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To my mother Aphrodite, to Angelika and Hypatia
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“The infinite vacuum is the real essence of the cosmos, whatever
exists has derived from the intrinsic action of the vacuum resulting
to positive and negative entities”

(Anaximander, 611-546 BC).
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Prologue

Throughout this book, we give the main principles of the electromag-
netic theory and quantum electrodynamics (QED), both developed
for the understanding of light’s nature and for the explanation of
the associated phenomena when interacting with matter. Of course,
it is not in the scope of this manuscript to give a full and detailed
presentation of these theories. Only selected theoretical topics have
been chosen, supported by experimental evidence, which are indis-
pensable for the understanding of the present status of the theories
on the nature of light.

Furthermore, we discuss the main difficulties encountered by both
theories, to ensure a complete and coherent mathematical description
of the simultaneous wave-particle nature of light put in evidence by
experiments.

Finally, we consider the basic aspect of QED related to the quan-
tization of the vector potential amplitude of the electromagnetic field
to a single photon state, and we advance elaborations on its relation-
ship with the classical electromagnetic wave theory and the vacuum.

The topics are all drawn from many works previously published,
and given in the bibliography. The perspectives and elaborations on
the photon vector potential and its relationship to the quantum vac-
uum are of my own, in the aim to raise questions and aspire for further
theoretical and experimental investigation, in order to improve our
knowledge and understanding on the real essence of light and vacuum.

Note: In this book, the word “light” is not limited to the visible
field, but concerns the whole electromagnetic spectrum ranging from
zero frequency to infinity.

ix
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Chapter 1

Introduction

“Light is the means nature employs to observe itself”.

Man has always been fascinated by light. Since the rise of humanity,
light is related to life and darkness to death. This concept seems to
have intrinsic roots in the human mind whatever the tribe or nation,
on any continent and during any historic or pre-historic period.

The natural entities emitting light, helping man and animals to
see while eliminating the fears of darkness, like the sun, the moon
and fire were venerated since the beginning and the absolute divine
was associated with them. Man quickly understood that life, as it
is met on the surface of this planet, would be inexistent or at least
completely different without light. The forests are the main lags of
the earth’s atmosphere contributing to the production and to the
recycling of oxygen, a so crucial for the life element. In the absence of
the sun’s light, plants, trees and forests are condemned to disappear
and consequently animals would be unable to survive.

Within a biological point of view, light is the basic medium of
nature conferring the possibility to organisms possessing an appro-
priate detection system, optical or not, to see or detect the shapes
of the objects of the surrounding cosmos. By the same token, light
is the means nature has chosen to watch itself by way of live beings.
The exchange of energy and information between atoms, molecules
and more complex systems occurs through light, permitting life to
emerge in the cosmos. This notion, once understood, automatically
attributes a unique character to light in the universe.

In the old historical times, light on earth was only emitted from
fire, volcanic lava or high temperature metallic objects. Ancient

1
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Greeks had such a profound respect for light that the only origin
they could imagine was undoubtedly divine. In the Greek language,
light is Phos (Φωs). This one-syllable word has quite a strong and
deep consonance that used to be attributed only to exceptional phys-
ical entities, like Pyr (Πυρ) fire, or even the head of the Gods, Zeus
(Zευs). Hence, according to the legend, Prometheus has stolen the
fire from Gods in order to offer light and heat to mankind. Disregard-
ing the fact if mankind was worthy of it, the value of the gift was
invaluable. For his action, Prometheus was punished by the Gods to
be attached on the Caucasian mountains where an eagle was eating
his liver in the day while it was regenerated during the night. The
character of this endless torture without any chance of forgiveness
or clemency gives witness to the extreme importance ancient Greeks
attributed to the stolen entity from the Gods, fire. One simply has
to wonder what human civilization would be like without fire.

Not surprisingly, in most religions God is identified with light.
However, light has an intrinsic nature and undergoes specific phys-

ical laws governing its behavior, and studied by science. Today, we
perfectly understand the behavior laws but our mathematical rep-
resentation of its wave-particle nature and its relationship to the
vacuum is still incomplete.
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Chapter 2

Historical Survey
and Experimental Evidence

The concepts of light during the last 2500 years: corpuscles, ray
optics, wave optics, electromagnetic wave theory and finally quan-
tum particle theory.

As far as we know, the first attempts to study the nature of light
from the scientific point of view are due to ancient Greeks. They
believed light to be composed of corpuscles.

Thales of Miletus in the sixth century BC knew already that in a
given medium, light propagates in straight lines and that the light of
the sun also obeys that property. Based on that knowledge and using
his famous theorem, he measured the height of the Cheops pyramid
by comparing the length of its shadow to that of his stick positioned
vertically.

About two centuries later, Euclid published the book “Optica”
in which, based on the rectilinear propagation of light, he developed
the laws of reflection by applying principles of geometry. Archimedes,
developed the geometrical study of parabolas and ellipsoids and,
according to the legend, he created big metallic mirrors for focusing
the sunlight in order to burn the Roman battle ships during the siege
of Syracuse. That was the first time in human history that light was
employed as a weapon.

A couple of centuries later, in his book “Optics”, Ptolemy of
Alexandria made a full synthesis of all the previous knowledge on light
following the concepts of Euclid, Archimedes and Heron of Alexandria,

3
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treating refraction, reflection and colors. Refraction of the moonlight
and sunlight by the earth’s atmosphere was also analyzed.

Euclid’s “Optica” and Ptolemy’s “Optics” are the first known sci-
entific publications on light’s properties. Only a fraction of “Optics”
has been saved, and this is thanks to Arab mathematicians of the
7th to 10th centuries AC.

After the dominance of Christians during the third century AC,
the first Byzantine emperors ordered the definite closure and destruc-
tion of all Greek mathematical and philosophical academies that were
spread from Greece to Egypt through the Middle East. Philosophers
and scientists were persecuted and murdered preventing any possi-
bility of scientific development for more than thirteen centuries. The
last one of them was Hypatia of Alexandria.

Humanity had to wait until 1620 AC for Snell’s works on refrac-
tion and Fermat’s principle, according to which light rays travel along
the path of least time. It was at this period that many scientists like,
Grimaldi, Boyle, Hook, Descartes and others began studying light’s
properties.

Half a century later, in the year of 1670, Newton had retaken the
proposals of Pierre Gassendi, who had revived the ideas of ancient
Greeks, and advanced the theory that light rays are composed of cor-
puscles that travel rectilinearly. However, he went further beyond this
description by announcing that under specific physical conditions,
the light corpuscles may give birth to waves in “aether”, without giv-
ing it a precise definition. Surprisingly, in the first edition of his book
“Opticks”, the light corpuscles and the generated “aether” waves
were replaced by particles submitted to a kind of “periodic relief”.

Parallel to Newton, in the year of 1680, Huygens developed a
remarkable wave theory for light, deducing the laws of reflection and
refraction while demonstrating that wave propagation may not be in
contradiction with the rectilinear propagation. Huygens’ wave theory
was a hard opponent to Newton’s particles concept.

In the beginning of the 19th century, Young’s experiments
demonstrated that interference can be obtained by different waves,
while Fresnel applied the wave theory to explain the diffraction
patterns observed experimentally. Furthermore, Young explained
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some polarization observations by making the hypothesis that light
oscillations are perpendicular to the propagation axis. Nevertheless,
not even a scientist could seriously consider the interference theory
and Young’s studies were berated by the journalists. Nearly twenty
years later, the diffraction theories of Young and Fresnel, though not
identical, were the only ones capable of predicting all the observed
diffraction patterns and that was really the crucial turnover point in
the 19th century following which the scientific community started to
generally accept the wave nature of light.

The wave theory was dominant until the beginning of 20th cen-
tury. It is worth noting that until that time, nearly for more than
2500 years, the main question for scientists was focused on the parti-
cle or the wave nature of light, but nobody had advanced any specific
questions on the real nature of light, i.e., a corpuscle made of what?
or a wave of what?

In 1865, James Clerk Maxwell published his remarkable work
on the electromagnetic waves issued from . . . Maxwell’s equations
describing the relations between the electric and magnetic fields, and
has shown that the electromagnetic waves propagate in vacuum at
the same speed observed by astronomers for light. For the first time
the speed of light was related directly to the vacuum electric permit-
tivity and magnetic permeability showing the natural relationship
between light and vacuum. Just a few years later, Hertz discovered
the long wavelength electromagnetic radiation demonstrating that it
propagates at the speed of light confirming Maxwell’s theory.

It is quite amazing in the history of science that Maxwell’s and
Hertz’s works, carried out within roughly ten years, were absolutely
revolutionary and decisive in our understanding about the nature of
light, which remained stationary for over 25 centuries.

At the same period, from 1880 to 1900, the works of Stefan, Wien
and Rayleigh have shown for the first time the direct relationship
between the thermal radiation energy and the temperature of the
emitting body, assimilated to a black body. However, the emitted
radiation energy density of the black body as a function of the tem-
perature calculated by Rayleigh, failed to describe the experimental
results obtained at short wavelengths. Scientists had given the name
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of “UV catastrophe” to this situation which revealed the necessity of
a new theoretical approach.

In the very beginning of the 20th century, Max Planck assumed
that the bodies are composed of “resonators”, a kind of oscillators
that have the particularity of emitting the electromagnetic energy in
packets of hν, thus proportional to the wave frequency ν times h, that
was later called Planck’s constant. This hypothesis permitted Planck
to establish the correct energy density expression for the radiation
emitting from a black body with respect to temperature, which is in
excellent agreement with the experiment.

In 1902, Lenard pointed out that the photoelectric effect, discov-
ered by Hertz fifteen years earlier, occurs beyond a threshold fre-
quency of light and the kinetic energy of the emitted electrons does
not depend on the incident light intensity.

The experiments carried out by Michelson and Morley demon-
strated that the speed of light in vacuum is a universal physical
constant. This fundamental discovery was the starting point for the
development of the theory of special relativity, based on Lorentz’s
set of equations followed by Poincare’s theoretical studies. Einstein
grouped all these works in an elaborated theory published in 1905.
During the same year, based on the works of Planck and Lenard,
Einstein published also an article stating that the electromagnetic
radiation is composed of quanta of energy hν and advanced a simple
particle interpretation of the photoelectric effect. In a second article
in 1917, Einstein re-established Planck’s radiation density formula
and expressed that the light quanta have a momentum hν/c, where
c is the velocity of light in vacuum. He advanced that “the energy
of a light ray when spreading from a point consists of a finite num-
ber of energy quanta localized in points in space, which move with-
out dividing and are only absorbed and emitted as a whole”. That
was a decisive step toward the particle theory of light, but Bohr,
who was strongly opposed to the photon concept, announced in his
Nobel lecture, “the light quanta hypothesis is not compatible with the
interference phenomena and consequently it cannot throw light in the
nature of radiation”. The concept of light composed of quanta was
still not generally accepted.
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Compton published his works on X-ray scattering by electrons in
1923 showing that the experimental results can only be interpreted
based on the light quanta model. On the other side, Wentzel in 1926
and Beck in 1927 demonstrated that “the photoelectric effect may be
quite well interpreted using Maxwell’s wave theory for radiation and
quantum theory for the atomic energy levels without ever having to
introduce the light quanta” in their calculations. Although their arti-
cles were an extremely strong argument in favor of the wave theory,
it is quite surprising that exactly the same year, the light quanta
concept started to be universally accepted by many scientists and
Lewis introduced the word “Photon”, from the Greek word Phos
(Φωs = light).

Obviously, just before 1930, the general picture on the nature of
light was extremely puzzling and confusing since both opposing sides
defending the wave or the particle theory presented equally strong
arguments. Not surprisingly, in 1928, Bohr inspired by De Broglie’s
thesis on the simultaneous wave character of particles announced
the “Complementarity Principle” according to which “light has both
wave and particle natures appearing mutually exclusive in each spe-
cific experimental condition”.

From 1925 to 1930, new theories have shaken physics. Heisenberg
developed matrix-mechanics, while in parallel, Schrödinger invented
wave-mechanics which was revealed to be equivalent to matrix-
mechanics. Dirac and Jordan developed the quantum theory of radi-
ation. A few years later, enhancing further Dirac’s works, Pauli and
Heisenberg developed the fundamentals of quantum electrodynamics
(QED) theory which was further developed in the years of forties to
sixties. According to this theory, photons are considered to be point
particles and the energy of the electromagnetic field corresponds to,
that of an ensemble of quantized harmonic oscillators. In the com-
plete absence of photons, QED representation gives an infinite energy
for the vacuum state.

By the end of 20th century and the beginning of the 21st, astro-
physical observations established the first estimations of the vacuum
energy in the universe demonstrating that it is measurable. In 1989,
Weinberg argued that when considering reasonable cut-offs in the
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UV spectrum for the energy of high frequency photons, the vacuum
energy density obtained by QED is by far many orders of magnitude
greater than the measured one. This has been recently called the
“quantum vacuum catastrophe” in order to mark the analogy with
the “UV catastrophe” which, a century ago, entailed the necessity of
developing a new theory to account with.

Considering that the fundamentals of QED were established in
the years of 1930 to 1950, since then no new theories came to light.
Nevertheless, the technological advances on microwaves during the
Second World War and the invention of masers and lasers in the years
of the fifties and sixties, respectively, gave scientists an impulse for
advanced experiments on light’s nature. Some of them are briefly
described in this book.
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32. A. Rougé, Relativité restreinte, la contribution d’Henri Poincaré, Editions
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Chapter 3

Basic Principles
of the Electromagnetic

Wave Theory

3.1. Maxwell’s Equations

The works of Ampere and Faraday on the electric and magnetic fields
during the years of the 1860s were the starting point for establishing
the theory of electromagnetic waves.

Initially they were both investigating time varying electric and
magnetic fields. Faraday firstly understood that the curl of an electric
field �E (�r, t) (units: Volt m−1) at a position �r and at an instant t, in a
medium with magnetic permeability µ (units: Henry m−1) equals the
time variation of the magnetic field intensity �H (�r, t) (units: Ampere
m−1) times µ

�∇× �E (�r, t) = −µ ∂
∂t
�H (�r, t) (3.1.1)

The last equation is still called Faraday’s law. A few years later,
Ampere put in evidence that in a medium with electric permittivity
ε (units: Farad m−1), the curl of the magnetic field intensity �H (�r, t)
equals the current density �j (�r, t) plus the time variation of the elec-
tric field intensity �E (�r, t) times ε.

�∇× �H (�r, t) = �j (�r, t) + ε
∂

∂t
�E (�r, t) (3.1.2)

where the current density �j (�r, t) (Coulomb m−2 s−1 or Ampere m−2)
is related to the charge density ρ (�r, t) (Coulomb m−3 ) through the

11
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fundamental “continuity equation”

�∇ ·�j (�r, t) = −∂ρ (�r, t)
∂t

(3.1.3)

expressing that the spatial variation of the current density equals the
time variation of the charge density implying simply charge conser-
vation.

What one first notices is the natural fact that the electric and
magnetic fields cannot evaluate independently of the medium which
is expressed in this case through the electric permittivity and the
magnetic permeability. We can thus introduce the notions of the
electric displacement flux density �D (�r, t) (units: Coulomb m−2) and
magnetic field flux density, that is the magnetic induction, �B (�r, t)
(units: Webers m−2) which are related to the electric and magnetic
fields intensities �E (�r, t) and �H (�r, t) respectively through the tensor
expressions,

�Dαβ(t) = ε̂αβ · �Eαβ(t); �Bαβ(t) = µ̂αβ · �Hαβ(t) (3.1.4)

where the electric permittivity and magnetic permeability respec-
tively are tensors ε̂αβ and µ̂αβ with α = x, y, z and β = x, y, z, char-
acterizing the intrinsic electric and magnetic nature of the medium
in which the electric and magnetic field intensities subsist.

At that point it is important mentioning that the electric field
�E (�r, t) and the magnetic induction �B (�r, t) are fundamental fields
while �D (�r, t) and �H (�r, t) are fields that include the response of the
medium at macroscopic level.

In isotropic media, i.e., in media in which the electric and mag-
netic properties are identical in all spatial directions, the electric
field is parallel to the electric displacement and the magnetic field
flux intensity parallel to the magnetic field

�D (�r, t) = ε �E (�r, t) �H (�r, t) =
1
µ
�B (�r, t) (3.1.5)

Taking the divergence (�∇·) of the Faraday’s and Ampere’s laws,
(3.1.1) and (3.1.2), and using the continuity equation (3.1.3) one gets
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directly Gauss’s laws

�∇ · �E (�r, t) =
ρ (�r, t)
ε

(3.1.6)

�∇ · �H (�r, t) = 0 (3.1.7)

where (3.1.6) is also called Coulomb’s law.
Physically speaking Gauss’s equations express the fact that indi-

vidual electric charges, positive as well as negative, subsist in nature
and are expressed in the charge density ρ (�r, t), while the absence of
the magnetic monopoles is expressed in equation (3.1.7).

James Clerk Maxwell in 1873 unified equations (3.1.1), (3.1.2),
(3.1.6) and (3.1.7) to a group called Maxwell’s equations which,
joined to the continuity equation (3.1.3) express the relationship
between the electric and magnetic fields intensities in a medium with
a given magnetic permeability µ and electric permittivity ε in the
presence of charges and current densities.

Frequently, Maxwell’s equations are written in such a way that
they express the relation between the electric field intensity �E (�r, t)
and the magnetic field flux intensity �B (�r, t), i.e., the fundamental
fields.

�∇× �E (�r, t) = − ∂

∂t
�B (�r, t) (3.1.8)

�∇× �B (�r, t) = µ�j (�r, t) + (εµ)
∂

∂t
�E (�r, t) (3.1.9)

�∇ · �E (�r, t) =
ρ (�r, t)
ε

(3.1.10)

�∇ · �B (�r, t) = 0 (3.1.11)

The relations (3.1.8) to (3.1.11) together with the continuity equa-
tion (3.1.3) are the fundamental equations governing the behavior of
the electromagnetic fields. They are invariant under time reversal
(t → −t), or space inversion (�r → −�r) or even both time reversal
and space inversion. More precisely, the intrinsic space time trans-
formation properties are such that the electric field �E (�r, t), and
therefore the electric displacement �D (�r, t), do not change sign under
time reversal but under space inversion. The opposite is valid for
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the magnetic induction �B (�r, t) and the magnetic field �H (�r, t). This
is also true for the response of a medium to an electric field and a
magnetic induction consisting respectively by the electric polariza-
tion �P (�r, t) (units: Coulomb m−2) and magnetization �M (�r, t) (units:
Ampere m−1) expressed as following

�P (�r, t) = �D (�r, t) − ε0 �E (�r, t) (3.1.12)

�M (�r, t) =
1
µ0

�B (�r, t) − �H (�r, t) (3.1.13)

According to the set of equations (3.1.8) to (3.1.11), in space
regions characterized by the absence of charges and current densities
|�j| = 0, ρ = 0, the physical vector entities �E (�r, t) and �B (�r, t) are
related through the quantities ε and µ which appear to be of cru-
cial importance in Ampere’s equation (3.1.9). Under these conditions
Maxwell’s equations get the simple form

�∇× �E (�r, t) = − ∂

∂t
�B (�r, t) (3.1.14)

�∇× �B (�r, t) = (εµ)
∂

∂t
�E (�r, t) (3.1.15)

�∇ · �E (�r, t) = 0 (3.1.16)

�∇ · �B (�r, t) = 0 (3.1.17)

Starting from the last set of equations, Maxwell deduced the time
varying propagation of the electric and magnetic fields that gave
birth, for the first time, to a theoretical representation of the elec-
tromagnetic waves.

3.2. Electromagnetic Wave Propagation

• Dispersion relation

Let us analyze how Maxwell’s equations lead naturally to the
expressions of propagation of the electromagnetic fields. We make
the hypothesis that the electric field intensity �E and the magnetic
field flux intensity �B at any spatial position �r vary in time with an
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angular frequency ω = 2πν = 2π 1
T , where ν and T are the frequency

and the period of the oscillation respectively, so as we can write[
�E (�r, t)
�B (�r, t)

]
= Re

{[
�E0 (�r)
�B0 (�r)

]
eiωt

}
(3.2.1)

where Re denotes the real part of the equation.
Then, Maxwell’s equations, more precisely Ampere’s and Fara-

day’s laws, are expressed through the angular frequency ω

�∇× �E (�r, t) = iω �B (�r, t) (3.2.2)

�∇× �B (�r, t) = −iω (εµ)�E (�r, t) (3.2.3)

�∇ · �E (�r, t) = 0 (3.2.4)

�∇ · �B (�r, t) = 0 (3.2.5)

The set of the above equation describes the behavior of the electric
field and magnetic field flux intensities of an electromagnetic har-
monic wave oscillating with an angular frequency ω in an isotropic
medium with electric permittivity ε and magnetic permeability µ.

One should notice two important points:

a. the correspondence ∂
∂t → −i ω, which as we shall see, will be of

crucial importance in quantum mechanics formalism,
b. the curl inversion absence of symmetry between �E and �B which

is ensured through the factor −(εµ), and which is revealed to be
of high importance in the electromagnetic field theory.

The first remark will be extensively discussed in the next chapter.
However, the second reveals the role of the medium’s nature in the
propagation of the electromagnetic field.

Let us assume the media to be homogeneous. Therefore we can use
plane wave solutions for �E0 (�r) and �B0 (�r) in (3.2.1) of the form ei

�k·�r

where �k is a vector along the propagation axis called wave vector.
Hence, from Maxwell’s equations we obtain

�k × �E (�r, t) = ω �B (�r, t) (3.2.6)
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�k × �B (�r, t) = −ω (µε)�E (�r, t) (3.2.7)

�k · �E (�r, t) = 0 (3.2.8)

�k · �B (�r, t) = 0 (3.2.9)

The last set of equations entail that in isotropic media �k is per-
pendicular to �E and �B (while it is always perpendicular to �D and
�B, even if the medium is anisotropic) and �E is perpendicular to �B.

Consequently, the unit vectors, ê = �E
| �E| , b̂ = �B

| �B| , k̂ = �k

|�k| constitute

a right-hand rectangular coordinate system.
Considering equation (3.2.6) and taking the cross-product we get

�k × �k × �E (�r, t) = ω�k × �B (�r, t) (3.2.10)

According to the vector property �k×�k× �E (�r, t) = (�k · �E (�r, t))�k−
k2 �E (�r, t) = −k2 �E (�r, t) where we have also used equation (3.2.8), the
equation (3.2.10) using (3.2.7) becomes

Ω2
k
�E (�r, t) = 0 (3.2.11)

with Ω2
k = k2 − (µε)ω2. The solution to the last equation is Ω2

k = 0.
Thus,

k2 = (µε)ω2 (3.2.12)

which is called the “dispersion relation” relating the wave vector k
to the angular frequency ω through the medium intrinsic properties
ε and µ.

• Physical quantities involved in the electromagnetic field

Notice that 1
εµ has the dimension of the square power of celerity.

Consequently, it is precisely the electric permittivity ε and magnetic
permeability µ that fixes the velocity of the electromagnetic wave in
a medium whose refractive index n is defined as

n =
√

µε

µ0ε0
(3.2.13)

with µ0 = 4π × 10−7Hm−1 and ε0 = 8.85 × 10−12Fm−1 ≈ 1
36π

10−9Fm−1, the magnetic permeability and electric permittivity of
the vacuum.
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This is already an amazing concept of the classical electromag-
netic theory that confers electric and magnetic properties to the vac-
uum state.

The characteristic impendence of a medium is given by

R =
√
µ

ε
(3.2.14)

corresponding to the resistance (units: Ohms, Ω) of the medium when
an electric potential is applied.

