

Rockford Lhotka

Expert VB 2005
Business Objects
Second Edition

6315_fm_final.qxd 4/7/06 5:24 PM Page i

Expert VB 2005 Business Objects, Second Edition

Copyright © 2006 by Rockford Lhotka

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-631-9

ISBN-10 (pbk): 1-59059-631-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Petar Kozul
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Damon Larson
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: April Eddy
Indexer: John Collin
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

6315_fm_final.qxd 4/7/06 5:24 PM Page ii

In memory of my Grandmother, Evylyn,

a true angel on earth, who now rests in heaven.

6315_fm_final.qxd 4/7/06 5:24 PM Page iii

6315_fm_final.qxd 4/7/06 5:24 PM Page iv

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Distributed Architecture . 1

■CHAPTER 2 Framework Design . 35

■CHAPTER 3 Business Framework Implementation . 93

■CHAPTER 4 Data Access and Security . 163

■CHAPTER 5 Completing the Framework . 239

■CHAPTER 6 Object-Oriented Application Design . 325

■CHAPTER 7 Using the CSLA .NET Base Classes . 365

■CHAPTER 8 Business Object Implementation . 407

■CHAPTER 9 Windows Forms UI . 465

■CHAPTER 10 Web Forms UI . 515

■CHAPTER 11 Web Services Interface . 567

■CHAPTER 12 Implementing Remote Data Portal Hosts . 607

■INDEX . 627

v

6315_fm_final.qxd 4/7/06 5:24 PM Page v

6315_fm_final.qxd 4/7/06 5:24 PM Page vi

Contents

About the Author . xv

About the Technical Reviewer . xvi

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Distributed Architecture . 1

Logical and Physical Architecture . 1

Complexity . 3

Relationship Between Logical and Physical Models 4

A 5-Layer Logical Architecture. 8

Applying the Logical Architecture . 13

The Way Ahead . 18

Managing Business Logic . 18

Potential Business Logic Locations . 18

Business Objects . 22

Mobile Objects . 25

Architectures and Frameworks. 33

Conclusion . 33

■CHAPTER 2 Framework Design . 35

Basic Design Goals . 36

N-Level Undo Capability . 37

Tracking Broken Business Rules . 40

Tracking Whether the Object Has Changed . 41

Strongly Typed Collections of Child Objects . 41

Simple and Abstract Model for the UI Developer . 43

Supporting Data Binding . 47

Object Persistence and Object-Relational Mapping 50

Custom Authentication . 57

Integrated Authorization . 58

vii

6315_fm_final.qxd 4/7/06 5:24 PM Page vii

Framework Design. 58

Business Object Creation . 59

N-Level Undo Functionality . 64

Data Binding Support . 67

Validation Rules . 68

Data Portal . 71

Custom Authentication . 84

Integrated Authorization . 85

Helper Types and Classes. 86

Namespace Organization . 89

Conclusion . 91

■CHAPTER 3 Business Framework Implementation . 93

Setting Up the CSLA .NET Project. 94

Creating the Directory Structure. 95

Supporting Localization. 95

Csla.Core Namespace . 96

IBusinessObject Interface . 97

IUndoableObject Interface. 97

IEditableCollection Interface . 98

IReadOnlyObject Interface. 99

IReadOnlyCollection Interface. 99

ICommandObject Interface . 99

ObjectCloner Class. 99

BindableBase Class . 100

NotUndoableAttribute Class . 104

UndoableBase Class . 104

BusinessBase Class. 112

ReadOnlyBindingList Class . 130

Csla.Validation Namespace. 131

RuleHandler Delegate . 132

RuleArgs Class . 132

RuleMethod Class . 133

ValidationRules Class . 134

BrokenRule Class. 137

BrokenRulesCollection Class . 137

ValidationException . 138

Csla.Security Namespace . 139

RolesForProperty Class . 139

AccessType Enum . 140

AuthorizationRules Class. 140

■CONTENTSviii

6315_fm_final.qxd 4/7/06 5:24 PM Page viii

Csla Namespace . 143

BusinessBase Class. 143

BusinessListBase Class. 146

ReadOnlyBase Class . 159

ReadOnlyListBase Class . 160

Conclusion . 161

■CHAPTER 4 Data Access and Security . 163

Data Portal Design . 164

Channel Adapter and Message Router Patterns . 165

Distributed Transaction Support. 168

Context and Location Transparency . 170

Enhancing the Base Classes. 173

Factory Methods and Criteria . 175

Save Methods. 176

Data Portal Methods . 178

Csla.MethodCaller Class . 181

Csla.Server.CallMethodException . 187

Csla.RunLocalAttribute Class . 188

Csla.DataPortalEventArgs Class . 188

Csla.DataPortal Class . 189

Csla.Server.IDataPortalServer . 197

Csla.DataPortalClient.IDataPortalProxy . 198

Csla.DataPortalClient.LocalProxy . 198

Csla.DataPortalClient.RemotingProxy . 200

Csla.Server.Hosts.RemotingPortal . 202

Csla.DataPortalClient.EnterpriseServicesProxy. 204

Csla.Server.Hosts.EnterpriseServicesPortal . 206

Csla.DataPortalClient.WebServicesProxy . 210

Csla.Server.Hosts.WebServicePortal . 213

Distributed Transaction Support. 215

Csla.TransactionalTypes . 215

Csla.TransactionalAttribute. 215

Csla.Server.DataPortal . 216

Csla.Server.ServicedDataPortal . 220

Csla.Server.TransactionalDataPortal . 221

Message Router . 222

Csla.CriteriaBase . 223

Csla.Server.SimpleDataPortal . 223

■CONTENTS ix

6315_fm_final.qxd 4/7/06 5:24 PM Page ix

Context and Location Transparency. 229

Csla.Server.DataPortalContext . 229

Csla.Server.DataPortalResult . 232

Csla.Server.DataPortalException . 233

Csla.ApplicationContext. 233

Conclusion . 238

■CHAPTER 5 Completing the Framework. 239

Additional Base Classes . 240

CommandBase. 240

NameValueListBase. 243

Custom Authentication . 247

BusinessPrincipalBase . 250

Sorting Collections . 251

SortedBindingList. 252

Date Handling. 267

SmartDate. 268

Common Business Rules. 277

CommonRules . 278

Data Access . 281

SafeDataReader . 281

DataMapper . 285

Reporting . 290

ObjectAdapter. 291

Windows Data Binding . 299

ReadWriteAuthorization. 299

BindingSourceRefresh. 306

Web Forms Data Binding. 307

CslaDataSource . 309

CslaDataSourceView . 311

CslaDataSourceDesigner. 314

CslaDesignerDataSourceView . 314

ObjectSchema . 318

ObjectViewSchema . 319

ObjectFieldInfo . 320

Conclusion . 323

■CHAPTER 6 Object-Oriented Application Design . 325

Application Requirements . 326

Use Cases . 327

■CONTENTSx

6315_fm_final.qxd 4/7/06 5:24 PM Page x

Object Design . 330

Initial Design. 330

Revising the Design . 332

Custom Authentication . 343

Using CSLA .NET . 344

Database Design . 347

Creating the Databases. 348

PTracker Database . 349

Security Database . 362

Conclusion . 363

■CHAPTER 7 Using the CSLA .NET Base Classes . 365

Business Object Life Cycle . 365

Object Creation. 366

Object Retrieval . 369

Updating Editable Objects . 371

Disposing and Finalizing Objects . 376

Business Class Structure . 378

Common Features . 378

Class Structures. 383

Conclusion . 405

■CHAPTER 8 Business Object Implementation. 407

ProjectTracker Objects . 407

Setting Up the Project . 408

Business Class Implementation . 410

Project . 410

ProjectResources . 431

ProjectResource . 436

Assignment. 441

RoleList . 443

Resource and Related Objects . 445

ProjectList and ResourceList . 448

Roles . 451

Role . 454

Implementing Exists Methods . 456

Custom Authentication . 458

PTPrincipal . 458

PTIdentity . 460

Conclusion . 464

■CONTENTS xi

6315_fm_final.qxd 4/7/06 5:25 PM Page xi

■CHAPTER 9 Windows Forms UI . 465

Interface Design . 465

User Control Framework . 467

User Control Design. 469

Application Configuration . 469

PTWin Project Setup . 472

User Control Framework . 472

WinPart . 472

MainForm . 474

Login Form . 480

Business Functionality. 482

MainForm . 482

RolesEdit . 485

Project List . 494

ProjectEdit . 497

Conclusion . 513

■CHAPTER 10 Web Forms UI . 515

Web Development and Objects. 515

State Management. 517

State on the Web Server . 518

Transferring State to or from the Client. 520

State in a File or Database . 521

Interface Design . 522

Application Configuration . 525

PTWeb Site Setup . 527

Master Page . 528

Login Page . 533

Business Functionality. 540

RolesEdit Form . 540

ProjectList Form. 550

ProjectEdit Form. 554

Conclusion . 565

■CHAPTER 11 Web Services Interface . 567

Overview of Web Services. 568

The SOAP Standard . 568

Message-Based Communication . 569

SOAP and Web Services . 569

SOAP, Web Services, and the .NET Framework. 570

■CONTENTSxii

6315_fm_final.qxd 4/7/06 5:25 PM Page xii

Web Services and SOA . 571

Services vs. Components . 571

Designing a Web Services Interface . 575

Component-Based vs. Service-Oriented Design . 575

Grouping Web Methods into Web Services . 576

Returning and Accepting Data . 577

Authentication . 579

Web Service Implementation . 581

Application Configuration . 581

PTWebService Site Setup . 583

PTService . 585

Authentication . 585

Component-Based Web Methods. 589

Service-Oriented Web Methods . 592

Web Service Consumer Implementation . 596

A Simple Smart Client . 599

Conclusion . 605

■CHAPTER 12 Implementing Remote Data Portal Hosts . 607

Data Portal Channel Comparison . 608

Factors for Comparison. 608

.NET Remoting . 611

Implementation . 612

Web Services . 615

Implementation . 616

Enterprise Services . 618

Creating the Proxy/Host Assembly . 618

Client Setup . 625

Conclusion . 626

■INDEX . 627

■CONTENTS xiii

6315_fm_final.qxd 4/7/06 5:25 PM Page xiii

6315_fm_final.qxd 4/7/06 5:25 PM Page xiv

About the Author

■ROCKFORD LHOTKA is the author of numerous books, including Expert C# 2005
Business Objects. He is a Microsoft regional director, a Microsoft MVP, and an
INETA speaker. Rockford speaks at many conferences and user groups around
the world, and is a columnist for MSDN Online. Rockford is the principal tech-
nology evangelist for Magenic Technologies (www.magenic.com), one of the
nation’s premiere Microsoft gold certified partners dedicated to solving today’s
most challenging business problems using 100-percent Microsoft tools and
technology.

xv

6315_fm_final.qxd 4/7/06 5:25 PM Page xv

About the Technical Reviewer

■PETAR KOZUL is a senior consultant for ComputerPro, a Melbourne-based company focused on
providing IT management, consulting, and enterprise solutions. He is the author of ActiveObjects,
a suite of extensions for the CSLA .NET framework (http://csla.kozul.info). As an active member
of the CSLA community, he has been using the framework since its inception. He graduated from
the Royal Melbourne Institute of Techology (RMIT) with a degree in computer science. Petar has
over 11 years experience in software design and development, with his primary focus on object-
oriented solutions using Microsoft technologies. He has worked in several countries, including
Croatia, Bosnia and Hercegovina, and Australia. His work has spanned a variety of industries in
both the public and private sectors, including gaming, retail, medicine, and government.

xvi

6315_fm_final.qxd 4/7/06 5:25 PM Page xvi

7e4af1220c26e223bcee6d3ae13e0471

Acknowledgments

This book started as a revision, and ended up being almost a complete rewrite to cover all the
changes in .NET 2.0 and Visual Studio 2005. Thus, it turned into a really a big project, and I want
to thank a number of people who helped make it come to fruition.

First, I’d like to thank my wife and sons for their love, patience, and support over the past
many years. Without you, this would have been impossible! Moreover, I owe my wife special thanks
for helping with the editing process, as she saved me many hours of work during my least favorite
part of the writing process.

I’d also like to thank Greg Frankenfield and Paul Fridman for making Magenic such an awesome
place to work. The support that you and the rest of Magenic have provided has been great, and I appre-
ciate it very much! It is an honor to work with everyone there.

Special thanks to Brant Estes, a fellow Magenic employee who ported the original code into C#
and kept it in sync with the VB code over the past few months. You saved me untold amounts of
time—thank you, Brant!

The Magenic Managed Services Organization (MSO) team did a lot of testing and is largely
responsible for the unit tests included with the framework. This fine group of people helped identify
and eliminate numerous bugs and played a key role in keeping the VB and C# code bases in sync.

Thank you to Steve Lasker at Microsoft for helping figure out solutions to some Windows Forms
data binding issues, and to Bill McCarthy for helping wrap the answer to one of those issues into the
BindingSourceRefresh control.

The Apress editorial team put in a lot of time and effort and really helped shape this book into
what you see here. I owe them all a debt of gratitude for their fine work.

Finally, I’d like to thank the scores of people who’ve sent me emails of support or encouragement,
or just plain asked when the book would be done. The great community that has grown around these
books and the CSLA .NET framework is wonderful, and I thank you all! I hope you find this book to be
as rewarding to read as it has been for me to write.

Code well and have fun!

xvii

6315_fm_final.qxd 4/7/06 5:25 PM Page xvii

6315_fm_final.qxd 4/7/06 5:25 PM Page xviii

Introduction

This book is about application architecture, design, and development in .NET using object-
oriented concepts. The focus is on business-focused objects called business objects, and how to
implement them to work in various distributed environments, including web and client/server
configurations. The book makes use of a great many .NET technologies, object-oriented design
and programming concepts, and distributed architectures.

The first half of the book walks through the process of creating a framework to support
object-oriented application development in .NET. This will include a lot of architectural con-
cepts and ideas. It will also involve some in-depth use of advanced .NET techniques to create
the framework.

The second half of the book makes use of the framework to build a sample application with
several different interfaces. If you wish, it’s perfectly possible to skip the first half of the book and
simply make use of the framework to build object-oriented applications.

One of my primary goals in creating the CSLA .NET framework was to simplify .NET devel-
opment. Developers using the framework in this book don’t need to worry about the details of
underlying technologies such as remoting, serialization, or reflection. All of these are embedded
in the framework so that a developer using it can focus almost entirely on business logic and
application design, rather than getting caught up in “plumbing” issues.

From .NET 1.0 to 2.0
This book is a major update to the previous edition: Expert One-on-One Visual Basic .NET Business
Objects. This updated book takes advantage of new features of .NET 2.0 and applies lessons learned
from using .NET 1.0 and 1.1 over the past few years.

This book is nearly identical to the Expert C# 2005 Business Objects book—the only difference
between the two books is the syntax of the programming languages.

Both the VB and C# books are the most recent expressions of concepts I’ve been working on for
nearly a decade. My goal all along has been to enable the productive use of object-oriented design
in distributed n-tier applications. Over the years, both the technologies and my understanding and
expression of the concepts have evolved greatly.

The VB 5 and 6 books that started this whole process discussed how to use VB, COM, DCOM,
MTS, and COM+ to create applications using object-oriented techniques. (Or at least they were as
object-oriented as was possible in VB 5/6 and COM.) They also covered the concept of distributed
objects, whereby a given object is “spread” over multiple machines in a physical n-tier environment.
In COM, this isn’t a trivial thing to implement, and so these books included a fair amount of discus-
sion relating to object state and state serialization techniques.

The end result was an architecture that I called CSLA (which stands for component-based,
scalable, logical architecture). Over the years, I’ve received hundreds of emails from people who
have used CSLA as a basis for their own architectures as they’ve built applications ranging from
small, single-user programs to full-blown enterprise applications that power major parts of their
businesses.

In .NET, the idea of distributed objects has given way to the more appropriate idea of mobile
objects, where objects actually move between computers in an n-tier environment. At a high level,

xix

6315_fm_final.qxd 4/7/06 5:25 PM Page xix

the architecture is comparable, but mobile objects provide a far more powerful way to implement
object-oriented designs in distributed environments.

I’ve also received a handful of emails from people for whom CSLA .NET wasn’t successful, but
this isn’t surprising. To use CSLA .NET effectively, you must become versed in object-oriented and
component-based design, understand the concept of distributed objects, and develop a host of
other skills. The mobile object architecture has many benefits, but it’s not the simplest or the easi-
est to understand.

Designing CSLA .NET
One of the characteristics of .NET is that it often provides several ways to solve the same problem.
Some of the approaches available will be better than others, but the best one for a given problem
may not be immediately obvious. Before writing the .NET 1.0 books, I spent a lot of time trying vari-
ous approaches to distributing objects. Although a variety have proven to work, in the end I’ve
arrived at the one that best matches my original goals.

Before I discuss those goals, I think it’s important to talk about one other issue that I wrestled
with when writing this book. Given the large number of people using the concepts and code from
the previous edition of the book, I wanted to preserve backward compatibility whenever possible.
At the same time, this new edition of the book is an opportunity to not only use .NET 2.0 features,
but also to apply lessons learned by using .NET over the past several years.

Applying those lessons means that using the new concepts and code requires changes to exist-
ing business objects and user interface code. I don’t take backward compatibility lightly, yet it is
important to advance the concepts to keep up with changes in technology and my views on both
object-oriented and distributed computing.

When possible, I have minimized the impact on existing code, so the transition shouldn’t be
overly complex for most applications.

I have a specific set of goals for the architecture and the book. These goals are important,
because they’re key to understanding why I made many of the choices I did in terms of which
.NET technologies to use, and how to use them. The goals are as follows:

• To support a fully object-oriented programming model

• To allow the developer to use the architecture without jumping through hoops

• To enable high scalability

• To enable high performance

• To provide all the capabilities and features of the original CSLA, namely

• N-level undo on a per-object basis (edit, cancel, apply)

• Management of validation rules

• Management of authorization rules

• Support for many types of UI based on the same objects

• Support for data binding in Windows and Web Forms

• Integration with distributed transaction technologies such as Enterprise Services and
System.Transactions

• To simplify .NET by handling complex issues like serialization, remoting, and reflection

• To use the tools provided by Microsoft, notably IntelliSense and the Autocomplete feature in
Visual Studio .NET

■INTRODUCTIONxx

6315_fm_final.qxd 4/7/06 5:25 PM Page xx

Of these, saving the developer from jumping through hoops—that is, allowing him or her to
do “normal” programming—has probably had the largest impact. To meet all these goals without
a framework, the developer would have to write a lot of extra code to track business rules, imple-
ment n-level undo, and support serialization of object data. All this code is important, but adds
nothing to the business value of the application.

Fortunately, .NET offers some powerful technologies that help to reduce or eliminate much
of this “plumbing” code. If those technologies are then wrapped in a framework, a business devel-
oper shouldn’t have to deal with them at all. In several cases, this goal of simplicity drove my
architectural decisions. The end result is that the developer can, for the most part, simply write
a normal C# class and have it automatically enjoy all the benefits of n-level undo, business rule
tracking, and so forth.

It has taken a great deal of time and effort, but I’ve certainly enjoyed putting this architecture
and this book together, and I hope that you will find it valuable during the development of your
own applications.

What’s Covered in This Book?
This book covers the thought process behind the CSLA .NET 2.0 architecture, describes the
construction of the framework that supports the architecture, and demonstrates how to create
Windows Forms, Web Forms, and Web Services applications based on business objects written
using the framework.

Chapter 1 is an introduction to some of the concepts surrounding distributed architectures,
including logical and physical architectures, business objects, and distributed objects. Perhaps
more importantly, this chapter sets the stage, showing the thought process that results in the
remainder of the book.

Chapter 2 takes the architecture described at the end of Chapter 1 and uses it as the starting
point for a code framework that enables the goals described earlier. By the end, you’ll have seen
the design process for the objects that will be implemented in Chapters 4 and 5; but before that,
there’s some other business to attend to.

Chapters 3 through 5 are all about the construction of the CSLA .NET framework itself. If
you’re interested in the code behind n-level undo, mobile object support, validation rules, auth-
orization rules, and object persistence, then these are the chapters for you. In addition, they make
use of some of the more advanced and interesting parts of the .NET Framework, including remot-
ing, serialization, reflection, .NET security, Enterprise Services, System.Transactions, strongly
named assemblies, dynamically loaded assemblies, application configuration files, and more.

The rest of the book then focuses on creating an application that makes use of the architecture
and framework. Even if you’re not particularly interested in learning all the lower-level .NET con-
cepts from Chapters 3 through 5, you can take the framework and build applications based on it
by reading Chapters 6 through 12.

In Chapter 6, I discuss the requirements of a sample application and create its database. The
sample application uses SQL Server and creates not only tables but also stored procedures in order
to enable retrieval and updating of data.

Chapter 7 discusses how to use each of the primary base classes in the CSLA .NET framework
to create your own business objects. The basic code structure for editable and read-only objects,
as well as collections and name/value lists, is discussed.

Chapter 8 creates the business objects for the application. This chapter really illustrates how
you can use the framework to create a powerful set of business objects rapidly and easily for an
application. The end result is a set of objects that not only model business entities, but also support
n-level undo, data binding, and various physical configurations that can optimize performance,
scalability, security, and fault tolerance, as discussed in Chapter 1.

■INTRODUCTION xxi

6315_fm_final.qxd 4/7/06 5:25 PM Page xxi

Chapter 9 demonstrates how to create a Windows Forms interface to the business objects.
Chapter 10 covers the creation of a Web Forms or an ASP.NET interface with comparable
functionality.

In Chapter 11, Web Services is used to provide a programmatic interface to the business objects
that any web service client can call.

Finally, Chapter 12 shows how to set up application servers using .NET Remoting, Enterprise
Services, and Web Services. These application servers support the CSLA .NET framework and can be
used interchangeably from the Windows Forms, Web Forms, and Web Services applications created
in Chapters 8 through 11.

By the end, you’ll have a framework that supports object-oriented application design in a prac-
tical, pragmatic manner. The framework implements a logical model that you can deploy in various
physical configurations to optimally support Windows, web, and Web Services clients.

Framework License
LICENSE AND WARRANTY
The CSLA .NET framework is Copyright 2006 by Rockford Lhotka.
You can use this Software for any noncommercial purpose, including distributing derivative works.
You can use this Software for any commercial purpose, except that you may not use it, in whole or
in part, to create a commercial framework product.

In short, you can use CSLA .NET and modify it to create other commercial or business software,
you just can’t take the framework itself, modify it, and sell it as a product.

In return, the owner simply requires that you agree:
This Software License Agreement (“Agreement”) is effective upon your use of CSLA .NET

(“Software”).

1. Ownership. The CSLA .NET framework is Copyright 2006 by Rockford Lhotka, Eden Prairie,
MN, USA.

2. Copyright Notice. You must not remove any copyright notices from the Software source
code.

3. License. The owner hereby grants a perpetual, non-exclusive, limited license to use the
Software as set forth in this Agreement.

4. Source Code Distribution. If you distribute the Software in source code form, you must do
so only under this License (i.e., you must include a complete copy of this License with your
distribution).

5. Binary or Object Distribution. You may distribute the Software in binary or object form with
no requirement to display copyright notices to the end user. The binary or object form must
retain the copyright notices included in the Software source code.

6. Restrictions. You may not sell the Software. If you create a software development framework
based on the Software as a derivative work, you may not sell that derivative work. This does
not restrict the use of the Software for creation of other types of non-commercial or com-
mercial applications or derivative works.

7. Disclaimer of Warranty. The Software comes “as is,” with no warranties. None whatsoever.
This means no express, implied, statutory, or other warranty, including without limitation,
warranties of merchantability or fitness for a particular purpose, noninfringement, or the
presence or absence of errors, whether or not discoverable. Also, you must pass this dis-
claimer on whenever you distribute the Software.

■INTRODUCTIONxxii

6315_fm_final.qxd 4/7/06 5:25 PM Page xxii

8. Liability. Neither Rockford Lhotka nor any contributor to the Software will be liable for any
of those types of damages known as indirect, special, consequential, incidental, punitive,
or exemplary related to the Software or this License, to the maximum extent the law per-
mits, no matter what legal theory it’s based on. Also, you must pass this limitation of
liability on whenever you distribute the Software.

9. Patents. If you sue anyone over patents that you think may apply to the Software for a
person’s use of the Software, your license to the Software ends automatically.

The patent rights, if any, licensed hereunder, only apply to the Software, not to any
derivative works you make.

10. Termination. Your rights under this License end automatically if you breach it in any way.

Rockford Lhotka reserves the right to release the Software under different license terms or
to stop distributing the Software at any time. Such an election will not serve to withdraw
this Agreement, and this Agreement will continue in full force and effect unless terminated
as stated above.

11. Governing Law. This Agreement shall be construed and enforced in accordance with the
laws of the state of Minnesota, USA.

12. No Assignment. Neither this Agreement nor any interest in this Agreement may be assigned
by licensee without the prior express written approval of developer.

13. Final Agreement. This Agreement terminates and supersedes all prior understandings or
agreements on the subject matter hereof. This Agreement may be modified only by a further
writing that is duly executed by both parties.

14. Severability. If any term of this Agreement is held by a court of competent jurisdiction
to be invalid or unenforceable, then this Agreement, including all of the remaining terms,
will remain in full force and effect as if such invalid or unenforceable term had never been
included.

15. Headings. Headings used in this Agreement are provided for convenience only, and shall
not be used to construe meaning or intent.

What You Need to Use This Book
The code in this book has been verified to work against Microsoft Visual Studio 2005 Profes-
sional, and therefore against version 2.0 of the .NET Framework. The database is a SQL Server
Express database, and SQL Server Express is included with Visual Studio 2005 Professional. The
Enterprise version of VS 2005 and the full version of SQL Server are useful, but not necessary.

In order to run the tools and products listed previously, you’ll need at least one PC with
Windows 2000, Windows Server 2003, or Windows XP Professional Edition installed. To test CSLA
.NET’s support for multiple physical tiers, of course, you’ll need an additional PC (or you can use
Virtual PC or a similar tool) for each tier that you wish to add.

Conventions
I’ve used a number of different styles of text and layout in this book to differentiate between dif-
ferent kinds of information. Here are some examples of the styles used, and an explanation of
what they mean.

■INTRODUCTION xxiii

6315_fm_final.qxd 4/7/06 5:25 PM Page xxiii

Code has several fonts. If I’m talking about code in the body of the text, I use a fixed-width font
like this: foreach. If it’s a block of code that you can type as a program and run, on the other hand,
then it will appear as follows:

if (Thread.CurrentPrincipal.Identity.IsAuthenticated)
{
pnlUser.Text = Thread.CurrentPrincipal.Identity.Name;
EnableMenus();

}

Sometimes, you’ll see code in a mixture of styles, like this:

dgProjects.DataSource = ProjectList.GetProjectList();
DataBind();

// Set security
System.Security.Principal.IPrincipal user;
user = Threading.Thread.CurrentPrincipal;

When this happens, the code with a normal font is code you’re already familiar with, or code
that doesn’t require immediate action. Lines in bold font indicate either new additions to the code
since you last looked at it, or something that I particularly want to draw your attention to.

■Tip Advice, hints, and background information appear in this style.

■Note Important pieces of information are included as notes, like this.

Bullets appear indented, with each new bullet marked as follows:

• Important words are in italics.

How to Download Sample Code for This Book
Visit the Apress website at www.apress.com, and locate the title through the Search facility. Open the
book’s detail page and click the Source Code link. Alternatively, on the left-hand side of the Apress
homepage, click the Source Code link, and select the book from the text box that appears.

Download files are archived in a zipped format, and need to be extracted with a decompression
program such as WinZip or PKUnzip. The code is typically arranged with a suitable folder structure,
so make sure that your decompression software is set to use folder names before extracting the files.

Author and Community Support
The books and CSLA .NET framework are also supported by both the author and a large user
community.

The author maintains a website with answers to frequently asked questions, updates to the
framework, an online discussion forum, and additional resources. Members of the community have
created additional support websites and tools to assist in the understanding and use of CSLA .NET
and related concepts.

For information and links to all these resources, visit www.lhotka.net/cslanet.

■INTRODUCTIONxxiv

6315_fm_final.qxd 4/7/06 5:25 PM Page xxiv

Distributed Architecture

Object-oriented design and programming are big topics—there are entire books devoted solely
to the process of object-oriented design, and other books devoted to using object-oriented pro-
gramming in various languages and on various programming platforms. My focus in this book isn’t
to teach the basics of object-oriented design or programming, but rather to show how they may be
applied to the creation of distributed .NET applications.

It can be difficult to apply object-oriented design and programming effectively in a physically
distributed environment. This chapter is intended to provide a good understanding of the key
issues surrounding distributed computing as it relates to object-oriented development. I’ll cover
a number of topics, including the following:

• How logical n-tier architectures help address reuse and maintainability

• How physical n-tier architectures impact performance, scalability, security, and fault
tolerance

• The difference between data-centric and object-oriented application models

• How object-oriented models help increase code reuse and application maintainability

• The effective use of objects in a distributed environment, including the concepts of
anchored and mobile objects

• The relationship between an architecture and a framework

This chapter provides an introduction to the concepts and issues surrounding distributed, object-
oriented architecture. Throughout this book, you’ll be exploring an n-tier architecture that may be
physically distributed across multiple machines. The book will show how to use object-oriented
design and programming techniques to implement a framework supporting this architecture. After
that, a sample application will be created to demonstrate how the architecture and the framework
support development efforts.

Logical and Physical Architecture
In today’s world, an object-oriented application must be designed to work in a variety of physical
configurations. Even the term “application” has become increasingly blurry due to all the hype
around service-oriented architecture (SOA). If you aren’t careful, you can end up building appli-
cations by combining several applications, which is obviously very confusing.

When I use the term “application” in this book, I’m referring to a set of code, objects, or com-
ponents that’s considered to be part of a single, logical unit. Even if parts of the application are in
different .NET assemblies or installed on different machines, all the code is viewed as being part
of a singular application.

1

C H A P T E R 1

■ ■ ■

6315_c01_final.qxd 4/7/06 2:03 PM Page 1

Although such an application might run on a single machine, it’s more likely that the applica-
tion will run on a web server, or be split between a smart client and an application server. Given
these varied physical environments, we’re faced with the following questions:

• Where do the objects reside?

• Are the objects designed to maintain state, or should they be stateless?

• How is object-to-relational mapping handled when retrieving or storing data in the
database?

• How are database transactions managed?

Before getting into discussing some answers to these questions, it’s important to fully understand
the difference between a physical architecture and a logical architecture. After that, I’ll define objects
and mobile objects, and show how they fit into the architectural discussion.

When most people talk about n-tier applications, they’re talking about physical models in
which the application is spread across multiple machines with different functions: a client, a web
server, an application server, a database server, and so on. And this isn’t a misconception—these
are indeed n-tier systems. The problem is that many people tend to assume there’s a one-to-one
relationship between the tiers in a logical model and the tiers in a physical model, when in fact
that’s not always true.

A physical n-tier architecture is quite different from a logical n-tier (or n-layer) architecture.
The latter has nothing to do with the number of machines or network hops involved in running the
application. Rather, a logical architecture is all about separating different types of functionality.
The most common logical separation is into a UI layer, a business layer, and a data layer that may
exist on a single machine, or on three separate machines—the logical architecture doesn’t define
those details.

■Note There is a relationship between an application’s logical and physical architectures: the logical architec-
ture always has at least as many layers as the physical architecture has tiers. There may be more logical layers
than physical ones (because one physical tier can contain several logical layers), but never fewer.

The sad reality is that many applications have no clearly defined logical architecture. Often the
logical architecture merely defaults to the number of physical tiers. This lack of a formal, logical
design causes problems because it reduces flexibility. If a system is designed to operate in two or
three physical tiers, then changing the number of physical tiers at a later date is typically very diffi-
cult. However, if you start by creating a logical architecture of three layers, you can switch more
easily between one, two, or three physical tiers later on.

Additionally, having clean separation between these layers makes your application more main-
tainable because changing one layer often has minimal impact on the other layers. Nowhere is this
truer than with the Presentation layer, where the ability to switch between Windows Forms, Web Forms,
Web Services, and future technologies like Windows Presentation Foundation (Avalon) is critical.

The flexibility to choose your physical architecture is important because the benefits gained by
employing a physical n-tier architecture are different from those gained by employing a logical n-layer
architecture. A properly designed logical n-layer architecture provides the following benefits:

• Logically organized code

• Easier maintenance

• Better reuse of code

• Better team-development experience

• Higher clarity in coding

2 CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE

6315_c01_final.qxd 4/7/06 2:03 PM Page 2

On the other hand, a properly chosen physical n-tier architecture can provide the following
benefits:

• Performance

• Scalability

• Fault tolerance

• Security

It goes almost without saying that if the physical or logical architecture of an application is
designed poorly, there will be a risk of damaging the things that would have been improved had
the job been done well.

Complexity
Experienced designers and developers often view a good n-tier architecture as a way of simplifying
an application and reducing complexity, but this isn’t necessarily the case. It’s important to recog-
nize that n-tier designs (logical and/or physical) are typically more complex than single-tier designs.
Even novice developers can visualize the design of a form or a page that retrieves data from a file
and displays it to the user, but novice developers often struggle with 2-tier designs, and are hope-
lessly lost in n-tier environments.

With sufficient experience, architects and developers typically find that the organization and
structure of an n-tier model reduces complexity for large applications. However, even a veteran
n-tier developer will often find it easier to avoid n-tier models when creating a simple form to dis-
play some simple data.

The point here is that n-tier architectures only simplify the process for large applications or
complex environments. They can easily complicate matters if all you’re trying to do is create a small
application with a few forms that will be running on someone’s desktop computer. (Of course, if that
desktop computer is one of hundreds or thousands in a global organization, then the environment
may be so complex that an n-tier solution provides simplicity.)

In short, n-tier architectures help to decrease or manage complexity when any of these are true:

• The application is large or complex.

• The application is one of many similar or related applications that when combined may
be large or complex.

• The environment (including deployment, support, and other factors) is large or complex.

On the other hand, n-tier architectures can increase complexity when all of these are true:

• The application is small or relatively simple.

• The application isn’t part of a larger group of enterprise applications that are similar or
related.

• The environment isn’t complex.

Something to remember is that even a small application is likely to grow, and even a simple
environment will often become more complex over time. The more successful your application,
the more likely that one or both of these will happen. If you find yourself on the edge of choosing
an n-tier solution, it’s typically best to go with it. You should expect and plan for growth.

This discussion illustrates why n-tier applications are viewed as relatively complex. There are
a lot of factors, technical and non-technical, that must be taken into account. Unfortunately, it isn’t
possible to say definitively when n-tier does and doesn’t fit. In the end, it’s a judgment call that you,

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 3

6315_c01_final.qxd 4/7/06 2:03 PM Page 3

as an application architect, must make, based on the factors that affect your particular organiza-
tion, environment, and development team.

Relationship Between Logical and Physical Models
Architectures such as Windows Distributed interNet Architecture (Windows DNA), represent a
merger of logical and physical models. Such mergers seem attractive because they appear so sim-
ple and straightforward, but typically they aren’t good in practice—they can lead people to design
applications using a logical or physical architecture that isn’t best suited to their needs.

■Note To be fair, Windows DNA didn’t mandate that the logical and physical models be the same. Unfortunately,
almost all of the printed material (even the mousepads) surrounding Windows DNA included diagrams and pictures
that illustrated the “proper” Windows DNA implementation as an intertwined blur of physical and logical architec-
ture. Although some experienced architects were able to separate the concepts, many more didn’t, and created
some horrendous results.

The Logical Model
When you’re creating an application, it’s important to start with a logical architecture that clarifies
the roles of all components, separates functionality so that a team can work together effectively, and
simplifies overall maintenance of the system. The logical architecture must also include enough lay-
ers so that you have flexibility in choosing a physical architecture later on.

Traditionally, you would devise at least a 3-layer logical model that separates the interface, the
business logic, and the data-management portions of the application. Today that’s rarely sufficient,
because the “interface” layer is often physically split into two parts (browser and web server), and
the “logic” layer is often physically split between a client or web server and an application server.
Additionally, there are various application models that have been used to break the traditional Busi-
ness Logic layer into multiple parts—model-view-controller and facade-data-logic being two of the
most popular at the moment.

This means that the logical layers are governed by the following rules:

• The logical architecture includes layers in order to organize components into discrete roles.

• The logical architecture must have at least as many layers as the anticipated physical deploy-
ment will have tiers.

Following these rules, most modern applications have four to six logical layers. As you’ll see,
the architecture used in this book includes five logical layers.

The Physical Model
By ensuring that the logical model has enough layers to provide flexibility, you can configure your
application into an appropriate physical architecture that will depend on your performance, scala-
bility, fault tolerance, and security requirements. The more physical tiers included, the worse the
performance will be; but there is the potential to increase scalability, security, and/or fault tolerance.

Performance and Scalability

The more physical tiers there are, the worse the performance? That doesn’t sound right, but if you
think it through, it makes perfect sense: performance is the speed at which an application responds
to a user. This is different from scalability, which is a measure of how performance changes as load

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE4

6315_c01_final.qxd 4/7/06 2:03 PM Page 4

(such as increased users) is added to an application. To get optimal performance—that is, the fastest
possible response time for a given user—the ideal solution is to put the client, the logic, and the data
on the user’s machine. This means no network hops, no network latency, and no contention with
other users.

If you decide that you need to support multiple users, you might consider putting application
data on a central file server. (This is typical with Access and dBASE systems, for example.) However,
this immediately affects performance because of contention on the data file. Furthermore, data access
now takes place across the network, which means you’ve introduced network latency and network
contention, too. To overcome this problem, you could put the data into a managed environment such
as SQL Server or Oracle. This will help to reduce data contention, but you’re still stuck with the net-
work latency and contention problems. Although improved, performance for a given user is still
nowhere near what it was when everything ran directly on that user’s computer.

Even with a central database server, scalability is limited. Clients are still in contention for the
resources of the server, with each client opening and closing connections, doing queries and updates,
and constantly demanding the CPU, memory, and disk resources that are being used by other clients.
You can reduce this load by shifting some of the work to another server. An application server, possibly
running Enterprise Services or Internet Information Services (IIS), can provide database connection
pooling to minimize the number of database connections that are opened and closed. It can also per-
form some data processing, filtering, and even caching to offload some work from the database server.

These additional steps provide a dramatic boost to scalability, but again at the cost of perform-
ance. The user’s request now has two network hops, potentially resulting in double the network latency
and contention. For a single user, the system gets slower; but it is able to handle many times more users
with acceptable performance levels.

In the end, the application is constrained by the most limiting resource. This is typically the speed
of transferring data across the network—but if the database or application server is underpowered, it
can become so slow that data transfer across the network isn’t an issue. Likewise, if the application
does extremely intense calculations and the client machines are slow, then the cost of transferring the
data across the network to a relatively idle high-speed server can make sense.

Security

Security is a broad and complex topic, but by narrowing the discussion solely to consider how
it’s affected by physical n-tier decisions, it becomes more approachable. The discussion is no
longer about authentication or authorization as much as it is about controlling physical access
to the machines on which portions of the application will run. The number of physical tiers in
an application has no impact on whether users can be authenticated or authorized, but physical
tiers can be used to increase or decrease physical access to the machines on which the applica-
tion executes.

For instance, in a 2-tier Windows Forms or Web Forms application, the machine running the
UI code must have credentials to access the database server. Switching to a 3-tier model in which
the data access code runs on an application server means that the machine running the UI code
no longer needs those credentials, potentially making the system more secure.

Security requirements vary radically based on the environment and the requirements of
your application. A Windows Forms application deployed only to internal users may need rela-
tively little security, but a Web Forms application exposed to anyone on the Internet may need
extensive security.

To a large degree, security is all about surface area: how many points of attack are exposed from
the application? The surface area can be defined in terms of domains of trust.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 5

6315_c01_final.qxd 4/7/06 2:03 PM Page 5

Security and Internal Applications

Internal applications are totally encapsulated within a domain of trust: the client and all servers are
running in a trusted environment. This means that virtually every part of the application is exposed
to a potential hacker (assuming that the hacker can gain physical access to a machine on the net-
work in the first place). In a typical organization, hackers can attack the client workstation, the web
server, the application server, and the database server if they so choose. Rarely are there firewalls or
other major security roadblocks within the context of an organization’s LAN.

■Note Obviously, there is security. It is common to use Windows domain or Active Directory (AD) security on the
clients and servers, but there’s nothing stopping someone from attempting to communicate directly with any of
these machines. Within a typical LAN, users can usually connect through the network to all machines due to a lack
of firewall or physical barriers.

Because the internal environment is so exposed to start with, security should have little impact
on the decisions regarding the number of physical tiers for the application. Increasing or decreasing
the number of tiers will rarely have much impact on a hacker’s ability to compromise the applica-
tion from a client workstation on the LAN.

An exception to this rule comes when someone can use an application’s own web services to
access its servers in invalid ways. This problem was particularly acute with DCOM, because there
were browsers that end users could use to locate and invoke server-side services. Thanks to COM,
users could use Microsoft Excel to locate and interact with server-side COM components, thereby
bypassing the portions of the application that were supposed to run on the client. This meant that
the applications were vulnerable to power users who could use server-side components in ways
their designers never imagined!

This problem is rapidly transferring to web services as Microsoft Office and other end-user
applications start to allow power users to call web services from within macros. I expect to find
power users calling web services in unexpected ways in the very near future.

The services in this book will be designed to prevent casual usage of the objects, even if a power
user were to gain access to the service from their application.

In summary, although security shouldn’t cause an increase or decrease in the number of physi-
cal tiers for internal applications, it should inform your design choices when exposing services from
server machines.

Security and External Applications

For external applications, things are entirely different. This is really where SOA comes into play.
Service orientation (SO) is all about assembling an “application” that spans trust boundaries.
When part of your application is deployed outside your own network, that certainly crosses at
least a security (trust) boundary.

In a client/server model, this would be viewed as a minimum of two tiers, since the client work-
station is physically separate from any machines running behind the firewall.

But really, SO offers a better way to look at the problem: there are two totally separate appli-
cations. The client runs one application, and another application runs on your server. These two
applications communicate with each other through clearly defined messages, and neither appli-
cation is privy to the internal implementation of the other.

This provides a good way to deal with not only the security trust boundary, but also with the
semantic trust boundary. What I mean by this is that the server application assumes that any data
coming from the client application is flawed: either maliciously or due to a bug in the client. Even
if the client has security access to interact with your server, the server application cannot assume
that the semantic meaning of the data coming from the client is valid.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE6

6315_c01_final.qxd 4/7/06 2:03 PM Page 6

In short, because the client workstations are outside the domain of trust, you should assume
that they’re compromised and potentially malicious. You should assume that any code running on
those clients will run incorrectly or not at all; in other words, the client input must be completely
validated as it enters the domain of trust, even if the client includes code to do the validation.

■Note I’ve had people tell me that this is an overly paranoid attitude, but I’ve been burned this way too many
times. Any time an interface is exposed (Windows, web, XML, and so on) so that clients outside your control can
use it, you should assume that the interface will be misused. Often, this misuse is unintentional—for example,
someone may write a buggy macro to automate data entry. That’s no different than if they made a typo while
entering the data by hand, but user-entered data is always validated before being accepted by an application.
The same must be true for automated data entry as well, or your application will fail.

This scenario occurs in three main architectures: smart/rich clients, web pages with DHTML/
JavaScript, and AJAX-style web pages.

If you deploy a Windows Forms client application to external workstations, it should be designed
as a stand-alone application that calls your server application through web services. Chapter 11 shows
how you can do this with the object-oriented concepts in this book.

If you use JavaScript in your web pages to validate data or otherwise provide a richer experience
for the user, your web UI code on the web server should assume that the browser didn’t do anything
it was supposed to. It is far too easy for a user to subvert your client-side JavaScript—as such, nothing
running in the browser can be trusted.

And of course, more recently, web developers have started creating AJAX web pages that contain
a lot of JavaScript code and do callbacks to the server through web services or specialized web pages.
AJAX is an attempt to make browser-based applications approach the richness available to Windows
applications. The same rules apply here: the code running in the browser should be viewed as a sepa-
rate application that is not trusted by the server application.

In these latter two cases, it is important to realize that JavaScript is not object-oriented and is
not at the same level of technology as .NET on the web server. You can apply the object-oriented
concepts from this book on your web server, but the JavaScript and AJAX concepts in the browser
are far more limited.

As you’ll see, the object-oriented concepts and techniques shown in this book can be used to cre-
ate smart client applications that call web services on your servers. They can be used to create those
web services. They can also be used to create Web Forms applications, in which those web pages may
use simple HTML, more complex client-side JavaScript, or even AJAX-based technologies.

Fault Tolerance

Fault tolerance is achieved by identifying points of failure and providing redundancy. Typically,
applications have numerous points of failure. Some of the most obvious are as follows:

• The network feed to your user’s buildings

• The power feed to your user’s buildings

• The network feed and power feed to your data center

• The primary DNS host servicing your domain

• Your firewall, routers, switches, etc.

• Your web server

• Your application server

• Your database server

• Your internal LAN

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 7

6315_c01_final.qxd 4/7/06 2:03 PM Page 7

In order to achieve high levels of fault tolerance, you need to ensure that if any one of these
fails, some system will instantly kick in and fill the void. If the data center power goes out, a gen-
erator kicks in. If a bulldozer cuts your network feed, you’ll need to have a second network feed
coming in from the other side of the building, and so forth.

Considering some of the larger and more well-known outages of major websites in the past
couple of years, it’s worth noting that most of them occurred due to construction work cutting net-
work or power feeds, or because their ISP or external DNS provider went down or was attacked.
That said, there are plenty of examples of websites going down due to local equipment failure. The
reason why the high-profile failures are seldom due to this type of problem is because large sites
make sure to provide redundancy in these areas.

Clearly, adding redundant power, network, ISP, DNS, or LAN hardware will have little impact
on application architecture. Adding redundant servers, on the other hand, will affect the n-tier
application architecture—or at least the application design. Each time a physical tier is added, you
need to ensure that you add redundancy to the servers in that tier. Thus, adding a fault-tolerant
physical tier always means adding at least two servers to the infrastructure.

The more physical tiers, the more redundant servers there are to configure and maintain. This
is why fault tolerance is typically expensive to achieve.

Not only that, but to achieve fault tolerance through redundancy, all servers in a tier must also
be logically identical at all times. For example, at no time can a user be tied to a specific server, so
no single server can ever maintain any user-specific information. As soon as a user is tied to a spe-
cific server, that server becomes a point of failure for that user. The result is that the user loses fault
tolerance.

Achieving a high degree of fault tolerance isn’t easy. It requires a great deal of thought and effort
to locate all points of failure and make them redundant. Having fewer physical tiers in an architec-
ture can assist in this process by reducing the number of tiers that must be made redundant.

To summarize, the number of physical tiers in an architecture is a trade-off between per-
formance, scalability, security, and fault tolerance. Furthermore, the optimal configuration for a
web application isn’t the same as the one for an intranet application with smart client machines.
If an application framework is to have any hope of broad appeal, it needs flexibility in the physi-
cal architecture so that it can support web and smart clients effectively, as well as provide both
with optimal performance and scalability. Beyond that, it needs to work well in a service-oriented
environment to create both client and server applications that interact through message-based
communication.

A 5-Layer Logical Architecture
This book will explore a 5-layer logical architecture and show how you can implement it using
object-oriented concepts. Once the logical architecture has been created, it will be configured into
various physical architectures in order to achieve optimal results for Windows Forms, Web Forms,
and Web Services interfaces.

■Note If you get any group of architects into a room and ask them to describe their ideal architecture, each one
will come up with a different answer. I make no pretense that this architecture is the only one out there, nor do I
intend to discuss all the possible options. My aim here is to present a coherent, distributed, object-oriented archi-
tecture that supports Windows, web, and Web Services interfaces.

In the framework used in this book, the logical architecture comprises the five layers shown in
Figure 1-1.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE8

6315_c01_final.qxd 4/7/06 2:03 PM Page 8

Remember that the benefit of a logical n-layer architecture is the separation of functionality
into clearly defined roles or groups, in order to increase clarity and maintainability. Let’s define each
of the layers more carefully.

Presentation
At first, it may not be clear why I’ve separated presentation from the user interface (UI). Certainly,
from a Windows perspective, presentation and UI are one and the same: They are graphical user
interface (GUI) forms with which the user can interact.

From a web perspective (or from that of terminal-based programming), the distinction is proba-
bly quite clear. Typically, the browser merely presents information to the user and collects user input.
In that case, all of the actual interaction logic—the code written to generate the output, or to interpret
user input—runs on the web server (or mainframe), and not on the client machine.

Of course, in today’s world, the browser might run JavaScript or even richer client-side code. But
as discussed earlier in the chapter, none of this code can be trusted. It must be viewed as being a sepa-
rate application that interacts with your application as it runs on the server. So even with code
running in the browser, your application’s UI code is running on your web server.

Knowing that the logical model must support both smart and web-based clients (along with
even more limited clients, such as cell phones or other mobile devices), it’s important to recognize
that in many cases, the presentation will be physically separate from the UI logic. In order to
accommodate this separation, it is necessary to design the applications around this concept.

■Note The types of presentation technologies continue to multiply, and each comes with a new and relatively
incompatible technology with which we must work. It’s virtually impossible to create a programming framework
that entirely abstracts presentation concepts. Because of this, the architecture and framework will merely support
the creation of varied presentations, not automate their creation. Instead, the focus will be on simplifying the other
tiers in the architecture, for which technology is more stable.

User Interface
Now that I’ve addressed the distinction between presentation and UI, the latter’s purpose is proba-
bly fairly clear. This layer includes the logic to decide what the user sees, the navigation paths, and
how to interpret user input. In a Windows Forms application, this is the code behind the form. Actu-
ally, it’s the code behind the form in a Web Forms application, too, but here it can also include code
that resides in server-side controls; logically, that’s part of the same layer.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 9

Figure 1-1. The 5-layer logical architecture

6315_c01_final.qxd 4/7/06 2:03 PM Page 9

In many applications, the UI code is very complex. For a start, it must respond to the user’s
requests in a nonlinear fashion. (It is difficult to control how users might click controls, or enter or
leave the forms or pages.) The UI code must also interact with logic in the business layer to validate
user input, to perform any processing that’s required, or to do any other business-related action.

Basically, the goal is to write UI code that accepts user input and then provides it to the busi-
ness layer, where it can be validated, processed, or otherwise manipulated. The UI code must then
respond to the user by displaying the results of its interaction with the business layer. Was the user’s
data valid? If not, what was wrong with it? And so forth.

In .NET, the UI code is almost always event-driven. Windows Forms code is all about respond-
ing to events as the user types and clicks the form, and Web Forms code is all about responding to
events as the browser round-trips the user’s actions back to the web server. Although both Windows
Forms and Web Forms technologies make heavy use of objects, the code that is typically written
into the UI isn’t object-oriented as much as procedural and event-based.

That said, there’s great value in creating frameworks and reusable components that will sup-
port a particular type of UI. When creating a Windows Forms UI, developers can make use of visual
inheritance and other object-oriented techniques to simplify the creation of the forms. When creat-
ing a Web Forms UI, developers can use ASP.NET user controls and custom server controls to
provide reusable components that simplify page development.

Because there’s such a wide variety of UI styles and approaches, I won’t spend much time deal-
ing with UI development or frameworks in this book. Instead, I’ll focus on simplifying the creation
of the Business Logic and Data Access layers, which are required for any type of UI.

