifically,
we consider that the network with a total of n nodes randomly and independently
distributed in a unit cube Œ0; 1�d (d D 1; 2; 3) following a uniform distribution
and connections are established following the unit disk connection model with
a transmission range r.n/. Denote the network by G .n; r .n//. As an example,
Fig. 6.3 gives an illustration of such network model for different values of d. In
addition, the results obtained using this model can also be extended to other network
models, e.g., nodes distributed following a Poisson point process. We refer readers
to the analysis in Chap. 4 for relevant techniques on converting the results obtained
assuming a uniform node distribution to that assuming a Poisson node distribution
and the converse. To quantify how fast the phase transition of k-connectivity occurs,
we use a metric called the phase transition width, which is also referred to as
the threshold width in the literature. Let Pk.n; r.n// denote the probability that an
instance of a randomly generated network G .n; r .n// is k-connected. The mapping
r.n/ ! Pk.n; r.n// is strictly monotonically increasing with 0 < Pk.n; r.n// < 1 in
some finite interval of r.n/, and Pk.n; r.n// D 0 or 1 outside the interval [97].

A monotone graph property is usually defined as follows:

Definition 106 A graph property ƒ is increasing if and only if

G 2 ƒ ) .8G0/Œ.V.G0/ D V.G/ and E.G/ � E.G0// ) G0 2 ƒ�
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where V .G/ and E .G/ denote, respectively, the vertex set and the edge set of G.
A graph property ƒ is said to be monotone if either ƒ or its complement ƒc is
increasing.

The minimum node degree of a graph G is defined as

degmin.G/ , min
u2V.G/

fdeg.u/g

where deg .u/ is the degree of a node u 2 V .G/, and the average node degree of a
graph G is

C.G/ , 1

n

X
u2V.G/

deg.u/

Let ˛ denote a positive real number between 0 and 1. Then, define

rk.n; ˛/ , inf.r > 0 W Pk.n; r/ � ˛/; ˛ 2 .0; 1/ (6.0.1)

By the definition of rk.n; ˛/ and the strict monotonicity of r.n/ ! Pk.n; r.n//,
it readily follows that Pk.n; rk.n; ˛// D ˛. The phase transition width over the
probability interval Œ˛; 1 � ˛� of k-connectivity is then defined as

ık.n; ˛/ , rk.n; 1 � ˛/ � rk.n; ˛/; ˛ 2 .0; 1
2
/ (6.0.2)

In addition to the above definition of ık.n; ˛/, we shall define the phase transition
width ı0

k.n; ˛/ measured using the average node degree as follows. The reason for
defining the phase transition width in terms of the average node degree is that
in random geometric graphs, connectivity is often directly related to the average
node degree, which combines the effects of the node density and the transmission
range. Let C.n/ denote the average node degree of G.n; r.n//, and let Pk.n;C.n//
denote the probability that G.n; r.n// is k-connected. Define

Ck.n; ˛/ , inf.C > 0 W Pk.n;C/ � ˛/; ˛ 2 .0; 1/ (6.0.3)

The new phase transition width ı0
k.n; ˛/ of k-connectivity in terms of the average

node degree is

ı0
k.n; ˛/ , Ck.n; 1 � ˛/ � Ck.n; ˛/; ˛ 2 .0; 1

2
/ (6.0.4)

Henceforth, unless otherwise indicated, the short term phase transition width will be
used with ˛ being simply understood. Note that the definition of the phase transition
width given by (6.0.2) is closely related to the so-called finite size scaling in the
physics of percolation and related phenomenon [37, 120].
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In this chapter, we derive a general analytical formula for the phase transition
width ık.n; ˛/ of k-connectivity for large n and for any fixed positive integer k > 0

in d-dimensional space (d D 1; 2; 3). Based on the result, we then compare the phase
transition width for different values of d by fixing k, n and ˛, which shows that the
phase transition width ık.n; ˛/ is larger for higher dimensional networks than that
for lower dimensional networks. Similarly we compare the phase transition width
for different values of k by fixing d, n and ˛, which shows that for large n the phase
transition width of k-connectivity is approximately the same as the phase transition
width of .k C 1/-connectivity. Alternatively, one may also investigate the phase
transition width in terms of the average node degree. This chapter also provides an
analytical result for the phase transition width measured in the average node degree.
Surprisingly, the newly defined phase transition width turns out to be independent
of n and k for large n. We also conduct corresponding simulations to verify our
theoretical analysis for large networks. The simulation results show that to achieve
a good accuracy, n should be larger than 200 when k D 1 and d D 1; and n should
be larger than 600 when k � 3 and d D 2; 3.

6.1 Phase Transition Width for Network
with Different Orders of Connectivity

In this section, we present the main results on the phase transition width ık.n; ˛/
of k-connectivity (k > 0) in d-dimensional space (d D 1; 2; 3). In our analysis, we
ignore the boundary effect for d D 2; 3. We refer interested readers to Chaps. 2
and 3 for techniques on handling the boundary effect and for discussions on the
impact of boundary effect on network connectivity.

Our main result in this section on rk.n; ˛/ for large n is given in the following
theorem:

Theorem 107 For a random geometric graph G.n; r.n// in <d .d D 1; 2; 3/, a
fixed positive integer k > 0 and a positive real number ˛ 2 .0; 1/, let rk.n; ˛/
denote the smallest transmission range at which the probability that G.n; r.n// is
k-connected is at least ˛. Ignore the boundary effect except when d D 1. Then, for
large n, rk.n; ˛/ is given by

rk.n; ˛/ D
�

F.n; k/

�dn

� 1
d

� log
�
log

�
1
˛

��
.1C o.1//

d.�dn/
1
d .F.n; k//

d�1
d

(6.1.1)

where

F.n; k/ , log n C .k � 1/ log.log n/ � log.k � 1/Š (6.1.2)

and �d (d D 1; 2; 3) is defined as �1 D 1, �2 D � and �3 D 4
3
� .
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In the rest of this section, we shall prove Theorem 107. We first present the following
Lemma which will be used later in the proof of Theorem 107.

Lemma 108 Consider a random geometric graph G.n; r.n// in <d .d D 2; 3/, a
fixed positive integer k > 0 and a real number ! 2 <. Let �.k; n; r.n// be the
expected number of nodes with degree k. If the boundary effect is ignored, and r.n/
is given by

r.n/ D rn.!/ D
�

F.n; k/C !

�dn

� 1
d

(6.1.3)

where F.n; k/ is as defined in (6.1.2), the following holds:

�.k � 1; n; rn.!// D e�!; k D 1 (6.1.4)

lim
n!1 �.k � 1; n; rn.!// D e�!; k > 1 (6.1.5)

Proof As shown in [19, 23, 96, 165, 173] (see also Sect. 1.2), for a set of n nodes,
where each node is randomly, independently, and uniformly placed in a finite region
of volume V in <d, the limiting case obtained by letting n ! 1 and V ! 1
while keeping n=V constant can be regarded as defining a homogeneous Poisson
point process of density � D n=V . For large n and large V , i.e., n � 1 and
V � �drd.n/, a homogeneous Poisson point process of density � D n=V is a
close approximation for the corresponding uniform distribution. Furthermore, using
the scaling and coupling technique, any realization of G.n; r.n// in a unit cube in
<d coincides with another realization of G.n; d

p
Vr.n// placed in a cube of volume

V in <d. Hence, throughout this chapter, we focus on G.n; r.n// distributed in a unit
cube in <d, and we assume n � 1 and 1 � �drd.n/ so that a homogeneous Poisson
point process of density � D n=1 D n can be used to approximate the uniform
distribution for the node spatial distribution [164, 165]. For a more formal treatment
of the conversion between the results obtained assuming a uniform distribution
to that assuming a Poisson distribution and the converse, we refer readers to the
Poissonization and de-Poissonization techniques that have been used in Chap. 4 and
the discussions in Chap. 1.

Using the Poisson approximation and ignoring the boundary effect, the probabil-
ity that a particular node i (i D 1; 2; : : : ; n) has m (m � 0) neighbors, denoted as
pi.m/, is given by

pi.m/ D
�
n�drd.n/

�m

mŠ
e�n�drd.n/; d D 2; 3 (6.1.6)

Therefore, by using the Palm Theorem [165] which captures a form of spatial
ergodicity property relating the probabilities that a given node has a certain degree
with the expected number of nodes in a network that have a certain degree, and
ignoring the boundary effect, the expected number of nodes with degree .k � 1/,
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Fig. 6.4 An illustration of the expected number of nodes with degree k (k D 1; 2; 3). For the
analytical results, the boundary effect is ignored; for the simulation results, the boundary effect is
eliminated by using the toroidal distance metric

denoted by �.k � 1; n; r.n//, is given by

� .k � 1; n; r.n// D n � pi.k � 1/ D n � .n�drd.n//k�1

.k � 1/Š e�n�drd.n/ (6.1.7)

We also conduct simulations to establish the accuracy of the analytical formula
given by (6.1.7). The analytical formula given by (6.1.7) is derived by approx-
imating the uniform point process with a Poisson point process. In Fig. 6.4, a
comparison between the analytical results obtained using the Poisson point process
approximation and the simulation results where nodes are distributed following a
uniform point process verifies the accuracy of the Poisson approximation.

For k D 1, substituting (6.1.3) into (6.1.7), we have

�.0; n; rn.!// D n � .n�drd.n//0

0Š
e�n�drd.n/

D n � exp

�
�n � �d � log n C !

n�d

�

D e�!

which proves (6.1.4).
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For k > 1, substituting (6.1.3) into (6.1.7), we have

lim
n!1 �.k � 1; n; rn.!//

D lim
n!1

�
n � .F.n; k/C !/k�1

.k � 1/Š � 1
n

� .k � 1/Š
.log n/k�1 � e�!

�

D e�! lim
n!1

�
1C .k � 1/ log.log n/

log n
� log.k � 1/Š

log n
C !

log n

�k�1

D e�!

which proves (6.1.5). ut
A more general form of Lemma 108 considering the random connection model has
also been given in Chap. 2.

Now, we are able to prove Theorem 107. We first prove the result for d D 2; 3

based on Theorem 1.1 and Theorem 2.2 in [164] and Lemma 108. Since the two
theorems in [164] are not valid for d D 1, we shall then prove the result for d D 1

separately based on Theorem 15 given in [79].

6.1.1 Case When d D 2; 3

For d D 2; 3, we first introduce two theorems by Penrose [164] that are important
for our proof. Let �k.n/ (respectively, �k.n/) denote the minimum transmission
range at which a random geometric graph G.n; r.n// is k-connected (respectively,
has minimum node degree k). The following two theorems have been established
in [164]:

Proposition 109 Consider a random geometric graph G.n; r.n// in <d (d � 2).
Given any integer k > 0,

lim
n!1 Pr .�k.n/ D �k.n// D 1 (6.1.8)

Theorem 110 Consider a random geometric graph G.n; r.n// in <d (d � 1). Let
! 2 <. Given any integer k > 0 and .rn/n�1 satisfying the following condition

lim
n!1 �.k � 1; n; rn/ D e�! (6.1.9)

then it follows that

lim
n!1 Pr .�k.n/ � rn/ D exp.�e�!/ (6.1.10)
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Remark 111 Theorem 109 implies that for very large value of n, k-connectivity
is predicted by the minimum node degree. Theorem 110 shows that there is a
relation between the proportion of nodes with degree .k � 1/ and the probability
that the network has a minimum node degree k. It is also important to notice that
Theorem 109 is valid for d � 2 and Theorem 110 is valid for d � 1.

For any ! 2 < and any positive integer k > 0, Theorem 109 and Theorem 110
immediately yield

lim
n!1 Pr .�k.n/ � rn.!//

D lim
n!1 Pr .�k.n/ � rn.!//

D exp.�e�!/ (6.1.11)

Hence, (6.1.11) and Lemma 108 yield

lim
n!1 Pk .n; rn.!// D exp.�e�!/ (6.1.12)

which plays a key role in the proof of Theorem 107.
For each x 2 <, define the Œ0; 1�-valued sequence f�n.x/; n D 1; 2; 3 : : :g by

�n.x/ D min

 
1;

�
F.n; k/C x

�dn

� 1
d

C

!
; n D 1; 2; : : : (6.1.13)

Because for any fixed integer k > 0 and x 2 <, F.n;k/
n ! 0 as n ! 1, there exists a

finite integer N.k; x/ such that

0 <

�
F.n; k/C x

�dn

� 1
d

< 1; 8n > N.k; x/

Hence, we have

�n.x/ D
�

F.n; k/C x

�dn

� 1
d

; 8n > N.k; x/ (6.1.14)

Therefore, from Lemma 108 and (6.1.12), we have

lim
n!1 Pk.n; �n.x// D exp.�e�x/: (6.1.15)

Now fixing x in <, from (6.1.15), we can obtain that for each " > 0, there exists
a finite integer N."; k; x/ such that

jPk.n; �n.x// � exp.�e�x/j < "; 8n > N."; k; x/ (6.1.16)
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It can be easily established that the mapping < ! <C W x ! exp.�e�x/ is
strictly monotonically increasing and continuous with limx!�1 exp.�e�x/ D 0

and limx!1 exp.�e�x/ D 1. Therefore, for each ˛ 2 .0; 1/, there exists a unique
value of x in <, denoted as x˛ , such that exp.�e�x˛ / D ˛. In fact, from the equality
exp.�e�x˛ / D ˛, we have

x˛ D � log.� log˛/ (6.1.17)

Hence, fixing x in < is equivalent to fixing ˛ in .0; 1/. Now fix ˛ in the interval
.0; 1/, and let " be sufficiently small such that 0 < 2" < ˛ and ˛ C 2" < 1. Then,
applying (6.1.16) with x D x˛C" and x D x˛�", respectively, we have

jPk.n; �n.x˛C"// � exp.�e�x˛C" /j < "; 8n > N."; k; x˛C"/ (6.1.18)

and

jPk.n; �n.x˛�"// � exp.�e�x˛�" /j < "; 8n > N."; k; x˛�"/ (6.1.19)

We always assume that n is sufficiently large when necessary. In the rest of this
subsection, we assume that n > N."; k; ˛/ with

N."; k; ˛/ D maxfN.k; x˛/; N."; k; x˛C"/; N."; k; x˛�"/g

where N.k; x˛/ represents the finite integer above which (6.1.14) holds.
Since exp.�e�x˛˙" / D ˛ ˙ ", it can be readily obtained from (6.1.18)

and (6.1.19) that

˛ < Pk.n; �n.x˛C"// < ˛ C 2"

and

˛ � 2" < Pk.n; �n.x˛�"// < ˛

According to the definition of rk.n; ˛/, we have Pk.n; rk.n; ˛// D ˛. Hence, from
the last two inequalities, it follows that

Pk.n; �n.x˛�"// < Pk.n; rk.n; ˛// < Pk.n; �n.x˛C"//

Because of the strict monotonicity of the mapping r.n/ ! Pk.n; r.n//, we have

�n.x˛�"/ < rk.n; ˛/ < �n.x˛C"/ (6.1.20)

Define �.n; ˛/ , rk.n; ˛/ � �n.x˛/, then it can be obtained from (6.1.20) that

�n.x˛�"/ � �n.x˛/ < �.n; ˛/ < �n.x˛C"/ � �n.x˛/ (6.1.21)
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For any fixed k > 0 and x 2 <, it is true that

lim
n!1

x

F.n; k/

D lim
n!1

x

log n C .k � 1/ log.log n/ � log.k � 1/Š
D 0

Hence, from (6.1.14), we have

�n.x/ D
�

F.n; k/C x

�dn

� 1
d

D
�

F.n; k/

�dn

� 1
d
�
1C x

F.n; k/

� 1
d

D
�

F.n; k/

�dn

� 1
d
�
1C 1

d

x.1C o.1//

F.n; k/

�
; as n ! 1

Therefore, for any fixed k > 0 and ˛ 2 .0; 1/, we have

�n.x˛˙"/ � �n.x˛/

D
�

F.n; k/

�dn

� 1
d
�
1C 1

d

x˛˙".1C o.1//

F.n; k/

�

�
�

F.n; k/

�dn

� 1
d
�
1C 1

d

x˛.1C o.1//

F.n; k/

�

D
�

F.n; k/

�dn

� 1
d x˛˙" � x˛

F.n; k/d
.1C o.1//; as n ! 1 (6.1.22)

Because (6.1.21) holds for all n > N."; k; ˛/, it must be valid when n ! 1 as
well. And as n ! 1, the small order part o.1/ in (6.1.22) goes to zero. Hence,
from (6.1.21) and (6.1.22), we have

x˛�" � x˛ � lim inf
n!1

0
BB@

F.n; k/d.1C o.1//
�

F.n;k/
�dn

� 1
d

�.n; ˛/

1
CCA

D lim inf
n!1

0
BB@

F.n; k/d
�

F.n;k/
�dn

� 1
d

�.n; ˛/

1
CCA
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and

x˛C" � x˛ � lim sup
n!1

0
BB@

F.n; k/d.1C o.1//
�

F.n;k/
�dn

� 1
d

�.n; ˛/

1
CCA

D lim sup
n!1

0
BB@

F.n; k/d
�

F.n;k/
�dn

� 1
d

�.n; ˛/

1
CCA

Because " can be chosen to be arbitrarily small, and as stated earlier x˛ D
� log.� log˛/ is a continuous and strictly monotonically increasing function of ˛
for ˛ 2 .0; 1/, it can be shown that

lim
"#0
.x˛�" � x˛/ D lim

"#0
.x˛C" � x˛/ D 0

Hence, we have

lim inf
n!1

0
BB@

F.n; k/d
�

F.n;k/
�dn

� 1
d

�.n; ˛/

1
CCA

D lim sup
n!1

0
BB@

F.n; k/d
�

F.n;k/
�dn

� 1
d

�.n; ˛/

1
CCA

D 0

Thus, given that

lim
n!1

0
BB@

F.n; k/d
�

F.n;k/
�dn

� 1
d

�.n; ˛/

1
CCA D 0

holds, it must be true that

�.n; ˛/ D o

0
BB@

�
F.n;k/
�dn

� 1
d

F.n; k/d

1
CCA D o

 
1

d .�dn/
1
d .F.n; k//

d�1
d

!
(6.1.23)
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Hence, we have

rk.n; ˛/ D �n.x˛/C �.n; ˛/

D
�

F.n; k/C x˛
�dn

� 1
d

C o

 
1

d .�dn/
1
d .F.n; k//

d�1
d

!

D
�

F.n; k/

�dn

� 1
d
�
1C x˛.1C o.1//

F.n; k/d

�
C o

 
1

d .�dn/
1
d .F.n; k//

d�1
d

!

D
�

F.n; k/

�dn

� 1
d

� log
�
log

�
1
˛

��
.1C o.1//

d.�dn/
1
d .F.n; k//

d�1
d

The proof of Theorem 107 for d D 2; 3 is complete.

6.1.2 Case When d D 1

For d D 1, when k D 1, (6.1.1) readily becomes the result already established by
Han et al. (see Eq. 4 in [97]), therefore, the result given in Theorem 107 is true for
d D 1 and k D 1.

When k > 1, we shall prove the result based on Theorem 15 given in [79].
It is noted in [79, Theorem 15] that given a random geometric graph G.n; r.n// in
1-dimensional space and ! 2 <, for any positive integer k > 1, if r.n/ is given by

r.n/ D 1

n
.log n C .k � 1/ log.log n/ � log.k � 1/ŠC !/

then

lim
n!1 Pk.n; r.n// D exp.�e�!/

Based on the critical transmission range given in [79] and using the same
technique as that described in Sect. 6.1.1, we can obtain

rk.n; ˛/ D F.n; k/

n
� log

�
log

�
1
˛

��
.1C o.1//

n
; d D 1

which agrees with the result given in Theorem 107 for d D 1 and k > 1. The proof of
Theorem 107 for d D 1 is thus complete. It is important to notice that the boundary
effect affects neither the derivation of Han et al.’s result in [97] nor the derivation of
Theorem 15 in [79]. Hence, our result in this chapter is not affected by the boundary
effect when d D 1.

Combining Sects. 6.1.1 and 6.1.2, we have finally proved Theorem 107.



6.1 Phase Transition Width for Network with Different Orders of Connectivity 163

Remark 112 Equation (6.1.1) given in Theorem 107 confirms Theorem 11 in [8].
It was noted in Theorem 11 of [8] that given a 2-connected network in <2, if
we double the transmission range, then the resulting network becomes globally
rigid, where global rigidity is a graph property that has been widely investigated
for network localization and for control [141]. Equation (6.1.1) yields 2r2.n; ˛/ >
r6.n; ˛/ for all large n. Given that 6-connectivity is a sufficient condition for global
rigidity in <2 [108], we can obtain that the network with a transmission range
2r2.n; ˛/ is globally rigid with high probability. In addition, the transmission range
given by (6.1.1) has a similar asymptotic behavior compared with the one given in
[181] as n goes to infinity.

Using Theorem 107, the desired result on the phase transition width ık.n; ˛/ for
large n is given in the following corollary, which forms another main result of this
subsection.

Corollary 113 Consider a random geometric graph G.n; r.n// in <d .d D 1; 2; 3/,
a fixed positive integer k > 0 and a positive real number ˛ 2 .0; 1

2
/. Ignore the

boundary effect except when d D 1. Then, for large n, the phase transition width of
k-connectivity ık.n; ˛/ is given by

ık.n; ˛/ D
log

�
log˛

log.1�˛/
�

d .�dn/
1
d .F.n; k//

d�1
d

.1C o.1// (6.1.24)

Proof Based on Theorem 107, for any fixed positive integer k > 0 and d 2 f1; 2; 3g,
the phase transition width ık.n; ˛/ for large n given in Corollary 113 can be readily
derived as

ık.n; ˛/ D rk.n; 1 � ˛/ � rk.n; ˛/

D
�

F.n; k/

�dn

� 1
d

� log
�
log

�
1
1�˛

��
.1C o.1//

d.�dn/
1
d .F.n; k//

d�1
d

�
�

F.n; k/

�dn

� 1
d

C log
�
log

�
1
˛

��
.1C o.1//

d.�dn/
1
d .F.n; k//

d�1
d

D
log

�
log˛

log.1�˛/
�

d.�dn/
1
d .F.n; k//

d�1
d

.1C o.1//

The proof of Corollary 113 is complete. ut
Remark 114 Comparing (6.4.2) on the phase transition width, which was first
obtained in [97] and shown later in the chapter, and (6.1.24), we can see that
when k D 1 and d D 1; 2, (6.1.24) readily reduces to (6.4.2) appearing in [97].
Furthermore, although we have derived the phase transition width of k-connectivity
given by (6.1.24), this result holds only when n is sufficiently large. When n is a
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small number (especially when n is comparable with kŠ), this result does not hold
any more. This observation is manifested in our proof of Theorem 107 and our later
simulation results, which show significant discrepancy between analytical results
and simulation results for small n. Also, the simulation results show that n should
be larger than 200 when d D 1 and k D 1; and n should be larger than 600 if k � 3

and d D 2; 3.

6.2 A Discussion on Properties of the Phase Transition
Width of a k-Connected Network

In this section, we continue to discuss properties of the phase transition width of a
k-connected network using the results established in the previous section.

Based on Corollary 113, three further corollaries can be established on the
properties of the phase transition width.

The following corollary compares the phase transition width for a k-connected
network for different values of k.

Corollary 115 Consider a random geometric graph G.n; r.n// in <d .d D 1; 2; 3/,
a fixed positive integer k > 0 and a positive real number ˛ 2 .0; 1

2
/. Ignore

the boundary effect except when d D 1. Then, the phase transition width of
k-connectivity ık.n; ˛/ and the phase transition width of .k C 1/-connectivity
ıkC1.n; ˛/ satisfy

lim
n!1

ıkC1.n; ˛/
ık.n; ˛/

D 1 (6.2.1)

Proof Based on Corollary 113, for any fixed positive integer k > 0 and d 2 f1; 2; 3g,
we have

lim
n!1

ıkC1.n; ˛/
ık.n; ˛/

D lim
n!1

 
d.�dn/

1
d .F.n; k//

d�1
d .1C o.1//

d.�dn/
1
d .F.n; k C 1//

d�1
d .1C o.1//

!

D lim
n!1

�
log n C .k � 1/ log.log n/ � log.k � 1/Š

log n C k log.log n/ � log kŠ

� d�1
d

D lim
n!1

 
1C .k�1/ log.log n/

log n � log.k�1/Š
log n

1C k log.log n/
log n � log kŠ

log n

! d�1
d

D 1:

The proof of Corollary 115 is complete. ut
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Fig. 6.5 Analytical results for the phase transition width of k-connectivity (k D 1; 2; 3) in two-
dimensional space. The value of ˛ is fixed in each scenario

As an example, Fig. 6.5 shows the analytical results for the phase transition width
of k-connectivity (k D 1; 2; 3) in two-dimensional space, which are calculated
from (6.1.24) (with d D 2 and k D 1; 2; 3). Parameter ˛ is set to two typical values,
i.e., 0:4 (close to 0:5) and 0:01 (close to 0). Parameter n is set to be a large value
(i.e., 10; 000) so that the way in which ık.n; ˛/ varies with n can be observed. Note
that in the calculation, we omit the small order part, i.e., o.1/ in .1 C o.1// which
becomes vanishingly small as n becomes large.

Remark 116 Corollary 115 means that for large enough n, ıkC1.n; ˛/ 
 ık.n; ˛/. In
other words, the increase in the transmission range for making the probability that
the network is k-connected increase from almost zero to almost one is approximately
the same as that required for making the probability that the network is .k C 1/-
connected increase from almost zero to almost one.

Corollary 117 further compares the phase transition width for a k-connected
network in space of different dimensions.

Corollary 117 Consider a random geometric graph G.n; r.n// in <d (d D 1; 2; 3),
a fixed positive integer k > 0 and a positive real number ˛ 2 .0; 1

2
/. Ignore

the boundary effect except when d D 1. Then, for large n, the phase transition
width of k-connectivity ık.n; ˛/ in .j C 1/-dimensional space is larger than that in
j-dimensional space, where j D 1; 2.

Proof Let ı.d/k .n; ˛/ denote the phase transition width of k-connectivity in
d-dimensional space as we want to emphasize the dependence of ık.n; ˛/ on d.
Let j be either 1 or 2. Then, based on Corollary 113, we have
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ı
.jC1/
k .n; ˛/

ı
.j/
k .n; ˛/

D

log
�

log˛
log.1�˛/
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For any fixed positive integer k > 0 and j (either j D 1 or j D 2), there exists a
finite integer N.k; j/ such that

j

j C 1
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�
n

F.n; k/

� 1
j.jC1/

.1C o.1// > 1

for all n > N.k; j/. Hence, from (6.2.2), we have ı.jC1/k .n; ˛/ > ı
.j/
k .n; ˛/ (j D 1; 2)

for large n. The proof of Corollary 117 is complete. ut
As an example, Fig. 6.6 shows the analytical results for the phase transition width
of 1-connectivity in d-dimensional space (d D 1; 2; 3), which are calculated
using (6.1.24) (k D 1 and d D 1; 2; 3). Other settings are the same as those in
Fig. 6.5. In the calculation, we still omit the small order part o.1/ in .1 C o.1//.
We can see that ı.3/k .n; ˛/ > ı

.2/
k .n; ˛/ > ı

.1/
k .n; ˛/ when n is larger than a certain

threshold.
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Fig. 6.6 Analytical results for the phase transition width of 1-connectivity in d-dimensional space
(d D 1; 2; 3). The value of ˛ is fixed in each scenario
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Remark 118 Corollary 117 is an easy consequence of the main result in
Corollary 113. It indicates that in a higher dimensional network, more transmission
power/range is needed in order to make the probability that the network is
k-connected increase from almost zero to almost one.

Corollary 119 allows us to separately evaluate the impact of the four key parameters
˛, n, k, and d on the phase transition width.

Corollary 119 Consider a random geometric graph G.n; r.n// in <d (d D 1; 2; 3),
a fixed positive integer k > 0, and a positive real number ˛ 2 .0; 1

2
/. Ignore the

boundary effect except when d D 1. Then, for large n, the variation of the phase
transition width of k-connectivity ık.n; ˛/ with ˛ is separable from the variation
with n, k, and d in the sense that for some functions T and Y, there holds ık.n; ˛/ D
T.˛/Y.n; k; d/.

Proof Let ı.d/k .n; ˛/ denote the phase transition width of k-connectivity in
d-dimensional space as we want to emphasize the dependence of ık.n; ˛/ on d.
We assume that n is large enough such that the small order part o.1/ in (6.1.24) can
be ignored. Then, for any fixed n, k, and d, we have

ı
.d/
k .n; ˛/ 


log
�

log˛
log.1�˛/

�

d .�dn/
1
d .F.n; k//

d�1
d

D log

�
log˛

log.1 � ˛/
�

� 1

d .�dn/
1
d .F.n; k//

d�1
d

D T.˛/ � Y.n; k; d/

It is obvious that for any fixed n, k, and d, the term Y.n; k; d/ is fixed. In addition,
the term Y.n; k; d/ is independent of ˛. Therefore, the value of Y.n; k; d/ does not
change as ˛ varies, given that n, k, and d are fixed. If we know ı

.d/
k .n; ˛/ for any

˛ 2 .0; 1
2
/, we can derive the value of Y.n; k; d/, which leads us to derive ı.d/k .n; ˛/

for any other ˛ 2 .0; 1
2
/ with n, k and d fixed.

The proof of Corollary 119 is complete. ut
As an example, Fig. 6.7 shows the dependence of the phase transition width of
k-connectivity on ˛ in d-dimensional space (d D 1; 2; 3). These analytical results
are calculated from (6.1.24), and the small order part o.1/ in .1C o.1// is omitted.
We can see that the variation of ı.d/k .n; ˛/with ˛ has the same functional dependence
irrespective of n, k, and d, saving for a scaling constant defined by these latter
variables.

Remark 120 Corollary 119 means that if we learn the phase transition width for any
˛ 2 .0; 1

2
/, it is easy to obtain it for any other ˛ 2 .0; 1

2
/ given that n, k, and d are

fixed.
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Fig. 6.7 Analytical results for the phase transition width of k-connectivity versus ˛ in
d-dimensional space d D 1; 2; 3

In addition to the results for ık.n; ˛/ in terms of the transmission range, using
the same technique for proving Theorem 107 and Corollary 113, and the relation
between the average node degree and the transmission range, we can obtain the
following theorem for ı0

k.n; ˛/ in terms of the average node degree:

Theorem 121 Consider a random geometric graph G.n; r.n// in <d .d D 1; 2; 3/,
a fixed positive integer k > 0, and a positive real number ˛ 2 .0; 1

2
/. Ignore the

boundary effect except when d D 1. Then, for large n, the phase transition width of
k-connectivity ı0

k.n; ˛/ in terms of the average node degree is given by

ı0
k.n; ˛/ D

8<
:
2 log

�
log˛

log.1�˛/
�

C o.1/; d D 1I
log

�
log˛

log.1�˛/
�

C o.1/; d � 2
(6.2.3)

Proof For d D 2; 3, ignoring the boundary effect, the average node degree is
n�drd.n/. In the same way as shown in the proof of Theorem 107 and Corollary 113,
we can readily obtain the result given in (6.2.3) for d D 2; 3.
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For d D 1, the average node degree is 2nr.n/. Again, using the same method as
shown in the proof of Theorem 107 and Corollary 113, the result follows. ut
Theorem 121 indicates that for large enough n, the phase transition width ı0

k.n; ˛/
measured in the average node degree is only determined by ˛ and is independent of
n and k. In addition, the phase transition width ı0

k.n; ˛/ for d D 2 and d D 3 are the
same and are half of that for d D 1.

6.3 Simulation Studies of the Phase Transition Width

We have theoretically investigated the phase transition width of k-connectivity
ık.n; ˛/ for any positive integer k and for large n in d-dimensional space (d D
1; 2; 3) in the previous sections. As emphasized in our analysis, the results estab-
lished on the phase transition width only apply to large wireless networks. The
theoretical results will become increasingly accurate as the number of node n in the
network increases. In this section, we conduct simulations to investigate empirically
how large a network needs to be in order for the theoretical results to be considered
reasonably accurate and the errors between the theoretical results and those obtained
from simulations for a network of finite size.

In the simulations, we consider that a total of n nodes are randomly and
independently distributed in a unit cube Œ0; 1�d (d D 1; 2; 3) according to a uniform
distribution. All nodes have the same transmission range r.n/. Simulations become
very computationally intensive and time consuming for k > 3 and large values of n.
Therefore, we limited k to 3 and n to 1500 in the simulations.

Computing the Phase Transition Width ık.n; ˛/

Here we give a brief description of the determination of the phase transition width
of k-connectivity ık.n; ˛/ in simulations. The following are the main steps:

(1) For any given n, distribute n nodes randomly and independently in a unit
cube Œ0; 1�d (d D 1; 2; 3) following a uniform distribution. Then, we obtain
an instance of a random network with n nodes. For this network and each
k 2 f1; 2; 3g, find the corresponding minimum transmission range rk.i/ which
makes the network k-connected.

(2) Repeat step 1/ for a large number of times N (e.g., N D 10; 000), then we
obtain a set of N random network instances and three sets of N corresponding
minimum transmission ranges frk.i/; i D 1; 2; 3; : : : ;Ng for k D 1; 2 and 3,
respectively, where each set contains N transmission range values.

(3) Record each set of the N transmission ranges (i.e., frk.i/; i D 1; 2; 3; : : : ;Ng for
k D 1 or 2 or 3 in an ascending order, such that r0

k.i/ � r0
k.i C 1/ in the new

ordered sets for all i 2 Œ1;N � 1�.
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(4) For each k 2 f1; 2; 3g, let j D dN � ˛e and l D dN � .1 � ˛/e.
Then, the j-th (respectively, l-th) item r0

k.j/ (respectively, r0
k.l/) in the new

ordered set is approximately the minimum transmission range at which the
network is k-connected with probability ˛ (respectively, 1 � ˛). Finally, the
difference between these two transmission ranges Qık.n; ˛/ D r0

k.l/ � r0
k.j/ is

approximately the phase transition width over the probability interval Œ˛; 1�˛�
of k-connectivity. The larger N is, the more accurate the computed phase
transition width is. However, a large N will cost a large amount of time.

(5) Repeat steps 1/ to 4/ for different values of n to obtain the phase transition width
of k-connectivity for different values of n.

An important consideration in the simulation is to eliminate the boundary effect.
Since the simulation is performed in a bounded area (e.g., unit cube Œ0; 1�d), the
average node degree of nodes located near borders of the network area is lower
than that of the nodes located in the middle of the network area. The boundary
effect in the simulation will make a fair comparison between the simulation results
and the analytical results difficult because the analytical results are derived without
considering the boundary effect and that in a large network, the impact of boundary
effect will be small as demonstrated in our analysis in Chaps. 2 and 3.

Usually, there are two ways to eliminate the boundary effect. The first one is
to divide the entire simulation area into two disjoint subareas: a boundary subarea
Zout with a width of at least r.n/, and an inner subarea Zin. Figure 6.8 shows two
examples for two-dimensional networks.

Only nodes located in the inner subarea Zin are counted for computing statistics
of the simulations. In fact, the nodes in the boundary subarea Zout can be used as
relay nodes for building links with the nodes located in the inner subarea Zin, but
they are not counted for the statistics. One of the disadvantages of this technique is

Fig. 6.8 An illustration of the first method for eliminating the boundary effect in a two-
dimensional network area. Only nodes located in subarea Zin are counted for computing statistics
in the simulation
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Fig. 6.9 Phase transition width of 1-connectivity versus the number of nodes n in d-dimensional
space d D 1; 2; 3. The value of ˛ is fixed in each scenario. For the analytical results, the boundary
effect is ignored; for the simulation results, the boundary effect is eliminated by using the toroidal
distance metric

that the number of nodes located in the inner subarea Zin decreases as r.n/ increases
when the size of the network area is fixed.

The second approach to eliminate the boundary effect is to use the toroidal
distance metric introduced in Sect. 1.3.1.1.

Figure 6.9 shows the analytical results and the simulation results for the phase
transition width of 1-connectivity ı1.n; ˛/ in d-dimensional space d D 1; 2; 3. The
value of n is varied between 100 and 1500, ˛ is set to two typical values, i.e., 0:4
(close to 0:5) and 0:05 (close to 0). For the analytical results, the boundary effect
is ignored; when calculating the analytical results by (6.1.24), the small order part
is omitted, i.e., o.1/ in the term .1 C o.1// is ignored. For the simulation results,
the boundary effect is eliminated by using the toroidal distance metric. We can see
that for each d 2 f1; 2; 3g, the phase transition width of 1-connectivity decreases
as n grows. It is obvious that there is significant discrepancy between the analytical
results and the simulation results for small values of n (e.g., n < 200). This is
because the small order part o.1/ in the analytical results is significant when n is
small, especially when n is comparable with kŠ However, the small order part o.1/
goes to zero as n goes to infinity. So the discrepancy decreases as n increases. We
can see that although there is significant discrepancy when n is not large enough,
the simulation results exhibit the same decreasing trend as the analytical results. We
can also see that the phase transition width of 1-connectivity is larger for d D 3 than
that for d D 2, and similarly, the phase transition width is larger for d D 2 than that
for d D 1, which validate Corollary 117. This means that in a higher dimensional
network, more transmission power/range is needed in order to make the probability
that the network is k-connected transit from almost zero to almost one.

Figure 6.10 shows the analytical results and the simulation results for the phase
transition width of k-connectivity ık.n; ˛/ (k D 1; 2; 3) in two-dimensional space.
Other settings are the same as those in Fig. 6.9. We can see that when d D 2, the
phase transition width of k-connectivity decreases as n increases. The figure also
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Fig. 6.10 Phase transition width of k-connectivity (k D 1; 2; 3) versus the number of nodes n
in 2-dimensional space. The value of ˛ is fixed in each scenario. For the analytical results, the
boundary effect is ignored; for the simulation results, the boundary effect is eliminated by using
the toroidal distance metric
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1; 2; 3. The value of n is fixed in each scenario. For the analytical results, the boundary effect is
ignored; for the simulation results, the boundary effect is eliminated by using the toroidal distance
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indicates that the difference between ık.n; ˛/ and ıkC1.n; ˛/ becomes smaller as
n gets larger. It means that ık.n; ˛/ 
 ıkC1.n; ˛/ when n is large enough, which
is consistent with Corollary 115. In other words, the transmission power/range
required for making the probability that the network is k-connected increase
from almost zero to almost one is approximately the same as the transmission
power/range required for making the probability that the network is .k C 1/-
connected increase from almost zero to almost one.

Figure 6.11 shows the dependence of the phase transition width of k-connectivity
on ˛ given that n, k, and d are fixed. We can see that the variation of ık.n; ˛/ with
˛ has the same functional dependence irrespective of n, k, and d. This verifies
Corollary 119. We can also see that for fixed n, k, and d, ık.n; ˛/ decreases as
˛ increases. In addition, the discrepancy between the analytical results and the
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simulation results becomes significant when ˛ is very small. The reason for this
is that the small order part o.1/ in the analytical results becomes significant when ˛
is very close to zero.

Simulation results also suggest that in order to achieve a good accuracy, n should
be larger than 200 when k D 1 and d D 1; and n should be larger than 600 when
k � 3 and d D 2; 3.

6.4 Notes and Further Readings

In this chapter, we investigated the phase transition behavior of k-connectivity with
respect to the transmission range of nodes in large wireless networks, where a
total of n nodes are randomly and uniformly distributed in a unit cube Œ0; 1�d, and
each node has a uniform transmission range r.n/. The phase transition behavior
is associated with the transmission range, thus the transmission power of nodes.
It is desirable to control the transmission range to be just above the right boundary
of the phase transition region so that the network achieves k-connectivity with
a high probability while minimizing the energy consumption. For large n, we
derived a general analytical formula for calculating the phase transition width of
k-connectivity for any fixed positive integer k in d-dimensional space (d D 1; 2; 3).
We also derived an analytical formula for a modified version of the phase transition
width in terms of the average node degree. We further conducted simulations to
validate our theoretical analysis. Our results were derived for large enough n. Hence,
they hold only when n is sufficiently large. When n is a small number (especially
when n is comparable with kŠ), our results do not hold any more. Simulation results
showed that n should be larger than 200 when k D 1 and d D 1; and n should
be larger than 600 when k � 3 and d D 2; 3. These results are of practical value
in the self-configuration of large wireless networks, and provide us useful design
principles for large wireless networks as well.

There has been extensive work on the phase transition phenomenon in the past
several years. Extensive results have been obtained for Bernoulli random graphs
[27]. Usually, a Bernoulli random graph is obtained by randomly distributing n
vertices and connecting any pair of two vertices with probability p.n/, independently
of all other pairs of vertices and the Euclidean distance between the two vertices.
Friedgut et al. [72] proved that all monotone graph properties have a sharp
threshold in the Bernoulli random graph, and the threshold width is ı.n; "/ D
O.log "�1= log n/. However, the techniques used for Bernoulli random graphs
cannot be applied straightforwardly to random geometric graphs, because in random
geometric graphs, the probability of existence of a link between two nodes is
dependent on their Euclidean distance.

In [122], Krishnamachari et al. demonstrated the ubiquity of the phase transition
phenomenon for monotone graph properties in Bernoulli random graphs and random
geometric graphs, and presented some examples in wireless ad hoc networks
where a phase transition phenomenon exists, such as connectivity, coordination
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and probabilistic flooding for route discovery. In [121], Krishnamachari et al.
investigated three distributed configuration tasks in large wireless networks, i.e.,
partition into coordinating cliques, Hamiltonian cycle formation and conflict-free
channel allocation. They showed that these tasks undergo phase transitions with
respect to the transmission range, and argued that phase transition analysis is useful
for quantifying the critical range of energy and bandwidth resources needed for
a scalable performance of self-configuring wireless networks. In [173], Ravelo-
manana showed that the coverage property is subject to abrupt phase transition
in three-dimensional wireless sensor networks. In [8], Aspnes et al. exhibited
with simulation evidence the phase transition for localizability in wireless sensor
networks. In [170], Raghavan et al. investigated phase transition behaviors for
the emergence of a giant component in wireless sensor networks and obtained an
expression for the critical radius at which the network has a giant component with
high probability.

In [82], Goel et al. proved that all monotone properties in random geometric
graph have a sharp threshold. Furthermore, the threshold width for random geomet-
ric graphs is much sharper than that for Bernoulli random graphs. They showed that
for every monotone property, the threshold width ı.n; "/ is

ı.n; "/ D
8
<
:

O.log1=2 1
"
=n1=2/; d D 1

O.log3=4 n=n1=2/; d D 2

O.log1=d n=n1=d/; d � 3

(6.4.1)

In [97], Han et al. found that while the results in [82] were derived for a general
monotone property, they may be further sharpened for certain specific monotone
graph properties such as connectivity. They were seeking to improve the results
given by Goel for the property of connectivity in one and two-dimensional spaces,
and derived the phase transition width for large n, i.e.,

ı1.n; "/ D
( C."/

n C o.n�1/; d D 1
C."/
2

q
1

�n log n .1C o.1//; d D 2
(6.4.2)

where C."/ D log. log "
log.1�"/ /. The results are much sharper than the results given

in (6.4.1), which indicates that the results in (6.4.1) can be quite conservative for
specific monotone properties.



Chapter 7
Connectivity of Large Wireless Networks
in the Presence of Interference

Abstract In this chapter, we investigate connectivity of large wireless networks in
the presence of interference. Different from previous chapters where connections
are assumed to be independent, the presence of interference implies that signals
transmitted at the same time will mutually interfere with each other. Hence, con-
nections become mutually correlated. Specifically, consider the extended network
model and the SINR connection model, we establish a sufficient condition and a
necessary condition, i.e., an upper bound and a lower bound, on the transmission
power required for a network adopting the carrier sense multiple access protocol
to be asymptotically almost surely connected. The two bounds differ by a constant
factor only. It is shown that the transmission power only needs to be increased by
a constant factor to combat interference and maintain connectivity compared with
that considering a unit disk connection model without interference.

In this chapter, we investigate connectivity of large wireless networks in the
presence of interference. Due to the nature of wireless communications, signals
transmitted at the same time will mutually interfere with each other. The SINR
(signal to interference plus noise) connection model, which has been introduced
in Sect. 1.1.5 and recited below for convenience, has been widely used to capture
the impact of interference on network connectivity.

7.1 Connections in Carrier Sense Multiple Access
(CSMA) Networks

Under the SINR connection model, the existence of a directional link between
a pair of nodes is determined by the strength of the received signal from the
desired transmitter, the interference caused by other concurrent transmissions and
the background noise. Therefore, the existence of a connection between a pair of
nodes is no longer independent of the existence of a connection between another
distinct pair of nodes. This distinction sets the SINR connection model apart from
the random connection model, the unit disk connection model, and the log-normal
connection model discussed in the previous chapters.
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Assume that all nodes transmit with the same power P and let xk; k 2 � , be the
location of node k, where � represents the set of indices of all nodes in the network.
A node j can successfully receive the transmitted signal from a node i (i.e., node j is
directly connected to node i) if the SINR at xj, denoted by SINR

�
xi ! xj

�
, is above

a prescribed threshold ˇ, i.e.,

SINR
�
xi ! xj

� D P`
�
xi; xj

�

N0 C �
P

k2Ti

P`
�
xk; xj

� � ˇ (7.1.1)

where Ti � � denotes the subset of nodes that are transmitting at the same time as
node i and N0 is the background noise power. The function `

�
xi; xj

�
is the power

attenuation from xi to xj. The coefficient 0 � � � 1 is the inverse of the processing
gain of the system and it weighs the impact of interference. In a broadband system
using CDMA (Code Division Multiple Access), � depends on the orthogonality
between codes used during concurrent transmissions and is smaller than 1; in a
narrow-band system, � is equal to 1 [57, 94].

Similarly, node i can receive from node j (i.e., node i is directly connected to
node j) if and only if

SINR
�
xj ! xi

� D P`
�
xj; xi

�

N0 C �
P

k2Tj

P` .xk; xi/
� ˇ (7.1.2)

Therefore, node i and node j are directly connected, i.e., a bidirectional or
undirectional link exists between node i and node j, if and only if both (7.1.1)
and (7.1.2) are satisfied.

A major difficulty in moving from the random connection model, including the
unit disk connection model and the log-normal connection model as two important
special cases, to the SINR connection model is that under the random connection
model, connections are assumed to be independent, i.e., the event that a pair of
nodes are directly connected and the event that another distinct pair of nodes are
directly connected are independent. This independence assumption on connections
is a critical assumption in the analysis of connectivity under the random connection
model. In the SINR model however, due to the presence of interference, the
existence of a direct connection between a pair of nodes depends on both the
location and the activities of other nodes in the network.

In [57] Dousse et al. used the above SINR connection model to analyze the
impact of interference on connectivity from the percolation perspective. They con-
sidered a network where all nodes are distributed in <2 following a homogeneous
Poisson point process with a constant density � and an attenuation function ` with
bounded support. By letting Tj D �= fi; jg, i.e., all other nodes in the network
transmit simultaneously with node i irrespective of their relative location to xi and
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xj, it is shown that there exists a very small positive constant � 0 such that if � > � 0
there is no infinite connected component in the network, i.e., the network does
not percolate. Furthermore, when � < � 0, there exists 0 < �0 < 1 such that
percolation can occur when � > �0. An improved result by the same authors in
[58] shows that under the more general conditions that � > �c and the attenuation
function has unbounded support, percolation occurs when � < � 0. Here, �c is
the critical node density above which the network with � D 0 (i.e., equivalent
to the unit disk connection model without interference) percolates [71, p48]. The
above results suggest that percolation under the SINR model can happen if and
only if � is sufficiently small. In their network setting, it is assumed that each
node transmits randomly and independently, irrespective of any nearby transmitter.
This corresponds to the ALOHA-type multiple access scheme [94]. In the ALOHA
multiple access scheme, if a node has data to transmit, the node will transmit the data
independently and irrespective of simultaneous transmissions from other nearby
transmitters. If more than two nearby nodes transmit at the same time, a collision
occurs and all transmitting nodes need to retransmit later. Since collisions can occur
and data may have to be sent again, ALOHA can result in low utilization of the
communications channel, especially when the density of transmitters is high. This
ALOHA multiple access strategy has therefore become obsolete [74, 123].

The more advanced multiple access strategies, e.g., CSMA (Carrier Sense
Multiple Access) and CSMA/CD (Carrier Sense Multiple Access with Collision
Detection) [172], have become prevalent with widespread adoption. The general
idea of CSMA schemes is that nearby nodes will not be scheduled to transmit
simultaneously. Therefore, it is natural to expect that CSMA schemes could improve
the performance of ALOHA schemes by alleviating interference, particularly under
heavy traffic.

Note that in the ALOHA multiple access scheme, because each node transmits
independently of other nodes, the subset of transmitters can be modeled by a Poisson
point process if all nodes in the network are distributed following a homogeneous
Poisson point process. In the CSMA multiple access scheme however, because a
node’s activity depends on the activities of nearby nodes, the subset of transmitters
no longer follows a Poisson point process even if all nodes are distributed following
a homogeneous Poisson point process.

In this chapter, we analyze connectivity of wireless CSMA networks under
the SINR model. Specifically, we consider a network with n nodes uniformly,

independently and identically distributed on a square
h
�

p
n
2
;

p
n
2

i2
, i.e., the so-called

extended network model, where the network size scales with the network area while
the node density is fixed. It is assumed that all nodes use the same transmission
power P and there is always a packet at a node waiting to be transmitted. This later
assumption allows us to focus on the network property without being disturbed by
other factors, e.g., traffic distribution.
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We consider that the attenuation function ` in (7.1.1) and (7.1.2) only depends
on Euclidean distance, viz., ` W <C ! <C, and is a power-law function [57, 58]:

` .s/ D s�˛ (7.1.3)

where s represents the Euclidean distance between a pair of nodes and ˛ is the
path-loss exponent, which typically varies from 2 to 6 [172, p139]. We assume
that ˛ > 2. The above assumptions on the attenuation function are widely used
[57, 94, 95] and are also supported by measurement studies [172]. The results in
this chapter can be readily extended to the situation where ` .s/ D min f1; s�˛g at the
expense of some lengthy but mostly straightforward discussions on the special case
when s�˛ < 1. The path loss model ` .s/ D min f1; s�˛g helps to avoid singularity
or unreasonably large signal strength gains that may occur as s approaches 0. As
commonly done in the connectivity analysis [57, 58, 71, 92, 165], the impact
of small-scale fading is ignored and only bidirectional communication links are
considered. Furthermore, since in dense wireless networks the background noise
is typically negligibly small [94, 95], in the following analysis, we ignore the
background noise N0 in (7.1.1) and (7.1.2). The result can be readily extended to
include the impact of background noise. In addition, we consider that all transmitters
are using the same channel, i.e., � D 1, which corresponds to a narrow-band system
[57, 94, 95].

In CSMA networks, two nodes located at xi and xj, respectively, are allowed to
transmit at the same time if and only if they cannot detect each other’s transmission,
i.e., both P`

�
xi; xj

�
and P`

�
xj; xi

�
in (7.1.1) and (7.1.2) are under a certain detection

threshold Pth. It then follows from (7.1.3) that the carrier-sensing range Rc, which
determines the minimum Euclidean distance between two simultaneously active
transmitters, is given by

Rc D .P=Pth/
1=˛ (7.1.4)

Alternatively, one may consider a scenario where a node can only transmit when
the aggregate interference is below the threshold Pth. This scenario forms a trivial
extension of the situation considered in this chapter.

7.2 Sufficient Condition for Almost Surely Connected CSMA
Networks

A major challenge in dealing with connectivity analysis under the SINR model is
that under the SINR connection model, the existence of a direct connection between
a pair of nodes depends on both the location and activities of other nodes in the
network, i.e., connections are correlated. In this chapter, we resort to a de-coupling
approach to handle the connection correlations. More specifically, we first establish
an upper bound on the aggregate interference experienced by any receiver in CSMA



7.2 Sufficient Condition for Almost Surely Connected CSMA Networks 179

networks. On that basis, we show that for an arbitrarily chosen SINR threshold,
there exists a transmission range R0 such that a pair of nodes are directly connected
if their Euclidean distance is smaller than or equal to R0. Given the above results,
we can then use existing results on network connectivity obtained under the unit
disk connection model to analyze network connectivity under the SINR connection
model.

7.2.1 An Upper Bound on Interference and the Associated
Transmission Range

A major result of this section is summarized in the following theorem, which
provides an upper bound on the aggregate interference experienced by any receiver
in CSMA networks.

Theorem 122 Consider a CSMA network with nodes distributed arbitrarily on a
finite area in <2 where the carrier-sensing range is Rc, which is given by (7.1.4), and
each node transmits at the same power P. Assume that the attenuation function l is
a power-law function given in (7.1.3). Denote by r0 the Euclidean distance between
a receiver and its nearest transmitter in the network, which is also the intended
transmitter for the receiver. When r0 < Rc, the maximum interference experienced
by the receiver is smaller than or equal to N .r0/ D N1 .r0/C N2, where

N1 .r0/ D
4P
�
5
p
3

4
Rc � r0

�1�˛ �p
3
4
.3˛ � 1/Rc � r0

�

R2c .˛ � 1/ .˛ � 2/

C 3P

.Rc � r0/
˛ C 3P�p

3Rc � r0
�˛ C 3P

�
3
2
Rc � r0

�1�˛
.˛ � 1/Rc

(7.2.1)

N2 D 3P

R˛c
C 3P. 3

2
/1�˛

.˛ � 1/R˛c
C 3P�p

3Rc

�˛

C 3P
�
5
4

�1�˛
.3˛ � 1/

.˛ � 1/ .˛ � 2/
�p

3Rc

�˛ (7.2.2)

Proof We first note that a network on a finite area, denoted by A � <2, can always
be obtained from a network on an infinite area <2 with the same node density
and distribution by removing these nodes outside A. Such removal process will
also remove all transmitters outside A. Therefore, it follows that the interference
experienced by a receiver in A is less than or equal to the interference experienced
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Fig. 7.1 An illustration of the densest equal-circle packing

by its counterpart in an infinite network in <2. It then suffices to show that the
interference experienced by a receiver in an infinite network in <2 is bounded
by N .r0/.

Consider that an arbitrary receiver z is located at a Euclidean distance r0 from
its closest transmitter w, which is also the intended transmitter for z. We construct a
coordinate system such that the origin of the coordinate system is at w and z is on
the Cy axis, as shown in Fig. 7.1.

In a CSMA network, any two simultaneously active transmitters are separated
by at least a Euclidean distance Rc. Draw a circle of radius Rc=2 centered at each
simultaneously active transmitter. Then, the two circles centered at two closest
transmitters cannot overlap except at single point. Therefore, the problem of
determining the maximum interference can be transformed into one that determining
the maximum number of equal-radius nonoverlapping circles that can be packed into
<2. In [46], the problem of the densest circle packing is studied. It was shown that
for circles with equal radius, the densest circle packing, i.e., fitting the maximum
number of nonoverlapping circles into <2, is obtained by placing the circle centers
at the vertices of a hexagonal lattice [46, p. 8], as shown in Fig. 7.1.

Partition the vertices of the hexagonal lattice into tiers of increasing distances
from the origin. The six vertices of the first tier are within a Euclidean distance
Rc to the origin. The 6m vertices in the mth tier are located at distances within
..m � 1/Rc;mRc� from the origin.
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Let I1 be the total interference caused by transmitters, hereinafter referred to
as interferers in this subsection, above the x-axis at node z. Using the triangle
inequality, it follows that kxi � zk � kxik � r0 where xi is the location of an
interferer above the x-axis. Using some straightforward geometric analysis, it can
be shown that among the 6m interferers in the mth group, half of them are located
above the x-axis. Among these interferers in the mth group above the x-axis, three of
them are at a Euclidean distance of exactly mRc from the origin and the remaining

3.m�1/ interferers are at Euclidean distances within Œ
p
3
2

mRc; mRc�. It then follows
from (7.1.3) that

I1 �
1X

mD1

0
B@ 3 .m � 1/P�p

3
2

mRc � r0
�˛ C 3P

.mRc � r0/
˛

1
CA (7.2.3)

Consider the first summation in (7.2.3). Let Um; m D 3; : : : ;1, be random
variables uniformly, identically, independently distributed in Œm � 1=2; m C 1=2�.
It follows from the convexity of 3.m�1/P�p

3
2 mRc�r0

�˛ and Jensen’s inequality (used in the

second step) that

1X
mD3

3 .m � 1/P�p
3
2

mRc � r0
�˛ (7.2.4)

D
1X

mD3

3 .E .Um/ � 1/P�p
3
2

E .Um/Rc � r0
�˛

�
1X

mD3
E

0
B@ 3 .Um � 1/P�p

3
2

UmRc � r0
�˛

1
CA

D
1X

mD3

Z mC1=2

m�1=2
3 .x � 1/P�p
3
2

xRc � r0
�˛ dx

D 3P
Z 1

5=2

.x � 1/
 p

3

2
xRc � r0

!�˛
dx

D
4P
�
5
p
3

4
Rc � r0

�1�˛ �p
3
4
.3˛ � 1/Rc � r0

�

R2c .˛ � 1/ .˛ � 2/ (7.2.5)

Likewise, it can also be shown that

1X
mD2

3P

.mRc � r0/
˛ � 3P

�
3
2
Rc � r0

�1�˛
.˛ � 1/Rc

(7.2.6)
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As a result of (7.2.3), (7.2.5), (7.2.6), and (7.2.1), it follows that

I1 � N1 .r0/ (7.2.7)

Now we consider the total interference caused by interferers below the x-axis at
node z, denoted by I2. Let xi be the location of an interferer below the x-axis, it
follows from the triangle inequality that kxi � zk � kxik. Therefore,

I2 �
1X

mD1

0
B@ 3P

.mRc/
˛ C 3 .m � 1/P�p

3
2

mRc

�˛

1
CA

D 3P

R˛c
C 3P. 3

2
/1�˛

.˛ � 1/R˛c
C 3P�p

3Rc

�˛

C 3P

 p
3

2
Rc

!�˛ 1X
mD3

.m � 1/
m˛

(7.2.8)

� 3P

R˛c
C 3P. 3

2
/1�˛

.˛ � 1/R˛c
C 3P�p

3Rc

�˛

C 3P
�
5
4

�1�˛
.3˛ � 1/

.˛ � 1/ .˛ � 2/
�p

3Rc

�˛ (7.2.9)

Combining (7.2.7) and (7.2.9), Theorem 122 is proved. ut
Remark 123 The upper bound in Theorem 122 is valid for any node distribution. In
a sparse network or a network where nodes are placed in a coordinated or planned
manner, by replacing the carrier-sensing range with the minimum separation
distance between a pair of simultaneously active transmitters, Theorem 122 can be
readily extended to be applicable for such situation.

Remark 124 The assumption that r0 < Rc is valid in most wireless systems
which not only require the SINR from a transmitter to a receiver to be above a
certain threshold but also require the received signal from the transmitter to be of
sufficiently good quality. However Theorem 122 does not critically depend on the
assumption. In the situation that r0 � Rc, so long as there exists a positive integer c
such that r0 < cRc, the upper bound in Theorem 122 can be revised to accommodate
the situation by changing the range of the summation in (7.2.4) and (7.2.6) from
Œ3;1� and Œ2;1� to Œc C 2;1� and Œc C 1;1� respectively and revising (7.2.7)
accordingly.

The following result can be obtained as a ready consequence of Theorem 122.
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Corollary 125 Under the same settings as in Theorem 122, assume that the SINR
threshold required for a successful transmission is ˇ. There exists a transmission
range R0 < Rc such that a pair of nodes are directly connected if their Euclidean
distance is smaller than or equal to R0. Furthermore, R0 is given implicitly in the
following equation

PR�˛
0

N .R0/
D ˇ (7.2.10)

Proof In Theorem 122, we have established that the interference experienced by
a receiver z at a Euclidean distance r0 from its transmitter w, denoted by I .r0/, is
upper bounded by N .r0/. From (7.2.1) and (7.2.2), it can be shown that for r0 < Rc,
N .r0/ is an increasing function of r0. Note also that Pr�˛

0 is a decreasing function of
r0. Therefore, using (7.2.10), the SINR of a receiver at r0 � R0 from its transmitter,
denoted by SINR .r0/, satisfies

SINR .r0/ D Pr�˛
0

I .r0/
� Pr�˛

0

N .r0/
� ˇ

i.e., the SINR at the receiver is greater than or equal to the threshold ˇ.
By symmetry, when the packet transmission occurs in the opposite direction, i.e.,

from z to w, the interference generated by the set of nodes that are transmitting at
the same time as z is also upper bounded by N .r0/. Therefore, the SINR at w is also
greater than or equal to ˇ.

Finally, the existence of a (unique) solution to (7.2.10) can be proved by noting
that Pr�˛

0

N.r0/
! 1 as r0 ! 0, Pr�˛

0

N.r0/
! 0 as r0 ! R�

c and that Pr�˛
0

N.r0/
is a monotonically

decreasing function of r0. ut
Corollary 125 relates the transmission range R0 to the transmission power P. It
allows the computation of R0 given the transmission power P and the converse.
A more convenient way to study the relation between P and R0 is by noting that
P D PthR˛c and considering R0 as a function of Rc. Using (7.2.1) and (7.2.2), (7.2.10)
can be rewritten as

1

ˇ
D
4
�
5
p
3

4
Rc
R0

� 1
�1�˛ �p

3
4
.3˛ � 1/ Rc

R0
� 1

�

�
Rc
R0

�2
.˛ � 1/ .˛ � 2/

C 3�
Rc
R0

� 1
�˛ C 3�p

3 Rc
R0

� 1
�˛ C

3
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3Rc
2R0

� 1
�1�˛

.˛ � 1/ Rc
R0

C 3�
Rc
R0

�˛ C 3. 3
2
/1�˛�

Rc
R0

�˛
.˛ � 1/

C 3�p
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Fig. 7.2 Variation of the ratio Rc
R0

with the SINR requirement ˇ when the path loss exponent ˛ is
equal to 4, 5, 6, respectively

C 3
�
5
4

�1�˛
.3˛ � 1/

.˛ � 1/ .˛ � 2/
�p

3 Rc
R0

�˛ (7.2.11)

Figure 7.2 shows the ratio Rc
R0

as a function of the SINR requirement ˇ. Different
curves represent different choices of the path loss exponent ˛. For instance, when
ˇ D 20 and ˛ D 4, we have Rc

R0
D 4.

7.2.2 A Sufficient Condition for Connectivity

Based on the transmission range R0 derived in Corollary 125, we obtain another
main result of this section:

Theorem 126 Consider a CSMA network with a total of n nodes identically and

independently distributed on a square
h
�

p
n
2
;

p
n
2

i2
following a uniform distribution.

A pair of nodes are directly connected if and only if both (7.1.1) and (7.1.2) (� D 1

and N0 D 0 in (7.1.1) and (7.1.2) ) are satisfied. Furthermore, the attenuation
function l W <C ! <C in (7.1.1) and (7.1.2) is a power-law function given in (7.1.3)
and the carrier-sensing condition is given in (7.1.4). As n ! 1, the above network
is asymptotically almost surely connected if the transmission power

P D Pthb˛1 .log n C c .n//
˛
2 (7.2.12)
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where b1 D b0=
p
� , c .n/ ! 1 as n ! 1 and 1 > b0 > 1 is the solution to the

following equation:

1

ˇ
D
4
�
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p
3

4
x � 1

�1�˛ �p
3
4
.3˛ � 1/ x � 1

�
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C 3

.x � 1/˛ C 3�p
3x � 1

�˛ C 3
�
3
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x � 1�1�˛
.˛ � 1/ x
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x˛
C 3. 3
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/1�˛

x˛ .˛ � 1/ C 3�p
3x
�˛

C 3
�
5
4

�1�˛
.3˛ � 1/

.˛ � 1/ .˛ � 2/
�p

3x
�˛ (7.2.13)

Proof We first show that there is a unique solution to (7.2.13) for any value of ˇ>0.
Let f .x/ be a function of x and f .x/ is equal to the right-hand side of (7.2.13). It
can be shown that f .x/ is a monotonically decreasing function of x for x > 1. Then,
noting that f .x/ ! 1 as x ! 1 and f .x/ ! 0 as x ! 1, it follows that for any
value of ˇ > 0, there exists a unique 1 > b0 > 0 such that f .b0/ D 1

ˇ
.