Consequently, the vacuum itself is characterized by the impen-
dence

Rvacuum =
√
µ0

ε0
≈ 120π Ω (3.2.15)

which has the definite value of 376.7 Ω.
It is extremely worthy noticing that the vacuum state in classical

electrodynamics is not an empty, fully inertial entity characterized by
the perfect “inexistence” but has its own physical, measurable impen-
dence, Rvacuum, as well as electric, ε0, and magnetic, µ0, properties
affecting the propagation of the electromagnetic waves in vacuum.
In fact, the speed of the electromagnetic waves in vacuum, c, results
directly from the intrinsic properties of the vacuum itself

c =
1√
ε0µ0

≈ 2.9979 108 m s−1 (3.2.16)

Although the origin of the vacuum’s electromagnetic properties
remains unknown, the last ones dictate the value of the highest pos-
sible velocity in the universe, c, in the frame of course of the present
state of knowledge.

The dispersion relation writes now

k2

(
c2

n2

)
= ω2 (3.2.17)

expressing a fundamental relationship between the wave vector k

and the angular frequency ω through the speed of the light c/n in a
medium with refractive index n, where n = 1 for the vacuum.
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• Propagation equations of electromagnetic waves

Taking the curl of equation (3.1.14) and using (3.1.15)

�∇× �∇× �E (�r, t) = − ∂

∂t
(�∇× �B(�r, t)) = − ∂

∂t
(µε)

∂

∂t
�E (�r, t)

= −(µε)
∂2

∂t2
�E (�r, t) (3.2.18)

Considering the classical vector formalism

�∇× �∇× �E = �∇(�∇ · �E) − �∇2 �E = −�∇2 �E (3.2.19)

So (3.2.18) writes

�∇2 �E (�r, t) − (µε)
∂2

∂t2
�E (�r, t) = 0 (3.2.20)

which is the propagation equation for the electric field in a medium
with refractive index n

�∇2 �E (�r, t) − n2

c2
∂2

∂t2
�E (�r, t) = 0 (3.2.21)

An analogue equation can be obtained for the magnetic field flux
intensity �B (�r, t).

• Helmholtz equation

The vector relations of (3.2.6) to (3.2.9) show that �k, �E and �B are
perpendicular to each other and construct a right-hand coordinate
system. Hence, the harmonic solutions of the propagation equation
for the electric field and magnetic field induction write

�E (�r, t) = E0 (�r) ê e−i(�k·�r−ωt) + c.c. (3.2.22)

�B (�r, t) = B0 (�r)(k̂ × ê) e−i(�k·�r−ωt) + c.c. (3.2.23)

with c.c. denoting the complex conjugate part.
From (3.2.12), (3.2.17), (3.2.21) and (3.2.22), we deduce the

Helmholtz equation for each component of the electric field(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)
Eα = 0 α = (x, y, z) (3.2.24)
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In other words, in the classical electromagnetic theory, the electric
and magnetic fields oscillate perpendicularly along the propagation
axis k with an angular frequency ω at the speed c/n.

This is called simply a plane wave solution. In this representation
the wave vector in vacuum (n = 1) has the simple expression

�k =
ω

c
k̂ =

2π ν
c
k̂ =

2π
λ
k̂ (3.2.25)

where λ is the wavelength, representing the spatial distance of a
complete oscillation of the electric and magnetic field vectors over a
period T and k̂, the unit vector along the propagation axis.

For a given fixed value of the angular frequency ω, and the wave-
length λ, the wave is called monochromatic (single color) and we will
use the notations �Eω (�r, t) and �Hω (�r, t) for the corresponding elec-
tric and magnetic fields, which, according to the above considerations
obey the same propagation equation

�∇2 �Gω(�r, t) − n2

c2
∂2

∂t2
�Gω(�r, t) = 0 (3.2.26)

where �Gω(�r, t) is either �Eω (�r, t) or �Hω (�r, t).
More generally an electromagnetic wave is called Transverse

Electro-Magnetic (TEM) when both �Eω(�r, t) and �Hω(�r, t) lie in the
plane that is transverse to the direction of propagation, with the
same token Transverse Electric (TE) corresponding to the configu-
ration with all the components of the electric field, but not those of
the magnetic field, in the transverse plane to the propagation axis.
Conversely, a Transverse Magnetic (TM) electromagnetic wave has
all of the components of the magnetic field, but not those of the
electric one, in the plane transverse to the propagation direction.

• Energy flux of electromagnetic waves

The vector product

�Sω = �Eω × �Hω (3.2.27)

represents the instantaneous magnitude and direction of the power
flow of the electromagnetic field and is called the Poynting vector.
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The power density (units: Watt m−2) along the propagation axis
is obtained by time averaging the Poynting vector over a period T

〈�Sω〉T =
1
T

∫ T

0
(�Eω × �Hω) dt =

1
2
Re

{
�Eω × �Bω

µ

}

=
1
2

( c
n

)
ε| �Eω|2 k̂ =

1
2

( c
n

) 1
µ
| �Bω|2k̂ (3.2.28)

The quantity 〈�Sω〉T is also called “Intensity” or “Irradiance” of
the monochromatic electromagnetic wave.

The energy density (units: Joules m−3) of a transverse monochro-
matic electromagnetic (TMEM) wave in vacuum oscillating at the
angular frequency ω is obtained at the coordinate �r and at an instant
t by the expression:

Wω(�r, t) =
1
2

(
ε0| �Eω(�r, t)|2 +

1
µ0

| �Bω(�r, t)|2
)

(3.2.29)

where ε0 and µ0 are the vacuum permittivity and permeability
related to the velocity of light in vacuum c by the simple relation:

ε0µ0c
2 = 1 (3.2.30)

implying once again that the vacuum in classical electrodynamics
has an electromagnetic essence.

Wω(�r, t) has to be understood as a time varying scalar field
entailing that the energy density has not fixed values at any space
coordinate, due naturally to the periodic variation of the electric and
magnetic fields. Frequently, Wω(�r, t) is expressed through the vacuum
permittivity only, getting for the total energy of a monochromatic
electromagnetic field in a volume V :

E(ω, ε0) =
ε0
2

∫
V

(| �Eω(�r, t)|2 + c2| �Bω(�r, t)|2)d3r (3.2.31)

It is quite important noticing that the energy of the electromag-
netic waves depends directly on the vacuum intrinsic properties, the
electric permittivity ε0 and magnetic permeability µ0.

Furthermore, Eω depends on the integration volume V and it is a
time varying function.
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• TEM waves — Laplace equation

General solutions of Maxwell’s equations for TEM waves are with-
out longitudinal field components.

From equations (3.1.5), (3.2.2) and (3.2.3), we can write the curls
of the electric and magnetic field as following

�∇× �E (�r, t) = −iω µ �H (�r, t) (3.2.32)
�∇× �H (�r, t) = iω ε �E (�r, t) (3.2.33)

Using the plane wave expression (3.2.22) and (3.2.23) and con-
sidering the propagation along the z-axis so that in Cartesian coor-
dinates the components of the electric and magnetic field intensities
of the transverse wave depend on (x, y), the equations (3.2.32) and
(3.2.33) are expanded to the component expressions[

∂Ez

∂y
+ iγEy

]
+ iωµHx = 0 (3.2.34)

[
∂Ez

∂x
+ iγEx

]
− iωµHy = 0 (3.2.35)

[
∂Ey

∂x
− ∂Ex

∂y

]
+ iωµHz = 0 (3.2.36)

[
∂Hz

∂y
+ iγHy

]
− iωεEx = 0 (3.2.37)

[
∂Hz

∂x
+ iγHx

]
+ iωεEy = 0 (3.2.38)

[
∂Hy

∂x
− ∂Hx

∂y

]
− iωεEz = 0 (3.2.39)

where we have introduced a general wave vector γ, called propagation
factor, in such a way that the difference between the square values
of k (given by 3.2.12) and γ define a cut-off wave vector kc

k2
c = k2 − γ2 (3.2.40)

According to the last set of six components equations, it is impor-
tant noting that all the transverse field components can be calculated
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with respect to the longitudinal components Ez and Hz

Ex = − i

k2
c

[
γ
∂Ez

∂x
+ ωµ

∂Hz

∂y

]
(3.2.41)

Ey = − i

k2
c

[
γ
∂Ez

∂y
− ωµ

∂Hz

∂x

]
(3.2.42)

Hx =
i

k2
c

[
ωε
∂Ez

∂y
− γ

∂Hz

∂x

]
(3.2.43)

Hy = − i

k2
c

[
ωε
∂Ez

∂x
+ γ

∂Hz

∂y

]
(3.2.44)

Hence, the components of TE waves, for which Ez = 0, as well
as TM waves, for which Hz = 0, are immediately deduced from
equations (3.2.41) to (3.2.44).

Now, one may wonder what happens for a TEM wave, when both
Ez and Hz are zero. Obviously, we cannot use equations (3.2.41) to
(3.2.44). Hence, we have to apply again equations (3.2.34) to (3.2.38)
from which, by eliminating Hx, we get simply

µεω2Ey = γ2Ey → γ = k = ω
√
µε (3.2.45)

entailing that the cut-off wave vector is zero for TEM waves

kc(TEM) = 0 (3.2.46)

From the Helmholtz equation, the (3.2.45) relation and the e−iγz

dependence of each component of the field we get(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)(
Ex

Ey

)
=
(

0
0

)
(3.2.47)

Because ∂2

∂z2

(
Ex

Ey

)
= −γ2

(
Ex

Ey

)
= −k2

(
Ex

Ey

)
equation (3.2.47) becomes

the Laplace equation for the transverse components of a TEM wave(
∂2

∂x2
+

∂2

∂y2

)(
Ex

Ey

)
=
(

0
0

)
(3.2.48)

It is easy to demonstrate that the magnetic field transverse com-
ponents Hx, Hy also satisfy Laplace equation, entailing that the
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transverse components of the TEM wave behave as static fields
between conductors.

3.3. Scalar and Vector Potentials

The classical electromagnetic theory described briefly above repre-
sents light as electromagnetic plane waves whose electric and mag-
netic fields may oscillate at any frequency from “zero” to “infinity”.
From mathematical point of view, �Eω(�r, t) and �Bω(�r, t) can be gen-
erated from the coupling of scalar and vector potentials which are
frequently denoted by Φω(�r, t) and �Aω(�r, t) respectively

�Eω(�r, t) = −�∇Φω(�r, t) − ∂

∂t
�Aω(�r, t) (3.3.1)

�Bω(�r, t) = �∇ × �Aω(�r, t) (3.3.2)

Obviously, the scalar and vector potentials are not precisely
defined by the last relations since equations (3.3.1) and (3.3.2) remain
unaltered when considering any function σ(�r, t) such as

Φω(�r, t) → Φω(�r, t) − ∂

∂t
σ(�r, t) (3.3.3)

and

�Aω(�r, t) → �Aω(�r, t) + �∇σ(�r, t) (3.3.4)

In electromagnetic theory, this property is called Gauge Invari-
ance which requires a supplementary condition for the definition of
the scalar and vector potential Φω(�r, t) and �Aω(�r, t).

In Lorentz Gauge, the supplementary condition is chosen to be

�∇ · �Aω(�r, t) = −µε ∂
∂t

Φω(�r, t) (3.3.5)

From the propagation equation (3.2.20) and (3.3.1), in absence of
charges and current densities |�j| = 0, ρ = 0, and using the Lorentz
Gauge condition, we get

�∇2 �Aω(�r, t) − µε
∂2

∂t2
�Aω(�r, t) = 0 (3.3.6)
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and

�∇2Φω(�r, t) − µε
∂2

∂t2
Φω(�r, t) = 0 (3.3.7)

showing that all the electric and magnetic fields of a monochromatic
electromagnetic wave, �Eω(�r, t), �Bω(�r, t), �Aω(�r, t) and Φω(�r, t) prop-
agate in space satisfying, exactly the same propagation equation.

If we consider that the current and charge densities are not zero,
it is easy to get from Maxwell’s equations (3.1.8) to (3.1.11) the
complete propagation equations:

�∇2 �Aω(�r, t) − µε
∂2

∂t2
�Aω(�r, t) = −µ �J(�r, t) (3.3.8)

and

�∇2Φω(�r, t) − µε
∂2

∂t2
Φω(�r, t) = −ρ (�r, t)

ε
(3.3.9)

The general solutions of the last equations are:

�A (�r, t) =
µ

4π

∫ �J
(
�r′, t− |�r−�r′|

c

)
|�r − �r′| d3r (3.3.10)

and

Φ(�r, t) =
1

4πε

∫ ρ
(
�r′, t− |�r−�r′|

c

)
|�r − �r′| d3r (3.3.11)

in which the time delay appearing in the current and charge den-
sities is conditioned by the speed of the electromagnetic waves in
vacuum, c.

At that level it is very important to note that the dimension
analysis of (3.3.10) shows that the vector potential is inversely pro-
portional to time, hence proportional to a frequency.

Now, let us consider a different Gauge condition which consider-
ably simplifies the equations. In the so called Coulomb Gauge, the
supplementary condition is chosen as:

�∇ · �Aω(�r, t) = 0 (3.3.12)
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From (3.3.5) and (3.3.9), we get Poisson’s equation relating the
scalar potential to the charge density:

�∇2Φω(�r, t) = −ρ (�r, t)
ε

(3.3.13)

whose solution is now independent of the time delay characterizing
the charge density:

Φ (�r, t) =
1

4πε

∫
ρ (�r ′, t′)
|�r − �r′| d

3r′ (3.3.14)

Hence in the absence of charges Φ(�r, t) = 0 and from (3.3.1),
we get a quite important relation between the electric field and the
vector potential in the Coulomb Gauge.

�Eω(�r, t) = − ∂

∂t
�Aω(�r, t) (3.3.15)

The last relation is principally used in classical and quantum elec-
trodynamics to calculate the electric field starting from the vector
potential.

3.4. Vector Potential and Electromagnetic Field
Polarization

Using the above relations, the propagation equation for the vector
potential in vacuum writes

�∇2 �Aω(�r, t) − 1
c2
∂2

∂t2
�Aω(�r, t) = 0 (3.4.1)

In the case of a plane monochromatic electromagnetic field the
vector potential is real (from mathematical point of view) and it is
expressed in the same way as the electric and magnetic fields

�Aω (�r, t) = �A0(ω) (e−i(�k·�r−ωt+θ) + c.c.)

= 2 �A0 (ω) cos(�k · �r − ω t+ θ) (3.4.2)

where θ is a phase parameter.
For the Coulomb Gauge condition to be satisfied, the following

relation between the wave vector and the amplitude of the vector
potential should hold:

�k · �A0(ω) = 0 (3.4.3)



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-ch03 page 26

26 Light and Vacuum

entailing that the wave vector is perpendicular to the vector potential
so that the electromagnetic wave is called transverse.

Taking θ = 0 and using the relations (3.3.15) and (3.3.2), while
putting �A0 → A0(ω) ε̂ and �k = ω

c k̂ we get directly the electric field
and magnetic induction expressed through the vector potential

�Eω(�r, t) = −2ωA0(ω) ε̂ sin (�k · �r − ω t) (3.4.4)

�Bω(�r, t) = −1
c
2ωA0(ω)(k̂ × ε̂) sin (�k · �r − ω t) (3.4.5)

The polarization of the radiation, i.e., the spatial orientation of
the electric field, is also specified by the unit vector of the vector
potential ε̂.

From the coupling of the equation (3.2.28) with the last expres-
sions one gets in vacuum,

〈�Sω〉T = 2ε0c ω2A2
0(ω) k̂ (3.4.6)

expressing that the power density along the propagation axis
(Poynting vector) is also expressed through the vector potential over
a period T .

In the same way the energy density of the electromagnetic field is
obtained by (3.2.29), (3.4.4) and (3.4.5):

Wω(�r, t) = 4ε0ω2A2
0(ω) sin2(�k · �r − ωt) (3.4.7)

whose mean value over a period writes:

〈Wω〉T = 2ε0ω2A2
0(ω) =

1
c
|〈�Sω〉T | (3.4.8)

Consequently, the only knowledge of the vector potential amplitude
A0(ω) is sufficient to deduce the principal physical properties of a
TMEM wave of angular frequency ω in vacuum.

We can now have a close look to the vector orientation of the
electric field and that of the vector potential with respect to the
propagation axis. Following the equation (3.4.3), the unit vector of
the vector potential and thus that of the electric field intensity, ε̂,
lies in a plane which is perpendicular to the propagation vector k̂.
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Considering two orthogonal unit vectors ê1 and ê2, defining the plane
perpendicular to the wave vector k̂ forming a right-handed system:

k̂ = ê1 × ê2, ê1 · ê2 = 0 (3.4.9)

so as the unit vector ε̂ of the vector potential can be decomposed
simply as

ε̂ = α1ê1 + α2ê2 (3.4.10)

And since ε̂ is a unit vector, the following relation between the
coefficients α1 and α2 holds

α2
1 + α2

2 = 1 (3.4.11)

Thus, we can define two complex orthogonal unit vectors L̂ and
R̂ such as

L̂ =
1√
2
(ê1 + iê2) and R̂ =

1√
2
(ê1 − iê2) (3.4.12)

appropriate for describing respectively, the Left-hand and Right-
hand circularly polarized electromagnetic waves, corresponding to
two states of the radiation polarization.

In the first case, the electric field follows a circular left-hand pre-
cession along the propagation axis with the angular frequency ω,
while in the second one it follows a circular right-hand precession at
the same angular frequency.

From equations (3.4.2) and (3.4.12), one may easily deduce the
components of the vector potential of a circularly polarized plane
wave in Cartesian coordinates (ê1 → x̂ and ê2 → ŷ):

A(L)
x (z, t) = A(R)

x (z, t) =
√

2A0(ω) cos (kz − ω t)

A(L)
y (z, t) = −A(R)

y (z, t) = −
√

2A0(ω) sin (kz − ω t)

A(L)
z = A(R)

z = 0 (3.4.13)

Using (3.3.15) and (3.4.13), the expressions of the corresponding elec-
tric field components write:

E(L)
x (z, t) = E(R)

x (z, t) = ωA(L)
y = −ωA(R)

y
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E(L)
y (z, t) = −E(R)

y (z, t) = −ωA(L)
x = −ωA(R)

x

E(L)
z = E(R)

z = 0 (3.4.14)
Consequently, an arbitrary state of polarization can be obtained

by the complex unit vector P̂ consisting of a linear combination of
L̂ and R̂:

P̂ = βLL̂+ βRR̂

=
1√
2
(βL(x̂+ iŷ) + βR(x̂− iŷ)) with |βL|2 + |βR|2 = 1

(3.4.15)
For example, a linear polarization consists of the oscillation of the

electric and magnetic field in the orthogonal planes (x, z) and (y, z)
along the propagation axis z.

Obviously, such a polarization is easily obtained by the combi-
nation of two circularly polarized waves propagating in phase and
having right and left polarization.

3.5. Guided Propagation of Electromagnetic Waves

In the previous chapter, we have seen that the electric and mag-
netic fields of a monochromatic wave obey the propagation equation
(3.2.26) in free space. It is of high interest to explore the way the elec-
tromagnetic wave propagate in a waveguide of specific cross sectional
shape and dimensions. The problem consists of seeking solutions to
Maxwell’s equations satisfying the particular boundary conditions
imposed by the waveguide shape.

Let us consider the simple case in which the inner walls of the
waveguide consists of a homogeneous and isotropic dielectric with
fixed values of ε and µ. It is worth noting that a TEM mode can
only propagate in the presence of two or more guiding conductors.
Consequently, a TEM mode cannot propagate in a hollow waveguide
since it is composed of a single conductor. Thus, we give below the
components of the electric and magnetic fields of transverse elec-
tric (TE) and transverse magnetic (TM) modes satisfying Maxwell’s
equations and the boundary conditions, in the case of rectangular
and circular waveguides.



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-ch03 page 29

Basic Principles of the Electromagnetic Wave Theory 29

• Rectangular waveguide of cross section a, b (a > b)

We also assume here time-harmonic fields with an angular fre-
quency ω, hence with an exponential dependence eiωt. The propa-
gating fields must be solutions of Maxwell’s equations satisfying the
boundary conditions, for the components of the electric and magnetic
fields on the waveguide walls.

3.5.1. TEm,n Modes

Are characterized by the absence of the electric field component along
the propagation axis Ez = 0. The magnetic field components Hz has
to satisfy the reduced (simplifies the time dependence) propagation
equation [

∂2

∂x2
+

∂2

∂y2
+ k2

c

]
Hz(x, y) = 0 (3.5.1)

The boundary conditions for the electric field tangential compo-
nents are

êx(x, y) = 0 at (y = 0 and b) and

êy(x, y) = 0 at (x = 0 and a) (3.5.2)

The solutions in Cartesian coordinates (x, y, z) are given by

Hx = iH0z

γ

k2
c

(mπ
a

)
sin
(mπx

a

)
cos
(nπy

b

)
e−iγz (3.5.3)

Hy = iH0z

γ

k2
c

(nπ
b

)
cos

(mπx
a

)
sin
(nπy

b

)
e−iγz (3.5.4)

Hz = H0z cos
(mπx

a

)
cos
(nπy

b

)
e−iγz (3.5.5)

Ex = Hy

(
ωµ

γ

)
; Ey = −Hx

(
ωµ

γ

)
; Ez = 0 (3.5.6)

Where γ is the propagation factor

γ =
√
k2 − k2

c =
(
µεω2 −

(mπ
a

)2 −
(nπ
b

)2
)1/2

(3.5.7)
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with k2 = µεω2 and

k2
c =

(
2π
λc

)2

=
(mπ
a

)2
+
(nπ
b

)2
(3.5.8)

is the cut-off wave vector and λc the cut-off wavelength corresponding
to a cut-off angular frequency

ωc =
kc√
µε

and λc =
2π√(

mπ
a

)2 +
(

nπ
b

)2 (3.5.9)

Only modes with ω > ωc and λ < λc can propagate in this rectan-
gular waveguide.

3.5.2. TMm,n Components

The TM m,n components are characterized by the absence of the mag-
netic field component along the propagation axisHz = 0. The electric
field components Ez has to satisfy the reduced propagation equation[

∂2

∂x2
+

∂2

∂y2
+ k2

c

]
Ez(x, y) = 0 (3.5.10)

The boundary conditions for êx and êy are also satisfied by êz, i.e.,

êz(x, y) = 0 at (x = 0 and a) and êz(x, y) = 0 at (y = 0 and b)
(3.5.11)

The solutions in Cartesian coordinates (x, y, z) are given by

Ex = −iE0z

γ

k2
c

(mπ
a

)
cos
(mπx

a

)
sin
(nπy

b

)
e−iγz (3.5.12)

Ey = −iE0z

γ

k2
c

(nπ
b

)
sin
(mπx

a

)
cos
(nπy

b

)
e−iγz (3.5.13)

Ez = E0z sin
(mπx

a

)
sin
(nπy

b

)
e−iγz (3.5.14)

Hx = −Ey

(
ωε

γ

)
; Hy = Ex

(
ωε

γ

)
; Hz = 0 (3.5.15)

where n,m are integers (including 0). H0zand E0zare the amplitudes
of the magnetic and the electric field respectively along the direction
of propagation z.
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As in the case of TEm,n modes in a rectangular waveguide, the
cut-off wavelength λc for the TM m,n writes

λc =
2π√(

mπ
a

)2 +
(

nπ
b

)2 (3.5.16)

Hence, in a rectangular waveguide, only TEm,n and TM m,n modes
with a wavelength shorter than λc can propagate.

