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Preface to the Second Edition

Since the first edition of this book was published, there have been major improve-
ments in symbolic mathematical languages such as Maple™ and Mathematica™
and this has opened up the possibility of solving considerably more complex and hence
interesting and realistic elasticity problems as classroom examples. It also enables the
student to focus on the formulation of the problem (e.g. the appropriate governing
equations and boundary conditions) rather than on the algebraic manipulations, with
a consequent improvement in insight into the subject and in motivation. During the
past 10 years I have developed files in Maple and Mathematica to facilitate this pro-
cess, notably electronic versions of the Tables in the present Chapters 19 and 20 and
of the recurrence relations for generating spherical harmonics. One purpose of this
new edition is to make this electronic material available to the reader through the
Kluwer website www.elasticity.org. I hope that readers will make use of this resource
and report back to me any aspects of the electronic material that could benefit from
improvement or extension. Some hints about the use of this material are contained in
Appendix A. Those who have never used Maple or Mathematica will find that it takes
only a few hours of trial and error to learn how to write programs to solve boundary
value problems in elasticity.

I have also taken the opportunity to include substantially more material in the
second edition — notably three chapters on antiplane stress systems, including Saint-
Venant torsion and bending and an expanded section on three-dimensional problems
in spherical and cylindrical coordinate systems, including axisymmetric torsion of
bars of non-uniform circular cross-section.

Finally, I have greatly expanded the number of end-of-chapter problems. Some of
these problems are quite challenging, indeed several were the subject of substantial
technical papers within the not too distant past, but they can all be solved in a few
hours using Maple or Mathematica. A full set of solutions to these problems is in
preparation and will be made available to bona fide instructors on request.

J.R.Barber
Ann Arbor
2002
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Preface to the First Edition

The subject of Elasticity can be approached from several points of view, depending
on whether the practitioner is principally interested in the mathematical structure of
the subject or in its use in engineering applications and in the latter case, whether
essentially numerical or analytical methods are envisaged as the solution method. My
first introduction to the subject was in response to a need for information about a
specific problem in Tribology. As a practising Engineer with a background only in
elementary Strength of Materials, I approached that problem initially using the con-
cepts of concentrated forces and superposition. Today, with a rather more extensive
knowledge of analytical techniques in Elasticity, I still find it helpful to go back to
these roots in the elementary theory and think through a problem physically as well
as mathematically, whenever some new and unexpected feature presents difficulties in
research. This way of thinking will be found to permeate this book. My engineering
background will also reveal itself in a tendency to work examples through to final
expressions for stresses and displacements, rather than leave the derivation at a point
where the remaining manipulations would be routine.

With the practical engineering reader in mind, I have endeavoured to keep to
a minimum any dependence on previous knowledge of Solid Mechanics, Continuum
Mechanics or Mathematics. Most of the text should be readily intelligible to a reader
with an undergraduate background of one or two courses in elementary Strength of
Materials and a rudimentary knowledge of partial differentiation. Cartesian tensor
notation and the summation convention are used in a few places to shorten the deriva-
tion of some general results, but these sections are carefully explained, so as to be
self-explanatory.

The book is based on a one semester graduate course on Linear Elasticity that I
have taught at the University of Michigan since 1983. In such a restricted format, it
is clearly necessary to make some difficult choices about which topics to include and,
more significantly, which to exclude. The most significant exclusion is the classical
complex variable solution of two-dimensional Elasticity, which, if it were to be ade-
quately treated including essential mathematical preliminaries, would need most of a
book of this length to itself. Instead, I have chosen to restrict the two-dimensional
treatment to the more traditional real stress function approach, so as to leave room for
a substantial amount of material on three-dimensional problems, which are arguably
closer to the frontier of current research.

Xvii



xviii CONTENTS

Modern practitioners of Elasticity are necessarily influenced by developments in
numerical methods, which promise to solve all problems with no more information
about the subject than is needed to formulate the description of a representative
element of material in a relatively simple state of stress. As a researcher in Solid
Mechanics, with a primary interest in the physical behaviour of the systems I am
investigating, rather than in the mathematical structure of the solutions, I have fre-
quently had recourse to numerical methods of all types and have tended to adopt
the pragmatic criterion that the best method is that which gives the most convincing
and accurate result in the shortest time. In this context, ‘convincing’ means that the
solution should be capable of being checked against reliable closed-form solutions in
suitable limiting cases and that it is demonstrably stable and in some sense conver-
gent. Measured against these criteria, the ‘best’ solution to many practical problems
1s often not a direct numerical method, such as the finite element method, but rather
one involving some significant analytical steps before the final numerical evaluation.
This is particularly true in three-dimensional problems, where direct numerical meth-
ods are extremely computer-intensive if any reasonably accuracy is required, and in
problems involving infinite or semi-infinite domains, discontinuities, bonded or con-
tacting material interfaces or theoretically singular stress fields. By contrast, I would
immediately opt for a finite element solution of any two-dimensional problem involv-
ing finite bodies with relatively smooth contours, unless it happened to fall into the
(surprisingly wide) class of problems to which the solution can be written down in
closed form. The reader will therefore find my choice of topics significantly biassed
towards those fields identified above where analytical methods are most useful.

I have provided a representative selection of problems suitable for class use at the
end of most of the chapters. Many texts on Elasticity contain problems which offer a
candidate stress function and invite the student to ‘verify’ that it defines the solution
to a given problem. Students invariably raise the question ‘How would we know to
choose that form if we were not given it in advance?’ I have tried wherever possible to
avoid this by expressing the problems in the form they would arise in Engineering —
i.e. as a body of a given geometry subjected to prescribed loading. This in turn has
required me to write the text in such a way that the student can approach problems
deductively. I have also generally opted for explaining difficulties that might arise in
an ‘obvious’ approach to the problem, rather than steering the reader around them
in the interests of brevity.

Even conceptually straightforward problems in three-dimensional Elasticity tend
to be algebraically complicated, because of the dependence of the results on Poisson’s
ratio, which is absent in two-dimensions, except where body forces etc. are involved.
With the greater general availablity of symbolic processors, this will soon cease to
be a difficulty, but those without access to such methods might like to simplify some
of the three-dimensional problems by restricting the solution to the case v = 0. At
the University of Michigan, we are fortunate in having a very sophisticated computer
environment, so I can ask my students to carry the problems as far as plotting graphs



CONTENTS Xix

of stress distributions and performing parametric studies to determine optimum de-
signs for components. From the engineering perspective, this leads to a significantly
greater insight into the nature of the subject, as well as serving as an educational
motivation for those students outside the classical Mechanics field.

Over the years, the students attending my course have been drawn from depart-
ments of Mechanical, Civil, Aerospace and Materials Engineering as well as Naval
Architecture, Applied Mechanics and Mathematics and have therefore generally rep-
resented quite a diverse set of points of view. The questions raised by this very
talented group of people have often resulted in vigorous classroom discussions which
have had a major impact on my perspective on the subject. It is therefore to my
graduate students, past and present, that this book is dedicated.

It is traditional at this point also to thank a multitude of colleagues, assistants
and family members for their contributions and support. However, since I developed
the text as part of my normal teaching duties and typset it myself using ETgX, many
of these credits would be out of place. My wife, Maria Comninou, may disagree,
but as far as I can judge, my temperament was not significantly soured during the
gestation period, but she does deserve my thanks for her technical input during times
that we have collaborated on research problems.

I am particularly grateful to the Rector and Fellows of Lincoln College, Oxford,
who provided me with a stimulating scholarly environment during an important stage
in the writing, and to David Hills of that College who made my visit there possible.
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Chapter 1

INTRODUCTION

The subject of Elasticity is concerned with the determination of the stresses and
displacements in a body as a result of applied mechanical or thermal loads, for those
cases in which the body reverts to its original state on the removal of the loads.
In this book, we shall further restrict attention to the case of linear infinitesimal
elasticity, in which the stresses and displacements are linearly proportional to the
applied loads and the displacements are small in comparison with the characteristic
length dimensions of the body. These restrictions ensure that linear superposition
can be used and enable us to employ a wide range of series and transform techniques
which are not available for non-linear problems.

Most engineers first encounter problems of this kind in the context of the subject
known as Mechanics of Materials, which is an important constituent of most under-
graduate engineering curricula. Mechanics of Materials differs from Elasticity in that
various plausible but unsubstantiated assumptions are made about the deformation
process in the course of the analysis. A typical example is the assumption that plane
sections remain plane in the bending of a slender beam. Elasticity makes no such
assumptions, but attempts to develop the solution directly and rigorously from its
first principles, which are Newton’s laws of motion, Euclidian geometry and Hooke’s
law. Approximations are often introduced towards the end of the solution, but these
are mathematical approximations used to obtain solutions of the governing equations
rather than physical approximations that impose artificial and strictly unjustifiable
constraints on the permissible deformation field.

However, it would be a mistake to draw too firm a distinction between the two
approaches, since practitioners of each have much to learn from the other. Mechanics
of Materials, with its emphasis on physical reasoning and a full exploration of the
practical consequences of the results, is often able to provide insights into the problem
that are less easily obtained from a purely mathematical perspective. Indeed, we
shall make extensive use of physical parallels in this book and pursue many problems
to conclusions relevant to practical applications, with the hope of deepening the
reader’s understanding of the underlying structure of the subject. Conversely, the

3
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mathematical rigour of Elasticity gives us greater confidence in the results, since,
even when we have to resort to an approximate solution, we can usually estimate
its accuracy with some confidence — something that is very difficult to do with the
physical approximations used in Mechanics of Materials'. Also, there is little to be
said for using an ad hoc approach when, as is often the case, a more rigorous treatment
presents no serious difficulty.

1.1 Notation for stress and displacement

It is assumed that the reader is more or less familiar with the concept of stress and
strain from elementary courses on Mechanics of Materials. This section is intended
to introduce the notation used, to refresh the reader’s memory about some important
ideas, and to record some elementary but useful results.

1.1.1 Stress

Components of stress will all be denoted by the symbol ¢ with appropriate suffices.
The second suffix denotes the direction of the stress component and the first the
direction of the outward normal to the surface upon which it acts. This notation is
illustrated in Figure 1.1 for the Cartesian codrdinate system z,y, 2.

| 19y
e xr Gﬁ
O o,
™ K
GJI
.~ Oy |%=a
O

Figure 1.1: Notation for stress components.

Notice that one consequence of this notation is that normal (i.e. tensile and
compressive) stresses have both suffices the same (e.g. 044, 0yy, 0, in Figure 1.1) and
are positive when tensile. The remaining six stress components in Figure 1.1 (i.e.
Oy, Oya» Oyz, Ozy, Oz, Ogz) have two different suffices and are shear stresses.

In fact, the only practical way to examine the effect of these approximations is to relax them,
by considering the same problem, or maybe a simpler problem with similar features, in the context
of the theory of Elasticity.
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Books on Mechanics of Materials often use the symbol 7 for shear stress, whilst
retaining o for normal stress. However, there is no need for a different symbol, since
the suffices enable us to distinguish normal from shear stress components. Also, we
shall find that the use of a single symbol with appropriate suffices permits matrix
methods to be used in many derivations and introduces considerable economies in
the notation for general results.

The equilibrium of moments acting on the block in Figure 1.1 requires that

Ouy = Oyg ; Oyz =0z a0d 0,3 = 0y, . (1.1)

This has the incidental advantage of rendering mistakes about the order of suffices
harmless! (In fact, a few books use the opposite convention.) Readers who have not
encountered three-dimensional problems before should note that there are two shear
stress components on each surface and one normal stress component. There are some
circumstances in which it is convenient to combine the two shear stresses on a given
plane into a two-dimensional vector in the plane — i.e. to refer to the resultant shear
stress on the plane. An elementary situation where this is helpful is in the Mechanics
of Materials problem of determining the distribution of shear stress on the cross-
section of a beam due to a transverse shear force?. For example, we note that in this
case, the resultant shear stress on the plane must be tangential to the edge at the
boundary of the cross section, since the shear stress complementary to the component
normal to the edge acts on the traction-free surface of the beam and must therefore
be zero. This of course is why the shear stress in a thin-walled section tends to follow
the direction of the wall.

We shall refer to a plane normal to the z-direction as an ‘z-plane’ etc. The only
stress components which act on an z-plane are those which have an z as the first
suffix (This is an immediate consequence of the definition).

Notice also that any z-plane can be defined by an equation of the form z = C,
where C is a constant. More precisely, we can define a ‘positive z-plane’ as a plane for
which the positive z-direction is the outward normal and a ‘negative z-plane’ as one
for which it is the inward normal. This distinction can be expressed mathematically
in terms of inequalities. Thus, if part of the boundary of a solid is expressible as
z=C, the solid must locally occupy one side or the other of this plane. If the domain
of the solid is locally described by z < C, the bounding surface is a positive z-plane,
whereas if it is described by z >, the bounding surface is a negative z-plane.

The discussion in this section suggests a useful formalism for correctly defining the
boundary conditions in problems where the boundaries are parallel to the codrdinate
axes. We first identify the equations which define the boundaries of the solid and then
write down the three traction components which act on each boundary. For example,
suppose we have a rectangular solid defined by the inequalities 0 <z <a, 0 <y <
b, 0 < z<c. Itis clear that the surface y = b is a positive y-plane and we deduce

2For the Elasticity solution of this problem, see Chapter 17.



6 CHAPTER 1. INTRODUCTION

immediately that the corresponding traction boundary conditions will involve the
stress components oygq, 0yy, 0y, — i.€. the three components that have y as the first
suffix. This procedure insures against the common student mistake of assuming (for
example) that the component o;; must be zero if the surface y =4 is to be traction
free. (Note : Don’t assume that this mistake is too obvious for you to fall into it.
When the problem is geometrically or algebraically very complicated, it is only too
easy to get distracted.)

Stress components can be defined in the same way for other systems of orthogonal
coordinates. For example, components for the system of cylindrical polar coordinates
(r,0, z) are shown in Figure 1.2.

GZZ

Gr0| Oor Oo6

Figure 1.2: Stress components in polar codrdinates.

(This is a case where the definition of the ‘f-plane’ through an equation, § = C, is
easier to comprehend than ‘the plane normal to the f-direction’. However, note that
the #-direction is the direction in which a particle would move if § were increased
with 7, z constant.)

1.1.2 Index and vector notation

Many authors use the notation z, x5, 23, in place of 7, y, z for the Cartesian codrdinate
system, in which case the stress components are written o1y, 012, etc. (Tzz,, Tzi2e
etc. would obviously be too cumbersome). This notation has the particular advantage
that in combination with the ‘summation convention’ it permits general results to be
written and manipulated in a concise and elegant form. The summation convention
lays down that any term in which the same latin suffix occurs twice stands for the
sum of all the terms obtained by giving this suffix each of its possible values. For
example o;; is interpreted as

3
05 = )04 =011 + 02 + 033 (1.2)

i=1
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and
8Ui = 67.1,1 B'UQ 3u3

35Ei - 8—2?1- 8$2 3.723 '
On the other hand, some results are more conveniently manipulated or expressed
in vector notation, for which we define the position vector

(1.3)

R=1iz+jy+kz, (1.4)

where ¢, 7, k are unit vectors in directions z,y, z respectively.
Important results will be given in each form wherever possible.

1.1.3  Vectors, tensors and transformation rules

Vectors can be conceived in a mathematical sense as ordered sets of numbers or
in a physical sense as mathematical representations of quantities characterized by
magnitude and direction. A link between these concepts is provided by the transfor-
mation rules. Suppose we know the components (u,u,) of the vector u in a given
two-dimensional Cartesian codrdinate system (z,%) and we wish to determine the
components (uy,u;) ina new system (z,y’) which is inclined to (z,y) at an angle ¢
in the counterclockwise direction as shown in Figure 1.3. The required components
are

= ugcosf + uysind (1.5)
= uycost — u,sinf . (1.6)

£ 8
S

O &

Figure 1.3: The codrdinate systems z,y and z’, 3.

We could define a vector as an entity, described by its components in a specified
Cartesian coordinate system, which transforms into other codrdinate systems accord-
ing to rules like equations (1.5, 1.6) — i.e. as an ordered set of numbers which obey
the transformation rules (1.5, 1.6). The idea of magnitude and direction could then
be introduced by noting that we can always choose ¢ such that (i) u, =0 and (ii)
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ul, > 0. The corresponding direction z' is then the direction of the resultant vector
and the component u, is its magnitude.

Now stresses have two suffices and components associated with all possible com-
binations of two codrdinate directions, though we note that equation (1.1) shows that
the order of the suffices is immaterial. (Another way of stating this is that the matrix
of stress components g;; is always symmetric). The stress components satisfy a more
complicated set of transformation rules which in the two-dimensional case are those
associated with Moht’s circle — i.e.

Opigt = OgyCOS 0+ 0yysin? 0 + 20, sin 6 cos 6 (1.7)
Opy = 0Ogy(cos®0 —sin®0) + (oyy — 044)sinfcosd (1.8
Oyy = Oy c0s? 0 + 0,4 5in% 6 — 204, sinfcos @ . (1.9

As in the case of vectors we can define a mathematical entity which has a matrix
of components in any given Cartesian codrdinate system and which transforms into
other such codrdinate systems according to rules like (1.7-1.9). Such quantities are
called second order Cartesian tensors.

We know from Mohr’s circle that we can always choose & such that o,y =0, in
which case the directions z',y’ are referred to as principal directions and the compo-
nents oy, oy as principal stresses. Thus another way to characterize a second order
Cartesian tensor is as a quantity defined by a set of orthogonal principal directions
and a corresponding set of principal values.

As with vectors, a pragmatic motivation for abstracting the mathematical prop-
erties from the physical quantities which exhibit them is that many different physical
quantities are naturally represented as second order Cartesian tensors. Apart from
stress and strain, some commonly occurring examples are the second moments of area
of a beam cross section (I, Iy, Iyy), the second partial derivatives of a scalar func-
tion (8 f/8x?;8° f /0xdy; 0* f /0y?) and the influence coefficient matrix Cy; defining
the displacement u due to a force F for a linear elastic system, i.e.

U; = Ciij y (110)

where the summation convention is implied.

It is a fairly straightforward matter to prove that each of these quantities obeys
transformation rules like (1.7-1.9). It follows immediately (for example) that every
beam cross section has two orthogonal principal axes of bending about which the two
principal second moments are respectively the maximum and minimum for the cross
section.

A special tensor of some interest is that for which the Mohr’s circle degenerates
to a point. In the case of stresses, this corresponds to a state of hydrostatic stress,
so-called because a fluid at rest cannot support shear stress (the constitutive law for
a fluid relates velocity gradient to shear stress) and hence o, = 0 for all §. The
only Mohr’s circle which satisfies this condition is one of zero radius, from which we
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deduce immediately that all directions are principal directions and that the principal
values are all equal. In the case of the fluid, we obtain the well-known result that the
pressure in a fluid at rest is equal in all directions.

It is instructive to consider this result in the context of other systems involving
tensors. For example, consider the second moments of area for the square cross section
shown in Figure 14. By symmetry, we know that Oz, Oy are principal directions and
that the two principal second moments are both equal to a*/12. It follows immediately
that the Mohr’s circle has zero radius and hence that the second moment about any
other axis must also be a*/12 — a result which is not obvious from an examination
of the section.

K

Figure 1.4: A beam of square cross-section.

As a second example, Figure 1.5 shows an elastic system consisting of three iden-
tical but arbitrary structures connecting a point, P, to a rigid support, the structures
being inclined to each other at angles of 120°.

The structures each have elastic properties expressible in the form of an influence
function matrix as in equation (1.10) and are generally such that the displacement
u is not colinear with the force F. However, the overall influence function matrix
for the system has the same properties in three different coordinate systems inclined
to each other at 120° since a rotation of the Figure through 120° leaves the system
unchanged. The only Mohr’s circle which gives equal components after a rotation of
120° is that of zero radius. We therefore conclude that the support system of Figure
1.5 is such that (i) the displacement of P always has the same direction as the force
F and (ii) the stiffness or compliance of the system is the same in all directions".

3A similar argument can be used to show that if a laminated fibre-reinforced composite is laid
up with equal numbers of identical, but not necessarily symmetrical, laminas in each of 3 or more
equispaced orientations, it must be elastically isotropic within the plane. This proof depends on the
properties of the fourth order Cartesian tensor c¢;jx; describing the stress-strain relation e;; = c¢;;jx1Or
of the laminas.
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Figure 1.5: Support structure with 3 similar but unsymmetrical components.

These two examples illustrate that there is sometimes an advantage to be gained
from considering a disparate physical problem that shares a common mathematical
structure with that under investigation.

1.1.4 Principal stresses and Von Mises stress

One of the principal reasons for performing elasticity calculations is to determine
when and where an engineering component will fail. Theories of material failure
are beyond the scope of this book, but the most widely used criteria are the Von
Mises distortion energy criterion for ductile materials and the maximum tensile stress
criterion for brittle materials®.

Brittle materials typically fracture when the maximum tensile stress reaches a
critical value and hence we need to be able to calculate the maximum principal stress
o1. For two dimensional problems, the principal stresses can be found by using the
condition 0, = 0 in equation (1.8) to determine the inclination & of the principal
directions. Substituting into (1.7, 1.9) then yields the well known results

Oze + O, Ogg — O 2
al,aFTWi\/(TW) + 02, . (1.11)

In most problems, the maximum stresses occur at the boundaries where shear
tractions are usually zero. Thus, even in three-dimensional problems, the determi-
nation of the maximum tensile stress often involves only a two-dimensional stress

4J.R.Barber, Intermediate Mechanics of Materials, McGraw-Hill, New York (2000), §2.2.
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transformation. However, the principal stresses are easily obtained in the fully three-
dimensional case from the results

I
oy = 31 (\/Il - 3L ) cos ¢ (1.12)
I 2
oy = —31+—< 3[2>cos( + ) (1.13)
Iy 2
= L, 2(/r 3l ) ( ) , 1
% = 3t 3( 2 )Cos\eF (1.14)
Where 1 213 — 91 I, + 271
_ 1 i — 91y + 2715
¢ = 3arccos< 207 = 3L,)i2 ) (1.15)
and
L = 0O+ oy +0z (1.16)
Iy = 0500y + 0yy0s, + 04,04, — 02y ~ crzz - ofw (1.17)
Iy = 04040, — amajz - ayy02 azza + 205y0y,0. - (1.18)

The quantities I, I3, I3 are known as Stress invariants because for a given stress state
they are the same in all coordinate systems.

Von Mises theory states that a ductile material will yield when the strain energy
of distortion per unit volume reaches a certain critical value. This leads to the yield

criterion
\JIE =3I,

= \/o§x+agy+afz—Umayy—oyyozz 0422025 +30%,+302,+30%, =Sy , (1.19)

OE

where Sy is the yield stress in uniaxial tension. The quantity og is known as the
equivalent tensile stress or the Von Mises stress.

The Maple and Mathematica files ‘principalstresses’ use equations (1.12-1.19) to
calculate the principal stresses and the Von Mises stress from a given set of stress
components.

1.1.5 Displacement

The displacement of a particle P is a vector w representing the difference between
the final and the initial position of P — i.e. it is the distance which P moves during
the deformation. The components of u are denoted by appropriate suffices — e.g.
Uy, Uy, Uy, SO that

U = U, + Juy, + ku, . (1.20)

The deformation of a body is completely defined if we know the displacement of
its every particle. Notice however that there is a class of displacements which do
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not involve deformation — the so-called ‘rigid-body displacements’. A typical case is
where all the particles of the body have the same displacement. The name arises, of
course, because rigid-body displacement is the only class of displacement that can be
experienced by a rigid body.

1.2  Strains and their relation to displacements

Components of strain will be denoted by the symbol, e, with appropriate suffices
(e.g. €szs,€sy). As in the case of stress, no special symbol is required for shear strain,
though we shall see below that the quantity defined in most elementary texts (and
usually denoted by <) differs from that used in the mathematical theory of Elasticity
by a factor of 2. A major advantage of this definition is that it makes the strain,
e, a second order Cartesian Tensor (see §1.1.3 above). We shall demonstrate this by
establishing transformation rules for strain similar to equations (1.7-1.9) in §1.2.4
below.

1.2.1 Tensile strain

Students usually first encounter the concept of strain in elementary Mechanics of
Materials as the ratio of extension to original length and are sometimes confused by
the apparently totally different definition used in more mathematical treatments of
solid mechanics. We shall discuss here the connection between the two definitions —
partly for completeness, and partly because the physical insight that can be developed
in the simple problems of Mechanics of Materials is very useful if it can be carried
over into more difficult problems.

Figure 1.6 shows a bar of original length L and density p hanging from the ceiling.
Suppose we are asked to find how much it increases in length under the loading of its
own weight.

rd

Figure 1.6: The bar suspended from the ceiling.
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It is easily shown that the tensile stress g, at the point P, distance z from the
ceiling, is
02z = pg(L — ), (1.21)

where ¢ is the acceleration due to gravity, and hence from Hooke’s law,

€rp = E‘K%Ti) . (1.22)

However, the strain varies continuously over the length of the bar and hence we
can only apply the Mechanics of Materials definition if we examine an infinitesimal
piece of the bar over which the strain can be regarded as sensibly constant.

We describe the deformation in terms of the downward displacement u, which
depends upon z and consider that part of the bar between z and x+éz, denoted by
PQ in Figure 1.7.

P

ux(P)

dx

r+0x

u,(Q)

Figure 1.7: Infinitesimal section of the bar.

After the deformation, PQ must have extended by u,(Q) — uz(P) and hence the local
value of ‘Mechanics of Materials’ tensile strain is

ug (@) — uz(P)  ug(z+ 0z) — uy(x)

€rz = 5 = 5 } (1.23)
Taking the limit as dx — 0, we obtain the definition
Ouy
Con = 5 (1.24)

Corresponding definitions can be developed in three-dimensional problems for the
other normal strain components. i.e.
Ouy ou,

=2 g, =", 1.25
eyy ay € 82 ( )
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Notice how easy the problem of Figure 1.6 becomes when we use these definitions.
We get

duz _ pg(L ~ =)
—_— 1.26
e 7 (1.26)
from (1.22, 1.24) and hence
pg(2Lz — z°)
Al I 1.27
u 55 + (1.27)

where A is an arbitrary constant of integration which expresses the fact that our
knowledge of the stresses and hence the strains in the body is not sufficient to deter-
mine its position in space. In fact, A represents an arbitrary rigid-body displacement.
In this case we need to use the fact that the top of the bar is joined to a supposedly
rigid ceiling —i.e. u,(0)= 0 and hence A=0 from (1.27).

1.2.2 Rotation and shear strain

Noting that the two z’s in e, correspond to those in its definition Au,/dz, it is natural
to seek a connection between the shear strain e;, and one or both of the derivatives
Ou, /0y, Ou,/Ox. As a first step, we shall discuss the geometrical interpretation of
these derivatives.

¥
QJ’
X i
P ¢
]
ay(P) HJ,( Q)

Py Q @+zy)

o

0

Figure 1.8: Rotation of a line segment.

Figure 1.8 shows a line segment PQ of length §z, aligned with the z-axis, the two
ends of which are displaced in the y-direction. Clearly if u,(Q) % u,(P), the line PQ
will be rotated by these displacements and if the angle of rotation is small it can be

written
Uy (¢ + 0z) — uy(2)

¢ = 5 : (1.28)

(anticlockwise positive).
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Proceeding to the limit as dz — 0, we have

=0y

=7 (1.29)

Thus, Ou,/0z is the angle through which a line originally in the z-direction rotates
towards the y-direction during the deformation’.

Now, if PQ is a line drawn on the surface of an elastic solid, the occurence of
a rotation ¢ does not necessarily indicate that the solid is deformed — we could
rotate the line simply by rotating the solid as a rigid body. To investigate this matter
further, we imagine drawing a series of lines at different angles through the point P
as shown in Figure 1.9(a).

(a) ®) (©

Figure 1.9: Rotation of lines at point P; (a) Original state, (b) Rigid-body
rotation; (c) Rotation and deformation.

If the vicinity of the point P suffers merely a local rigid-body rotation, all the
lines will rotate through the same angle and retain the same relative inclinations
as shown in 1.9(b). However, if different lines rotate through different angles, as in
1.9(c), the body must have been deformed. We shall show in the next section that
the rotations of the lines in Figure 1.9(c) are not independent and a consideration of
their interdependency leads naturally to a definition of shear strain.

1.2.3 Transformation of coordinates

Suppose we knew the displacement components ug,u, throughout the body and
wished to find the rotation, ¢, of the line PQ in Figure 1.10, which is inclined at
an angle 4 to the z-axis.

3Students of Mechanics of Materials will have already used a similar result when they express
the slope of a beam as du/dz, where z is the distance along the axis of the beam and wu is the
transversedisplacement.
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We construct a new axis system Oz'y’ with Oz’ parallel to PQ as shown, in which
case we can argue as above that PQ rotates anticlockwise through the angle

_ Ouy
J/ [ A J/
r—0
0
x r
0
0 x
Figure 1.10: Rotation of a line inclined at angle 6.
Furthermore, we have
0 .
= i~6~+ 9 i =i — + "g
or By ) 5z " By
3] .
= cos 955 -+ sin 6’8— , (1.32)
and by similar arguments,
Uy = Uy COSH + uysinf (1.33)
Uy = Uycosh —uysing . (1.34)
Substituting these results into equation (1.30), we find
a ., 0 .
H(PQ) = <cos Ba—x + sin 9(—,95) (uy cos B — u, sin 6) (1.35)
o Ouy dugy . o Juy, Jug\ .
= %—cos g — _8?;8”1 0+ -az~ E sin @ cos
1 [0u, Ou, 1/0u, Ou,
2 (633 B 6y>+5<5;+ ay)cos(%)
1 /0u, Ouy\ .
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In the final expression (1.36), the first term is independent of the inclination 8
of the line PQ and hence represents a rigid-body rotation as in Figure 1.9(b). We
denote this rotation by the symbol w, which with the convention illustrated in Figure
1.8 is anticlockwise positive.

Notice that as this term is independent of 8 in equation (1.36), it is the same for
any right-handed set of axes — i.e.

1 (0u, Bu,\ 1{0u, 0Ou,
Y73 <8:1: By) T2 (&m’ 8y’) ' (1.37)
for any z’, /.

In three dimensions, w represents a small positive rotation about the z-axis and
is therefore more properly denoted by w, to distinguish it from the corresponding
rotations about the z and y axes —i.e.

1 {0u,  Ouy\ 1 c?u,;_c')uz _ 1 %_&Lz
wﬁ_?(ay 62) ’wy—2<8z 8:1:) ’w2_2(8x 8y)’ (1.38)

or in suffix notation

1 Ou;
W = 5 (Eijka-z%) s (1.39)

where ¢, is the alternating tensor which is defined to be 1 if the suffices are in cyclic
order (e.g. 2,3,1), —1 if they are in reverse cyclic order (e.g. 2,1,3) and zero if any two
suffices are the same. (Notice, the alternating tensor is not a second order Cartesian

tensor.)
The rotation w is a vector in three-dimensional problems and can be defined by

the equation

1 1
w = icurl u = §V XU, (1.40)

but in two dimensions it behaves as a scalar since two of its components degenerate
6
to zero'.

1.2.4 Definition of shear strain

We are now in a position to define the shear strain e, as the difference between the
rotation of a line drawn in the z-direction and the corresponding rigid-body rotation.