Using the results in Chap. 3 with proper scaling and coupling, it can be shown
that for a network with a total of n nodes identically and independently distributed
on a

p
n�p

n square following a uniform distribution and a pair of nodes are directly
connected if and only if their Euclidean distance is smaller than or equal to a given
threshold r .n/ (i.e., the unit disk connection model), the network is asymptotically

almost surely connected as n ! 1 if and only if r .n/ D
q

log nCc.n/
�

where c .n/ !
1 as n ! 1. Using the above result, (7.2.11) (letting b0 D Rc

R0
), Corollary 125 and

Theorem 122, the result in the theorem follows. ut
The implication of Theorem 126 is that in CSMA networks, even when the impact of
mutual interference is considered, there exists a scheduling algorithm that allows as
many as possible concurrent transmissions, and meanwhile, allows any pair of nodes
in the network to be connected, in the sense that they can exchange packets, under an
arbitrarily high SINR requirement. This result is in contrast to the ALOHA networks
considered in [57, 58] in which percolation only occurs for a sufficiently small � .
Furthermore, it is evident from (7.2.12) that the transmission power only needs to
be increased by a constant factor to combat interference and maintain connectivity
compared with that in the unit disk connection model, in which no interference is
considered.
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7.3 Necessary Condition for Almost Surely Connected
CSMA Networks

Section 7.2 derived a sufficient condition for a connected CSMA network as n ! 1
in the presence of interference. A logical question after the results in Sect. 7.2 is:
what is the necessary condition for a connected CSMA network as n ! 1 in the
presence of interference.

In a CSMA network, any set of nodes can transmit simultaneously as long
as the carrier-sensing constraints are satisfied. Furthermore, in a large network,
scheduling is often performed in a distributed manner. In the absence of accurate
global knowledge on which particular set of nodes are simultaneously transmitting
at a particular time instant, it is natural that a node sets its transmission power to
be above the minimum transmission power required for a CSMA network to be
connected under any scheduling algorithm. Denote that minimum power by P0

�

where� represents the set of all scheduling algorithms satisfying the carrier-sensing
constraints. In this section, we investigate P0

�, i.e., a necessary condition required for
the same CSMA network considered in Sect. 7.2 to be connected as n ! 1. This
is done by analyzing the transmission power required for the above CSMA network
to have no isolated node, where having no isolated node is a necessary condition for
a connected network.

With a bit abuse of terminology, we call a set of nodes that can simultaneously
transmit while satisfying the carrier-sensing constraints as an independent set.
Obviously the independent set depends on the transmission power of nodes. As
the transmission power decreases, other things being equal, Rc will decrease and the
number of nodes that can simultaneously transmit will increase.

Denote by �0 a set of nodes that are scheduled to transmit simultaneously in the
CSMA network. It follows that �0 must be an independent set. Given �0, a node v 2
�0 is isolated if there is no node in the network that can successfully receive from
it when the set of nodes in �0 are simultaneously transmitting. Furthermore, as
explained in the last paragraph, the independent set depends on the transmission
power. Let �0 be an independent set when the transmission power is P1. When the
transmission power is reduced from P1 to P2, where P2 � P1, if �0 is an independent
set at power level P1, it will also be an independent set at power level P2. Based on
the above observation and using (7.1.1) and (7.1.2), which suggests that when the
set of active transmitters remain the same, a reduction in the transmission power
will cause a decrease in the SINR, it readily follows that if a node v 2 �0 is isolated
at power level P1 when the set of active transmitters is �0, it will also be isolated at
power level P2 when the set of active transmitters is �0. Therefore, the probability
that an arbitrary node is isolated is a nonincreasing function of the transmission
power. It then follows that the probability that a network has no isolated node is a
nonincreasing function of the transmission power.

Denote by P� (respectively, P!) the minimum transmission power required for
the network to have no isolated node under any scheduling algorithm (respectively,
under a particular scheduling algorithm !). Based on the above discussions, we have
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P0
� � P� D max

!2� P! and P� � P!; !2� (7.3.1)

Now the task becomes constructing a particular algorithm which gives as large
P! as possible, i.e., a tight lower bound on P0

�. In the following, we construct such
scheduling algorithm ! heuristically.

7.3.1 Construction of Scheduling Algorithm for CSMA
Networks

It is obvious that such a scheduling algorithm ! first needs to satisfy the constraint
on the minimum separation distance between simultaneously active transmitters
imposed by the carrier-sensing requirement. Meanwhile, the algorithm ! needs to
schedule as many concurrent transmissions as possible to maximize interference,
hence P! .

We first start with a technical lemma that is required for the construction of the
scheduling algorithm !.

Lemma 127 Partition the square
h
�

p
n
2
;

p
n
2

i2
into nonoverlapping hexagons of

equal side length sn such that the origin o coincides with the center of a hexagon
and two diagonal vertices of this hexagon, whose Euclidean distance is 2sn, are
located on y axis, as shown in Fig. 7.3. Furthermore, we call a hexagon an interior

hexagon if it is entirely contained in the square
h
�

p
n
2
;

p
n
2

i2
. When

sn D
r
2 log n

5
(7.3.2)

asymptotically almost surely each interior hexagon is occupied by at least one node
as n ! 1.

Proof Because nodes are identically and independently distributed following a
uniform distribution, for an arbitrary interior hexagon, the probability that it is

empty is given by
�
1 � 3

p
3s2n
2n

�n
. Let �i be the event that an interior hexagon i is

empty, where i 2 „ and „ denotes the set of indices of all interior hexagons. Since

each interior hexagon occupies an area of 3
p
3s2n
2

, there are at most 2n
3
p
3s2n

interior

hexagons. Therefore, j„j � 2n
3
p
3s2n

.

Denote by An the event that there is at least one empty interior hexagon inh
�

p
n
2
;

p
n
2

i2
. It follows that

Pr .An/ D Pr

 [
i2„
�i

!
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Fig. 7.3 An illustration of the hexagonal partition of the network area. The shaded hexagons
represent simultaneously active hexagons, where k D 3

Using union bound, we have

Pr

 [
i2„
�i

!
�
X
i2„

Pr .�i/ �
2n
�
1 � 3

p
3s2n
2n

�n

3
p
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Using the fact that 1 � x � exp .�x/ and sn D
q

log np
3

, we have

lim
n!1 Pr .An/ � lim

n!1
2ne� 3

p
3s2n
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3

5 log n
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Therefore, it can be concluded that asymptotically almost surely every interior
hexagon is occupied by at least one node as n ! 1. ut

Hereinafter, we declare a hexagon to be active if there is a node transmitting in it.
In the following, we consider a scheduling algorithm ! that uses the hexagons as
the basic unit for scheduling and allows at most one node in a hexagon to be active
at any time instant. Due to the minimum separation distance constraint between
simultaneously active transmitters in CSMA networks, any two simultaneously
active hexagons should be separated by a minimum Euclidean distance (depending
on the carrier-sensing range given in (7.1.4)). Let k be an integer, which represents
the minimum number of inactive hexagons between two closest simultaneously
active hexagons (see Fig. 7.3). Any two nodes inside the two active hexagons are
separated by a Euclidean distance of at least

p
3ksn. With a bit twist of terminology,

we further define a maximal independent set for scheduling to be the set of hexagons
that (a) includes as many hexagons as possible; and (b) closest hexagons in the set
are separated by exactly k adjacent hexagons. Figure 7.3 illustrates such a maximal
independent set with k D 3. Note that according to the earlier definition of maximal
independent set, the number of maximal independent sets is finite and depends on k
only.

The scheduling algorithm ! is defined such that only hexagons belonging to
the same maximal independent set can be active at the same time. No nodes in the
same hexagon can be scheduled to transmit simultaneously. Note that if a hexagon

intersecting the border of
h
�

p
n
2
;

p
n
2

i2
has node(s) in it, it is also included into the

maximal independent set and its node(s) are treated in the same way as other nodes
in interior hexagons. As a consequence of the CSMA constraint and the definition
of k:

p
3ksn � Rc � p

3 .k � 1/ sn (7.3.3)

7.3.2 Probability of Having No Isolated Node

In this subsection, we derive a lower bound on P! for the scheduling algorithm
! defined in the previous subsection. This is done by analyzing the event that the
network has no isolated node under the scheduling algorithm !.

We first give a lemma, which will be used in the later analysis.

Lemma 128 Consider a triangular lattice with unit side length and having a vertex
located at the origin o. Define the 1st tier of points to be the six points placed at the
vertices of the triangular lattice at a distance of 1 to the origin o. Let the mth tier
of points be the 6m points placed at the vertices of the triangular lattice located
at distances within .m � 1; m� from the origin o, as shown in Fig. 7.4. The total
number of points from the 1st tier to the mth tier then is equal to j D 3m .1C m/. Let
v1; v2; : : : vj be the location vectors of these j points and the points are ordered
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Fig. 7.4 An illustration of a triangular lattice

according to their distances to the origin o in a nondecreasing order. For an
arbitrary point z located inside the hexagon formed by the 1st tier of six points,
the following holds:

Pj
iD1 kvi � zk�˛ is minimized when z is located at the origin

o, or equivalently when

z D 1

j

jX
iD1

vi

where ˛ is the path loss exponent.

The proof of Lemma 128 is based on the following theorem.

Theorem 129 ([6, Theorem 1]) Let v1; v2; : : : ; vj be j arbitrary points in <2. Let
w1;w2; : : :wj be j positive numbers regarded as weights attached to these points,
and define a position vector c by

jX
iD1

wivi D Wc where W D
jX

iD1
wi

Then, for an arbitrary point z, the following holds:

jX
iD1

wi kvi � zk2 D
jX

iD1
wi kvi � ck2 C W kz � ck2
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Now we use Theorem 129 to prove Lemma 128.

Proof Letting all attached weights wi equal to 1 and using Theorem 129, for an
arbitrary point z located inside the hexagon formed by the 1st tier of six points, it
can be shown that

P6
iD1 kvi � zk2 D P6

iD1 kvi � ck2 C 6 kz � ck2 (7.3.4)

where c is given by

6X
iD1

vi D 6c (7.3.5)

It is clear that c is the centroid of the six points. Since the hexagon has a unit side
length, kvi � ck is equal to 1. Let xi D kvi � zk and y D kz � ck. The problem
in Lemma 128 can then be converted to the following constrained minimization
problem:

minimize f .x1; : : : ; x6/ D P6
iD1x

�˛
i

subject to h .x1; : : : ; x6/ D P6
iD1x

2
i � 6 � 6y2 D 0

where the constraint is due to (7.3.4). Using the method of Lagrange multipliers, we
first construct the Lagrangian in the following:

F .x1; : : : x6;ƒ/ D f .x1; : : : ; x6/Cƒh .x1; : : : ; x6/

where the parameter ƒ is known as the Lagrange multiplier. Then, find the gradient
and set it to zero:

rF .x1; : : : x6;ƒ/

D

0
BBB@

�˛x�˛�1
1 C 2ƒx1

:::

�˛x�˛�1
6 C 2ƒx6

h .x1; x2; : : : ; x6/

1
CCCA

T

D 0

Solving the above equation, it is obtained that

ƒ D ˛

2

�
1C y2

�� ˛C2
2

and x1 D x2 : : : D x6 D
�
2ƒ

˛

� �1
˛C2

D �
1C y2

� 1
2
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Since xi D kvi � zk denotes the Euclidean distance from vi to z, only when
z D c, we can have x1 D x2 D : : : D x6 D 1. It follows that the minimum of
f .x1; x2; : : : ; x6/ is obtained only when z is located at the origin o. Furthermore,
for the 6m points of the mth tier, using the same method, it can be shown thatP6m

iD1 kvi � zk�˛ is minimized only when z is located at the origin o. Hence, the
result follows. ut
On the basis of the above lemma, the following theorem, which summarizes a major
outcome of the chapter, can be obtained:

Theorem 130 Under the same setting in Theorem 126 and assuming the scheduling
algorithm !, a necessary condition on P! for the CSMA network to have no isolated
node asymptotically almost surely as n ! 1 is

P! � Pthb˛2 .log n/
˛
2 (7.3.6)

where b2 D
q

6
5
.b � 1/ and b is the smallest integer satisfying the inequality:

2
�p

3 .b C 1/C 1
�1�˛ �p

3 .˛ � 1/ .b C 1/C 1
�

.b C 1/2 .˛ � 1/ .˛ � 2/

� 1

ˇ

�
2�

5

� ˛
2

(7.3.7)

Proof The main strategy used in proving Theorem 130 is to couple the network
under the SINR connection model with the associated network under the unit disk
connection model. On that basis, an upper bound on the probability of having no
isolated node in the network under the SINR connection model can be found by
using existing results in the literature obtained for the network under the unit disk
connection model.

Denote the Euclidean distance between the centers of two closest hexagons in a
maximal independent set by

L D p
3 .k C 1/ sn (7.3.8)

See Fig. 7.3 for an illustration. We divide the hexagons belonging to the same
maximal independent set as a hexagon hi into tiers of increasing Euclidean
distance from the center of hi using a similar strategy as that in Lemma 128. The
Euclidean distances between the center of hi and the centers of its 1st tier are
L D p

3 .k C 1/ sn. The centers of the hexagons in the mth tier of hi are located
within ..m � 1/ L; mL� from the center of hi. With this definition, the mth tier of hi

has at most 6m hexagons. Furthermore, we declare that the mth tier of hi is complete
in a given area if all the 6m hexagons are entirely enclosed in this given area.

Denote by CA a square
h
�

p
cn
2
;

p
cn
2

i2
(0 < c < 1 and the exact value of c will be
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decided later in this paragraph). The hexagon containing the origin o has a number

of t D
�

c
p

n
2 �

p
3sn
2

L

�
complete tiers in CA. As the value of c increases, t increases as

well. For the hexagons located inside CA but near the border of CA, the number of

complete tiers in the square
h
�

p
n
2
;

p
n
2

i2
decreases with an increase in c however. In

the following analysis we choose the value of c such that each hexagon inside CA has

at least t complete tiers in the square
h
�

p
n
2
;

p
n
2

i2
, and the value of t is maximized.

Let C0
A be the union of hexagons entirely contained in CA. With a little bit abuse of

terminology, we use CA (respectively C0
A) to denote both the area itself and the size

of the area. It can be readily shown that

lim
n!1

C0
A

CA
D 1 (7.3.9)

Consider an arbitrarily node i transmitting inside a hexagon hi in C0
A. If there

is no node that can receive from node i, then node i is isolated. Let Imin be the
minimum interference that could possibly be experienced by a potential receiver of
node i under the scheduling algorithm !. Note that the Euclidean distance between
the transmitter inside a hexagon in the mth tier of hi and the center of hexagon hi is
less than mL C sn (see Fig. 7.3). Using (7.1.3) and Lemma 128, it can be shown that

Imin

�
tX

mD1
6m .mL C sn/

�˛ P

D 6P
tX

mD1
m
�p

3m .k C 1/ sn C sn

��˛

D 6Ps�˛
n

tX
mD1

m
�p

3m .k C 1/C 1
��˛

D 6Ps�˛
n

Z t

1

bxc
�p

3 bxc .k C 1/C 1
��˛

dx (7.3.10)

� 6Ps�˛
n

Z t

1

x
�p

3x .k C 1/C 1
��˛

dx (7.3.11)

where bxc denotes the largest integer smaller than or equal to x. Equation (7.3.11) is

obtained due to the fact that the function x
�p

3x .k C 1/C 1
��˛

is a decreasing

function when x > 1p
3.kC1/.˛�1/ and

p
3 .k C 1/ .˛ � 1/ > 1 for ˛ > 2 and

k � 1. Therefore, x
�p

3x .k C 1/C 1
��˛

is a decreasing function when x > 1.
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Furthermore, noting that lim
n!1t D lim

n!1

� p
cn
2 �

p
3sn
2

L

�
D 1, it follows that

lim
n!1 6

Z t

1

x
�p

3x .k C 1/C 1
��˛

dx

D
2
�p

3 .k C 1/C 1
�1�˛ �p

3 .˛ � 1/ .k C 1/C 1
�

.k C 1/2 .˛ � 1/ .˛ � 2/
, f .k/

The above equation implies that for an arbitrarily small positive constant ", there
exists a positive integer n" such that when n � n"

6Ps�˛
n

Z t

1

bxc
�p

3 bxc .k C 1/C 1
��˛

dx

� Ps�˛
n .f .k/ � "/ , Jn (7.3.12)

Let d be the Euclidean distance between node i and its receiver. Using (7.1.1),
(7.1.2) and (7.1.3), it follows that only when Pd�˛

Jn
� ˇ, the transmission from node i

to its receiver could possibly be successful. In other words, if there is no node within

a Euclidean distance of
�
1
PˇJn

�� 1
˛ to node i, then node i is isolated. Denote this

distance by

R D
�
1

P
ˇJn

�� 1
˛

(7.3.13)

Denote by M and MSINR the (random) number of isolated nodes in the CSMA

network in the square
h
�

p
n
2
;

p
n
2

i2
and in C0

A �
h
�

p
n
2
;

p
n
2

i2
, respectively. Denote

by MUDM the (random) number of isolated nodes in an area C0
A �

h
�

p
n
2
;

p
n
2

i2
in a

network with a total of n nodes identically, independently, and uniformly distributed

on the square
h
�

p
n
2
;

p
n
2

i2
and a pair of nodes are directly connected if and only if

their Euclidean distance is smaller than or equal to R. Based on the discussion in the
last paragraph and using the coupling technique, it can be shown that

Pr .M � 1/ � Pr
�
MSINR � 1

� � Pr
�
MUDM � 1

�

Consequently,

Pr .M D 0/ � Pr
�
MUDM D 0

�
(7.3.14)
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It remains to find the value of Pr
�
MUDM D 0

�
.

We first consider a network with a total of n nodes distributed on a squareh
�

p
n
2
;

p
n
2

i2
and a pair of nodes are directly connected if and only if their Euclidean

distance is smaller than or equal to r .n/. It is well known that when r .n/ Dq
log nC�.n/

�
and limn!1 � .n/ D � where � is a constant (� D 1 is allowed),

the probability that there is no isolated node in the above network asymptotically
converges to e�e��

as n ! 1 (See Theorem 70). Furthermore, it was shown in
Chap. 2 that boundary effect has an asymptotically vanishingly small impact on the
number of isolated nodes. Let Z be a random integer representing the number of

nodes located inside CA �
h
�

p
n
2
;

p
n
2

i2
. Let Mr.n/ be the number of isolated nodes

within an area CA in the above network with a transmission range r .n/. Based on
the above results, it follows that conditioned on that there are cn number of nodes

in the subarea CA �
h
�

p
n
2
;

p
n
2

i2
, i.e., when Z D cn (Here we have omitted some

trivial discussions involving the situation that cn is not an integer.),

lim
n!1 Pr

�
Mr.n/ D 0

ˇ̌
ˇ Z D cn

�
D e�ce��

(7.3.15)

It can also be shown that E .Z/ D cn and Var .z/ D cn .1 � c/. Using
Chebyshev’s inequality, for 0 < ı < 1

2
, we obtain that

lim
n!1 Pr

�
jZ � cnj � .cn/

1
2Cı�

� lim
n!1

Var .Z/�
.cn/

1
2Cı�2

D 0 (7.3.16)

Let f .n/ D .cn/
1
2Cı . Using the following two equations:

log .n C f .n//C � .n/ D log n C log

�
1C f .n/

n

�
C � .n/

and

lim
n!1 log

�
1C f .n/

n

�
C � .n/ D lim

n!1 � .n/ D �

and (7.3.15), it can be shown that

lim
n!1 Pr

�
Mr.n/ D 0

ˇ̌
ˇ Z D cn C f .n/

�
D e�ce��
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Following the above procedure, it can be established that for any integer m satisfying
�f .n/ � m � f .n/,

lim
n!1 Pr

�
Mr.n/ D 0

ˇ̌
ˇ Z D cn C m

�
D e�ce��

The above equation, together with (7.3.16), allows us to conclude that when

r .n/ D
q

log nC�.n/
�

lim
n!1 Pr

�
Mr.n/ D 0

�
D e�ce��

(7.3.17)

We are now ready to discuss Pr
�
MUDM D 0

�
and Pr .M D 0/. As a result of

(7.3.14), a necessary condition for lim
n!1 Pr .M D 0/D 1 is that lim

n!1 Pr .MUDM D 0/D
1. Using (7.3.9) and (7.3.17), it follows that a necessary condition for the network
under the SINR connection model to have no isolated node asymptotically almost

surely is that R �
q

log nC�.n/
�

and � .n/ ! 1 as n ! 1. As a consequence
of (7.3.13), the above requirement on R means that

�
1

P
ˇJn

�� 1
˛

�
r

log n C � .n/

�

as n ! 1. Substituting the value of Jn in (7.3.12) and the value of sn in (7.3.2) into
the above equation, it can be further obtained that

f .k/ � 1

ˇ

�
2�

5

log n

log n C ı

� ˛
2

C "

Letting n ! 1 and then " ! 0 in the above inequality, it can be obtained that

f .k/ � 1

ˇ

�
2�

5

� ˛
2

Based on the above equation, together with (7.1.4) and (7.3.3), Theorem 130
results. ut
The following corollary can be obtained as a ready consequence of Theorem 130
and (7.3.1).

Corollary 131 A necessary condition required for CSMA networks to be asymptot-
ically almost surely connected as n ! 1 under any scheduling algorithm, i.e., a
lower bound on P0

�, is given by

P0
� � Pthb˛2 .log n/

˛
2 (7.3.18)
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Fig. 7.5 A plot of the two constant factors b1 and b2 in the upper bound (7.2.12) and in the lower
bound (7.3.18) when ˛ D 4

Comparing the lower bound on P0
� in (7.3.18) with the upper bound in (7.2.12) (i.e.,

a sufficient condition), it can be shown that, given an arbitrary SINR requirement ˇ,
the lower bound and the upper bound differ by a constant factor only as n ! 1.
Figure 7.5 shows a plot of the two constant factors, viz., b1 and b2, in the upper
bound and in the lower bound, respectively, as a function of ˇ when the path loss
exponent ˛ D 4. The curve representing b2 is a step function due to the granularity
caused by the integer k in the scheduling algorithm !.

7.4 Notes and Further Readings

In this chapter, we studied connectivity of wireless CSMA networks considering
the impact of interference. We showed that, different from an ALOHA network,
the aggregate interference experienced by any receiver in CSMA networks is upper
bounded even when the coefficient � in (7.1.1) and (7.1.2) is equal to 1.

An upper bound and a lower bound were obtained on the critical transmission
power required for having an asymptotically almost surely connected CSMA
network. These two bounds are tight and differ from each other by a constant
factor only for an arbitrary SINR requirement. The results suggested that any pair
of nodes can be connected (via multi-hop paths) under an arbitrarily high SINR
requirement so long as the carrier-sensing capability is available. Compared with
that considering a unit disk connection model without interference, the transmission
power only needs to be increased by a constant factor to combat interference and
maintain connectivity. This is a much more optimistic result compared with previous
results considering connectivity of ALOHA networks under the SINR connection
model.



198 7 Connectivity of Large Wireless Networks in the Presence of Interference

As shown in Fig. 7.5, the upper and lower bounds on the critical transmission
power for having an asymptotically connected CSMA network are close. The gap
between the two bounds can be further narrowed by considering more intricate
geometric shapes than hexagons. However, such improvement is possibly of minor
importance. The implication of the results in this chapter is that there exists a spatial
and temporal scheduling algorithm in a large CSMA network that allows as many
as possible concurrent transmissions, and meanwhile, allows any pair of nodes in
the network to be connected, in the sense that they can exchange packets, under an
arbitrarily high SINR requirement.

Despite the significant impact of mutual interference caused by multiple con-
current transmissions on network connectivity, limited work has been done on
analyzing network connectivity under the SINR connection model. In [10, 124],
the authors studied connectivity from the perspective of channel assignment.
Specifically, channels/time slots are assigned to each link in order for all active
links to be simultaneously transmitting while satisfying the SINR requirement. The
two papers [57, 58] discussed in Sect. 7.1 studied the impact of interference on
connectivity of ALOHA networks from the percolation perspective. Some other
work exists on modeling the point process formed by the location of simultaneously
active transmitters in CSMA networks. Nguyen et al. [157] and Busson et al. [34]
proposed using the Matern point process and Simple Sequential Inhibition point
process, respectively, to model the set of active transmitters in CSMA networks.



Part II
Connectivity of Highly Dynamic Networks



Chapter 8
Connectivity of Dynamic Networks

Abstract In this chapter, we study connectivity of networks with dynamically
changing network topology. In wireless networks, a change in topology can be
caused by node mobility, by node or link failure, or by nodes being switched on
or off for energy saving purposes. Dynamic networks offer many interesting and
unique challenges than its static counterparts. Particularly, a dynamic network may
be disconnected at any time instant but a message transmitted by any node can still
reach any other node over time. That is, a dynamic network may become connected
over time. In this chapter, we introduce those properties of dynamic networks that
are different from statistic networks from the connectivity perspective. We extend
and develop the concepts of route matrix, connectivity matrix, and probabilistic
connectivity matrix as convenient tools to characterize and investigate properties
of dynamic networks. The properties of these matrices are established and their
relevance to properties of dynamic networks are introduced.

In the previous chapters, we have studied connectivity of large static wireless
networks where nodes in the network are not moving or the network topology
is time-invariant. In the next three chapters, we shall investigate connectivity
of dynamic networks with dynamically changing network topology. In wireless
networks, a change in topology can be caused by node mobility, by node or link
failure, or by nodes being switched on or off for energy saving purposes.

8.1 Challenges and Opportunities in Dynamic Networks

From graph theoretic point of view, there are two major differences between
connectivity of a static network and connectivity of a dynamic network:

• In dynamic networks, it is possible that two nodes may never be part of the
same connected component but they are still able to communicate with each
other within a finite time interval. This is illustrated in Fig. 8.1. In the figure,
the network of six mobile nodes is disconnected at any time instant but there is
a path from any node to any other node during the four time slots in the sense
that a message transmitted by any node can reach any other node within the four
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Fig. 8.1 An illustration of connectivity in a mobile network with six nodes. A solid line represents
a direct connection between two nodes. The network is disconnected at any time instant but there
is a path from any node to any other node in the network over the four time slots. For example,
nodes v1 and v6 are never part of the same connected component but a message from v1 can still
reach v6 through the following path: Œ0; t1/ W v1 ! v2, Œt1; t2/ W v2 ! v3, Œt2; t3/ W v3 ! v4,
Œt3; t4/ W v4 ! v6

time slots. For example, a message transmitted by node v1 can reach node v6
through the following path: in the first time slot, the message may be transmitted
from v1 to v2; in the second time slot, the message may be transmitted from v2
to v3; in the third time slot, the message may be transmitted from v3 to v4; while
in the fourth time slot, the message reaches v6 from v4. Conversely, a message
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transmitted by node v6 can reach node v1 through the following path: in the first
time slot, the message may be transmitted from v6 to v5 and in the second time
slot, the message reaches v1 through v5.

• In dynamic networks, while any wireless link may be (or may be assumed to be)
undirectional, the path connecting any two nodes must be regarded as directional,
i.e., the fact that there is a path from node vi to node vj within a designated
time period does not necessarily mean there is a path from vj to vi within the
same period. For example, in Fig. 8.1 a message from v6 can reach v1 at t2 but
a message from v1 can only reach v6 at t4. Therefore, there is a path from v6
to v1 during time interval Œ0; t2/ does not imply that a path from v1 to v6 also
exists within the same time interval Œ0; t2/. This has been caused by the fact that
in dynamic networks, the time sequence following which links appear affects the
existence of a path from a node to another node.

Consequently, many established concepts in static networks must be revisited for
dynamic networks. For example, a static network is said to be connected if there is
a path between any pair of nodes in the network. A static network is k-connected if
there are k mutually independent paths, i.e., paths not having any nodes in common
except the starting and ending nodes, between any pair of nodes in the network.
However a more meaningful definition of connectivity in dynamic networks is to
say that a dynamic network is connected in time period Œ0;T� if there is a path from
any node to any other node within Œ0;T�. A more rigorous definition of connectivity
in dynamic networks is deferred to later in the chapter. The above definition implies
that the tradeoff between connectivity, mobility (or active period in networks with
stationary nodes but nodes may be switched on or off) and delay must be properly
considered in the analysis of dynamic networks. Particularly, the example shown in
Fig. 8.1 reveals that node mobility in dynamic networks can be explored to improve
connectivity.

In addition to connectivity, mobility has also been found to improve network
capacity. It was shown in [87] that in a mobile network with no delay requirement,
mobility of nodes can be explored to significantly increase network capacity
[87, 91]. This can be understood intuitively as follows. In static networks, if the
wireless channel is being occupied, a node has to wait whereas in mobile networks
the node can carry the message over a physical distance, hopefully in the direction
of the destination, until a better transmission opportunity arises. In other words,
information propagates in static networks via a store-and-forward process whereas
information propagates in mobile networks via a store-carry-forward process. It is
this possibility that the information may be carried, instead of just being transmitted
wirelessly, over a physical distance towards its destination in mobile networks that
makes it possible for mobility to be explored to increase network capacity.

In this chapter, we use and extend a recently proposed graph theoretic model,
i.e., evolving graphs, to capture the characteristics, in particular connectivity, of
dynamic wireless networks. We extend and develop a set of tools, i.e., route matrix,
connectivity matrix and probabilistic connectivity matrix, to investigate properties
of dynamic wireless networks. The properties of these matrices related to dynamic



204 8 Connectivity of Dynamic Networks

wireless networks will be established. Note that in addition to the algebraic tools
introduced in this chapter, branching process has also been widely used to model
information propagation in dynamic networks. Please refer to Sect. 1.3.2 for a brief
introduction to the branching process.

8.2 Connectivity Matrix and Probabilistic Connectivity
Matrix for Dynamic Networks

A major challenge in the analysis of dynamic networks is choosing a proper
graphic model that can both capture the dynamics of the network and be tractable
for analytical studies. We use and extend a class of graphs, evolving graphs
[24, 66, 192], as a formal abstraction of dynamic networks for our analysis. There
has been research in the literature on the evaluation of computational complexity
of algorithms in evolving graphs [24, 192] and on simulation based studies on
the performance of routing algorithms in dynamic networks using evolving graphs
[151].

An evolving graph G D .G; SG/ consists of a given graph G.V;E/, along with an
ordered sequence of its subgraphs, SG D G1.V1;E1/;G2.V2;E2/; : : : ;G� .V� ;E� /,
� 2 N. Let the vertex set and the edge set of G be VG D [Vi and EG D [Ei,
respectively. If we assign a physical meaning to subgraphs such that the subgraph
Gi.Vi;Ei/ at a given index i is the underlying graph of the network during the time
interval Œti�1; ti/ and t0 < t1 < � � � < t� , the time domain is then incorporated into
the model. Let Pi be a path in Gi. Let F.Pi/ and L.Pi/ be the first vertex and the last
vertex of Pi, respectively, and jPij be its length. We define a journey in G D .G; SG/
from vertex u to vertex v of VG as a sequence J .u; v/ D P�1;P�2; : : : ;P�l, with
1 � �1 < �2 < � � � < �l � � , such that (a) P�i is a path in G�i with F.P�1/ D u,
L.P�l/ D v; (b) for all 1 � i � l, it holds that F .P�i/ ¤ L .P�i/ and (c) for all
i < l, it holds that L .P�i/ D F .P�iC1/. The length of the journey is

Pl
iD1 jP�ij. The

restriction F .P�i/ ¤ L .P�i/ has limited the journey to consist of non-cycle paths
only. Nevertheless a vertex may still appear more than once inside a journey, viz., a
vertex might appear both in a path P�i 2 J .u; v/ and in a path P�j 2 J .u; v/, where
�i ¤ �j. The starting and the ending vertices of a journey may also be the same.
We define an evolving path in G D .G; SG/ from vertex u to vertex v of VG as a
journey J .u; v/ in which all vertices are distinct except that the ending vertex of the
journey may be the same as the starting vertex. The term evolving path is intended to
differentiate a path in an evolving graph from a path in one of the subgraphs G�i. A
vertex v is said to be k-hops away from another vertex u if the length of the shortest
journey (or equivalently the shortest evolving path) from vertex u to vertex v is k.
The evolving graph G D .G; SG/ is said to be a connected graph if there exists
a journey (or equivalently an evolving path) from any vertex to any other vertex
of VG .
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To facilitate later discussions, we call a dynamic network deterministic if all
entries of its adjacency matrix, as defined in Sect. 1.3.3, during each time interval
are either 1 or 0, representing the fact that there are or there are no direct connections
between the corresponding pairs of vertices, respectively. We call a dynamic
network probabilistic if during some time intervals only statistical information on
the probabilities that there are direct connections between certain pairs of nodes is
known.

8.2.1 Connectivity Matrix of Deterministic Dynamic Networks

Let 0; �1; �2; : : : ; �k; : : :, 0 < �1 < �2 < � � � < �k � � � be the embedding points of the
network such that network topology, defined by a collection of all direct connections
between nodes in the network, only changes at these discrete time instants. We
define the route matrix Hk of a deterministic dynamic network of n nodes during
time interval Œ�k�1; �k/ whose underlying graph is Gk as an n � n square matrix such
that its .i; j/-th entry is the number of distinct paths in Gk from vertex i to another
distinct vertex j. If there is no path from i to j, .Hk/ij D 0 where .Hk/ij is the .i; j/-
th entry of Hk. Furthermore, the diagonal entries of Hk is 1 by definition. As will
be shown later, this definition of the diagonal entries properly reflects the fact that
in dynamic networks routes and connections are constantly changing, when a node
either becomes isolated or cannot find a (better) route to the destination, it has to
store the message until a (better) route is available. For convenience, we assume
that V1 D V2 D � � � D Vk D � � � such that the route matrices during different time
intervals have the same dimension. If a node disappears and then reappears in the
network, the situation can be readily accommodated by considering that node as an
isolated node during some time intervals.

Based on the above definition of the route matrix, we can establish some
properties of the route matrix and their relevance to connectivity of a dynamic
network.

Lemma 132 There are a total of Hk
ij journeys from node i to node j in the evolving

graph G D .G; SG/, SG D G1.V1;E1/;G2.V2;E2/; : : : ;Gk.Vk;Ek/, k 2 N within
Œ0; �k/, where Hk

ij is the .i; j/-th entry of H1H2 � � � Hk � I.

Proof We prove Lemma 132 by recursion.
When k D 1, the lemma is obviously correct. Note that the diagonal entries of

H1 � I is 0, i.e., there is no journey from a node to itself within Œ0; �1/.
When k D 2,

H2
ii D h1iih

2
ii C

X
l¤i

h1ilh
2
li � 1 D

X
l¤i

h1ilh
2
li
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is the total number of journeys from node i to itself within Œ0; �1/
S
Œ�1; �2/, where

hp
ij; p D 1; 2 is the .i; j/-th entry of Hp. Each journey is made of two non-cycle paths,

one from i to l ¤ i in G1 and the other from l to i in G2. For distinct i and j,

H2
ij D

X
l

h1ilh
2
lj D h1ij C h2ij C

X
l¤i;j

h1ilh
2
lj

The first term in the above equation is the number of journeys from node i to node
j made of paths in G1 only; the second term is the number of journeys from i to j
made of paths in G2 only; and the third term is the number of journeys from node
i to node j, where each journey is made of a non-cycle path in G1 and a non-cycle
path in G2. Therefore, the lemma is true for k D 2.

Assuming that the lemma is correct for k D T , let us consider k D T C 1 and
i ¤ j:

HTC1
ij D

X
l

HT
il h

TC1
lj D HT

ij C HT
ii h

TC1
ij C

X
l¤i;j

HT
il h

TC1
lj

In the above equation, the first term is the number of journeys from i to j within
Œ0; �T/. The sum of the second and the third terms is the number of newly added
journeys from i to j where each journey consists of a non-cycle path in GTC1.
The second term is the sum of

�
HT

ii � 1� hTC1
ij , representing the number of journeys

that (a) start at i before �T ; (b) end at i at �T ; and (c) reach j at �TC1, and hTC1
ij ,

representing the number of journeys from i to j made of non-cycle paths in GTC1
only. The third term is the number of journeys that end at an intermediate node at �T

and reach j at �TC1. The sum of the three terms gives the total number of journeys
from node i to node j within Œ0; �TC1/. It is trivial to show that HTC1

ii � 1 is the total
number of journeys that start and end at i within Œ0; �TC1/. ut
Remark 133 Denote by H0

k the route matrix of Gk except that the diagonal entries
of H0

k are zeros, i.e., H0
k D Hk � I. It can be shown that

H1H2 � � � Hk � I D
X

i

H0
i C

X
i<j

H0
i H

0
j C � � � C H0

1H
0
2 � � � H0

k:

The r-th sum on the right-hand side of the above equation represents the number of
journeys with exactly r non-cycle paths in r distinct subgraphs of G, respectively.
Therefore, the earlier definition of the route matrix Hk and Lemma 132 allow an easy
computation of the total number of journeys ever occurred in the evolving graph G.

Lemma 134 A dynamic network is connected in Œ0; �k/ if and only if H1H2 � � � Hk �
J element wise, where J is an n � n matrix with all entries equal to 1.

The proof of Lemma 134 is straightforward and hence omitted.
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Lemma 135 Hk
ij is a nondecreasing function of k.

This lemma is an easy consequence of Lemma 132 and the fact that Hk is the sum
of I and a nonnegative matrix. An implication of Lemma 135 is that in dynamic
networks the number of journeys from any node to any other node will only increase
over time.

We define the connectivity matrix Qk of a deterministic dynamic network of n
nodes whose underlying graph is Gk during time interval Œ�k�1; �k/ as an n�n square
matrix such that its .i; j/-th entry is 1 if there exists a path in Gk from vertex i to
another distinct vertex j. If there is no path from i to j, .Qk/ij D 0. We also set

.Qk/ii , 1. Alternatively, Qk can be considered as the sign matrix of Hk. Using the
properties of nonnegative matrices [177] and the above lemmas, we can establish
the following properties of the connectivity matrix.

Lemma 136 A dynamic network is connected in Œ0; �k/ if and only if Q1Q2 � � � Qk �
J element wise. There is a journey from vertex i to j if and only if .Q1Q2 � � � Qk/ij � 1.

It can also be established that .Q1Q2 � � � Qk/ij is a nondecreasing function of k. This,
together with Lemma 136, suggests for a mobile network in which mobile nodes
travel according to a random mobility model within a bounded area, e.g., random
walk model [90], the network will become connected eventually. The interesting
question is thus the rate at which the network becomes connected or equivalently
the rate at which all entries of Q1Q2 � � � Qk (or equivalently H1H2 � � � Hk) become
greater than or equal to 1.

The connectivity matrix and the route matrix defined earlier, although are
convenient tools to investigate connectivity, do not capture the fact that in a
communications network, a message can only travel a limited distance within a
limited amount of time. In view of this, we extend the earlier definitions to account
for message propagation delays. We call a path Pi in Gi feasible if a message of a
unit length transmitted by the starting point of Pi at �i�1 can reach the end point of
Pi before �i in ideal conditions, i.e., no traffic congestion. We call a journey feasible
if it is made entirely of feasible paths. We can also define the concept of feasible
connectivity matrix and feasible route matrix analogously. Obviously the above
lemmas on the properties of connectivity matrix and route matrix still hold if the
relevant terms are replaced by their “feasible” counterparts. By a direct application
of Lemma 132, we obtain the following Lemma that relates the feasible connectivity
matrix to end-to-end throughput (or latency).

Lemma 137 Assuming that node i starts to transmit a message of unit length to
another distinct node j at time 0, there are Mk

ij feasible journeys from i to j that take
less than or equal to �k time for the unit message to reach j, where Mk

ij is the .i; j/-th
entry of M1M2 � � � Mk. Mk is the feasible route matrix of graph Gk during Œ�k�1; �k/.

Lemma 137 can be used to derive an upper bound on the end-to-end throughput in
a dynamic network. Furthermore, let � be the time required to transmit a message
of unit length from a node to its immediate neighbors. We choose the embedding
points of the network 0; �1; �2; : : : ; �k; : : : to be �k D k� and assume that a node can
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only start transmitting a message at �k, which accords with a synchronized network.
If a direct connection between two nodes is broken during the interval Œ.i � 1/�; i�/,
it is considered that there is no direct connection between the two nodes during
Œ.i � 1/�; i�/. Under the above conditions, a feasible connectivity matrix becomes
the sum of the corresponding adjacency matrix and I. We can obtain the following
lemma:

Lemma 138 Assuming that node i starts to transmit a unit message to another
distinct node j at time 0, the least amount of time for the message to arrive at node
j is k� if and only if Mk�1

ij D 0 and Mk
ij � 1. The number of messages that can be

transmitted from i to j within Œ0; k�/ is less than or equal to Mk
ij.

Lemmas 137 and 138 give an easy way to study the foremost journeys [24, 192]
in an evolving graph. A slight modification of the two lemmas can be used to
investigate the shortest journeys and the fastest journeys [24, 192] in an evolving
graph algebraically.

8.2.2 Probabilistic Connectivity Matrix of Probabilistic
Dynamic Networks

Let 0; �1; �2; : : : ; �k; : : :, 0 < �1 < �2 < � � � < �k � � � be the embedding points of the
network such that network topology only changes at these discrete time points. We
define the probabilistic connectivity matrix Qk of a probabilistic dynamic network
of n nodes during time interval Œ�k�1; �k/, whose underlying graph is Gk, as an n � n
square matrix such that its .i; j/-th entry is the probability that there is a path in Gk

from vertex i to another distinct vertex j and in addition for all i, .Qk/ii , 1. We
further assume that

(1) the events whose probabilities are the entries in the same probabilistic connec-
tivity matrix are independent;

(2) the events whose probabilities are the entries in probabilistic connectivity
matrices during different time intervals are independent.

An example in which these assumptions hold is wireless sensor networks with
uncoordinated power saving mechanisms [59]. We can establish the following
properties of probabilistic connectivity matrix.

Lemma 139 The probability that there exists at least one journey from node
i to another distinct node j in the evolving graph G D .G; SG/, SG D
G1.V1;E1/;G2.V2;E2/; : : : ;Gk.Vk;Ek/, k 2 N is Qk

ij, where Qk
ij is the .i; j/-th

entry of Q1 ˝ Q2 � � � ˝ Qk. Here, C D A ˝ B means Cij D 1 � Q
l

�
1 � AilBlj

�
;

and Aij, Bij and Cij are the .i; j/-th entries of n � n square matrices A, B, and C
respectively.
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Proof We prove this lemma by recursion and omit the proof that the defined product
operation is associative.

The lemma is obviously correct for k D 1 and the diagonal elements Q1
ii D 1,

1 � i � n.
Assuming the lemma is correct for k D T , let us consider k D T C 1. First, it

can be shown that the diagonal elements of Q1 ˝ Q2 � � � ˝ QTC1 are always 1. Let
us now consider QTC1

ij where i ¤ j,

QTC1
ij D 1 �

�
1 � qTC1

ij

� �
1 � QT

ij

�Y
l¤i;j

�
1 � QT

ilq
TC1
lj

�

In the above equation, qTC1
ij is the .i; j/-th entry of QTC1 and represents the

probability of having a journey consisting of a path from i to j in GTC1 only. QT
ij is the

probability of having a journey from i to j in the evolving graph G D .G; SG/, SG D
G1;G2; : : : ;GT . The existence of such a journey necessarily means the existence of
a journey in G D .G; SG/, SG D G1;G2; : : : ;GTC1. The term QT

ilq
TC1
lj , l ¤ i; j is

the probability of having a journey in G D .G; SG/, SG D G1;G2; : : : ;GTC1 that
ends at an intermediate node l at �T and reaches j at �TC1. Using the assumption on
the independence of events represented by entries in the probabilistic connectivity
matrix, we can obtain that the above three events are independent. Therefore,Q

l

�
1 � QT

ilq
TC1
lj

�
is the probability that none of the above three events occurs.

Finally, 1 � Q
l

�
1 � QT

ilq
TC1
lj

�
gives the probability that at least one of the above

three events occurs, which is the probability of having a journey from i to j in the
evolving graph G D .G; SG/, SG D G1;G2; : : : ;GTC1. ut
Lemma 140 Qk

ij is a nondecreasing function of k.

This lemma can be proved using the definition of Qk
ij.

Suppose that the probabilistic connectivity matrix is the same on every interval,
so that the network simply resets certain connections, with the same probabilities,
at each clock time. Then, this lemma can be used to show that in the limit as k tends
to infinity, either Qk

ij tends to 1, or it is zero for all k, i.e., there is never a connection
from node i to node j.

Lemma 141 A network of n nodes is connected with probability 1 in Œ0; �k/ if and
only if Qk

ij D 1 for all pairs of i and j.

This lemma is an easy consequence of Lemma 139.
Similarly by defining the concept of feasible probabilistic connectivity matrix,

we can use the probabilistic connectivity matrix to investigate end-to-end delay. We
define the feasible probabilistic connectivity matrix Qk of a probabilistic dynamic
network of n nodes during time interval Œ�k�1; �k/ as an n � n square matrix such
that its .i; j/-th entry is the probability that there is a feasible path in Gk from vertex
i to another distinct vertex j and .Qk/ij , 1 . The above lemmas on the properties of
probabilistic connectivity matrix still hold if the relevant terms are replaced by their
“feasible” counterparts.
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Furthermore, let � be the time required to transmit a message of unit length from
a node to its immediate neighbors. We choose the embedding points of the network
0; �1; �2; : : : ; �k; : : : to be �k D k� and assume a node can only start transmitting a
message at �k. If a direct connection between two nodes is broken during the interval
Œ.i � 1/�; i�/, it is considered that there is no connection between the two nodes
during Œ.i�1/�; i�/. Under the above conditions, a feasible probabilistic connectivity
matrix becomes the sum of the corresponding probabilistic adjacency matrix, as
defined in [32], and I. We can establish the following lemma:

Lemma 142 Assuming that node i starts to transmit a unit message to a distinct
node j at time 0, the probability that the message can reach j in less than �k time
is Qk

ij, where Qk
ij is the .i; j/-th entry of Q1 ˝ Q2 � � � ˝ Qk and the mean end-to-end

delay from i to j is given by:

1X
kD1

�
1 � Qk�1

ij

�
Qk

ijk�:

This lemma can be obtained from Lemma 139. It can be used to study the mean
end-to-end delay and the delay distribution.

8.3 Notes and Further Readings

In this chapter, we used and extended a recently proposed graph theoretic model,
i.e., evolving graphs, as a formal abstraction of dynamic wireless networks. We
extended and developed a set of tools, i.e., route matrix, connectivity matrix, and
probabilistic connectivity matrix, to investigate properties of dynamic wireless
networks. The properties of these matrices were investigated in relation to properties
of the corresponding dynamic networks. We expect them to provide a convenient
tool to formally investigate properties of dynamic networks.

The most related work to ours includes the use of adjacency matrix to study the
connectivity of networks by Cvetkovic et al. [48] and Brooks et al. [32]. In [48],
the adjacency matrix of a static network of n nodes is defined to be an n � n square
matrix M whose .i; j/-th entry mij D 1 if there is a direct connection between distinct
nodes i and j, otherwise mij D 0. Furthermore mii is defined to be 0, i.e., no self-loop
is allowed. It is shown that the number of walks of length z between nodes i and j
(with j D i permitted) is mz

ij, where mz
ij is the .i; j/-th entry of Mz. A walk of length

z between nodes i and j is a sequence of z C 1 nodes i; v1; v2; : : : ; vz�1; j which
starts at i and ends at j and there is a direct connection between adjacent nodes. A
path of length z between nodes i and j is a walk of length z between nodes i and
j in which the vertices i; v1; v2; : : : ; vz�1 are distinct, save that i D j is permitted.
If i D j, the path is called a cycle. In [32] Brooks et al. considered a probabilistic
version of the adjacency matrix for wireless networks and defined a probabilistic
adjacency matrix as an n�n square matrix M whose .i; j/-th entry mij represents the
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Fig. 8.2 An illustration of the connectivity of a dynamic network in different time intervals. Each
subfigure represents the connectivity of a four-node network in a corresponding time interval. A
solid line represents a direct connection between two nodes

probability of having a direct connection between distinct nodes i and j, and mii D 0.
They established that the probability that there exists at least one walk of length z
between nodes i and j is mz

ij, where mz
ij is the .i; j/-th entry of M ˝ M ˝ � � � ˝ M

(z times). C , A ˝ B if and only if Cij D 1 � Q
l¤i;j

�
1 � AilBlj

�
where Aij, Bij, and

Cij are the .i; j/-th entries of the n � n square matrix A, B, and C, respectively. We
remark that the product defined this way has the associativity property, allowing the
computation of a product of three or more matrices with an arbitrary sequence of
single product operations.

The above adjacency matrix and probabilistic adjacency matrix, however, is not
suitable for investigating dynamic networks. This is illustrated through the example
dynamic network of four nodes shown in Fig. 8.2. Denote the adjacency matrix of
the network during Œ.i � 1/�; i�/ by Mi. If one were to follow the above definition of
adjacency matrix, it would be concluded that there is no connection from v1 to v4
in the network within Œ0; 4�/ because the .1; 4/-th entries in M1, M1M2, M1M2M3

and M1M2M3M4 are all zero. This is obviously incorrect because a message from
v1 can reach v4 using the following journey: Œ0; �/ W v1 ! v2, Œ�; 2�/ W v2 ! v3,
Œ3�; 4�/ W v3 ! v4. If the 1s in Mi, 1 � i � 4 are replaced by values between
0 and 1 representing the probabilities that there are direct connections between the
corresponding pairs of vertices, Mi, 1 � i � 4 becomes the probabilistic adjacency
matrix of the network during Œ.i � 1/�; i�/ as defined in [32]. It can be obtained that
the probability that there exists a connection from v1 to v4 in the network within
Œ0; 4�/ is zero because the .1; 4/-th entries in M1, M1 ˝ M2, M1 ˝ M2 ˝ M3 and
M1 ˝ M2 ˝ M3 ˝ M4 are all zero. Apparently, this is not true. Therefore, neither the
adjacency matrix defined in [48] and the probabilistic adjacency matrix defined in
[32] is suitable for investigating the connectivity of dynamic networks. The problem
with the definition of Brooks et al. [32] is that it fails to capture the notion that in a
wireless network, it is legitimate for a message to remain at a node over one or more
time intervals.



Chapter 9
Information Propagation in One-Dimensional
Dynamic Networks

Abstract In this chapter, we study the information propagation process in
one-dimensional dynamic networks with vehicular ad hoc networks being the
motivating example. Particularly, we consider a vehicular ad hoc network formed
by vehicles Poissonly distributed on a highway. Corresponding to different lanes of
the highway and different types of vehicles, we consider that vehicles in the network
can be categorized into a number of traffic streams, where vehicles in the same traffic
stream have the same speed distribution while the speed distributions of vehicles
in different traffic streams are different. We analyze the information propagation
process of the above vehicular network and characterize the information propagation
speed. The results established in this chapter allow one to study the impact of
parameters such as radio range, vehicle traffic density, vehicle speed distribution,
and the temporal variation of vehicle speed on the information propagation speed.

In this chapter, we study information propagation in one-dimensional dynamic
networks with vehicular ad hoc networks (VANETs) being a typical example.
As mentioned in the last chapter, a mobile network in which mobile nodes move
randomly and independently will become connected eventually, in the sense that
information from a node can reach another node eventually. The interesting question
is thus the rate at which the network becomes connected. This motivates us to study
the information propagation process in dynamic networks.

A VANET is a mobile multi-hop network formed by vehicles traveling on
the road. As a new way of communication, VANETs have attracted significant
interest not only in academia but also in industry. IEEE has taken up working
on new standards for VANETs, such as the IEEE 1609 Family of Standards for
Wireless Access in Vehicular Environments (WAVE). Furthermore, there are many
projects on VANETs such as InternetITS in Japan, Network on Wheels in Germany,
PReVENT project in Europe, etc. [198]. In this chapter, we study the expected
propagation speed for a piece of information to be broadcast along the road in a
VANET, referred to as the information propagation speed (IPS). Due to the mobility
of vehicles, the topology of a VANET is changing over time. Furthermore, traffic
density on a road can vary significantly depending on time-of-day or day-of-week.
Therefore, the information propagation process in a VANET can be quite different
from that in a static network.

© Springer International Publishing AG 2017
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Fig. 9.1 An illustration of the topology of a VANET at different time instants. In the figure, the
positive direction of the axis is the direction of information propagation

A VANET is often naturally partitioned into a number of clusters [190], where
a cluster is a maximal set of vehicles in which every pair of vehicles is connected
by at least one multi-hop path. Due to the mobility of vehicles, the clusters are
splitting and merging over time. Therefore, information propagation in a VANET
is typically based on a store-carry-forward scheme alike that in a delay-tolerant
network. Considering the example illustrated in Fig. 9.1, a piece of information
starts to propagate from the origin toward the positive direction of the axis at
time t0. The vehicles that have received this piece of information are referred to
as the informed vehicles, where other vehicles are uninformed. As indicated by the
left most ellipse, the first informed vehicle is inside a cluster of four vehicles at
time t0. At time t1, the message is forwarded, in a multi-hop manner, to the foremost
vehicle in its cluster. The propagation of the message within a cluster, which begins
at t0 and ends at t1, is called a forwarding process. In a forwarding process the
information propagation speed is determined by the per-hop delay and the length
of the cluster. The per-hop delay ˇ is the time required for a vehicle to receive and
process a message before it is available for further retransmission [191]. The value
of ˇ depends on the practical implementation, and a common assumption for the
value of ˇ reflecting typical technology is 4ms [191]. We shall show that the per-
hop delay has a significant impact on the IPS, especially when the vehicle density is
high.

Define the head at time t to be the informed vehicle with the largest coordinate
at time t. Define the tail at time t to be the uninformed vehicle with the smallest
coordinate at time t. Two vehicles can directly communicate with each other if and
only if their Euclidean distance is smaller than or equal to the transmission range r0.
Although this unit disk connection model is a simplified model, it can be indicative
for real world scenarios. A realistic radio model usually takes into account statistical
variations of the received signal power around its mean value. It is shown in [100]
that these variations actually can increase the connectivity of a network. Therefore,
the analysis under the unit disk connection model provides a conservative estimate
on the performance of a VANET. As shown in Fig. 9.1, at time t1 the tail is outside
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the transmission range of the head. Then, a catch-up process begins, during which
the informed vehicles hold the information until the head catches up the tail (at time
t2). We study both the forwarding process and the catch-up process to characterize
the information propagation process in VANET. We start by considering single
traffic stream, i.e., vehicles traveling in the same direction and with the same speed
distribution, and then move to examine the situation with multiple traffic streams.

9.1 Information Propagation Process in VANETs with Single
Traffic Stream

In this section, we study information propagation process in one-dimensional
VANETs with one traffic stream only. We start by describing the network model
and mobility model for the VANET.

A synchronized random walk mobility model is used for modeling movement
of vehicles. Specifically, time is divided into time slots with equal length � .
Each vehicle randomly chooses its new speed at the beginning of each time slot,
independent of other vehicles and its own speed in other time slots, according to a
certain distribution with a mean value EŒv�. It is shown later that the constant speed
model forms a special case in the above mobility model when � ! 1. Due to
the limited speed acceleration, the vehicle speed in the real world does not change
as rapidly as in the above mobility model. Therefore, as will be shown later in
Sect. 9.1.7.3, the results based on the above model provide a conservative estimate
on the IPS. Furthermore, we also discuss the impact of a non-synchronized mobility
model at the beginning of Sect. 9.1.4.

In the above model, the speed of a vehicle can be considered as having a
constant component EŒv� and a variable component with a zero mean. Accordingly,
the vehicular network can be decomposed into two components: a network in
which all vehicles travel at a constant speed and a network in which vehicles
travel at speeds following the same prescribed distribution fv.v/ with a zero mean.
Our analysis focuses on the IPS in the second network component, where fv.v/
is the probability density function of the speed distribution. The first network
component is considered separately and is combined into the result at the end of
the analysis. Furthermore, a positive (negative) value of the speed means that the
vehicle is traveling in the same (opposite) direction as the direction of information
propagation. Therefore, when EŒv� is a positive (negative) value, our analysis
provides the results for a VANET in which a message propagates in the same
(opposite) direction as the direction of the vehicle traffic flow. In this section, the
analysis is first performed for a general speed distribution. Then, detailed analytical
results are given for the Gaussian speed distribution with standard deviation � ,
which is commonly used for VANETs on a highway [126, 198].

The aforementioned speed-change time interval � depends on practical condi-
tions, e.g., a sports car may change its speed more frequently than a heavy truck.
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Reasonable values for the time interval can be from 1s to 25s [18]. The vehicle
mobility parameters, i.e., EŒv�, � and � , are taken from practical measurements.
Typical values for EŒv� and � are given in [176], where the usual record time
intervals for a vehicle speed monitor are � D 1s; 5s. We conduct our analysis in
the discrete time domain (t D i� ). Extension to the continuous time domain is
straightforward following the procedure outlined later in the chapter.

We adopt a commonly used traffic model in vehicular traffic theory [126] in
which vehicles travel independently in the same direction on a one-dimensional
infinite line and follow the Poisson arrival model with a rate � veh/s. The
Poisson arrival model is a commonly used traffic model in vehicular traffic theory
based on real world measurements. Furthermore, the Poisson arrival model and
the Poisson distribution of the vehicles are also commonly used traffic models in
the studies of vehicular ad hoc networks [68, 198]. The following lemma relates the
spatial distribution of the vehicles on the road to the Poisson arrival model of the
vehicles. The result on the spatial distribution of vehicles is used in the rest of this
section.

Lemma 143 If the traffic in a VANET follows the Poisson arrival model with
rate � and the speed of each vehicle changes at the beginning of each time slot,
independent of other vehicles, according to fv.v/, then at any time instant, the
spatial distribution of the vehicles on the road follows a homogeneous Poisson point
process with density � D �

R1
�1

fv.v/
v

dv.

Proof It has been shown in [198] that if the vehicle speeds do not change over
time, then at any time instant the distances between adjacent vehicles (inter-
vehicle distance l) are independent and follow an exponential distribution with rate
parameter � D �

R1
�1

fv.v/
v

dv. It follows that the spatial distribution of the vehicles
follows a homogeneous Poisson point process with density �.

Next we apply the mathematical induction to study the spatial distribution of
vehicles under our mobility model, in which vehicles are allowed to change their
speeds from one time slot to another. In the first time slot [0,� ), it is straightforward
to show that the spatial distribution of the vehicles follows a homogeneous Poisson
point process with density �, because the speed does not change during a time slot.

Assume that in the ith time slot [.i�1/� ,i� ), the spatial distribution of the vehicles
still follows a homogeneous Poisson point process with density �. When the next
time slot begins, each vehicle chooses its new speed, independent of other vehicles,
according to fv.v/. Then, according to the random splitting property of a Poisson
point process ( [155], see also Sect. 1.2), the spatial distribution of the vehicles
traveling at the speed v 2 Œvm; vm C dvm/ during the i C 1th time slot [i� ,.i C
1/� ) follows a homogeneous Poisson sub-process with density �fv.vm/dvm. These
vehicles have the same speed so that at any time instant during the i C 1th time slot,
the spatial distribution of these vehicles does not change. Then, according to the
random coupling property of a Poisson point process [155], the spatial distribution
of all vehicles in the i C 1th time slot follows a homogeneous Poisson point process,
which is the sum of all the sub-processes, with the density

R1
�1 �fv.vm/dvm D �. ut
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Note that previous research [198] only considered that the vehicle speeds do not
change over time. In Lemma 143, we consider the time variation of vehicle speeds
in the analysis of vehicle distribution on the road.

9.1.1 Catch-Up Process for a General Speed Distribution

In this subsection, we study the catch-up process in a VANET where the vehicle
speeds follow a general probability density function fv.v/. Without loss of general-
ity, it is assumed that the catch-up process starts at time 0. The displacement x of a
vehicle at time t is defined as the difference between the position of the vehicle at
time 0 and its position at time t.

9.1.2 Modeling the Movement of Single Vehicle

Denote by p.x; t/ the probability that the displacement of a vehicle is x at time t.
Because the speed does not change during a time slot, p.x; �/ can be readily obtained
from fv.v/.

Due to the independence of the vehicle speeds in different time slots, hence the
displacements, we have for t D i� :

p.x; t/ D p.x; i�/ D
i-fold convolution‚ …„ ƒ

.p � p � : : : � p/.x; �/ (9.1.1)

The calculation of the above i-fold convolution can be simplified by using the
Fourier and inverse Fourier transform.

9.1.3 Modeling the Movement of the Head and Tail

Denote by Hm (Pm) the mth vehicle to the left of the head H0 (to the right of the
tail P0) at time 0, as shown in Fig. 9.2. Define wm to be the Euclidean distance
between Hm and H0 at time 0.

Let us first consider the movement of the head. Define xm.t/ to be the displace-
ment of Hm at time t. Define y.t/ to be the displacement of the head at time t. Note
that the head vehicle at time 0 is not necessarily the head vehicle at time t because
the original head may be overtaken by another informed vehicle during time .0; t�.
It follows that:

y.t/ D max fx0.t/; x1.t/ � w1; x2.t/ � w2; : : : ; xn.t/ � wng (9.1.2)
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Hn H2

head tail

H1
0

w2

w1 lc

H0 P0

Fig. 9.2 An illustration of a VANET at the beginning of a catch-up process with gap lc, where lc
is the Euclidean distance between the head and the tail at time 0. Hereinafter, a catch-up process
where the initial distance between the head and tail is lc at time 0 is referred to as a catch-up
process with gap lc

where n is the number of vehicles, to the left of the head, that have the potential to
overtake the head vehicle at time 0.

Because the movement of a vehicle is independent of other vehicles, xm.t/ and
xj.t/ are independent for any m ¤ j. Therefore, the cumulative distribution function
of the displacement of the head at time t is:

Pr.y.t/ � y/ D
nY

mD0
Pr.xm.t/ � wm � y/

D
nY

mD0

�Z 1

0

Z yCwm

�1
p.x; t/fwm.wm/dxdwm

�
(9.1.3)

where p.x; t/ is given by (9.1.1), wm is the distance between Hm and H0 at time
0, w0 D 0 and fwm.wm/ is the probability density function of wm. As an easy
consequence of the Poisson distribution of the vehicles, proved in Lemma 143, the
inter-vehicle distance follows an exponential distribution. Therefore, we have:

fwm.wm/ D �e��wm.�wm/
m�1

.m � 1/Š for m � 1 (9.1.4)

Define ph.y; t/ to be the probability that the displacement of the head is y at time t.
Then:

ph.y; t/ D @Pr.y.t/ � y/

@y
(9.1.5)

The calculation is however tedious for a general speed distribution. Therefore,
only the methodology for the analysis of the catch-up process is shown in this
subsection. A detailed analytical result for the catch-up process under the Gaussian
speed distribution is shown in Sect. 9.1.4.
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Denote by pg.Qy; t/ the probability that the displacement of the tail is Qy at time t.
The analysis for the movement of the tail is similar to the one for the head and
therefore is omitted.