• Circular waveguide of radius r0

In a circular waveguide things are slightly different and it is more
practical to use the cylindrical coordinates (r, θ, z).

3.5.3. TEm,n Modes

In the case of the rectangular waveguide, the electric field compo-
nent along the propagation axis Ez = 0, while the magnetic field
component Hz is a solution to the equation[

∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2
+ k2

c

]
Hz(ρ, θ) = 0 (3.5.17)

The solution for Hz(ρ, θ) has to be periodic in angular rotation
so that Hz(ρ, θ) = Hz(ρ, θ + 2nπ), while the tangential component
of the electric field on the wall should vanish as Eθ(ρ = r0, θ) = 0.

Respecting these boundary conditions the field components have
the expressions

Hz = H0z cos (mθ)Jm

(
R(J ′

m)
n

ρ

r0

)
e−iγz (3.5.18)

Hθ = H0z

γ

k2
c

(
m

ρ

)
sin(mθ)Jm

(
R(J ′

m)
n

ρ

r0

)
e−iγz (3.5.19)

Hρ = −iH0z

(
γ

kc

)
cos (mθ)J ′

m

(
R(J ′

m)
n

ρ

r0

)
e−iγz (3.5.20)

Eθ = −Hρ

(
ωµ

γ

)
; Eρ = Hθ

(
ωµ

γ

)
; Ez = 0 (3.5.21)
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where Jm is the Bessel function of the first kind of order m and R(J ′
m)

n

is the nth root of J ′
m, the derivative with respect to the argument.

The cut-off wavelength λc and the corresponding cut-off angular fre-
quency ωc are also given as a function of the circular waveguide cross
section parameter r0.

λc =
2π r0
R

(J ′
m)

n

(3.5.22)

ωc =
R

(J ′
m)

n

r0
√
µε

(3.5.23)

In a circular waveguide with radius r0 only the TEm,n modes with
a wavelength shorter than λc can propagate.

3.5.4. TMm,n Modes

The TM modes are obtained by solving for Ez, the propagation equa-
tion: [

∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2
+ k2

c

]
Ez(ρ, θ) = 0 (3.5.24)

This is an identical equation to that of the Hz component in the
TE case. Thus, the general solutions have the same form and are
obtained with the boundary condition that the z component of the
electric field vanishes at the walls: Ez(ρ = r0, θ) = 0.

Ez = E0z cos(mθ)Jm

(
R(Jm)

n

ρ

r0

)
e−iγz (3.5.25)

Eθ = iE0z

γ

k2
c

(
m

ρ

)
sin (mθ) Jm

(
R(Jm)

n

ρ

r0

)
e−iγz (3.5.26)

Eρ = −iE0z

(
γ

kc

)
cos(mθ)J ′

m

(
R(Jm)

n

ρ

r0

)
e−iγz (3.5.27)

Hθ = Eρ

(
ωε

γ

)
; Hρ = −Eθ

(
ωε

γ

)
; Hz = 0 (3.5.28)

The expression for the propagation factor is the same as in the
TE modes while the cut-off wavelength and angular frequency cut-off
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now write

λc =
2π r0
R

(Jm)
n

(3.5.29)

and

ωc =
R

(Jm)
n

r0
√
µε

(3.5.30)

where R(Jm)
n is the nth root of Jm, that is Jm(R(Jm)

n ) = 0.

• Case of two parallel plates

This is a particular configuration that accepts TE and TM waves
and can also support TEM waves since it is composed of two conduc-
tors. As we have seen in 3.2, the TEM waves behave as the static fields
between conductors and consequently they can be deduced from the
scalar potential that satisfies Poisson’s equation (3.3.13) in the plane
(x, y) and in the absence of charges.

�∇2
(x,y) Φ (x, y) = 0 (3.5.31)

Considering two parallel plates in the (x, z) plane separated by
a distance y0, having a potential difference of U , and considering a
definite length along the x axis, x0, for 0 ≤ x ≤ x0 and 0 ≤ y ≤ y0,
the boundary conditions for the scalar potential write

Φ(x, 0) = 0 and Φ (x, y0) = U (3.5.32)

The solution of (3.5.31) respecting the boundary conditions
(3.5.32) is

Φ (x, y) =
y

y0
U (3.5.33)

The TE field is obtained immediately

�E (x, y) = −�∇(x,y)Φ(x, y) =
1
y0
U êy (3.5.34)

and the complete expression of the electric field is

�E (x, y, z) =
U

y0
e−ikz êy (3.5.35)

and the magnetic field becomes

�H (x, y, z) =
U

y0R
e−ikz êx (3.5.36)
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where R is the impendence of the medium between the parallel plates
given by (3.2.14). Since Ez and Hz are zero here, the TEM fields in
this situation are analogue to plane waves in a homogeneous medium.

Now, one can easily calculate the potential V (y0) on the plate at
y = y0 from the classical electrostatic formalism

V (y0) = −
∫ y0

0

U

y0
e−ikz dy = U e−ikz (3.5.37)

while the surface current density on the same plate is calculated as
following

I(y0) = −
∫ x0

0
(êy × �H) · êz dx =

x0

y0

U

R
e−ikz (3.5.38)

This is a quite interesting result showing that TEM waves can
propagate between two parallel plates with a potential difference U ,
inducing a current density on the upper plate.

• Density of states

The guided propagation of the electromagnetic waves reveals that
whatever the shape of the box the exponential part of the wave func-
tion e−i�k·�r of (3.4.2) suffers the boundary conditions. This introduces
naturally the notion that the electromagnetic wave is composed of
“states”, whose number is imposed by the shape and the dimensions
of a given volume and can be calculated.

Let us consider the simple case of a cube of a large side L and
volume V . Then the periodic boundary conditions, like in (3.5.8) for
the wave vector are

kx =
2π
L
nx, ky =

2π
L
ny, kz =

2π
L
nz (3.5.39)

with nx, ny, nz = 0,±1,±2, . . . .
The number of modes in the range dkxdkydkz = d3k writes

dkxdkydkz =
(

2π
L

)3

dnxdnydnz (3.5.40)
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Assuming that L is too large compared to the wavelength, nx, ny,
nz can be considered as continuous variables

dnxdnydnz =
(
L

2π

)3

dkxdkydkz =
V

8π3
4πk2dk (3.5.41)

Using the dispersion relation ω = kc and considering two direc-
tions of polarization per state, the total number of states in the
angular frequency interval dω writes

dn(ω) = V
ω2

π2c3
dω (3.5.42)

Notice that the same expressions will be used later in quantum
mechanics for the calculation of the number of photons in a volume
V , revealing an interesting relation between the notion of electro-
magnetic field “state” and the concept of the “photon”.

Hence, the states density, corresponding to the number of states
per unit volume and unit frequency ν = ω/2π results readily from
(3.5.42),

ρ(ν) =
8πν2

c3
(3.5.43)

Equation (3.5.41) is extremely useful for transforming the discrete
summation over the wave vector k, characterizing each state to a
continuous summation over the angular frequencies∑

k

→ V

8π3

∫
4πk2dk =

V

2π2c3

∫
ω2dω (3.5.44)

This is the key relation used in all calculations in quantum elec-
trodynamics in order to obtain physical results independent of the
volume parameter V .

3.6. Conclusion Remarks

The principal conclusion that can be drawn out from the last chap-
ter is that the electromagnetic waves can propagate in vacuum and
the propagation equations are immediately deduced from Maxwell’s
equations.

However, in Maxwell’s theory the vacuum itself is not a com-
pletely empty medium but has an electromagnetic nature, processing
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a magnetic permeability µ0 = 4π × 10−7Hm−1 and an electric per-
mittivity ε0 = 8.85×10−12Fm−1 ≈ 1

36π 10−9Fm−1, and consequently

an impendence of a precise value, Rvacuum =
√

µ0

ε0
≈ 120πΩ.

Whereas, the speed c of the electromagnetic waves is imposed by
the intrinsic electric and magnetic properties of the vacuum, c =

1√
ε0µ0

≈ 2.9979 108 m s−1, which at the present status of knowledge
is considered to be the highest speed permitted in the universe.

Furthermore, it is important noticing that the energy density and
flux of the electromagnetic waves depend equally on the vacuum
properties ε0 and µ0.

It turns out that the electromagnetic waves, in other words light,
appear to behave as a natural perturbation of the vacuum, hav-
ing intrinsic electric and magnetic properties. The vector poten-
tial of the electromagnetic field, issued from Maxwell’s equations is
proportional to the angular frequency.

On the other hand, it is of high interest to notice the volume
importance for the existence of a “mode” of the electromagnetic field,
issued from the guided propagation studies. All the cut-off wave-
lengths calculated for the different shapes of waveguides entail that
longer wavelengths beyond those values cannot stand within a volume
of a given shape and dimensions. Consequently, an electromagnetic
wave mode of a given wavelength, even the simplest one composed
by a single state, cannot subsist in a volume whose dimensions cor-
respond to a smaller cut-off wavelength.

Finally, the number of states per unit volume and unit frequency
calculated by ρ(ν) = 8πν2

c3
is only valid in a volume whose dimensions

are considerably bigger than the wavelength of the electromagnetic
waves.
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Chapter 4

From Electromagnetic Waves
to Quantum Electrodynamics

4.1. Elements of Quantum Mechanics

• Blackbody radiation and the ultraviolet catastrophe

The study of the properties of radiation emitted by hot bodies
was the starting point for the development of the quantum theory
at the end of the 19th and the beginning of the 20th centuries. The
experimental evidence has shown that the spectral distribution, in
other words the distribution of the wavelengths of the radiation, as
well as the total energy radiated depend directly on the temperature
of the body.

The number of standing electromagnetic waves, i.e., the number of
modes, per unit volume and unit frequency within a cavity is given
by the expression (3.5.43). It can be shown that for a sufficiently
big cavity this expression holds whatever its shape. Considering, the
electromagnetic waves to be in thermal equilibrium at temperature
T with the walls of the cavity, the probability p(E) that a mode
has an energy E included between E + dE, is obtained in classical
theory by

p (E) =
e−E/kT

kT
(4.1.1)

where k is Boltzmann’s constant.

39



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-ch04 page 40

40 Light and Vacuum

The mean energy of a mode is thus

Ē =
∫ ∞

0
Ep (E) dE =

∫ ∞

0
E
e−E/kT

kT
dE = kT (4.1.2)

Consequently, all the modes have the same mean energy, indepen-
dent of the frequency. Using (3.5.43), the energy per unit volume of
the cavity at temperature T and per unit frequency writes

u (T, ν) =
8πν2

c3
kT (4.1.3)

The last expression is known historically as the Rayleigh-Jeans
energy density which fails to describe the experimentally observed
results at high frequencies, often called the “ultraviolet catastrophe”,
while giving an infinite total energy per unit volume of the cavity
when summing up along all the frequencies

U(T ) =
∫ ∞

0

8πν2

c3
kTdν → ∞ (4.1.4)

In order to resolve this problem, Max Planck introduced the orig-
inal idea that the cavity walls are composed of local oscillators, each
one being capable of absorbing and emitting discrete quantities of
electromagnetic energy nhν, where n is an integer and h is a uni-
versal constant attributed in his honor to him, Planck’s constant.
This absolutely revolutionary concept at the beginning of the 20th
century, led in the following years to the development of the quantum
theory of the electronic energy levels in matter and in the quantiza-
tion of the electromagnetic field.

Following Planck’s idea, the total energy of a mode is En = nhν

and the probability for a mode to be composed of n quantum of
electromagnetic energy, called photons, is

pn = γ e−nhν/kT (4.1.5)

where γ is a normalization factor so that the sum of all probabilities
be equal to 1.

Hence,

γ
∑
n

e−nhν/kT = 1 ⇒ γ = 1 − e−hν/kT (4.1.6)
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Now, using β = 1
kT , the mean energy of each mode in thermal

equilibrium writes

ε̄ =
∑∞

0 nhν e−nhνβ∑∞
0 e−nhνβ

= − d

dβ
log

( ∞∑
0

e−nhνβ

)

= − d

dβ
log
(

1
1 − e−hνβ

)
=

hν

ehνβ − 1
(4.1.7)

and the electromagnetic energy per unit volume and unit frequency
now becomes within Planck’s hypothesis

u (T, ν) =
8πν2

c3
hν

ehν/kT − 1
(4.1.8)

The last expression is Planck’s radiation law and interprets quite
satisfactorily all the experimental results at any frequency and tem-
perature of a black body.

• Energy and momentum operators in quantum mechanics

In the first two decades of the 20th century, the introduction by
Max Planck of the quantized energy levels of the atoms and molecules
resulting in quantized emissions and absorptions of the electromag-
netic field, as well as many experiments demonstrating the wave prop-
erties of electrons (Davisson and Germer), created the necessity to
elaborate a new theory.

The birth of quantum mechanics came along with Niels Bohr’s
and Erwin Schrödinger’s works in 1925, based on the ideas put for-
ward by Louis de Broglie in 1924, following which the energy and
the momentum of particles are associated to a frequency and a wave-
length, through the formalism already established previously for light

E = hν = �ω �P =
h

λ
êk = ��k (4.1.9)

A plane wave is associated to the particle

Ψ (�r, t) = Ψ0 e
i(�k·�r−ωt) (4.1.10)

From the last two equations, one can easily deduce

i�
∂

∂t
Ψ = EΨ − i��∇Ψ = �pΨ (4.1.11)
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According to the last relations, a fundamental postulate of quan-
tum mechanics was born according to which for a nonrelativistic
particle, either it is free or not, the energy and the momentum are
represented by the operators

E → i�
∂

∂t
�p→ −i��∇ (4.1.12)

At that point, we recall the correspondence already deduced from
Maxwell’s equations in (3.2) between the angular frequency and the
time derivative operator ω → i ∂

∂t getting from (4.1.12), E → �ω,
when considering plane wave solutions.

Taking into account the potential energy V of the particle in the
total energy and using (4.1.11), we get the Schrödinger equation
which consists the basis of quantum mechanics

i�
∂

∂t
Ψ =

(
�P 2

2m
+ V

)
Ψ = − �

2

2m
�∇2Ψ + VΨ (4.1.13)

To complement the fundamentals of the quantum mechanical the-
ory, we can now consider the action of the momentum operator
pα = −i� ∂

∂α along a Cartesian coordinate α where α is x, y or z
acting on a function φ(α). For that we apply the commutation oper-
ator [α, pa] = αpα − pαα on a function φ(α)

[α, pa]φ(α) = −i�
(
α
∂φ(α)
∂α

− ∂

∂α
αφ(α)

)
= i�φ(α) (4.1.14)

The last result shows that the commutation between the coordi-
nate α and the corresponding component of momentum operator pα

do not commute and can be generalized using the Cartesian coordi-
nates

[x, px] = [y, py] = [z, pz] = i� (4.1.15)

All the other operators vanish, that is [α, pα′ ] = i�δα,α′ where δα,α′

is Kronecker symbol such as δα,α′ = 1 when α = α′ and δα,α′ = 0 for
α �= α′.

The physical consequence of this is that for the non-commuting
operators a “simultaneous” measurement of the corresponding
observables is impossible.
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• Particle in a square potential well — correspondence with the
waveguides

The simplest case of the application of Schrödinger equation is
to consider a particle of mass m in a one-dimensional infinite square
potential well, V (z) defined by

V (z) = 0 for |z| > z0
V (z) → ∞ for z < −z0 and z > z0 (4.1.16)

Since the potential tends to infinity for z < −z0 and z > z0, the
particle has no possibility to be outside the borders of the poten-
tial, consequently its wave function Ψ(z) must tend to zero in that
interval.

For |z| < z0 where V (z) = 0, the Schrödinger equation is simply
written as

− �
2

2m
d2

dz2
Ψ(z) = EΨ (z) (4.1.17)

Putting

k =

√
2mE
�

(4.1.18)

the solution of (4.1.17) is a general trigonometric function of the form

Ψ(z) = c1 sin(kz) + c2 cos(kz) (4.1.19)

Taking into account that Ψ(z) must be zero at z = ±z0 we get
two solutions:

Either

c1 = 0 and cos(kz0) = 0 (4.1.20)

so that the only permitted values of k are

kn =
nπ

2z0
(n = 1, 3, 5, 7, . . .) (4.1.21)

Or

c2 = 0 and sin (kz0) = 0 (4.1.22)

And the permitted values of k are now

kn =
nπ

2z0
(n = 2, 4, 6, 8, . . .) (4.1.23)
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Consequently the energy is deduced from (4.1.18) and is found to
be quantified following the integer values of n

En =
�

2k2

2m
=

�
2

8m

(
nπ

z0

)2

(n = 1, 2, 3, 4, . . .) (4.1.24)

The wave function for both solutions can be normalized to
unity by ∫ z0

−z0

|Ψn(z)|2dz = 1 (4.1.25)

getting for both solutions respectively

Ψn(z) =
1

z
1/2
0

cos
(
nπ

2z0
z

)
(n = 1, 3, 5, . . .) (4.1.26)

and

Ψn(z) =
1

z
1/2
0

sin
(
nπ

2z0
z

)
(n = 2, 4, 6, . . .) (4.1.27)

Comparing (4.1.21) and (4.1.23) with (3.5.8), we deduce that
when attributing a wave function to a particle entails automatically,
it is submitted to boundary conditions obtaining for k equivalent
expressions with those of the guided electromagnetic waves.

4.2. Harmonic Oscillator in Quantum Mechanics

• From the classical expressions to the quantum mechanical ones

In order to have a precise understanding of the mathematical
process of the quantization of the electromagnetic field, with which
we will deal in the next chapters, it is of outstanding importance
to know how the harmonic oscillator is described in the quantum
mechanical approach.

We may start with the simple case of one dimensional motion
along the x axis of a particle of mass m submitted to a central force
expressed by the well-known Hooke’s law

�F = −∂V (x)
∂x

�x

|x| = −Kx �x (4.2.1)
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where V (x) is the potential energy and Kx is the force constant.

V (x) =
1
2
Kx x

2 (4.2.2)

The kinetic energy at any coordinate x of the motion of the par-
ticle is

Tx =
1
2
m

(
∂x

∂t

)2

=
P 2

x

2m
(4.2.3)

where Px = m(∂x
∂t ) is the momentum of the particle along the x axis.

The total energy of the system writes

E(x) = Tx + V (x) =
P 2

x

2m
+

1
2
Kx x

2 (4.2.4)

Consequently, putting

ωx =
(
Kx

m

)1/2

(4.2.5)

the energy simply becomes

E(x) =
P 2

x

2m
+

1
2
mω2

x x
2 (4.2.6)

Notice that ωx has the dimensions of an angular frequency along
the x axis.

As we have seen in the previous chapter, the general expression
of the three dimensions momentum operator in quantum mechanics
is

P̃ = −i��∇ (4.2.7)

which writes along the x axis

P̃x = −i� ∂

∂x
(4.2.8)

Considering ψ (x) to be the eigenfunction, the Schrödinger equa-
tion for the linear harmonic oscillator derives immediately from
(4.2.6),

− �
2

2m
∂2ψ(x)
∂x2

+
1
2
mω2

xx
2ψ(x) = E(x)ψ(x) (4.2.9)
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Putting

ξ = x

(
mKx

�2

)1/4

(4.2.10)

and considering the dimensionless fraction

ηx =
2E(x)

�ωx
(4.2.11)

we get the simplified equation

∂2ψ(ξ)
∂ξ2

+ (ηx − ξ2)ψ(ξ) = 0 (4.2.12)

The asymptotic behavior of the above equation when |ξ| → ∞
suggests looking for solutions of the form:

ψ(ξ) = e−ξ2/2H(ξ) (4.2.13)

where H(ξ) should be polynomial functions not affecting the asymp-
totic behavior.

Solutions of (4.2.12) are found for

ηx = 2nx + 1 with ηx = 0, 1, 2, . . . (4.2.14)

called the Hermite polynomials Hn(ξ) whose general expression is

Hnx(ξ) = (−1)nxeξ
2 dnxe−ξ2

dξnx
(4.2.15)

Getting the complete eigenfunctions

ψnx(ξ) = Ce−ξ2/2Hnx(ξ) = C(−1)nxeξ
2/2 d

nxe−ξ2

dξnx
(4.2.16)

Where C is a constant which can be determined by imposing the
summation over the whole space of the square modulus of the wave
function to be normalized to unity. And the eigenvalues, that is the
energy spectrum with E(x) → Enx(ωx) writes

Enx(ωx) = �ωx

(
nx +

1
2

)
(4.2.17)

Hence, the energy of the linear one dimensional harmonic oscilla-
tor in quantum mechanics can only get the discrete values of relation
(4.2.17) with nx = 0, 1, 2, . . . .
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This is easily generalized in a three dimensional harmonic oscil-
lator for which the Schrödinger equation and the energy spectrum
take the expressions

− �
2

2m
�∇2Ψ(�r) +

1
2
m
[
ω2

xx
2 + ω2

yy
2 + ω2

zz
2
]
Ψ(�r) = EΨ(�r)

(4.2.18)

E = �ωx

(
nx +

1
2

)
+ �ωy

(
ny +

1
2

)
+ �ωz

(
nz +

1
2

)
(4.2.19)

This is a quite amazing result showing that a zero energy state
cannot exist, and even an one dimensional harmonic oscillator, in
complete absence of any external interaction, at zero temperature,
has a minimum nonzero energy which equals to E0(ω) = 1

2�ω depend-
ing only on the potential and the mass of the particle according
to (4.2.5).

• Dirac representation, creation and annihilation operators, a, a+

For an one dimensional harmonic oscillator of mass m at a coor-
dinate �q with a momentum �p = md�q/dt, employing the reduced
expressions for the canonical variables of position Q = |�q|√m and
momentum P = |�p|/√m, the total energy (4.2.6) becomes

E =
1
2
(P 2 + ω2Q2) (4.2.20)

The transition to the quantum mechanical Hamiltonian is
obtained by imposing the following expressions for the momentum
and position operators respectively

P̂ = i

√
�ω

2
(a+ − a) and Q̂ =

√
�

2ω
(a+ + a) (4.2.21)

where a, a+ are the annihilation and creation operators of a quan-
tum of energy of the harmonic oscillator, which can be expressed by
inversing equation (4.2.21)

a =

√
1

2�ω
(ωQ̂+ iP̂ ) and a+ =

√
1

2�ω
(ωQ̂− iP̂ ) (4.2.22)
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Considering (4.1.15), the commutation relation between the posi-
tion and momentum operators is

[Q,P ] = i� (4.2.23)

and we get

[a, a+] = 1 (4.2.24)

Considering (4.2.21) and (4.2.20), we obtain directly the Hamil-
tonian of the harmonic oscillator expressed with respect to the anni-
hilation and creation operators

H̃HO =
1
2
(P̂ 2 + ω2Q̂2) = �ω

(
a+a+

1
2

)
(4.2.25)

In Dirac representation, each eigenfunction takes the simple
expression ψn(ξ) ⇒ |n〉 corresponding to a quantum state composed
of n harmonic oscillators.

It can be shown that the actions of the creation and annihilation
operators a+ and a respectively on the eigenfunction are expressed
as following

a+|n〉 =
√
n+ 1|n+ 1〉

a|n〉 =
√
n|n− 1〉 (4.2.26)

Consequently, the simplified Schrödinger equation in Dirac repre-
sentation is

H̃HO|n〉 = E|n〉 → �ω

(
a+ a+

1
2

)
|n〉

= �ω

(
n+

1
2

)
|n〉 (4.2.27)

The successive application of a first and a+ next, i.e., a+ a on the
|n〉 state translates the number n of the quantum oscillators having
energy �ω. Thus, a+ a is also called the number operator.
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4.3. Quantum Electrodynamics (QED) and the Photon
Description

Brief description of selected experiments that have historically
played an important role for the introduction of the photon concept.