Wy, 1.e.
O (% + 8%) (1.41)

b= B T T 9\ T By

In some books, w,wy,w, are denoted by wy,,w.q,wsy Tespectively. This notation is not used
here because it gives the erroneous impression that w is a second order tensor rather than a vector.
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and similarly

1 [Ou, Ouy 1 {0u, Ou,
—— C ey = - . 1.42
vz 2(8y+az) P e 2<Bz+ax> (1.42)
Note that e, so defined is one half of the quantity 7., used in Mechanics of

Materials and in many older books on Elasticity.
The strain-displacement relations (1.24, 1.25, 1.41, 1.42) can be written in the

concise form /8 5
U; U
===+ =1 . 1.43
e 2<8xj+6a:i> (143)

With the notation of equations (1.24, 1.25, 1.38, 1.41), we can now write (1.36)
in the form

$(PQ) = w, + ezy(cos® 8 — sin? 0) + (eyy — €4z) sinf cos b (1.44)

and hence
Cyty = ¢(PQ) = Wy
(by definition)
= €gy(cos® § — sin®§) + (eyy — €4s) sinfcosf . (1.45)
This is of course one of the coordinate transformation relations for strain. The

other one
Cww = €45 C08° 0 + ey, 8in® 0 + 2e,, sin 6 cos @ (1.46)

being obtainable from equations (1.24, 1.32, 1.33) in the same way. A comparison of
equations (1.45, 1.46) and (1.7, 1.8) confirms that, with these definitions, the strain
e;; is a second order Cartesian tensor.

1.3 Stress-strain relations

We shall develop the various forms of the linear elastic stress-strain relations for the
isotropic medium by regarding Young’s modulus E and Poisson’s ratio v as funda-
mental constants. Hence we regard as experimentally determined the equations

_ Oag VO VO,
e = BT (1.47)
o VO,, UOgzg
‘w = B TF E (1.48)
Tey  VOpz  VOyy
e = 2E B W 1.4
c E E E (1.49)

The relation between e,y and o, can then be obtained by using the transformation
relations. We know that there are three principal directions such that if we align them
with z,y, z, we have

Oy = Oyp = Opp =0 (1.50)
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and hence by symmetry
Eoy = €y = €, =0 (1.51)

Using a coordinate system aligned with the principal directions, we write
exy = (€yy — €xz) Sinfcosf (1.52)
from equations (1.45, 1.51)

(0yy — O2z)(1 + v)sinfcos b

E
_ (1 + I/)Uz/y/
= 7 , (1.53)
from (1.47, 1.48, 1.8).
We define B
F=oa+v) (1.54)
so that equation (1.53) takes the form
O gt it
exry = ~23/j’— . (1.55)

1.3.1 Lamé’s constants

It is often desirable to solve equations (1.47-1.49) to express o, in terms of e,, etc.
The solution is routine and leads to the equation

_ Bu(eg + ey +e..) Fe,,

= 1.56
Te T T )1 -20) L+ (1.56)
and similar equations, which are more concisely written in the form
Ozz = A+ 2uey, (1.57)
etc., where
Ev 2pv
T+ (-2 (-2 (1.58)
and
eE=eyteyte,=e;=divu (1.59)

is known as the dilatation.
The stress-strain equations (1.55, 1.57) can be written more concisely in the index
notation in the form
Oy = Aemméij + 2,&6,']' , (160)
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where §;; is the Kronecker delta, defined as 1 if 4 = j and 0 if ¢ # j. The constants
A, p are known as Lamé’s constants. Young’s modulus and Poisson’s ratio can be
written in terms of Lamé’s constants through the equations

E &(i%i)ﬂ (1.61)
A
v = s (1.62)

1.3.2 Dilatation and bulk modulus

The dilatation, €, is easily shown to be invariant as to codrdinate transformation and
is therefore a scalar quantity. In physical terms it is the local volumetric strain, since
a unit cube increases under strain to a block of dimensions (1+eg,), (1+ey,), (1+e€.,)
and hence the volume change is

OV = (14 ez0)(1 + ey ) (1 +e,.) — 1= €gp + ey + €, + Oleggeyy) - (1.63)

It can be shown that the dilatation e and the rotation vector w are harmonic —
i.e. V2e = V2w = 0. For this reason, many early solutions of elasticity problems were
formulated in terms of these variables, so as to make use of the wealth of mathematical
knowledge about harmonic functions. We now have other more convenient ways of
expressing elasticity problems in terms of harmonic functions, which will be discussed
in Chapter 18 et seq..

The dilatation is proportional to the mean stress & through a constant known as
the bulk modulus &. Thus, from equation (1.57),

1
F= (me + O’yy + OZZ) = -0y = Kbe , (164)

3 3

where 2 E
Kb=)\+§,u=m. (1.65)

We note that K, — oo if v — 0.5 — i.e. the material becomes incompressible.

PROBLEMS

1. Show that equations (1.47-1.49, 1.53) can be written in the concise form

N (1 + V)O'ij _ uamméij

TR E

(1.66)

2. Prove that the partial derivatives 8*f/8x?; 8 f/0zdy; 8% f /8y? of the scalar func-
tion f transform into the rotated codrdinate system z’,y’ by rules similar to equations
(1.7-1.9).
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3. A rigid body is subjected to a small rotation w, = € <« 1 about the z-axis. If
the displacement of the origin is zero, find expressions for the three displacement
components u,, i, 4, asfunctionsof z,y,z

4. Use the suffix notation to develop a general expression for the derivative

Bui
Brcj

in terms of strains and rotations.

5. Use the suffix notation to develop concise expressions for the three stress invariants
I, I, I3 and the equivalent tensile stress og.

6. Show that
ow tha b,

(i) 5? = 6;; and (il) R = /z:z; ,

J
where R = |R| is the distance from the origin. Hence find OR/0z; in suffix notation.
Confirm your result by finding dR/dz in z,y, z notation.
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Chapter 2

EQUILIBRIUM AND
COMPATIBILITY

We can think of an elastic solid as a highly redundant framework — each particle is
built-in to its neighbours. For such a framework, we expect to get some equations from
considerations of equilibrium, but not as many as there are unknowns. The deficit
is made up by compatibility conditions — statements that the deformed components
must fit together. These latter conditions will relate the dimensions and hence the
strains of the deformed components and in order to express them in terms of the same
unknowns as the stresses (forces) we need to make use of the stress-strain relations
as applied to each component separately.

If we were to approximate the continuous elastic body by a system of intercon-
nected elastic bars, this would be an exact description of the solution procedure. The
only difference in treating the continuous medium is that the system of algebraic
equations is replaced by partial differential equations describing the same physical or
geometrical principles.

2.1 Equilibrium equations

We consider a small rectangular block of material — side dz,dy, 6z — as shown in
Figure 2.1. We suppose that there is a body force', p per unit volume and that
the stresses vary with position so that the stress components on opposite faces of the
block differ by the differential quantities oz, do,y etc. Only those stress components
which act in the z-direction are shown in Figure 2.1 for clarity.

'A body force is one that acts directly on every particle of the body, rather than being applied
by tractions at its boundaries and transmitted to the various particles by means of internal stresses.
This is an important distinction which will be discussed further in Chapter 7, below. The commonest
example of a body force is that due to gravity.

23
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O 1

Figure 2.1: Forces in the z-direction on an elemental block.
Resolving forces in the z-direction, we find

(Op + 8048 ~ 0us)0Y02 + (04y + 604y — 04y)d202
+(0py + 002, — 04,)020Yy + préxdydz = 0. (2.1)

Hence, dividing through by {d2dydz) and proceeding to the limit as these infinites-
imals tend to zero, we obtain

00y, O00gy 00y,
ps,=0. 2.2
Oz + Oy + 0z TP (22)

Similarly, we have

00y, 0oy,  Ooy,
Ox + Oy * 0z

00, " 00,y + 00,

+py, =0 (2.3)

5z "oy oz TP (24)
or in suffix notation
9oy . _¢ (2.5)
6$j b= ' '

These are the differential equations of equilibrium.

2.2 Compatibility equations

The easiest way to satisfy the equations of compatibility — as in framework problems
— is to express all the strains in terms of the displacements. In a framework, this
ensures that the components fit together by identifying the displacement of points in
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two links which are pinned together by the same symbol. If the framework is redun-
dant, the number of pin displacements thereby introduced is less than the number of
component lengths (and hence extensions) determined by them — and the number
of unknowns is therefore reduced.

For a solid body, the process is essentially similar, but much more straightforward.
We define the six components of strain in terms of displacements through equations
(1.43). These six equations introduce only three unknowns (u, u,, 1) and hence the
latter can be eliminated to give equations constraining the strain components.

For example, from (1.24, 1.25) we find

azezz . asuz . a2eyy _ Bauy (2 6)
oyt~ 0zdy? ' 0z  OyOx? '
and hence \ \ \ \
Ow Oy _ O (Oup  Duy) _,0cn = (2.7)
oy? Ox? dzdy \ 0y Oz 0x0y

from (1.41) —i.e.
d%e d%e d%e
=M W, (2.8)
o0y? Oxdy  Jx?
Two more equations of the same form may be obtained by permuting suffices.
It is tempting to pursue an analogy with algebraic equations and argue that, since
the six strain components are defined in terms of three independent displacement
components, we must be able to develop three (i.e. 6 — 3) independent compatibility
equations. However, it is easily verified that, in addition to the three equations similar
to (2.8), the strains must satisfy three more equations of the form

2
e, O <Beyz . Oer Bemy) . 2.9)

dzdy 0z \ 8z = By Oz

The resulting six equations are independent in the sense that no one of them can
be derived from the other five, which all goes to show that arguments for algebraic
equations do not always carry over to partial differential equations.

A concise statement of the six compatibility equations can be written in the index

notation in the form
0 Besj aesi
— - =0 . 2.1

ok Bnck <BCL'1 Bac]) ( 0)

The full set of six equations makes the problem very complicated. In practice,
therefore, most three-dimensional problems are treated in terms of displacements in-
stead of strains. This satisfies the requirement of compatibility automatically. How-
ever, in two dimensions, all except one of the compatibility equations degenerate to
identities, so that a formulation in terms of stresses or strains is more practical.
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2.2.1 The significance of the compatibility equations

The physical meaning of equilibrium is fairly straightforward, but people often get
mixed up about just what is being guaranteed by the compatibility equations.

Single-valued displacements

Mathematically, we might say that the strains are compatible when they are definable
in terms of a single-valued, continuously differentiable displacement.

We could imagine reversing this process — i.e. integrating the strains (displace-
ment gradients) to find the relative displacement (ws—upg) of two points A, B in the
solid (see Figure 2.2).

S

A

Figure 2.2: Path of the integral in equation (2.11).

Formally we can write®

Ay
- = —dS . 2.11
Ua—UB = |, 53 (2.11)
The integral will be along the line, S, and if the displacements are to be single-valued,
it mustn’t make any difference if we change the line provided it remains within the

solid. In other words, the integral should be path-independent.
The compatibility equations are not quite sufficient to guarantee this.

They do guarantee
ou

5 SdS =0 (2.12)
around an infinitessimal closed loop.

Now, we could make infinitesimal changes in our line from A to B by taking
in such small loops until the whole line was sensibly changed, thus satisfying the
requirement that the integral (2.11) is path-independent, but the fact that the line is
changed infinitesimally stops us from taking a qualitatively (topologically) different
route through a multiply-connected body. For example, in Figure 2.3, it is impossible
to move S, to Sy by infinitesimal changes without passing outside the body".

2Explicit forms of the integral (2.11) in terms of the strain components were developed by
E.Cesaro and are known as Cesaro integrals. See, for example, A.E.H.Love, A Treatise on the
Mathematical Theory of Elasticity, 4th edn., Dover (1944), §156A.

*For a more rigorous discussion of this question, see A.E.H.Love, loc.cit. or B.A.Boley and
J.H.Weiner, Theory of Thermal Stresses, John Wiley, New York, (1960), §§3.6-3.8.
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Figure 2.3: Qualitatively different integration paths in a multiply-connected body.

In practice, if a solid is multiply-connected it is usually easier to work in terms of
displacements and by-pass this problem. Otherwise the equivalence of topologically
different paths in integrals like (2.11, 2.12) has to be explicitly enforced.

Compatibility of deformed shapes

A more ‘physical’ way of thinking of compatibility is to state that the separate par-
ticles of the body must deform under load in such a way that they fit together after
deformation. This interpretation is conveniently explored by way of a ‘jig-saw’ anal-
ogy.
gyWe consider a two-dimensional body cut up as a jig-saw puzzle (Figure 2.4), of
which the pieces are deformable. Figure 2.4(a) shows the original puzzle and 2.4(b)
the puzzle after deformation by some external loads F;. (The pieces are shown as
initially rectangular to aid visualization.)
The deformation of the puzzle must satisfy the following conditions:-

(i) The forces on any given piece (including external forces if any) must be in
equilibrium.

(i1) The deformed pieces must be the right shape to fit together to make the de-
formed puzzle (Figure 2.4(b)).

For the continuous solid, the compatibility condition guarantees that (ii) is satis-
fied, since shape is defined by displacement derivatives and hence by strains. However,
if the puzzle is multiply-connected — e.g. if it has a central hole — condition (ii)
is not sufficient to ensure that the deformed pieces can be assembled into a coherent
body. Suppose we imagine assembling the ‘deformed’ puzzle working from one piece
outwards. The partially completed puzzle is simply-connected and the shape condi-
tion is sufficient to ensure the success of our assembly until we reach a piece which
would convert the partial puzzle to a multiply connected body. This piece may be
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the right shape for both sides, but the wrong Size for the separation. If so, it will be
possible to leave the puzzle in a state with a discontinuity as shown in Figure 2.4(c) at
any arbitrarily chosen position — i.e. there is no part of the body at which continuity
breaks down — but there will be no way in which Figure 2.4(b) can be constructed.

®)

Figure 2.4: A multiply-connected, deformable jig-saw puzzle: (a) Before deforma-
tion; (b) After deformation; (c) Result of attempting to assemble the deformed puzzle
if equation (2.12) is not satisfied for any closed path encircling the hole.

The lines defining the two sides of the discontinuity in Figure 2.4(c) are the same
shape and hence, in the most general case, the discontinuity can be defined by six
arbitrary constants corresponding to the three rigid-body translations and three ro-
tations needed to move one side to coincide with the other’. We therefore get six
additional algebraic conditions for each hole in a multiply-connected body.

*This can be proved by evaluating the relative displacements of corresponding points on opposite
sides of the cut, using an integral of the form (2.11) whose path does not cross the cut.
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2.3 Equilibrium equations for displacements

Remembering that it is often easier to work in terms of displacements to avoid com-
plications with the compatibility conditions, it is convenient to express the eqilibrium
equations in terms of displacements. This is done by substituting for the stresses
from the stress-strain relations (1.60) into equation (2.2) giving

de Oty  Oezy  Oeg, _
/\633+2 (8a:+ By +5‘z +p,=0. (2.13)
Also,
Oege  Oegy Oty O, 0%, 82uy u,  0%u,
2 = 2
<M+8y+& 22 T By Bady T 022 | 8202
Oe
= Vg“”%” (2.14)
and hence equation (2.13) can be written
a

(A + ;L)b—:;div u+pViug +p, =0. (2.15)

Two similar equations are obtained for the equilibrium conditions in the y- and
z-directions.
We also note that

2v 1
= 1 = 2.16
Ath “(+1-2u> a-20)’ (2.16)
from (1.58) and hence the general equilibrium condition can be concisely written in
the vector form
(1-2v)p

Vdiv u + (1 —21/)V2u+——7—— =0, (2.17)

or in suffix notation
2
5] U;

u; L d=2v)p;
31}i6$j

=0. 2.1
(9.’Ek6:1?k 124 ( 8)

+(1-2v)

PROBLEMS

1. Show that, if there are no body forces, the dilatation e must satisfy the condition

Vie=0.

2. Show that, if there are no body forces, the rotation w must satisfy the condition

Viw=0.
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3. One way of satisfying the compatibility equations in the absence of rotation is to
define the components of displacement in terms of a potential function ¥ through the

relations B @- . B % ' B 6_¢

Uy = Uy = Uy = .
R T 7"
Use the stress-strain relations to derive expressions for the stress components in

terms of 4.
Hence show that the stresses will satisfy the equilibrium equations in the absence

of body forces if and only if
V2 = constant .

4. Plastic deformation during a manufacturing process generates a state of residual
stress in the large body z> 0. If the residual stresses are functions of z only and the
surface z=0 is not loaded, show that the stress components o0y, 0.5, 0z, must be zero
everywhere.

5. By considering the equilibrium of a small element of material similar to that shown
in Figure 1.2, derive the three equations of equilibrium in cylindrical polar coordinates
r, 8, 2.

)

6. In cylindrical polar codrdinates, the strain-displacement relations for the ‘in-plane
strains are

Ou, 1(1 Ou, Oug ua> . u, 10ug
- = ) €gp =

B =5\ T T T T

Epp =

Use these relations to obtain a compatibility equation that must be satisfied by the
three strains.

7. If no stresses occur in a body, an increase in temperature T causes unrestrained
thermal expansion defined by the strains

Cag = Cyy =€ =0T ;| €y =€, =€,;,=0.

Show that this is possible only if T is a linear function of z,¥, z and that otherwise
stresses must be induced in the body, regardless of the boundary conditions.

8. If there are no body forces, show that the equations of equilibrium and compati-
bility imply that

620,‘]' E)zakk -0
Ozidzy  Ozidz;

(1+v)
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TWO-DIMENSIONAL
PROBLEMS
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Chapter 3

PLLANE STRAIN AND PLANE
STRESS

A problem is two-dimensional if the field quantities such as stress and displacement
depend on only two codrdinates (z,y) and the boundary conditions are imposed on
a line f(z,y)=0 in the zy-plane.

In this sense, there are strictly no two-dimensional problems in elasticity. There
are circumstances in which the stresses are independent of the z-codrdinate, but all
real bodies must have some bounding surfaces which are not represented by a line
in the zy-plane. The two-dimensionality of the resulting fields depends upon the
boundary conditions on such surfaces being of an appropriate form.

3.1 Plane strain

It might be argued that a closed line in the zy-plane doesdefine a solid body — namely
an infinite cylinder of the appropriate cross-section whose axis is parallel to the z-
direction. However, making a body infinite does not really dispose of the question of
boundary conditions, since there are usually some implied boundary conditions ‘at
infinity’. For example, the infinite cylinder could be in a state of uniaxial tension,
0,,=C, where C is an arbitrary constant. However, a unique two-dimensional infinite
cylinder problem can be defined by demanding that u.,u, be independent of z and
that u,=0 for all z,y, z, in which case it follows that

€1z = €y =€, = 0. (3.1)

This is the two-dimensional state known as plane strain.
In view of the stress-strain relations, an equivalent statement to equation (3.1) is

O =0, =0 u, =0, (3.2)
and hence a condition of plane strain will exist in a finite cylinder provided that (i)

any tractions or displacements imposed on the sides of the cylinder are independent

33
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of z and have no component in the z-direction and (ii) the cylinder has plane ends
(e.g. z==e)which are in frictionless contact with two plane rigid walls.
From the condition e,,=0 (3.1) and the stress-strain relations, we can deduce

0o % V(0gz + 0yy)
E E
—i.e.
Ozz = V(Umm + ayy) (33)
and hence
e = TJm _ Vo _ V2 (04 + 0yy)
w R E FE
(1 =130y V(14 v)oy
= - . 3.4
7 5 (3.4)

Of course, there are comparatively few practical applications in which a cylinder
with plane ends is constrained between frictionless rigid walls, but fortunately the
plane strain solution can be used in an approximate sense for a cylinder with any
end conditions, provided that the length of the cylinder is large compared with its
cross-sectional dimensions.

We shall illustrate this with reference to the long cylinder of Figure 3.1, for which
the ends, z = +£c are traction-free and the sides are loaded by tractions which are
independent of z.

Tractions

Independent of z

Traction-free

Figure 3.1: The long cylinder with traction-free ends.

We first solve the problem under the plane strain assumption, obtaining an exact
solution in which all the stresses are independent of 2z and in which there exists a
normal stress ¢,, on all z-planes, which we can calculate from equation (3.3).
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The plane strain solution satisfies all the boundary conditions of the problem
except that o,, also acts on the end faces, z=+c, where it appears as an unwanted
normal traction. We therefore seek a corrective solution which, when superposed on
the plane strain solution, removes the unwanted normal tractions on the surfaces
z=c, without changing the boundary conditions on the sides of the cylinder.

3.1.1 The corrective solution

The corrective solution must have zero tractions on the sides of the cylinder and a
prescribed normal traction (equal and opposite to that obtained in the plane strain
solution) on the end faces.

This is a fully three-dimensional problem which generally has no closed-form so-
lution. However, if the prescribed tractions have the linear form

0., =B+ Cz+ Dy, (3.5)

the solution can be obtained in the context of Mechanics of Materials by treating the
long cylinder as a beam subjected to an axial force

F= 220A 3.6
f,o (36)

and bending moments
M, = /Aa“ydA ; My = —/Aazzxda (3.7)

about the axes Oz, Oy respectively, where O is chosen to coincide with the centroid
of the cross-section'.

If the original plane strain solution does not give a distribution of o,, of this
convenient linear form, we can still use equations (3.6, 3.7) to define the force and
moments for an approximate Mechanics of Materials corrective solution. The error
involved in using this approximate solution will be that associated with yet another
corrective solution corresponding to the problem in which the end faces of the cylinder
are loaded by tractions equal to the difference between those in the plane strain
solution and the Mechanics of Materials linear form (3.5) associated with the force
resultants (3.6, 3.7).

In this final corrective solution, the ends of the cylinder are loaded by self-
equilibrated tractions, since the Mechanics of Materials approximation is carefully
chosen to have the same force and moment resultants as the required exact solution
and in such cases, we postulate that significant stresses will only be generated in the
immediate vicinity of the ends — or more precisely, in regions whose distance from the

'"The Mechanics of Materials solution for axial force and pure bending is in fact exact in the sense
of the Theory of Elasticity, but we shall not prove this here. See for example S.P.Timoshenko and
J.N.Goodier, Theory of Elasticity, McGraw-Hill, New York, 3rd. edn. (1970) §102.
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ends is comparable with the cross-sectional dimensions of the cylinder. If the cylinder
is many times longer than its cross-sectional dimensions, there will be a substantial
portion near the centre where the final corrective solution gives negligible stresses
and hence where the sum of the original plane strain solution and the Mechanics of
Materials correction is a good approximation to the actual three-dimensional stress
field.

3.1.2 Saint-Venant’s principle

The thesis that a self-equilibrating system of loads produces only local effects is known
as Saint-Venant’s principle. It seems intuitively reasonable, but has not been proved
rigorously except for certain special cases — some of which we shall encounter later
in this book (see for example Chapter 6). It can be seen as a consequence of the rule
that alternate load paths through a structure share the load in proportion with their
stiffnesses. If a region of the boundary is loaded by a self-equilibrating system of
tractions, the stiffest paths are the shortest — i.e. those which do not penetrate far
from the loaded region. Hence, the longer paths — which are those which contribute
to stresses distant from the loaded region — carry relatively little load.

Note that if the local tractions are not self-equilibrating, some of the load paths
must go to other distant parts of the boundary and hence there will be significant
stresses in intermediate regions. For this reason, it is important to superpose the
Mechanics of Materials approximate corrective solution when solving plane strain
problems for long cylinders with traction free ends. By contrast, the final stage of
solving the ‘Saint-Venant problem to calculate the correct stresses near the ends is
seldom of much importance in practical problems, since the ends, being traction-free,
are not generally points of such high stress as the interior.

As a point of terminology, we shall refer to problems in which the boundary condi-
tions on the ends have been corrected only in the sense of force and moment resultants
as being solved in the weak sense with respect to these boundaries. Boundary condi-
tions are satisfied in the strong sense when the tractions are specified in a pointwise
rather than a force resultant sense.

3.2 Plane stress

Plane stress is an approximate solution, in contrast to plane strain, which is exact.
In other words, plane strain is a special solution of the complete three-dimensional
equations of elasticity, whereas plane stress is only approached in the limit as the
thickness of the loaded body tends to zero.

It is argued that if the two bounding z-planes of a thin plate are sufficiently close
in comparison with the other dimensions, and if they are also free of tractions, the
stresses on all parallel z-planes will be sufficiently small to be neglected in which case
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we write

Opp =0y = 0,, =0, (3.8)
for all z,y, 2.

It then follows that
€ =€z =0, (3.9)
but e,, #0, being given in fact by
v
€ry = —-E—(aw +oyy) . (3.10)

The two-dimensional stress-strain relations are then

_ Oz VOy

Cpz = T TR (3.11)
14 T

ey = %"— UE (3.12)

The fact that plane stress is not an exact solution can best be explained by con-
sidering the compatibility equation
Oe,, 0%, O%..

57 Yy T gy =0 (3.13)

Since ez-hypothesi none of the stresses vary with z, the first two terms in this
equation are identically zero and hence the equation will be satisfied if and only if

A%,

Ay?

=0. (3.14)

This in turn requires
2
0% (030 + 0yy)

=0 (3.15)

from equation (3.10).

Applying similar arguments to the other compatibility equations, we conclude
that the plane stress assumption is exact if and only if (og;+0y,) is a linear function
of z,y. ie. if

Ope+0yy =B+ Czx+ Dy. (3.16)

The attentive reader will notice that this condition is exactly equivalent to (3.3,
3.5). In other words, the plane stress solution is exact if and only if the ‘weak form’
solution of the corresponding plane strain solution is exact. Of course this is not
a coincidence. In this special case, the process of off-loading the ends of the long
cylinder in the plane strain solution has the effect of making o,, zero throughout the
cylinder and hence the resulting solution also satisfies the plane stress assumption,
whilst remaining exact.
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3.2.1 Generalized plane stress

The approximate nature of the plane stress formulation is distasteful to elasticians
of a more mathematical temperament, who prefer to preserve the rigour of an exact
theory. This can be done by the contrivance of defining the average stresses across
the thickness of the plate — e.g.

B = 2% * Gaada . (3.17)

—C

It can then be shown that the average stresses so defined satisfy the plane stress
equations exactly. This is referred to as the generalized plane stress formulation.

In practice, of course, the gain in rigour is illusory unless we can also establish that
the stress variation across the section is small, so that the local values are reasonably
close to the average. A fully three-dimensional theory of thin plates under in-plane
loading shows that the plane stress assumption is a good approximation except in
regions whose distance from the boundary is comparable with the plate thickness”.

3.2.2 Relationship between plane stress and plane strain

The solution of a problem under either the plane strain or plane stress assumptions
involves finding a two-dimensional stress field, defined in terms of the components
Oy Ty, Oyy, Which satisfies the equilibrium equations (2.5), and for which the corre-
sponding strains, €.q, €4y, €yy, satisfy the only non-trivial compatibility equation (2.8).
The equilibrium and compatibility equations are the same in both formulations, the
only difference being in the relation between the stress and strain components, which
for normal stresses are given by (3.4) for plane strain and (3.11, 3.12) for plane stress.
The relation between the shear stress o, and the shear strain e, is the same for both
formulations and is given by equation (1.55). Thus, from a mathematical perspective,
the plane strain solution simply looks like the plane stress solution for a material with
different elastic constants and vice versa. In fact, it is easily verified that equation
(3.4) can be obtained from (3.11) by making the substitutions
! !
E= ——?—— ;ov= v ,

(1-v7?) (1-—v)
and then dropping the primes. This substitution also leaves the shear stress-shear
strain relation unchanged as required.

An alternative approach is to write the two-dimensional stress-strain relations in
the form

r+1 3—K K+1 3~k Oy
€z = —8;1,— Ozg — "@"‘ Oyy 7 Eyy = ——8/,L_ Oyy — W Orx ery:—é;:

(3.19)

(3.18)

2See for example S.P.Timoshenko and J.N.Goodier, loc. cit., §98.



PROBLEMS 39

where x=3—4v for plane strain and (3 — v)/(1 + v) for plane stress and is known as
Kolosov’s constant.

In the following chapters, we shall generally treat two-dimensional problems with
the plane stress assumptions, noting that results for plane strain can be recovered by
the substitution (3.18) when required.

PROBLEMS

1. The plane strain solution for the stresses in the rectangular block 0 <z <a, —b<
y<b,—c<z<c with a given loading is

3Fzy 3F(B? — y?) 3vFzy
Ozz = 2b3 y Oxy = 403 y Oy =03 0,=- op3

Find the tractions on the surfaces of the block and illustrate the results on a sketch
of the block.

We wish to use this solution to solve the corresponding problem in which the
surfaces z = ¢ are traction-free. Determine an approximate corrective solution for
this problem by offloading the unwanted force and moment resultants using the ele-
mentary bending theory. Find the maximum error in the stress o,, in the corrected
solution and compare it with the maximum tensile stress in the plane strain solution.

2. For a solid in a state of plane stress, show that if there are body forces p;,p, per
unit volume in the direction of the axes z, y respectively, the compatibility equation
can be expressed in the form

oz T By

Hence deduce that the stress distribution for any particular case is independent
of the material constants and the body forces, provided the latter are constant.

V04 +0yy) = —(1 +v) (apx 8py> .

3. (1) Show that the compatibility equation (2.8) is satisfied by unrestrained thermal
expansion (eg; = eyy = aT, €5y = 0), provided that the temperature, T, is a
two-dimensional harmonic function — i.e.

T  0°T 0
or? - oyr

(i) Hence deduce that, subject to certain restrictions which you should explicitly
list, no thermal stresses will be induced in a thin body with a steady-state,
two-dimensional temperature distribution and no boundary tractions.

(iii) Show that an initially straight line on such a body will be distorted by the heat
flow in such a way that its curvature is proportional to the local heat flux across
it.
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4. Find the inverse relations to equations (3.18) — i.e. the substitutions that should
be made for the elastic constants E, v in a plane strain solution if we want to recover
the solution of the corresponding plane stress problem.

5. Show that in a state of plane stress without body forces, the in-plane displacements
must satisfy the equations

5 (14+v) 0 (Oug  Fuy\ _ = oo (1+v) 8 (Ouy  Ouy) _
v 7”+(1—1/)5‘9v<8ac dy —O,Vuy+(1_~y)8y 8x+6y =0

6. Show that in a state of plane strain without body forces,

Oe <1~2u> Ow,  Oe _(1—21/) Ow,

Oz —8?’8_342 1—-v/ 8z

1—v

7. If a material is incompressible (¢¥=0.5), a state of hydrostatic stress 0, =0y, =0,
produces no strain. One way to write the corresponding stress-strain relations is

0ij = 2uei; — gdi;

where ¢ is an unknown hydrostatic pressure which will generally vary with position.
Also, the condition of incompressibility requires that the dilatation

GEekaO.

Show that the stress components and the hydrostatic pressure ¢ must satisfy the
equations
Vi =divp and oz + Oy = —2¢q,

where p is the body force.



Chapter 4

STRESS FUNCTION
FORMULATION

4.1 The concept of a scalar stress function

Newton’s law of gravitation states that two heavy bodies attract each other with a
force proportional to the inverse square of their distance — thus it is essentially a
vector theory, being concerned with forces. However, the idea of a scalar gravitational
potential can be introduced by defining the work done in moving a unit mass from
infinity to a given point in the field. The principle of conservation of energy requires
that this be a unique function of position and it is easy to show that the gravitational
force at any point is then proportional to the gradient of this scalar potential. Thus,
the original vector problem is reduced to a problem about a scalar potential and its
derivatives.

In general, scalars are much easier to deal with than vectors. In particular, they
lend themselves very easily to codrdinate transformations, whereas vectors (and to an
even greater extent tensors) require a set of special transformation rules (e.g. Mohr’s
circle).