Business Logic
Business logic includes all business rules, data validation, manipulation, processing, and security
for the application. One definition from Microsoft is as follows: “The combination of validation
edits, login verifications, database lookups, policies, and algorithmic transformations that consti-
tute an enterprise’s way of doing business.”1

■Note Again, while you may implement validation logic to run in a browser or other external client, that code
can’t be trusted. You must view the logic that runs under your control in the business layer as being the only real
validation logic.

The business logic must reside in a separate layer from the UI code. While you may choose
to duplicate some of this logic in your UI code to provide a richer user experience, the business
layer must implement all the business logic, because it is the only point of central control and
maintainability.

I believe that this particular separation between the responsibilities of the business layer and UI
layer is absolutely critical if you want to gain the benefits of increased maintainability and reusability.
This is because any business logic that creeps into the UI layer will reside within a specific UI, and will
not be available to any other UIs that might be created later.

Any business logic written into (say) a Windows UI is useless to a web or Web Services inter-
face, and must therefore be written into those as well. This instantly leads to duplicated code,
which is a maintenance nightmare. Separation of these two layers can be done through tech-
niques such as clearly defined procedural models, or object-oriented design and programming.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE10

1. MSDN, “Business rule” definition, “Enterprise Glossary.” See http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/vsentpro/html/veovrb.asp.

6315_c01_final.qxd 4/7/06 2:03 PM Page 10

In this book, I’ll show how to use object-oriented concepts to help separate the business logic
from the UI.

It is important to recognize that a typical application will use business logic in a couple differ-
ent ways. Most applications have some user interaction, such as forms in which the user views or
enters data into the system. Most applications also have some very non-interactive processes, such
as posting invoices, relieving inventory, or calculating insurance rates.

Ideally, the Business Logic layer will be used in a very rich and interactive way when the
user is directly entering data into the application. For instance, when a user is entering a sales
order, he or she expects that the validation of data, the calculation of tax, and the subtotaling of
the order will happen literally as they type. This implies that the business layer can be physically
deployed on the client workstation or on the web server to provide the high levels of interactivity
users desire.

To support non-interactive processes, on the other hand, the Business Logic layer often
needs to be deployed onto an application server, or as close to the database server as possible.
For instance, the calculation of an insurance rate can involve extensive database lookups along
with quite a bit of complex business processing. This is the kind of thing that should occur behind
the scenes on a server, not on a user’s desktop.

Fortunately, it is possible to deploy a logical layer on multiple physical tiers. Doing this does
require some up-front planning and technical design, as you’ll see in Chapter 2. The end result,
however, is a single business layer that is potentially deployed on both the client workstation (or
web server) and on the application server. This allows the application to provide high levels of
interactivity when the user is working directly with the application, and efficient back-end pro-
cessing for non-interactive processes.

Data Access
Data access code interacts with the Data Management layer to retrieve, insert, update, and remove
information. The Data Access layer doesn’t actually manage or store the data; it merely provides an
interface between the business logic and the database.

Data access gets its own logical layer for much the same reason that the presentation is split
from the UI. In some cases, data access will occur on a machine that’s physically separate from the
one on which the UI and/or business logic is running. In other cases, data access code will run on
the same machine as the business logic (or even the UI) in order to improve performance or fault
tolerance.

■Note It may sound odd to say that putting the Data Access layer on the same machine as the business logic
can increase fault tolerance, but consider the case of web farms, in which each web server is identical to all the
others. Putting the data access code on the web servers provides automatic redundancy of the Data Access layer
along with the Business Logic and UI layers.

Adding an extra physical tier just to do the data access makes fault tolerance harder to implement, because it
increases the number of tiers in which redundancy needs to be implemented. As a side effect, adding more physi-
cal tiers also reduces performance for a single user, so it’s not something that should be done lightly.

Logically defining data access as a separate layer enforces a separation between the business
logic and any interaction with a database (or any other data source). This separation provides the
flexibility to choose later whether to run the data access code on the same machine as the business
logic, or on a separate machine. It also makes it much easier to change data sources without affect-
ing the application. This is important because it enables switching from one database vendor to
another at some point.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 11

6315_c01_final.qxd 4/7/06 2:03 PM Page 11

This separation is useful for another reason: Microsoft has a habit of changing data access
technologies every three years or so, meaning that it is necessary to rewrite the data access code to
keep up (remember DAO, RDO, ADO 1.0, ADO 2.0, and now ADO.NET?). By isolating the data access
code into a specific layer, the impact of these changes is limited to a smaller part of the application.

Data access mechanisms are typically implemented as a set of services, with each service being
a procedure that’s called by the business logic to retrieve, insert, update, or delete data. Although
these services are often constructed using objects, it’s important to recognize that the designs for
an effective Data Access layer are really quite procedural in nature. Attempts to force more object-
oriented designs for relational database access often result in increased complexity or decreased
performance. I think the best approach is to implement the data access as a set of methods, but
encapsulate those methods within objects to keep them logically organized.

■Note If you’re using an object database instead of a relational database, then of course the data access code
may be very object-oriented. Few of us get such an opportunity, however, because almost all data is stored in
relational databases.

Sometimes the Data Access layer can be as simple as a series of methods that use ADO.NET
directly to retrieve or store data. In other circumstances, the Data Access layer is more complex, pro-
viding a more abstract or even metadata-driven way to get at data. In these cases, the Data Access
layer can contain a lot of complex code to provide this more abstract data access scheme. The frame-
work created in this book doesn’t restrict how you implement your Data Access layer. The examples
in the book will work directly against ADO.NET, but you could also use a metadata-driven Data
Access layer if you prefer.

Another common role for the Data Access layer is to provide mapping between the object-
oriented business logic and the relational data in a data store. A good object-oriented model is
almost never the same as a good relational database model. Objects often contain data from mul-
tiple tables, or even from multiple databases; or conversely, multiple objects in the model can
represent a single table. The process of taking the data from the tables in a relational model and
getting it into the object-oriented model is called object-relational mapping (ORM), and I’ll have
more to say on the subject in Chapter 2.

Data Storage and Management
Finally, there’s the Data Storage and Management layer. Database servers such as SQL Server and
Oracle often handle these tasks, but increasingly, other applications may provide this functionality,
too, via technologies such as Web Services.

What’s key about this layer is that it handles the physical creation, retrieval, update, and deletion
of data. This is different from the Data Access layer, which requests the creation, retrieval, update, and
deletion of data. The Data Management layer actually implements these operations within the context
of a database or a set of files.

The business logic (via the Data Access layer) invokes the Data Management layer, but the
layer often includes additional logic to validate the data and its relationship to other data. Some-
times, this is true relational data modeling from a database; other times, it’s the application of
business logic from an external application. What this means is that a typical Data Management
layer will include business logic that is also implemented in the Business Logic layer. This time,
the replication is unavoidable because relational databases are designed to enforce relational
integrity; and that’s just another form of business logic.

In summary, whether you’re using stored procedures in SQL Server, or web service calls to
another application, data storage and management is typically handled by creating a set of services

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE12

6315_c01_final.qxd 4/7/06 2:03 PM Page 12

or procedures that can be called as needed. Like the Data Access layer, it’s important to recognize
that the designs for data storage and management are typically very procedural.

Table 1-1 summarizes the five layers and their roles.

Table 1-1. The Five Logical Layers and the Roles They Provide

Layer Roles

Presentation Renders display and collects user input.

UI Acts as an intermediary between the user and the business logic,
taking user input and providing it to the business logic, then
returning results to the user.

Business Logic Provides all business rules, validation, manipulation, processing,
and security for the application.

Data Access Acts as an intermediary between the business logic and data
management. Also encapsulates and contains all knowledge of
data access technologies (such as ADO.NET), databases, and data
structures.

Data Storage and Management Physically creates, retrieves, updates, and deletes data in a per-
sistent data store.

Everything I’ve talked about to this point is part of a logical architecture. Now it’s time to move
on and see how it can be applied in various physical configurations.

Applying the Logical Architecture
Given this 5-layer logical architecture, it should be possible to configure it into one, two, three, four,
or five physical tiers in order to gain performance, scalability, security, or fault tolerance to various
degrees, and in various combinations.

■Note In this discussion, it is assumed that there is total flexibility to configure which logical layer runs where.
In some cases, there are technical issues that prevent the physical separation of some layers. Fortunately, there
are fewer such issues with the .NET Framework than there were with COM-based technologies.

There are a few physical configurations that I want to discuss in order to illustrate how the logical
model works. These are common and important setups that are encountered on a day-to-day basis.

Optimal Performance Smart Client
When so much focus is placed on distributed systems, it’s easy to forget the value of a single-tier
solution. Point of sale, sales force automation, and many other types of application often run in
stand-alone environments. However, the benefits of the logical n-layer architecture are still desir-
able in terms of maintainability and code reuse.

It probably goes without saying that everything can be installed on a single client workstation.
An optimal performance smart client is usually implemented using Windows Forms for the presen-
tation and UI, with the business logic and data access code running in the same process and talking
to an Access (JET) or Microsoft SQL Server Express database. The fact that the system is deployed
on a single physical tier doesn’t compromise the logical architecture and separation, as shown in
Figure 1-2.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 13

6315_c01_final.qxd 4/7/06 2:03 PM Page 13

I think it’s very important to remember that n-layer systems can run on a single machine in
order to support the wide range of applications that require stand-alone machines. It’s also worth
pointing out that this is basically the same as 2-tier, “fat-client” physical architecture; the only dif-
ference in that case is that the Data Storage and Management tier would be running on a central
database server, such as SQL Server or Oracle, as shown in Figure 1-3.

Other than the location of the data storage, this is identical to the single-tier configuration, and
typically the switch from single-tier to 2-tier revolves around little more than changing the database
configuration string for ADO.NET.

High-Scalability Smart Client
Single-tier configurations are good for stand-alone environments, but they don’t scale well. To sup-
port multiple users, it is common to use 2-tier configurations. I’ve seen 2-tier configurations support
more than 350 concurrent users against SQL Server with very acceptable performance.

Going further, it is possible to trade performance to gain scalability by moving the Data
Access layer to a separate machine. Single or 2-tier configurations give the best performance, but
they don’t scale as well as a 3-tier configuration would. A good rule of thumb is that if you have
more than 50 to 100 concurrent users, you can benefit by making use of a separate server to han-
dle the Data Access layer.

Another reason for moving the Data Access layer to an application server is security. Since the
Data Access layer contains the code that directly interacts with the database, the machine on which
it runs must have credentials to access the database server. Rather than having those credentials on
the client workstation, they can be moved to an application server. This way, the user’s computer
won’t have the credentials to interact directly with the database server, thus increasing security.

It is also possible to put the Business Logic layer on the application server. This is very useful
for non-interactive processes such as batch updates or data-intensive business algorithms. Yet, at
the same time, most applications allow for user interaction, and so there is a very definite need to
have the Business Logic layer running on the client workstation to provide high levels of inter-
activity for the user.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE14

Figure 1-2. The five logical layers running on a single machine

Figure 1-3. The five logical layers with a separate database server

6315_c01_final.qxd 4/7/06 2:03 PM Page 14

As discussed earlier in the chapter, it is possible to deploy the same logical layer onto multiple
physical tiers. Using this idea, the Data Access layer can be put on an application server, and the Busi-
ness Logic layer on both the client workstation and the application server, as shown in Figure 1-4.

Putting the Data Access layer on the application server centralizes all access to the database
on a single machine. In .NET, if the connections to the database for all users are made using the
same user ID and password, you’ll get the benefits of connection pooling for all your users. What
this means immediately is that there will be far fewer connections to the database than there
would be if each client machine connected directly. The actual reduction depends on the specific
application, but often it means supporting 150 to 200 concurrent users with just two or three
database connections!

Of course, all user requests now go across an extra network hop, thereby causing increased
latency (and therefore decreased performance). This performance cost translates into a huge scala-
bility gain, however, because this architecture can handle many more concurrent users than a 2-tier
physical configuration.

With the Business Logic layer deployed on both the client and server, the application is able to
fully exploit the strengths of both machines. Validation and a lot of other business processing can
run on the client workstation to provide a rich and highly interactive experience for the user, while
non-interactive processes can efficiently run on the application server.

If well designed, such an architecture can support thousands of concurrent users with ade-
quate performance.

Optimal Performance Web Client
As with a Windows Forms application, the best performance is received from a web-based applica-
tion by minimizing the number of physical tiers. However, the trade-off in a web scenario is
different: in this case, it is possible to improve performance and scalability at the same time, but at
the cost of security, as I will demonstrate.

To get optimal performance in a web application, it is desirable to run most of the code in a
single process on a single machine, as shown in Figure 1-5.

The Presentation layer must be physically separate because it’s running in a browser, but the
UI, Business Logic, and Data Access layers can all run on the same machine, in the same process.
In some cases, you might even put the Data Management layer on the same physical machine,
though this is only suitable for smaller applications.

This minimizes network and communication overhead and optimizes performance. Figure 1-6
shows how it is possible to get very good scalability, because the web server can be part of a web
farm in which all the web servers are running the same code.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 15

Figure 1-4. The five logical layers with separate application and database servers

6315_c01_final.qxd 4/7/06 2:03 PM Page 15

This setup provides very good database-connection pooling because each web server will be
(potentially) servicing hundreds of concurrent users, and all database connections on a web server
are pooled.

■Note In COM-based technologies such as ASP and Visual Basic 6, this configuration was problematic, because
running COM components in the same process as ASP pages had drawbacks in terms of the manageability and
stability of the system. Running the COM components in a COM+ server application addressed the stability issues,
but at the cost of performance. These issues have been addressed in .NET, however, so this configuration is highly
practical when using ASP.NET and other .NET components.

Unless the database server is getting overwhelmed with connections from the web servers
in the web farm, a separate application server will rarely provide gains in scalability. If a separate
application server is needed, there will be a reduction in performance because of the additional
physical tier. (Hopefully, there will be a gain in scalability, because the application server can
consolidate database connections across all the web servers.) It is important to consider fault
tolerance in this case, because redundant application servers may be needed in order to avoid
a point of failure.

Another reason for implementing an application server is to increase security, and that’s the
topic of the next section.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE16

Figure 1-5. The five logical layers as used for web applications

Figure 1-6. The five logical layers deployed on a load-balanced web farm

6315_c01_final.qxd 4/7/06 2:03 PM Page 16

High-Security Web Client
As discussed in the earlier section on security, there will be many projects in which it’s dictated that
a web server can never talk directly to a database. The web server must run in a “demilitarized zone”
(DMZ), sandwiched between the external firewall and a second internal firewall. The web server
must communicate with another server through the internal firewall in order to interact with the
database or any other internal systems.

As with the 3-tier Windows client scenario, there is tremendous benefit to also having the
Business Logic layer deployed on both the web server and the application server. Such a deploy-
ment allows the Web Forms UI code to interact closely with the business logic when appropriate,
while non-interactive processes can simply run on the application server.

This is illustrated in Figure 1-7, in which the dashed lines represent the firewalls.

Splitting out the Data Access layer and running it on a separate application server increases the
security of the application. However, this comes at the cost of performance—as discussed earlier, this
configuration will typically cause a performance degradation of around 50 percent. Scalability, on the
other hand, is fine: like the first web configuration, it can be achieved by implementing a web farm in
which each web server runs the same UI and business logic code, as shown in Figure 1-8.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 17

Figure 1-7. The five logical layers deployed in a secure web configuration

Figure 1-8. The five logical layers in a secured environment with a web farm

6315_c01_final.qxd 4/7/06 2:03 PM Page 17

The Way Ahead
After implementing the framework to support this 5-layer architecture, I’ll create a sample application
with three different interfaces: Windows Forms, Web Forms, and Web Services. This will give you the
opportunity to see firsthand how the framework supports the following models:

• High-scalability smart client

• Optimal performance web client

• Optimal performance web service

Due to the way the framework is implemented, switching to any of the other models just discussed
will require only configuration file changes. The result is that you can easily adapt your application to
any of the physical configurations without having to change your code.

Managing Business Logic
At this point, you should have a good understanding of logical and physical architectures, and how a
5-layer logical architecture can be configured into various n-tier physical architectures. In one way or
another, all of these layers will use or interact with the application’s data. That’s obviously the case for
the Data Management and Data Access layers, but the Business Logic layer must validate, calculate,
and manipulate data; the UI transfers data between the Business Logic and Presentation layers (often
performing formatting or using the data to make navigational choices); and the Presentation layer
displays data to the user and collects new data as it’s entered.

In an ideal world, all of the business logic would exist in the Business Logic layer, but in reality,
this is virtually impossible to achieve. In a web-based UI, validation logic is often included in the
Presentation layer, so that the user gets a more interactive experience in the browser. Unfortunately,
any validation that’s done in the web browser is unreliable, because it’s too easy for a malicious user
to bypass that validation. Thus, any validation done in the browser must be rechecked in the Busi-
ness Logic layer as well.

Similarly, most databases enforce referential integrity, and often some other rules, too. Further-
more, the Data Access layer will very often include business logic to decide when and how data should
be stored or retrieved from databases and other data sources. In almost any application, to a greater or
a lesser extent, business logic gets scattered across all the layers.

There’s one key truth here that’s important: for each piece of application data, there’s a fixed set
of business logic associated with that data. If the application is to function properly, the business
logic must be applied to that data at least once. Why “at least”? Well, in most applications, some of
the business logic is applied more than once. For example, a validation rule applied in the Presenta-
tion layer can be reapplied in the UI layer or Business Logic layer before data is sent to the database
for storage. In some cases, the database will include code to recheck the value as well.

Now, I’d like to look at some of the more common options. I’ll start with three popular (but
flawed) approaches. Then I’ll discuss a compromise solution that’s enabled through the use of
mobile objects; such as the ones supported by the framework I’ll create later in the book.

Potential Business Logic Locations
Figure 1-9 illustrates common locations for validation and manipulation business logic in a typical
application. Most applications have the same logic in at least a couple of these locations.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE18

6315_c01_final.qxd 4/7/06 2:03 PM Page 18

Business logic is put in a Web Presentation layer to give the user a more interactive experi-
ence—and put into a Windows UI for the same reason. The business logic is rechecked in the web
UI (on the web server) because the browser isn’t trustworthy. And database administrators put the
logic into the database (via stored procedures and other database constructs) because they don’t
trust any application developers!

The result of all this validation is a lot of duplicated code, all of which has to be debugged, main-
tained, and somehow kept in sync as the business needs (and thus logic) change over time. In the real
world, the logic is almost never really kept in sync, and so developers must constantly debug and main-
tain the code in a near-futile effort to make all of these redundant bits of logic agree with each other.

One solution is to force all of the logic into a single layer, thereby making the other layers as
“dumb” as possible. There are various approaches to this, although (as you’ll see) none of them
provide an optimal solution.

Business Logic in the Data Management Tier
The classic approach is to put all logic into the database as the single, central repository. The pres-
entation and UI then allow the user to enter absolutely anything (because any validation would be
redundant), and the Business Logic layer now resides inside the database. The Data Access layer
does nothing but move the data into and out of the database, as shown in Figure 1-10.

The advantage of this approach is that the logic is centralized, but the drawbacks are plentiful.
For starters, the user experience is totally non-interactive. Users can’t get any results, or even confir-
mation that their data is valid, without round-tripping the data to the database for processing. The
database server becomes a performance bottleneck, because it’s the only thing doing any actual

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 19

Figure 1-9. Common locations for business logic in applications

Figure 1-10. Validation and business logic in the Data Management tier

6315_c01_final.qxd 4/7/06 2:03 PM Page 19

work. Unfortunately, the hardest physical tier to scale up for more users is the database server, since
it is difficult to use load-balancing techniques on it. The only real alternative is to buy bigger and
bigger server machines.

Business Logic in the UI Tier
Another common approach is to put all of the business logic into the UI. The data is validated and
manipulated in the UI, and the Data Storage layer just stores the data. This approach, as shown in
Figure 1-11, is very common in both Windows and web environments, and has the advantage that
the business logic is centralized into a single tier (and of course, one can write the business logic in
a language such as C# or VB .NET).

Unfortunately, in practice, the business logic ends up being scattered throughout the UI and
intermixed with the UI code itself, thereby decreasing readability and making maintenance more
difficult. Even more importantly, business logic in one form or page isn’t reusable when subsequent
pages or forms are created that use the same data. Furthermore, in a web environment, this archi-
tecture also leads to a totally non-interactive user experience, because no validation can occur in
the browser. The user must transmit his or her data to the web server for any validation or manipu-
lation to take place.

■Note ASP.NET Web Forms’ validation controls at least allow for basic data validation in the UI, with that valida-
tion automatically extended to the browser by the Web Forms technology itself. Though not a total solution, this is
a powerful feature that does help.

Business Logic in the Middle (Business and Data Access) Tier
Still another option is the classic UNIX client/server approach, whereby the Business Logic and
Data Access layers are merged, keeping the Presentation, UI, and Data Storage tiers as “dumb” as
possible (see Figure 1-12).

Unfortunately, once again, this approach falls afoul of the non-interactive user experience
problem: the data must round-trip to the Business Logic/Data Access tier for any validation or
manipulation. This is especially problematic if the Business Logic/Data Access tier is running on
a separate application server, because then you’re faced with network latency and contention
issues, too. Also, the central application server can become a performance bottleneck, because
it’s the only machine doing any work for all the users of the application.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE20

Figure 1-11. Business logic deployed with only the UI

6315_c01_final.qxd 4/7/06 2:03 PM Page 20

Sharing Business Logic Across Tiers
I wish this book included the secret that allows you to write all your logic in one central location,
thereby avoiding all of these awkward issues. Unfortunately, that’s not possible with today’s technol-
ogy: putting the business logic only on the client, application server, or database server is problematic,
for all the reasons given earlier. But something needs to be done about it, so what’s left?

What’s left is the possibility of centralizing the business logic in a Business Logic layer that’s
deployed on the client (or web server), so that it’s accessible to the UI layer; and in a Business Logic
layer that’s deployed on the application server, so that it’s able to interact efficiently with the Data
Access layer. The end result is the best of both worlds: a rich and interactive user experience and
efficient high-performance back-end processing when interacting with the database (or other data
source).

In the simple cases in which there is no application server, the Business Logic layer is deployed
only once: on the client workstation or web server, as shown in Figure 1-13.

Ideally, this business logic will run on the same machine as the UI code when interacting with
the user, but on the same machine as the data access code when interacting with the database. (As
discussed earlier, all of this could be on one machine or a number of different machines, depending
on your physical architecture.) It must provide a friendly interface that the UI developer can use to
invoke any validation and manipulation logic, and it must also work efficiently with the Data Access
tier to get data in and out of storage.

The tools for addressing this seemingly intractable set of requirements are mobile business
objects that encapsulate the application’s data along with its related business logic. It turns out that
a properly constructed business object can move around the network from machine to machine
with almost no effort on your part. The .NET Framework itself handles the details, and you can
focus on the business logic and data.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 21

Figure 1-12. Business logic deployed on only the application server

Figure 1-13. Business logic centralized in the Business Logic layer

6315_c01_final.qxd 4/7/06 2:03 PM Page 21

By properly designing and implementing mobile business objects, you allow the .NET Frame-
work to pass your objects across the network by value, thereby automatically copying them from
one machine to another. This means that with little extra code, you can have your business logic
and business data move to the machine where the UI tier is running, and then shift to the machine
where the Data Access tier is running when data access is required.

At the same time, if you’re running the UI tier and Data Access tier on the same machine, then
the .NET Framework doesn’t move or copy your business objects. They’re used directly by both tiers
with no performance cost or extra overhead. You don’t have to do anything to make this happen,
either—.NET automatically detects that the object doesn’t need to be copied or moved, and thus
takes no extra action.

The Business Logic layer becomes portable, flexible, and mobile, and adapts to the physical envi-
ronment in which you deploy the application. Due to this, you’re able to support a variety of physical
n-tier architectures with one code base, whereby your business objects contain no extra code to sup-
port the various possible deployment scenarios. What little code you need to implement to support
the movement of your objects from machine to machine will be encapsulated in a framework, leaving
the business developer to focus purely on the development of business logic.

Business Objects
Having decided to use business objects and take advantage of .NET’s ability to move objects
around the network automatically, it’s now time to discuss business objects in more detail. I will
discuss exactly what they are and how they can help you to centralize the business logic pertain-
ing to your data.

The primary goal when designing any kind of software object is to create an abstract represen-
tation of some entity or concept. In ADO.NET, for example, a DataTable object represents a tabular
set of data. DataTables provide an abstract and consistent mechanism by which you can work with
any tabular data. Likewise, a Windows Forms TextBox control is an object that represents the con-
cept of displaying and entering data. From the application’s perspective, there is no need to have any
understanding of how the control is rendered on the screen, or how the user interacts with it. It’s
just an object that includes a Text property and a handful of interesting events.

Key to successful object design is the concept of encapsulation. This means that an object is
a black box: it contains logic and data, but the user of the object doesn’t know what data or how the
logic actually works. All they can do is interact with the object.

■Note Properly designed objects encapsulate both behavior or logic and the data required by that logic.

If objects are abstract representations of entities or concepts that encapsulate both data and
its related logic, what then are business objects?

■Note Business objects are different from regular objects only in terms of what they represent.

Object-oriented applications are created to address problems of one sort or another. In the
course of doing so, a variety of different objects are often used. Some of these objects will have no
direct connection with the problem at hand (DataTable and TextBox objects, for example, are just
abstract representations of computer concepts). However, there will be others that are closely
related to the area or domain in which you’re working. If the objects are related to the business
for which you’re developing an application, then they’re business objects.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE22

6315_c01_final.qxd 4/7/06 2:03 PM Page 22

For instance, if you’re creating an order entry system, your business domain will include things
such as customers, orders, and products. Each of these will likely become business objects within
your order entry application—the Order object, for example, will provide an abstract representation
of the order being placed by a customer.

■Note Business objects provide an abstract representation of entities or concepts that are part of the business
or problem domain.

Business Objects As Smart Data
I’ve already discussed the drawbacks of putting business logic into the UI tier, but I haven’t thor-
oughly discussed the drawback of keeping the data in a generic representation such as a DataSet
object. The data in a DataSet (or an array or XML document) is unintelligent, unprotected, and
generally unsafe. There’s nothing to prevent anyone from putting invalid data into any of these
containers, and there’s nothing to ensure that the business logic behind one form in the applica-
tion will interact with the data in the same way as the business logic behind another form.

A DataSet or an XML document with an XSD (XML Schema Definition) might ensure that text
cannot be entered where a number is required, or that a number cannot be entered where a date
is required. At best, it might enforce some basic relational-integrity rules. However, there’s no way
to ensure that the values match other criteria, or that calculations or other processing is done
properly against the data, without involving other objects. The data in a DataSet, an array, or an
XML document isn’t self-aware; it’s not able to apply business rules or handle business manipu-
lation or processing of the data.

The data in a business object, however, is what I like to call “smart data.” The object not
only contains the data, but also includes all the business logic that goes along with that data.
Any attempt to work with the data must go through this business logic. In this arrangement,
there is much greater assurance that business rules, manipulation, calculations, and other pro-
cessing will be executed consistently everywhere in the application. In a sense, the data has
become self-aware, and can protect itself against incorrect usage.

In the end, an object doesn’t care whether it’s used by a Windows Forms UI, a batch-processing
routine, or a web service. The code using the object can do as it pleases; the object itself will ensure
that all business rules are obeyed at all times.

Contrast this with a DataSet or an XML document, in which the business logic doesn’t reside in
the data container, but somewhere else—typically, a Windows form or a web form. If multiple forms
or pages use this DataSet, there is no assurance that the business logic is applied consistently. Even
if you adopt a standard that says that UI developers must invoke methods from a centralized class
to interact with the data, there’s nothing preventing them from using the DataSet directly. This may
happen accidentally, or because it was simply easier or faster to use the DataSet than to go through
some centralized routine.

■Note With consistent use of business objects, there’s no way to bypass the business logic. The only way to the
data is through the object, and the object always enforces the rules.

So, a business object that represents an invoice will include not only the data pertaining to
the invoice, but also the logic to calculate taxes and amounts due. The object should understand
how to post itself to a ledger, and how to perform any other accounting tasks that are required.
Rather than passing raw invoice data around, and having the business logic scattered throughout

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 23

6315_c01_final.qxd 4/7/06 2:03 PM Page 23

the application, it is possible to pass an Invoice object around. The entire application can share
not only the data, but also its associated logic. Smart data through objects can dramatically
increase the ability to reuse code, and can decrease software-maintenance costs.

Anatomy of a Business Object
Putting all of these pieces together, you get an object that has an interface (a set of properties and
methods), some implementation code (the business logic behind those properties and methods),
and state (the data). This is illustrated in Figure 1-14.

The hiding of the data and the implementation code behind the interface are keys to the
successful creation of a business object. If the users of an object are allowed to “see inside” it,
they will be tempted to cheat, and to interact with the logic or data in unpredictable ways. This
danger is the reason that it will be important to take care when using the public keyword as you
build your classes.

Any property, method, event, or field marked as public will be available to the users of objects
created from the class. For example, you might create a simple class such as the following:

Public Class Project

Private mId As Guid = Guid.NewGuid
Private mName As String = ""

Public ReadOnly Property Id() As Guid
Get
Return mId

End Get
End Property

Public Property Name() As String
Get
Return mName

End Get
Set(ByVal value As String)
If Len(value) > 50 Then
Throw New Exception("Name too long")

End If

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE24

Figure 1-14. A business object composed of state, implementation, and interface

6315_c01_final.qxd 4/7/06 2:03 PM Page 24

mName = value
End Set

End Property

End Class

This defines a business object that represents a project of some sort. All that is known at the
moment is that these projects have an ID value and a name. Notice, though, that the fields contain-
ing this data are Private—you don’t want the users of your object to be able to alter or access them
directly. If they were Public, the values could be changed without the object’s knowledge or permis-
sion. (The mName field could be given a value that’s longer than the maximum of 50 characters, for
example.)

The properties, on the other hand, are Public. They provide a controlled access point to the
object. The Id property is read-only, so the users of the object can’t change it. The Name property
allows its value to be changed, but enforces a business rule by ensuring that the length of the new
value doesn’t exceed 50 characters.

■Note None of these concepts are unique to business objects—they’re common to all objects, and are central
to object-oriented design and programming.

Mobile Objects
Unfortunately, directly applying the kind of object-oriented design and programming I’ve been talk-
ing about so far is often quite difficult in today’s complex computing environments. Object-oriented
programs are almost always designed with the assumption that all the objects in an application can
interact with each other with no performance penalty. This is true when all the objects are running
in the same process on the same computer, but it’s not at all true when the objects might be running in
different processes, or even on different computers.

Earlier in this chapter, I discussed various physical architectures in which different parts of
an application might run on different machines. With a high-scalability smart client architecture,
for example, there will be a client, an application server, and a data server. With a high-security
web client architecture, there will be a client, a web server, an application server, and a data
server. Parts of the application will run on each of these machines, interacting with each other
as needed.

In these distributed architectures, you can’t use a straightforward object-oriented design,
because any communication between classic fine-grained objects on one machine and similar
objects on another machine will incur network latency and overhead. This translates into a per-
formance problem that simply can’t be ignored. To overcome this problem, most distributed
applications haven’t used object-oriented designs. Instead, they consist of a set of procedural
code running on each machine, with the data kept in a DataSet, an array, or an XML document
that’s passed around from machine to machine.

This isn’t to say that object-oriented design and programming is irrelevant in distributed
environments—just that it becomes complicated. To minimize the complexity, most distributed
applications are object-oriented within a tier, but between tiers they follow a procedural or serv-
ice-based model. The end result is that the application as a whole is neither object-oriented nor
procedural, but a blend of both.

Perhaps the most common architecture for such applications is to have the Data Access layer
retrieve the data from the database into a DataSet. The DataSet is then returned to the client (or the
web server). The code in the forms or pages then interacts with the DataSet directly, as shown in
Figure 1-15.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 25

6315_c01_final.qxd 4/7/06 2:03 PM Page 25

This approach has the maintenance and code-reuse flaws that I’ve talked about, but the fact
is that it gives pretty good performance in most cases. Also, it doesn’t hurt that most program-
mers are pretty familiar with the idea of writing code to manipulate a DataSet, so the techniques
involved are well understood, thus speeding up development.

A decision to stick with an object-oriented approach should be undertaken carefully. It’s all
too easy to compromise the object-oriented design by taking the data out of the objects running
on one machine, sending the raw data across the network, and allowing other objects to use that
data outside the context of the objects and business logic. Such an approach would break the
encapsulation provided by the logical business layer.

Mobile objects are all about sending smart data (objects) from one machine to another, rather
than sending raw data.

Through its remoting, serialization, and deployment technologies, the .NET Framework con-
tains direct support for the concept of mobile objects. Given this ability, you can have your Data
Access layer (running on an application server) create a business object and load it with data from
the database. You can then send that business object to the client machine (or web server), where
the UI code can use the object (as shown in Figure 1-16).

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE26

Figure 1-15. Passing a DataSet between the Business Logic and Data Access layers

Figure 1-16. Using a business object to centralize business logic

6315_c01_final.qxd 4/7/06 2:03 PM Page 26

In this architecture, smart data, in the form of a business object, is sent to the client, rather
than raw data. Then the UI code can use the same business logic as the data access code. This
reduces maintenance, because you’re not writing some business logic in the Data Access layer,
and some other business logic in the UI layer. Instead, all of the business logic is consolidated
into a real, separate layer composed of business objects. These business objects will move across
the network just like the DataSet did earlier, but they’ll include the data and its related business
logic—something the DataSet can’t easily offer.

■Note In addition, business objects will typically move across the network more efficiently than the DataSet.
The approach in this book will use a binary transfer scheme that transfers data in about 30 percent of the size of
data transferred using the DataSet. Also, the business objects will contain far less metadata than the DataSet,
further reducing the number of bytes transferred across the network.

Effectively, you’re sharing the Business Logic layer between the machine running the Data
Access layer and the machine running the UI layer. As long as there is support for mobile objects,
this is an ideal solution: it provides code reuse, low maintenance costs, and high performance.

A New Logical Architecture
Being able to directly access the Business Logic layer from both the Data Access layer and the UI
layer opens up a new way to view the logical architecture. Though the Business Logic layer remains
a separate concept, it’s directly used by and tied into both the UI and Data Access layers, as shown
in Figure 1-17.

The UI layer can interact directly with the objects in the Business Logic layer, thereby relying
on them to perform all validation, manipulation, and other processing of the data. Likewise, the
Data Access layer can interact with the objects as the data is retrieved or stored.

If all the layers are running on a single machine (such as a smart client), then these parts will
run in a single process and interact with each other with no network or cross-processing overhead.
In more distributed physical configurations, the Business Logic layer will run on both the client and
the application server, as shown in Figure 1-18.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 27

Figure 1-17. The Business Logic layer tied to the UI and Data Access layers

6315_c01_final.qxd 4/7/06 2:03 PM Page 27

Local, Anchored, and Mobile Objects
Normally, one might think of objects as being part of a single application, running on a single
machine in a single process. A distributed application requires a broader perspective. Some of
the objects might only run in a single process on a single machine. Others may run on one
machine, but may be called by code running on another machine. Still others may be mobile
objects: moving from machine to machine.

Local Objects

By default, .NET objects are local. This means that ordinary .NET objects aren’t accessible from out-
side the process in which they were created. Without taking extra steps in your code, it isn’t possible
to pass objects to another process or another machine (a procedure known as marshaling), either
by value or by reference.

Anchored Objects

In many technologies, including COM, objects are always passed by reference. This means that
when you “pass” an object from one machine or process to another, what actually happens is that
the object remains in the original process, and the other process or machine merely gets a pointer,
or reference, back to the object, as shown in Figure 1-19.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE28

Figure 1-18. Business logic shared between the UI and Data Access layers

Figure 1-19. Calling an object by reference

6315_c01_final.qxd 4/7/06 2:03 PM Page 28

By using this reference, the other machine can interact with the object. Because the object is still
on the original machine, however, any property or method calls are sent across the network, and the
results are returned back across the network. This scheme is only useful if the object is designed so
that it can be used with very few method calls; just one is ideal! The recommended designs for MTS or
COM+ objects call for a single method on the object that does all the work for precisely this reason,
thereby sacrificing “proper” object-oriented design in order to reduce latency.

This type of object is stuck, or anchored, on the original machine or process where it was cre-
ated. An anchored object never moves; it’s accessed via references. In .NET, an anchored object is
created by having it inherit from MarshalByRefObject:

Public Class MyAnchoredClass
Inherits MarshalByRefObject

End Class

From this point on, the .NET Framework takes care of the details. Remoting can be used to pass
an object of this type to another process or machine as a parameter to a method call, for example,
or to return it as the result of a function.

Mobile Objects

The concept of mobile objects relies on the idea that an object can be passed from one process to
another, or from one machine to another, by value. This means that the object is physically copied
from the original process or machine to the other process or machine, as shown in Figure 1-20.

Because the other machine gets a copy of the object, it can interact with the object locally. This
means that there’s effectively no performance overhead involved in calling properties or methods
on the object—the only cost was in copying the object across the network in the first place.

■Note One caveat here is that transferring a large object across the network can cause a performance problem.
Returning a DataSet that contains a great deal of data can take a long time. This is true of all mobile objects,
including business objects. You need to be careful in your application design in order to avoid retrieving very large
sets of data.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 29

Figure 1-20. Passing a physical copy of an object across the network

6315_c01_final.qxd 4/7/06 2:03 PM Page 29

Objects that can move from process to process or from machine to machine are mobile
objects. Examples of mobile objects include the DataSet and the business objects created in this
book. Mobile objects aren’t stuck in a single place, but can move to where they’re most needed.
To create one in .NET, add the <Serializable()> attribute to your class definition. You may also
optionally implement the ISerializable interface. I’ll discuss this further in Chapter 2, but the
following illustrates the start of a class that defines a mobile object:

<Serializable()> _
Public Class MyMobileClass

End Class

Again, the .NET Framework takes care of the details, so an object of this type can be simply
passed as a parameter to a method call or as the return value from a function. The object will be
copied from the original machine to the machine where the method is running.

It is important to understand that the code for the object isn’t automatically moved across
the network. Before an object can move from machine to machine, both machines must have the
.NET assembly containing the object’s code installed. Only the object’s serialized data is moved
across the network by .NET. Installing the required assemblies is often handled by ClickOnce or
other .NET deployment technologies.

When to Use Which Mechanism

The .NET Framework supports all three of the mechanisms just discussed, so you can choose to
create your objects as local, anchored, or mobile, depending on the requirements of your design.
As you might guess, there are good reasons for each approach.

Windows Forms and Web Forms objects are all local—they’re inaccessible from outside the
processes in which they were created. The assumption is that other applications shouldn’t be
allowed to just reach into your program and manipulate your UI objects.

Anchored objects are important because they will always run on a specific machine. If you
write an object that interacts with a database, you’ll want to ensure that the object always runs
on a machine that has access to the database. Because of this, anchored objects are typically
used on application servers.

Many business objects, on the other hand, will be more useful if they can move from the
application server to a client or web server, as needed. By creating business objects as mobile
objects, you can pass smart data from machine to machine, thereby reusing your business logic
anywhere the business data is sent.

Typically, anchored and mobile objects are used in concert. Later in the book, I’ll show how
to use an anchored object on the application server to ensure that specific methods are run on
that server. Then mobile objects will be passed as parameters to those methods, which will cause
those mobile objects to move from the client to the server. Some of the anchored server-side
methods will return mobile objects as results, in which case the mobile object will move from
the server back to the client.

Passing Mobile Objects by Reference

There’s a piece of terminology here that can get confusing. So far, I’ve loosely associated anchored
objects with the concept of “passing by reference,” and mobile objects as being “passed by value.”
Intuitively, this makes sense, because anchored objects provide a reference, though mobile objects
provide the actual object (and its values). However, the terms “by reference” and “by value” have
come to mean other things over the years.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE30

6315_c01_final.qxd 4/7/06 2:03 PM Page 30

The original idea of passing a value “by reference” was that there would be just one set of data—
one object—and any code could get a reference to that single entity. Any changes made to that entity
by any code would therefore be immediately visible to any other code.

The original idea of passing a value “by value” was that a copy of the original value would be
made. Any code could get a copy of the original value, but any changes made to that copy weren’t
reflected in the original value. That makes sense, because the changes were made to a copy, not to
the original value.

In distributed applications, things get a little more complicated, but the previous definitions
remain true: an object can be passed by reference so that all machines have a reference to the same
object on a server. And an object can be passed by value so that a copy of the object is made. So far, so
good. However, what happens if you mark an object as <Serializable()> (i.e., mark it as a mobile
object), and then intentionally pass it by reference? It turns out that the object is passed by value, but
the .NET Framework attempts to provide the illusion that the object was passed by reference.

To be more specific, in this scenario, the object is copied across the network just as if it were
being passed by value. The difference is that the object is then returned back to the calling code
when the method is complete, and the reference to the original object is replaced with a reference
to this new version, as shown in Figure 1-21.

This is potentially very dangerous, since other references to the original object continue to
point to that original object—only this one particular reference is updated. You can potentially
end up with two different versions of the same object on the machine, with some references
pointing to the new one and some to the old one.

■Note If you pass a mobile object by reference, you must always make sure to update all references to use the
new version of the object when the method call is complete.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 31

Figure 1-21. Passing a copy of the object to the server and getting a copy back

6315_c01_final.qxd 4/7/06 2:03 PM Page 31

You can choose to pass a mobile object by value, in which case it’s passed one way: from the
caller to the method. Or you can choose to pass an mobile object by reference, in which case it’s
passed two ways: from the caller to the method and from the method back to the caller. If you
want to get back any changes the method makes to the object, use “by reference.” If you don’t
care about or don’t want any changes made to the object by the method, use “by value.”

Note that passing a mobile object by reference has performance implications—it requires
that the object be passed back across the network to the calling machine, so it’s slower than
passing by value.

Complete Encapsulation
Hopefully, at this point, your imagination is engaged by the potential of mobile objects. The flexi-
bility of being able to choose between local, anchored, and mobile objects is very powerful, and
opens up new architectural approaches that were difficult to implement using older technologies
such as COM.

I’ve already discussed the idea of sharing the Business Logic layer across machines, and it’s
probably obvious that the concept of mobile objects is exactly what’s needed to implement such
a shared layer. But what does this all mean for the design of the layers? In particular, given a set
of mobile objects in the business layer, what’s the impact on the UI and Data Access layers with
which the objects interact?

Impact on the UI Layer

What it means for the UI layer is simply that the business objects will contain all the business
logic. The UI developer can code each form or page using the business objects, thereby relying
on them to perform any validation or manipulation of the data. This means that the UI code can
focus entirely on displaying the data, interacting with the user, and providing a rich, interactive
experience.

More importantly, because the business objects are mobile , they’ll end up running in the same
process as the UI code. Any property or method calls from the UI code to the business object will
occur locally without network latency, marshaling, or any other performance overhead.

Impact on the Data Access Layer

A traditional Data Access layer consists of a set of methods or services that interact with the data-
base, and with the objects that encapsulate data. The data access code itself is typically outside the
objects, rather than being encapsulated within the objects. This, however, breaks encapsulation,
since it means that the objects’ data must be externalized to be handled by the data access code.

The framework created in this book allows for the data access code to be encapsulated within
the business objects, or externalized into a separate set of objects. As you’ll see in Chapter 7, there
are both performance and maintainability benefits to including the data access code directly inside
each business object. However, there are security and manageability benefits to having the code
external.

Either way, the concept of a Data Access layer is of key importance. Maintaining a strong logi-
cal separation between the data access code and business logic is highly beneficial, as discussed
earlier in this chapter. Obviously, having a totally separate set of data access objects is one way to
clearly implement a Data Access layer. However, logical separation doesn’t require putting the logic
in separate classes. It is enough to put the data access code in clearly defined data access methods.
As long as no data access code exists outside those methods, separation is maintained.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE32

6315_c01_final.qxd 4/7/06 2:03 PM Page 32

Architectures and Frameworks
The discussion so far has focused mainly on architectures: logical architectures that define the sep-
aration of responsibilities in an application, and physical architectures that define the locations
where the logical layers will run in various configurations. I’ve also discussed the use of object-
oriented design and the concepts behind mobile objects.

Although all of these are important and must be thought through in detail, you really don’t
want to have to go through this process every time you need to build an application. It would be
preferable to have the architecture and design solidified into reusable code that could be used to
build all your applications. What you want is an application framework. A framework codifies an
architecture and design in order to promote reuse and increase productivity.

The typical development process starts with analysis, followed by a period of architectural
discussion and decision making. Next comes the application design: first, the low-level concepts
to support the architecture, and then the business-level concepts that actually matter to the end
users. With the design completed, developers typically spend a fair amount of time implementing
the low-level functions that support the business coding that comes later.

All of the architectural discussions, decision making, designing, and coding can be a lot of fun.
Unfortunately, it doesn’t directly contribute anything to the end goal of writing business logic and
providing business functionality. This low-level supporting technology is merely “plumbing” that
must exist in order to create actual business applications. It’s an overhead that in the long term you
should be able to do once, and then reuse across many business application–development efforts.

In the software world, the easiest way to reduce overhead is to increase reuse, and the best way
to get reuse out of an architecture (both design and coding) is to codify it into a framework.

This doesn’t mean that application analysis and design are unimportant—quite the opposite!
People typically spend far too little time analyzing business requirements and developing good
application designs to meet those business needs. Part of the reason is that they often end up
spending substantial amounts of time analyzing and designing the “plumbing” that supports the
business application, and then run out of time to analyze the business issues themselves.

What I’m proposing here is to reduce the time spent analyzing and designing the low-level
plumbing by creating a framework that can be used across many business applications. Is the
framework created in this book ideal for every application and every organization? Certainly not!
You’ll have to take the architecture and the framework and adapt them to meet your organiza-
tion’s needs. You may have different priorities in terms of performance, scalability, security, fault
tolerance, reuse, or other key architectural criteria. At the very least, though, the remainder of
this book should give you a good start on the design and construction of a distributed, object-
oriented architecture and framework.

Conclusion
In this chapter, I’ve focused on the theory behind distributed systems—specifically, those based
on mobile objects. The key to success in designing a distributed system is to keep clear the dis-
tinction between a logical and a physical architecture.

Logical architectures exist to define the separation between the different types of code in an
application. The goal of a good logical architecture is to make code more maintainable, under-
standable, and reusable. A logical architecture must also define enough layers to enable any
physical architectures that may be required.

A physical architecture defines the machines on which the application will run. An application
with several logical layers can still run on a single machine. You also might configure that same

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE 33

6315_c01_final.qxd 4/7/06 2:03 PM Page 33

logical architecture to run on various client and server machines. The goal of a good physical archi-
tecture is to achieve the best trade-off between performance, scalability, security, and fault tolerance
within your specific environment.

The trade-offs in a physical architecture for a smart client application are very different from
those for a web application. A Windows application will typically trade performance against scala-
bility, and a web application will typically trade performance against security.

In this book, I’ll be using a 5-layer logical architecture consisting of presentation, UI, busi-
ness logic, data access, and data storage. Later in the book, this architecture will be used to create
Windows, web, and Web Services applications, each with a different physical architecture. The
next chapter will start the process of designing the framework that will make this possible.

CHAPTER 1 ■ DISTRIBUTED ARCHITECTURE34

6315_c01_final.qxd 4/7/06 2:03 PM Page 34

Framework Design

In Chapter 1, I discussed some general concepts about physical and logical n-tier architecture,
including a 5-layer model for describing systems logically. In this chapter, I’ll take that 5-layer logi-
cal model and expand it into a framework design. Specifically, this chapter will map the logical
layers against the technologies illustrated in Figure 2-1.

The framework itself will focus on the Business Logic and Data Access layers. This is primarily due
to the fact that there are already powerful technologies for building Windows, web (browser-based and
Web Services), and mobile UIs and presentations. Also, there are already powerful data-storage options
available, including SQL Server, Oracle, DB2, XML documents, and so forth.

Recognizing that these preexisting technologies are ideal for building the Presentation and UI
layers, as well as for handling data storage, allows business developers to focus on the parts of the
application that have the least technological support, where the highest return on investment
occurs through reuse. Analyzing, designing, implementing, testing, and maintaining business logic
is incredibly expensive. The more reuse achieved, the lower long-term application costs become.
The easier it is to maintain and modify this logic, the lower costs will be over time.

35

C H A P T E R 2

■ ■ ■

Figure 2-1. Mapping the logical layers to technologies

6315_c02_final.qxd 4/13/06 12:27 PM Page 35

■Note This is not to say that additional frameworks for UI creation or simplification of data access are bad ideas.
On the contrary, such frameworks can be very complementary to the ideas presented in this book; and the combi-
nation of several frameworks can help lower costs even further.

When I set out to create the architecture and framework discussed in this book, I started with
the following set of high-level guidelines:

• Simplify the task of creating object-oriented applications in a distributed .NET environment.

• The Windows, web, and Web Services interface developer should never see or be aware of
SQL, ADO.NET, or other raw data concepts, but should instead rely on a purely object-
oriented model of the problem domain.

• Business object developers should be able to use “natural” coding techniques to create their
classes—that is, they should employ everyday coding using fields, properties, and methods.
Little or no extra knowledge should be required.

• The business classes should provide total encapsulation of business logic, including valida-
tion, manipulation, calculation, security, and data access. Everything pertaining to an entity
in the problem domain should be found within a single class.

• It should be relatively easy to create code generators, or templates for existing code-
generation tools, to assist in the creation of business classes.

• Provide an n-layer logical architecture that can be easily reconfigured to run on one to four
physical tiers.

• Use complex features in .NET—but those should be largely hidden and automated
(remoting, serialization, security, deployment, and so forth).

• The concepts present in version 1.x of the framework from the .NET 1.x Framework should
carry forward, including object-undo capabilities, broken rule tracking, and object-state
tracking (IsNew, IsDirty, IsDeleted).

In this chapter, I’ll focus on the design of a framework that allows business developers to make
use of object-oriented design and programming with these guidelines in mind. Having walked
through the design of the framework, Chapters 3 through 5 will dive in and implement the frame-
work itself, focusing first on the parts that support UI development, and then on providing scalable
data access and object-relational mapping for the objects. Before I get into the design of the frame-
work, however, let’s discuss some of the specific goals I was attempting to achieve.

Basic Design Goals
When creating object-oriented applications, the ideal situation is that any nonbusiness objects
will already exist. This includes UI controls, data access objects, and so forth. In that case, all
developers need to do is focus on creating, debugging, and testing the business objects them-
selves, thereby ensuring that each one encapsulates the data and business logic needed to make
the application work.

As rich as the .NET Framework is, however, it doesn’t provide all the nonbusiness objects
needed in order to create most applications. All the basic tools are there, but there’s a fair amount
of work to be done before you can just sit down and write business logic. There’s a set of higher-
level functions and capabilities that are often needed, but aren’t provided by .NET right out of
the box.

36 CHAPTER 2 ■ FRAMEWORK DESIGN

6315_c02_final.qxd 4/13/06 12:27 PM Page 36

These include the following:

• N-level undo capability

• Tracking broken business rules to determine whether an object is valid

• Tracking whether an object’s data has changed (is it “dirty”?)