9.1.3.1 Catch-Up Delay

As illustrated in Fig. 9.2, consider a catch-up process where the Euclidean distance
between the head and the tail is lc at the beginning of the catch-up process
(designated as time 0), which is referred to as a catch-up process with gap lc. Define
the catch-up delay tc to be the time taken from time 0 till the time when the head and
tail move into the transmission range of each other for the first time, i.e., t2 � t1 in
Fig. 9.1. We do not consider the rare event that the distance between the head and tail
becomes larger than r0 again during .tc; tcCˇ/, which may cause the transmission of
a packet being interrupted, because the per-hop delay ˇ (e.g., 4ms [191]) is usually
much smaller than the time interval for a vehicle to change speed (typically longer
than a second [18]). It is worth noting that there is a first passage phenomenon in
the catch-up process, i.e., the catch-up process finishes as soon as the head and the
tail move into the transmission range of each other. Therefore, the catch-up delay
is tc if and only if the distance between the head and tail reduces from lc at time 0
to r0 for the first time at time tc. This first passage phenomenon is important for the
analysis of the catch-up process.

Denote by pH.z; t/ the probability that the reduction of the Euclidean distance
between head and tail is z at time t, with regard to their original distance at time 0.
As illustrated in Fig. 9.3, it can be shown that:

pH.z; t/ D
Z 1

�1
ph.y; t/pg.y � z; t/dy (9.1.6)

Note that the above equation can be converted into convolution if pg.Qy; t/ D
pg.�Qy; t/, which is the case to be introduced in the next subsection when the vehicle
speed follows a Gaussian distribution.

Denote by h.z; i/ the probability that the reduction of the distance between head
and tail reaches z in the ith time slot Œ.i � 1/�; i�/. Therefore,

h.z; i/ D
Z i�

.i�1/�
pH.z; t/dt (9.1.7)

Fig. 9.3 An illustration of
the displacements of the head
and tail at time t in a catch-up
process with gap lc. The
reduction of distance is
z D y � Qy

Head Tail
y y

lc

∼
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In order to obtain a closed-form result, the probability of the reduction of the
distance between head and tail being z at time t 2 Œ.i � 1/�; i�/ is considered to
be approximately equal to the probability of the reduction of the distance between
head and tail being z at time t D i� . This approximation provides a fairly accurate
result when � is small (e.g., � D1s, 5s) as shown in Sect. 9.1.7.1 and Sect. 9.1.7.3.
Therefore, from (9.1.7),

h.z; i/ D
Z i�

.i�1/�
pH.z; t/dt 
 �pH.z; i�/ (9.1.8)

Define �.z; i/ to be the first passage probability [174] of h.z; i/, viz., the
probability that the reduction of the distance between head and tail reaches z in
the ith time slot Œ.i �1/�; i�/ for the first time since time 0. The relationship between
�.z; i/ and h.z; i/ can be studied as the first passage time in a stochastic process
[152]. The first passage time of a diffusing particle or a random walker is the time
at which the particle or the random walker first reaches a specified site.

A standard procedure is applied to determine the first passage probability �.z; i/
[152, 174]. As illustrated in Fig. 9.4, consider a class of random walks starting at
time 0 and walking from point 0 to z0 must proceed by going through a point z. The
transition from 0 to z0 can be decomposed into two independent stages: in the first
stage an agent walks from 0 to z for the first time in the ith time slot; in the second
stage the agent walks from z to z0 in the i0 � ith time slot, not necessarily for the first
time. Then, we can obtain the following equation [152, 174]:

h.z0; i0/ D
i0X

iD1
�.z; i/h.z0 � z; i0 � i/ (9.1.9)

The convolution can be simplified by using the Z-transform with regard to i,
which is denoted by the operator Z . According to the convolution theorem, (9.1.9)
becomes

.Zh/.z0; s/ D .Z�/.z; s/ .Zh/.z0 � z; s/ (9.1.10)

Thus: .Z�/.z; s/ D .Zh/.z0; s/
.Zh/.z0 � z; s/

(9.1.11)

i i’-i

0 Z Z’

Fig. 9.4 An illustration of a class of random walks taking i0 time slots to walk from 0 to z0 through
an intermediate point z
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Then, by inverse Z-transform we can obtain �.z; i/. Denote by F� .z; i/ the
cumulative distribution function of �.z; i/ with regard to i, i.e., the probability that
the reduction of the distance between head and tail has reached z during time .0; i��.
It follows that F� .lc � r0; i/ is the probability that the head and tail have moved into
the transmission range of each other during time .0; i��. Therefore, the expected
catch-up delay (tc) for a catch-up process with gap lc is

EŒtcjlc� D �

1X
iD1
.1 � F� .lc � r0; i// (9.1.12)

9.1.3.2 Distribution of the Gaps lc

Denote by fl.l/ the probability density function of the Euclidean distance between
any two adjacent vehicles. Due to the Poisson distribution of vehicles, it is evident
that fl.l/ D �e��l. Denote by flc.lc/ the probability density function of the Euclidean
distance between any two adjacent but disconnected vehicles. It is straightforward
that for lc > r0:

flc.lc/ D fl.lc/

1 � R r0
0

fl.l/dl
D �e��.lc�r0/ (9.1.13)

9.1.4 Catch-Up Process for a Gaussian Speed Distribution

In this subsection, we provide detailed analytical results on the catch-up process
assuming a Gaussian speed distribution, which is a commonly used assumption for
VANETs on a highway [126, 176, 198]. The procedure of the analysis is the same
as the one introduced in the previous subsection, except for some adjustments in
order to obtain a simpler result.

For a zero mean Gaussian speed distribution with standard deviation � , the
probability density function of the vehicle speed is:

fv.v/ D 1

�
p
2�

exp

��v2
2�2

�
(9.1.14)

At the end of the first time slot, i.e., t D � , it is straightforward to show that:

p.x; �/ D 1

��
p
2�

exp

� �x2

2.��/2

�
(9.1.15)
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Furthermore, because the convolution of two Gaussian functions yields another
Gaussian function [85], using (9.1.1) we can obtain:

p.y; i�/ D 1

�i

p
2�

exp

��y2

2�2i

�
(9.1.16)

where �2i D i.��/2.
Next, we consider the situation in which vehicles are allowed to change speed at

different time instants. Without loss of generality, consider that a vehicle changes
its speed at time �0 for the first time since time 0, where �0 is uniformly distributed
in .0; ��. For t D i� , (9.1.1) becomes:

p.x; t/ D p.x; i�/

D p.x; �0/ �
(i-1)-fold convolution‚ …„ ƒ

.p � p � : : : � p/.x; �/�p.x; � � �0/

D 1

�i

p
2�

exp

��x2

2�2i

�
(9.1.17)

where �2i D .i � 1/�2�2 C �2�20 C �2.� � �0/2 D i�2�2 C 2�2�20 � 2�2��0.
Compared with the result obtained using a synchronized mobility model

(i.e., (9.1.16)), the additional terms are 2�2�20 � 2�2��0. To simplify the analysis,
we ignore the additional terms and consider the synchronized mobility model only.
The error caused by ignoring these additional terms and assuming a synchronized
mobility model is given by

R �
0
.2�2�20 � 2�2��0/

1
�
d�0 D � �2�2

3
. It is obvious that

the error is small compared with the dominant term i�2�2, particularly when i is
large. Furthermore, the accuracy of this approximation is verified in Sect. 9.1.7.3.

9.1.4.1 Catch-Up Delay in a Basic Catch-Up Process

In this subsection, we temporarily ignore the possibility of overtaking, i.e., we
consider a basic catch-up process involving only the vehicle, which is the head
at time 0, catching up with the vehicle, which is the tail at time 0. We have the
following lemma for the basic catch-up process.

Lemma 144 In a basic catch-up process where vehicle speed follows a zero mean
Gaussian distribution with standard deviation � , the probability that the reduction
of distance between the head and tail is z for the first time during the ith time slot is:

�.z; i/ D z

2i��
p
� i

exp

�
� z2

4i�2�2

�
(9.1.18)
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Proof Because the Gaussian speed distribution is symmetric with respect to the
mean, for the displacement of the tail we have: pg.Qy; t/ D p.Qy; t/ D p.�Qy; t/.
Using (9.1.6), it can be shown that:

pH.z; i�/ D
Z 1

�1
p.y; i�/pg.z � y; i�/dy

D .p � p/.z; i�/

D 1

Q�i

p
2�

exp

��z2

2 Q�2i

�
(9.1.19)

where Q�2i D 2i.��/2. Therefore:

h.z; i/ D �pH.z; i�/ D �

Q�i

p
2�

exp.
�z2

2 Q�2i
/ (9.1.20)

Inspired by [152, Eq. 6.4], h.z; i/ in (9.1.20) can be rewritten in the following
form in order to calculate the Z-transform:

h.z; i/ D �

2�

Z 1

�1
exp.�jz˛ � Q�2i

2
˛2/d˛ (9.1.21)

where j denotes
p�1.

Then, perform the Z-transform on (9.1.21) with regard to i:

.Zh/.z; s/ D
1X

iD1
e�sih.z; i/

D �

2�

Z 1

�1
exp.�jz˛/

1X
iD1

exp.�si/ exp.� Q�2i
2
˛2/d˛

With Q�2i D 2i.��/2, there holds:

.Zh/.z; s/ D �

2�

Z 1

�1
exp.�jz˛/

1X
iD1

exp.�si/ exp.�i.��/2˛2/d˛

D �

2�

Z 1

�1
exp.�jz˛/.s C �2�2˛2/�1d˛

D �

2

exp.�z
p

s=.�2�2//p
s�2�2

(9.1.22)
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Then, according to (9.1.11) we have:

.Z�/.z; s/ D .Zh/.z0; s/
.Zh/.z0 � z; s/

D exp.�z0ps=.�2�2//

exp.�.z0 � z/
p

s=.�2�2//

D exp.�z
p

s=.�2�2// (9.1.23)

Finally, using the inverse Z-transform, it can be obtained that:

�.z; i/ D z

2i��
p
� i

exp.� z2

4i�2�2
/ (9.1.24)

ut
We say that one vehicle catches up another vehicle if and only if the Euclidean dis-
tance between them reduces to the transmission range r0. Then, using Lemma 144,
one can readily obtain the following result.

Theorem 145 Consider two vehicles separated by a Euclidean distance lc at
time 0. The probability that one vehicle catches up the other for the first time in

the ith time slot is lc�r0
2i��

p
� i

exp.� .lc�r0/2

4i�2�2
/.

Proof It is straightforward that the reduction of distance is z D lc � r0. Then, using
Lemma 144, the theorem is readily proved. ut

9.1.4.2 Catch-Up Delay with Overtaking Permitted

In the previous subsection, the possibility of overtaking is not included in the
calculation of the first passage probability, in order to obtain a closed-form result
in (9.1.24). In this subsection, the possibility of overtaking is considered to provide a
more accurate result on the catch-up delay. Recall that Hm denotes the mth vehicle to
the left of the head H0 at time 0 and Pm0 denotes the m0th vehicle to the right of the
tail P0 at time 0. Note that all the vehicles Hm (Pm0 ) for m;m0 2 Œ1;1/ can possibly
overtake the head H0 (the tail P0).

Lemma 146 Denote by qmm0.ijlc/ the probability that Hm catches up Pm0 (m;m0 2
Œ0;1/) for the first time in the ith time slot, in a catch-up process with gap lc. Then,
using Lemma 144, we have

qmm0.ijlc/ 
 �
�
lc � r0 C m=�C m0=�; i

�
(9.1.25)

Proof Recall that wm is the distance between Hm and H0 at time 0, which follows
an exponential distribution. It follows that the expected distance between Hm and
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H0 at time 0 is
R1
0

wmfwm.wm/dwm D m=�, where fwm.wm/ is given by (9.1.4).
Similarly, the expected distance between Pm0 and P0 at time 0 is m0=�. Therefore, in
a catch-up process with gap lc, the expected distance between Hm and Pm0 at time 0
is lc C m=�C m0=�. In order for Hm to catch up with Pm0 , the reduction of distance
should be z D lc � r0 C m=�C m0=�. ut
Remark 147 In Lemma 146, only the mean value of the distance between vehicles
is required. This provides us with the flexibility to extend the analysis from the
Poisson distribution model to another vehicle distribution model, i.e., we only need
to replace m=� in (9.1.25) by the corresponding average inter-vehicle distance if a
different vehicle distribution model is used. The rest of the analysis on the catch-up
process does not depend on the particular vehicle distribution model being used.
However, the accuracy of using mean value approximation for another vehicle
distribution needs to be validated.

Denote by H.ijlc/ the probability that none of the Hm-Pm0 pairs (m;m0 2 Œ0;1/)
catches up in the ith time slot, in a catch-up process with gap lc. Due to the
independence of the movements of vehicles, we have:

H.ijlc/ D
Y

m;m02Œ0;1/

.1 � qmm0.ijlc// (9.1.26)

where qmm0.ijlc/ is given by Lemma 146. During numerical evaluation, finite values
of m;m0 can provide fairly accurate results, which is discussed later in Sect. 9.1.7.1.

Denote by h.ijlc/ the probability that at least one pair of Hm-Pm0 catches up in the
ith time slot and none of them has caught up before the ith time slot, in a catch-up
process with gap lc. It is straightforward that:

h.icjlc/ D .1 � H.icjlc//
ic�1Y
iD1

H.ijlc/ (9.1.27)

Finally, the expected delay for a catch-up process with gap lc is:

EŒtcjlc� D
1X

iD1
i�h.ijlc/ (9.1.28)

9.1.5 Analysis of the Forwarding Process

In a forwarding process, the packet is forwarded in a multi-hop manner between
vehicles inside a cluster. We start with an analysis on the distribution of the length
of the cluster.
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9.1.5.1 Cluster Length

Define the cluster length x0 to be the diameter of a cluster, which is the Euclidean
distance between the vehicles at the two ends of a cluster. Define fx0 .x0/ to be the
probability density function of the cluster length, which has often been studied as
the probability density function of the busy period in queuing theory by drawing
an analogy between the inter-vehicle distance and the inter-arrival time in a queue.
In previous research only numerical solutions [198] or approximate results [190]
were provided for the cluster length distribution. In this subsection, we provide a
closed-form formula for the probability density function of the cluster length using
a different method inspired by the study on the connectivity of random interval
graph [79] and theory of coverage processes [96].

Theorem 148 In a VANET where the spatial distribution of vehicles follows a
homogeneous Poisson point process with density �, the probability density function
of the cluster length is:

fx0 .x0/ D �

.e�r0 � 1/
bx0=r0cX

mD0

.��.x0 � mr0//m�1

�mŠ
.�.x0 � mr0/C m/e��mr0

where m is an integer and b:c is the floor function.

Proof Place the origin of the axis at the position of the leftmost vehicle of a cluster.
Let N be the random integer representing the number of vehicles in the cluster. The
cluster ends in Œx0; x0 C dx0/ and there are n vehicles in this cluster if and only if:

• E1: There is a vehicle in Œx0; x0 C dx0/; and
• E2: There is no vehicle in Œx0 C dx0; x0 C r0/; and
• E3: There are n � 2 vehicles in .0; x0/; and
• E4: The inter-vehicle distance between any two adjacent vehicles for those n

vehicles in Œ0; x0 C dx0/ is smaller than or equal to r0.

Denote by Pr.Em/ the probability of event Em;m D 1; 2; 3; 4 in the above list.
Due to the Poisson distribution of vehicles, it is straightforward to show that:

Pr.E1/ D �dx0 (9.1.29)

Pr.E2/ D e��r0 (9.1.30)

Pr.E3/ D .�x0/n�2e��x0

.n � 2/Š (9.1.31)

Furthermore, Pr.E4/ can be studied using [79, Lemma 1], which provides results
on the connectivity of random interval graph. In [79], vertices are randomly and
uniformly distributed on a unit interval. Due to the Poisson distribution of the
vehicles in our case, conditioned on that there are n vehicles in a cluster with length
x0, these n vehicles follow a uniform distribution. Therefore, by scaling the cluster
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length x0 to 1 and consequently the transmission range to r0
x0

, we have the following
equation obtained from [79, Lemma 1]:

Pr.E4/ D
minfn�1;bx0=r0cgX

mD0

 
n � 1

m

!
.�1/m.1 � m

r0
x0
/n�2 (9.1.32)

where m is an integer. For the convenience of the following calculation, let
�n�1

m

� D 0

for m > n � 1. Thus the above summation is from m D 0 to bx0=r0c.
Events E1, E2, and E3 are independent of each other. Event E4, which is

conditioned on event E3, is independent of events E1 and E2. Define f .x0;N D n/ to
be the joint probability that the cluster ends in Œx0; x0Cdx0/ and there are n vehicles
in this cluster. It is evident that f .x0;N D n/ D Pr.E1/Pr.E2/Pr.E3/Pr.E4/. Next
we derive fx0 .x0/ using f .x0;N D n/.

If the cluster only consists of one vehicle, then the cluster length is 0 and the
probability of this event is e��r0 . If the cluster consists of more than one vehicles,
then the probability density function of the cluster length x0 is:

fx0 .x0/ D
P1

nD2 f .x0;N D n/

Pr.N � 2/

D
1X

nD2

�
�e��r0 .�x0/n�2e��x0

.n � 2/Š.1 � e��r0 /

2
4

bx0=r0cX
mD0

 
n � 1

m

!
.�1/m.1 � m

r0
x0
/n�2

3
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Using
�n

m

� D nŠ
mŠ.n�m/Š , the summation terms in (9.1.33) can be simplified as:
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Using xex D
1X
˛D0

˛x˛

˛Š
, (9.1.34) can be written as:
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Substituting the above equation into (9.1.33), one can obtain:
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ut
Theorem 148 gives a closed-form formula for the probability density function
of the cluster length, which is important for analytical study on the performance
of VANETs.

9.1.5.2 Hop Count Statistics in a Cluster

In order to study the information propagation speed in the forwarding process, the
number of hops between the leftmost vehicle and the rightmost vehicle in the same
cluster needs to be calculated. Two vehicles are said to be k hops apart if the shortest
path between them, measured by the number of hops, is k. Define �k.x0/ to be the
probability that two vehicles separated by Euclidean distance x0 are k hops apart.
It is assumed that the positions of the vehicles do not change during the forwarding
process since the forwarding delay is relatively small, which is also confirmed in
Fig. 9.7. Therefore, the probability �k.x0/ can be calculated by the result introduced
in [63] for a static one-dimensional multi-hop network.

Define Prs.x0/ to be the probability of successful transmissions between any pair
of vehicles separated by a Euclidean distance x0. An end-to-end packet transmission
is successful if a packet can reach the destination, by any number of hops. Therefore,

Prs.x0/ D
1X

kD1
�k.x0/

Define �ks.x0/ to be the conditional probability that a packet reaches its des-
tination at the kth

s hop, conditioned on the transmission being successful and the
Euclidean distance between the source and the destination being x0. It is trivial to
see that �k.x0/ D �ks.x0/Prs.x0/. Therefore, the expected number of hops between
two vehicles separated by distance x0, given that they are connected, is:

EsŒksjx0� D
P1

kD1 k�k.x0/

Prs.x0/
(9.1.36)

Define the forwarding delay to be the time required for a packet to be forwarded
from the leftmost vehicle to the rightmost vehicle in the cluster, which is t1 � t0 in
the example illustrated in Fig. 9.1. Then, the expected forwarding delay in a cluster
with length x0 is EŒtf jx0� D ˇEsŒksjx0�.
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Remark 149 The hop count statistics for a one-dimensional network with inhomo-
geneous Poisson distribution of nodes is studied in [201], which provides us with
the required methodology for extending our analysis on the forwarding process from
the Poisson distribution model to another vehicle distribution model.

9.1.6 Information Propagation Speed

The entire information propagation process can be considered as a renewal reward
process [175, Chapter 7.4 ] where each cycle consists of a catch-up process followed
by a forwarding process and the reward is the information propagation distance
during each cycle. As mentioned in Sect. 9.1, EŒv� is the constant component of the
vehicle speed. It can be shown that [190]:

EŒvip� 
 expected length of one cycle

expected time duration of one cycle
C EŒv�

D
R1

r0
lcflc.lc/dlc C R1

0
x0fx0 .x0/dx0R1

r0
EŒtcjlc�flc.lc/dlc C ˇ C 1

1�pc

R1
0

EŒtf jx0�fx0 .x0/dx0
C EŒv�

where pc D 2WminNb
.WminC1/2C2WminNb

is the probability of collision given in [127], Wmin is
the minimum contention window size and Nb D �2�r0 is the average node degree.
Packet collision can be shown to have negative impact on the forwarding process,
i.e., reducing the IPS, when the vehicle density is high. To illustrate this effect, we
conduct simulations using the parameters shown in [36], i.e., Wmin D 32.

9.1.7 Simulation Results

A number of approximations were used in the earlier analysis. In this subsection, we
report on simulations to validate the accuracy of the analytical results. Each point
shown in the figures is the average value from 2000 simulations. The confidence
interval is too small to be distinguishable and hence is ignored in the following
plots. The transmission range is r0 D 250m [190]. The mobility parameters are
EŒv� D 25m=s; � D 7:5m=s [176]. In order to distinguish the impact on the IPS of
packet collision and other parameters, we let pc D 0 except in Fig. 9.11.

9.1.7.1 Catch-Up Process

As mentioned earlier, we use � D 1s; 5s. Only the results for � D 5s are shown
in this subsection since the results for � D 1s have a similar (and slightly better)
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Fig. 9.5 (a) Cumulative distribution function of the catch-up delay for a catch-up process with
gap lc D 400. (b) Simulation results on the probability that a randomly chosen vehicle overtakes
another vehicle within time t, where their initial Euclidean distance is z D m � 83 at time 0

accuracy. The traffic density is � D 0:3 veh/s. It follows that the spatial distri-
bution of the vehicles follows a homogeneous Poisson point process with density
� D R1

0
fv.v/
v

dv D 0:012 veh/m, which is a low traffic density resulting in a large
number of catch-up processes. The results for other densities are quite similar hence
not shown in this subsection.

Figure 9.5a shows the probability that a catch-up process with gap lc D 400

finishes within time t. It can be seen that when m D m0 D 4, the analytical result
gives a good approximation. Moreover, considering more vehicles in the overtake
process, e.g., m D 6 or m D 8, has marginal impact on the results. This is because
as the distance between vehicles increases, the probability of overtaking decreases
rapidly, which can be seen in Fig. 9.5b. Figure 9.5b shows the simulation result of
the probability that a randomly chosen vehicle overtakes another vehicle within time
t D i� , where their distance is z at time 0. Because the average inter-vehicle distance
is 1=� D 1=0:012 
 83 m, the curve of z D m � 83 in Fig. 9.5b approximately
illustrates the probability that vehicle Hm overtakes H0 before time t. As can be seen
in the figure, the probability that H4 overtakes H0 within 100 s while none of H1, H2,
H3 overtakes H0 within 100 s is approximately given by 0:2.1�0:72/.1�0:52/.1�
0:34/ D 0:01774. It can be understood that the probability that H0 is overtaken by
another vehicle, e.g., H5, H6 : : :, is very small. Therefore, considering m D m0 D 4

can provide a good approximation.
Figure 9.6a shows the expected catch-up delay for a catch-up process with

gap lc. It can be seen that the analytical result, which considers m D m0 D 4,
provides a good approximation. The discrepancy between the simulation result
and the analytical result is caused by the approximations used during the analysis.
Specifically, the first passage analysis is only applied to the analysis of the catch-
up process between a pair of vehicles which are the head and the tail at the start
of the catch-up process. However, the first passage analysis does not consider the
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Fig. 9.6 (a) Expected catch-up delay, (b) probability density function of the length of the gap (lc)

possibility that the head (the tail) may be overtaken by other vehicles during the
catch-up process. Furthermore, Fig. 9.6b also verifies that the inter-vehicle distance,
under our network model and the Gaussian speed distribution, still follows an
exponential distribution with � D 0:012. This property is also expected to hold
in some other speed distributions, although it needs to be analyzed and verified
separately.

9.1.7.2 Forwarding Process

In addition to the simulation settings introduced earlier, the per-hop delay is set to
be ˇ D 4ms [190]. Figure 9.7a shows the expected forwarding delay in a cluster
with a given length. Figure 9.7b shows the probability density function of the cluster
length. It can be seen that analytical results match simulation results very well. The
results for other values of the parameters have a similar accuracy and so are omitted.
Furthermore it is interesting to note that in Fig. 9.7b, the probability density function
of the cluster length is a constant for x0 2 Œ0; 250�. This is because within the
transmission range (r0 D 250) of the first vehicle, Pr.E4/ D 1 according to (9.1.32)
and the cluster length is x0 if and only if there is a vehicle in Œx0; x0 C dx0/ and there
is no vehicle in Œx0 C dx; x0 C r0/. It follows that the probability density function of
the cluster length is a constant for x0 2 Œ0; r0�.

9.1.7.3 Information Propagation Speed

In addition to the simulation settings introduced earlier, the Poisson arrival rate � is
varied from 0 to 1:5 veh/s. With EŒv� D 25, the spatial distribution of the vehicles
follows a homogeneous Poisson point process with density � ranging from 0 to
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Fig. 9.8 The expected information propagation speed for � D 1s; 5s

0:06. For completeness of the plot, � D 0 is included which means there is only
one vehicle on the road. Therefore, the average number of neighbors (average node
degree) varies from 0 to 30, which represents a large range of traffic densities.

Figure 9.8 shows the expected IPS for � D 1s, 5s. It can be seen that when
the vehicle density is low, the IPS is determined by vehicle speeds because there is
little packet forwarding in the network. When the vehicle density increases, small
clusters are formed and the IPS is determined by the catch-up delay, which is further
determined by the mobility of vehicles. It can be seen that the more frequently
the speed changes, the slower the information propagates. This is mainly because
changing speed has the potential to interrupt the catch-up process, i.e., during a
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catch-up process, the tail may speed up and the head may slow down. An intuitive
explanation can be provided by considering an extreme case. In the extreme case
that the speed-change time interval tends to 0, it can be shown using the central limit
theorem that the average vehicle speed in any specified time interval converges to the
mean speed EŒv�. Hence the network topology becomes static and the expected IPS
is equal to the mean speed EŒv� because there is no catch-up process to bridge the
gaps. Finally, as the vehicle density further increases, clusters become larger and the
forwarding process starts to dominate. Therefore, the IPS increases until it reaches
the maximum value, which is determined by the per-hop delay in the forwarding
process. The maximum IPS is obviously equal to r0=ˇ, where ˇ is the per-hop
delay. See also the analysis in [3], which formally characterizes this phase transition
phenomenon in the IPS.

Figure 9.9 shows the expected IPS under the constant speed model, i.e., the
vehicle speed does not change over time. The result Analytical-wu is calculated
based on [190] for comparison. The constant speed model is a special case of the
mobility model considered in this chapter, i.e., when � ! 1. In Fig. 9.9, we choose
a fairly large value of � to obtain analytical result under our mobility model and
use the result as an approximation of the result under the constant speed model. The
result Analytical-wu, which does not consider first passage phenomenon, provides
a good match with the simulations. This is because the first passage phenomenon
does not have a significant impact when the vehicle speed does not change over time.
Finally, it can be seen that the constant speed model used in previous research, e.g.,
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Fig. 9.10 The expected IPS under non-synchronized mobility models

[190], causes serious over-estimation of the IPS by almost an order of magnitude.
Therefore, time variation of vehicle speed is an important factor affecting the IPS.

Figure 9.10 shows the expected IPS under non-synchronized mobility models.
In the analysis we choose the synchronized random walk mobility model in order
to study the impact of the time variation of vehicle speed on the IPS. In order
to verify the general applicability of the analytical study assuming the simplified
mobility model, more simulations are conducted. As shown in Fig. 9.10, three
different mobility models are evaluated, i.e., the speed-change time interval � of
each vehicle is uniformly selected from Œ4:8; 5:2� (i.e., around 5) or from Œ2; 8� (i.e.,
within a larger range around 5); and for � following an exponential distribution
with mean 5. Under all three mobility models, vehicles change speed at different
time instants (non-synchronized) and the average speed-change time interval is 5 s.
It can be seen that the IPSs under non-synchronized mobility models are very close
(almost indistinguishable) to each other and our analysis assuming the simplified
(synchronized) mobility model provides a good estimation on the IPS.

We consider the unit disk connection model in the analysis. The unit disk
communication model is constructed based on the path loss attenuation model,
which is suitable to model the radio environment in free space without clutters
[172]. Therefore, the unit disk connection model is suitable for the VANET on
the freeway. In order to study the impact of clutters such as road-side buildings,
simulation results of the expected IPS under the log-normal shadowing model [172]
are shown in Fig. 9.11. The results are compared under the condition that the
average node degrees (i.e., the average number of neighbors per node) under the
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Fig. 9.11 The expected IPS in a VANET subject to log-normal shadowing and packet collision,
where �L is the path loss exponent and �L is the standard deviation of the log-normal shadowing.
Furthermore, when a head cannot transmit a packet to any uninformed vehicle to the right of itself,
the head keep trying to re-transmit the packet after every 0.9s time delay. The value is chosen
according to the real world measurement that the channel coherence time of a VANET on the
freeway is around 0:3s � 1:5s

log-normal model and under the unit disk model, respectively, are the same. In the
log-normal shadowing model, the received signal strength (RSS) attenuation (in dB)
follows a normal distribution with a mean value equal to the RSS under the path
loss attenuation model. This random variation on the RSS attenuation provides a
higher chance for a node to find a next-hop neighbor. Hence even with the same
average node degree, the IPS under the log-normal shadowing model is faster than
that under the unit disk model. A similar observation is obtained in the study of
network connectivity in [100] and [71, Theorem 2.5.2]. Therefore, the IPS under
the unit disk model can be considered as a lower bound on the IPS of a VANET in
the real world.

In addition, the third and forth curves in Fig. 9.11 show the IPS subject to packet
collision with collision probability pc given in Sect. 9.1.6. It can be seen that the
packet collision has a significant impact on the IPS, especially when the vehicle
density is high.

9.2 Information Propagation Process in VANETs
with Multiple Traffic Streams

On the basis of previous section which studied the information propagation process
in a VANET with single traffic stream, in this section, we continue to investigate
the information propagation process in a VANET with multiple traffic streams as
illustrated in Fig. 9.12.
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Fig. 9.12 An illustration of a VANET with four traffic streams. Information is propagating in the
positive direction of the axis

Recent research has shown that downstream traffic, i.e., a set of vehicles traveling
in the opposite direction of information propagation, can be explored to improve
the IPS [1, 2, 11]. Furthermore, real world measurements show that vehicles
traveling in different lanes (e.g., bus lane or heavy truck lane) often have different
speed distributions. In view of these observations, this section further investigates
information propagation in VANETs with multiple traffic streams, where a traffic
stream is a set of vehicles following the same speed distribution. Traffic streams
can be used to represent vehicles traveling in different lanes, or different types of
vehicles (e.g., sports cars or heavy trucks).

Consider a VANET with a total of N traffic streams and a synchronized random
walk mobility model. Each vehicle in the nth, n 2 f1; : : : ;Ng, traffic stream
chooses its speed randomly at the beginning of each time slot, independent of the
speeds of other vehicles and its own speeds in other time slots, according to a
probability density function fn.v/. A non-synchronized mobility model, i.e., each
vehicle changes its speed at different time instants, is evaluated by simulations later
in Sect. 9.2.6 and shown to have little impact on the IPS. We consider the Gaussian
speed distribution, i.e., fn.v/ 	 N .
n; �

2
n /, where 
n and �2n are the mean speed and

variance of the nth traffic stream, respectively. Though the mobility model allows
arbitrary values of 
n, in real world [176], typical values of 
n can be ˙25m=s
or ˙10m=s corresponding to the speeds of vehicles traveling in fast lane or slow
lane, respectively. Note that a positive (negative) value of the vehicle speed means
that the vehicle is moving in the positive (negative) direction of the axis. When a
vehicle changes its speed from a positive value to a negative one, it means that the
vehicle changes its moving direction. This does not occur very often when 
n is
much greater than �n. Furthermore, another interesting scenario is a traffic stream
with 
n D �n D 0, corresponding to the vehicles stopped at roadside or some
roadside units without (expensive) wired connection; these roadside units are shown
later to have great potential of improving the IPS.

Same as in the previous section, we adopt the unit disk connection model with a
transmission range r0 and consider a per-hop delay ˇ where the value of ˇ is chosen
to be 4ms.

At the beginning of the information propagation process, vehicles in the nth

traffic stream follow a homogeneous Poisson spatial distribution with density �n.
Then, these vehicles start to move according to the random walk mobility model.
As an easy consequence of Lemma 143, the spatial distribution of vehicles in the
nth traffic stream remains a homogeneous Poisson distribution with density �n at
any time instant. Then, according to the superposition property of Poisson point



238 9 Information Propagation in One-Dimensional Dynamic Networks

processes ([155], see also Sect. 1.2), at any time instant the spatial distribution of
all vehicles on the road follows a homogeneous Poisson point process with density
� D PN

nD1 �n. This means that the total vehicle density is � vehicles per meter. Note
that the assumption of Poisson distribution of vehicles is only suitable for free-flow
traffic [198], i.e., the movements of vehicles are independent. Therefore, the model
is applicable to VANET scenarios where the vehicle density is low or moderate.

In the following three subsections, we study the information propagation process
by separately analyzing its two major constituent sub-processes: the forwarding
process and the catch-up process. On the basis of these studied, simplified results
are provided in Sect. 9.2.4 for both the forwarding process and the catch-up process.

9.2.1 Forwarding Process

Define the forwarding delay as the time required for a packet to be forwarded from
the leftmost vehicle in a cluster to the rightmost vehicle in the cluster. Note that
we consider that the radio propagation speed is sufficiently large in a forwarding
process, because the information propagation delay is usually small. For example,
a typical value of per-hop-delay in vehicle-to-vehicle communication is ˇ D 4ms
[191], which means that the radio propagation speed can be as large as 250=0:004 D
62500m=s, which is much faster than the moving speed of vehicles (typical speed is
25m/s [176]). Therefore, it is assumed that a cluster does not become disconnected
during the forwarding process. Then, the expected forwarding delay in a cluster with
length x is EŒtf jx� D ˇEŒkjx�, where EŒkjx� (given in [63], see also Sect. 11.1) is the
expected number of hops between two vehicles separated by distance x and tf is the
forwarding delay.

Denote by X.�/ the length of an arbitrary cluster in a VANET with density �,
i.e., it is the Euclidean distance between the leftmost vehicle and the rightmost
vehicle in a cluster. Using Theorem 148, the probability density function of the
cluster length is:

fX.�/ .x/ D �

.e�r0 � 1/
bx=r0cX
mD0

�
.��.x � mr0//m�1

�mŠ
.�.x � mr0/C m/e��mr0



It follows that the cumulative distribution function of the cluster length is:

Pr .X.�/ � x/ D
Z x

0

fX.�/ .y/ dy (9.2.1)
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9.2.2 Catch-Up Process

We study the catch-up process in this subsection. Without loss of generality, it is
assumed that the catch-up process starts at time 0. The displacement � of a vehicle
at time t is defined to be the distance between the vehicle position at time t and its
position at time 0. Note that � 2 .�1;1/, where a positive (negative) value of �
means that the position of the vehicle at time t is on the right (left) of its position at
time 0.

This subsection is organized as follows: in Lemma 150, we study the movement
of single vehicle. Then, the result on the distance between two vehicles at a given
time is summarized in Lemma 151 and Lemma 152, followed by the study on the so-
called pseudo catch-up process in Lemma 153. After considering the overtaking of
vehicles in Sect. 9.2.2.4, we obtain the delay of a catch-up process in Sect. 9.2.2.5.

9.2.2.1 Modeling the Movement of Single Vehicle

Consider single vehicle first. Suppose that a vehicle is located at the origin (� D 0)
at time 0. Denote by pn.�; t/ the probability density function that the displacement
of a vehicle in the nth traffic stream is � at time t. We have the following result:

Lemma 150 Suppose that a vehicle in the nth traffic stream follows a Gaussian
speed distribution with mean 
n and variance �2n . Under the synchronized random
walk mobility model, there holds

pn.�; t/ D 1

Q�i

p
2�

exp

��.� � 
ni� � 
n.t � i�//2

2 Q�2i

�
(9.2.2)

where Q�2i D i.�n�/
2 C �2n .t � i�/2 and i D b t

�
c.

Proof According to the Gaussian speed distribution model, the probability density
function of the speed of a vehicle in the nth traffic stream is

fn.v/ D 1

�n

p
2�

exp

��.v � 
n/
2

2�2n

�
(9.2.3)

Because the speed does not change during a time slot, it is straightforward that
pn.�; �/ is also a Gaussian function:

pn.�; �/ D 1

�n�
p
2�

exp

��.� � 
n�/
2

2.�n�/2

�
(9.2.4)

Recall that we consider that the speed of a vehicle at a time slot is independent
of that in another time slot. Hence the displacements of a vehicle are independent
across time slots. Then, there holds:
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Hn H2

head tail

H1
0

w2

w1 lc

H0 P0

Fig. 9.13 An illustration of a VANET at the beginning of a catch-up process

pn.�; t/ D
i-fold convolution‚ …„ ƒ

.pn � pn � : : : � pn/.�; �/�pn.�; t � i�/ (9.2.5)

where i D b t
�
c.

Using the property that the convolution of two Gaussian functions is a Gaussian
function [85], the Gaussian function after i-fold convolution has mean 
ni� and
variance i.�n�/

2. Then, the lemma is readily proved. ut

9.2.2.2 The Distance Between a Pair of Vehicles

As shown in Fig. 9.13, denote by H� (P�) the � th vehicle to the left of the head H0

(to the right of the tail P0) at the beginning of a catch-up process (viz., at time 0).
If H� happens to be in the nth traffic stream, then an additional label n (e.g., Hn

� ) is

used to indicate that the vehicle is in the nth traffic stream. In this subsection, we
study the Euclidean distance between Hn

� and Pm
� , where n;m 2 f1; : : : ;Ng, n may

or may not be equal to m, and parameters � and � are nonnegative integers. Note
that we need to consider arbitrary nonnegative integer values of �; � rather than
� D � D 0 due to the fact that at time t > 0 the head vehicle H0 (the tail vehicle
P0) can be possibly overtaken by another informed vehicle (uninformed vehicle).
Consequently, the information may be forwarded from H� to P� for any nonnegative
integer values of � and �.

The information can be forwarded from Hn
� to Pm

� as soon as their distance
reduces to the transmission range r0. Next, we characterize the reduction in the
distance between Hn

� and Pm
� compared with their initial distance at the beginning of

the catch-up process.

Lemma 151 Denote by gnm
�� .z; t/ the probability density function of the reduction in

the distance between Hn
� and Pm

� being z at time t, with regard to their distance at
time 0 (viz., the start-time of the catch-up process). Then, there holds

gnm
�� .z; t/ D 1p

2��2t
exp

��.z � 
t/
2

2�2t

�
(9.2.6)
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where 
t D 
ni� C 
n.t � i�/ � 
mi� � 
m.t � i�/, �2t D i�2n �
2 C �2n .t � i�/2 C

i�2m�
2 C �2m.t � i�/2 and i D b t

�
c.

The proof is straightforward using the same technique as that used in the proof of
Lemma 150, hence omitted here.

Note that vehicle Hn
� catches up another vehicle Pm

� when their Euclidean distance
reduces to the transmission range r0 for the first time. However, during a sufficiently
long time interval, the reduction in distance between Hn

� and Pm
� can reach a given

value z at several occasions with nonzero probabilities. We are only interested in
the event that the reduction in the distance between Hn

� and Pm
� reaches z for the

first time, i.e., the first passage phenomenon. A thorough understanding of the first
passage phenomenon is therefore essential for the analysis of the catch-up process.

Lemma 152 Denote by Gnm
�� .z; i/ the probability density function of the event that

the reduction in the distance between Hn
� and Pm

� , with regard to their distance at

time 0, reaches z (z > 0) for the first time in the ith (i � 1) time slot. Then:

(a) When 
n D 
m:

Gnm
�� .z; i/ D z

i
p
2� i�2.�2n C �2m/

exp

� �z2

2i�2.�2n C �2m/

�
(9.2.7)

(b) When 
n ¤ 
m and i D 1,

Gnm
�� .z; i/ � 1

2

0
B@1 � erf .

z � O
q
2�2i

/

1
CA (9.2.8)

(c) When 
n ¤ 
m and i � 2,

Gnm
�� .z; i/ � 1

4
.1C erf .

z � 
i�1q
2�2i�1

//.1 � erf .
z � O
q
2�2i

// (9.2.9)

where O
 D 
ni� � 
mi�; �2i D .�2n C �2m/�
2i and erf .:/ is the error function.

Proof We first consider the case that two traffic streams have the same mean speed,
i.e., 
n D 
m. In this case, we have 
t D 0 in (9.2.6).

It is straightforward that in the ith time slot, the probability that the reduction
in the distance between Hn

� and Pm
� reaches z is

R i�
.i�1/� gnm

�� .z; t/dt. According to the

mean value theorem, there exists Ot 2 ..i � 1/�; i�� such that
R i�
.i�1/� gnm

�� .z; t/dt D
�gnm

�� .z; Ot/. To facilitate the first passage analysis, we approximate Ot by i� and apply
a standard procedure, as shown in [174], to determine the first passage probability
Gnm
�� .z; i/. Then, there holds



242 9 Information Propagation in One-Dimensional Dynamic Networks

�gnm
�� .z

0; i0�/ D �

i0X
iD1

Gnm
�� .z; i/g

nm
��

�
z0 � z; .i0 � i/�

�
(9.2.10)

The convolution can be simplified by performing the Z-transform on gnm
�� .z; i�/

with regard to i:

.Zg/.z; s/ D
1X

iD1
e�signm

�� .z; i�/ (9.2.11)

D 1

2

exp.�z
p
2s=..�2n C �2m/�

2//p
s.�2n C �2m/�

2=2
(9.2.12)

The derivation from (9.2.11) to (9.2.12) is similar to the proof of Lemma 144,
hence omitted here. Then, according to (9.2.10), there holds

.ZG/.z; s/ D .Zg/.z0; s/
.Zg/.z0 � z; s/

D exp

�
�z
q
2s=..�2n C �2m/�

2/

�

Finally, using the inverse Z-transform operation, it is straightforward to obtain
that for 
n D 
m,

Gnm
�� .z; i/ D z

i
p
2� i�2.�2n C �2m/

exp

� �z2

2i�2.�2n C �2m/

�
(9.2.13)

When 
n ¤ 
m, we use a method different from the complicated first passage
analysis to calculate Gnm

�� .z; i/ from gnm
�� .z; t/. Define A to be the event that the

reduction in distance between Hn
� and Pm

� is smaller than z at time .i � 1/� , with
regard to time 0. Let B be the event that the reduction in distance between Hn

� and
Pm
� is larger than z at time i� , with regard to time 0. Then, for 
n ¤ 
m and i � 2:

Gnm
�� .z; i/

� Pr.A/Pr.BjA/
� Pr.A/Pr.B/ (9.2.14)

D
Z z

0

gnm
�� .z0; .i � 1/�/dz0

Z 1

z
gnm
�� .z0; i�/dz0 (9.2.15)

D 1

2

0
B@1C erf .

z � 
i�1q
2�2i�1

/

1
CA 1

2

0
B@1 � erf .

z � O
q
2�2i

/

1
CA (9.2.16)
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where O
 D 
ni� � 
mi�; �2i D .�2n C �2m/�
2i. The first inequality is due to the

fact that we do not consider the first passage phenomenon. Hence Pr.A/Pr.BjA/ is
larger than or equal to the probability that the reduction in distance between Hn

� and

Pm
� reaches z for the first time in the ith time slot. When 
n ¤ 
m, gnm

�� .z; t/ becomes
a Gaussian function with a nonzero mean according to Lemma 151. It follows that
the mean value of the distance between Hn

� and Pm
� is either a decreasing (when


n < 
m) or an increasing (when 
n > 
m) function of t. Therefore, this bound is
tight when the difference between 
n and 
m is large, which is usually satisfied in
situations when different traffic streams are formed by vehicles traveling in fast lane,
slow lane or even vehicles stopped at roadside. Secondly, the inequality Pr.BjA/ �
Pr.B/ in (9.2.14) is due to the observation that A and B are negatively correlated.
Events A and B are negatively correlated because conditioned on the occurrence of
event A, that the reduction in distance is less than z at time .i � 1/� , the occurrence
of event B, that the reduction in distance is larger than z at time i� , is less likely due
to the bounded value of vehicle speed.

Furthermore, when 
n ¤ 
m and i D 1, it is straightforward that:

Gnm
�� .z; i/ � Pr.B/ D 1

2

0
B@1 � erf .

z � O
q
2�2i

/

1
CA (9.2.17)

ut
The results on Gnm

�� .z; i/ are important steps in the analysis of the catch-up delay and
will be used in the following subsections.

9.2.2.3 Pseudo Catch-Up Events

Another major challenge in the analysis of the catch-up process in a VANET with
multiple traffic streams is the study of the pseudo catch-up event, denoted by ‰.
The pseudo catch-up event occurs when a packet is forwarded from a head (say H0)
to a tail (P0) that is in another traffic stream different from the head, but later H0

overtakes P0 (and all other informed vehicles) and becomes the head again owing to
the mobility of vehicles. Such event often occurs when the head and the tail are in
two traffic streams with very different mean vehicle speeds, e.g., two traffic streams
in opposite directions.

An example of the pseudo catch-up event is illustrated in Fig. 9.14. Suppose that
the distance between the head (H0) and the tail (PC

0 ) is lc at time 0, as shown in
Fig. 9.14a. After some time, the information is forwarded from HC

0 to an uninformed
vehicle P0 as shown in Fig. 9.14b, i.e., a catch-up event occurs. However, due to
the higher speed of HC

0 compared with P0, later HC
0 may overtake P0 and all

vehicles in the cluster containing P0 and become the head again. In this case, the
previous catch-up event becomes a pseudo catch-up event in the sense that the
previous catch-up does not advance the propagation of the information. The pseudo
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+
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+
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+
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Informed vehicle Uninformed vehicle
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b 

Fig. 9.14 An illustration of a pseudo catch-up event in a VANET with two traffic streams traveling
in opposite directions. (a) Suppose that at time 0, the distance between the head (H0) and the tail
(PC
0 ) is lc and the distance between HC

0 and PC
0 is Lb. (b) Suppose that at time t > 0, the distance

between HC
0 and PC

0 becomes Ld . Furthermore, suppose that the information is forwarded from
HC
0 to P0 at time t. However, due to the higher speed of HC

0 compared with P0, HC
0 may overtake

P0 later and become the head again, resulting in a pseudo catch-up event

catch-up event was firstly analyzed in [11], and has been ignored in other previous
work. Indeed, as shown later, under certain conditions, the pseudo catch-up event
can have significant impact on the information propagation process. This subsection
quantitatively characterizes the impact of the pseudo catch-up events on the IPS and
provides a more accurate estimate on the IPS, as shown in Sect. 9.2.6.

Next, we present an analytical result on the probability that a pseudo catch-up
event occurs. For simplicity, hereafter a catch-up process, where the initial distance
between the head H0 and tail P0 is lc at time 0, is referred to as a catch-up process
with gap lc. Denote by fc.lc/ the probability density function of lc. Because of the
Poisson distribution of vehicles, it is straightforward that for lc > r0,

fc.lc/ D � exp.��lc/R1
r0
� exp.��l/dl

D � exp.��.lc � r0// (9.2.18)

Lemma 153 Denote by Pr.‰/ the probability that a pseudo catch-up event occurs.
There holds

Pr.‰/ �
Z 1

r0

fb.lb/Pr .X.� � �nmax/ � lb � 2r0/ dlb (9.2.19)

where nmax , arg maxnf
ng, fb is given by (9.2.22) and Pr .X.�/ � x/ is given
by (9.2.1).
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Proof To characterize pseudo catch-up events, we first consider the distance
between the head and the tail. Consider a catch-up process with gap lc, i.e., the
Euclidean distance between the head and the tail is lc at the beginning of the catch-
up process. Denote by HC

0 (PC
0 ) the rightmost informed (leftmost uninformed)

vehicle in the nth
max traffic stream at the beginning of a catch-up process, where the

nth
max traffic stream is the traffic stream with the largest mean speed, i.e., nmax D

arg maxnf
ng. As illustrated in Fig. 9.14, denote by Lb (Ld) the Euclidean distance
between HC

0 and PC
0 at the beginning (at time t > 0) of a catch-up process. Suppose

that at time t > 0, a message is forwarded from HC
0 to P0. If the length of the cluster

following P0 is shorter than Ld � 2r0, then the information cannot be forwarded to
PC
0 via multi-hop forwarding. Furthermore, as mentioned earlier, HC

0 and P0 are
in different traffic streams and have a nonzero mean relative speed, hence HC

0 may
overtake P0 and all vehicles in the cluster containing P0 and become the head again.
Therefore, a sufficient condition, which gives an upper bound on Pr.‰/, for a catch-
up process to be successful is that the cluster containing P0 is long enough to bridge
the gap Ld, such that the catch-up process moves the message from HC

0 to PC
0 .

Furthermore, there holds Lb �st Ld in stochastic ordering, due to the fact that
the distance between HC

0 and PC
0 tends to reduce over time, because vehicles with

a fast (slow) speed may overtake other vehicles and become the new head HC
0 (new

tail PC
0 ) after a certain time period. Using stochastic ordering, we say Lb �st Ld if

and only if Pr.Lb > c/ � Pr.Lb > c/ for any number c 2 .�1;1/. In view of
the analytical tractability of Lb, the following analysis considers Lb instead of Ld to
obtain an upper bound on Pr.‰/.

Define fl.lbjlc/ as the probability density function of Lb given a catch-up process
with gap lc. Because the distribution of vehicles in each traffic stream follows a
Poisson point process independent of other traffic streams, there holds

fl.lbjlc/ D �nmax exp .��nmax.lb � lc// (9.2.20)

Then, using the total probability theorem, there holds

fl.lb/ D
Z lb

r0

fl.lbjlc/ � exp.��lc/R lb
r0
� exp.��l/dl

dlc

D
Z lb

r0

�nmax exp.��nmax.lb � lc//
� exp.��lc/R lb

r0
� exp.��l/dl

dlc

D �nmax� exp.��nmax lb//

exp.��r0/ � exp.��lb/

Z lb

r0

exp.�nmax lc � �lc/dlc

D ��nmax

� � �nmax

� exp.��nmax lb C .�nmax � �/r0/ � exp.��lb/

exp.��r0/ � exp.��lb/
(9.2.21)
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Define fb.lb/ as the probability density function of lb. Then, through normaliza-
tion, there holds

fb.lb/ D fl.lb/R1
r0

fl.lb/dlb
(9.2.22)

Given the gap lb, we next study the pseudo catch-up event. As discussed at the
beginning of this lemma, to obtain an upper bound on Pr.‰/, we consider that the
pseudo catch-up event occurs if the cluster containing P0 is shorter than lb � 2r0,
which happens with probability Pr.X.�� �nmax/ � lb � 2r0/, where Pr.X.�/ � x/ is
the cumulative distribution function of the cluster length given in (9.2.1).

It follows that the probability that a pseudo catch-up event occurs satisfies

Pr.‰/ �
Z 1

r0

fb.lb/Pr .X.� � �nmax/ � lb � 2r0/ dlb

ut
Figure 9.15 shows the probability of pseudo catch-up events, viz., Pr.‰/. It can

be seen that the probability of pseudo catch-up events is affected by the vehicle
densities in both traffic streams. When the density of traffic stream nmax is small
(say 0.001 veh/m), a large percentage of catch-up processes are pseudo catch-up
events. On the other hand, when the density of the traffic stream nmax is large
(say 0.01 veh/m), another traffic stream with a small density (say 0.001 veh/m) can
significantly boost the catch-up process, in the sense of bridging the gap in the nth

max
traffic stream. Note that the analysis provides a fairly tight bound on Pr.‰/.
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Fig. 9.15 Simulation (Sim) and analytical (Ana) results on the probability of pseudo catch-up
events, viz., Pr.‰/, in a VANET with two traffic streams. Detailed simulation parameters are
introduced in Sect. 9.2.6
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9.2.2.4 The Catch-Up Process Between H� and P�

Recall that H� (P�) is the � th vehicle to the left of the head H0 (to the right of the
tail P0) at the beginning of a catch-up process. viz., at time 0. It is worth noting
that the head vehicle at time t > 0 is not necessarily the head vehicle at time 0
because the previous head vehicle may be overtaken by another informed vehicle,
either in the same traffic stream or in a different stream, during time .0; t�. In view of
this, we study the catch-up process between vehicles H� and P� in this subsection.

Lemma 154 Denote by q��.ijlc/ the probability that H� catches up P� for the first
time in the ith time slot, in a catch-up process with gap lc, where � and � are
nonnegative integers. Then, there holds

q��.ijlc/ 

X

nDm2f1;:::;Ng
Gnm
�� .znm; i/

�n�m

�2

C
X

n;m2f1;:::;Ng for n¤m

Gnm
�� .znm; i/

�n�m

�2

Z 1

lc

.1 � Pr .X.� � �nmax/ � lb � 2r0// fl.lbjlc; �nmax/dlb (9.2.23)

where nmax , arg maxnf
ng, znm D lc � r0 C �=�n C �=�m, fb.lbjlc; �nmax/ D
�nmax exp.��nmax.lb � lc//, Pr.X.�/ � x/ is given by (9.2.1) and Gnm

�� is given
by (9.2.24).

Proof Denote by �nm the probability that a randomly chosen pair of vehicles belong
to the nth and the mth traffic stream, respectively. It is straightforward that �nm D
�n�m
�2

owing to the Poisson distribution of vehicles. Furthermore, due to the effect of
pseudo catch-up processes studied in the previous subsection, the probability that
the head and the tail vehicles of a catch-up process belong to the nth and the mth

traffic stream, respectively, can be different from �nm D �n�m

�2
. This is one of the

major challenges in the study of the catch-up process in a VANET with multiple
traffic streams. In the following analysis, we take this effect into account.

Let znm D lc � r0 C wn
� C wm

� , where wn
� (wm

� ) is the distance between Hn
� and H0

(Pm
� and P0) at time 0. Due to the Poisson distribution of vehicles, the inter-vehicle

distance in the nth traffic stream follows an exponential distribution with mean 1=�n.
Denote by f .wn

�/ the probability density function of wn
� , then f .wn

�/ D Erlang.�; �n/

is an Erlang function because the sum of � independent exponentially distributed
random variables follows an Erlang distribution. Denote by Gnm

�� .ijlc/ the probability

that Hn
� catches up Pm

� for the first time in the ith time slot in a catch-up process with
gap lc. Then, it is straightforward that

Gnm
�� .ijlc/ D

Z 1

0

Z 1

0

Gnm
�� .znm; i/f .w

n
�/f .w

m
� /dwn

�dwm
� (9.2.24)
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where Gnm
�� .znm; i/ is given by Lemma 152, which is the probability that the distance

between Hn
� and Pm

� reduces from znm to r0 for the first time in the ith time slot.
Furthermore, denote by  .lc/ the probability that a catch-up event between H� and
P� is not a pseudo catch-up event in a catch-up process with gap lc. Then, according
to the total probability theorem, it is evident that

q��.ijlc/ D
X

n;m2f1;:::;Ng
Gnm
�� .ijlc/ .lc/�nm (9.2.25)

Note that  .lc/ can be seen as a weighting factor for �nm that addresses the bias
of �nm introduced at the beginning of this proof. Next, we calculate  .lc/. To take
the effect of pseudo catch-up events into account without making the calculation too
complicated, we approximately consider that a catch-up event between two vehicles
is a pseudo catch-up event if these vehicles are in different traffic streams and the
cluster containing the tail is shorter than Lb�2r0, as shown in Fig. 9.14. The accuracy
of this approximation has been discussed in the previous subsection and verified by
simulations. Then, (9.2.25) becomes

q��.ijlc/ 

X

nDm2f1;:::;Ng
Gnm
�� .ijlc/�nm

C
X

n;m2f1;:::;Ng for n¤m

Gnm
�� .ijlc/�nm

Z 1

lc

.1 � Pr .X.� � �nmax/ � lb � 2r0// fb.lbjlc; �nmax/dlb (9.2.26)

where fb.lbjlc; �nmax/ is the probability density function of lb given that the distance
between the head and the tail at time 0 is lc. Because the vehicles in each traffic
stream follow a homogeneous Poisson distribution independent of other traffic
streams, there holds

fb.lbjlc; �nmax/ D �nmax exp.��nmax.lb � lc// (9.2.27)

ut

9.2.2.5 Delay of a Catch-Up Process

Define the catch-up delay tc to be the time interval from the beginning of a catch-up
process till the time when the head and the tail move into the transmission range
of each other for the first time, i.e., t2 � t1 in Fig. 9.1. This subsection studies the
catch-up delay. Note that we do not consider the rare event that the distance between
the head and tail becomes larger than r0 again during the transmission between head
and tail (from time tc to tc C ˇ) due to changes of vehicle speeds, which may cause
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the transmission to be interrupted, because the per-hop delay ˇ (e.g., 4ms) is usually
much smaller than the time interval for a vehicle to change speed (typically longer
than a second [18]).

Denote by H.ijlc/ the probability that none of the H�-P� vehicle pairs for �; � 2
f0; 1; 2; : : :g catches up in the ith time slot, in a catch-up process with gap lc. We next
derive H.ijlc/. Denote by„�� the event that a pair of vehicles H�-P� does not catch-
up in the ith time slot. It is worth noting that the events „��, for �; � 2 f0; 1; 2; : : :g,
are not independent of each other. Specifically, the event„0� is positively correlated
[103, Section 1.2] with events „��, for any given � 2 f0; 1; 2; : : :g and all � 2
f1; 2; : : :g, because the occurrence of event„0� means that the occurrences of events
„�� are more likely. In other words, if the rightmost informed vehicle, viz., the head
H0 as shown in Fig. 9.13, does not catch-up to an uninformed vehicle, other things
being equal, then other informed vehicles are less likely to catch up the uninformed
vehicle. Similarly, the event „�0 is positively correlated with events „��, for any
given � 2 f0; 1; 2; : : :g and all � 2 f1; 2; : : :g, because if the leftmost uninformed
vehicle, viz., P0, was not caught up by an informed vehicle, then other uninformed
vehicles are less likely to be caught up by the informed vehicle. Then, according to
the FKG inequality [103, Section 1.2], there holds:

H.ijlc/ D Pr.
\

�;�2f0;1;2;:::g
„��/ �

Y
�;�2f0;1;2;:::g

.1 � q��.ijlc// (9.2.28)

where q��.ijlc/ is given by Lemma 154. Furthermore, the above inequality is tight
in VANETs with a low density, where the distance between vehicle pair H�-P�
increases rapidly as either � or � increases, so that the effect of the aforementioned
correlation issue reduces rapidly as either � or � increases. This is exactly the
situation where this analysis on the catch-up process focuses on.

Denote by h.ijlc/ the probability that one vehicle pair (H� and P�) catches up
in the ith time slot and no vehicle pair has caught up before the ith time slot, in a
catch-up process with gap lc. Assume that the catch-up event in the ith time slot
is independent of those in the jth time slots for 0 < j < i, which is an accurate
approximation when the duration of a time slot is large, e.g., � D 1s or 5s as shown
in Sect. 9.2.6. Then:

h.icjlc/ D .1 � H.icjlc//
ic�1Y
iD1

H.ijlc/ (9.2.29)

Finally, the expected delay of a catch-up process with gap lc is EŒtcjlc� DP1
iD1 i�h.ijlc/.



250 9 Information Propagation in One-Dimensional Dynamic Networks

9.2.3 Information Propagation Speed

Similarly as that in the previous section, the information propagation pro-
cess is modeled by a renewal reward process. Each cycle in the renewal reward
process starts at the time when a catch-up process starts and consequently each
cycle consists of a catch-up process followed by a forwarding process. The reward
of each cycle is the distance traveled by a packet in the catch-up process and
forwarding process during the cycle. Then, the expected IPS (EŒvip�) is:

EŒvip� D expected length of one cycle

expected time duration of one cycle


 EŒlc�C EŒX.�/�

EŒtc�C ˇ C EŒtf �
C 
nmax

D
R1

r0
lcfc.lc/dlc C R1

0
x Pr.X.�/ D x/dxR1

r0
EŒtcjlc�fc.lc/dlc C ˇ C R1

0
EŒtf jx�Pr.X.�/ D x/dx

C 
nmax (9.2.30)

where the term EŒlc� C EŒX.�/� is the expected distance traveled by a packet
during a catch-up process and a forwarding process, without considering the
distance traveled when the packet is carried by the head vehicle during the catch-up
process. The contribution of the movement of the head vehicle to the information
propagation speed is considered separately by the term 
nmax . Furthermore, the term
EŒtc�CˇCEŒtf � is the expected time duration of a catch-up process and a forwarding
process.

9.2.4 Simplified Results Charactering the Information
Propagation Process

In the previous three subsections, we studied in detail the information propagation
process of a VANET. To provide a more insightful understanding of the information
propagation process, this subsection presents some simplified results to reveal
more clearly the interactions among the main parameters that determine the
performance of the information propagation process. In this subsection, we first
provide simplified results on the number of hops traveled by a packet in a cluster
and the length of a cluster, followed by the results on the catch-up delay and the IPS.
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Fig. 9.16 An illustration of
the per-hop progress, marked
by A, which is the distance
between a node (say S) and
the rightmost node in the
transmission range r0 of S,
which is node D

A

S D

r
0

9.2.4.1 Simplified Hop Count

Denote by A (where 0 < A � r0) the per-hop progress, which is the Euclidean
distance between a randomly chosen vehicle and its rightmost directly connected
neighbor at a randomly chosen time instant, as illustrated in Fig. 9.16. Denote by
‰1 the event that there is no node in a given road segment with length r0 � a,
where 0 < a � r0. Because vehicles follow a Poisson distribution with density �
at any time instant, it is evident that Pr.‰1/ D exp.��.r0 � a//. Denote by ‰2
the event that there is at least one node in a given road segment with length a.
It is straightforward that Pr.‰2/ D 1 � exp.��a/. Denote by Cr the event that a
progress is made at a given node (say S), i.e., there is at least one node to the right
of node S within its transmission range r0, as illustrated in Fig. 9.16. Furthermore,
denote by Pr.A � a;Cr/ the probability that a progress is made at a given node and
the progress is not larger than a. It is evident that Pr.A � a;Cr/ D Pr.‰1/Pr.‰2/.
Finally, denote by Pr.A � ajCr/ the cumulative distribution function of per-hop
progress A, conditioned on the event that a progress is made. It is evident that Pr.A �
ajCr/ D Pr.A�a;Cr/

Pr.Cr/
, where Pr.Cr/ D 1 � exp.��r0/. Then, the expected per-hop

progress is:

Na , EŒAjCr� D
Z r0

0

.1 � Pr.A � ajCr//da

D
Z r0

0

�
1 � .1 � exp.��a// exp.��.r0 � a//

1 � exp.��r0/

�
da

D r0 � 1

�
C r0 exp.��r0/

1 � exp.��r0/
(9.2.31)

Furthermore, the expected number of hops from the left-most vehicle to the right-
most vehicle in a cluster with length x can be approximated by:

EŒkjx� 
 x

Na (9.2.32)

Figure 9.17a shows the expected number of hops from the left-most vehicle to
the right-most vehicle in clusters with different lengths. The exact analytical result
(denoted by Ana) is given by [63] and the approximate analytical result (denoted
by Ana-simple) is given by (9.2.32). It is interesting to observe that (9.2.32), which
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Fig. 9.17 Simulation (Sim) and analytical (Ana) results for (a) the expected number of hops from
the leftmost vehicle to the rightmost vehicle in a cluster; (b) probability density function of the
cluster length

is much simpler than the recursive formula presented in [63], provides a fairly
accurate estimate on the hop count in VANETs. The accuracy of the approximation
reduces as the cluster length increases (say longer than 6000m), however, as shown
in Fig. 9.17b and studied in the next subsection, the probability of forming a long
cluster decreases exponentially.