We have seen in 4.1 that for the interpretation of black body
radiation, Planck was the first to introduce the revolutionary idea of
the quantized absorptions and emissions of the electromagnetic field
by oscillators.

In this chapter, we will discuss the main experiments that have
led to the particle concept of the electromagnetic field, and then we
will describe the theoretical methods that have been developed, in
order to transit from the continuous electromagnetic waves to the
quantum electromagnetic entity called the photon.

• The photoelectric effect and the quantum interpretation

By the end of the 19th century, it has been observed by many
physicists like Hertz, Lenard, Stoletov and others, that metal surfaces
eject charged particles when irradiated by ultraviolet light. In a series
of experiments measuring the charge to mass ratio of the ejected
charged particles, Lenard demonstrated that these were electrons
and the effect was called photoelectric.

Based on Planck’s ideas on the quantized emission of radiation
by the equally quantized energy levels of atomic oscillators for the
interpretation of the black body radiation, Einstein proposed in 1905,
an explanation for the photoelectric effect. He advanced that light
consists of point particles, called photons, carrying an amount of
energy proportional to the frequency of the light E = hν, where h is
Planck’s constant.

Hence, considering that a minimum work W is required for an
electron to escape from the surface of the metal, he deduced that the
maximum kinetic energy of the ejected electron is simply obtained by

Ekin =
mu2

2
= hν −W (4.3.1)

From 1914 to 1917, Millikan carried out many experiments on
the photoelectric effect using the visible light on lithium, potassium
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and sodium, all of these characterized by low values of the extraction
work W and confirmed the last relation.

• Compton scattering

Modifications of the wavelength of X-rays when scattered by elec-
trons have been reported by many experiments between 1912 and
1920. In 1922, for the interpretation of the experimental observations,
Compton, who had carried out many similar experiments himself,
proposed the revolutionary concept that X-rays whose wavelength is
modified are scattered in crystals by electrons almost at rest.

The theoretical aspect of this effect is described by considering not
only electrons but also photons as integral particles and by applying
the energy and momentum conservation laws.

Consider an X-ray photon with frequency ν colliding with an elec-
tron with rest mass m0 which after the collision acquires momentum.

The energy conservation law writes

hν +m0c
2 = hν ′ +mc2 ⇒ h(ν − ν ′) = (m−m0)c2 (4.3.2)

and the momentum conservation
hν

c
=
hν ′

c
cos θ + pe cosφ⇒ hν

c
− hν ′

c
cos θ = pe cosφ (4.3.3)

hν ′

c
sin θ = pe sinφ⇒

(
hν ′

c

)2

sin2 θ = p2
e sin2 φ (4.3.4)

where θ is the angle of the scattered photon trajectory from the
collision axis and φ that of the scattered electron.

Taking the square of (4.3.3) and using (4.3.4) and (4.3.2), we get

p2
e =

(
hν

c

)2

− 2
hν

c

hν ′

c
+
(
hν ′

c

)2

+ 2m0c
h(ν − ν ′)

c
(4.3.5)

The energy conservation for the electron writes

m2c4 = m2
0c

4 + p2
ec

2 ⇒ p2
e = (m2 −m2

0)c
2 (4.3.6)

Combining (4.3.3) and (4.3.4), we obtain

p2
e =

(
hν

c

)2

− 2
hν

c

hν ′

c
cos θ +

(
hν ′

c

)2

(4.3.7)
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Equating (4.3.5) and (4.3.7), we get(
hν ′

c

)2

+
(
hν

c

)2

− 2
hν

c

hν ′

c
cos θ

=
(
hν

c

)2

− 2
hν

c

hν ′

c
+
(
hν ′

c

)2

+ 2m0c
h(ν − ν ′)

c

getting the frequency of the scattered photon by the electron

ν ′ =
ν

1 + hν(1−cos θ)
m0c2

(4.3.8)

The last relation obtained by particle dynamics interprets quite
satisfactorily the experimental results demonstrating the particle
nature of the photon, which is characterized by energy, momentum
and directionality.

Finally, what is also extremely important here is that the Comp-
ton scattering demonstrates that the energy of a single photon, by
the same token, its wavelength and frequency, can be modified during
a collisional process.

• Low intensity Young’s double-slit interferences

As we have seen in the historical survey, Young performed the
famous double-slit experiment in 1802, obtaining an interference pat-
tern that could be only explained by the wave theory of the light.
At that time, it was the strongest argument supporting the wave
concept of the light against Newton’s particle hypothesis.

However, in 1909, Taylor repeated the same experiments by using
extremely low intensity light sources (Fig. 4.3.1) and observed that
“spots” were appearing on a photographic plate whose graduate
accumulation tended to form interference patterns.

This was readily interpreted by many authors as a demonstra-
tion of the photons existence. More recently, using lasers and single
photon pulse techniques, many experiments have also revealed the
creation of spots on the detection screen and the gradual formation
of interference pattern.
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Very low 
intensity 
light source

Double slit screen
Spots forming gradually an interference
pa ern

Fig. 4.3.1. Schematic representation of Taylor’s double slit diffraction experiment in
which the light source has an extremely low intensity.

4.3.1. Second Quantization

The photoelectric effect, Compton’s scattering and Taylor’s experi-
ments, among others, have given a decisive impulse toward the gen-
eral acceptance of the particle nature of light and consequently, a
theoretical effort had started to model the quantized electromagnetic
field based upon the harmonic oscillator quantum mechanical model
described in (4.2).

• Quantization process of the electromagnetic field

We will give now the main lines of the electromagnetic field
quantization procedure, which is generally described in the Coulomb
gauge.

Considering that the electromagnetic field vector potential �A(�r, t)
consists of a superposition of plane waves, the classical electromag-
netic field energy in a given volume V can be written according to
(3.4.8) as

EV = 2ε0V
∑
k,λ

ω2
k|Akλ|2 (4.3.9)

where ε0 is the vacuum permittivity and |Akλ| the vector potential
amplitude corresponding to the mode with a wave vector k, angular
frequency ωk and polarization λ. Caution has to be taken here not to
confuse two different physical entities, number of polarizations and
wavelength, which are both denoted in QED with λ.
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Notice that (4.3.9) derives from (3.4.8), which is a mean value over
a period, in other words over the wavelength. It is generally accepted
that it is difficult to conceive a photon along the propagation axis
with dimensions less than the wavelength. On the other hand, all the
calculations on the guided propagation of the electromagnetic waves
developed in Chapter 3 (3.5) show that a minimum volume has to
be considered for a given mode to subsist. Consequently, caution
has to be taken when using the formalism (4.3.9) in a volume V of
given dimensions for the total energy calculation based on the modes
summation.

In fact, for a fixed volume V we can write more rigorously

EEM = 2ε0V
∑

k≥kc,λ

ω2
k|Akλ|2 (4.3.10)

where the summation on the wave vectors has a lower cut-off limit
defined by the boundary conditions of the box dimensions V . For the
sake of simplicity we will drop this lower limit in the next calcula-
tions, which comes out to consider that the volume V is much bigger
than the wavelengths of the modes considered.

The equivalence with the harmonic oscillator Hamiltonian is
obtained by introducing equivalent expressions with the definitions
(4.2.21) and (4.2.22), relating Akλ to the canonical variables of posi-
tion Qkλ and momentum Pkλ

Akλ =
1

2ωk

√
ε0V

(ωkQkλ + iPkλ)

A∗
kλ =

1
2ωk

√
ε0V

(ωkQkλ − iPkλ)

Qkλ =
√
ε0V (Akλ +A∗

kλ)

Pkλ = −iωk

√
ε0V (Akλ −A∗

kλ) (4.3.11)

Using the above relations in (4.3.9), the energy of the electromag-
netic field writes as a function of Qkλ and Pkλ

EEM =
1
2

∑
k,λ

(P 2
kλ + ω2

kQ
2
kλ) (4.3.12)
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Comparing the last relation with (4.2.25), it can be deduced
directly that each mode of the radiation field can be considered equiv-
alent to a harmonic oscillator.

In order to express the amplitude of the vector potential with
respect to the quantized energy of the photons �ω, we start from
the monochromatic electromagnetic wave energy density equation
(3.4.7). The energy density of N photons in a box V equals the mean
energy density over a period 2π/ω of the classical electromagnetic
field

〈4ε0ω2A2
0(ω) sin2(�k ·�r − ωt)〉period = 2ε0ω2A2

0(ω) =
N�ω

V
(4.3.13)

Consequently, for N = 1 in the relation (4.3.13), we obtain
the link between the classical electromagnetic wave issued from
Maxwell’s equations and the quantized field operators used in QED,
which is expressed by the intermediate of the vector potential ampli-
tude in a volume V as follows

Akλ →
√

�

2ε0ωkV
akλ A∗

kλ →
√

�

2ε0ωkV
a+

kλ (4.3.14)

Where akλ and a+
kλ are respectively the annihilation and creation

operators of a k mode and λ polarization photon composing the
photon number operator N̂kλ = a+

kλakλ.
Using the above expressions for the amplitude of the vector poten-

tial the classical formalism of equation (3.4.2) becomes in QED, when
taking into account all k modes and polarizations λ,

�A (�r, t) =
∑
k,λ

√
�

2ε0ωkV
[akλε̂kλe

i(�k·�r−ωkt+θ) + a+
kλε̂

∗
kλe

−i(�k·�r−ωkt+θ)]

(4.3.15)
According to (4.2.26), the creation and annihilation operators of

a k mode and λ polarization photon have the properties

a+
kλ|nkλ〉 =

√
nkλ + 1|nkλ + 1〉

akλ|nkλ〉 =
√
nkλ|nkλ − 1〉

a+
kλakλ|nkλ〉 = N̂kλ|nkλ〉 = nkλ|nkλ〉 (4.3.16)
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where N̂kλ, the photon number operator expresses the number of
photons.

Using the link expressions (4.3.14) in the equations of Qkλ and Pkλ

given in (4.3.11), one obtains the position and momentum operators
expressed with respect to akλ and a+

kλ

Q̂kλ =

√
�

2ωk
(a+

kλ + akλ) P̂kλ = i

√
�ωk

2
(a+

kλ − akλ) (4.3.17)

Replacing the canonical variables Qkλ and Pkλ in equation
(4.3.12) by the expressions of Q̂kλ and P̂kλ (4.3.17) and considering
the commutation relation [akλ, a

+
kλ] = 1 we get the Hamiltonian of

the quantized electromagnetic field

HEM =
1
2

∑
k,λ

(P̂ 2
kλ + ω2

kQ̂
2
kλ) =

∑
k,λ

�ωk

(
N̂kλ +

1
2

)
(4.3.18)

Hence, in QED, photons are considered as point particles created
and annihilated by the operators a+

kλ and akλ respectively which obey
the properties of (4.3.16), and having the energy of an ensemble of
harmonic oscillators given by (4.3.18).

Generally, the polarization λ takes two values corresponding to
Right- and Left-hand circularly polarized photons.

The term 1/2 of the established radiation Hamiltonian is an occu-
pation operator, which rigorously means that in complete absence
of photons, i.e., when N̂kλ = 0, empty space is filled permanently
by “half” photons of all frequencies and polarizations. Hence, the
quantization procedure of the classical expression of the energy of
the electromagnetic waves to get the radiation Hamiltonian leads
to the zero-point radiation field, also called the quantum vacuum,
expressed by the term

∑
k,λ

1
2�ωk. This term is mainly responsible

for the QED singularities related to the infinite energy of the vacuum,
while at the same time it is pretexted that it provides the basis for
the explanation of various experimentally observed effects, such as
spontaneous emission, atomic levels energy shifts (Lamb shift), the
Casimir effect etc.
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4.4. Interaction between Electromagnetic Waves
and Charged Particles, Reality of the Vector Potential

• Interaction Hamiltonian between an electromagnetic wave and a
charged particle

The interaction Hamiltonian of a charged particle of charge q and
mass m, having a momentum �p, in an electromagnetic field charac-
terized by a vector potential �A(�r, t) and a scalar potential Φ(�r, t) is
written as

H =
1

2m
(�p− q �A (�r, t))2 + qΦ(�r, t) (4.4.1)

Using the Coulomb gauge
�∇ · �A(�r, t) = 0 and Φ(�r, t) = 0 (4.4.2)

and considering the momentum operator (4.2.7), the time dependent
Schrödinger equation for an electron, where q = −e, in the electro-
static Coulomb potential of an hydrogenic atom − Ze2

4πε0r , interacting
with the electromagnetic field writes

i�
∂

∂t
Ψ(�r, t)

=
(
− �

2

2m
�∇2 − Ze2

4πε0r
− i�e

m
�A (�r, t) · �∇ +

e2

2m
�A (�r, t)2

)
Ψ(�r, t)

(4.4.3)
In fact, it can be easily shown that the Coulomb gauges makes �A

and �∇· to commute
�∇ · ( �AΨ) = �A · (�∇Ψ) + (�∇ · �A)Ψ = �A · (�∇Ψ) (4.4.4)

In the case of weak fields, the term of the square of the vector
potential in Schrodinger equation is quite small compared to the
linear one and consequently, the main part of the interaction Hamil-
tonian between the bounded electron and the electromagnetic field
writes

Hint(t) ∼= − i�e
m

�A(�r, t) · �∇ (4.4.5)

which is time dependent because of the vector potential.
From the established interaction Hamiltonian, arises the question

whether the vector potential represents a mathematical artifact or if
it corresponds to a physical entity.
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• Reality of the vector potential, Ehrenberg–Siday or Aharonov–
Bohm effect.

Obviously, according to the Hamiltonian (4.4.1), the vector poten-
tial directly affects the modulus and the direction of the momentum
of a charged particle.

In 1949, W. Ehrenberg and R.E. Siday were the first to deduce
the effect of the vector potential of the electromagnetic fields on
charged particles. The Ehrenberg–Siday effect is a fine demonstra-
tion of the real existence of the scalar and vector fields issued from
the electromagnetic theory. In fact, before Ehrenberg’s and Siday’s
works, the vector and scalar fields, �A(�r, t); Φ(�r, t) respectively, were
believed to be simply mathematical constructs for the development
of the gauge theories in electromagnetism. In reality, both of these
potentials interact with a charged particle even in absence of electric
and magnetic fields.

The same effects were later rediscovered by Aharonov and Bohm
in 1959 and were confirmed experimentally by Chambers in 1960 and
Osakabe in 1986 using a quite advanced experimental apparatus.

4.5. Transition Rates and Vacuum Induced Spontaneous
Emission

For describing the transitions between the quantized energy levels
of the atoms, we have started in the previous chapter, defining the
interaction Hamiltonian (4.4.1) of a charged particle in an electro-
magnetic field characterized by a vector potential �A(�r, t) and a scalar
potential Φ(�r, t).

Hence, the interaction Hamiltonian is a time dependent pertur-
bation and can be studied within the time dependent perturbation
theory according to which the wave function Ψ(�r, t) is expended in
terms of the unperturbed eigenfunctions ϕl(�r), solutions of the time
independent Schrödinger equation

H0ϕl(�r, t) =
(
− �

2

2m
�∇2 − Ze2

4πε0r

)
ϕl(�r, t) = Elϕl(�r, t) (4.5.1)
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The expansion of the wave function writes

Ψ(�r, t) =
∑

l

cl(t)ϕl(�r)e−iElt/� (4.5.2)

where the summation runs over all the discrete and continuous sets
of the eigenfunctions ϕl(�r). The time dependence is included in the
exponential argument and in the coefficients cl(t), which in the time
dependent perturbation theory satisfy the coupled equations

i�
dc

(n+1)
m (t)
dt

=
∑

l

∫
ϕ∗

m(�r )Hint(t)ϕi(�r )d3r c
(n)
l (t)eiωmlt (4.5.3)

where n = 0, 1, 2, . . . and Em −El = �ωml

Assuming that the system is initially at t = 0 in a defined sta-
tionary state ϕi(�r) corresponding to the energy Ei, for n = 1, the
coefficient c(0)l (t) = δli for the discrete states or c(0)l (t) = δ(l − i) for
the continuous ones.

Where, δli is Kronecker delta symbol, δli = 1 if l = i and δli = 0
if l �= i and δ(l − i) is Dirac delta function, δ(0) = 1 (if l = i) and
δ(l − i) = 0 if l �= i

In this case the last equation gives

i�
dc

(1)
m (t)
dt

=
∫
ϕ∗

m(r)Hint(t)ϕi(r) d3reiωmit (4.5.4)

Using the interaction Hamiltonian (4.4.5) and the expression for
the vector potential (3.4.2), we obtain the transition probability
amplitude at a given instant t by integrating within an angular fre-
quency interval δω and over the time interval from 0 to t

c(1)m (t) = − e

m

∫
δω
A0(ω)dω

×
[
eiθ〈ϕm|ei�k·�rε̂ · �∇|ϕi〉

∫ t

0
ei(ωmi−ω)t′dt′

+ e−iθ〈ϕm|e−i�k·�rε̂∗ · �∇|ϕi〉
∫ t

0
ei(ωmi+ω)t′dt′

]
(4.5.5)
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The square modulus of c(1)m (t) represents the probability of the
system to be in the stationary state m at time t.

|c(1)m (t)|2 = 2
( e
m

)2
∫

δω

|A0(ω)|2Θ(t, ω − ωmi)|Mmi(ω)|2dω
(4.5.6)

where the matrix element |Mmi(ω)| has the form

|Mmi(ω)| =
∣∣∣∣
∫
ϕ∗

m(�r)ei�k·�rε̂ · �∇ϕi(�r)d3r

∣∣∣∣ (4.5.7)

The trigonometric function Θ(t, ω − ωmi) involved in the integration
of (4.5.6) results from the time integration of the exponentials and
has the form

Θ(t, ω − ωmi) =
1 − cos [(ω − ωmi)t]

(ω − ωmi)2
(4.5.8)

Since Θ(t, ω − ωmi) takes its maximum value for ω = ωmi and
its integration over all the frequencies gives π t we can consider in
a first approximation that for a large time interval ω = ωmi in the
expressions of the vector potential amplitude A0(ωmi) and the matrix
element between the states ϕm(�r) and ϕi(�r), Mmi(ωmi) and the inte-
gration of (4.5.6) now gives

|c(1)m (t)|2 = 2π
( e
m

)2 |A0(ωmi)|2|Mmi(ωmi)|2t (4.5.9)

which increases linearly with time.
We obtain immediately the transition rates T for absorption

Tabs =
d

dt
|c(1)m (t)|2 = 2π

( e
m

)2 |A0(ωmi)|2|Mmi(ωmi)|2 (4.5.10)

and stimulated emission

T stimulated
emi =

d

dt
|c(1)m (t)|2 = 2π

( e
m

)2 |A0(ωmi)|2|Mim(ωmi)|2
(4.5.11)

for which the main difference relies on the order inversion of the
matrix element between the initial and final state.

It is worth noting that for the above calculations, we have used
the classical expression of the vector potential given by (3.4.2).
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• Photoelectric effect and the semi-classical interpretation

At that level, within a chapter that deals mainly with the photon,
we will make a parenthesis to present the way Wentzel and Beck in
1926, Lamb and Scully in 1960s demonstrated that the photoelectric
effect may quite well be interpreted using the electromagnetic wave
nature of the light.

In fact, we can calculate the transition rate in the case of the
photoelectric effect from (4.5.6) and (4.5.8), exactly in the same way
as in the previous paragraph

|c(1)m (t)|2 = 2
( e
m

)2
∫

|A0(ω)|2 1 − cos[(ω − ωmi)t]
(ω − ωmi)2

|Mmi(ω)|2dω
(4.5.12)

On the other hand we have∫ +ω

−ω

1 − cos[(ω − ωmi)t]
(ω − ωmi)2

dω = πt (4.5.13)

And for sufficiently long time-periods

lim
t→∞

1 − cos[(ω − ωmi)t]
(ω − ωmi)2

= πtδ(ω − ωmi) (4.5.14)

Consequently (4.5.12) becomes

|c(1)m (t)|2 = 2πt
( e
m

)2 |A0(ω)|2|Mmi(ω)|2δ(ω − ωmi) (4.5.15)

And the transition rate writes

Tphotoelectric =
d

dt
|c(1)m (t)|2 = 2π

( e
m

)2 |A0(ω)|2|Mmi(ω)|2δ(ω − ωmi)

(4.5.16)

Between an initial bounded state and the continuum level, Dirac
delta function guarantees that the energy of the photoelectron sat-
isfies the photoelectric equation. The rate of the emission is directly
proportional to the square modulus of the radiation vector potential,
and consequently to the field intensity. Obviously, because of (4.5.14),
the calculated transition rate for the photoelectric effect is valid for
time periods t 
 ω−1 and consequently for visible and UV light, it
predicts the emission of electrons without any delay.
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As remarked by many authors, a semi-classical calculation, in
which the electromagnetic field is strictly considered with the
classical wave expressions, gives an excellent interpretation of the
photoelectric effect without the introduction of the photon con-
cept. Recalling that the photoelectric effect is used experimentally
to detect photons, this is a quite upsetting result.

• Spontaneous emission rate

As we have discussed in (4.3.18) in the QED description, the
vacuum state is composed by an infinite quantity of photons of all
frequencies and polarizations

∑
k,λ

1
2�ωk. Consequently, in order to

describe the spontaneous emission we have to use the expression
(4.3.15) for the vector potential, since in the classical electromagnetic
theory the vacuum has no electromagnetic fields and consequently
(3.4.2) is zero.

The part of the quantum expression of the vector potential respon-
sible for the creation of a photon is

〈 �AC(�r, t)〉 = 〈. . . nkλ, nkλ + 1 . . . |

×
√

�

2ε0ωkV

[
a+

kλε̂
∗
kλe

−i(�k·�r−ωkt+θ)
]
| . . . nkλ . . .〉

=

√
�(nkλ + 1)
2ε0ωkV

[
ε̂∗kλe

−i(�k·�r−ωkt+θ)
]

(4.5.17)

Of course, we can use the same expression for the transition rate as
in (4.5.16), which writes here

Temi = π
( e
m

)2 �(nkλ + 1)
ε0ωkV

|Mim|2δ(ωk − ωmi) (4.5.18)

In absence of k mode and λ polarization photon, i.e., when nkλ =
0, the transition rate does not vanish and develop within a direction

T spontaneous
emi =

( e
m

)2 π �

ε0ωkV
|Mim|2δ(ωk − ωmi) (4.5.19)

which depends on the volume V of the system, but if we consider
the density of states (3.5.42) and integrate over ω and all spatial
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directions of emission, while summing on both possible photon polar-
ization (λ = 1, 2), then the parameter V is eliminated and we get a
final expression of the total transition rate which is independent of V .

T spontaneous
emi (total) =

( e
m

)2 �

8π2ε0c3

∫
dΩ
∑

λ

|Mim|2λωmi (4.5.20)

The special interest on the spontaneous emission arises from the
fact that it results from the coupling of the atomic levels to the
quantum vacuum state.