In certain field theories, the scalar potential has an obvious physical significance.
For example, in the conduction of heat, the temperature is a scalar potential in terms
of which the vector heat flux can be defined. However, it is not necessary to the
method that such a physical interpretation can be given. The gravitational potential
can be given a physical interpretation as discussed above, but this interpretation may
never feature in the solution of a particular problem, which is simply an excercise
in the solution of a certain partial differential equation with appropriate boundary
conditions. In the theory of elasticity, we make use of scalar potentials called Stress
functions or displacement functions which have no obvious physical meaning other
than their use in defining stress or displacement components in terms of derivatives.

41
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4.2 Choice of a suitable form

In the choice of a suitable form for a stress or displacement function, there is only one
absolute rule — that the operators which define the relationship between the scalar
and vector (or tensor) quantities should indeed define a vector (or tensor).

For example, it is appropriate to define the displacement in terms of the first
derivatives (the gradient) of a scalar or to define the stress components in terms of
the second derivatives of a scalar, since the second derivatives of a scalar form the
components of a Cartesian tensor.

In effect, what we are doing in requiring this similarity of form between the def-
initions and the defined quantity is ensuring that the relationship is preserved in
codrdinate transformations. It would be quite possible to work out an elasticity prob-
lem in terms of the displacement components u,, uy, u,, treating these as essentially
scalar quantities which vary with position — indeed this was a technique which was
used in early theories. However, we would then get into trouble as soon as we tried
to make any statements about quantities in other coordinate directions. By contrast,
if we define (for example) u, = 0v/0x; u, = 0vy/0y; u, =0Y/0z, (ie. u= V), it
immediately follows that ul, =0 /0’ for any z’.

4.3 The Airy stress function

The two-dimensional problem of elasticity is most easily reduced to a tractable po-
tential problem by representing the stress components in the form
S B i (4.1)
== W T g2 0 T T T ey '

This representation was introduced by G.B.Airy' in 1862 and ¢ is therefore gen-
erally referred to as the Airy stress function. It is not the most obvious form. It
would seem more natural to write o4, = 8°%/01%; 0y, = 0%h/Oy?; 04y, = 0% /020y
and indeed this also leads to a representation which is widely used as part of the
general three-dimensional solution (see Chapter 18 below).

It is easily verified that equation (4.1) transforms as a Cartesian tensor as required.
For example, using (1.32) we can write

8% AN
prri <c030£ +sm9@) ¢
52 d? 8%

_ 2 . 9
= é?cos 6+—a?sm 0+26z8y

sinf cos @, (4.2)

from which using (1.9 and 4.1) we deduce that oy, =08%¢/0z' asrequired.

For a good historical survey of the development of potential function methods in Elasticity, see
H.M.Westergaard, Theory of Elasticity and Plasticity, Dover, New York (1964), Chapter 2.
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4.4 The governing equation

As discussed in Chapter 2, the stress or displacement field has to satisfy the equations
of equilibrium and compatibility if they are to describe permissible states of an elastic
body. In stress function representations, this generally imposes certain constraints on
the choice of stress function, which can be expressed by requiring it to be a solution of
a certain partial differential equation. We shall determine this governing equation by
substituting the representation (4.1) into the equilibrium and compatibility equations
in two dimensions.

4.4.1 The equilibrium equations

On substituting (4.1) into the first equilibrium equation, we obtain

¢ 0%

y20s  dapye T Pe=0 (43)

and hence p; = 0. In the same way, the second equilibrium equation is satisfied as
long as p, =0. Thus, the Airy stress function automatically satisfies the equilibrium
equations provided the body forces are zero. In some books, it is stated that this is
precisely the reason for preferring the Airy function to the more obvious form referred
to in §4.3 above, but this is misleading, since the ‘more obvious form’ — although
it requires some constraints on % in order to satisfy equilibrium — can be shown to
define displacements which automatically satisfy the compatibility condition’. The
real reason for preferring the Airy function is that it is capable of describing all
possible two-dimensional states of stress in an elastic body, whilst the alternative is
more restrictive. This will not be proved here.

It is worth noting that the Airy stress function can be used in other applica-
tions, with inelastic constitutive laws — for example plasticity theory — where its
satisfaction of the equilibrium equations remains an advantage.

4.4.2 Non-zero body forces

If the body force p is not zero, but is of a restricted form such that it can be written
p = —VV, where V is a scalar potential, equations (4.1) can be generalized by
including an extra term +V in each of the normal stress components whilst leaving
the shear stress definition unchanged. It is easily verified that, with this modification,
the equilibrium equations are again satisfied.

Problems involving body forces will be discussed in more detail in Chapter 7
below. For the moment, we restrict attention to the the case where p=0 and hence
where the representation (4.1) is appropriate.

2See Problem 2.3.
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4.4.3 The compatibility condition

In order to determine the constraints placed upon the choice of ¢ by the compati-
bility condition, we first express the latter in terms of stresses using the stress-strain
relations, obtaining
2 2 2 2 2
0%0pr 0oy _2(1+V)3 Oay 4 0oy VB Oz
0y? oy? 0zxdy  0z? Oz?

We then substitute for the stress components from (4.1) obtaining

=0 . (4.4)

' o' o ¢ &'
i Vaway T aeg T e Vawep T (45)
i-e. 4 4 4 2 2\ 2
o9 9% d'¢ (8 0 B
8144—2&H8y2+-3y4__(5$24_3y2 v=0 (46)

This equation is known as the biharmonic equation and is usually written in the

concise form
Vig=0 .

The biharmonic equation is the governing equation for the Airy stress function
in elasticity problems. Thus, by using the Airy stress function representation, the
problem of determining the stresses in an elastic body is reduced to that of finding
a solution of equation (4.7) (i.e. a biharmonic function) whose derivatives satisfy
certain boundary conditions on the surfaces.

4.4.4 Method of solution

Historically, the boundary-value problem for the Airy stress function has been ap-
proached in a semi-inverse way — i.e. by using the variation of tractions along the
boundaries to give a clue to the kind of function required, but then exploring the
stress fields developed from a wide range of such functions and selecting a combina-
tion which can be made to satisfy the required conditions. The disadvantage with
this method is that it requires a wide experience of particular solutions and even then
is not guaranteed to be successful.

A more modern method which has the advantage of always developing an appro-
priate stress function if the boundary conditions are unmixed (i.e. all specified in
terms of stresses or all in terms of displacements) is based on representing the stress
function in terms of analytic functions of the complex variable. This method will
be discussed briefly in Chapter 19. However, although it is powerful and extremely
elegant, it is an unfortunate fact that for most problems it leaves us with the task of
evaluating a difficult contour integral, which may not be as convenient a numerical
technique as a direct series or finite difference attack on the original problem using
real stress functions. (There are some exceptions — notably for bodies which are
susceptible of a simple conformal transformation into the unit circle.).
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4.4.5 Reduced dependence on elastic constants

It is clear from dimensional considerations that, when the compatibility equation is
expressed in terms of ¢, Young’s modulus must appear in every term and can therefore
be cancelled, but it is an unexpected bonus that the Poisson’s ratio terms also cancel
in (4.5), leaving an equation that is independent of elastic constants. It follows
that the stress field in a simply-connected elastic body® in a state of plane strain
or plane stress is independent of the material properties if the boundary conditions
are expressed in terms of tractions and in particular, that the plane stress and plane
strain fields are identical.

Dundurs® has shown that a similar reduced dependence on elastic constants occurs
in plane problems involving interfaces between two dissimilar elastic materials. In
such cases, three independent dimensionless parameters (e.g. g/ug, v, ¥2) can be
formed from the elastic constants p, v1, 2, ¥2 of the materials 1, 2 respectively, but
Dundurs proved that the stress field can be written in terms of only two parameters
which he defined as

K1 +1 +1 +1 +1
o = < LT ) /(’“ + 2 ) (4.8)
231 M2 2| M2
-1 -1 +1 1
R (C e P
M1 H2 H1 H2
where & is Kolosov’s constant (see equation (3.19)). It can be shown that Dundurs’
parameters must lie in the range —1<a<1; —-0.5<3<0.5if 0<p;, 15 <0.5.

PROBLEMS

1. Newton’s law of gravitation states that two heavy particles of mass my, m, respec-
tively will experience a mutual attractive force

where Ris the distance between the particles and +y is the gravitational constant. Use
an energy argument and superposition to show that the force acting on a particle of

mass mg can be written
F = —’)/m()VV y

pl&; n, §)dédnd(
Vewd =~ [/ e b

3The restriction to simply-connected bodies is necessary, since in a multiply-connected body there
is an implied displacement condition, as explained in §2.2 above.

*J Dundurs, Discussion on ‘Edge bonded dissimilar orthogonal elastic wedges under normal and
shear loading, ASVIE J.Appl.Mech., Vol. 36 (1969), 650-652.

where
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1 represents the volume of the universe and p is the density of material in the universe,
which will generally be a function of position (&, 7, ().
Could a similar method have been used if Newton’s law had been of the more

general form
Ymima

72
If so, what would have been the corresponding expression for V? If not, why not?

F=

2. An ionized liquid in an electric field experiences a body force p. Show that the
liquid can be in equilibrium only if p is a conservative vector field. Hint: Remember
that a stationary liquid must be everywhere in a state of hydrostatic stress.

3.(i) Show that the function
¢=yw+y

satisfies the biharmonic equation provided that w,? are both harmonic (i.e.
V2w=0, V%) =0).

(ii) Develop expressions for the stress components in terms of w,, based on the

use of ¢ as an Airy stress function.

(iii) Show that a solution suitable for the half-plane y >0 subject to normal surface
tractions only (i.e. 04, =0 on y=0) can be obtained by writing

and hence that under these conditions the normal stress o,, near the surface
y=0is equal to the applied traction ogy,.

(iv) Do you think this is a rigorous proof? Can you think of any exceptions? If so,
at what point in your proof of section (iii) can you find a lack of generality?

4. The constitutive law for an orthotropic elastic material in plane stress can be
written

€xx = S110zz + S120yy ; Eyy = S12032 + S2a0yy § €y = 84404y ,

where s11, S12, 822, S44 are elastic constants.
Using the Airy stress function ¢ to represent the stress components, find the
equation that must be satisfied by ¢.

5. Show that if the two-dimensional function w(z,y) is harmonic (V2w = 0), the
function

b= +yP)w
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will be biharmonic.
6. The constitutive law for an incompressible elastic material can be written
0ij = 00i; + 2ue;; ,
where
Tkk

3

represents an arbitrary hydrostatic stress field. Some soils can be approximated as
an incompressible material whose modulus varies linearly with depth, so that

o=

u=Mz

for the half space z>0.
Use the displacement function representation

u=V¢

to develop a potential function solution for the stresses in such a body. Show that
the functions ¢, & must satisfy the relations
0
V=0 ; 5= oM
0z
and hence obtain expressions for the stress components in terms of the single harmonic

function ¢.
If the half-space is loaded by a normal pressure

au(x,y,O) = —p(x,y) ) orm(as,y,()) = Uzy(x’yao) =0,

show that the corresponding normal surface displacement u,(z,y,0) is linearly pro-
portional to the local pressure p(z,y) and find the constant of proportionality’.

7. Show that Dundurs’ constant 8—0 for plane strain in the limit where v; =0.5 and
p1/p2—0 — i.e. material 1 is incompressible and has a much lower shear modulus®
than material 2. What is the value of « in this limit?

8. Solve Problem 3.7 for the case where there is no body force, using the Airy
stress function ¢ to represent the stress components. Hence show that the governing
equation is V4¢=0, as in the case of compressible materials.

SFor an alternative proof of this result see C.R.Calladine and J.A.Greenwood, Line and point
loads on a non-homogeneous incompressible elastic half-space, Q.J.Mech.Appl.Math., Vol 31 (1978),
507-529.

SThis is a reasonable approximation for the important case of rubber (material 1) bonded to steel

(material 2).
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Chapter 5

PROBLEMS IN RECTANGULAR
COORDINATES

The Cartesian coordinate system (z,y) is clearly particularly suited to the problem
of determining the stresses in a rectangular body whose boundaries are defined by
equations of the form z=a,y=>. A wide range of such problems can be treated using
stress functions which are polynomials in z,y. In particular, polynomial solutions can
be obtained for ‘Mechanics of Materials’ type beam problems in which a rectangular
bar is bent by an end load or by a distributed load on one or both faces.

5.1 Biharmonic polynomial functions
In rectangular coordinates, the biharmonic equation takes the form

8¢ o'¢ ¢

5 2——3x28y2 + Gyt 0 (6.1)
and it follows that any polynomial in z,y of degree less than four will be biharmonic
and is therefore appropriate as a stress function. However, for higher order polynomial
terms, equation (5.1) is not identically satisfied. Suppose, for example, that we
consider just those terms in a general polynomial whose combined degree (the sum
of the powers of  and y) is N. We can write these terms in the form

Py(z,y) = Aoz + Az ty+ Apa™V % 4 Any® (5.2)
N

= 3 Ay, (5.3)
=0

where we note that there are (NV+ 1) independent coefficients, A4;(i =0, N). If we
now substitute Py(z,y) into equation (5.1), we shall obtain a new polynomial of
degree (N — 4), since each term is differentiated four times. We can denote this new

49
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polynomial by Qn-4(z,y) where

QN—4(xay) = V4PN(xay) (54)
N-4

= 3 Bty (5.5)
1=0

The (N — 3)coefficients By, ..., By_4 are easily obtained by expanding the right
hand side of equation (5.4) and equating coefficients. For example,

Bo=N(N = 1)(N — 2)(N — 3)Ag + 4(N — 2)(N — 3)A; + 244, . (5.6)

Now the original function Py(z,y) will be biharmonic if and only if Qn-4(z,y)
is zero for all z,y and this in turn is only possible if every term in the series (5.5) is
identically zero, since the polynomial terms are all linearly independent of each other.
In other words

B;i=0,; i=0to N—4. (6.7)

These conditions can be converted into a corresponding set of (N — 3) equations
for the coefficients A;. For example, the equation By =0 gives

N(N = 1)(N = 2)(N = 3)Ag + 4(N = 2)(N — 3)A; + 244, =0,  (5.8)

from equation (5.6). We shall refer to the (N —3) equations of this form as constraints
on the coefficients A;, since the coefficients are constrained to satisfy them if the
original polynomial is to be biharmonic.

One approach would be to use the constraint equations to eliminate (N — 3) of
the unknown coefficients in the original polynomial — for example, we could treat
the first fourcoefficients, Ag, A, A3, A3, as unknown constants and use the constraint
equations to define all the remaining coefficients in terms of these unknowns. Equation
(5.8) would then be treated as an equation for A4 and the subsequent constraint
equations would each define one new constant in the series. It may help to consider
a particular example at this stage. Suppose we consider the fifth degree polynomial

Ps(z,y) = Agz® + Azty + Ayzdy® + Asz®y® + Agzy® + Asy® (5.9)

which has six independent coefficients. Substituting into equation (5.4), we obtain
the first degree polynomial

Q1(z,y) = (12040 + 244, + 24A4)z + (24A; + 2445 + 12045)y . (5.10)

The coefficients of z and % in @; must both be zero if Ps is to be biharmonic and
we can write the resulting two constraint equations in the form

A4 = —5A0-—A2 (511)
A5 = —AI/S—A3/5 (512)
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Finally, we use (5.11, 5.12) to eliminate A4, A5 in the original definition of Ps,
obtaining the definition of the most general biharmonic fifth degree polynomial

Ps(z,y) = Ao(z® - 5zy*) + A(a'y — 4°/5)
+Ax(x%y? — zyt) + Az(z?y® — 45/5) . (5.13)

This function will be biharmonic for any values of the four independent constants
Ag, Ay, Ag, A3. We can express this by stating that the biharmonic polynomial Ps has
four degrees of freedom.

In general, the polynomial Q is of degree 4 less than P because the biharmonic
equation is of degree 4. It follows that there are always four fewer constraint equations
than there are coefficients in the original polynomial P and hence that they can
be satisfied leaving a polynomial with 4 degrees of freedom. However, the process
degenerates if N <3.

In view of the above discussion, it might seem appropriate to write an expression
for the general polynomial of degree N in the form of equation (5.13) as a preliminary
to the solution of polynomial problems in rectangular coérdinates. However, as can
be seen from equation (5.13), the resulting expressions are algebraically messy and
this approach becomes unmanageable for problems of any complexity. Instead, it
turns out to be more straightforward algebraically to define problems in terms of the
simpler unconstrained polynomials like equation (5.2) and to impose the constraint
equations at a later stage in the solution.

5.1.1 Second and third degree polynomials

We recall that the stress components are defined in terms of the stress function ¢
through the relations

¢
%
8¢
Oy = o (5.16)

It follows that when the stress function is a polynomial of degree N in z,y, the
stress components will be polynomials of degree (N — 2). In particular, constant and
linear terms in ¢ correspond to null stress fields (zero stress everywhere) and can be
disregarded.

The second degree polynomial

¢ = Agz? + Arzy + Asy’ (5.17)



52 CHAPTER5. PROBLEMSIN RECTANGULAR COORDINATES

yields the stress components
Ogy = 2A2 y Ogy = —Al y Oyy = 2A0 (518)

and hence corresponds to the most general state of biaxial uniform stress.
The third degree polynomial

¢ = Aoz + Arz?y + Arxy® + Asy® (5.19)
yields the stress components
Ope = 2422 + 643y | o0gy = —2A12 — 240y ; 0y = 640z + 241y . (5.20)
If we arbitrarily set Ay, A1, A2 = 0, the only remaining non-zero stress will be
Oz = 643y, (5.21)

which corresponds to a state of pure bending, when applied to the rectangular beam
—a<z<a,—-b<y<b, as shown in Figure 5.1.

) J

Traction-free

Figure 5.1: The rectangular beam in pure bending.

The other terms in equation (5.19) correspond to a more general state of bending.
For example, the constant Ag describes bending of the beam by tractions oy, applied
to the boundaries y = £b, whilst the terms involving shear stresses oy, could be
obtained by describing a general state of biaxial bending with reference to a Cartesian
coordinate system which is not aligned with the axes of the beam.

The above solutions are of course very elementary, but we should remember that,
in contrast to the Mechanics of Materials solutions for simple bending, they are
obtained without making any simplifying assumptions about the stress fields. For ex-
ample, we have not assumed that plane sections remain plane, nor have we demanded
that the beam be long in comparison with its depth. Thus, the present section could
be taken as verifying the exactness of the Mechanics of Materials solutions for uniform
stress and simple bending, as applied to a rectangular beam.
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5.2 Rectangular beam problems

5.2.1 Bending of a beam by an end load

Figure 5.2 shows a rectangular beam, 0 <z < a, —b <y < b, subjected to a transverse
force, F at the end z =0, and built-in at the end z = a, the horizontal boundaries
y = £b being traction free. The boundary conditions for this problem are most
naturally written in the form

oy = 0; y==b (5.22)
o = 0 y==b (5.23)
O = 0 z= (5.24)
/_bbazydy ~ F; z=0. (5.25)
VY
a
’ 4
0 . L
F —_.r
b
/

Figure 5.2: Cantilever with an end load.

The boundary condition (5.25) is imposed in the weak form, which means that
the value of the traction is not specified at each point on the boundary — only the
force resultant is specified. In general, we shall find that problems for the rectangular
beam have finite polynomial solutions when the boundary conditions on the ends are
stated in the weak form, but that the strong (i.e. pointwise) boundary condition can
only be satisfied on all the boundaries by an infinite series or transform solution. This
issue is further discussed in Chapter 6.

Mechanics of Materials considerations suggest that the bending moment in this
problem will vary with z and hence that the stress component o, will have a leading
term proportional to zy. This in turn suggests a fourth degree polynomial term zy® in
the stress function ¢. Our procedure is therefore to start with the trial stress function

¢ =Cizy®, (5.26)
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examine the corresponding tractions on the boundaries and then seek a corrective so-
lution which, when superposed on equation (5.26), yields the solution to the problem.
Substituting (5.26) into (5.14-5.16), we obtain

Opz = 6C 2y (5.27)
oy = —3C1y° (5.28)
Oy = 0, (5.29)

from which we note that the boundary conditions (5.23, 5.24) are satisfied identically,
but that (5.22) is not satisfied, since (5.28) implies the existence of an unwanted
uniform shear traction —3C;b% on both of the edges y=+b. This unwanted traction
can be removed by superposing an appropriate uniform shear stress, through the
additional stress function term Cyxy. Thus, if we define

¢ = Cizy® + Cozy (5.30)
equations (5.27, 5.29) remain unchanged, whilst (5.28) is modified to
Oy = —3C1y> — Cy . (5.31)

The boundary condition (5.22) can now be satisfied if we choose C to satisfy the

equation
Cg = —301b2 s (532)

so that
Ozy = 3C1 (> — ) . (5.33)

The constant C; can be determined by substituting (5.33) into the remaining
boundary condition (5.25), with the result

F
C) = TR (5.34)
The final stress field is therefore defined through the stress function
F(zy® — 3b%zy)
p= (5.35)
the corresponding stress components being
3Fzxy
O T (5.36)
3F (B — y*)
oy = 0. (5.38)

The solution of this problem is given in the Mathematica and Maple files ‘S521°.
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We note that no boundary conditions have been specified on the built-in end,
z=a. In the weak form, these would be

b
/bamdy = 0; z=a (5.39)
b

/—bawdy = F;, z=a (5.40)
b

/bamydy = Fa; z=a. (5.41)

However, if conditions (5.22-5.25) are satisfied, (5.39-5.41) are merely equivalent
to the condition that the whole beam be in equilibrium. Now the Airy stress function
is so defined that whatever stress function is used, the corresponding stress field will
satisfy equilibrium in the local sense of equations (2.5). Furthermore, if every particle
of a body is separately in equilibrium, it follows that the whole body will also be in
equilibrium. It is therefore not necessary to enforce equations (5.39-5.41), since if we
were to check them, we should necessarily find that they are satisfied identically.

5.2.2 Higher order polynomials — a general strategy

In the previous section, we developed the solution by trial and error, starting from
the leading term whose form was dictated by equilibrium considerations. A more
general technique is to identify the highest order polynomial term from equilibrium
considerations and then write down the most general polynomial of that degree and
below. The constant multipliers on the various terms are then obtained by imposing
boundary conditions and biharmonic constraint equations.

The only objection to this procedure is that it involves a lot of algebra. For
example, in the problem of §5.2.1, we would have to write down the most general
polynomial of degree 4 and below, which involves 12 separate terms even when we
exclude the linear and constant terms as being null. However, this is not a serious
difficulty if we are using Maple or Mathematica, so we shall first develop the steps
needed for this general strategy. Shortcuts which would reduce the complexity of the
algebra in a manual calculation will then be discussed in §5.2.3.

Order of the polynomial

Suppose we have a normal traction on the surface y =56 varying with 2. In Mechanics
of Materials terms, this corresponds to a distributed load proportional to z" and
elementary equilibrium considerations show that the bending moment can then be
expected to contain a term proportional to 2. This in turn implies a bending stress
04z proportional to "2y and a term in the stress function proportional to z™+%y® —
i.e. aterm of polynomial order (n+5). A corresponding argument for shear tractions
proportional to 2™ shows that we require a polynomial order of at least (m+4).

A sufficient polynomial order can therefore be selected by the following procedure:-
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(i) Identify the highest order polynomial term n in the normal tractions oy, on the
surfaces y=d:b.

(i) Identify the highest order polynomial term m in the shear tractions o, on the
surfaces y = =%b.

(iii) Use a polynomial for ¢ including all polynomial terms oforder max(m+4, n+5)
and below, but excluding constant and linear terms.

In the special case where both surfaces y==b are traction-free, it is sufficient to use
a polynomial of 4th degree and below (as in §5.2.1).

Solution procedure

Once an appropriate polynomial has been identified for ¢, we proceed as follows:-

() Substitute ¢ into the biharmonic equation (5.1), leading to a set of constraint
equations, as in §5.1.

(ii) Substitute ¢ into equations (5.14-5.16), to obtain the stress components as
functions of z,y.

(iii) Substitute the equations defining the boundaries (e.g. £=0,y=b,y=—b in the
problem of §5.2.1) into appropriate’ stress components, to obtain the tractions
on each boundary.

(iv) For the longer boundaries (where strong boundary conditions will be enforced),
sort the resulting expressions into powers of z or y and equate coefficients with
the corresponding expression for the prescribed tractions.

(v) For the shorter boundaries, substitute the tractions into the appropriate weak
boundary conditions, obtaining three further independent algebraic equations.

The equations so obtained will generally not all be linearly independent, but they
will be sufficient to determine all the coefficients uniquely. The solvers in Maple and
Mathematica can handle this redundancy.

Example

We illustrate this procedure with the example of Figure 5.3, in which a rectangular
beam —a<z<a, ~b<y<b is loaded by a uniform compressive normal traction p on
y=>b and simply supported at the ends.

Recall from §1.1.1 that the only stress components that act on (e.g.) y =¥b are those which
contain ¥ as one of the suffices.
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Figure 5.3: Simply supported beam with a uniform load.
The boundary conditions on the surfaces y =254 can be written
Oy = 0 y===b (5.42)
Oy = —p; y=> (5.43)
oy = 0; y=-b. (5.44)

These boundary conditions are to be satisfied in the strong sense. To complete the
problem definition, we shall require three linearly independent weak boundary con-
ditions on one or both of the ends z=4a. We might use symmetry and equilibrium
to argue that the load will be equally shared between the supports, leading to the
conditions

Fz(a)=ﬁbb6¢z(a,y)dy =0 (5.45)
Fy(a)=/_bb0xy(a,y)dy = pa (5.46)
M(a)=/_bb0m(a,y)ydy =0 (5.47)

on the end z =a. As explained in §5.2.1, we do not need to enforce the additional
three weak conditions on z=—a.

The normal traction is uniform — i.e. it varies with z° (n = 0), so the above
criterion demands a polynomial of order (n + 5)=5. We therefore write

¢ = C12*+Cozy+Cay? +Caz® + Csaly+Coxy® +Cry® + Caz* + Coxy + Crox?y?
+011.’E'y3 +C12y4 + 0131175 +Cl4x4y+015x3y2 +015£C2y3 +Cl7my4 +018y5 . (548)

%It is not necessary to use symmetry arguments to obtain three linearly independent weak con-
ditions. Since the beam is simply supported, we know that

b

b b
M(a) =/_bcrm(a,y)ydy=0 ; M(~a) =/_bazz(—a,y)ydy=0 ; Fr(a) =/_b0u(a,y)dy=0-

It is easy to verify that these conditions lead to the same solution as (5.45-5.47).



58 CHAPTERS5. PROBLEMSIN RECTANGULAR COORDINATES

This is a long expression, but remember we only have to type it in once to the
computer file. We can cut and paste the expression in the solution of subsequent
problems (and the reader can indeed cut and paste from the web file ‘polynomial’).
Substituting (5.48) into the biharmonic equation (5.1), we obtain

(120013 +24C15 + 24017)1' + (24014 +24C6 + 120018)1/ + (2403 +8Ch + 24012) =0

(5.49)
and this must be zero for all z,y leading to the three constraint equations
120013 + 24015 + 24017 =0 (550)
24C 4 +24C16 +120C1s = 0 (551)
2403 + 8010 + 24C12 = 0. (552)

The stresses are obtained by substituting (5.48) into (5.14-5.16) with the result

Opz = 203+ 2Csx + 6Cry + 20101‘2 +6CyHzy + 12012y2 + 20151‘3 + 6015$2y

+12C172y* + 20C15y° (5.53)
Oy = —Cy—2053 — 2Csy — 3Cya? — 4Cgzy — 3C11y° — 4C 1z — 6C 52y

—6Cezy? — 4C17y° (6.54)
oy = 20y +6Cux+2Csy + 12032 4 6Cyzy + 2C10y% + 200323 + 12C 422y

+6C15zy? + 2C161° . (5.55)

The tractions on y=b are therefore

Oye = —4C1z® — (3Cy + 6C15b)x* — (2C5 + 4C10b + 6C160%)

~(Cy + 2Ceb + 3C11b* + 4C7b%) (5.56)
oy = 20C132° + (12Cs + 12C14b)2% 4 (6Cy + 6Cob + 6Cy b))z

+(2C, + 2Csb + +2C100* 4 2C16b°) (5.57)

and these must satisfy equations (5.42, 5.43) for all z, giving

4Cyy = 0 (5.58)

3Cs +6Cisb = 0 (5.59)

2C5 + 4C10b + 6C1sb* = 0 (5.60)

Cy + 2Csb + 3C1 6% + 4C76° = 0 (5.61)
20C;; = 0 (5.62)

12Cs +12C14b = 0 (5.63)

6Cy + 6Cob + 6C15b* = 0 (5.64)

2C + 2Csb + 2C1pb* + 2C16b* = —p. (5.65)
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A similar procedure for the edge y=—b yields the additional equations

3Cg - 60151) =0 (566)

2C5 — 4C1pb + 6C1gb*> = 0 (5.67)

Cy — 2Csb + 3C11b* — 4016 = 0 (5.68)
12Cg — 12Cb = 0 (5.69)

6Cy — 6Cob + 6C156> = 0 (5.70)

2C) — 2Csb + 200" — 2C160° = 0. (5.71)

On z=a, we have

Oze = 2034 2Csa + 6Cry + 2C00% + 6Cay + 12C10y* + 2C15a° + 6C16ay

+12017U/y2 + 200131}3 (572)
Ony = —Cy—2Csa— 2Csy — 3Cea® — 4Cypay — 3C11y° — 4C1a® — 6Cy5a’y
—6C1gay? — 4C7y° . (5.73)

Substituting into the weak conditions (5.45-5.47) and evaluating the integrals, we
obtain the three additional equations

4C3b + 405&b -+ 4010a2b + 801253 -+ 4C’15a3b + 8017(1[)3 =0 (574)
—2C2b - 4C5ab - 609(121) hnd 20111)3 — 8014a3b - 4C16ab3 = pa (575)
4Cb° + 4C)1ab* + 4C16a®h* + 8Cigb® = 0.  (5.76)

Finally, we solve equations (5.50-5.52, 5.58-5.71, 5.74-5.76) for the unknown con-
stants C, ..., C1g and substitute back into (5.48), obtaining

¢ = 4—601)—3(53:2y3 —y® — 156%z%y — 5a’y® + 267y — 106%22) | (5.77)

The corresponding stress field is

Opw = 2(%(153;2;/ — 10y® — 15a%y + 6b%) (5.78)
3px

Ory = Z{a(bz -9 (5.79)

Oy = 4—I;§(y3 — 3b%y — 26%) . (5.80)

The reader is encouraged to run the Maple or Mathematica files ‘S522°, which
contain the above solution procedure. Notice that most of the algebraic operations
are generated by quite simple and repetitive commands. These will be essentially
similar for any polynomial problem involving rectangular codrdinates, so it is a simple
matter to modify the program to cover other cases.
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5.2.3 Manual solutions — symmetry considerations

If the solution is to be obtained manually, the complexity of the algebra makes the
process time consuming and increases the likelihood of errors. Fortunately, the com-
plexity can be reduced by utilizing the natural symmetry of the rectangular beam. In
many problems, the loading has some symmetry which can be exploited in limiting
the number of independent polynomial terms and even when this is not the case,
some saving of complexity can be achieved by representing the loading as the sum of
symmetric and antisymmetric parts. We shall illustrate this procedure by repeating
the solution of the problem of Figure 5.3.

The problem is symmetrical about the mid-point of the beam and hence, taking
the origin there, we deduce that the resulting stress function will contain only even
powers of . This immediately reduces the number of terms in the general stress
function to 10.