• Strongly typed collections of child objects (parent-child relationships)

• A simple and abstract model for the UI developer

• Full support for data binding in both Windows Forms and Web Forms

• Saving objects to a database and getting them back again

• Custom authentication

• Integrated authorization rules

• Other miscellaneous features

In all of these cases, the .NET Framework provides all the pieces of the puzzle, but they
must be put together to match your specialized requirements. What you don’t want to do, how-
ever, is to have to put them together for every business object or application. The goal is to put
them together once, so that all these extra features are automatically available to all the business
objects and applications.

Moreover, because the goal is to enable the implementation of object-oriented business systems,
the core object-oriented concepts must also be preserved:

• Abstraction

• Encapsulation

• Polymorphism

• Inheritance

The result will be a framework consisting of a number of classes. The design of these classes will
be discussed in this chapter, and their implementation will be discussed in Chapters 3 through 5.

■Tip The Diagrams folder in the Csla project in the code download includes FullCsla.cd, which shows all
the framework classes in a single diagram. You can also get a PDF document showing that diagram from www.
lhotka.net/cslanet/csla20.aspx.

Before getting into the details of the framework’s design, let’s discuss the desired set of features
in more detail.

N-Level Undo Capability
Many Windows applications provide their users with an interface that includes OK and Cancel but-
tons (or some variation on that theme). When the user clicks an OK button, the expectation is that
any work the user has done will be saved. Likewise, when the user clicks a Cancel button, he expects
that any changes he’s made will be reversed or undone.

Simple applications can often deliver this functionality by saving the data to a database when
the user clicks OK, and discarding the data when they click Cancel. For slightly more complex appli-
cations, the application must be able to undo any editing on a single object when the user presses
the Esc key. (This is the case for a row of data being edited in a DataGridView: if the user presses Esc,
the row of data should restore its original values.)

CHAPTER 2 ■ FRAMEWORK DESIGN 37

6315_c02_final.qxd 4/13/06 12:27 PM Page 37

When applications become much more complex, however, these approaches won’t work.
Instead of simply undoing the changes to a single row of data in real time, you may need to be able
to undo the changes to a row of data at some later stage.

■Note It is important to realize that the n-level undo capability implemented in the framework is optional and is
designed to incur no overhead if it is not used.

Consider the case of an Invoice object that contains a collection of LineItem objects. The Invoice
itself contains data that the user can edit, plus data that’s derived from the collection. The TotalAmount
property of an Invoice, for instance, is calculated by summing up the individual Amount properties of
its LineItem objects. Figure 2-2 illustrates this arrangement.

The UI may allow the user to edit the LineItem objects, and then press Enter to accept the
changes to the item, or Esc to undo them. However, even if the user chooses to accept changes
to some LineItem objects, they can still choose to cancel the changes on the Invoice itself. Of
course, the only way to reset the Invoice object to its original state is to restore the states of the
LineItem objects as well; including any changes to specific LineItem objects that might have
been “accepted” earlier.

As if this weren’t enough, many applications have more complex hierarchies of objects and
subobjects (which I’ll call child objects). Perhaps the individual LineItem objects each have a col-
lection of Component objects beneath them. Each one represents one of the components sold to
the customer that make up the specific line item, as shown in Figure 2-3.

CHAPTER 2 ■ FRAMEWORK DESIGN38

Figure 2-2. Relationship between the Invoice, LineItems, and LineItem classes

6315_c02_final.qxd 4/13/06 12:27 PM Page 38

Now things get even more complicated. If the user edits a Component object, those changes ulti-
mately impact the state of the Invoice object itself. Of course, changing a Component also changes
the state of the LineItem object that owns the Component.

The user might accept changes to a Component, but cancel the changes to its parent LineItem
object, thereby forcing an undo operation to reverse accepted changes to the Component. Or in an even
more complex scenario, the user may accept the changes to a Component and its parent LineItem, only
to cancel the Invoice. This would force an undo operation that reverses all those changes to the child
objects.

Implementing an undo mechanism to support such n-level scenarios isn’t trivial. The applica-
tion must implement code to take a snapshot of the state of each object before it’s edited, so that
changes can be reversed later on. The application might even need to take more than one snapshot
of an object’s state at different points in the editing process, so that the object can revert to the
appropriate point based on when the user chooses to accept or cancel any edits.

■Note This multilevel undo capability flows from the user’s expectations. Consider a typical word processor,
in which the user can undo multiple times to restore the content to ever-earlier states.

CHAPTER 2 ■ FRAMEWORK DESIGN 39

Figure 2-3. Class diagram showing a more complex set of class relationships

6315_c02_final.qxd 4/13/06 12:27 PM Page 39

And the collection objects are every bit as complex as the business objects themselves. The
application must handle the simple case in which a user edits an existing LineItem, but it must also
handle the case in which a user adds a new LineItem and then cancels changes to the parent or
grandparent, resulting in the new LineItem being discarded. Equally, it must handle the case in
which the user deletes a LineItem and then cancels changes to the parent or grandparent, thereby
causing that deleted object to be restored to the collection as though nothing had ever happened.

N-level undo is a perfect example of complex code that shouldn’t be written into every busi-
ness object. Instead, this functionality should be written once, so that all business objects support
the concept and behave the way we want them to. This functionality will be incorporated directly
into the business object framework—but at the same time, the framework must be sensitive to the
different environments in which the objects will be used. Although n-level undo is of high impor-
tance when building sophisticated Windows user experiences, it’s virtually useless in a typical web
environment.

In web-based applications, the user typically doesn’t have a Cancel button. They either
accept the changes, or navigate away to another task, allowing the application to simply discard
the changed object. In this regard, the web environment is much simpler, so if n-level undo isn’t
useful to the web UI developer, it shouldn’t incur any overhead if it isn’t used. The framework
design will take into account that some UI types will use the concept, though others will simply
ignore it.

N-level undo is optional and won’t incur any overhead if it isn’t used by the UI developer.

Tracking Broken Business Rules
A lot of business logic involves the enforcement of business rules. The fact that a given piece of data
is required is a business rule. The fact that one date must be later than another date is a business
rule. Some business rules are the result of calculations, though others are merely toggles. In any
case, a business or validation rule is either broken or not. And when one or more rules are broken,
the object is invalid.

Because all rules ultimately return a Boolean value, it is possible to abstract the concept of
validation rules to a large degree. Every rule is implemented as a bit of code. Some of the code
might be trivial, such as comparing the length of a string and returning false if the value is zero.
Other code might be more complex, involving validation of the data against a lookup table or
through a numeric algorithm. Either way, a rule can be expressed as a method that returns a
Boolean result.

The .NET Framework provides the Delegate concept, making it possible to formally define
a method signature for a type of method. A Delegate defines a reference type (an object) that repre-
sents a method. Essentially, delegates turn methods into objects, allowing you to write code that
treats the method like an object; and of course they also allow you to invoke the method.

I’ll use this capability in the framework to formally define a method signature for all validation
rules. This will allow the framework to maintain a list of validation rules for each object, enabling
relatively simple application of those rules as appropriate. With that done, every object can easily
maintain a list of the rules that are broken at any point in time.

■Note There are commercial business rule engines and other business rule products that strive to take the
business rules out of the software and keep it in some external location. Some of these are powerful and valu-
able. For most business applications, however, the business rules are typically coded directly into the software.
When using object-oriented design, this means coding them into the objects.

A fair number of business rules are of the toggle variety: required fields, fields that must be a
certain length (no longer than, no shorter than), fields that must be greater than or less than other

CHAPTER 2 ■ FRAMEWORK DESIGN40

6315_c02_final.qxd 4/13/06 12:27 PM Page 40

fields, and so forth. The common theme is that business rules, when broken, immediately make the
object invalid. In short, an object is valid if no rules are broken, but invalid if any rules are broken.

Rather than trying to implement a custom scheme in each business object in order to keep track
of which rules are broken and whether the object is or isn’t valid at any given point, this behavior can
be abstracted. Obviously, the rules themselves are often coded into an application, but the tracking of
which rules are broken and whether the object is valid can be handled by the framework.

■Tip Defining a validation rule as a method means you can create libraries of reusable rules for your application.
The framework in this book actually includes a small library with some of the most common validation rules so you
can use them in applications without having to write them at all.

The result is a standardized mechanism by which the developer can check all business objects
for validity. The UI developer should also be able to retrieve a list of currently broken rules to dis-
play to the user (or for any other purpose).

Additionally, this provides the underlying data required to implement the System.
ComponentModel.IDataErrorInfo interface defined by the .NET Framework. This interface is used
by the ErrorProvider and DataGridView controls in Windows Forms to automate the display of
validation errors to the user.

The list of broken rules is obviously linked to the framework’s n-level undo capability. If the
user changes an object’s data so that the object becomes invalid, but then cancels the changes, the
original state of the object must be restored. The reverse is true as well: an object may start out
invalid (perhaps because a required field is blank), so the user must edit data until it becomes valid.
If the user later cancels the object (or its parent, grandparent, etc.), then the object must become
invalid once again, because it will be restored to its original invalid state.

Fortunately, this is easily handled by treating the broken rules and validity of each object as
part of that object’s state. When an undo operation occurs, not only is the object’s core state
restored, but so is the list of broken rules associated with that state. The object and its rules are
restored together.

Tracking Whether the Object Has Changed
Another concept is that an object should keep track of whether its state data has been changed.
This is important for the performance and efficiency of data updates. Typically, data should only
be updated into the database if the data has actually changed. It’s a waste of effort to update the
database with values it already has! Although the UI developer could keep track of whether any
values have changed, it’s simpler to have the object take care of this detail, and it allows the object
to better encapsulate its behaviors.

This can be implemented in a number of ways, ranging from keeping the previous values of all
fields (allowing comparisons to see if they’ve changed), to saying that any change to a value (even
“changing” it to its original value) will result in the object being marked as having changed.

Rather than having the framework dictate one cost over the other, it will simply provide a
generic mechanism by which the business logic can tell the framework whether each object has
been changed. This scheme supports both extremes of implementation, allowing you to make a
decision based on the requirements of a specific application.

Strongly Typed Collections of Child Objects
The .NET Framework includes the System.Collections.Generic namespace, which contains a num-
ber of powerful collection objects, including List(Of T), Dictionary(Of TKey, TValue), and others.

CHAPTER 2 ■ FRAMEWORK DESIGN 41

6315_c02_final.qxd 4/13/06 12:27 PM Page 41

There’s also System.ComponentModel.BindingList(Of T), which provides collection behaviors and
full support for data binding.

A Short Primer on Generics
Generic types are a new feature in .NET 2.0. A generic type is a template that defines a set of
behaviors, but the specific data type is specified when the type is used rather than when it is
created. Perhaps an example will help.

Consider the ArrayList collection type. It provides powerful list behaviors, but it stores all
its items as type Object. While you can wrap an ArrayList with a strongly typed class, or create
your own collection type in many different ways, the items in the list are always stored in mem-
ory as type object.

The new List(Of T) collection type has the same behaviors as ArrayList, but it is strongly
typed—all the way to its core. The type of the indexer, enumerator, Remove(), and other methods
are all defined by the generic type parameter, T. Even better, the items in the list are stored in
memory as type T, not type Object.

So what is T? It is the type provided when the List(Of T) is created. For instance:

Dim myList As New List(Of Integer)

In this case, T is Integer, meaning that myList is a strongly typed list of Integer values. The
public properties and methods of myList are all of type Integer, and the values it contains are
stored internally as Integer values.

Not only do generic types offer type safety due to their strongly typed nature, but they typically
offer substantial performance benefits because they avoid storing values as type Object.

Strongly Typed Collections of Child Objects
Sadly, the basic functionality provided by even the generic collection classes isn’t enough to inte-
grate fully with the rest of the framework. As mentioned previously, the business objects need to
support some relatively advanced features, such as undo capabilities. Following this line of reason-
ing, the n-level undo capabilities discussed earlier must extend into the collections of child objects,
thereby ensuring that child object states are restored when an undo is triggered on the parent
object. Even more complex is the support for adding and removing items from a collection, and
then undoing the addition or the removal if an undo occurs later on.

Also, a collection of child objects needs to be able to indicate if any of the objects it contains
are dirty. Although the business object developer could easily write code to loop through the child
objects to discover whether any are marked as dirty, it makes a lot more sense to put this func-
tionality into the framework’s collection object. That way, the feature is simply available for use.
The same is true with validity: if any child object is invalid, then the collection should be able to
report that it’s invalid. If all child objects are valid, then the collection should report itself as being
valid.

As with the business objects themselves, the goal of the business framework will be to make
the creation of a strongly typed collection as close to normal .NET programming as possible,
while allowing the framework to provide extra capabilities common to all business objects. What
I’m defining here are two sets of behaviors: one for business objects (parent and/or child) and
one for collections of business objects. Though business objects will be the more complex of the
two, collection objects will also include some very interesting functionality.

CHAPTER 2 ■ FRAMEWORK DESIGN42

6315_c02_final.qxd 4/13/06 12:27 PM Page 42

Simple and Abstract Model for the UI Developer
At this point, I’ve discussed some of the business object features that the framework will support.
One of the key reasons for providing these features is to make the business object support
Windows- and web-style user experiences with minimal work on the part of the UI developer.
In fact, this should be an overarching goal when you’re designing business objects for a system.
The UI developer should be able to rely on the objects to provide business logic, data, and related
services in a consistent manner.

Beyond all the features already covered are the issues of creating new objects, retrieving
existing data, and updating objects in some data store. I’ll discuss the process of object persist-
ence later in the chapter, but first this topic should be considered from the UI developer’s
perspective. Should the UI developer be aware of any application servers? Should they be aware
of any database servers? Or should they simply interact with a set of abstract objects? There are
three broad models to choose from:

• UI-in-charge

• Object-in-charge

• Class-in-charge

To a greater or lesser degree, all three of these options hide information about how objects are
created and saved and allow us to exploit the native capabilities of .NET. In the end, I’ll settle on the
option that hides the most information (keeping development as simple as possible) and best
allows you to exploit the features of .NET.

■Note Inevitably, the result will be a compromise. As with many architectural decisions, there are good argu-
ments to be made for each option. In your environment, you may find that a different decision would work better.
Keep in mind, though, that this particular decision is fairly central to the overall architecture of the framework, so
choosing another option will likely result in dramatic changes throughout the framework.

To make this as clear as possible, the following discussion will assume the use of a physical
n-tier configuration, whereby the client or web server is interacting with a separate application
server, which in turn interacts with the database. Although not all applications will run in such
configurations, it will be much easier to discuss object creation, retrieval, and updating in this
context.

UI-in-Charge
One common approach to creating, retrieving, and updating objects is to put the UI in charge of
the process. This means that it’s the UI developer’s responsibility to write code that will contact the
application server in order to retrieve or update objects.

In this scheme, when a new object is required, the UI will contact the application server and
ask it for a new object. The application server can then instantiate a new object, populate it with
default values, and return it to the UI code. The code might be something like this:

Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Dim cust As Customer = svr.CreateCustomer

Here the object of type AppServer is anchored, so it always runs on the application server. The
Customer object is mobile, so although it’s created on the server, it’s returned to the UI by value.

CHAPTER 2 ■ FRAMEWORK DESIGN 43

6315_c02_final.qxd 4/13/06 12:27 PM Page 43

■Note This code example uses the .NET Remoting technology to contact a web server and have it instantiate
an object on the server. In Chapter 4, you’ll see how to do this with Web Services and Enterprise Services as
well. Sometime late in 2006, Microsoft plans to release the Windows Communication Foundation (WCF), code-
name Indigo, to replace and update all these technologies. The design in Chapter 4 will leave the door open to
easily add support for WCF when it becomes available.

This may seem like a lot of work just to create a new, empty object, but it’s the retrieval of
default values that makes it necessary. If the application has objects that don’t need default val-
ues, or if you’re willing to hard-code the defaults, you can avoid some of the work by having the
UI simply create the object on the client workstation. However, many business applications have
configurable default values for objects that must be loaded from the database; and that means
the application server must load them.

Retrieving an existing object follows the same basic procedure. The UI passes criteria to the
application server, which uses the criteria to create a new object and load it with the appropriate
data from the database. The populated object is then returned to the UI for use. The UI code might
be something like this:

Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Dim cust As Customer = svr.GetCustomer(myCriteria)

Updating an object happens when the UI calls the application server and passes the object to
the server. The server can then take the data from the object and store it in the database. Because
the update process may result in changes to the object’s state, the newly saved and updated object
is then returned to the UI. The UI code might be something like this:

Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

cust = svr.UpdateCustomer(cust)

Overall, this model is straightforward—the application server must simply expose a set of
services that can be called from the UI to create, retrieve, update, and delete objects. Each object
can simply contain its business logic, without the object developer having to worry about appli-
cation servers or other details.

The drawback to this scheme is that the UI code must know about and interact with the
application server. If the application server is moved, or some objects come from a different server,
then the UI code must be changed. Moreover, if a Windows UI is created to use the objects, and
then later a web UI is created that uses those same objects, you’ll end up with duplicated code.
Both types of UI will need to include the code in order to find and interact with the application
server.

The whole thing is complicated further if you consider that the physical configuration of the
application should be flexible. It should be possible to switch from using an application server
to running the data access code on the client just by changing a configuration file. If there’s code
scattered throughout the UI that contacts the server any time an object is used, then there will
be a lot of places where developers might introduce a bug that prevents simple configuration file
switching.

CHAPTER 2 ■ FRAMEWORK DESIGN44

6315_c02_final.qxd 4/13/06 12:27 PM Page 44

Object-in-Charge
Another option is to move the knowledge of the application server into the objects themselves.
The UI can just interact with the objects, allowing them to load defaults, retrieve data, or update
themselves. In this model, simply using the New keyword creates a new object:

Dim cust As New Customer

Within the object’s constructor, you would then write the code to contact the application
server and retrieve default values. It might be something like this:

Public Sub New()
Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Dim values() As Object = svr.GetCustomerDefaults

' Copy the values into our local fields
End Sub

Notice that the above code does not take advantage of the built-in support for passing an
object by value across the network. Ideally, the code would look more like this:

Public Sub New()
Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Me = svr.CreateCustomer
End Sub

But it won’t work because you can’t change the value of Me. While the compiler won’t complain,
at runtime the value won’t be set.

This means you’re left to retrieve the data in some other manner (Array, Hashtable, DataSet,
an XML document, or some other data structure) and then load it into the object’s fields. The end
result is that you have to write code on both the server and in the business class in order to manu-
ally copy the data values.

Given that both the UI-in-charge and class-in-charge techniques avoid all this extra coding,
let’s just abort the discussion of this option and move on.

Class-in-Charge (Factory Pattern)
The UI-in-charge approach uses .NET’s ability to pass objects by value, but requires the UI devel-
oper to know about and interact with the application server. The object-in-charge approach enables
a very simple set of UI code, but makes the object code prohibitively complex by making it virtually
impossible to pass the objects by value.

The class-in-charge option provides a good compromise by providing reasonably simple
UI code that’s unaware of application servers, while also allowing the use of .NET’s ability to pass
objects by value, thus reducing the amount of “plumbing” code needed in each object. Hiding
more information from the UI helps create a more abstract and loosely coupled implementation,
thus providing better flexibility.

CHAPTER 2 ■ FRAMEWORK DESIGN 45

6315_c02_final.qxd 4/13/06 12:27 PM Page 45

■Note The class-in-charge approach is a variation on the Factory design pattern, in which a “factory” method is
responsible for creating and managing an object. In many cases, these factory methods are Shared methods that
may be placed directly into a business class—hence the class-in-charge moniker.1

In this model, I’ll make use of the concept of Shared factory methods on a class. A Shared
method can be called directly, without requiring an instance of the class to be created first. For
instance, suppose that a Customer class contains the following code:

<Serializable()> _
Public Class Customer

Public Shared Function NewCustomer() As Customer
Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Return svr.CreateCustomer
End Function

End Class

Then the UI code could use this method without first creating a Customer object, as follows:

Dim cust As Customer = Customer.NewCustomer

A common example of this tactic within the .NET Framework itself is the Guid class, whereby
a Shared method is used to create new Guid values, as follows:

Dim myGuid As Guid = Guid.NewGuid

This accomplishes the goal of making the UI code reasonably simple; but what about the
Shared method and passing objects by value? Well, the NewCustomer() method contacts the appli-
cation server and asks it to create a new Customer object with default values. The object is created
on the server and then returned back to the NewCustomer() code, which is running on the client.
Now that the object has been passed back to the client by value, the method simply returns it to
the UI for use.

Likewise, you can create a Shared method in the class in order to load an object with data from
the data store, as shown:

Public Shared Function GetCustomer(ByVal criteria As String) As Customer

Dim svr As AppServer = _
CType(Activator.GetObject(GetType(AppServer), _
"http://myserver/myroot/appserver.rem"), AppServer)

Return svr.GetCustomer(criteria)
End Function

Again, the code contacts the application server, providing it with the criteria necessary to load
the object’s data and create a fully populated object. That object is then returned by value to the
GetCustomer() method running on the client, and then back to the UI code.

CHAPTER 2 ■ FRAMEWORK DESIGN46

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley, 1995).

6315_c02_final.qxd 4/13/06 12:27 PM Page 46

As before, the UI code remains simple:

Dim cust As Customer = Customer.GetCustomer(myCriteria)

The class-in-charge model requires that you write Shared factory methods in each class, but
keeps the UI code simple and straightforward. It also takes full advantage of .NET’s ability to pass
objects across the network by value, thereby minimizing the plumbing code in each object. Overall,
it provides the best solution, which will be used (and explained further) in the chapters ahead.

Supporting Data Binding
For more than a decade, Microsoft has included some kind of data binding capability in its devel-
opment tools. Data binding allows developers to create forms and populate them with data with
almost no custom code. The controls on a form are “bound” to specific fields from a data source
(such as a DataSet or a business object).

With .NET 2.0, Microsoft has dramatically improved data binding for both Windows Forms
and Web Forms. The primary benefits or drivers for using data binding in .NET development
include the following:

• Data binding offers good performance, control, and flexibility.

• Data binding can be used to link controls to properties of business objects.

• Data binding can dramatically reduce the amount of code in the UI.

• Data binding is sometimes faster than manual coding, especially when loading data into
list boxes, grids, or other complex controls.

Of these, the biggest single benefit is the dramatic reduction in the amount of UI code that
must be written and maintained. Combined with the performance, control, and flexibility of .NET
data binding, the reduction in code makes it a very attractive technology for UI development.

In both Windows Forms and Web Forms, data binding is read-write, meaning that an element
of a data source can be bound to an editable control so that changes to the value in the control will
be updated back into the data source as well.

Data binding in .NET 2.0 is very powerful. It offers good performance with a high degree of
control for the developer. Given the coding savings gained by using data binding, it’s definitely
a technology that needs to be supported in the business object framework.

Enabling the Objects for Data Binding
Although data binding can be used to bind against any object or any collection of homogeneous
objects, there are some things that object developers can do to make data binding work better.
Implementing these “extra” features enables data binding to do more work for us, and provide the
user with a superior experience. The .NET DataSet object, for instance, implements these extra
features in order to provide full data binding support to both Windows Forms and Web Forms
developers.

The IEditableObject Interface

All editable business objects should implement the interface called System.ComponentModel.
IEditableObject. This interface is designed to support a simple, one-level undo capability, and is
used by simple forms-based data binding and complex grid-based data binding alike.

In the forms-based model, IEditableObject allows the data binding infrastructure to notify
the business object before the user edits it, so that the object can take a snapshot of its values.
Later, the application can tell the object whether to apply or cancel those changes, based on the

CHAPTER 2 ■ FRAMEWORK DESIGN 47

6315_c02_final.qxd 4/13/06 12:27 PM Page 47

user’s actions. In the grid-based model, each of the objects is displayed in a row within the grid.
In this case, the interface allows the data binding infrastructure to notify the object when its row
is being edited, and then whether to accept or undo the changes based on the user’s actions. Typi-
cally, grids perform an undo operation if the user presses the Esc key, and an accept operation if
the user presses Enter or moves off that row in the grid by any other means.

The INotifyPropertyChanged Interface

Editable business objects need to raise events to notify data binding any time their data values
change. Changes that are caused directly by the user editing a field in a bound control are sup-
ported automatically—however, if the object updates a property value through code, rather than
by direct user editing, the object needs to notify the data binding infrastructure that a refresh of
the display is required.

The .NET Framework defines System.ComponentModel.INotifyPropertyChanged, which should
be implemented by any bindable object. This interface defines the PropertyChanged event that data
binding can handle to detect changes to data in the object.

The IBindingList Interface

All business collections should implement the interface called System.ComponentModel.
IBindingList. The simplest way to do this is to have the collection classes inherit from System.
ComponentModel.BindingList(Of T). This generic class implements all the collection interfaces
required to support data binding:

• IBindingList

• IList

• ICollection

• IEnumerable

• ICancelAddNew

• IRaiseItemChangedEvents

As you can see, being able to inherit from BindingList(Of T) is very valuable. Otherwise, the
business framework would need to manually implement all these interfaces.

This interface is used in grid-based binding, in which it allows the control that’s displaying the
contents of the collection to be notified by the collection any time an item is added, removed, or
edited, so that the display can be updated. Without this interface, there’s no way for the data bind-
ing infrastructure to notify the grid that the underlying data has changed, so the user won’t see
changes as they happen.

Along this line, when a child object within a collection changes, the collection should notify
the UI of the change. This implies that every collection object will listen for events from its child
objects (via INotifyPropertyChanged), and in response to such an event will raise its own event
indicating that the collection has changed.

Events and Serialization
The events that are raised by business collections and business objects are all valuable. Events
support the data binding infrastructure and enable utilization of its full potential. Unfortunately,
there’s a conflict between the idea of objects raising events and the use of .NET serialization via
the <Serializable()> attribute.

CHAPTER 2 ■ FRAMEWORK DESIGN48

6315_c02_final.qxd 4/13/06 12:27 PM Page 48

When an object is marked as <Serializable()>, the .NET Framework is told that it can pass
the object across the network by value. As part of this process, the object will be automatically con-
verted into a byte stream by the .NET runtime. It also means that any other objects referenced by
the object will be serialized into the same byte stream, unless the field representing it is marked
with the <NonSerialized()> attribute. What may not be immediately obvious is that events create
an object reference behind the scenes.

When an object declares and raises an event, that event is delivered to any object that has a
handler for the event. Windows Forms often handle events from objects, as illustrated in Figure 2-4.

How does the event get delivered to the handling object? Well, it turns out that behind every
event is a delegate—a strongly typed reference that points back to the handling object. This means
that any object that raises events can end up with bidirectional references between the object and
the other object/entity that is handling those events, as shown in Figure 2-5.

Even though this back reference isn’t visible to developers, it’s completely visible to the .NET
serialization infrastructure. When serializing an object, the serialization mechanism will trace
this reference and attempt to serialize any objects (including forms) that are handling the events!

CHAPTER 2 ■ FRAMEWORK DESIGN 49

Figure 2-4. A Windows form referencing a business object

Figure 2-5. Handling an event on an object causes a back reference to the form.

6315_c02_final.qxd 4/13/06 12:27 PM Page 49

Obviously, this is rarely desirable. In fact, if the handling object is a form, this will fail outright
with a runtime error, because forms aren’t serializable.

■Note If any non-serializable object handles events that are raised by a serializable object, you’ll be unable to
serialize the object because the .NET runtime serialization process will error out.

Solving this means marking the events as <NonSerialized()>. It turns out that this requires
a bit of special syntax when dealing with events. Specifically, a more explicit block structure must be
used to declare the event. This approach allows manual declaration of the delegate field so that it is
possible to mark that field as <NonSerialized()>. The BindingList(Of T) class already declares its
event in this manner, so this issue only pertains to the implementation of INotifyPropertyChanged
(or any custom events you choose to declare in your business classes).

The IDataErrorInfo Interface

Earlier, I discussed the need for objects to implement business rules and expose information about
broken rules to the UI. The System.ComponentModel.IDataErrorInfo interface is designed to allow
data binding to request information about broken validation rules from a data source.

Given that the object framework will already help the objects manage a list of all currently bro-
ken validation rules, you’ll already have the tools needed to easily implement IDataErrorInfo. This
interface defines two methods. The first allows data binding to request a text description of errors
at the object level, while the second provides a text description of errors at the property level.

By implementing this interface, the objects will automatically support the feedback mechanisms
built into the Windows Forms DataGridView and ErrorProvider controls.

Object Persistence and Object-Relational Mapping
One of the biggest challenges facing a business developer building an object-oriented system is that
a good object model is almost never the same as a good relational data model. Because most data is
stored in relational databases using a relational model, we’re faced with the significant problem of
translating that data into an object model for processing, and then changing it back to a relational
model later on to persist the data from the objects back into the data store.

■Note The framework in this book doesn’t require a relational model, but since that is the most common data
storage technology, I focus on it quite a bit. You should remember that the concepts and code shown in this chap-
ter can be used against XML files, object databases, or almost any other data store you are likely to use.

Relational vs. Object Modeling
Before going any further, let’s make sure we’re in agreement that object models aren’t the same as
relational models. Relational models are primarily concerned with the efficient storage of data, so
that replication is minimized. Relational modeling is governed by the rules of normalization, and
almost all databases are designed to meet at least the third normal form. In this form, it’s quite
likely that the data for any given business concept or entity is split between multiple tables in the
database in order to avoid any duplication of data.

Object models, on the other hand, are primarily concerned with modeling behavior, not data.
It’s not the data that defines the object, but the role the object plays within your business domain.

CHAPTER 2 ■ FRAMEWORK DESIGN50

6315_c02_final.qxd 4/13/06 12:27 PM Page 50

Every object should have one clear responsibility and a limited number of behaviors focused on ful-
filling that responsibility.

■Tip I recommend the book Object Thinking, by David West (DV-Microsoft Professional, 2004), for some
good insight into behavioral object modeling and design. Though my ideas differ somewhat from those in
Object Thinking, I use many of the concepts and language from that book in my own object-oriented design
work and in this book.

For instance, a Customer object may be responsible for adding and editing customer data.
A CustomerInfo object in the same application may be responsible for providing read-only access
to customer data. Both objects will use the same data from the same database and table, but they
provide different behaviors.

Similarly, an Invoice object may be responsible for adding and editing invoice data. But
invoices include some customer data. A naive solution is to have the Invoice object make use of
the aforementioned Customer object, but that’s not a good answer. That Customer object should only
be used in the case where the application is adding or editing customer data—something that isn’t
occurring while working with invoices. Instead, the Invoice object should directly interact with the
customer data that it needs to do its job.

Through these two examples, it should be clear that sometimes multiple objects will use the
same relational data. In other cases, a single object will use relational data from different data enti-
ties. In the end, the same customer data is being used by three different objects. The point, though,
is that each one of these objects has a clearly defined responsibility that defines the object’s behav-
ior. Data is merely a resource that the object needs to implement that behavior.

Behavioral Object-Oriented Design
It is a common trap to think that data in objects needs to be normalized like it is in a database.
A better way to think about objects is to say that behavior should be normalized. The goal of object-
oriented design is to avoid replication of behavior, not data.

■Note In object-oriented design, behavior should be normalized, not data.

At this point, most people are struggling. Most developers have spent years programming
their brains to think relationally, and this view of object-oriented design flies directly in the face
of that conditioning. Yet the key to the successful application of object-oriented design is to
divorce object thinking from relational or data thinking.

Perhaps the most common objection at this point is this: if two objects (say, Customer and
Invoice) both use the same data (say, the customer’s name), how do you make sure that consistent
business rules are applied to that data? And this is a good question.

The answer is that the behavior must be normalized. Business rules are merely a form of
behavior. The business rule specifying that the customer name value is required, for instance, is just
a behavior associated with that particular value.

Earlier in the chapter, I discussed the idea that a validation rule can be reduced to a method
defined by a Delegate. A Delegate is just an object that points to a method, so it is quite possible to
view the Delegate itself as the rule. Following this train of thought, every rule then becomes an
object.

Behavioral object-oriented design relies heavily on the concept of collaboration. Collaboration
is the idea that an object should collaborate with other objects to do its work. If an object starts to

CHAPTER 2 ■ FRAMEWORK DESIGN 51

6315_c02_final.qxd 4/13/06 12:27 PM Page 51

become complex, you can break the problem into smaller, more digestible parts by moving some
of the sub-behaviors into other objects that collaborate with the original object to accomplish the
overall goal.

In the case of a required customer name value, there’s a Rule object that defines that behavior.
Both the Customer and Invoice objects can collaborate with that Rule object to ensure that the rule
is consistently applied. As you can see in Figure 2-6, the actual rule is only implemented once, but
is used as appropriate—effectively normalizing that behavior.

It could be argued that the CustomerName concept should become an object of its own, and
that this object would implement the behaviors common to the field. While this sounds good in
an idealistic sense, it has serious performance and complexity drawbacks when implemented on
development platforms such as .NET. Creating a custom object for every field in your application
can rapidly become overwhelming, and such an approach makes the use of technologies like data
binding very complex.

My approach of normalizing the rules themselves provides a workable compromise—
providing a high level of code reuse while still offering good performance and allowing the
application to take advantage of all the features of the .NET platform.

In fact, the idea that a string value is required is so pervasive that it can be normalized to a
general StringRequired rule that can be used by any object with a required property anywhere in
an application. In Chapter 5, I’ll implement a CommonRules class containing several common vali-
dation rules of this nature.

Object-Relational Mapping
If object models aren’t the same as relational models (or some other data models that we might be
using), some mechanism is needed by which data can be translated from the Data Storage and
Management layer up into the object-oriented Business Logic layer.

■Note This is a well-known issue within the object-oriented community. It is commonly referred to as the
impedance mismatch problem, and one of the best discussions of it can be found in David Taylor’s book,
Object Technology: A Manager's Guide, 2nd Edition (Addison-Wesley, 1997).

Several object-relational mapping (ORM) products exist for the .NET platform from various
vendors. In truth, however, most ORM tools have difficulty working against object models defined
using behavioral object-oriented design. Unfortunately, most of the ORM tools tend to create

CHAPTER 2 ■ FRAMEWORK DESIGN52

Figure 2-6. Normalizing the customer name required behavior

6315_c02_final.qxd 4/13/06 12:27 PM Page 52

“superpowered” DataSet equivalents, rather than true behavioral business objects. In other words,
they create a data-centric representation of the business data and wrap it with business logic.

The difference between such a data-centric object model and what I am proposing in this
book are subtle but important. Behavioral object modeling creates objects that are focused on
the object’s behavior, not on the data it contains. The fact that objects contain data is merely a
side effect of implementing behavior; the data is not the identity of the object. Most ORM tools,
by contrast, create objects based around the data, with the behavior being a side effect of the
data in the object.

Beyond the philosophical differences, the wide variety of mappings you might need and the
potential for business logic to drive variations in the mapping from object to object make it virtu-
ally impossible to create a generic ORM product that can meet everyone’s needs.

Consider the Customer object example discussed earlier. While the customer data may come
from one database, it is totally realistic to consider that some data may come from SQL Server while
other data comes through screen-scraping a mainframe screen. It’s also quite possible that the busi-
ness logic will dictate that some of the data is updated in some cases, but not in others. Issues like
these are virtually impossible to solve in a generic sense, and so solutions almost always revolve
around custom code. The most a typical ORM tool can do is provide support for simple cases, in
which objects are updated to and from standard, supported, relational data stores. At most, they’ll
provide hooks with which their behavior can be customized. Rather than trying to build a generic
ORM product as part of this book, I’ll aim for a much more attainable goal.

The framework in this book will define a standard set of four methods for creating, retrieving,
updating, and deleting objects. Business developers will implement these four methods to work
with the underlying data management tier by using ADO.NET, the XML support in .NET, Web Ser-
vices, or any other technology required to accomplish the task. In fact, if you have an ORM (or some
other generic data access) product, you’ll often be able to invoke that tool from these four methods
just as easily as using ADO.NET directly.

■Note The approach taken in this book and the associated framework is very conducive to code generation.
Many people use code generators to automate the process of building common data access logic for their
objects—thus achieving high levels of productivity while retaining the ability to create a behavioral object-
oriented model.

The point is that the framework will simplify object persistence to the point at which all
developers need to do is implement these four methods in order to retrieve or update data. This
places no restrictions on the object’s ability to work with data, and provides a standardized per-
sistence and mapping mechanism for all objects.

Preserving Encapsulation
As I noted at the beginning of the chapter, one of my key goals is to design this framework to pro-
vide powerful features while following the key object-oriented concepts, including encapsulation.

Encapsulation is the idea that all of the logic and data pertaining to a given business entity is
held within the object that represents that entity. Of course, there are various ways in which one
can interpret the idea of encapsulation—nothing is ever simple!

One approach is to encapsulate business data and logic in the business object, and then
encapsulate data access and ORM behavior in some other object: a persistence object. This pro-
vides a nice separation between the business logic and data access, and encapsulates both types
of behavior, as shown in Figure 2-7.

CHAPTER 2 ■ FRAMEWORK DESIGN 53

6315_c02_final.qxd 4/13/06 12:27 PM Page 53

Although there are certainly some advantages to this approach, there are drawbacks, too.
The most notable of these is that it can be challenging to efficiently get the data from the persist-
ence object into or out of the business object. For the persistence object to load data into the
business object, it must be able to bypass business and validation processing in the business
object, and somehow load raw data into it directly. If the persistence object tries to load data
into the object using the object’s public properties, you’ll run into a series of issues:

• The data already in the database is presumed valid, so a lot of processing time is wasted
unnecessarily revalidating data. This can lead to a serious performance problem when
loading a large group of objects.

• There’s no way to load read-only property values. Objects often have read-only properties for
things such as the primary key of the data, and such data obviously must be loaded into the
object, but it can’t be loaded via the normal interface (if that interface is properly designed).

• Sometimes properties are interdependent due to business rules, which means that some
properties must be loaded before others or errors will result. The persistence object would
need to know about all these conditions so that it could load the right properties first. The
result is that the persistence object would become very complex, and changes to the busi-
ness object could easily break the persistence object.

On the other hand, having the persistence object load raw data into the business object breaks
encapsulation in a big way, because one object ends up directly tampering with the internal fields of
another. This could be implemented using reflection, or by designing the business object to expose its
private fields for manipulation. But the former is slow, and the latter is just plain bad object design: it
allows the UI developer (or any other code) to manipulate these fields, too. That’s just asking for the
abuse of the objects, which will invariably lead to code that’s impossible to maintain.

A much better approach, therefore, is to view encapsulation to mean that all the logic for
the business entity should be in the object—that is, the logic to support the UI developer (vali-
dation, calculation, and so on) and the data access logic. This way, the object encapsulates all
responsibility for its data—it has sole control over the data from the moment it leaves the data-
base until the time it returns to the database, as shown in Figure 2-8.

CHAPTER 2 ■ FRAMEWORK DESIGN54

Figure 2-7. Separation of ORM logic into a persistence object

Figure 2-8. Business object directly managing persistence to the data store

6315_c02_final.qxd 4/13/06 12:27 PM Page 54

This is a simpler way of doing things, because it keeps all of the logic for the entity within the
boundaries of a single object, and all the code within the boundaries of a single class. Any time
there’s a need to alter, enhance, or maintain the logic for an entity, you know exactly where to find
it. There’s no ambiguity regarding whether the logic is in the business object, the persistence
object, or possibly both—there’s only one object.

The new approach also has the benefit of providing optimal performance. Because the data
access code is inside the object, that code can interact directly with the object’s Private instance
fields. There’s no need to break encapsulation, or to resort to trickery such as reflection (or deal
with the resulting performance issues).

The drawback to this approach is that the data access code ends up inside the business class;
potentially blurring the line between the Business Logic layer and the Data Access layer in the
n-layer logical model. The framework will help to mitigate this by formally defining four methods
into which the data access code will be written, providing a clear and logical location for all data
access code within each object.

On balance, then, I prefer this second view, because it allows total encapsulation of all data and
logic pertaining to a business entity with very high performance. Better still, this is accomplished
using techniques and technologies that are completely supported within the .NET Framework, with-
out the need to resort to any complex or hard-to-code workarounds (such as using reflection to load
the data).

That said, the framework directly supports the idea of having a separate persistence object that
implements the Data Access layer. If you choose to take such an approach, it is up to you to deter-
mine how to transfer the data from the persistence object into the business object. You may choose
to use reflection to load field values directly, you may pass XML documents or data transfer objects
(DTOs) between the two objects, or you may simply open an ADO.NET DataReader and hand it back
to the business object.

Supporting Physical N-Tier Models
The question that remains, then, is how to support physical n-tier models if the UI-oriented and
data-oriented behaviors reside in one object?

UI-oriented behaviors almost always involve a lot of properties and methods—a very fine-
grained interface with which the UI can interact in order to set, retrieve, and manipulate the
values of an object. Almost by definition, this type of object must run in the same process as the
UI code itself, either on the Windows client machine with Windows Forms, or on the web server
with Web Forms.

Conversely, data-oriented behaviors typically involve very few methods: create, fetch,
update, and delete. They must run on a machine where they can establish a physical connection
to the database server. Sometimes, this is the client workstation or web server, but often it means
running on a physically separate application server.

This point of apparent conflict is where the concept of mobile objects enters the picture. It’s pos-
sible to pass a business object from an application server to the client machine, work with the object,
and then pass the object back to the application server so that it can store its data in the database. To
do this, there needs to be some black-box component running as a service on the application server
with which the client can interact. This black-box component does little more than accept the object
from the client, and then call methods on the object to retrieve or update data as required. But the
object itself does all the real work. Figure 2-9 illustrates this concept, showing how the same physical
business object can be passed from application server to client, and vice versa, via a generic router
object that’s running on the application server.

In Chapter 1, I discussed anchored and mobile objects. In this model, the business object is
mobile, meaning that it can be passed around the network by value. The router object is anchored,
meaning that it will always run on the machine where it’s created.

CHAPTER 2 ■ FRAMEWORK DESIGN 55

6315_c02_final.qxd 4/13/06 12:27 PM Page 55

In the framework, I’ll refer to this router object as a data portal. It will act as a portal for all
data access for all the objects. The objects will interact with this portal in order to retrieve default
values (create), fetch data (read), update or insert data (update), and remove data (delete). This
means that the data portal will provide a standardized mechanism by which objects can perform
all CRUD operations.

The end result will be that each business class will include a factory method that the UI can
call in order to load an object based on data from the database, as follows:

Public Shared Function GetCustomer(ByVal customerId As String) As Customer
Return DataPortal.Fetch(Of Customer)(New Criteria(customerId))

End Function

The actual data access code will be contained within each of the business objects. The data
portal will simply provide an anchored object on a machine with access to the database server,
and will invoke the appropriate CRUD methods on the business objects themselves. This means
that the business object will also implement a method that will be called by the data portal to
actually load the data. That method will look something like this:

Private Sub DataPortal_Fetch(ByVal criteria As Criteria)
' Code to load the object's fields with data goes here

End Sub

The UI won’t know (or need to know) how any of this works, so in order to create a Customer
object, the UI will simply write code along these lines:

Dim cust As Customer = Customer.GetCustomer("ABC")

The framework, and specifically the data portal, will take care of all the rest of the work,
including figuring out whether the data access code should run on the client workstation or on
an application server.

Using the data portal means that all the logic remains encapsulated within the business
objects, while physical n-tier configurations are easily supported. Better still, by implementing
the data portal correctly, you can switch between having the data access code running on the
client machine and placing it on a separate application server just by changing a configuration

CHAPTER 2 ■ FRAMEWORK DESIGN56

Figure 2-9. Passing a business object to and from the application server

6315_c02_final.qxd 4/13/06 12:27 PM Page 56

file setting. The ability to change between different physical configurations with no changes to
code is a powerful, valuable feature.

Custom Authentication
Application security is often a challenging issue. Applications need to be able to authenticate the
user, which means that they need to verify the user’s identity. The result of authentication is not
only that the application knows the identity of the user, but that the application has access to the
user’s role membership and possibly other information about the user—collectively, I’ll refer to
this as the user’s profile data. This profile data can be used by the application for various purposes,
most notably authorization.

The framework directly supports integrated security. This means that you can use objects
within the framework to determine the user’s Windows identity and any domain or Active Direc-
tory (AD) groups to which they belong. In some organizations, this is enough: all the users of the
organization’s applications are in the Windows NT domain or AD, and by having them log in to a
workstation or a website using integrated security, the applications can determine the user’s iden-
tity and roles (groups).

In other organizations, applications are used by at least some users who are not part of the
organization’s NT domain or AD. They may not even be members of the organization in question.
This is very often the case with web and mobile applications, but it’s surprisingly common with
Windows applications as well. In these cases, you can’t rely on Windows integrated security for
authentication and authorization.

To complicate matters further, the ideal security model would provide user profile and role
information not only to server-side code, but also to the code on the client. Rather than allowing
the user to attempt to perform operations that will generate errors due to security at some later
time, the UI should gray out the options, or not display them at all. This requires that the devel-
oper have consistent access to the user’s identity and profile at all layers of the application,
including the UI, Business Logic, and Data Access layers.

Remember that the layers of an application may be deployed across multiple physical tiers.
Due to this fact, there must be a way of transferring the user’s identity information across tier
boundaries. This is often called impersonation.

Implementing impersonation isn’t too hard when using Windows integrated security, but it’s
often problematic when relying solely on, say, COM+ role-based security, because there’s no easy
way to make the user’s COM+ role information available to the UI developer.

■Note In May 2002, Juval Lowy wrote an article for MSDN magazine in which he described how to create
custom .NET security objects that merge NT domain or AD groups and COM+ roles so that both are available to
the application.2

The business framework will provide support for both Windows integrated security and cus-
tom authentication, in which you define how the user’s credentials are validated and the user’s
profile data and roles are loaded. This custom security is a model that you can adapt to use any
existing security tables or services that already exist in your organization. The framework will rely
on Windows itself to handle impersonation when using Windows integrated or AD security, and
will handle impersonation itself when using custom authentication.

CHAPTER 2 ■ FRAMEWORK DESIGN 57

2. Juval Lowy, “Unify the Role-Based Security Models for Enterprise and Application Domains with .NET”
(MSDN, May 2002). See http://msdn.microsoft.com/msdnmag/issues/02/05/rolesec.

6315_c02_final.qxd 4/13/06 12:27 PM Page 57

Integrated Authorization
Applications also need to be able to authorize the user to perform (or not perform) certain opera-
tions, or view (or not view) certain data. Such authorization is typically handled by associating
users with roles, and then indicating which roles are allowed or disallowed for specific behaviors.

■Note Authorization is just another type of business logic. The decisions about what a user can and can’t do or
can and can’t see within the application are business decisions. Although the framework will work with the .NET
Framework classes that support authentication, it’s up to the business objects to implement the rules themselves.

Earlier, I discussed authentication and how the framework will support both Windows inte-
grated or AD authentication, and custom authentication. Either way, the result of authentication is
that the application has access to the list of roles (or groups) to which the user belongs. This infor-
mation can be used by the application to authorize the user as defined by the business.

While authorization can be implemented manually within the application’s business code,
the business framework can help formalize the process in some cases. Specifically, objects must
use the user’s role information to restrict what properties the user can view and edit. There are
also common behaviors—such as loading, deleting, and saving an object—that are subject to
authorization.

As with validation rules, authorization rules can be distilled to a set of fairly simple yes/no
answers. A user either can or can’t read a given property. The business framework will include
code to help a business object developer easily restrict which object properties a user can or can’t
read or edit. In Chapters 7 and 8, you’ll also see a common pattern that can be implemented by
all business objects to control whether an object can be retrieved, deleted, or saved.

Not only does this business object need access to this authorization information, but the UI
does as well. Ideally, a good UI will change its display based on how the current user is allowed to
interact with an object. To support this concept, the business framework will help the business
objects expose the authorization rules such that they are accessible to the UI layer without dupli-
cating the authorization rules themselves.

Framework Design
So far, I’ve been focused on the major goals for the framework. Having covered the guiding prin-
ciples, let’s move on to discuss the design of the framework so it can meet these goals. In the rest
of this chapter, I’ll walk through the various classes that will combine to create the framework.
After covering the design, Chapters 3 through 5 will dive into the implementation of the frame-
work code.

A comprehensive framework can be a large and complex entity. There are usually many
classes that go into the construction of a framework, even though the end users of the frame-
work—the business developers—only use a few of those classes directly. The framework
discussed here and implemented in Chapters 3 through 5 accomplishes the goals I’ve just dis-
cussed, along with enabling the basic creation of object-oriented n-tier business applications.
For any given application or organization, this framework will likely be modified and enhanced
to meet specific requirements. This means that the framework will grow as you use and adapt
it to your environment.

The CSLA .NET framework contains a lot of classes and types, which can be overwhelming if
taken as a whole. Fortunately, it can be broken down into smaller units of functionality to better
understand how each part works. Specifically, the framework can be divided into the following
functional groups:

CHAPTER 2 ■ FRAMEWORK DESIGN58

6315_c02_final.qxd 4/13/06 12:27 PM Page 58

• Business object creation

• N-level undo functionality

• Data binding support

• Validation rules

• A data portal enabling various physical configurations

• Transactional and nontransactional data access

• Authentication and authorization

• Helper types and classes

For each functional group, I’ll focus on a subset of the overall class diagram, breaking it down
into more digestible pieces.

Business Object Creation
First, it’s important to recognize that the key classes in the framework are those that business
developers will use as they create business objects, but that these are a small subset of what’s
available. In fact, many of the framework classes are never used directly by business developers.
Figure 2-10 shows only those classes the business developer will typically use.

Obviously, the business developer may periodically interact with other classes as well, but
these are the ones that will be at the center of most activity. Classes or methods that the business
developer shouldn’t have access to will be scoped to prevent accidental use.

Table 2-1 summarizes each class and its intended purpose.

CHAPTER 2 ■ FRAMEWORK DESIGN 59

Figure 2-10. Framework classes used directly by business developers

6315_c02_final.qxd 4/13/06 12:27 PM Page 59

Table 2-1. Business Framework Base Classes

Class Purpose

BusinessBase(Of T) Inherit from this class to create a single editable business object
such as Customer, Order, or OrderLineItem.

BusinessListBase(Of T, C) Inherit from this class to create an editable collection of business
objects such as PaymentTerms or OrderLineItems.

CommandBase Inherit from this class to implement a command that should run
on the application server, such as implementation of a
Customer.Exists or an Order.ShipOrder command.

ReadOnlyBase(Of T) Inherit from this class to create a single read-only business object
such as OrderInfo or ProductStatus.

ReadOnlyListBase(Of T, C) Inherit from this class to create a read-only collection of objects
such as CustomerList or OrderList.

NameValueListBase(Of K, V) Inherit from this class to create a read-only collection of
key/value pairs (typically for populating drop-down list controls)
such as PaymentTermsCodes or CustomerCategories.

Let’s discuss each class in a bit more detail.

BusinessBase
The BusinessBase class is the base from which all editable (read-write) business objects will be
created. In other words, to create a business object, inherit from BusinessBase, as shown here:

<Serializable()> _
Public Class Customer
Inherits BusinessBase(Of Customer)

End Class

When creating a subclass, the business developer must provide the specific type of new busi-
ness object as a type parameter to BusinessBase(Of T). This allows the generic BusinessBase type
to expose strongly typed methods corresponding to the specific business object type.

Behind the scenes, BusinessBase(Of T) inherits from Csla.Core.BusinessBase, which imple-
ments the majority of the framework functionality to support editable objects. The primary reason
for pulling the functionality out of the generic class into a normal class is to enable polymorphism.