9.2.4.2 Simplified Cluster Length

In the previous subsection, we have shown that the expected per-hop progress Na is
a performance-determining factor which can be used to characterize the forwarding
process. Next, we consider that a multi-hop forwarding process can continue as
long as there is at least one vehicle within distance Na to the right of an arbitrary
vehicle, which happens with probability ps D 1� exp.�� Na/, because of the Poisson
distribution of vehicles. Then, the number of successful multi-hop forwarding
progresses, denoted by �, follows a geometric distribution with the following
probability density function

f�.�/ D .1 � ps/p
��1
s (9.2.33)

The expected time delay of a forwarding process is

EŒtf � 
 ˇEŒ�� D ˇ

1 � ps
D ˇ

exp.�� Na/ (9.2.34)

Furthermore, the expected cluster length in a VANET with vehicle density � is

EŒX.�/� 
 NaEŒ�� D Na
1 � ps

D Na
exp.�� Na/ (9.2.35)
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Next we present an approximation of the distribution of the cluster length. Note
that � is a discrete random variable, whereas the cluster length x is a continuous
random variable. To facilitate the analysis, let �c be the continuous analogue
of �, where �c follows an exponential distribution with parameter pc. Then, the
probability of having at least � consecutive successful progresses can be expressed
as p�s D exp.�pc�/, from which we can obtain pc D � log.ps/. Therefore, the
probability density function of the cluster length can be approximated by

fX.�/ .x/ 
 pc exp.�pc
x
Na /R1

0
pc exp.�pc

x0Na /dx0

D pc exp.�pc
x
Na /

Na
D � log.1 � exp.�� Na//

Na exp.
x log.1 � exp.�� Na//

Na / (9.2.36)

Furthermore, its cumulative distribution function is

Pr.X.�/ � x/ 
 1 � exp.� pcx
Na /

Na

D 1 � exp. log.1�exp.��Na//
Na x/

Na (9.2.37)

Figure 9.17b shows the probability density function of the cluster length. The
exact analytical result is given by (9.2.1) and the approximate analytical result is
given by (9.2.36). It is interesting to note that the accuracy of the approximation
is good, while at the same time the analytical formula of the approximate result is
much simpler than that for the exact result.

9.2.4.3 Simplified Catch-Up Delay

Recall that the nth
max traffic stream is the traffic stream with the largest mean speed,

i.e., nmax D arg maxnf
ng. Furthermore, let the nth
min traffic stream be the traffic

stream with the smallest mean speed, i.e., nmin D arg minnf
ng. Define t� to be
the expected time interval from the beginning of an arbitrary catch-up process to
the time when a vehicle in traffic stream n 2 f1; : : : ;Ng n nmax comes into the
transmission range of a vehicle in traffic stream nmax. Then, it can be shown that
tm 
 De.���nmax /


nmax �
nmin
, where De.�/ is the expected distance between two adjacent but

disconnected vehicles. Because vehicles follow a homogeneous Poisson distribution
with density �, there holds

De.�/ D
R1

r0
lc� exp.��lc/dlcR1

r0
� exp.��lc/dlc
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D exp.��r0/.�r0 C 1/

exp.��r0/�

D .�r0 C 1/

�
(9.2.38)

Next, we take the pseudo catch-up events into consideration. Let ‡ be the event
that a vehicle in traffic stream n 2 f1; : : : ;Ng n nmax comes into the transmission
range of a vehicle in traffic stream nmax in an arbitrary catch-up process. Recall that
‡ is a pseudo catch-up event if the length of the cluster containing the tail vehicle
is shorter than Lb � 2r0, where Lb is the Euclidean distance between HC

0 and PC
0 .

Denote by pp the probability that ‡ is a pseudo catch-up event. Then

pp D EŒPr .X.� � �nmax/ � Lb � 2r0/�


 Pr .X.� � �nmax/ � EŒLb � 2r0�/

where

EŒLb � 2r0� D
Z 1

2r0

.lb � 2r0/�nmax exp.��nmax lb/dlb

D exp.��nmax2r0/

�nmax

(9.2.39)

Recognizing that an approximation is involved, assume that the catch-up events
are independent of each other. Then, the number of pseudo catch-up events before
a successful one follows a geometric distribution with mean 1

1�pp
. Therefore, the

expected catch-up delay is:

EŒtc� 
 tm
1�pp


 .���nmax /r0C1
.
nmax �
nmin /.���nmax /.1�pp/

(9.2.40)

9.2.5 Simplified IPS

According to (9.2.30) and the results obtained in the previous subsections, the
expected IPS satisfies

EŒvip� D expected length of one cycle

expected time duration of one cycle


 r0 C EŒX.�/�

EŒtc�C EŒtf �
C 
nmax
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r0 C Na

exp.��Na/
EŒtc�C ˇ

exp.��Na/
C 
nmax

D
r0 C �r0�1

� exp.1��r0/

EŒtc�C ˇ

exp.1��r0/

C 
nmax (9.2.41)

where EŒtc� is given by (9.2.40).
Note that the result is much simpler than that given by (9.2.30) and in Sect. 9.1,

where the accuracy and applicability of the simplified result are discussed in the
next subsection. Furthermore, the impact of main parameters on the performance
of the information propagation process is clearly shown. For example, a larger
difference between mean vehicle speeds (
nmax � 
nmin in (9.2.40)) leads to a faster
IPS. More observations dealing with the impact of the fundamental parameters are
discussed in the next subsection.

9.2.6 Simulation Results

In this subsection, we report on simulations to validate the accuracy of the analytical
results. Each point shown in the figures is the average value from 1000 simulations.
The confidence interval is too small to be distinguishable and hence is ignored in
the following plots. Similar as in Sect. 9.1.7, the transmission range is r0 D 250m.
The typical values of the mean and standard deviation of vehicle speed are 25m/s
and 7.5m/s. The vehicle mobility parameters, i.e., 
n, �n and � , are taken from real
measurements, where the usual record time intervals for a vehicle speed monitor are
� D 1s; 5s. The traffic density is varied so that the density � of the homogeneous
Poisson point process governing the spatial distribution of the vehicles varies from
0 to 0:06 veh/m. For completeness of the plot, � D 0 is included which means that
there is only one vehicle in each traffic stream. Consequently, the average number
of neighbors varies from 0 to 30, which represents a large range of traffic densities.

Firstly, Fig. 9.18 validates our mobility model. The analytical results are given by
(9.2.30), which is derived under the synchronized random walk model, whereas the
simulation results show the expected IPS under non-synchronized mobility models.
Three different mobility models are evaluated: the speed-change time interval � of
each vehicle is uniformly selected from Œ4:8; 5:2� (i.e., around 5s) or from Œ2; 8� (i.e.,
within a larger range around 5s); and for � following an exponential distribution
with mean 5s. Under all three mobility models, vehicles change speed at different
time instants (non-synchronized) and the average speed-change time interval is
5s. It can be seen that the IPSs under non-synchronized mobility models are very
close (almost indistinguishable) to each other and our analysis using the simplified
(synchronized) mobility model provides a good estimation on the IPS.

Moreover, it can be observed in Fig. 9.18 that when the vehicle density is low, the
IPS is close to the vehicle moving speed because there is little packet forwarding in
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Fig. 9.18 Simulation (Sim) and analytical (Ana) results of the expected information propagation
speed in a VANET with one traffic stream (N D 1)

the network. Furthermore, when the vehicle density increases, small clusters are
formed and the IPS increases. As the vehicle density further increases, clusters
become larger and the forwarding process starts to dominate. Therefore, the IPS
increases until it reaches the maximum value, which is determined by the per-hop
delay in the forwarding process. The maximum IPS is obviously equal to r0=ˇ,
where ˇ is the per-hop delay. When the vehicle density is moderate, the IPS is
determined by the catch-up delay, which is further determined by the mobility of the
vehicles. It can be seen from Fig. 9.18 that the more frequently the speed changes,
the slower the information propagates. This is mainly because changing speed has
the potential to interrupt the catch-up process, i.e., during a catch-up process, the
tail may speed up and the head may slow down.

Moreover, vehicle speed distribution also has a significant impact on the catch-
up process, hence the IPS. Figure 9.19 shows the IPS in a VANET with two
traffic streams with equal vehicle density but different vehicle speed distributions.
Specifically, the mean speed of one traffic stream is fixed at 25 and the mean speed of
another traffic stream is varied. It can be seen that our analytical results have a better
match with the simulation results than that in [11]. An interesting observation is that
the IPS increases when the average speed of the vehicles in one of the traffic streams
is reduced from 25m/s to 0m/s. Furthermore, an even faster IPS is observed when
the average speed of the vehicles in one of the traffic streams is �25m/s, i.e., two
traffic streams traveling in opposite directions. The reason behind this interesting
observation is that a larger relative speed between vehicles results in faster catch-
up processes, hence a faster IPS. This can also be seen from the analytical results
of Gnm

�� .z; i/, e.g., applying the fact that the error function is an increasing function
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Fig. 9.19 The expected IPS in a VANET with different vehicle speeds in two traffic streams (N D
2). The plot Ana-pre shows the IPS derived in [11] for a VANET with vehicle speed 25 and �25
in two streams respectively

to (9.2.8). This observation tells us that making use of the vehicles traveling in
the opposite direction of information propagation can increase the IPS. Moreover,
some (stationary) roadside units without (expensive) wired connections can also
significantly increase the IPS in a VANET. The optimum placement of the roadside
units is not the focus of this chapter and will be studied in Chap. 11.

Figure 9.20 shows the expected IPS in a VANET with different vehicle densities
in two traffic streams. Specifically, the total traffic density � is fixed while the
fractions of traffic density in two traffic streams are varied to examine the impact
of traffic densities in different traffic streams on the IPS. Firstly, it can be seen
that an uneven distribution of the vehicle densities between traffic streams (e.g.,
�1 D �=10; �2 D 9�=10) results in a slower IPS compared to the IPS in a
VANET with evenly distributed traffic densities (e.g., �1 D �2 D �=2). This
is because an uneven distribution of the vehicle densities between traffic streams
results in a smaller number of catch-ups between vehicles in different traffic streams
(as manifested by the factor �n�m

�2
in (9.2.23)). Hence there is less improvement

on the IPS provided by the large relative vehicle speed, compared with a VANET
with evenly distributed vehicle densities between traffic streams. This situation can
be observed in the real world on freeways connecting the business district and
residential district. Densities of the traffic streams in opposite directions vary a great
deal depending on time-of-day when people go to work or come back home.

On the other hand, it can be seen from Fig. 9.20 that a small amount (e.g., �=10)
of vehicle traffic in an opposite direction can still significantly increase the IPS.
Therefore, it is meaningful to explore the traffic streams with different vehicle
moving speeds. This phenomenon can also be observed in Fig. 9.21, owing to
the fact that large relative speed between vehicles reduces the catch-up delay, as
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Fig. 9.21 The expected IPS in a VANET with four traffic streams

discussed earlier. It is worth noting that the IPS can still be large in a VANET where
most, or even all, vehicles are in the same traffic stream, which is different from
previous studies, e.g., [1, 11], considering that all vehicles traveling at the same and
time-invariant speed where the catch-up events can only occur between vehicles in
different traffic streams.

Figure 9.22 compares the results on the IPS given in Sect. 9.2.1 with previous
results of related studies. In Fig. 9.22a, the transmission range is 250m and the
vehicle density is varied from 0 to 0:015, whereas in Fig. 9.22b the vehicle density
is 0:036 and the transmission range is varied from 0 to 90m. Consider a common
case that the mean distance between two consecutive vehicles on the same lane is
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Fig. 9.22 The expected information propagation speed in a VANET with two traffic streams,
where Ana-1 is the previous result given in Sect. 9.1, Ana-2 is the result given in this chapter,
and Ana-pre is the result given by [11]

around 110 m [65], leading to a mean vehicle density of around 9 veh/km/lane.
Consider two lanes in each direction, leading to an overall mean vehicle density of
around 36 veh/km or 0:036 veh/m [65]. It can be seen that the results presented in
this subsection, which consider the effects of pseudo catch-up events in detail, have
better accuracy compared with previous results such as [11] and our own result in
Sect. 9.1. Moreover, it can also be seen that the impact of pseudo catch-up events
can be significant.

Figure 9.23 shows the simplified results of the IPS, derived in Sect. 9.2.4.
Without detailed analysis of the catch-up process as shown in Sect. 9.2.2, the
simplified results are only valid for VANETs with more than one traffic streams, i.e.,
vehicles have different mean speeds. Nevertheless, it can be seen that the simplified
results, though do not match exactly with simulation results, capture the impact of
fundamental parameters, e.g., vehicle density and speed, on the IPS.

9.3 Notes and Further Readings

In this chapter, we studied the information propagation process in one-dimensional
dynamic networks with vehicular networks being the motivating example. Different
from static networks in which information propagates via a store-and-forward
process, in mobile networks, information propagates via a store-carry-forward
process. Accordingly, the information propagation process in mobile networks can
be divided into two sub-processes: the forwarding process and the catch-up process.
We presented analysis for both sub-processes and the results were combined using
the renewal theory to form a complete picture on the information propagation
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Fig. 9.23 Simplified results of the expected IPS, where Ana is given by (9.2.41)

process. Both vehicular networks with single traffic stream and vehicular networks
with multiple traffic streams were investigated.

In recent years, VANET has attracted significant interest. In [68], Fracchia et al.
introduced the design of a warning delivery service in VANETs. They studied the
propagation of a warning message in a one-dimensional VANET where vehicles
move in the opposite direction of the propagation direction of the warning message.
Their analysis is based on an overly simplified assumption that the vehicular
network topology does not change over time during the information propagation
process. In [191], Wu et al. studied the IPS through simulations. They used a
commercial microscopic traffic simulator, CORSIM, to simulate the traffic on a
highway. Then, the topology data from CORSIM were imported into a wireless
communication simulator to study the properties of the information propagation
process. They showed that the IPS varies significantly with vehicle densities.

There are analytical studies on VANETs based on the assumption that vehicle
speed does not change over time, referred to as the constant speed model. In [198],
Yousefi et al. provided analytical results on the distribution of the inter-vehicle
distance in a one-dimensional VANET under the constant speed model and the
Poisson arrival model: in the Poisson arrival model, the number of vehicles passing
an observation point on the road during any time interval follows a homogeneous
Poisson point process with density �. By applying the results used in studying the
busy period in queueing theory, they further analyzed the connectivity distance, a
measure similar to the cluster length in this chapter. However, they did not provide
a closed-form formula for the distribution of the cluster length. In [2], Agarwal
et al. studied the IPS in a one-dimensional VANET where vehicles are Poissonly
distributed and move at the same speed but either in the positive or negative direction
of the axis. They derived upper and lower bounds for the IPS, which provided a hint
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on the impact of vehicle density on the IPS. However the bounds are not tight and
many factors, e.g., temporal variation of speeds and propagation delay, were ignored
in their analysis. In [190], Wu et al. considered a one-dimensional VANET where
vehicles are Poissonly distributed and vehicle speeds are uniformly distributed in
a designated range. They provided a numerical method to compute the IPS under
two special network models, i.e., when the vehicle density is either very low or very
high. The aforementioned studies [2, 190, 198] were all based on the constant speed
model.

In [3], Ashish, Starobinski, and Little analyzed the phase transition phenomenon
in the IPS. They found that below a certain critical threshold in vehicle density, the
average information propagation speed is the same as the average vehicle speed;
on the other hand, above another higher critical threshold, the average information
propagation speed quickly increases as a function of vehicle density and approaches
the speed of wireless communications. In this chapter, we also found and discussed
this phase transition phenomenon.



Chapter 10
Information Propagation in Two-Dimensional
Dynamic Networks

Abstract In this chapter, we investigate the information propagation process in
two-dimensional dynamic networks with mobile ad hoc networks being the moti-
vating example. Particularly, we consider a two-dimensional mobile ad hoc network
where nodes are initially randomly distributed and then move following a ran-
dom direction mobility model. Adopting a popularly used Susceptible-Infectious-
Recovered epidemic broadcast scheme, we analyze performance measures such
as the fraction of nodes that can receive the information and the delay of the
information dissemination process. The accuracy of analytical results is verified
using simulations driven by both the random direction mobility model and a real
world trace.

In this chapter, we continue to investigate the information propagation process
in two-dimensional dynamic networks with mobile ad hoc networks being the
motivating example.

A mobile ad hoc network (MANET) is a self-organizing network comprising
mobile devices like smart phones, tablet PCs, or connected and automated vehicles
(CAVs). In a MANET, information dissemination often relies on local ad hoc
connections that emerge opportunistically as mobile devices move and meet each
other. The main challenge of data communication in a MANET is the time-varying
nature of ad hoc connections, which is attributable to two major factors: dynamic
network topology and channel randomness.

The dynamic topology of a MANET is caused by the mobility of wireless
communication devices. Specifically, as mobile users or CAVs move over time,
the distances between mobile devices are changing constantly, resulting in time-
varying wireless connections. This makes many commonly used routing protocols,
e.g., the well-known Ad hoc On Demand Distance Vector (AODV) [166] or a
basic flooding broadcast algorithm [189], less effective for MANETs, because they
can only disseminate information to the node(s) that is connected to the source by
at least one (multi-hop) path at the time instant when the source node transmits.
Furthermore, differently from the store-forward pattern that AODV relies on to
disseminate information, information dissemination in MANETs has to propagate
by way of store-carry-forward that allows a node to carry the information over
a physical distance and forward to other nodes over time. It has been widely
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recognized that the dynamic topology of a MANET often resembles the topology
of a human network [183, 202], in the sense that the movement of mobile devices
in a MANET is not only similar to, but often governed by, the movement of their
human owners. In view of this, epidemic schemes [183] have been proposed as
a fast and efficient approach to broadcast information in MANETs. On the other
hand, unlike the spreading of epidemic disease in human networks, information
dissemination schemes in MANETs can often be carefully designed to meet certain
goals in addition to information delivery, such as achieving energy efficiency or
fulfilling certain delay constraint, as shown in this chapter.

In addition to the fast-changing network topology, channel randomness also has a
significant impact on the performance of information broadcast in MANETs. It has
been shown that channel shadowing has negative impacts on information dissem-
ination in MANETs employing traditional routing algorithms like AODV [169].
Moreover, the wireless connection between two devices can also be affected by the
availability of spectrum resource. Due to scarcity of the radio frequency spectrum, a
frequency band is usually shared by more than one devices. Consequently, wireless
communication between two mobile devices is affected by temporal availability
of spectrum band in the vicinity of the devices. Due to these factors, i.e., the
uncertainty in the availability of spectrum band as well as shadowing and fading
effects, wireless connections between nodes are random and time-varying, which
often need to be considered in the design of information dissemination schemes
for MANETs. Therefore, it is challenging to establish a distributed information
dissemination scheme for MANETs that is adaptive to both dynamic topology
and channel randomness, while meeting the performance objectives, i.e., delay
constraint and energy efficiency.

This chapter presents the analysis and design of a broadcast scheme for informa-
tion dissemination in two-dimensional MANETs based on an in-depth analysis of
the advantages and inadequacies of the widely used epidemic broadcast schemes.

10.1 Information Dissemination Scheme and Network Model

This section introduces the information dissemination model, i.e., the Susceptible-
Infectious-Recovered (SIR) model, and the network model used in the chapter.

10.1.1 Network Model

Suppose that at some initial time instant (t D 0), a set of N nodes are independently,
randomly and uniformly placed on a torus .0;L�2. It follows that the node density is
� D N=L2. Then, these nodes start to move according to a random direction model
(RDM). Specifically, at time t D 0, each node chooses its direction independently
and uniformly in Œ0; 2�/, and then moves in this direction thereafter at a constant
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speed V . It has been established in [154] that under the aforementioned model,
at any time instant t � 0, the spatial distribution of nodes is stationary and still
follows the uniform distribution. Note that the uniform spatial distribution and
random direction mobility are both simplified but widely used models in the field
[35, 71, 154]. Furthermore, we also evaluate the applicability of our analysis in
networks whose node distribution and mobility deviate from the above assumption
using a real world mobility trace, which is described in detail in Sect. 10.3.1.

A commonly used radio propagation model in this field is the unit disk connection
model, under which two nodes are directly connected if and only if the Euclidean
distance between them is not larger than the transmission range r0. More specifi-
cally, under the unit disk connection model, the received signal strength (RSS) at a
receiver separated by distance x from the transmitter is Pu.x/ D Cptx��, where C
is a constant, pt is the transmission power common to all nodes, and � is the path
loss exponent [172]. A transmission is successful if and only if the RSS exceeds
a given threshold pmin. Therefore, the required transmission power pt allowing a
transmission range r0 is pt D pmin

C r�0 . Refer to Sect. 1.1 for more detailed discussions.
The unit disk connection model is simple but unrealistic. In reality, the RSS

may have significant variations around the mean value. This is typically taken
into account in the log-normal shadowing model. Under the log-normal shadowing
model, the RSS attenuation (in dB) follows a Gaussian distribution, i.e., there
is 10 log10.Pl.x/=Cptx��/ 	 Z, where Pl.x/ is the RSS under the log-normal
shadowing model and Z is the shadowing factor, which is a zero-mean Gaussian
distributed random variable with standard deviation � . When � D 0, the model
reduces to the unit disk connection model. Denote by q.z/ the probability density
function of the shadowing factor Z; then:

q.z/ D 1

�
p
2�

exp

�
� z2

2�2

�
(10.1.1)

Furthermore, we consider that the shadowing factors Z between all pairs of
transmitter and receiver are independent and all links are symmetric.

In addition to the above large-scale fading, we consider a general model of small-
scale fading, i.e., the Nakagami-m fading model [180]. Assuming the Nakagami-m
fading, the RSS per symbol, O!, is distributed according to a Gamma distribution
with the following probability density function [180]:

O�. O!/ D mm O!m�1

.EŒ O!�/m�.m/ exp

�
� m O!

EŒ O!�
�
; O! � 0 (10.1.2)

where �.:/ is the standard Gamma function and EŒ O!� D Pl.x/ is the mean RSS (over
time), which is determined by the path loss and shadowing effects. By choosing
different values for the parameter m, the Nakagami-m fading model easily includes
several widely used fading distributions as its special cases [180].

To incorporate both shadowing and fading effects, we adopt a wireless connec-
tion model, named the general connection model, which is built on the basis of the
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random connection model introduced in Chap. 1. Specifically, let Pg.ptx��;Z; �/:
<C � < � < ! Œ0; 1� be the RSS at a receiver separated by distance x from
the transmitter, where Z and � (called channel factors) are random variables
representing the random variation of the RSS caused by shadowing effect and small-
scale fading effect, respectively. Note that the analysis in this chapter allows a
general form of the RSS function Pg.ptx��;Z; �/, and the analytical results under
the log-normal shadowing model with Nakagami fading (called the Log-normal-
Nakagami model) are provided in Sect. 10.2 as a typical example. Lastly, to be
practically meaningful in modeling the RSS attenuation, it is assumed that the RSS
Pg.ptx��;Z; �/ is a nondecreasing function of ptx��, Z and �, respectively.

10.1.2 Information Dissemination Scheme

Suppose that a piece of information is broadcast from an arbitrary node. Once a
node receives the information for the first time, it becomes infectious. The infectious
node holds the information for a fixed amount of time �s, called the sleep time
interval, followed by a random amount of time �r, to be specified in the next
paragraph, then re-transmits the information once to all nodes directly connected
to the infectious node. Such a sleep-active cycle repeats for a fixed number of
times, denoted by a positive integer ˇ, after which the node recovers. A recovered
node stops transmitting the information and will ignore all future transmissions of
the same information. The information dissemination process naturally stops, i.e.,
reaches the steady state, when there is no infectious node in the network. The nodes
that have received the information are referred to as the informed nodes. It is obvious
that the fraction of informed nodes is a key performance metric of information
dissemination.

Note that the time interval between two consecutive transmissions is determined
by two additive components: a pre-designated sleep time interval �s and a random
time interval �r. The pre-designated waiting period �s is chosen to allow sufficient
time, e.g., V�s � 2r0, for a node to move away from the location of its previous
broadcast, thereby reducing redundant transmissions to the same nodes. The random
time interval �r introduces randomness in the transmitting time instants, which
can reduce collisions and contention between nodes caused by simultaneous trans-
missions. Furthermore, �r also reflects the channel access time in some practical
scenarios. For example, using carrier sense multiple access (CSMA), if a node finds
the channel busy at the end of the pre-designated sleep time interval �s, then, the
node needs to wait a random time interval, viz., random back-off time, for the
next transmission opportunity. We include �r in our broadcast scheme to introduce
flexibility in determining the transmitting time of each infectious node, so that a
node can transmit at its convenience, e.g., when the node using CSMA senses the
channel idle, in a decentralized manner while the performance of broadcast in the
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whole network, e.g., measured by the fraction of informed nodes, is still guaranteed.
These features are valuable for a MANET subject to dynamic topological changes
and channel randomness.

Note that when �r takes a constant value 0, �s ! 0 and ˇ�s is a positive value,
the above broadcast scheme becomes a traditional SIR epidemic scheme [183, 202]
with an active period ˇ�s seconds. Furthermore, when ˇ�s ! 1, the broadcast
scheme becomes a Susceptible-Infectious (SI) epidemic scheme. The advantage
of the considered broadcast scheme compared with the traditional SIR scheme is
discussed in detail later in Sect. 10.2.5.

The network described above is hereafter denoted by G.�; �; �;V; r0; ˇ; �s; �r/.
Furthermore, we assume a sufficiently large network, i.e., L � ˇ.�s C maxf�rg/V ,
so that a node will not be wrapped, through its motion in the torus, back to the point
where it became infected before it recovers.

10.2 Analytical Characterization of the Information
Propagation Process

In this section, we analytically study the information propagation process in a
MANET adopting the information dissemination scheme introduced in the previous
section.

10.2.1 The Probability of Direct Connection

In order to incorporate channel randomness into the analysis, we need the following
lemma.

Lemma 155 Consider a set of transmitter-receiver pairs where the wireless chan-
nel between each pair has shadowing factor z and fading factor !. Then, there exists
a constant value rN.z; !/, called the transmission range given the channel factors z
and !, such that an arbitrary transmitter-receiver pair in the aforementioned set of
transmitter-receiver pairs is directly connected if and only if the Euclidean distance
between the transmitter and receiver is less than or equal to rN.z; !/. Furthermore,
rN.z; !/ is the solution of r to the equation Pg.ptr��; z; !/ D pmin.

Given the values of the channel factor z and !, the randomness in the RSS
disappears. Noting that Pg.ptx��, z, !) is a nonincreasing function of the distance
x between transmitter and receiver, the conclusion readily follows. Hence the proof
of the lemma is omitted.

Next, we consider a typical wireless channel model, i.e., the Log-normal-
Nakagami model, and obtain the associated value of the transmission range.
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Lemma 156 Suppose that the wireless channel between a transmitter and a
receiver is subject to the Log-normal-Nakagami model with channel factors Z D z
and � D ! respectively, then, the transmission range given the channel factors z
and ! is:

rN.z; !/ , r0!
1=� exp

�
z log 10

10�

�
(10.2.1)

where r0 is the transmission range under the unit disk connection model, the
probability density function of Z is given by (10.1.1) and � follows a Gamma
distribution with mean 1.

Proof Denote by x the Euclidean distance between a transmitter and a receiver.
Subject to Nakagami-m fading, the RSS varies around its mean value over time
according to a Gamma distribution with mean Pl.x/, where Pl.x/ D Cptx��10Z=10

is the RSS under the log-normal shadowing model.
To facilitate the analysis, we introduce a random variable � which follows a

Gamma distribution with mean 1. Therefore, the probability density function of
� is

�.!/ D mm!m�1

�.m/
exp.�m!/; ! � 0 (10.2.2)

Furthermore, it can be shown that for any constant C1 2 <, the random
variable C1� follows a Gamma distribution with mean C1. Then, under the Log-
normal-Nakagami model, the RSS at a receiver at distance x from the transmitter is
Pg.ptx��;Z; �/ D Pl.x/� D Cptx��10Z=10�.

Recall that two nodes are directly connected if and only if the RSS exceeds a
given threshold pmin. Without shadowing and fading effects, i.e., considering path
loss only, there holds pmin D Cptr

��
0 (see Sect. 10.1). With shadowing and fading,

there holds:

Pr
�
Pg.ptx

��;Z; �/ � pmin
�

D Pr
�
Cptx

��10Z=10� � Cptr
��
0

�

D Pr

�
x � r0�

1
� exp.

Z log 10

10�
/

�

Conditioned on the channel factors Z D z and � D ! between two nodes,
the two nodes are directly connected if and only if their distance is not larger than
r0!1=� exp. z log 10

10�
/. ut
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10.2.2 The Effective Node Degree

In this subsection, we analyze the effective node degree, a key parameter character-
izing the information propagation process.

Definition 157 The effective node degree R0 of an infectious node is the expected
number of nodes that are directly connected to the infectious node in at least one of
the ˇ transmissions.

Note that R0 is the same for all nodes due to the stationarity and homogeneity of
node distribution on the torus. To compute the effective node degree, we further
need to calculate the clustering factor as defined in the following.

Definition 158 The clustering factor �.�s/ is the expected number of nodes that are
directly connected to an infectious node in both of two consecutive transmissions
when the sleep time interval is �s.

Using Lemma 156, we have the following results.

Lemma 159 In network G.�; �; �;V; r0; ˇ; �s; �r/, the clustering factor satisfies

�.�s/ D
Z 1

0

Z 1

0

Z 1

�1

Z 1

�1

Z 1

0

Z �

0

Ap.	; �s; rN.z1; !1/; rN.z2; !2//

� �

�
p� .�r/q.z1/q.z2/�.!1/�.!2/d	d�rdz1dz2d!1d!2 (10.2.3)

where Ap.	; �s; r1; r2/ is given by (10.2.4).

Proof Denote by ‚ the angle measured counterclockwise from the moving direc-
tion of an infectious node to the moving direction of an arbitrary node. Recall that
the direction of a node is randomly and uniformly chosen in Œ0; 2�/, independent of
the directions of other nodes. Consequently, it can be shown that the angle‚ is also
uniformly distributed in Œ0; 2�/.

Suppose that an infectious node transmits once at point S1, then it moves by
distance .�s C �r/V to point S2 and transmits again, as shown in Fig. 10.1.

Next, we focus on a subset of nodes that fulfill the following three conditions: 1)
they move in direction ‚ 2 .	; 	 C d	/; and 2) their RSS from the infectious
node has shadowing factors Z1 2 .z1; z1 C dz1/ and �1 2 .!1; !1 C d!1/
when the infectious node transmits at S1; and 3) their RSS from the infectious
node has shadowing factors Z2 2 .z2; z2 C dz2/ and �2 2 .!2; !2 C d!2/
when the infectious node transmits at S2. Due to the independence of shadowing
factors and the mobility of nodes, these nodes are uniformly distributed with
density �

2�
q.z1/q.z2/�.!1/�.!2/d	dz1dz2d!1d!2. Among this subset of nodes, the

nodes that are connected to the infectious node in the first transmission are in
a disk centered at point S1 with radius rN.z1; !1/, denoted by C.S1; rN.z1; !1//.
Furthermore, when the infectious node transmits at S2, these nodes move by
distance .�s C �r/V from being contained in C.S1; rN.z1; !1// to being contained
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Fig. 10.1 An illustration of the nodes (in the shaded area Ap) that are directly connected to an
infectious node in both of the two consecutive transmissions (occurring at S1 and S2). Symbols are
defined in Lemma 159

in a new disk C.B; rN.z1; !1// as shown in Fig. 10.1. Then, the nodes that are
connected to the infectious node in both transmissions are in the intersectional area
C.S2; rN.z2; !2// \ C.B; rN.z1; !1//. Denote by Ap.	; �s; rN.z1; !1/; rN.z2; !2// the
size of the intersectional area C.S2; rN.z2; !2// \ C.B; rN.z1; !1//. It can be readily
calculated using the following formula:

Ap.	; �s; r1; r2/ D

8ˆ̂̂ˆ̂̂ˆ̂<
ˆ̂̂ˆ̂̂ˆ̂:

min.�r21; �r22/ for  .	; �s/ � jr1 � r2j
r21 arccos.

 2.	;�s/Cr21�r22
2r1 .	;�s/

/C r22 arccos.
 2.	;�s/Cr22�r21

2r2 .	;�s/
/

� 1
2

p
Œ.r1 C r2/2 �  2.	; �s/�Œ 2.	; �s/� .r1 � r2/2� for jr1 � r2j <  .	; �s/

< r1 C r2

0 otherwise

(10.2.4)

where  .	; �s/D2.�s C �r/V sin 	
2

is the length of BS2 (see Fig. 10.1).
Next we consider all subsets of nodes. Note that only the cases for 	 2 Œ0; �/

need to be calculated due to symmetry. Then, it can be shown that the clustering
factor satisfies �.�s/ D �EŒAp.	; �s; rN.z1; !1/; rN.z2; !2//�. ut
Remark 160 The results of Lemma 159 can be extended to different channel models
by replacing the probability density functions of the channel factors z1; z2; !1, and
!2.

Finally, we have the following theorem for the value of R0.

Theorem 161 In network G.�; �; �;V; r0; ˇ; �s; �r/, under the Log-normal-
Nakagami model, the effective node degree satisfies
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R0 � ˇ��r20 exp

�
.� log 10/2

50�2

� m
�2
� �.m C 2

�
/

�.m/
� .ˇ � 1/�.�s/ (10.2.5)

where �.:/ is the standard Gamma function and �.:/ is given by Lemma 159.

Proof We first consider two consecutive transmissions, as illustrated in Fig. 10.1.
Along the same lines as Lemma 159, consider that the shadowing factors of the
ith transmission, i D f1; 2; : : : ; ˇg, is Zi 2 Œzi; zi C dzi� and �i 2 Œ!i; !i C d!i�.
Define �1;2.�s/ to be the clustering factor of the two consecutive transmissions.
It is straightforward that �1;2.�s/ is given by the (10.2.3) without integrating over
z1; z2; !1, and !2.

Note that the size of the area covered by the transmission range in the ith

transmission is �.rN.zi; !i//
2. Furthermore, the size of the area wherein the nodes

receive both the 1st and the 2nd transmissions is �1;2.�s/=�. Denote by AR the
total (union) size of the area wherein the nodes receive either the 1st or the 2nd

transmissions. Some straightforward geometric analysis leads to the conclusion that
AR D �.rN.z1; !1//2C�.rN.z2; !2//2 � �1;2.�s/=�.

Then, the expected number of nodes that are directly connected to an infectious
node in either of the two transmissions can be calculated using (10.1.1) and
Lemma 156:
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Using the inclusion-exclusion principle, (10.2.5) can be readily obtained. More
specifically, if the number of transmissions is ˇ D 1, then R0 is equal to the first
term in (10.2.5). If the number of transmissions is ˇ D 2, then R0 is equal to the two
terms in (10.2.5). Furthermore, when ˇ � 3, the analysis involves the intersectional
area of more than two circles, as shown in Fig. 10.2. To avoid complicated formulas,
we only calculate the intersectional area of two circles (viz., the term �.�s/) and
provide an upper bound on R0 as shown in (10.2.5). ut
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Fig. 10.2 An illustration of the area covered by the transmission range of an infectious node
during three transmissions at points A, B, and C sequentially. Consider a set of nodes moving
in the direction AA0. When the infectious node transmits the third time (at point C), the nodes
that have received the first and second transmissions are in the disks centered at points A0 and B0

respectively

10.2.3 Percolation Probability

We first study the fraction of informed nodes from a percolation perspective
asymptotically, viz., we increase the network area towards infinity, i.e., letting
L ! 1, while keeping other parameters, i.e., �;V; r0; ˇ; �s and �r, unchanged.

Consider a realization of a random network on a torus .0;L�2. Denote by a
constant N.L/ the total number of nodes in this network. Further denote by a random
integer NR.L/ the number of informed nodes of a packet in this network, i.e., the
nodes that have received the packet at the end of the information dissemination
process. Then, the fraction of informed nodes of the packet in this network can be
calculated by NR.L/=N.L/. Note that the fraction of informed nodes is calculated for
each information dissemination process in each realization of a random network.

Recall that in an infinite network, the network is said to percolate if there exists a
component of infinite size in the network. Percolation probability is the probability
that the network percolates. As widely used in the study of percolation in random
networks, we consider asymptotic networks in this chapter. More specifically, we
consider asymptotic networks where L ! 1 while keeping the node density
unchanged. It follows that the total number of nodes in each realization of the
network becomes N.L/ ! 1.

Further note that, a series an depending on n is said to be nonvanishingly small
if there exists a sufficiently small positive constant " and a positive integer n0 such
that for all n > n0, an > ". Here, we are interested in the probability that the random
number NR.L/=N.L/ is nonvanishingly small as N.L/ approaches infinity, i.e., the
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probability that the fraction of informed nodes is nonvanishingly small. With a bit
twist of its standard definition, we call this probability the percolation probability
in this chapter.

Definition 162 The percolation probability pc of a MANET is the probability that
a piece of information broadcast from an arbitrary node can be received by a
nonvanishingly small fraction of nodes asymptotically.

The main result of this subsection is as follows:

Theorem 163 In network G.�; �; �;V; r0; ˇ; �s; �r/ with effective node degree R0.
The percolation probability pc satisfies pc � 1C 1

R0
W.�R0e�R0 /, where W.:/ is the

Lambert W Function.

Proof We first model the information dissemination process using a Galton-Watson
branching process ( [110], see also Sect. 1.3.2). The root, viz., the 0th generation, is
the source node. The expected number of children per node is given by R0. Denote
by �.k/ the number of individuals in the kth generation of the branching process.

Define q , Pr.limk!1 �.k/ ! 0/ to be the extinction probability of the
branching process, viz., the probability that the number of individuals in the kth

generation diminishes to zero as k ! 1. It has been shown in [110, Theorem 6.5.1]
and Sect. 1.3.2 that the extinction probability q is the smallest nonzero solution of
q D exp..1 � q/R0/ as the number of nodes N ! 1. Solving the equation, it can

be obtained that q D W.�R0e�R0 /

�R0
, where W.:/ is the Lambert W Function [47].

Next we establish the connection between the branching process and the
information dissemination process in a MANET. Denote by �N.k/ the number of
nodes in the kth generation of the information dissemination process, where the
kth generation of the information dissemination process consists of the nodes that
receive the information for the first time from a node belonging to the .k � 1/th

generation, and the 0th generation is the source node. Similarly as above, define
qN , Pr.limk!1 �N.k/ ! 0/ to be the extinction probability of the information
dissemination process. Because some of the nodes connected to an infectious node
may have already received the information from other infectious nodes, the number
of children per node of the information dissemination process is stochastically
less than that in the branching process introduced earlier. Therefore, there holds
�N.k/ �st �.k/. Recall that in stochastic ordering, we say �N.k/ �st �.k/ if and
only if Pr.�N.k/ > c/ � Pr.�.k/ > c/ for any constant c. Then, there holds

qN � q D W.�R0e�R0 /

�R0
.

Denote by p0
c the probability that the information dissemination process does not

become extinct. It is clear that p0
c D 1 � qN . Furthermore, it is obvious that the

information dissemination process does not become extinct is a necessary but not a
sufficient condition for having an nonvanishingly small fraction of informed nodes.
Therefore, there holds pc � p0

c. ut
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10.2.4 Expected Fraction of Informed Nodes

Define z0 as the expected fraction of informed nodes in the steady state of a
percolated network. Then, we report the following two results:

Theorem 164 Consider a network (L ! 1), whose effective node degree is R0.
The expected fraction of informed nodes in the steady state of a percolated network
satisfies z0 � 1C 1

R0
W.�R0e�R0 /, where W.:/ is the Lambert W Function.

Theorem 164 can be readily proved using a set of ordinary differential equations
and a mean field limit theorem that is commonly used in the analysis of epidemic
broadcast schemes, see [106] and the reference herein. The proof is therefore
omitted here and the accuracy of the result is verified by simulation in Sect. 10.3.

Theorems 163 and 164 show that the effective node degree determines the
performance of broadcast scheme. We shall present further analysis quantifying the
value of the effective node degree in the later subsections.

10.2.5 Energy and Bandwidth Efficiency

In a communication network, the energy and bandwidth consumed in disseminating
information can be important considerations in the design of the information
dissemination scheme. We next introduce the energy and bandwidth consumption
metrics. Specifically, assume that the time spent on transmitting a packet of unit size
over single hop is a constant Tt. Therefore, the energy consumed in transmitting a
packet is Ttpt, denoted via a constant E1 D Ttpt. Similarly, denote by constant E2
the energy consumed when receiving a packet at a node.

Denote by random variable Di the node degree of a randomly chosen node at
a random time instant. Then, the sum of the energy consumption for a randomly
chosen node broadcasting a packet and the energy consumed by all its neighbors
in receiving the packet is evidently E1 C DiE2. It follows that the expected energy
consumption for a randomly chosen node broadcasting a packet and all its neighbors
receiving the packet is E1 C EŒDi�E2, where EŒDi� is the average node degree.

Therefore, we can combine the energy consumption at single node, including
energy consumed by other nodes in receiving its packet, by a constant Ec D
E1 C EŒDi�E2. As manifested in the above equation, the overall energy consumption
is directly related to the number of transmissions and is equal to the number of
transmissions times Ec.

Similarly, if each transmission occupies, e.g., using CSMA, the frequency band
in an area whose expected size is Ac, then the expected size of the area where
the frequency band is occupied by an infectious node during its ˇ transmissions
is ˇAc. Therefore, the consumption of bandwidth is also an increasing function of
the number of transmissions. To save energy and bandwidth, we need to reduce the
number of transmissions ˇ.
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On the other hand, to meet pre-designated broadcast performance objectives,
measured by the percolation probability and expected fraction of informed nodes,
a certain number of transmissions are required. Given the dependence of the
performance objectives on the effective node degree, which is determined by
the number of transmissions ˇ, and the reliance of the energy and bandwidth
consumption on the number of transmissions ˇ, we propose using the following
ratio to measure the energy and bandwidth efficiency of the proposed broadcast
scheme:

Y , R0
ˇ

(10.2.7)

which is the average effective node degree achieved per transmission.
To improve energy and bandwidth efficiency, it is obvious that the clustering

factor, which characterizes the amount of overlap between two transmissions, needs
to be reduced. The following lemma reports a useful property of the clustering
factor �.�s/.

Lemma 165 The clustering factor �.�s/ is a monotone nonincreasing function of
�s, when all other parameters, i.e., �; �; �;V; r0; ˇ, and �r, are fixed.

Proof In (10.2.3), the only term determined by �s is the size of the intersectional
area

R �
0

Ap.	; �s; rN.z1; !1/; rN.z2; !2//d	 . It can be shown using (10.2.4) that for
any given value of 	 , Ap.	; �s; rN.z1; !1/; rN.z2; !2// is a nonincreasing function
of �s. Then, the conclusion follows that the clustering factor �.�s/ is a monotone
nonincreasing function of �s. ut
Introducing the sleep time interval �s, the proposed broadcast scheme separates
consecutive transmissions in both space and time, allowing each transmission to
be received by more new nodes that have not received the information during
the previous transmission(s). This is more energy and bandwidth efficient than the
traditional forwarding schemes, e.g., SI or SIR scheme, where an infectious node
transmits the information to every susceptible node coming into the transmission
range. To quantitatively compare the energy and bandwidth efficiencies between a
traditional SIR scheme and our scheme, we consider a SIR scheme with a perfect
neighbor discovery mechanism where an infectious node only wakes up when there
is a new node coming into the transmission range. Then, the energy and bandwidth
efficiency of the SIR scheme can be calculated in the same way as (10.2.7):

OY , R0
R0 � ��r20 C 1

(10.2.8)

where ��r20 is the expected number of nodes receiving the first transmission and
R0 � ��r20 C 1 is the expected number of transmissions required by an infectious
node using an ideal SIR scheme to transmit a piece of information to R0 nodes.



276 10 Information Propagation in Two-Dimensional Dynamic Networks

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
−3

1

1.5

2

2.5

3

3.5

4

Density λ

E
ffi

ci
en

cy

UDM, β=2~4, λ=0.001~0.003, r
0
=20

Opportunistic Case 1
SIR Case 1
Opportunistic Case 2
SIR Case 2

Fig. 10.3 The energy and bandwidth efficiency metrics under the proposed scheme (given
by (10.2.7)) and the traditional SIR scheme (given by (10.2.8)). Note that R0 in (10.2.8) takes
the same value as R0 in (10.2.7). In Case 1 and Case 2, the proposed scheme transmits ˇ D 2 and
ˇ D 4 times, respectively. Recall that the efficiency metric is a measure of the average effective
node degree achieved per transmission

As can be seen in Fig. 10.3, the proposed scheme has a higher energy and
bandwidth efficiency than the SIR scheme, especially when the density is large.
This is because when the density is large, the traditional method needs to transmit
frequently to every new neighbor whereas the proposed scheme can wait until the
infectious node moves to a new region and it will then transmit to a set of new nodes
at the same time.

10.2.6 Information Dissemination Delay

Suppose that a piece of information is broadcast from an arbitrary node at time
t D 0 using the proposed broadcast scheme. Let T.z/ be the expected time when the
fraction of informed nodes reaches z, for 0 < z < 1.

Theorem 166 In network G.�; �; �;V; r0; ˇ; �s; �r/, whose effective node degree is
R0, as L ! 1 and N D �L2 ! 1, there holds

T.z/ � �s

66641C log .Nz/

log
�
1C R0

ˇ

�
7775 (10.2.9)

Proof Recall that each infectious node has ˇ transmissions separated by a random
time interval �s C �r. In this proof, we obtain a lower bound on the delay T.z/
by constructing a new network, denoted by GL, where the time interval between
any two consecutive transmissions of each node is a constant �s and the infectious
nodes never recover. Then, in the new network GL, all infectious nodes transmit
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simultaneously at time �s; 2�s; 3�s; : : : . It can be established that the delay of
information dissemination in the new network is a lower bound on the delay in the
original network because 1) each node retransmits the information sooner because
sleep time interval is �s in the new network compared with �s C �r in the original
network, and 2) the number of transmissions of each node is greater than or equal
to that in the original network, and 3) the number of infectious nodes created by
each infectious node is greater than or equal to that in the original network (to be
described in the next paragraph).

Let ak be the total number of infectious nodes at time k�s in the new network
GL, for k � 0. Initially, there is a0 D 1. Denote by Qi 2 f0; 1; 2; : : : g the number
of nodes directly connected to node i at a randomly chosen time instant. Due to
the uniform distribution of nodes and the fact that nodes move independently of
one another, it can be shown that qi has an identical distribution across all nodes.
Furthermore, EŒQi� D R0. Note that some of the nodes directly connected to an
infectious node, say node i, may have already received the information. Hence the
number of new infectious nodes created by infectious node i at each transmission
is not larger than Qi. To obtain a lower bound on the delay, we consider that the
number of new infectious nodes created by an infectious node i at a transmission is
equal to Qi.

It can be readily shown that the total number of infectious nodes at time k�s

satisfies the relationship ak D ak�1 C Pak�1

iD1 Qi. However, an explicit and non-
recursive form for ak is difficult to find. To simplify the analysis, an asymptotic
model is used. Specifically, as we let L ! 1 while keeping the density N

L2

unchanged, the expected number of children EŒQi� does not vary as N ! 1.
Furthermore, because ak only depends on ak�1 and the distribution of Qi, according
to the mean field limit [106], as N ! 1, the number of nodes in the kth generation
converges almost surely to the deterministic form ak D ak�1 C ak�1EŒQi� D
ak�1

�
1C R0

ˇ

�
:

Further noting that a0 D 1, it follows that for N ! 1, ak D
�
1C R0

ˇ

�k
and

lim
n!1 T.z/ � E

�
�s arg max

k
.ak � Nz/



D �sE

�
arg max

k

�
.1C R0

ˇ
/k � Nz

�

D �s

66641C log .Nz/

log
�
1C R0

ˇ

�
7775 (10.2.10)

ut
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10.2.7 Optimization of the Inter-Transmission Time Interval

In the previous subsections, we postulated that consecutive transmissions of an
infectious node are separated by a random time interval �s C �r , � . The randomly
distributed time interval � reflects the uncertainty in the channel access time in
practical scenarios. This subsection disregards the technology limitation, i.e., we
assume that channel access time can be pre-determined and there is no contention
or collision between concurrent transmissions of different nodes, and investigates
the optimal probability distribution of � that maximizes the effective node degree
when all other parameters, i.e., �; �; �;V; r0 and ˇ, are fixed.

Note that this subsection conducts optimization under the unit disk connection
model for ˇ D 2 only, where the R0 is equal to the expression given in (10.2.5).
The same method can be applied to other scenarios which, however, involve
nontrivial analysis of the intersectional area of multiple disks. The performance of
the information dissemination process using the optimal broadcast scheme is shown
and discussed later in Sect. 10.3.

Theorem 167 Denote by p� .�/ the probability density function of the random time
interval � . In networks assuming the unit disk connection model, consider a set of
proposed broadcast schemes with ˇ D 2 but using different sleep strategies, i.e.,
different values of �s and different distributions for �r. Among all sleep strategies
with the same mean sleep time interval EŒ� �, the optimal one that maximizes the
effective node degree R0 is a strategy using a constant sleep time interval with
length EŒ� �.

Proof Note that under the unit disk connection model r1 D r2 D r0. Taking the
second derivative of (10.2.4) with regard to � , there results

@2

@�2
Ap.	; �; r0; r0/

D

8̂
<̂
ˆ̂:

0; for  .	; �/ D 0

@2

@�2
2r20 arccos. .	;�/

2r0
/ � @2 12

p
Œ.2r0/2� 2.	;�/�Œ 2.	;�/�

@�2
; for 0 <  .	; �/ < 2r0

0; otherwise

(10.2.11)

First consider the second derivative of (10.2.4) for 0 < a� < 2r0. Let a D
2V sin 	

2
, then  .	; �/ D a� . There holds

A1 , @2

@�2
2r20 arccos

�
 .	; �/

2r0

�

D @2

@�2
2r20 arccos

�
a�

2r0

�

D � 2a3�r20q
4r20 � a2�2.4r20 � a2�2/

(10.2.12)
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Furthermore,

A2 , @2

@�2
1

2

p
Œ.2r0/2 �  2.	; �/�Œ 2.	; �/�

D a5�3 � 6a3r20�

.4r20 � a2�2/
q
4r20 � a2�2

(10.2.13)

Then, the second derivative of (10.2.4) for 0 < a� < 2r0 is given by

A1 � A2 D �2a3�r20 � a5�3 C 6a3r20�

.4r20 � a2�2/
q
4r20 � a2�2

D a3�
4r20 � a2�2

.4r20 � a2�2/
q
4r20 � a2�2

> 0 (10.2.14)

It is evident that Ap.	; �; r0; r0/ is a convex function of � . Then, according to the
Jensen’s inequality, there holds EŒAp.	; �; r0; r0/� � Ap.	;EŒ� �; r0; r0/:

Using Lemma 159, the clustering factor is

�.�/ D
Z 1

0

Z �

0

Ap.	; �; r0; r0/
�

�
p� .�/d	d�r

�
Z �

0

�

�
Ap.	;EŒ� �; r0; r0/d	 (10.2.15)

Finally, according to Theorem 161, under the unit disk connection model when
ˇ D 2, R0 D 2��r20 � �.�/.

This means that among all distributions of the sleep time interval � with mean
EŒ� �, the case where consecutive transmissions are separated by a constant EŒ� �
minimizes the clustering factor �.�/, consequently maximizes the effective node
degree. ut
Note that only Theorem 167 has the limitation of ˇ D 2, while other results
presented in the chapter can be applied to any positive integer value of ˇ.

Remark 168 Note that the result of Theorem 167 only applies to the situation where
nodes move at the same constant speed. In the situation where nodes’ speeds are
randomly distributed, the optimal sleep interval depends on the speeds of the active
nodes as well as the speeds of other nodes, or more precisely, depends on the relative
speeds between the active nodes and other nodes. Specifically, when an active node
moves slower than V and other nodes move at speed V , the active node needs to
sleep for a longer time interval in order to move away from its previous transmission
location. On the other hand, if the active node moves slower than V but other nodes
move faster than V , then the active node may not necessarily need a longer sleep
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time interval because other nodes can move away from the active node. Therefore,
in the situation where node speed is randomly distributed, there does not exist a
simple optimal sleep time interval that maximizes the effective node degree of every
node. An algorithm needs to be designed to adjust the sleep time interval of a node
dynamically according to the relative speeds of the active node and all its neighbors.

Remark 169 The randomly distributed time interval reflects the uncertainty in the
channel access time. Theorem 167 disregards this limitation, i.e., assuming that
channel access time can be pre-determined and there is no contention or collision
between concurrent transmissions, and investigates the optimal distribution that
maximizes the effective node degree.

10.3 Simulation Studies of the Information Propagation
Process

In this section we use simulations to further investigate the information propagation
process and establish the accuracy of the analysis presented in the previous sections.

Initially, N D 1280 nodes are randomly, independently, and uniformly deployed
on a torus .0; 800m�2, i.e., density is � D 0:002 nodes/m2. After deployment of the
nodes, they start to move according to the mobility model introduced in Sect. 10.1.
The speed V is set to 10 m/s. The sleep time interval is a constant, i.e., �r D 0,
except for Fig. 10.7.

Figure 10.4 shows the percolation probability and the expected fraction of
informed nodes. It can be seen that both metrics improve as either �s or � increases,
owing to the reduction of the clustering factor as shown in Sect. 10.2.5. Our
analytical bounds are close to the simulation results as shown in Fig. 10.4a, while the
discrepancy in Fig. 10.4b is caused by the well-mixing assumption used in deriving
the fraction of informed nodes, which however requires sophisticated analysis to
adjust. More specifically, in the analysis it was assumed that informed and unformed
nodes are very well mixed but in reality the informed nodes may be clustered
together.

Note that the percolation probability is an asymptotic figure of merit, whereas any
simulation can only be conducted on a finite network. The simulation in this section
is conducted in a finite but large network with 1280 nodes. The simulation result
for the percolation probability shows the probability of having at least x D 10%
informed nodes in the steady state. Note that we have tried some different values
for x ranging from 5% to 20% and the plots are similar. It can be seen that the
percolation model, though constructed for an infinite network, is of predictive value
for networks likely to be encountered in real world.

Figure 10.5 illustrates the impact of Rayleigh fading on the percolation probabil-
ity and the expected fraction of informed nodes. It can be seen that Rayleigh fading
has a negative impact on the information dissemination process, which can also be
seen from the analysis in Lemma 165.
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Fig. 10.4 Analytical (Ana) and simulation (Sim) results of the percolation probability and the
expected fraction of informed nodes, using different network parameters. Analytical results are
the upper bounds obtained by combining Theorems 163, 164 and 161. Simulation result for the
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Figure 10.6 shows the lower bound of the delay for a piece of information to
be received by 50% of nodes. It can be seen that the length of the sleep time
interval has a significant impact on the delay and our analytical results provide valid
lower bounds on the delay. It is clear that a longer sleep time interval can cause a
longer delay. A network designer needs to consider the trade-off between delay and
resource consumption.

Furthermore, Figs. 10.4, 10.5, and 10.6 suggest that shadowing effects benefit
the information dissemination process in terms of the percolation probability, the
expected fraction of informed nodes and delay, because an increase in � leads to
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an increase in the effective node degree R0 as shown in Theorem 161. This is in
sharp contrast with previous conclusions, e.g., [169], because traditional routing
algorithms like AODV need to establish a route before sending data, whilst the route
is unstable due to dynamic topology and channel randomness.

The proposed scheme and the analysis presented can also be useful for unicast.
For example, consider that a source node sends a unicast packet to a randomly
chosen destination node using the proposed broadcast scheme. It is interesting to
note that the probability that the packet reaches the randomly chosen destination at
time T.z/ is z as shown in Theorem 166. Moreover, the probability that the packet
reaches the randomly chosen destination at the steady state is given by the expected
fraction of informed node z0 as shown in Theorem 164.

Figure 10.7a verifies the results of Theorem 167 that a constant time interval
between consecutive transmissions leads to the largest effective node degree, which
further leads to the largest percolation probability as shown in Fig. 10.7b. Note that
in a practical scenario where concurrent transmissions of different nodes can cause
wireless channel contention and transmission failure, further analysis is required to
characterize the effective node degree and the percolation probability.

Now we present simulation results evaluating the energy and bandwidth effi-
ciency of the proposed scheme. The energy and bandwidth consumed in the
information dissemination is an increasing function of the number of transmissions
of the packets containing the information. According to a study by Feeney et al.
[64], using 11Mbps wireless transmission, the energy consumed by a node to
broadcast a packet of 1K bytes is 482
J, and the energy consumed by a node
to receive a broadcast packet of size 1K bytes is 76
J. Therefore, the overall
energy consumption, including the transmitting and receiving energy, is Ec D
482C EŒDi�76, where EŒDi� is the average node degree, which is equal to the right-
hand side of (10.2.5) (i.e., it is no longer an upper bound) by letting ˇ D 1.
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Fig. 10.8 Simulation results of the overall energy consumption using the proposed scheme and
the traditional SIR scheme for a packet to be received by 99% of nodes in a network. In Case 1 and
Case 2, ˇ D 2 and 4, respectively

Figure 10.8 shows simulation results of the overall energy consumption for
the dissemination of a piece of information using the proposed scheme and the
traditional SIR scheme. Firstly, it can be seen that the proposed scheme has
a significantly smaller energy consumption compared with the traditional SIR
scheme. Furthermore, the increase in node density has much less impact on the
overall energy consumption than the SIR scheme. This is because a larger node
density causes more overlap between consecutive transmissions, which leads to
a larger clustering factor and consequently more energy consumption for the
traditional SIR scheme. On the other hand, the enforced gaps between transmissions
under the proposed scheme reduce the aforementioned overlap. Hence the proposed
scheme is more energy efficient.
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Fig. 10.9 Simulation results of the overall energy consumption using the proposed scheme and
the traditional SIR scheme for a packet to be received by 99% of nodes is a network. The impact
of the sleep time interval �s on the overall energy consumption is evaluated by letting the random
component �r take a constant value 0

Figure 10.9 evaluates the impact of the sleep time interval �s on the energy
consumption. Note that other things being equal, the energy and bandwidth
consumption is a linearly increasing function of the number of transmissions. It
can be seen that increasing the sleep time interval reduces the energy consumption.
This is because a larger gap between transmissions leads to less overlap and the
same reason applies to the network under the unit disk connection model (labeled
� D 0), the network under the log-normal shadowing model (labeled � D 4) and
the networks subject to Rayleigh fading (labeled with Rayleigh).

Figure 10.10 compares the proposed scheme with two classic schemes in the
literature: the SI scheme and the SIR scheme. A large number of studies in this
area considered the SI scheme, where every node carries the received information
and forwards it to all nodes coming into the transmission range. In particular,
Thedinger et al. proposed an SI-based broadcast scheme in [182], where each node
broadcasts the received information to its directly connected neighbors repeatedly
and consecutive re-broadcasts are separated by a fixed time interval. Using an
SI-based scheme, every node needs to re-broadcast the received packet. For a
fair comparison, we stop the re-broadcast when the packet is received by 99%
of nodes in the network. It can be seen in Fig. 10.10 that the SIR based model
requires a significantly smaller overall energy consumption compared with the SI
based model. This is because the recovery mechanism in the SIR model limits the
number of transmissions of each node to save energy. Moreover, as described earlier,
the scheme presented in this chapter further reduces the energy consumption by
reducing the overlap between consecutive transmissions and thereby reducing the
number of transmissions to nodes already having a copy of the packet. Therefore, the
proposed scheme requires less number of transmissions for a packet to be received
by the same percentage of nodes in a network.
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Fig. 10.10 Simulation results of the overall energy consumption using the proposed scheme and
the other classic schemes for a packet to be received by 99% of nodes in a network

10.3.1 Real Mobility Trace Simulation

In this subsection, we consider a MANET driven by a real world trace of cabs in the
San Francisco Bay Area [168]. The cab trace contains GPS coordinates of 536 cabs
over approximately 30 days. Linear interpolation was used to increase the trace
granularity. We focus on the downtown area (3.5km�3.5km) as indicated by the
square in Fig. 10.11. A piece of information is broadcast from an arbitrary cab in
the downtown area using the scheme proposed in Sect. 10.1. When information
dissemination stops, we count the fraction of cabs in the downtown area that have
received the information.

It is obvious that the cabs do not follow the mobility model used in the
analysis. Actually there has been no analytical model that can fully characterize
the movement of real world devices. The analysis based on analytical models under
some ideal assumptions is used to predict the real world situations. We use the cab
trace to evaluate the analytical results in a large network when the node mobility and
distribution deviate from assumptions described in Sect. 10.1, and to identify the
limitations of the analysis and present possible usage in estimating the performance
of information dissemination in real world dynamic networks. It is interesting to
see in the following figures that the impact of varying each network parameters
on the network performance predicted by the analysis highly coincides with the
simulations results.

Figure 10.12a and b shows the percolation probability and the expected fraction
of informed nodes in the steady state. It can be seen that though the analytical result
and simulation result exhibit the same trend, the fraction of informed nodes in a
MANET driven by the actual cab trace is lower than that predicted by analysis.
The discrepancy is mainly caused by the inhomogeneity of the node distribution.
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Fig. 10.11 A snapshot of the San Francisco Bay Area. The dots represent the positions of the cabs
at a particular time instant. The square represents the downtown area we are interested in
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Fig. 10.12 The percolation probability and the expected fraction of informed nodes for the
MANET driven by cab trace
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Specifically, as can be seen in Fig. 10.11, the density of cabs in suburbs is lower
than that in the downtown area. Therefore, when an infectious node moves to the
suburbs, it has little chance to inform other nodes.

10.4 Notes and Further Readings

This chapter presented an information dissemination scheme for dynamic networks
subject to channel randomness and with consideration of the energy and bandwidth
consumed in the information propagation process. The information propagation
process in dynamic networks adopting the information dissemination scheme
was studied. The relevant parameters characterizing the information propagation
process, i.e., the percolation probability, the expected fraction of informed nodes
and delay, were analytically investigated. The accuracy of the analytical results was
validated using simulations.

A number of existing studies on information dissemination in wireless networks,
e.g., [115], focused on connected networks, where a network is said to be connected
if and only if there is at least one multi-hop path connecting any pair of nodes all
the time. As pointed out in Chap. 8, in mobile networks, it is often unnecessary
or impractical to require a network to be always connected, due to fast-changing
network topology or channel randomness.

Epidemic broadcast schemes are popularly used for information dissemination in
MANETs. In [40], Chen et al. studied the information dissemination process using a
Susceptible-Infectious (SI) epidemic scheme, where every node carries the received
information and forwards it to all nodes coming into the transmission range. The SI
epidemic scheme is a reliable but costly scheme due to a lack of a proper mechanism
to stop the transmission.

In [43], Clementi et al. studied the speed of information propagation in a
mobile network where nodes move independently at random over a square area.
They obtained an upper bound on the flooding time, which is the maximum time
required for all nodes of the network to be informed. In [109], Jacquet et al.
studied the information propagation speed in mobile networks where nodes are
uniformly distributed in a bounded area. The nodes were assumed to move following
identically and independently distributed random trajectories. An upper bound on
the information propagation speed, viz., ratio of the distance traveled by information
over a given amount of time, was obtained.