The beam is also symmetrical about the axis y =0, but the loading is not. We
therefore decompose the problem into the two sub-problems illustrated in Figure
5.4(a,b).

DLLbbbbt  bbbbbiidd
TV FITTET

Figure 5.4: Decomposition of the problem into (a) antisymmetric and (b) symmetric
parts.

The problem in Figure 5.4(a) is anti-Symmetric in y and hence requires a stress
function with only odd powers of y, whereas that of Figure 5.4(b) is Symmetric and
requires only even powers. In fact, the problem of Figure 5.4(b) clearly has the trivial
solution corresponding to uniform uniaxial compression, oy, =—p/2, the appropriate
stress function being ¢ = -—px2/4.

For the problem of Figure 5.4(a), the most general fifth degree polynomial which
is even in £ and odd in y can be written

b = Cszy + Coy® + Craz'y + Cis2®y® + Crsy® (5.81)
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which has just five degrees of freedom. We have used the same notation for the re-
maining constants as in (5.48) to aid in comparing the two solutions. The appropriate
boundary conditions for this sub-problem are

Oy = 0; y==b (5.82)
Oy = q:g‘ ; y=b (5.83)
b
/ Gwdy = 0 z=a (5.84)
b
/_bamydy = 0; z=12a. (5.85)

Notice that, in view of the symmetry, it is only necessary to satisfy these conditions
on one of each pair of edges (e.g. on y=b,z=a). For the same reason, we do not have
to impose a condition on the vertical force at z = %a, since the symmetry demands
that the forces be equal at the two ends and the total force must be 2pa to preserve
global equilibrium, this being guaranteed by the use of the Airy stress function, as in
the problem of §5.2.1.

It is usually better strategy to start a manual solution with the strong bound-
ary conditions (equations (5.82, 5.83)), and in particular with those conditions that
are homogeneous (in this case equation (5.82)), since these will often require that
one or more of the constants be zero, reducing the complexity of subsequent steps.
Substituting (5.81) into (5.15, 5.16), we find

ony = —2C5z —4C1uz’ — 6Cizy? (5.86)
Oy = 2Csy+ 12C1zy + 2C16y° . (5.87)
Thus, condition (5.82) requires that
4C4z% + (2C5 + 6C1b*)z = 0 ; for all z (5.88)
and this condition is satisfied if and only if

Ci4=0 and 2C5+6C1eb*> =0. (5.89)

A similar procedure with equation (5.87) and boundary condition (5.83) gives the
additional equation

2Csb + 2C16b° = —g : (5.90)
Equations (5.89, 5.90) have the solution
3p p
Cy % Cis 03 (5.91)

We next determine Cig from the condition that the function ¢ is biharmonic,

obtaining
(24C14 +24C16 + 120018)y =0 (592)
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and hence

___P
Cis = ~ 3o » (5.93)

from (5.89, 5.91, 5.92).

It remains to satisfy the two weak boundary conditions (5.84, 5.85) on the ends
x==a. The first of these is satisfied identically in view of the antisymmetry of the
stress field and the second gives the equation

4C7b* + 4Ca®b® + 8C1gb° = 0, (5.94)
which, with equations (5.91, 5.93), serves to determine the remaining constant,

p(20% — 5a?)

T

(5.95)
The final solution of the complete problem (the sum of that for Figures 5.4(a) and
(b)) is therefore obtained from the stress function

¢ = ﬁ(sxzyf‘ — 5 — 15b%%y — 5aZy® + 2b%® — 106%22) (5.96)
as in the ‘computer solution’ (5.77), and the stresses are therefore given by (5.78-5.80)
as before.

5.3 Fourier series and transform solutions

Polynomial solutions can, in principle, be extended to more general loading of the
beam edges, as long as the tractions are capable of a power series expansion. However,
the practical use of this method is limited by the algebraic complexity encountered for
higher order polynomials and by the fact that many important traction distributions
do not have convergent power series representations.

A more useful method in such cases is to build up a general solution by components
of Fourier form. For example, if we write

¢ = f(y)cos(Az) or ¢ = f(y)sin{Az), (5.97)

substitution in the biharmonic equation (5.1) shows that f(y) must have the general
form

f(w) = (A+ By)e¥ + (C + Dy)e™ , (5.98)
where A, B, C, D are arbitrary constants. Alternatively, by defining new arbitrary
constants A’, B’,C’, D’ through the relations A= A'+C’', B=B'+D', C = A" -
C', D=B'-D', we can group the exponentials into hyperbolic functions, obtaining
the equivalent form

fy) = (A" + B'y) cosh(Ay) + (C" + D'y) sinh(Ny) . (5.99)
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The hyperbolic form enables us to take advantage of any symmetry about y = 0,
since cosh(Ay),ysinh(Ay) are even functions of y and sinh()y),ycosh(Ay) are odd
functions.

More general biharmonic stress functions can be constructed by superposition of
terms like (5.98, 5.99), leading to Fourier series expansions for the tractions on the
surfaces y = +b. The theory of Fourier series can then be used to determine the
coefficients in the series, using strong boundary conditions on y ==b. Quite general
traction distributions can be expanded in this way, so Fourier series solutions provide
a methodology applicable to any problem for the rectangular bar.

5.3.1 Choice of form

The stresses due to the stress function ¢ = f(y) cos(Az) are
Gux = =N f(y) cOS(\E) 3 Oy = AF'(8)5in(\2) ; 03y = f"(y) cos(Aa)  (5.100)
and the tractions on the edge z=a are

oez(a,y) = —A2f(y) cos(Aa) ; azy(a,y) = Af'(y)sin(Aa) . (5.101)

It follows that we can satisfy homogeneous boundary conditions on one (but not both)
of these tractions in the strong sense, by restricting the Fourier series to specific values
of A. In equation (5.101), the choice A =nn/a willgive oy, = 0on z = xa, whilst
A=(2n — 1)rr/2a willgive 0,, =0 on x=xa, where n is any integer.

Example

We illustrate this technique by considering the rectangular beam —a <z <a, —b<
y < b, simply supported at z==a and loaded by compressive normal tractions p;(z)
on the upper edge y=> and pz(z) on y=—b — i.e.

Oy = 0; y==b (5.102)
oy = —plz) ; y=>b (5.103)

= —palz) ; y=-b (5.104)
Oz = 0 z==a. (5.105)

Notice that we have replaced the weak conditions (5.84, 5.85) by the strong condition
(5.105). As in §5.2.2, it is not necessary to enforce the remaining weak conditions
(those involving the vertical forces on z=da), since these will be identically satisfied
by virtue of the equilibrium condition.

The algebraic complexity of the problem will be reduced if we use the geometric
symmetry of the beam to decompose the problem into four sub-problems. For this
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purpose, we define

M

fi(z) = fi(—z) %{m(ﬁ?) + pi(—2) + pa(x) + po(—2)} (5.106)
fo(z) = — f2(~2) %{pl(x) —p1(=2) + pa(z) — pa(—2)} (5.107)
fa(z) = fs(-2) = i{l’l(ﬂl) + pi(—z) — pa(z) — po(—2x)} (5.108)

fa(z) = —fa(-2) zll-{pl(x) —pi(—z) — p2(z) + pa(—2)} (5.109)
(5.110)

il

it

and hence

pi(z) = fi(x)+ fo(2) + fa(z) + fa(x) 5 pa(2) = fi(2)+ fo(z) — fa(z) = falz) . (5.111)

The boundary conditions now take the form

Oy = 0; y==b (6.112)
o = —filz) = falz) = fa(2) — falz) 5 y=0 (5.113)

= —fi(z) - falz) + fa(z) + fa(z) 5 y=-b (5.114)
Oz = 0 ; z=2a (5.115)

and each of the functions fi, fa, f3, f4 defines a separate problem with either symmetry
or antisymmetry about the z- and y-axes. We shall here restrict attention to the
loading defined by the function f3{x), which is symmetric in x and antisymmetric in
y. The boundary conditions of this sub-problem are

Ogy = 0; y=:£b (5.116)
oy = Ffas(z) ; y==b (5.117)
O = 0; z=1=%a. (5.118)

The problem of equations (5.116-5.118) is even in z and odd in y, so we use a
cosine series in x with only the odd terms from the hyperbolic form (5.99) — i.e.

¢ = i{Any cosh(A\,y) + By sinh{A,y)} cos(A,2) , (5.119)

n=1

where A,, B, are arbitrary constants. The strong condition (5.118) on x = %a can
then be satisfied in every term by choosing

(2n - D)7

A, =
" 2a

(5.120)
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The corresponding stresses are

Opz = 9_{2AnAnsinh(Any) + A, A2y cosh(Any) + By AZ sinh(A,y) } cos(Anz) (5.121)

n:l

0wy = I {Anhycosh(My)+ A A2y sinh(Any) + Bu A2 cosh (Any) } sin(A,z)  (5.122)
n—l

Oy = Z{A My cosh(Ay) + BpA2 sinh(Ay)} cos(Aaz) (5.123)

and hence the boundary conditions (5.116, 5.117) on y==b require that

S {AnA, cosh(Anb) + Ap A2bsinh(A,b) + B, A2 cosh(A,b) } sin(Anz) = 0 (5.124)

n=1

i

oo
S~ {ApAZbcosh(And)+ B, A2 sinh(A,0)} cos(Anz)

n=1

f3(z) .(5.125)

To invert the series, we multiply (5.125) by cos(A,z) and integrate from —a to a,
obtaining

T " {AuX2bcosh(Aib) -+ B, 22 sinh(A,5)) cos(Az) cos(Amz)da
= fs()cos( z)dz . (5.126)

The integrals on the left hand side are all zero except for the case m=n and hence,
evaluating the integrals, we find

{AmAZbcosh(Amb) + B2, sinh(Amb)}a = / " f(@) cosAmz)dz . (5.127)
The homogeneous equation (5.124) is clearly satisfied if
A cosh(Anb) + A A2 bsinh(Anb) + By A2, cosh(A,0) =0 . (5.128)

Solving (5.127, 5.128) for A, By, we have

B cosh(A,b) a
Am = Db = sinh (b cosh (i b}/ fs(z) cos(Amz)dz
(cosh(Anb) + Apbsinh(A,b))
B = 732 anb — simh(Anb) cosh(} b}/_af3 (2) cos(Ama)dz ;- (5.129)

where A, is given by (5.120). The stresses are then recovered by substitution into
equations (5.121-5.123).

The corresponding solutions for the functions fi, f2, f4+ are obtained in a sim-
ilar way, but using a sine series for the odd functions fy, f4 and the even terms
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ysinh(\y), cosh(\y) in ¢ for fi, fo. The complete solution is then obtained by super-
posing the solutions of the four sub-problems.

The Fourier series method is particularly useful in problems where the traction
distribution on the long edges has no power series expansion, typically because of
discontinuities in the loading. For example, suppose the beam is loaded only by a
concentrated compressive force F on the upper edge at x =0, corresponding to the
loading p;(z) = Fé(z), pa(z) = 0. For the symmetric/antisymmetric sub-problem
considered above, we then have

Fé(z)

fa(z) = 1 (5.130)

from (5.108) and the integral in equations (5.129) is therefore

a
/ fa(z) cos(Apz)dz = % : (5.131)

—Q
This solution satisfies the end condition on o, in the strong sense, but the con-
dition on o4y, only in the weak sense. In other words, the tractions ., on the ends
add up to the forces required to maintain equilibrium, but we have no control over
the exact distribution of these tractions. This represents an improvement over the
polynomial solution of §5.2.3, where weak conditions were used for both end tractions,
so we might be tempted to use a Fourier series even for problems with continuous
polynomial loading. However, this improvement is made at the cost of an infinite
series solution. If the series were truncated at a finite value of n, errors would be

obtained particularly near the ends or any discontinuities in the loading.

5.3.2 Fourier transforms

If the beam is infinite or semi-infinite (@ — 00), the series (5.119) must be replaced
by the integral representation

é(z,y) = /000 f(Ay) cos(Az)dA (5.132)
where
F(Ny) = A(AN)y cosh(Ay) + B()) sinh(Ay) . (5.133)

Equation (5.132) is introduced here as a generalization of (5.97) by superposition, but
é(x,y) is in fact the Fourier cosine transform of f(),y), the corresponding inversion
being

fhy) = %/Ooo o(z,y) cos(Az)dz . (5.134)

The boundary conditions on y = +b will also lead to Fourier integrals, which can
be inverted in the same way to determine the functions A(A), B(A). For a definitive



PROBLEMS 67

treatment of the Fourier transform method, the reader is referred to the treatise by
Sneddon’. Extensive tables of Fourier transforms and their inversions are given by
Erdelyi’. The cosine transform (5.132) will lead to a symmetric solution. For more
general loading, the complex exponential transform can be used.

It is worth remarking on the way in which the series and transform solutions are
natural generalizations of the elementary solution (5.97). One of the most powerful
techniques in Elasticity — and indeed in any physical theory characterized by linear
partial differential equations — is to seek a simple form of solution (often in separated-
variable form) containing a parameter which can take a range of values. A more
general solution can then be developed by superposing arbitrary multiples of the
solution with different values of the parameter.

For example, if a particular solution can be written symbolically as ¢= f(z,y, A),
where A is a parameter, we can develop a general series form

oo

i=0
or an integral form
b
s(z9)= [ AN f(,y, Nax. (5.136)

The series form will naturally arise if there is a discrete set of eigenvalues, X; for
which f(z, vy, A;) satisfies some of the boundary conditions of the problem. Additional
examples of this kind will be found in §§6.2, 11.2. In this case, the series (5.135) is most
properly seen as an eigenfunction expansion. Integral forms arise most commonly
(but not exclusively) in problems involving infinite or semi-infinite domains (see, for
example, §§11.3,27.2.2.).

Any particular solution containing a parameter can be used in this way and, since
transforms are commonly named after their originators, the reader desirous of instant
immortality might like to explore some of those which have not so far been used. Of
course, the usefulness of the resulting solution depends upon its completeness — i.e.
its capacity to represent all stress fields of a given class — and upon the ease with
which the transform can be inverted.

PROBLEMS

1. The beam —b <y <b, 0 <z < L, is built-in at the end z =0 and loaded by a
uniform shear traction o, =.S on the upper edge, y = b, the remaining edges, z =
L, y=—b& being traction-free. Find a suitable stress function and the corresponding
stress components for this problem, using the weak boundary conditions on z=L.

3].N.Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.
“A.Erdelyi, ed., Tables of Integral Transforms, Bateman Manuscript Project, California Institute
of Technology, Vol.1, McGraw-Hill, New York, 1954.
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2. The beam —b<y<b,~L <z < L is simply supported at the ends z ==L and
loaded by a shear traction o, =Sz/L on the lower edge, y = —b, the upper edge being
traction-free. Find a suitable stress function and the corresponding stress components
for this problem, using the weak boundary conditions on z=+L.

3. The beam —b<y<b, 0<z< L, is built-in at the end £ = L and loaded by a
linearly-varying compressive normal traction p(z) = Sz/L on the upper edge, y =b,
the remaining edges, =0, y=—b being traction-free. Find a suitable stress function
and the corresponding stress components for this problem, using the weak boundary
conditions on z={0.

4. The beam —b <y <b, —L <z < L is simply supported at the ends z =L and
loaded by a compressive normal traction

p(z) = Scos (-72%)

on the upper edge, ¥ =5, the lower edge being traction-free. Find a suitable stress
function and the corresponding stress components for this problem.

5. The beam —b <y <b, 0 <z < L, is built-in at the end 2 = L and loaded by a
compressive normal traction

p(z) = Ssin (%)

on the upper edge, y=">0, the remaining edges, =0, y=—b being traction-free. Use
a combination of the stress function (5.97) and an appropriate polynomial to find the
stress components for this problem, using the weak boundary conditions on z=0.

6. A large plate defined by y> 0 is subjected to a sinusoidally varying load
Oy = SsinAz ; 04y =0

at its plane edge y = 0.

Find the complete stress field in the plate and hence estimate the depth y at which
the amplitude of the variation in oy, has fallen to 10% of S

Hint: You might find it easier initially to consider the case of the layer 0 <y <h,
with y=h traction-free, and then let A — oo.

7. The beam —a <z <a,~b<y<b is loaded by a uniform compressive traction p in
the central region —a/2 <z < a/2 of both of the edges y = +b, as shown in Figure
5.5. The remaining edges are traction-free. Use a Fourier series with the appropriate
symmetries to obtain a solution for the stress field, using the weak condition on oy,
on the edges =da and the strong form of all the remaining boundary conditions.
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Figure 5.5

8. Use a Fourier series to solve the problem of Figure 5.4(a) in §5.2.3. Choose the
terms in the series so as to satisfy the condition o,;(+a,y)=0 in the strong sense.

If you are solving this problem in Maple or Mathematica, compare the solution
with that of §5.2.3 by making a contour plot of the difference between the truncated
Fourier series stress function and the polynomial stress function

p

= m(5m2y3 — 3y — 150%2%y — 5aly® + 2b%°) .

¢

Examine the effect of taking different numbers of terms in the series.

9. The large plate y >0 is loaded at its remote boundaries so as to produce a state
of uniform tensile stress
Oz =S § Oy =0y =0,

the boundary y =0 being traction-free. We now wish to determine the perturbation
in this simple state of stress that will be produced if the traction-free boundary had
a slight waviness, defined by the line

y = ecos(Az) ,
where Ae < 1. To solve this problem

(i) Start with the stress function

¢ = —— + f(y) cos(Ax)

and determine f(y) if the function is to be biharmonic.

(i) The perturbation will be localized near y=0, so select only those terms in f(y)
that decay as y — 00.
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(iii) Find the stress components and use the stress transformation equations to de-
termine the tractions on the wavy boundary. Notice that the inclination of
the wavy surface to the plane y = 0 will be everywhere small if Ae <« 1 and
hence the trigonometric functions involving this angle can be approximated
using sin(z) =z, cos(z) =1,z 1.

(iv) Choose the free constants in f(y) to satisfy the traction-free boundary condition
on the wavy surface.

(v) Determine the maximum tensile stress and hence the stress concentration factor
as a function of \e.
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END EFFECTS

The solution of §5.2.2 must be deemed approximate insofar as the boundary conditions
on the ends z = *a of the rectangular beam are satisfied only in the weak sense of
force resultants, through equation (5.45-5.47). In general, if a rectangular beam is
loaded by tractions of finite polynomial form, a finite polynomial solution can be
obtained which satisfies the boundary conditions in the strong (i.e. pointwise) sense
on two edges and in the weak sense on the other two edges.

The error involved in such an approximation corresponds to the solution of a
corrective problem in which the beam is loaded by the difference between the actual
tractions applied and those implied by the approximation. These tractions will of
course be confined to the edges on which the weak boundary conditions were applied
and will be self-equilibrated, since the weak conditions imply that the tractions in
the approximate solution have the same force resultants as the actual tractions.

For the particular problem of §5.2.2, we note that the stress field of equations
(5.78-5.80) satisfies the boundary conditions on the edges y ==b, but that there is a
self-equilibrated normal traction

P (302 - 5y%) (6.1)

Tz = 1053

on the ends z = £a, which must be removed by superposing a corrective solution if
we wish to satisfy the boundary conditions of Figure 5.3 in the strong sense.

6.1 Decaying solutions

In view of Saint-Venant’s theorem, we anticipate that the stresses in the corrective
solution will decay as we move away from the edges where the self-equilibrated trac-
tions are applied. The decay rate is likely to be related to the width of the loaded
region and hence we anticipate that the stresses in the corrective solution will be
significant only in two regions near the ends, of linear dimensions comparable to the
width of the beam. These regions are, shown shaded in Figure 6.1. It follows that
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the solution of §5.2.2 will be a good approximation in the unshaded region in Figure

Db

pra a

[

Figure 6.1: Regions of the beam influenced by end effects.

It also follows that the corrective solutions for the two ends are uncoupled, since
the corrective field for the end z = —a has decayed to negligible proportions before
we reach the end z = +a and vice versa. This implies that, so far as the left end
is concerned, the corrective solution is essentially identical to that which would be
required in the semi-infinite beam, z > —a. For the rest of this discussion, we shall
therefore simplify the statement of the problem by considering the corrective solution
for the left end only and shifting the origin to —a, so that the semi-infinite beam
under consideration is defined by >0, —b<y<b.

It is also now clear why we chose to satisfy the strong boundary conditions on the
long edges, y=:b. If instead we had imposed strong conditions on z==+a and weak
conditions on y = b, the shaded regions would have overlapped and there would be
no region in which the finite polynomial solution was a good approximation to the
stresses in the beam. It also follows that the approximation will only be useful when
the beam has an aspect ratio significantly different from unity — i.e. b/a>>1.

6.2 The corrective solution

We recall that the stress function, ¢, for the corrective solution must (i) satisfy the
biharmonic equation (5.1), (ii) have zero tractions on the boundaries y==+b and (iii)
have prescribed non-zero tractions (such as those defined by equation (6.1)) on the
end(s). We cannot generally expect to find a solution to satisfy all these conditions in
closed form and hence we seek a series or transform (integral) solution as suggested
in §5.3. However, the solution will be simpler if we can find a class of solutions, all of
which satisfy some of the conditions. We can then write down a more general solution
as a superposition of such solutions and choose the coefficients so as to satisfy the
remaining condition(s).

Since the traction boundary condition on the end will vary from problem to prob-
lem, it is convenient to seek solutions which satisfy (i) and (ii) — i.e. biharmonic



6.2. THE CORRECTIVE SOLUTION 73

functions which define zero tractions on the surfaces y==b. The traction-free condi-
tion requires

Oy =0y =0 y==b (6.2)
and hence 82q5 62¢
o ~daoy 0 VT E (63)

6.2.1 Separated-variable solutions

One way to obtain functions satisfying conditions (6.3) is to write them in the
separated-variable form

¢ = flz)g(y), (6.4)
in which case, (6.3) will be satisfied for all X, provided that
gy)=gy)=0; y==b. (6.5)

Notice that the final corrective solution cannot be expected to be of separated-
variable form, but it is possible that it can be represented as the sum of such terms.
If the functions (6.4) are to be biharmonic, we must have

dt d*f d*g d*

2L Pl e

dz dx? dy? dy
and this equation must be satisfied for all values of z, 3. Now, if we consider the subset
of points x, ¢, where ¢ is a constant, it is clear that f(z) must satisfy an equation of

the form o f 2
& P
where A, B, C, are constants, and hence f(x) must consist of exponential terms such
as f(z) = exp(Az). Similar considerations apply to the function g(y). Notice inci-
dentally that A might be complex or imaginary, giving sinusoidal functions, and there
are also degenerate cases where C and/or B =0 in which case f(z) could also be a
polynomial of degree 3 or below.
Since we are seeking to represent a field which decays with x, we select terms of
the form

(6.6)

A= +Cf=0, (6.7)

¢ =gly)e ™, (6.8)
in which case, (6.6) reduces to
d* d%g
d~j+2x2d2 FMg=0, (6.9)

which is a fourth order ordinary differential equation for g(y) with general solution

9(y) = (A1 + Agy) cos(Ay) + (As + Agy) sin(Xy) . (6.10)
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6.2.2 The eigenvalue problem

The arbitrary constants A;, Ay, As, A4 are determined from the boundary conditions
(6.2), which in view of (6.5) lead to the four simultaneous equations

(A; + Agb) cos(Ab) + (As + Agy)sin(Ab) = 0 (6.11)
(A; — Ayb) cos(Ab) — (A3 — Agy)sin(Ab) = 0 (6.12)
(Ag + Az + AgAb) cos(Ab) — (A ) + Agdb — Ag)sin(Ab) = 0 (6.13)
(A + Agh — AgAb) cos(Ab) + (A1 N — AgAb — Ay)(sinAb) = 0. (6.14)

This set of equations is homogeneous and will generally have only the trivial solu-
tion A; = Ay = A3 = A, =0. However, there are some eigenvalues for the exponential
decay rate, A, for which the determinant of coefficients is singular and the solution is
non-trivial.

A more convenient form of the equations can be obtained by taking sums and dif-
ferences in pairs — i.e. by constructing the equations (6.11+6.12), (6.11-6.12), (6.13+
6.14), (6.13 — 6.14), which after rearrangement and cancellation of non-zero factors
yields the set

Aj cos(Ab) + Agbsin(Ab) = 0 (6.15)
A dsin(Ab) — A4{sin(Ab) + Ab(cos(Ab)} = 0 (6.16)
Agbcos(Ab) + Agsin(Ab) = 0 (6.17)
Ag{cos(Ab) — Absin{Ab)} + AzAcos(Ab) = 0. (6.18)

What we have done here is to use the symmetry of the system to partition the
matrix of coefficients. The terms A;cos(\y), Asysin(Ay) are symmetric, whereas
Agycos(Ay), Assin(Ay) are antisymmetric. The boundary conditions are also sym-
metric and hence the symmetric and antisymmetric terms must Separately satisfy
them.

We conclude that the set of equations (6.15-6.18) has two sets of eigenvalues, for
one of which the resulting eigenfunction is symmetric and the other antisymmetric.
The symmetric eigenvalues are obtained by eliminating A,, A4 from (6.15, 6.16) with
the result

sin(2Ab) + 200 =0, (6.19)

whilst the antisymmetric eigenvalues are obtained in the same way from (6.17, 6.18)
with the result
sin(2X0) —2Xb =0 . (6.20)

Figure 6.2 demonstrates graphically that the only real solution of equations (6.19,
6.20) is the trivial case A=0 (which in fact corresponds to the non-decaying solutions
in which a force or moment resultant is applied at the end and transmitted along the
beam).
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xr=2Ab

\\\—2 Xb

Figure 6.2: Graphical solution of equations (6.19, 6.20).

However, there is a denumerably infinite set of non-trivial complex solutions, cor-
responding to stress fields which oscillate whilst decaying along the beam. These
solutions are fairly easy to find by writing Ab=c + d, separating real and imaginary
parts in the complex equation, and solving the resulting two simultaneous equations
for the real numbers, C, d, using a suitable numerical algorithm.

Once the eigenvalues and the related eigenfunctions have been determined, the
next stage is to establish a more general solution of the form

6= Cigly)e™* | (6.21)
1=1

where g;(y) is the eigenfunction corresponding to the eigenvalue A; and C; defines a
set of as yet undetermined coefficients.

The final step is to choose the constants C; so as to satisfy the prescribed boundary
condition on the end z =0. This raises a question of completeness. It is fairly clear
that (i) if we truncate the series (6.21), we can develop an approximate solution to
the problem and (ii) that the accuracy of the solution (however defined) can always
be improved by taking more terms. In particular cases, this is easily established
numerically. However, it is more challenging to prove that the eigenfunction expansion
is complete in the sense that any prescribed self-equilibrated traction on z =0 can
be described to within an arbitrarily small accuracy by taking a sufficient number of
terms in the series, though experience with other eigenfunction expansions (e.g. with
expansion of elastodynamic states of a structure in terms of normal modes) suggests
that this will always be true. In fact, although the analysis described in this section
has been known since the investigations by Papkovich and Fadle in the early 1940s,
the formal proof of completeness was only completed by Gregory' in 1980.

R.D.Gregory, Green’s functions, bi-linear forms and completeness of the eigenfunctions for the
elastostatic strip and wedge, J.Elasticity. Vol. 9 (1979), 283-309; R.D.Gregory, The semi-infinite
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It is worth noting that, as in many related problems, the eigenfunctions oscillate
in y with increasing frequency as J; increases and in fact every time we increase ¢ by
1, an extra zero appears in the function g¢;(y) in the range 0 <y <b. Thus, there is a
certain similarity to the process of approximating functions by Fourier series and in
particular, the residual error in case of truncation will always cross zero once more
than the last eigenfunction included.

This is also helpful in that it enables us to estimate the decay rate of the first
excluded term. We see from equation (6.10) that the distance between zeros in y in
any of the separate terms would be (7/Ag), where Ag is the real part of A. Itfollows
that over a corresponding distance in the = direction, the field would decay by the
factor exp(—n) = 0.0432. This suggests that we might estimate the decay rate of
the end field by noting the distance between zeros in the corresponding tractions’.
For example, the traction of equation (6.1) has zeros at y =0, 3b/5, corresponding to
Ar=(57/3b)=5.23/b.

An alternative way of estimating the decay rate is to note that the decay rate for
the various terms in (6.21) increases with ¢ and hence as z increases, the leading term
will tend to predominate. The tractions of (6.1) are antisymmetric and hence the
leading term corresponds to the real part of the first eigenvalue of equation (6.20),
which is found numerically to be Agb=3.7.

Either way, we can conclude that the error associated with the end tractions in
the approximate solution of §5.2.2 has decayed to around e, i.e. to about 2% of the
values at the end, within a distance b of the end. Thus the region affected by the end
condition — the shaded region in Figure 6.1 — is quite small.

(a) ®)

Figure 6.3: Leading term in self-equilibrated tractions for (a) symmetric loading
and (b) antisymmetric loading.

strip £ >0, —1 <y <1; completeness of the Papkovich-Fadle eigenfunctions when ¢z (0, ¥), ¢yy(0,y)
are prescribed, J.Elasticity, Vol. 10 (1980), 57-80; R.D.Gregory, The traction boundary value prob-
lem for the elastostatic semi-infinite strip; existence of solution and completeness of the Papkovich-
Fadle eigenfunctions, J.Elasticity, Vol. 10 (1980), 295-327. These papers also include extensive
references to earlier investigations of the problem.

This assumes that the wavelength of the tractions is the same as that of ¢, which of course is
an approximation, since neither function is purely sinusoidal.
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For problems which are symmetric in ¥, the leading self-equilibrated term is likely
to have the form of Figure 6.3(a), which has a longer wavelength than the correspond-
ing antisymmetric form, 6.3(b). The end effects in symmetric problems therefore decay
more slowly and this is confirmed by the fact that the real part of the first eigenvalue
of the symmetric equation (6.19) is only Agb=2.1.

6.3 Other Saint-Venant problems

The general strategy used in this chapter can be used in other curvilinear codrdinate
systems to correct the errors incurred by imposing the weak boundary conditions on
appropriate edges. The essential steps are:-

(i) Define a codrdinate system (&, n) such that the boundaries on which the strong
conditions are applied are of the form, n=constant.

(ii) Find a class of separated-variable biharmonic functions containing a parameter
(A in the above case).

(iii) Set up a system of four homogeneous equations for the coefficients of each
function, based on the four traction-free boundary conditions for the corrective
solution on the edges n=constant.

(iv) Find the eigenvalues of the parameter for which the system has a non-trivial
solution and the corresponding eigenfunctions, which are then used as the terms
in an eigenfunction expansion to define a general form for the corrective field.

(v) Determine the coefficients in the eigenfunction expansion from the prescribed
inhomogeneous boundary conditions on the end ¢ =constant.

PROBLEMS

1. Show that if {=z+y and sin(¢)—( =0, where x,y are real variables, then

f(z) = coszy/z? —sin*z + sinz In(sinz) — sinzIn (ac + /2% — sin® :c) =0.

Using Maple or Mathematica to plot the function f(z), find the first six roots of this
equation and hence determine the first six values of Agb for the antisymmetric mode.

2. Devise a method similar to that outlined in Problem 6.1 to determine the first six
values of Agb for the symmetric mode.
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3. A displacement function representation for plane strain problems can be developed?
in terms of two harmonic functions ¢, w in the form

_0¢ Ow _0¢ ow
2pu, = Br +y8w ; 2uuy = By + By (3 —dv)w

8%  ow Ow 8¢ &w Ow
e = gtV Wy = goar F Vo, T T Mg,
0% 0*w Ow
O'yy—— 6—y7+y5§5—2(1—l/)-a-§.