Polymorphism is what allows you to treat all subclasses of a type as though they were an
instance of the base class. For instance, all Windows Forms—Form1, Form2, and so forth—can all
be treated as type Form. You can write code like this:

Dim form As Form = New Form2
form.Show()

This is polymorphic behavior, in which the variable form is of type Form, but references an
object of type Form2. The same code would work with Form1, because both inherit from the base
type Form.

It turns out that generic types are not polymorphic like normal types.
Another reason for inheriting from a non-generic base class is to make it simpler to cus-

tomize the framework. If needed, you can create alternative editable base classes starting with
the functionality in Core.BusinessBase.

Csla.Core.BusinessBase and the classes from which it inherits provide all the functionality
discussed earlier in this chapter, including n-level undo, tracking of broken rules, “dirty” tracking,
object persistence, and so forth. It supports the creation of root (top-level) objects and child

CHAPTER 2 ■ FRAMEWORK DESIGN60

6315_c02_final.qxd 4/13/06 12:27 PM Page 60

objects. Root objects are objects that can be retrieved directly from and updated or deleted within
the database. Child objects can only be retrieved or updated in the context of their parent object.

■Note Throughout this book, it is assumed that you are building business applications, in which case almost all
objects are ultimately stored in the database at one time or another. Even if an object isn’t persisted to a database,
you can still use BusinessBase to gain access to the n-level undo, validation rule tracking, and “dirty” tracking
features built into the framework.

For example, an Invoice is typically a root object, though the LineItem objects contained by an
Invoice object are child objects. It makes perfect sense to retrieve or update an Invoice, but it makes
no sense to create, retrieve, or update a LineItem without having an associated Invoice. To make this
distinction, BusinessBase includes a method that can be called to indicate that the object is a child
object: MarkAsChild(). By default, business objects are assumed to be root objects, unless this
method is invoked. This means that a child object might look like this:

<Serializable()>
Public Class Child
Inherits BusinessBase(Of Child)

Private Sub New()
MarkAsChild()

End Sub
End Class

The BusinessBase class provides default implementations of the data access methods that
exist on all root business objects. These methods will be called by the data portal mechanism.
These default implementations all raise an error if they’re called. The intention is that the busi-
ness objects can opt to override these methods if they need to support, create, fetch, insert,
update, or delete operations. The names of these methods are as follows:

• DataPortal_Create()

• DataPortal_Fetch()

• DataPortal_Insert()

• DataPortal_Update()

• DataPortal_DeleteSelf()

• DataPortal_Delete()

Though Overridable implementations of these methods are in the base class, developers
will typically implement strongly typed versions of DataPortal_Create(), DataPortal_Fetch(),
and DataPortal_Delete(), as they all accept a criteria object as a parameter. The Overridable
methods declare this parameter as type Object, of course; but a business object will typically
want to use the actual data type of the criteria object itself. This is discussed in more detail in
Chapters 7 and 8.

The data portal also supports three other (optional) methods for pre- and post-processing and
exception handling. The names of these methods are as follows:

• DataPortal_OnDataPortalInvoke()

• DataPortal_OnDataPortalInvokeComplete()

• DataPortal_OnDataPortalException()

CHAPTER 2 ■ FRAMEWORK DESIGN 61

6315_c02_final.qxd 4/13/06 12:27 PM Page 61

BusinessBase provides a great deal of functionality to the business objects, whether root or
child. Chapter 3 will cover the implementation of BusinessBase itself, and Chapters 7 and 8 will
show how to create business objects using BusinessBase.

BusinessListBase
The BusinessListBase class is the base from which all editable collections of business objects will
be created. Given an Invoice object with a collection of LineItem objects, BusinessListBase will be
the base for creating that collection:

<Serializable()> _
Public Class LineItems
Inherits BusinessListBase(Of LineItems, LineItem)

End Class

When creating a subclass, the business developer must provide the specific types of their
new business collection, and the child objects the collection contains, as type parameters to
BusinessListBase(Of T, C). This allows the generic type to expose strongly typed methods cor-
responding to the specific business collection type and the type of the child objects.

The result is that the business collection automatically has a strongly typed indexer, along
with strongly typed Add() and Remove() methods. The process is the same as if the object had
inherited from System.ComponentModel.BindingList(Of T), except that this collection will include
all the functionality required to support n-level undo, object persistence, and the other business
object features.

■Note BusinessListBase inherits from System.ComponentModel.BindingList(Of T), so it starts with
all the core functionality of a data-bindable .NET collection.

The BusinessListBase class also defines the data access methods and the MarkAsChild()
method discussed in the previous BusinessBase section. This allows retrieval of a collection of
objects directly (rather than a single object at a time), if that’s what is required by the application
design.

CommandBase
Most applications consist not only of interactive forms or pages (which require editable objects
and collections), but also of non-interactive processes. In a 1- or 2-tier physical model, these
processes run on the client workstation or web server, of course. But in a 3-tier model, they
should run on the application server to have optimal access to the database server or other
back-end resources.

Common examples of non-interactive processes include tasks as simple as checking to see if
a specific customer or product exists, and as complex as performing all the back-end processing
required to ship an order or post an invoice.

The CommandBase class provides a clear starting point for implementing these types of behav-
iors. A command object is created on the client and initialized with the data it needs to do its work
on the server. It is then executed on the server through the data portal. Unlike other objects, how-
ever, command objects implement a special execute method:

DataPortal_Execute()

CHAPTER 2 ■ FRAMEWORK DESIGN62

6315_c02_final.qxd 4/13/06 12:27 PM Page 62

The optional pre-, post-, and exception data portal methods can also be implemented if desired.
But the DataPortal_Execute() method is the important one, since that is where the business devel-
oper writes the code to implement the non-interactive back-end processing.

I’ll make use of CommandBase in Chapter 8 when implementing the sample application objects.

ReadOnlyBase
Sometimes, applications don’t want to expose an editable object. Many applications have objects
that are read-only or display-only. Read-only objects need to support object persistence only for
retrieving data, not for updating data. Also, they don’t need to support any of the n-level undo or
other editing-type behaviors, because they’re created with read-only properties.

For editable objects, there’s BusinessBase, which has a property that can be set to indicate
whether it’s a parent or child object. The same base supports both types of objects, allowing
dynamic switching between parent and child at runtime.

Making an object read-only or read-write is a bigger decision, because it impacts the interface
of the object. A read-only object should only include read-only properties as part of its interface,
and that isn’t something you can toggle on or off at runtime. By implementing a specific base class
for read-only objects, they can be more specialized, and have less overhead.

The ReadOnlyBase class is used to create read-only objects, as follows:

<Serializable()> _
Public Class StaticContent
Inherits ReadOnlyBase(Of StaticContent)

End Class

Classes shouldn’t implement any read-write properties. Were they to do so, it would be entirely
up to the code in the object to handle any undo, persistence, or other features for dealing with the
changed data. If an object has editable properties, it should subclass from BusinessBase.

ReadOnlyListBase
Not only do applications sometimes need read-only business objects, but they also commonly
require immutable collections of objects. The ReadOnlyListBase class lets you create strongly typed
collections of objects whereby the object and collection are both read-only.

<Serializable()> _
Public Class StaticList
Inherits ReadOnlyListBase(Of StaticList, ChildType)

End Class

As with ReadOnlyBase, this object supports only the retrieval of data. It has no provision for
updating data or handling changes to its data. While the child objects in such a collection may
inherit from ReadOnlyBase, they don’t have to. More commonly, the child objects in a read-only
collection are just simple .NET objects that merely expose read-only properties.

NameValueListBase
The NameValueListBase class is designed specifically to support the idea of lookup tables or lists of
read-only key/value data such as categories, customer types, product types, and so forth. The goal
of this class is to simplify the process of retrieving such data and displaying it in common controls
like drop-down lists, combo boxes, and other list controls.

CHAPTER 2 ■ FRAMEWORK DESIGN 63

6315_c02_final.qxd 4/13/06 12:27 PM Page 63

<Serializable()> _
Public Class CodeList
Inherits NameValueListBase(Of Integer, String)

End Class

While the business developer does need to create a specific class for each type of name/value
data, inheriting from this base class largely trivializes the process.

N-Level Undo Functionality
The implementation of n-level undo functionality is quite complex, and involves heavy use of
reflection. Fortunately, we can use inheritance to place the implementation in a base class, so that
no business object needs to worry about the undo code. In fact, to keep things cleaner, this code is
in its own base class, separate from any other business object behaviors, as shown in Figure 2-11.

At first glance, it might appear that you could use .NET serialization to implement undo
functionality: what easier way to take a snapshot of an object’s state than to serialize it into a byte
stream? Unfortunately, this isn’t as easy as it might sound, at least when it comes to restoring the
object’s state.

Taking a snapshot of a <Serializable()> object is easy, and can be done with code similar to
this:

CHAPTER 2 ■ FRAMEWORK DESIGN64

Figure 2-11. Separating n-level undo into Core.UndoableBase

6315_c02_final.qxd 4/13/06 12:27 PM Page 64

<Serializable()> _
Public Class Customer

Public Function Snapshot() As Byte()
Using m As New MemoryStream
Dim f As New BinaryFormatter

f.Serialize(m, Me)
m.Position = 0
return m.ToArray()

End Using
End Function

End Class

This converts the object into a byte stream, returning that byte stream as an array of type
Byte. That part is easy—it’s the restoration that’s tricky. Suppose that the user now wants to undo
the changes, requiring that the byte stream be restored back into the object. The code that deserial-
izes a byte stream looks like this:

<Serializable()> _
Public Class Customer

Public Function Deserialize(ByVal state As Byte()) As Customer
Using m As New MemoryStream(state)
Dim f As New BinaryFormatter

Return CType(f.Deserialize(m), Customer)
End Using

End Function
End Class

Notice that this function returns a new customer object. It doesn’t restore the existing object’s
state; it creates a new object. Somehow, you would have to tell any and all code that has a refer-
ence to the existing object to use this new object. In some cases, that might be easy to do, but it
isn’t always trivial. In complex applications, it’s hard to guarantee that other code elsewhere in the
application doesn’t have a reference to the original object—and if you don’t somehow get that code
to update its reference to this new object, it will continue to use the old one.

What’s needed is some way to restore the object’s state in place, so that all references to the
current object remain valid, but the object’s state is restored. This is the purpose of the
UndoableBase class.

UndoableBase
The BusinessBase class inherits from UndoableBase, and thereby gains n-level undo capabilities.
Because all business objects inherit from BusinessBase, they too gain n-level undo. Ultimately,
the n-level undo capabilities are exposed to the business object and to UI developers via three
methods:

• BeginEdit() tells the object to take a snapshot of its current state, in preparation for being
edited. Each time BeginEdit() is called, a new snapshot is taken, allowing the state of the
object to be trapped at various points during its life. The snapshot will be kept in memory
so the data can be easily restored to the object if CancelEdit() is called.

• CancelEdit() tells the object to restore the object to the most recent snapshot. This effec-
tively performs an undo operation, reversing one level of changes. If CancelEdit() is called
the same number of times as BeginEdit(), the object will be restored to its original state.

CHAPTER 2 ■ FRAMEWORK DESIGN 65

6315_c02_final.qxd 4/13/06 12:27 PM Page 65

• ApplyEdit() tells the object to discard the most recent snapshot, leaving the object’s current
state untouched. It accepts the most recent changes to the object. If ApplyEdit() is called the
same number of times as BeginEdit(), all the snapshots will be discarded, essentially mak-
ing any changes to the object’s state permanent.

Sequences of BeginEdit(), CancelEdit(), and ApplyEdit() calls can be combined to respond
to the user’s actions within a complex Windows Forms UI. Alternatively, you can totally ignore these
methods, taking no snapshots of the object’s state. In such a case, the object will incur no overhead
from n-level undo, but it also won’t have the ability to undo changes. This is common in web appli-
cations in which the user has no option to cancel changes. Instead, the user simply navigates away
to perform some other action or view some other data.

Supporting Child Objects

As it traces through a business object to take a snapshot of the object’s state, UndoableBase may
encounter child objects. For n-level undo to work for complex objects as well as simple objects, any
snapshot of object state must extend down through all child objects as well as the parent object.

I discussed this earlier with the Invoice and LineItem example. When BeginEdit() is called on
an Invoice, it must also take snapshots of the states of all its LineItem objects, because they’re tech-
nically part of the state of the Invoice object itself. To do this while preserving encapsulation, each
individual object takes a snapshot of its own state so that no object data is ever made available out-
side the object—thus preserving encapsulation for each object.

In that case, UndoableBase simply calls a method on the child object to cascade the
BeginEdit(), CancelEdit(), or ApplyEdit() call to that object. It is then up to the individual child
object to take a snapshot of its own data. In other words, each object is responsible for managing
its own state, including taking a snapshot and potentially restoring itself to that snapshot later.

UndoableBase implements Core.IUndoableObject, which simplifies the code in the class. This
interface defines the methods required by UndoableBase during the undo process.

A child object could also be a collection derived from BusinessListBase. Notice that
BusinessListBase implements the Core.IEditableCollection interface, which inherits from the
Core.IUndoableObject interface.

NotUndoableAttribute
The final concept to discuss regarding n-level undo is the idea that some data might not be sub-
ject to being in a snapshot. Taking a snapshot of an object’s data takes time and consumes
memory—if the object includes read-only values, there’s no reason to take a snapshot of them.
Because the values can’t be changed, there’s no benefit in restoring them to the same value in
the course of an undo operation.

To accommodate this scenario, the framework includes a custom attribute named
NotUndoableAttribute, which you can apply to fields within your business classes, as follows:

<NotUndoable()> _
Private mReadonlyData As String

The code in UndoableBase simply ignores any fields marked with this attribute as the snapshot
is created or restored, so the field will always retain its value regardless of any calls to BeginEdit(),
CancelEdit(), or ApplyEdit() on the object.

CHAPTER 2 ■ FRAMEWORK DESIGN66

6315_c02_final.qxd 4/13/06 12:27 PM Page 66

Data Binding Support
As I discussed earlier in the chapter, the .NET data binding infrastructure directly supports the
concept of data binding to objects and collections. However, an object can provide more complete
behaviors by implementing a few interfaces in the framework base classes. Table 2-2 lists the
interfaces and their purposes.

Table 2-2. .NET Data Binding Interfaces

Interface Purpose

IBindingList Defines data binding behaviors for collections, including change noti-
fication, sorting, and filtering (implemented by BindingList(Of T))

ICancelAddNew Defines data binding behaviors for collections to allow data binding
to cancel the addition of a new child object (implemented by
BindingList(Of T))

IRaiseItemChangedEvents Indicates that a collection object will raise a ListChanged event to
indicate that one of its child objects has raised a PropertyChanged
event (implemented by BindingList(Of T))

IEditableObject Defines single-level undo behavior for a business object, allowing the
object to behave properly with in-place editing in a DataGridView

INotifyPropertyChanged Defines an event allowing an object to notify data binding when a
property has been changed

IDataErrorInfo Defines properties used by the DataGridView and ErrorProvider con-
trols to automatically show descriptions of broken validation rules
within the object

The IBindingList interface is a well-defined interface that (among other things) raises a single
event to indicate that the contents of a collection have changed. Fortunately, there’s the System.
ComponentModel.BindingList(Of T) base class that already implements this interface, so virtually
no effort is required to gain these benefits.

The System.ComponentModel.INotifyPropertyChanged interface members are a bit more com-
plex. This interface defines a single PropertyChanged event that a business object should raise any
time a property value is changed. As discussed earlier, in a serializable object, events must be
declared using a more explicit syntax than normal so the delegate references can be marked as
<NonSerialized()>.

The BindableBase class exists to encapsulate this event declaration and related functionality.
This acts as the ultimate base class for BusinessBase(Of T), while BindingList(Of T) is the base
class for BusinessListBase(Of T, C), as shown in Figure 2-12.

Combined with implementing System.ComponentModel.IEditableObject and System.
ComponentModel.IDataErrorInfo in BusinessBase, the objects can now fully support data binding
in both Windows Forms and Web Forms.

While BusinessListBase won’t support sorting of a collection, Chapter 5 will implement
a SortedBindingList class that provides a sorted view against any collection derived from
IList(Of T) (which in turn means any BindingList(Of T)). Such a sorted view provides superior
performance and stability as compared to directly sorting a collection in place.

CHAPTER 2 ■ FRAMEWORK DESIGN 67

6315_c02_final.qxd 4/13/06 12:27 PM Page 67

Validation Rules
Recall that one of the framework’s goals is to simplify the tracking of broken business rules. An
important side benefit of this is that the UI developer will have read-only access to the list of broken
rules, which means that the descriptions of the broken rules can be displayed to the user in order to
explain what’s making the object invalid.

The support for tracking broken business rules will be available to all editable business objects,
so it’s implemented at the BusinessBase level in the framework.

To provide this functionality, each business object will have an associated collection of broken
business rules.

Additionally, a “rule” is defined as a method that returns a Boolean value indicating whether
the business requirement was met. In the case that the result is False (the rule is broken), a rule also
returns a text description of the problem for display to the user.

To automate this process, each business object will have an associated list of rule methods for
each property in the object.

Figure 2-13 illustrates all the framework classes required to implement both the management
of rule methods and maintenance of the list of broken rule descriptions.

CHAPTER 2 ■ FRAMEWORK DESIGN68

Figure 2-12. Class diagram with BindableBase and BindingList(Of T)

6315_c02_final.qxd 4/13/06 12:27 PM Page 68

A business object taps into this functionality through methods exposed on BusinessBase.
The end result is that a business property is always coded in a consistent manner. In the follow-
ing example, the highlighted line of code triggers the validation rules behavior:

Public Property Name() As String
Get
If CanReadProperty() Then
Return mName

Else
Throw New System.Security.SecurityException("Property get not allowed")

End Get
Set(ByVal value As String)
If CanWriteProperty() Then
If mName <> value Then
mName = value
PropertyHasChanged()

End If
Else
Throw New System.Security.SecurityException("Property set not allowed")

End If
End Set

End Property

You’ll see more complete use of the validation rules functionality in Chapter 8, during the
implementation of the sample application.

There are three types of functionality displayed in Figure 2-13. The ValidationRules,
RuleHandler, RuleArgs, and ValidationException classes manage the rule methods associated with
the properties of an object. The BrokenRulesCollection and BrokenRule classes maintain a list of
currently broken validation rules for an object. Finally, the CommonRules class implements a set
of commonly used validation rules, such as StringRequired.

CHAPTER 2 ■ FRAMEWORK DESIGN 69

Figure 2-13. Classes implementing the validation rules behavior

6315_c02_final.qxd 4/13/06 12:27 PM Page 69

Managing Rule Methods
Business rules are defined by a specific method signature as declared in the RuleHandler delegate:

Public Delegate Function RuleHandler(_
ByVal target As Object, ByVal e RuleArgs) As Boolean

Each business object contains an instance of the ValidationRules object, which in turn main-
tains a list of rules for each property in the business object. Within ValidationRules, there is an
optimized data structure that is used to efficiently store and access a list of rules for each property.
This allows the business object to request that validation rules for a specific property be executed;
or that all rules for all properties be executed.

Each rule method returns a Boolean value to indicate whether the rule was satisfied. If a rule
is broken, it returns False. A RuleArgs object is passed to each rule method. This object includes
a Description property that the rule can set to describe the nature of a broken rule.

As ValidationRules executes each rule method, it watches for a response. When it gets a nega-
tive response, it adds an item to the BrokenRulesCollection for the business object. On the other
hand, a positive response causes removal of any corresponding item in BrokenRulesCollection.

Finally, there’s the ValidationException class. A ValidationException is not thrown when
a rule is broken, since the broken rule is already recorded in BrokenRulesCollection. Instead,
ValidationException is thrown by BusinessBase itself in the case that there’s an attempt to save
the object to the database when it’s in an invalid state.

Maintaining a List of Broken Rules
The ValidationRules object maintains a list of rule methods associated with an object. It also exe-
cutes those methods to check the rules, either for a specific property or for all properties. The end
result of that process is that descriptions for broken rules are recorded into the
BrokenRulesCollection associated with the business object.

The BrokenRulesCollection is a list of BrokenRule objects. Each BrokenRule object represents
a validation rule that is currently broken by the data in the business object. These BrokenRule
objects are added and removed from the collection by ValidationRules as part of its normal
processing.

The BusinessBase class uses its BrokenRulesCollection to implement an IsValid property.
IsValid returns True only if BrokenRulesCollection contains no items. If it does contain items,
then the object is in an invalid state.

The primary point of interest with the BusinessRulesCollection is that it is designed to not
only maintain a list of current broken rules, but also to provide read-only access to the UI. This is
the reason for implementing a specialized collection object that can change its own data, but that
the UI sees as being read-only. On top of that, the base class implements support for data binding
so that the UI can display a list of broken rule descriptions to the user by simply binding the col-
lection to a list or grid control.

Additionally, the implementation of IDataErrorInfo makes use of the BrokenRulesCollection
to return error text for the object or for individual properties. Supporting this interface allows the
DataGridView and ErrorProvider controls to automatically display validation error text to the user.

Implementing Common Rules
If you consider the validation rules applied to most properties, there’s a set of common behaviors
that occur time and time again. For example, there’s the idea that a string value is required, or that
a string has a maximum length.

CHAPTER 2 ■ FRAMEWORK DESIGN70

6315_c02_final.qxd 4/13/06 12:27 PM Page 70

Rather than requiring every business application to implement these same behaviors over and
over again, you can have them be supplied by the framework. As you’ll see in Chapter 3, the imple-
mentation will make use of reflection—so there’s a performance cost. If your particular application
finds that performance cost to be too high, you can always do what you would have done anyway—
that is, write the rule implementation directly into the application. In most cases, however, the
benefit of code reuse will outweigh the small performance cost incurred by reflection.

Data Portal
Supporting object persistence—the ability to store and retrieve an object from a database—can be
quite complex. I discussed this earlier in the chapter when talking about basic persistence and the
concept of ORM.

As you’ll see in Chapter 8, business objects will either encapsulate data access logic within the
objects, or they will delegate the data access behavior to a persistence object. At the same time,
however, you don’t want to be in a position in which a change to your physical architecture requires
every business object in the system to be altered. The ability to easily switch between having the
data access code run on the client machine and having it run on an application server is the goal;
with that change driven by a configuration file setting.

On top of this, when using an application server, not every business object in the application
should be directly exposed by the server. This would be a maintenance and configuration night-
mare, because it would require updating configuration information on all client machines any time
a business object is added or changed.

■Note This is a lesson learned from years of experience with DCOM and MTS/COM+. Exposing large numbers of
components, classes, and methods from a server almost always results in a tightly coupled and fragile relationship
between clients and the server.

Instead, it would be ideal if there were one consistent entry point to the application server, so
that every client could simply be configured to know about that single entry point and never have to
worry about it again. This is exactly what the data portal concept provides, as shown in Figure 2-14.

CHAPTER 2 ■ FRAMEWORK DESIGN 71

Figure 2-14. The data portal provides a consistent entry point to the application server.

6315_c02_final.qxd 4/13/06 12:27 PM Page 71

The data portal provides a single point of entry and configuration for the server. It manages
communication with the business objects while they’re on the server running their data access
code. Additionally, the data portal concept provides the following other key benefits:

• Centralized security when calling the application server

• A consistent object persistence mechanism (all objects persist the same way)

• Abstraction of the network transport between client and server (enabling support for
remoting, Web Services, Enterprise Services, and future protocols)

• One point of control to toggle between running the data access code locally and via
remoting

The data portal functionality is designed in several parts, as shown in Table 2-3.

Table 2-3. Parts of the Data Portal Concept

Area Functionality

Client-side DataPortal Functions as the primary entry point to the data portal infrastructure,
for use by code in business objects

Client-side proxy classes Implement the channel adapter pattern to abstract the underlying
network protocol from the application

Message objects Transfer data to and from the server, including security information,
application context, the business object’s data, the results of the call,
and any server-side exception data

Server-side host classes Expose single points of entry for different server hosts, such as remot-
ing, Web Services, and Enterprise Services

Server-side data portal Implements transactional and nontransactional data access behav-
iors, delegating all actual data access to appropriate business objects

Let’s discuss each area of functionality in turn.

Client-Side DataPortal
The client-side DataPortal is implemented as a Module, which means that any Public methods
it exposes become available to business object code without the need to create a DataPortal
object. The methods it provides are Create(), Fetch(), Update(), Delete(), and Execute().
Business objects and collections use these methods to retrieve and update data, or in the case
of a CommandBase-derived object, to execute server code on the server.

The client-side DataPortal has a great deal of responsibility, however, since it contains the
code to read and act on the client’s configuration settings. These settings control whether the
“server-side” data portal components will actually run on the server or locally on the client. It
also looks at the business object itself, since a <RunLocal()> attribute can be used to force per-
sistence code to run on the client, even if the configuration says to run it on the server.

Either way, the client-side DataPortal always delegates the call to the server-side data portal,
which handles the actual object persistence behaviors.

However, if the client configuration indicates that the server-side data portal will really run
on a server, the configuration will also specify which network transport should be used. It is the
client-side DataPortal that reads that configuration and loads the appropriate client-side proxy
object. That proxy object is then responsible for handling the network communication.

As an object is implemented, its code will use the client-side DataPortal to retrieve and update
the object’s information. An automatic result is that the code in the business object won’t need to

CHAPTER 2 ■ FRAMEWORK DESIGN72

6315_c02_final.qxd 4/13/06 12:27 PM Page 72

know about network transports or whether the application is deployed into a 1-, 2-, or n-tier physi-
cal environment. The business object code always looks something like this:

Public Shared Function GetCustomer(ByVal id As String) As Customer
Return DataPortal.Fetch(Of Customer)(New Criteria(id))

End Function

An even more important outcome is that any UI code using these business objects will look
something like this:

Dim cust As Customer = Customer.GetCustomer(myId)

Neither of these code snippets changes, regardless of whether you’ve configured the server-
side data portal to run locally, or on a remote server via remoting, Web Services, Enterprise Services,
or (in the future) WCF. All that changes is the application’s configuration file.

Client-Side Proxies
While it is the client-side DataPortal that reads the client configuration to determine the appropri-
ate network transport, the client-side proxy classes actually take care of the details of each network
technology. There is a different proxy class for each technology: remoting, Web Services, and Enter-
prise Services.

The design also allows for a business application to provide its own proxy class to use other
protocols. This means you can write your own TCP sockets protocol if you are so inclined.

The remoting and Web Services proxies use the HTTP protocol for communication across the
network. This makes both of them firewall- and Internet-friendly. The Enterprise Services proxy
uses DCOM for communication across the network. This is substantially faster than HTTP, but
harder to configure for firewalls or the Internet. Both HTTP and DCOM can be configured to
encrypt data on the wire and so provide quite high levels of security if needed.

Every client-side proxy has a corresponding server-side host class. This is because each trans-
port protocol requires that both ends of the network connection use the same technology.

The client-side DataPortal simply creates an instance of the appropriate client-side proxy and
then delegates the request (Create, Fetch, Update, Delete, or Execute) to the proxy object. The proxy
object is responsible for establishing a network connection to the server-side host object and dele-
gating the call across the network.

The proxy must also pass other message data, such as security and application context, to the
server. Similarly, the proxy must receive data back from the server, including the results of the oper-
ation, application context information, and any exception data from the server.

To this last point, if an exception occurs on the server, the full exception details are returned
to the client. This includes the nature of the exception, any inner exceptions, and the stack trace
related to the exception. Ideally, this exception information will be used on the client to rethrow the
exception, giving the illusion that the exception flowed naturally from the code on the server back
to the code on the client.

Message Objects
When the client-side DataPortal calls the server-side data portal, several types of information are
passed from client to server. Obviously, the data method call (Create, Update, Insert, etc.) itself is
transferred from client to server. But other information is also included, as follows:

• Client-side context data (such as the client machine’s culture setting)

• Application-wide context data (as defined by the application)

• The user’s principal and identity security objects (if using custom security)

CHAPTER 2 ■ FRAMEWORK DESIGN 73

6315_c02_final.qxd 4/13/06 12:27 PM Page 73

Client-side context data is passed one way, from the client to the server. This information may
include things like the client workstation’s culture setting—thus allowing the server-side code to
also use that context when servicing requests for that user. This can be important for localization
of an application when a server may be used by workstations in different nations.

Application-wide context data is passed both from client to server and from server back to
client. You may use this context data to pass arbitrary application-specific data between client and
server on each data portal operation. This can be useful for debugging, as it allows you to build up
a trace log of the call as it goes from client to server and back again.

If the application is using custom authentication, then the custom principal and identity
objects representing the user are passed from client to server. This means the code on the server
will run under the same security context as the client. If you are using Windows integrated or AD
security, then Windows itself can be configured to handle the impersonation.

When the server-side data portal has completed its work, the results are returned to the client.
Other information is also included, as follows:

• Application-wide context data (as defined by the application)

• Details about any server-side exception that may have occurred

Again, the application-wide context data is passed from client to server and from server to
client.

If an exception occurs on the server, the details about that exception are returned to the client.
This is important for debugging, as it means you get the full details about any issues on the server.
It is also important at runtime, since it allows you to write exception handling code on the client to
gracefully handle server-side exceptions—including data-oriented exceptions such as duplicate
key or concurrency exceptions.

All the preceding bulleted items are passed to and from the server on each data portal opera-
tion. Keeping in mind that the data portal supports several verbs, it is important to understand
what information is passed to and from the server to support each verb. This is listed in Table 2-4.

Table 2-4. Data Passed to and from the Server for Data Portal Operations

Verb To Server From Server

Create Type of object to create and (optional) New object loaded with default values
criteria about new object

Fetch Criteria for desired object Object loaded with data

Update Object to be updated Object after update (possibly containing
changed data)

Delete Criteria for object to be deleted Nothing

Execute Object to be executed (must derive from Object after execution (possibly contain-
CommandBase) ing changed data)

Notice that the Create, Fetch, and Delete operations all require criteria information about the
object to be created, retrieved, or removed. At a minimum, the criteria object must specify the type
of object you are trying to create, retrieve, or delete. It may also contain any other data you need to
describe your particular business object. A criteria object can be created one of two ways:

• By creating a nested class within your business class

• By creating a class that inherits from CriteriaBase

CHAPTER 2 ■ FRAMEWORK DESIGN74

6315_c02_final.qxd 4/13/06 12:27 PM Page 74

When a criteria class is nested within a business class, the .NET type system can be used to
easily determine the type of class in which the criteria is nested. The CriteriaBase class, on the
other hand, directly includes a property you must set, indicating the type of the business object.

In either case, your criteria class should include properties containing any specific information
you need in order to identify the specific object to be created, retrieved, or removed.

Server-Side Host Objects
I’ve already discussed the client-side proxy objects and how each one has a corresponding server-
side host object. In Chapter 4, I’ll create three host objects, one for each protocol: remoting, Web
Services, and Enterprise Services. It is also possible to add new host objects without altering the
core framework, providing broad extensibility. Any new host object would need a corresponding
client-side proxy, of course.

Server-side host objects are responsible for two things: first, they must accept inbound
requests over the appropriate network protocol from the client, and those requests must be passed
along to the server-side data portal components; second, the host object is responsible for running
inside the appropriate server-side host technology.

Microsoft provides a couple server-side host technologies for hosting application server code:
Internet Information Services (IIS) and Enterprise Services.

It is also possible to write your own Windows service that could act as a host technology, but
I strongly recommend against such an approach. By the time you write the host and add in secu-
rity, configuration, and management support, you’ll have recreated most or all of either IIS or
Enterprise Services. Worse, you’ll have opened yourself up for unforeseen security and stability
issues.

The remoting and Web Services host objects are designed to run within the IIS host. This way,
they can take advantage of the management, stability, and security features inherent in IIS. The
Enterprise Services host object is designed to run within Enterprise Services, taking advantage of
its management, stability, and security features.

Both IIS and Enterprise Services provide a robust process model and thread management, and
so provide very high levels of scalability.

Server-Side Data Portal
At its core, the server-side data portal components provide an implementation of the message
router design pattern. The server-side data portal accepts requests from the client and routes those
requests to an appropriate handler—in this case, a business object.

■Note I say “server-side” here, but keep in mind that the server-side data portal components may run either
on the client workstation or on a remote server. Refer to the client-side DataPortal discussion regarding how this
selection is made. The data portal is implemented to minimize overhead as much as possible when configured to
run locally or remotely, so it is appropriate for use in either scenario.

For Create, Fetch, and Delete operations, the server-side data portal requires type information
about your business object. Typically, this is provided via the criteria object. For update and execute
operations, the business object itself is passed to the server-side data portal.

But the server-side data portal is more than a simple message router. It also provides optional
access to the transactional technologies available within .NET, namely Enterprise Services
(MTS/COM+) and the new System.Transactions namespace.

CHAPTER 2 ■ FRAMEWORK DESIGN 75

6315_c02_final.qxd 4/13/06 12:27 PM Page 75

The business framework defines a custom attribute named TransactionalAttribute that can
be applied to methods within business objects. Specifically, you can apply it to any of the data
access methods that your business object might implement to create, fetch, update, or delete data,
or to execute server-side code. This allows you to use one of three models for transactions, as listed
in Table 2-5.

Table 2-5. Transaction Options Supported by the Data Portal

Option Description Transactional Attribute

Manual You are responsible for imple- None or <Transactional
menting your own transactions (TransactionalTypes.Manual)>
using ADO.NET, stored proce-
dures, etc.

Enterprise Services Your data access code will run <Transactional
within a COM+ distributed (TransactionalTypes.
transactional context, providing EnterpriseServices)>
distributed transactional support

System.Transactions Your data access code will run <Transactional
within a TransactionScope from (TransactionalTypes.
System.Transactions, automatic- TransactionScope)>
ally providing basic or distributed
transactional support as required

This means that in the business object, there may be an update method (overriding the one
in BusinessBase) marked to be transactional:

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Update()
' Data update code goes here

End Sub

At the same time, the object might have a fetch method in the same class that’s not
transactional:

Private Sub DataPortal_Fetch(ByVal criteria As Criteria)
' Data retrieval code goes here

End Sub

This facility means that you can control transactional behavior at the method level, rather
than at the class level. This is a powerful feature, because it means that you can do your data
retrieval outside of a transaction to get optimal performance, and still do updates within the
context of a transaction to ensure data integrity.

The server-side data portal examines the appropriate method on the business object
before it routes the call to the business object itself. If the method is marked as
<Transactional(TransactionalTypes.EnterpriseServices)>, then the call is routed to a
ServicedDataPortal object that is configured to require a COM+ distributed transaction. The
ServicedDataPortal then calls the SimpleDataPortal, which delegates the call to your business
object, but only after it is running within a distributed transaction.

If the method is marked with <Transactional(TransactionalTypes.TransactionScope)>,
the call is routed to a TransactionalDataPortal object that is configured to run within a System.
Transactions.TransactionScope. A TransactionScope is powerful because it provides a lightweight
transactional wrapper in the case that you are updating a single database; but it automatically
upgrades to a distributed transaction if you are updating multiple databases. In short, you get

CHAPTER 2 ■ FRAMEWORK DESIGN76

6315_c02_final.qxd 4/13/06 12:27 PM Page 76

the benefits of COM+ distributed transactions if you need them, but you don’t pay the performance
penalty if you don’t need them. Either way, your code is transactionally protected.

If the method doesn’t have the attribute, or is marked as <Transactional(TransactionalTypes.
Manual)>, the call is routed directly to the SimpleDataPortal, as illustrated in Figure 2-15.

Data Portal Behaviors
Now that you have a grasp of the areas of functionality required to implement the data portal con-
cept, let’s discuss the specific data behaviors the data portal will support. The behaviors were listed
earlier, in Table 2-4.

Create

The “create” operation is intended to allow the business objects to load themselves with values that
must come from the database. Business objects don’t need to support or use this capability, but if
they need to initialize default values, then this is the mechanism to use.

There are many types of applications for which this is important. For instance, order entry
applications typically have extensive defaulting of values based on the customer. Inventory man-
agement applications often have many default values for specific parts, based on the product family
to which the part belongs. Medical records also often have defaults based on the patient and physi-
cian involved.

When the Create() method of the DataPortal is invoked, it’s passed a Criteria object. As I’ve
explained, the data portal will either use reflection against the Criteria object or will rely on the
type information in CriteriaBase to determine the type of business object to be created. Using that
information, the data portal will then use reflection to create an instance of the business object
itself. However, this is a bit tricky, because all business objects will have Private or Protected con-
structors to prevent direct creation by code in the UI:

<Serializable()> _
Public Class Employee
Inherits BusinessBase(Of Employee)

CHAPTER 2 ■ FRAMEWORK DESIGN 77

Figure 2-15. Routing calls through transactional wrappers

6315_c02_final.qxd 4/13/06 12:27 PM Page 77

Private Sub New()
' prevent direct creation

End Sub

<Serializable()> _
Private Class Criteria
Private mSsn As String
Public ReadOnly Property Ssn() As String
Get
Return mSsn

End Get
End Property

Public Sub New(ByVal ssn As String)
mSsn = ssn

End Sub
End Class

End Class

Business objects will expose Shared factory methods to allow the UI code to create or retrieve
objects. Those factory methods will invoke the client-side DataPortal. (I discussed this “class-in-
charge” concept earlier in the chapter.) As an example, an Employee class may have a Shared factory
method, such as the following:

Public Shared Function NewEmployee() As Employee
Return DataPortal.Create(Of Employee)()

End Function

Notice that no Employee object is created on the client here. Instead, the factory method asks
the client-side DataPortal for the Employee object. The client-side DataPortal passes the call to the
server-side data portal. If the data portal is configured to run remotely, the business object is cre-
ated on the server; otherwise, the business object is created locally on the client.

Even though the business class has only a Private constructor, the server-side data portal uses
reflection to create an instance of the class.

The alternative is to make the constructor Public—in which case the UI developer will need to
learn and remember that they must use the Shared factory methods to create the object. Making the
constructor Private provides a clear and direct reminder that the UI developer must use the Shared
factory method, thus reducing the complexity of the interface for the UI developer. Keep in mind
that not implementing the default constructor won’t work either, because in that case, the compiler
provides a Public default constructor on your behalf.

Once the server-side data portal has created the business object, it calls the business object’s
DataPortal_Create() method, passing the Criteria object as a parameter. At this point, code inside
the business object is executing, so the business object can do any initialization that’s appropriate
for a new object. Typically, this will involve going to the database to retrieve any configurable
default values.

When the business object is done loading its defaults, the server-side data portal returns the
fully created business object back to the client-side DataPortal. If the two are running on the same
machine, this is a simple object reference; but if they’re configured to run on separate machines,
then the business object is serialized across the network to the client (that is, it’s passed by value),
so the client machine ends up with a local copy of the business object. The UML sequence diagram
in Figure 2-16 illustrates this process.

You can see how the UI interacts with the business object class (the Shared factory method),
which then creates a Criteria object and passes it to the client-side DataPortal. The client-side
DataPortal then delegates the call to the server-side data portal (which may be running locally or

CHAPTER 2 ■ FRAMEWORK DESIGN78

6315_c02_final.qxd 4/13/06 12:27 PM Page 78

remotely, depending on the configuration). The server-side data portal then creates an instance of
the business object itself, and calls the business object’s DataPortal_Create() method so it can pop-
ulate itself with default values. The resulting business object is then ultimately returned to the UI.

Alternatively, the DataPortal_Create() method could request the default data values from a
persistence object in another assembly, thus providing a clearer separation between the Business
Logic and Data Access layers.

In a physical n-tier configuration, remember that the Criteria object starts out on the client
machine and is passed by value to the application server. The business object itself is created on
the application server, where it’s populated with default values. It’s then passed back to the client
machine by value. This architecture truly takes advantage of the mobile object concept.

Fetch

Retrieving a preexisting object is very similar to the creation process just discussed. Again, a
Criteria object is used to provide the data that the object will use to find its information in the
database. The Criteria class is nested within the business object class and/or inherits from
CriteriaBase, so the server-side data portal code can determine the type of business object
desired and then use reflection to create an instance of the class.

The UML sequence diagram in Figure 2-17 illustrates all of this.

CHAPTER 2 ■ FRAMEWORK DESIGN 79

Figure 2-16. UML sequence diagram for the creation of a new business object

6315_c02_final.qxd 4/13/06 12:27 PM Page 79

The UI interacts with the factory method, which in turn creates a Criteria object and passes it
to the client-side DataPortal code. The client-side DataPortal determines whether the server-side
data portal should run locally or remotely, and then delegates the call to the server-side data portal
components.

The server-side data portal uses reflection to determine the assembly and type name for the
business class and creates the business object itself. After that, it calls the business object’s
DataPortal_Fetch() method, passing the Criteria object as a parameter. Once the business object
has populated itself from the database, the server-side data portal returns the fully populated busi-
ness object to the UI.

Alternatively, the DataPortal_Fetch() method could delegate the fetch request to a persistence
object from another assembly, thus providing a clearer separation between the Business Logic and
Data Access layers.

As with the “create” process, in an n-tier physical configuration, the Criteria object and
business object move by value across the network as required. You don’t have to do anything spe-
cial beyond marking the classes as <Serializable()>—the .NET runtime handles all the details
on your behalf.

Update

The update process is a bit different from the previous operations. In this case, the UI already has
a business object with which the user has been interacting, and this object needs to save its data
into the database. To achieve this, all editable business objects have a Save() method (as part of
the BusinessBase class from which all business objects inherit). The Save() method calls the
DataPortal to do the update, passing the business object itself, Me, as a parameter.

The thing to remember when doing updates is that the object’s data will likely change as a
result of the update process. Any changed data must be placed back into the object.

There are two common scenarios illustrating how data changes during an update. The first is
when the database assigns the primary key value for a new object. That new key value needs to be
put into the object and returned to the client. The second scenario is when a timestamp is used to
implement optimistic first-write-wins concurrency. In this case, every time the object’s data is

CHAPTER 2 ■ FRAMEWORK DESIGN80

Figure 2-17. UML sequence diagram for the retrieval of an existing business object

6315_c02_final.qxd 4/13/06 12:27 PM Page 80

inserted or updated, the timestamp value must be refreshed in the object with the new value from
the database. Again, the updated object must be returned to the client.

This means that the update process is bidirectional. It isn’t just a matter of sending the data to
the server to be stored, but also a matter of returning the object from the server after the update has
completed, so that the UI has a current, valid version of the object.

Due to the way .NET passes objects by value, it may introduce a bit of a wrinkle into the overall
process. When passing the object to be saved over to the server, .NET makes a copy of the object
from the client onto the server, which is exactly what is desired. However, after the update is com-
plete, the object must be returned to the client. When an object is returned from the server to the
client, a new copy of the object is made on the client, which isn’t really the desired behavior.

Figure 2-18 illustrates the initial part of the update process.

The UI has a reference to the business object and calls its Save() method. This causes the busi-
ness object to ask the data portal to save the object. The result is that a copy of the business object is
made on the server, where it can save itself to the database. So far, this is pretty straightforward.

■Note Notice that the business object has a Save() method, but the data portal infrastructure has methods
named Update(). Although this is a bit inconsistent, remember that the business object is being called by UI
developers, and I’ve found that it’s more intuitive for the typical UI developer to call Save() than Update(), espe-
cially since the Save() call can trigger an Insert, an Update, or even a Delete operation.

However, once this part is done, the updated business object is returned to the client, and the
UI must update its references to use the newly updated object instead, as shown in Figure 2-19.

This is fine, too—but it’s important to keep in mind that you can’t continue to use the old busi-
ness object; you must update all object references to use the newly updated object. Figure 2-20 is a
UML sequence diagram that shows the overall update process.

CHAPTER 2 ■ FRAMEWORK DESIGN 81

Figure 2-18. Sending a business object to the data portal to be inserted or updated

6315_c02_final.qxd 4/13/06 12:27 PM Page 81

You can see that the UI calls the Save() method on the business object, which results in a call
to the client-side DataPortal’s Update() method, passing the business object as a parameter. As
usual, the client-side DataPortal determines whether the server-side data portal is running locally
or remotely, and then delegates the call to the server-side data portal.

The server-side data portal then simply calls the DataPortal_Update() method on the business
object so that the object can save its data into the database. If the object were a new object, then
DataPortal_Insert() would have been called, and if the object had been marked for deletion, then
DataPortal_DeleteSelf() would have been called.

CHAPTER 2 ■ FRAMEWORK DESIGN82

Figure 2-19. Data portal returning the inserted or updated business object to the UI

Figure 2-20. UML sequence diagram for the updating of a business object

6315_c02_final.qxd 4/13/06 12:27 PM Page 82

These methods may implement the code to insert, update, or delete the object directly within
the business class, or they may delegate the call to a persistence object in another assembly.

At this point, two versions of the business object exist: the original version on the client and
the newly updated version on the application server. However, the best way to view this is to
think of the original object as being obsolete and invalid at this point. Only the newly updated
version of the object is valid.

Once the update is done, the new version of the business object is returned to the UI; the UI
can then continue to interact with the new business object as needed.

■Note The UI must update any references from the old business object to the newly updated business object as
soon as the new object is returned from the data portal.

In a physical n-tier configuration, the business object is automatically passed by value to the
server, and the updated version is returned by value to the client. If the server-side data portal is
running locally, however, simple object references are passed. This avoids the overhead of seriali-
zation and so forth.

Delete

The final operation, and probably the simplest, is to delete an object from the database. The frame-
work actually supports two approaches to deleting objects.

The first approach is called deferred deletion. In this model, the object is retrieved from the
database and is marked for deletion by calling a Delete() method on the business object. Then the
Save() method is called to cause the object to update itself to the database (thus actually doing the
Delete operation). In this case, the data will be deleted by the DataPortal_DeleteSelf() method.

The second approach, called immediate deletion, consists of simply passing criteria data to
the server, where the object is deleted immediately within the DataPortal_Delete() method.

This second approach provides superior performance because you don’t need to load the
object’s data and return it to the client. Instead, you simply pass the criteria fields to the server,
where the object deletes its data.

The framework supports both models, providing you with the flexibility to allow either or both
in your object models, as you see fit.

Deferred deletion follows the same process as the update process I just discussed, so let’s
explore immediate deletion. In this case, a Criteria object is created to describe the object to be
deleted, and the data portal is invoked to do the deletion. Figure 2-21 is a UML diagram that illus-
trates the process.

Because the data has been deleted at this point, you have nothing to return to the UI, so the
overall process remains pretty straightforward. As usual, the client-side DataPortal delegates the
call to the server-side data portal. The server-side data portal creates an instance of the business
object and invokes its DataPortal_Delete() method, providing the Criteria object as a parameter.

The business logic to do the deletion itself is encapsulated within the business object, along
with all the other business logic relating to the object. Alternatively, the business object could dele-
gate the deletion request to a persistence object in another assembly.

CHAPTER 2 ■ FRAMEWORK DESIGN 83

6315_c02_final.qxd 4/13/06 12:27 PM Page 83

Custom Authentication
As discussed earlier in the chapter, many environments include users who aren’t part of a Windows
domain or AD. In such a case, relying on Windows integrated security for the application is prob-
lematic at best, and you’re left to implement your own security scheme. Fortunately, the .NET
Framework includes several security concepts, along with the ability to customize them to imple-
ment your own security as needed.

The following discussion applies to you only in the case that Windows integrated security
doesn’t work for your environment. In such a case, you’ll typically maintain a list of users and their
roles in a database, or perhaps in an LDAP server. The custom authentication concepts discussed
here will help you integrate the application with that preexisting security database.

Custom Principal and Identity Objects

The .NET Framework includes a couple of built-in principal and identity objects that support
Windows integrated security or generic security. You can also create your own principal and iden-
tity objects by creating classes that implement the IPrincipal and IIdentity interfaces from the
System.Security.Principal namespace.

Implementations of principal and identity objects will be specific to your environment and
security requirements. However, the framework will include a BusinessPrincipalBase class to
streamline the process.

When you create a custom principal object, it must inherit from BusinessPrincipalBase. Code
in the data portal ensures that only a WindowsPrincipal or BusinessPrincipalBase object is passed
between client and server, depending on the application’s configuration.

In many cases, your custom principal object will require very little code. The base class already
implements the IPrincipal interface, and it is quite likely that you’ll only need to implement the
IsInRole() method to fit your needs.

However, you will need to implement a custom identity object that implements IIdentity.
Typically, this object will populate itself with user profile information and a list of user roles from
a database. Essentially, this is just a read-only business object, and so you’ll typically inherit from
ReadOnlyBase. Such an object might be declared like this:

CHAPTER 2 ■ FRAMEWORK DESIGN84

Figure 2-21. UML sequence diagram for immediate deletion of a business object

6315_c02_final.qxd 4/13/06 12:27 PM Page 84

<Serializable()> _
Public Class CustomIdentity
Inherits ReadOnlyBase(Of CustomIdentity)

Implements IIdentity

' implement here
End Class

You’ll also need to implement a Login method that the UI code can call to initiate the process
of authenticating the user’s credentials (username and password) and loading data into the custom
identity object. This is often best implemented as a Shared factory method on the custom principal
class. In many cases, this factory method will look something like this:

Public Shared Sub Login(ByVal username As String, ByVal password As String)
Dim identity As CustomIdentity = _
CustomIdentity.GetIdentity(username, password)

If identity.IsAuthenticated Then
Dim principal As IPrincipal = New CustomPrincipal(identity)
Csla.ApplicationContext.User = principal

End If
End Sub

The GetIdentity method is a normal factory method in CustomIdentity that just calls the
data portal to load the object with data from the database. A corresponding Logout method may
look like this:

Public Shared Sub Logout()
Dim identity As CustomIdentity = CustomIdentity.UnauthenticatedIdentity()
Dim principal As IPrincipal = New CustomPrincipal(identity)
Csla.ApplicationContext.User = principal

End Sub

The UnauthenticatedIdentity() method is actually a variation on the factory concept, but in
this case, it probably doesn’t use the data portal. Instead, it merely needs to create an instance of
CustomIdentity, in which IsAuthenticated returns False.

Integrated Authorization
Virtually all applications rely on some form of authorization. At the very least, there is typically
control over which users have access to the application at all. But more commonly, applications
need to restrict which users can view or edit specific bits of data at either the object or property
level. This is often accomplished by assigning users to roles and then specifying which roles are
allowed to view or edit various data.

To help control whether the current user can view or edit individual properties, the business
framework will allow the business developer to specify the roles that are allowed or denied the
ability to view or edit each property. Typically, these role definitions will be set up as the object is
created, and they may be hard-coded into the object or loaded from a database, as you choose.

With the list of allowed and denied roles established, the framework is able to implement
CanReadProperty() and CanWriteProperty() methods that can be called within each property’s get
and set code. The result is that a typical property looks like this:

CHAPTER 2 ■ FRAMEWORK DESIGN 85

6315_c02_final.qxd 4/13/06 12:27 PM Page 85

Public Property Name() As String
Get
CanReadProperty(True)
return mName

End Get
Set(ByVal value As String)
CanWriteProperty(True)
If mName <> value Then
mName = value
PropertyHasChanged()

End If
End Set

End Property

The CanReadProperty() and CanWriteProperty() methods check the current user’s roles against
the list of roles allowed and denied read and write access to this particular property. If the authori-
zation rules are violated, a security exception is thrown; otherwise, the user is allowed to read or
write the property. There are other overloads of these methods as well, offering variation in coding
simplicity, control, and performance. These will be fully explored in Chapter 3.