• Dipole approximation and spontaneous emission

Within the dipole approximation, according to which when the
wavelength of the electromagnetic field is too big with respect to
the atomic dimension, i.e., when kr � 1, the exponential in (4.5.7)
can be considered to be close to unity and using (4.2.7) the matrix
element writes

Mmi =
∫
ϕ∗

m(�r)ε̂ · �∇ϕi(�r)d3r = ε̂ ·
(
i

�

)∫
ϕ∗

m(�r)�pϕi(�r)d3r

(4.5.21)
According to Heisenberg equation of motion for a vector observ-

able �F
d

dt
�F = − i

�
[�F ,H0] (4.5.22a)

�p = m
d

dt
�r = −m i

�
[�r,H0] (4.5.22b)

where H0 is the unperturbed Hamiltonian of the system.
So (4.5.21) becomes

Mmi = ε̂ ·
(m

�2

)∫
ϕ∗

m(�r)[�r,H0]ϕi(�r)d3r

= ε̂ ·
(m

�2

)
(Ei − Em)

∫
ϕ∗

m(�r)�rϕi(�r)d3r

= −
(m

�

)
ωmiε̂ ·

∫
ϕ∗

m(�r)�rϕi(�r)d3r

= −
(m

�

)
ωmiε̂ ·�rmi = −

(m
�

)
ωmi|rmi| cos θ (4.5.23)

where θ is the angle between �r and the polarization vector ε̂.
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Thus, the spontaneous emission rate writes

T spontaneous
emi (total) =

e2

8π2�ε0c3
ω3

mi

∫
dΩ
∑

λ

|�rmi|2λ cos2 θ

=
e2

3πε0�c3
ω3

mi|�rmi|2 (4.5.24)

where we have considered two polarizations and cos2 θ has been
replaced by the mean value

〈cos2 θ〉 =
1
4π

∫
cos2 θ dΩ =

1
4π

∫ 2π

0
dφ

∫ +1

−1
cos2 θd(cos θ) =

1
3

(4.5.25)

Finally, it can be demonstrated that the interaction Hamilto-
nian between an electron and the electromagnetic field in the dipole
approximation can be simply written

Hint = − �D · �E(�r, t) = −e�r · �E(�r, t) (4.5.26)

with �D = e�r the electric dipole moment of the electron with charge
e at the position �r from the nucleus and �E (�r, t), the electric field of
the electromagnetic wave obtained by the vector potential according
to (3.3.15).

• The photon spin

Conservation of angular momentum during spectroscopy exper-
iments has shown that each photon has a component of angular
momentum along the propagation axis of magnitude ±�. This cor-
responds to the intrinsic spin of photons whose component along
the propagation axis is also called helicity. A left-hand circularly
polarized photon has an helicity of +� while a right-hand circularly
polarized photon has an helicity of −�.

4.6. Lamb Shift

• Nonrelativistic calculations: Bethe’s approach

The energy difference between the energy levels 2S1/2 and 2P3/2

of the atomic hydrogen was measured precisely by W.E. Lamb and
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R.C. Retherford in 1947 using microwave technics. They obtained a
value of 4.5 × 10−5 eV, which was not explained by Dirac’s theory,
which predict these two levels to have the same energy.

With the development of QED and the introduction of the notion
of the quantum vacuum, many scientists advanced the hypothesis
that the experimentally observed shifts of the atomic levels, named
Lamb shifts, are due to the interaction of the bounded electrons with
the vacuum. The first to propose a theoretical interpretation was
H.A. Bethe in 1947 by introducing an astonishing way for extracting
finite quantities from singularities. We reproduce briefly here those
calculations.

Since the basis of the hypothesis is the interaction of an elec-
tron with the vacuum photons, we go back to Schrödinger equation
(4.4.3) and start by examining the contributions of the vector poten-
tial terms.

The quadratic term of the vector potential contributes in the
same manner to all atomic states since it does not contain atomic
operators

∆E( �A2) = 〈nkλ, vacuum| e
2

2m
�A2|nkλ, vacuum〉

=
e2

2m

∑
k,λ

�

2ε0ωkV
=

e2�

4π2ε0mc3

∫ ∞

0
ωdω (4.6.1)

where we have replaced the discrete summation by a continuous one
according to the well- known transformation introduced in (3.5.44)
and taking into account the polarization λ∑

k,λ

→
∑

λ

V

8π3

∫
d3k =

V

8π3

∑
λ

∫
4πk2dk =

V

2π2c3

∑
λ

∫
ω2dω

(4.6.2)
The (4.6.1) expression is infinite. However, it is fully neglected

based on the argument that it does not induce “measurable energy
shifts”.

Now, starting again from (4.4.3) and considering (4.5.15), the sec-
ond order perturbation theory gives the energy shifts to the atomic
levels, due to the coupling with the quantum vacuum resulting from
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the linear term of the vector potential in the interaction Hamiltonian

∆El( �A) =
∑

f

∑
k,λ

× e2

m2

(
�

2ε0ωkV

) |〈f, nk,λ = 1|a+
k,λ(ε̂k,λ · �p)|l, nkλ = 0〉|2

El − Ef − �ωk

=
∑

f

∑
k,λ

e2

m2

(
�

2ε0ωkV

) |ε̂k,λ · �pfl|2
El − Ef − �ωk

=
∑

f

e2

4c3ε0m2π2

∑
λ

|�pfl|2〈cos2 θ〉
∫

ω dω(
El−Ef

�

)
− ω

=
∑

f

(
e2

6�m2c3ε0π2

)
|�pfl|2

∫
E dE

El − Ef − E

=
∑

f

(
2αFS

3πm2c2

)
|�pfl|2

∫ ∞

0

E dE

El − Ef − E
(4.6.3)

where we have used the relations (4.5.25) and (4.6.2) and considered
two polarizations (right- and left-hand circular). Also αFS is the fine
structure constant

αFS =
e2

4πε0�c
=

1
137.036

; e2 = 2αFS (ε0hc) (4.6.4)

As in the case of the quadratic term of the vector potential, the
obtained expression (4.6.3) for the energy shift ∆El( �A) induced by
the linear part of the vector potential is also infinite.

To circumvent this difficulty, Bethe introduced a renormalisation
procedure. In fact, for a free electron in the vacuum field, all the
values of the atomic levels energy differences El−Ef are zero so that
∆El( �A) writes

∆El( �A)free =
∑

f

(
2αFS

3πm2c2

)
|�pfl|2

∫ ∞

0
dE (4.6.5)

in which the momentum operator between the atomic levels is pre-
served.
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∆El( �A)free is equally infinite. However, the experimentally
observed shift for an atomic level |l〉 should be the difference

∆El( �A) − ∆El( �A)free

=
∑

f

(
2αFS

3πm2c2

)
|�pfl|2(El − Ef )

∫ ∞

0

dE

El − Ef − E
(4.6.6)

This operation is named Bethe’s renormalization and results to
the relation (4.6.6) which is still infinite but through a slow logarith-
mic divergence.

Next, an upper level for the integration has been introduced and
fixed to mc2, m being the electron mass at rest, getting

∆El( �A) − ∆El( �A)free

=
∑

f

(
2αFS

3πm2c2

)
|�pfl|2(Ef −El) log

∣∣∣∣ mc2

El − Ef

∣∣∣∣ (4.6.7)

In order to get the logarithm out from the discrete summation,
the mean value can be considered

∆El( �A) − ∆El( �A)free

=
(

2αFS

3πm2c2

)〈
log
∣∣∣∣ mc2

El − Ef

∣∣∣∣
〉∑

f

|�pf l|2(Ef − El) (4.6.8)

where the average is calculated over all the discrete and continuous
atomic levels〈

log
∣∣∣∣ mc2

El − Ef

∣∣∣∣
〉

≈ log(mc2) −
∑

f |�pfl|2(Ef −El) log |Ef −El|∑
f |�pfl|2(Ef − El)

(4.6.9)
It can be easily shown that for a hydrogen atom with atomic

number Z, we get∑
f

|�pfl|2(Ef − El) = 2πZ|e�ϕl(o)|2 (4.6.10)

entailing that the shift should be more important for the s states for
which |ϕl(o)|2 �= 0.
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Thus (4.6.8) becomes

∆El( �A) − ∆El( �A)free ≈
(

4αFSZe
2
�

2

3m2c2

)〈
log
∣∣∣∣ mc2

El − Ef

∣∣∣∣
〉
|ϕl(o)|2

(4.6.11)

which is the calculated energy shift for the level |l〉.
Using a numerical estimate of the (4.6.9) along all the energy

levels |f〉 up to the continuum spectrum, Bethe found for the 2S
hydrogen level, an energy shift corresponding to a frequency of about
1000 MHz, in good agreement with the experimental value.

4.7. Conclusion Remarks

Some quite important concepts and calculation methodologies have
been developed in this chapter.

The second quantization processes introduced the link equations
(4.3.14) for the vector potential amplitude between the electromag-
netic wave expressions and those of the QED creation and anni-
hilation operators. This permitted to establish the correspondence
between the electromagnetic wave and the harmonic oscillators in
quantum mechanics establishing the Hamiltonian of the quantized
electromagnetic field (4.3.18). The validity of this process will be
discussed in the next chapters. Note that the link equations (4.3.14)
etc., obtained by considering the mean value of the energy density
of the electromagnetic wave over a period, in other words over a
wavelength, are put equal to the value of a point photon with energy
�ω in a given volume V .

Furthermore, we have seen that the interaction Hamiltonian
between the electromagnetic field and the charged particles is
expressed through the vector potential, a real physical entity, first
demonstrated by Ehrenberg and Siday. The same interaction Hamil-
tonian has been employed by Wentzel, Beck, Lamb and Scully to
demonstrate that the photoelectric effect, generally advanced as a
demonstration of the particle nature of the light, can quite well be
interpreted through the electromagnetic wave representation.

Finally, we have briefly presented two important effects of the
vacuum-electron interactions, the spontaneous emission and the
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Lamb shift, which will extensively discussed in the next chapters.
Many authors have discussed and commented Bethe’s nonrelativistic
calculations for the Lamb shift. P.A.M. Dirac was the first to argue
that intelligent mathematics consists of neglecting negligible quanti-
ties and not infinite quantities because, simply, you don’t want them.
In fact, the original method that Bethe introduced was to calculate
finite quantities by subtracting and neglecting infinite quantities.
However, as many authors remarked, what is extremely puzzling is
that after manipulating and ignoring infinite quantities, after impos-
ing arbitrary integration limits, after considering mean logarithmic
values over an infinity of atomic energy levels near the continuum,
“the final result compares “remarkably well” to the experiment”.

We have not presented in this chapter, the relativistic calculation
of the Lamb shift, developed and published in 1949 by Kroll et al.
because the calculations are extremely tedious. Nevertheless, we have
to mention that even in this approach various approximations are
introduced and a “different” mean logarithmic value is employed.
Furthermore, it seems that the upper integration limit appears natu-
rally in the relativistic approach, however, the author, as the major-
ity of the authors in the literature, has not attempted to reproduce
completely these calculations.
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Chapter 5

Theory, Experiments and Questions

In what follows, we analyze the questions raised from the quantum
theory of radiation and we point out the mathematical difficulties
encountered mainly from the second quantization procedure which
has been developed to provide photons description from the quantum
point of view. We first make a theoretical analysis of some particular
aspects of QED, including the well known singularities, and then we
present some experiments which strongly support the simultaneous
wave-particle nature of photons.

5.1. Planck’s Constant and the Vacuum Intrinsic
Electromagnetic Properties

The correspondence for the energy between the electromagnetic wave
theory and the Quantum electrodynamics (QED) describing the same
entity, the light, is given by the well-known expression

E (ω) = �ω ↔ E (ω,A0(ω), ε0) =
∫

V
2ε0ω2A2

0(ω,�r) d
3r (5.1.1)

In QED, the energy of the photon �ω depends only on the angu-
lar frequency of the electromagnetic wave ω and it is proportional to
Planck’s reduced constant �, while the vacuum electric permittivity
constant ε0 and the vector potential amplitude A0(ω), which both
play a major role in the classical electromagnetic wave description
(3.4.8), are totally ignored. On the other hand, it is obvious that the
knowledge of the angular frequency alone is not sufficient in the clas-
sical electromagnetic theory in order to deduce the electromagnetic
field energy. The vector potential amplitude is indispensable.

71
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Consequently, for (5.1.1) to be physically coherent, � should be
related to both the vacuum electric permittivity ε0 and the vector
potential amplitude A0(ω).

Indeed, � is related to ε0 through the fine structure constant αFS

(4.6.4) according to the relation:

� =
(

e2

4πε0

) (
1

cαFS

)
(5.1.2)

where e is the electron charge.
From the last equation one can also express in QED, the energy

of a photon depending on ε0 as follows

E(ω) = �ω =
(

e2

4πε0

) (
1

cαFS

)
ω (5.1.3)

According to (5.1.3), one may assume that the absolute value of
the energy of a photon with an angular frequency ω corresponds to
the Coulomb interaction between an electron and a positron sepa-
rated by the characteristic distance lω

lω =
cαFS

ω
= αFS

λ

2π
(5.1.4)

where λ is the wavelength.
However, it is puzzling to note that the expression (5.1.3), intro-

duces the charge of the electron and the fine structure constant which
essentially characterize the atomic energy levels. Consequently, one
could naturally wonder why these physical quantities should be nec-
essary to describe the energy of light in vacuum, in complete absence
of charges and matter? In fact, the electron (positron) and the elec-
tromagnetic field are strongly related physical entities. Under par-
ticular conditions, in the presence of a strong electric field like in
the vicinity of a heavy nucleus, a high energy gamma photon can be
annihilated, giving birth to an electron and a positron. Of course,
the probability of such a phenomenon is extremely low and becomes
significant for a nucleus of Z ∼ 140, which is physically instable.
Nevertheless, Fulcher et al. have argued that such a nuclear state
could be created during the collision of two nuclei of large Z. Thus,
we can say that (5.1.3) is a simple relation which implies directly that
the electron (positron) and the electromagnetic waves are physical
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entities that might be issued from the same quantum field related to
vacuum.

Now, we have seen that we can easily establish a relation between
� and the vacuum permittivity ε0 through the fine structure con-
stant αFS but what would be the relation between � and the vector
potential amplitude A0(ω) for a single photon guessed by (5.1.1)? In
a coherent description of the photon as a quantum of the electromag-
netic field, this relation should be independent of any external param-
eter such as the volume V involved in the link equations (4.3.14).

We will explore the possibility of such a relation in the next
chapter.

5.2. Hamiltonian Issued from the Quantization
of the Electromagnetic Field

Let us go back to the quantization procedure of the electromagnetic
field. When we introduce the link expressions (4.3.14), directly in the
relation of the energy of the classical electromagnetic field (4.3.9), we
obtain the following radiation Hamiltonians

HEM =
∑
k,λ

�ωkN̂kλ (5.2.1)

if the “normal ordering” expression is considered in (4.3.9), i.e.,

2ε0V
∑
k,λ

ω2
kA

∗
kλAkλ (5.2.2)

and

HEM =
∑
k,λ

�ωk(N̂kλ + 1) (5.2.3)

when the anti-normal ordering is used

2ε0V
∑
k,λ

ω2
kAkλA

∗
kλ (5.2.4)

It is very important to note that it is impossible to get HEM =∑
k,λ �ωk (N̂kλ + 1

2) when starting from the electromagnetic field
energy expression (4.3.9), the “normal ordering” is used or not.

This mathematical ambiguity, which leads to a quite different
physical interpretation of the radiation zero-level state, demonstrates
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the lack of a coherent mathematical transition from the classical
to the quantum mechanical formalism of the electromagnetic field
energy.

Consequently, a strong doubt may arise in whether the term∑
k,λ

1
2�ωk, corresponding to the vacuum energy in (4.3.18) repre-

sents a real physical state since it is not in reality a natural con-
sequence of the electromagnetic field quantization. Hence, we will
analyze in next chapters, the reasons for which one obtains different
expressions for the zero-point energy. Also we will show how the
relation (4.3.12) has to be transformed to ensure a coherent transi-
tion between the classical electromagnetic wave energy and the quan-
tum mechanical Hamiltonian, in order to eliminate this mathematical
ambiguity.

5.3. QED Singularities

Let us consider the Hamiltonian of the electromagnetic field (4.3.18)
in complete absence of photons, that is when Nk,λ = 0, which
becomes

Hvacuum =
∑
k,λ

1
2

�ωk (5.3.1)

The summation runs over all modes k and polarizations λ. Hence,
as it has been mentioned in Chapter 4 (4.3.1), the vacuum in the QED
description consists of an infinite sea of “photons” corresponding to
the state |Nk,λ = 0,∀ {k, λ}〉 corresponding to infinite energy.

In this context, the vacuum electromagnetic energy density is

Wvacuum =
1
V

∑
k,λ

1
2

�ωk (5.3.2)

using (4.6.2) and considering two polarizations, we get

Wvacuum =
�

2π2c3

∫
ω3dω (5.3.3)

which is also infinite.
In the visible region situated in the wavelengths range between

4000 and 7000 Angstroms, the energy density calculated using (5.3.3)
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corresponds roughly to 22 J/m3, which represents a tremendous
amount of energy in space which is fully unobservable experimentally.
Recent astronomical observations have demonstrated that the mea-
sured vacuum energy density in space is many orders of magnitude
less than that predicted by QED theory. The huge discrepancy
between the theoretical and the measured values of the vacuum
energy has been called the “quantum vacuum catastrophe.”

On the other hand, the quantized radiation electric field �E(�r, t) is
obtained using the vector potential expression (4.3.15) and (3.3.15)
in the Coulomb gauge

�E(�r, t) = −∂
�A(�r, t)
∂t

= i
∑
k ,λ

√
�ωk/(2ε0V )

×[akλε̂kλe
i(�k·�r−ωkt+ϕ) − a+

kλε̂
∗
kλe

−i(�k·�r−ωkt+ϕ)]

(5.3.4)

where ε̂kλ is a polarization vector. Consequently, the expectation
value of the photons electric field in vacuum within a volume V is
given by the expression

〈E(�r)2〉vacuum =
∑
k,λ

�ωk,

2ε0V
(5.3.5)

which is also infinite.

5.4. Electron-Vacuum Interactions and the Associated Effects

The presence of the vacuum energy singularity in the quantised radi-
ation field Hamiltonian Hvacuum =

∑
k,λ

1
2�ωk constitutes the fun-

damental argument generally found in the literature, in order to
explain some physical effects such as the spontaneous emission, Lamb
displacements in atomic levels as well as the Casimir effect. The ter-
minology usually employed for that purpose uses the term “vacuum
fluctuations”, though in most cases no mathematical representation
of any kind of fluctuation is explicitly presented. Some authors pre-
fer using the term “virtual photons” for the vacuum Hamiltonian.
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However, we could naturally wonder why the first term of the Hamil-
tonian (4.3.18) is considered as real while the second one as “virtual”.

Nevertheless, it is absolutely certain that the last effects are due
to the electron-vacuum interactions and cannot be calculated using a
semi-classical model, in which the atomic energy levels are quantized
while the electric field is represented by a classical wave equation
in the interaction Hamiltonian. The reason is simply that in the
classical description, the vacuum has no electromagnetic waves and
consequently, �E(�r, t) in the interaction Hamiltonian Hint in (4.5.26)
is zero. Conversely, in QED, according to the radiation Hamiltonian
(4.3.18), the vacuum is considered to be composed by photons of all
modes and polarizations, permitting one to consider an interaction
Hamiltonian.

Now, the above effects are due to the interaction between an
electron in a given atomic state and the vacuum. Consequently, for
their description the term

∑
k,λ

1
2�ωk of the Hamiltonian (4.3.18),

which is the eigenvalue of the fundamental radiation eigenstate
| . . . , 0k,λ, . . . , 0k′,λ′ , . . .〉, corresponding to the vacuum state, should
be of high importance.

However, as we will see in the following, this singularity has no
implication in the mathematical interpretation of those effects.

• Spontaneous emission

We recall the total Hamiltonian of an atom in the presence of an
electromagnetic field in the dipole approximation:

Htot = HEM +Hint +Hatom

=
∑
k,λ

�ωk

(
N̂kλ +

1
2

)
− �D · �E(�r, t) +

∑
i

�ωi|Ψi〉〈Ψi|

(5.4.1)
where �D = e�r is the dipole moment of an atomic electron of charge e
according to (4.5.26) and |Ψi〉 the atomic levels with the correspond-
ing energies �ωi.

The spontaneous emission rate is always calculated in QED
neglecting

∑
k,λ

1
2�ωk in Htot and using the expression (5.3.4) for

the electric field �E(�r, t).
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Therein, we recall that according to Heisenberg’s equation of
motion (4.5.22.a), the electric field writes

�E(�r, t) = −∂
�A(�r, t)
∂t

=
i

�


 �A(�r, t),

∑
k,λ

�ωk

(
N̂kλ +

1
2

) (5.4.2)

Consequently, for the calculation of the electric field attributed
to the vacuum state, the term

∑
k,λ

1
2�ωk should be the principal

contribution to the Hamiltonian. But the commutation operator of
the vector potential and the vacuum Hamiltonian cancels

 �A (�r, t),
∑
k,λ

1
2

�ωk


 = 0 (5.4.3)

Hence, the term
∑

k,λ
1
2�ωk in this representation has absolutely

no contribution in the general expression of the quantized electric
field used to calculate the spontaneous emission.

Obviously, the vacuum effect in the quantized vector potential is
involved in the commutation relation [akλ, a

+
kλ] = 1 and not in the∑

k,λ
1
2�ωk term.

Indeed, in a rigorous calculation, the interaction Hamiltonian
between an atomic electron and the vacuum writes

Hint = −�d · i
�


 �A (�r, t),

∑
k,λ

1
2

�ωk


 = 0 (5.4.4)

which also vanishes in QED, as in the semi-classical description.
The physical reason is that in QED, the vacuum state Hamil-

tonian is not described by a function of akλ and a+
kλ operators and

consequently it is impossible to define an interaction Hamiltonian for
the description of the electron-vacuum interaction processes.

• Lamb shift

The mathematical treatment of the quantum vacuum effects upon
the atomic energy levels described in Section 4.6 is without any doubt
among the most revolutionary ones introduced in modern physics. It
consists of neglecting infinite quantities for calculating finite energy
differences which are measurable experimentally.
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We can now have a close look to a detailed analysis of this calcu-
lation, resuming the comments and arguments of many authors.

First, the quadratic term of the vector potential of equation
(4.6.1) is dropped out, though it’s infinite. Despite the fact that the
linear term of the vector potential of equation (4.6.3) is also infinite,
it is not dropped out as the quadratic one, but instead it suffers a
renormalization procedure which equally results in an infinite quan-
tity (4.6.6). At that level one should expect that since the quadratic
term, being infinite, does not induce a measurable shift, by the same
token the linear term, being also infinite, should also not induce a
measurable shift. Nonetheless, the linear term is kept in the calcu-
lation and in order to “overcome” the difficulty, an arbitrary upper
limit for the integration of (4.6.6) is introduced in the nonrelativistic
approach whose choice, at that level of calculation, is not based on
any experimental or physical argument. Conversely, in the relativistic
approach developed much later, the upper integration limit seems to
appear “naturally”. Consequently, one may wonder why the same
upper limit is not equally applied in the integration of the quadratic
term of the vector potential. Furthermore, the introduction of a mean
value for the logarithmic term (4.6.9), calculated numerically over
an indefinite number of discrete states, in both the nonrelativistic
and the relativistic approach, gives rise to the upsetting feeling that
under these calculation conditions, the fact that the final obtained
displacement energy is accurate compared to the experiment is
puzzling.