Use this representation to formulate the eigenvalue problem of the long strip z >
0, —b <y <b whose edges y==xb are both bonded to a rigid body. Find the eigenvalue
equation for symmetric and antisymmetric modes and comment on the expected decay
rates for loading of the strip on the end z=0.

4. Use the displacement function representation of Problem 6.3 to formulate the
eigenvalue problem for the long strip > 0,—b < y < b whose edges y = +b are
in frictionless contact with a rigid body (so that the normal displacement is zero,
but the frictional (tangential) traction is zero). Find the eigenvalue equation for
symmetric and antisymmetric modes and comment on the expected decay rates for
loading of the strip on the end z=0.

5. Use the displacement function representation of Problem 6.3 to formulate the
eigenvalue problem for the long strip z > 0, —b < y < b which is bonded to a rigid
surface at y = —b, the other long edge y = b being traction-free. Notice that this
problem is not symmetrical, so the problem will not partition into symmetric and
antisymmetric modes.

3This solution is a two-dimensional version of a three-dimensional solution developed in Chapter
19 and tabulated in Table 19.1 as solutions A and B.
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BODY FORCES

A body forceis defined as one which acts directly on the interior particles of the body,
rather than on the boundary. Since the interior of the body is not accessible, it follows
necessarily that body forces can only be produced by some kind of physical process
which acts ‘at a distance’. The commonest examples are forces due to gravity and
magnetic or electrostatic attraction. In addition, we can formulate elasticity problems
for accelerating bodies in terms of body forces, using D’Alembert’s principle (see
§7.2.2 below).

7.1 Stress function formulation

We noted in §4.4 that the Airy stress function formulation satisfies the equilibrium
equations if and only if the body forces are identically zero, but the method can be
extended to the case of non-zero body forces provided the latter can be expressed as
the gradient of a scalar potential, V.

We adopt the new definitions

82
82
%
0-1"1/ - - —amay 3 (7.3)

in which case the two-dimensional equilibrium equations will be satisfied provided

ov oV

__9v _ 9 4
Pz 5 0 P By’ (7.4)

ie.
p=-~-VV. (7.5)
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Notice that the body force potential V appears in the definitions of the two normal
stress components oz, oy, (7.1, 7.2), but not in the shear stress o, (7.3). Thus, the
modification in these equations is equivalent to the addition of a biaxial hydrostatic
tension of magnitude V, which is of course invariant under codrdinate transformation
(see §1.1.3).

7.1.1 Conservative vector fields

If a force field is capable of being represented as the gradient of a scalar potential,
as in equation (7.5), it is referred to as conservative. This terminology arises from
gravitational theory, since if we move a particle around in a gravitational field and if
the force on the particle varies with position, the principle of conservation of energy
demands that the work done in moving the particle from point A to point B should be
path-independent — or equivalently, the work done in moving it around a closed path
should be zero. If this were not the case, we could choose a direction for the particle
to move around the path which would release energy and hence have an inexhaustible
source of energy.

If all such integrals are path-independent, we can use the work done in bringing
a particle from infinity to a given point as the definition of a unique local potential.
Then, by equating the work done in an infinitesimal motion to the corresponding
change in potential energy, we can show that the local force is proportional to the
gradient of the potential, thus demonstrating that a conservative force field must
be capable of a representation like (7.5). Conversely, if a given force field can be
represented in this form, we can show by integration that the work done in moving a
particle from A to B is proportional to V(A)-V(B) and is therefore path-independent.

Not all body force fields are conservative and hence the formulation of §7.1 is not
sufficiently general for all problems. However, we shall show below that most of the
important problems involving body forces can be so treated.

We can develop a condition for a vector field to be conservative in the same way
as we developed the compatibility conditions for strains. We argue that the two
independent body force components p.,p, are defined in terms of a single scalar
potential V and hence we can obtain a constraint equation on pg, p, by eliminating
V between equations (7.4) with the result

Opy  Ops _
Oz Jy

In three dimensions there are three equations like (7.6), from which we conclude
that a vector field pis conservative if and only if curl p=0. Another name for such
fields is irrotational, since we note that if we replace p by u, the conditions like (7.6)
are equivalent to the statement that the rotation w is identically zero (c¢f equation
(1.40)).

If the body force field satisfies equation (7.6), the corresponding potential can be
recovered by partial integration. We shall illustrate this procedure in §7.2 below.

(7.6)
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7.1.2 The compatibility condition

We demonstrated in §4.4.3 that, in the absence of body forces, the compatibility
condition reduces to the requirement that the Airy stress function ¢ be biharmonic.
This condition is modified when body forces are present.

We follow the same procedure as in §4.4.3, but use equations (7.1-7.3) in place
of (4.1). Substituting into the compatibility equation in terms of stresses (4.4), we
obtain

o' 0OV o' o*v ¢
ayt + oyr V@xQByQ Y Oy? +21+v) dx20y?

o'¢ OV o' O*V

hiihg — — = 7.7
Ozt + Ox? V8x26y2 Y oa? 0, (7.7)

-+

ie.
Vip=—(1-v)VV. (7.8)
Methods of obtaining suitable functions which satisfy this equation will be dis-
cussed in §7.3 below.

7.2 Particular cases

It is worth noting that the vast majority of mechanical engineering components are
loaded principally by boundary tractions rather than body forces. Of course, most
components are subject to gravity loading, but the boundary loads are generally
so much larger that gravity can be neglected. This is less true for civil engineering
structures such as buildings, where the self-weight of the structure may be much larger
than the weight of the contents or wind loads, but even in this case it is important
to distinguish between the gravity loading on the individual component and that
transmitted to the component by way of boundary tractions.

It might be instructive at this point for the reader to draw free-body diagrams for a
few common engineering components and identify the sources and relative magnitudes
of the forces acting upon them. There are really comparatively few ways of applying
a load to a body. By far the commonest is to push against it with another body —
in other words to apply the load by contact. This is why contact problems occupy
a central place in elasticity theory'. Significant loads may also be applied by fluid
pressure as in the case of turbine blades or aircraft wings. Notice that it is fairly easy
to apply a compressive normal traction to a boundary, but much harder to apply
tension or shear.

This preamble might be taken as a justification for not studying the subject of
body forces at all, but there are a few applications in which they are of critical
importance, most notably those dynamic problems in which large accelerations occur.

'See Chapters 12, 26.
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We shall develop expressions for the body force potential for some important cases in
the following sections.

7.2.1 Gravitational loading

The simplest type of body force loading is that due to a gravitational field. If the
problem is to remain two-dimensional, the direction of the gravitational force must
lie in the zy-plane and we can choose it to be in the negative y-direction without loss
of generality. The magnitude of the force will be pg per unit volume, where p is the
density of the material, so in the notation of §2.1 we have

p=0; py=—pg. (7.9)

This force field clearly satisfies condition (7.6) and is therefore conservative and
by inspection we note that it can be derived from the body force potential

V =pgy . (7.10)

It also follows that V2V =0 and hence the stress function, ¢ for problems involving
gravitational loading is biharmonic, from (7.6).

7.2.2 Inertia forces

It might be argued that D’Alembert achieved immortality simply by moving a term
from one side of an equation to the other, since D’ Alembert’s principle consists merely
of writing Newton’s second law of motion in the form F'—ma =0 and treating the
term —ma as a fictitious force in order to reduce the dynamic problem to one in
statics.

This simple process enables us to formulate elasticity problems for accelerating
bodies as elastostatic body force problems, the corresponding body forces being

Pe = —pPaz ; Py = —pPay , (7'11)

where aq, a, are the local components of acceleration, which may of course vary with
position through the body.

7.2.3 Quasi-static problems

If the body were rigid, the accelerations of equation (7.11) would be restricted to those
associated with rigid-body translation and rotation, but in a deformable body, the
distance between two points can change, giving rise to additional, stress-dependent
terms in the accelerations.

These two effects give qualitatively distinct behaviour, both mathematically and
physically. In the former case, the accelerations will generally be defined a priori
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from the kinematics of the problem, which therefore reduces to an elasticity problem
with body forces. We shall refer to such problems as quasi-static.

By contrast, when the accelerations associated with deformations are important,
they are not known a priori, since the stresses producing the deformations are them-
selves part of the solution. In this case the kinematic and elastic problems are cou-
pled and must be solved together. The resulting equations are those governing the
propagation of elastic waves through a solid body and their study is known as Elas-
todynamics.

In this chapter, we shall restrict attention to quasi-static problems. As a practical
point, we note that the characteristic time scale of elastodynamic problems is very
short. For example it generally takes only a very short time for an elastic wave to
traverse a solid. If the applied loads are applied gradually in comparison with this
time scale, the quasi-static assumption generally gives good results. A measure of the
success of this approximation is that it works quite well even for the case of elastic
impact between bodies, which may have a duration of the order of a few milliseconds”.

7.2.4 Rigid-body kinematics

The most general acceleration for a rigid body in the plane involves arbitrary trans-
lation and rotation. We choose a codrdinate system fixed in the body and suppose
that, at some instant, the origin has velocity vp and acceleration ag and the body is
rotating in the clockwise sense with absolute angular velocity € and angular acceler-
ation . The instantaneous acceleration of the point (r,6) relative to the origin can
then be written )

ar = - ; ag=—-0r. (7.12)

Transforming these results into the z,y-codrdinate system and adding the accel-
eration of the origin, we obtain the components of acceleration of the point (z,y)
as

Gz = agz— 2z +Qy (7.13)
ay = agy — Py —Qz (7.14)
and hence the corresponding body force field is
ps = —plags — Dz + Qy) (7.15)
py = —plaoy — Ny - Q). (7.16)

The astute reader will notice that the case of gravitational loading can be recovered
as a special case of these results by writing ag, =g and setting all the other terms to

2For more information about elastodynamic problems, the reader is referred to the classical
texts of J.D.Achenbach, Wave Propagation in Elastic Solids, North Holland, Amsterdam, (1973)
and A.C.Eringen and E.S.§uhubi, Elastodynamics, Academic Press, New York, (1975). For a more
detailed discussion of the impact of elastic bodies, see K.L.Johnson, Contact Mechanics, Cambridge
University Press, Cambridge, (1985), §11.4.
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zero. In fact, a reasonable interpretation of the gravitational force is as a D’ Alembert
force consequent on resisting the gravitational acceleration. Notice that if a body is
in free fall — i.e. if it is accelerating freely in a gravitational field and not rotating —
there is no body force and hence no internal stress unless the boundaries are loaded.
Substitution of (7.15, 7.16) into (7.6) shows that the inertia forces due to rigid-
body accelerations are conservative if and only if =0 — i.e. if the angular velocity is
constant. We shall determine the body force potential for this special case. Methods
of treating the problem with non-zero angular acceleration are discussed in §7.4 below.
From equations (7.4, 7.15, 7.16) with =0 we have

av
1 = p(a'O:r: - QQ"E) (717)
ov
3y = p(a'Oy s sz) ) (718>

and hence, on partial integration of (7.17)
12 2
V=p (agmz - 59 x > + h{y), (7.19)

where h(y)is an arbitrary function of yonly. Substituting this result into (7.18) we
obtain the ordinary differential equation

ah
EZ = p(aoy — 0%y) (7.20)

for h(y), which has the general solution

Q2 2
My) =p (aUyy - 2y ) +C, (7.21)

where C is an arbitrary constant which can be taken to be zero without loss of
generality, since we are only seeking a particular potential function V.
The final expression for V is therefore

1
V=p (a()z:v + agyy — 592(1‘2 + y2)) . (7.22)

The reader might like to try this procedure on a set of body forces which do not
satisfy the condition (7.6). It will be found that the right hand side of the ordinary
differential equation like (7.20) then contains terms which depend on z and hence
this equation cannot be solved for A(y).
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7.3 Solution for the stress function

Once the body force potential V has been determined, the next step is to find a
suitable function ¢, which satisfies the compatibility condition (7.8) and which de-
fines stresses through equations (7.1-7.3) satisfying the boundary conditions of the
problem. There are broadly speaking two ways of doing this. One is to choose some
suitable form (such as a polynomial) without regard to equation (7.8) and then satisfy
the constraint conditions resulting from (7.8) in the same step as those arising from
the boundary conditions. The other is to seek a general solution of the inhomoge-
neous equation (7.8) and then determine the resulting arbitrary constants from the
boundary conditions.

7.3.1 The rotating rectangular beam

As an illustration of the first method, we consider the problem of the rectangular
beam —a <z <a, —b<y <}, rotating about the origin at constant angular velocity
2, all the boundaries being traction-free (see Figure 7.1).

.ﬂy
| 0 2 z
= a - a I

Figure 7.1: The rotating rectangular bar.

The body force potential for this problem is obtained from equation (7.22) as
i
V= —in2($2 +4?), (7.23)
and hence the stress function must satisfy the equation
Vi = 2p(1 — )22, (7.24)

from (7.8, 7.23).
The geometry suggests a formulation in Cartesian codrdinates and equation (7.24)

leads us to expect a polynomial of degree 4 in z,y. We also note that V is even in
both z and y and that the boundary conditions are homogeneous, so we propose the

candidate stress function

¢ = Azt + Ayx’y® + Ayt + Agz® + Asy? (7.25)
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which contains all the terms of degree 4 and below with the required symmetry.
The constants Ay,..., As will be determined from equation (7.24) and from the

boundary conditions

Oy = 0 ; y==b (7.26)
oy = 0; y==b (7.27)
b
/ Ozedy = 0 ; z2=+=a, (7.28)
-b

where we have applied the weak boundary conditions only on z=z=a. Note also that
the other two weak boundary conditions — that there should be no moment and no
shear force on the ends — are satisfied identically in view of the symmetry of the
problem about y=0.

As in the problem of §5.2.3, it is algebraically simpler to start by satisfying the
strong boundary conditions (7.26, 7.27). Substituting (7.25) into (7.1-7.3), we obtain

1
Ope = 2A22% +12A3y° + 245 — 5,092(3;2 + 4% (7.29)
1
Oy = 12412° +245% + 24, — §pQ2(x2 + ) (7.30)
Oy = —44zy. (7.31)
It follows that conditions (7.26, 7.27) will be satisfied for all = if and only if
Ay =p02/24 5 Ay =0 ; Ay=pQ*b?/4. (7.32)

The constant A3 can now be determined by substituting (7.25) into (7.24), with
the result
24(A; + A3) = 200%(1 — v) (7.33)
which is the inhomogeneous equivalent of the constraint equations (see §5.1) and
hence
Az = pQ*(1 - 2v)/24 , (7.34)
using (7.32).
Finally, we determine the remaining constant As by substituting (7.29) into the
weak boundary condition (7.28) and evaluating the integral, with the result

B a2
=2 (22 .

As=p < 5 + 4> (7.35)

The final stress field is therefore

2,2 2 g 2
2 3

02

Oy = E'Q'—(bZ“yz) (7.37)

Oyr = 0, (738)
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from equations (7.29-7.31).

Notice that the boundary conditions on the ends z ==a agree with those of the
physical problem except for the second term in o4, which represents a symmetric
self-equilibrated traction. From §6.2.2, we anticipate that the error due to this dis-
agreement will be confined to regions near the ends of length comparable with the
half-length, b.

7.3.2 Solution of the governing equation

Equation (7.24) is an inhomogeneous partial differential equation — i.e. it has a
known function of z,y on the right hand side — and it can be solved in the same way
as an inhomogeneous ordinary differential equation, by first finding a particular solu-
tion of the equation and then superposing the general solution of the corresponding
homogeneous equation.

In this context, a particular solution is any function ¢ that satisfies (7.24). It
contains no arbitrary constants. The generality in the general solution comes from
arbitrary constants in the homogeneous solution. Furthermore, the homogeneous
solution is the solution of equation (7.24) modified to make the right hand side zero
— ie.

Vi =0 (7.39)

Thus, the homogeneous solution is a general biharmonic function and we can
summarize the solution method as containing the three steps:-

(i) finding any function ¢ which satisfies (7.24);

(i) superposing a sufficiently general biharmonic function (which therefore contains
several arbitrary constants);

(i) choosing the arbitrary constants to satisfy the boundary conditions.

In the problem of the preceding section, the particular solution would be any
fourth degree polynomial satisfying (7.24) and the homogeneous solution, the most
general fourth degree biharmonic function with the appropriate symmetry.

Notice that the particular solution (i) is itself a solution of a different physical
problem — one in which the body forces are correctly represented, but the correct
boundary conditions are not (usually) satisfied. Thus, the function of the homoge-
neous solution is to introduce additional degrees of freedom to enable us to satisfy
the boundary conditions.

Physical superposition

It is often helpful to think of this superposition process in a physical rather than a
mathematical sense. In other words, we devise a related problem in which the body
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forces are the same as in the real problem, but where the boundary conditions are
simpler. For example, if a beam is subjected to gravitational loading, a simple physical
‘particular’ solution would correspond to the problem in which the beam is resting on
a rigid foundation and hence the stress field is one-dimensional. To complete the real
problem, we would then have to superpose the solution of a corrective problem with
tractions equal to the difference between the required tractions and those implied by
the particular solution, but with no body force, since this has already been taken into
account in the particular solution.

One advantage of this way of thinking is that it is not restricted to problems in
which the body force can be represented by a potential. We can therefore use it to
solve the problem of the rotationally accelerating beam in the next section.

7.4 Rotational acceleration

We saw in §7.2.4 that the body force potential cannot be used in problems where
the angular acceleration is non-zero. In this section, we shall generate a particular
solution for this problem and then generalize it, using the results without body force
from Chapter 5.

7.4.1 The circular disk

Consider the rotationally symmetric problem of Figure 7.2. A solid circular disk,
radius a, is initially at rest (2 =0) and at time t =0 it is caused to accelerate in
a clockwise direction with angular acceleration €2 by tractions uniformly distributed
around the edger =a. Note that we could determine the magnitude of these tractions
by writing the equation of motion for the disk, but it will not be necessary to do this
— the result will emerge from the analysis of the stress field.

/ \
t 1— Oro
\ /

X—7

. el

Figure 7.2: The disk with rotational acceleration.

At any given time, the body forces and hence the resulting stress field will be the
sum of two parts, one due to the instantaneous angular velocity and the other to the
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angular acceleration. The former can be obtained using the body force potential and
we therefore concentrate here on the contribution due to the angular acceleration.
This is the only body force at the beginning of the process, so the following solution
can also be regarded as the solution for the instant, t=0.

The problem is clearly axisymmetric, so the stresses and displacements must de-
pend on the radius r only, but it is also antisymmetric, since if the sign of the tractions
were changed, the problem would become a mirrorimage of thatillustrated. Now sup-
pose some point in the disk had a non-zero outward radial displacement, «,. Changing
the sign of the tractions would change the sign of this displacement — i.e. make it be
directed inwards — but this is impossible if the new problem is to be a mirror image
of the old. We can therefore conclude from symmetry that u, = 0 throughout the
disk. In the same way, we can conclude, that the stress components o, ggg are zero
everywhere. Incidentally, we also note that if the problem is conceived as being one
of plane strain, symmetry demands that o,, be everywhere zero. It follows that this
is one of those lucky problems in which plane stress and plane strain are the same
and hence the plane stress assumption involves no approximation.

We conclude that there is only one non-zero displacement component, ug, and
one non-zero strain component, erg. Thus, the number of strain and displacement
components is equal and no non-trivial compatibility conditions can be obtained by
eliminating the displacement components. (An alternative statement is that all the
compatibility equations are satisfied identically, as can be verified by substitution —
the compatibility equations in cylindrical polar coordinates are given by Saada’).

It follows that the only non-zero stress component, ¢,¢ can be determined from
equilibrium considerations alone. Considering the equilibrium of a small element due
to forces in the #-direction and dropping terms which are zero due to the symmetry
of the system, we obtain

_65_;0 + 20:0 =—prQd, (7.40)
which has the general solution
Qr: A
ow=-21 4 5, (7.41)

where A is an arbitrary constant which must be set to zero to retain continuity at
the origin. Thus, the stress field in the disk of Figure 7.2 is

Q 2
G = ~ 2 4T . (7.42)
In particular, the traction at the surface r = @ is
Q 2
~omala) = =2 (7.43)

3A.S.Saada, Elasticity, Pergamon Press, New York, (1973), §6.9.
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and the applied moment about the axis of rotation is therefore

mpQlat
M = ~27na’o.4(a) = p2 , (7.44)
since the traction acts over a length 27a and the moment arm is a. We know from
elementary dynamics that M = I, where | is the moment of inertia and we can

therefore deduce from (7.44) that

4
I= 7”;“ , (7.45)

which is of course the correct expression for the moment of inertia of a solid disk of
density p, radius ¢ and unit thickness. Notice however that we were able to deduce
the relation between M and €2 without using the equations of rigid-body dynamics.
Equation (7.40) ensures that every particle of the body obeys Newton’s law and this
is sufficient to ensure that the complete body satisfies the equations of rigid-body
dynamics.

7.4.2 The rectangular bar

We can use the stress field (7.42) as a particular solution for determining the stresses
in a body of any shape due to angular acceleration. One way to think of this is to
imagine cutting out the real body from an imaginary disk of sufficiently large radius.
The stresses in the cut-out body will be the same as those in the disk, provided we
arrange to apply tractions to the boundaries of the body that are equal to the stress
components on that surface before the cut was made. These will not generally be
the correct boundary tractions for the real problem, but we can correct the boundary
tractions by superposing a homogeneous solution — i.e. a corrective solution for
the actual body with prescribed boundary tractions (equal to the difference between
those applied and those obtained in the disk solution) but no body forces (since these
have already been taken care of in the disk solution.)

As an illustration, we consider the rectangular bar, —a < z < a, ~b <y < b,
accelerated by two equal shear forces, F, applied at the ends z = +a as shown in
Figure 7.3, the other boundaries, y ==+b being traction free.

TJ’
z F
(D2 o |1
F 5 lx
I— a - a I

Figure 7.3: The rectangular bar with rotational acceleration.
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We first transform the disk solution into rectangular codrdinates, using the trans-
formation relations (1.7-1.9), obtaining

pQr?sin @ cos 6 _ 2Qzy

Ozz = =—20,98n0cos6 = 5 5 (7.46)
o )
oy = 20ygsinfcosl = A 31;100059 = —pQ;y (7.47)
Or2(cos? 6 — sin? § Q22 — o2
Oy = org(cos? 6 —sin® ) = BT (cos 5 sin” 6) =L (CE4 v) . (7.48)

This stress field is clearly odd in both z and y and involves normal tractions on
y = £b which vary linearly with z. The bending moment will therefore vary with
x® suggesting a stress function ¢ with a leading term z°y — i.e. a sixth degree
polynomial.

The most general polynomial with the appropriate symmetry is

¢ = ArzPy + Ayrdy® + Aszy® + Agxdy + Aszy® + Agzy . (7.49)

The stress components are the sum of those obtained from the homogeneous stress
function (7.49) using the definitions (4.1) — remember the homogeneous solution here
is one without body force — and those from the disk problem given by equations
(7.46-7.48). We find

1 .
Opp = 5,()Qxy + 6Ay2%y + 20A37y° + 6 Aszy (7.50)
1 .
oy = —5Pey + 2041z + 6452y + 6443y (7.51)
1 .
Opy = —ZpQ(:L‘2 — %) = 5A,z* — 94,3%y?
—5A3y* — 3A4z® — 3A5y% — Ag . (7.52)

The boundary conditions are

Oy = 0 ; y==£b (7.53)
Oy = 0; y==b (7.54)
b
/ yody = 0 ; z=+a, (7.55)
~b

where we note that weak boundary conditions are imposed on the ends z==a. Since
the solution is odd in y, only the moment and shear force conditions are non-trivial
and the latter need not be explicitly imposed, since they will be satisfied by global
equilibrium (as in the problem of §5.2.2).

Conditions (7.53, 7.54) have to be satisfied for all z and hence the corresponding
coefficients of all powers of z must be zero. It follows immediately that A; =0 and
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the remaining conditions can be written

——-;—pQ + 6402 +64; = 0 (7.56)
—%pﬂ — 940 —34, = 0 (7.57)
inbQ —5Agh* — 3450 —Ag = 0. (7.58)

We get one additional condition from the requirement that ¢ (equation (7.49)) be
biharmonic
72A5 + 12043 =0 (7.59)

and another from the boundary condition (7.55), which with (7.50) yields
—é—pQ + 2A50% + 4A30* + 245 =0 . (7.60)
The solution of these equations is routine, giving the stress function
pSd

o= ——W(&v?’ys —3zy® — 100223y + 116%2y° — 5a’zy® + 15a’b2zy — 33b%2y) . (7.61)

The complete stress field, including the particular solution terms, is

2 2 2
. ¥ 3 (a*—2%)
Oggr — pﬂacy (EE - g + T) (762)
pzy y?
2 2 2
_ - 2 _ 2 y + a” — 3.’E _ E

from (7.50-7.52).
Finally, we can determine the forces F on the ends by integrating the shear trac-
tion, o4, over either end as

_ b _ 2 . 9 2
F=- /_bazy(a)dy = =pQb(a? +17) (7.65)

Maple and Mathematica solutions of this problem are given in the files ‘S742’. As
in §7.4.1, the relation between the applied loading and the angular acceleration has
been obtained without recourse to the equations of rigid-body dynamics. However,
we note that the moment of inertia of the rectangular bar for rotation about the
origin is I = 4pab(a®+b*)/3 and the applied moment is M = 2Fa, so application of
the equation M = I leads to the same expression for F as that found in (7.65).
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7.4.3 Weak boundary conditions and the equation of motion

We saw in §5.2.1 that weak boundary conditions need only be applied at one end of
a stationary rectangular bar, since the stress field defined in terms of the Airy stress
function must involve tractions that maintain the body in equilibrium. Similarly,
in dynamic problems involving prescribed accelerations, an appropriate set of weak
boundary conditions can be omitted. For example, we did not have to specify the
value of F in the problem of Figure 7.3. Instead, it’s value was calculated after the
stress field had been determined and necessarily proved to be consistent with the
equations of rigid-body dynamics.

If a body is prevented from moving by a statically determinate support, it is
natural to treat the support reactions as the ‘neglected” weak boundary conditions.
Thus, if the body is attached to a rigid support at one boundary, we apply no weak
conditions at that boundary, as in §5.2.1. If the body is simply supported at a
boundary, we impose the weak boundary condition that there be zero moment applied
at the support, leading for example to the conditions stated in footnote 2 on Page 59.

Similar considerations apply in a dynamic problem if the body is attached to
a support which moves in such a way as to prescribe the acceleration of the body.
However, we may also wish to solve problems in which specified non-equilibrated loads
are applied to an unsupported body. For example, we may be asked to determine the
stresses in the body of Figure 7.3 due to prescribed end loads F. One way to do this
would be first to solve a rigid-body dynamics problem to determine the accelerations
and then proceed as in §7.4.2. However, in view of the present discussion, a more
natural approach would be to include the angular acceleration Q as an unknown and
use equation (7.65) to determine it in terms of F at the end of the solution procedure.

More generally, if we have a two-dimensional body subjected to prescribed trac-
tions on all edges, we could assume the most general accelerations (7.13, 7.14) and
solve the body force problem, treating ag, aoy, ) as if they were known. If strong
boundary conditions are imposed on two opposite edges and weak boundary condi-
tions on both the remaining edges, it will then be found that there are three extra
conditions which serve to determine the unknown accelerations.

PROBLEMS

1. Every particle of an elastic body of density p experiences a force

_Cém

r2

F

directed towards the origin, where C is a constant, 7 is the distance from the origin
and dm is the mass of the particle. Find a body force potential V that satisfies these
conditions.
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2. Verify that the body force distribution
p=Cy ; py=-Cz

is non-conservative, by substituting into equation (7.6). Use the technique of §7.2.4
to attempt to construct a body force potential V for this case. Identify the step at
which the procedure breaks down.

3. To construct a particular solution for the stress components in plane strain due
to a non-conservative body force distribution, it is proposed to start by representing
the displacement components in the form

10y

) 161/)'11 — u, =0
“Toudy T YT 2uex P

Use the strain-displacement equations (1.43) and Hooke’s law (1.60) to find expres-
sions for the stress components in terms of ¥. Substitute these results into the equi-
librium equations (2.2, 2.3) to find the governing equations for the stress function
.

What is the condition that must be satisfied by the body force distribution p if
these equations are to have a solution? Show that this condition is satisfied if the
body force distribution can be written in terms of a potential function W as

oW oW

pz—*@ ; ;Dy——gm—-

For the special case
p==Cy ; py=-Czx,

find a particular solution for % in the axisymmetric polynomial form
¥ =A@+ )",

where A is a constant and n is an appropriate integer power. Show that this solution
can be used to obtain the stress components (7.46-7.48). Suggest ways in which
this method might be adapted to give a particular solution for more general non-
conservative body force distributions.

4. If the elastic displacement w varies in time, there will generally be accelerations
a = % and hence body forces p = —pit, from equation (7.11). Use this result and
equation (2.17) to develop the general equation of linear Elastodynamics.

Show that this equation is satisfied by a displacement field of the form

up=flz—cit) ; uy=glz—ct) 5 u, =0,

where f, g are any functions and ¢;, ¢; are two constants that depend on the material
properties. Find the values of ¢;, ¢z and comment on the physical significance of this
solution.
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5. The beam —b<y<b, 0 <z < L is built-in at the edge =L and is loaded merely
by its own weight, pg per unit volume.
Find a solution for the stress field, using weak conditions on the end z=0.

6. One wall of a multistory building of height H is approximated as a thin plate
—b<zr<b, 0<y<H. During an earthquake, ground motion causes the building to
experience a uniform acceleration a in the 2-direction. Find the resulting stresses in
the wall if the material has density g and the edges x==b, y=H can be regarded as
traction-free.

7. A tall thin rectangular plate —a¢ <z < a, —b <y < b (b>> a) is supported on
the vertical edges = =+a and loaded only by its own weight (density p). Find the
stresses in the plate using weak boundary conditions on the horizontal edges y=+b
and assuming that the support tractions consist only of uniform shear.

8. Figure 7.4(a) shows a triangular cantilever, defined by the boundaries y=0, y=
z tanca and built-in at z=a. It is loaded by its own weight, pg per unit volume. Find
a solution for the complete stress field and compare the maximum tensile bending
stress with that predicted by the Mechanics of Materials theory.

Would the maximum tensile stress be lower if the alternative configuration of
Figure 7.4(b) were used?

(@) (%)

Figure 7.4

9. The thin rectangular plate —a <z < a,—b <y <b with @ > b rotates about the
y-axis at constant angular velocity 2. All surfaces of the plate are traction-free. Find
a solution for the stress field, using strong boundary conditions on the long edges
y==£b and weak boundary conditions on the ends z = =ta.

10. Solve Problem 7.9 for the case where @ < b. In this case you should use strong
boundary conditions on z==a and weak boundary conditions on y = +b.
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11. A thin triangular plate bounded by the lines y ==z tan o, x =a rotates about the
axis z =a at constant angular velocity {2. The inclined edges of the plate y = +z tan «
are traction-free. Find a solution for the stress field, using strong boundary conditions
on the inclined edges (weak boundary conditions will then be implied on z=a).

12. A thin triangular plate bounded by the lines y =%z tan o, x=ua is initially at rest,
but is subjected to tractions at the edge z=a causing an angular acceleration £ about
the perpendicular axis through the point (a,0). The inclined surfaces y = +z tan«
are traction-free. Find a solution for the instantaneous stress field, using the technique
of §7.4.2.