There are other broadcast schemes for MANETs beside epidemic schemes. In
[73], Friedman et al. reviewed some gossip-based algorithms that can be suitable
candidates for information dissemination in MANETs. They pointed out that the
design of energy and bandwidth efficient information dissemination schemes for
MANETs is a challenging and open problem. A more recent work [188] of Gao
et al. proposed a novel data forwarding strategy which explores the transient social
contact patterns in social networks. They identified that low node density and a lack
of global information are two major challenges in effective data forwarding in delay
tolerant networks.
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Chapter 11
Connectivity of One-Dimensional
Small to Medium Sized Networks

Abstract In this chapter, we study the connectivity of one-dimensional small to
medium sized networks with and without infrastructure support. Different from
the connectivity of large static networks and dynamic networks where asymptotic
analysis is a major tool used in the analysis, for small to medium sized networks,
the number of nodes in the network is not necessarily large enough to warrant the
use of asymptotic analysis. Therefore, for small to medium sized networks, our
focus is on characterizing three related connectivity measures, collectively called
the probabilities of k-hop connection or hop count statistics, viz., 1) the probability
that a randomly selected node is k-hops apart from another randomly selected node,
i.e., the length of the shortest path from the first node to the second node measured
by the number of hops is k; 2) the probability that a node x apart from another node
is connected to that node in exactly k hops; and 3) the spatial distribution of the
nodes k-hops apart from another designated node. In this chapter, we investigate the
aforementioned three connectivity measures for one-dimensional small to medium
sized networks with and without infrastructure support.

In the previous chapters, we have studied the connectivity of large static networks
and dynamic networks. Asymptotic analysis is a major tool used in the study of
large networks. In the next several chapters, we continue to study the connectivity
of small to medium sized networks whose number of nodes is not necessarily large
enough for asymptotic results to apply.

In a very general setting, we consider a wireless network with nodes identically
and independently distributed following a homogeneous Poisson distribution with
known density � in a given d-dimensional area (d D 1; 2), denoted by S. A node
at x2 2 S is directly connected to a node at x1 2 S with probability g .x2 � x1/,
i.e., following the random connection model. There are three related probabilities
characterizing the connectivity properties of such a network: 1) Pr .k/ the probability
that a randomly selected node is k-hops apart from another randomly selected node,
i.e., the length of the shortest path from the first node to the second node measured
by the number of hops is k; 2) Pr .kjx/ the probability that a node x apart from
another node is connected to that node in exactly k hops; and 3) Pr .xjk/ the spatial
distribution of the nodes k-hops apart from another designated node. These three
probabilities are related through Bayes’ formula. Given the probability density p.x/
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for the displacement x between two randomly chosen node [144] and if one is
computable, the other two will be computable using similar techniques. Therefore,
we call these three probabilities collectively the probabilities of k-hop connection
or hop count statistics.

As special cases of the above general setting, we study, respectively, the
cases when d D 1, i.e., one-dimensional networks, or when d D 2, i.e., two-
dimensional networks; when the connection model is a unit disk connection model
or when the connection model becomes a log-normal connection model. When
the probabilistic measures Pr .kjx/ and Pr .xjk/ depend only on the Euclidean
distance x between nodes, we can write Pr .kjx/ for Pr .kjx/ and Pr .xjk/ for Pr .xjk/,
instead of their displacement. Obviously,

P1
kD1 Pr .k/ gives the probability that two

randomly selected nodes are connected (via a multi-hop path). Assuming the unit
disk connection model,

P1
kD1 Pr .kjx/ gives the probability that a one-dimensional

network with two nodes placed at both ends of a line segment of length x and other
nodes in between is connected. We shall also show that the three measures and their
variants can be used to derive other connectivity related properties of the network.

Solutions to the probability of k-hop connection problems can be used in a
number of areas in wireless networks. The probability Pr .k/ is useful in estimating
the overall energy consumption, lifetime, and capacity of a wireless sensor network
[204, 205] because these measures are tightly related to the number of hops required
to transmit a packet from its source to its destination. The probability Pr .kjx/ can
be used in the analysis of end-to-end delay, energy consumption, and reliability
of packet transmission [54, 203] and the probability in vehicular networks that a
vehicle can access the base station within a designated number of hops [196]. The
probability Pr .xjk/ is useful in estimating the distance between two nodes from
their neighborhood information and obtaining variance of such estimate, which can
then be used in localization [62].

A focus of our study on the connectivity of small to medium networks will be on
the characterization of the three related probabilistic measures.

11.1 Probabilities of k-Hop Connection in One-Dimensional
Ad Hoc Networks

In this section, we consider the special case of a one-dimensional network with
nodes distributed on a semi-infinite line extending towards Cx axis following a
homogeneous Poisson distribution with density �. A pair of nodes are directly
connected following the unit disk connection model with a transmission range r0.
Without loss of generality, place the origin on the leftmost node and designate the
node as the source node. We study the conditional probability Pr .kjx/, i.e., the
probability that a node located at x is k-hop apart from the source node.
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Let �k, k D 1; : : :, be the furthest Euclidean distance between the source node
and its k-hop neighbors, if exist. We first study the distribution of �k, k D 1; : : : and
then use the distribution of �k, k D 1; : : : to derive Pr .kjx/.

We derive the distribution of �k, k D 1; : : :, recursively and start with �1. Due to
the Poisson distribution of nodes, it can be readily shown that for x � r0

Pr .�1 � x/ D .1 � e��x/ e��.r0�x/ (11.1.1)

where the term 1� e��x is the probability that there is at least one node in Œ0; x� and
the term e��.r0�x/ is the probability that there is no node in .x; r0�. It follows that the
probability density function of �1, denoted by f�1 .x/, is given by

f�1 .x/ D d Pr .�1 � x/

dx
D �e��.r0�x/ (11.1.2)

Due to the unit disk connection model being considered, it follows that f�1 .x/ D 0

for x > r0 and Pr .�1 � r0/ D 1 � e��r0 is the probability that there exists a 1-hop
neighbor of the source.

Now we move on to consider the distribution of �2. Obviously �2 has to satisfy
the condition that r0 < �2 � �1Cr0, it follows that conditioned on �1, the cumulative
distribution function of �2 is given by

Pr . �2 � xj �1/ D
8<
:
0 for x � r0�
1 � e��.x�r0/

�
e��.�1Cr0�x/ for r0 < x � �1 C r0

1 � e���1 for x > �1 C r0

(11.1.3)

The probability density function of �2, conditioned on �1, is given by

f�2 .xj �1/ D
8<
:
0 for x � r0
�e��.�1Cr0�x/ for r0 < x � �1 C r0
0 for x > �1 C r0

(11.1.4)

Supposing that the (conditional) distributions of �1; �2; : : : ; �k are known, we
now consider the conditional distribution of �kC1. First note that under the unit disk
connection model, the distribution of �kC1 only depends on the distributions of �k

and �k�1, i.e., f�kC1
.xj �k; : : : ; �1/ D f�kC1

.xj �k; �k�1/ because a node is a k C 1-hop
neighbor of the source if and only if its location x satisfies �k C r0 < x � �k�1 C r0.
This is also illustrated in Fig. 11.1.

ξkξk−1

r0
r0

Possible region for k+1-hop nodes

Fig. 11.1 An illustration of possible region for k C 1-hop neighbors
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Similarly as before, it can be shown that

Pr .�kC1 � xj �k; : : : ; �1/

D Pr .�kC1 � xj �k; �k�1/

D
8<
:
0 for x � �k�1 C r0�
1 � e��.x��k�1�r0/

�
e��.�kCr0�x/ for �k�1 C r0 < x � �k C r0

1 � e�.�k��k�1/ for x > �k C r0

(11.1.5)

and the probability density function of �kC1, conditioned on �k; : : : ; �1, is given by

f�kC1
.xj �k; : : : ; �1/ D

8
<
:
0 for x � �k�1 C r0
�e��.�kCr0�x/ for �k�1 C r0 < x � �k C r0
0 for x > �k C r0

(11.1.6)

Remark 170 It is evident from (11.1.5) that, under the unit disk connection model,
the distribution of the furtherest distance of k C 1-hop nodes depends only on
the distributions of the furtherest distances of the previous two hop nodes. The
same conclusion may not be true for other connections models, e.g., the log-normal
connection model and the random connection model.

It follows that the joint distribution of �kC1; : : : ; �1 can be obtained as

f .�kC1; : : : ; �1/ D f . �kC1j �k; : : : ; �1/ f . �kj �k�1; : : : ; �1/ � � � f .�1/

D f . �kC1j �k; �k�1/ f . �kj �k�1; �k�2/ � � � f .�1/ (11.1.7)

and the probability density function (and the cumulative distribution function) of �k,
k D 1; : : :, can be obtained from (11.1.7) using the total probability theorem.

Given the distribution of �k, k D 1; : : :, Pr .kjx/ can be readily obtained:

Pr .kjx/ D Pr .�k�1 < x � �k�1 C r0/

D Pr .x � r0 � �k�1 < x/ (11.1.8)

11.2 Connectivity of One-Dimensional Infrastructure Based
Networks

In this section, we continue to investigate the connectivity of one-dimensional
wireless networks with infrastructure support. Examples of such networks can
be found in vehicular networks and wireless sensor networks, see [44, 76] for
more examples. In vehicular networks, roadside infrastructure plays an important
role in the reliable and timely distribution of critical information to vehicles on
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the road [14]. In wireless sensor networks, data sinks gather useful information
collected by the sensors via multi-hop paths. Then, these data sinks may either
store the data for later retrieval or aggregate and transfer the data immediately via a
backbone network to the remote base station or Internet. An example is the sensor
network deployed on Great Duck Island for habitat monitoring [136]. From the
above examples, it can be summarized that an infrastructure-based wireless network
has the following characteristics: (a) the communication between “ordinary” nodes
(vehicles / sensors) and “powerful” nodes (roadside infrastructure / data sinks) is
important for the core functions of the networks to be carried out properly; (b) the
powerful nodes are inter-connected, either by wired or by wireless links and their
location is usually deterministic; (c) the location of ordinary nodes is often random.
In this section, we investigate the connectivity of this type of one-dimensional
infrastructure based networks, which is also referred to as hybrid networks in the
literature.

To characterize connectivity of one-dimensional infrastructure based networks,
we propose a new concept of connectivity, which we term type-II connectivity, to
distinguish it from connectivity of homogeneous networks studied earlier. We say
that a network is type-II connected if every ordinary node in the network is con-
nected, directly or via multi-hop paths, to at least one of a small subset of powerful
nodes. Type-II connectivity problem is a broad topic. In addition to connectivity
probability, we also analyze the average number of clusters. The average number
of clusters can be considered as an alternative measure of network connectivity,
which measures how fragmented a network is if it is not connected. It tells us how
many additional powerful nodes are required for all ordinary nodes in a network
to be connected to at least one powerful node with high probability. Assuming
these additional powerful nodes are mobile, then there exist a number of ways [16]
that they can connect the ordinary nodes together to achieve certain purposes such
as maximizing the communication reliability between nodes [113] or balancing
the traffic load among the nodes [128]. Such problems are important in network
topology control and routing. Based on the above connectivity and clustering results,
we obtain the optimum powerful node distribution that minimizes the average
number of clusters and maximizes the asymptotic connectivity probability of the
network.

More specifically, the network model studied in this section is defined as follows.

Definition 171 Denote by G.�; npI LI ro; rp/ a one-dimensional wireless network
with two types of nodes: ordinary nodes and powerful nodes. Ordinary nodes are
identically, independently, and Poissonly distributed with a known density � in
the interval Œ0;L�. There are np � 2 powerful nodes in the network, where two
of them are placed at both ends of the interval and the rest are arbitrarily distributed
in the interior of the same interval. A direct connection between two ordinary
nodes (respectively, between an ordinary node and a powerful node) exists if their
Euclidean distance is smaller than or equal to ro (respectively, rp). Furthermore, all
powerful nodes are assumed to be inter-connected to each other.

An example of our model is illustrated in Fig. 11.2.
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Fig. 11.2 An example of a wireless network with a mixture of ordinary nodes and powerful nodes.
The distances between adjacent powerful nodes are denoted by wi, for 1 � i � np � 1

In the model, the powerful nodes divide the interval Œ0;L� into np�1 sub-intervals
and each sub-interval i has length wi for 1 � i � np � 1.

In general, we assume that rp � ro. This assumption is justified because it is
often the case that a powerful node can not only transmit at a larger transmission
power than an ordinary node,but it may also be equipped with more sophisticated
antennas, which make it more sensitive to the transmitted signal from an ordinary
node [172]. As will be shown later, in this section we mostly focus on the network
with L D 1, i.e., on the unit interval. Using the scaling technique, the results for the
network on the unit interval can be easily applied to a network on the interval Œ0;L�
where L ¤ 1.

11.2.1 Characterization of Type-II Connectivity Probability

In this subsection we investigate the type-II connectivity probability of a network
G.�; npI 1I ro; rp/, i.e., on the unit interval. Under the unit disk connection model,
the connectivity probability can be derived by first examining each sub-interval
bounded by two consecutive powerful nodes.

Let Ai.wi/ be the event that sub-interval i with length wi is type-II connected
under the assumption that rp � ro. It is trivial to show that Pr .Ai.wi//, the
probability that Ai.wi/ occurs, is 1 when wi � 2rp. For wi > 2rp, a realization
of a type-II connected sub-interval i for rp � ro remains type-II connected if and
only if after removing an interval of length rp�ro (and the ordinary nodes within that
interval) from the left end and right end of sub-interval i respectively, the resulting
sub-interval with rp D ro is still type-II connected. Hence for wi > 2rp,

Pr .Ai.wi// D Pr
�
Aeq

i .wi � 2.rp � ro//
�

(11.2.1)

where Aeq
i .x/ is the event that sub-interval i with length x is type-II connected

under the situation that rp D ro. In the next subsection we provide the derivation
of Pr

�
Aeq

i .x/
�
.

A network is type-II connected if and only if each sub-interval is type-II
connected. Under the unit disk connection model, the event that one sub-interval
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is type-II connected is independent of the event that another sub-interval is type-II
connected. Hence, the probability that a network with each sub-interval i having
length wi is type-II connected (say, event B.w1; � � � ;wnp�1/) is

Pr
�
B.w1; � � � ;wnp�1/

� D
np�1Y
iD1

Pr .Ai.wi// (11.2.2)

Based on (11.2.2), we can obtain the following theorem.

Theorem 172 Denote by B the event that a random instance of G.�; npI 1I ro; rp/

is type-II connected. Then, the probability that event B occurs is

Pr .B/ D
Z

D

0
@

np�1Y
iD1

Pr .Ai.wi//

1
A f .w/dw (11.2.3)

where D D f.w1; � � � ;wnp�1/ W Pnp�1
iD1 wi D 1g; f .w/ D f .w1; � � � ;wnp�1/ is the

joint probability density function of the distances between adjacent powerful nodes;
Pr .Ai.wi// is given in (11.2.1) and Pr

�
Aeq

i .wi/
�

is given in (11.2.10).

Using (11.2.3), we can calculate the type-II connectivity probability of a network
with any distribution of powerful nodes as long as f .w/ of that distribution is
known. For example, if the powerful nodes are uniformly distributed, then f .w/ D
.np � 2/Š [53]. If the powerful nodes are placed in an equidistant fashion,
then (11.2.3) simplifies into

Pr .B/ D .Pr .Ai.w///
np�1 (11.2.4)

with w D 1
np�1 . In the following subsections, we derive Pr

�
Aeq

i .x/
�

and its
asymptotic approximation where the superscript eq is used to highlight that the
power nodes are placed in an equidistant fashion.

11.2.1.1 Exact Probability that a Sub-Interval Is Type-II Connected
for rp D ro

As mentioned earlier, the result for rp D ro can be used to obtain the result for the
general case where rp � ro. Let Aeq

i .mi;wi/ be the event that sub-interval i with
length 0 < wi � 1 is type-II connected given that there are mi ordinary nodes in the
sub-interval. Denote the common transmission range by r, i.e., r D rp D ro. The
derivation of Pr

�
Aeq

i .mi;wi/
�

relies on the following lemma from [79].

Lemma 173 Let Œx; x C y� be a sub-interval of length y within Œ0; 1�. Assume two
of k given vertices have been placed at the borders of this sub-interval. Define two
vertices to be neighbors if and only if they are at distance r or less apart, let Zk;y;r be
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the event that k � 2 vertices, corresponding to the remaining vertices and uniformly
placed in Œ0; 1�, are inside Œx; x C y� and “join” the borders, that is, the k vertices
form a connected subgraph of length y; and let P.k; y; r/ D Pr.Zk;y;r/. Then, for
k � 2,

P.k; y; r/ D
min.k�1;by=rc/X

jD0

 
k � 1

j

!
.�1/j.y � jr/k�2 (11.2.5)

A sub-interval is type-II connected if all ordinary nodes within the sub-interval are
connected to at least one of the two powerful nodes located at both ends of the
sub-interval. Hence, event Aeq

i .mi;wi/ occurs with probability

Pr
�
Aeq

i .mi;wi/
� D P.mi C 2; 1; Or/C mi.mi C 1/

Z 1�Or

0

P.mi C 1; Ox; Or/dOx
(11.2.6)

where Or D r
wi

is the normalized transmission range and Ox D x
wi

is the normalized
distance of x. The two terms on the right-hand side of (11.2.6) represent the two
possible cases of the event, as illustrated in Fig. 11.3. Figure 11.3a corresponds to
the first term in (11.2.6), and Fig. 11.3b corresponds to the second term.

Figure 11.3a shows a possible case where all mi ordinary nodes within sub-
interval i are connected to both powerful nodes. That is, none of the mi C1 spacings
between the adjacent ordinary nodes and the two powerful nodes is larger than r.
In this case, all ordinary nodes and the two powerful nodes in sub-interval i form a
connected “subgraph” of length wi. From Lemma 173, the probability of this case
is P.mi C 2; 1; Or/, where mi C 2 is the sum of the number of ordinary nodes and the
two powerful nodes.

Fig. 11.3 An illustration that sub-interval i is type-II connected. Subgraph (a) shows that all
ordinary nodes are connected to both powerful nodes. All spacings between any two adjacent
nodes are not greater than the transmission range r. Subgraph (b) shows an example where there
is a big spacing with length s in the sub-interval, and s > r. All ordinary nodes located to the left
(right) of the big spacing are connected to the left (right) powerful node
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Fig. 11.4 An illustration of the scenario that if the big spacing with length s and the ordinary node
attached to the left end of the big spacing are removed (the “remove” operation) from the sub-
interval i (except for the case when the big spacing is the left most spacing, and then the ordinary
node attached to the right of the big spacing is removed), then the mi �1 remaining ordinary nodes
and the two powerful nodes form a connected “subgraph” of length x D wi � s

Figure 11.3b shows the other possible case where the mi ordinary nodes inside
sub-interval i are connected to either one of the two powerful nodes but not both.
Then, among the mi C 1 spacings between adjacent nodes, there is exactly one
spacing with length s > r. Suppose temporarily that the big spacing of length s and
the ordinary node attached to the left end of the big spacing are removed from sub-
interval i, as illustrated in Fig. 11.4. Then, the mi � 1 remaining ordinary nodes and
the two powerful nodes form a connected “subgraph” of length x D wi � s.

A special case occurs when the big spacing is the leftmost spacing in the sub-
interval. If this is the case, then we remove the ordinary node attached to the right
end of the big spacing instead. The probability that the mi � 1 remaining ordinary
nodes and the two powerful nodes, with the sub-interval having the new length of
x, form a connected interval is given by P.mi C 1; Ox; Or/ where Ox D x

wi
. Following

the convention in [79] that nodes are treated as distinguishable, the event that a
particular node i attached to the left end of the big spacing is removed together with
the big spacing and the remaining nodes form a connected interval, and the event
that a particular node j attached to the left end of the big spacing is removed together
with the big spacing and the remaining nodes form a connected interval are treated
as different events. Therefore, any of the mi ordinary nodes can be attached to the
left end of the big spacing (or attached to the right end for the special case), and
the big spacing can be any of the mi C 1 spacings in sub-interval i. As a result, the
probability that events like Fig. 11.3b occur is then mi.mi C 1/P.mi C 1; Ox; Or/, for Ox
ranging from zero to 1 � Or. Therefore, we obtain the second term in (11.2.6).

After applying (11.2.5) into the second term of (11.2.6), we can get rid of the
integral in the second term by moving the inner sum outside the integral. With
further changes to the range of summation and integral, we obtain
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mi.mi C 1/

Z 1�Or

0

P.mi C 1; Ox; Or/ dOx

D .mi C 1/

min.mi;b1=Orc�1/X
jD0

 
mi

j

!
.�1/j .1 � .j C 1/Or/mi (11.2.7)

Using (11.2.7), and replacing the first term in (11.2.6) by (11.2.5), we can
simplify (11.2.6):

Pr
�
Aeq

i .mi;wi/
�

D
min.miC1;bwi=rc/X

jD0
.1 � j/

 
mi C 1

j

!
.�1/j.1 � j

r

wi
/mi (11.2.8)

Since all sub-intervals bounded by powerful nodes are nonoverlapping segments
with length wi and ordinary nodes are Poissonly distributed, mi is a Poisson random
variable with mean wi�, and mi and mj are mutually independent for i ¤ j. Let
Aeq

i .wi/ be the event that sub-interval i with length 0 < wi � 1 is type-II connected.
Then,

Pr
�
Aeq

i .wi/
� D

1X
miD0

Pr
�
Aeq

i .mi;wi/
� .wi�/

mi

miŠ
exp.�wi�/ (11.2.9)

D
bwi=rcX

jD0
.1 � j/.�1/j 1

jŠ
.j C wi� � jr�/

� .wi� � jr�/j�1 exp.�jr�/ (11.2.10)

where from (11.2.9) we first exchange the order of the inner sum and the outer
sum after we substitute Pr

�
Aeq

i .mi;wi/
�

by (11.2.8). Then, we substitute
�miC1

j

� D
1
jŠ

dj

dtj
tmiC1

ˇ̌
ˇ
tD1, move the derivative outside the inner sum, and with some arithmetic

steps we obtain (11.2.10). Note that (11.2.10) is still valid even when wi � 2r. That
is, Pr

�
Aeq

i .wi/
� D 1 when wi � 2r as expected.

11.2.1.2 Asymptotic Probability That a Sub-Interval Is Type-II
Connected for rp D ro

Equation (11.2.10) is in a very complicated form which may prevent us from
obtaining in-depth understanding on the relations among parameters that determine
Pr
�
Aeq

i .wi/
�
. In the following we derive a simplified asymptotic approximation for

Pr
�
Aeq

i .wi/
�
.
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Let Ow D wi=r be the normalized length of sub-interval i by r, where r D rp D ro

as usual. Let 
 D 2r� be the average node degree ignoring the boundary effect. Let
�. Ow/ D Pr

�
Aeq

i . Owr/
�
. Then, (11.2.10) implies the following difference-differential

equation.

d2

d Ow2 �. Ow/C 2ˇ
d

d Ow�. Ow � 1/C ˇ2�. Ow � 2/ D 0 (11.2.11)

where ˇ D 


2
exp.�


2
/. Using (11.2.11), we can obtain the Laplace transform of

�. Ow/ as

ˆ.s/ D 1

s C ˇ exp.�s/
C ˇ exp.�s/

.s C ˇ exp.�s//2
(11.2.12)

As s ! 0, exp.�s/ 
 1 � s. Substituting this approximation into (11.2.12), the
inverse Laplace transform of the approximated equation is then

�. Ow/ 

�
1 � 2ˇ
.1 � ˇ/2 C ˇ Ow

.1 � ˇ/3


exp.
�ˇ Ow
1 � ˇ / (11.2.13)

Figure 11.5 shows that (11.2.13) serves as a good approximation for the exact result
in (11.2.10) provided 
 � 6, and virtually all values of Ow � 2, not just large values
of Ow.
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Solving (11.2.13) for Ow leads to

Ow D ˚�W�1Œ�.1 � ˇ/2 exp.�.1 � 2ˇ//�. Ow/� � .1 � 2ˇ/� 1 � ˇ
ˇ

(11.2.14)

where W�1Œ�� is the real-valued, non-principal branch of the LambertW function
[47]. Given the required connectivity probability �. Ow/, and the value of ˇ, which
is related to the ordinary node density � and the transmission range r, we can
use (11.2.14) to obtain Ow, the maximum distance between two adjacent powerful
nodes so that the designated connectivity probability requirement is fulfilled.

11.2.2 Average Number of Clusters

Besides connectivity probability, another measure of interest is the number of
clusters in the network. It is an indicator of how fragmented a network is. In our
network model, all ordinary nodes that are connected to at least one of the powerful
nodes belong to the same cluster. Denote by “main cluster” the cluster formed by the
ordinary nodes which are connected to at least one powerful node. Other ordinary
nodes which are not connected to any powerful node, if exist, form one or more
“secondary clusters.” Therefore, there is always one main cluster and zero or more
secondary clusters in a network. Note that a network is type-II connected if and only
if there is no secondary cluster in the network. In this subsection we investigate the
average number of clusters in a network G.�; npI 1I ro; rp/where the powerful nodes
are placed in an equidistant fashion. The reason for focusing on equidistant powerful
node distribution is that, as will be shown later, it gives the best performance in terms
of minimizing the average number of clusters and maximizing the asymptotic type-
II connectivity probability. Nevertheless, the analysis in the previous subsection
has provided the conceptual basis of how the results can be generalized to having
powerful nodes arbitrarily distributed.

Let Ci.w/ be the number of secondary clusters in sub-interval i with length w
under the assumption that rp � ro. Note that w D 1

np�1 for equidistant powerful
node distribution. We only consider w > 2rp to avoid triviality. Also note that
ordinary nodes in sub-interval i, which are at most rp � ro Euclidean distance away
from the powerful nodes, belong to the main cluster with probability 1 and any
other ordinary nodes which are directly connected to these ordinary nodes are also
directly connected to the powerful nodes. Consequently, the number of secondary
clusters remains the same after we remove an interval of length rp � ro (and the
ordinary nodes within that interval) from the left end and right end of sub-interval i,
respectively, and then assume that rp D ro. So, we have Ci.w/ D Ceq

i .w�2.rp �ro//

where Ceq
i .x/ is the number of secondary clusters in sub-interval i with length x

under the special assumption that rp D ro.
To obtain Ceq

i .x/, let ti.x/ be the number of spacings with length greater than r in
sub-interval i of length x where r D rp D ro as usual. Then, Ceq

i .x/ and ti.x/ have
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the following relationship:

Ceq
i .x/ D

(
ti.x/ � 1 for ti.x/ � 1

0 for ti.x/ D 0
(11.2.15)

Assume that there are mi ordinary nodes in sub-interval i of length x and let 1i;j.x/
be an indicator function such that

1i;j.x/ D
(
1 if the j-th spacing in sub-interval i of length x has length greater than r

0 otherwise

where 1 � j � mi C 1. Then, the expected value of ti.x/ given mi ordinary nodes in
sub-interval i with length x is

EŒ ti.x/j mi� D E

2
4 X
1�j�miC1

1i;j.x/jmi

3
5

D .mi C 1/E
	
1i;j.x/jmi



for any j (11.2.16)

D .mi C 1/.1 � r

x
/mi (11.2.17)

where E
	
1i;j.x/

ˇ̌
mi� is equal to the probability that the j-th spacing in sub-interval i

of length x has length greater than r. Since this probability is equal to the probability
that the mi ordinary nodes fall into a smaller interval of length 1 � r

x in sub-interval
i, we obtain (11.2.17).

Since mi is a Poissonly distributed random variable with mean x�, it follows
immediately that

E Œti.x/� D
1X

miD0
E Œ ti.x/j mi�

.x�/mi

miŠ
exp.�x�/

D .x� � r�C 1/ exp.�r�/:

From (11.2.15) we have

E
	
Ceq

i .x/

 D EŒti.x/� � 1C Pr .ti.x/ D 0/ (11.2.18)

D
bx=rcX
jD2
.�1/j 1

jŠ
.j C x� � jr�/.x� � jr�/j�1 exp.�jr�/ (11.2.19)

where from (11.2.18) to (11.2.19) we apply

Pr .ti.x/ D 0/ D
bx=rcX
jD0
.�1/j 1

jŠ
.j C x� � jr�/.x� � jr�/j�1 exp.�jr�/ (11.2.20)
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which is obtained from the first term in (11.2.6) and simplified using the same
procedure as that resulting in (11.2.10). Finally, let D.np/ be the number of clusters
in a network with np powerful nodes equally spaced and assume rp � ro. Then,

D.np/ D
np�1X
iD1

Ci.w/C 1 (11.2.21)

D
np�1X
iD1

Ceq
i .w � 2.rp � ro//C 1 (11.2.22)

where w D 1
np�1 . That is, we add up the number of secondary clusters in each

sub-interval and one (and the only) main cluster in the whole network. Based
on (11.2.22), we can obtain the following theorem.

Theorem 174 For G.�; npI 1I ro; rp/ with powerful nodes placed in an equidistant
fashion, the expected number of clusters in the network is then

E
	
D.np/


 D .np � 1/E 	Ceq
i .w � 2.rp � ro//


C 1 (11.2.23)

where E
	
Ceq

i .x/



is given in (11.2.19) and w D 1
np�1 .

11.2.3 The Optimal Distribution of Powerful Nodes

In this subsection, we shall show that the equidistant placement of powerful nodes
will minimize the average number of clusters in a network and maximize the
asymptotic type-II connectivity probability.

11.2.3.1 Minimizing the Average Number of Clusters

From (11.2.21), we have the average number of clusters in a network
G.�; npI 1I ro; rp/ given each sub-interval i has length wi, is

E
	
D.w1;w2; � � � ;wnp�1/


 D
np�1X
iD1

E ŒCi.wi/�C 1 (11.2.24)

where EŒCi.wi/� is the average number of secondary clusters in sub-interval i.
Finding the optimal powerful node placement to minimize the average number of
clusters can be treated as a constrained optimization problem:

minimize E
	
D.w1;w2; � � � ;wnp�1/




subject to
np�1X
iD1

wi D 1

In the following we prove that EŒCi.wi/� is a convex function of wi.
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Recall that for wi > 2rp, we have EŒCi.wi/� D EŒCeq
i .wi � 2.rp � ro//�.

From (11.2.18) we further have,

EŒCeq
i .x/� D .x� � ro�C 1/e�ro� � 1C Pr .ti.x/ D 0/

where Pr .ti.x/ D 0/ is given by (11.2.20). With some arithmetic steps we can derive
the second derivative of EŒCeq

i .x/� and obtain

d2

dx2
EŒCeq

i .x/� D d2

dx2
Pr .ti.x/ D 0/

D .�e�ro�/2 Pr .ti.x � 2ro/ D 0/

� 0

Hence, the second derivative of EŒCi.wi/� is also greater or equal to zero for wi >

2rp. It is trivial to show that the second derivative is zero for wi � 2rp as EŒCi.wi/� D
0 in that range.

Since EŒCi.wi/� is a convex function, using (11.2.24), EŒD.w1;w2; � � � ;wnp�1/�
is also a convex function. Hence the optimization problem is a convex optimization
problem. It is then straightforward to prove, e.g., using the method of Lagrange
multipliers, that the minimum of the average number of clusters is achieved when
w1 D � � � D wnp�1 D 1

np�1 and by convexity it is a global minimum.

11.2.3.2 Maximizing the Asymptotic Type-II Connectivity Probability

Using (11.2.13) we approximate the type-II connectivity probability

Pr
�
B.w1; � � � ;wnp�1/

� D
np�1Y
iD1

Pr .Ai.wi// 

np�1Y
iD1

�.xi/

where xi D wi � 2.rp � ro/, and

�.xi/ D
8
<
:

h
1�2ˇ
.1�ˇ/2 C ˇxi=ro

.1�ˇ/3
i

exp.�ˇxi=ro
1�ˇ / if xi > 2ro

1 otherwise

Since both expressions 1�2ˇ
.1�ˇ/2 C ˇxi=ro

.1�ˇ/3 and exp.�ˇxi=ro
1�ˇ / are log-concave on xi � 0,

and the product of log-concave functions is a log-concave function [30], we have
�.xi/ is log-concave on xi and Pr

�
B.w1; � � � ;wnp�1/

�
is also a log-concave function

of the lengths of sub-intervals. Using this property, it can be readily shown that the
maximum of the probability that the network G.�; npI 1I ro; rp/ is type-II connected
is also achieved when powerful nodes are distributed in an equidistant fashion.
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Simulation results
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Fig. 11.6 The type-II connectivity probability given different values of �, np, and rp D ro D
0:05 under the unit disk connection model. The solid lines are plotted using (11.2.4), verified by
simulation results obtained from 40; 000 randomly generated network topologies

11.2.4 Impact of Different Parameters on Connectivity

In this subsection, we investigate the impact of different parameters on the perfor-
mance of a network G.�; npI 1I ro; rp/. Note that all figures are plotted under the
condition that powerful nodes are placed in an equidistant fashion.

First, Fig. 11.6 shows the probability that a network is connected given different
values of �, np and rp D ro D 0:05 under the unit disk connection model. The
accuracy of the analytical results is verified by simulation results obtained from
40; 000 randomly generated network topologies. As the numbers of instances of
random networks used in the simulations are very large, the confidence interval is
too small to be distinguishable and hence ignored in this plot and the latter plots.
The number of powerful nodes has been varied from 2 to 10. With rp D 0:05, the
network will be fully covered by the powerful nodes for np > 10. It is shown that an
increase in np significantly improves network connectivity probability. The impact
of � on connectivity is rather interesting. When � is small, the network connectivity
probability initially drops as � increases. That is because when the number of
ordinary nodes is small, the probability that an ordinary node is connected to a
powerful node via a multi-hop path is small and can be almost neglected. Therefore,
an ordinary node has to be close to a powerful node in order to be connected. Thus,
when the number of ordinary nodes is small, an increase in the number of ordinary
nodes causes a drop in the probability that all ordinary nodes are connected to at
least one nearby powerful node. As the number of ordinary nodes further increases,
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the probability that an ordinary node far away from a powerful node can establish
a multi-hop path to the powerful node increases, which consequently causes an
increase in the probability of having a type-II connected network. Note that this
phenomenon, i.e., the increase of node density will first reduce the connectivity
probability and then improve it, can also be verified by examining the first derivative
of Pr .B/ from (11.2.4) with regard to �. In addition, the value of node density
which minimizes the connectivity probability can be obtained numerically using the
classical Newton’s method.

Note that the properties observed in Fig. 11.6, i.e., under the unit disk connection
model, are also observed when the log-normal connection model is considered. In
the log-normal connection model, two nodes separated by a Euclidean distance x
are directly connected with probability

g.x/ D Q

�
10˛

�
log10

x

r

�
(11.2.25)

where Q.y/ D 1p
2�

R1
y exp.� z2

2
/dz is the tail probability of the standard normal

distribution, ˛ is the path loss exponent, �2 is the shadowing variance, r is
the transmission range ignoring shadowing effect. In order to further accurately
model the direct connection between nodes, we consider channel correlation in our
simulation. That is, we follow the approach in [78, 89, 194] and use an exponential
model to model the fading correlations between wireless links. In the model, the
received signals at two nearby nodes from the same transmitting node are correlated
with correlation coefficient

�.x/ D exp

�
� x

dcorr
loge 2

�
(11.2.26)

where x is the Euclidean distance between two receiving nodes, dcorr is the de-
correlation distance whose typical value is 20 m for the urban environment and
5 m for the indoor environment [194]. This is the well-known Gudmundson model.
It works well for two-dimensional networks but it may not be able to accurately
model some situations in one-dimensional networks. Particularly, consider a big
obstacle located between a powerful node and two ordinary nodes in proximity
where the wireless signals between the powerful node and the ordinary nodes cannot
propagate through. One ordinary node cannot receive the signals from the powerful
node implies that the other ordinary node also cannot receive the signals either.
That is, two nodes “hiding” behind a big obstacle in a one-dimensional network are
highly correlated compared to the two-dimensional case. Gudmundson model is less
suitable in modeling such situation. Nevertheless, Gudmundson model is still used
here due to its popularity in the literature.

Figure 11.7 is plotted using simulation results obtained from 40; 000 randomly
generated network topologies, and following the correlated log-normal model. To
have a fairer comparison between different shadowing effect assumptions, we adjust
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Fig. 11.7 The type-II connectivity probability given different values of the average node degree
,
np, rp D ro D 0:05, and considering the correlated log-normal model. The dash lines are plotted
using simulation results obtained from 40000 randomly generated samples

the density � of ordinary nodes in each simulation so that the average node degree

 of an arbitrary ordinary node is preserved under different path loss exponent
˛ and shadowing variance �2 settings. Ignoring the boundary effect, we have


 D 2�ro exp
�
1
2

�
�
10˛

loge 10
�2�

. The steps to derive the equation are omitted

here. When � D 0, the log-normal connection model reduces to the unit disk
connection model and we have 
 D 2�ro. As a result, Fig. 11.6 can be directly
compared with Fig. 11.7 as the former is also plotted with the average node degree
ranging from 0 to 8. Figure 11.6 and 11.7 together show that the impact of the
powerful nodes on the type-II connectivity probability under the correlated log-
normal model has quantitatively little difference compared with the impact of the
powerful nodes under the unit disk connection model. Furthermore, an increase in
shadowing variance �2 will improve the connectivity probability even if the node
density has been reduced to preserve the same average node degree. The better type-
II connectivity probability observed under the log-normal model is consistent with
the results in ad hoc networks without infrastructure support.

Next we investigate the impact of � and np on the average number of clusters
under the unit disk connection model. The analytical formula in (11.2.23) is verified
by simulations obtained from 40; 000 randomly generated network topologies.

Figure 11.8 shows virtually an exact match of (11.2.23) with the simulation
results. In addition, the curves in the figure also agree with the curves in Fig. 11.6
and show that the connectivity probability reaches its minimum when the aver-
age number of clusters is maximized; conversely, the connectivity probability
approaches one when the average number of clusters approaches one.
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under the unit disk model. The solid lines are plotted using (11.2.23), verified by simulation results
obtained from 40; 000 randomly generated network topologies

11.3 Notes and Further Readings

In this chapter, we studied connectivity of one-dimensional small to medium sized
networks with and without infrastructure support respectively. The results will be
useful for many real world applications modelable by one-dimensional networks,
e.g., a vehicular network built along a highway or a sensor network deployed along
the border of a defined region for intrusion detection.

Connectivity of one-dimensional wireless ad hoc networks has been extensively
studied [55, 67, 77, 147]. Among the studies, Miorandi and Altman [147] assumed
that there is a pre-determined node located at the origin. They investigated the
probability of other nodes, which are either arbitrarily or uniformly distributed along
a semi-infinite line, being connected (either directly or via multi-hop paths) to the
node at the origin. Both the unit disk connection model and a Boolean model with
a random transmission range were considered. This scenario can be considered as
a special case of type-II connectivity with only one powerful node placed at the
origin.

Dousse et al. have conducted a study closely related to type-II connectivity in
[61], considering one-dimensional networks under the unit disk connection model.
The nodes are assumed to be Poissonly distributed on a line segment of length L
with a known density. Two base stations are placed at both ends of the line segment.
Based on the above model, they obtained analytically p.x/, the probability that a
node at distance x from the left base station is connected to at least one base station.
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Fig. 11.9 An illustration of the difficulty in analyzing connectivity of one-dimensional networks
assuming a more general connection model than the unit disk connection model. Solid lines
represent direct connections between nodes. A node may be connected to another node via a multi-
hop path through a third node in the opposite direction of the other node

Based on p.x/, the authors concluded that the existence of base stations improves the
probability that two arbitrary nodes are connected. The authors considered this line
segment as a “reduced” version of a more general network with an infinite number
of base stations placed every L units distance on an infinite line. Note that Dousse
et al. analyzed the probability that a node at location x is connected to at least one
base station, denoted by p.x/, whereas in this chapter we analyzed the probability
that all nodes are connected to at least one powerful node (or base station). It is not
trivial to derive the probability that a network is type-II connected using p.x/. The
difficulty lies in the fact that the event that one node located at x is connected to a
base station and the event that another node at y is connected to a base station are
not independent, but correlated in a complicated way.

It is worth noting that despite numerous studies on network connectivity and
advances in the field, analytical characterization of connectivity of one-dimensional
networks assuming a more general connection model than the unit disk connection
model (including the unit disk model where each node has a variable transmission
range) remains an open problem. Figure 11.9 gives an illustration of the difficulty.
Under a more general model, e.g., the log-normal connection model or the random
connection model, a node may be connected to another node (via a multi-hop
path) through a third node in the opposite direction of the other node. It becomes
very difficult to enumerate and incorporate all such possibilities in the analysis of
network connectivity.



Chapter 12
Connectivity of Two-Dimensional
Small to Medium Sized Networks

Abstract In this chapter, we continue to investigate connectivity of two-
dimensional small to medium sized networks by analyzing the three connectivity
related measures: 1) the probability that a randomly selected node is k-hops apart
from another randomly selected node, i.e., the length of the shortest path from the
first node to the second node measured by the number of hops is k; 2) the probability
that a node x apart from another node is connected to that node in exactly k hops; and
3) the spatial distribution of the nodes k-hops apart from another designated node,
which are collectively called the probabilities of k-hop connection or hop count
statistics. We start with networks assuming the unit disk connection model and
then move to networks assuming the random connection model and the log-normal
connection model.

In the previous chapter, we have studied connectivity of one-dimensional small to
medium sized networks. In this chapter, we continue to investigate connectivity of
two-dimensional small to medium sized networks by analyzing the three connectiv-
ity related measures: 1) Pr .k/ the probability that a randomly selected node is k-hops
apart from another randomly selected node, i.e., the length of the shortest path from
the first node to the second node measured by the number of hops is k; 2) Pr .kjx/ the
probability that a node x apart from another node is connected to that node in exactly
k hops; and 3) Pr .xjk/ the spatial distribution of the nodes k-hops apart from another
designated node, which are collectively called the probabilities of k-hop connection
or hop count statistics. We start with networks assuming the unit disk connection
model and then move to networks assuming the random connection model and the
log-normal connection model. Under the random connection model, a node located
at x2 is directly connected to a node at x1 with probability g .x2 � x1/. Therefore,
Pr .xjk/ and Pr .xjk/ are functions of the displacement x between nodes. When the
connection model is a unit disk connection model or a log-normal connection model,
the probabilistic measures Pr .kjx/ and Pr .xjk/ depend on the Euclidean distance
x between nodes only, which allows to write Pr .kjx/ for Pr .kjx/ and Pr .xjk/ for
Pr .xjk/, instead of their displacement.

© Springer International Publishing AG 2017
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12.1 Probabilities of k-Hop Connection Under the Unit Disk
Connection Model

Consider a wireless network whose nodes are identically and independently dis-
tributed in a bounded region in <2 according to a homogeneous Poisson point
process with density �. Each node has an identical transmission range of r0. Denote
by G D .V;E/ the underlying graph of the network, where V is the vertex set and E
is the edge set.

In this section we investigate the conditional probability Pr.kjx/ that two
randomly selected nodes separated by a known Euclidean distance x are k-hop
neighbors for some positive integer k. Two nodes being k-hop neighbors means that
the length of the shortest path between the two nodes, measured in the number of
hops, is k. A recursive analytical equation embodying an approximation is given for
computing this probability. As mentioned in Chap. 11, knowledge of Pr.kjx/ can be
used to compute two other related connectivity measures Pr.k/ and Pr.xjk/.

In the following analysis, we first derive the probability that any two nodes
separated by a known distance x are two-hop neighbors. Then, we further develop a
recursive analytical equation for the probability that any two nodes separated by a
known distance x are k-hop neighbors for k > 2.

In what follows, the conditional probability Pr.kjx/ is denoted by ˆk.x/ for
convenience. Denote by D.s; l/ a disk of radius l centered at s.

Obviously, ˆ1.x/ D 1 when x � r0 and ˆ1.x/ D 0 when x > r0. For k D 2, it
means that the source s and the destination d have no direct link between each other
but can communicate through at least one intermediate node. Therefore, at least one
node must lie in the intersectional area D.s; r0/\ D.d; r0/, i.e., the shaded area A in
Fig. 12.1.

Fig. 12.1 An illustration of two-hop neighbors. Nodes s and d are two randomly selected nodes
separated by a distance x (r0 < x � 2r0)
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Ignoring the boundary effect, the probability ˆ2.x/ can be found as the probabil-
ity that there is at least one node located in A.

Since nodes are Poissonly distributed, the probability that there is no node located
in A is exp.��A/, where A is the size of the area A, given by

A D 2r20 arcsin

 s
1 � x2

4r20

!
� xr0

s
1 � x2

4r20
; r0 < x � 2r0 (12.1.1)

Hence, the probability ˆ2.x/ can be readily obtained:

ˆ2.x/ D 1 � Pr .fno node in Ag/ D 1 � e��A (12.1.2)

When x � r0, the two nodes can connect directly with each other, so ˆ2.x/ D 0;
when x > 2r0, we have A D 0, so that ˆ2.x/ D 0. Therefore,

ˆ2.x/ D
�
1 � e��A; r0 < x � 2r0

0; otherwise
(12.1.3)

Now we shall further evaluate the probability ˆk.x/ for k > 2, continuing
to ignore the boundary effect. Consider two random nodes s and d separated by
distance x, as shown in Fig. 12.2. Node d is a k-hop neighbor of s if and only if node
d is not an m-hop neighbor of s for any m < k and there is at least one node within
D.d; r0/ which is a k � 1 hop neighbor of s.

Let us first consider the probability that there is at least one node within D.d; r0/
which is a k � 1 hop neighbor of s. An approximation, termed the independence
assumption has to be used in order to obtain an analytical solution, i.e., the event that
an arbitrary node located within D.d; r0/ is a k � 1 hop neighbor of s is independent

Fig. 12.2 An illustration of k-hop (k > 1) neighbors. Nodes s and d are two random nodes
separated by a known distance x (x > r0)
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of the event that another arbitrary node located within D.d; r0/ is a k�1 hop neighbor
of s. The performance impact of the independence assumption will be dealt with
separately in Sect. 12.3. Considering the area C in Fig. 12.2, i.e., C D D.s; r/ \
D.d; r0/, a differential increment dr on r gives a differential area dC and the size of
the differential area dC is dC D 2r	dr, where 	 is given by

	 D arccos
x2 C r2 � r20

2xr
(12.1.4)

Since dr is a very small value, the probability that there exist more than one
nodes within dC can be ignored and the probability that there exists a node in the
differential area dC is given by 2�r	dr. Givenˆk�1.r/, the probability that there is a
node within dC which is also a k � 1 hop neighbors of s is given by 2ˆk�1.r/�r	dr.

Let f .C/ denote the probability that there is no node in C which is a k � 1 hop
neighbor of s. Then

f .C C dC/ D f .C/.1 � 2ˆk�1.r/�r	dr/ (12.1.5)

Equation (12.1.5) readily leads to the conclusion that

df .C/ D �2ˆk�1.r/�r	 f .C/dr (12.1.6)

Therefore, the probability that there is no node within D.d; r0/ which is a k � 1 hop
neighbor of s at distance x is given by

g.x/ D exp.
Z xCr0

x�r0

�2ˆk�1.r/�r	dr/ (12.1.7)

The probability that a node d at a distance x to s is not an m-hop neighbor of s
for any m < k is given by:

1 �
k�1X
iD1

ˆi.x/ (12.1.8)

Therefore, the probability that node d is a k-hop neighbor of s is given
recursively as:

ˆk.x/ D
 
1 �

k�1X
iD1

ˆi.x/

!�
1 � exp.�

Z xCr0

x�r0

2ˆk�1.r/�r	dr/


(12.1.9)

For k D 2, when x � r0 or x > 2r0, it can be readily shown that ˆ2.x/ D 0;
when r0 < x � 2r0, it can be shown that

�
Z xCr0

x�r0

2ˆ1.r/�r	dr � �
Z r0

x�r0

2r	dr D ��A (12.1.10)

where A is given in (12.1.1), and 1 � ˆ1.x/ D 1, the expression for ˆ2.x/ agrees
with that in (12.1.3).
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Next, we offer some discussions on the key parameters that determineˆk.x/. Let
˛ , x=r0 and ˇ , �r20�. Parameter ˛ is the normalized distance and parameter
ˇ is the average vertex degree. In the next paragraph we show by mathematical
induction that under the independence assumption, ˆk.x/ is only determined by the
normalized distance and the average vertex degree.

For k D 1, it is immediate that ˆ1.x/ is a function of ˛ only. Suppose that ˆn.x/
can be expressed as a function of ˛ and ˇ for n � k, i.e., ˆn.x/ D ‡n.˛; ˇ/. Then,
when n D k C 1, the first term on the right side of (12.1.9) is

1 �
kX

iD1
ˆi.x/ D 1 �

kX
iD1

‡i.˛; ˇ/ (12.1.11)

Let 
 D r=r0, the integral in the second term on the right side of 12.1.9 becomes

Z xCr0

x�r0

2‡k.
r

r0
; ˇ/�r	dr

D
Z x=r0C1

x=r0�1
2‡k.
; ˇ/�
r0	r0d


D ˇ

�

Z ˛C1

˛�1
2‡k.
; ˇ/ arccos

˛2 C 
2 � 1
2˛



d
 (12.1.12)

From (12.1.9), (12.1.11), and (12.1.12), we have ˆkC1.x/ D ‡kC1.˛; ˇ/. Hence,
the hypothesis is also valid when n D k C 1.

12.1.1 Simulation Studies

In this subsection, we use simulations to establish the accuracy of the theoretical
analysis in the presence of the boundary effect and the shortcomings of the
independence assumption. In the simulation, nodes are distributed on a square of
size a � a, where a D 20, according to a homogenous Poisson point process
with node density �. We vary the average vertex degree, i.e., �r20�, while keeping
the node density � fixed and each value of the average vertex degree represents
a different scenario. Each scenario is repeated 100 times and the average result is
shown. The analytical results are obtained through numerical integration using the
adaptive quadrature algorithm [149, pp. 27–41], which calculates more points only
in regions of rapid functional variation and less points where the integrand is varying
slowly, and hence obtains accurate numerical results with moderate computational
complexity.
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Fig. 12.3 Probability that two random nodes separated by a known distance x are k-hop neighbors
for k D 2; 3, and 4

Figure 12.3 displays ˆk.x/ for k D 2; 3 and 4.
For k D 2, we can see that the simulation results and the analytical results agree

very well, which indicates that (12.1.3) is an accurate expression ofˆ2.x/. However,
for k D 3 and 4, there are slight discrepancies between the analytical results and
the corresponding simulation results, as shown in Fig. 12.3. The discrepancies are
attributable to the boundary effect and the independence assumption used in the
analysis. Note that the discrepancy for the small probabilities, e.g., ˆk.x/ 	 10�5,
is due to the accuracy of the numerical integration. Because the analytical result
is given in a recursive form, it is also possible that the accuracy of the numerical
integration decreases for large k. However, this was not found to be the major
cause of the discrepancy in the simulation. The impact of the boundary effect is
illustrated in Fig. 12.4. In Fig. 12.4, we keep �r20� constant and vary the ratio r0=a
to calculate the mean absolute difference (MAD) between the analytical results and
the simulation results. The mean absolute difference is the average value of the
absolute differences, i.e., MAD D 1

N

PN
iD1 jAnai � Simij, where Anai and Simi are

the i-th analytical result and its corresponding simulation result respectively, and N
is the number of results selected to calculate MAD. The larger MAD is, the greater
the discrepancy is.

12.2 Probabilities of k-Hop Connection Under the Random
Connection Model

In this section, we consider a wireless network with nodes identically and inde-
pendently distributed following a homogeneous Poisson distribution with known
density � in a given two-dimensional area, denoted by A. A node at x2 2 A is
directly connected to a node at x1 2 A with probability g .x2 � x1/ independently of
other pairs of nodes, i.e., following the random connection model. Under the above
settings, we investigate the conditional probability Pr.kjx/ that a node located at x
apart from another node is connected to the other node in k hops for some positive
integer k.
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Fig. 12.4 The mean absolute difference (MAD) between the analytical results and the correspond-
ing simulation results for different values of r0=a. The average vertex degree �r20� is kept constant
at 15:7080. When r0=a increases, a larger percentage of nodes are located near the boundary and
the impact of the boundary effect is more pronounced. Thus the discrepancy between the analytical
and the simulation results increases

Without loss of generality, consider that there is a node located at the origin and
the origin is in A. The probability that a node located at x is directly connected
to the node at the origin is given by g .x/. Due to the independence of connections
between nodes, the set of nodes directly connected to the node at the origin, denoted
by K1, can be shown to have an inhomogeneous Poisson distribution with density
�g .x/. Obviously Pr .k D 1jx/ D g .x/. It follows that the set of nodes not directly
connected to the node at the origin, denoted by K1, has an inhomogeneous Poisson
distribution with density � .1 � g .x//.

Due to the inhomogeneous Poisson distribution of K1, the probability that there
is a node in K1 within a differential area dAx centered at x is �g .x/ dAx. Without
loss of generality, we assume that the node in dAx is located at x. The probability
that there are more than one nodes in the differential area dAx can be ignored due to
the Poisson distribution of nodes. Therefore, the probability that a node at y … dAx

is not directly connected to any of the nodes within K1 is given by
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lim
dAx!0

Y
dAx�A;dAx\fygD;

Œ.1� g .y � x// �g .x/ dAx C .1� �g .x/ dAx/� (12.2.1)

D lim
dAx!0

e
P

dAx�A;dAx\fygD; log.1�g.y�x/�g.x/dAx/ (12.2.2)

D lim
dAx!0

e
P

dAx�A;dAx\fygD;.�g.y�x/�g.x/dAx/ (12.2.3)

D e�
R

A �g.y�x/g.x/dx (12.2.4)

In (12.2.1), the term .1 � g .y � x// �g .x/ dAx represents the probability that there
is a node in dAx from K1, (i.e., the �g .x/ dAx term) and the node at y is not directly
connected to that node in dAx at location x (i.e., the 1 � g .y � x/ term). The term
1 � �g .x/ dAx represents the probability that there is no node in dAx from K1.

It follows from (12.2.4) that the probability that the node at y is directly connected
to at least one of the nodes in K1, denoted by g2 .y/, is given by

g2 .y/ D 1 � e� R
A �g.y�x/g.x/dx (12.2.5)

A node at y is connected to the node at the origin in exactly two hops if and only
if it is not directly connected to the node at the origin and it is directly connected to
at least one node in K1. Therefore,

Pr .k D 2jx/ D .1 � g .x// g2 .x/

For consistency in notation we also use g1 .x/ for g .x/. Due to the spatial
dependence problem mentioned in previous subsection, which will be explained
in greater detail in the next section, the event that a node is directly connected
to another node in k hops and the event that a third node is directly connected
to the same node in k hops are dependent for k � 2. In this subsection, we
ignore such dependence and consider the above two events to be approximately
independent. Using the independence approximation, it then follows that the set
of nodes that are directly connected to the node at the origin in exactly two
hops, denoted by K2, has an approximate inhomogeneous Poisson distribution with
density � .1 � g .x// g2 .x/. The set of nodes that are not connected to the node at the
origin within two hops, denoted by K1 C K2, has an approximate inhomogeneous
Poisson distribution with density � .1 � g1 .x// .1 � g2 .x//.

Using the same steps leading to (12.2.5) and the fact that K2 has an approximate
inhomogeneous Poisson distribution with density � .1 � g .x// g2 .x/, it can be
shown that the probability that a node at y is directly connected to at least one
of the nodes in K2, denoted by g3 .y/, is given by

g3 .y/ D 1 � e� R
A �g1.y�x/.1�g1.x//g2.x/dx (12.2.6)
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It then follows that

Pr .k D 3jx/ D .1 � g1 .x// .1 � g2 .x// g3 .x/

Using the independence approximation, it can be shown that the set of nodes
within K1 C K2 that are directly connected to at least one node in K2, denoted
by K3, has an approximate inhomogeneous Poisson distribution with density
� .1 � g1 .x// .1 � g2 .x// g3 .x/.

By recursion, for a positive integer l > 1, it can be shown that (adopting the
independence assumption)

Pr .k D ljx/ D gl .x/
l�1Y
iD1
.1 � gi .x// (12.2.7)

where

gl .y/ D 1 � e� R
A �g1.y�x/gl�1.x/

Ql�2
iD1.1�gi.x//dx

Given knowledge of Pr .kjx/ and Pr .x/, i.e., the distribution of the displacement
between two randomly selected nodes in A [144], Pr .xjk/ and Pr .k/ can be readily
obtained using Bayes’ formula.

Note that the independence approximation is only needed for the computation
of Pr .k D ljx/ with l > 2, and is not required for the computation of Pr .k D 1jx/
and Pr .k D 2jx/. Therefore, the results on Pr .k D ljx/ in (12.2.7) are accurate for
l D 1; 2 and are an approximation only for l > 2.

12.2.1 Simulation Studies

In this subsection we use simulations to establish the accuracy of the analytical
result on Pr .kjx/. In the simulation, nodes are deployed on a 2000�2000 square
area according to a homogeneous Poisson point process with density �. Two widely
used connection models, i.e., the unit disk connection model and the log-normal
connection model, are used as specific examples of the general connection g. Under
the unit disk connection model, the transmission range r is 100, i.e., g .x/ D 1 for
kxk � 100 and g .x/ D 0 for kxk > 100. Simulations are conducted for a number
of node densities but only the results for a node density which gives an average
node degrees 40 are shown. Results using other node densities showed similar trend.
Recall that under the log-normal connection model, a node B is directly connected
to another node C if the power received from C at B, whose propagation follows the
log-normal model, is greater than a given threshold, PT . It then follows that under
the log-normal model
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g .x/ D Pr .Pr .kxk/ � PT/ D
Z

10˛ log10
kxk
r0

1p
2��

e� z2

2�2 dz

where r0 D d010
Pt�PL0.d0/�PT

10˛ and Pr is the received power in dB milliwatts, Pt is
the transmitted power in dB milliwatts, kxk is the Euclidean distance between the
two nodes, PL0 .d0/ is the reference path loss in dB at a reference distance d0, ˛
is the path loss exponent, and � is the standard deviation of the log-normal fading.
The path loss exponent depends on the environment and can vary between 2 in free
space to 6 in urban areas and the value of � can be as large as 12. Several values of
˛ and � have been used in the simulation, but only the result for ˛ D 4 and � D 4 is
shown because other results have similar accuracy. Under the log-normal connection
model, r0 is chosen to be 100, while � is chosen to give the same average degree as
that in the unit disk connection model. Every point shown in the plots is the average
value from 2000 simulations. As the number of instances of random networks used
in the simulation is large, the confidence interval is too small to be distinguishable
and hence is ignored in the following plots. The analytical result in this subsection
is compared with the analytical result in the previous subsection obtained under
the unit disk connection model in Fig. 12.5, and the analytical result from [153]
obtained under the log-normal connection model in Fig. 12.6, respectively. Note
that under an omnidirectional model, such as the unit disk connection model and the
log-normal connection model considered in the simulation, Pr .kjx/ D Pr .kj kxk/.
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Fig. 12.5 Conditional probability Pr .kj kxk/ under the unit disk connection model for k D1
to 6. Analytical-Ta is the result from Sect. 12.1. The result in this subsection is marginally more
accurate than the result in Sect. 12.1 for k > 2 however the two analytical results are mostly
indistinguishable
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6. Analytical-Mukherjee is the result from [153]. Our result is marginally more accurate than the
result in [153] for k > 2 however the two analytical results are mostly indistinguishable

As shown in Figs. 12.5 and 12.6, the result in this subsection is marginally more
accurate than the result in Sect. 12.1 obtained under the unit disk connection model
and the result in [153] obtained under the log-normal connection model due to
the inclusion of the boundary effect in the analysis. However, unsurprisingly, in
most cases the analytical result in this subsection is almost indistinguishable from
the previous results, reflecting the negligible impact of the boundary effect on the
analysis of Pr .kjx/. However analysis in this subsection is applicable for a wider
class of wireless channel models whereas the results obtained in Sect. 12.1 assuming
the unit disk connection model and in [153] assuming the log-normal connection
model are only valid for the particular channel model being considered.

The discrepancy between the analytical result and the simulation result starts
to appear for k > 2. This is attributable to the spatial dependence problem and
the associated independence approximation mentioned earlier. The discrepancy
between the analytical and the simulation results is larger for a larger value of k.
This is caused both by the independence approximation and by the accumulation of
errors in the recursive procedure for computing Pr .kjx/. Such errors appear to be
acceptable for some applications [62, 153, 203–205] but not necessarily for all.
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12.3 Probabilities of k-Hop Connection in Wireless Networks
Subject to Fading

In this section, we continue to investigate the probabilities of k-hop connections
or hop count statistics in wireless networks assuming more realistic communication
channels. A particular focus of this section is on quantifying the impact of the spatial
dependence problem on the hop count statistics. As mentioned in the previous two
sections, a major technical obstacle in the analysis of hop counts statistics is the so-
called spatial dependence problem. The spatial dependence problem arises because
in a wireless network the event that a randomly chosen node is k hops apart from a
particular node is not independent of the event that another randomly chosen node
is i hops apart from the same node for i � k. It follows that an accurate analysis on
the conditional probability Pr.kjx/ needs to consider all previous hops, which makes
the analysis complicated. In this section, a significant improvement on the accuracy
of computing Pr.kjx/ is achieved by considering the positions of previous two hop
nodes, compared to earlier results considering the positions of previous one hop
nodes only. Furthermore, intuitively as more previous hops are taken into account,
the resulting improvement on the accuracy of computing Pr.kjx/ when an extra
previous hop is considered will reduce. In this section, we show that considering
the positions of previous two hops nodes is enough to provide an accurate estimate
of Pr.kjx/.

More specifically, in this section, we consider a wireless network where nodes are
identically and independently distributed on a square according to a homogeneous
Poisson point process with a known density �.

We consider that every node has the same transmission power. The simplest
radio propagation model is the unit disk communication model. Under the unit disk
model, the power attenuates with the Euclidean distance x from a transmitter like
x��, where � is the path loss exponent. The path loss exponent can vary from 2
in free space to 6 in urban areas. The received signal strength (RSS) at a receiver
separated by Euclidean distance x from the transmitter is Pu.x/ D CPtx��, where C
is a constant, Pt is the transmission power. A transmission is successful if and only if
the RSS exceeds a given threshold Pmin. Therefore, the required transmission power
Pt allowing a transmission range r0 is Pt D C1r

�
0 , where C1 D Pmin=C.

The unit disk connection model is simple but unrealistic. In reality the RSS
may have significant variations around the mean value, because of both large scale
variation (i.e., shadowing) and small-scale fading. Considering a typical type of
shadowing, i.e., the log-normal shadowing, the RSS attenuation (in dB) follows a
normal distribution with respect to the distance x between the transmitter and the
receiver:

10 log10

�
Pl .x/

CPtx��

�
	 Z
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where Pl.x/ is the RSS in the log-normal shadowing model and Z is a zero-mean
Gaussian distributed random variable with standard deviation � . When � D 0 the
model reduces to the unit disk connection model. In practice the value of � is often
computed from measured data and can be as large as 12 [172]. Denote by q.z/ the
probability density function of the shadowing fades; then:

q.z/ D 1

�
p
2�

exp

�
� z2

2�2

�

Furthermore, we assume that the shadowing fades Z between all pairs of trans-
mitting node and receiving node are independently and identically distributed and
the link is symmetric. In some environments, the assumption of independence of
connections may not be accurate while in other environments, e.g., open space,
it is a reasonable assumption. For example, it is generally accepted that if a
pair of transmitters are separated by more than �=4, where � is the wavelength,
their signals at a common receiver can be regarded as statistically independent.
Furthermore, it was shown [171] that if a pair of receivers are separated by
more than �, their received signals from a common transmitter are only weakly
correlated, with a correlation coefficient less than 0.15. At a typical frequency of
5GHz, � D 0:06m. Thus the requirement on the separation of nodes can be easily
fulfilled. We also note that although field measurements in real applications seem
to indicate that connections between different pairs of geographically/frequency
proximate wireless nodes are correlated [4, 186], the independence assumption is
generally considered appropriate for far-field transmission and has been widely used
in the literature under many channel models including the log-normal shadowing
model [22, 153, 172].

Shadowing makes the RSS vary around its mean value over space, while the
small-scale fading makes the RSS vary around its mean value over time. In this
section, we consider a general model of small-scale fading, i.e., the Nakagami-m
fading [180]. By choosing different values for the parameter m in the Nakagami-
m fading model, the results include several widely used fading distributions as
special cases, e.g., Rayleigh distribution (by setting m D 1) and one-sided Gaussian
distribution (by setting m D 1=2). Subject to Nakagami-m fading, the RSS per
symbol, !, is distributed according to a Gamma distribution given by the following
probability density function [180]:

�.!/ D mm!m�1

N!�.m/ exp
�
�m!