Finally, once again, in these calculations the vacuum effects on
the atomic energy levels is not due to the zero-point level of the
Hamiltonian (4.3.18). Except Bethe’s approach, various calculations
of the Lamb shift have been published, each one by considering the
influence of the vacuum upon the atomic orbitals through different
aspects; Welton’s vacuum electric field perturbation, Feynman’s gas
interpretation, Stark shift due to the vacuum electric field and so
forth. It is quite interesting noticing that almost all these physical
mechanisms used for the interpretation of the atomic energy shifts
do no require any mass renormalization process.
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• Casimir effect

The behavior of two perfectly conducting and uncharged paral-
lel plates has been investigated by Casimir in 1948. This physical
situation has been extensively studied by many authors over half a
century and of course it is out of the scope of this book to present
all these works in detail. Considering the energy difference of the
vacuum radiation modes between and outside the plates, separated
by a distance d, it is drawn out that an attractive force arises, whose
expression is

F (d) ≈ − (4.11 10−2)
�c

d4
(5.4.5)

The explanation initially advanced, and which is still generally
admitted today, is that when considering the boundary conditions,
as in (3.5.39), the density of the vacuum photons outside the plates
is higher than that in the region inside, inducing a radiation pressure
pushing the plates together to come closer.

The first experiments carried out by Sparnaay in 1958 and then by
van Blokland and Overbeek in 1978, in order to measure Casimir’s
force were not quite successful, since the experimental errors were
very significant, nearly 100% and 30% respectively. However, they
permitted to put in evidence an attractive force between the plates.

More recent experiments mentioned by Lambrecht and Reynaud
in 2002, attained a precision of the order of 1%, but they were still
unable of confirming neither the theoretical predictions at larger dis-
tances (of the order of a µm) nor the temperature effects. Hence,
it appears that higher accuracy experiments are further required to
fully confirm the agreement with Casimir’s theory.

Despite this, the Casimir effect is generally considered as the prin-
ciple demonstration of the existence of the vacuum zero-point level
photons

∑
k,λ

1
2�ωk involved in the Hamiltonian (4.3.18). However,

it is important underlying that Schwinger et al. in 1978 and Milonni
in 1982 obtained the same expression for the attraction force with
that of Casimir’s, without even referring to the zero-point energy. In
fact, as mentioned by Milonni in 1992, a simple summation of the



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-ch05 page 80

80 Light and Vacuum

Van der Waals pairwise intermolecular forces on the surfaces of the
two plates gives a quite close result to that of the Casimir force

F (d) ≈ − (3.27 10−2)
�c

d4
(5.4.6)

demonstrating that physical and reasonable results can be obtained
from classical electrodynamics, without considering the hypotheti-
cal energy density difference of the vacuum photons in the regions
between and outside the plates. As a conclusion, caution has to be
taken concerning the interpretation of the physical origin of Casimir’s
effect since Casimir’s theory for larger distances and the associated
temperature effects have not yet been confirmed experimentally.

5.5. Simultaneous Wave-particle Nature of the Photon
Revealed by the Experiments — Discussions

• Photoelectric effect and Young’s double-slit experiment

The photoelectric effect was initially considered as a direct demon-
stration of the particle nature of light and historically was the
strongest argument of the photon concept, although Einstein had not
advanced any explanation on what could correspond the frequency
ν for a point particle.

Nevertheless, as we have seen in Chapter 4 (4.5), Wentzel in
1926 and Beck in 1927, as well as much later, Mendel, Lamb and
Scully in the 1960s, demonstrated that the photoelectric effect can
be interpreted remarkably well by considering the electromagnetic
wave nature of the light issued from Maxwell’s equations without
referring at all to the photon concept.

Consequently, since both wave and particle models interpret satis-
factorily the photoelectric effect, it cannot be considered as a decisive
experiment for the introduction of the photon concept.

On the other side, Young’s double-slit experiment, which was ini-
tially interpreted with the wave nature of light and was used as the
strongest argument against the particle theory, was used by Taylor
at very low intensities to demonstrate the particle concept.

The interpretation of Taylor’s experiment by some authors was
based on the wave nature of a single photon permitting to pass
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through both slits. Many scientists were skeptical about this inter-
pretation, as in recent similar experiments, interference patterns have
been observed with heavy atoms and molecules. Indeed, Nairz et al.
obtained recently interferences with spherical fullerenes, which are
almost six orders of magnitude bigger than a nucleon particle. It is
impossible to conceive, at least in the present stage of our knowledge
that fullerenes can pass through both slits simultaneously.

In order to get a comprehensive picture of all these interference
experiments carried out with light and material particles, Jin et al.
in 2010 advanced a particle-based description of Young’s double slit
interferences without even referring to the wave theory.

Consequently, what can be essentially deduced from the exper-
imental evidence during more than two centuries of struggling
between the wave and particle theories, is that experiments simply
confirm both natures for light (and for material particles).

Bohr, although initially in favor of the wave concept, understood
quite rapidly that the only way out of this frustrating dilemma is the
wave-particle complementarity, even if this concept is hardly com-
prehensive for the human common sense.

We will now present selected recent experiments and discuss the
final results with respect to the second quantization procedure.

• Mizobuchi and Ohtake double-prism experiment

Since Bohr announced his famous complementarity principle
expressing that light has simultaneously both the wave and particle
nature, appearing mutually exclusive in every physical situation, the
opposition between the defenders of the wave or particle theories had
ceased. However, the majority of scientists were skeptical about the
wave-particle simultaneity which is not at all comprehensive for the
human mind.

With the development of lasers and the revolutionary parametric
down converters techniques, it becomes possible to realize conditions
in which, with a very high degree of statistical accuracy, only one
photon is present in the experimental apparatus. Hence, in order to
test Bohr’s complementarity principle, Ghose, Home and Agarwal,
proposed in 1991, the double prism experiment which was carried
out by Mizobuchi and Ohtake in 1992.
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Fig. 5.5.1. Schema of the double prism experiment initially proposed by Ghose, Home
and Agarwal and carried out by Mizobuchi and Ohtake. With kind permission from
Springer Science+Business Media: <Foundations of Physics, The Two-Prism Experiment
and Wave-Particle Duality of Light, 26(7), 943–953, Fig. 1 1996, Partha Ghose and
Dipankar Home, and any original (first) copyright notice displayed with material>.

A single photon pulse goes through two prisms separated by
an air gap whose thickness is less than the incident photon wave-
length (Fig. 5.5.1). In these conditions, classical electromagnetic wave
theory predicts a tunneling effect for the wave-like photon, according
to which the wave will traverse the air gap straightforward and will be
detected by Detector 1. On the other hand, a particle-like photon will
be reflected by the inner wall of the first prism and will be detected
by Detector 2. Both detectors are connected to a coincidence counter
in order to detect any eventual coincidence.

The experiment results have shown very strong anti-coincidence
entailing that a single photon state goes either through the gap by
wave tunneling or is reflected by the first prism like a particle. Con-
sequently, both the wave and the particle natures of the photon are
exhibited in the same experimental conditions, confirming the wave-
particle concept and at the same time contradicting the mutual exclu-
siveness of Bohr’s complementarity principle.

Finally, it is worth noting that simultaneous wave-particle duality
for neutrons in similar interferometer have also been reported by
Greenberger and Yasin.
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Fig. 5.5.2. Experimental disposition of Grangier’s et al. experiment for the demonstra-
tion of the indivisibility of a single photon state. Reproduced with permission from
Ref. 19.

• Grangier’s et al. experiments, photon indivisibility

The purpose of this experiment is to test the indivisibility of the
photon. It is based on the two emission lines of the lower energy
levels of Ca atoms 1S0 →1 P1 and 1P1 →1 S0 (Fig. 5.5.2). The first
transition gives a photon with angular frequency ω1, whose detection
opens a rectangular gate to control the detection of the second photon
emission at ω2. The last one passes through a beam splitter behind
which photomultipliers can detect the transmitted and the reflected
ω2 photons. The intermediate level has a life time τ and in order to
decrease the probability to get coincidence, counting due to two ω2

photons issued from two different Ca atoms, the gate width γ has
been chosen to be much smaller than τ .

The final results of the experiment revealed extremely low levels
of coincidences, demonstrating without any doubt, that the photons
are integral particles transmitted or reflected by the beam splitter as
a whole.

Although the issue of the experiment shows the indivisibility of
the photons, it does not exclude the wave nature of them.

• Hunter–Wadlinger experiments, the photon spatial expansion

Akhiezer and Berestetskii have pointed out that it is impossible
to consider a photon within a length shorter than the wavelength.
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Fig. 5.5.3. Schema of Hunter’s and Wadlinger’s experiment for the investigation of the
lateral spatial extension of the electromagnetic waves. Reproduced with permission from
Ref. 21.

Nowadays, this concept is generally accepted. However, the lateral
expansion of the photon considered as an integral particle was always
an intriguing part of physics.

For many decades, it has been well known that Faraday’s metallic
cage is a quite efficient shield toward electromagnetic waves, provided
that the dimensions of the holes of the grid are roughly five times
smaller than the wavelength of the incident radiation, which is ∼ λ/5.
That was rather an empirical rule and most of the constructed grills
to screen the radiation of a wavelength λ imposed the dimensions of
the holes to be within the interval λ/4 to λ/8.

Robinson in 1953 and Hadlock in 1958 carried out experiments
using microwaves crossing small apertures, and deduced that no
energy is transmitted through apertures whose diameters are less
than roughly ∼λ/4.

In 1986, Hunter and Wadlinger, realized a very simple experiment
inspired by those carried out by Robinson and Hadlock (Fig. 5.5.3).
They used x-band microwaves with λ = 28.5 mm and measured the
transmitted power through rectangular or circular apertures of dif-
ferent dimensions.

The purpose was to define the smaller dimensions of the slit
beyond which the transmitted power is zero. All the results, corrected
with the subtraction of the first harmonic of the emitted beam
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by the microwave antenna, have shown that the cut-off dimension
(diameter for the circular aperture, width for the rectangular one) is
roughly ∼λ/π.

Consequently, taking also into account that the longitudinal
extension of the photon along the propagation axis is the wavelength
λ itself, it implies that the intrinsic “photon volume” depends on its
wavelength and it should be proportional to λ3.

5.6. Conclusion Remarks

We have seen that the equivalence of the photons energy with that of
the classical electromagnetic wave description implies that a relation-
ship between Planck’s constant and the vector potential quantized
amplitude should exist. We have also analyzed the QED singularities
and shown that the term

∑
k,λ

1
2�ωk is not involved in the vacuum-

electron interactions.
On the experimental front, we may essentially deduce that the

photoelectric effect and Young’s interferences have both demon-
strated the wave-particle nature of light. This has been further estab-
lished by Mizobuchi and Ohtake’s experiment, which also demon-
strates that the wave and particle natures appear simultaneously
and are not necessarily exclusive.

On the other hand, Robinson, Hunter and Wadlinger have demon-
strated that the photon should have a lateral extension of the order
λ/4 to λ/π and cannot be a “point particle,” while the experiments
of Grangier et al. demonstrated the photon indivisibility.

During the Compton scattering experiments, the photon exhibits a
very particular property; it conserves its integrity as particle, but may
concede a fraction of its energy, entailing a modification of its wave-
length and consequently its energy, momentum and spatial extension.

To sum up the experimental evidence, it turns out that the
photon appears to be an indivisible quantum (segment) of the elec-
tromagnetic field over a period, thus extended along a wavelength,
with intrinsic wave properties, emitted and detected as a whole and
capable of interacting with charged particles, increasing (or even
decreasing) its wavelength and consequently decreasing (or even
increasing) its energy.
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In the next chapter, we will consider further theoretical elabo-
rations conform to the experiments and advance a non-local photon
representation based on a precise quantization of the electromagnetic
field vector potential, linking coherently the electromagnetic theory
and quantum mechanics and entailing a well-defined description of
the quantum vacuum.
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Chapter 6

Analysis of the Electromagnetic
Field Quantization Process

and the Photon Vector Potential.
The Non-Local Photon

Wave-Particle Representation
and the Quantum Vacuum

6.1. Quantized Vector Potential Amplitude of a Single
Photon State

Frequency and vector potential imply electromagnetic wave proper-
ties while energy and momentum imply particle properties. In a full
wave-particle description of light, the challenge consists of establish-
ing a coherent relation among all these physical quantities.

• Dimension analysis from Maxwell’s equations. Vector potential
amplitude proportional to the frequency.

The relations (4.1.9) attribute a precise value of energy and
momentum to a photon related to the electromagnetic wave only
by the angular frequency, while no information is supplied about
the photon vector potential which is basically indispensable in the
classical electromagnetic description. As we have discussed in the
previous Chapter 5 (5.1), in the electromagnetic theory, it is impos-
sible to define the energy of an electromagnetic wave simply by its
frequency while omitting the vector potential. Hence, if the photon

89
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is an integral particle with definite quantum energy then the exact
quantization of its vector potential should be a natural consequence.

Obviously, the quantization procedure of the electromagnetic
field, described briefly in Section (4.3.1), does not result effectively to
the description of the vector potential of individual photons. Indeed,
examining the link relations (4.3.14), obtained from (4.3.13) when
N = 1, the amplitude of the vector potential for a single k mode
photon with angular frequency ωk is given by

α0 =

√
�

2ε0ωkV
(6.1.1)

Of course, for a large number of photons in a volume V , with
short wavelengths compared to the dimensions of V , the summation
transformation (3.5.44) resulting from the density of states helps
to directly eliminate the external volume parameter V involved in
the expression of the quantized vector potential amplitude. Con-
sequently, one may argue that it’s needless to enhance further the
analysis on the definition of (6.1.1) to a single photon, since it is
sufficient for the description of the physical situations studied in
quantum electrodynamics (QED). Hence, by limiting the theoretical
analysis of the equation (6.1.1), we miss a fundamental information
on the photon vector potential that might ensure the link with the
electromagnetic theory.

In fact, it is intriguing to deduce from (6.1.1), that the vector
potential of a single photon depends on an independent free space
variable V entailing that, for a given finite volume it is inversely
proportional to the square root of the angular frequency. This is also
puzzling from a physical point of view because, knowing that the
current density �j(�r, t) has the dimension of charge times m−2 s−1, a
dimension analysis of the general expression of the vector potential
amplitude in equation (3.3.10) issued from Maxwell’s equation shows
that it should be proportional to the frequency, and consequently for
a k-mode photon with angular frequency ωk we should have

α0(ωk) ∝ (Constant × ωk) → ξωk (6.1.2)

This is contradictory with the frequency dependence of (6.1.1),
implying mathematically that in the case of a single photon state,
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V cannot be a free external parameter in (6.1.1), but it has to be
proportional to ω−3

k

Vk ∝
(

1
ω3

k

)
(6.1.3)

The possible spatial expansion of a single photon state will be
discussed later. Now we can have a close look to the photon vector
potential amplitude quantization constant ξ.

• Wave equation for the photon vector potential

Based on (6.1.2), the fundamental physical quantities, energy,
momentum, vector potential and wave vector, characterizing both
the wave and particle nature of a single k mode photon state are all
related to the angular frequency

Ek

�
=

|�pk|
�/c

=
α0

ξ
= |�k|c = ωk (6.1.4)

The expression of the photon vector potential may now be written
in a general plane wave expression

�αωk
(�r, t) = ξωk[ε̂ei(

�k·�r−ωkt+ϕ) + ε̂∗e−i(�k·�r−ωkt+ϕ)] (6.1.5)

whose propagation occurs within a period T , thus over a wavelength
λ, and then repeated successively along the propagation axis.

Hence, the photon vector potential αωk
(�r, t) has to satisfy the

wave propagation equation

�∇2�αωk
(�r, t) − 1

c2
∂2

∂t2
�αωk

(�r, t) = 0 (6.1.6)

The second derivative with respect to time is proportional to the
square of the amplitude

∂2

∂t2
�αωk

(�r, t) = −ω2
k�αωk

(�r, t) = −
(
α0

ξ

)2

�αωk
(�r, t) (6.1.7)

and the propagation equation can be written

[α2
0 + ξ2c2�∇2]�αωk

(�r, t) = 0 (6.1.8)

entailing the interesting result that the photon vector potential
amplitude can be expressed as an operator α̃0 proportional to ξ

α̃0 = −iξ c�∇ (6.1.9)
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which is quite symmetrical with the relativistic Hamiltonian operator
for a massless particle

H̃ = −i�c�∇ (6.1.10)

Let’s apply α̃0 upon αωk
(�r, t) along the propagation axis

α̃0�αωk
(�r, t, ϕ) = iξck �αωk

(
�r, t, ϕ+

π

2

)
(6.1.11)

with ϕ the phase parameter.
But for the time variation, we also get

∂

∂t
�αωk

(�r, t, ϕ) = ωk�αωk

(
�r, t, ϕ +

π

2

)
(6.1.12)

The combination of the last two equations gives a linear time
differential equation for the photon vector potential, valid within
every wavelength interval successively along the propagation axis

iξ
∂

∂t
�αωk

(�r, t) = α̃0 �αωk
(�r, t) (6.1.13)

The symmetry with the Schrödinger equation for a particle with
a wave function φ (�r, t) is obvious

i�
∂

∂t
φ (�r, t) = H φ (�r, t) (6.1.14)

Furthermore, we also remark that when considering Heisenberg’s
energy time uncertainty principle

δEkδt ≥ � (6.1.15)

we deduce directly from the relations (6.1.4), a vector potential time
uncertainty according to the relation

δα0δt ≥ ξ (6.1.16)

It is worth noticing the symmetrical mathematical correspondence
between the pairs {E, �,particle} ↔ {α0, ξ,wave} for a single photon.
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• Photon wavelength dimensions following the experimental evi-
dence

It is useful to recall that, in order to get the link equations (4.3.14),
one has to consider the mean value of the left-hand side of (4.3.13),
over a period T (or in space representation over a wavelength λ),
while putting N = 1 to the right-hand side of (4.3.13). Notice also
that the energy density of the electromagnetic field 〈Wω〉T and the
energy flux obtained by Poynting vector 〈�Sω〉T in (3.4.8), are both
calculated over a period T while they are completely independent on
any external volume V .

It comes out that both these physical quantities, 〈Wω〉T and
〈�Sω〉T , describing the energy density and flow of a “fraction” of the
electromagnetic wave limited to its wavelength, depend only on the
angular frequency ω, the amplitude of the vector potential, α0(ω),
and on the vacuum electric permittivity ε0.

Consequently, following the above aspects and considering the
photon as an integral particle with a given energy, we may write
using (3.2.29), (3.4.4) and (3.4.5) for a single k-mode photon∫

ε0ω
2
kα

2
0(ωk)[ε̂ei(ωkt−�k·�r+ϕ) + c.c]

2
d3r = �ωk (6.1.17)

For the last relation to hold at any instant t, we deduce that the
photon polarization unit vector should have at least two orthogonal
components, ê1 and ê2, such as ε̂ = σ1ê1 +σ2ê2 with |σ1|2 + |σ2|2 = 1
and ê1 · ê2 = 0.

According to (3.4.12), R and L hand circular polarization unit
vectors, êL,R = 1√

2
(ê1 + iê2) are naturally appropriate to satisfy this

condition and equation (6.1.17) becomes∫
2ε0ω2

kα
2
0(ωk) d3r = �ωk (6.1.18)

Indeed, it is generally accepted that the photons are characterized
by L or R circular polarization.

The equation (6.1.18) is equivalent to the normalization of the
energy of a classical electromagnetic plane wave over a wavelength,
issued from Maxwell’s equations, to Planck’s expression of the quan-
tized radiation energy. At that point, we recall the energy density
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equivalence between the classical and the quantum mechanical for-
mulations given by (4.3.13), which for N = 1 is simply reduced to

2ε0ω2
kα

2
0(ωk)Vk = �ωk (6.1.19)

where α0(ωk) is the vector potential amplitude that may be
attributed to a k mode photon and Vk, the corresponding quanti-
zation volume.

The comparison of the last two equations implies that Vk cor-
responds to an intrinsic property of the photon. From (6.1.2) and
(6.1.19), we get

Vk =
(

�

2ε0ξ2

)
ω−3

k (6.1.20)

in agreement with the previous analysis resulting to (6.1.3).
Since it has been demonstrated that a photon cannot be consid-

ered as an integral entity within a region smaller than its wavelength
λ, and since the directional character of photons has been demon-
strated experimentally by Compton, the integration of (6.1.18) may
be carried out in cylindrical coordinates (ρ, θ, z), where z is the propa-
gation axis, along which the vector potential rotates perpendicularly.
In a full period interval, 0 ≤ z ≤ λ, the angular coordinate θ is
related to z by θ = 2πz/λ and the integration may be reduced to
the variables, z and ρ in the limits 0 ≤ z ≤ λ and 0 ≤ ρ ≤ ηλ, with
η, a positive dimensionless constant characterizing the later spatial
extension of the photon and permitting the following relation to hold

2ε0ω2
kα

2
0(ωk)

(
η2

2
λ3

)
= ε0ξ

2η2 (2πc)3

ω3
k

ω4
k = �ωk (6.1.21)

The product of the two constants η and ξ has the value

ηξ =
1

(2π)3/2

√
�

ε0c3
(6.1.22)

In a first approximation, the last relation is almost independent
of the integration coordinates of equation (6.1.18). For instance, inte-
grating in spherical coordinates with 0 ≤ r ≤ λ

2 , one gets

2ε0ω2
k(ξωk)2

∫ λ/2

0
4π χ2r2dr = �ωk (6.1.23)

where χ2 is equally a positive constant for the last equation to hold.
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We obtain

χξ =
1

(2π)3/2

√
3�

πε0c3
(6.1.24)

The physical meaning of relations (6.1.22) and (6.1.24) is that
Planck’s constant is related to the vacuum’s electric permittivity ε0
by the intermediate of photon’s intrinsic physical parameters.

• Wave-particle formalism

Following the expression (6.1.5), the photon vector potential can
be written in a general wave-particle formalism

�αωkλ
(�r, t) = ωk[ξε̂kλe

i(�k·�r−ωkt+ϕ) + ξ∗ε̂∗kλe
−i(�k·�r−ωkt+ϕ)]

= ωk
�Ξkλ(ωk, �r, t) (6.1.25)

α̃kλ = ωk	ξakλε̂kλe
i(�k·�r−ωkt+ϕ) + ξ∗a+

kλε̂
∗
kλe

−i(�k·�r−ωkt+ϕ)

= ωkΞ̃kλ(akλ, a

+
kλ) (6.1.26)

where for the quantum mechanical formalism, we have used the cre-
ation and annihilation operators a+

kλ and akλ respectively for a k

mode and λ polarization photon.
The general equation of the vector potential for the electromag-

netic wave considered as a superposition plane waves writes

�A (�r, t) =
∑
k,λ

ωk[ξε̂kλe
i(�k·�r−ωkt+ϕ) + ξ∗ε̂∗kλe

−i(�k·�r−ωkt+ϕ)]

=
∑
k,λ

ωk
�Ξkλ(ωk, �r, t) (6.1.27)

and that of a large number of photons in the QED description is

Ã =
∑
k,λ

ωk 	ξakλε̂kλe
i(�k·�r−ωkt+ϕ) + ξ∗a+

kλε̂
∗
kλe

−i(�k·�r−ωkt+ϕ)


=
∑
k,λ

ωkΞ̃kλ(akλ, a
+
kλ) (6.1.28)

The vector potential with the quantized amplitude ξ in the wave
expression (6.1.25) translates the individual wave property of the
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photon, while that of (6.1.26) its particle property, reflected through
the vector potential amplitude operator. The mathematical repre-
sentation of the wave and particle expression of the vector potential
amplitude operator writes

wave: {α̃0 = −iξc�∇; α̃∗
0 = iξ∗c�∇}

particle: {α̃0kλ
= ξωkakλ; α̃∗

0kλ
= ξ∗ωka

+
kλ} (6.1.29)

We easily verify that when introducing α̃0kλ
and α̃∗

0kλ
into the QED

position and momentum operators expressions (4.3.11), one directly
gets the corresponding position Q̂kλ and momentum P̂kλ operators

Q̂kλ =
√
ε0Vk(α̃0kλ

+ α̃∗
0kλ

) P̂kλ = −iωk

√
ε0Vk(α̃0kλ

− α̃∗
0kλ

)

(6.1.30)

Using (6.1.20), the demonstration of Heisenberg’s commutation
relation is immediate

[Q̂kλ, P̂k′λ′ ] = −iε0ω2
k′ωk

√
VkVk′ [(ξakλ + ξ∗a+

kλ), (ξak′λ′ − ξ∗a+
k′λ′)]

= i�δkk′δλλ′ (6.1.31)

We can now deduce the particle properties of the photon by using
the wave characteristics.