The CanReadProperty() and CanWriteProperty() methods are Public in scope. This is impor-
tant because it allows code in the UI layer to ask the object about the user’s permissions to read and
write each property. The UI can use this information to alter its display to give the user visual cues
as appropriate. In Chapter 9, you’ll see how this capability can be exploited by an extender control
in Windows Forms to eliminate most authorization code in a typical application. While the story
isn’t quite as compelling in Web Forms, Chapter 10 will demonstrate how to leverage this capability
in a similar manner.

Helper Types and Classes
Most business applications require a set of common behaviors not covered by the concepts dis-
cussed thus far. These behaviors are a grab bag of capabilities that can be used to simplify common
tasks that would otherwise be complex. These include the items listed in Table 2-6.

Table 2-6. Helper Types and Classes

Type or Class Description

SafeDataReader Wraps any IDataReader (such as SqlDataReader) and converts all null
values from the database into non-null empty or default values

ObjectAdapter Fills a DataSet or DataTable with information from an object or a collection
of objects

DataMapper Maps data from an IDictionary to an object’s properties, or from one
object’s properties to another object’s properties

SmartDate Implements a DateTime data type that understands how to translate values
transparently between DateTime and string representations, and also
understands the concept of an empty date

SortedBindingList Provides a sorted view of any IList(Of T); if the underlying collection is
editable, then the view will also be editable

Let’s discuss each of these in turn.

CHAPTER 2 ■ FRAMEWORK DESIGN86

6315_c02_final.qxd 4/13/06 12:27 PM Page 86

SafeDataReader
Most of the time, applications don’t care about the difference between a null value and an empty
value (such as an empty string or a zero)—but databases often do. When retrieving data from a
database, an application needs to handle the occurrence of unexpected null values with code such
as the following:

If dr.IsDBNull(idx) Then
myValue = ""

Else
myValue = dr.GetString(idx)

End If

Clearly, doing this over and over again throughout the application can get very tiresome. One
solution is to fix the database so that it doesn’t allow nulls when they provide no value, but this is
often impractical for various reasons.

■Note Here’s one of my pet peeves: allowing nulls in a column in which you care about the difference between
a value that was never entered and the empty value ("", or 0, or whatever) is fine. Allowing nulls in a column
where you don’t care about the difference merely complicates your code for no good purpose, thereby decreasing
developer productivity and increasing maintenance costs.

As a more general solution, the framework includes a utility class that uses SqlDataReader (or
any IDataReader implementation) in such a way that you never have to worry about null values
again. Unfortunately, the SqlDataReader class isn’t inheritable—it can’t be subclassed directly.
Instead, it is wrapped using containment and delegation. The result is that your data access code
works the same as always, except that you never need to write checks for null values. If a null
value shows up, SafeDataReader will automatically convert it to an appropriate empty value.

Obviously, if you do care about the difference between a null and an empty value, you can
just use a regular SqlDataReader to retrieve the data. In this case, .NET 2.0 includes the new
Nullable(Of T) generic type that helps manage null database values. This new type is very valu-
able when you do care about null values: when business rules dictate that an “empty” value like
0 is different from null.

ObjectAdapter
Many reporting technologies, such as Crystal Reports, don’t offer the ability to generate a report
directly against objects. Unfortunately, these technologies are designed to only generate reports
directly against a database or DataSet; yet many applications need to generate reports against
business objects, leaving the developer in a difficult position.

The ObjectAdapter implements a Fill() method that copies data from an object or a collection
of objects into a DataTable or a DataSet. The resulting DataSet can then be used as a data source for
reporting technologies that can’t run directly against objects.

While not useful for large sets of data, this technology can be very useful for generating small
printouts against small amounts of data. For a more complete discussion of ObjectAdapter and
reporting with objects, see Chapter 5.

DataMapper
In Chapter 10, you will see how to implement an ASP.NET Web Forms UI on top of business objects.
This chapter will make use of the new data binding capabilities in Web Forms 2.0. In this technol-
ogy, the Insert and Update operations provide the data from the form in IDictionary objects

CHAPTER 2 ■ FRAMEWORK DESIGN 87

6315_c02_final.qxd 4/13/06 12:27 PM Page 87

(name/value pairs). The values in these name/value pairs must be loaded into corresponding prop-
erties in the business object. You end up writing code much like this:

cust.Name = e.Values("Name").ToString
cust.Address1 = e.Values("Address1").ToString
cust.City = e.Values("City").ToString

Similarly, in Chapter 11, you’ll see how to implement a Web Services interface on top of busi-
ness objects. When data is sent or received through a web service, it goes through a proxy object:
an object with properties containing the data, but no other logic or code. Since the goal is to get
the data into or out of a business object, this means copying the data from one object’s properties
to the other. You end up writing code much like this:

cust.Name = message.Name
cust.Address1 = message.Address1
cust.City = message.City

In both cases, this is repetitive, boring code to write. One alternative, though it does incur
a performance hit, is to use reflection to automate the copy process. This is the purpose of the
DataMapper class: to automate the copying of data to reduce all those lines of code to one simple
line. It is up to you whether to use DataMapper in your applications.

SmartDate
Dates are a perennial development problem. Of course, there’s the DateTime data type, which
provides powerful support for manipulating dates, but it has no concept of an “empty” date. The
trouble is that many applications allow the user to leave date fields empty, so you need to deal
with the concept of an empty date within the application.

On top of this, date formatting is problematic—rather, formatting an ordinary date value is
easy, but again you’re faced with the special case whereby an “empty” date must be represented by
an empty string value for display purposes. In fact, for the purposes of data binding, we often want
any date properties on the objects to be of type String so that the user has full access to the various
data formats as well as the ability to enter a blank date into the field.

Dates are also a challenge when it comes to the database: the date data types in the database
don’t understand the concept of an empty date any more than .NET does. To resolve this, date
columns in a database typically do allow null values, so a null can indicate an empty date.

■Note Technically, this is a misuse of the null value, which is intended to differentiate between a value that
was never entered and one that’s empty. Unfortunately, we’re typically left with no choice, because there’s no way
to put an empty date value into a date data type.

You may be able to use Nullable(Of DateTime) as a workable data type for your date values.
But even that isn’t always perfect, because Nullable(Of DateTime) doesn’t offer specialized format-
ting and parsing capabilities for working with dates. Nor does it really understand the concept of
an empty date: it isn’t possible to compare actual dates with empty dates, yet that is often a busi-
ness requirement.

The SmartDate type is an attempt to resolve this issue. Repeating the problem with
SqlDataReader, the DateTime data type isn’t inheritable, so SmartDate can’t just subclass DateTime to
create a more powerful data type. Instead, it uses containment and delegation to create a new type
that provides the capabilities of the DateTime data type while also supporting the concept of an
empty date.

CHAPTER 2 ■ FRAMEWORK DESIGN88

6315_c02_final.qxd 4/13/06 12:27 PM Page 88

This isn’t as easy at it might at first appear, as you’ll see when the SmartDate class is implemented
in Chapter 5. Much of the complexity flows from the fact that applications often need to compare an
empty date to a real date, but an empty date might be considered very small or very large. You’ll see an
example of both cases in the sample application in Chapter 8.

The SmartDate class is designed to support these concepts, and to integrate with the
SafeDataReader so that it can properly interpret a null database value as an empty date.

SortedBindingList
The business framework will base its collections on BindingList(Of T), thus automatically support-
ing data binding as well as collection behaviors. The BindingList(Of T) class is an implementation
of the IBindingList interface. This interface not only defines basic data binding behaviors, but also
exposes methods for sorting the contents of the collection. Unfortunately, BindingList(Of T)
doesn’t implement this sorting behavior.

It would be possible to implement the sorting behaviors directly within the BusinessListBase
and ReadOnlyBindingList classes. Unfortunately, it turns out that sorting a collection in place is
somewhat complex. The complexity arises because IBindingList also supports the idea of remov-
ing the sort—thus presumably returning the collection’s contents to their original order. That
necessitates keeping a list of the original position of all items when a sort is applied. Add to this
the question of where to position newly added items, and things can get quite complex.

ADO.NET provides one possible solution through its use of DataView objects that are used
to provide sorted views of a DataTable. Taking a cue from ADO.NET, SortedBindingList provides
a sorted view of any IList(Of T) collection, including all collection objects that inherit from
BindingList(Of T). By implementing a sorted view, all the complexity of manipulating the origi-
nal collection is avoided. The original collection remains intact and unchanged, and
SortedBindingList just provides a sorted view of the collection.

That said, SortedBindingList will provide an editable view of a collection if the original source
collection is editable. In other words, editing a child object in a SortedBindingList directly edits the
child object in the source collection. Similarly, adding or removing an item from a
SortedBindingList directly adds or removes the item from the original collection.

Namespace Organization
At this point, I’ve walked through all the classes that will make up the business framework. Given
that there are quite a few classes and types required to implement the framework, there’s a need to
organize them for easier discovery and use. The solution for this is to organize the types into a set
of namespaces.

Namespaces allow you to group classes together in meaningful ways so that you can program
against them more easily. Additionally, namespaces allow different classes to have the same name
as long as they’re in different namespaces. From a business perspective, you might use a scheme
like the following:

MyCompany.MyApplication.FunctionalArea.Class

A convention like this immediately indicates that the class belongs to a specific functional area
within an application and organization. It also means that the application could have multiple
classes with the same names:

MyCompany.MyApplication.Sales.Product
MyCompany.MyApplication.Manufacturing.Product

CHAPTER 2 ■ FRAMEWORK DESIGN 89

6315_c02_final.qxd 4/13/06 12:27 PM Page 89

It’s quite likely that the concept of a “product” in sales is different from that in manufacturing,
and this approach allows reuse of class names to make each part of the application as clear and self-
documenting as possible.

The same is true when you’re building a framework. Classes should be grouped in meaningful
ways so that they’re comprehensible to the end developer. Additionally, use of the framework can
be simplified for the end developer by putting little-used or obscure classes in separate name-
spaces. This way, the business developer doesn’t typically see them via IntelliSense.

Consider the UndoableBase class, which isn’t intended for use by a business developer: it exists
for use within the framework only. Ideally, when business developers are working with the frame-
work, they won’t see UndoableBase via IntelliSense unless they go looking for it by specifically
navigating to a specialized namespace. The framework has some namespaces that are to be used
by end developers, and others that are intended for internal use.

All the namespaces in the framework are prefixed with component-based, scalable, logical
architecture (CSLA).

■Note CSLA was the name of the COM-based business object framework about which I wrote in the mid-to-late
1990s. In many ways, this book brings the basic concepts and capabilities of that architecture into the .NET envi-
ronment. In fact, .NET enables the CSLA concepts, though COM has often hindered them.

Table 2-7 lists the namespaces used in the CSLA .NET framework.

Table 2-7. Namespaces Used in the CSLA .NET Framework

Namespace Description

Csla Contains the types most commonly used by business developers

Csla.Core Contains the types that provide core functionality for the framework;
not intended for use by business developers

Csla.Data Contains the optional types used to support data access operations;
often used by business developers, web UI developers, and web service
developers

Csla.DataPortalClient Contains the types that support the client-side DataPortal behaviors;
used when creating a custom data portal proxy

Csla.Properties Contains code generated by Visual Studio for the Csla project; not
intended for use by business developers

Csla.Security Contains the types supporting authorization; used when creating a cus-
tom principal object

Csla.Server Contains the types supporting the server-side data portal behaviors;
not intended for use by business developers

Csla.Server.Hosts Contains the types supporting server-side data portal hosts; used when
creating a custom data portal host

Csla.Validation Contains the types supporting validation and business rules; often used
when creating rule methods

Csla.Web Contains the CslaDataSource control; used by web UI developers

Csla.Web.Design Contains the supporting types for the CslaDataSource control; not
intended for use by business developers

Csla.WebServiceHost Contains the Web Services data portal host; not intended for use by
business developers

Csla.Windows Contains controls to assist with Windows Forms data binding; used by
Windows UI developers

CHAPTER 2 ■ FRAMEWORK DESIGN90

6315_c02_final.qxd 4/13/06 12:27 PM Page 90

For instance, the primary base classes intended for use by business developers go into the Csla
namespace itself. They are named as follows:

• Csla.BusinessBase(Of T)

• Csla.BusinessListBase(Of T, C)

• Csla.ReadOnlyBase(Of T)

• Csla.ReadOnlyListBase(Of T, C)

• Csla.NameValueListBase(Of K, V)

• Csla.CommandBase

The rest of the classes and types in the framework are organized into the remaining name-
spaces based on their purposes. You’ll see how they all fit and are implemented in Chapters 3
through 5.

The end result is that a typical business developer can simply use the Csla namespace as
follows:

using Csla;

and all the developer will see are the classes intended for use during business development. All
the other classes and concepts within the framework are located in other namespaces, and there-
fore won’t appear in IntelliSense by default, unless the developer specifically imports those
namespaces.

When using custom authentication, you’ll likely import the Csla.Security namespace. But
if you’re not using that feature, you can ignore those classes and they won’t clutter up the devel-
opment experience. Similarly, Csla.Data and Csla.Validation may be used in some cases, as
you’ll see in Chapter 8. If the types they contain are useful, they can be brought into a class with
an Imports statement; otherwise, they are safely out of the way.

Conclusion
This chapter has examined some of the key design goals for the CSLA .NET business framework.
The key design goals include the following:

• N-level undo capability

• Tracking broken validation rules to tell if an object is valid

• Tracking whether an object’s data has changed (whether or not it’s “dirty”)

• Support for strongly typed collections of child objects

• Providing a simple and abstract model for the UI developer

• Full support for data binding in both Windows Forms and Web Forms

• Saving objects to a database and getting them back again

• Custom authentication

• Integrated authorization

• Other miscellaneous features

I’ve also walked you through the design of the framework itself, providing a high-level glimpse
into the purpose and rationale behind each of the classes that will make it up. With each class, I dis-
cussed how it relates back to the key goals to provide the features and capabilities of the framework.

CHAPTER 2 ■ FRAMEWORK DESIGN 91

6315_c02_final.qxd 4/13/06 12:27 PM Page 91

The chapter closed by defining the namespaces that contain the framework classes. This way,
they’re organized so that they’re easily understood and used.

Chapter 3 will implement the portions of the framework primarily geared toward supporting
the UI and data binding. Then, Chapter 4 will implement the data portal and object persistence.
Chapter 5 will wrap up loose ends by implementing the helper classes, such as SmartDate,
SafeDataReader, and others.

With the framework complete, the rest of the book will walk through the design and imple-
mentation of a sample application using object-oriented concepts and the CSLA .NET framework.
Those chapters will explore how the framework functions and how it meets the goals set forth in
this chapter.

CHAPTER 2 ■ FRAMEWORK DESIGN92

6315_c02_final.qxd 4/13/06 12:27 PM Page 92

Business Framework
Implementation

In Chapter 1, I discussed the concepts behind the use of business objects and distributed objects.
In Chapter 2, I explored the design of the business framework. In this chapter, we’re going to start
creating the CSLA .NET framework. The focus in this chapter is on the functionality required to sup-
port editable and read-only objects and collections. Specifically, the goal is to create the following
classes, along with all supporting classes and functionality:

• Csla.BusinessBase(Of T)

• Csla.BusinessListBase(Of T, C)

• Csla.ReadOnlyBase(Of T)

• Csla.ReadOnlyListBase(Of T, C)

These four base classes are the primary classes from which most business objects will inherit.
Chapter 5 will cover the other base classes: CommandBase and NameValueListBase.

BusinessBase and BusinessListBase rely on quite a number of other classes. For instance,
Csla.BusinessBase inherits from Csla.Core.BusinessBase, which inherits from
Csla.Core.UndoableBase. It also makes use of the ValidationRules and AuthorizationRules classes.

The end result is that this chapter will cover the creation of the four base classes, plus the types
and classes in the Csla.Core namespace and most of the types from the Csla.Validation and Csla.
Security namespaces. Table 3-1 lists all the classes discussed in this chapter.

Table 3-1. Classes Required to Support Editable and Read-Only Business Objects

Type Description

Csla.Core.IBusinessObject Interface implemented by all editable and read-only
base classes

Csla.Core.IUndoableObject Interface implemented by all editable base classes

Csla.Core.IEditableCollection Interface implemented by all editable collection base
classes

Csla.Core.IReadOnlyObject Interface implemented by all read-only base classes

Csla.Core.IReadOnlyCollection Interface implemented by all read-only collection
base classes

Csla.Core.ICommandObject Interface implemented by CommandBase

Csla.Core.ObjectCloner Clones any serializable object

Continued

93

C H A P T E R 3

■ ■ ■

6315_c03_final.qxd 4/13/06 12:29 PM Page 93

Table 3-1. Continued

Type Description

Csla.Core.BindableBase Implements INotifyPropertyChanged

Csla.NotUndoableAttribute Used to mark a field such that n-level undo ignores
the field’s value

Csla.Core.UndoableBase Implements n-level undo functionality

Csla.Core.BusinessBase Implements editable object functionality and data
binding support

Csla.Core.ReadOnlyBindingList Inherits from BindingList(Of T) to implement read-
only behaviors

Csla.Validation.RuleHandler Defines the method signature for rule methods

Csla.Validation.RuleArgs Defines the arguments passed to a rule handler
method

Csla.Validation.RuleMethod Contains information about a rule method

Csla.Validation.ValidationRules Maintains a list of rules associated with each object
property

Csla.Validation.BrokenRule Represents a single broken rule in the
BrokenRulesCollection

Csla.Validation.BrokenRulesCollection Maintains a list of currently broken validation rules
for a business object

Csla.Security.RolesForProperty Maintains a list of roles allowed or denied access for
a specific object property

Csla.Security.AuthorizationRules Maintains a list of roles allowed or denied access for
all object properties by using RolesForProperty
objects

Csla.BusinessBase Base class from which editable business classes will
inherit

Csla.BusinessListBase Base class from which editable business collection
classes will inherit

Csla.ReadOnlyBase Base class from which read-only business classes will
inherit

Csla.ReadOnlyListBase Base class from which read-only business collection
classes will inherit

The reasoning behind the existence of these classes, and the explanation of how they’re organ-
ized into namespaces, were covered in Chapter 2. In this chapter, I’ll focus mostly on the actual
implementation of each assembly and class.

This chapter will cover the creation of each class in turn. Obviously, this is a lot to cover, so the
chapter will only include the critical code from each class. You’ll want to download the code for the
book from the Apress website (www.apress.com) so you can see each complete class or type as it is
discussed.

Setting Up the CSLA .NET Project
Open Visual Studio 2005 and create a new Class Library project named Csla. I recommend imme-
diately saving the project using File ➤ Save All. Make sure the option to create a directory for the
solution is checked, as shown in Figure 3-1.

94 CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION

6315_c03_final.qxd 4/13/06 12:29 PM Page 94

Of course, the Class1.vb file needs to be removed in preparation for adding the classes that
belong to the framework.

Creating the Directory Structure
To keep all the source files in the project organized, the project needs a set of folders. Table 3-2 lists
the folders to add to the project.

Table 3-2. Folders in the Csla Project

Folder Purpose

Core Contains the Csla.Core types

Data Contains the Csla.Data types

DataPortal Contains files in the Csla namespace that are part of the data portal func-
tionality (see Chapter 4)

DataPortal\Client Contains Csla.DataPortal, along with the Csla.DataPortalClient proxy
classes (see Chapter 4)

DataPortal\Hosts Contains the Csla.Server.Hosts host classes (see Chapter 4)

DataPortal\Server Contains the Csla.Server types that implement the server-side data portal
functionality (see Chapter 4)

Security Contains the Csla.Security types

Validation Contains the Csla.Validation types

By organizing the various files into folders, the project will be far easier to create and manage.
Some of the folders listed here won’t be used until Chapter 4, but it is worth getting them all set up
now to be ready.

There’s an additional Diagrams folder in the code download, containing many of the diagrams
(or pieces of them at least) used to create the graphics in this book.

Supporting Localization
The CSLA .NET framework supports localization. For a framework, the key to supporting localiza-
tion is to avoid using any string literal values that might be displayed to the end user. The .NET
Framework and Visual Studio 2005 offer features to assist in this area through the use of resources.

In the Solution Explorer window, double-click on the Properties node under the Csla proj-
ect to bring up the project’s properties windows. Click on the Resources tab to navigate to the
built-in resource editor. Figure 3-2 shows this editor with several of the string resources from
Resources.resx.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 95

Figure 3-1. Saving the blank Csla solution

6315_c03_final.qxd 4/13/06 12:29 PM Page 95

The complete set of resources is available in the Resources.resx file in the download. Addi-
tionally, a number of people around the world have been kind enough to translate the resources
to various languages. As this is an ongoing process, please refer to www.lhotka.net/cslanet/
download.aspx for updates to the framework and resource files.

Now that the basic project has been set up, let’s walk through each class or type in turn. To keep
things organized, I’ll follow the basic order from Table 3-1 (with a couple of exceptions). This way,
the namespaces can be built one at a time.

Csla.Core Namespace
The Csla.Core namespace contains types that are not intended for business developers. Rather,
these types are intended for use by the CSLA .NET framework itself. This is a primary motivation
for putting them into their own namespace—to help keep them out of sight of business develop-
ers during normal development.

These types may also be useful to people who wish to extend the framework. For instance,
Core.BusinessBase could easily act as a starting point for creating some different or more advanced
BusinessBase-style class. Likewise, Core.ReadOnlyBindingList is useful as a base for creating any
type of read-only collection that supports data binding.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION96

Figure 3-2. Visual Studio resource editor

6315_c03_final.qxd 4/13/06 12:29 PM Page 96

IBusinessObject Interface
Generic types like BindingList(Of T) are very powerful because they allow a developer to easily
create a strongly typed instance of the generic type. For instance

Dim myStringList As BindingList(Of String)

defines a strongly typed collection of type String. Similarly

Dim myIntList As BindingList(Of Integer)

defines a strongly typed collection of type Integer. Since both myStringList and myIntList are “of
type” BindingList(Of T), you might think they are polymorphic—that you could write one method
that could act on both fields. But you can’t. Generic types are not inherited, and thus do not come
from the same type. This is highly counterintuitive at first glance, but nonetheless is a fact of life
when working with generic types.

Since CSLA .NET makes use of generic types (BusinessBase(Of T), BusinessListBase(Of T, C),
etc.), this is a problem. There are cases in which a UI developer will want to treat all business objects
the same—or at least be able to use the .NET type system to determine whether an object is a busi-
ness object or not.

In order to treat instances of a generic type polymorphically, or to do type checks to see if those
instances come from the same type, the generic type must inherit from a non-generic base class or
implement a non-generic interface. In the case of BindingList(Of T), the generic type implements
IBindingList. So both myStringList and myIntList can be treated as IBindingList types.

To provide this type of polymorphic behavior to CSLA .NET business objects, all business base
classes will implement Csla.Core.IBusinessObject. This, then, is the ultimate base type for all busi-
ness objects. Here’s the code for IBusinessObject:

Namespace Core

Public Interface IBusinessObject
End Interface

End Namespace

Notice that this interface has no members (methods, properties, etc). This is because there are
no common behaviors across both read-only and editable business objects. The interface remains
incredibly useful, however, because it allows code to easily detect whether an object is a business
object, through code like this:

If TypeOf theObject Is Csla.Core.IBusinessObject Then
' theObject is a business object

End If

The next couple of interfaces will have more members.

IUndoableObject Interface
In the same way that IBusinessObject provides a form of polymorphism and commonality
across all business objects, IUndoableObject does the same thing for editable business objects—
specifically those that inherit from BusinessBase(Of T) and BusinessListBase(Of T, C).

This polymorphic ability will be of critical importance in the implementation of UndoableBase
later in the chapter. UndoableBase needs to be able to treat all editable objects the same in order to
implement the n-level undo functionality.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 97

6315_c03_final.qxd 4/13/06 12:29 PM Page 97

Here’s the code for IUndoableObject:

Namespace Core

Public Interface IUndoableObject
Inherits IBusinessObject

Sub CopyState()
Sub UndoChanges()
Sub AcceptChanges()

End Interface

End Namespace

First notice that this interface inherits from the IBusinessObject interface. This means that all
editable objects implementing this interface will automatically be business objects in the broader
sense.

All editable objects support n-level undo. The n-level undo support implemented by
UndoableBase requires that every object implement the three methods listed in this interface.

Putting these methods in an interface is a double-edged sword. On one hand, it clearly defines
the methods and will make it easier to implement UndoableBase. On the other hand, these methods
are now potentially available to any code using a business object. In other words, a UI developer
could write code to call these methods—almost certainly causing nasty bugs and side effects,
because these methods aren’t designed for public use.

This is a difficult design decision when building frameworks. In this case, the benefits of having
a common interface for use by UndoableBase appears to outweigh the potential risk of a UI devel-
oper doing something foolish by calling the methods directly.

To help minimize this risk, the actual implementation methods in the base classes will keep
these methods Private. That way, they can only be called by directly casting the object to the
IUndoableObject type.

IEditableCollection Interface
While a BusinessListBase(Of T, C) is both a business object and an editable object, it is also a col-
lection. It turns out that collections need one extra behavior beyond a simple editable object, so the
IEditableCollection interface adds that extra method:

Namespace Core

<System.Diagnostics.CodeAnalysis.SuppressMessage(_
"Microsoft.Naming", "CA1711:IdentifiersShouldNotHaveIncorrectSuffix")> _
Public Interface IEditableCollection
Inherits IUndoableObject

Sub RemoveChild(ByVal child As Core.BusinessBase)
End Interface

End Namespace

The RemoveChild() method will be important later in the chapter, during the implementation
of BusinessBase and BusinessListBase, and specifically for the implementation of the System.
ComponentModel.IEditableObject interface. This interface has some tricky requirements for inter-
action between a child object in a collection and the collection itself.

Also notice the SuppressMessage attribute applied to the interface. Some versions of Visual Stu-
dio 2005 offer a code-analysis feature. This is a powerful feature that can be used to proactively find

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION98

6315_c03_final.qxd 4/13/06 12:29 PM Page 98

bugs and other problems with your code. It applies a set of naming standards to your code as part
of its analysis, which is often good. Sometimes, however, you don’t want to follow the recommenda-
tion. In that case, this attribute can be applied to tell code analysis to be silent on a specific issue.
You’ll see this type of attribute used here and there throughout the code in Chapters 3 through 5.

IReadOnlyObject Interface
In the same way that IBusinessObject provides a form of polymorphism and commonality across
all business objects, IReadOnlyObject does the same thing for read-only business objects—
specifically those that inherit from ReadOnlyBase(Of T).

It turns out that all read-only objects support a method for authorization: CanReadProperty().
This method is defined in the interface as follows:

Public Interface IReadOnlyObject
Inherits IBusinessObject

Function CanReadProperty(ByVal propertyName As String) As Boolean
End Interface

The CanReadProperty() method will be discussed later in the chapter.

IReadOnlyCollection Interface
The IReadOnlyCollection interface exists purely to support polymorphism for read-only collection
objects that inherit from ReadOnlyListBase(Of T, C). As such, it is an empty interface.

Public Interface IReadOnlyCollection
Inherits IBusinessObject

End Interface

You can use this interface to easily determine if a business object is a read-only collection as
needed within your business or UI code.

ICommandObject Interface
The final common interface is ICommandObject. Like IReadOnlyCollection, this is an empty
interface:

Public Interface ICommandObject
Inherits IBusinessObject

End Interface

Again, you can use this interface to easily determine if a business object inherits from
CommandBase within your business or UI code.

ObjectCloner Class
All read-only and editable objects will implement the System.ICloneable interface. This interface
defines a Clone() method that returns an exact copy of the original object. Also remember that all
business objects will be mobile objects: marked with the <Serializable()> attribute.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 99

6315_c03_final.qxd 4/13/06 12:29 PM Page 99

■Tip The primary reason I’m including this cloning implementation is to reinforce the concept that business
objects and any objects they reference must be serializable. Having implemented a Clone() method as part of
the framework, it becomes very easy to create a test harness that attempts to clone each of your business objects,
clearly establishing that they are all totally serializable.

Creating a clone of a serializable object is easily accomplished through the use of the
BinaryFormatter object in the System.Runtime.Serialization.Formatters.Binary namespace.
Still, the implementation is a few lines of code. Rather than replicating this code in every base class,
it can be centralized in a single object. All the base classes can then collaborate with this object to
perform the clone operation.

The class contains the following code:

Namespace Core

Friend Module ObjectCloner

Public Function Clone(ByVal obj As Object) As Object

Using buffer As New MemoryStream()
Dim formatter As New BinaryFormatter()

formatter.Serialize(buffer, obj)
buffer.Position = 0
Dim temp As Object = formatter.Deserialize(buffer)
Return temp

End Using

End Function

End Module

End Namespace

This code is implemented in a Module, as there is no reason to create an instance of the class.
Also notice that it has a scope of Friend, making it only available to classes within the CSLA .NET
framework.

The Clone() method itself uses the BinaryFormatter to serialize the object’s state into an in-
memory buffer. All objects referenced by the business object are also automatically serialized into
the same buffer. The combination of an object and all the objects it references, directly or indirectly,
is called an object graph.

The in-memory buffer is immediately deserialized to create a copy of the original object graph.
The buffer is then disposed, as it could consume a fair amount of memory, depending on the size of
the fields in your objects.

The resulting copy is returned to the calling code.

BindableBase Class
Editable objects that derive from Csla.BusinessBase will support data binding. One key interface
for Windows Forms data binding is System.ComponentModel.INotifyPropertyChanged. This interface
simply declares a single event: PropertyChanged.

In Chapter 2, I discussed the issue of serializing objects that declare events. If a non-
serializable object handles the event, then serialization will fail, because it will attempt to serialize

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION100

6315_c03_final.qxd 4/13/06 12:29 PM Page 100

the non-serializable object. Having just discussed the ObjectCloner class, it is clear that all business
objects must be serializable.

To avoid this issue, events must be declared in a more complex manner than normal. Specifi-
cally, they must be declared using a block structure such that it is possible to manually declare the
delegate field. That way, the field can be marked with the <NonSerialized()> attribute to prevent
serialization from attempting to serialize a non-serializable event handler.

To be slightly more clever, the implementation can maintain two delegate fields, one serializ-
able and one not. As event handlers are added, the code can check to see if the handler is contained
within a serializable object or not, and can add the event handler to the appropriate delegate.

All this functionality is encapsulated in Csla.Core.BindableBase. This is the base class from
which Csla.BusinessBase will ultimately derive. Here’s the code:

Namespace Core

<Serializable()> _
Public MustInherit Class BindableBase

Implements System.ComponentModel.INotifyPropertyChanged

Protected Sub New()

End Sub

<NonSerialized()> _
Private mNonSerializableHandlers As PropertyChangedEventHandler
Private mSerializableHandlers As PropertyChangedEventHandler

<System.Diagnostics.CodeAnalysis.SuppressMessage(_
"Microsoft.Design", "CA1062:ValidateArgumentsOfPublicMethods")> _

Public Custom Event PropertyChanged As PropertyChangedEventHandler _
Implements INotifyPropertyChanged.PropertyChanged

AddHandler(ByVal value As PropertyChangedEventHandler)
If value.Method.IsPublic AndAlso _
(value.Method.DeclaringType.IsSerializable OrElse _
value.Method.IsStatic) Then
mSerializableHandlers = _
DirectCast(System.Delegate.Combine(_
mSerializableHandlers, value), PropertyChangedEventHandler)

Else
mNonSerializableHandlers = _
DirectCast(System.Delegate.Combine(_
mNonSerializableHandlers, value), PropertyChangedEventHandler)

End If
End AddHandler

RemoveHandler(ByVal value As PropertyChangedEventHandler)
If value.Method.IsPublic AndAlso _
(value.Method.DeclaringType.IsSerializable OrElse _
value.Method.IsStatic) Then
mSerializableHandlers = DirectCast(_
System.Delegate.Remove(_
mSerializableHandlers, value), PropertyChangedEventHandler)

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 101

6315_c03_final.qxd 4/13/06 12:29 PM Page 101

Else
mNonSerializableHandlers = DirectCast(_
System.Delegate.Remove(_
mNonSerializableHandlers, value), PropertyChangedEventHandler)

End If
End RemoveHandler

RaiseEvent(ByVal sender As Object, ByVal e As PropertyChangedEventArgs)
Dim nonSerializableHandlers As PropertyChangedEventHandler = _
mNonSerializableHandlers

If nonSerializableHandlers IsNot Nothing Then
nonSerializableHandlers.Invoke(sender, e)

End If
Dim serializableHandlers As PropertyChangedEventHandler = _
mSerializableHandlers

If serializableHandlers IsNot Nothing Then
serializableHandlers.Invoke(sender, e)

End If
End RaiseEvent

End Event

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnIsDirtyChanged()

OnUnknownPropertyChanged()

End Sub

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnUnknownPropertyChanged()

Dim properties() As PropertyInfo = _
Me.GetType.GetProperties(BindingFlags.Public Or BindingFlags.Instance)

For Each item As PropertyInfo In properties
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(item.Name))

Next

End Sub

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnPropertyChanged(ByVal propertyName As String)
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(propertyName))

End Sub

End Class

End Namespace

It’s important that this class is marked as <Serializable()>. Ultimately, all business objects
will be serializable, and that means that any classes they inherit from must also be marked as
such. Also, the class is declared as MustInherit. This means that an instance of this class can’t be
created directly.

Before declaring the event itself, the code declares two delegate fields. These fields will hold
delegate references to all event handlers registered to receive the PropertyChanged event:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION102

6315_c03_final.qxd 4/13/06 12:29 PM Page 102

<NonSerialized()> _
Private mNonSerializableHandlers As PropertyChangedEventHandler
Private mSerializableHandlers As PropertyChangedEventHandler

Notice that one is declared with the <NonSerialized()> attribute, while the other is not. The
BinaryFormatter will ignore the first one and all objects referenced by that delegate field. Objects
referenced by the second field will be serialized as normal.

The event declaration uses a block structure, including AddHandler, RemoveHandler, and
RaiseEvent sections. Notice how the code in the AddHandler and RemoveHandler sections checks
to see if the event handler is contained within a serializable object:

If value.Method.IsPublic AndAlso _
(value.Method.DeclaringType.IsSerializable OrElse _
value.Method.IsStatic) Then

If the event handler is contained in a serializable object, it is added or removed from the serial-
izable delegate; otherwise it is added or removed from the non-serialized delegate.

The thing about events and inheritance is that an event can only be raised by code in the
class in which it is declared. This is because the event member can only be accessed directly
from the class in which it is defined. It can’t be raised by code in classes that inherit from this
class. This means that business objects can’t raise the PropertyChanged event directly, even
though that is the goal. To solve this problem, the code follows a standard .NET design pattern
by creating a Protected method that in turn raises the event:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnPropertyChanged(ByVal propertyName As String)
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(propertyName))

End Sub

Any classes that inherit from the base class can call this method when they want to raise the
event.

This method is marked with the <EditorBrowsable()> attribute, indicating that this is an
advanced method. In VB, this means that the method appears in the All tab in IntelliSense, and
won’t appear in the Common tab. In C#, this means that the method won’t appear in IntelliSense
unless the IDE is set to show advanced members.

The OnUnknownPropertyChanged() method covers a special case, different from the
OnPropertyChanged() method. Where OnPropertyChanged() raises the PropertyChanged event for
a single property, OnUnknownPropertyChanged() raises the event for all properties of the object:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnUnknownPropertyChanged()

Dim properties() As PropertyInfo = _
Me.GetType.GetProperties(BindingFlags.Public Or BindingFlags.Instance)

For Each item As PropertyInfo In properties
RaiseEvent PropertyChanged(_
Me, New PropertyChangedEventArgs(item.Name))

Next

End Sub

There are a number of cases in which the object’s state will change in such a way that it isn’t
possible to know which properties actually changed. In that case, this blanket notification approach
ensures that data binding is aware that something changed, so the UI updates as needed.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 103

6315_c03_final.qxd 4/13/06 12:29 PM Page 103

To do this, the method uses reflection to get a list of all the Public properties on the business
object, and then raises the PropertyChanged event for each item in the list. Since only Public proper-
ties can be bound through data binding, this ensures that data binding will refresh any properties
that are bound to the UI. The result is a base class that allows business objects to raise the
PropertyChanged event, thereby supporting data binding and serialization.

NotUndoableAttribute Class
As discussed in Chapter 2, editable business objects and collections will support n-level undo
functionality. Sometimes, however, objects may have values that shouldn’t be included in the
snapshot that’s taken before an object is edited. (These may be read-only values, or recalculated
values, or values that are simply so big—large images, perhaps—that you choose not to support
undo for them.)

The custom attribute NotUndoable is used to allow a business developer to indicate that a field
shouldn’t be included in the undo operation.

The UndoableBase class, which will implement the n-level undo operations, will detect whether
this attribute has been placed on any fields. If so, it will simply ignore that field within the undo
process, neither taking a snapshot of its value nor restoring it in the case of a cancel operation.

■Note Since this attribute will be used by business developers as they write normal business code, it will be
in the Csla namespace along with all the other types intended for use directly by business developers. It is also in
the main project directory rather than in the Core subdirectory.

The NotUndoableAttribute class contains the following code:

<AttributeUsage(AttributeTargets.Field)> _
Public NotInheritable Class NotUndoableAttribute
Inherits Attribute

End Class

The <AttributeUsage()> attribute specifies that this attribute can be applied only to fields.
Beyond that, the <NotUndoable()> attribute is merely a marker to indicate that certain actions
should (or shouldn’t) be taken by the n-level undo implementation, so there’s no real code here
at all.

UndoableBase Class
The UndoableBase class is where all the work to handle n-level undo for an object will take place.
This is pretty complex code that makes heavy use of reflection to find all the fields in each busi-
ness object, take snapshots of their values, and then (potentially) restore their values later in the
case of an undo operation.

Remember, nothing requires the use of n-level undo. In many web scenarios, as demon-
strated in Chapter 10, there’s no need to use these methods at all. A flat UI with no Cancel button
has no requirement for undo functionality, so there’s no reason to incur the overhead of taking a
snapshot of the object’s data. On the other hand, when creating a complex Windows Forms UI
that involves modal dialog windows to allow editing of child objects (or even grandchild objects),
it is often best to call these methods to provide support for the OK and Cancel buttons on each of
the dialog windows.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION104

6315_c03_final.qxd 4/13/06 12:29 PM Page 104

■Tip Typically, a snapshot of a business object’s fields is taken before the user or an application is allowed
to interact with the object. That way, you can always undo back to that original state. The BusinessBase and
BusinessListBase classes will include a BeginEdit() method that will trigger the snapshot process, a
CancelEdit() method to restore the object’s state to the last snapshot, and an ApplyEdit() method to commit
any changes since the last snapshot.

The reason this snapshot process is so complex is that the values of all fields in each object
must be copied, and each business object is essentially composed of several classes all merged
together through inheritance and aggregation. This causes problems when classes have fields
with the same names as fields in the classes they inherit from, and it causes particular problems
if a class inherits from another class in a different assembly.

Since this will be a base class from which Csla.BusinessBase will ultimately derive, it must be
marked as <Serializable()>. It should also be declared as MustInherit, so that no one can create
an instance of this class directly. All business objects need to utilize the INotifyPropertyChanged
interface implemented in BindableBase so they’ll inherit from that, too. Finally, the n-level undo
functionality relies on the Csla.Core.IUndoableObject interface, so that will be implemented in
this class (and in BusinessListBase later in the chapter):

<Serializable()> _
Public MustInherit Class UndoableBase
Inherits Csla.Core.BindableBase

Implements IUndoableObject

End Class

With that base laid down, I can start to discuss how to implement the undo functionality. There
are three operations involved: taking a snapshot of the object state, restoring the object state in case
of an undo, and discarding the stored object state in case of an accept operation.

Additionally, if this object has child objects that implement Csla.Core.IUndoableObject, those
child objects must also perform the store, restore, and accept operations. To achieve this, any time
the algorithm encounters a field that’s derived from either of these types, it will cascade the opera-
tion to that object so it can take appropriate action.

The three operations will be implemented by a set of three methods:

• CopyState()

• UndoChanges()

• AcceptChanges()

CopyState
The CopyState() method will take a snapshot of the object’s current data and store it in a System.
Collections.Generic.Stack(Of T) object.

Stacking the Data

Since this is an implementation of n-level undo capability, each object could end up storing a
number of snapshots. As each undo or accept operation occurs, it will get rid of the most recent
snapshot stored; this is the classic behavior of a “stack” data structure. Fortunately, the .NET
Framework includes a prebuilt Stack(Of T) class that implements the required functionality.
It is declared as follows:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 105

6315_c03_final.qxd 4/13/06 12:29 PM Page 105

<NotUndoable()> _
Private mStateStaStack(Of T)ck As New Stack(Of Byte())

This field is marked as <NotUndoable()> to prevent taking a snapshot of previous snapshots.
CopyState() should just record the fields that contain actual business data. Once a snapshot has
been taken of the object’s data, the snapshot will be serialized into a single byte stream. That byte
stream is then put on the stack. From there, it can be retrieved and deserialized to perform an
undo operation if needed.

Taking a Snapshot of the Data

The process of taking a snapshot of each field value in an object is a bit tricky. Reflection is used
to walk through all the fields in the object. During this process, each field is checked to determine
if it has the <NotUndoable()> attribute. If so, the field is ignored.

The big issue is that field names may not be unique within an object. To see what I mean, con-
sider the following two classes:

Public Class BaseClass

Dim mId As Integer

End Class

Public Class SubClass
Inherits BaseClass

Dim mId As Integer

End Class

Here, each class has its own field named mId—and in most circumstances, that’s not a prob-
lem. However, when using reflection to walk through all the fields in a SubClass object, it will
return two mId fields: one for each of the classes in the inheritance hierarchy.

To get an accurate snapshot of an object’s data, CopyState() needs to accommodate this
scenario. In practice, this means prefixing each field name with the name of the class to which
it belongs. Instead of two mId fields, the result is BaseClass!mId and SubClass!mId. The use of an
exclamation point for a separator is arbitrary, but some character is necessary to separate the
class name from the field name.

As if this weren’t complex enough, reflection works differently with classes that are subclassed
from other classes in the same assembly than with classes that are subclassed from classes in a dif-
ferent assembly. If in the example above, BaseClass and SubClass are in the same assembly, one
technique can be used, but if they’re in different assemblies, a different technique will be necessary.
Of course, CopyState() should deal with both scenarios so the business developer doesn’t have to
worry about these details.

■Note Not all the code for UndoableBase is listed in the book. I’m only covering the key parts of the algorithm.
For the rest of the code, please refer to the download.

The following method deals with all of the preceding issues. I’ll walk through how it works after
the listing.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION106

6315_c03_final.qxd 4/13/06 12:29 PM Page 106

<EditorBrowsable(EditorBrowsableState.Never)> _
Protected Friend Sub CopyState() Implements IUndoableObject.CopyState

Dim currentType As Type = Me.GetType
Dim state As New HybridDictionary()
Dim fields() As FieldInfo
Dim field As FieldInfo
Dim fieldName As String

Do
' get the list of fields in this type
fields = currentType.GetFields(_

BindingFlags.NonPublic Or _
BindingFlags.Instance Or _
BindingFlags.Public)

For Each field In fields
' make sure we process only our variables
If field.DeclaringType Is currentType Then
' see if this field is marked as not undoable
If Not NotUndoableField(field) Then
' the field is undoable, so it needs to be processed
Dim value As Object = field.GetValue(Me)

If GetType(Csla.Core.IUndoableObject). _
IsAssignableFrom(field.FieldType) Then

' make sure the variable has a value
If Not value Is Nothing Then
' this is a child object, cascade the call
DirectCast(value, IUndoableObject).CopyState()

End If

Else
' this is a normal field, simply trap the value
fieldName = field.DeclaringType.Name & "!" & field.Name
state.Add(fieldName, value)

End If

End If

End If
Next

currentType = currentType.BaseType

Loop Until currentType Is GetType(UndoableBase)

' serialize the state and stack it
Using buffer As New MemoryStream
Dim formatter As New BinaryFormatter
formatter.Serialize(buffer, state)
mStateStack.Push(buffer.ToArray)

End Using
CopyStateComplete()

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 107

6315_c03_final.qxd 4/13/06 12:29 PM Page 107

End Sub

Protected Overridable Sub CopyStateComplete()

End Sub

This method is scoped as Protected Friend, which is a bit unusual. The method needs
Protected scope because BusinessBase will subclass UndoableBase, and the BeginEdit() method
in BusinessBase will need to call CopyState(). That part is fairly straightforward.

The method also needs Friend scope, however, because child business objects will be con-
tained within business collections. When a collection needs to take a snapshot of its data, what
that really means is that the objects within the collection need to take snapshots of their data.
BusinessListBase will include code that goes through all the business objects it contains, telling
each business object to take a snapshot of its state. This will be done via the CopyState() method,
which means that BusinessListBase needs the ability to call this method, too. Since it’s in the
same project, this is accomplished with Friend scope.

To take a snapshot of data, there needs to be somewhere to store the various field values
before they are pushed onto the stack. A HybridDictionary is ideal for this purpose, as it stores
name/value pairs. It also provides high-speed access to values based on their names, which will
be important for the undo implementation. Finally, the HybridDictionary object supports .NET
serialization, which means that it can be serialized and passed by value across the network as
part of a business object.

The CopyState() routine is essentially a big loop that starts with the outermost class in the
object’s inheritance hierarchy and walks back up through the chain of classes until it gets to
UndoableBase. At that point, it can stop—it knows that it has a snapshot of all the business data.

At the end of the method there’s a call to CopyStateComplete(). Notice that
CopyStateComplete() is an Overridable method with no implementation. The idea is that a sub-
class can override this method if additional actions should be taken once the object’s state is
copied. While this method won’t be overridden in the framework, it provides an extensibility
point for advanced business developers.

Getting a List of Fields

It’s inside the loop where the real work occurs. The first step is to get a list of all the fields corres-
ponding to the current class:

' get the list of fields in this type
fields = currentType.GetFields(_

BindingFlags.NonPublic Or _
BindingFlags.Instance Or _
BindingFlags.Public)

It doesn’t matter whether the fields are Public—they all need to be recorded regardless of
scope. What’s more important is to only record instance fields, not those declared as Shared. The
result of this call is an array of FieldInfo objects, each of which corresponds to a field in the busi-
ness object.

Avoiding Double-Processing of Fields

As discussed earlier, the FieldInfo array could include fields from the base classes of the current
class. Due to the way the Just-in-Time (JIT) compiler optimizes code within the same assembly, if
some base classes are in the same assembly as the actual business class, the same field name may

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION108

6315_c03_final.qxd 4/13/06 12:29 PM Page 108

be listed in multiple classes! As the code walks up the inheritance hierarchy, it could end up pro-
cessing those fields twice. To avoid this, the code only looks at the fields that directly belong to the
class currently being processed:

For Each field As FieldInfo In fields
' make sure we process only our variables
If field.DeclaringType Is currentType Then

Skipping <NotUndoable()> Fields

At this point in the proceedings, it has been established that the current FieldInfo object refers to
a field within the object that’s part of the current class in the inheritance hierarchy. However, a
snapshot of the field should only be taken if it doesn’t have the <NotUndoable()> attribute:

' see if this field is marked as not undoable
If Not NotUndoableField(field) Then

Having reached this point, it is clear that the field value needs to be part of the snapshot, so
there are two possibilities: this may be a regular field or it may be a reference to a child object that
implements Csla.Core.IUndoableObject.

Cascading the Call to Child Objects or Collections

If the field is a reference to a Csla.Core.IUndoableObject, the CopyState() call must be cascaded
to that object so that it can take its own snapshot:

If GetType(Csla.Core.IUndoableObject). _
IsAssignableFrom(field.FieldType) Then

' make sure the variable has a value
If Not value Is Nothing Then
' this is a child object, cascade the call
DirectCast(value, IUndoableObject).CopyState()

End If

If an object were to “reach into” another object and manipulate its state, it would break encap-
sulation. Instead, it is up to that other object to manage its own state. By cascading the CopyState()
call to the child object, it is up to that child object to take a snapshot of its own state. Keep in mind
that if the child object is derived from BusinessListBase, the call will automatically be cascaded
down to each individual child object in the collection.

■Tip Of course, the GetValue() method returns everything as type object, so the result is casted to Csla.
Core.IUndoableObject in order to call the method.

Later on, the methods to undo or accept any changes will work the same way—that is,
they’ll cascade the calls to any child objects. This way, all objects handle undo without breaking
encapsulation.

Taking a Snapshot of a Regular Field

With a regular field, the code simply stores the field value into the Hashtable object, associating that
value with the combined class name and field name:

' this is a normal field, simply trap the value
fieldName = field.DeclaringType.Name & "!" & field.Name
state.Add(fieldName, value)

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 109

6315_c03_final.qxd 4/13/06 12:29 PM Page 109

Note that these “regular” fields might actually be complex types in and of themselves. All
that is known is that the field doesn’t reference an editable business object, since the value didn’t
implement Csla.Core.IUndoableObject. It could be a simple value such as an Integer or String,
or it could be a complex object (as long as that object is marked as <Serializable()>).

Having gone through every field for every class in the object’s inheritance hierarchy, the
Hashtable will contain a complete snapshot of all the data in the business object.

■Note This snapshot will include some fields put into the BusinessBase class to keep track of the object’s
status (such as whether it’s new, dirty, deleted, etc.). The snapshot will also include the collection of broken rules
that will be implemented later. An undo operation will restore the object to its previous state in every way.

Serializing and Stacking the Hashtable

At this point, the object’s field values have been recorded, but the snapshot is in a complex data
type: a Hashtable. To further complicate matters, some of the elements contained in the Hashtable
might be references to more complex objects. In that case, the Hashtable just has a reference to the
existing object, not a copy or a snapshot at all.

Fortunately, there’s an easy answer to both issues. The BinaryFormatter can be used to convert
the Hashtable to a byte stream, reducing it from a complex data type to a very simple one for stor-
age. Better yet, the very process of serializing the Hashtable will automatically serialize any objects
to which it has references.

This does require that all objects referenced by any business objects must be marked as
<Serializable()>, so that they can be included in the byte stream. If referenced objects aren’t
serializable, the serialization attempt will result in a runtime error. Alternatively, any non-
serializable object references can be marked as <NotUndoable()> so that the undo process simply
ignores them.

The code to do the serialization is fairly straightforward:

' serialize the state and stack it
Using buffer As New MemoryStream
Dim formatter As New BinaryFormatter
formatter.Serialize(buffer, state)
mStateStack.Push(buffer.ToArray)

End Using

This code is quite comparable to the cloning code implemented earlier in the ObjectCloner
class.

The BinaryFormatter object serializes the Hashtable (and any objects to which it refers) into
a stream of bytes in an in-memory buffer. The byte stream is simply extracted from the in-memory
buffer and pushed onto the stack:

mStateStack.Push(buffer.ToArray)

Converting a MemoryStream to a byte array is not an issue since the MemoryStream is imple-
mented to store its data in a byte array. The ToArray() method simply returns a reference to that
existing array, so no data is copied.

The act of conversion to a byte array is important, however, because a byte array is serial-
izable, while a MemoryStream object is not. If the business object is passed across the network by
value while it is being edited, the stack of states needs to be serializable.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION110

6315_c03_final.qxd 4/13/06 12:29 PM Page 110

■Tip Passing objects across the network while they’re being edited is not anticipated, but since business
objects are serializable, you can’t prevent the business developer from doing just that. If the stack were to
reference a MemoryStream, the business application would get a runtime error as the serialization failed, and
that’s not acceptable. Converting the data to a byte array avoids accidentally crashing the application on the
off chance that the business developer decides to pass an object across the network as it’s being edited.