N!
�
; ! � 0 (12.3.1)

where �.�/ is the standard Gamma function and N! D Pl.x/ is the mean RSS (over
time), which is determined by path loss and shadowing.

We firstly conduct the analysis assuming the unit disk connection model, then
we introduce the analysis in the more realistic Log-normal-Nakagami connection
model, which takes into account statistical variations of RSS around the mean value
due to both log-normal shadowing and Nakagami-m fading.
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Furthermore, in a wireless network, how to optimally set the transmission
power/range of nodes to minimize energy consumption in packet transmissions is
an interesting problem often encountered in the design and management of wireless
networks. If the transmission power is high, there is a high chance that a packet from
a source can reach its destination but a significant amount of energy may be wasted.
Alternatively, if the transmission power is low, there is a high chance that a packet
cannot reach its destination due to the network being disconnected. The energy
consumed in intermediate relay nodes to deliver the packet may also be wasted
because the packet will be dropped eventually. In Chap. 4, it was established that
significant energy savings can be achieved by requiring most nodes but not all nodes
to be connected. Based on the above considerations, in this section, considering a
sparse network in which there is not necessarily a path between all pairs of nodes,
we study the energy efficiency of the network by deriving the effective energy
consumption per successfully transmitted packet in end-to-end packet transmissions
and on that basis, analyzing the optimum transmission power which minimizes the
effective energy consumption. The established results also apply to a connected
network.

In the following paragraphs, we further introduce the energy consumption model
and the routing algorithm being considered in order to evaluate the energy efficiency.

12.3.1 Per Hop Energy Consumption

Assume that the time spent on transmitting a packet of unit size over single hop
is a constant Tt, and all nodes transmit at the same power Pt, which results in a
transmission range (without shadowing) of r0 in the unit disk connection model. It
follows that the energy consumed in transmitting a packet over single hop is:

Eng.r0/ D TtPt C Engc

1 � ˛.r0/ D C2r
�
0 C Engc

1 � ˛.r0/ (12.3.2)

where C2 D C1Tt is a constant, Engc is another constant which includes the
processing power consumption and receiving power consumption in each node and
˛.r0/ D 2WNb

.WC1/2C2WNb
is the packet error rate [36], Wmin is the minimum contention

window size, and Nb is the average node degree: Nb D ��r20. Packet collision
can increase the energy consumption, due to the consequent retransmission of a
packet, especially when the transmission range is large. To evaluate this effect,
we implement simulations in Sect. 12.3.6 using parameters shown in [36], i.e.,
Wmin D 64. The values of C2 and Engc are dependent on hardware specifications.
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12.3.2 Routing Algorithm

In addition to its impact on the wireless channel between two nodes, fading also
affects the performance of higher layer protocols, e.g., routing protocols. Here, we
consider the issue by analyzing the performance of a wireless network using the
greedy forwarding routing algorithm, as a typical example of distributed routing
algorithms. The greedy forwarding routing belongs to the category of geographic
routing algorithms and is a widely used routing algorithm for wireless networks.
Using greedy forwarding, each node makes routing decisions independently of
other nodes by using its own location information, the location information of
its neighboring nodes and the location of the source and the destination. Greedy
forwarding has shown great potential in wireless networks because of its distributed
nature, low control overhead and capability of adapting to dynamic network
topologies.

We consider a basic greedy forwarding algorithm that operates following two
rules [204, 205]: 1) every node tries to forward the packet to the node within its
transmission range which is closest to the destination; 2) a packet will be dropped
if a node cannot find a next-hop neighbor that is closer to the destination than itself,
and hence the transmission becomes unsuccessful. In the case of ties, viz., more
than one nodes have the same Euclidean distance to the destination, an arbitrary one
of those nodes can be chosen as the next hop node without affecting our analysis.
This is because the way to settle ties does not affect the probability distribution of
the remaining distance to the destination at each hop, which is the quantity used to
derive our results as shown in Sect. 12.3.3.2. Note that a number of complicated
recovery algorithms have been proposed to route a packet around the routing void
[93]. For analytical tractability and generality of the results, we consider the basic
greedy forwarding algorithm without any recovery algorithm, as in [54, 63, 204,
205].

Denote by EsŒksjx0� the expected number of hops for a packet to reach its
destination, conditioned on the Euclidean distance between the source and the
destination being x0 and the transmission being successful, i.e., the packet can reach
its destination. For convenience, throughout this section we use conditioned on x0
for conditioned on the Euclidean distance between the source and the destination
being x0. Denote by EuŒkujx0� the expected number of hops traversed by a packet
before it is dropped due to the nonexistence of a next hop node closer to the
destination, conditioned on x0 and the transmission being unsuccessful. In this case
x0 is the distance between the source and the intended destination.

It is worth noting that with the assumption that the network is connected, as
used in, say, [205], the number of hops between two nodes increases as the
transmission range (hence the average node degree) decreases. In the analysis of
energy consumption, the assumption of a connected network results in a misleading
conclusion that a smaller transmission range is always better. This conclusion
is misleading because the probability of having a multi-hop path between two
nodes reduces as the transmission range decreases and this important fact is not
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considered. Consequently, this conclusion is in sharp contrast with the result
obtained in this section considering the possibility of disconnected networks where
there exists an optimum transmission range that minimizes the energy consumption,
as shown in Fig. 12.13. Our analysis does not rely on the assumption that the
network is connected.

Consider a network with a total of N distinct source and destination pairs, where
each source is separated from the associated destination by Euclidean distance x0.
Each source transmits a packet of unit size to its associated destination. Therefore,
there are a total of N packets transmitted. Assume M (M � N) packets can reach
their respective destinations successfully.

Define Engeff .r0jx0/ to be the effective energy consumption per successfully
transmitted packet for any pair of nodes separated by Euclidean distance x0, viz.,
Engeff .r0jx0/ is the total energy spent on transmitting all packets divided by the
number of successfully received packets:

Engeff .r0jx0/

D MEng.r0/EsŒksjx0�C .N � M/Eng.r0/EuŒkujx0�
M

D Eng.r0/
�s.x0/EsŒksjx0�C .1 � �s.x0//EuŒkujx0�

�s.x0/
(12.3.3)

where �s.x0/ WD M=N is the probability of successful transmission between any
pair of nodes separated by x0.

In a network where the transmission range without shadowing and fading is r0,
given the distribution of the Euclidean distance between any pair of nodes f .x0/,
examples of which are given in [144], the average effective energy consumption is:

Engeff .r0/ D
Z

Engeff .r0jx0/f .x0/dx0 (12.3.4)

The effective energy consumption is a measure of the energy spent on each
successfully transmitted packet. A lower Engeff means a higher energy efficiency.
We use Engeff as the metric to investigate the energy efficiency in end-to-end packet
transmissions.

12.3.3 Analysis Assuming the Unit Disk Model

In this subsection, we analyze the hop count statistics, in particular the probability
Pr.kjx/, and the effective energy consumption assuming the unit disk connection
model. We start with the calculations of the probability that two arbitrary nodes
are k hops apart for k � 3 using greedy forwarding. The analysis for k D 1; 2 is
straightforward.
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Fig. 12.7 An illustration of the spatial dependence problems in the hop count statistics using a
unit disk connection model. Sk is the kth hop node, where r0 is the transmission range

12.3.3.1 Spatial Dependence Problem

Before going into the analysis, we introduce in detail the spatial dependence
problem in the analysis of hop count statistics using the unit disk connection model
as an example. The same problem also exists in other models. Generally, there are
two types of spatial dependence problems.

First, it can be shown that the event that a randomly chosen node is a k-th hop
node (Sk) from a randomly chosen source node (S) is not independent of the event
that another randomly chosen node is an i-th hop node for 1 � i < k. Denote
by C.Sk; r/ the disk centered at Sk with a radius r. As shown in the example in
Fig. 12.7a, the fact that Sk�1 is a k�1-th hop node from a source node S (not shown in
the figure) implies that there is at least one node in the area C.Sk�3; r0/\C.Sk�1; r0/.
On the other hand, Sk is a k-th hop node from S implies that there is no node in the
area C.Sk�3; r0/ \ C.Sk; r0/; otherwise, Sk will become a k � 2-th hop node. An
overlap of the two areas implies that the event that Sk is a kth hop node and the event
that Sk�1 is a k � 1th hop node are not independent.

Secondly, it can be shown that the event that a randomly chosen node is a
k-th hop node from S is not independent of the event that another randomly chosen
node is a k-th hop node from S. As shown in the example in Fig. 12.7b, Sk is a k-th
hop node from S implies that there is at least one node (the k � 1-th hop node)
in the area A2 D C.Sk�2; r0/ \ C.Sk; r0/. Another node S�

k is a k-th hop node
from the same S implies that there is at least one node (the k � 1-th hop node)
in the area A�

2 D C.Sk�2; r0/ \ C.S�
k ; r0/. An overlap of the two areas implies

that the event that Sk is a k-th hop node and the event that S�
k is a k-th hop node

are not independent. In this subsection, a significant improvement on the accuracy
of Pr.kjx/ is obtained by reducing the inaccuracy associated with the first type of
spatial dependence problem. The second type of spatial dependence problem can be
handled by a similar technique. Specifically, when considering the area covered by
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the transmission range of a k-th hop node, we need to consider the overlap of the
area covered by the transmission range of the k-th hop node and the area covered
by the transmission range of other k-th hop nodes. However, it can be seen later
that the result is fairly accurate after a proper handling of the first type of spatial
dependence problem, so that specific handling of this second spatial dependence
problem is effectively not warranted.

12.3.3.2 Distribution of the Remaining Distance

Denote by A.x; r1; r2/ the intersectional area of two disks with distance x between
centers and radii r1 and r2, respectively. The size of the area is:

A.x; r1; r2/ D

8ˆ̂̂ˆ̂̂<
ˆ̂̂ˆ̂̂:

min.�r21; �r22/ for x � jr1 � r2j
r21 arccos

�
x2Cr21�r22

2xr1

�
C r22 arccos

�
x2Cr22�r21

2xr2

�

� 1
2

rh
.r1 C r2/

2 � x2
i h

x2 � .r1 � r2/
2
i

for jr1 � r2j < x < r1 C r2

0 otherwise
(12.3.5)

Define xk to be the remaining Euclidean distance between the k-th hop node (Sk)
and the destination (D). Define A1 D A.xk�1; r0; xk/ to be the intersectional area of
the disks C.Sk�1; r0/ and C.D; xk/. Similarly, we have A2 D A.xk�2; r0; xk/. Next we
record the form of @A.x;r1;r2/

@r2
, which will be used later. For jr1 � r2j < x < r1 C r2:

@A.x; r1; r2/

@r2
D �r21p

1 � S2

�
@S

@r2

�
C 2r2 arccos.T/C r22.

�1p
1 � T2

/.
@T

@r2
/ � 1

4
p

W

�
@W

@r2

�

(12.3.6)

where

S D x2 C r21 � r22
2xr1

T D x2 C r22 � r21
2xr2

W D ..r1 C r2/
2 � x2/.x2 � .r1 � r2/

2/

Define f .xk; kjx0/ to be the joint probability density function of the remaining
Euclidean distance to the destination from Sk being xk and the packet having been
successfully forwarded k hops, conditioned on x0. Due to the spatial dependence
problem, f .xk; kjx0/ depends on the remaining distances of all previous hop nodes,
i.e., xk�1, xk�2; : : : ; x0. In this subsection, we consider no more than two previous
hops and the justification is given in Sect. 12.3.4.
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Sk

A1\A2

A2
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xk-2

xk-1

xk
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Fig. 12.8 Possible positions for the node at the k-th hop, denoted by Sk, are located on the arc,
considering the positions of Sk�1 and Sk�2, which are the nodes at the k�1-th hop and k�2-th hop
from the source, respectively. Parameters A1, A2, xk, xk�1 and xk�2 are described in the following
text

Define g.xk; kjxk�1; xk�2; k � 1/ to be the joint probability density function of the
remaining Euclidean distance to the destination at Sk being xk and the packet having
been successfully forwarded k hops, conditioned on B, where B is the event that the
remaining distances at Sk�1 and Sk�2 are xk�1 and xk�2, respectively and the packet
has been successfully forwarded k�1 hops. Note that a packet has been successfully
forwarded k � 1 hops necessarily means that it has been successfully forwarded i
hops for i � k � 1. Accordingly, define the cumulative distribution function of
the remaining distance at the kth hop node to be Pr.Xk � xk; kjxk�1; xk�2; k � 1/.
Ignoring the boundary effect, whose impact will be discussed in detail later, the
cumulative distribution function is equal to the probability that there is at least one
node in area A1 n A2 as indicated by the uniform-shaded area in Fig. 12.8. The area
A2 needs to be excluded because if there is a node in this area, that node will be
closer to the destination than Sk�1, which violates the condition that Sk�1 is the
k � 1-th hop node using greedy forwarding. We approximate the size of A1 n A2
by A1 � A2. This approximation will greatly simplify the calculation while giving a
sufficiently accurate result, as validated in Sect. 12.3.6. Using the approximation, it
can be shown that

Pr.Xk � xk; kjxk�1; xk�2; k � 1/
D 1 � exp .��.A.xk�1; r0; xk/ � A.xk�2; r0; xk/// (12.3.7)
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For any two nodes close to the border, the intersectional area of the transmission
ranges of the two nodes may be partially located outside the network area, which
causes an error in computing the size of the area A1nA2 in (12.3.7). This effect is
due to the boundary effect. Ignoring the boundary effect may generally cause an
overestimation on the size of A1nA2, hence an overestimation on the probability of
finding the next hop node. However, simulation results in Sect. 12.3.6 show that the
boundary effect has very limited impact on the accuracy of the analytical results.

Taking the derivative of the cumulative distribution function with respect to xk,
we have

g.xk; kjxk�1; xk�2; k � 1/

D @Pr.Xk � xk; kjxk�1; xk�2; k � 1/
@xk

D �

�
@A.xk�1; r0; xk/

@xk
� @A.xk�2; r0; xk/

@xk

�
� exp .��.A.xk�1; r0; xk/ � A.xk�2; r0; xk///

(12.3.8)

where the partial differentiations are given in (12.3.6).
Define h.xk; xk�1; kjx0/ to be the joint probability density function of the

remaining Euclidean distances at the k-th hop node and k � 1-th hop node being xk

and xk�1, respectively, and the packet having been successfully forwarded k hops,
conditioned on x0.

For k D 1, it is straightforward that:

f .x1; k D 1jx0/ D �
@A.x0; r0; x1/

@x1
e��A.x0;r0;x1/

For convenience, f .x1; k D ijx0/ is denoted by f .x1; ijx0/ hereafter. Based on the
above result, for k D 2 we have:

h.x2; x1; 2jx0/ D g.x2; 2jx1; x0; 1/f .x1; 1jx0/
For k > 2, h.xk; xk�1; kjx0/ can be calculated recursively:

h.xk; xk�1; kjx0/ D
Z x0

r0
g.xk; kjxk�1; xk�2; k � 1/h.xk�1; xk�2; k � 1jx0/dxk�2 (12.3.9)

Finally for k > 1 we have:

f .xk; kjx0/ D
Z x0

r0

h.xk; xk�1; kjx0/dxk�1 (12.3.10)
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12.3.3.3 Hop Count Statistics

Define Pr.kjx0/ to be the probability that the destination can be reached at the k-th
hop conditioned on x0. The destination can be reached at the k-th hop if the k � 1-th
hop node is within the transmission range of the destination. Therefore,

Pr.kjx0/ D
Z r0

0

f .xk�1; k � 1jx0/dxk�1 (12.3.11)

12.3.3.4 Results for Successful Transmissions

Denote by Prs.ksjx0/ the conditional probability that a packet can reach its destina-
tion at the ks-th hop, conditioned on x0, and the transmission is successful. It follows
that Pr.ksjx0/ D Prs.ksjx0/�s.x0/, and

1X
ksD1

ks Pr.ksjx0/ D �s.x0/
1X

ksD1
ksPrs.ksjx0/

D �s.x0/EsŒksjx0� (12.3.12)

where �s.x0/ and EsŒksjx0� have been given earlier in the subsection. In reality, an
upper bound on ks can be found beyond which Pr.ksjx0/ is 0. So (12.3.12) and other
similar equations only need to be computed for a finite range of ks.

An end-to-end packet transmission is successful if a packet can reach the
destination at any number of hops. Therefore:

�s.x0/ D
1X

ksD1
Pr.ksjx0/ (12.3.13)

12.3.3.5 Results for Unsuccessful Transmissions

Define �u.kjx0/ to be the probability of a packet having been successfully forwarded
k hops from the source toward the destination x0 apart, but not reaching the
destination in k hops, which distinguishes �u.kjx0/ from Pr.kjx0/. Therefore:

�u.kjx0/ D
Z x0

0

f .xk; kjx0/dxk (12.3.14)

Based on the example introduced earlier in the subsection, we further assume
that only Mk out of N packets reach the kth hop nodes. Then, �u.kjx0/ D Mk=N.
At the next hop, there are three possibilities for each of these Mk packets: 1) a
packet reaches the destination at the next hop; 2) a packet makes another hop without
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reaching the destination; 3) the packet is dropped because a next-hop node cannot be
found. Let WkC1 and MkC1 be the number of packets for which the first and second
possibilities apply.

Define  .kujx0/ to be the probability of the packets being dropped at the ku-th
hop. Then:

 .kujx0/ D Mku � MkuC1 � WkuC1
N

D �u.kujx0/ � �u.ku C 1jx0/ � Pr.ku C 1jx0/ (12.3.15)

The average number of hops for unsuccessful transmissions between a source and
a destination separated x0 apart is the expected value of ku whose probability density
function is given by  .kujx0/. Similar to the way to derive (12.3.12), we have:

1X
kuD1

ku .kujx0/ D .1 � �s.x0//EuŒkujx0�

Given the above analysis, the effective energy consumption can be computed
using (12.3.4), which is shown in Sect. 12.3.6. Furthermore, the above results can
also be useful in the analysis of delay, throughput or reliability of end-to-end packet
transmissions [54, 153], as well as localization [54, 62].

12.3.4 Impact of Spatial Dependence Problem

In this subsection, we considered that the remaining distance at the kth hop node (Sk)
depends on the remaining distance at previous two hops nodes (Sk�1 and Sk�2). Due
to the spatial dependence problem, it can be shown that an accurate analysis of the
hop count statistics requires all previous hops to be considered, but the calculation is
more complicated than if an independence assumption is made. Previous research,
e.g., [205], usually considered the dependence on only previous one hop. In this
subsection we study the impact of the spatial dependence problem on the accuracy
of the Pr.kjx/.

Define Am to be the intersectional area of the disk centered at Sk�m with radius r0
and the disk centered at D with radius xk. Therefore, the precise area that should be
considered in the calculation of (12.3.7) is A D A1 n .A2 [ A3 [ : : :[ Ak/ instead of
A1 n A2.

Consider only previous one hop, then A 
 A1. Consider only previous two hops,
then A 
 A1 n A2 D A1�A1 \ A2. Consider only previous three hops, then

A 
 A1 n .A2 [ A3/ D A1 � A1 \ .A2 [ A3/

D A1 � A1 \ A2�A1 \ A3 C A1 \ A2 \ A3 (12.3.16)
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The underlined terms are the additional terms introduced when considering one
more previous hop. In considering the previous m hops instead of previous m � 1

hops, the improvement is bounded by a term determined by A1 \ Am. Furthermore,
it is evident that xk�1 < xk�2 < : : : < x0. Therefore, A1 > A2 > : : : > Ak and the
size of A1 \ Am is dominated by the size of Am.

Define h.xk; xk�m; kjx0/ to be the joint probability density function of the
remaining Euclidean distances at the kth hop node and k � mth hop node being xk
and xk�m, respectively, and the packet having been successfully forwarded k hops,
conditioned on x0. Then, the expected size of Am at the k-th hop can be calculated by:

EŒAm; kjx0� D
Z x0

0

Z xkCr0

xk

A.xk�m; r0; xk/h.xk; xk�m; kjx0/dxk�mdxk (12.3.17)

For m D 1, h.xk; xk�1; kjx0/ can be calculated using (12.3.9). For m D 2,
we have:

h.xk; xk�2; kjx0/ D
Z x0

r0

g.xk; kjxk�1; xk�2; k � 1/h.xk�1; xk�2; k � 1jx0/dxk�1 (12.3.18)

For m � 3, the calculation becomes more intricate but approximately
h.xk; xk�m; kjx0/ 
 f .xk; kjx0/f .xk�m; k � mjx0/, where f .xk; kjx0/ is given
by (12.3.10). This approximation is valid because the distance between Sk and
Sk�m generally increases as m increases, hence the size of the overlapping area
decreases. Therefore, the correlation between f .xk; kjx0/ and f .xk�m; k � mjx0/
reduces as m increases.

Based on the approach introduced above, Fig. 12.9 shows the results for the
average size of Am when the source node and the destination node are separated
by distance x0 D 10r0. The simulation parameters are introduced in Sect. 12.3.6.
It is evident that the size of Am, m � 3, is negligibly small (less than 1% of the
size of the area covered by the transmission range) compared to the size of A1 and
A2. It validates the claim that the improvement made by taking previous m hops
into consideration will become marginal for m � 3, which explains our choice of
considering two previous hops only.

Our results suggest that the accuracy of the analysis on Pr.kjx/ can be sig-
nificantly improved by considering previous two hops, compared to considering
previous one hop only. However, moving beyond two hops results in marginal
improvement in accuracy of the analysis. Therefore, a conclusion can be drawn
that the location of nodes three or more hops away provides little information for
a node to determine its geometric relationship with other nodes. This conclusion
provides analytical support for observations, to this point unsupported by analysis,
in routing, localization, and network security that taking into account the (location
or link status) information of two-hop neighbors can significantly improve the
routing [133] (respectively, localization [137], network security [116]) performance
compared with using one-hop neighborhood information only. However beyond two
hops, taking into account more neighborhood information only has marginal impact.
Therefore, many distributed routing, localization, and network security protocols
use two-hop neighborhood information.
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Fig. 12.9 Simulation (Sim) and analytical (Ana) results for the normalized average intersectional
area size under the unit disk connection model. AreaAm is the intersectional area of the disk
centered at Sk�m with radius r0 and the disk centered at D with radius xk

12.3.5 Analysis Assuming the Log-Normal-Nakagami Model

In this subsection, we further investigate the hop count statistics assuming the log-
normal-Nakagami model for communication channels. The technique to incorporate
the impacts of both shadowing and small-scale fading is through the use of the
random split property of a Poisson point process.

12.3.5.1 Random Split of a Poisson Point Process

First, we introduce a random variable named the Nakagami fades�0, which follows
the Gamma distribution with mean 1. The probability density function of �0 is

�0.!0/ D mm!m�1
0

�.m/
exp.�m!0/; !0 � 0 (12.3.19)

where m is introduced in (12.3.1).
It can be shown that the random variable Pl.x/�0 follows the Gamma distribution

with mean Pl.x/, where Pl.x/ D CPtx��10Z=10 is the RSS given by the log-normal
shadowing model. Then, in the Log-normal-Nakagami model, the RSS at a receiver
at distance x from the transmitter is PN.x/ D Pl.x/�0 D CPtx��10Z=10�0, where Z
is a zero-mean Gaussian distributed random variable and�0 is a Gamma distributed
random variable with mean 1.

According to the random split property of a Poisson point process ([155], see
also Sect. 1.3), the subset of nodes whose RSS from a particular transmitting node
with shadowing fades Z 2 Œz; z C dz� and Nakagami fades �0 2 Œ!0; !0 C d!0�
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are identically and independently distributed following a Poisson point process with
density �q.z/dz�0.!0/d!0. Using the splitting of the Poisson point process, we can
study the sub-process by the same technique used in the unit disk connection model.

Remark 175 The aforementioned technique can be readily extended to other com-
munication models, e.g., the class of random connection models.

Define Prl.kjx0/ to be the probability that two arbitrary nodes separated by
Euclidean distance x0 are k hops apart using greedy forwarding in the Log-normal-
Nakagami model. We start with k D 1.

12.3.5.2 Probability of Direct Connection

Under the Log-normal-Nakagami model, two nodes separated by distance x are
directly connected if and only if the RSS exceeds a given threshold Pmin. Without
shadowing and small-scale fading, the model reduces to the unit disk connection
model where Pmin D CPtr

��
0 . With shadowing and fading, we have:

Pr.PN.x/ � Pmin/ D Pr.CPtx
��10Z=10�0 � CPtr

��
0 /

D Pr

 
Z � 10� log10

 
x

r0�
1=�
0

!!
(12.3.20)

D Pr

�
x � r0�

1
�

0 exp

�
Z log 10

10�

��
(12.3.21)

Thus two nodes are directly connected if either of the following two con-
ditions is satisfied: 1) given the distance x and Nakagami fades value !0, two
nodes are directly connected if and only if the (random) shadowing fades Z �
10� log10.

x

r0!
1=�
0

/; 2) given that the shadowing fades z and Nakagami fades value !0,

two nodes are directly connected if and only if their distance x � r0!
1=�
0 exp. z log 10

10�
/.

Based on the first condition, the probability of having a direct connection
between two arbitrary nodes separated by x0 is:

Prl.k D 1jx0/ D
Z 1

0

Z 1

10� log10

 
x

r0!
1=�
0

! q.z/dz�0.!0/d!0

D
Z 1

0

1

2

0
BB@1� erf

0
BB@
10� log10

�
x

r0!
1=�
0

�

p
2�2

1
CCA

1
CCA �0.!0/d!0 (12.3.22)

where erf .:/ is the error function.
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Remark 176 Without small-scale fading, viz., considering the log-normal shadow-
ing model only, the probability of having a direct connection between two arbitrary

nodes separated by x0 is
�
1
2

�
1 � erf .

10� log10.
x

r0
/p

2�2
/
��

. Similarly, the following anal-

ysis can be reduced to the analysis without small-scale fading by simply removing
the integral with respect to !0.

In order to derive Prl.kjx0/ for k > 1, we use the second condition to study the
probability of a direct connection. Define rN.zS; !S/ to be the transmission range of
a transmitter (S) conditioned on the shadowing fades and Nakagami fades being zS

and !S, respectively. Then:

rN.zS; !S/ D r0!
1=�
S exp

�
zS log 10

10�

�
(12.3.23)

Therefore, any node, whose RSS from the transmitter (S) has shadowing fades
ZS 2 ŒzS; zS C dzS� and Nakagami fades �S 2 Œ!S; !S C d!S�, is directly connected
to S if and only if its Euclidean distance to the transmitter is smaller than or equal
to rN.zS; !S/. This allows us to apply the analysis used in the unit disk connection
model.

12.3.5.3 Distribution of the Remaining Distance

Define area size A1 D A.xk�1; rN.z1; !1/; xk/ and A2 D A.xk�2; rN.z2; !2/; xk/,
where A.x; r1; r2/ and xk are defined in Sect. 12.3.3. With a bit abuse of symbols,
we use the same symbol to denote the size of an area and the area itself. Define
fl.xk; kjx0/, gl.xk; kjxk�1; xk�2; k � 1/, the event Bl, Prl.Xk � xk; kjxk�1; xk�2; k � 1/

and hl.xk; xk�1; kjx0/ analogously as in Sect. 12.3.3 and use the subscript l to mark
the corresponding probabilities in the Log-normal-Nakagami model. We shall derive
Prl.Xk � xk; kjxk�1; xk�2; k � 1/ by studying the following two events. Denote by C
the event that there is at least one node whose Euclidean distance to the destination
is smaller than xk and has a direct connection to Sk�1 and has no direct connection to
Sk�m for m 2 Œ2; k� where S0 is the source node. Denote by D the event that the node
Sk�1 is not directly connected to the destination. Events C and D are independent
because of the independence of the shadowing and Nakagami fades. It is evident
that:

Prl.Xk � xk; kjxk�1; xk�2; k � 1/ D Pr.CjBl/ � Pr.DjBl/ (12.3.24)

We start with the analysis of event C. In this paragraph we only consider
the subset of nodes whose RSS from Sk�1 has fades Z1 2 Œz1; z1 C dz1� and
�1 2 Œ!1; !1 C d!1�, and whose RSS from Sk�2 has fades Z2 2 Œz2; z2 C dz2�
and �2 2 Œ!2; !2 C d!2�. Due to the independence of the fades and the property of
Poisson point process, these nodes are distributed following a homogeneous Poisson
point process with density �q.z1/q.z2/dz1dz2�0.!1/�0.!2/d!1d!2. Denote by E the
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Fig. 12.10 Possible positions for the k-th hop node (Sk) are located on the arc. Consider the nodes
whose RSS from Sk�1 has fades Z1 2 Œz1; z1Cdz1� and�1 2 Œ!1; !1Cd!1�, and whose RSS from
Sk�2 has fades Z2 2 Œz2; z2 C dz2� and �2 2 Œ!2; !2 C d!2�. The dashed-line circles represent the
transmission range of Sk�1 (respectively, Sk�2) conditioned on the above values of shadowing and
Nakagami fades. Parameters A1 and A2 are described in the following

event that Z1 2 Œz1; z1 C dz1� and Z2 2 Œz2; z2 C dz2� and �1 2 Œ!1; !1 C d!1�
and �2 2 Œ!2; !2 C d!2�. Pr.C; E jBl/ is equal to the probability that there is
at least one node in area A1 n A2, as shown in Fig. 12.10. We approximate the
size of area A1 n A2 by .A1 � A2/C, where .A1 � A2/C D maxf0;A1 � A2g.
Note that through this approximation we ignored some rare events that cause
A1 � A2 < 0, which can possibly occur when rN.z2; !2/ is much larger than
rN.z1; !1/. In contrast, under the unit disk connection model, it is always the case
that A1 � A2 � 0. Considering this subset of nodes only, 1 � Pr.C; E jBl/ is
equal to 1� exp.�.A1 � A2/C�q.z1/q.z2/dz1dz2�0.!1/�0.!2/d!1d!2/, which is the
probability that there is no node in area A1 n A2. Note that A1 depends on z1 and !1;
while A2 depends on z2 and !2.

Then, considering all subset of nodes, we have

Pr.CjBl/ D 1 �
Y

z1;z22.�1;C1/;!1;!22.0;C1/

exp.�.A1 � A2/
C�

q.z1/q.z2/dz1dz2�0.!1/�0.!2/d!1d!2 (12.3.25)

D 1 � exp.�
Z 1

0

Z 1

0

Z 1

�1

Z 1

�1
.A1 � A2/

C�

q.z1/q.z2/dz1dz2�0.!1/�0.!2/d!1d!2/ (12.3.26)
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Since the event D only depends on xk�1, we have

Pr.DjBl/ D 1 � Prl.1jxk�1/ (12.3.27)

Then, substitute (12.3.26) and (12.3.27) into (12.3.24),

Prl.Xk � xk; kjxk�1; xk�2; k � 1/

D .1 � exp.�
Z 1

0

Z 1

0

Z 1

�1

Z 1

�1
.A1 � A2/

C�

q.z1/q.z2/dz1dz2�0.!1/�0.!2/d!1d!2// � .1 � Prl.1jxk�1// (12.3.28)

By Leibniz integral rule,

gl.xk; kjxk�1; xk�2; k � 1/

D @Prl.Xk � xk; kjxk�1; xk�2; k � 1/
@xk

D
Z 1

0

Z 1

0

Z 1

�1

Z 1

�1
@.A1 � A2/C

@xk
�q.z1/q.z2/dz1dz2�0.!1/�0.!2/d!1d!2

� exp.�
Z 1

0

Z 1

0

Z 1

�1

Z 1

�1
.A1 � A2/

C�q.z1/q.z2/

�0.!1/�0.!2/dz1dz2d!1d!2/.1 � Prl.1jxk�1// (12.3.29)

where @A1=@xk and @A2=@xk can be calculated by (12.3.6).
It is straightforward that for k D 1, we have

fl.x1; 1jx0/

D
Z 1

0

Z 1

�1
@A.x0; rN.z1/; x1/

@x1
�q.z1/dz1�0.!1/d!1

� exp.�
Z 1

0

Z 1

�1
A.x0; rN.z1/; x1/�q.z1/dz1

�0.!1/d!1/.1 � Prl.1jx0// (12.3.30)

For k D 2, the probability density function of the remaining distance of the
previous hop is given by (12.3.30). Therefore:

hl.x2; x1; 2jx0/ D gl.x2; 2jx1; x0; 1/fl.x1; 1jx0/ (12.3.31)

For k > 2, the joint probability density function of xk and xk�1 is calculated
recursively:

hl.xk; xk�1; kjx0/ D
Z x0

0

gl.xk; kjxk�1; xk�2; k � 1/hl.xk�1; xk�2; k � 1jx0/dxk�2 (12.3.32)
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Finally for k � 2, we have

fl.xk; kjx0/ D
Z x0

0

hl.xk; xk�1; kjx0/dxk�1 (12.3.33)

12.3.5.4 Hop Count Statistics

Because of shadowing and small-scale fading, the destination can be possibly
reached in single hop no matter how far the remaining distance from that hop is.
Therefore, for k � 2,

Prl.kjx0/ D
Z x0

0

Prl.1jxk�1/fl.xk�1; k � 1jx0/dxk�1 (12.3.34)

Remark 177 Based on the above results, we can calculate the average number of
hops for successful and unsuccessful transmissions, the probability of successful
transmissions and the effective energy consumption by the same technique used in
the unit disk connection model.

12.3.6 Simulation Studies

In this subsection, we report on simulations to establish the accuracy of the
analytical results. In the simulations, nodes are deployed on a 400�400 square
following a homogeneous Poisson point process with density � D 0:003. The
boundary effect is included in the simulation but it is shown to have a limited impact
on the results. The route between two nodes is determined by the basic greedy
forwarding algorithm. The transmission range r0 is varied from 10 to 50, which
results in the average node degree varying from around 1 to 24. Note that r0 is the
transmission range without shadowing and small-scale fading. The value of r0 can
be specified by the network designer via adjusting the transmission power and the
receiver gain. The existence of a direct wireless link between an arbitrary pair of
nodes will be further affected by shadowing and small-scale fading. Several values
of the standard deviation in log-normal shadowing model have been used in our
simulations, but only the results for � D 4 are shown in this chapter because other
results show a similar trend. Furthermore, we only include the results for C2 D 0:01

and Engc D 0:02 (in (12.3.2)) as an example and the value of Engc is found to
have very limited impact on the results. In order to distinguish the impact on the
network performance of different parameters, the packet error rate is not included
(i.e., setting ˛ D 0) except in Fig. 12.14 and the small-scale fading is not included
except in Figs. 12.12 and 12.13b. Every point shown in the simulation result is
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the average value from 3000 simulations. As the number of instances of random
networks used in the simulation is large, the confidence interval is too small to be
distinguishable and hence is ignored in the following plots.

12.3.6.1 Hop Count Statistics

Figure 12.11 shows the probability that two arbitrary nodes separated by distance
x0 are k hops apart using greedy forwarding under the unit disk connection model
and the log-normal connection model, respectively. As shown in Fig. 12.11, the
analytical results have a good match with the simulation results, which verifies the
accuracy of our analysis in both the unit disk connection model and the log-normal
shadowing model.

In addition, we can see that the accuracy is significantly improved by considering
previous two hops compared with that considering only previous one hop. Further-
more, it can be seen in Fig. 12.11 that the improvement of accuracy will be marginal
if more than two previous hops are considered, which also confirms the analysis
in Sect. 12.3.4. We expect this observation to be applicable to many other areas
(e.g., routing, localization, network security) and the approach used for shedding
the independence assumption can be seen in a broader context. Specifically, our
approach for shedding the independence assumption is to show that one can improve
the accuracy of Pr.kjx/ by taking into account the location of previous m-hops
nodes .1 � m � k � 1/. However the improvement becomes marginal as m > 2.
This suggests that the location of nodes three or more hops away provides little
information in determining the geometric relationship of a node with other nodes in
the network. This observation further confirms our assertion in Sect. 12.3.4.

It is also interesting to see that packets can be transmitted to a longer distance
under the log-normal shadowing model than that under the unit disk model, at the
same number of hops. This is because log-normal shadowing introduces a Gaussian
variation of the transmission range around the mean value, and with a higher chance
a node can find a next-hop neighbor closer to the destination. This phenomenon has
also been observed in other studies of connectivity.

Figure 12.12 shows the probability that two arbitrary nodes separated by distance
x0 are k hops apart in the Log-normal-Nakagami model when the Nakagami
parameter m D 1. Therefore, the corresponding network is subject to log-normal
shadowing and Rayleigh fading. The result shown in Fig. 12.12 verifies the accuracy
of our analysis. Furthermore, it can be seen that Rayleigh fading reduces the
probability that two nodes are connected by a path with k hops. This can be
explained by the exponentially distributed RSS over the mean value caused by
the Rayleigh fading which reduces the probability of direct connection. Therefore,
Rayleigh fading has a negative impact on the network connectivity. A similar result
is also observed in the next section.
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Fig. 12.11 The probability that two arbitrary nodes separated by Euclidean distance x0 are k hops
apart. Dep1 stands for the result calculated by considering the dependency on previous one hop.
Dep2 is the result from this chapter . (a) In the unit disk model, Dep2-unit is the result under the
unit disk model, while Dep2-log is the result under log-normal connection model by setting � D 0.
(b) Dep2-log is indistinguishable in the plot because the curve fully agrees with Dep2-unit. In the
log-normal shadowing model
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Fig. 12.12 The probability that two arbitrary nodes separated by distance x0 are k hops apart in a
network subject to log-normal shadowing and Rayleigh fading

12.3.6.2 Effective Energy Consumption

Figure 12.13 shows the probability of successful transmissions and Engeff . It can be
seen that, unsurprisingly, the probability of successful transmissions increases from
nearly 0 to nearly 1 as r0 increased from 10 to 50. In contrast, the effective energy
consumption could hardly have been predicted by heuristic reasoning, and needs
more explanations.

Take the results under the unit disk connection model as example. When r0 is
small, the network is made up of a large number of small components. An increase
in r0 will cause an increase in the size (number of nodes) of the components and
also a reduction in the number of components. Therefore, the average number of
hops for unsuccessful transmission increases, and the energy wasted on unsuccessful
transmissions also increases. Consequently, there is an initial increase in Engeff

with the increase in r0. As r0 further increases, although the average number of
hops for successful/unsuccessful transmission still increases, the energy wasted
on unsuccessful transmissions starts to decrease as more source–destination pairs
become connected. The balance of the two effects causes Engeff to peak at r0 
 19.
Above this transmission range, the decrease in wasted energy starts to dominate,
which causes a subsequent decrease in Engeff . As r0 increases further, the average
number of hops approaches its maximum and the energy wasted on unsuccessful
transmissions also reduces to a small amount. These cause Engeff to reach its
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(2) Log−normal shadowing model
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(a) Unit disk with Rayleigh fading
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(b) Log−normal shadowing with Rayleigh fading
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Fig. 12.13 Probability of successful transmissions (Succ) and effective energy consumption (Eng)
in the network. Subfigure (a) shows the results without small-scale fading and (b) shows the results
with Rayleigh fading. Furthermore, “No Rayleigh” is the result without small-scale fading shown
in (b) for comparison

minimum at r0 
 31. Above this transmission range, most source–destination pairs
are connected as shown in Fig. 12.13(a.1). Another effect starts to dominate. That is,
the increase in r0 causes the increase in the per-hop energy consumption (like r20) and
the decrease in the number of hops (approximately like 1=r0). The net effect is an
increase in Engeff with the increased r0. Most previous studies have only considered
this last stage of the relation between the energy consumption and the transmission
range and therefore cannot give a complete understanding of the energy efficiency
in end-to-end packet transmissions.

It is interesting to note that the energy optimizing transmission range is
around 31, which corresponds to a network with most (around 70%) source–
destination pairs connected but not all of them. Note that for r0 < 20, Engeff may
be smaller than the minimum Engeff . However at such value of r0 most source–
destination pairs are disconnected using greedy forwarding and no meaningful
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service can be provided by the wireless network. In order for more than 99%
source–destination pairs to be connected, r0 has to be larger than 47 and Engeff

will increase to more than 225% of its minimum value in the unit disk connection
model. A similar result can also be found in the log-normal shadowing model
and the models with Rayleigh fading. Therefore, significant energy savings can
be obtained by requiring most nodes, instead of all nodes, in the network to be
connected. This observation also agrees with the results in Chap. 4. In addition,
our result gives the amount of energy that can be saved. Purely from an energy-
saving perspective and without consideration of other implications, this interesting
result shows that the most energy-efficient topology control algorithms should be
designed to let 70% (under this network setting) of the source–destination pairs be
connected at the same time. The result sheds insight on the design of large wireless
multi-hop networks where energy efficiency is a important issue.

Furthermore, Fig. 12.13b shows that the probability of successful transmissions
is slightly lower in a network with Rayleigh fading compared to a network without
Rayleigh fading. This confirms our assertion in the previous subsection.

Figure 12.14 shows the effective energy consumption with a nonzero packet error
rate as shown in (12.3.2). The packet error rate increases from 0.004 when r0 D 10

to 0.40 when r0 D 50. It can be seen that as the transmission range increases, the tail
of the effective energy consumption increases faster than its error-free counterpart.
This is because an increase in the transmission range causes an increase in the
number of neighbors and also an increase in the distance between the transmitter and
the receiver. This in turn increases the packet error rate and the energy consumption.

10 15 20 25 30 35 40 45 50

10
5

10
6

10
7

r
0

Lo
ga

rit
hm

 o
f t

he
 e

ffe
ct

iv
e 

en
er

gy
 c

on
su

m
pt

io
n

Poisson, Unit disk, Area=4002, r
0
=10~50, ρ=0.003, η=4

Simulation without packet error
Analytical without packet error
Simulation with packet error
Analytical with packet error

Fig. 12.14 The effective energy consumption subject to packet error
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Fig. 12.15 The effective energy consumption under the log-normal shadowing model with various
values of standard deviations

Therefore, when the packet error rate is nonzero, the energy optimizing transmission
range becomes smaller as can be seen in Fig. 12.14.

Figure 12.15 shows the effective energy consumption under the log-normal
shadowing model with various values of standard deviations. It can be seen that
a larger variance in the log-normal shadowing model leads to a lower energy
consumption and a smaller optimum transmission range. This is because a larger
variance provides a larger probability for a node to forward the packet to a further
node that is closer to the intended destination, which is similar to the observation
obtained in Sect. 12.3.6.1.

12.3.6.3 Impact of Node Density and Path Loss Exponent on the
Optimum Transmission Range

Figure 12.16 illustrates the impact of node density and path loss exponent on
the optimum transmission range under the unit disk connection model. It can be
seen that an increase in the node density will cause a decrease in the optimum
transmission range. This is because an increase in the node density without
reduction in the transmission range causes an increase in the average number of
neighbors as well as the probability of successful transmissions between two nodes.
Figure 12.16 also shows that a higher path loss exponent will result in a smaller
optimum transmission range. This is because an increase in the path loss exponent
will cause an increase in the per-hop energy consumption, as given by (12.3.2).
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Fig. 12.16 Impact of node density and path loss exponent on the optimum transmission range

Therefore, under a higher value of the path loss exponent it is more energy efficient
to have smaller components, hence a smaller optimum transmission range.

It has been shown that the probability Pr.kjx/ and the energy consumption are
affected by the node density and path loss exponent. Our analysis fully captures
these effects and sheds insight on the design of a wireless multi-hop network.

12.4 Notes and Further Readings

In this chapter, we studied connectivity of two-dimensional small to medium sized
wireless networks by investigating the associated hop count statistics. We started
with networks assuming the unit disk connection model and then moved on to
investigating networks assuming the general random connection model. Finally,
we investigated wireless networks assuming more realistic Log-normal-Nakagami
communication model with a particular focus on quantifying the impact of the
spatial dependence problem on the hop count statistics. The spatial dependence
problem arises because in a wireless network the event that a randomly chosen node
is k hops apart from a particular node is not independent of the event that another
randomly chosen node is i hops apart from the same node for i � k. It follows
that an accurate analysis on the conditional probability Pr.kjx/ needs to consider
all previous hops. The spatial dependence problem is a major technical obstacle in
the analysis of hop counts statistics. We showed that considering the positions of
previous two hops nodes is sufficient to provide an accurate estimate of Pr.kjx/.

The hop count statistics were first investigated by Chandler [38] in 1989.
He analyzed the probability that two randomly chosen nodes separated by a
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known distance can communicate in k or less hops where nodes are uniformly
distributed over a plane. However the aforementioned spatial dependence problem
was incorrectly ignored in his analysis. Zorzi et al. [204, 205] proposed a greedy
forwarding algorithm for a network where nodes are Poissonly distributed in the
coverage area of a transmitting node. They studied an upper and a lower bound on
the average number of hops between two nodes separated by a known Euclidean
distance. In [45], Contla and Stojmenovic considered position based routing
schemes for a wireless multi-hop network where nodes are uniformly distributed
on a square. They studied the average number of hops between an arbitrary pair of
source–destination nodes. Dulman et al. [63] investigated the probability Pr.kjx/ by
estimating the expected progress per hop using greedy forwarding. They considered
the impact of the Euclidean distance between neighboring nodes in the previous
hop on the progress in the current hop. Both [205] and [63] were established on the
assumption that a packet can always reach the destination using greedy forwarding,
which may not be true in some networks.

The aforementioned results are all based on the unit disk connection model. Con-
sidering the log-normal connection model, Hekmat and Mieghem [100] showed,
through simulations, that the probability of a network being connected increases
with increasing value of the shadowing parameter, which is the ratio between the
standard deviation of shadowing and the path loss exponent. Mukherjee and Avidor
[153] considered the impact of the log-normal shadowing on the probability Pr.kjx/
in a wireless network where nodes are Poissonly distributed in a disk.



Chapter 13
A New Measure of Wireless Network
Connectivity

Abstract Despite intensive research in the area of network connectivity, there is
an important category of problems that remain unsolved: how to characterize and
measure the quality of connectivity of a wireless network which has a realistic
number of nodes, not necessarily large enough to warrant the use of asymptotic
analysis, and which has unreliable connections, reflecting the inherent unreliability
of wireless communications? The quality of connectivity measures how easily and
reliably a packet sent by a node can reach another node. It complements the use
of capacity to measure the quality of a network in saturated traffic scenarios and
provides an intuitive measure of the quality of (end-to-end) network connections.
In this chapter, we introduce a probabilistic connectivity matrix as a tool to
measure the quality of network connectivity. Some interesting properties of the
probabilistic connectivity matrix and their connections to the quality of connectivity
are demonstrated. We demonstrate that the largest magnitude eigenvalue of the
probabilistic connectivity matrix, which is positive, can serve as a good measure of
the quality of network connectivity. Furthermore, we provide a flooding algorithm
whereby the nodes repeatedly flood the network with packets, and by measuring
just the number of packets a given node receives, the node is able to asymptotically
estimate this largest eigenvalue.

In the previous chapters, we have studied connectivity of large static networks,
connectivity of large and highly dynamic networks, and connectivity of small to
medium sized networks. Despite intensive research on network connectivity, there
is an important category of problems that remain unsolved: how to characterize
and measure the quality of connectivity of a wireless network, which has a realistic
number of nodes, not necessarily large enough to warrant the use of asymptotic
analysis, and which has unreliable connections, reflecting the inherent unreliability
of wireless communications? The quality of connectivity measures how easily and
reliably a packet sent by a node can reach another node. It complements the use
of capacity to measure the quality of a network in saturated traffic scenarios and
provides an intuitive measure of the quality of (end-to-end) network connections.

In this chapter, we introduce a probabilistic connectivity matrix as a tool to
measure the quality of network connectivity. Some interesting properties of the
probabilistic connectivity matrix, and their connections to the quality of connectivity
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will be demonstrated. We demonstrate that the largest magnitude eigenvalue of the
probabilistic connectivity matrix, which is positive, can serve as a good measure of
the quality of network connectivity.

The precise computation of the elements of this connectivity matrix, given the
individual link quality measures and the network topology, involves significant
computation. As an alternative, we provide a flooding algorithm that computes
the largest magnitude eigenvalue in a decentralized fashion using experimental
data, with multiple experiments to allow some averaging. Using the algorithm, the
topology and link probabilities do not need to be known in order to determine
the largest magnitude eigenvalue. This new measure constitutes the first that can
be determined for moderate to small size networks.

13.1 Motivation for a New Connectivity Measure

As manifested in the previous chapters of the book, there are two general approaches
to studying the connectivity problem. The first, spearheaded by the seminal work of
Penrose [165] and Gupta and Kumar [92], is based on an asymptotic analysis of
large random networks, which considers a network of n nodes that are identically
and independently distributed on an area with an underlying uniform distribution.
A pair of nodes are directly connected if and only if their Euclidean distance is
smaller than or equal to a given threshold r .n/, independent of other connections.
Some interesting results are obtained on the value of r .n/ required for the above
network to be asymptotically almost surely connected as n ! 1. In [185],
these results are extended to provide the radius for k-connectivity. In Chaps. 2
and 3, we extended the above results by Penrose and Gupta and Kumar from
the unit disk connection model to a random connection model, in which any pair
of nodes separated by a displacement x are directly connected with probability
g .x/, independent of other connections. The analytical techniques used in this
approach have some intrinsic connections to continuum percolation theory [143],
which is usually based on a network setting with nodes Poissonly distributed in an
infinite area and studies the conditions required for the network to have a connected
component containing an infinite number of nodes (in other words, the network
percolates).

The second approach is based on a deterministic setting and studies connectivity
and other topological properties of a network using algebraic graph theory. Specif-
ically, consider a network with a set of n nodes. Its properties can be studied using
its underlying graph G .V;E/, where V , fv1; : : : ; vng denotes the vertex set and E
denotes the edge set. The underlying graph is obtained by representing each node
in the network uniquely using a vertex and the converse. An undirected edge exists
between two vertices if and only if there is a direct connection (or link) between
the associated nodes. Note that in this chapter, we limit our discussions to a simple
graph (network) where there is at most one edge (link) between a pair of vertices
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(nodes) and an undirected graph. Define an adjacency matrix AG of the graph
G .V;E/ to be a symmetric n � n matrix whose .i; j/th ; i ¤ j; entry is equal to one if
there is an edge between vi and vj and is equal to zero otherwise. Furthermore, the
diagonal entries of AG are all equal to zero. The eigenvalues of the graph G .V;E/
are defined to be the eigenvalues of AG. The network connectivity information, e.g.,
connectivity and k-connectivity, is entirely contained in its adjacency matrix. Many
interesting connectivity and topological properties of the network can be obtained by
investigating the eigenvalues of its underlying graph. For example, let 
1 � : : : �

n be the eigenvalues of a graph G. If 
1 D 
2, then G is disconnected. If 
1 D
�
n and G is not empty, then at least one connected component of G is nonempty
and bipartite [101, p. 28–6]. If the number of distinct eigenvalues of G is r, then G
has a diameter of at most r�1 [25]. Some researchers have also studied properties of
the underlying graph using its Laplacian matrix [148], where the Laplacian matrix
of a graph G is defined as LG , D � AG and D is a diagonal matrix with degrees
of vertices in G on the diagonal. Particularly, the algebraic connectivity of a graph
G is the second-smallest eigenvalue of LG and it is greater than 0 if and only if G
is a connected graph. Furthermore, the algebraic connectivity is also known to be
a good indicator of the convergence rate of consensus algorithms [159]. Chapter 1
provides a brief introduction of the algebraic graph theory tools. We refer readers to
[25] and [80] for a comprehensive treatment of the topic. Reference [101] provides
a concise summary of major results in the area. The adjacency matrix, the Laplacian
matrix and their associated parameters mainly focus on describing the connectivity
between vertices with direct connections. As demonstrated later in this section, it
is not trivial to use these tools to quantify the quality of end-to-end connections
(especially when the existence of a direct connection between two nodes becomes
probabilistic), which is of paramount concern in many communication applications.
In this chapter, we develop the probabilistic connectivity matrix, a concept defined
later in the chapter, to fill this theoretical gap.

Despite the aforementioned research, an important category of problems remain
unsolved: how to measure the quality of connectivity of a wireless network which
has a realistic number of nodes, not necessarily large enough to warrant the use
of asymptotic analysis, and has unreliable connections, reflecting the inherent
unreliable characteristics of wireless communications? The quality of connectivity
measures how easily and reliably packets sent by a node can reach another. It com-
plements the use of capacity to measure the quality of a network in saturated traffic
scenarios and provides an intuitive measure of the quality of (end-to-end) network
connections. The following paragraphs elaborate on the above question using two
examples of networks with a fixed number of nodes and known transmission power.

Example 178 Assume that the wireless propagation model of a network is known
and its characteristics have been quantified through a priori measurements or
empirical estimation. Furthermore, a link exists between two nodes if and only if the
received signal strength from one node at the other node, whose propagation follows
the wireless propagation model and the signal strength is random, e.g., due to fading
and shadowing, is greater than or equal to a predetermined threshold and the same is
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also true in the opposite direction. One can then find the probability that a link exists
between two nodes at two fixed location: it is determined by the probability that the
received signal strength is greater than or equal to the pre-determined threshold.
Two related questions can be asked: a) if these nodes are deployed at a set of
known location, what is the quality of connectivity of the network, measured by
the probability that there is a path between any two nodes, as compared to node
deployment at another set of location? b) how can one optimize the node deployment
to maximize the quality of connectivity?

Example 179 The transmission between a pair of nodes with a direct connection,
say vi and vj, may fail with a known probability, say 1 � aij, quantifying the
inherent unreliable characteristics of wireless communications. There are no direct
connections between some pairs of nodes because the probability of successful
transmission between them is too low to be acceptable. How should one measure
the quality of connectivity of such a network, in the sense that a packet transmitted
from one node can easily and reliably reach another node via a multi-hop path. Will
single “good” path between a pair of nodes be preferable to multiple “bad” paths?
These questions are illustrated in Figs. 13.1 and 13.2.

In this chapter, we introduce and explore the use of a probabilistic connectivity
matrix, a concept to be defined later in Sect. 13.2, as a tool to measure the quality of
network connectivity. Some key properties of the probabilistic connectivity matrix
and their connections to the quality of connectivity are demonstrated. Armed with
certain inequalities derived later and assuming a symmetric network, we further
derive several properties of the eigenvalues of the probabilistic connectivity matrix.
First we show that in a connected network, i.e., where there is a path of nonzero
probability between every pair of nodes, the largest magnitude eigenvalue, which
is positive, does indeed quantify the quality of network connectivity. Should the
network be disconnected, then we show that it naturally partitions into connected
components. Specifically, there is a path of nonzero probability between any
two nodes in a connected component, but all inter-component paths have zero
probability. In this case the probabilistic connectivity matrix is block diagonal, each
diagonal block in turn being the connectivity matrix of a particular component. In
this case the largest magnitude eigenvalue provides the connectivity measure of this
component. We show also that the matrix is positive semidefinite, and is in fact
positive definite, unless there is a path in the network that has probability one.

We further demonstrate that increasing a link probability increases the largest
eigenvalue of the component to which the link belongs. Exploring the positive
semi-definiteness of this matrix we provide an algorithm that computes the largest
eigenvalue in a decentralized fashion using experimental measurements on the
network, including averaging over a number of experiments. Specifically this
flooding algorithm requires the nodes to repeatedly flood the network with packets,
and by measuring just the number of packets a given node receives, the node is able
to asymptotically estimate this largest eigenvalue without knowing any element of
the probabilistic connectivity matrix or the number of packets received by the other
nodes.
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Fig. 13.1 An illustration of networks with different quality of connectivity. A solid line represents
a direct connection between two nodes and the number beside the line represents the corresponding
transmission successful probability. The networks shown in (a), (b), and (c) are all connected
networks but not 2-connected networks, i.e., their connectivity cannot be differentiated using the
k-connectivity concept. However intuitively the quality of the network in (b) is better than that of
the network in (a) because of the availability of the additional high-quality link between v2 and v4
in (b). The quality of the network in (c) is even better because of the availability of the additional
nodes and the associated high-quality links, hence additional routes, if these additional nodes act
as relay nodes only. If these additional nodes also generate their own traffic, it is uncertain whether
the quality of the network in (c) is better or not. Therefore, it is important to develop a measure to
quantitatively compare the quality of connectivity (for the networks in (a) and (b)) and to evaluate
the benefit of additional nodes on connectivity (for the network in (c))

13.2 Probabilistic Connectivity Matrix and Its Properties

In this section we define the network to be studied, its probabilistic adjacency
matrix and probabilistic connectivity matrix, give an approach to computing the
probabilistic connectivity matrix, and discuss its properties.

Consider a network of n nodes. For some pair of nodes, an edge (or link) may
exist with a non-negligible probability. The edges are considered to be undirected.
That is, if a node vi is connected to a node vj, then the node vj is also connected to the
node vi. Furthermore, as is commonly done in the area, it is assumed that the event
that there is an edge between a pair of nodes and the event that there is an edge
between another distinct pair of nodes (which may include one node in common
with the first pair) are independent. In addition to such spatial independence, we
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Fig. 13.2 The networks
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also assume temporal independence; specifically that each edge event is identically
and independently distributed over time, e.g., due to fading and shadowing. This
temporal independence is needed for some later results, and is formalized in that
part.

Denote the underlying graph of the above network by G .V;E/, where V D
fv1; : : : ; vng is the vertex set and E D fe1; : : : ; emg is the edge set, which contains
the set of all possible edges, i.e., all vertex pairs for which the probability of being
directly connected is nonzero. Here the vertices and the edges are indexed from 1 to
n and from 1 to m, respectively. For convenience, in some parts of this chapter we
also use the symbol eij to denote an edge between vertices vi and vj when there is
no confusion. We associate with each edge ei, i 2 f1; : : :mg, an indicator random
variable Ii such that Ii D 1 if the edge ei exists; Ii D 0 if the edge ei does not exist.
The indicator random variables Iij, i ¤ j and i; j 2 f1; : : : ng, are defined analogously.
Furthermore, we use .Ii; i 2 f1; 2; : : : ;mg/ to denote a particular instance of the
indicator random variables associated with an instance of the random edge set.

In the following, we give a definition of the probabilistic adjacency matrix,
differing mildly from that of Brooks et al. [32] as described further below:
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Definition 180 The probabilistic adjacency matrix of G .V;E/, denoted by AG, is a
n � n matrix whose .i; j/th, i ¤ j, entry aij , Pr

�
Iij D 1

�
and its diagonal entries are

all equal to 1.

Due to the undirected property of an edge mentioned above, AG is a symmetric
matrix, i.e., aij D aji. Note that the diagonal entries of AG are defined to be 1, which
is different from the usual convention in the literature, e.g., [32]. In Chap. 8 we have
discussed the implication of this definition in the context of mobile ad hoc networks.
This treatment of the diagonal entries reflects the fact that if a node in the network
finds the wireless channel busy, it can store a packet (or equivalently transmit the
packet to itself) until the channel is free. A pair of nodes vi and vj are said to be
directly connected if the associated aij is greater than 0.

The probabilistic connectivity matrix is defined in the following way:

Definition 181 The probabilistic connectivity matrix of G .V;E/, denoted by QG,
is an n � n matrix whose .i; j/th, i ¤ j, entry is the probability that there exists a path
between vertices vi and vj, and its diagonal entries are all equal to 1.

As a ready consequence of the symmetry of AG, QG is also a symmetric matrix.
Furthermore, the following property of QG can be easily obtained from the above
definition. The lemma refers to the direct sum between matrices, defined as
A
L

B D diagfA;Bg.

Lemma 182 Suppose AG defined in Definition 180 is symmetric. Then, the proba-
bilistic connectivity matrix QG is a symmetric nonnegative matrix. If it has a zero
element, then there is an ordering of vertices under which QG is a direct sum of
positive matrices.

Proof Symmetry of QG follows from the symmetry of AG. Nonnegativity of QG

follows from the fact that its diagonal elements are one and the rest are probabilities.
Now suppose for some i; j, qij D qji D 0 but that for some k, qik D qki ¤ 0. This
indicates that all paths between vi and vj have zero probability (henceforth, vi and
vj are not connected) but at least one between vk and vi has a nonzero probability
(vk and vi are connected). Thus qkj D qjk D 0 as otherwise there is a path between
vk and vj and consequently between vi and vk that has nonzero probability, violating
the assumption that qij D qji D 0. Thus, one can partition the vertex set V into sets
Vl, such that all nodes in Vl are connected to each other but are not connected to any
node in Vm, m ¤ l. Order the vertices so that for each l those of Vl are consecutive.
The resulting QG is clearly a direct sum of positive matrices. ut
Remark 183 We call the network connected if QG is positive, as there is then a
nonzero probability that a path exists between any two nodes. Lemma 182 and its
proof also formalize the fact that a network that is not connected partitions into
disjoint components, each of which is connected, but all paths between nodes from
different components have probability zero (we are not distinguishing conceptually
between the notion that a link or path may not exist, and the notion that a link or
path always has zero probability).
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Given the probabilistic adjacency matrix AG, the probabilistic connectivity matrix
QG is fully determined. However the computation of QG is not trivial because for a
pair of vertices vi and vj, there may be multiple paths between them and some of
the paths may share common edges, i.e., paths are not independent or are spatially
correlated. In the rest of this subsection, we give a method to compute QG.

13.2.1 Computation of the Probabilistic Connectivity Matrix

We now indicate in rather formal language the conceptual basis of computing the
probabilistic connectivity matrix QG.

Let QGj .Ii; i 2 f1; 2; : : : ;mg/ be the connectivity matrix of G conditioned on a
particular instance of the indicator random variables I1; : : : ; Im associated with an
instance of the random edge set. The .i; j/th entry of QGj .Ii; i 2 f1; 2; : : : ;mg/ is
either 0, when there is no path between vi and vj, or 1 when there exists a path
between vi and vj. The diagonal entries of QGj .Ii; i 2 f1; 2; : : : ;mg/ are always 1.
Conditioned on .Ii; i 2 f1; 2; : : : ;mg/, G .V;E/ is just a deterministic graph. There-
fore, the entries of QGj .Ii; i 2 f1; 2; : : : ;mg/ can be efficiently computed using a
search algorithm, such as breadth-first search. Given QGj .Ii; i 2 f1; 2; : : : ;mg/, QG

can be computed using the following:

QG D E.Ii;i2f1;2;:::;mg/ .QGj .Ii; i 2 f1; 2; : : : ;mg// (13.2.1)

where the expectation is taken over all possible instances of .Ii; i 2 f1; 2; : : : ;mg/.
Using the technique introduced in the previous paragraph, the probabilistic

connectivity matrix of the three networks in Fig. 13.1 and two networks in Fig. 13.2,
denoted by Q1a, Q1b, Q1c, Q2a and Q2b respectively, can be computed. For example,

Q2a D

2
666664

1:0000 0:9876 0:9744 0:9823 0:9880

0:9876 1:0000 0:9812 0:9856 0:9916

0:9744 0:9812 1:0000 0:9780 0:9827

0:9823 0:9856 0:9780 1:0000 0:9926

0:9880 0:9916 0:9827 0:9926 1:0000

3
777775

(13.2.2)

Q2b D

2
666664

1:0000 0:9603 0:9571 0:9540 0:9614

0:9603 1:0000 0:9918 0:9854 0:9961

0:9571 0:9918 1:0000 0:9879 0:9936

0:9540 0:9854 0:9879 1:0000 0:9878

0:9614 0:9961 0:9936 0:9878 1:0000

3
777775

(13.2.3)

A comparison of the entries of Q2a and Q2b leads to intuitive and quantitative
conclusion on the quality of end-to-end paths between any pair of nodes in the two
networks in Fig. 13.2a and b. In the rest of this chapter, we shall further establish
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properties of the probabilistic connectivity matrix that facilitates the analysis of
network quality and connectivity.