Chapter 8

PROBLEMS IN POLAR

COORDINATES

Polar codrdinates (r,6) are particularly suited to problems in which the boundaries
can be expressed in terms of equations like r =a,#=c«. This includes the stresses in
a circular disk or around a circular hole, the curved bar with circular boundaries and
the wedge, all of which will be discussed in this and subsequent chapters.

8.1 Expressions for stress components

We first have to transform the biharmonic equation (4.7) and the expressions for
stress components (4.1) into polar codrdinates, using the relations

z=rcosh ; y=rsind (8.1)
— 2 2 . f= Q) 2
r=4/z?+y? ; 0= arctan (x . (8.2)
The derivation is tedious, but routine. We first note by differentiation that
g ordo 9890 0 sinf 9
— =t — = f— — —— .
s dzor Tozoe - o T 7 e ®.3)
E—QIQJr@—B— = sin6—8—+~——cose—8— (8.4)
oy Oyor Oyoh or r 986 '
It follows that
iz — co H_a_ — ?l{l.g_(z. c 9-8_ — ﬁi_n,qg_
ox? " or r 06 Y% r 06
o* 10 1 6°
_ 200 2[00 1O
= cos 987"2 + sin“ g (r 5 T2 692>
, 19 10
+2 sin 6 cos 6 (ﬁ'gé - ;m) (85)

97
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and by a similar process, we find that

2 2 2
7 = sin29—6—+cos2t9(l—a—+ia )
or

Oy? or? r r2 562
. 19 1 ¢
—2sinfcosb (;5-8—0 - ;61‘60) (8.6)
O _ npeose (L 10 _10°
oxdy Si P eos or2 ror r?2og?
19 18
— 2 —_— 1 2 —_——— — —
(cos # — sin 0) (r2 50 r8r86) . (8.7)

Finally, we can determine the expressions for stress components, noting for exam-
ple that

Op = OgyCOS°H + Tyy sin?8 + 20,y sin 6 cos § (8.8)
8% %9 3¢
. 2 . .
= o8 95?}—2 +31n29§3 - QSlnﬁcosﬁm
189 10%
T oror  r2e2 (8.9)

after substituting for the partial derivatives from (8.5-8.7) and simplifying.
The remaining stress components, ogg, 0,s can be obtained by a similar procedure.
We find

18 10% 0%
=L T T G (8.10)

_l1op 10 0 (109
70 =356 rore8  or (r ) (8.11)

If there is a conservative body force p described by a potential V, the stress
components are modified to

_ 134 1% %

Urr—;ar ﬁW+V ; 0'00‘—:5;—2-4-‘/ (8.12)

_10p 10 _ 9 (104
=300 " roro6 -~ or \r96) (8:13)
where oy LoV
Pr=-gs i M= (8.14)
We also note that the Laplacian operator

g o* o 18 108

2= 4 7 - 42
V= 9z? + ay*  orr  ror * r2 962’ (8.15)
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from equations (8.5, 8.6) and hence

% 10 132>(a2¢ 1a¢+182¢)

dp =2 4L 22 T A
V¢—( trart ot 7 T o

ot v r2oe (8.16)

Notice that in applying the second Laplacian operator in (8.16) it is necessary to
differentiate by parts. The two differential operators cannot simply be multiplied
together. In Mathematica and Maple, the easiest technique is to define a new function

) 18¢ 1 8%

= 2 —_ T — —
f=vie or? + r Or + 72 0§? (8.17)
and then obtain V*¢ from
2 2
V4¢=v2f=8f 10/ 10/ (8.18)

orr " rar  r206%
8.2 Strain components

A similar technique can be used to obtain the strain-displacement relations in polar
coordinates. Writing

U, o8 8 — ugsin (8.19)
ursinf + ugcos @ (8.20)

<
8
!

I

Uy

and substituting in (8.3), we find

_ Ouy Ou, ug Oug 10u,\ .
€ 5. = S 0+( ——é—r——;ae)SIHOCOSG
Up lau(; .. 9
+(7+r 60)sm 9. (8.21)

Using the same method to obtain expressions for egy,€,, and substituting the
results in the strain transformation relations analogous to (8.8) etc., we obtain

ou, 1 (1 Ou, Ouy Ug) 1 Oug LU (8.22)

“r= T T T3\ree T ar 7)) T

8.3 Fourlier series expansion

The simplest problems in polar codrdinates are those in which there are no #-boundar-
ies, the most general case being the disk with a central hole illustrated in Figure 8.1
and defined by b<r<a.
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Figure 8.1: The disk with a central hole.

The stresses and displacements must be single-valued and continuous and hence
they must be periodic functions of 8, since (r,#+ 2mm) defines the same point as
(r,8), when m is any integer. It is therefore natural to seek a general solution of the
problem of Figure 8.1 in the form

¢ = ifn(r) cos(nd) + ign(r) sin(nf) . (8.23)

Substituting this expression into the biharmonic equation, using (8.16), we find
that the functions f,, g, must satisfy the ordinary differential equation

(d2 + 1d _ n2> (den + _1_df_n_ ann> =0, (8.24)

dr?2  rdr r? dr? r dr T2

which, if n#0, 1 has the general solution
fa(r) = Aur™? 4 Apor ™ o+ Apar™ + Apar ™", (8.25)

where A1, ... Apqare four arbitrary constants.
Whenn=0,1, the solution (8.25) develops repeated roots and equation (8.24) has
a different form of solution given by

folr) = Apir? + Agar? In{r) + Agz In(r) + Aopq (8.26)
fl (7") = A11T3 + AlzT 11’1(7‘) + A13T + A147‘—1 . (827)
In all the above equations, we note that the stress functions associated with the

constants A3, A,4 are harmonic and hence biharmonic a fortiori, whereas those as-
sociated with A,;, An2 are biharmonic but not harmonic.
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8.3.1 Satisfaction of boundary conditions

The boundary conditions on the surfaces r=a, will generally take the form

o = F(0) ; r=a (8.28)
= F#) ; r=b (8.29)
o = F3(0) ; r=a (8.30)
= F(0); r=b, (8.31)

each of which has to be satisfied for all values of 8. This can conveniently be done by
expanding the functions #1,... Fy as Fourier series in . i.e.

Fi(0) = anjcos(nb) + Y byisin(nd) ; j=1,...,4. (8.32)
n=0 n=1

In combination with the stress function of equation (8.23), (8.28-8.31) will then
give four independent equations for each trigonometric term, cos(nd),sin(nd) in the
series and hence serve to determine the four constants A,,..., A,4. The problem of
Figure 8.1 is therefore susceptible of a general solution.

8.3.2 Circular hole in a shear field

The general solution has some anomolous features for the special values n=0,1, but
before discussing these we shall illustrate the method by solving a simple example.
Figure 8.2 shows a large plate in a state of pure shear oy, =S, perturbed by a hole
of radius a.

- — — ——

S

Figure 8.2: Circular hole in a shear field.
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A formal statement of the boundary conditions for this problem is

oy = 0 r=a (8.33)
o = 0 r=a (8.34)
OpenOgy — 07 17— 00 (8.35)
Oy — S ; r—00. (8.36)

Notice that we describe a body as ‘large’ when we mean to interpret the boundary
condition at the outer boundary as being applied at r—o0o. Notice also that we have
stated these ‘infinite” boundary conditions in (z,y) codrdinates, since this is the most
natural way to describe a state of uniform stress. We shall see that the stress function
approach makes it possible to use both rectangular and polar codrdinates in the same
problem without any special difficulty.

This is a typical perturbation problem in which a simple state of stress is perturbed
by a local geometric feature (in this case a hole). It is reasonable in such cases to
anticipate that the stresses distant from the hole will be unperturbed and that the
effect of the hole will only be felt at moderate values of r/a. Perturbation problems
are most naturally approached by first solving the simpler problem in which the
perturbation is absent (in this case the plate without a hole) and then seeking a
corrective solution which will describe the influence of the hole on the stress field.
With such a formulation, we anticipate that the corrective solution will decay with
increasing r.

The unperturbed field is clearly a state of uniform shear, o,, =5, and this in turn
is conveniently described by the stress function

S72sin(26)

=, (8.37)

¢ =—Szy=—Sr?sinfcosf = —

from equation (4.1)

Notice that although the stress function is originally determined in rectangular
coodrdinates, it is easily transformed into polar coodrdinates using (8.1) and then into
the Fourier form of equation (8.23).

The unperturbed solution satisfies the ‘infinite’ boundary conditions (8.35, 8.36),
but will violate the conditions at the hole surface (8.33, 8.34). However, we can correct
the stress field by superposing those terms from the series (8.23) which (i) have the
same Fourier dependence as (8.37) and (ii) lead to stresses which decay as r increases.
There will always be two such terms for any given Fourier component, permitting the
two traction boundary conditions to be satisfied. In the present instance, the required
terms are those derived from the constants Ags, Asy in equation (8.25), giving the

stress function'
Sr? sin(20)
¢ - '——T—

Tt might be thought that the term involving Asq is inappropriate because it does not decay with
r. However, it leads to stresses which decay with r, which is of course what we require.

+ Asin(20) + Br~%sin(26) . (8.38)




8.3. FOURIER SERIESEXPANS ON 103

The corresponding stress components are obtained by substituting in (8.10, 8.11)
with the result

14 6B

S (5 -~ T—4) sin(20) (8.39)
24 6B

oy = (s TR T4) cos(26) (8.40)

oo = (_s+9§> sin(26) . (8.41)

The two boundary conditions at the hole surface (8.33, 8.34) then yield the two
equations

4A 6B
2t S (8.42)
2A 6B
- + il -5 (8.43)
for the constants A, B, with solution
Sat
A=Sa®; B= ——;— (8.44)
and the final stress field is
a? at\ |
Orp = S <1 - 4;3 + 3;;) sin(26) (8.45)
a2 et
o = S (1 + 274—2 - 3r_4> cos(26) (8.46)
at
Ogg = S ("—1 - 3;4—) Sln(20) . (847)

Notice incidentally that the maximum stress is the hoop stress, ogg =4S at the
point (a,3w/4). At this point there is a state of uniaxial tension, so the maximum
shear stress is 2S. Since the unperturbed shear stress has a magnitude S, we say
that the hole produces a stress concentration of 2. However, for a brittle material,
we might be inclined to define the stress concentration factor as the ratio of the
maximum tensile stresses in the perturbed and unperturbed solutions, which in the
present problem is 4. In general, a stress concentration factor implies a measure of
the severity of the stress field — usually a failure theory — which serves as a standard
of comparison and the magnitude of the stress concentration factor will depend upon
the measure used.

The determination of the stress concentration due to holes, notches and changes of
section under various loading conditions is clearly a question of considerable practical
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importance. An extensive discussion of problems of this kind is given by Savin? and
stress concentration factors for a wide range of geometries are tabulated by Peterson’
in a form suitable for use in engineering design.

8.3.3 Degenerate cases

We have already remarked in §8.3 above that the solution (8.25) degenerates for
n = 0,1 and must be supplemented by some additional terms. In fact, even the
modified stress function of (8.26, 8.27) is degenerate because the stress function

¢p=A+Br+Cy=A+ Brcost+ Crsind (8.48)

defines a trivial null state of stress (see §5.1.1) and hence the constants Agy, A1z in
equations (8.26, 8.27) correspond to null stress fields.

This question of degeneracy arises elsewhere in Elasticity and indeed in mathe-
matics generally, so we shall take this opportunity to develop a general technique for
resolving it. As we saw in §8.3, the degeneracy often arises from the occurrence of
repeated roots to an equation. Thus, in equation (8.25), the terms A,or="%2, A,
degenerate to the same form when n=1.

Suppose for the moment that we relax the restriction that n be an integer. Clearly
the degeneracy in equation (8.25) only arises exactly at the values n=20,1. There is
no degeneracy for n=1+¢ for any non-zero ¢, however small. We shall show therefore
that we can recover the extra solution at the degenerate point by allowing the solution
to tend smoothly to the limit n— 1, rather than setting n=1 ab initio.

For n=1+¢, the two offending terms in (8.25) can be written

f(r) = Ar'=c 4 Brite (8.49)

where A, B, are two arbitrary constants.
Clearly the two terms tend to the same form as ¢ — 0. However, suppose we
construct a new function from the sum and difference of these functions in the form

fir)y=C@te 717 + D(r'te — 179, (8.50)

In this form, the first function tends to 2Cr as ¢ — 0, whilst the second tends
to zero. However, we can prevent the second term degenerating to zero, since the
constant D is arbitrary. We can therefore choose D= Ee¢~!in which case the second
term will tend to the limit

7«1+E . 7.1—5
lim F————— = 2Ern(r), (8.51)

e—0 €

2G.N.Savin, Qress Concentration around Holes, Pergamon Press, Oxford, (1961).
*R.E.Peterson, Sress Concentration Design Factors, John Wiley, New York, (1974).
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where we have used L’Hopital’s rule to evaluate the limit. Notice that this result
agrees with the special term included in equation (8.27) above to resolve the degen-
eracy in ¢ for n=1.

This procedure can be generalized as follows: Whenever a degeneracy occurs at a
denumerable set of values of a parameter (such as » in equation (8.25)), we can always
make up the defecit using additional terms obtained by differentiating the original
form with respect to the parameter before allowing it to take the special value.

The pairs 7"%2,r~"*2 and 7", 7~" both degenerate to the same form for n=0, so
the new functions are of the form

) d(,,.n+2) B )

lim =T In(r) (8.52)
d(r)
7111_)0 el In(r), (8.53)

again agreeing with the special terms introduced in (8.26).

Sometimes the degeneracy is of a higher order, corresponding to more than two
identical roots, in which case L’Hdpital’s rule has to be applied more than once — i.e.
we have to differentiate more than once with respect to the parameter. It is always a
straightforward matter to check the resulting solutions to make sure they are of the
required form.

We now turn our attention to the degeneracy implied by the triviality of the stress
function of equation (8.48). Here, the stress function itself is not degenerate — i.e. it
is a legitimate function of the required Fourier form and it is linearly independent of
the other functions of the same form. The trouble is that it gives a null stress field.
We must therefore look for stress functions that are not of the standard Fourier form,
but which give Fourier type stress components.

Once again, the method is to approach the solution as a limit using L’Hopital’s
rule, but this time we have to operate on the complete stress function — not just on
the part that varies with . Suppose we consider the axisymmetric degenerate term,
¢=A, which can be regarded as the limit of a stress function of the form

¢ = Ar€ cos(ef) + Bresin(ed) , (8.54)

as e—0.
Differentiating this function with respect to € and then letting ¢ tend to zero,we
obtain the new function
¢ = Aln(r) + BE . (8.55)

The first term is the same one that we found by operating on the function f,(r)
and is of the correct Fourier form, but the second term is not appropriate to a Fourier
series. However, when we substitute the second term into equations (8.10, 8.11), we
obtain the stress components

B
O =009 =0 ; oOp9= 2 (8.56)
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which are of the required Fourier form (for = =0), since the stress components do not

vary with 8.
In the same way, we can develop special terms to make up the deficit due to the
two null terms with n=1 (equation (8.48), obtaining the new stress functions

¢ = BrOsinf + Crfcosf , (8.57)

which generate the Fourier-type stress components

_ 2B cos @ 3 2C'sin 6
- r 7 '

(8.58)

Oy =099 =0 ; Op

8.4 The Michell solution

The preceding results now permit us to write down a general solution of the elasticity
problem in polar codrdinates, such that the stress components form a Fourier series
in . We have

(b = A01T‘2 + AQZTQ IH(T) + A03 ln(r) + A046
+(Apr® + Aarin(r) + Ayr ) cos 6 + Apzrfsinf
+(B117% + BarIn(r) + Biyr V) sin 0 + Bysrfcosf

+ S (Anr™? 4 Apar T 4 Apgr™ + Anar ") cos(nf)

n=2

[o 0]
+ Z:(Bnlr”Jr2 + Bpor "2 4 Bugr™ + Bpgr ™) sin(nd) (8.59)
n=2

This solution is due to Michell*. The corresponding stress components are easily
obtained by substituting into equations (8.10, 8.11). For convenience, we give them
in tabular form in Table 8.1, since we shall often wish to select a few components from
the general solution in the solution of specific problems. The terms in the Michell
solution are also given in the Maple and Mathematica files ‘Michell’, from which
appropriate terms can be cut and pasted as required.

Notice that there are four independent stress functions for each term in the Fourier
series, as required by the argument of §8.3.1. If the disk is solid, there is no inner
boundary and we must exclude those components in Table 8.1 that give stresses which
go to infinity as r—0.

In addition to the special stress functions necessitated by the degeneracy discussed
in §8.3.3, the cases n=0, 1 exhibit other anomolies. In particular, some of the stress
functions for n =20, 1 correspond to multiple-valued displacement fields and cannot
be used for the complete annulus of Figure 8.1. Also, equilibrium requirements place

*J.H.Michell, On the direct determination of stress in an elastic solid, with application to the
theory of plates, Proc, London Math. Soc., Vol. 31 (1899), 100-124.
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Table 8.1: The Michell solution — stress components

¢ Orr Org Tgg

r? 2 0 2

r?In(r) 2In(r) +1 0 2In(r) +3

In(r) 15 0 —1/r?

0 0 1/r2 0

r3cosf 2r cos 6 2rsin @ 67 cos 0

rfsinf 2cosf/r 0 0

r1n(r) cos@ | cosbB/r sin@/r cosf/r

cos@/r —2cosf/r3 —2sinf/r? 2cosf/r?

7% sin @ 2rsind —2rcosb 6rsind

76 cos 2sinf/r 0 0

rln(r)sinf | sinf/r —cosf/r sinf/r

sinf/r —2sin@/r3 2cosf/r? 2sin6/r?

r™2cosnf |—(n+1)(n—2)r"cosnf |n(n+1)r"sinnd (n+1)(n+2)r"cos nd
r~™2cosnf |—(n+2)(n—1)r~"cosnf |—n(n—1)r"sinnf | (n—1)(n—2)r"cosnf
rcosnf  |—n(n—1)r"2cosnf n(n—1)r"Zsinnf | n(n—1)r"2cosnf
r~"cosnf |—n(n+1)r " 2cosnd —n(n+1)r~"2%sinnf | n(n+1)r—"2cos né
r™2sinnd | —(n+1)(n—2)r"sinnd |—n(n+1)r"cosnfd | (n+1)(n+2)r"sinnf
r~™2sinnf |—(n+2)(n—1)r"sinnf | n(n—1)r "cosnf (n—1)(n—2)r"sinnfd
rsin nf —n(n—1)r"2sin nf —n(n—1)r"2cosnf |n(n—1)r"2sinnf
r~"sinnd |—n(n+1)r " 2sinnf n(n+1)r"2cosnf |n(n+1)r " 2sinnf
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restrictions on the permissible boundary conditions for the terms n = 0,1 in the
Fourier series (8.32).

Detailed discussion of these difficulties will be postponed to §9.3.1, after we have
introduced methods of determining the displacements associated with a given stress
field. In the present chapter, we shall restrict attention to cases where these difficulties
do not arise.

8.4.1 Hole in a tensile field

To illustrate the use of Table 8.1, we consider the case where the the body of Figure
8.2 is subjected to uniform tension at infinity instead of shear, so that the boundary
conditions become

0w = 03 r=a (8.60)
g9 = 0; r=a (8.61)
Onys gy —> 0 7200 (8.62)
Oz — S ; r—o00. (8.63)

The unperturbed problem in this case can clearly be described by the stress func-
ton _ Sy?  Sr’sin®6  Sr?  Sr?cos(20)
=TT T a1

This function contains both an axisymmetric term and a cos(26) term, so to
complete the solution, we supplement it with those terms from Table 8.1 which have
the same form and for which the stresses decay as r — co.

The resulting stress function is

(8.64)

Sr2 Sr?cos(20
¢ = _Z:— - _T%ﬂ_) + Aln(r) + B8 + C cos 20 + Dr~% cos(26) (8.65)

and the corresponding stress components are

S Scos(20) A 4Ccos(20) 6D cos(26)

Ssin(2) B 2Csin(20) 6Dsin(26)
Org = —————2—— + ;3 - 2 - 7‘4 (867)
8 Scos(20) A  6Dcos(26)
Ogg = —2——-_2_—__7‘_2—‘_*—7“4——. (8.68)

The boundary conditions (8.60, 8.61) will be satisfied if and only if the coefficients
of both Fourier terms are zero on r=a and hence we obtain the equations

5 A

2+a—2 = 0 (8.69)
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B
S 4C 6D
R i i 0 (8.71)
S 2C 6D
B o s 0, (8.72)
which have the solution
Sa? Sa? Sa*
A——T,B—O,C’—T,D——T. (8.73)
The final stress field is then obtained as
_ S ) a? S cos(26) (3a* 4_(12+1 874
Orr = 3 72+ 2 M2 (8.74)
Ssin(20) (3a*  2a?
Org — —2_— (—F — 7"_2 - l (8.75)
S a? S cos(20) (3a*
opp = 5<1+;2_>_——2 —T—4—+1 . (8.76)

The maximum tensile stress is ogg =35 at (a,7/2) and hence the stress concentra-
tion factor for tensile loading is 3. The maximum stress point and the unperturbed
region at infinity are both in uniaxial tension and hence the stress concentration fac-
tor will be the same whatever criterion is used to measure the severity of the stress
state. This contrasts with the problem of §8.3.2, where the maximum stress state is
uniaxial tension, but the unperturbed field is pure shear.

PROBLEMS

1. A large plate with a small central hole of radius a is subjected to in-plane hydro-
static compression g =0y, =—S, 04, =0 at the remote boundaries. Find the stress
field in the plate if the surface of the hole is traction-free.

2. A large rectangular plate is loaded in such a way as to generate the unperturbed
stress field
Oz = CY2 5 Oy = ~C1® 5 04 =0.

The plate contains a small traction-free circular hole of radius a centred on the origin.
Find the perturbation in the stress field due to the hole.

3. Figure 8.3 shows a thin uniform circular disk, which rotates at constant speed §2
about the diametral axis y =0, all the surfaces being traction-free. Determine the
complete stress field in the disk.
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% Traction-free
r
% 0 Q
X
a

Figure 8.3: Thin disk rotating about a diametral axis.

4. A series of experiments is conducted in which a thin plate is subjected to biaxial
tension/compression, o1, 09, the plane surface of the plate being traction-free (i.e.
0'3:0).

Unbeknown to the experimenter, the material contains microscopic defects which
can be idealized as a sparse distribution of small holes through the thickness of the
plate. Show graphically the relation which will hold at yield between the tractions
o1, 02 applied to the defective plate, if the Tresca (maximum shear stress) criterion
applies for the undamaged material.

5. The circular disk 0 < r < @ is subjected to uniform compressive tractions o,, =-S5
in the two arcs —7/4 <@ < w/4 and 37/4 < 6 < 57/4, the remainder of the surface
r=aq being traction-free. Expand these tractions as a Fourier series in # and hence
develop a series solution for the stress field. Use Maple or Mathematica to produce a
contour plot of the Von Mises stress og, using a series truncated at 10 terms.



Chapter 9

CALCULATION OF
DISPLACEMENTS

So far, we have restricted attention to the calculation of stresses and to problems in
which the boundary conditions are stated in terms of tractions or force resultants, but
there are many problems in which displacements are also of interest. For example,
we may wish to find the deflection of the rectangular beams considered in Chapter
5, or calculate the stress concentration factor due to a rigid circular inclusion in an
elastic matrix, for which a displacement boundary condition is implied at the bonded
interface.

If the stress components are known, the strains can be written down from the
stress-strain relations (1.66) and these in turn can be expressed in terms of displace-
ment gradients through (1.43). The problem is therefore reduced to the integration
of these gradients to recover the displacement components.

The method is most easily demonstrated by examples, of which we shall give two
— one in rectangular and one in polar codrdinates.

9.1 The cantilever with an end load

We first consider the cantilever beam loaded by a transverse force, F, at the free end
(Figure 5.2), for which the stress components were calculated in §5.2.1, being

_ 3y _SEE -y

Ogz = TR Oy PTE D Oy =0, (9.1)
from (5.36-5.38).
The corresponding strain components are therefore
_ Osz  VOyy 3Fzy (9.2)

b2 = B TR T 3k
_og(l+v) 3F(1+ v) (8% — y?)
oy = E AED

111
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_ gﬂ_uam__iiFl/wy 9.4
“w = F TTE T 2ER (9-4)
for plane stress.
We next make use of the strain-displacement relation to write
Ou, 3Fzy
Tz — = ; 9.5
‘s = 55~ 2Eb (9:5)
which can be integrated with respect to z to give
3Fz%y
w= S L 1), (06)

where we have introduced an arbitrary function f(y) of y, since any such function
would make no contribution to the partial derivative in (9.5). A similar operation on
(9.4) yields the result \
Uy = —:%'%— +g(z), 9.7)
where g{z) is an arbitrary function of z.
To determine the two functions f(y), g(z), we use the definition of shear strain

(1.41) and (9.3) to write
1 (émy Buz> _3F(1+v)(0* - y?)

(9.8)

o =3\ az " By 4Eb

Substituting for ug, u,, from (9.6, 9.7) and rearranging the terms, we obtain

3F 22 1dg*3FVy2 lfii_i_BF(l—}-V)(bz*yQ) (9.9)
SED® ' 2dr  S8EW  2dy 4Eb? | |

Now, the left hand side of this equation is independent of ¥ and the right hand
side is independent of z. Thus, the equation can only be satisfied for all z,y, if both
sides are independent of both x and y — i.e. if they are equal to a constant, which
we shall denote by ;C.

Equation (9.9) can then be partitioned into the two ordinary differential equations

dg 3F?

2= S+ (9.10)
df  3Fvy?  3F(1+v)(0® -y

dy — 4BF T SEb ¢ (0-11)

which have the solution

F 3
g(z) = -Zﬁxb—g+cx+13 (9.12)

_ Fuy® | F(1+v)(3by — %)
) = e _Cy+A, (9.13)
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where A, B are two new arbitrary constants.
The final expressions for the displacements are therefore

3Fz%y N SF(L+v)y  F2+v)y

Y = R 2E} g ATy (9.14)
3Fvzy*  Fzd
Uy = — 15D ~Eb—3+B+C$. (9.15)

This partial integration process can be performed for any biharmonic function ¢
in Cartesian coordinates, using the Maple and Mathematica files ‘uxy’.

9.1.1 Rigid-body displacements and end conditions

The three constants A, B, C define the three degrees of freedom of the cantilever as
a rigid body, A, B corresponding to translations in the z-, y-directions respectively
and C to a small anticlockwise rotation about the origin.

These rigid-body terms always arise in the integration of strains to determine
displacements and they reflect the fact that a complete knowledge of the stresses and
hence the strains throughout the body is sufficient to determine its deformed shape,
but not its location in space.

As in Mechanics of Materials, the rigid-body displacements can be determined
from appropriate information about the way in which the structure is supported.
Since the cantilever is built-in at z=a, we would ideally like to specify

Uy =1u, =0 ; z=a, -b<y<bh, (9.16)

but the three constants in (9.14, 9.15) do not give us sufficient freedom to satisfy such
a strong boundary condition. We should anticipate this deficiency, since the complete
solution procedure only permitted us to satisfy weak boundary conditions on the ends
of the beam and (9.16), in addition to locating the beam in space, implies a pointwise
traction distribution sufficient to keep the end plane and unstretched.

Many authors adapt the Mechanics of Materials support conditions for a cantilever
by demanding that the mid-point (a, 0) of the end have zero displacement and the axis
of the beam (y=0) have zero slope at that point. This leads to the three conditions

ou

U, =uy; =0 ; ﬁ:o;x:a,yzo (9.17)
and yields the values
Fa3 3Fa?
A:O)B:_éfb_a’ —E—gg‘, (918)

when (9.14, 9.15) are substituted in (9.17).
However, the displacement «, at x =a corresponds to the deformed shape of Figure
9.1(a). This might be an appropriate end condition if the cantilever is supported in
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a horizontal groove, but other built-in support conditions might approximate more
closely to the configuration of Figure 9.1(b), where the third of conditions (9.17) is

replaced by 5
Uy

Oy

VL (®)

=0; z=a,y=0. (9.19)

Figure 9.1: End conditions for the cantilever,

This modified boundary condition leads to the values

Fa3 b? 3Fq? b?
A=0; B=- 2Eb3<1+3(1+u)a> ; C= YVl (1+2(1+u) ) (9.20)

for the rigid-body displacement coefficients.

The configurations 9.1 (a, b) are clearly extreme cases and we might anticipate that
the best approximation to (9.16) would be obtained by an intermediate case such as
Figure 9.1(c). In fact, the displacement equivalent of the weak boundary conditions
of Chapter 5 would be to prescribe

6 6 b
/bumdyz() ; /buydy:O ; / yuzdy =0 ; z=a. (9.21)
_ - ~b

The substitution of (9.14, 9.15) into (9.21) gives a new set of rigid-body displace-
ment coefficients, which are

Fa? (12 + 110) b? 3Fa? (8 + 9v) b?
2Eb3<1 5 & ’C“4Eb3<1+ 5 @)
(9.22)

A=0,; B=-

9.1.2 Deflection of the free end

The different end conditions corresponding to {a, b, ¢) of Figure 9.1 will clearly lead to
different estimates for the deflection of the cantilever. We can investigate this effect
by considering the displacement of the mid-point of the free end, z =0,y = 0, for
which

1,(0,0) = B, (9.23)
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from equation (9.15).
Thus, the end deflection predicted with the boundary conditions of (a,b,c) re-
spectively of Figure 9.1 are

Fab

uy(0,0) = “3ER (a)
3 2
= -22‘;3 (1+3(1+u)22-) (b) (9.24)
Fa? (12 + 11v) &?
= T2ED (H 5 F) ©

The first of these results (a) is also that predicted by the elementary Mechanics
of Materials solution and the second (b) is that obtained when a correction is made
for the ’shear deflection’, based on the shear stress at the beam axis. Case (c),
which is intermediate between (@) and (b), but closer to (b), is probably the closest
approximation to the true built-in boundary condition (9.16).

All three expressions have the same leading term and the corrective term in (b, ¢)
will be small as long as b < a —ie. as long as the cantilever can reasonably be
considered as a slender beam.

9.2 The circular hole

The procedure of §9.1 has some small but critical differences in polar codrdinates,
which we shall illustrate using the problem of §8.3.2, in which a traction-free circular
hole perturbs a uniform shear field. The stresses are given by equations (8.45-8.47)
and, in plane stress, the strains are therefore

0y vog S 46?2  3(1+wv)at\ .
e, = 'E‘T’“E(HU"W+T sin(20) (9.25)
(1+v)og S 21 +v)a®  3(1 +v)a*
Erg = ——-——-—E = —E 14+v+ 2 - 7"4 COS(20) (926)
oy VO S qva?  3(1+v)a*\ |
e = 5T F ( 1-v+ 2 g, sin(26) . (9.27)

Two of the three strain-displacement relations (8.22) contain both displacement
components, so we start with the simpler relation

du,

err:E")

substitute for e,, from (9.25) and integrate, obtaining

(9.28)

wes ((1 - ‘ii)—) sin(26) + £(6) (9.29)
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where f(#) is an arbitrary function of 4.
Writing the expression (8.22) for egg in the form

8’IJ,9

50 = Tegy — Uy , (9.30)

we can substitute for egg, u, from (9.27, 9.29) respectively and integrate with respect
to #, obtaining

ue:%<(1+u)r+

2(1 - 2 1 4
( ru)a + ( t:)a )003(26) — F(6) + g(r), (9.31)
where g(r) is an arbitrary function of r and we have written F'() for [ f(8)d6.
Finally, we substitute for u,,ug,erg from (9.29, 9.31, 9.26) into the second of
equations (8.22) to obtain an equation for the arbitrary functions F'(8), g(r), which
reduces to

F@)+ F"(0) = g(r) = rg'(r) . (9.32)

As in §9.1, this equation can only be satisfied for all r, & if both sides are equal to
a constant'. Solving the two resulting ordinary differential equations for F(6), g(r)
and substituting into equations (9.29, 9.31), remembering that f(#)=F’(#) we obtain

2 4
Uy = —z; <(1 +v)r + éf— - (—1——%3@-‘1—) sin(26) + Acosf + Bsinf  (9.33)

up = % ((1 +v)r + 2 - e +(1+ u)a4r3) cos(26)

—Asinf + Beosf + Cr (9.34)

for the displacement components.