At this point, we’re a third of the way through implementing n-level undo support. It is now
possible to create a stack of snapshots of an object’s data. It is time to move on and discuss the undo
and accept operations.

UndoChanges
The UndoChanges() method is the reverse of CopyState(). It takes a snapshot of data off the stack,
deserializes it back into a Hashtable, and then takes each value from the Hashtable and restores it
into the appropriate object field. Like CopyState(), once this method is complete, an Overridable
UndoChangesComplete() method is called to allow subclasses to take additional actions. This method
will be overridden later in Csla.Core.BusinessBase.

The hard issues of walking through the types in the object’s inheritance hierarchy and find-
ing all the fields in the object were solved in the implementation of CopyState(). The structure of
UndoChanges() will therefore be virtually identical, except that it will restore field values rather
than take a snapshot.

Since the overall structure of UndoChanges() is essentially the reverse of CopyState(), I won’t
show the entire code here. Rather, I’ll focus on the key functionality.

EditLevel

It is possible for a business developer to accidentally trigger a call to UndoChanges() when there is
no state to restore. If this condition isn’t caught, it will cause a runtime error. To avoid such a sce-
nario, the first thing the UndoChanges() method does is to get the “edit level” of the object by
retrieving the Count property from the stack object. If the edit level is 0, then there’s no state to
restore, and UndoChanges() just exits without doing any work.

This edit level concept will become even more important later during the implementation of
BusinessListBase, and so you’ll notice that the value is implemented as a property.

Re-Creating the Hashtable Object

Where CopyState() serializes the Hashtable into a byte array at the end of the process, the first thing
UndoChanges() needs to do is pop the most recently added snapshot off the stack and deserialize it
to re-create the Hashtable object containing the detailed values:

Dim state As HybridDictionary
Using buffer As New MemoryStream(mStateStack.Pop())
buffer.Position = 0
Dim formatter As New BinaryFormatter()
state = _
CType(formatter.Deserialize(buffer), HybridDictionary)

End Using

This is the reverse of the process used to put the Hashtable onto the stack in the first place. The
result of this process is a Hashtable containing all the data that was taken in the original snapshot.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 111

6315_c03_final.qxd 4/13/06 12:29 PM Page 111

Restoring the Object’s State Data

With the Hashtable containing the original object values restored, it is possible to loop through
the fields in the object in the same manner as CopyState().

When the code encounters a child business object that implements Csla.Core.
IUndoableObject, it cascades the UndoChanges() call to that child object so that it can do its own
restore operation. Again, this is done to preserve encapsulation—only the code within a given
object should manipulate that object’s data.

With a “normal” field, its value is simply restored from the Hashtable:

' this is a regular field, restore its value
fieldName = field.DeclaringType.Name & "!" & field.Name
field.SetValue(Me, state.Item(fieldName))

At the end of this process, the object will be reset to the state it had when the most recent
snapshot was taken. All that remains is to implement a method to accept changes, rather than to
undo them.

AcceptChanges
AcceptChanges() is actually the simplest of the three methods. If changes are being accepted, it
means that the current values in the object are the ones that should be kept, and the most recent
snapshot is now meaningless and can be discarded. Like CopyState(), once this method is com-
plete, an Overridable AcceptChangesComplete() method is called to allow subclasses to take
additional actions.

In concept, this means that all AcceptChanges() needs to do is discard the most recent
snapshot:

mStateStack.Pop()

However, it is important to remember that the object may have child objects, and they need
to know to accept changes as well. This requires looping through the object’s fields to find any
child objects that implement Csla.Core.IUndoableObject. The AcceptChanges() method call must
be cascaded to them, too.

The process of looping through the fields of the object is the same as in CopyState() and
UndoChanges(). The only difference is where the method call is cascaded:

' the field is undoable so see if it is editable
If GetType(Csla.Core.IUndoableObject). _
IsAssignableFrom(field.FieldType) Then
Dim value As Object = field.GetValue(Me)
' make sure the variable has a value
If Not value Is Nothing Then
' it is a child object so cascade the call
DirectCast(value, IUndoableObject).AcceptChanges()

End If
End If

Simple field values don’t need any processing. Remember that the idea is that the current
values have been accepted—so there’s no need to change those current values at all.

BusinessBase Class
The next class listed in Table 3-1 is Csla.Core.BusinessBase. This class will implement most of the
functionality for a single editable object, and combine the n-level undo, validation rules, and

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION112

6315_c03_final.qxd 4/13/06 12:29 PM Page 112

authorization rules, along with some data binding support. Given that the validation and authori-
zation classes are later in the chapter, you may need to look forward in the chapter to see the full
implementation of each feature.

Like all base classes, this class must be serializable and MustInherit. It inherits from
UndoableBase (and therefore also from BindableBase):

Namespace Core

<Serializable()> _
Public MustInherit Class BusinessBase
Inherits UndoableBase

Implements System.ComponentModel.IEditableObject
Implements ICloneable
Implements IDataErrorInfo

Not only does this class inherit from UndoableBase, but it also implements System.
ComponentModel.IEditableObject and System.ComponentModel.IDataErrorInfo to provide data bind-
ing support. It also implements System.ICloneable, and so the object will have a Clone() method.

This class pulls together a lot of functionality. The goal is to abstract all this functionality into
a set of easily understood behaviors that simplify the creation of business objects. Table 3-3 lists the
functional areas.

Table 3-3. Functional Areas Implemented in Csla.Core.BusinessBase

Functional Area Description

Tracking object status Keeps track of whether the object is new, old, dirty, clean,
or marked for deletion

N-level undo Provides access to the underlying n-level undo functionality
implemented in UndoableBase, and implements the
IEditableObject interface

Root, parent, and child behaviors Implement behaviors so that the object can function as
either a stand-alone object, a parent object, or a child of
another object or collection

Validation rules Provide abstract access to the validation rules behavior
(discussed later in the chapter) and implement the
IDataErrorInfo interface

Authorization rules Provide abstract access to the authorization rules behavior
(discussed later in the chapter)

Cloning Implements the ICloneable interface

■Tip Of course, there will also be code in BusinessBase to support data access—a topic discussed in
Chapter 4. In this chapter, the focus is on the behaviors that support the creation of the user interface and the
implementation of non–data access business logic.

Tracking Object Status
All editable business objects should keep track of whether the object has just been created, whether
its data has been changed, or whether it has been marked for deletion. Using the validation rules
functionality, the object can also keep track of whether it’s valid. Table 3-4 lists the object status
properties in BusinessBase.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 113

6315_c03_final.qxd 4/13/06 12:29 PM Page 113

Table 3-4. Object Status Properties

Property Description

IsNew Indicates whether the object’s primary identifying value in memory corresponds
to a corresponding primary key in a database—if not, the object is new

IsDirty Indicates whether the object’s data in memory is known to be different from data
in the database—if different, the object is dirty

IsValid Indicates whether the object currently has any broken validation rules—if so, the
object is not valid

IsSavable Combines IsValid and IsDirty—only a valid and dirty object is savable

IsDeleted Indicates whether the object is marked for deletion

I will now discuss the concepts behind an object being new, dirty, valid, and marked for
deletion.

IsNew

When an object is “new,” it means that the object exists in memory, but not in the database or
other persistent store. If the object’s data resides in the database, then the object is considered to
be “old.” I typically think of it this way: if the primary key value in the object corresponds to an
existing primary key value in the database, then the object is old; otherwise it is new.

The value behind the IsNew property is stored in an mIsNew field. When an object is first created,
this value defaults to the object being new:

Private mIsNew As Boolean = True

If the object is then loaded with data from the database, the mIsNew field is set to False, through
a protected MarkOld() method:

Protected Overridable Sub MarkOld()
mIsNew = False
MarkClean()

End Sub

Notice that this process also sets the object to a “clean” status—a concept discussed later for
the IsDirty property. When an object’s data has just been loaded from the database, it is safe to
assume that the object’s data matches the data in the database and so has not been changed—and
thus is “clean.”

There’s also a corresponding MarkNew() method:

Protected Overridable Sub MarkNew()
mIsNew = True
mIsDeleted = False
MarkDirty()

End Sub

Typically, this method is called upon deletion of an existing object, but it can be used any
time the business developer knows that the object does not correspond to data in the database.
In such a case, not only is the object “new,” but it must also be “dirty,” because the data in the
object does not match data in the database. The concept of being marked for deletion will be dis-
cussed later with the IsDeleted property, but a new object shouldn’t be marked for deletion, and
so this flag is set to False.

Knowing whether an object is new or old will allow for implementation of the data access code
in Chapter 4. The IsNew property will control the choice of whether to insert or update data into the
database.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION114

6315_c03_final.qxd 4/13/06 12:29 PM Page 114

Sometimes, the IsNew property can be useful to the UI developer as well. Some UI behaviors
may be different for a new object than an existing object. The ability to edit the object’s primary key
data is a good example—this is often editable only up to the point that the data has been stored in
the database. When the object becomes “old,” the primary key is fixed.

IsDirty

An object is considered to be “dirty,” or changed, when the values in the object’s fields do not match
the values in the database. If the values in the object’s fields do match the values in the database,
then the object is not dirty. It is virtually impossible to always know whether the object’s values
match those in the database, so the implementation shown here acts on a “best guess.” The imple-
mentation relies on the business developer to indicate when an object has been changed and thus
has become dirty.

The current status of the value is maintained in a field:

Private mIsDirty As Boolean = True

The value is then exposed as a property:

<Browsable(False)> _
Public Overridable ReadOnly Property IsDirty() As Boolean
Get
Return mIsDirty

End Get
End Property

Notice that this property is marked as Overridable. This is important because sometimes a
business object isn’t simply dirty because its data has changed. For instance, consider a business
object that contains a collection of child objects—even if the business object’s data hasn’t changed,
it will be dirty if any of its child objects have changed. In this case, the business developer will need
to override the IsDirty property to provide a more sophisticated implementation. This will be
clearly illustrated in Chapter 7, in the implementation of the example business objects.

Also notice that the property is adorned with the <Browsable()> attribute from the System.
ComponentModel namespace. This attribute tells data binding not to automatically bind this prop-
erty. Without this attribute, data binding would automatically display this property in grids and on
forms—and typically, this property shouldn’t be displayed. This attribute is used on other proper-
ties in BusinessBase as well.

The IsDirty property defaults to True, since a new object’s field values won’t correspond to
values in the database. If the object’s values are subsequently loaded from the database, this value
will be changed to False when MarkOld() is called. Remember that MarkOld() calls a MarkClean()
method:

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Sub MarkClean()
mIsDirty = False
OnUnknownPropertyChanged()

End Sub

This method not only sets the value to False, but calls the OnUnknownPropertyChanged()
method implemented in Csla.Core.BindableBase to raise the PropertyChanged event for all object
properties. This notifies data binding that the object has changed, so Windows Forms can refresh
the display for the user.

There’s a corresponding MarkDirty() method as well. This method will be called from various
points in an object’s lifetime, including any time a property value is changed, or when the MarkNew()
method is called.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 115

6315_c03_final.qxd 4/13/06 12:29 PM Page 115

When a property value has been changed, a specific PropertyChanged event will be raised for
that property.

If MarkDirty() is called at other times, when a specific property value wasn’t changed, then the
PropertyChanged event for all object properties should be raised. That way, data binding is notified
of the change if any object property is bound to a UI control.

To be clear, the goal is to ensure that at least one PropertyChanged event is raised any time the
object’s state changes. If a specific property were changed, then the PropertyChanged event should
be raised for that property. But if there’s no way to tell which properties were changed (like when the
object is persisted to the database) there’s no real option but to raise PropertyChanged for every
property.

Implementing this requires a couple of overloads of the MarkDirty() method:

Protected Sub MarkDirty()
MarkDirty(False)

End Sub

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Sub MarkDirty(ByVal supressEvent As Boolean)
mIsDirty = True
If Not supressEvent Then
OnUnknownPropertyChanged()

End If
End Sub

The first overload can be called by a business developer if they want to manually mark the
object as changed. This is intended for use when unknown properties may have changed.

The second overload is called by the PropertyHasChanged() method:

Protected Sub PropertyHasChanged(ByVal propertyName As String)
ValidationRules.CheckRules(propertyName)
MarkDirty(True)
OnPropertyChanged(propertyName)

End Sub

The PropertyHasChanged() method is called by the business developer to indicate that a
specific property has changed. Notice that in this case, any validation rules for the property are
checked (the details on this are discussed later in the chapter). Then the object is marked as being
dirty by raising the PropertyChanged event for the specific property that was changed.

■Tip This method is Overridable, allowing you to add extra steps to the process if needed. Additionally, this
means you can override the behavior to implement field-level dirty tracking if desired.

Calling PropertyHasChanged() by passing the property name as a string value would mean
hard-coding the property name in code. String literals are notoriously difficult to maintain, so
there’s an overload to automatically glean the property name at runtime:

<System.Runtime.CompilerServices.MethodImpl(_
System.Runtime.CompilerServices.MethodImplOptions.NoInlining)> _

Protected Sub PropertyHasChanged()
Dim propertyName As String = _
New System.Diagnostics.StackTrace(). _
GetFrame(1).GetMethod.Name.Substring(4)

PropertyHasChanged(propertyName)
End Sub

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION116

6315_c03_final.qxd 4/13/06 12:29 PM Page 116

This implementation uses System.Diagnostics to retrieve the name of the method or property
that called PropertyHasChanged(). The <MethodImpl()> attribute prevents the compiler from merg-
ing this code directly into the property itself, since that would confuse the System.Diagnostics call.

There is a performance penalty (akin to using reflection) to calling System.Diagnostics like this,
but I am usually happy to pay that price to avoid using string literals for property names through a
business class. Using this method, a business object’s property will look like this:

Public Property Name() As String
Get
CanReadProperty(True)
Return mName

End Get
Set(ByVal value As String)
CanWriteProperty(True)
If mName <> value Then
mName = value
PropertyHasChanged()

End If
End Set

End Property

The PropertyHasChanged() call doesn’t require the property name because it is automatically
retrieved using System.Diagnostics. If you feel the performance penalty for that approach is too
high, you can always hard-code the property name as a parameter to every PropertyHasChanged()
method call.

Either way, the property’s validation rules are checked, the IsDirty property is set to True, and
the appropriate PropertyChanged event is raised.

IsValid

An object is considered to be valid if it has no currently broken validation rules. The Csla.
Validation namespace is covered later in the chapter and provides management of the business
rules. The IsValid property merely exposes a flag indicating whether the object currently has bro-
ken rules or not:

<Browsable(False)> _
Public Overridable ReadOnly Property IsValid() As Boolean
Get
Return ValidationRules.IsValid

End Get
End Property

As with IsDirty, this property is marked with the <Browsable()> attribute so data binding
defaults to ignoring the property.

IsSavable

An object should only be saved to the database if it is valid and its data has changed. The IsValid
property indicates whether the object is valid, and the IsDirty property indicates whether the
object’s data has changed. The IsSavable property is a simple helper to combine those two
properties into one:

<Browsable(False)> _
Public Overridable ReadOnly Property IsSavable() As Boolean
Get
Return IsDirty AndAlso IsValid

End Get
End Property

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 117

6315_c03_final.qxd 4/13/06 12:29 PM Page 117

The primary purpose for this property is to allow a Windows Forms UI developer to bind the
Enabled property of a Save button such that the button is only enabled if the object can be saved.

IsDeleted

The CSLA .NET framework provides for deferred or immediate deletion of an object. The immedi-
ate approach directly deletes an object’s data from the database without first loading the object
into memory. It requires prior knowledge of the object’s primary key value(s), and is discussed in
Chapter 4, as it is directly linked to data access.

The deferred approach requires that the object be loaded into memory. The user can then view
and manipulate the object’s data, and may decide to delete the object, in which case the object is
marked for deletion. The object is not immediately deleted, but rather it is deleted if and when the
object is saved to the database. At that time, instead of inserting or updating the object’s data, it is
deleted from the database.

This approach is particularly useful for child objects in a collection. In such a case, the user
may be adding and updating some child objects at the same time as deleting others. All the insert,
update, and delete operations occur in a batch when the collection is saved to the database.

Whether an object is marked for deletion or not is tracked by the mIsDeleted field and
exposed through an IsDeleted property. As with IsDirty, there’s a Protected method to allow the
object to be marked for deletion when necessary:

Protected Sub MarkDeleted()
mIsDeleted = True
MarkDirty()

End Sub

Of course, marking the object as deleted is another way of changing its data, so the
MarkDirty() method is called to indicate that the object’s state has been changed.

The MarkDeleted() method is called from the Delete() and DeleteChild() methods. The
Delete() method is used to mark a non-child object for deferred deletion, while DeleteChild()
is called by a parent object (like a collection) to mark the child object for deferred deletion:

Public Sub Delete()
If Me.IsChild Then
Throw New NotSupportedException(My.Resources.ChildDeleteException)

End If

MarkDeleted()
End Sub

Friend Sub DeleteChild()
If Not Me.IsChild Then
Throw New NotSupportedException(My.Resources.NoDeleteRootException)

End If

MarkDeleted()
End Sub

Both methods do the same thing: call MarkDelete(). But Delete() is scoped as Public and
can only be called if the object is not a child object (a topic covered later in the discussion about
parent and child object behaviors). Conversely, DeleteChild() can only be called if the object is
a child. Since it is intended for use by BusinessListBase, it is scoped as Friend.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION118

6315_c03_final.qxd 4/13/06 12:29 PM Page 118

N-Level Undo
UndoableBase implements the basic functionality to take snapshots of an object’s data and then
perform undo or accept operations using these snapshots. These methods were implemented as
Protected methods, so they’re not available for use by code in the UI. The BusinessBase class will
implement three standard methods for use by the UI code, as described in Table 3-5.

Table 3-5. Object-Editing Methods in BusinessBase

Method Description

BeginEdit() Initiates editing of the object. Triggers a call to CopyState().

CancelEdit() Indicates that the user wants to undo her recent changes. Triggers a call to
UndoChanges().

ApplyEdit() Indicates that the user wants to keep her recent changes. Triggers a call to
AcceptChanges().

The System.ComponentModel.IEditableObject interface also ties into n-level undo as well as
supporting data binding. This interface is used by Windows Forms data binding to control the edit-
ing of objects—specifically, to provide a single level of undo behavior.

When using n-level undo, the UI should start by calling BeginEdit(). If the user then clicks
a Cancel button, the CancelEdit() method can be called. If the user clicks a Save or an Accept but-
ton, then ApplyEdit() can be called. See Chapter 8 for an example of using n-level undo within a
rich Windows Forms UI.

Calling BeginEdit() multiple times will cause stacking of states. This allows complex hier-
archical interfaces to be created, in which each form has its own Cancel button that triggers a call
to CancelEdit().

It is important to recognize that every BeginEdit() call must have a corresponding
CancelEdit() or ApplyEdit() call. Refer to the UndoableBase implementation regarding the use
of a Stack object to maintain the list of states.

BeginEdit, CancelEdit, and ApplyEdit Methods

The basic edit methods are intended for use by UI developers so they can control when an object’s
state is trapped and restored. They delegate the work to the methods in UndoableBase, but include
other code to interact appropriately with the IEditableObject implementation:

Public Sub BeginEdit()
mBindingEdit = True
CopyState()

End Sub

Public Sub CancelEdit()
UndoChanges()

End Sub

Protected Overrides Sub UndoChangesComplete()
mBindingEdit = False
ValidationRules.SetTarget(Me)
AddBusinessRules()
OnUnknownPropertyChanged()
MyBase.UndoChangesComplete()

End Sub

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 119

6315_c03_final.qxd 4/13/06 12:29 PM Page 119

Public Sub ApplyEdit()
mBindingEdit = False
mNeverCommitted = False
AcceptChanges()

End Sub

The primary action in each method is to delegate to the corresponding method in
UndoableBase. The mBindingEdit and mNeverCommitted fields are used by the implementation
of IEditableObject.

Notice the overridden UndoChangesComplete() method. This is required because there are
actions that must be taken any time the object’s state has been restored. While it may seem that
these actions could be taken in the CancelEdit() method, remember that a business object’s
state can also be restored by its parent object through UndoableBase—without ever calling
CancelEdit() on the child object. Overriding UndoChangesComplete() means that these lines of
code will run after CancelEdit() is either called directly on this object or on its parent object.

The code in UndoChangesComplete() sets the mBindingEdit flag, reestablishes the object’s vali-
dation rules, and raises the PropertyChanged event for all properties on the object—thus ensuring
that data binding is aware that the object’s state has changed. The ValidationRules class will be
implemented later in the chapter, but it manages a list of business rules for each property. It also
maintains a list of currently broken business rules. The list of broken business rules is part of the
object’s state and is subject to n-level undo.

The list of rules associated with each property is really a list of delegate references, which
can be broken by serialization. To prevent any such issues, that list isn’t subject to serialization
or n-level undo. Instead, after resetting the object’s state with UndoChanges(), the business rules
are simply reassociated with the properties by calling the AddBusinessRules() method. The
SetTarget() method is also called to ensure that ValidationRules has a current reference to the
business object.

This will be much clearer later in the chapter as you look at the ValidationRules and
BrokenRulesCollection classes.

System.ComponentModel.IEditableObject

The System.ComponentModel.IEditableObject interface is used by the Windows Forms data binding
infrastructure to control undo operations in two cases:

• If an object is a child of a collection and is being edited in a grid control, the IEditableObject
interface will be used so that the user can start editing a row of the grid (that is, the object)
and then press Esc to undo any edits he has made on the row.

• When binding controls from a Windows Form to an object’s properties, the IEditableObject
interface will be used to tell the object that editing has started. It will not be used to tell the
object when editing is complete, or whether the user requests an undo. It’s up to the UI code
to handle these cases.

When using data binding to bind an object to a form, you can allow the data binding infra-
structure to tell the object that editing has started. I typically don’t rely on that feature, preferring
to call BeginEdit() myself. Since I have to call CancelEdit() and ApplyEdit() manually anyway,
I prefer simply to control the entire process.

■Note The BeginEdit() and CancelEdit() methods on this interface are different from the Public methods
a developer may call directly. The rules for using the interface apply to data binding, and you should not confuse
them with the rules for calling BeginEdit(), CancelEdit(), or ApplyEdit() manually.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION120

6315_c03_final.qxd 4/13/06 12:29 PM Page 120

IEditableObject is most important when an object is being edited within a grid control. In that
case, this interface is the only way to get the editing behavior that’s expected by users.

Clearly, implementing the interface requires understanding of how it is used. The interface
defines three methods, as described in Table 3-6.

Table 3-6. IEditableObject Interface Methods

Method Description

BeginEdit() This is called by data binding to indicate the start of an edit process. However,
it may be called by the Windows Forms data binding infrastructure many times
during the same edit process, and only the first call should be honored.

CancelEdit() This is called by data binding to indicate that any changes since the first
BeginEdit() call should be undone. However, it may be called by the Windows
Forms data binding infrastructure many times during the same edit process,
and only the first call should be honored.

EndEdit() This is called by data binding to indicate that the edit process is complete, and
that any changes should be kept intact. However, it may be called by the
Windows Forms data binding infrastructure many times during the same edit
process, and only the first call should be honored.

■Note The official Microsoft documentation on these methods is somewhat inconsistent with their actual behav-
ior. In the documentation, only BeginEdit() is noted for being called multiple times, but experience has shown
that any of these methods may be called multiple times.

While these methods are certainly similar to the edit methods implemented earlier, there
are some key differences in the way these new methods work. Consider BeginEdit(), for exam-
ple. Every call to the existing BeginEdit() method will result in a new snapshot of the object’s
state, while only the first call to IEditableObject.BeginEdit() should be honored. Any subse-
quent calls (and they do happen during data binding) should be ignored. The same is true for
the other two methods.

Remember, data binding only uses a single level of undo. By definition, this means that only
the first call to BeginEdit() through the IEditableObject interface has any meaning.

To implement the behavior of the IEditableObject methods properly, the object needs to
keep track of whether the edit process has been started and when it ends. At the same time,
though, it is important to preserve the existing BeginEdit() functionality. This means implement-
ing separate methods for IEditableObject, which will call the preexisting n-level undo methods
when appropriate.

There is one other complication to deal with as well. When a collection of objects is bound
to a Windows Forms grid control, the user can dynamically add and remove child objects in the
collection by using the grid control. When an object is removed in this manner, the grid control
does not notify the collection object. Instead, it notifies the child object, and it’s up to the child
object to remove itself from the collection.

It is then up to the child to interact with its parent collection to be removed from the collection
itself. For this to happen, the child object needs a reference to its parent collection. This is expressed
through a Protected property named Parent, which is discussed later in the chapter, in the “Root,
Parent, and Child Behaviors” section.

A flag is used to ignore multiple calls to the IEditableObject methods:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 121

6315_c03_final.qxd 4/13/06 12:29 PM Page 121

<NotUndoable()> _
Private mBindingEdit As Boolean
Private mNeverCommitted As Boolean = True

Notice that mBindingEdit is declared with the <NotUndoable()> attribute. This field controls
interaction with the UI, not internal object state; and because of this, there’s no reason to make it
part of the object’s snapshot data, as that would just waste memory.

A second flag is also declared, and is used to track whether ApplyEdit() has been called on the
object. This value was set to False in the ApplyEdit() implemented earlier, and will be used to con-
trol whether a child object should remove itself from its parent collection.

The three interface methods are implemented as follows:

Private Sub IEditableObject_BeginEdit() _
Implements System.ComponentModel.IEditableObject.BeginEdit
If Not mBindingEdit Then
BeginEdit()

End If
End Sub

Private Sub IEditableObject_CancelEdit() _
Implements System.ComponentModel.IEditableObject.CancelEdit
If mBindingEdit Then
CancelEdit()
If IsNew AndAlso mNeverCommitted AndAlso _
EditLevel <= EditLevelAdded Then
If Not Parent Is Nothing Then
Parent.RemoveChild(Me)

End If
End If

End If
End Sub

Private Sub IEditableObject_EndEdit() _
Implements System.ComponentModel.IEditableObject.EndEdit
If mBindingEdit Then
ApplyEdit()

End If
End Sub

Notice that the methods are declared using syntax to explicitly implement the IEditableObject
interface. This is required because BeginEdit() and CancelEdit() are already public methods in the
class, and this avoids any naming conflict. All three methods call the corresponding edit methods
implemented earlier.

The mBindingEdit field is used to determine whether the BeginEdit() method has been called
already so any subsequent method calls can be ignored. The mBindingEdit field is set to True when
an edit process is started, and to False when either CancelEdit() or ApplyEdit() is called.

The mNeverCommitted field tracks whether the ApplyEdit() method has ever been called. If it
hasn’t ever been called, and data binding attempts to cancel the edit operation, this flag is used to
control whether the object should remove itself from its parent collection. The mNeverCommitted
field starts out True and is set to False if ApplyEdit() is called.

With this mechanism in place, the implementation of IEditableObject.BeginEdit() calls
only the real BeginEdit() method if no edit session is currently underway. With the implementa-
tion of the n-level undo methods and System.ComponentModel.IEditableObject, business objects
now provide full control over editing and undo capabilities, both to the UI developer and to
Windows Forms data binding.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION122

6315_c03_final.qxd 4/13/06 12:29 PM Page 122

Root, Parent, and Child Behaviors
Chapter 2 introduced the idea that a business object can be a root, parent, and/or child object.
A definition of each can be found in Table 3-7.

Table 3-7. Root, Parent, and Child Object Definitions

Object Type Definition

Root An object that can be directly retrieved or updated via the data portal

Parent An object that contains other business objects as part of its state

Child An object that is contained by another business object

A root object may be a stand-alone object. It may also be a parent if it contains child objects.
A child object could also be a parent if it, in turn, contains other child objects. An example of a root
and parent object is an Invoice, while an example of a child object would be a LineItem object
within that Invoice. Child objects are related to root objects via a containment relationship, as
illustrated by the class diagram in Figure 3-3.

MarkAsChild

The business programmer makes the choice about whether an object is a child or not through code.
By default, an object is a root object, and is only considered to be a child object if the MarkAsChild()
method is called in the object’s constructor. The MarkAsChild() method looks like this:

Protected Sub MarkAsChild()
mIsChild = True

End Sub

The mIsChild field is used to maintain whether the object is a child, and that value is exposed
via an IsChild property:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 123

Figure 3-3. Class diagram showing how root, child, and grandchild objects are related

6315_c03_final.qxd 4/13/06 12:29 PM Page 123

<NotUndoable()> _
Private mIsChild As Boolean

Protected Friend ReadOnly Property IsChild() As Boolean
Get
Return mIsChild

End Get
End Property

Notice that the field is declared using the <NotUndoable()> attribute. Since this value will
never change during the lifetime of the object, there’s no reason to include it in an n-level undo
snapshot. The IsChild property will be used within other BusinessBase code, and may be useful
to the business developer, so it’s declared as Protected.

There are certain behaviors that are valid only for root objects, and others that apply only to
child objects. These rules will be enforced by throwing exceptions when an invalid operation is
attempted. The Delete() and DeleteChild() methods implemented earlier are examples of this
approach.

Parent Property

If a business object is a child of a collection, then it will maintain a reference to its parent business
object. As you saw earlier, this is required for implementation of System.ComponentModel.
IEditableObject.

To avoid circular reference issues with n-level undo and serialization, the field holding this
reference must be declared with the <NotUndoable()> and <NonSerialized()> attributes. Without
these attributes, UndoableBase will go into an infinite loop during CopyState(), and .NET seriali-
zation will create a much larger byte stream during serialization than is required. The value will
also be exposed through a property:

<NotUndoable()> _
<NonSerialized()> _
Private mParent As Core.IEditableCollection

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected ReadOnly Property Parent() As Core.IEditableCollection
Get
Return mParent

End Get
End Property

Due to the fact that the mParent field is not serializable, its value must be restored by the par-
ent collection any time that deserialization occurs. To make this possible, the collection will call
a Friend method on the business object:

Friend Sub SetParent(ByVal parent As Core.IEditableCollection)
If Not IsChild Then
Throw New InvalidOperationException(My.Resources.ParentSetException)

End If
mParent = parent

End Sub

This method is only valid if the object is a child object, and all it does is store the parent object
reference in the mParent field.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION124

6315_c03_final.qxd 4/13/06 12:29 PM Page 124

Edit Level Tracking for Child Objects

N-level undo of collections of child objects is pretty complex, a fact that will become clear in the
implementation of BusinessListBase. The biggest of several problems arises when a new child
object is added to the collection, and then the collection’s parent object is “canceled.” In that case,
the child object must be removed from the collection as though it were never there—the collection
must be reset to its original state. To support this, child objects must keep track of the edit level at
which they were added.

UndoableBase made use of an EditLevel property that returned a number corresponding to
the number of times the object’s state had been copied for later undo. From a UI programmer’s
perspective, the edit level is the number of times BeginEdit() has been called, minus the number
of times CancelEdit() or ApplyEdit() has been called.

An example might help. Suppose that there is an Invoice object with a collection of LineItem
objects. If BeginEdit() is called on the Invoice, then its edit level is 1. Since it cascades that call
down to its child collection, the collection and all child objects are also at edit level 1.

If a new child object is added to the collection, it would be added at edit level 1. If the Invoice
object is then canceled, the user expects the Invoice object’s state to be restored to what it was
originally—effectively, back to the level 0 state. Of course, this includes the child collection, which
means that the collection somehow needs to realize that the newly added child object should be
discarded. To do this, the BusinessListBase code will loop through its child objects looking for
any that were added at an edit level higher than the current edit level.

In this example, when the Invoice is canceled, its edit level immediately goes to 0. It cascades
that call to the child collection, which then also has an edit level of 0. The collection scans its child
objects looking for any that were added at an edit level greater than 0, and finds the new child
object that was added at edit level 1. It then knows that this child object can be removed.

This implies that business objects—if they’re child objects—must keep track of the edit level
at which they were added. This can be done with a simple field and a Friend property to set and
retrieve its value:

Private mEditLevelAdded As Integer

Friend Property EditLevelAdded() As Integer
Get
Return mEditLevelAdded

End Get
Set(ByVal Value As Integer)
mEditLevelAdded = Value

End Set
End Property

The purpose and use of this functionality will become much clearer in the implementation of
the BusinessListBase class later in this chapter.

Validation Rules
As discussed in Chapter 2, most business objects will be validating data based on various business
rules. The actual implementation to manage an object’s validation rules and maintain a list of bro-
ken business rules will be discussed later, in the “Csla.Validation Namespace” section. However,
the BusinessBase class encapsulates that behavior and exposes it in an easy-to-use manner.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 125

6315_c03_final.qxd 4/13/06 12:29 PM Page 125

ValidationRules Object

The validation rules and broken rules will be managed by a ValidationRules object, and
BusinessBase will collaborate with this object to manage all validation rule behaviors. A reference
to this object is kept by BusinessBase, and is exposed through a property:

Private mValidationRules As Validation.ValidationRules

Protected ReadOnly Property ValidationRules() _
As Validation.ValidationRules
Get
If mValidationRules Is Nothing Then
mValidationRules = New Validation.ValidationRules(Me)

End If
Return mValidationRules

End Get
End Property

The property implements a lazy loading approach, so the ValidationRules object is created
only on first use. This is ideal, since an object that doesn’t use any of the validation rules function-
ality won’t even incur the overhead of creating the object.

The ValidationRules object maintains a list of validation rules for each property on the object.
These rules are configured by the business developer in an AddBusinessRules() method, defined in
BusinessBase, and overridden in the business class:

Protected Overridable Sub AddBusinessRules()
End Sub

This method is called when the object is created through the constructor in the BusinessBase
class:

Protected Sub New()
AddBusinessRules()
AddAuthorizationRules()

End Sub

An AddAuthorizationRules() method is also called, and will be discussed shortly in the
“Authorization Rules” section.

AddBusinessRules() must also be called when the business object is deserialized. This will
happen after a clone operation or when the object moves across the network via the data portal.
It is not efficient to try to maintain the list of rule delegates for each property during serialization
and deserialization. Instead, when the object is deserialized, it can simply call AddBusinessRules()
to reestablish the rule references:

<OnDeserialized()> _
Private Sub OnDeserializedHandler(ByVal context As StreamingContext)
ValidationRules.SetTarget(Me)
AddBusinessRules()
OnDeserialized(context)

End Sub

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Sub OnDeserialized(_
ByVal context As StreamingContext)
' do nothing - this is here so a subclass
' could override if needed

End Sub

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION126

6315_c03_final.qxd 4/13/06 12:29 PM Page 126

The <OnDeserialized()> attribute is used to tell the .NET serialization infrastructure to call
this method once deserialization is complete. This attribute comes from the System.Runtime.
Serialization namespace, and is one of a set of attributes you can use to decorate methods that
are to be called by the .NET Framework during the serialization and deserialization of an object.

Inside this method, the AddBusinessRules() method is called. Before that, however, the
ValidationRules object needs to be given a reference to the business object so it can properly apply
the validation rules to the properties. Finally, an Overridable OnDeserialized method is invoked so
that the business developer can respond to the deserialization operation if desired.

The ValidationRules object maintains a list of currently broken rules. This was used earlier
in the implementation of the IsValid property, but there’s value in exposing the collection itself:

<Browsable(False)> _
<EditorBrowsable(EditorBrowsableState.Advanced)> _
Public Overridable ReadOnly Property BrokenRulesCollection() _
As Validation.BrokenRulesCollection
Get
Return ValidationRules.GetBrokenRules

End Get
End Property

Within ValidationRules, this collection is implemented to be read-only. Even though the col-
lection is exposed as a Public property, it can’t be changed by the UI. However, the UI can display
the list of broken rules to the user if so desired.

System.ComponentModel.IDataErrorInfo

Windows Forms data binding uses the IDataErrorInfo interface to interrogate a data source for
validation errors. This interface allows a data source, such as a business object, to provide human-
readable descriptions of errors at the object and property levels. This information is used by grid
controls and the ErrorProvider control to display error icons and tooltip descriptions.

The ValidationRules object will provide a list of broken rules for each property on the object,
making it relatively easy to implement IDataErrorInfo:

Private ReadOnly Property [Error]() As String _
Implements System.ComponentModel.IDataErrorInfo.Error
Get
If Not IsValid Then
Return ValidationRules.GetBrokenRules.ToString

Else
Return ""

End If
End Get

End Property

Private ReadOnly Property Item(ByVal columnName As String) As String _
Implements System.ComponentModel.IDataErrorInfo.Item
Get
Dim result As String = ""
If Not IsValid Then
Dim rule As Validation.BrokenRule = _
ValidationRules.GetBrokenRules.GetFirstBrokenRule(columnName)

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 127

6315_c03_final.qxd 4/13/06 12:29 PM Page 127

If rule IsNot Nothing Then
result = rule.Description()

End If
End If
Return result

End Get
End Property

The Error property returns a text value describing the validation errors for the object as
a whole. The indexer returns a text value describing any validation error for a specific property.
In this implementation, only the first validation error in the list is returned. In either case, if there
are no errors, an empty string value is returned—telling data binding that there are no broken
rules to report.

Authorization Rules
In a manner similar to validation rules, authorization rules are managed by an AuthorizationRules
object. The BusinessBase class collaborates with AuthorizationRules to implement authorization
rules for each property. To simplify usage of this feature, BusinessBase encapsulates and abstracts
the underlying behavior.

Step one is to declare a field and property for the rules:

<NotUndoable()> _
Private mAuthorizationRules As Security.AuthorizationRules

Protected ReadOnly Property AuthorizationRules() _
As Security.AuthorizationRules
Get
If mAuthorizationRules Is Nothing Then
mAuthorizationRules = New Security.AuthorizationRules

End If
Return mAuthorizationRules

End Get
End Property

BusinessBase also declares an Overridable AddAuthorizationRules() method that the business
developer can override in a business class. The business developer should write code in this method
to specify which roles are allowed and denied access to read and write specific properties:

Protected Overridable Sub AddAuthorizationRules()
End Sub

The BusinessBase constructor automatically calls AddAuthorizationRules() so that any role-
property relationships are established when the object is first created.

The BusinessBase class also defines methods so that both the business object developer and
UI developer can find out whether the current user is allowed to read or write to a specific property.
The CanReadProperty() methods indicate whether the user can read a specific property, while the
CanWriteProperty() methods do the same for altering a property. Both have several overloads. Only
the CanReadProperty() methods will be shown here, and you can look at the CanWriteProperty()
methods in the downloaded code.

The primary CanReadProperty() implementation enforces the authorization rules for a
property, making use of the AuthorizationRules object:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION128

6315_c03_final.qxd 4/13/06 12:29 PM Page 128

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Public Overridable Function CanReadProperty(_
ByVal propertyName As String) As Boolean

Dim result As Boolean = True
If AuthorizationRules.HasReadAllowedRoles(propertyName) Then
' some users are explicitly granted read access
' in which case all other users are denied
If Not AuthorizationRules.IsReadAllowed(propertyName) Then
result = False

End If

ElseIf AuthorizationRules.HasReadDeniedRoles(propertyName) Then
' some users are explicitly denied read access
If AuthorizationRules.IsReadDenied(propertyName) Then
result = False

End If
End If
Return result

End Function

The AuthorizationRules object can maintain a list of roles explicitly granted access to a
property, and a separate list of roles explicitly denied access. This algorithm first checks to see
if there are any roles granted access, and if so, it assumes all other roles are denied. On the other
hand, if no roles are explicitly granted access, it assumes all roles have access—except those in
the denied list.

Notice that the method is Overridable, so a business developer can override this behavior to
implement a different authorization algorithm if needed. The CanWriteProperty() method oper-
ates in the same manner and is also Overridable.

As with the PropertyHasChanged() method earlier in the chapter, the CanReadProperty() imple-
mentation requires a string parameter indicating the property name. That forces the use of string
literals in the business object, which should be avoided for maintainability. To assist in this effort,
there’s an overloaded version that uses System.Diagnostics to retrieve the property name, just like
PropertyHasChanged().

There’s a third overload as well. Notice that the CanReadProperty() implementation returns
a Boolean result, allowing the calling code to decide what to do if access is denied. That’s fine, but
within a business object’s property, denied access will almost always trigger a security exception
to be thrown. The final overload simplifies business object property code by throwing this exception
automatically:

<System.Runtime.CompilerServices.MethodImpl(_
System.Runtime.CompilerServices.MethodImplOptions.NoInlining)> _

Public Function CanReadProperty(ByVal throwOnFalse As Boolean) As Boolean

Dim propertyName As String = _
New System.Diagnostics.StackTrace(). _
GetFrame(1).GetMethod.Name.Substring(4)

Dim result As Boolean = CanReadProperty(propertyName)
If throwOnFalse AndAlso result = False Then
Throw New System.Security.SecurityException(_
String.Format("{0} ({1})", _
My.Resources.PropertyGetNotAllowed, propertyName))

End If
Return result

End Function

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 129

6315_c03_final.qxd 4/13/06 12:29 PM Page 129

This version of the method uses System.Diagnostics to retrieve the property name. But if
access is denied, it optionally throws an exception. This allows code in a property to enforce
property read and write authorization with just two lines of code and no string literals.

The Boolean parameter to this method is only required to create a different method signa-
ture. Otherwise, the only difference would be the return type (or lack thereof), which isn’t
sufficient for method overloading.

System.ICloneable
The BusinessBase class implements the System.ICloneable interface. This interface defines a
Clone() method that can be called to create a clone, or copy, of an object. The Csla.Core.
ObjectCloner class implements a general cloning solution that works against any serializable
object, making it very easy to implement a Clone() method.

However, there are cases in which a business developer might not want to return an exact
clone of an object. To accommodate this case, the cloning will be handled by an Overridable
method so that the business developer can override the method and replace the cloning mecha-
nism with their own, if needed:

Private Function Clone() As Object Implements ICloneable.Clone
Return GetClone()

End Function

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Function GetClone() As Object
Return ObjectCloner.Clone(Me)

End Function

Notice that neither of these methods is Public. The only way to invoke this Clone() method
is through the ICloneable interface. Later in the chapter, BusinessBase(Of T) will implement a
strongly typed Public Clone() method by virtue of being a generic type.

The GetClone() method is Protected in scope to allow customization of the cloning process
by a business developer. While a straight copy of the object is typically the required behavior,
sometimes a business object needs to do extra work when creating a clone of itself.

ReadOnlyBindingList Class
The final type in the Csla.Core namespace is the ReadOnlyBindingList(Of C) class. This imple-
ments a read-only collection based on System.ComponentModel.BindingList(Of T). The standard
BindingList(Of T) class implements a read-write collection that supports data binding, but there
are numerous cases in which a read-only collection is useful. For example, ReadOnlyBindingList is
the base class for Csla.ReadOnlyListBase, Csla.NameValueListBase, and Csla.Validation.
BrokenRulesCollection.

This class inherits from BindingList. It is also serializable and MustInherit, like all the
framework base classes:

<Serializable()> _
Public MustInherit Class ReadOnlyBindingList(Of C)
Inherits System.ComponentModel.BindingList(Of C)

Implements Core.IBusinessObject

End Class

All the basic collection and data binding behaviors are already implemented by BindingList.
Making the collection read-only is a matter of overriding a few methods to prevent alteration of the

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION130

6315_c03_final.qxd 4/13/06 12:29 PM Page 130

collection. Of course, the collection has to be read-write at some point, in order to get data into the
collection at all. To control whether the collection is read-only or not, there’s a field and a property:

Private mIsReadOnly As Boolean = True

Public Property IsReadOnly() As Boolean
Get
Return mIsReadOnly

End Get
Protected Set(ByVal value As Boolean)
mIsReadOnly = value

End Set
End Property

Notice that while the IsReadOnly property is Public for reading, it is Protected for changing.
This way, any code can determine if the collection is read-only or read-write, but only a subclass
can lock or unlock the collection.

The class contains a constructor that turns off the options to edit, remove, or create items
in the collection by setting some properties in the BindingList base class:

Protected Sub New()
AllowEdit = False
AllowRemove = False
AllowNew = False

End Sub

The rest of the class overrides the methods in BindingList that control alteration of the col-
lection. Each override checks the IsReadOnly property and throws an exception when an attempt
is made to change the collection when it is in read-only mode.

The only complicated overrides are ClearItems() and RemoveItem(). This is because
AllowRemove is typically set to False and must be temporarily changed to True to allow the operation
(when the collection is not in read-only mode). For instance, here’s the ClearItems() method:

Protected Overrides Sub ClearItems()
If Not IsReadOnly Then
Dim oldValue As Boolean = AllowRemove
AllowRemove = True
MyBase.ClearItems()
AllowRemove = oldValue

Else
Throw New NotSupportedException(My.Resources.ClearInvalidException)

End If
End Sub

The original AllowRemove value is restored after the operation is complete. This completes all
the types in the Csla.Core namespace. The rest of the implementation is available in the code
download for the book. Let’s move on and discuss the types in the Csla.Validation namespace.

Csla.Validation Namespace
The Csla.Validation namespace contains types that assist the business developer in implementing
and enforcing business rules. The Csla.Core.BusinessBase class, discussed earlier in the “Business-
Base Class” section, illustrated how some of the functionality in the Csla.Validation namespace
will be used. This includes managing a list of business rules for each of the object’s properties and
maintaining a list of currently broken business rules.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 131

6315_c03_final.qxd 4/13/06 12:29 PM Page 131

Obviously, the framework can’t implement the actual business rules and validation code—that
will vary from application to application. However, business rules follow a very specific pattern in
that they are either broken or not. The result of a rule being checked is a Boolean value and a
human-readable description of why the rule is broken. This makes it possible to check the rules
and then maintain a list of broken rules—including human-readable descriptions of each rule.

RuleHandler Delegate
Given that rules follow a specific pattern, it is possible to define a method signature that covers
virtually all business rules. In .NET, a method signature can be formally defined using a delegate;
here’s the definition for a rule method:

Public Delegate Function RuleHandler(_
ByVal target As Object, ByVal e As RuleArgs) As Boolean

Every rule is implemented as a method that returns a Boolean result: True if the rule is satisfied,
False if the rule is broken. The object containing the data to be validated is passed as the first argu-
ment, and the second argument is a RuleArgs object that can be used to pass extra rule-specific
information. This means that a business rule in a business class looks like this:

Private Function CustNameRequired(
ByVal target As Object, ByVal e As RuleArgs) As Boolean

If Len(CType(target, Customer).Name) = 0 Then
e.Description = "Customer name required"
Return False

Else
Return True

End If
End Function

If the length of the target object’s Name property is zero, then the rule is not satisfied, so it returns
False. It also sets the Description property of the RuleArgs object to a human-readable description
of why the rule is broken.

This illustrates a rule that would be implemented within a single business class. By using
reflection, it is possible to write entirely reusable rule methods that can be used by any business
class. You’ll see some examples of this in the “Common Business Rules” section of Chapter 5 when
I discuss the CommonRules class.

RuleArgs Class
The RuleHandler delegate specifies the use of the RuleArgs object as a parameter to every rule
method. This follows the general pattern used throughout .NET of passing an EventArgs parameter
to all event handlers. Business rules aren’t event handlers, so RuleArgs doesn’t inherit from
EventArgs, but it follows the same basic principal:

Public Class RuleArgs

Private mPropertyName As String
Private mDescription As String
Public ReadOnly Property PropertyName() As String
Get
Return mPropertyName

End Get
End Property

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION132

6315_c03_final.qxd 4/13/06 12:29 PM Page 132

Public Property Description() As String
Get
Return mDescription

End Get
Set(ByVal Value As String)
mDescription = Value

End Set
End Property

Public Sub New(ByVal propertyName As String)
mPropertyName = propertyName

End Sub

Public Overrides Function ToString() As String
Return mPropertyName

End Function

End Class

The goal is to be able to pass data into and out of the rule method in a clearly defined manner.
At a minimum, RuleArgs passes the name of the property to be validated into the rule method, and
passes back any broken rule description out of the rule method. To do this, it simply contains a
read-only PropertyName property and a read-write Description property.

More important is the fact that the author of a rule method can create a subclass of RuleArgs
to provide extra information. For instance, implementing a maximum value rule implies that the
maximum allowed value can be provided to the rule. To do this, the rule author would create a
subclass of RuleArgs. You’ll see an example of this in the “Common Business Rules” section of
Chapter 5, in which I discuss the CommonRules class.

RuleMethod Class
The ValidationRules class will maintain a list of rules for each property. This implies that
ValidationRules has information about each rule method. This is the purpose of the RuleMethod
class. It stores information about each rule, including the target object containing the data the rule
should validate, a delegate reference to the rule method itself, a unique name for the rule, and any
custom RuleArgs object that should be passed to the rule method. This information is stored in a
set of fields with associated properties. The fields are declared like this:

Private mTarget As Object
Private mHandler As RuleHandler
Private mRuleName As String = ""
Private mArgs As RuleArgs

The RuleMethod class is scoped as Friend, as it is used by other classes in the Csla.Validation
namespace, but shouldn’t be used by code outside the framework.

The unique rule name associated with each rule is derived automatically by combining the
name of the rule method with the string representation of the RuleArgs object. By default, this is
the name of the property with which it is associated:

mRuleName = mHandler.Method.Name & "!" & mArgs.ToString

Because the rule name must be unique, any custom subclasses of RuleArgs should be sure to
override ToString() to return a value that includes any custom data that is part of the arguments
object.

When the business developer associates a rule method with a property, ValidationRules cre-
ates a RuleMethod object to maintain all this information. This RuleMethod object is what’s actually

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 133

6315_c03_final.qxd 4/13/06 12:29 PM Page 133

associated with the property, thus providing all the information needed to invoke the rule when
appropriate.

In fact, the RuleMethod object handles the invocation of the rule method itself by exposing
an Invoke() method:

Public Function Invoke() As Boolean
Return mHandler.Invoke(mTarget, mArgs)

End Function

When ValidationRules is asked to check the business rules, it merely loops through its list of
RuleMethod objects, asking each one to invoke the rule it represents. As you can see, the Invoke()
method simply invokes the method via the delegate reference, passing in a reference to the object
to be validated (the business object) and the RuleArgs object associated with the rule.

ValidationRules Class
The ValidationRules class is the primary class in the Csla.Validation namespace. Every business
object that uses the validation rules functionality will contain its own ValidationRules object.
ValidationRules relies on the other classes in Csla.Validation to do its work. Together, these
classes maintain the list of rules for each property and the list of currently broken rules.

Managing Rules for Properties
You’ve already seen how a business rule is defined based on the RuleHandler delegate. A key part
of what ValidationRules does is keep a list of such rule methods for each of the business object’s
properties.

Referencing the Business Object

Remember that each rule method accepts a target parameter, which is the object containing the
data to be validated. This target is always the business object, so ValidationRules keeps a reference
to the business object. This reference is provided via the constructor and can be reset through the
SetTarget() method—both of which you’ve seen in the implementation of Csla.Core.
BusinessBase:

<NonSerialized()> _
Private mTarget As Object

Friend Sub New(ByVal businessObject As Object)
SetTarget(businessObject)

End Sub

Friend Sub SetTarget(ByVal businessObject As Object)
mTarget = businessObject

End Sub

Notice that the mTarget field is marked as <NonSerialized()>. This is important because
otherwise the BinaryFormatter would trace the circular reference between the business object
and the ValidationRules object, causing a bloated serialization byte stream. No failure would
result, but the size of the byte stream would be larger than needed, which may cause a perform-
ance issue in some cases.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION134

6315_c03_final.qxd 4/13/06 12:29 PM Page 134

Associating Rules with Properties

To provide good performance in managing the list of rules for each property, ValidationRules
uses an optimal data structure. Specifically, it has a dictionary with an entry for each property.
Each entry in the dictionary contains a list of the rules for that property. This provides for very
fast lookup to get the list of rules for a specific property, since the dictionary can jump right to
the property’s entry.