The approach suggested in the last paragraph is essentially a brute-force approach
to computing QG. More efficient algorithms can be possibly designed to com-
pute QG. Indeed in Sect. 13.3 we suggest an approach to simplifying the com-
putation of QG via a recursive procedure exploring the property of QG. Since the
main focus here is on exploring the properties of QG that facilitate the connectivity
analysis, an extensive discussion of designing computationally efficient algorithms
to compute QG is left out.

That said, the complications in computing QG are mitigated by the fact that
a measure of connectivity developed in this chapter can also be estimated using
experimental data without explicitly obtaining the elements of QG. This measure
is the largest eigenvalue of QG. As shown in the chapter it can be asymptotically
estimated in a completely decentralized fashion without knowing the entries of QG

or the link probabilities and network topology.

Remark 184 For simplicity, the terms used in our discussion are based on the
problems in Example 178. The discussion, however, can be easily adapted to
the analysis of the problems in Example 13.2. For example, if aij is defined to be
the probability that a direct transmission between nodes vi and vj is successful, the
.i; j/th entry of the probabilistic connectivity matrix QG computed using (13.2.1)
then gives the probability that a transmission from vi to vj via a multi-hop path is
successful under the best routing algorithm, which can always find a shortest and
error-free path between from vi to vj if it exists, or alternatively, the probability that
a packet flooded from vi can reach vj where each node receiving the packet only
broadcasts the packet to its directly connected neighbors once. Therefore, the .i; j/th

entry of QG can be used as a quality measure of the end-to-end paths between vi and
vj, which takes into account the fact that availability of an extra path between a pair
of nodes can be explored to improve the probability of successful transmissions.

13.2.2 Some Key Inequalities for Connection Probabilities

The entries of the probabilistic connectivity matrix give an intuitive idea about the
overall quality of end-to-end paths in a network. In this subsection, we provide some
important inequalities that may facilitate the analysis of the quality of connectivity.
Some of these inequalities are explored in the next subsection to establish some key
properties of the probabilistic connection matrix itself.

We first introduce some concepts and results that are required for the further
analysis of the probabilistic connectivity matrix QG.

For a random graph with a given set of vertices, a particular event is increasing
if the event is preserved when more edges are added into the graph. An event is
decreasing if its complement is increasing.
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The following theorems summarizing a relevant form of the FKG inequality and
BK inequality, respectively, will be used:

Theorem 185 ([143, Theorem 1.4] FKG Inequality) If events A and B are both
increasing events or decreasing events depending on the state of finitely many
edges, then

Pr .A \ B/ � Pr .A/ Pr .B/

Theorem 186 ([17, 143, Theorem 1.5] BK Inequality) If events A and B are both
increasing events depending on the state of finitely many edges, then

Pr .A�B/ � Pr .A/ Pr .B/

where for two events A and B, A�B denotes the event that there exist two disjoint
sets of edges such that the first set of edges guarantees the occurrence of A and the
second set of edges guarantees the occurrence of B.

Denote by �ij the event that there is a path between vertices vi and vj, i ¤ j. Denote
by �ikj the event that there is a path between vertices vi and vj and that path passes
through the third vertex vk, where k 2 �nn fi; jg and �n is the set of indices of all
vertices. Denote by �ij the event that there is an edge between vertices vi and vj.
Denote by �ikj the event that there is a path between vertices vi and vk and there is
a path between vertices vk and vj, where k 2 �nn fi; jg. Obviously

�ikj ) �ij (13.2.4)

It is clear from the above definitions that

�ij D �ij [ �[k¤i;j�ikj
�

(13.2.5)

Let qij, i ¤ j, be the .i; j/th entry of QG, i.e., qij D Pr
�
�ij
�
. The following theorem

is obtained from the FKG inequality and the above definitions.

Theorem 187 For two distinct indices i; j 2 �n and 8k 2 �nn fi; jg

qij � max
k2�nnfi;jg

qikqkj (13.2.6)

qij � 1 � �
1 � aij

� Y
k2�nnfi;jg

�
1 � qikqkj

�
(13.2.7)

where aij D Pr
�
�ij
�
.

Proof We first prove inequality (13.2.6). It follows readily from the above defini-
tions that the event �ij is an increasing event. Due to (13.2.4) and the FKG inequality:
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Pr
�
�ij
� � Pr

�
�ikj
� � Pr .�ik/ Pr

�
�kj
�

(13.2.8)

The conclusion follows.
Now we prove the second inequality (13.2.7). We shall first show that �ikj ,

�ik��kj. That is, the occurrence of the event �ikj is a sufficient and necessary
condition for the occurrence of the event �ik��kj.

Using the definition of �ikj, occurrence of �ikj means that there is a path between
vertices vi and vj and that path passes through vertex vk. It follows that there exist
a path between vertex vi and vertex vk and a path between vertex vk and vertex vj

and the two paths do not have edge(s) in common. Otherwise, it will contradict the
definition of �ikj, noting that the definition of a path requires its edges to be distinct.
Therefore, �ikj ) �ik��kj. Likewise, �ikj ( �ik��kj also follows directly from the
definitions of �ikj, �ik, �kj and �ik��kj. Consequently

Pr
�
�ikj
� D Pr

�
�ik��kj

� � Pr .�ik/ Pr
�
�kj
�

(13.2.9)

where the inequality is a direct result of the BK inequality.
Note that the event [k2�nnfi;jg�ikj and the event �ij are independent because the

existence of a direct connection between vi and vj has no impact on the event
[k2�nnfi;jg�ikj. Therefore, using (13.2.5) and independence of edges (used in the
second step)

qij D Pr
�
�ij [ �[k2�nnfi;jg�ikj

��

D 1 � �
1 � aij

�
Pr
�
\k2�nnfi;jg�ikj

�

� 1 � �
1 � aij

� Y
k2�nnfi;jg

Pr
�
�ikj

�
(13.2.10)

� 1 � �
1 � aij

� Y
k2�nnfi;jg

�
1 � qikqkj

�
(13.2.11)

where in (13.2.10), FKG inequality and the obvious fact that �ikj is a decreasing
event are used and the last step is from (13.2.9). ut
Remark 188 Inequality (13.2.6) also provides another proof of a key relationship
used in Lemma 182. Specifically, if qij D 0, then this inequality implies that at
least one among qik and qkj must be zero. Likewise if neither qik nor qkj is zero,
then qij > 0.

When there is no edge between vertices vi and vj, the upper and lower bounds in
Theorem 186 reduce to

max
k2�nnfi;jg

qikqkj � qij � 1 �
Y

k2�nnfi;jg

�
1 � qikqkj

�
(13.2.12)
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The above inequality sheds insight on how the quality of paths between a pair
of vertices is related to the quality of paths between other pairs of vertices. It can
be possibly used to determine the most effective way of improving the quality of a
particular set of paths by improving the quality of a particular (set of) edge(s), or
equivalently what can be reasonably expected from an improvement of a particular
edge on the quality of end-to-end paths. Furthermore, an immediate consequence of
this inequality is that: if qij D 0, then at least one of qik and qkj must be 0 for all
k ¤ i; j.

The following lemma further shows that the occurrence of a certain relation
among entries of the probabilistic connectivity matrix QG can be used to derive
some topological information of the graph.

Lemma 189 If qij D qikqkj for distinct vertices vi, vj and vk, the vertex set V of
the graph G .V;E/ can be divided into three nonempty and nonintersecting sub-sets
V1, V2, and V3 such that vi 2 V1, vj 2 V3 and V2 D fvkg and any possible path
between a vertex in V1 and a vertex in V2 must pass through vk, and the converse.
Furthermore, for any pair of vertices vl and vm, where vl 2 V1 and vm 2 V3,
qlm D qlkqkm.

Proof Using (13.2.8) in the second step, it follows that

qij D Pr
�
�ijn�ikj

�C Pr
�
�ikj
�

� Pr
�
�ijn�ikj

�C qikqkj

Therefore, qij D qikqkj implies that Pr
�
�ijn�ikj

� D 0 or equivalently �ij , �ikj

Furthermore, Pr
�
�ijn�ikj

� D 0 implies that a possible path (i.e., a path with a
nonzero probability) connecting vi and vk and a possible path connecting vk and
vj cannot have any edge in common. Otherwise a path from vi to vj, bypassing vk,
exists with a nonzero probability which implies Pr

�
�ijn�ikj

�
> 0. The conclusion

follows readily that if qij D qikqkj for three distinct vertices vi, vj, and vk, the vertex
set V of the underlying graph G .V;E/ can be divided into three nonempty and
nonoverlapping sub-sets V1, V2 and V3 such that vi 2 V1, vj 2 V3 and V2 D fvkg
and a path between a vertex in V1 and a vertex in V2, if exists, must pass through vk.

Furthermore, for any pair of vertices vl and vm, where vl 2 V1 and vm 2 V3, it
is easily shown that Pr .�lmn�lkm/ D 0. Due to independence of edges and further
using the fact that Pr .�lmn�lkm/ D 0, it can be shown that

Pr .�lm/ D Pr .�lkm/ D Pr .�lk/Pr .�km/ (13.2.13)

where (13.2.13) results due to the fact that under the condition of Pr .�lmn�lkm/ D 0,
a path between vertices vl and vk and a path between vertices vk and vm cannot
possibly have any edge in common. ut
An implication of Lemma 189 is that for any three distinct vertices, vi, vj, and vk, if
a relationship qij D qikqkj holds, vertex vk must be a critical vertex whose removal
will render the graph disconnected.
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13.3 The Largest Eigenvalue of the Probabilistic
Connectivity Matrix

We now establish a measure of the quality of network connectivity. Just as the
eigenvalues of the adjacency matrix provide a deterministic measure of connectivity,
we now provide a series of arguments supporting the contention that a similar
property can be ascribed to certain eigenvalues of the probabilistic connectivity
matrix QG.

From Lemma 182, QG is a nonzero nonnegative matrix. Thus from the Perron-
Frobenius Theorem [75], its largest magnitude eigenvalue, known as the Perron-
Frobenius eigenvalue, is real and positive. Furthermore, as QG is symmetric, all its
eigenvalues are real, and its largest magnitude eigenvalue �max.QG/ is also its largest
singular value. Also from the Perron-Frobenius Theorem, should the network be
connected, i.e., QG is positive as opposed to just nonnegative, this eigenvalue is
simple.

We now argue that �max.QG/ quantifies the quality of network connectivity.
Indeed, suppose that the i-th node vi transmits xi number of distinct packets in a
time interval. This means that vi floods the packet across the entire network and each
node receiving the packet only broadcasts the packet once to its directly connected
neighbors. If the same packet is received more than once by the same node, it
is counted as one packet. Let x D Œx1; � � � ; xn�

> and let yi denote the expected
number of packets received by the i-th node, y D Œy1; � � � ; yn�

>. Then by definition:
y D QGx. As the basic purpose of any network is to transport packets from some
nodes in the network to some others, a measure of connectivity that naturally arises
is the largest size of y relative to x. One measure of the size of y is its 2-norm,
denoted by kyk2. Then, as QG is symmetric and nonnegative,

max
kxk2¤0

kyk2
kxk2 D max

kxk2¤0

p
y>yp
x>x

D max
kxk2¤0

q
x>Q>

G QGx
p

x>x

D max
kxk2¤0

s
x>Q2

Gx

x>x
D �max.QG/

It is well known that for a symmetric QG, the maximum ratio is attained when x is
the eigenvector associated with the eigenvalue �max.QG/. Observe also from Perron-
Frobenius theory [75] that as QG is nonnegative, the eigenvector associated with
�max.QG/ has all entries of the same sign, without loss of generality nonnegative.
Thus the largest value of max kxk2¤0

kyk2
kxk2 is itself attained by a x with nonnegative

elements. Thus indeed one can strengthen the equality above to state that:

max
kxk2¤0;xi�0

kyk2
kxk2 D �max.QG/
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Consequently, �max.QG/ is a natural measure of network connectivity.
There are two other approaches to characterizing �max.QG/: min-max and max-

min flow gain:

max
x>0

min
i

yi

xi
and min

x>0
max

i

yi

xi
:

Regardless of whether QG is symmetric, its largest magnitude eigenvalue, obeys
min-max and max-min type relations through the Collatz-Wielandt equalities (see
Corollary 8.1.31 in [102]). In particular,

max
x>0

min
i

yi

xi
D �max.QG/ D min

x>0
max

i

yi

xi
:

The case of using �max.QG/ as a measure of connectivity is further supported
by the following observation. When QG is positive as opposed to just nonnegative,
�max.QG/ strictly increases with increasing values of its off-diagonal elements [75].
If, on the other hand, it has zero elements, then on the face of it, it is merely
nondecreasing. However, recall from Lemma 182 and Remark 183 that if there
are zero entries in QG, the network partitions into disjoint connected components
represented by graphs Gi.Vi;Ei/, and QG itself can be expressed as QG D Ll

iD1 QGi ,
with QGi all positive. Should an element of a particular QGi increase, then so must its
largest eigenvalue. On the other hand, for vi 2 Vi and vj 2 Vj, qij D 0. Should now
this become positive, then we argue that with G0

ij D �
Vi
S

Vj;Ei
S

Ej
�
, �max.QG0

ij
/

does indeed strictly increase. Indeed suppose the new qij D q > 0. Then, from
Lemma 182, for every 0 < qij < q, the resulting QG0

ij
is positive and the result

follows.
We next establish the remarkable fact that in fact QG is a positive semidefinite

matrix. The implications of the positive semi-definiteness of QG will be explored
later. At the core of the development leading to this result is the following fact.

Lemma 190 Each off-diagonal entry of the probabilistic connectivity matrix QG is
a multiaffine function of aij. A multiaffine function is affine in each variable when
the other variables are fixed.

Proof Consider an arbitrary off-diagonal entry, qkl of QG. This is the probability that
there is a path between vertices vk and vl. This event is �kl. Enumerate the distinct
events constituting a path between vk and vl, listing first those not containing edge
eij as N�1;kl; : : : N�s;kl and then those containing edge eij as N�sC1;kl \�ij; � � � ; N�t;kl \�ij. Of
course, the event that a path exists is the intersection of the events �pq for the edges
epq along the path. Evidently,

�kl D N�1;kl [ � � � [ N�s;kl [ . N�1;kl \ �ij/ [ � � � [ . N�t;kl \ �ij/ (13.3.1)

Because every event �ij is independent of all the other edge connection events, it
is easy to verify that qkl is equal to
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Pr
� N�1;kl [ � � � [ N�t;kl

�
aij C Pr

� N�1;kl [ � � � [ N�s;kl
�
.1 � aij/ (13.3.2)

Since the probabilities multiplying aij and 1 � aij in (13.3.2) are probabilities of
events independent of the event �ij, they do not depend on aij. Thus if we hold apq

with fi; jg ¤ fp; qg constant, qkl is an affine function of aij. The same applies to
every off-diagonal element of AG. The result follows. ut
Note that Pr. N�1:kl [ � � � [ N�t;kl/ is the probability of a path between vertices vk and
vl with the original network modified by eliminating any link between vertices
fvi; vjg, while Pr. N�sC1;kl [ � � � [ N�t;kl/ is the probability of a path between the
same vertices with the original network modified by imposing a perfect connection
(aij D 1) between vertices vi and vj (equivalently the two vertices are merged); the
latter is obviously greater than or equal to the former. The associated matrices are
themselves probabilistic connectivity matrices.

Due to this multiaffine property, for k; l; i; j 2 f1; : : : ng, where k ¤ l and i ¤ j,
the following holds:

qlk D c1aij C c2 (13.3.3)

where c1 and c2 are in Œ0; 1�, are determined by the state of the set of edges in
En ˚eij

�
only, and are not affected by the state of eij; c2 D 0 implies that vl and vk

will be disconnected without the edge eij. Thus eij is a critical edge for the end-to-
end paths between the vertices vl and vk. c1 D 0 implies that the state of the edge
eij is irrelevant for the end-to-end paths between vl and vk. In fact, c1 measures the
criticality of the edge eij to the end-to-end paths between vl and vk.

Using the multiaffine property, a more efficient algorithm for computing QG

than the one suggested earlier using (13.2.1) can be constructed. Particularly,
the probabilistic connectivity matrix of a network forming a tree can be easily
computed. Therefore, the algorithm may start by first identifying a spanning
tree in G.V;E/ and computing the associated probabilistic connectivity matrix.
Then, the edges in E but outside the spanning tree can be added recursively
and the corresponding probabilistic connectivity matrix updated using (13.3.3).
Since the computational complexity of QG depends on 2jEj, let l be the number of
edges in the spanning tree, the computational complexity improves approximately
by a factor of 2l compared with the algorithm using (13.2.1) directly. The key
purpose of this chapter is to postulate and justify as valid, a measure of network
connectivity and to formulate a procedure for estimating this measure, without
having to explicitly obtain QG. Therefore, we leave out discussions for constructing
computationally efficient algorithms for computing QG from the aij and network
topology. That said, the following remark is also instructive.

Remark 191 Several papers have explored multiaffine variations. These include the
design of adaptive estimation algorithms [49–51] and stability analysis [5, 52, 200].
All explore the fact that variations are individually affine in each variable as long as
the other variables are fixed. The fact that there is an increasing relationship between
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the elements of QG and �max.QG/ and the latter depends multiaffinely on the
probabilities aij suggests the following obvious optimization. Modify one or more
aij under suitable constraints to maximize �max.QG/. The multiaffine dependence of
qij on the aij, together with the fact that QG is positive semi-definite, promises to
provide several avenues for such optimization.

The basis for these calculations is likely to be the following observation. If QG D
aijQ1G C Q2G with Q1G, Q2G independent of aij, and if x is a positive eigenvector
of QG associated with the maximum eigenvalue �max.QG/, then it is easily seen that
@�max
@aij

D x>Q1Gx
x>x

:

We now establish that QG is positive semidefinite.

Theorem 192 The matrix QG D Q>
G 2 <n�n is a positive semi-definite matrix. It is

not positive definite if and only if there exist i ¤ j, such that qij D 1.

We prove this theorem at the end of this section. For the moment we discuss its
implications. One in particular is its use in the analysis of the flooding algorithm
of the next subsection. There are also implications to the level of connectivity.
Let �max.QG/ � �2.QG/ � : : : � �min.QG/ � 0 be the eigenvalues of QG.
As all diagonal elements of QG are one, the trace of QG and hence �max.QG/ C
�2.QG/ : : :C�min.QG/ is equal to n. Thus as an easy consequence of Theorem 192,
n � �max.QG/ � 1 and 1 � �min.QG/ � 0. In the best case, QG is a matrix with
all entries equal to 1. Then, �max.QG/ D n and �2.QG/ D � � � D �min.QG/ D 0. In
the worst case, when no node is connected to any other, QG is an identity matrix.
Then, �max.QG/ D �2.QG/ D : : : D �min.QG/ D 1. Consider also the following
consequence of Lemma 182.

Lemma 193 Suppose for all i; j, aij 2 f0; 1g. Then, there is a relabeling of vertices
under which QG is a direct sum of matrices whose elements are all ones.

Proof From Lemma 182 under a reordering of vertices QG D L
i QGi with QGi all

positive. As all aij 2 f0; 1g, there is an edge between vi and vj surely when aij D 1;
or there is no edge between vi and vj surely when aij D 0. Thus either there is a path
between vi and vj surely or there is no path between vi and vj surely, i.e., for all i, j,
qij 2 f0; 1g. Thus every element of every QGi is 1. ut
This lemma thus characterizes QG when aij 2 f0; 1g for all i; j, i.e., the network is
effectively deterministic. In this case, there is an ordering of vertices for which QG

is a direct sum of square matrices of all ones. If there are m such summands, then
n � m eigenvalues of QG are 0. Of course, as noted above, in the extreme case where
all aij D 1, there are n � 1 zero eigenvalues. This also suggests that the proximity
of �min.QG/ to zero in a connected network is a measure of connectivity, as is the
number of eigenvalues that are close to zero when the network is not connected.
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13.3.1 Proof of Theorem 192

We are now ready to prove Theorem 192. To prove Theorem 192 we prove in turn
that (A) each QG is positive semidefinite; (B) that should any qij D 1 for i ¤ j then
QG cannot be positive definite; and that (C) if for all i ¤ j, 0 � qij < 1, then QG is
positive definite. First we recount Corollary 2.1 of [52] which explores the facts that
all convex combinations of positive semidefinite matrices are positive semidefinite,
and that multiaffine functions are affine in each variable, if the others are fixed.

Lemma 194 Suppose for integers n and N, P.˛/ 2 <n is a multiaffine function
of the elements of ˛ D Œ˛1; � � � ; ˛N �

>. Then, P.˛/ is positive semidefinite for all
˛i 2 Œ˛�

i ; ˛
C
i � and i 2 f1; � � � ;Ng if and only if it is positive semidefinite for all

˛i 2 f˛�
i ; ˛

C
i g and i 2 f1; � � � ;Ng.

Proof of (A) As matrices of all ones are positive semidefinite, Lemma 193 proves
that QG is positive semidefinite whenever for all i; j, aij 2 f0; 1g. The result follows
from Lemmas 190 and 194.

Proof of (B) This follows from the following lemma and the fact that a matrix with
two identical rows cannot be positive definite.

Lemma 195 Suppose for some i ¤ j, qij D 1. Then, row i and row j of QG are
identical, as are columns i and j.

Proof Note that QG is a symmetric matrix. Thus it suffices to show that the row
property holds. One has

qij D qji D qii D qjj D 1 (13.3.4)

Now consider any k … fi; jg. Using Theorem 187 and (13.3.4), qik � qijqjk D qjk

and qjk � qijqik D qik. Thus qjk D qik. ut
Proof of (C) Denote N D n.n�1/

2
; A 2 <N a vector whose elements are 0 � aij < 1,

i > j; Al 2 <N the vector whose first l elements equal the corresponding elements of
A and the rest are zeros; AC

l 2 <N the vector whose .lC1/-th element is one and the
rest identical to Al; and QG.A/ the QG formed when the aij are the elements of A.
As AN D A it suffices to show that QG.Al/ is positive definite for all l 2 f0; � � � ;Ng.

Use induction on l. Note that for every l, there is a ˛l 2 .0; 1� such that AlC1 D
˛lAl C .1 � ˛l/AC

l . Because of Lemma 190 and the fact that only the .l C 1/-th
element of the three vectors AlC1, Al and AC

l differ from each other, there holds:

QG.AlC1/ D ˛lQG.Al/C .1 � ˛l/QG.AC
l /; ˛l 2 .0; 1�: (13.3.5)

As A0 D 0, QG.A0/ D I and is positive definite. Suppose for some l 2
f0; � � � ;N � 1g, QG.Al/ is positive definite. From (A), QG.AC

l / is positive semidef-
inite. Thus (13.3.5) implies that QG.AlC1/ is positive definite.
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13.4 A Decentralized Algorithm for Finding the Largest
Eigenvalue

We now describe an algorithm for computing �max.G/ in a decentralized fashion
without having to know QG or even the individual link probabilities. We do require
the ability to experiment by introducing packets repeatedly at nodes, and measuring
how many arrive at their intended destinations. For this reason, we call the algorithm
the flooding algorithm.

Section 13.4.1 provides a recursion and a theorem that provide the conceptual
basis for the algorithm. Section 13.4.2 explains the theorem by exposing certain
properties of positive matrices. Section 13.4.3 explains how the near convergence
of this conceptual algorithm can be locally detected at each node. The recursion
in principle requires that QG be known. Section 13.4.4 provides the flooding
algorithm that under the temporal independence of the links, implements this
algorithm in a completely decentralized fashion, without having to know QG.
Section 13.4.5 discusses some practical issues and convergence rates. Section 13.4.6
has simulations. Section 13.4.7 proves a theorem in Sect. 13.4.3.

13.4.1 A Basic Recursion

We begin with a theorem on the conceptual recursion.

Theorem 196 Suppose QG D Q>
G 2 <n�n is positive. Consider zŒk� D

Œz1Œk�; � � � ; znŒk��> and the recursion,

zŒk C 1� D QGzŒk� (13.4.1)

with zŒ0� strictly positive. Then, for all i 2 f1; � � � ; ng,

lim
k!1

ziŒk C 1�

ziŒk�
D �max .QG/ (13.4.2)

Thus zŒk� converges to a positive eigenvector of QG associated with its maximum
eigenvalue. Furthermore, (13.4.1) induces ziŒkC1�

ziŒk�
, locally seen at each node, to

converge to �max .QG/.
Many variations of this theorem appear in the literature [83, 99, 184]. In most

cases it is proved under an additional normalization, namely replacing (13.4.1) by:

zŒk C 1� D QG
zŒk�

kzŒk�k (13.4.3)
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Such a normalization militates against our eventual goal of decentralization as its
implementation requires each node to know the state of all other nodes. We still
omit the proof of Theorem 196. Instead we recount properties of positive matrices
that explain this result and help derive an important refinement.

13.4.2 Properties of the Recursion

Consider the projective metric [99], p.x; y/, between two positive vectors x and y
with elements xi and yi,

p.x; y/ D log

"
maxi

xi
yi

mini
xi
yi

#
(13.4.4)

Evidently p.x; y/ � 0 with equality if and only if for a scalar ˛, x D ˛y. This metric
is scale invariant, i.e., for all positive scalar ˛; ˇ

p.˛x; ˇy/ D p.x; y/ (13.4.5)

For a strictly positive matrix such as QG there is a 0 � � < 1 such that for all
positive x; y, p .QGx;QGy/ � �p.x; y/ [99]. In fact � is independent of x and y and
depends only on QG.

Call �max.QG/ the Perron-Frobenius eigenvalue of QG and associated eigenvec-
tors Perron-Frobenius eigenvectors. Then, for a positive QG, as Perron-Frobenius
eigenvectors are positive to within a scaling, with � D Œ�1; � � � ; �n�

> a positive
Perron-Frobenius eigenvector, using (13.4.5) in (13.4.1) one has:

p .zŒk C 1�; �/ D p .zŒk C 1�; �max .QG/ �/

D p .QGzŒk�;QG�/

� �p .zŒk�; �/ (13.4.6)

Thus as 0 � � < 1,

lim
k!1 p .zŒk�; �/ D 0 (13.4.7)

Therefore, for every n > 0, there exists k1 such that for all k � k1,

0 � log

"
maxi

ziŒk�
�i

mini
ziŒk�
�i

#
� log.1C n/ (13.4.8)

Then, the following lemma connects (13.4.2) to (13.4.8).
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Lemma 197 Suppose the probabilistic connectivity matrix QG 2 <n�n is symmet-
ric and positive, and � D Œ�1; � � � ; �n�

> a Perron-Frobenius eigenvector of QG with
all elements strictly positive. Consider (13.4.1) with positive zŒ0�. Suppose that for
some ˇ � 0 there exists a k0 such that for all k � k0,

1 �
maxi2f1;��� ;ng ziŒk�

�i

mini2f1;��� ;ng ziŒk�
�i

� 1C ˇ (13.4.9)

Then, for all i 2 f1; � � � ; ng and k � k0
ˇ̌
ˇ̌ ziŒk C 1�

ziŒk�
� �max .QG/

ˇ̌
ˇ̌ � ˇ�max.QG/

Proof As QG and zŒ0� are positive so is zŒk�. Consider any k for which (13.4.9) holds.
At such a k define ˛ D mini

ziŒk�
�i
: Then, for all i 2 f1; � � � ; ng, there holds

˛�i � ziŒk� � .1C ˇ/˛�i (13.4.10)

Define �Œk� D zŒk� � ˛� and .QG�Œk�/i as the i-th element of QG�Œk�. Because
of (13.4.10), �Œk� is nonnegative. Thus, as QG is positive, QG�Œk� is nonnegative
and for each i 2 f1; � � � ; ng,

0 � .QG�Œk�/i

D .QG.zŒk� � ˛�Œk�//i
� .QG..1C ˇ/˛ � ˛//�Œk�/i
D ˇ˛�max.QG/�i (13.4.11)

As zŒk C1� D QG�Œk�C˛�max.QG/�; and �Œk� is nonnegative, from (13.4.11) for all
i 2 f1; � � � ; ng, there thus holds:

˛�max.QG/�i � ziŒk C 1� � ˛.1C ˇ/�max.QG/�i (13.4.12)

Hence (13.4.10) and (13.4.12) provide:

�ˇ�max.QG/

1C ˇ
� ziŒk C 1�

ziŒk�
� �max .QG/ � ˇ�max.QG/

ut
Identify n in (13.4.8) with ˇ in Lemma 197. Then, there exists a k1 such that for all
k � k1 and all i 2 f1; � � � ; ng:

ˇ̌
ˇ̌ ziŒk C 1�

ziŒk�
� �max .QG/

ˇ̌
ˇ̌ � n�max .QG/ (13.4.13)
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This constitutes an explanation if not a proof of Theorem 196. The convergence is
monotonic in the sense of (13.4.6).

Remark 198 Should QG be nonnegative as opposed to positive, the ratio for the
i-th element of zŒk� will converge to the largest eigenvalue of the probabilistic
connectivity matrix of the component to which the corresponding nodes belong.

13.4.3 Local Detection of Convergence

Since the convergence in (13.4.2) is asymptotic, we now explore whether each node
can detect near convergence locally. Indeed the next theorem states that should n
successive ratios ziŒkC1�

ziŒk�
be close enough for any given i, then this ratio must be

close to �max.QG/ and will remain close in subsequent iterations.

Theorem 199 Under the conditions of Theorem 196, consider, for some c > 0,
i 2 f1; � � � ; ng, ı > 0 and k0 the n inequalities:

ˇ̌
ˇ̌ ziŒk C 1�

ziŒk�
� c

ˇ̌
ˇ̌ � ı; 8k 2 fk0; k0 C 1; � � � ; k0 C n � 1g : (13.4.14)

Then, for every  > 0, there exists a ı� such that for all 0 < ı � ı�, (13.4.14)
implies for all k � k0

ˇ̌
ˇ̌ ziŒk C 1�

ziŒk�
� �max.QG/

ˇ̌
ˇ̌ �  (13.4.15)

We shall prove this Theorem in Sect. 13.4.7. While this theorem does permit the i-th
node to conclude if its ratios are close to the postulated connectivity measure, the
question remains on whether this node can also conclude that all other nodes are
also close to convergence. We now argue that though this is not true in general, it is
true for general values of the probabilities aij, and hence also for general networks.

To see this, suppose for sufficiently small , (13.4.15) holds for i D 1. Were one
to be able to conclude that this implied that p.zŒk0�; �/ were small, � being a Perron-
Frobenius eigenvector of QG, then one can conclude that (13.4.15) would hold for all
i, but possibly different, albeit small . So the issue boils down to whether (13.4.15)
implies a correspondingly small p.zŒk0�; �/?

Though a small p.zŒk0�; �/, implies a small  in (13.4.15), the reverse, is generally
but not always true. For all k � k0,

z1Œk� D e>
1 Qk�k0

G zŒk0� (13.4.16)

where e1 D Œ1; 0; � � � ; 0�>. Should the pair ŒQG; e>
1 � be completely observable

[39], i.e.,

W D 	
e>
1 ; e

>
1 QG; � � � ; e>

1 Qn�1
G


>
(13.4.17)
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be nonsingular then the zŒk0� leading to the n-successive samples in (13.4.16) is
unique. In such a case a small  in (13.4.15), with i D 1, forces a small p.zŒk0�; �/.
Consequently, each node can detect near convergence of the ratios at all other
nodes, from the near convergence of its own ratios.

For every n > 2, we now provide example networks, that (a) for a particular
choice of the probabilities aij yield a QG for which ŒQG; e>

1 � is not completely
observable; and (b) for a particular choice of the probabilities aij yield a QG for
which ŒQG; e>

1 � is completely observable.
In particular (a) shows that there are networks for which a node cannot conclude

that the near convergence of its ratios implies that other nodes are near convergence.
What is more important from a practical point of view is (b), that shows that almost
all choices of aij yield networks for which near convergence at one node implies
near convergence at all. This is so as QG and hence W in (13.4.17) is polynomial in
the aij. Thus, either W is singular for all values of aij or it is nonsingular for general
values. The network is as follows.

Example 200 For n > 2, choose the aij D aji as follows. For some 1 � ri > 0

and i 2 f1; � � � ; n � 1g there holds: a1;iC1 D ri. For all i 2 f2; � � � ; n � 1g and
j 2 fi C 1; � � � ; ng, aij D 0. Under the independence assumption,

qij D
�

rj�1 i D 1 and j 2 f2; � � � ; ng
rirj i 2 f2; � � � ; n � 1g and j 2 fi C 1; � � � ; ng (13.4.18)

Thus, e.g., for n D 4 one has

Q D

2
664

1 r1 r2 r3
r1 1 r1r2 r1r3
r2 r1r2 1 r2r3
r3 r1r3 r2r3 1

3
775

The next Lemma proves both (a) and (b) above.

Lemma 201 For n > 2, consider under 0 < ri < 1, the symmetric probabilistic
connectivity matrix with diagonal elements qii D 1 and the remaining elements
as in (13.4.18). Then, with e1 D Œ1; 0; � � � ; 0�>, the pair ŒQG; e>

1 � is completely
observable if and only if the ris are all distinct.

Proof By the Popov-Belevitch-Hautus test [39], ŒQG; e>
1 � is a completely observ-

able pair if and only if for all scalar complex �:

rank
�	

e1 �I � QG


� D n (13.4.19)

With r D Œr1; � � � ; rn�1�> and R D diagfr2i gn�1
iD1 , (13.4.18) is

QG D
�
1 r>
r I � R � rr>


(13.4.20)
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Suppose the ris are distinct, but to establish a contradiction, ŒQG; e>
1 � is not

completely observable, i.e., (13.4.19) is violated. Then, there exists a scalar complex
� and nonzero f 2 <.n�1/ such that

r>f D 0 (13.4.21)

and
�
.� � 1/I C R � rr>� f D 0I i.e.,

..� � 1/I C R/ f D 0 (13.4.22)

As ri > 0, 8i, from (13.4.21) at least two elements of f , without loss of generality
f1 and f2, are nonzero. Thus (13.4.22) yields

� D 1 � r2i 8i 2 f1; 2g (13.4.23)

which is impossible as r21 ¤ r22, establishing a contradiction.
Now suppose at least two elements of r, without loss of generality, r1 and r2,

are equal. Choose f D Œ0; 1;�1; 0; � � � ; 0�> and the scalar � as in (13.4.23). Then,
clearly e>

1 f D 0. Furthermore,

.�I � QG/ f D 	
1 r1 r2 0>

n�3

>
.r1 � r2/ D 0;

where 0n�3 is the zero vector in <n�3 (empty if n D 3). Thus (13.4.19) is violated
and ŒQG; e>

1 � is not completely observable. ut
Note that for n D 2, ŒQG; e>

1 � is completely observable if and only if q12 ¤ 0.
We have effectively shown that for almost all networks, local detection of near
convergence implies near convergence of all nodes.

13.4.4 The Flooding Algorithm

Observe, (13.4.1) requires that the i-th node knows all the qij as well as all elements
of zŒk�. We now provide an algorithm that sidesteps this need and can be used
in our probabilistic network setting provided the transmissions at different time
slots are identically and independently distributed. Formally, we make the following
assumption:

The indicator random variables Ii defined before Definition 180 are identically
and independently distributed across transmission slots.

This assumption permits us to postulate a flooding algorithm that asymptotically
approximates (13.4.1) in a totally decentralized fashion. Suppose, for some k, zŒk�
has been obtained, and in a series of simultaneous experiments the i-th node floods
the network with xi D ziŒk� number of distinct packets. Then, the expected number
of packets received by this node is the i-th entry of QGzŒk�. Now suppose for



372 13 A New Measure of Wireless Network Connectivity

some K, each node repeats this flooding operation K times. Denote by zŒk;m�; i 2
f1; : : : ; ng;m 2 f1; : : : ;Kg; the number of packets received by node vi in the m-th
repetition. Then, because of assumption of the independence of Iis, by the law of
large numbers, for sufficiently large K:

zŒk C 1� 
 1

K

KX
mD1

zŒk;m� (13.4.24)

There are clearly two approximations inherent in (13.4.24). Firstly, implicitly for
non-integer zŒk�, we quantize to the nearest vector of integers. Secondly (13.4.24)
represents a better approximation as K grows. We comment on the size of K in
Sect. 13.4.5.

Accordingly, the flooding algorithm we postulate is as follows: for some K, l D 0

and positive vector yŒl;K�, let the i-th node flood the network with yiŒl;K� number of
packets. Every node repeats this experiment K times in the l-th iteration. The number
of packets transmitted by the i-th node in the .l C 1/-th iteration is the number of
packets averaged over K transmissions, received by it in the l-th iteration. Then,

lim
l!1

�
lim

K!1
yiŒl C 1;K�

yiŒl;K�

�
D �max .QG/ (13.4.25)

In principle, the number of packets from a node increases by a factor approx-
imately equal to �max .QG/ in each iteration of (13.4.1). In a large network,
this leaves open the risk that after a modest number of iterations, the number
of packets becomes very large. As explained in Sect. 13.4.5, this may require
larger values of K for the approximation in (13.4.24) to be sufficiently good. The
implementation of (13.4.3), rather than just (13.4.1) would avoid this difficulty.
However, the normalization by kzŒk�k in (13.4.3) does not permit a decentralized
implementation. Instead we propose an optional renormalization to combat this
challenge. Specifically, should the yiŒl;K� exceed a pre-specified threshold at a
particular node i, then this node must divide the number of packets it transmits by a
pre-specified factor. It can then piggyback this scaling information in every packet it
transmits, so that all the other nodes are alerted of this scaling, and scale the number
of packets they transmit by the the same factor. If the pre-designated threshold is
chosen to be sufficiently large, the chance of missing this scaling information is
negligible. As only the convergence of ratios are at issue, there is no resulting impact
on convergence speed to speak of. As argued later, this option is rarely needed.

Despite quantization and approximate averaging, simulations in Sect. 13.4.6
show that relatively small l and K suffice for the ratios yiŒlC1;K�

yiŒl;K�
; i 2 f1; : : : ; ng;

to converge to a value that is very close to �max .QG/.
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13.4.5 Practical Issues and Convergence Rates

To avoid the effect of network delays, packets must be accumulated over large
intervals. The convergence speed of (13.4.1) is measured by �2.QG/=�max.QG/,
where �2.QG/ is the second largest eigenvalue of QG. Inter alia, this suggests
faster convergence in highly connected networks. To see why, observe that as QG

is positive semidefinite, and its trace is always n, �2.QG/ is upper bounded by
n � �max.QG/. Thus �max .QG/ lower bounds the convergence rate.

The slowest part of the convergence is determined by the law of large numbers.
In fact K is proportional to the variance of the independently and identically
distributed variables being averaged. As QG is positive semidefinite and has trace
n, �max.QG/ � 1. Thus, in (13.4.1) ziŒk� is potentially unbounded though ratios
of successive values are not. Nonetheless the flooding algorithm does not estimate
these ratios directly, but rather estimates the ziŒk�.

Just as the ziŒk�, yiŒl;K� grow in size with l. Larger they are, the larger their
initial variance. This in turn correspondingly increases the required K, thus slowing
convergence. This underscores the importance of the renormalization proposed
in Sect. 13.4.4 and used in the simulations. There are other mechanisms of
renormalization one may invoke. For example, for some predetermined integer m
all nodes scale down yiŒl;K� by a factor C whenever l is a multiple of m.

Actually, in practice renormalization is rarely needed. As shown in the simula-
tions in Sect. 13.4.6, in networks with even moderate connectivity, convergence is
so rapid that it can be detected well before packet growth becomes unmanageable.
In networks with low connectivity, �max.QG/ is relatively small, and larger number
of iterations can be sustained before packet growth becomes so large as to require
normalization.

13.4.6 Simulation Studies

The simulation shown in Figs. 13.3 and 13.4 involves six nodes, and K D 10. Within
just seven iterations, the ratio (13.4.25) converges to within half a percent of the true
�max .QG/.

Figure 13.5 considers a network with 50 nodes where aijs, 1 � i < j � 50,
are drawn uniformly from Œ0;P�. Varying P, which controls network connectivity,
illustrates the effect of connectivity to convergence speed. Note that when the
number of nodes is equal to 50, the number of edges is equal to 1225. It becomes
computationally prohibitive to compute QG and �max .QG/ whose computational
complexity increases approximately with the number of edges according to 2jEj with
jEj being the number of edges. Therefore, in the figure we use yiŒ10�

yiŒ9�
averaged over 50

nodes as an approximation of �max .QG/. Furthermore, as explained in Sect. 13.4.4,
to make the algorithm more efficient, whenever the number of packets flooded by a
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Fig. 13.3 An illustration of the convergence of the ratio yiŒlC1�

yiŒl�
to �max .QG/. The simulation result

is obtained from a random network with six nodes. aijs, 1 � i < j � 6, are drawn uniformly,
randomly, and independently from Œ0; 1�. K is chosen to be 10. The horizontal axis is the number
of iterations and the vertical axis is the difference between yi ŒlC1�

yi Œl�
and �max .QG/. Since there are

six nodes, six curves are shown in the figure corresponding to the value of yi ŒlC1�

yi Œl�
for each of the

six nodes

node in an iteration exceeds 5000, the number of packets flooded by all nodes in the
next iteration is divided by a common factor equal to the number of nodes.

A feature of note is that foreshadowed at the end of Sect. 13.4.5. Observe in
Fig. 13.5 that even with P D 0:5, representing a network of moderate connectivity,
convergence is virtually immediate. When P > 0:5, this convergence occurs by
l D 1, obviating the need for renormalization.

13.4.7 Proof of Theorem 199

We conclude this subsection by proving Theorem 199 which requires the following
lemma.

Lemma 202 Suppose F D F> 2 <n�n is positive and h 2 <n is nonnegative.
Suppose also that there exists a  2 <n such that:

	
h>; h>F; � � � ; h>Fn�1
>  D 0 (13.4.26)
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Fig. 13.4 A further illustration of the convergence of the ratio yi ŒlC1�

yi Œl�
to �max .QG/. The simulation

result is obtained from a random network with six nodes. aijs, 1 � i < j � 6, are drawn uniformly,
randomly, and independently from Œ0; 1�. K is chosen to be 10. The horizontal axis is the number
of iterations and the vertical axis is the average absolute difference between yiŒlC1�

yiŒl�
and �max .QG/,

i.e., j yi ŒlC1�

yi Œl�
��max .QG/ j averaged over six nodes. Furthermore the simulation is repeated 50 times

and each point in the curve corresponds to the average value over 50 simulations

Consider any eigenvector !i of F, other than the Perron-Frobenius eigenvector, and
a nonzero � 2 <n that is given by ˛ C ˇ!i for some constants ˛; ˇ. Then, � must
have at least one element negative and another positive.

Proof As F D F>, its eigenvalues are real and the eigenvectors can be chosen to
form an orthonormal basis. Suppose �1 > �2 � � � � � �n, where the strictness
of the first inequality is a consequence of F being positive. Suppose !i is a unit
norm eigenvector corresponding to �i, with at least one element positive. From the
Perron-Frobenius theorem !1 is positive.

Suppose � is a linear combination of  with some !i, i 2 f2; � � � ; ng. To
establish a contradiction, suppose all elements of � ¤ 0 are nonnegative. Define the
orthogonal matrix U D 	

!1 �



with � D 	
!2; � � � ; !n



. Observe:  D UU> DPn

iD1 !i
�
U> 

�
i, where

�
U> 

�
i denotes the i-th element of U> . Now consider

two cases.

Case I
�
U> 

�
1

D 0: Then,  is in the range space of �. As � is a linear
combination of  and a column of �, � is in the range space of � as well. Now
as every column of � is orthogonal to !1, so must be � . Then as !1 is positive,
� cannot be nonnegative and nonzero, establishing a contradiction.
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P=0.1, λ
max

=39.9650

P=0.25, λ
max

=49.8629

P=0.5, λ
max

=49.9999

Fig. 13.5 A further illustration of the convergence of the ratio yi ŒlC1�

yi Œl�
to �max .QG/. The simulation

result is obtained from a random network with 50 nodes. aijs, 1 � i < j � 50, are drawn uniformly,
randomly, and independently from Œ0;P�. K is chosen to be 10. The horizontal axis is the number
of iterations and the vertical axis is the average absolute difference between yiŒlC1�

yiŒl�
and �max .QG/,

i.e., j yi ŒlC1�

yi Œl�
��max .QG/ j averaged over 50 nodes. Furthermore the simulation is repeated 10 times

and each point in the curve corresponds to the average value over 10 simulations. As P increases
above 0:5, the ratio converges to the true value of �max .QG/ D 50 immediately in the first iteration

Case II
�
U> 

�
1

¤ 0: Observe that F D UƒU>, with ƒ D diagf�1; � � � ; �ng.
Thus using [39], (13.4.26) implies for all t:

0 D h>eFt D h>UeƒtU> D
NX

iD1

�
h>U

�
i

�
U> 

�
i e�it

As �1 ¤ �i, for all i 2 f2; � � � ; ng, this in particular implies that�
h>U

�
1

�
U> 

�
1

D 0, i.e., 0 D �
h>U

�
1

D h>!1: As h ¤ 0 is nonnegative
and !1 is positive, this cannot be true.

ut
We now prove Theorem 199 by showing in turn the following: for small enough ı,
(A) c in (13.4.14) is close to an eigenvalue of QG; (B) that this is �max.QG/; and (C)
that subsequent ratios ziŒkC1�

ziŒk�
remain close to �max.QG/.
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Proof of (A) With ei a vector with i-th element 1 and rest 0,

ziŒk� D e>
i Qk

GzŒ0� 8k � 0 (13.4.27)

Because of (13.4.14), there exist jıij < ı, such that for all k 2 fk0; � � � ; k0Cng, there
holds:

ziŒk� D
8<
:

kY
jDk0

.c C ıj/

9=
; ziŒk0� (13.4.28)

Suppose the characteristic polynomial of QG is given by: det .�I � QG/ D �n �Pn�1
iD0 ˛i�

i: Then

Qn
G D

n�1X
iD0

˛iQ
i
G (13.4.29)

ut
From (13.4.28), (13.4.27) and (13.4.29), there obtains

8<
:

nY
jDk0

.c C ıj/

9=
; ziŒk0�

D ziŒk0 C n�

D e>
i Qk0Cn

G zŒ0�

D e>
i

 
n�1X
lD0

˛lQ
l
G

!
Qk0

G zŒ0�

D
n�1X
lD0

˛le
>
i Qk0Cl

G zŒ0�

D
n�1X
lD0

˛lziŒl C k0�

D
0
@

n�1X
lD0

˛l

8<
:

k0ClY
jDk0

.c C ıj/

9=
;

1
A ziŒk0�

A positive zŒ0� implies zŒk� is positive for all k > 0. Thus:

(
k0CnY
iDk0

.c C ıi/

)
D
 

n�1X
lD0

˛l

(
k0ClY
iDk0

.c C ıi/

)!
(13.4.30)
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As the roots of a monic polynomial vary continuously with its coefficients, with
�max .QG/ D �1 > �2 � � � � � �n the eigenvalues of QG, for every  > 0 there
exists a ı� such that for all 0 < ı � ı� under (13.4.14)

c 2
n[

iD1
Œ�i � ; �i C � (13.4.31)

Proof of (B) We shall now show that in fact for every  > 0 there exists a ı� such
that for all 0 < ı � ı� under (13.4.14) c 2 Œ�1 � ; �1 C �.

Suppose instead that for some l 2 f2; � � � ; ng, c 2 Œ�l � ; �l C �.
As (13.4.27) holds for all k 2 fk0; � � � ; k0 C n � 1g, under (13.4.17) we have	
ziŒk0� � � � ziŒk0 C n � 1�
 D z>Œk0�W>: Suppose � is an eigenvector of QG

corresponding to �l, and �i is its i-th element. Then:
	
�i � � � �k0Cn�1

l �i


 D �>W>:
Then, a standard continuity argument shows that for every  there exists a ı� such
that for all 0 < ı � ı� under (13.4.14)

zŒk0� D  C �C e; kek � ; and W D 0 (13.4.32)

As zŒ0� is positive, so is zŒk0�. Yet, because of Lemma 202,  C � has at least one
negative element. Thus, because of (13.4.32) for sufficiently small , zŒk0� has at
least one negative element.

Proof of (C) Thus with � a Perron-Frobenius eigenvector of QG, and  obey-
ing (13.4.32), for every  there exists a ı� such that for all 0 < ı � ı�
under (13.4.14), (13.4.32) holds. Thus

e>
i Qm

G D 0I 8m (13.4.33)

Now consider the alternative recursion: sŒk C 1� D QGsŒk�I sŒk0� D �C e: Because
of (13.4.33) for all k � k0,

ziŒk� D siŒk� (13.4.34)

Furthermore, as � is a Perron-Frobenius eigenvector, for every  there exists a ı�
such that for all 0 < ı � ı� under (13.4.14), p.sŒk0�; �/ � log.1C /. Consequently
from (13.4.6) and Lemma 197 for every  there exists a ı� such that for all 0 <
ı � ı� under (13.4.14) the following holds for all j 2 f1; � � � ; ng and k � k0:ˇ̌
ˇ sjŒkC1�

sjŒk�
� �max .QG/

ˇ̌
ˇ � �max .QG/ : The result follows as this also holds for j D i,

�max .QG/ is finite and (13.4.34).
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13.5 Notes and Further Readings

In this chapter, we have considered the probabilistic connectivity matrix QG as a
tool to measure the quality of network connectivity. Key properties of this matrix
and their relation to the quality of network connectivity have been demonstrated. In
particular, the off-diagonal entries of the probabilistic connectivity matrix provide
a measure of the quality of end-to-end connections. We have provided theoretical
analysis supporting the use of the largest eigenvalue of QG as a measure of the
quality of overall network connectivity. Our analysis compares networks with the
same number of nodes. For networks with different number of nodes, the largest
eigenvalue of QG normalized by the number of nodes may be used as the quality
metric. A flooding algorithm is presented for experimentally estimating the largest
eigenvalue in a decentralized fashion, without knowledge of the individual link
probabilities or the network topology.

Inequalities between the entries of the probabilistic connectivity matrix have
been established. These may provide insights into the correlations between quality
of end-to-end connections. We have also shown that QG is positive semidefinite
and its off-diagonal entries are multiaffine functions of link probabilities. These
two properties should facilitate optimization and robust network design, e.g.,
determining the link that maximally impacts network quality, and determining
quantitatively the relative criticality of a link to either a particular end-to-end
connection or to the entire network.

We assume that the links are symmetric and independent. We expect that our
analysis can be extended with nontrivial work to the case where the assumption
on symmetric links is removed. We conjecture that the largest singular value,
as opposed to the largest eigenvalue of QG is a more appropriate measure of
connectivity. Relaxing the independence assumption requires more work. Yet, we
are encouraged by the fact that the elements of QG, being probabilities of union of
edge events, are multiaffine functions of the aij and the conditional link probabilities,
as P.A

S
B/ D P.A/ C P.B/ � P.BjA/P.A/. Thus we still expect all the results

in Sect. 13.3 to hold, though the proof may be nontrivial. In real applications
link correlations may arise due to both physical layer correlations and correlations
caused by traffic congestion.

Another implicit assumption in the chapter is that traffic is uniformly distributed
and traffic between every source–destination pair is equally important. If this is
not the case, a weighted version of the probabilistic connectivity matrix can be
contemplated. Whether our results can be extended to a weighted probabilistic
connectivity matrix is an open issue.

The research most related to the work in this chapter is possibly the work of
Brooks et al. [32]. In [32] Brooks et al. considered a probabilistic version of the
adjacency matrix and defined a probabilistic adjacency matrix as a n � n square
matrix M whose .i; j/-th entry mij represents the probability of having a direct
connection between distinct nodes i and j, and mii D 0. They observed that the
probability that there exists at least one walk of length z between nodes i and j is mz

ij,
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where mz
ij is the .i; j/-th entry of M˝M˝� � �˝M (z times). Here C , A˝B is defined

by Cij D 1� Q
l¤i;j

�
1 � AilBlj

�
where Aij, Bij and Cij are the .i; j/-th entries of the n�n

square matrix A, B, and C, respectively and the operator ˝ is associative, so that
powers are well-defined. Obviously, the existence of a walk implies the existence of
a path and conversely. Furthermore, the existence of a walk of length z implies the
existence of a path of length smaller than or equal to z. Considering that in a walk,
an edge may appear more than once whereas in a path, all edges are distinct, it is
not trivial to use their result to derive the probability of existence of a path or the
probability of existence of a path of a particular length.
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Chapter 14
Applications of Connectivity Studies

Abstract Connectivity studies play a vital role in the design, deployment, and man-
agement of a network. Furthermore, connectivity of a network conveys topological
information of the network, which can be subsequently used to infer topology-
related information of the network, e.g., location of nodes and boundary of the
network. In this chapter, we give three examples on the applications of the connec-
tivity studies. The first example is on the analysis of two key performance measures,
viz., the access probability and the connectivity probability, of vehicular networks.
The analysis reveals the tradeoffs between key system parameters, such as distance
between vehicular infrastructure, e.g., base stations (BS) and road side units, vehicle
density, transmission ranges of a BS and a vehicle, and their collective impact on the
access probability and the connectivity probability under different communication
channel models. The analysis enables network designers and operators to effectively
improve network planning, deployment, and radio resource management. In the
second example, we demonstrate the use of connectivity information to estimate
the distance between a pair of neighboring nodes. Such distance estimates can be
subsequently used to derive the relative location of nodes. In the third example,
we introduce a category of connectivity-based wireless localization schemes that
estimate the location of nodes directly using the connectivity information, without
the need to first estimating the distances between particular pairs of neighboring
nodes.

Any communication network is essentially used to transport packets from some
nodes to other nodes in the network. Connectivity is a prerequisite to achieving
this function. Therefore, connectivity studies play a vital role in the design,
deployment, and management of a network. Furthermore, in wireless networks, a
direct connection can only occur between two nearby nodes. Therefore, a node being
directly connected to another node reveals information on the relative positions
of the two nodes. More generally, connectivity of a network conveys topological
information of the network, which can be subsequently used to infer topology-
related information of the network, e.g., location of nodes and boundary of the
network.

© Springer International Publishing AG 2017
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In this chapter, we give three examples on the applications of the connectivity
studies. The first example is on the analysis of two key performance measures,
viz., the access probability and the connectivity probability, of vehicular networks.
The analysis reveals the tradeoffs between key system parameters, such as distance
between vehicular infrastructure, e.g., base stations (BS) and road side units, vehicle
density, transmission ranges of a BS and a vehicle, and their collective impact on the
access probability and the connectivity probability under different communication
channel models. The analysis enables network designers and operators to effectively
improve network planning, deployment, and radio resource management. In the
second example, we demonstrate the use of connectivity information to estimate
the distance between a pair of neighboring nodes. Such distance estimates can be
subsequently used to derive the relative location of nodes. In the third example,
we introduce a category of connectivity-based wireless localization schemes that
estimate the location of nodes directly using the connectivity information, without
the need to first estimating the distances between particular pairs of neighboring
nodes.

14.1 Access and Connectivity Properties of Vehicular
Networks

Vehicular networks are a type of application-oriented networks deployed along
roads for safety and emergency information dissemination, entertainment content
distribution, and road traffic data collection and communication. A vehicular
network is a hybrid wireless network that supports both infrastructure-based and ad
hoc communications. Specifically, vehicles on the road can communicate with each
other through a multi-hop ad hoc path. They can also access the Internet and other
broadband services via the roadside infrastructure, i.e., base stations (BSs), road side
units (RSUs), or access points (APs) along the road. When a vehicle moves outside
the radio coverage area of a BS, it will identify and use its neighboring vehicles,
if exist, as relays to access the roadside infrastructure. These types of Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications have received
significant interests from both academia and industry.

In this section, we shall develop an analytical model to study the access
probability (for user satisfaction analysis) and the connectivity probability (for
service coverage analysis) for infrastructure-based vehicular networks, wherein
both one-hop (direct access) and two-hop (via a relay) communications between
a vehicle and the infrastructure (i.e., a BS or a RSU) are supported. A general
random connection model is first used to investigate the impact of different system
parameters, i.e., inter-BS distance (or BS density), vehicle density, radio coverage
ranges of BSs and vehicles, on key performance metrics, i.e., user access probability
and service connectivity probability. The analysis is then applied to two widely
used communication channel models, i.e., the unit disk connection model and
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Fig. 14.1 An infrastructure-based vehicular network

the log-normal connection model, as specific examples of the general random
connection model. This research enables us to improve the access probability and
the connectivity probability in vehicular networks, and thereby support reliable
V2I and V2V data transmissions in a number of applications and services, such as
emergency messaging service, mobile Internet access, and on-road entertainments.

14.1.1 System Model

We consider an infrastructure-based vehicular network, as shown in Fig. 14.1, where
a number of BSs are uniformly deployed along a long road, while other vehicles
are distributed on the road randomly according to a homogeneous Poisson point
process. We analyze the access probability, i.e., the probability that an arbitrary
vehicle can access its nearby BSs within two hops, and the connectivity probability,
i.e., the probability that all vehicles can access at least one BS within two hops, of
the network by investigating a subnetwork bounded by two adjacent base stations.
Here the limitation to two hops comes from the relevant technical standards, e.g.,
IEEE 802.11p standard, and the fact that in a wireless multi-hop network, end-to-
end communication quality deteriorates significantly with even a modest increase
in the number of hops. Let L be the Euclidean distance (in meters) between two
adjacent BSs and � be the vehicle density measured in vehicles per meter. Since the
vehicles are assumed to be Poissonly distributed with density �, discussion on the
distribution of the number of vehicles on the road is only meaningful if we restrict
to the (random) number of vehicles in a specific section of the road, and we call any
section of the road a road segment. For a road segment with length x, the number
of vehicles on that road segment is then a Poisson random variable with mean �x. It
follows that the probability that there are k vehicles on a road segment of x meters
is given as

f .k; x/ D .�x/ke��x

kŠ
; k � 0 (14.1.1)

Since we investigate a subnetwork bounded by two adjacent BSs, the probability
that there are k vehicles on the road segment bounded by two adjacent BSs is then
f .k;L/.
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Assuming a general channel model C, let gCv .x/ be the probability that two
vehicles separated by a Euclidean distance x are directly connected. Similarly,
denote by gCb .x/ the probability that a vehicle and a BS separated by a Euclidean
distance x are directly connected. We assume that the event that a pair of vehicles
(or a vehicle and a BS) are directly connected is independent of the event that
another distinct pair of vehicles (or a vehicle and a BS) are directly connected.
That is, the event that two vehicles (or in the similar case, between a vehicle
and a BS) are directly connected is only determined by the location of the two
vehicles and is not affected by the presence or absence of connections between
other pairs of vehicles. Although field measurements in real applications seem
to indicate that connections between different pairs of geographically/frequency
proximate wireless nodes are correlated [4, 41, 186], the independence assumption
is generally considered appropriate for far-field transmission and has been widely
used in the literature under many channel models including log-normal connection
model.

We also assume that gCb .x/ � gCv .x/ for any x � 0. This assumption is justified
because it is often the case that a BS can not only transmit at a larger transmission
power than a vehicle, it can also be equipped with more sophisticated antennas,
which make it more sensitive to the transmitted signal from a vehicle.

14.1.2 Analysis of Access and Connectivity Probabilities

Assume that the subnetwork being considered is placed at Œ0;L�. The two BSs
at both ends of the subnetwork are labeled as BS1 and BS2 and are at 0 and L
respectively. Denote by G.L; �; C/ the subnetwork with length L, vehicle density
�, and channel model C. We investigate the access probability pa that an arbitrary
vehicle in G.L; �; C/ can access either BS (either BS1 or BS2). We also investigate
the probability pc that all vehicles in G.L; �; C/ are connected to at least one of the
BSs at both ends of the subnetwork.

A vehicle is said to be located at x if its Euclidean distance to BS1 is x. The
probabilities that a vehicle located at x is not directly connected to BS1 and BS2
are 1 � gCb .x/ and 1 � gCb .L � x/ respectively. Because the event that a vehicle is
not directly connected to BS1 and the event that the same vehicle is not directly
connected to BS2 are independent, the probability that the vehicle is directly
connected to either BS1 or BS2 is then

p1.x/ D 1 � .1 � gCb .x//.1 � gCb .L � x// (14.1.2)

In order to derive pa and pc we need the following lemmas.

Lemma 203 Let K1 be the set of vehicles in the subnetwork G.L; �; C/ which are
directly connected to either BS1 or BS2, then K1 has an inhomogeneous Poisson
distribution with density �p1.x/ where p1.x/ is given by (14.1.2).

Lemma 203 is an easy consequence of Theorem 3.
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Lemma 204 Let p2.x/ be the probability that a vehicle located at x in G.L; �; C/ is
directly connected to at least one vehicle in K1, then

p2.x/ D 1 � e� R L
0 gCv .kx�yk/�p1.y/dy (14.1.3)

where p1.y/ is given by (14.1.2).

Proof Imagine we partition Œ0;L� into L=dy nonoverlapping intervals of differential
length dy. Since dy is a very small value, the probability that there exist more than
one vehicles within each interval of length dy can be ignored and the probability that
there exists exactly one vehicle within dy is �dy. The probability that there exists a
vehicle in Œy; y C dy� which is also in K1 is then given by �p1.y/dy. Note that the
vehicles at x and y are directly connected to each other with probability gCv .kx�yk/.
Therefore, the probability that a vehicle at x is directly connected to a vehicle in K1
and is located in Œy; y C dy� is gCv .kx � yk/�p1.y/dy.

Let h.x; y/ denotes the probability that the vehicle at x is not directly connected
to any of the vehicles in K1 located within Œ0; y�. Because the events that distinct
pairs of vehicles are directly connected are independent, the event that the vehicle
at x is not directly connected to any of the vehicles in K1 located within Œ0; y�
is independent of the event that the same vehicle is not directly connected to the
vehicle in K1 located within Œy; y C dy� (if there is any). We have

h.x; y C dy/ D h.x; y/.1 � gCv .kx � yk/�p1.y/dy/ (14.1.4)

where the second term on the right-hand side of (14.1.4) is the complement of the
probability that a vehicle at x is directly connected to a vehicle in K1 and located in
Œy; y C dy�. Equation (14.1.4) leads to

dh.x; y/ D �h.x; y/gCv .kx � yk/�p1.y/dy (14.1.5)

Therefore, the probability that a vehicle at x is not directly connected to any vehicle
in K1 is

h.x/ D e� R L
0 gCv .kx�yk/�p1.y/dy (14.1.6)

The result follows. ut
The following two theorems give the access probability pa and the connectivity
probability pc respectively.

Theorem 205 Denote by pa.x/ the access probability of a vehicle at x, i.e., the
probability that the vehicle at x is connected to either BS1 or BS2 in at most two
hops. Then

pa.x/ D 1 � .1 � p1.x//.1 � p2.x// (14.1.7)

where p1.x/ is given by (14.1.2) and p2.x/ is given by (14.1.3).
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Proof The result follows readily from the observation that the event that a vehicle
at x is directly connected to either BS1 or BS2 is independent of the event that the
same vehicle is directly connected to at least one vehicle in K1. ut
Theorem 206 Denote by pc the connectivity probability of G.L; �; C/, i.e., the
probability that all vehicles in the subnetwork G.L; �; C/ are connected to either
BS1 or BS2 in at most two hops. Assume that the event that a vehicle is connected
to either BS1 or BS2 in at most two hops is independent of the event that another
vehicle is connected to either BS1 or BS2 in at most two hops. Then

pc D e� R L
0 �.1�pa.x//dx (14.1.8)

where pa.x/ is given by (14.1.7).