In fact, the particle properties, energy Ek and the momentum
�Pk, of a k mode photon are not carried by a point particle and can
be expressed in terms of the quantization volume Vk and the wave
properties namely the dispersion relation, the vector potential and
the electric and magnetic fields

Ek = 2ε0ω2
kα

2
0k
Vk = �ωk = �kc (6.1.32)

Considering equations (3.4.13) to (3.4.14) for circular polarization
photons the momentum writes

�Pk =
∫

Vk

ε0 �E
(1) × �B(2)d3r

= ε0(
√

2ωkα0kλ
)
(

1
c

√
2ωkα0kλ

)
Vk

�k

|�k|
= ��k (6.1.33)
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The photon momentum has the dimensions of a mass mk times
the velocity, that is c in vacuum

|�Pk| = �k = mkc (6.1.34)
Combination of (6.1.32) and (6.1.34) gives

Ek = mkc
2 (6.1.35)

showing that the energy–mass equivalence is a direct result of the
wave-particle double nature of light which is extended to particles.

• Relation between the photon vector potential and the electron
charge

Following the above analysis on the wave-particle nature of the
photon, a quite interesting feature results when writing the energy
equivalence (6.1.19), as follows

4π c
(

1
4π c

2ε0ω2
kα0 (ωk)Vk

)
α0 (ωk) = 4π cQα0 (ωk) = �ωk

(6.1.36)
where the Q parameter has charge dimensions. Using (6.1.4) and
(6.1.22), we obtain

Q2 =
(

1
4π c

2ε0ω2
kα0 (ωk)Vk

)2

=
η2

4
(hε0c) (6.1.37)

Using for η, the experimental approximate value of 1/4 discussed
in Chapter 5 (5.5), it results immediately that Q ∼ 1.6 10−19

Coulomb, which is the electron charge, a physical constant, appear-
ing naturally when considering the equivalence of the classical and
quantum mechanical energy density of the electromagnetic field at a
single photon level.

This entails that the physical origin of the electron charge is
strongly related to the quantum of the electromagnetic field over
a period, the photon.

Based on this result, we can go further in the definitions of both
η and ξ constants by the intermediate of the fine structure constant
αFS, as defined in the equation (4.6.4), by equating the square of the
electron charge to (6.1.37)

η2

4
(hε0c) ≈ 2αFS (hε0c) (6.1.38)
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getting

η ≈ √
8αFS (6.1.39)

Consequently, we can have an approximate idea of the numerical
value of the vector potential amplitude quantization constant from
(6.1.36) or the coupling of (6.1.22) and (6.1.39)

4π cQα0(ωk) ≈ 4π c eξωk ≈ �ωk (6.1.40)

ξ ∝ 1
(2π)3/2

√
�

8αFSε0c3
=

�

4πec
= 1.747 10−25 Volt m−1s2

(6.1.41)

Appropriate experiments could attribute more precise values to η

and ξ.

6.2. Quantum Vacuum Representation

Let us come back to the two values of the Hamiltonian, (5.2.1) and
(5.2.3) which result simply from the commutation of A∗

kλ and Akλ

in equation (4.3.9), and let us deal with the fundamental problem of
the mathematical origin of the �ω/2 term.

As it is well known, a simple commutation between the vector
potential amplitude and its complex value, which has absolutely
no influence in the classical expression of the electromagnetic field
energy (4.3.9), proves to be of crucial importance for the quantum
mechanical Hamiltonian. We can now analyze the reason for which
the radiation Hamiltonian (4.3.18) cannot be obtained when the link
equations (4.3.14) are introduced in the expression of the electro-
magnetic field energy (4.3.9).

It is important noticing that, for a harmonic oscillator of a particle
of mass m and momentum �p = md�q/dt, the transition from the
classical expression of energy (4.2.20) to the Hamiltonian (4.2.25)

EHO =
1
2
(P 2 + ω2Q2) → H̃HO =

1
2
(P̂ 2 + ω2Q̂2) = �ω

(
a+a+

1
2

)
(6.2.1)
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where P̂ = i
√

�ω
2 (a+ − a) and Q̂ =

√
�

2ω (a+ + a), is immediate and
needs no commutation operations between the canonical variables P
and Q.

Consequently, the harmonic oscillator Hamiltonian H̃HO is a
direct result expressing a perfect correspondence between the classi-
cal canonical variables of momentum and position, P and Q respec-
tively, and the quantum mechanical Hermitian operators P̂ and Q̂.

Conversely, this is not the case for the electromagnetic field
because commutations between Qkλ and Pkλ occur during the tran-
sition from the expression (4.3.9) to (4.3.12). Therein, we recall
that Heisenberg’s commutation relation [Q̂kλ, P̂k′λ′ ] = i�δkk′δλλ′ is
a fundamental concept of quantum mechanics which should not be
ignored, when transiting from classical variables to quantum mechan-
ical operators. This is exactly the reason for which the equation
(4.3.12) cannot be considered as the electromagnetic field energy
expression for establishing the quantized radiation Hamiltonian since
it is not equivalent, from the quantum mechanical point of view, to
equation (4.3.9).

In fact, introducing the vector potential amplitude expressions of
(4.3.11) in the equation (4.3.9){

Akλ =
(ωkQkλ + iPkλ)

2ωk

√
ε0V

; A∗
kλ =

(ωkQkλ − iPkλ)
2ωk

√
ε0V

}

→ E = 2ε0V
∑
k,λ

ω2
k|Akλ|2 (6.2.2)

and keeping the commutation terms appearing in the calculation
one gets, instead of the expression (4.3.18), i.e., EEM = 1

2

∑
k,λ(P 2

kλ

+ω2
kQ

2
kλ), the complete expression for the energy of for the electro-

magnetic field

EEM =
1
2

∑
k,λ

(P 2
kλ + ω2

kQ
2
kλ) ± iωk[Qkλ, Pkλ] (6.2.3)

where the (+) sign is obtained when the starting equation (4.3.9)
is considered to be in the “normal ordering”, 2ε0V

∑
k,λ ω

2
kA

∗
kλAkλ,

and the (−) one when 2ε0V
∑

k,λ ω
2
kAkλA

∗
kλ.
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Equation (6.2.3) is a rigorous mathematical result leading to the
radiation Hamiltonians

H̃EM =
1
2

∑
k,λ

(P̂ 2
kλ + ω2

kQ̂
2
kλ) ± iωk[Q̂kλ, P̂k′λ′ ]

=



∑
k,λ

N̂kλ �ωk (+)

∑
k,λ

(N̂kλ + 1)�ωk (−)


 (6.2.4)

where the upper summation of the last part corresponds to the (+)
sign, hence to the normal ordering of the vector potential amplitude
and its conjugate, while the lower summation to the (−) sign. This
is the correct mathematical way to get identical results with the
Hamiltonian (6.2.4) when the link equations (4.3.14) are introduced
in the classical energy expression (4.3.9).

Consequently, one may wonder whether the vacuum contribution
to the quantized electromagnetic field Hamiltonian, i.e., the term∑

k,λ
1
2�ωk of equation (4.3.18) obtained when neglecting arbitrar-

ily the commutation ±iωk[Qkλ, Pkλ] without respecting Heisenberg’s
relation, can really represent a physical state.

From a pure mathematical point of view the classical electromag-
netic field energy may be equivalent to that of an ensemble of quan-
tized harmonic oscillators when considering the mean value of the
“normal ordering” and “anti-normal ordering” expressions getting

EEM =
1
2


2ε0V

∑
k,λ

ω2
kA

∗
kλAkλ + 2ε0V

∑
k,λ

ω2
kAkλA

∗
kλ




=
1
2


1

2

∑
k,λ

(
P 2

kλ + ω2
kQ

2
kλ

)
+ iωk[Qkλ, Pkλ]

+
1
2

∑
k,λ

(P 2
kλ + ω2

kQ
2
kλ) − iωk[Qkλ, Pkλ]



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=
1
2

∑
k,λ

(P 2
kλ + ω2

kQ
2
kλ) → 1

2

∑
k,λ

(P̂ 2
kλ + ω2

kQ̂
2
kλ)

=
∑
k,λ

(N̂kλ +
1
2
)�ωk (6.2.5)

However, the physical reasons for considering the above mean
value are rather elusive. Nevertheless, as it has been analyzed in Sec-
tion (5.4), the zero-point energy of the electromagnetic field Hamil-
tonian as a constant value, either

∑
k,λ

1
2�ωk or

∑
k,λ �ωk, is not

really involved directly in the electron-vacuum interactions. Therein,
it has been pointed out by many authors that the mathematical and
physical basis for the description of the electron-vacuum interactions
issues from the properties of the photon creation and annihilation
operators, a+

kλ and akλ respectively.
Consequently, if the Hamiltonian

∑
k,λ N̂kλ�ωk obtained when

using the normal ordering (+) in the radiation Hamiltonian (6.2.4)
represents the physical state of a photon ensemble then what could
be the expression for the quantum vacuum? We can now investigate
what could be the vacuum expression in this case. According to the
relations (6.1.4), for ωk = 0, the vector potential, the energy, and the
momentum of a k mode photon vanish. However, in complete absence
of energy, the field Ξkλ in (6.1.25) to (6.1.28) does not vanish and
reduces to the vacuum field that can also be described as a quantum
mechanical operator

�Ξ0kλ
= ξε̂kλe

iϕ + ξ∗ε̂∗kλe
−iϕ (6.2.6)

Ξ̃0kλ
= ξakλε̂kλe

iϕ + ξ∗a+
kλε̂

∗
kλe

−iϕ (6.2.7)
Thus, Ξ̃0kλ

is a real entity of the vacuum state having the dimen-
sions Volt m−1 s2 corresponding to a vector potential per angular
frequency and implying an electric nature of the quantum vacuum,
as in the case of the classical electromagnetic description. In fact,
as we have seen in (3.2.13) and (3.2.15), since the very beginning
of the electromagnetic theory, the vacuum state has been charac-
terized by an impendence Rvacuum =

√
µ0

ε0
≈ 120π Ω, a magnetic

permeability µ0 = 4π × 10−7Hm−1 and an electric permittivity
ε0 = 8.85 × 10−12Fm−1.
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The vacuum field Ξ̃0kλ
constitutes the “skeleton” of photons and

consequently the energy, and by the same token, the mass appear to
be the direct result of real vacuum vibrations. Under specific physical
conditions, photons and elementary particles might emerge from the
quantum vacuum.

Obviously, Ξ̃0kλ is a dynamic entity capable of inducing electronic
transitions in matter since it is described by a function of a+

kλ and
akλ operators according to (6.2.7).

Furthermore, following equation (6.1.41), the electric character
of the vacuum expressed through the constant ξ makes that every
charge moving in free space with an acceleration γ will experience
an electric potential Uvacuum due to the vacuum electric nature

Uvacuum = γξ (6.2.8)

Finally, introducing (6.1.20) in (5.3.5), we obtain the expectation
value of the electric field in vacuum

〈E(�r)2〉vacuum =
∑
k,λ

ω4
kξ

2 → 0 for ωk(vacuum) → 0 (6.2.9)

Hence, in this description the QED singularities, related to the
infinite vacuum energy and the infinite expectation value of the pho-
tons electric field in the vacuum state are lifted.

6.3. The Quantum Vacuum Field Effects

Taking into account the wave-particle formalism developed in the
previous chapter, we examine here how the effects due to the quan-
tum vacuum, described briefly in Section 4 and whose difficulties are
encountered in Section 5, can now be described in a more coherent
and comprehensive mathematical approach.

• Spontaneous emission

For the description of the electron–vacuum interaction and in
order to overcome the difficulty arising from the (5.4.4), a “vacuum
action” operator corresponding to an interaction Hamiltonian per
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angular frequency between the vacuum field Ξ̃0kλ
and an atomic elec-

tron of mass me and charge e can now be defined like the third term
of the Hamiltonian (4.4.3):

Hωk
= −i� e

me
Ξ̃0kλ

· �∇ (6.3.1)

Thus, the amplitude of the transition probability per angular fre-
quency between an initial state |Ψi, 0〉 with total energy Ei = �ωi,
corresponding to an atom in the state |Ψi〉 with energy Ei in vacuum
| . . . , 0kλ, . . . , 0k′λ′ , . . .〉, and a final state |Ψf , nkλ〉 with total energy
Ef,nkλ

= �ωf + nkλ�ωk representing the atom in the state |Ψf 〉 with
energy Ef = �ωf in the presence of nkλ photons, can be expressed
in first order time dependent perturbation theory using (4.5.5)

c(1)ωk
(t) = − e

me

∫ t

0
[〈Ψf , nkλ|ξ�εkλ · �∇akλ|Ψi, 0〉ei(ωi−ωf−nkλωk)t′

+〈Ψf , nkλ|ξ∗�ε ∗
kλ · �∇a+

kλ|Ψi, 0〉ei(ωi−ωf−nkλωk)t′ ]dt′

(6.3.2)

Since akλ|Ψi, 0〉 = 0, using the fundamental definition of the momen-
tum operator (4.1.12), as well as Heisenberg’s equation of motion
(4.5.22b), the scalar product of equation (6.3.2) corresponding to
the creation operator a+

kλ writes

〈Ψf , nkλ|ξ∗�ε ∗
kλ · �∇a+

kλ|Ψi, 0〉 = −ξ∗δ1,nkλ
meωif�ε

∗
kλ · �rif/�

(6.3.3)
with �rif = 〈Ψf |�r|Ψi〉, ωif = ωi − ωf and considering the expression
of ξ ∝ �

4πec from (6.1.41), one gets with an equivalent calculation
as in (4.5.24), the spontaneous emission rate in the elementary solid
angle dΩ.

Wif =
1

3�c3
e2

4π2ε0
ω3

if |�rif |2dΩ (6.3.4)

The calculation shows that the spontaneous emission is mainly
due to the creation operator a+

kλ, which here is involved in the
quantum vacuum expression Ξ̃0kλ

permitting to establish an interac-
tion Hamiltonian.
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• Lamb shift

In Section 4.6., we have calculated the energy level displacement
due to the vacuum interaction by employing a “particular calcula-
tion” consisting of neglecting infinite quantities and imposing arbi-
trary integration limits. Let us now have a much simpler approach
on one of the ways the vacuum state could interact with the atomic
energy levels.

In a first approximation, the energy level displacements of
the electron bounded states can be seen as a topological effect of the
vacuum radiation pressure upon the electronic orbitals. In fact, the
motion of a bounded state electron with charge e, whose energy is
Enlj, in the vacuum field Ξ̃0kλ

can be characterized by Bohr’s angular
frequency

ωnlj =
Enlj

�
=
R∞
n2�

(6.3.5)

Where n, l, j are the quantum numbers of the corresponding
orbital entailing the rise in the electron frame of a vector potential
amplitude

α0(nlj) = ξω(nlj) (6.3.6)

corresponding to “vacuum photons” with energy

4πecξωnlj = �ωnlj (6.3.7)

Hence, due to its periodic motion an electron experiences in its
frame vacuum photons whose radiation pressure per unit surface
writes

dP (vac) =
∑

λ

ε0|E(R,L)
0

|2dΩ (6.3.8)

Where |E(R,L)
0 | is the electric mean field intensity of the L and R

hand polarized vacuum photons seen by the electron which can be
expressed by the vector potential mean components, using (3.4.13),

|E(R)
0 |2 = ω2

nlj(|A(R)
x0

|2 + |A(R)
y0

|2) = ω2
nlj(|A(L)

x0
|2 + |A(L)

y0
|2)

= ω2
nlj(2ξ

2ω2
nlj) (6.3.9)

Consequently, using (6.3.9) and (6.1.41), the summation of (6.3.8)
over the two circular polarizations, R and L, and over the whole solid
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angle gives the total vacuum radiation pressure

P (vac) = 4πε0(4ξ2ω4
nlj) ≈

�ω4
nlj

4απ2c3
(6.3.10)

Hence, if the electron subsists in the effective volume Vnlj(eff)
of the nlj orbital, the corresponding energy shift due to vacuum
radiation pressure writes

δE = P (vac)Vnlj(eff) ≈ �ω4
nlj

4απ2c3
Vnlj(eff) (6.3.11)

A delicate operation consists of defining V(nlj)(eff). The nS elec-
tronic orbitals for example are characterized by a density probabil-
ity distribution decreasing smoothly with an exponential expression.
Furthermore, for the excited electronic nS states, the radial wave
functions contain negative values and the electron probability den-
sity distribution involves a significant space area with zero values.
Hence, in the case of atomic hydrogen for the spherically symmetri-
cal electronic orbitals nS, in order not to take into account the space
regions where the probability density is zero, the effective volume
may be written in a first approximation

V(nS)(eff) ≈ 1
n

4
3
π|〈ψns|r|ψns〉|3 (6.3.12)

and following the last two equations, the corresponding frequency of
the energy shift

νnS =
δE(nS)

h
≈ ω4

nS

6απ2c3
1
n
|〈ψns|r|ψns〉|3 (6.3.13)

Putting ωnS = R∞
n2�

with R∞ = 13.606 eV, and considering the
cube of the mean value of the distance in the hydrogen electronic
orbitals nS

|〈r〉|3n,l=0 =
∣∣∣∣
∫

Ψ(n,l=0)rΨ
∗
(n,l=0)d

3r

∣∣∣∣
3

= a3
0

(
3n2

2

)3

(6.3.14)

with a0 = 0.53 10−10 m, being the first Bohr radius, the frequency of
the energy shift writes

νnS ≈ 1
n3

9R4∞a3
0

16απ2c3�4
(6.3.15)

Significant Lamb shifts have been observed for the nS orbitals
(n being the principal quantum number) having a spherical density
probability distribution and zero orbital momentum l = 0.
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We obtain the Lamb shifts frequencies for the hydrogen nS levels:

1S: ∼7.96 GHz (8.2), 2S: ∼1000 MHz (1040), 3S: ∼296 MHz (303),

4S: ∼124 MHz,

where the experimental values are given in parenthesis. Consequently,
the energy shifts of the nS levels of the hydrogen atom interact-
ing with vacuum can be estimated with a rather good approxima-
tion for such a simple calculation, within a physically comprehensive
approach.

• Cosmic vacuum energy density

In Chapter 5 (5.3), we have pointed out that recent astronomical
observations revealed the vacuum energy density in the universe to be
many orders of magnitude lower than that predicted by QED even
when considering cut-offs for the high frequencies near the visible
spectrum for the integration of equation (5.3.3).

In fact, the studies on the dark energy and the arising constraints
have stimulated the creation of new models to remedy the theoretical
cosmology difficulties. Carroll et al. have shown that the modelling of
the dark energy as a fluid has led to the classical phantom descrip-
tion which revealed to be instable from both quantum mechanical
and gravitational point of view. Some proposals based on phantom
cosmology have introduced more consistent dark energy models such
as Fanaoni’s quantum effects in general relativity, Nojiri’s nonlinear
gravity-matter interaction, Abdalla’s revised gravity and Elizalde’s
effective phantom phase and holography among many others.

On the other hand, various studies on the contribution of the
quantum vacuum state to the dark energy have been carried out
based on both quantum chromodynamics (QCD) and QED descrip-
tions like those of Frieman, Silvestri, and more recently Labun’s
works. However it has been pointed out by many authors that our
understanding of the QCD vacuum state still remains very elusive.
Conversely, QED vacuum offers a more comprehensive framework
and it is worthy to analyze the eventual contribution of the electro-
magnetic field lower energy level to the dark energy, starting from the
basic principles of the classical electromagnetism and QED theories.
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According to the relation (6.1.20), for photons with very low angu-
lar frequencies, the corresponding spatial extension gets extremely
big. For ωk → 0, the wavelength of a k mode photon tends to cosmic
dimensions while the energy, the vector potential and the momen-
tum tend to extremely low values. However, even for ωk = 0, the field
�Ξkλ(ωk, �r, t) does not vanish and reduces to �Ξ0kλ

expressed by (6.2.6)
and (6.2.7), filling the whole space. Although in the case of an infinite
universe, this state corresponds to zero energy, �Ξ0kλ

is a real entity
having the dimensions Volt m−1 s2. We have thus pointed out that
�Ξ0kλ

can be identified to a quantum vacuum field with an electric
nature. A k mode photon may be considered as a vacuum soliton
since it is composed of �Ξ0kλ

, rotating with an angular frequency ωk.
For a finite, universe behaving as a cosmic cavity, ωk in (6.1.20)

gets infinitely small but not zero. Hence, we may assume the universe
to be filled by electromagnetic waves with cosmic dimensions. Under
these conditions, with the recent astrophysical data on the possi-
ble dimensions of the universe, an extremely high number of cosmic
photons of the background vacuum energy, roughly of the order of
10100 could contribute to the energy density whose measured value
is about 10−9 J/m3.

Finally, in particular situations the various distributions of mass
and charges in the universe may induce fluctuations of �Ξ0kλ

, giving
rise to higher frequency electromagnetic waves that may lay in the
range of extremely long wavelength radio waves up to the microwaves,
that might contribute to the microwaves irregularities observed in
space.

6.4. Conclusion Remarks

In this chapter we have advanced theoretical elaborations in order to
ensure a coherent link between the electromagnetic wave theory and
Quantum Electrodynamics with the purpose to establish a non-local
wave-particle description of the photon as required by the experi-
ments. We have started from the fact that the vector potential ampli-
tude of a single photon state is not defined in QED (6.1.1) since
it depends on an arbitrary external volume parameter V. Taking
into account that according to Maxwell’s theory the vector potential
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amplitude should be proportional to the frequency we elaborated a
non-local wave-particle formalism. The quantization constant of the
vector potential amplitude is strongly related to the quantum vac-
uum. Under these conditions, Heisenberg’s commutation relations as
well as the electron charge, a physical constant, appear naturally from
the non-local expression of the photon energy. Hence, photons (and
perhaps electrons and other particles) appear to be “corpuscules”
(solitons) issued from the electromagnetic quantum vacuum. Finally,
some quantum vacuum field effects such as the spontaneous emission,
Lamb’s shift and the cosmological vacuum energy density have been
discussed showing the consistency of the elaborations. Consequently,
advanced experiments are indispensable for the determination of the
photon vector potential amplitude constant, which also characterizes
the quantum vacuum.
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Chapter 7

Epilogue

The mathematical expressions of a valid theory should correctly
describe the physical mechanisms involved in a complete ensemble
of experimentally observed phenomena. When many theories, each
based on different concepts, interpret only partially some measurable
observables, then it becomes obvious that they cannot be epistemo-
logically valid, entailing that they have to be improved, if possible, or
abandoned. Hence, the historical evolution over twenty five centuries
of the concepts on light’s nature followed the sequence: corpuscles,
ray optics (without having any idea on the nature of the particles
composing the rays), wave optics (with no idea about the nature
of the waves), electromagnetic waves theory and finally quantum
particle theory. Despite all these evolutions, the general picture of
the nature of light is not satisfactory and Bohr’s complementarity
principle was, and still remains, the artificial mask behind which
is hidden the difficulty of our comprehension of the simultaneous
wave-particle concept. However, the mutual exclusiveness of Bohr’s
complementarity principle, according to which light has both wave
and particle natures but only one of those is expressed explicitly in
a given physical situation, is strongly put in doubt by recent experi-
ments.