The dictionary is strongly typed, keyed by the property name, and used for storing strongly
typed lists of RuleMethod objects:

<NonSerialized()> _
Private mRulesList As _
Generic.Dictionary(Of String, List(Of RuleMethod))

The business developer calls an AddRule() method to associate a rule method with a property
on the business object. There are two versions of this method, the simplest accepting just a rule
method delegate and the name of the property:

Public Sub AddRule(_
ByVal handler As RuleHandler, ByVal propertyName As String)

' get the list of rules for the property
Dim list As List(Of RuleMethod) = GetRulesForProperty(propertyName)

' we have the list, add our new rule
list.Add(New RuleMethod(mTarget, handler, propertyName))

End Sub

The GetRulesForProperty() method returns the list of RuleMethod objects associated with the
property. If such a list doesn’t already exist, it creates an empty list and adds it to the dictionary. This
is another example of lazy object creation. If there are no rules for a property, no list object is ever
added to the dictionary, thus reducing the overhead of the whole process.

In fact, the dictionary object itself is created on demand as well, so if no business rules are ever
associated with properties for an object, even that little bit of overhead is avoided.

The other AddRule() implementation provides an increased level of control. Its method signa-
ture is as follows:

Public Sub AddRule(ByVal handler As RuleHandler, ByVal args As RuleArgs)

This overload allows the business developer to provide a specific RuleArgs object that will be
passed to the rule method when it is invoked. This is required for any rule methods that require
custom RuleArgs subclasses, so it will be used any time extra information needs to be passed to
the rule method.

The combination of the RuleMethod class, the dictionary and list object combination, and the
AddRule() methods covers the management of the rules associated with each property.

Checking Validation Rules
Once a set of rule methods have been associated with the properties of a business object, there
needs to be a way to invoke those rules. Typically, when a single property is changed on a business
object, only the rules for that property need to be checked. At other times, the rules for all the
object’s properties need to be checked. This is true when an object is first created, for instance,
since multiple properties of the object could start out with invalid values.

To cover these two cases, ValidationRules implements two CheckRules() methods. The first
checks the rules for a specific property:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 135

6315_c03_final.qxd 4/13/06 12:29 PM Page 135

Public Sub CheckRules(ByVal propertyName As String)
Dim list As List(Of RuleMethod)
' get the list of rules to check
If RulesList.ContainsKey(propertyName) Then
list = RulesList.Item(propertyName)
If list Is Nothing Then Exit Sub

' now check the rules
Dim rule As RuleMethod
For Each rule In list
If rule.Invoke() Then
BrokenRulesList.Remove(rule)

Else
BrokenRulesList.Add(rule)

End If
Next

End If
End Sub

This method checks to see if the RulesList (the dictionary) contains an entry for the specified
property. If so, it retrieves the list of RuleMethod objects and loops through them, asking each one to
invoke its underlying rule method.

If a rule returns True, then BrokenRulesList.Remove() is called to ensure that the rule isn’t listed
as a broken rule. If the rule returns False, then BrokenRulesList.Add() is called to ensure that the
rule is listed as a broken rule. The BrokenRulesList class is part of the Csla.Validation namespace,
and will be discussed shortly.

The other CheckRules() implementation checks all the rules that have been added to the
ValidationRules object:

Public Sub CheckRules()
' get the rules for each rule name
Dim de As Generic.KeyValuePair(Of String, List(Of RuleMethod))
For Each de In RulesList

Dim list As List(Of RuleMethod) = _
de.Value

' now check the rules
Dim rule As RuleMethod
For Each rule In list
If rule.Invoke() Then
BrokenRulesList.Remove(rule)

Else
BrokenRulesList.Add(rule)

End If
Next

Next
End Sub

This method simply loops through all items in the RulesList dictionary. Every entry in the
dictionary is a list of RuleMethod objects, so it then loops through each list, invoking all the rules.
The rule is then added or removed from BrokenRulesList based on the result.

At this point, it should be clear how ValidationRules associates rule methods with properties
and is then able to check those rules for a specific property or for the business object as a whole.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION136

6315_c03_final.qxd 4/13/06 12:29 PM Page 136

Maintaining a List of Broken Rules
The ValidationRules object also maintains a list of currently broken validation rules. This list was
used in the CheckRules() methods, and is declared as follows:

Private mBrokenRules As BrokenRulesCollection

Private ReadOnly Property BrokenRulesList() As BrokenRulesCollection
Get
If mBrokenRules Is Nothing Then
mBrokenRules = New BrokenRulesCollection

End If
Return mBrokenRules

End Get
End Property

Notice that the mBrokenRules field is not adorned with either the <NotUndoable()> or
<NonSerialized()> attributes. The list of currently broken rules is directly part of a business object’s
state, and so it is subject to n-level undo operations and to being transferred across the network
along with the business object.

This way, if a business developer transfers an invalid object across the network or makes a
clone, the object remains invalid, with its list of broken rules intact.

The BrokenRulesList value is also exposed via a Public method. To any external consumer,
such as code in the UI, this is a read-only collection:

Public Function GetBrokenRules() As BrokenRulesCollection
Return BrokenRulesList

End Function

The reason the collection is exposed publicly is to allow UI developers to use the list of broken
rules as they see fit. Remember that a broken rule includes a human-readable description of the
rule, and so it is perfectly reasonable to display this list to the end user in some circumstances.

BrokenRule Class
When a rule method returns False in a CheckRules() method, the broken rule is recorded into a
BrokenRulesCollection. That collection contains a list of BrokenRule objects, each one representing
a single broken business rule. The BrokenRule object exposes read-only properties for the rule
name, a human-readable description of the broken rule, and the name of the property that is
broken. The class is available in the code download for the book.

BrokenRulesCollection Class
The BrokenRulesCollection class is used by ValidationRules to maintain the list of currently broken
rules. Each broken rule is represented by a BrokenRule object. The collection inherits from Csla.
Core.ReadOnlyBindingList and so is a read-only collection:

<Serializable()> _
Public Class BrokenRulesCollection
Inherits Core.ReadOnlyBindingList(Of BrokenRule)

Friend Sub New()
' limit creation to this assembly

End Sub

End Class

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 137

6315_c03_final.qxd 4/13/06 12:29 PM Page 137

The collection also includes a Friend constructor, thus ensuring that an instance of the
object can only be created from within the CSLA .NET framework. Also, though the collection is
read-only, it does provide some Friend methods to allow ValidationRules to add and remove
items. These methods are used in the CheckRules() methods to ensure that broken rules are only
in the list when appropriate:

Friend Overloads Sub Add(ByVal rule As RuleMethod)
Remove(rule)
IsReadOnly = False
Add(New BrokenRule(rule))
IsReadOnly = True

End Sub

Friend Overloads Sub Remove(ByVal rule As RuleMethod)
' we loop through using a numeric counter because
' removing items in a For..Each isn't reliable
IsReadOnly = False
For index As Integer = 0 To Count - 1
If Me(index).RuleName = rule.RuleName Then
RemoveAt(index)
Exit For

End If
Next
IsReadOnly = True

End Sub

The Add() method is pretty straightforward. To avoid possible duplicate object issues, it first
ensures that the broken rule isn’t already in the list by calling the Remove() method. Then it changes
the collection to be read-write, adds the rule to the collection, and sets the collection back to be
read-only.

While it could just see if the collection contains the broken rule, removing and re-adding
the rule is better, because it ensures that the human-readable description for the rule is current.
The rule method could have changed the description over time.

The Remove() method is a bit more complex. It has to scan through the collection to find a rule
with the same rule name. Notice that no exception is thrown if the item isn’t in the collection. If it
isn’t there, that’s fine—then there’s just no need to remove it.

There are two other methods in BrokenRulesCollection worth mentioning. Both provide
information about the contents of the collection.

The GetFirstBrokenRule() method scans the list and returns the first broken rule (if any) for
a specified property. You may recall that this method was used in Csla.Core.BusinessBase to
implement the IDataErrorInfo interface.

The second is an overridden ToString() method that concatenates the human-readable
descriptions of all broken rules into a single string value. This too is used in the IDataErrorInfo
implementation to return all the errors for the entire object.

ValidationException
The ValidationException class allows CSLA .NET to throw a custom exception to indicate that
a validation problem has been found. This exception is thrown by the Save() method in
BusinessBase.

This exception class doesn’t add any new information to the base Exception class from the
.NET Framework. Thus its code is very simple, since it merely declares a set of constructors, each
of which delegates to the Exception base class. (You can look at the code from the code download
for the book.)

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION138

6315_c03_final.qxd 4/13/06 12:29 PM Page 138

The reason ValidationException exists is to allow UI code to easily catch a
ValidationException as being separate from other exceptions that might be thrown by the
Save() method. For instance, UI code might look like this:

Try
customer = customer.Save()

Catch ex As ValidationException
' handle validation exceptions

Catch ex As Exception
' handle other exceptions

End Try

Custom exceptions, even if they offer no extra information, are often very valuable in this way.
At this point, the Csla.Validation namespace is complete, except for CommonRules, which will

be discussed in Chapter 5. The framework now supports validation rules and broken rule tracking.

Csla.Security Namespace
The Csla.Security namespace includes both authentication and authorization functionality. In this
chapter, only the authorization classes will be explored, leaving authentication for Chapter 4.

Authorization supports the idea that each business object property can have a list of roles that
are allowed and denied access. You’ve already seen some of the authorization implemented in Csla.
Core.BusinessBase with the CanReadProperty() and CanWriteProperty() methods. Those methods
made use of a Csla.Validation.AuthorizationRules object.

Every business object that uses authorization rules will have an associated AuthorizationRules
object that manages the list of roles associated with each property. The AuthorizationRules object
will use a RolesForProperty collection to manage those roles.

RolesForProperty Class
The RolesForProperty class is responsible for maintaining the list of roles explicitly allowed and
denied access to a specific property. The AuthorizationRules class will provide public methods for
interaction with the authorization functionality. All the code in RolesForProperty exists to support
AuthorizationRules. The RolesForProperty class itself is scoped as Friend, because it is only used
within the framework.

Primarily, RolesForProperty just maintains four lists, declared as follows:

Private mReadAllowed As New List(Of String)
Private mReadDenied As New List(Of String)
Private mWriteAllowed As New List(Of String)
Private mWriteDenied As New List(Of String)

Each list is just a collection of string values—each entry representing a role or group that is
allowed or denied access to read or write the property. Each of the four lists is exposed via a read-
only property so that AuthorizationRules can interact with the list as needed.

More interesting, however, are the methods that compare a user’s roles with the list of allowed
or denied roles. For instance, the IsReadAllowed() method returns a Boolean indicating whether
a user has a role that allows reading of the property:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 139

6315_c03_final.qxd 4/13/06 12:29 PM Page 139

Public Function IsReadAllowed(ByVal principal As IPrincipal) As Boolean
Dim result As Boolean
For Each role As String In ReadAllowed
If principal.IsInRole(role) Then
result = True
Exit For

End If
Next
Return result

End Function

The method accepts a System.Security.Principal.IPrincipal object—the standard security
object in the .NET Framework. All IPrincipal objects expose an IsInRole() method that can be
used to determine if the user is in a specific role. Using this property, the IsReadAllowed() method
loops through the list of roles allowed to read the current property to determine if the user is in any
of the roles. If the user is in one of the allowed roles, then the method returns True; otherwise, it
returns False to indicate that the user isn’t allowed to read the property.

The IsReadDenied(), IsWriteAllowed(), and IsWriteDenied() methods work the same way.
Together, these methods help simplify the implementation of AuthorizationRules.

AccessType Enum
The AuthorizationRules class will provide access to the list of roles allowed or denied read or write
access to each property. When implementing the GetRolesForProperty() method that returns this
information, the calling code needs to specify the operation (read, write and allow, deny) for which
the roles should be returned. The AccessType enumerated value defines the following options:

Public Enum AccessType
ReadAllowed
ReadDenied
WriteAllowed
WriteDenied

End Enum

This enumerated value will be used in the AuthorizationRules class. It may also be used by
business developers if they need access to the list of roles—perhaps to implement some type of
custom authorization for a specific object.

AuthorizationRules Class
The AuthorizationRules class is the core of the authorization rules implementation. Every business
object has its own AuthorizationRules object, and the business object collaborates with
AuthorizationRules to implement the authorization rules for the object.

As with validation rules, authorization rules are implemented to use lazy object creation to
minimize overhead. That way, if a business object doesn’t use the feature, there’s little to no cost
to having it in the framework.

It also uses a similar design by using a dictionary object to associate a RolesForProperty object
with each business object property. This dictionary is created on demand:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION140

6315_c03_final.qxd 4/13/06 12:29 PM Page 140

Private mRules As Dictionary(Of String, RolesForProperty)

Private ReadOnly Property Rules() _
As Dictionary(Of String, RolesForProperty)
Get
If mRules Is Nothing Then
mRules = New Dictionary(Of String, RolesForProperty)

End If
Return mRules

End Get
End Property

Each entry in the dictionary is indexed by the property name and contains a RolesForProperty
object to manage the list of allowed and denied roles for the property.

Retrieving Roles
Following the idea of lazy object creation, the GetRolesForProperty() method returns the list of
roles for a property, creating it if it doesn’t exist:

Private Function GetRolesForProperty(_
ByVal propertyName As String) As RolesForProperty
Dim currentRoles As RolesForProperty = Nothing
If Not Rules.ContainsKey(propertyName) Then
currentRoles = New RolesForProperty
Rules.Add(propertyName, currentRoles)

Else
currentRoles = Rules.Item(propertyName)

End If
Return currentRoles

End Function

This method is scoped as Private because it is only used by other methods in the class. There
is a public overload of GetRolesForProperty() that returns the list of roles for the property—for a
specific type of access (read, write and allow, deny):

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Public Function GetRolesForProperty(ByVal propertyName As String, _
ByVal access As AccessType) As String()

Dim currentRoles As RolesForProperty = GetRolesForProperty(propertyName)
Select Case access
Case AccessType.ReadAllowed
Return currentRoles.ReadAllowed.ToArray

Case AccessType.ReadDenied
Return currentRoles.ReadDenied.ToArray

Case AccessType.WriteAllowed
Return currentRoles.WriteAllowed.ToArray

Case AccessType.WriteDenied
Return currentRoles.WriteDenied.ToArray

End Select
Return Nothing

End Function

This method may be used by business developers if they need access to the list of roles—
perhaps to implement some type of custom authorization for a specific object. It is implemented

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 141

6315_c03_final.qxd 4/13/06 12:29 PM Page 141

here for flexibility—not because the framework needs the functionality directly—and so the
<EditorBrowsable()> attribute is used to designate this as an advanced method.

Associating Roles with Properties
Of course, the business object needs to be able to associate lists of roles with its properties. The
AuthorizationRules object exposes a set of methods for this purpose—one for each access type.
For instance, the AllowRead() method adds roles to the list of roles allowed to read a specific
property:

Public Sub AllowRead(_
ByVal propertyName As String, ByVal ParamArray roles() As String)
Dim currentRoles As RolesForProperty = GetRolesForProperty(propertyName)
For Each item As String In roles
currentRoles.ReadAllowed.Add(item)

Next
End Sub

This method accepts the name of the property and an array of role names. It uses the
GetRolesForProperty() method to retrieve the appropriate RolesForProperty object from the
dictionary, and then appends the roles to the ReadAllowed list.

The DenyRead(), AllowWrite(), and DenyWrite() methods work in a similar fashion.

Checking Roles
The final behavior implemented by AuthorizationRules is to allow a business object to authorize
the current user to read or write to a property. The Csla.Core.BusinessBase class implemented the
actual algorithm for this purpose, but AuthorizationRules provides methods to make that possible.

■Tip Remember that the methods in BusinessBase were Overridable, so a business developer could
implement their own authorization algorithm by using AuthorizationRules if the algorithm in BusinessBase
is inadequate.

For each access type, there are two methods. One indicates where there are any roles associ-
ated with the property for the specific access type, and the other checks the current user’s roles
against the roles for the property. For the read-allowed access type, the following methods are
implemented:

Public Function HasReadAllowedRoles(_
ByVal propertyName As String) As Boolean
Return (GetRolesForProperty(propertyName).ReadAllowed.Count > 0)

End Function

Public Function IsReadAllowed(ByVal propertyName As String) As Boolean
Return GetRolesForProperty(propertyName). _
IsReadAllowed(ApplicationContext.User)

End Function

The HasReadAllowedRoles() method returns True if there are any roles explicitly allowing read
access to the specified property. Recall that the CanReadProperty() method in BusinessBase uses
this method to decide how to apply authorization rules.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION142

6315_c03_final.qxd 4/13/06 12:29 PM Page 142

■Note The principal object is retrieved from Csla.ApplicationContext. This class is discussed in Chapter 4.
Its User property returns the proper principal object in both ASP.NET and other environments, and should be used
rather than System.Threading.Thread.CurrentPrincipal or HttpContext.Current.User.

The IsReadAllowed() method retrieves the IPrincipal object for the current user and collabo-
rates with the underlying RolesForProperty object to determine if the user has a role that matches
any of the roles in the list of roles that can read the specified property.

The deny-read, allow-write, and deny-write access types each have a pair of methods imple-
mented in a similar manner. Combined, these methods provide the tools needed by BusinessBase
to implement the CanReadProperty() and CanWriteProperty() methods.

This concludes not only the Csla.Security discussion, but all the supporting classes required
for the main base classes in the Csla namespace itself. The rest of the chapter will cover the base
classes typically used by business developers when creating their own editable and read-only busi-
ness objects.

Csla Namespace
The rest of the chapter will cover the implementation of the four primary base classes a business
developer will use to create editable and read-only business objects and collections:

• Csla.BusinessBase(Of T)

• Csla.BusinessListBase(Of T, C)

• Csla.ReadOnlyBase(Of T)

• Csla.ReadOnlyListBase(Of T, C)

Let’s walk through each of these in turn.

BusinessBase Class
The Csla.BusinessBase class is the primary base class for creating both editable root and editable
child objects. This includes objects such as Invoice, Customer, OrderLineItem, and so forth.

Given the code in Csla.Core.BusinessBase, implementing this new base class will be relatively
straightforward. In fact, the only methods this class will contain are those that rely on .NET generics
to be strongly typed.

Like all the framework base classes, Csla.BusinessBase is serializable and abstract. This class
is also a generic template:

<Serializable()> _
Public MustInherit Class BusinessBase(Of T As BusinessBase(Of T))
Inherits Core.BusinessBase

End Class

The use of generics here is a bit tricky. The type parameter, T, is constrained to only allow types
that inherit from BusinessBase(Of T). This is a self-referencing generic and ensures that
BusinessBase(Of T) can only be used as a base class when the subclass itself is provided as T.
For instance, a business class looks like this:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 143

6315_c03_final.qxd 4/13/06 12:29 PM Page 143

<Serializable()> _
Public Class Customer
Inherits Csla.BusinessBase(Of Customer)

End Class

The purpose behind doing this is so that BusinessBase(Of T) can implement methods that
return the business object itself in a strongly typed manner. For instance, in Chapter 4,
BusinessBase(Of T) will implement a Save() method that (in the preceding example) would return
an object of type Customer.

■Note This use of generics not only provides strong typing for methods, but hides the generic types from the
UI developer, making their code more readable. In this example, the UI developer will see only a Customer class
with strongly typed methods.

The BusinessBase class implements functionality in three areas: overriding System.Object
methods, a strongly typed Clone() method, and data access methods. The data access methods will
be added in Chapter 4; this chapter will only deal with the first two areas.

System.Object Overrides
A well-implemented business object should always override three methods from the base
System.Object type. Remember that all .NET objects ultimately inherit from System.Object, and
so all objects have default implementations of these methods. Unfortunately, the default imple-
mentation is not ideal, and better implementations can (and should) be provided by every business
object.

These three methods are Equals(), GetHashCode(), and ToString(). To implement each of these
methods, the business object must have some unique identifying field—a primary key, in a sense.
Such a unique identifier can be used to determine equality between objects, to return a unique
hash code, and to return a meaningful string representation for the object.

Obviously, the BusinessBase class can’t automatically determine a unique identifying value
for every business object a developer might create. To get such a value, the class instead imple-
ments a MustOverride method that must be implemented by the business developer to return the
object’s unique key value:

Protected MustOverride Function GetIdValue() As Object

This forces any subclass of BusinessBase to implement a GetIdValue() method that returns
a unique value identifying the business object. This value can then be used to implement the three
System.Object method overrides:

Public Overloads Overrides Function Equals(ByVal obj As Object) As Boolean
If TypeOf obj Is T Then
Dim id As Object = GetIdValue()
If id Is Nothing Then
Throw New ArgumentException(My.Resources.GetIdValueCantBeNull)

End If
Return DirectCast(obj, T).GetIdValue.Equals(id)

Else
Return False

End If
End Function

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION144

6315_c03_final.qxd 4/13/06 12:29 PM Page 144

Public Overrides Function GetHashCode() As Integer
Dim id As Object = GetIdValue()
If id Is Nothing Then
Throw New ArgumentException(My.Resources.GetIdValueCantBeNull)

End If
Return id.GetHashCode

End Function

Public Overrides Function ToString() As String
Dim id As Object = GetIdValue()
If id Is Nothing Then
Throw New ArgumentException(My.Resources.GetIdValueCantBeNull)

End If
Return id.ToString

End Function

In each case, the result of GetIdValue() is checked to see if it is Nothing. If so, an exception
is thrown, since these implementations require a non-null value.

The GetHashCode() and ToString() implementations are very simple, as they just use the
object’s ID value to generate a hash code or a string value, respectively.

The Equals() method is a bit more interesting. It compares the business object to see if it is
equal to the object passed as a parameter. The first thing it does is check the type of the parameter
to see if that object is the same type as the business object:

If TypeOf obj Is T Then

Notice the use of the generic type, T, to represent the type of the business object. If the types
are different, then obviously the objects can’t be equal to each other. If the types are the same, then
the obj parameter is casted to type T (the type of the business object), and its ID value is retrieved
by calling its GetIdValue() method.

This clearly demonstrates why T is constrained to types that inherit from BusinessBase(Of T).
Without that constraint on the generic type, there would be no guarantee that the obj parameter
would implement GetIdValue().

If the two ID values match, then the objects are considered to be equal.
You should remember that these are merely default implementations of the three methods.

If a business object needs a different implementation, it is perfectly acceptable to override one or
all of these methods in a business class and ignore these implementations.

Clone Method
Earlier in the chapter, I discussed the ICloneable interface and the concept of cloning. The Csla.
Core.ObjectCloner class contains code to clone any serializable object, and Csla.Core.
BusinessBase implemented the ICloneable interface, delegating to an Overridable GetClone()
method to do the work. Recall that the Clone() method implemented at that time was not Public
in scope.

The reason for this is so that a strongly typed Clone() method could be implemented in the
generic base class. ICloneable.Clone() returns a value of type object, but the following Clone()
method is strongly typed:

Public Overridable Function Clone() As T
Return DirectCast(GetClone(), T)

End Function

This implementation returns an object of type T, which is the type of the business object. So in
the Customer class example, this would return an object of type Customer. Notice that it delegates the

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 145

6315_c03_final.qxd 4/13/06 12:29 PM Page 145

call to the same Overridable GetClone() method, so the business developer can override the default
cloning behavior if he needs to implement a variation.

Other than the data access support that will be added in Chapter 4, the BusinessBase class is
now complete.

BusinessListBase Class
While BusinessBase is the primary base class for building business objects, the framework must also
support collections of business objects. Both the UndoableBase and Csla.Core.BusinessBase classes
made accommodations for the BusinessListBase class discussed here. Remember the use of Csla.
Core.IUndoableObject and Csla.Core.IEditableCollection in the implementation of those classes.
BusinessListBase will implement IEditableCollection to interact with those other classes.

BusinessListBase needs to support many of the same features implemented in Csla.Core.
BusinessBase. Table 3-8 lists all the functional areas included in the class. Of course, the imple-
mentation of each of these is quite different for a collection of objects than for a single object.

Table 3-8. Functional Areas Implemented in BusinessListBase

Functional Area Description

Tracking object status Keeps track of whether the collection is dirty and valid

Root and child behaviors Implement behaviors so the collection can function as a root object
or as a child of another object or collection

N-level undo Integrates with the n-level undo functionality implemented in
UndoableBase, and implements the IEditableCollection interface

Cloning Implements the ICloneable interface

As with all base classes, this one is serializable and MustInherit. To support both data binding
and collection behaviors, it inherits from System.ComponentModel.BindingList(Of T):

<Serializable()> _
Public MustInherit Class BusinessListBase(_
Of T As BusinessListBase(Of T, C), C As Core.BusinessBase)
Inherits System.ComponentModel.BindingList(Of C)

Implements Core.IEditableCollection
Implements ICloneable

End Class

Notice that in addition to inheriting from BindingList(Of T), this class implements Csla.Core.
IEditableCollection and System.ICloneable.

Also take a look at the generic type parameters, T and C. The T type is constrained, just as with
Csla.BusinessBase, ensuring that T will be the type of the business collection subclassing
BusinessListBase. The C type represents the type of child object contained within the collection.
It is constrained to be of type Csla.Core.BusinessBase, ensuring that the collection will only contain
business objects. The end result is that a business collection is declared like this:

<Serializable()> _
Public Class LineItems
Inherits Csla.BusinessListBase(Of LineItems, LineItem)

End Class

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION146

6315_c03_final.qxd 4/13/06 12:29 PM Page 146

This indicates that the collection contains business objects defined by a LineItem class that
inherits from Csla.BusinessBase(Of LineItem).

With this basis established, let’s move on and discuss each functional area in the class.

Tracking Object Status
The IsDirty and IsValid concepts are relatively easy to implement. A collection is “dirty” if it con-
tains child objects that are dirty, added, or removed. A collection’s “validity” can be determined by
finding out if all its child objects are valid. An invalid child object means that the entire collection
is in an invalid state. Here are the properties:

Public ReadOnly Property IsDirty() As Boolean
Get
' any deletions make us dirty
If DeletedList.Count > 0 Then Return True

' run through all the child objects
' and if any are dirty then the
' collection is dirty
For Each Child As C In Me
If Child.IsDirty Then Return True

Next
Return False

End Get
End Property

Public Overridable ReadOnly Property IsValid() As Boolean
Get
' run through all the child objects
' and if any are invalid then the
' collection is invalid
For Each child As C In Me
If Not child.IsValid Then Return False

Next
Return True

End Get
End Property

Remember that the generic type C is the type of the child objects contained in the collection.
As you can see, all the real work is done by the child objects, so the collection’s state is really driven
by the state of its children.

Root and Child Behaviors
The idea that a collection can be a root object or a child object is particularly important. It’s fairly
obvious that a collection can be a child object—an Invoice root object will have a LineItems collec-
tion that contains LineItem objects, so the LineItems collection is itself a child object. However,
collection objects can also be root objects.

An application may have a root object called Categories, which contains a list of Category
objects. It’s quite possible that there’s no root object to act as a parent for Categories—it may simply
be an editable list of objects. To support this concept, BusinessListBase, like BusinessBase itself,
must support these two modes of operation. In root mode, some operations are legal while others
are not; in child mode, the reverse is true.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 147

6315_c03_final.qxd 4/13/06 12:29 PM Page 147

As in BusinessBase, the collection object needs to know whether it’s a root or a child object:

<NotUndoable()> _
Private mIsChild As Boolean = False

Protected ReadOnly Property IsChild() As Boolean
Get
Return mIsChild

End Get
End Property

Protected Sub MarkAsChild()
mIsChild = True

End Sub

This functionality is the same in BusinessBase, and it allows the business developer to mark
the object as a child object when it’s first created. The IsChild property will be used in the rest of
BusinessListBase to adjust the behavior of the object (such as exercising control over deletion)
accordingly.

N-Level Undo
As with a regular business object, a collection needs to support n-level undo. The functionality in
BusinessListBase must integrate with UndoableBase. This means that BusinessListBase must
implement the Csla.Core.IEditableCollection interface, which inherits from Csla.Core.
IUndoableObject.

Implementing the interface requires that the class implement CopyState(), UndoChanges(), and
AcceptChanges() methods that store and restore the collection’s state as appropriate. Because a col-
lection can also be a root object, it needs Public methods named BeginEdit(), CancelEdit(), and
ApplyEdit(), like BusinessBase. In either scenario, the process of taking a snapshot of the collec-
tion’s state is really a matter of having all the child objects take a snapshot of their individual states.

The undo operation for a collection is where things start to get more complicated. Undoing
all the child objects isn’t too hard, since the collection can cascade the request to each child
object. At the collection level, however, an undo means restoring any objects that were deleted
and removing any objects that were added, so the collection’s list of objects ends up the same as
it was in the first place.

There’s a fair amount of code in BusinessListBase just to deal with deletion of child objects in
order to support n-level undo. As with the rest of the framework, if n-level undo isn’t used, then no
overhead is incurred by these features.

Edit Level Tracking

The hardest part of implementing n-level undo functionality is that not only can child objects be
added or deleted, but they can also be “undeleted” or “unadded” in the case of an undo operation.

Csla.Core.BusinessBase and UndoableBase use the concept of an edit level. The edit level allows
the object to keep track of how many BeginEdit() calls have been made to take a snapshot of its
state without corresponding CancelEdit() or ApplyEdit() calls. More specifically, it tells the object
how many states have been stacked up for undo operations.

BusinessListBase needs the same edit level tracking as in BusinessBase. However, a collection
won’t actually stack its states. Rather, it cascades the call to each of its child objects so that they can
stack their own states. Because of this, the edit level can be tracked using a simple numeric counter.
It merely counts how many unpaired BeginEdit() calls have been made:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION148

6315_c03_final.qxd 4/13/06 12:29 PM Page 148

' keep track of how many edit levels we have
Private mEditLevel As Integer

The implementations of CopyState(), UndoChanges(), and AcceptChanges() will alter this value
accordingly.

Reacting to Insert, Remove, or Clear Operations

Collection base classes don’t implement Add() or Remove() methods directly, since those are imple-
mented by Collection(Of T), which is the base class for BindingList(Of T). However, they do need
to perform certain operations any time that an insert or remove operation occurs. To accommodate
this, BindingList(Of T) invokes certain Overridable methods when these events occur. These
methods can be overridden to respond to the events.

Child objects also must have the ability to remove themselves from the collection. Remem-
ber the implementation of System.ComponentModel.IEditableObject in Clsa.Core.BusinessBase—
that code included a parent reference to the collection object, and code to call a RemoveChild()
method. This RemoveChild() method is part of the IEditableCollection interface implemented
by BusinessListBase.

The following code handles the insert and remove operations, as well as the implementation
of the RemoveChild() method:

Private Sub RemoveChild(ByVal child As Core.BusinessBase) _
Implements Core.IEditableCollection.RemoveChild
Remove(DirectCast(child, C))

End Sub

Protected Overrides Sub InsertItem(ByVal index As Integer, ByVal item As C)
' when an object is inserted we assume it is
' a new object and so the edit level when it was
' added must be set
item.EditLevelAdded = mEditLevel
item.SetParent(Me)
MyBase.InsertItem(index, item)

End Sub

Protected Overrides Sub RemoveItem(ByVal index As Integer)
' when an object is 'removed' it is really
' being deleted, so do the deletion work
DeleteChild(Me(index))
MyBase.RemoveItem(index)

End Sub

The RemoveChild() method is called by a child object contained within the collection. This is
called when a Windows Forms grid control requests that the child remove itself from the collection
via the System.ComponentModel.IEditableObject interface.

■Note In reality, this shouldn’t be a common occurrence. Windows Forms 2.0 uses a new interface,
ICancelAddNew, that is implemented by BindingList(Of T). This interface notifies the collection that the child
should be removed, rather than notifying the child object itself. The code in the RemoveItem() method takes care
of the ICancelAddNew case automatically, so this code is really here to support backward compatibility for anyone
explicitly calling the IEditableObject interface on child objects.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 149

6315_c03_final.qxd 4/13/06 12:29 PM Page 149

The InsertItem() method is called when an item is being added to the collection. The
EditLevelAdded property is changed when a new child object is added to the collection, thus telling
the child object the edit level at which it’s being added. Recall that this property was implemented
in BusinessBase to merely record the value so that it can be checked during undo operations. This
value will be used in the collection’s UndoChanges() and AcceptChanges() methods later on.

Also notice that the child object’s SetParent() method is called to make sure its parent refer-
ence is correct. This way, if needed, it can call the collection’s RemoveChild() method to remove
itself from the collection.

The RemoveItem() method is called when an item is being removed from the collection. To
support the concept of undo, the object isn’t actually removed, because it might need to be restored
later. Rather, a DeleteChild() method is called, passing the object being removed as a parameter.
You’ll see the implementation of this method shortly. For now, it’s enough to know that it keeps
track of the object in case it must be restored later.

Deleted Object Collection

To ensure that the collection can properly “undelete” objects in case of an undo operation, it needs
to keep a list of the objects that have been “removed.” The first step in accomplishing this goal is to
maintain an internal list of deleted objects.

Along with implementing this list, there needs to be a ContainsDeleted() method so that the
business or UI logic can find out whether the collection contains a specific deleted object.

BindingList(Of T) already includes a Contains() method so that the UI code can ask the
collection if it contains a specific item. Since a BusinessListBase collection is unusual in that it
contains two lists of objects, it’s appropriate to allow client code to ask whether an object is con-
tained in the deleted list, as well as in the nondeleted list:

Private mDeletedList As List(Of C)

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected ReadOnly Property DeletedList() As List(Of C)
Get
If mDeletedList Is Nothing Then
mDeletedList = New List(Of C)

End If
Return mDeletedList

End Get
End Property

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Public Function ContainsDeleted(ByVal item As C) As Boolean
Return DeletedList.Contains(item)

End Function

Notice that the list of deleted objects is kept as a List(Of C)—a strongly typed collection of
child objects. That list is then exposed through a Protected property so that it is available to sub-
classes. Subclasses have access to the nondeleted items in the collection, so this just follows the
same scoping model. The list object is created on demand to minimize overhead in the case that
no items are ever removed from the collection.

Deleting and Undeleting Child Objects
Given the list for storing deleted child objects, it is now possible to implement the methods to
delete and undelete objects as needed.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION150

6315_c03_final.qxd 4/13/06 12:29 PM Page 150

Deleting a child object is really a matter of marking the object as deleted and moving it from
the active list of child objects to DeletedList. Undeleting occurs when a child object has restored its
state so that it’s no longer marked as deleted. In that case, the child object must be moved from
DeletedList back to the list of active objects in the collection.

The permutations here are vast. The ways in which combinations of calls to BeginEdit(),
Add(), Remove(), CancelEdit(), and ApplyEdit() can be called are probably infinite. Let’s look at
some relatively common scenarios, though, to get a good understanding of what happens as child
objects are deleted and undeleted.

First, consider a case in which the collection has been loaded with data from a database, and
the database included one child object: A. Then, the UI called BeginEdit() on the collection and
added a new object to the collection: B. Figure 3-4 shows what happens if those two objects are
removed and then CancelEdit() is called on the collection object.

■Tip In Figure 3-4, EL is the mEditLevel value in the collection, ELA is the mEditLevelAdded value in each
child object, and DEL is the IsDeleted value in each child object.

After both objects have been removed from the collection, they’re marked for deletion and
moved to the DeletedList collection. This way, they appear to be gone from the collection, but the
collection still has access to them if needed.

After the CancelEdit() call, the collection’s edit level goes back to 0. Since child A came from
the database, it was “added” at edit level 0, so it sticks around. Child B, on the other hand, was
added at edit level 1, so it goes away. Also, child A has its state reset as part of the CancelEdit() call
(remember that CancelEdit() causes a cascade effect, so each child object restores its snapshot
values). The result is that because of the undo operation, child A is no longer marked for deletion.

Another common scenario follows the same process, but with a call to ApplyEdit() at the end,
as shown in Figure 3-5.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 151

Figure 3-4. Edit process in which objects are removed and CancelEdit() is called

6315_c03_final.qxd 4/13/06 12:29 PM Page 151

The first two steps are identical, of course, but after the call to ApplyEdit(), things are quite
different. Since changes to the collection were accepted rather than rejected, the changes became
permanent. Child A remains marked for deletion, and if the collection is saved back to the data-
base, the data for child A will be removed. Child B is totally gone at this point. It was a new object
added and deleted at edit level 1, and all changes made at edit level 1 were accepted. Since the col-
lection knows that B was never in the database (because it was added at edit level 1), it can simply
discard the object entirely from memory.

Let’s look at one last scenario. Just to illustrate how rough this gets, this will be more com-
plex. It involves nested BeginEdit(), CancelEdit(), and ApplyEdit() calls on the collection. This
can easily happen if the collection contains child or grandchild objects, and they are displayed
in a Windows Forms UI that uses modal dialog windows to edit each level (parent, child, grand-
child, etc.).

Again, child A is loaded from the database and child B is added at edit level 1. Finally, C is added
at edit level 2. Then all three child objects are removed, as shown in Figure 3-6.

Suppose ApplyEdit() is now called on the collection. This will apply all edits made at edit level
2, putting the collection back to edit level 1. Since child C was added at edit level 2, it simply goes
away, but child B sticks around because it was added at edit level 1, which is illustrated in Figure 3-7.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION152

Figure 3-5. Edit process in which objects are removed and ApplyEdit() is called

6315_c03_final.qxd 4/13/06 12:29 PM Page 152

Both objects remain marked for deletion because the changes made at edit level 2 were
applied. Were CancelEdit() called now, the collection would return to the same state as when the
first BeginEdit() was called, meaning that only child A (not marked for deletion) would be left.

Alternatively, a call to ApplyEdit() would commit all changes made at edit level 1: child A
would continue to be marked for deletion, and child B would be totally discarded since it was
added and deleted at edit level 1. Both of these possible outcomes are illustrated in Figure 3-8.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 153

Figure 3-6. A more complex example with nested edit method calls

Figure 3-7. The result after calling ApplyEdit()

6315_c03_final.qxd 4/13/06 12:29 PM Page 153

Having gone through all that, let’s take a look at the code that will implement these behaviors.
The DeleteChild() and UnDeleteChild() methods deal with marking the child objects as deleted
and moving them between the active items in the collection and the DeletedList object:

Private Sub DeleteChild(ByVal child As C)
' mark the object as deleted
child.DeleteChild()
' and add it to the deleted collection for storage
DeletedList.Add(child)

End Sub

Private Sub UnDeleteChild(ByVal child As C)
' we are inserting an _existing_ object so
' we need to preserve the object's editleveladded value
' because it will be changed by the normal add process
Dim SaveLevel As Integer = child.EditLevelAdded
Add(child)
child.EditLevelAdded = SaveLevel

' since the object is no longer deleted, remove it from
' the deleted collection
DeletedList.Remove(child)

End Sub

On the surface, this doesn’t seem too complicated—but look at the code that deals with the
child’s EditLevelAdded property in the UnDeleteChild() method. Recall the InsertItem() method
implemented earlier. That method assumes that any child being added to the collection is a new
object, and therefore sets its edit level value to the collection’s current value. However, the
InsertItem() method will be run when this preexisting object is reinserted into the collection,
altering its edit level. This would leave the child object with an incorrect edit level value.

The problem is that in this case, the child object isn’t a new object; it is a preexisting object
that is just being restored to the collection. To solve this, the object’s edit level value is stored in a
temporary field, the child object is re-added to the collection, and then the child object’s edit level
value is reset to the original value, effectively leaving it unchanged.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION154

Figure 3-8. Result after calling either CancelEdit() or ApplyEdit()

6315_c03_final.qxd 4/13/06 12:29 PM Page 154

CopyState

Everything has so far laid the groundwork for the n-level undo functionality. All the pieces now exist
to make it possible to implement the CopyState(), UndoChanges(), and AcceptChanges() methods,
and then the BeginEdit(), CancelEdit(), and ApplyEdit() methods.

The CopyState() method needs to take a snapshot of the collection’s current state. It is invoked
when the BeginEdit() method is called on the root object (either the collection itself, or the collection’s
parent object). At that time, the root object takes a snapshot of its own state and calls CopyState() on
any child objects or collections so they can take snapshots of their states as well.

Private Sub CopyState() Implements Core.IEditableCollection.CopyState
Dim Child As C

' we are going a level deeper in editing
mEditLevel += 1

' cascade the call to all child objects
For Each Child In Me
Child.CopyState()

Next

' cascade the call to all deleted child objects
For Each Child In DeletedList
Child.CopyState()

Next
End Sub

As CopyState() takes a snapshot of the collection’s state, it increases the edit level by one.
Remember that UndoableBase relied on the Stack object to track the edit level, but this code just
uses a simple numeric counter. Remember, a collection has no state of its own, so there’s nothing
to add to a stack of states. Instead, a collection is only responsible for ensuring that all the objects
it contains take snapshots of their states. All it needs to do is keep track of how many times
CopyState() has been called, so the collection can properly implement the adding and removing
of child objects, as described earlier.

Notice that the CopyState() call is also cascaded to the objects in DeletedList. This is impor-
tant because those objects might, at some point, get restored as active objects in the collection.
Even though they’re not active at the moment (because they’re marked for deletion), they need to
be treated the same as regular nondeleted objects.

Overall, this process is fairly straightforward: the CopyState() call is just cascaded down to the
child objects. The same can’t be said for UndoChanges() or AcceptChanges().

UndoChanges

The UndoChanges() method is more complex than the CopyState() method. It too cascades the call
down to the child objects, deleted or not, but it also needs to find any objects that were added since
the latest snapshot. Those objects must be removed from the collection and discarded, since an
undo operation means that it must be as though they were never added. Furthermore, it needs to
find any objects that were deleted since the latest snapshot. Those objects must be re-added to the
collection.

Here’s the complete method:

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 155

6315_c03_final.qxd 4/13/06 12:29 PM Page 155

Private Sub UndoChanges() Implements Core.IEditableCollection.UndoChanges
Dim child As C
Dim index As Integer

' we are coming up one edit level
mEditLevel -= 1
If mEditLevel < 0 Then mEditLevel = 0

' Cancel edit on all current items
For index = Count - 1 To 0 Step -1
child = Me(index)
child.UndoChanges()
' if item is below its point of addition, remove
If child.EditLevelAdded > mEditLevel Then
RemoveAt(index)

End If
Next

' cancel edit on all deleted items
For index = DeletedList.Count - 1 To 0 Step -1
child = DeletedList.Item(index)
child.UndoChanges()
If child.EditLevelAdded > mEditLevel Then
' if item is below its point of addition, remove
DeletedList.RemoveAt(index)

Else
' if item is no longer deleted move back to main list
If Not child.IsDeleted Then UnDeleteChild(child)

End If
Next

End Sub

First of all, mEditLevel is decremented to indicate that one call to CopyState() has been
countered.

Notice that the loops going through the collection itself and the DeletedList collections go
from bottom to top, using a numeric index value. This is important because it allows safe removal
of items from each collection. Neither a For...Each loop or a forward-moving numeric index would
allow removal of items from the collections without causing a runtime error.

UndoChanges() is called on all child objects in the collection so that they can restore their indi-
vidual states. After a child object’s state has been restored, the child object’s edit level is checked
to see when it was added to the collection. If the collection’s new edit level is less than the edit level
when the child object was added, then it is a new child object that now must be discarded.

' if item is below its point of addition, remove
If child.EditLevelAdded > mEditLevel Then
RemoveAt(index)

End If

The same process occurs for the objects in DeletedList—again, UndoChanges() is called on
each child object. Then there’s a check to see if the child object was a newly added object that can
now be discarded:

If child.EditLevelAdded > mEditLevel Then
' if item is below its point of addition, remove
DeletedList.RemoveAt(index)

A bit more work is required when dealing with the deleted child objects. It is possible that the
undo operation needs to undelete an object. Remember that the IsDeleted flag is automatically

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION156

6315_c03_final.qxd 4/13/06 12:29 PM Page 156

maintained by UndoChanges(), so it is possible that the child object is no longer marked for deletion.
In such a case, the object must be moved back into the active list:

Else
' if item is no longer deleted move back to main list
If Not child.IsDeleted Then UnDeleteChild(child)

End If

At the end of the process, the collection object and all its child objects will be in the state they
were when CopyState() was last called. Any changes, additions, or deletions will have been undone.

AcceptChanges

The AcceptChanges() method isn’t nearly as complicated as UndoChanges(). It also decrements the
mEditLevel field to counter one call to CopyState(). The method then cascades the AcceptChanges()
call to each child object so that the child object can accept its own changes. The only complex bit of
code is that the “edit level added” value of each child must also be altered:

Private Sub AcceptChanges() _
Implements Core.IEditableCollection.AcceptChanges
Dim child As C
Dim index As Integer

' we are coming up one edit level
mEditLevel -= 1
If mEditLevel < 0 Then mEditLevel = 0

' cascade the call to all child objects
For Each child In Me
child.AcceptChanges()
' if item is below its point of addition, lower point of addition
If child.EditLevelAdded > mEditLevel Then child.EditLevelAdded = mEditLevel

Next

' cascade the call to all deleted child objects
'For Each Child In deletedList
For index = DeletedList.Count - 1 To 0 Step -1
child = DeletedList.Item(index)
child.AcceptChanges()
' if item is below its point of addition, remove
If child.EditLevelAdded > mEditLevel Then
DeletedList.RemoveAt(index)

End If
Next

End Sub

While looping through the collection and DeleteList, the code makes sure that no child object
maintains an EditLevelAdded value that’s higher than the collection’s new edit level.

Think back to the LineItem example, and suppose the collection were at edit level 1 and the
changes were accepted. In that case, the newly added LineItem object is to be kept—it’s valid.
Because of this, its EditLevelAdded property needs to be the same as the collection object’s, so it
needs to be set to 0 as well.

This is important, because there’s nothing to stop the user from starting a new edit session
and raising the collection’s edit level to 1 again. If the user then cancels the operation, the collection
shouldn’t remove the previous LineItem object accidentally. It was already accepted once, and it
should stay accepted.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 157

6315_c03_final.qxd 4/13/06 12:29 PM Page 157

This method won’t be removing any items from the collection as changes are accepted, so the
simpler For...Each looping structure can be used rather than the bottom-to-top numeric looping
structure needed in the UndoChanges() method.

When looping through the DeletedList collection, however, the bottom-to-top approach is
still required. This is because DeletedList may contain child items that were newly added to the
collection and then were marked for deletion. Since they are new objects, they have no correspon-
ding data in the database, and so they can simply be dropped from the collection in memory. In
such a case, those child objects will be removed from the list based on their edit level value.

This completes all the functionality needed to support n-level undo, allowing
BusinessListBase to integrate with the code in the UndoableBase class.

BeginEdit, CancelEdit, and ApplyEdit

With the n-level undo methods complete, it is possible to implement the methods that the UI will
need in order to control the edit process on a collection. Remember, though, that this control is only
valid if the collection is a root object. If it’s a child object, then its edit process should be controlled
by its parent object. This requires a check to ensure that the object isn’t a child before allowing these
methods to operate:

Public Sub BeginEdit()
If Me.IsChild Then
Throw New _
NotSupportedException(My.Resources.NoBeginEditChildException)

End If

CopyState()
End Sub

Public Sub CancelEdit()
If Me.IsChild Then
Throw New _
NotSupportedException(My.Resources.NoCancelEditChildException)

End If

UndoChanges()

End Sub

Public Sub ApplyEdit()
If Me.IsChild Then
Throw New _
NotSupportedException(My.Resources.NoApplyEditChildException)

End If

AcceptChanges()
End Sub

All three methods are very straightforward and allow developers to create a UI that starts edit-
ing a collection with BeginEdit(), lets the user interact with the collection, and then either cancels
or accepts the changes with CancelEdit() or ApplyEdit(), respectively.

System.ICloneable
The BusinessListBase class implements the System.ICloneable interface. This interface defines
a Clone() method that can be called to create a clone, or copy, of an object. The Csla.Core.
ObjectCloner class implements a general cloning solution that works against any serializable

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION158

6315_c03_final.qxd 4/13/06 12:29 PM Page 158

object, making it very easy to implement a Clone() method. Additionally, BusinessListBase is
a generic class, so it can implement a strongly typed Clone() method like Csla.BusinessBase.

As in Csla.Core.BusinessBase, the clone operation is implemented through an Overridable
method named GetClone(), allowing the business developer to override the default cloning behav-
ior if desired:

Private Function ICloneable_Clone() As Object Implements ICloneable.Clone
Return GetClone()

End Function

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Function GetClone() As Object
Return ObjectCloner.Clone(Me)

End Function

Public Overloads Function Clone() As T
Return DirectCast(GetClone(), T)

End Function

The ICloneable.Clone() and strongly typed Clone() methods delegate to GetClone() to do
their work. Other than the data access functionality that will be added in Chapter 4, this concludes
the functionality for the BusinessListBase class.

ReadOnlyBase Class
With BusinessBase and BusinessListBase finished (at least for the time being), a business devel-
oper has the tools needed to build editable objects and collections. However, most applications
also include a number of read-only objects and collections. An application might have a read-only
object that contains system configuration data, or a read-only collection of ProductType objects
that are used just for lookup purposes.

■Tip Chapter 5 will include a NameValueListBase class designed specifically to handle name/value lookup data.

The ReadOnlyBase class will provide a base on which business developers can build a read-only
object. The chapter will conclude with the ReadOnlyListBase, which supports read-only collections
of data.

By definition, a read-only object is quite simple: it’s just a container for data, possibly with
authorization or formatting logic to control how that data is accessed. It doesn’t support editing of
the data, so there’s no need for n-level undo, change events, or much of the other complexity built
into UndoableBase and BusinessBase. In fact, other than data access logic, the base class can only
implement the CanReadProperty() authorization methods and the ICloneable interface.

Like all base classes, this one is serializable and MustInherit. It will also implement
Csla.Core.IBusinessObject to provide some level of polymorphic behavior even though this is
a generic class:

<Serializable()> _
Public MustInherit Class ReadOnlyBase(Of T As ReadOnlyBase(Of T))

Implements ICloneable
Implements Core.IReadOnlyObject

End Class

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 159

6315_c03_final.qxd 4/13/06 12:29 PM Page 159

Like Csla.BusinessBase, the generic type T is constrained to be the type of business object
being created, so a business class is declared like this:

<Serializable()> _
Public Class DefaultCustomerData
Inherits Csla.ReadOnlyBase(Of DefaultCustomerData)

End Class

Like all good objects, it should override the core System.Object methods just like
BusinessBase(Of T). To do this, the class defines a GetIdValue() method and uses its result to
implement Equals(), GetHashCode(), and ToString() in exactly the same manner as
BusinessBase(Of T) did earlier.

Presumably, any business object based on this class would consist entirely of read-only
properties or methods that just return values. Chapter 4 will add data access functionality to this
class, supporting only the reading of data from the database, with no update possible.

Let’s walk through the implementation of authorization rules and the ICloneable interface.

Authorization Rules
The authorization rules behavior in ReadOnlyBase is virtually identical to that in BusinessBase, with
the exception that only read operations need to be checked. Since the intent is to create a read-only
object, there’s no reason to support checking authorization rules for writing to a property.