Proof Let K2 be the set of vehicles in G.L; �; C/ which are connected to either BS1
or BS2 in exactly two hops. Together with the definition of K1 in Lemma 203, let
K1 C K2 D Kn.K1CK2/ be the set of vehicles in G.L; �; C/which are not connected
to either BS1 or BS2 in at most two hops. Apply the thinning procedure for K, i.e.,
consider a realization of K and remove each vehicle located at x independently from
this realization with probability pa.x/. The resulting set of vehicles can be viewed
as a realization of K1 C K2 under our assumption that the event that one vehicle is
connected to either BS in two hops is independent of the event that another vehicle is
connected to either BS in two hops, and the probability that vehicle at x is connected
to either BS in two hops is pa.x/. Using the same technique as that used in the proof
of Lemma 203, it can be readily shown that K1 C K2 has an inhomogeneous Poisson
distribution with density �.1 � pa.x//. Then, all vehicles G.L; �; C/ are connected
to either BS1 or BS2 in at most two hops if and only if N .K1 C K2/ D 0 where
N .K1 C K2/ denotes the number of vehicles in the set K1 C K2. The result follows.ut
Note that Theorem 206 only gives an approximate result for the connectivity
probability because of the independence assumption. The following lemma proves,
in a way, that the event that a vehicle is connected to either BS1 or BS2 in at most
two hops is not independent of the event that another vehicle is connected to either
BS1 or BS2 in at most two hops.

Lemma 207 Let h.x/ D 1 � p2.x/ be the probability that a vehicle at x is not
directly connected to any vehicle in K1. Let h.x1; x2/ be the probability that two
vehicles, at x1 and x2 respectively, are not directly connected to any vehicle in K1.
Then, h.x1; x2/ � h.x1/h.x2/.

Proof Let h.x1; x2I y/ denotes the probability that two vehicles, at x1 and x2
respectively, are not directly connected to any vehicle in K1 located in Œ0; y�. Using
the similar argument in (14.1.4), we have

h.x1; x2I y C dy/ D h.x1; x2I y/k.x1; x2I y/ (14.1.9)

where

k.x1; x2I y/ D .1 � gCv .kx1 � yk//.1 � gCv .kx2 � yk//�p1.y/dy C .1 � �p1.y/dy/
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The first term on the right-hand side of k.x1; x2I y/ is the probability there is a vehicle
in K1 located in Œy; y C dy� and both vehicles in x1 and x2 are not directly connected
to it. The second term on the right-hand side of k.x1; x2I y/ is the probability that
there is no vehicle in K1 located in Œy; y C dy�. Expanding the right-hand side of
k.x1; x2I y/ we have

k.x1; x2I y/ D 1 � gCv .kx1 � yk/�p1.y/dy

� gCv .kx2 � yk/�p1.y/dy

C gCv .kx1 � yk/gCv .kx2 � yk/�p1.y/dy

Using the same approach in Lemma 204, we obtain

h.x1; x2/ D e� R L
0 ŒgCv .kx1�yk/CgCv .kx2�yk/��p1.y/dy

� e
R L
0 gCv .kx1�yk/gCv .kx2�yk/�p1.y/dy

� e� R L
0 ŒgCv .kx1�yk/CgCv .kx2�yk/��p1.y/dy

D h.x1/h.x2/

where the last step results from (14.1.6). ut
Before obtaining the exact result of the connectivity probability, we introduce some
properties in the following lemma.

Lemma 208 Let pc.y/ be the connectivity probability of G.L; �; C/ conditioned on
that the number of vehicles directly connected to either BS is n and they are located
at y D fy1; y2; � � � ; yn W 0 � yi � L; 1 � i � ng. Let pY.y/ be the probability density
function of y conditioned on that there are n vehicles directly connected to either
BS. The following properties hold.

(i)pY.y/ D
nY

iD1

p1.yi/R L
0

p1.x/dx
(14.1.10)

(ii)pc.y/ D e� R L
0 �.1�p1.x//

Qn
iD1.1�gCv .kx�yik//dx (14.1.11)

Proof For n D 1, pY.y1/ D p1.y1/R L
0 p1.x/dx

is the probability density function that a vehicle

in K1 is located at y1. Since the events corresponding to p1.yi/ and p1.yj/ respectively
are mutually independent for i ¤ j, the result follows for (14.1.10).

For (14.1.11), note that a vehicle at x is not connected to any BS in at most two
hops if it is not directly connected to any BS (the probability is 1 � p1.x/) and it is
not directly connected to vehicles which are located at y given that these vehicles
are in K1 (the probability is 1 � gCv .kx � yik/ for 1 � i � n). That is, vehicle at x
cannot access any BS in at most two hops with probability

.1 � p1.x//
nY

iD1
.1 � gCv .kx � yik// (14.1.12)
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Equation (14.1.12) is valid when x … y. When x D yj for arbitrary j, we assume that
gCv .0/ D 1. This implies that pa.xjy/ D 0. This treatment allows (14.1.12) to be still
valid when x 2 y.

Applying the thinning procedure and the technique used in Lemma 203, we have
the number of vehicles which are neither directly connected to any BS nor directly
connected to any of the vehicles at y is an inhomogeneous Poisson random variable
with density �.1 � p1.x//

Qn
iD1.1 � gCv .kx � yik//. The result readily follows. ut

Theorem 209 Denote by pc the connectivity probability of G.L; �; C/, i.e., the
probability that all vehicles in the subnetwork G.L; �; C/ are connected to either
BS1 or BS2 in at most two hops. Then,

pc D
1X

nD0
Pr.N .K1/ D n/

�Z

Œ0;L�n
pc.y/pY.y/dy


(14.1.13)

where pc.y/ and pY.y/ are given by Lemma 208, Pr.N .K1/ D n/ is given by
Lemma 203. When n D 0, we declare

Z

Œ0;L�n
pc.y/pY.y/dy

ˇ̌
ˇ̌
nD0

D pc.y/pY.y/jnD0

D e� R L
0 �.1�p1.x//dx

Proof Equation (14.1.13) directly follows from the total probability theorem, so the
details are omitted here. ut
Equation (14.1.13) gives an exact formula for the connectivity probability which
does not rely on the assumption that the event that a vehicle is connected to either
BS in two hops and the event that another vehicle is connected to either BS in
two hops are independent. However (14.1.13) is much more complicated than the
approximate result in (14.1.8). In many situations, (14.1.8) provides a reasonably
accurate result for the connectivity probability. Therefore, we include both results.

14.1.3 Performance Evaluation Under Specific Connection
Models

Based on the analysis in Sect. 14.1.2, we further derive and compare in this
subsection the access probability and connectivity probability performance under
two specific connection models, i.e., the unit disk connection model and the log-
normal connection model.
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14.1.3.1 Unit Disk Connection Model

In the unit disk connection model U , assume that two vehicles are directly connected
if and only if their Euclidean distance is less than or equal to r; assume that a vehicle
and a BS are directly connected if and only if their Euclidean distance is not more
than R. In other words,

gUv .x/ D
(
1 if x � r

0 otherwise;
gUb .x/ D

(
1 if x � R

0 otherwise:

where r and R are predetermined values, known as the transmission ranges.
Typically we have R > r. Applying the above equations into (14.1.2), (14.1.3),
and (14.1.7) we obtain the access probability under the unit disk model U :

(1) For 0 < L � 2R,
we have p1.x/ D 1 implies that pa.x/ D 1 for x 2 Œ0;L�. Hence,

pa D 1

(2) For 2R < L � 2R C r,
we have p1.x/ is 0 when x 2 .R;L � R/, and 1 otherwise. When x 2 .R;L �
R/, (14.1.3) becomes

p2.x/ D 1 � e� R R
0 gCv .kx�yk/�dy�R L

L�R gCv .kx�yk/�dy

D 1 � e� R R
x�r �dy�R xCr

L�R �dy

D 1 � e��.2RC2r�L/

So substituting p2.x/ into (14.1.7), it is obtained that

pa D 2R

L
C L � 2R

L
.1 � e��.2RC2r�L//

D 1 � L � 2R

L
e��.2RC2r�L/

(3) For 2R C r < L � 2R C 2r,
we have for x 2 .R;L � R/, (14.1.3) becomes

p2.x/ D 1 � e� R R
0 gCv .kx�yk/�dy�R L

L�R gCv .kx�yk/�dy

D 1 � e� R R
x�r �dy�R xCr

L�R �dy
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So substituting p2.x/ into (14.1.7), it follows that

pa D 2R

L
C 1

L

Z L�R�r

R
.1 � e��.RCr�x//dx

C 1

L

Z RCr

L�R�r
.1 � e��.2RC2r�L//dx

C 1

L

Z L�R

RCr
.1 � e��.RCrCx�L//dx

D 1C 2

�L
.e��r � e��.2RC2r�L//

� 2R C 2r � L

L
e��.2RC2r�L/

(4) For L > 2R C 2r,
From (14.1.3)

p2.x/ D

8
ˆ̂<
ˆ̂:

1 � e� R R
x�r �dy D 1 � e��.RCr�x/ when x 2 .R;R C r�

1 � e� R xCr
L�R �dy D 1 � e��.RCrCx�L/ when x 2 ŒL � R � r;L � R/

0 when x 2 .R C r;L � R � r/

Substituting p2.x/ into (14.1.7):

pa D 2R

L
C 1

L

Z RCr

R
.1 � e��.RCr�x//dx

C 1

L

Z L�R

L�R�r
.1 � e��.RCrCx�L//dx

D 2R C 2r

L
C 2.e��r � 1/

�L

To derive the equations for the connectivity probability (exact result), we first look
at Lemma 208. Under the unit disk connection model, p1.x/ is 1 when x 2 Œ0;R� [
ŒL � R;L� and zero otherwise. Hence, (14.1.10) becomes

pY.y/ D 1

.min.2R;L//n
(14.1.14)

when yi 2 Œ0;R� [ ŒL � R;L�;8yi, and zero otherwise. Equation (14.1.11) becomes

pc.y/ D e� R L�R
R �

Qn
iD1.1�gCv .kx�yik//dx (14.1.15)
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Note that
Qn

iD1.1 � gCv .kx � yik// is 1 when kx � yik > r for all yi. For L � 2R,
we can easily obtain pc from (14.1.13) by substituting (14.1.14) and (14.1.15) into it
(will be shown later). To obtain the result for L > 2R, the following transformation
will simplify the arithmetic work.

Let Sa (and Sb) be the set of vehicles in Œ0;R� (and ŒL�R;L�) which, by definition,
are also in K1. Let N .Sa/ (and N .Sb/) be the number of vehicles in Sa (and Sb). Note
that Sa [ Sb D K1 and N .Sa/C N .Sb/ D N .K1/. Let ya (and yb) be the location of
the vehicle in Sa (and Sb) which is furthest from BS1 (and BS2). That is,

ya D
(
0 if Sa D ;
maxfy W y 2 Sag otherwise;

(14.1.16)

yb D
(

L if Sb D ;
minfy W y 2 Sbg otherwise:

(14.1.17)

Therefore, the cumulative distribution function of pa is

Pr.ya � ymax/ D Pr.yi � ymax;8yi 2 Sa/

D .
ymax

R
/na for na D N .Sa/ � 1

With (14.1.16), defining ya D 0 when N .Sa/ D 0, we have the probability density
function of ya as

fa.yaI na/ D
(

na
R .

ya
R /

na�1 if na � 1

ı.ya/ if na D 0

Similarly, we have the probability density function of yb as

fb.ybI nb/ D
(

nb
R .

L�yb
R /nb�1 if nb � 1

ı.L � yb/ if nb D 0

With ya and yb, we can rewrite (14.1.15) into

pc.ya; yb/ D e� R minfL�R;yb�rg
maxfR;yaCrg �dx (14.1.18)

and (14.1.13) can be transformed into

pc D
1X

naD0

1X
nbD0

Pr.N .Sa/ D na/Pr.N .Sb/ D nb/

�Z R

0

Z L

L�R
pc.ya; yb/fa.yaI na/fb.ybI nb/dybdya


(14.1.19)
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for L > 2R. Equation (14.1.19) can be further simplified under different cases. For
na > 0 and nb > 0, (14.1.19) becomes

p.na>0;nb>0/
c

D
Z R

0

Z L

L�R
pc.ya; yb/

2
4

1X
naD1

1X
nbD1

Pr.N .Sa/ D na/

Pr.N .Sb/ D nb/fa.yaI na/fb.ybI nb/� dybdya

D
Z R

0

Z L

L�R
pc.ya; yb/

2
4

1X
naD1

1X
nbD1

.�R/na

naŠ
e��R
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For na D 0 and nb > 0, (14.1.19) becomes

p.naD0;nb>0/
c

D
1X

nbD1
e��R .�R/nb

nbŠ
e��R

�Z L

L�R
pc.0; yb/

nb

R
.
L � yb

R
/nb�1dyb



D
Z L

L�R
pc.0; yb/�e�2�R

1X
nbD1

.�.L � yb//
nb�1

.nb � 1/Š dyb

D
Z L

L�R
pc.0; yb/�e�2�Re�.L�yb/dyb (14.1.21)

With similar steps (omitted here) we can obtain for na > 0 and nb D 0, (14.1.19)
becomes

p.na>0;nbD0/
c D

Z R

0

pc.ya;L/�e�2�Re�ya dya (14.1.22)
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Note that it can be shown that (14.1.22) is equivalent to (14.1.21) by letting
yb D L � ya, then

p.na>0;nbD0/
c D �

Z L�R

L
pc.L � yb;L/�e�2�Re�.L�yb/dyb

D
Z L

L�R
pc.0; yb/�e�2�Re�.L�yb/dyb

where pc.L � yb;L/ D pc.0; yb/. Finally, for na D 0 and nb D 0,

p.naD0;nbD0/
c D e��Re��Rpc.0;L/

D e�2�Re� R L�R
R �dx

D e�2�Re��.L�2R/

D e��L (14.1.23)

Using (14.1.20), (14.1.21), (14.1.22), and (14.1.23), we can obtain the connec-
tivity probability as follows. Due to the lengthy (but straightforward) steps involved
to derive the results, we omit the intermediate steps and only include the results
of (14.1.20) and (14.1.21).

(1) For 0 < L � 2R,
pY.y/ D 1

Ln from (14.1.10) and pc.y/ D 1 from (14.1.11) implies that

pc D
1X

nD0
Pr.N .K1/ D n/ D 1

(2) For 2R < L � 2R C r,

p.na>0;nb>0/
c D 1C e��L � 2e��R C e��.3RCr�L/

C
�

�1
4

� 1

2
�.L � 2R/

�
e��.2RC2r�L/

� e��.LCr�R/ C 1

4
e��.LC2r�2R/

p.naD0;nb>0/
c D �e��L C e��R � 1

2
e��.3RCr�L/

C 1

2
e�.LCr�R/

pc D 1C 1

4
e��.LC2r�2R/

C .�1
4

� 1

2
�.L � 2R//e��.2RC2r�L/
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(3) For 2R C r < L � 2R C 2r,
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c
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2
e��.L�2R/ � e��.LCr�R/

C
�

�3
4

� 1

2
�.2R C 2r � L/

�
e��.2RC2r�L/

C 1

4
e��.LC2r�2R/ � e��.L�R�r/

p.naD0;nb>0/
c

D �e��L C 1

2
e��.LCr�R/ C 1

2
e��.L�R�r/

pc D 1C 1

2
e��.L�2R/ C 1

4
e��.LC2r�2R/

C
�

�3
4

� 1

2
�.2R C 2r � L/

�
e��.2RC2r�L/

(4) For L > 2R C 2r,
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2
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14.1.3.2 Log-Normal Connection Model

In the log-normal connection model L, the received power (in dBmW) at a
destination vehicle is given by

prx D p0 � 10˛ log10
l

d0
C N� (14.1.24)

where prx is the received power (in dBmW) at the destination vehicle; p0 is the power
(in dBmW) at a reference distance d0; ˛ is the path loss exponent; N� is a Gaussian
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random variable with zero mean and variance �2; l is the Euclidean distance between
the two vehicles (or a vehicle and a BS depending on the context). A source vehicle
can establish a direct connection to a destination vehicle if the received power at
the destination vehicle prx is greater than or equal to a certain threshold power pvth.
Similarly, a source vehicle can establish a direct connection to a destination BS if
the received power at the destination BS prx is greater than or equal to a certain
threshold power pb

th. We further assume that wireless connections between vehicles,
and between vehicles and BSs, are symmetric. Note that when � D 0, the log-
normal connection model reduces to the unit disk connection model. Due to this
fact, we assign pvth D p0 � 10˛ log10

r
d0

, pb
th D p0 � 10˛ log10

R
d0

so that the results
under log-normal connection model can be compared with the results under the unit
disk connection model later. It can be shown that under the log-normal connection
model

gLv .x/ D Pr.prx � pvth/ D Q

�
10˛

�
log10

x

r

�
(14.1.25)

where function Q.y/ D 1p
2�

R1
y e� x2

2 dx is the tail probability of the standard normal

distribution. Similarly, gLb .x/ D Q. 10˛
�

log10
x
R /. When � D 0, gLv .x/ D Pr.x � r/,

gLb .x/ D Pr.x � R/, and the log-normal connection model becomes the unit disk
connection model as expected.

The access probability can then be obtained for different values of ˛ and � by
computing (14.1.7) using numerical integration. The approximate and exact results
for the connectivity probability can be obtained by computing (14.1.8) and (14.1.13)
using numerical integration.

14.1.4 Analytical and Simulation Results

14.1.4.1 Unit Disk Connection Model

Figure 14.2 shows the access probability assuming different values of L and �.
The simulation results are obtained from 40; 000 randomly generated network
topologies. As the number of instances of random networks used in the simulation
is very large, the confidence interval is too small to be distinguishable and hence
ignored in this plot as well as other plots. As shown in the figure, the access
probability decreases with L when L exceeds some limits. For small �, the access
probability decreases as soon as L > 2R. That is because when the vehicle density
� is low, a vehicle is either directly connected to a BS or disconnected, i.e., cannot
reach any BS in at most two hops. It is difficult for the vehicle to find a one-hop relay
in its range via which it can access a BS if it is not within the transmission range
of any BS. However, for large �, it is easier for the vehicle, which is not within the
transmission range of any BS, to find a one-hop relay to access the BS. In general
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Fig. 14.2 Access probability with varying value of L under the unit disk connection model with
R D 1000m, r D 500m, � D 1=5; 1=50; 1=500 vehicles/m respectively

the access probability increases with an increase in �, and the reason is that when
the vehicle density increases, the probability increases for vehicles in the gap of the
transmission ranges of BSs to find a neighbor within the transmission range of a BS
to act as a relay.

Similarly, Fig. 14.3 shows the connectivity probability under different values
of L and �. The approximate analytical result is shown to be reasonably close to
the exact analytical result and the simulation result. The figure shows that when
L � 2R C r D 2500 m, it is easy for all vehicles to be connected to either BS
in at most two hops, hence the connectivity probability is high. As L gets larger,
it becomes more difficult for all vehicles to be connected to the BSs due to the
larger possible distances between the vehicles and the BSs. This causes a drop in the
connectivity probability, and the connectivity probability tends to zero as L goes to
infinity. The transition of the connectivity probability from 1 to 0 gets sharper as the
vehicle density increases. As � goes to infinity, the transition happens at the critical
distance L D 2R C 2r D 3000 m, below which the network is disconnected with a
high probability and above which the network is connected with a high probability.
Furthermore, networks with a larger � have a higher connectivity probability than
networks with a smaller � when L is small. This is because when the vehicle density
is large, it is easier for vehicles not directly connected to a BS to find a vehicle
within its communication range and is directly connected to a BS to act as a relay.
When L is large, the networks with a larger � have a lower connectivity probability
than the networks with a smaller �. This is because at large values of L when the
vehicle density is large it is easier to have at least one vehicle which is located too
far from the BSs to be connected to a BS in at most two hops.
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Figure 14.4 shows how the transmission range of the vehicles r affect the access
probability. It shows that the access probability increases with r, and when � is large
enough, the access probability could be quite close to 1. Figure 14.4 shows again
that the access probability increases with an increase in �.



400 14 Applications of Connectivity Studies

Unit Disk Model, R =1000m, L = 2500m

Coverage Radius of a Vehicle (meters)

C
on

ne
ct

iv
ity

 P
ro

ba
bi

lit
y

ρ = 1/500, analytical result (exact)

ρ = 1/500, analytical result (approx.)
ρ = 1/50, analytical result (approx.)
ρ = 1/5, analytical result (approx.)

ρ = 1/500, simulation result
ρ = 1/50, simulation result
ρ = 1/5, simulation result

ρ = 1/50, analytical result (exact)
ρ = 1/5, analytical result (exact)

1

0.8

0.7

0.6

0.5

0.3

0.4

0.2

0.1

0
0 200 300 400 500 600 700 800 900 1000100

0.9

Fig. 14.5 Connectivity probability with varying value of r under the unit disk connection model
with R D 1000m, L D 2500m, � D 1=5; 1=50; 1=500 vehicles/m respectively

With a similar setup, Fig. 14.5 shows the sensitivity of the connectivity probabil-
ity to r. For a large �, around a certain value of r, a small increase in r will result
in a dramatic increase in the connectivity probability from near 0 to near 1, i.e.,
the well-known phase transition phenomenon which has been discussed in Chap. 6.
From the figure, it can be seen that such phenomenon does not exist for small �.
Figure 14.5 also shows a scenario where there may be a significant gap between the
approximate and exact results for connectivity probability.

Figure 14.6 supported our conclusion that an increase in � will improve the
access probability as it shows that the access probability monotonically increases
with �. While � is relatively small and the width of the gap region not directly
covered by any of the BSs is relatively large, the access probability will be low.
Therefore, in this circumstance, network operator should consider deploying more
BSs for better connectivity and greater access probability.

14.1.4.2 Log-Normal Connection Model

Figure 14.7 shows the access probability under the log-normal shadowing model.
In general, it is easier for the vehicles in the subnetwork to get access to any BS
under the log-normal model. As � increases, the access probability improves. The
improvement in access probability is more pronounced for high vehicle density.

Figure 14.8 shows the connectivity probability under the log-normal model when
the vehicle density is low (� D 1

500
vehicles/m). As the vehicle density increases,

the computational complexity involved in numerically computing the exact result
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increases very quickly. As such, we only provide the exact analytical results for low
vehicle density. Furthermore, Fig. 14.8 shows that the approximate analytical results
are reasonably close to the true values when the vehicle density is low. However, as
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shown in Fig. 14.9, the discrepancy between the approximate results and the true
values can be significant when the vehicle density is high (� D 1

50
; 1
5

vehicles/m).
In general, the approximate analytical result always underestimate the simulation
result. Same situation can be observed for the results obtained under the unit disk
connection model. This can be explained by Lemma 207 that a vehicle is more
likely to be able to access to any BS where there is another vehicle nearby that
can access to the BSs. Because of the independence assumption used in obtaining
the approximate analytical result, the approximate result will underestimate the true
value.

14.2 Distance Estimation via Connectivity

In this section, we present a technique that employs a maximum-likelihood esti-
mator (MLE) to estimate distances between a pair of neighboring nodes in static
wireless networks using their local connectivity information, namely the numbers
of their common and non-common one-hop neighbors. We develop the distance
estimation technique assuming the general random connection model. Then, we take
the log-normal connection model as an example to demonstrate the implementation
of the proposed technique. The impact of uncertainties in the log-normal connection
model is examined and the bias and standard deviation of distance estimates
produced by the technique are numerically evaluated. The proposed technique,



14.2 Distance Estimation via Connectivity 403

Log-normal Model, α = 2, R = 1000m, r = 500m
ρ = 1/50 vpm

1

0.8

0.6

0.4 0.4

0.2 0.2

0
0 2000 4000 6000 0

0
2000

C
on

ne
ct

iv
ity

 P

C
on

ne
ct

iv
ity

 P
ro

ba
bi

lit
y

4000 6000

ρ = 1/5 vpm

s = 1, analytical result (approx.)
s = 2, analytical result (approx.)
s = 3, analytical result (approx.)
s = 1, simulation result
s = 2, simulation result
s = 3, simulation result

Distance Between Adjacent BSs (meters) Distance Between Adjacent BSs (meters)

Fig. 14.9 Connectivity probability with varying value of L under the log-normal connection model
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though not comparable to the fine-grained distance estimation techniques like time
of arrival and time difference of arrival, outperforms the well-known received signal
strength based technique for estimation of long distances. Moreover, using the
Cramér-Rao lower bound (CRLB), we analyze the influences of various factors
on distance estimation from local connectivity information, and derive useful
guidelines on implementing the proposed technique in reality. Finally, the proposed
technique is validated using real measurement data.

14.2.1 The Connectivity-Based Distance Estimation Method

In this subsection, we present the technique of estimating distances via connectivity.
Specifically, we consider a static wireless network on an infinite plane where nodes
are distributed according to a homogeneous Poisson point process of density �.
Assuming a random connection model, a pair of nodes separated a Euclidean
distance x are directly connected with probability g .x/, independently of other pairs
of nodes. As two widely used special cases of the random connection model, the unit
disk connection model and the log-normal connection model are also considered.
We further assume that the connections are symmetric, i.e., if a node v is directly
connected to a node u, the node u is also directly connected to the node v.
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Fig. 14.10 An illustration of
the coverage of two nodes
under the unit disk
connection model

14.2.1.1 Estimating Distances Under the Unit Disk Connection Model

Let us first consider a unit disk connection model with a transmission range r
and then extend to the more general random connection model. Consider two
neighboring nodes A and B with coordinates .xA; yA/ and .xB; yB/ respectively.
Denote by d (d � r) the Euclidean distance between the two nodes. Let D .A; r/
and D .B; r/ be two disks with the same radius r and centered at node A and node
B respectively. The two disks represent respectively the coverage of node A and
node B, as shown in Fig. 14.10. The two disks intersect and create three disjoint
regions: D .A; r/ nD .B; r/, D .A; r/ \ D .B; r/, and D .B; r/ nD .A; r/. Let S D �r2

and f .d/ be the size of the overlapping region D .A; r/ \ D .B; r/. It can be readily
established that

f .d/ D 2S

�
arccos.

d

2r
/ � d

r
r2 � d2

4
(14.2.1)

It is obvious that the nodes residing in D .A; r/ \ D .B; r/ are common one-hop
neighbors of A and B, and the nodes residing in D .A; r/ nD .B; r/ (D .B; r/ nD .A; r/)
are non-common one-hop neighbors of A (B). Define three random variables M;P,
and Q to be the numbers of the above three categories of neighbors respectively.
Due to the Poisson distribution of nodes, the three random variables are mutually
independent and Poissonly distributed with means �f .d/; �.S�f .d//, and �.S�f .d//
respectively. The actual values of M;P, and Q can be easily obtained after A and B
exchange their neighborhood information. Based on the observations of M;P, and
Q, an MLE for estimating d is summarized as follows:

Theorem 210 M;P, and Q are mutually independent Poisson random variables
with means �f .d/; �.S � f .d// and �.S � f .d//, respectively. If f .d/ is invertible and
S is a nonzero constant, then the MLE for d, termed Od, is

Od D
(

f �1 .S/ if M D P D Q D 0

f �1 . O�S/ otherwise

where O� D 2M
2MCPCQ .
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Proof Note that observations of M;P, and Q provide a measured triplet � D
Œm p q � where m; p; q are nonnegative integers. The unknown parameters are 	 D
Œd � �. By formulating the likelihood function, we can derive that the MLE for d is
the solution for d in the following equation set

(
m

f .d/ � pCq
S�f .d/ C � D 0

mCpCq
�

� .2S � f .d// D 0

By eliminating �, we can obtain

2mS D .2m C p C q/f .d/ (14.2.2)

If 2m C p C q > 0, Od D f �1. 2m
2mCpCq S/; otherwise, the solution for d is not

well defined. Note however f .d/ D S maximizes the likelihood, thus we have Od D
f �1.S/. This completes the proof of the theorem. ut
Note that the actual value of � is not needed in obtaining Od. Furthermore, the
derivation of the MLE suggests that as long as nodes in a local region which covers
the communication coverage of two neighboring nodes admits a uniform density,
the proposed method is applicable. In addition, if the least squares method, instead
of the MLE, is applied here, the resulting expression of the distance estimator is
actually the same as that in Theorem 210.

14.2.1.2 Extension Under the General Random Connection Model

Under the general random connection model defined by g.d/, M;P, and Q are
still used to denote the numbers of common and non-common one-hop neighbors
associated with two nodes. First, we can compute their expectations as follows:

E.M C P/ D E.M C Q/

D �

Z 1

�1

Z 1

�1

g.
p
.x � xB/2 C .y � yB/2/dxdy (14.2.3)

E.M/ D �

Z 1

�1

Z 1

�1

g.
p
.x � xA/2 C .y � yA/2/g.

p
.x � xB/2 C .y � yB/2/dxdy (14.2.4)

Then, from the integral boundedness condition on g.d/, i.e., (1.1.9), it follows that
E.M/ < E.M C P/ < 1. Unlike the unit disk connection model where the
independence among M;P, and Q is straightforward due to having three disjoint
regions, the random connection model does not necessarily lead to such three
disjoint regions. The following theorem establishes the mutual independence of the
three random variables.

Theorem 211 Consider a wireless network on an infinite plane with nodes dis-
tributed according to a homogeneous Poisson point process of density � and a
pair of nodes are directly connected following the random connection model.
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Considering two randomly chosen nodes in the network, let M be the number of
their common one-hop neighbors, and P and Q be the numbers of their non-common
one-hop neighbors. Then, M;P, and Q are mutually independent Poisson random
variables.

The results in Theorem 211 can be readily proved by noting that the nodes
are distributed following homogeneous Poisson point process and that given the
location of the two nodes, say A and B, each of the three events: (1) a node is
connected to A but not B; (2) a node is connected to B but not A; (3) a node
is connected to both A and B can be regarded as an outcome of the independent
thinning of the original homogeneous Poisson point process.

Under the random connection model, parameters S and f .d/ can be generalized
to be linked to the expectations of M;P, and Q, instead of the areas defined under
the unit disk connection model, and can be formulated as follows:

S D
Z 1

�1

Z 1

�1

g.
p
.x � xB/2 C .y � yB/2/dxdy (14.2.5)

f .d/ D
Z 1

�1

Z 1

�1

g.
p
.x � xA/2 C .y � yA/2/g.

p
.x � xB/2 C .y � yB/2/dxdy (14.2.6)

In this way, if S and f .d/ satisfy the conditions in Theorem 210, the MLE obtained
assuming the unit disk connection model can be directly applied here under the
random connection model.

Note that, in reality, wireless networks are deployed in regions of finite areas,
and thus the expectations of M;P, and Q associated with two nodes, especially those
near the network boundaries, cannot be derived by simply integrating over an infinite
plane to compute S and f .d/. This is due to the boundary effect. In this study, we
concentrate on the theoretical foundations of the proposed method and ignore the
impact of the boundary effect.

Prior to implementing the proposed method, it is a prerequisite to know the
wireless channel, i.e., g.d/, such that the quantity S, the function f .d/, and its inverse
can be determined offline and then programmed into each node. After that, due to
the simple mechanism of the proposed method, a distributed protocol can be easily
designed for collecting and exchanging local connectivity information by each node
through local broadcast. Once a node obtains neighborhood information of all its
immediate neighbors, the node is able to estimate the distances from its immediate
neighbors using the inverse of f .d/, S, and the MLE in Theorem 210.

14.2.1.3 Distance Estimation Under the Log-Normal Connection Model

In this subsection, we provide the method to estimate the distance between nodes
under the log-normal connection model assuming that the parameters characterizing
the log-normal model, i.e., �dB the standard deviation of the log-normal fading
measured in dB unit, r the equivalent transmission range when �dB D 0 and ˛
the path loss exponent, are known.
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a b

Fig. 14.11 The functions g.d/ and f .d/ under the log-normal connection model with ˛ D 4 and
r D 1. (a) The connection function g .d/ under the log-normal connection model. (b) The function
f .d/ under the log-normal connection model

We shall demonstrate how to determine the three parameters g.d/, S, and f .d/
required in the MLE to estimate the distance.

Under the log-normal connection model, the probability that the two nodes
separated by a Euclidean distance d are directly connected is given by

g.d/ D
Z 1

k log d
r

e
� z2

2�2dBp
2��dB

dz (14.2.7)

where k D 10˛
log 10 .

We plot g.d/ with respect to d for different values of �dB given ˛ D 4 and r D 1

in Fig. 14.11a. It can be seen that the smaller is d, the higher is the probability
that a direct connection exists. Furthermore, a larger �dB tends to inhibit a direct
connection for a smaller d but promotes a direction connection for a larger d.

In view of the restrictions on g.d/, it is straightforward to obtain lim
d!1g.d/ D 0.

As such, for an arbitrarily small and positive ", there exists dth such that g.d/ < " if
d > dth. That is, nodes whose distances to a particular node are larger than dth can
hardly connect with this node directly. As such, dth is a surrogate of the transmission
range. This phenomenon can be observed in Fig. 14.11a.

14.2.1.4 Formulating S and f.d/

In Chap. 12, the expectation E.M C P/ (or E.M C Q/) has been studied. Using the
result, the equivalent S under the log-normal connection model is given by:

S D �r2e
2�2dB

k2 (14.2.8)
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Further using (14.2.4), (14.2.6), and (14.2.7), we can derive the formula for f .d/
under the log-normal connection model. By letting ˛ D 4 and r D 1, we plot
f .d/ with respect to different values of d and �dB in Fig. 14.11b. As can be seen in
the figure, f .d/ is a monotonically decreasing function of d and invertible. Hence,
Theorem 210 is applicable under the log-normal connection model. But the closed-
form formula for f .d/ and its inverse are difficult to obtain. Alternatively, we can
establish a piecewise linear function to approximate its inverse such that for each
affine segment, a linear regression model can be used to predict d.

Considering the fact that two nodes with distance larger than dth can hardly
connect with each other directly, we restrict the distance estimates to be between 0
and dth. But in real applications, O�S and S may exceed Œf .dth/; f .0/� and consequently
Od may exceed Œ0; dth�. Therefore, we adapt the distance estimator as follows

Od D

8̂
<̂
ˆ̂:

0 if M D P D Q D 0 or O�S > f .0/

f �1 . O�S/ if f .dth/ � O�S � f .0/

dth if O�S < f .dth/

(14.2.9)

14.2.2 Performance Analysis of the Distance Estimator

In this subsection, we evaluate the performance of the proposed method under the
log-normal connection model from several different perspectives.

14.2.2.1 Impact of Imprecise Knowledge of Parameters ˛ and �dB

In the proposed method, the parameters ˛ and �dB are supposed to be known
precisely. It is interesting to know the robustness of the estimation in the presence
of imperfect knowledge of the two values. To answer this question, we define

�˛;�dB.d/ D f .d/

S
(14.2.10)

where f .d/ and S are computed using (14.2.6), (14.2.8), and (14.2.7) given ˛ and
�dB. The distance estimator in (14.2.9) then becomes

Od D

8̂
<̂
ˆ̂:

0 if M D P D Q D 0 or O� > �˛;�dB.0/

��1
˛;�dB

. O�/ �˛;�dB.dth/ � O� � �˛;�dB.0/

dth O� < �˛;�dB.dth/

(14.2.11)
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a b

Fig. 14.12 The inverse function of �˛;�dB .d/ under the log-normal connection model. (a) �dB D 4.
(b) ˛ D 4

As shown in the above equation, imprecise knowledge of ˛ and/or �dB results in
an incorrect value of the function ��1

˛;�dB
. O�/, which in turn affects the accuracy of the

distance estimate Od. We plot the function ��1
˛;�dB

. O�/ with respect to different values
of ˛ and �dB in Fig. 14.12.

Supposing �dB is known to be exactly 4, we further investigate the impact of
the uncertainty in the knowledge of ˛. As shown in Fig. 14.12a, ��1

˛;�dB
. O�/ is much

more sensitive to a small ˛ than to a large ˛; in other words, for a small ˛, an
imprecise value of ˛ tends to degrade the accuracy of the distance estimate Od more
seriously than for a large ˛. Moreover, if ˛ is overestimated, an underestimated
Od will be produced for a small d but an overestimated Od for a large d, and the
converse. However, ��1

˛;�dB
. O�/ does not demonstrate the same sensitivity to �dB as

that observed for ˛, as illustrated in Fig. 14.12b. We can therefore conclude that, if
�dB is overestimated, then an overestimated Od will be produced for a small d but an
underestimated Od for a large d, and the converse.

14.2.2.2 Bias and Standard Deviation

According to Theorem 210, all possible values of O� are rational numbers within
Œ0; 1�, so that Od is a discrete random variable and its j-th moment is given as follows

E
�Odj
�

D
X

a

hOdj Pr.Od D a/
i

(14.2.12)

We divide the range of Od, i.e., Œ0; dth�, into w equal-length intervals: I1 D
Œz0; z1/; � � � ; Iw D Œzw�1; zw� with zi D i�dth

w . Given a sufficiently large w,
Od is approximately constant over each interval, denoted by Qdi. Then, we can
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approximately reformulate (14.2.12) as

E.Odj/ 

wX

iD1

h
. Qdi/

j Pr.Od 2 Ii/
i

(14.2.13)

Towards the probability associated with the i-th interval Ii, we have

Pr
�Od 2 Ii

�
D

8
ˆ̂<
ˆ̂:

Pr .f .z1/ < O�S � S/ if i D 1

Pr .f .zi/ < O�S � f .zi�1// if 1 < i < w

Pr .0 � O�S � f .zw�1// if i D w

By letting Y D P C Q, we have

Pr.b < O�S < c/ D
1X

yD0
ŒPr.b < O�S < cjY D y/Pr.Y D y/� (14.2.14)

which makes it possible for us to numerically evaluate the moments of Od and thus
the bias and the standard deviation.

Let 
 be the expected number of one-hop neighbors of a node, namely 
 D
E.M C P/ D E.M C Q/, and the values of � with respect to different �dB and 
 are
listed in Table 14.1. For better presentation, the connectivity index (or equivalently
the average node degree) 
 will be used in the following discussions instead of the
node density �.

Given ˛ D 4, r D 1, w D 1000, and 
 varying from 5 to 40, Fig. 14.13
depicts the numerical bias and the standard deviation associated with the proposed
method and the corresponding simulation results. The two groups of results are
highly consistent, and the comparatively non-smooth aspect of some of the curves,
e.g., Fig 14.13a, is attributable to the fact that all observations of M;P, and Q are
necessarily integers, and such observations are used in determining the curves.

It can be seen from Fig. 14.13 that the proposed method is obviously biased.
The absolute bias is much less than the standard deviation in most cases; except
for �dB D 0, the absolute bias and the standard deviation are comparable to true
distances, especially for short distances and sparse networks. Particularly, when

 D 5, their values are extraordinarily large and nearly twice the corresponding

Table 14.1 The values of �
with respect to different
values of �dB and 
 when
˛ D 4




�dB 5 10 20 30 40

0 1.59 3.18 6.37 9.55 12.73

4 1.43 2.86 5.73 8.59 11.45

8 1.04 2.08 4.17 6.25 8.33

12 0.61 1.23 2.45 3.68 4.90
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a b

c d

e f

g h

Fig. 14.13 The bias and the standard deviation of distance estimation from numerical evaluations
(solid lines) and simulations (dashed lines) with 
 D 5; 10; 20; 30; 40 and ˛ D 4; r D 1. For
the standard deviation, a larger 
 corresponds to a line to the bottom; for the bias, a larger 

corresponds to a line with the bias closer to 0. (a) Bias (�dB D 0, dth D 1). (b) Standard deviation
(�dB D 0, dth D 1). (c) Bias (�dB D 4, dth D 2). (d) Standard deviation (�dB D 4, dth D 2). (e)
Bias (�dB D 8, dth D 4). (f) Standard deviation (�dB D 8, dth D 2). (g) Bias (�dB D 12, dth D 6).
(h) Standard deviation (�dB D 12, dth D 6)
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values when 
 D 10. Moreover, with 
 increasing, the standard deviation always
reduces, while the absolute bias reduces in most cases. An intuitive explanation
is that with 
 increasing, the variances of the ratios 2M=E.2M/ and .2M C P C
Q/=E.2M C P C Q/ both decrease, the variance of O� is reduced, and so is the
variance of Od. As mentioned in the previous subsection, when the average node
degree is fixed, a large �dB results in more direct connections between distant nodes
but reduces direct connections between nearby nodes. As a result, the geometric
relationship implied by direct connections becomes less accurate. Hence, the larger
is �dB, the worse are both the bias and the standard deviation.

14.2.2.3 Root Mean Square Error

As a performance measure, the root mean square error (RMSE) is defined to be
the square root of the sum of the square bias and variance of estimation errors.
We plot the RMSE of Od produced by the proposed method in Fig. 14.14. As shown
in the figure, the RMSE decreases with 
 increasing and �dB decreasing, which is
consistent with the trend exhibited by the variations of the bias and the standard
deviation of Od with 
 and �dB. When d is near 0, the RMSE is extraordinarily
large compared to the true value of d, implying that the proposed method fails to
provide reasonable estimates for short distances. This underperformance with short
distances limits the use of the proposed method in practice, and is due to a mixed
impact of the following facts:

• It is evident that the variance of 2M C P C Q is constant irrespective of the value
of d, but the variance of 2M increases with d decreasing. As a result, O�, i.e.,

2M
2MCPCQ , is more likely to have larger variances when d is smaller.

• As depicted in Fig. 14.12, ��1
˛;�dB

. O�/ is quite sensitive to O� when d is small.

Namely, a small perturbation in O� leads to a large change in Od and thus a large
distance estimation error.

• In light of (14.2.11), Od is roughly set to be 0 when O� is greater than �˛;�dB.0/,
but a small d often causes O� to be within Œ�˛;�dB.0/; 1� and hence resulting in the
underperformance.

To conclude, for short distances, the non-smooth aspect and the sensitivity to O� of
the function defined in (14.2.11) are responsible for the underperformance.

Under the log-normal connection model with �dB > 0, distance estimation can
also be realized by using the received signal strength (RSS) measurements. The bias
and variance of the resulting distance estimate (denoted by OdRSS) are provided in
[42], so that we can compute the RMSE of OdRSS and compare it with that of Od in
Fig. 14.14. It can be seen that: (1) the RMSE of OdRSS increases in direct proportion
to d, but that of Od appears to have comparatively small variations with d increasing;
(2) the proposed method outperforms the RSS method for long distances by a large
margin.
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Fig. 14.14 The RMSE of OdRSS (dashed lines) and Od (solid lines; 
 D 10; 20; 30; 40 with ˛ D
4; r D 1; a larger 
 corresponds to a curve to the bottom.) under the log-normal connection model
.(a) �dB D 0, dth D 1. (b) �dB D 4, dth D 2. (c) �dB D 8, dth D 4. (d) �dB D 12, dth D 6

14.2.3 Analysis Based on the CRLB

In this subsection, we formulate the Cramér-Rao lower bound (CRLB) regarding
the distance estimation problem via connectivity, i.e., estimating d from M;P, and
Q, under the log-normal connection model. In estimation theory and statistics, the
CRLB, named in honor of Harald Cramér and Calyampudi Radhakrishna Rao,
expresses a lower bound on the variance of estimators of a deterministic parameter
[114]. In its simplest form, the bound states that the variance of any unbiased
estimator is at least as high as the inverse of the Fisher information.

For this estimation problem, the unknown parameters are d and �. The Fisher
Information Matrix (FIM) for this estimation problem, denoted by FIM.d; �/, is

FIM.d; �/ D
 
� .f 0.d//2

�
1

f .d/ C 2
S�f .d/

�
�f 0.d/

�f 0.d/ 2S�f .d/
�

!
(14.2.15)
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where f .d/ is differentiable to the first order in (14.2.6). The evaluation of the FIM
relies on the computation of the first derivative of f .d/. In the following paragraphs,
we establish the existence of f 0.d/

First, consider the following expression

lim
"!0

�
�1
"

h
g.
p

x2 C d2 � 2xd cos 	/ � g.
p

x2 C .d C "/2 � 2x.d C "/ cos 	/
i�

D k.x cos 	 � d/e
�.k.log

p
x2Cd2�2xd cos 	�log r//2

2�2dBp
2��dB.x2 C d2 � 2xd cos 	/

which is bounded for x 2 Œ0;C1/. Then, note that the derivative of f .d/ can be
formulated as

f 0.d/ D
Z 1

0

Z 2�

0

g.x/x lim
"!0

�
�1
"

h
g.
p

x2 C d2 � 2xd cos 	/

�g.
p

x2 C .d C "/2 � 2x.d C "/ cos 	/
i�

d	dx (14.2.16)

Because
R1
0

R 2�
0

g.x/xd	dx is equal to E.M C P/ and is convergent, f 0.d/ is also
convergent.

It follows from the expression for the FIM in (14.2.15) and the existence of f 0.d/
that the CRLB for d, denoted by CRLB.d/, is

CRLB.d/ D .S � f .d//.2S � f .d//f .d/

2�S2.f 0.d//2
(14.2.17)

Though the CRLB is only valid for unbiased distance estimates and the proposed
method is known to be biased, the bound is still helpful to understand the essential
features of the distance estimation problem. In what follows, we shall discuss the
influences of various parameters on the CRLB.

14.2.3.1 Influence of �

It is clear that the CRLB is inversely proportional to �. In other words, a better
estimation accuracy can be attained in dense wireless networks, which is intuitive
and is also consistent with that shown in Fig. 14.14. Hence, it is desirable to apply
the proposed method in dense networks.
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14.2.3.2 Influence of d

Using (14.2.17), it is difficult to directly observe the influence of d on the CRLB
because we do not have the closed-form formulas for f .d/ and f 0.d/ except for the
case of �dB D 0. However, note that the numerator of (14.2.17) is bounded in a
narrow range. Therefore, if the denominator can be very small, the CRLB will be
seriously affected by the denominator. Based on Fig. 14.11b, we can obtain some
intuitive knowledge about the key component in the denominator, i.e., f 0.d/. As
shown in Fig. 14.11b, when d increases from 0, jf 0.d/j first experiences an increase
and then decreases after d grows above a certain value which differs from �dB; when
d increases further, jf 0.d/j continuously decreases and approaches 0. Hence, it is
postulated that the CRLB will experience a rise when d increases.

As shown in Fig. 14.13, in the cases of �dB D 8; 12, the standard deviation of the
distance estimation exhibits an apparent rise when d is larger than a certain value,
and then drops when d approaches dth. The reason behind such a drop is that we
restrict the maximum distance estimate to be dth, so that estimates for d near dth are
improved. In the case of �dB D 4, jf 0.d/j is not so close to 0 when d is near dth,
but is comparatively small when d is near 0; as a result, the expected rise does not
happen.

14.2.3.3 Influences of r

As manifested in (14.1.25), parameter r in the log-normal connection model
includes the impact of the transmission power of wireless nodes. The following
theorem establishes the impact of the parameter r on the CRLB:

Theorem 212 Consider the CRLB in (14.2.6), (14.2.8), and (14.2.17) and suppose
that only d and r are variables. Then, the CRLB for a given distance d with r D r0
is equal to the CRLB for a distance d

r0
with r D 1.

Proof Regarding r as a variable, we substitute the notations as follows: S ! S.r/,
f .d/ ! f .r; d/, f 0.d/ ! @f .r;d/

@d , CRLB.d/ ! CRLB.r; d/, g.d/ ! g.r; d/.
According to (14.2.7), we have

g.r; dr/ D
Z 1

k log d

e
� z2

2�2dBp
2��dB

dz D g.1; d/

Using (14.2.6), we have

f .r; dr/ D
Z 1

0

Z 2�

0

g.r; x/g.r;
p

x2 C .dr/2 � 2xdr cos 	/xd	dx

D
Z 1

0

Z 2�

0

g.r; xr/g.r; r
p

x2 C d2 � 2xd cos 	/r2xd	dx
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D r2
Z 1

0

Z 2�

0

g.1; x/g.1;
p

x2 C d2 � 2xd cos 	/xd	dx

D r2f .1; d/

Moreover, we can obtain

@f .x; y/

@y

ˇ̌
ˇ̌
xD1;yDd

D 1

r
� @f .x; y/

@y

ˇ̌
ˇ̌
xDr;yDdr

(14.2.18)

Using the relationship that S.r/ D r2S.1/ (based on (14.2.8)), (14.2.17), and the
above equations, it can be obtained that

CRLB.r; dr/ D CRLB.1; d/ (14.2.19)

or equivalently,

CRLB.r; d/ D CRLB.1;
d

r
/:

ut
Theorem 212 reveals that: (1) the CRLB is mainly determined by the ratio d

r ;
(2) the value field of the CRLB is invariant no matter how large the parameter
r is. Therefore, if the parameter r is increased (by increasing the transmission
power), distant nodes will become more easily connected, so that estimates for long
distances will be available. However the CRLB will not exceed the value field of
the CRLB associated with the original small value of r. Consequently, estimates for
long distances will generally have less relative errors (i.e., the ratio of the estimation
error to the true value d) than those for short distances.

Further note that, because the CRLB is not a monotonic function of d, tuning r
does not necessarily increase or decrease the corresponding CRLB associated with
a given value of d. Increasing r however results in more one-hop neighbors for each
node and consequently more distance estimates, though any distance estimate is not
necessarily improved. This increase in the number of distance estimates will benefit
other applications, e.g., wireless network localization. This feature can be explored
in the implementation of the proposed method. Considering that in static wireless
networks the procedure of estimating distances is usually executed only once and
probably in the beginning of the network lifetime, the ratio r can be initially set a
high value to achieve a high connectivity or average node degree, and then is tuned
to be a normal value when the distance estimation is completed. As a result, more
estimates of long distances with comparatively good accuracies will be available.
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14.2.4 Practical Implementation of the Distance Estimation
Technique

In this subsection, we improve the proposed method when dealing with short
distances and then test it in a practical environment.

Given ˛ and �dB, define ˛;�dB to be the RMSE when d D 0. As illustrated
in Fig. 14.14, the RMSE of distance estimates produced by the proposed distance
estimation technique experiences small variations as d increases from 0 up to dth,
so that if d � ˛;�dB the RMSE tends to be under d, implying that relatively good
performance is attained. Moreover, based on the analysis in Sect. 14.2.2.3, we focus
on the function defined in (14.2.11) with O� 2 Œ�˛;�dB.˛;�dB/; 1�, and reformulate it
by a linear function

.1 � O�/˛;�dB

1 � �˛;�dB.˛;�dB/

which smoothly transforms any O� between �˛;�dB.˛;�dB/ and 1 to a distance estimate
between 0 and ˛;�dB . Consequently, (14.2.11) is updated to be

Od D

8̂
ˆ̂<
ˆ̂̂:

0 if M D P D Q D 0
.1� O�/˛;�dB

1��˛;�dB .˛;�dB /
if O� > �˛;�dB.˛;�dB/

��1
˛;�dB

. O�/ if �˛;�dB.dth/ � O� � �˛;�dB.˛;�dB/

dth if O� < �˛;�dB.dth/:

(14.2.20)

Now we test the distance estimation technique using real measurement data. In
[162], a wireless sensor network consisting of 44 nodes was deployed in a real
environment and RSS measurements between any two nodes were recorded. Based
on the measurement data, we can simulate a realistic environment to implement
the distance estimation technique. According to [162], ˛ D 2:3, �dB D 3:92,
and the reference power p0 D �37:47dBm (see (14.1.24)). To proceed with the
experiment, we also need to specify the threshold power Pth (see (14.1.25)), which
essentially “defines” whether two nodes are connected, and ˛;�dB in (14.2.20). After
that, we can compute the connection function g.d/, and on that basis, obtain the
distance estimators based on (14.2.11) and (14.2.20) respectively. To remove the
impact of the boundary effect, we consider only the four nodes near the center of the
deployment region, i.e., nodes 15; 23; 24; 25 shown in Fig. 14.15, and estimate the
inter-node distances between the four nodes using the originally proposed method
and the method with the adjustment for short distances.

In this experiment, by letting ˛;�dB be 0:5r and raising Pth from �61dBm to
�52dBm, the average distance estimation errors incurred by the original and the
improved methods are listed in Table 14.2. According to the distance estimates
produced by the RSS method, which were provided in [162], we compute the
corresponding average distance estimation error to be 1:07 m. As shown in the
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Fig. 14.15 An illustration of
the true location of nodes in
the measurements
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Table 14.2 Distance
estimation using real
measurements with different
settings of Pth

Pth(dBm) r.m/ ND DEE (m) DEE Improved (m)

�52 4.28 8.50 1.00 0.44

�53 4.73 11.25 1.49 0.56

�54 5.23 14.00 1.95 0.95

�55 5.78 17.25 1.78 0.74

�56 6.38 20.75 1.81 0.70

�57 7.05 27.25 2.00 1.08

�58 7.80 31.75 2.08 1.41

�59 8.62 34.50 2.11 1.57

�60 9.52 37.00 2.15 1.72

�61 10.53 38.75 2.14 1.67

Note: average node degree (ND), average distance estimation
error (DEE)

table, (1) the improved method always outperforms the original method; (2) the
original method outperforms the RSS-based method only in the case of Pth(dBm)D
�52dBm, while the improved method outperforms the RSS-based method when
Pth(dBm) is between �56dBm and �52dBm; (3) though the average node degree
increases when Pth decreases, the average estimation error obtained with the
improved method increases in general, a phenomenon which is attributable to the
boundary effect.

14.3 Connectivity Based Localization

In the last section, we have demonstrated the use of connectivity information to
estimate distances between neighboring nodes. On that basis, a wireless localization
scheme can be readily designed that uses the estimated inter-node distances to
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derive the location of nodes. In this section, we further introduce a category of
connectivity-based wireless localization schemes that estimate the location of nodes
directly using the connectivity information, without the need to first estimate the
distances between particular pairs of neighboring nodes.

Wireless network localization algorithms estimate the location of wireless nodes
with initially unknown location information by using knowledge of the absolute
location of a few nodes and inter-node measurements such as distance, bearing,
and connectivity. Nodes with known location information are called anchors and
their location can be obtained by using a global positioning system (GPS), or by
installing anchors at points with known coordinates. In applications requiring a
global coordinate system, these anchors will determine the location of the wireless
network in the global coordinate system. In applications where a local coordinate
system suffices, these anchors define the local coordinate system to which all other
nodes are referred. Because of constraints on the cost and size of wireless devices,
energy consumption, implementation environment (e.g., GPS is not accessible in
some environments), and the deployment of nodes (e.g., wireless nodes may be
randomly scattered in the region), most nodes do not know their location. These
nodes with unknown location information are called non-anchor nodes and their
coordinates will be estimated by the wireless network localization algorithm.

There is a distinct category of localization algorithms, called connectivity-based
or “range free” localization algorithms, which use the connectivity information, i.e.,
“who is within the communications range of whom” [179] to estimate the location
of the non-anchor nodes. The principle of these algorithms is: a wireless node being
in the transmission range of another wireless node defines a proximity constraint
between both nodes, which can be explored for localization. Bulusu et al. [33]
and Niculescu et al. [158] developed distributed connectivity-based localization
algorithms. Shang et al. [179] and Doherty et al. [56] developed centralized
connectivity-based localization algorithms.

In [33], Bulusu et al. defined a connectivity metric, which is the ratio of the
number of transmitter signals successfully received to the total number of signals
from that transmitter, to measure the quality of communication for a specific
transmitter-receiver pair. A receiver at an unknown location uses the centroid of
its reference points as its location estimate, where a reference point is a transmitter
with a known location and whose connectivity metric exceeds a certain threshold
(90% in [33]). An experiment was conducted in a 10m � 10m outdoor parking lot
using four reference points placed at the four corners of the 10m � 10m square. The
10m � 10m square was subdivided into 100 smaller 1m � 1m grids and the receivers
were placed at the grid points. Experimental results showed that for over 90% of
the data points, the localization error falls within 30% of the separation distance
between two adjacent reference points.

The “DV(distance vector)-hop” approach developed by Niculescu et al. [158]
starts with all anchors flooding their location to other nodes in the network. The
messages are propagated hop-by-hop and there is a hop-count in the message. Each
node maintains an anchor information table and counts the least number of hops that
it is away from an anchor. When an anchor receives a message from another anchor,
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it estimates the average distance of one hop using the location of both anchors
and the hop-count, and sends it back to the network as a correction factor. When
receiving the correction factor, a non-anchor node is able to estimate its distance to
anchors and performs trilateration to estimate its location. The algorithm was tested
using simulation with a total of 100 nodes uniformly distributed in a circular region
of diameter 10. The average node degree, i.e., average number of neighbors per
node, is 7:6. Simulation results showed that the algorithm has a mean error of 45%
transmission range with 10% anchors; and has a reduced mean error of about 30%
transmission range when the percentage of anchors increases above 20%.

Shang et al. [179] developed a centralized algorithm by using multi-dimensional
scaling (MDS). MDS was originally used in psychometrics and psychophysics and
it is a set of data analysis techniques that displays the structure of distance-like data
as a geometric picture. In their algorithm, the shortest paths, measured in the number
of hops, between all pairs of nodes are first computed, which are used to construct
a distance matrix for MDS. Then, MDS is applied to the distance matrix and an
approximate value of the relative coordinates of each node is obtained. Finally,
the relative coordinates are transformed to the absolute coordinates by aligning
the estimated relative coordinates of anchors with their absolute coordinates. The
location estimates obtained using earlier steps can be refined using a least-squares
minimization. Simulation was conducted using 100 nodes uniformly distributed in a
square of size 10� 10 and four anchors randomly placed in the region. The average
node degree is 10. Simulation results showed a localization error of 0:35. Shang
et al. further improved their algorithm in [178] by dividing the entire sensor network
into overlapping local regions. Localization is performed in individual regions using
the earlier described procedures. Then, these local maps are patched together to
form a global map by using common nodes shared between adjacent regions. The
improved algorithm can achieve better performance on irregularly shaped networks
by avoiding the use of distance information between far away nodes. The improved
algorithm can also be implemented in a distributed fashion.

In the centralized algorithm of Doherty et al. [56], the connectivity-based
localization problem is formulated as a convex optimization problem and solved
using existing algorithms for solving linear programs and semidefinite programming
(SDP) algorithms. Semidefinite programs are a generalization of the linear programs
and have the form:

Minimize cTx (14.3.1)

Subject to: F.x/ D F0 C x1F1 C � � � C xnFn (14.3.2)

Ax < b (14.3.3)

Fi D FT
i (14.3.4)

where x D Œx1; x2; : : : ; xn�
T and xi represents the coordinate vector of node i, i.e.,

xi D Œxi; yi�. The quantities A, b, c, and Fi are all known. The inequality (14.3.3)
is known as a linear matrix inequality (LMI). A connection between nodes i and j
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can be represented by a “radial constraint” on the node location: jjxi � xjjj � R,
where R is the transmission range. This constraint is a convex constraint and can
be transformed into an LMI using Schur complements [56]. A solution to the
coordinates of the non-anchor nodes satisfying the radial constraints can be obtained
by leaving the objective function cTx blank and solving the problem. Because
there may be many possible coordinates of the non-anchor nodes satisfying the
constraints, the solution may not be unique. If we set the element of c corresponding
to xi (or yi) to be 1 (or -1) and all other elements of c to be zero, the problem becomes
a constrained maximization (or minimization) problem. A lower bound or an upper
bound on xi (or yi) satisfying the radial constraints can be computed, from which
a rectangular box bounding the location estimates of the non-anchor nodes can
be obtained. The algorithm was tested using simulation with a total of 200 nodes
randomly placed on a square of size 10R � 10R and the average node degree is
5:7 [56]. Simulation results showed that the mean location error is a monotonically
decreasing function of the number of anchors. When the number of anchors is small,
the estimated location is as poor as a random guess of the node’s coordinates. The
mean location error reduces to R when the number of anchors increases to 18; it
reduces to 0:5R when the number of anchors increases to 50.

In comparison with other localization algorithms, the most attractive feature of
the connectivity-based localization algorithms is their simplicity. However they can
only provide a coarse grained estimate of each node’s location, which means that
they are only suitable for applications requiring an approximate location estimate
only. Also the localization error is highly dependent on the node density of the
network, the number of anchors, and the network topology. The location error will
be larger in a network with a smaller node density, fewer anchors, or irregular
network topology. There are many later extension of the aforementioned basic
connectivity-based localization algorithms to deal with these issues to improve the
localization accuracy [125, 132, 135, 187].

14.4 Notes and Further Readings

In this chapter, we gave three examples to illustrate the applications of connectivity
studies. Obviously, the applications of the connectivity studies go much further
beyond the three examples. Throughout this book and the literature, we can find
extensive applications of connectivity studies in determining the capacity of a
network, in determining the energy consumption of a network, in determining the
lifetime of a network, in determining the information propagation speed of dynamic
networks, and in radio resource management. These in turn lead to the optimum
design, deployment, and management of a network.

Particularly, it was demonstrated in [138, 142, 195] that the capacity scaling law
of large wireless networks observed in [91] can be easily explained by the increase
in the average number of hops (hence the increase in the portion of bandwidth spent
on relaying traffic) as the network becomes larger. In [204, 205], the analysis on
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the hop count statics was used in estimating the energy consumption, the network
lifetime, and the reliability of end-to-end packet transmission. The connectivity
analysis can also be used to estimate the effective energy consumption and help the
network designers to choose the optimum transmission range/power to minimize the
energy consumption, or to set the transmission range/power to provide a guaranteed
performance on end-to-end packet transmissions.



Appendix

Landau’s Order Notation

For two real functions f and h, the following order notations are used throughout the
book:

• f .z/ D Oz .h .z// if and only if there exists a positive constant C and a real
number z0 such that for z � z0, jf .z/j � C jh .z/j ;

• f .z/ D oz .h .z// if and only if limz!1 f .z/
h.z/ D 0;

• f .z/ D !z .h .z// if and only if h .z/ D oz .f .z//;
• f .z/ D ‚z .h .z// if and only if there exist a sufficiently large z0 and two positive

constants c1 and c2 such that for any z > z0, c1h .z/ � f .z/ � c2h .z/;
• f .z/ 	z h .z/ if and only if limz!1 f .z/

h.z/ D 1;

The above definition applies whether the argument z is continuous or discrete, e.g.,
assuming integer values.

When we do not need to emphasize the dependence on the argument z, we omit
the argument in the order notation.

Frequently Used Statistical Inequalities and Functions

Chebyshev’s Inequality

Let X be a real-valued random variable with finite expected value 
 and finite
nonzero variance �2. Then, for any real number k > 0,

Pr .jX � 
j � k�/ � 1

k2
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Markov Inequality

Let X be a nonnegative random variable and a > 0, then

Pr .X � a/ � E .X/

a

Jensen Inequality

Let X be a real-valued random variable and f be a convex function, then

f .E .X// � E .f .x//

Fortuin–Kasteleyn–Ginibre (FKG) Inequality

The FKG inequality is a correlation inequality and states that for two increasing
functions g and h and a real-valued random variable X

Z

<
g .x/ h .x/ fX .x/ dx �

Z

<
g .x/ fX .x/ dx

Z

<
h .x/ fX .x/ dx

where fX .x/ is the probability density function of X.

Q-Function

The Q-function is the tail probability of the standard normal distribution and is
defined as

Q .x/ D
Z 1

x

1p
2�

e� y2

2 dy

Error Function

For a normally distributed random variable X with mean 0 and variance 1
2
, the error

function erf .x/ describes the probability of X falling in the range Œ�x; x�. The error
function is defined as

erf .x/ D 1p
�

Z x

�x
e�y2dy
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Lambert W Function

The Lambert-W function is defined to be the multivalued inverse of the function
f .z/ D zez. In other words,

z D f �1 .zez/ D W .zez/

By substituting x D zez into the above equation, we get the defining equation for
the Lambert W function:

x D W .x/ eW.x/

Since the function ƒ is not injective, W is multivalued except at 0. If we restrict W to
be real-valued, W is defined only for x � �1=e and is double-valued on .�1=e; 0/.
The additional constraint W � �1 defines a single-valued function W0.x/. We have
W0.0/ D 0 and W0.�1=e/ D �1. Meanwhile, the lower branch has W � �1 and is
denoted W�1.x/. It decreases from W�1.�1=e/ D �1 to W�1.0�/ D �1.

The Lambert W relation cannot be expressed in terms of elementary functions.
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