This partial integration process can be performed for any biharmonic function
¢ in polar coordinates, using the Maple and Mathematica files ‘urt’. As before,
the three arbitrary constants A, B, C correspond to rigid-body displacements, A, B
being translations in the z-, y-directions respectively, whilst C describes a small
anticlockwise rotation about the origin.

In the present problem, we might reasonably set A, B, C to zero to preserve sym-
metry. At the hole surface, the radial displacement is then

_ 4Sasin(26)

which implies that the hole distorts into the ellipse shown in Figure 9.2.

"It turns out in polar cooérdinate problems that the value of this constant does not affect the final
expressions for the displacement components.
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S

— — —  —-  —-

n

Figure 9.2: Distortion of a circular hole in a shear field.

The reader should note that, in both of the preceding examples, the third strain-
displacement relation gives an equation for two arbitrary functions of one variable
which can be partitioned into two ordinary differential equations. The success of the
calculation depends upon this partition, which in turn is possible if and only if the
strains satisfy the compatibility conditions. In the present examples, this is of course
ensured through the derivation of the stress field from a biharmonic stress function.

9.3 Displacements for the Michell solution

Displacements for all the stress functions of Table 8.1 can be obtained” by the pro-
cedure of §9.2 and the results® are tabulated in Table 9.1. In this Table, results
for plane strain can be recovered by setting x = (3—4v), whereas for plane stress,
k=(3-v)/(1+v). Note that it is always possible to superpose a rigid-body displace-
ment defined by u,=Acosf+Bsinf, up=—Asinf+Bcosd + Cr, where A, B, C are
arbitrary constants.

>The reader might like to confirm this in a few cases by using the Maple and Mathematica
files ‘urt’. Notice however that the results for the ‘n = 0,1’ functions may differ by a rigid-body
displacement from those given in the table.

These results were first compiled by Professor J.Dundurs of Northwestern University and his
research students, and are here reprinted with his permission.
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Table 9.1: The Michell solution — displacement components

¢ 2puy 2pug

r? (k=1Dr 0

r21n(r) («=1)rln(r) —r (k+1)ro

In(r) —1/r 0

0 0 -1/r

r3cosf (k —2)r?cosd (k+2)r?sin@

rfsin @ 1{(k—1)0sinf —cosf® | 3{(k— 1)@ cosf —sinf

rIn(r) cos @

+(k + 1) In(r) cos 6}
5{(k+1)fsinf — cos

—(k+ 1) In(r)sinf}
s{(k+1)fcosf —sinf

+(x — 1) In(r) cos 6} —(k — 1) In(r) sin 8}
cos@/r cosf/r? sin 6 /r?
r3sin @ (k — 2)r?sin 6 —(k+2)r?cosf
r6 cos 6 H{(k—1)0cosf+sinf | 1{—(x—1)fsinf — cosf

7 In(r) sinf

—(k+ 1) In(r)sin 6}
H{—(k+1)fcosf —sinf
+(k — 1) In(r) sin 6}

—(k+1)In(r) cos 6}
3{(k+1)fsinf + cos
+(k — 1) In(r) cos 8}

sin@/r sin 0 /r? —cos@/r?

rt2cosnf |(k—n—1)r"tlcosnf |(k+n+1)r"*'sinnd
r~"*2cosnf | (k +n— 1)r™*cosnd | —(k —n+1)r"*lsinnd
™ cos nd —nr™~! cos nf nr*~!sinnf

r~™ cosnf nr~" ! cosnf nr~""!sinnd

r*2sinnf | (k —n — 1)r"*'sinnf —(k+n+ 1)r**t cosnf
r~"*2ginnd | (k+n—1)r " sinnd | (k —n+1)r"* cosnd
r™ sin nf —nr™*1sinnf —nr* ! cosnd

r~"sinnf | nr " !sinnf —nr~""! cos nf

For plane strain

whilst for plane stress

Kk=3—4v

-(57)
re 14+v
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9.3.1 Equilibrium considerations
In the geometry of Figure 8.1, the boundary conditions (8.28-8.31) on the surfaces

r =a,b are not completely independent, since they must satisfy the condition that
the body be in equilibrium. This requires that

/OZW(FI (8) cos @ — F3(8) sin 6)adf

_ /02”(F2(9)cosa—F4(e)sin0)bd9 =0 (9.36)
/ " (F1(6) sin 6 + F(6) cos 6)ad8
_ /0 " (Fy(0) sin 6 + Fy(9) cos6)bdd = 0 (9.37)
27 2
/O F3(6)a’df - /0 Fi(0)p*d8 = 0. (9.38)

The orthogonality of the terms of the Fourier series ensures that these relations
only concern the Fourier terms for n=0, 1, but for these cases, there are only three
independent algebraic equations to determine each of the corresponding sets of four
constants, Ag1,... A, A1, ... A, B, ... B,

The key to this paradox is to be seen in the displacements of Table 9.1. In the
terms for n = 0,1, some of the displacements include a #-multiplier. For example,
we find 2pug = (k+1)r8 for the stress function ¢ =r2In(r). Now the function § is
multi-valued. We can make it single-valued by defining a principal value — e.g., by
restricting 8 to the range 0 <8 < 27, but we would then have a discontinuity at the
line # =0, 2w which is unacceptable for the continuous body of Figure 8.1. We must
therefore restrict our choice of stress functions to a set which defines a single-valued
continuous displacement and it turns out that this imposes precisely one additional
condition on each of the sets of four constants for n=0, 1.

Notice incidentally that if the annulus were incomplete, or if it were cut along the
line #=0, the principal value of # would be continuous and single-valued throughout
the body and the above restrictions would be removed. However, we would then also
lose the equilibrium restrictions (9.36-9.38), since the body would have two new edges
(e.g. #=0,2m, for the annulus with a cut on §=0) on which there may be non-zero
tractions.

We see then that the complete annulus has some complications which the incom-
plete annulus lacks. This arises of course because the complete annulus is multiply-
connected. The results of this section are a direct consequence of the discussion of
compatibility in multiply-connected bodies in §2.2.1. These questions and problems
in which they are important will be discussed further in Chapter 13.
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9.3.2 The cylindrical pressure vessel

Consider the plane strain problem of a long cylindrical pressure vessel of inner radius
a and outer radius b, subjected to an internal pressure py. The boundary conditions
for this problem are

O =-Do; 0p6=0; r=a (9.39)

Oy =0,9=0; 7=b. (9.40)

The loading is clearly independent of #, so we seek a suitable stress function in the
n =0 row of Tables 8.1, 9.1. However, we must exclude the term r?ln(r), since it
gives a multivalued expression for uy. We therefore start with

¢ = Ar? + Bln(r) 4+ C8, (9.41)

for which the stress components are

B C B
0'1-7-=2A+T—2; Urg———r—Q; 0'99‘—‘—‘214—;3. (9.42)

The boundary conditions (9.39, 9.40) then give the equations

2A 4+ = = T (9.43)
% - 0 (9.44)
2A + g =0 (9.45)
b% =0, (9.46)
with solution pod? poa?h?
A= S ) ; B= T3 a) ; C=0. (9.47)
The final stress field is therefore
2 2
O = Wp‘o—ﬂaT) <1 —~ %) (9.48)
o = 0 (9.49)
2 2
gey = (”WQ% (1 + f—,z) , (9.50)

from (9.42, 9.47). Notice that the equations (9.43-9.46) are not linearly independent.
This occurs because the loading must satisfy the global equilibrium condition (9.38),

which here reduces to
a’o,9(a) = b2o,p(b) . (9.51)
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If this condition had not been satisfied — for example if there had been a uniform
shear traction on only one of the two surfaces r = a,b, the above boundary-value
problem would have no solution. Of course, with this loading, the cylinder would
experience rotational acceleration about the axis and this would need to be taken
into account in formulating the problem, as in the problem of §7.4.1.

PROBLEMS

1. Find the displacement field corresponding to the stress field of equations (5.78—
5.80). The beam is simply-supported at x=za. You will need to impose this in the
form of appropriate weak conditions on the displacements.

Find the vertical displacement at the points (0,0), (0,—b), (0,b) and compare
them with the predictions of the elementary bending theory.

2. The rectangular plate —a<x <a, —b<y<b is bonded to rigid supports at z==*a,
the edges y ==4b being traction-free. The plate is loaded only by its own weight in
the negative y-direction.

(i) Find a solution for the stress field assuming uniform shear tractions on z=a.
Use strong boundary conditions on z = *a and weak conditions on y=zb.

(ii) Find the displacements corresponding to this stress field. Do the resulting
expressions permit the built-in boundary condition at z==a to be satisfied in
the strong sense?

(ili) What are the restrictions on the ratio a/b for this solution to be a reasonable
approximation to the physical problem?

3. A state of pure shear, 0z, =.5 in a large plate is perturbed by the presence of a
rigid circular inclusion in the region r < a. The inclusion is perfectly bonded to the
plate and is prevented from moving, so that ¥, =ug=0 at r=a.

Find the complete stress field in the plate and hence determine the stress concen-
tration factor due to the inclusion based on (i) the maximum shear stress criterion or
(ii) the maximum tensile stress criterion.

Is it necessary to apply a force or a moment to the inclusion to prevent it from
moving?

4. A thin annular disk, inner radius b and outer radius a rotates at constant speed 2
about the axis of symmetry, all the surfaces being traction-free. Determine the stress
field in the disk.

5. A large rectangular plate is subjected to simple bending, such that the stress field
is given by
Oz =Cy 5 Ogy =0y =0.
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The plate contains a small traction-free circular hole of radius a centred on the origin.
Find the perturbation in the stress field due to the hole.

6. A heavy disk of density p and radius a is bonded to a rigid support at r=a. The
gravitational force acts in the direction #=—m/2. Find the stresses and displacements
in the disk.

Hint: The easiest method is to find the stresses and displacements for a simple
particular solution for the body force and then superpose ‘homogeneous’ terms using
Tables 8.1 and 9.1.

7. A heavy disk of density p, elastic properties y,» and radius e + € is pressed into a
frictionless hole of radius a in a rigid body.

What is the minimum value of ¢ if the disk is to remain in contact with the hole
at all points when the gravitational force acts in the direction #=—m/2.

8. A rigid circular inclusion of radius a in a large elastic plate is subjected to a force
F in the z-direction.

Find the stress field in the plate if the inclusion is perfectly bonded to the plate
at r=a and the stresses tend to zero asr—co.



Chapter 10
CURVED BEAM PROBLEMS

If we cut the circular annulus of Figure 8.1 along two radial lines, § =, 3, we generate
a curved beam. The analysis of such beams follows that of Chapter 8, except for a
few important differences — notably that (i) the ends of the beam constitute two new
boundaries on which boundary conditions (usually weak boundary conditions) are to
be applied and (ii) it is no longer necessary to enforce continuity of displacements (see
§9.3.1), since a suitable principal value of # can be defined which is both continuous
and single-valued.

10.1 Loading at the ends

We first consider the case in which the curved surfaces of the beam are traction-free
and the ends are loaded. As in §5.2.1, we only need to impose boundary conditions
on one end — the Airy stress function formulation will ensure that the tractions on
the other end have the correct force resultants to guarantee global equilibrium.

10.1.1 Pure bending

The simplest case is that illustrated in Figure 10.1, in which the beam ¢ <r <b, 0<
f <« is loaded by a bending moment My, but no forces. Equilibrium considerations
demand that the bending moment M, and zero axial force and shear force will be
transmitted across all for f-surfaces and hence that the stress field will be independent
of 8. We therefore seek the solution in the axisymmetric terms in Table 8.1, using
the stress function

¢ = Ar® + Br?In(r) + Cln(r) + D8 , (10.1)
the corresponding stress components being
C
o = 24+ B(2In(r)+1) + p (10.2)
D
Org = —7‘_2_ (103)

123



124 CHAPTER 10. CURVED BEAM PROBLEMS

C

o = 2A+BIn(r)+3)- . (10.4)

Figure 10.1: Curved beam in pure bending.

The boundary conditions for the problem of Figure 10.1 are

o = 0; r=a,b (10.5)

og = 0; r=a,b (10.6)

/ab ogedr = 0 ; 6=0 (10.7)
/ab Gdr = 0; 0=0 (10.8)
/ab ogerdr = My ; 6=0. (10.9)

Notice that in practice it is not necessary to impose the zero force conditions
(10.7, 10.8), since if there were a non-zero force on the end # =0, it would have to
be transmitted around the beam and this would result in a non-axisymmetric stress
field. Thus, our assumption of axisymmetry automatically rules out there being any
force resultant.

We first impose the strong boundary conditions (10.5, 10.6), which with (10.2,
10.3) yield the four algebraic equations

2A+B(21na+1)+% = 0 (10.10)
2A+B(21nb+1)+b92 =0 (10.11)
=0 (10.12)

a2
D
5 =0, (10.13)
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and an additional equation is obtained by substituting (10.4) into (10.9), giving
(A+ B)(b* — a®) + B(b*Inb ~ a*lna) — Cln(b/a) = M, . (10.14)

These equations have the solution

A= _ME((,Q —a®>+2b%Inb - 2a%Ina)
Mo

oMo an) b
N, = Noablna ; D=0, (10.15)

where
No = (b — a®)® —~ 4a®b* In*(b/a) (10.16)

The corresponding stress field is readily obtained by substituting these values back
into equations (10.2-10.4).

The principal practical interest in this solution lies in the extent to which the
classical Mechanics of Materials bending theory underestimates the bending stress
oge at the inner edge, r =a when a/b is small. Timoshenko and Goodier give some
numerical values and show that the elementary theory starts to deviate significantly
from the correct result for a/b < 0.5. The theory of curved beams — based on the
application of the principle that plane sections remain plane, but allowing for the fact
that the beam elements increase in length as r increases due to the curvature — gives
a much better agreement. However, the exact result is quite easy to compute.
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Figure 10.2: Bend in a rectangular beam with a small fillet radius.

An important special case is that of a ‘rectangular’ bend in a beam, with a small
inner fillet radius (see Figure 10.2). This is reasonably modeled as the curved beam
shown dotted, since there will be very little stress in the outer corner of the bend.



126 CHAPTER 10. CURVED BEAM PROBLEMS

10.1.2 Force transmission

A similar type of solution can be generated for the problem in which a force is applied
at the end of the beam. We consider the case illustrated in Figure 10.3, where a shear
force is applied at §=0, resulting in the boundary conditions

b
/crggdr — 0; =0 (10.17)
b
/ogrdr - F; =0 (10.18)
b
/aogrdr = 0;60=0, (10.19)

which replace (10.7-10.9) in the problem of §10.1.1.

0,

Figure 10.3: Curved beam with an end load.

Equilibrium considerations show that the shear force on any section # = a will
vary as F'cosca and hence we seek the solution in those terms in Table 8.1 in which

the shear stress o,4 depends on cos§ — i.e.

¢ = (Ar® + Br~' 4+ Crln(r))sin + Drf cos @ , (10.20)

for which the stress components are

O = (247 —2Br? + Cr™' — 2Dr ")sind (10.21)
org = (—2Ar+2Br® —Cr ') cosf (10.22)
opp = (6Ar+2Br=3 +Cr Y)sind . (10.23)
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The hoop stress ggg is identically zero on # = 0 and hence the end conditions
(10.17, 10.19) are satisfied identically in the strong sense, whilst the strong boundary
conditions (10.5, 10.6) lead to the set of equations

2Aa—£+g—-g =0 (10.24)
a a a
2B C 2D
2Ab—§+3—7 =0 (1025)
2B C
2Aa — —t—- = 0 (10.26)
Q a
2B C
2Ab — g + 7T 0. (10.27)

The final solution that also satisfies the inhomogeneous condition (10.18) is ob-
tained as

F Fa2p? F(a® + b?)
A——2-ﬁ1,B——2N1 ,C——T,D—O, (10.28)
where
Ny = (a® — b*) + (a® + b*) In(b/a) . (10.29)

As before, the final stress field is easily obtained by back substitution into equa-
tions (10.21-10.23).

The corresponding solution for an axial force at the end § = 0 is obtained in the
same way except that we interchange sine and cosine in the stress function (10.20).
Alternatively, we can use the present solution and measure the angle from the end
# = /2 instead of from §=0. Notice however that the axial force at § = /2 must
have the same line of action as the shear force at #=0 in Figure 10.3. In other words,
it must act through the origin of coordinates. If we wish to solve a problem in which
an axial force is applied with some other, parallel, line of action — e.g. if the force
acts through the mid-point of the beam, 7 =(a+b)/2 — we can do so by superposing
an appropriate multiple of the bending solution of §10.1.1.

10.2 Eigenvalues and eigenfunctions

A remarkable feature of the preceding solutions is that in each case we had a set
of four simultaneous homogeneous algebraic equations for four unknown constants
— equations (10.10-10.13) in §10.1.1 and (10.24-10.27) in §10.1.2 — but in each we
were able to obtain a non-trivial solution, because the equations were not linearly
independent'.

'In particular, (10.12, 10.13) can both be satisfied by setting D = 0 and (10.24-10.27) reduce to
only two independent equations if D = 0.
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Suppose we were to define an inhomogeneous problem for the curved beam in
which the curved edges r=a, b were loaded by arbitrary tractions o,, 0,g. We could
then decompose these tractions into appropriate Fourier series — as indicated in §8.3.1
— and use the general solution of equation (8.59) and Table 8.1. There would then be
four linearly independent stress function terms for each Fourier component and hence
the four boundary conditions would lead to a well-conditioned set of four algebraic
equations for four arbitrary constants for each separate Fourier component.

In the special case where there are no tractions of the appropriate Fourier form
on the curved surfaces, we should get four homogeneous algebraic equations and we
anticipate only the trivial solution in which the corresponding four constants — and
hence the stress components — are zero.

This is exactly what happens for all values of n other than0, 1, but, as we have seen
above, for these two special cases, there is a non-trivial solution to the homogeneous
problem. In a sense, 0, 1 are eigenvalues of the general Fourier problem and the
corresponding stress fields are eigenfunctions.

10.3 The inhomogeneous problem

Of course, eigenvalues can be viewed from two different perspectives. They are the
values of a parameter at which the homogeneous problem has a non-trivial solution
— e.g. the frequency at which a dynamic system will vibrate without excitation —
but they are also the values at which the inhomogeneous problem has an unbounded
solution — excitation at the natural frequency predicts an unbounded amplitude.
In the present instance, we must therefore anticipate difficulties in the inhomoge-
neous problem if the boundary tractions contain Fourier terms with n=0 or 1.

10.3.1 Beam with sinusoidal loading

As an example, we consider the problem of Figure 10.4, in which the curved beam is
subjected to a radial normal traction

O =Ssin® ; r=5b, (10.30)

the other boundary tractions being zero.

A ‘naive’ approach to this problem would be to use a stress function composed of
those terms in Table 8.1 for which the stress component o,, varies with sin#. This
of course would lead to the formulation of equations (10.20-10.23) and the strong
boundary conditions on the curved edges would give the four equations

2B 2D
240~ 28,0 D _ (10.31)
a a a
oap— 2B, ¢ 2D _ (10.32)
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2B C

20— 5 += = 0 (10.33)
a a
2B C

24b~ S+ = 0. (10.34)

Figure 10.4: Curved beam with sinusoidal loading.

This looks like a well-behaved set of four equations for four unknown constants,
but we know that the coefficient matrix has a zero determinant, since we successfully
obtained a non-trivial solution to the corresponding homogeneous problem in §10.1.2
above.

In such cases, we must seek an additional special solution in which the dependence
of the stress field on @ differs from that in the boundary conditions. Such solutions
are known for a variety of geometries, but are usually presented as a fait accompli
by the author, so it is difficult to see why they work, or how we might have been
expected to determine them without guidance. In this section, we shall present the
appropriate function and explain why it works, but we shall then develop a more
rational approach to determining the class of solution required.

The special solution can be generated by expressing the original function (10.20)
in complex variable form and then multiplying it by In({, where { = z + 2y is
the complex variable. Thus, (10.20) consists of a linear combination of the terms
$(¢% ¢ ¢Ing; CIn (), so we can generate a new biharmonic function from the terms
I(C¢%In¢; ¢ In¢; ¢ In*¢; ¢ In? ¢), which can be written in the form

¢ = Ar*(In(r)sind + 6cos@) + B'r~'(fcosd — Inrsind)
C'rIn(r)fcos 8 + D'r(In’rsin — 6?sin ) . (10.35)
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The corresponding stress components are
o = (247 —2B'r2 4+ C'r ' —2D'r"H)fcosh

+(2A4'rIn(r) — A'r + 2B'r*In(r) — 3B'77®
~2C"r " n(r) + 2D'rVn(r) — 4D'r 1Y sin g (10.36)

org = (247 —2B'r™* +C'r 1)fsinb

+(—2A"rIn(r) — 34'r — 2B'r*In(r) 4+ 3B'r 3

—C'r7! —2D'r" In(r)) cos 8 (10.37)
ogg = (6AT+2B'r*+C'r H)fcosb

+(6A'r In(r) + 5A'r — 2B'r3In(r) + 3B'+73
+2D'r~n(r) + 2D'r"") siné . (10.38)

Notice in particular that these expressions contain some terms of the required
form for the problem of Figure 10.4, but they also contain terms with multipliers of
the form @sin 8, 8 cos 8, which are inappropriate. We therefore get four homogeneous
algebraic equations for the coefficients A’, B',C', D' from the requirement that these
inappropriate terms should vanish in the components .., o+ on the boundaries r =
a, b, i.e.

2B" C' 4D’
2B" C' 4D’
R (10.40)
BI !
2A'a—2a3 +9a~ =0 (10.41)
2B" '
240~ -+ = 0. (10.42)

Clearly these equations are identical®> with (10.24—10.27) and are not linearly in-
dependent. There is therefore a non-trivial solution to (10.39-10.42), which leaves
us with a stress function that can supplement that of equation (10.20) to make the
problem well-posed.

From here on, the solution is algebraically tedious, but routine. Adding the two
stress functions (10.20, 10.35), we obtain a function with 8 unknown constants which
is required to satisfy 9 boundary conditions comprising (i) equations (10.39-10.42),
(ii) equations (10.31-10.34) modified to include the sin, cosf terms from equations
(10.36, 10.37) respectively and (iii) the weak traction-free condition

b
/ oo =0; §=0 (10.43)

2except that 4D’ replaces 2D.
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on the end of the beam. Since two of equations (10.39-10.42) are not independent,
the system reduces to a set of 8§ equations for 8 constants whose solution is

Sb Sa?b? Sb(a? + b?)
' . f_— _ . e A 7
A = —, B : C 3N,

4N1 ’ 4N,
A = 8N2{2( a?) — (302 + b*)Inb+ (36 + a*) Ina
In(b/a)} ;

—2(a’Ina + b 1nb

; D'=90

(
)

B = %3’;{ 2(b? — a®) + (30% + a%) Inb — (3a® + b*) Ina

—2(; 2lnb+ b*lna)In(b/a)}
C = 4—le{2(b4+a) n(b/a) — (b* - a*)} (10.44)
D = bel (0% - a®) +2(* + a*)Ina},

where Njis given by equation (10.29).

Of course, it is not fortuitous that the stress function (10.35) leads to a set of
equations (10.39-10.42) identical with (10.24-10.27). When we differentiate the func-
tion f(¢,¢)In(¢) by parts to determine the stresses, the extra multiplier In(¢) is only
preserved in those terms where it is not differentiated and hence in which all the
differential operations are performed on f(¢ ,f) But these operations on f(¢ ,C—) are
precisely those leading to the stresses in the original solution and hence to equations
(10.24-10.27). The reader will notice a parallel here with the procedure for determin-
ing the general solution of a differential equation with repeated differential multipliers
and with that for dealing with degeneracy of solutions discussed in §8.3.3.

10.3.2 The near-singular problem

Suppose we next consider a more general version of the problem of Figure 104 in
which the inhomogeneous boundary condition (10.30) is replaced by

o = Ssin(M) ; r=b, (10.45)

where ) is a constant. In the special case where A=1, this problem reduces to that
of §10.3.1. For all other values (excluding A=0), we can use the stress function

¢ = (Ar**? 4 Br* + Cr™* + Dr=**%)sin(0) , (10.46)
with stress components

O = —{AMX=2)(A+ 1)r* + BA(X — 1)r*7?
+CAN + 1)r 272+ DA+ 2)(A = 1)r~*} sin(\0)
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o = {=AANM+1)r* — BAD ~ 1)r*?
+CA(A +1)r™72 + DA(A ~ 1)r™*} cos(A0) (10.47)
o = {AQ+1)(A+2)r + BA - 1)

+CAA+ D)r "2 4+ DA — 1)(A — 2)r*} sin(A) .
The boundary conditions on the curved edges lead to the four equations
AP O+l)a* + BAN-Da* 2+ CAQH)a A2+ DO (-Da™ = 0
AP O+)OM+ BAQ=DO 2+ CAQH)O 2+ DO (- = =S
— AN - BAQG-D)a 2+ CAMH) a2+ DAG-Da™ = 0
—ANMHYY — BAQ=DP 2+ CAMH)O A2+ DA = 0,

(10.48)
which have the solution
A= (150 - MR- 1))
T2+ DN
—-S*
B = m{”(/\+ 1) = (A=1pf(N)}
_SGZAbA+2 .
C = mw* 2R+ fO) (10.49)
B Sa2/\—2b)\ o )
D = m{/\b fQA)+a*f(N},
where
N = MfO=1f+1) = (W =1fN)? (10.50)
fl) = ¥ —d*. (10.51)

On casual inspection, it seems that this problem behaves rather remarkably as A
passes through unity. The stress field is sinusoidal for all A1 and increases without
limit as A approaches unity from either side, since N(A)=0 when A=1. (Notice that
an additional singularity is introduced through the factor (A—1) in the denominator
of the coefficients B, D.) However, when A is exactly equal to unity, the problem has
the bounded solution derived in §10.3.1, in which the stress field is not sinusoidal.

However, we shall demonstrate that the solution is not as discontinuous as it
looks. The stress field obtained by substituting (10.49) into (10.46) is not a complete
solution to the problem since the end condition (10.43) is not satisfied. The solution
from (10.46) will generally involve a non-zero force on the end, given by

b
F(A) = /(largdr

Y {Af (—A-;-L—l> + Bf (%—1-) +Cf (iA—Q——l) +Df (_A; 1)} (10.52)
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To restore the no-traction condition on the end (in the weak sense of zero force
resultant) we must subtract the solution of the homogeneous problem of §10.1.2, with
F given by (10.52). The final solution therefore involves the superposition of the stress
functions (10.20) and (10.46). As A approaches unity, both components of the solution
increase without limit, since (10.52) contains the singular terms (10.49), but they also
tend to assume the same form since, for example, r?+*sin(\d) approaches 7% sin . In
the limit, the corresponding term takes the form

A (A)r*Asin(A) — Ay(A)r3sind

,l\l—rﬁ NV , (10.53)
where
A = -@i—{(AH)f(A) — A2 F(A—=1)} 10.54
BT 9+ 1) (10-54)
FONQK)

Ay(N) = ———. .

2(}) 5N, (10.55)
Setting A=1 in equations (10.54, 10.55), we find
2012 _ o2

Ar(1) = A(1) = &(22_2_) . (10.56)

The zero in N()) is therefore cancelled and (10.53) has a bounded limit which can
be recovered by using L’Hopital’s rule. We obtain

{A1(1) = AL(1)}r3sind  A,(1)g(r,0,1)
N'(1) TTND

(10.57)

where

g(r, 8, ) +Asin(Ag) = r**}{In(r) sin(\0) + O cos(A8)} , (10.58)

_ 9.2
=5
which in the limit A =1 reduces to 7*{In(r)sin@ + 8 cos8}. The coefficient of this

term will be

A1) Sh
TN 4N
agreeing with the corresponding coefficient, A', in the special solution of §10.3.1 (see
equations (10.44)).

A similar limiting process yields the form and coefficients of the remaining 7
stress functions in the solution of §10.3.1. In particular, we note that the coefficients
B, D in equations (10.49) have a second singular term in the denominator and hence
L’Hépital’srule has to be applied twice, leading to stress functions of the form of the
last two terms in equation (10.35).

AI

(10.59)
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Thus, we find that the solution to the more general problem of equation (10.45)
includes that of §10.3.1 as a limiting case and there are no values of A for which the
stress field is singular. The limiting process also shows us a more general way of
obtaining the special stress functions required for the problem of §10.3.1. We simply
take the stress function (10.46), which degenerates when A =1, and differentiate it
with respect to the parameter, A. Since the last two terms of (10.20) are already of
this differentiated form, a second differentiation is required to generate the last two
terms of (10.35).

104 Some general considerations

Similar examples could be found for other geometries in the two-dimensional theory
of elasticity. To fix ideas, suppose we consider the body a < é < b, ¢ <n < d in the
general system of curvilinear codrdinates, £, n. In general we might anticipate a class
of separated-variable solutions of the form

¢ = fr(E)ga(n) (10.60)

where A is a parameter. An important physical problem is that in which the bound-
aries 7=a,b are traction-free and the tractions on the remaining boundaries have a
non-zero force or moment resultant. In such cases, we can generally use dimensional
and/or equilibrium arguments to determine the form of the stress variation in the
€-direction and hence the appropriate function f3(£). The biharmonic equation will
then reduce to a fourth order ordinary differential equation for g}(n), with four lin-
early independent solutions. Enforcement of the traction-free boundary conditions
will give a set of four homogeneous equations for the unknown multipliers of these
four solutions.

If the solution is to be possible, the equations must have a non-trivial solution,
implying that the matrix of coefficients is singular. It therefore follows that the
corresponding inhomogeneous problem cannot be solved by the stress function of
equation (10.60) if the tractions on n=a,b vary with f}({) — i.e. in the same way
as the stresses in the homogeneous (end loaded) problem. However, special stress
functions appropriate to this limiting case can be obtained by differentiating (10.60)
with respect to the parameter A.

The special solution for A=A* is not qualitatively different from that at more gen-
eral values of A, but appears as a regular limit once appropriate boundary conditions
are imposed on the edges £ =c, d.

Other simple examples in the two-dimensional theory of elasticity include the
curved bar in bending (§10.1.1) and the wedge with traction-free faces (§11.2). Similar
arguments can also be applied to three-dimensional axisymmetric problems — e.g.
to problems of the cone or cylinder with traction-free curved surfaces.
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10.4.1 Conclusions

1. Whenever we find a classical solution in which there are two traction-free bound-
aries, we can formulate a related inhomogeneous problem for which the equation
system resulting from these boundary conditions will be singular.

2. Special solutions for these cases can be obtained by parametric differentiation of
more general solutions for the same geometry.

3. Alternatively, the special case can be recovered as a limit as the parameter tends
to its eigenvalue, provided that the remaining boundary conditions are satisfied in an
appropriate sense (e.g. in the weak sense of force resultants) before the limit is taken.