In this book, we have tried to resume selected chapters of both
classical electromagnetism and quantum electrodynamics (QED), in
order to help the reader have an opinion on how the nature of light
is represented through each theory. It is of outstanding importance
to note that in both representations, the light and the vacuum are
strongly related entities.

111
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Classical electrodynamics issued from Maxwell’s equations
revealed the necessity of introducing the notion of volume for an
electromagnetic wave to stand, entailing precise values of cut-off
wavelengths to account for the shape and dimensions of the sur-
rounding space. Conversely, QED theory considers light to be com-
posed of point particles, disregarding the conceptual question on how
the frequency of oscillating electric and magnetic fields over a wave-
length may be attributed to a point particle. The theoretical basis for
establishing the QED mathematical expressions for a point particle
is the classical and the quantum mechanical energy density equiva-
lence (4.3.13), in which the mean value of the energy is taken over
a wavelength and attributed to a point particle. Obviously, the inca-
pacity of QED to advance a comprehensive description of a single
wave-particle photon state relies on the point particle concept.

In Chapter 5 we have analysed the QED main theoretical difficul-
ties and singularities. The zero-point energy of the electromagnetic
field, as deduced in the Hamiltonian (4.3.18) issues from the math-
ematical artifact related to the dropping of the permutation of the
canonical variables of position and momentum during the quantiza-
tion procedure, without respecting Heisenberg’s relations and results
to a quantum vacuum having infinite energy, an unobserved exper-
imental singularity. Furthermore, the measurable effects attributed
to the quantum vacuum, i.e., the spontaneous emission, the atomic
energy shifts and the Casimir effect may quite well be interpreted
using aspects of electrodynamics and without referring at all to the
zero-point energy of the Hamiltonian (4.3.18). Finally, the contribu-
tion of the electromagnetic field vacuum energy to the cosmological
constant, as calculated in QED, is in contradiction with the astro-
nomical observations by many orders of magnitude. All these strongly
entail that the zero-point energy of the Hamiltonian (4.3.18) may not
correspond to a real physical state of the electromagnetic field.

On the experimental front we have seen that the photoelectric
effect, traditionally presented as a demonstration of the particle
nature of light is pretty well interpreted, by applying classical elec-
tromagnetism using the wave concept. On the other hand, Young’s
diffraction experiments, initially supporting the wave theory, were
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quite well interpreted using particle principles. Finally, we presented
some particular experiments, requiring for their interpretation the
notion of the simultaneous wave particle of light, and which can be
hardly interpreted either by classical electromagnetism alone or the
QED theory.

The natural way out of the wave-particle dilemma and the QED
shortcomings is to consider that the photon is not a point particle
but rather a segment (soliton) of the electromagnetic field, hence
with a real wave function, composed of a quantized vector potential
with definite amplitude oscillating over a wavelength. This is the
essential concept of the theoretical elaborations we have advanced in
Chapter 6, starting from the electromagnetic field vector potential
amplitude issued from Maxwell’s equations, which is proportional to
the angular frequency. Consequently, for the energy of the photon,
considered as an integral and indivisible entity, to correspond to a
definite value �ω, the vector potential amplitude has to be quantized
to a single photon level α0 = ξω. Next, the equivalence between the
classical and the quantum mechanical electromagnetic field energy
density (4.3.13) results inevitably to a photon wavelength spatial
expansion V ∝ ω−3 according to the relation (6.1.20). The equations
(6.1.4) relate the particle (energy, momentum) and wave (frequency,
vector potential amplitude, wave vector) physical quantities charac-
terizing the wave-particle nature of light. In the extension of these
calculations, the vacuum appears naturally to have an electric nature,
composed of a universal field Ξ̃0kλ

with the amplitude ξ, which is
the essence of the photon vector potential amplitude. Under these
conditions, the photon can be seen as a quantum vacuum soliton.
The mass–energy equivalence is also a direct result of the wave par-
ticle nature of the photon. Furthermore, as shown in (6.1.36), the
electron charge, a physical constant, appears naturally when consid-
ering the equivalence between the energy of a segment of the electro-
magnetic field restricted to the wavelength and the quantum expres-
sion �ω. From (6.1.41), the electron charge may be expressed only
through the vacuum parameters {ε0, µ0, ξ} and Planck’s constant:
e ∝ �

4πcξ = �
√

ε0µ0

4πξ . It seems that the electron, the positron, and
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perhaps all the elementary particles, might also behave as quantum
vacuum solitons.

The calculations also show that the field Ξ̃0kλ
is a real entity, capa-

ble of interacting with the electrons in matter since it is expressed
as a function of photon creation and annihilation operators a+

kλ and
akλ respectively. An interaction Hamiltonian between the vacuum
and the electrons can be defined in this way, in order to describe the
spontaneous emission effect. The atomic level energy shifts can also
be interpreted as a result of the vacuum radiation pressure upon the
atomic orbitals without involving singularities or neglecting infinite
quantities in the calculations. This representation coherently links
the electromagnetic theory to QED, attributes well defined physical
properties to single photons and to the vacuum state and shows the
complementarity of the wave-particle nature of light, as required by
the experimental evidence. These concepts open perspectives for new
experiments in order to determine the value of ξ and investigate the
spatial expansion of the single photon state.

Finally, with an objective point of view, we can frankly confess
that at the present state of knowledge, our comprehension of the
photon and its relationship to the vacuum is still unsatisfactory and
the purpose of this manuscript is to raise questions and give hints of
answers, in order to stimulate further theoretical and experimental
investigations.



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-ch03 page 37

Basic Principles of the Electromagnetic Wave Theory 37

4. S.L. Chuang, Physics of photonic devices, New Jersey: John Wiley & Sons.
2009.

5. J.C. Garrison and R.Y. Chiao, Quantum optics, Oxford: Oxford University
Press. 2008.

6. H. Haken, Light, Amsterdam–Oxford: North Holland Publishing. 1981.
7. M.D. Pozar, Microwave engineering, 3rd Edition, New York: John Wiley &

Sons, Inc. 2005.
8. F.H. Read, Electromagnetic radiation, New York: John Wiley & Sons. 1980.
9. B.E.A. Saleh and M.C. Teich, Fundamentals of photonics, New York: John

Wiley & Sons. 2007.



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 115

Index

Abdalla, 106
absorption, 59
Agarwal, 81
Aharonov, 57
Akhiezer, 83
Ampere’s, 11, 15
Ampere’s equation, 14
Ampere’s laws, 12
amplitude of the vector potential, 54,

96
ancient Greeks, 3, 4
angular momentum, 63
Angstrom, 74
annihilation and creation operators,

47, 54, 85, 101, 114
annihilation operators, 48
anti-coincidence, 82
anti-normal ordering, 73
Arab mathematicians, 4
Archimedes, 3
astronomical observations, 75, 106,

112
astrophysical, 7
astrophysical data, 107
atomic energy levels, 7, 68, 72, 76, 77,

104
atomic energy shifts, 112
atomic hydrogen, 63, 105
atomic level energy shifts, 114
atomic levels energy, 65

background vacuum energy, 107
beam splitter, 83
Beck, 7, 60, 67, 80

Berestetskii, 83
Bessel function, 32
Bethe, 65, 67, 68
Bethe’s approach, 63
Bethe’s renormalization, 66
black body, 5
blackbody radiation, 39, 49
Blokland, 79
Bohm, 57
Bohr, 6, 7, 81, 82
Bohr radius, 105
Bohr’s complementarity principle, 111
Bohr’s angular frequency, 104
Boltzmann’s constant, 39
boundary conditions, 28–33, 44, 53
Boyle, 4
Byzantine emperors, 4

Ca atoms, 83
cage, 84
canonical variables, 47, 55, 99
canonical variables of position, 53
canonical variables of position and

momentum, 112
Carroll, 105
Cartesian coordinates, 30, 42
Casimir, 79
Casimir effect, 55, 75, 79, 112
Casimir’s force, 79
Casimir’s theory, 79
Chambers, 57
charge conservation, 12
charge density, 12, 13, 25
charged particles, 56

115



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 116

116 Light and Vacuum

Cheops pyramid, 3
circular aperture, 84
circular polarizations, 93, 96, 104
circular waveguide, 31, 32
circularly polarized electromagnetic

waves, 27
circularly polarized photons, 55
circularly polarized waves, 28
coincidences, 83
colors, 4
commutation operator, 42, 77
commutation relation, 48, 55
complementarity principle, 7, 81
Compton, 7, 50, 52, 94
Compton scattering, 85
continuity equation, 12, 13
continuum spectrum, 67
corpuscles, 3, 111
cosmology, 105
Coulomb Gauges, 24, 25, 56, 75
Coulomb interaction, 72
Coulomb potential, 56
Coulomb’s law, 13
creation and annihilation, 67
creation and annihilation operators,

47, 95, 114
creation operator, 102
current and charge densities, 24
current densities, 11, 13, 14, 23, 34, 90
cut-off, 53
cut-off angular frequency, 30, 32
cut-off wave vector, 21, 22, 30
cut-off wavelength, 30–32, 36, 112

dark energy, 106
Davisson, 41
De Broglie, 7
density of states, 34, 61, 90
density probability distribution,

105
Descartes, 4
diffraction, 5
diffraction patterns, 4
dipole approximation, 62, 63, 76
dipole moment, 76
Dirac, 7, 68

Dirac delta function, 58, 60
Dirac’s representation, 47, 48
Dirac’s theory, 64
directional character of photons, 94
discrete and continuous atomic levels,

66
dispersion relation, 14, 16, 17

effective phantom phase, 106
Ehrenberg and Siday, 67
Ehrenberg–Siday effect, 57
eigenfunction, 46, 58
Einstein, 6, 49, 80
electric and magnetic fields, 5, 96
electric charges, 13
electric dipole moment, 63
electric displacement, 12, 13
electric field, 11, 14, 15, 18, 19, 25,

26, 29–31, 33, 63, 77
electric field intensity, 11, 13, 14
electric permittivity, 12, 13, 15, 16,

20, 36, 72, 95, 101
electric polarization, 14
electromagnetic field, 7, 13, 16, 26,

35, 40, 41, 49, 56, 61, 62, 67, 72, 73,
76, 85, 93, 97–99, 106, 112, 113

electromagnetic field energy, 52
electromagnetic field Hamiltonian,

100
electromagnetic field quantization, 74
electromagnetic field quantization

procedure, 52
electromagnetic properties, 71
electromagnetic wave, 89, 93
electromagnetic wave energy density,

54
electromagnetic wave propagation, 14
electromagnetic waves, 5, 56
electromagnetic waves theory, 3, 11,

71, 111
electron, 56, 66, 72, 113
electron charge, 72, 97, 113
electron–vacuum interaction, 75–77,

102
electronic orbitals, 104
Elizalde, 106



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 117

Index 117

energy and momentum conservation
laws, 50

energy and momentum operators, 41

energy and momentum, 42

energy conservation, 50

energy density, 26, 74, 80, 93, 97, 106,
107

energy density of the electromagnetic
wave, 67

energy flux of electromagnetic waves,
19

energy quanta, 6

energy shifts, 64, 65, 67, 105

energy spectrum, 46, 47

energy–mass equivalence, 97

Erwin Schrödinger, 41

Euclid, 3

expectation value of the electric field
in vacuum, 102

expectation value of the photons
electric field, 75

Fanaoni, 106

Faraday, 11, 12, 84

Faraday’s laws, 11, 15

Fermat’s principle, 4

fine structure constant, 65, 72, 73, 97

Fresnel, 5

Frieman, 106

Fulcher, 72

fullerenes, 81

fundamental fields, 12

Gassenti, 4

Gauge Invariance, 23

gauge theories, 57

Gauss’s laws, 13

Germer, 41

Ghose, 81

Grangier, 82, 85

Greenberger, 82

Grimaldi, 4

guided electromagnetic waves, 44

guided propagation, 28, 36, 53

H.A. Bethe, 64
Hadlock, 84
Hamiltonian, 48
Hamiltonian of the electromagnetic

field, 74
Hamiltonian of the quantized

electromagnetic field, 55
Hamiltonian operator for a massless

particle, 92
harmonic oscillators, 7 44, 46–48, 54,

55, 67, 98
harmonic oscillator Hamiltonian, 99
harmonic oscillator in quantum

mechanics, 44
Heisenberg, 7, 92
Heisenberg’s commutation relation,

96, 99, 100
Heisenberg’s equation of motion, 62,

77, 103
helicity, 63
Helmholtz equation, 18, 22
Hermite polynomials, 46
Hermitian operators, 99
Heron of Alexandria, 3
Hertz, 5, 49
historical survey, 3
Home, 81
Hook, 4
Hooke’s law, 44
Hunter, 85
Hunter and Wadlinger, 84
Hunter–Wadlinger experiments, 83
Huygens, 4
hydrogen nS levels, 106
hydrogen atom, 66, 105
hydrogen electronic orbitals, 105
hydrogenic atom, 56

impendence, 17, 36
indivisibility of the photons, 82, 83
Intensity, 20
interaction Hamiltonian, 56–58, 63,

65, 67, 76, 77, 102, 103, 114
interference experiments, 81
interference patterns, 51, 80
interference phenomena, 6



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 118

118 Light and Vacuum

interferences, 5, 81
interferometer, 82
irradiance, 20

James Clerk Maxwell, 5, 13
Jin, 81
Jordan, 7

k mode photon, 90, 91, 94, 96, 101,
107

Kroll, 68
Kronecker delta, 58
Kronecker symbol, 42

Labun, 106
Lamb, 63, 80
Lamb displacements, 75
Lamb shifts, 55, 63, 64, 68, 77, 104,

105
Lambrecht, 79
Laplace equation, 21, 22
lasers, 51
left-hand circularly polarized photon,

63
Lenard, 6, 49
Lewis, 7
light corpuscles, 4
light intensity, 6
light quanta, 6, 7
light ray, 6
light’s properties, 4
linear harmonic oscillator, 45
linear polarization, 28
linear term, 78
linear term of the vector potential, 65
link equations, 93, 100
link expressions, 55, 73
link relations, 90
logarithmic divergence, 66
Lorentz Gauge, 23
Lorentz’s, 6
Louis de Broglie, 41

magnetic field, 11, 14, 19, 28–31, 33
magnetic field flux intensities, 12, 13,

15, 18

magnetic field induction, 18
magnetic field intensity, 11
magnetic induction, 12, 14, 26
magnetic monopoles, 13
magnetic permeability, 11–13, 15, 16,

20, 36, 101
magnetization, 14
mass–energy equivalence, 113
matrix element, 62
matrix-mechanics, 7
Max Planck, 6, 40, 41
Maxwell’s equations, 11, 13–15, 21,

24, 28, 29, 35, 36, 42, 54, 80, 89, 90,
93, 112, 113

Maxwell’s theory, 35
Maxwell’s wave theory, 7
Mendel, 80
Michelson, 6
microwave antenna, 84
microwaves irregularities, 107
Millikan, 49
Milonni, 79
Mizobuchi, 81, 82, 85
Mizobuchi and Ohtake double-prism

experiment, 81
momentum, 6, 53
momentum and position operators, 47
momentum conservation, 50
momentum operators, 42, 45, 56, 65,

96, 102
monochromatic, 19, 20, 24, 28
monochromatic electromagnetic field,

25
moonlight, 4
Morley, 6
mutual exclusiveness, 111
mutually exclusive, 7

Nairz, 80
neutrons, 82
Newton, 4, 51
Niels Bohr, 41
Nojiri, 106
nonrelativistic, 78
nonrelativistic approach, 78
normal ordering, 73, 99



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 119

Index 119

number of modes, 34, 39
number of photons in a volume V , 35
number of states, 35, 36
number operator, 48, 54

Ohtake, 81, 82, 85
Optica, 3, 4
Opticks, 4
Optics, 3, 4
Osakabe, 57
oscillating electric and magnetic

fields, 112
oscillators, 6, 40, 49
Overbeek, 79

parametric down converters, 81
particle nature of the light, 52, 67
particle nature of the photon, 51
particle properties, 96
particle theories, 6, 81
periodic boundary conditions, 34
periodic relief, 4
phantom description, 105
phase parameter, 25
Phos, 7
photoelectric effect, 6, 7, 49, 52, 60,

61, 67, 80, 112
photoelectric effect and the

semi-classical interpretation, 60
photoelectric equation, 60
photon, 7
photon concept, 6, 61
photon indivisibility, 82, 85
photon momentum, 97
photon spatial expansion, 83
photon spin, 63
photon vector potential, 90–92, 95,

113
photon volume, 85
photon wavelength dimensions, 93
Pierre Gassendi, 4
Planck, 49, 93
Planck’s constant, 40, 49, 71, 95
Planck’s hypothesis, 41
Planck’s ideas, 40, 49
Planck’s radiation law, 41

plane wave solution, 19
plane waves, 41, 52, 93, 95
Poincare’s, 6
point particles, 7, 49, 55, 85, 112
point photon, 67
Poisson’s equation, 25, 33
polarization, 5, 26, 28, 35, 52, 61, 76,

93
polarization vector, 62, 75
polarized plane wave, 27
position Q̂kλ and momentum P̂kλ

operators, 96
position and momentum operators,

48, 55
positron, 72, 113
postulate of quantum mechanics, 42
potential energy, 42, 45
power density, 20, 26
Poynting vector, 19, 20, 26, 93
principal quantum number, 105
propagation equations, 18, 19, 24, 25,

32, 91
propagation factor, 21, 29, 32
propagation of the electromagnetic

field, 15
Ptolemy of Alexandria, 3

QED, 8
QED singularities, 55, 74, 85
quadratic term of the vector

potential, 64, 65, 78
quantization of the electromagnetic

field, 44
quantization procedure, 73, 90, 112
quantization volume, 96
quantized electromagnetic field, 52
quantized radiation electric field, 75
quantized vector potential, 113
quantum chromodynamics (QCD),

106
quantum electrodynamics (QED), 7,

8, 31, 49, 52, 54, 55, 61, 64, 67, 71,
74–77, 111–114

quantum particle theory, 3, 111
quantum theory, 7
quantum theory of radiation, 71



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 120

120 Light and Vacuum

quantum vacuum, 55, 64, 77, 98, 101,
102, 106

quantum vacuum catastrophe, 8, 75
quantum vacuum field, 106
quantum vacuum soliton, 113
quantum vacuum state, 62

R.C. Retherford, 64
R.E. Siday, 57
radial wave functions, 104
radiation, 5–7, 26, 39
radiation Hamiltonians, 55, 73, 76,

98, 100
radiation modes, 79
radiation polarization, 27
radiation pressure, 79, 103
radiation vector potential, 60
ray optics, 3, 111
Rayleigh, 5
Rayleigh-Jeans, 40
reality of the vector potential, 56,

57
rectangular and circular waveguides,

28
rectangular waveguide, 29–31
reduced propagation equation, 30
reflection, 3, 4
refraction, 4
refractive index, 16, 17
relativistic approach, 68, 78
relativistic calculation, 68
renormalisation, 65, 78
resonators, 6
Reynaud, 79
right-hand circularly polarized

photon, 63
Robinson, 84, 85
Roman battle ships, 3

scalar and vector potentials, 23
scalar potential, 25, 33, 56, 57
Schrödinger, 7
Schrödinger equation, 42, 43, 45, 47,

48, 56, 57, 64, 92
Schwinger, 79
Scully, 80

second order perturbation theory, 64

second quantization, 52, 67, 71

Silvestri, 106
single k-mode photon, 93

single photon pulse techniques, 51

single photon state, 82, 89, 90
single photons, 113, 114

singularities, 64, 76

Snell, 4
space inversion, 13

Sparnaay, 79

spatial expansion of a single photon
state, 91

spatial extension of the photon, 94

special relativity, 6
spectral distribution, 39

speed of light, 5, 6

speed of the electromagnetic waves in
vacuum, 17, 24

spontaneous emission, 55, 57, 61–63,
75–77, 102, 103, 112, 114

spontaneous emission rate, 61, 76,
103

square potential well, 43

Stefan, 5
stimulated emission, 59

Stoletov, 49

sunlight, 3, 4
Syracuse, 3

TEm,n modes, 29, 31

TMm,n components, 30

TMm,n modes, 32

Taylor, 51, 52, 80
Taylor’s experiment, 80

TE and TM waves, 33

TE field, 33
TE waves, 22

TEM fields, 34

TEM mode, 28
Thales de Millet, 3

thermal equilibrium, 39, 41

thermal radiation, 5

threshold frequency, 6
time delay, 24, 25



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 121

Index 121

time dependent perturbation theory,
58, 102

time derivative operator, 42

time reversal, 13

transition probability, 58, 103

transition rates, 57, 59, 60, 62

transmitted power, 84

transverse components, 22

Transverse Electric (TE), 19

Transverse Electro-Magnetic (TEM),
19, 22, 33, 34

Transverse Magnetic (TM), 19, 22

transverse monochromatic
electromagnetic (TMEM), 20, 26

transverse wave, 21

Trigonometric function, 42

tunneling effect, 82

two prisms, 81

ultraviolet catastrophe, 39, 40

uncertainty principle, 92

universe, 36, 106

unperturbed eigenfunctions ϕl, 57

unperturbed Hamiltonian, 62

UV catastrophe, 6, 8

vacuum, 5, 35, 36, 72

vacuum electric nature, 103

vacuum electric permittivity, 71, 93

vacuum electromagnetic energy
density, 74

vacuum energy, 7, 74, 75

vacuum field, 101–103

vacuum fluctuations, 75

vacuum Hamiltonian, 75, 77

vacuum intrinsic properties, 20, 71

vacuum permittivity, 52, 73

vacuum permittivity and
permeability, 20

vacuum photons, 64, 79, 80, 104

vacuum properties, 36

vacuum radiation pressure, 104, 105

vacuum state, 7, 17, 61, 76, 77, 101,
104, 106, 114

vacuum’s electromagnetic properties,
17

Van der Waals, 80

vector potential, 24–26, 52, 56, 57,
59, 61, 63, 64, 77, 78, 89, 90, 93, 94,
96, 101, 107

vector potential amplitude, 26, 54, 59,
67, 71, 73, 89–91, 94, 99, 100, 113

vector potential amplitude operator,
96

vector potential amplitude
quantization constant, 91, 98

vector potential of a single photon,
90

vector potential of the
electromagnetic field, 36

velocity of light in vacuum, 20

virtual photons, 75

visible spectrum, 106

W. Ehrenberg, 57

W.E. Lamb, 63

Wadlinger, 85

wave function, 34, 44, 92

wave nature of the light, 5, 60

wave optics, 3, 111

wave theory, 81

wave theory of the light, 4, 51

wave vector, 16, 17, 19, 26, 34, 52

wave-mechanics, 7

wave-particle, 81, 89, 97, 113, 114

wave-particle duality, 82

wave-particle formalism, 95

wave-particle nature of light, 85

wave-particle nature of photon,
80

waveguide, 28

wavelengths, 5, 19, 32, 35, 36, 39, 50,
53, 72, 84, 93, 94, 113

Wentzel, 7, 60, 67, 80

Wien, 5

x-band microwaves, 84

X-ray scattering, 7

X-rays, 50



October 9, 2014 8:1 Light and Vacuum 9in x 6in b1896-index page 122

122 Light and Vacuum

Yasin, 82
Young, 5, 51
Young’s diffraction, 113
Young’s double-slit experiment, 80
Young’s double-slit interferences,

51, 81

Young’s experiments, 4
Young’s interferences, 85

zero-point radiation field, 55
zero-point energy, 74, 79, 112