PROBLEMS

1. A curved beam of inner radius ¢ and outer radius 5a is subjected to a force F at
its end as shown in Figure 10.5. The line of action of the force passes through the
mid-point of the beam.

/)

]

A

-

5a

)“72d 2a 4’|
T

Figure 10.5: Curved beam loaded by a central force.

By superposing the solutions for the curved beam subjected to an end force and to
pure bending respectively, find the hoop stress ogy at the point A(a,7/2) and compare
it with the value predicted by the elementary Mechanics of Materials bending theory.

2. The curved beam b<r<a, 0<@<7/2 is built in at §=n/2 and loaded only by its
own weight, which acts in the direction §=—m/2. Find the stress field in the bar.
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3. The curved beam b<r <a, 0 <8 <7/2 is built in at § =7/2 and loaded by a
uniform normal pressure o,, =—S5 at r=a, the other edges being traction-free. Find
the stress field in the bar.

4. The curved beam b<r <a, 0 <8< 7/2 is built in at § =x/2 and loaded by a
uniform shear traction o,4=S5 at r=a, the other edges being traction-free. Find the
stress field in the bar.

5. The curved beam b<r <a, 0<<7/2 rotates about the axis §=n/2 at speed {2,
the edges r =a,b and 9 =0 being traction-free. Find the stresses in the bar. Hint:
The easiest method is probably to solve first the problem of the complete annular
ring b<r <a rotating about §=m/2 and then correct the boundary condition at §=0
(in the weak sense) by superposing a suitable homogeneous solution.

6. Figure 10.6 shows a crane hook of thickness ¢ that is loaded by a force F acting
through the centre of the curved section. Find the stress field in the curved portion
of the hook and compare the maximum tensile stress with that predicted by the
elementary bending theory. Neglect the self-weight of the hook.

4a

F

Figure 10.6: The crane hook.



Chapter 11
WEDGE PROBLEMS

In this chapter, we shall consider a class of problems for the semi-infinite wedge
defined by the lines a < @< g, illustrated in Figure 11.1.

0

Figure 11.1: The semi-infinite wedge.

11.1 Power law tractions

We first consider the case in which the tractions on the boundaries vary with 7", in
which case equations (8.10, 8.11) suggest that the required stress function will be of
the form

¢ =1r""2f(0) . (11.1)

The function f(6) can be found by substituting (11.1) into the biharmonic equa-
tion (8.16), giving the ordinary differential equation

2 2

137
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For n#0, —2, the four solutions of this equation define the stress function
¢ = r"T2{ A cos(n + 2)0 + Ay cos(nf) + Agsin(n + 2)0 + Ay sin(nd)} (11.3)

and the corresponding stress and displacement components can be taken from Tables
8.1, 9.1 respectively, with appropriate values of n.

11.1.1 Uniform tractions

Timoshenko and Goodier, in a footnote in §45, state that the uniform terms in the
four boundary tractions are not independent and that only three of them may be
prescribed. This is based on the argument that in a more general non-singular series
solution, the uniform terms represent the stress in the corner, =0 and the stress at
a point only involves three independent components in two-dimensions.

However, the differential equation (11.2) has four independent non-trivial solutions
for n=0, corresponding to the stress function'

¢ =1*{ A cos(20) + A, + Azsin(20) + A0} . (11.4)

The corresponding stress components are

o = —2A;1c08(20) + 2A; — 2A;3sin(26) + 2440 (11.5)
o9 = 2A;sin(20) — 2A;3cos(26) — Ay (11.6)
o = 24, COS<2(9) + 24, + 24, SII’I(20) + 2440, (117)

and, in general, these permit us to solve the problem of the wedge with any combina-
tion of four independent traction components on the faces’. Timoshenko’s assertion
is therefore incorrect.

Uniform shear on a right-angle wedge

To explore this paradox further, it is convenient to consider the problem of Figure
11.2, in which the right-angle corner z>0, y >0 is subjected to uniform shear on one
face defined by

Opy = S5 055=0; 2=0 (11.8)

Oy = 0 0,=0; y=0.

'Another way of generating this special solution is to note that the term in (11.2) which degen-
erates when n=01is A4 sin(nf). Following §8.3.3, we can find the special solution by differentiating
with respect to m, before proceeding to the limit n— 0, giving the result .A46.

This problem was investigated by E.Reissner, Note on the theorem of the symmetry of the stress
tensor, J.Math.Phys. Vol. 23 (1944), 192. See also D.B.Bogy and E.Sternberg, The effect of couple-
stresses on the corner singularity due to an asymmetric shear loading, Int.J.Solids Structures, Vol.
4 (1968), 159-174.
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Figure 11.2: Uniform shear on a right-angle wedge.

Timoshenko’s footnote would seem to argue that this is not a well-posed problem,
since it implies that o,y #0y, at z=y=0.
Casting the problem in polar codrdinates, (r,8), the boundary conditions become

gor = —S ; oge =0 ; 6’=g (11.10)

cor = 05 0ge=0; 6=0, (11.11)

Using the stress field of equations (11.5-11.7), this reduces to the system of four
algebraic equations

243 — 44 = -8 (11.12)
~2A1 +2A,+ Ay = 0 (11.13)
-—2A3 - A4 = 0 (1114)
241 +24, = 0, (11.15)
with solution
) iy S S
Al——8—1A2~-—8~,A3—~—Z,A4—§, (11.186)

giving the stress function
b=S (m"? cos(20) 7r?  r?sin(20) 7“29)

8 8 4 2

Timoshenko’s ‘paradox’ is associated with the apparent inconsistency in the stress
COMPONENtS 0y, 0y, at & =y =0, s0 it is convenient to recast the stress function in
Cartesian coordinates as

2, .2 2,2
¢=S<g(m2——y2)— w—%—i-@—-;—y—)arctan%) . (11.18)

(11.17)

8 2
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We then determine the shear stress oy as
82¢ B Sy2
0zdy  x?+y?’

Ogy =

(11.19)

It is easily verified that this expression tends to zero for y=0 and to .S for z=0,
except of course that it is indeterminate at the point x =y =0. The first three terms in
the stress function (11.18) are second degree polynomials in x,y and therefore define
a uniform state of stress throughout the wedge, but the fourth term, resulting from
Ayr?0 in (11.4), defines stresses which are uniform along any line 6 =constant, but
which vary with 8. Thus, any stress component ¢ is a bounded function of § only. It
follows that the corner of the wedge is not a singular point, but the stress gradientsin
the #-direction (l 5’1) increase with 7=! as r—~ 0. This arises because lines of constant

r 08
0 meet at r=0.

11.1.2 More general uniform loading

More generally, there is no inconsistency in specifying four independent uniform trac-

tion components on the faces of a wedge, though values which are inconsistent with

the conditions for stress at a point will give infinite stress gradients in the corner.
For the general case, it is convenient to choose a codrdinate system symmetric with

respect to the two faces of the wedge, which is then bounded by the lines 8 = +a.
Writing the boundary conditions

ogr = 11 ; 0=« (11.20)
Ogr = T2 N 0 =—-« (1121)
Opg = N1 ; 0=a (1122)
Ogg — N2 ) 0= -, (1123)
and using the solution (11.5-11.7), we obtain the four algebraic equations
2A;sin(2a) — 24sco8(20) - Ay = T (11.24)
—2A4;sin(20) — 243co8(2a) — Ay = Ty (11.25)
2A; cos(20r) + 24, + 24;3sin(2a) + 2440 = Ny (11.26)
2A; cos(2a) + 245 — 243sin(2a) — 24500 = N; . (11.27)

As in §6.2.2, we can exploit the symmetry of the problem to partition the coeffi-
cient matrix by taking sums and differences of these equations in pairs, obtaining the
simpler set

—4A3c08(2a) — 244 = T1+ T (11.28)
4A,8in(2e) = T1—-Th (11.29)
4A;cos(2a) +44; = N1+ N, (11.30)
4A3sin(2a) + 4A4 = Ny — Ny, (11.31)
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where we note that the termsinvolving Ay, A; correspond to a symmetric stress field
and those involving As, A4 to an antisymmetric field.

11.1.3 Eigenvalues for the wedge angle

The solution of these equations is routine, but we note that there are two eigenvalues
for the wedge angle 2o at which the matrix of coefficients is singular.
In particular, the solution for the symmetric terms (equations (11.29, 11.30) is
singular if
sin(2a) =0, (11.32)

i.e. at 2a=180° or 360°, whilst the antisymmetric terms are singular when
tan(2a) = 2a, (11.33)

which occurs at 2a0=257.4°. The 180° wedge is the half plane x>0, whilst the 257.4°
wedge is a reéntrant corner.

As in the problem of §10.3, special solutions are needed for the inhomogeneous
problem if the wedge has one of these two special angles. As before, they can be
obtained by differentiating the general solution (11.3) with respect to n before setting
n=0, leading to the new terms, r?{In(r) cos(26) —6sin(20)} and r?In(r). A particular
problem for which these solutions are required is that of the half plane subjected to
a uniform shear traction over half of its boundary (see Problem 11.1, below).

The homogeneous solution

For wedges of 180° and 257.4°, the homogeneous problem, where N1 =Ny =T; =T5=0
has a non-trivial solution. For the 180° wedge (i.e. the half plane z >0), this solution
can be seen by inspection to be one of uniaxial tension, oy, =S, which is non-trivial,
but involves no tractions on the free surface z =0. The same state of stress is also
a non-trivial solution for the 360° wedge, which corresponds to a semi-infinite crack
(see Figure 11.6 and §11.2.3 below).

11.2 Williams’ asymptotic method

Figure 11.3 shows a body with a notch, loaded by tractions on the remote boundaries.
Intuitively we anticipate a stress concentration at the notch and we shall show in
this section that the stress field there is generally singular — i.e. that the stress
components tend to infinity as we approach the sharp corner of the notch.
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Pttt

R

Figure 11.3: The notched bar in tension.

Williams® developed a method of exploring the nature of the stress field near this
singularity by defining a set of polar codrdinates centred on the corner and expanding
the stress field as an asymptotic series in powers of 7.

11.2.1 Acceptable singularities

Before developing the asymptotic solution in detail, we must first address the question
as to whether singular stress fields are ever acceptable in elasticity problems.

Engineering criteria

This question can be approached from various points of view. The engineer is usually
inclined to argue that no real materials are capable of sustaining an infinite stress
and hence any situation in which such a stress is predicted by an elastic analysis will
in practice lead to yielding or some other kind of failure.

We also note that stress singularities are always associated with discontinuities
in the geometry or the boundary conditions — for example, a sharp corner, as in
the present instance, or a concentrated (delta function) load. In practice, there are
no sharp corners and loads can never be perfectly concentrated. If we are to give
any meaning to these solutions, they must be considered as limits of more practical
situations, such as a corner with a very small fillet radius or a load applied over a
very small region of the boundary.

Yet another practical limitation is that of the continuum theory. Real materials
are not continua — they have atomic structure and often a larger scale granular

*M.L.Williams, Stress singularities resulting from various boundary conditions in angular corners
of plates in extension, ASME J.Appl.Mech., Vol. 19 (1952), 526-528.
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structure as well. Thus, it doesn’t make much practical sense to talk about the value
of quantities nearer to a corner than (say) one atomic distance, since the theory is
going to break down there anyway.

Of course, we find this kind of argument whenever we try to idealize a physical
system, which means essentially whenever we try to describe its behaviour in math-
ematical terms. Because there are so many idealizations or approximations involved
in the modeling process, it is never certain which one is responsible when mathe-
matical difficulties are encountered in a problem and often there are several ways of
reformulating the problem to introduce more physical reality and avoid the difficulty.

Mathematical criteria

A totally different approach to the question — more favoured by mathematicians
— is to make choices based on questions of uniqueness, convergence and existence
of solutions, rather than on the physical grounds discussed above. In terms of the
functional analysis, we choose to locate the theory of elasticity in a functional space
which guarantees that problems are mathematically well-posed. A functional space
here denotes a class of functions in which the solution is to be sought, and generally
this involves some statement about the strength of acceptable singularities in the
solution.

In this context, the engineer’s objections outlined above can be addressed by lim-
iting arguments. It is not logically impossible that a material should have a yield
strength of any arbitrarily large (but finite) magnitude, that the radius of a corner
should be arbitrarily small, but finite, etc. Solutions of problems involving singulari-
ties are then to be conceived as the result of allowing these quantities to tend to their
limits. Generally the difference between the real problem and the limiting case will
be only localized.

In regions of a body or its boundary where no concentrated traction etc. is applied,
we adopt the criterion that the only acceptable singularities are those for which the
total strain energy in a small region surrounding the singular point vanishes as the
size of that region tends to zero.

If the stresses and hence the strains vary with r* as we approach the point r = 0,
the strain energy in a two-dimensional problem will be an integral of the form

1 r2n pr T
= = i5€44 d9 = / Za+1 s .
U 2/0 /0 oieirdr o T dr (11.34)

where C is a constant which depends on the elastic constants and the nature of the
stress variation with 6. This integral is bounded if a> —1 and otherwise unbounded.
Thus, singular stress fields are acceptable if and only if the exponent on the stress
components exceeds —1.

Concentrated forces and dislocations® involve stress singularities with exponent
a = —1 and are therefore excluded by this criterion, since the integral in (11.34)

“See Chapter 13 below.
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would lead to a logarithm, which is unbounded at ~ = 0. However, these solutions
can be permitted on the understanding that they are really idealizations of explicitly
specified distributions. In this case, it is important to recognize that the resulting
solutions are not meaningful at or near the singular point. We also use these and other
singular solutions as Green’s functions — i.e. as the kernels of convolution integrals
to define the solution of a non-singular problem. This technique will be illustrated in
Chapters 12 and 13, below.

11.2.2 Eigenfunction expansion

We are concerned only with the stress components in the notch at very small values
of r and hence we imagine looking at the corner through a strong microscope, so that
we see the wedge of Figure 11.4. The magnification is so large that the other surfaces
of the body, including the loaded boundaries, appear far enough away for us to treat
the wedge as infinite, with ‘loading at infinity’.

Traction-free

Figure 11.4: The semi-infinite notch.

The stress field at the notch is of course a complicated function of r,#, but as in
Chapter 6, we seek to expand it as a series of separated-variable terms, each of which
satisfies the traction-free boundary conditions on the wedge faces. The appropriate
separated-variable form is of course that given by equation (11.3), except that we
increase the generality of the solution by relaxing the requirement that the exponent
n be an integer — indeed, we shall find that most of the required solutions have
complex exponents.
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Following Williams™ notation, we replace n by (A—1) in equation (11.3), obtaining
the stress function

¢ = r {4 cos(A+1)8+ Ay cos(A— 1)0 + Az sin(A + 1)0 + Ay sin(A— 1)8} , (11.35)
with stress components
o = T H=A A + 1) cos(A + 1)8 — AA(A — 3) cos(X — 1)8
—AzA(A + 1) sin(A +1)0 — Ay (X — 3) sin{A — 1)6} (11.36)
org = T HAMN+ 1)sin(A + 1)8 4 AA() — 1) sin(\ — 1)0
—AzA(A + 1) cos(A + 1)8 — AgA(A — 1) cos(A — 1)6} (11.37)
oge = T AN+ 1)cos(A+ 1)8 + ApA(A + 1) cos(A — 1)

+A3A(A + 1) sin(A + 1)8 + AgA (A + 1) sin(A - 1)6} . (11.38)
For this solution to satisfy the traction-free boundary conditions
Ogr = Ogg = 0; 0 =+ta (11.39)
we require

MAL(A + 1) sin(A + 1)a + Ay(A — 1) sin(A - 1)a
—Az(A+1)cos(A+ Da — Ag(A — 1) cos(A—1)a} = 0 (11.40)

M=A(A+ 1) sin(A + Da — Ay(A — 1) sin(A — Da
—Az(A+1)cos(A + )a— Ay(A—1)cos(A —1)a} = 0 (11.41)

MAI (A + 1) cos(A + e+ Az(A + 1) cos(A — 1o
+A3(A + 1) sin(A + 1)a + Ag(A + 1)sin(A - 1)a} = 0 (11.42)

MAL (A + 1) cos(A + 1o+ Aa(A + 1) cos(A — 1)
~As(A+ 1) sin{A + o — Ay(A+ D)sin(A — 1)a} = 0. (11.43)
This is a set of four homogeneous equations for the four constants A;,..., A4

and will have a non-trivial solution only for certain eigenvalues of the exponent A.
Since all the equations have a A multiplier, A=0 must be an eigenvalue for all wedge
angles. We can simplify the equations by canceling this factor and taking sums and
differences in pairs to expose the symmetry of the system, with the result

Ai(A+ Dsin(A + Da+ Ay(A = I)sin(A - 1)a = 0 (11.44)
Ai(A+ D cos(A+ 1)a+ Ay(A+1)cos(A = 1)a = 0 (11.45)
As(A+ 1) cos(A + 1)a+ Ay(A —1)cos(A = 1)a = 0O (11.46)
As(A+ 1) sin(A+ Da+ Ay(A+ D)sin(A -~ 1)aa = 0. (11.47)

This procedure partitions the coefficient matrix, to yield the two independent matrix
equations

O+ Dsin(A+ Do (A-1Dsin(A-Da ][ A ] _
(A+1) (S«:OI;(A +Da (A+1)cos() — 1o } { As } =0 (11.48)
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and

(A+1)cos(A+1)a (A —1)cos(A~1) As |
A+ D) sin(A+ o (A+1)sin(X — 1)3 } { } =0. (11.49)

The symmetric terms A;, A; have a non-trivial solution if and only if the de-
terminant of the coefficient matrix in (11.48) is zero, leading to the characteristic
equation

Asin2a +sin(2Xe) =0, (11.50)

whilst the antisymmetric terms Aj, A; have a non-trivial solution if and only if
Asin2e — sin(2Xa) =0, (11.51)

from (11.49).

11.2.3 Nature of the eigenvalues

We first note from equations (11.36-11.38) that the stress components are propor-
tional to »*~! and hence ) is restricted to positive values by the energy criterion
of §11.2.1. Furthermore, we shall generally be most interested in the lowest possible
eigenvalue’, since this will define the strongest singularity that can occur at the notch
and will therefore dominate the stress field at sufficiently small r.

Both equations (11.50, 11.51) are satisfied for all & if A =0 and (11.51) is also
satisfied for all o if A=1.

The case A=0 is strictly excluded by the energy criterion, but we shall find in the
next chapter that it corresponds to the important case in which a concentrated force
is applied at the origin. It can legitimately be regarded as describing the stress field
sufficiently distant from a load distributed on the wedge faces near the origin, but as
such it is clearly not appropriate to the unloaded problem of Figure 11.3.

The solution A=1 of equation (11.51) is a spurious eigenvalue, since if we compute
the corresponding eigenfunction, it turns out to have the null form ¢ = A4sin(0). The
correct limiting form for A =1 requires the modified stress function (11.4) and leads to
the condition (11.33) for antisymmetric fields, which is satisfied only for 2a:=257.4°.

Some insight into the nature of the eigenvalues for more general wedge angles can
be gained from the graphical representation of Figure 11.5, where we plot the two
terms in equations (11.50, 11.51) against z=2A«. The sine wave represents the term
sin(2Aw) (=sinz) and the straight lines represent various possible positions for the
terms A sin(2a) =tz (sin(2a) /20).

More rigorously, a general stress field near the corner can be expressed as an eigenfunction
expansion, but the term with the smallest eigenvalue will be arbitrarily larger than the next term
in the expansion at sufficiently small values of r.
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Figure 11.5: Graphical solution of equations (11.50, 11.51).

The simplest case is that in which 2a=27 and the wedge becomes the crack illus-
trated in Figure 11.6. We then have sin(2a) =0 and the solutions of both equations
(11.50, 11.51) correspond to the points where the sine wave crosses the horizontal
axis — i.e. 13

A=-,1,-, ...
272

This is an important special case because of its application to fracture mechanics.

In particular, we note that the lowest positive eigenvalue of A is % and hence the

crack-tip field is square-root singular for both symmetric and antisymmetric loading.

(11.52)

NI

T

Figure 11.6: Tip of a crack considered as a 360° wedge.

Suppose we now consider a wedge of somewhat less than 27, in which case equa-
tions (11.50, 11.51) are represented by the intersection between the sine wave and the
lines A, A’ respectively in Figure 11.5.

As the wedge angle is reduced, the slope (sin{2a)/2a) of the lines first becomes
increasingly negative until a maximum is reached at 2a =257.4°, corresponding to
the tangential line B’ and its mirror image B. Further reduction causes the slope to
increase monotonically, passing through zero again at 2a =7 (corresponding to the
case of the half plane) and reaching the limit C, C" at 2a:=0.
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Clearly, if the lines A, A’ are even slightly inclined to the horizontal, they will
only intersect a finite number of waves, corresponding to a finite set of real roots, the
number of real roots increasing as the slope approaches zero. Increasing the slope
causes initially equal-spaced real roots to become closer in pairs such as b, ¢ in Figure
11.5. For any given pair, there will be a critical slope at which the roots coalesce and
for further increase in slope, a pair of complex conjugate roots will be developed.

In the antisymmetric case for 360° > 2a > 257.4°, the intersection &' in Figure 11.5
corresponds to the spurious eigenvalue of (11.51), but &’ is a meaningful eigenvalue
corresponding to a stress singularity that weakens from square-root at 2a:=360° to
zero at 2c = 257.4°. For smaller wedge angles, o' is the spurious eigenvlaue and b’
corresponds to a real but non-singular root.

o

180 240 ° 300 ° 260

LN B I L N B D B L

-0.7

Antisymmetric
-0.2
(A1)

-0.
X Symmetric

-0.4

-0.5
Figure 11.7: Strength of the singularity in a reéntrant corner.

In the symmetric case, the root @ gives a real eigenvalue corresponding to a singular
stress field whose strength falls monotonically from square-root to zero as the wedge
angle is reduced from 27 to m. The strength of the singularity (A —1) for both
symmetric and antisymmetric terms is plotted against total wedge angle6 in Figure
11.7. The singularity associated with the symmetric field is always stronger than that
for the antisymmetric field except in the limit 2a = 27, where they are equal, and
there is a range of angles (257.4° > 2a. > 180°) where the symmetric field is singular,
but the antisymmetric field is not.

SFigure 11.7 is reproduced by courtesy of Dr.D.A.Hills.
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For non-reéntrant wedges (2a <), both fields are bounded, the dominant eigen-
value for the symmetric field becoming complex for 2a: < 146°. Since bounded solu-
tions correspond to eigenfunctions with r raised to a power with positive real part,
the stress field always tends to zero in a non-re€ntrant corner.

11.2.4 The singular stress fields

If A= )g is an eigenvalue of (11.50), the two equations (11.44, 11.45) will not be

linearly independent and we can satisfy both of them by choosing A;, A, such that
Al = A(/\S — 1) Sin()\s - l)a (1153)
A; —-A(/\S + 1) Sin(/\s + 1)a s (11‘54)

where A is a new arbitrary constant. The corresponding (symmetric) singular stress
field is then defined through the stress function

¢s = Ar*sTH{(As — 1) sin(Ag ~ 1)acos(As +1)8 — (As +1) sin(Ag + L) cos(As — 1)} .

(11.55)

A similar procedure with equations (11.46, 11.47) defines the antisymmetric sin-
gular field through the stress function

¢a = Brist{(A+1)sin(Aa—Dasin(Ag+1)0— (A4 +1) sin(Aa+1asin(ha — 1)} ,
(11.56)
where A4 is an eigenvalue of (11.51) and B is an arbitrary constant.

For the crack tip of Figure 11.6, the eigenvalues of both equations are given by
equation (11.52) and the dominant singular fields correspond to the values Ag=X 4= %
Substituting this value into (11.55) and the resulting expression into (8.10, 8.11), we
obtain the symmetric singular field as

R )
S \/I;r_r {Zcos (g) + (%)} (11.58)
o = \7% {%sin (g) + (3’;—')} , (11.59)

where we have introduced the new constant

K = 3A\/Z-, (11.60)

known as the mode | stress intensity factor’.

1
Z COS
1
Z Sin

"Brittle materials typically fail when the stress intensity factor at a crack tip reaches a critical
value. This will be discussed in more detail in §13.3.
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The corresponding antisymmetric singular crack-tip field is obtained from (11.56)

11 5 (0 . (30
_ Ku [ 5. (0 i 11.61
Orr \/%{ 4sm(2>+ sm<2>} ( )
K 3. (0 . (36
= _Zsin{ =]~ i 1.
Coo \/%{ 7 Sin <2> s1n(2)} (11.62)
Ky |1 0 3 36
_ Leos[2) 4 2cos (22 11.
Iro qu{llcos(2)+4cos(2>} ) (11.63)

where Kp; is the mode II stress intensity factor.

as

11.2.5 Other geometries

Williams® method can also be applied to other discontinuities in elasticity and indeed
in other fields in mechanics. For example, we can extend it to determine the strength
of the singularity in a composite wedge of two different materials®. An important
special case is illustrated in Figure 11.8, where two dissimilar materials are bonded®,
leaving a composite wedge of angle 3x/2 at the points A, B. Another composite
wedge is the tip of a crack (or debonded zone) at the interface between two dissimilar
materials (see Chapter 29).

T i O T T s e
I A
z
AL AT SIS AT S ///
A B
N
N N
N
\

RERRR

Figure 11.8: Composite T-bar, with composite notches at the reéntrant corners

A, B.

¥D.B.Bogy, Two edge-bonded elastic wedges of different materials and wedge angles under surface
tractions, ASME J.Appl.Mech., Vol. 38 (1971), 377-386.

A problem of this kind was solved by G.G.Adams, A semi-infinite elastic strip bonded to an
infinite strip, ASVE J.Appl.Mech., Vol. 47 (1980), 789-794.




11.2. WILLIAMS ASYMPTOTIC METHOD 151

The method has also been applied to determine the asymptotic fields in contact
problems, with and without friction' (see Chapter 12 below).

These problems generally involve both traction and displacement boundary con-
ditions. For example, if the dissimilar wedges o <8<y and o < < @y are bonded
together at the common plane # =cp and the other faces #=a;, ap are traction-free,
the boundary conditions are

ogelrion) = 0 (11.64)
og(r,en) = 0 (11.65)
(7, ) — ogg(r,0) = 0 (11.66)
a5, (ry 0) — ag, (r,00) = 0 (11.67)
up(r, a0) — ul(r,a0) = 0 (11.68)
up(r, a0) — ug(r,a0) = 0 (11.69)
ol (r,a) = 0 (11.70)
ok (ra) = 0 (11.71)

where superscripts 1, 2 refer to the two wedges, respectively. Equations (11.66, 11.67)
can be seen as statements of Newton’s third law for the tractions transmitted be-
tween the two wedges, whilst (11.68, 11.69) express the fact that if two bodies are
bonded together, adjacent points on opposite sides of the bond must have the same
displacement.

To formulate asymptotic problems of this type, the stress equations (11.36—11.38)
must be supplemented by the corresponding expressions for the displacements Uy, ug.
These can be written down from Table 9.1, since in that table the parameter n
does not necessarily have to take integer values. Alternatively, they can be obtained
directly by substituting the expression (11.35) into the Maple or Mathematica file

urt’. Omitting the rigid-body displacements, we obtain

2uu, = 1{—A;(A+1)cos(A+ 1)0 + Ay(k — A) cos(A — 1)8

—Asz(A + 1) sin{A + 1)8 + Ay(x — A) sin(A ~ 1)8} (11.72)
2uug = T{A1(A+ 1)sin(\ + 1) + Ag(k + A) sin(A — 1)
—Az(A+1)cos(A+1)8 — Ay(k + A) cos(A — 1)8} (11.73)

The results of asymptotic analysis are very useful in numerical methods, since they
enable us to predict the nature of the local stress field and hence devise appropriate
special elements or meshes. Failure to do this in problems with singular fields will
always lead to numerical inefficiency and sometimes to lack of convergence, mesh
sensitivity or instability.

197 Dundurs and M.S.Lee, Stress concentration at a sharp edge in contact problems, J.Elasticity,
Vol. 2 (1972), 109-112; M.Comninou, Stress singularities at a sharp edge in contact problems with
friction, Z.angew.Math.Phyz., Vol. 27 (1976), 493-499.
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To look ahead briefly to three-dimensional problems, we note that when we con-
centrate our attention on a very small region at a corner, the resulting magnification
makes all other dimensions (including radii of curvature etc) look very large. Thus, a
notch in a three-dimensional body will generally have a two-dimensional asymptotic
field at small r. The above results and the underlying method are therefore of very
general application. Another consequence is that the out-of-plane dimension becomes
magnified indefinitely, so that plane strain (rather than plane stress) conditions are
appropriate in all three-dimensional asymptotic problems.

11.3  General loading of the faces

If the faces of the wedge 8 = +a are subjected to tractions that can be expanded
as power series in r, a solution can be obtained using a series of terms like (11.1).
However, as with the rectangular beam, power series are of limited use in representing
a general traction distribution, particularly when it is relatively localized. Instead,
we can adapt the Fourier transform representation (5.132) to the wedge, by noting
that the stress function (11.35) will oscillate along lines of constant § if we choose
complex values for A. This leads to a representation as a Mellin transform defined as

b(r,60) = —— / % b(s, 0)rds (11.74)

—100

for which the inversion is'!
£(s,8) = /0 ” o(r,0)r\dr . (11.75)

The integrand of (11.74) is the function (11.35) with A=-s—1. The integral itself
is of course path independent in any strip of the complex plane in which the integrand
is regular. If we evaluate it along the straight line s=c+ww, it can be written in the
form

r°¢(r, 6)

I

1 [ee] o
o /_oof(c+zw,9)r dw
1 o w In(r)
= 5 / fle+w)e dw , (11.76)

which is readily converted to a Fourier integral'? by the change of variable ¢=1In(r).
The constant ¢ has to be chosen to ensure regularity of the integrand. If there are no

"'1.N.Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951.

"2The basic theory of the Mellin transform and its relation to the Fourier transform is explained
by I.N.Sneddon, loc. cit.. For applications to elasticity problems for the wedge, see E.Sternberg
and W.T.Koiter, The wedge under a concentrated couple: A paradox in the two-dimensional theory
of elasticity, ASVMIE J.Appl.Mech., Vol. 25 (1958), 575-581, W.J.Harrington and T.W.Ting, Stress
boundary-value problems for infinite wedges, J.Elasticity, Vol. 1 (1971), 65-81.
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unacceptable singularities in the tractions and the latter are bounded at infinity, it
can be shown that a suitable choice is ¢c=~1.

The Mellin transform and power series methods can be applied to a wedge of
any angle, but it should be remarked that, because of the singular asymptotic fields
obtained in §11.3, meaningful results for the reéntrant wedge (2c. > w) can only be
obtained if the conditions at infinity are also prescribed and satisfied.

More precisely, we could formulate the problem for the large but finite sector
—a <8 <a 0<r<b with precribed tractions on all edges’®. The procedure
would be first to develop a particular solution for the loading on the faces § = +«
as if the wedge were infinite and then to correct the boundary conditions at r = b
by superposing an infinite sequence of eigenfunctions from §11.3 with appropriate
multipliers'. For sufficiently large b, the stress field near the apex of the wedge
would be adequately described by the particular solution and the singular terms from
the eigenfunction expansion.

PROBLEMS

1. Figure 11.9 shows a half plane, y < 0, subjected to a uniform shear traction, o,, =S
on thehalf-line, >0, y=0, the remaining tractions on y=0 being zero.
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Figure 11.9: The half plane with shear tractions.

Find the complete stress field in the half plane. Note: This is a problem requiring
a special stress function with a logarithmic multiplier (see §11.1.3 above).

A 