An AuthorizationRules object will be used to manage the roles for each property:

<NotUndoable()> _
Private mAuthorizationRules As New Security.AuthorizationRules

Protected ReadOnly Property AuthorizationRules() _
As Security.AuthorizationRules
Get
Return mAuthorizationRules

End Get
End Property

Then the same CanReadProperty() methods are implemented as in BusinessBase. I won’t
repeat them here, as they are literally the exact same code: three different overloads of the method
to support different scenarios. And the primary implementation is an Overridable method, allow-
ing a business developer to alter the authorization behavior if needed.

System.ICloneable
The ICloneable interface is implemented as well. The Clone() method for the interface itself is
accessible only via the interface. There’s also a Public strongly typed method that returns an object
of type T. Both of these methods delegate to an Overridable method named GetClone(), which in
turn delegates to Csla.Core.ObjectCloner to do the actual work.

Again, this is the same code as in BusinessBase and BusinessListBase, so I won’t repeat it here.
This completes the ReadOnlyBase class. The chapter will wrap up by covering ReadOnlyListBase.

ReadOnlyListBase Class
Like the ReadOnlyBase class, ReadOnlyListBase is quite simple to create. It is designed to make it
easy for a business developer to create a business collection that doesn’t allow items to be added
or removed. Presumably, it will be used to contain read-only child objects, but any type of child
object is allowed.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION160

6315_c03_final.qxd 4/13/06 12:29 PM Page 160

The Csla.Core.ReadOnlyBindingList class implemented earlier in the chapter already handles
all the details, except for implementing ICloneable and data access. The data access code will be
added in Chapter 4, so only the ICloneable functionality will be added here.

The ReadOnlyListBase class is defined like this:

<Serializable()> _
Public MustInherit Class ReadOnlyListBase(_
Of T As ReadOnlyListBase(Of T, C), C)
Inherits Core.ReadOnlyBindingList(Of C)

Implements Csla.Core.IReadOnlyCollection
Implements ICloneable

End Class

Like BusinessListBase, it accepts two generic type parameters. Type T is constrained to be
a subclass of this base class and refers to the type of the collection being created. Type C is the type
of the child object to be contained within the collection, and it can be any type. Again, it would
make the most sense for the child type to be some form of read-only object, but that’s not required
by the collection class. A business collection would be declared like this:

<Serializable()> _
Public Class CustomerList
Inherits Csla.ReadOnlyListBase(Of CustomerList, CustomerInfo)

End Class

This indicates that the collection will be containing child objects of type CustomerInfo.

System.ICloneable
The class implements System.ICloneable like all base classes in CSLA .NET. The implementation
is identical to that in BusinessListBase, so I won’t duplicate it here. The clone operation is available
via ICloneable and through a Public strongly typed Clone() method.

Other than the data access code that will be implemented in Chapter 4, this completes the
read-only collection base class and this chapter.

Conclusion
This chapter has applied the concepts from Chapter 1 to implement about a third of the framework
discussed in Chapter 2. At this point, the framework provides enough functionality for a business
developer to build object-oriented systems that support useful concepts such as the following:

• N-level undo

• Validation rules

• Authorization rules

• Data binding

• Change tracking

• Strongly typed collections

• Editable and read-only objects

• Root and child objects

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION 161

6315_c03_final.qxd 4/13/06 12:29 PM Page 161

Chapters 4 and 5 will finish the business framework. Chapter 4 will focus on implementing
the data portal concept and supporting object persistence. Then Chapter 5 will wrap up by imple-
menting a variety of functionality to support a business developer in building an application using
mobile objects.

From Chapter 6 on, the focus will be on designing and building a simple business application
that illustrates how the classes in the framework can be used to build applications based on mobile
business objects.

CHAPTER 3 ■ BUSINESS FRAMEWORK IMPLEMENTATION162

6315_c03_final.qxd 4/13/06 12:29 PM Page 162

Data Access and Security

Chapter 3 combined the concepts from Chapter 1 with the framework design from Chapter 2 to
implement much of the CSLA .NET framework. The focus in Chapter 3 was on creating editable and
read-only business objects and collections to support the UI developer. This chapter will continue
the process by adding data access to the framework. This will entail making some minor changes to
some of the base classes created in Chapter 4. Chapter 1 introduced the concept of mobile objects,
including the idea that in an ideal world, business logic would be available both on the client work-
station (or web server) and on the application server. The implementation of data access in this
chapter is specifically designed to leverage the concept of mobile objects by enabling objects to
move between client and server. When on the client, all the data binding and UI support from
Chapter 3 is available to a UI developer; and when on the server, the objects will be able to persist
themselves to the database (or other data store).

Chapter 2 discussed the idea of a data portal. The data portal combines the channel adapter
and message router design patterns to provide a simple, clearly defined point of entry to the server
for all data access operations. In fact, the data portal entirely hides whether a server is involved,
allowing an application to switch between 2-tier and 3-tier physical deployments without changing
any code.

The UI developer is entirely unaware of the use of a data portal. Instead, the UI developer will
interact only with the business objects created by the business developer.

The business developer will make use of a Csla.DataPortal class to create, retrieve, update,
and delete all business object data. This DataPortal class is the single entry point to the entire data
portal infrastructure, which enables mobile objects and provides access to server-side resources
such as distributed transaction support. The key features enabled by the data portal infrastructure
include:

• Enabling mobile objects

• Hiding the network transport (channel adapter)

• Exposing a single point of entry to the server (message router)

• Exposing server-side resources (database engine, distributed transactions, etc.)

• Unifying context (passing context data to/from client and server)

• Using Windows integrated (AD) security

• Using CSLA .NET custom authentication (including impersonation)

Meeting all those needs means that the data portal is a very complex entity. While to a business
developer, it appears to consist only of the simple Csla.DataPortal class, there’s actually a lot going
on behind that class.

You should also know that the foundation for custom authentication in the data portal will be
created in this chapter, but the details of creating a custom .NET principal object for the data portal
will be discussed in Chapter 5 and then in the sample application in Chapter 8.

163

C H A P T E R 4

■ ■ ■

6315_c04_final.qxd 4/13/06 12:33 PM Page 163

Figure 4-1 shows the primary classes created in this chapter.

This chapter also includes many cases that support those shown in Figure 4-1. While the con-
cept behind these classes was covered in Chapter 2, this chapter will reprise those discussions,
providing insight into the implementation.

Data Portal Design
One of the primary goals of object-oriented programming is to encapsulate all the functionality
(data and implementation) for a domain entity into a single class. This means, for instance, that all
the data and implementation logic for the concept of a customer should be in a Customer class.

In many cases, the business logic in an object directly supports a rich, interactive user expe-
rience. This is especially true for Windows Forms applications, in which the business object
implements validation and calculation logic that should be run as the user enters values into
each field on a form. To achieve this, the objects should be running on the client workstation or
web server to be as close to the user as possible.

At the same time, most applications have back-end processing that is not interactive. In an
n-tier deployment, this non-interactive business logic should run on an application server. Yet good
object-oriented design dictates that all business logic should be encapsulated within objects rather
than spread across the application. This can be challenging when an object needs to both interact
with the user and perform back-end processing. Effectively, the object needs to be on the client
sometimes and on the application server other times.

The idea of mobile objects solves this problem by allowing an object to physically move from
one machine to another. This means it really is possible to have an object run on the client to inter-
act with the user, then move to the application server to do back-end work like interacting with the
database.

A key goal of the data portal is to enable the concept of mobile objects. In the end, not only will
objects be able to go to the application server to persist their data to a database, but they will also
be able to handle any other non-interactive back-end business behaviors that should run on the
application server.

164 CHAPTER 4 ■ DATA ACCESS AND SECURITY

Figure 4-1. Types required to implement data access, mobile objects, and security

6315_c04_final.qxd 4/13/06 12:33 PM Page 164

Channel Adapter and Message Router Patterns
The data portal combines two common design patterns: channel adapter and message router.

The channel adapter pattern provides a great deal of flexibility for n-tier applications by allow-
ing the application to switch between 2-tier and 3-tier models, as well as switching between various
network protocols.

The message router pattern helps to decouple the client and server by providing a clearly
defined, single point of entry for all server interaction. Each call to the server is routed to an appro-
priate server-side object.

Channel Adapter
Chapter 1 discussed the costs and benefits of physical n-tier deployments. Ideally, an application
will use as few physical tiers as possible. At the same time, it is good to have the flexibility to switch
from a 2-tier to a 3-tier model, if needed, to meet future scalability or security requirements.

Switching to a 3-tier model means that there’s now a network connection between the client
(or web server) and the application server. Today, .NET directly supports three technologies for
such communication, and Windows Communication Foundation (WCF) will add another in the
near future. To avoid being locked into a single network communication technology, the data por-
tal will apply the channel adapter design pattern.

The channel adapter pattern allows the specific network technology to be changed through
configuration rather than through code. A side effect of the implementation shown in this chapter
is that no network is also an option. Thus, the data portal provides support for 2-tier or 3-tier
deployment. In the 3-tier case, it supports various network technologies, all of which are config-
urable without changing any code.

Figure 4-2 illustrates the flow of a client call to the Csla.DataPortal class as it goes through all
the optional channels to the server-side Csla.Server.DataPortal object.

Switching from one channel to another is done by changing a configuration file, not by chang-
ing code. Notice that the LocalProxy channel communicates directly with the Csla.Server.
DataPortal object on the right. This is because it entirely bypasses the network, interacting with

CHAPTER 4 ■ DATA ACCESS AND SECURITY 165

Figure 4-2. Flow of a client call through the data portal

6315_c04_final.qxd 4/13/06 12:33 PM Page 165

the object in memory on the client. All the other channel proxies use network communication to
interact with the server-side object.

■Tip The data portal will also allow you to create your own proxy/host combination so you can support network
channels other than the three implemented in this chapter.

Table 4-1 lists the types required to implement the channel adapter portion of the data portal.

CHAPTER 4 ■ DATA ACCESS AND SECURITY166

Table 4-1. Types Required for the Channel Adapter

Type Description

Csla.MethodCaller Utility class that encapsulates the use of reflection to
find method information and invoke methods

Csla.Server.CallMethodException Exception thrown by the data portal when an excep-
tion occurs while calling a data access method

Csla.RunLocalAttribute Attribute applied to a business object’s data access
methods to force the data portal to always run that
method on the client, bypassing the configuration
settings

Csla.DataPortalEventArgs EventArgs subclass passed as a parameter for events
raised by Csla.DataPortal

Csla.DataPortal Primary entry point to the data portal infrastructure;
used by business developers

Csla.Server.DataPortal Portal to the message router functionality on the
server; acts as a single point of entry for all server
communication

Csla.Server.IDataPortalServer Interface defining the methods required for data
portal host objects

Csla.DataPortalClient.IDataPortalProxy Interface defining the methods required for client-
side data portal proxy objects

Csla.DataPortalClient.LocalProxy Loads Csla.Server.DataPortal directly into memory
on the client and runs all “server-side” operations in
the client process

Csla.DataPortalClient.RemotingProxy Uses .NET Remoting to communicate with a remot-
ing server running in IIS or within a custom host
(typically a Windows service)

Csla.Server.Hosts.RemotingPortal Exposed on the server by IIS or a custom host; called
by RemotingProxy

Csla.DataPortalClient.EnterpriseServicesProxy Uses Enterprise Services (DCOM) to communicate
with a server running in COM+

Csla.Server.Hosts.EnterpriseServicesPortal Exposed on the server by Enterprise Services; called
by EnterpriseServicesProxy

Csla.DataPortalClient.WebServicesProxy Uses Web Services to communicate with a service
hosted in IIS

Csla.Server.Hosts.WebServicePortal Exposed on the server as a web service by IIS; called
by WebServicesProxy

The point of the channel adapter is to allow a client to call Csla.DataPortal without your hav-
ing to worry about how that call will be relayed to the Csla.Server.DataPortal object. Once the call
makes it to the server-side DataPortal object, the message router pattern becomes important.

6315_c04_final.qxd 4/13/06 12:33 PM Page 166

Message Router
One important lesson to be learned from the days of COM and MTS/COM+ is that it isn’t wise to
expose large numbers of classes and methods from a server. When a server exposes dozens or even
hundreds of objects, the client must be aware of all of them in order to function.

Having the client aware of every server-side object results in tight coupling and fragility. A
change to the server typically changes the server’s public API, breaking all clients—often even those
that aren’t even using the object that was changed.

One way to avoid this fragility is to add a layer of abstraction. Specifically, you can implement
the server to have a single point of entry that exposes a limited number of methods. This keeps the
server’s API very clear and concise, minimizing the need for a server API change. The data portal will
expose just the five methods listed in Table 4-2.

Table 4-2. Methods Exposed by the Data Portal Server

Method Purpose

Create Creates a new object, loading it with default values from the database

Fetch Retrieves an existing object, first loading it with data from the database

Update Inserts, updates, or deletes data in the database corresponding to an existing object

Delete Deletes data in the database corresponding to an existing object

Execute Executes a command object (subclass of CommandBase as described in Chapter 5) on
the server

Of course, the next question is how, with a single point of entry, do your clients get at the
dozens or hundreds of objects on the server? It isn’t like they aren’t needed! This is the purpose of
the message router.

The single point of entry to the server routes all client calls to the appropriate server-side
object. If you think of each client call as a message, then this component routes messages to your
server-side objects. In CSLA .NET, the message router is Csla.Server.DataPortal. Notice that it is
also the endpoint for the channel adapter pattern discussed earlier; the data portal knits the two
patterns together into a useful whole.

For Csla.Server.DataPortal to do its work, all server-side objects must conform to a stan-
dard design so the message router knows how to invoke them. Remember, the message router
merely routes messages to objects—it is the object that actually does useful work in response to
the message.

Figure 4-3 illustrates the flow of a call through the message router implementation.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 167

Figure 4-3. Flow of a client call through the message router

6315_c04_final.qxd 4/13/06 12:33 PM Page 167

The DataPortal class (on the left of Figure 4-3) represents the Csla.Server.DataPortal—
which was the rightmost entity in Figure 4-2. It relies on a SimpleDataPortal object to do the
actual message routing, a fact that will become important shortly for support of distributed
transactions.

The SimpleDataPortal object routes each client call (message) to the actual business object
that can handle the message. These are the same business classes and objects that make up the
application’s business logic layer.

In other words, the same exact objects used by the UI on the client are also called by the data
portal on the server. This allows the objects to run on the client to interact with the user, and on
the server to do back-end processing as needed.

Table 4-3 lists the classes needed, in addition to Csla.Server.DataPortal, to implement the
message router behavior.

Table 4-3. Types Required for the Message Router

Type Description

Csla.Server.SimpleDataPortal Entry point to the server, implementing the message router
behavior and routing client calls to the appropriate business
object on the server

Csla.CriteriaBase Optional base class for use when building criteria objects; cri-
teria objects contain the criteria or key data needed to create,
retrieve, or delete an object’s data

Csla.MethodCaller Utility class that encapsulates the use of reflection to find
method information and to invoke methods

Notice that neither the channel adapter nor message router explicitly deal with moving objects
between the client and server. This is because the .NET runtime typically handles object movement
automatically as long as the objects are marked as <Serializable()>. The exception to this is when
using Web Services. In that case, as you’ll see later in the chapter, manual serialization and deserial-
ization of the objects is required.

The Csla.CriteriaBase class listed in Table 4-3 is optionally used to define the message sent
from a client to the server for Create, Fetch, and Delete data portal operations. It exists primarily to
support business objects created using code-generation tools. During the implementation of
SimpleDataPortal later in the chapter, you’ll see how this base class is used.

Distributed Transaction Support
There are several different technologies that support database transactions, including trans-
actions in the database itself, ADO.NET, Enterprise Services, and System.Transactions. When
updating a single database (even multiple tables), any of them will work fine, and your decision
will often be based on which is fastest or easiest to implement.

If your application needs to update multiple databases, however, the options are a bit more
restrictive. Transactions that protect updates across multiple databases are referred to as distributed
transactions. In SQL Server, you can implement distributed transactions within stored procedures.
Outside the database, you can use Enterprise Services or System.Transactions.

Distributed transaction technologies use the Microsoft Distributed Transaction Coordinator
(DTC) to manage the transaction across multiple databases. There is a substantial performance
cost to enlisting the DTC in a transaction. Your application, the DTC, and the database engine(s)
all need to interact throughout the transactional process to ensure that a consistent commit or
rollback occurs, and this interaction takes time.

CHAPTER 4 ■ DATA ACCESS AND SECURITY168

6315_c04_final.qxd 4/13/06 12:33 PM Page 168

Historically, you had to pick one transactional approach for your application. This often meant
using distributed transactions even when they weren’t required—and paying that performance cost.

The new System.Transactions namespace offers a compromise through the TransactionScope
object. It starts out using nondistributed transactions (like those used in ADO.NET), and thus offers
high performance for most applications. However, as soon as your code uses a second database
within a transaction, TransactionScope automatically enlists the DTC to protect the transaction.
This means you get the benefits of distributed transactions when you need them, but you don’t pay
the price for them when they aren’t needed.

The data portal allows the developer to specify which transactional technology to use for each
of a business object’s data access methods. To do this, the message router portion of the data portal
uses some extra classes, as shown in Figure 4-4. Notice that this is basically the same diagram as
Figure 4-3, but with extra types to support the transactional technologies.

The Csla.Server.DataPortal object uses the TransactionalAttribute to determine what type
of transactional approach should be used for each call by the client. Ultimately, all calls end up
being handled by SimpleDataPortal, which routes the call to an appropriate business object. The
real question is whether SimpleDataPortal (and thus the business object) run within a preexisting
transactional context or not.

The TransactionalAttribute is applied to the data access methods on the business object
itself. Csla.Server.DataPortal looks at the business object’s data access method that will ulti-
mately be invoked by SimpleDataPortal, and finds the value of the TransactionalAttribute (if
any). Table 4-4 lists the options for this attribute.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 169

Figure 4-4. Types supporting transactional technologies in the data portal

6315_c04_final.qxd 4/13/06 12:33 PM Page 169

Table 4-4. Transactional Options Supported by the Data Portal

Attribute Result

None The business object does not run
within a preexisting transactional
context and so must implement its
own transactions using stored pro-
cedures or ADO.NET.

<Transactional(TransactionalTypes.Manual)> Same as “none” in the previous entry.

<Transactional(TransactionalTypes.EnterpriseServices)> The business object runs within a
COM+ distributed transactional
context.

<Transactional(TransactionalTypes.TransactionScope)> The business object runs within
a System.Transactions.
TransactionalScope transaction.

Table 4-5 lists the types required, in addition to Csla.Server.DataPortal and Csla.Server.
SimpleDataPortal, to support transactional technologies in the data portal.

Table 4-5. Types Required to Implement Transactional Support

Type Description

Csla.Server.ServicedDataPortal Creates a COM+ distributed transaction and then dele-
gates the call to SimpleDataPortal

Csla.Server.TransactionalDataPortal Creates a System.Transactions.TransactionScope trans-
action and then delegates the call to SimpleDataPortal

Csla.TransactionalAttribute Used by a business developer to indicate the type of
transactional technology expected by each business
object data access method

Csla.TransactionalTypes Enumerates the list of options used by
TransactionalAttribute

By extending the message router concept to add transactional support, the data portal makes
it very easy for a business developer to leverage either Enterprise Services or System.Transactions
as needed. At the same time, the complexity of both technologies is reduced by abstracting them
within the data portal.

Context and Location Transparency
A key goal for the data portal is to provide a consistent environment for the business objects. At a
minimum, this means that both client and server should run under the same user identity (imper-
sonation) and the same culture (localization). The business developer should be able to pass other
arbitrary information between client and server as well.

In addition to context information, exception data from the server should flow back to the
client with full fidelity. This is important for debugging and at runtime. The UI often needs to know
the specifics about any server-side exceptions in order to properly notify the user about what hap-
pened and then to take appropriate steps.

Figure 4-5 shows the objects used to flow data from the client to the server and back again to
the client.

CHAPTER 4 ■ DATA ACCESS AND SECURITY170

6315_c04_final.qxd 4/13/06 12:33 PM Page 170

The arrows pointing off the left side of the diagram indicate communication with the calling
code—typically the business object’s factory methods. A business object calls Csla.DataPortal to
invoke one of the data portal operations. Csla.DataPortal calls Csla.Server.DataPortal (using the
channel adapter classes not shown here), passing a DataPortalContext object along with the actual
client request.

The DataPortalContext object contains several types of context data, as listed in Table 4-6.

Table 4-6. Context Data Contained Within DataPortalContext

Context Data Description

GlobalContext Collection of context data that flows from client to server and then from server
back to client; changes on either end are carried across the network

ClientContext Collection of context data that flows from client to server; changes on the
server are not carried back to the client

Principal Client’s IPrincipal object, which flows to the server if custom authentication
is being used

IsRemotePortal A flag indicating whether Csla.Server.DataPortal is actually running on a
server or not

ClientCulture Client thread’s culture, which flows from the client to the server

ClientUICulture Client thread’s UI culture, which flows from the client to the server

The GlobalContext and ClientContext collections are exposed to both client and server code
through Shared methods on the Csla.ApplicationContext class. All business object and UI code will
use properties on the Csla.ApplicationContext class to access any context data.

When a call is made from the client to the server, the client’s context data must flow to the
server; the data portal does this by using the DataPortalContext object.

The Csla.Server.DataPortal object accepts the DataPortalContext object and uses its data to
ensure that the server’s context is set up properly before invoking the actual business object code.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 171

Figure 4-5. Context and exception data flow to and from the server

6315_c04_final.qxd 4/13/06 12:33 PM Page 171

This means that by the time the business developer’s code is running on the server, the server’s
IPrincipal, culture, and Csla.ApplicationContext are set to match those on the client.

■Caution The exception to this is when using Windows integrated (AD) security. In that case, you must config-
ure the server technology (such as IIS) to use Windows impersonation or the server will not impersonate the user
identity from the client.

There are two possible outcomes of the server-side processing. Either it succeeds or it throws
an exception.

If the call to the business object succeeds, Csla.Server.DataPortal returns a DataPortalResult
object back to Csla.DataPortal on the client. The DataPortalResult object contains the information
listed in Table 4-7.

Table 4-7. Context Data Contained Within DataPortalResult

Context Data Description

GlobalContext Collection of context data that flows from client to server and then from server
back to client; changes on either end are carried across the network

ReturnObject The business object being returned from the server to the client as a result of the
data portal operation

Csla.DataPortal puts the GlobalContext data from DataPortalResult into the client’s Csla.
ApplicationContext, thus ensuring that any changes to that collection on the server are reflected
on the client. It then returns the ReturnObject value as the result of the call itself.

You may use the bidirectional transfer of GlobalContext data to generate a consolidated list of
debugging or logging information from the client, to the server, and back again to the client.

On the other hand, if an exception occurs on the server, either within the data portal itself,
or more likely within the business object’s code, that exception must be returned to the client.
Either the business object or the UI on the client can use the exception information to deal with
the exception in an appropriate manner.

In some cases, it can be useful to know the exact state of the business object graph on the
server when the exception occurred. To this end, the object graph is also returned in the case of an
exception. Keep in mind that it is returned as it was at the time of the exception, so the objects are
often in an indeterminate state.

If an exception occurs on the server, Csla.Server.DataPortal catches the exception and
wraps it as an InnerException within a Csla.Server.DataPortalException object. This
DataPortalException object contains the information listed in Table 4-8.

Table 4-8. Context Data Contained Within Csla.Server.DataPortalException

Context Data Description

InnerException The actual server-side exception (which may also have InnerException
objects of its own)

StackTrace The stack trace information for the server-side exception

DataPortalResult A DataPortalResult object (as discussed previously) containing both
GlobalContext and the business object from the server

CHAPTER 4 ■ DATA ACCESS AND SECURITY172

6315_c04_final.qxd 4/13/06 12:33 PM Page 172

Again, Csla.DataPortal uses the information in the exception object to restore the Csla.
ApplicationContext object’s GlobalContext. Then it throws a Csla.DataPortalException, which
is initialized with the data from the server.

The Csla.DataPortalException object is designed for use by business object or UI code.
It provides access to the business object as it was on the server at the time of the exception. It also
overrides the StackTrace property to append the server-side stack trace to the client-side stack
trace, so the result shows the entire stack trace from where the exception occurred on the server
all the way back to the client code.

■Note Csla.DataPortal always throws a Csla.DataPortalException in case of failure. You must use either
its InnerException or BusinessException properties, or the GetBaseException() method to retrieve the
original exception that occurred.

In addition to Csla.DataPortal and Csla.Server.DataPortal, the types in Table 4-9 are required
to implement the context behaviors discussed previously.

Table 4-9. Types Required to Implement Context Passing and Location Transparency

Type Description

Csla.ApplicationContext Provides access to the ClientContext and GlobalContext
collection objects, as well as other context information

Csla.DataPortalException Exception thrown by the data portal in case of any server-
side exceptions; the server-side exception is an
InnerException within the DataPortalException

Csla.Server.DataPortalContext Transfers context data from the client to the server on every
data portal operation

Csla.Server.DataPortalResult Transfers context and result data from the server to the
client on every successful data portal operation

Csla.Server.DataPortalException Transfers context and exception data from the server to the
client on every unsuccessful data portal operation

This infrastructure ensures that business code running on the server will share the same key
context data as the client. It also ensures that the client’s IPrincipal object is transferred to the
server when the application is using custom authentication. The framework’s support for custom
authentication will be discussed in Chapter 5.

At this point, you should have a good understanding of the various areas of functionality pro-
vided by the data portal, and the various classes and types used to implement that functionality.
The rest of the chapter will walk through those classes. As with Chapter 3, not all code is shown in
this chapter, so you’ll want to get the code download for the book (available at www.apress.com) to
follow along.

Enhancing the Base Classes
In order to support persistence, the ability to save and restore from the database, objects need to
implement methods that can be called by the UI. They also need to implement methods that can
be called by the data portal on the server.

Figure 4-6 shows the basic process flow when the UI code wants to get a new business object or
load a business object from the database.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 173

6315_c04_final.qxd 4/13/06 12:33 PM Page 173

Following the class-in-charge model from Chapter 2, you can see that the UI code calls a fac-
tory method on the business class. The factory method then calls the appropriate method on the
Csla.DataPortal class to create or retrieve the business object. The Csla.Server.DataPortal object
then creates the object and invokes the appropriate data access method (DataPortal_Create() or
DataPortal_Fetch()). The populated business object is returned to the UI, which can then use it as
needed by the application.

Immediate deletion follows the same basic process, with the exception that no business object
is returned to the UI as a result.

The BusinessBase and BusinessListBase classes need to implement a Save() method to make
the update process work, as illustrated by Figure 4-7.

The process is almost identical to creating or loading an object, except that the UI starts off by
calling the Save() method on the object to be saved, rather than invoking a factory method on the
business class.

CHAPTER 4 ■ DATA ACCESS AND SECURITY174

Figure 4-6. Process flow to create or load a business object

6315_c04_final.qxd 4/13/06 12:33 PM Page 174

Factory Methods and Criteria
Chapter 2 discussed the class-in-charge model and factory methods. When the UI needs to create
or retrieve a business object, it will call a factory method that abstracts that behavior. These factory
methods are just Shared methods, and you can put them in any class you choose. While some
people put them in their own factory class, I prefer to put them in the business class for the object
they create or retrieve, as I think it makes them easier to find.

This means a Customer class will include Shared factory methods such as GetCustomer() and
NewCustomer(), both of which return a Customer object as a result. It may also implement a
DeleteCustomer() method, which would return nothing. The implementation of these methods
would typically look like this:

Public Shared Function NewCustomer() As Customer
Return DataPortal.Create(Of Customer)()

End Function

Public Shared Function GetCustomer(ByVal id As Integer) As Customer
Return DataPortal.Fetch(Of Customer)(New Criteria(id))

End Function

Public Shared Sub DeleteCustomer(ByVal id As Integer)
DataPortal.Delete(New Criteria(id))

End Sub

CHAPTER 4 ■ DATA ACCESS AND SECURITY 175

Figure 4-7. Process flow for saving a business object

6315_c04_final.qxd 4/13/06 12:33 PM Page 175

The Criteria class used in the GetCustomer() method will either be nested within the busi-
ness class, or must inherit from Csla.CriteriaBase. The former is the typical approach for classes
written by hand, while the latter is intended for use with code-generation tools.

The purpose of a criteria object is to convey at least one piece of information from the client
to the server. The only required piece of data is the type of the business object to be created,
retrieved, or deleted. The data portal determines this either by looking at the class within which
the criteria object is nested, or by retrieving a Type object from the criteria object in the case that
it inherits from Csla.CriteriaBase.

In reality, most criteria objects include other information to uniquely identify the specific
object to be retrieved. In this Customer example, the customer’s unique ID value is a number.

A nested criteria class would look like this:

<Serializable()> _
Public Class Customer
Inherits BusinessBase(Of Customer)
<Serializable()> _
Private Class Criteria
Private mId As Integer
Public ReadOnly Property Id() As Integer
Get
Return mId

End Get
End Property

Public Sub New(ByVal id As Integer)
mId = id

End Sub
End Class

End Class

The same criteria class inheriting from Csla.CriteriaBase would look like this:

<Serializable()> _
Friend Class Criteria
Inherits CriteriaBase
Private mId As Integer
Public ReadOnly Property Id() As Integer
Get
Return mId

End Get
End Property

Public Sub New(ByVal id As Integer)
MyBase.New(GetType(Customer))
mId = id

End Sub
End Class

Either way, the data portal can discover that the criteria object is looking for a Customer object,
and so a Customer object will be created by the data portal. This will become clearer later, in the
implementation of Csla.Server.SimpleDataPortal.

Save Methods
The factory methods, combined with the support for deleting child objects implemented in
Chapter 3, cover creating, retrieving, and deleting objects. This leaves inserting and updating.

CHAPTER 4 ■ DATA ACCESS AND SECURITY176

6315_c04_final.qxd 4/13/06 12:33 PM Page 176

In both of these cases, the object already exists in memory, and so the Save() method is an instance
method on any editable object.

One Save() method can be used to support inserting and updating an object’s data because all
editable objects have an IsNew property. Recall from Chapter 3 that the definition of a “new” object
is that the object’s primary key value doesn’t exist in the database. This means that if IsNew is True,
then Save() causes an insert operation; otherwise, Save() causes an update operation.

Csla.BusinessBase and Csla.BusinessListBase are the base classes for all editable business
objects, and both these base classes implement Save() methods:

Public Overridable Function Save() As T
If Me.IsChild Then
Throw New NotSupportedException(_
My.Resources.NoSaveChildException)

End If

If EditLevel > 0 Then
Throw New Validation.ValidationException(_
My.Resources.NoSaveEditingException)

End If

If Not IsValid Then
Throw New Validation.ValidationException(_
My.Resources.NoSaveInvalidException)

End If

If IsDirty Then
Return DirectCast(DataPortal.Update(Me), T)

Else
Return DirectCast(Me, T)

End If
End Function

Public Function Save(ByVal forceUpdate As Boolean) As T

If forceUpdate AndAlso IsNew Then
MarkOld()
MarkDirty(True)

End If
Return Me.Save()

End Function

The first Save() method is the primary one that does the real work. It implements a set of
common rules that make sense for most objects. Specifically, it does the following:

• Ensures that the object is not a child (since child objects must be saved as part of their
parent)

• Makes sure that the object isn’t currently being edited (a check primarily intended to assist
with debugging)

• Checks to see if the object is valid; invalid objects can’t be saved

• Ensures the object is dirty; there’s no sense saving unchanged data into the database

Notice that the method is Overridable, so if a business developer needs a different set of rules
for an object, it is possible to override this method and implement something else.

The second Save() method exists to support Web Services (discussed in Chapter 10). It allows a
web service author to create a new instance of the object, load it with data, and then force the object

CHAPTER 4 ■ DATA ACCESS AND SECURITY 177

6315_c04_final.qxd 4/13/06 12:33 PM Page 177

to do an update (rather than an insert) operation. The reason for this is that when creating a web
service to update data, the application calling the web service often passes all the data needed to
update the database; there’s no need to retrieve the existing data just to overwrite it. This optional
overload of Save() gives you that option.

This is done by first calling MarkOld() to set IsNew to False, and then calling MarkDirty() to
set IsDirty to True. This feature can also be useful for some stateless Web Forms implementa-
tions as well.

In either case, it is the DataPortal.Update() call that ultimately triggers the data portal infra-
structure to move the object to the application server so it can interact with the database.

It is important to notice that the Save() method returns an instance of the business object.
Recall that .NET doesn’t actually move objects across the network; rather, it makes copies of the
objects. The DataPortal.Update() call causes .NET to copy this object to the server so the copy can
update itself into the database. That process could change the state of the object (especially if you
are using primary keys assigned by the database or timestamps for concurrency). The resulting
object is then copied back to the client and returned as a result of the Save() method.

■Note It is critical that the UI update all its references to use the new object returned by Save(). Failure to do
this means that the UI will be displaying and editing old data from the old version of the object.

Data Portal Methods
As noted earlier, the data portal places certain constraints on business objects. Specifically, it needs
to know what methods it can invoke on the server. The data portal will invoke the methods listed in
Table 4-10, though not all framework base classes need to implement all the methods. Collectively,
I’ll refer to these methods as the DataPortal_XYZ methods.

Table 4-10. Business Object Methods Invoked by the Data Portal

Method Purpose

DataPortal_Create() An editable business object implements this method
to load itself with default values required for a new
object.

DataPortal_Fetch() An editable or read-only business object implements
this method to load itself with existing data from the
database.

DataPortal_Insert() An editable business object implements this method
to insert its data into the database.

DataPortal_Update() An editable business object implements this method
to update its data in the database.

DataPortal_DeleteSelf() An editable business object implements this method
to delete its data from the database.

DataPortal_Delete() An editable business object implements this method
to delete its data from the database based on its pri-
mary key values only.

DataPortal_Execute() A command object (see Chapter 5) implements this
method to execute arbitrary code on the application
server.

DataPortal_OnDataPortalInvoke() This method is invoked on all objects before one of
the preceding methods is invoked.

CHAPTER 4 ■ DATA ACCESS AND SECURITY178

6315_c04_final.qxd 4/13/06 12:33 PM Page 178

Method Purpose

DataPortal_OnDataPortalInvokeComplete() This method is invoked on all objects after any of the
preceding methods have been invoked.

DataPortal_OnDataPortalException() This method is invoked on an object if an exception
occurs on the server; in this case, DataPortal_
OnDataPortalInvokeComplete would not typically
be invoked.

There are several ways the framework might ensure that the appropriate methods are imple-
mented on each business object. A formal interface or abstract base class could be used to force
business developers to implement each method. Alternatively, a base class could implement
Overridable methods with default behaviors that could optionally be overridden by a business
developer. Finally, it is possible to use reflection to dynamically invoke the methods.

Since not all objects will implement all the methods listed in Table 4-10, the idea of an inter-
face or base class with MustOverride methods isn’t ideal. Another negative side effect of those
approaches is that the methods end up being publicly available, so a UI developer could call
them. Of course, that would be problematic, since these methods will be designed to be called
only by the data portal infrastructure. Finally, defining the methods at such an abstract level pre-
vents the use of strong typing. Since the data types of the parameters being passed to the server
by the client are defined by the business application, there’s no way the framework can antici-
pate all the types—meaning that the parameters must be passed as type Object or another very
generic base type.

Implementing default Overridable methods is an attractive option because it doesn’t force
the business developer to implement methods that will never be called. This is the approach
I used in CSLA .NET 1.0, and will use in this chapter as well. However, this approach suffers from
the same lack of strong typing as the interface or abstract base class approach.

Which brings us to the use of reflection. Reflection is much maligned as being slow, and it is
in fact slower than making a native method call. However, it offers substantial benefits as well,
most notably the ability to implement strongly typed data access methods on the business
objects. The purpose behind reflection is to allow dynamic loading of types and then to allow
dynamic invocation of methods on those types. And that’s exactly what the data portal does.

■Note The performance cost of reflection is typically negligible within the data portal. This is because the over-
head of network communication and data access is so high that any overhead due to reflection usually becomes
inconsequential.

Remember that the message router pattern implies that CSLA .NET has no reference to any
business assembly. Business assemblies are loaded dynamically based on the request coming from
the client. Reflection is used to dynamically load the assemblies and to create instances of business
objects based on the classes built by the business developer.

Using reflection to also invoke the DataPortal_XYZ methods on the objects means that the
business developer can write strongly typed versions of those methods. After all, the business devel-
oper knows the exact type of the parameters she is sending from the client to the server, and can
write data access methods to accept those types. For instance, a DataPortal_Fetch() method may
look like this:

Private Sub DataPortal_Fetch(ByVal criteria As MyCriteria)
' load data into object from database

End Sub

CHAPTER 4 ■ DATA ACCESS AND SECURITY 179

6315_c04_final.qxd 4/13/06 12:33 PM Page 179

If this method were defined by CSLA .NET, it couldn’t use the MyCriteria type because that type
is specific to the business application. Instead, the framework would have to define the method
using Object as the parameter type, as I did in CSLA .NET 1.0. In that case, a business developer
must write code like this:

Protected Overrides Sub DataPortal_Fetch(ByVal criteria As Object)
MyCriteria crit = CType(criteria, MyCriteria)
' load data into object from database

End Sub

For the purposes of backward compatibility, the implementation in this chapter will support
both the old and new strongly typed models.

To support the old model, the base classes in the framework need to include Protected
Overridable methods with default behaviors for the key DataPortal_XYZ methods that a business
developer might override. For those methods that aren’t appropriate for a given base class, Private
methods are implemented in the base class that throw an exception.

For example, Csla.Core.BusinessBase includes the following code:

Protected Overridable Sub DataPortal_Create(ByVal criteria As Object)
Throw New NotSupportedException(_
My.Resources.CreateNotSupportedException)

End Sub

This provides a base method definition that a business class can override. The Visual Studio
2005 IDE makes it very easy to override methods by simply typing the keyword Overrides into the
editor and getting an IntelliSense list of the Overridable methods in the base class.

Notice that the default implementation throws an exception. If the business developer doesn’t
override this method (or provide a strongly typed equivalent), but does implement a factory method
that calls DataPortal.Create(), this exception will be the result.

■Tip Notice the use of a string resource rather than a literal string for the exception’s message. This is done to
enable localization. Since the text value comes from the resource (resx) file for the project, it will automatically
attempt to use the resources for the current culture on the executing thread.

The same thing is done for DataPortal_Fetch(), DataPortal_Insert(), DataPortal_Update(),
DataPortal_DeleteSelf(), and DataPortal_Delete(). Since a subclass of BusinessBase is an editable
object, all the data portal operations are valid. Likewise, the same default methods are implemented
in BusinessListBase. Again, it is the base for editable collections, and so all operations are valid.

Csla.ReadOnlyBase and Csla.ReadOnlyListBase are used to create read-only objects. As
such, only the DataPortal.Fetch() operation is valid. This means that only DataPortal_Fetch()
is implemented as a Protected Overridable default. All the other DataPortal_XYZ methods are
implemented with Private scope, and they all throw exceptions if they are called. This ensures
that read-only objects can only be retrieved—never inserted, updated, or deleted.

This completes the enhancements to the business object base classes that are required for
the data portal to function. Chapter 5 will implement a couple more base classes, and they too
will have comparable features.

Now let’s move on and implement the data portal itself, feature by feature. The data portal is
designed to provide a set of core features, including

CHAPTER 4 ■ DATA ACCESS AND SECURITY180

6315_c04_final.qxd 4/13/06 12:33 PM Page 180

• Implementing a channel adapter

• Supporting distributed transactional technologies

• Implementing a message router

• Transferring context and providing location transparency

The remainder of the chapter will walk through each functional area in turn, discussing the
implementation of the classes supporting the concept. Though the data portal support for custom
authentication and impersonation will be covered in this chapter, the Csla.Security.
BusinessPrincipalBase class will be covered in Chapter 5.

The data portal is exposed to the business developer through the Csla.DataPortal class. This
class implements a set of Shared methods to make it as easy as possible for the business developer
to create, retrieve, update, or delete objects. All the channel adapter behaviors are hidden behind
the Csla.DataPortal class.

The Csla.DataPortal class makes use of methods from the Csla.MethodCaller class.

Csla.MethodCaller Class
In fact, MethodCaller is used by many other classes in the data portal infrastructure, as it wraps
the use of reflection in several ways. Csla.DataPortal, Csla.Server.DataPortal, and Csla.Server.
SimpleDataPortal in particular all need to retrieve information about methods on the business
class, and SimpleDataPortal needs to invoke those methods. The MethodCaller class contains
methods to provide all these behaviors.

GetMethod
Chief among the behaviors is the GetMethod() method. This method is used to locate a specific
method on the business class or object. Once the method has been located, other code can retrieve
the attributes for that method, or the method can be invoked.

This method is somewhat complex. Recall that the data portal will call strongly typed methods
based on the type of criteria object provided by the business object’s factory method. This means
that GetMethod() must locate the matching method on the business class—not only by method
name, but by checking the parameter types as well.

The process flow is illustrated in Figure 4-8.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 181

6315_c04_final.qxd 4/13/06 12:33 PM Page 181

Here’s the method in its entirety:

Public Function GetMethod(ByVal objectType As Type, _
ByVal method As String, ByVal ParamArray parameters() As Object) _
As MethodInfo

Dim flags As BindingFlags = _
BindingFlags.FlattenHierarchy Or _
BindingFlags.Instance Or _
BindingFlags.Public Or _
BindingFlags.NonPublic

Dim result As MethodInfo = Nothing

' try to find a strongly typed match
If parameters.Length > 0 Then
' put all param types into an array of Type
Dim paramsAllNothing As Boolean = True
Dim types As New List(Of Type)
For Each item As Object In parameters
If item Is Nothing Then
types.Add(GetType(Object))

CHAPTER 4 ■ DATA ACCESS AND SECURITY182

Figure 4-8. Process flow implemented by GetMethod()

6315_c04_final.qxd 4/13/06 12:33 PM Page 182

Else
types.Add(item.GetType)
paramsAllNothing = False

End If
Next

If paramsAllNothing Then
' all params are Nothing so we have
' no type info to go on
Dim oneLevelFlags As BindingFlags = _
BindingFlags.DeclaredOnly Or _
BindingFlags.Instance Or _
BindingFlags.Public Or _
BindingFlags.NonPublic

Dim typesArray() As Type = types.ToArray

' walk up the inheritance hierarchy looking
' for a method with the right number of
' parameters
Dim currentType As Type = objectType
Do
Dim info As MethodInfo = _
currentType.GetMethod(method, oneLevelFlags)

If info IsNot Nothing Then
If info.GetParameters.Length = parameters.Length Then
' got a match so use it
result = info
Exit Do

End If
End If
currentType = currentType.BaseType

Loop Until currentType Is Nothing

Else
' at least one param has a real value
' so search for a strongly typed match
result = objectType.GetMethod(method, flags, Nothing, _
CallingConventions.Any, types.ToArray, Nothing)

End If
End If

' no strongly typed match found, get default
If result Is Nothing Then
Try
result = objectType.GetMethod(method, flags)

Catch ex As AmbiguousMatchException
Dim methods() As MethodInfo = objectType.GetMethods
For Each m As MethodInfo In methods
If m.Name = method AndAlso _
m.GetParameters.Length = parameters.Length Then
result = m
Exit For

End If

CHAPTER 4 ■ DATA ACCESS AND SECURITY 183

6315_c04_final.qxd 4/13/06 12:33 PM Page 183

Next
If result Is Nothing Then
Throw

End If
End Try

End If

Return result
End Function

Let’s walk through the key parts of the process. First, assuming parameters were passed in for
the method, the parameter types are put into a list:

' put all param types into an array of Type
Dim paramsAllNothing As Boolean = True
Dim types As New List(Of Type)
For Each item As Object In parameters
If item Is Nothing Then
types.Add(GetType(Object))

Else
types.Add(item.GetType)
paramsAllNothing = False

End If
Next

The reason for doing this is twofold. First, if there is at least one parameter that is not Nothing,
then this list is needed for a call to reflection to get the matching method. Second, the loop deter-
mines whether there actually are any non-Nothing parameters. If not, the search for a matching
method can only by done by parameter count, not data type.

■Note In the general case, this could be problematic, because a Nothing value along with some non-Nothing
values could result in an ambiguous match. For the purposes of the data portal, however, this is not an issue
because the parameters involved are very clearly defined.

If all the parameter values are Nothing, then the search is done based on parameter count
rather than parameter type. This is complicated, however, by the fact that preference is given to
methods lower on the inheritance hierarchy. In other words, if both a base class and subclass have
methods of the same name and number of parameters, preference is given to the subclass.

To accomplish this, the code loops through the specific class types, starting with the outer-
most class and working up through the inheritance chain—ultimately to System.Object:

Dim currentType As Type = objectType
Do
Dim info As MethodInfo = _
currentType.GetMethod(method, oneLevelFlags)

If info IsNot Nothing Then
If info.GetParameters.Length = parameters.Length Then
' got a match so use it
result = info
Exit Do

End If
End If
currentType = currentType.BaseType

Loop Until currentType Is Nothing

CHAPTER 4 ■ DATA ACCESS AND SECURITY184

6315_c04_final.qxd 4/13/06 12:33 PM Page 184

As soon as a match is found, the loop is terminated and the result is used.
The other case occurs when at least one parameter is not Nothing. In such a case, reflection

can be used in a simpler manner to locate a method with matching parameter types:

' at least one param has a real value
' so search for a strongly typed match
result = objectType.GetMethod(method, flags, Nothing, _
CallingConventions.Any, types.ToArray, Nothing)

One way or the other, the result is typically a MethodInfo object for the correct method. How-
ever, it is possible that no match was found. In that case, as in the case in which no parameters
were passed at all, a search is done based purely on the method’s name:

result = objectType.GetMethod(method, flags)

Finally, it is possible for this check to find multiple matches—an ambiguous result. When that
happens, an exception is thrown. In such a case, as a last-ditch effort, all methods on the business
class are scanned to see if there’s a match based on method name and parameter count:

Dim methods() As MethodInfo = objectType.GetMethods
For Each m As MethodInfo In methods
If m.Name = method AndAlso _
m.GetParameters.Length = parameters.Length Then
result = m
Exit For

End If
Next

If even that fails, then the AmbiguousMatchException is thrown so that the business developer
knows that something is seriously wrong with the data access methods in their business class.

The end result of GetMethod() is a MethodInfo object describing the method on the business class.
This MethodInfo object is used by other methods in MethodCaller and in other data portal code.

CallMethod
The Csla.Server.SimpleDataPortal object (discussed later in the chapter) will ultimately invoke
methods on business objects based on the MethodInfo object returned from GetMethod(). To sup-
port this, MethodCaller implements two different CallMethod() overloads:

Public Function CallMethod(ByVal obj As Object, _
ByVal method As String, ByVal ParamArray parameters() As Object) As Object

Dim info As MethodInfo = _
GetMethod(obj.GetType, method, parameters)

If info Is Nothing Then
Throw New NotImplementedException(_
method & " " & My.Resources.MethodNotImplemented)

End If

Return CallMethod(obj, info, parameters)
End Function

Public Function CallMethod(ByVal obj As Object, _
ByVal info As MethodInfo, ByVal ParamArray parameters() As Object) _
As Object

CHAPTER 4 ■ DATA ACCESS AND SECURITY 185

6315_c04_final.qxd 4/13/06 12:33 PM Page 185

' call a Public method on the object
Dim result As Object
Try
result = info.Invoke(obj, parameters)

Catch e As Exception
Throw New CallMethodException(_
info.Name & " " & My.Resources.MethodCallFailed, _
e.InnerException)

End Try
Return result

End Function

The first version accepts the method name as a String value, while the second accepts a
MethodInfo object. In the first case, GetMethod() is called to retrieve a matching MethodInfo
object. If one isn’t found, an exception is thrown; otherwise, the second version of CallMethod()
is invoked.

The second version of CallMethod() actually invokes the method by using the MethodInfo
object. The interesting bit here is the way exceptions are handled. Since reflection is being used
to invoke the business method, any exceptions that occur in the business code end up being
wrapped within a reflection exception.

To business developers, the exception from reflection isn’t very useful. They want the actual
exception that occurred within their business method. To resolve this, when an exception is
thrown as the business method is invoked, it is caught, and the InnerException of the reflection
exception is wrapped within a new Csla.Server.CallMethodException.

Effectively, the reflection exception is stripped off and discarded, leaving only the original
exception thrown within the business code. That exception is then wrapped within a CSLA .NET
exception so the name of the failed business method can be returned as well.

CallMethodIfImplemented
The CallMethodIfImplemented() method is similar to the CallMethod() methods mentioned previ-
ously, but it doesn’t throw an exception if the method doesn’t exist on the business class.

Public Function CallMethodIfImplemented(ByVal obj As Object, _
ByVal method As String, ByVal ParamArray parameters() As Object) As Object

Dim info As MethodInfo = _
GetMethod(obj.GetType, method, parameters)

If info IsNot Nothing Then
Return CallMethod(obj, info, parameters)

Else
Return Nothing

End If
End Function

This is the same basic code as the first CallMethod() implementation, except that it doesn’t
throw an exception if the method isn’t found. Instead, it simply returns a value of Nothing.

CallMethodIfImplemented() is used by Csla.Server.SimpleDataPortal to invoke optional
methods on the business class—methods that should be invoked if implemented by the business
developer, but which shouldn’t cause failure if they aren’t implemented at all. An example is
DataPortal_OnDataPortalInvoke(), which is purely optional, but should be called if it has been
implemented by the business developer.

CHAPTER 4 ■ DATA ACCESS AND SECURITY186

6315_c04_final.qxd 4/13/06 12:33 PM Page 186

GetObjectType
The final method in MethodCaller is used by both Csla.DataPortal and Csla.Server.DataPortal
to determine the type of business object involved in the data portal request. It uses the criteria
object supplied by the factory method in the business class to find the type of the business
object itself.

This method supports the two options discussed earlier: where the criteria class is nested
within the business class and where the criteria object inherits from Csla.CriteriaBase:

Public Function GetObjectType(ByVal criteria As Object) As Type

If criteria.GetType.IsSubclassOf(GetType(CriteriaBase)) Then
' get the type of the actual business object
' from CriteriaBase
Return CType(criteria, CriteriaBase).ObjectType

Else
' get the type of the actual business object
' based on the nested class scheme in the book
Return criteria.GetType.DeclaringType

End If
End Function

If the criteria object is a subclass of Csla.CriteriaBase, then the code simply casts the object
to type CriteriaBase and retrieves the business object type by calling the ObjectType property.

With a nested criteria class, the code gets the type of the criteria object and then returns the
DeclaringType value from the Type object. The DeclaringType property returns the type of the class
within which the criteria class is nested.

Csla.Server.CallMethodException
The MethodCaller class throws a custom Csla.Server.CallMethodException in the case that an
exception occurs while calling a method on the business object. The purpose behind throwing
this exception is to supply the name of the business method that generated the exception, and
to provide the original exception details as an InnerException.

More importantly, it preserves the stack trace from the original exception. The original stack
trace shows the details about where the exception occurred, and is very useful for debugging. With-
out a bit of extra work, this information is lost as the method call comes back through reflection.

Remember that MethodCaller.CallMethod() uses reflection to invoke the business method.
When an exception occurs in the business method, a reflection exception is thrown—with the origi-
nal business exception nested inside. CallMethod() strips off the reflection exception and provides
the original business exception as a parameter during the creation of the CallMethodException
object. In the constructor of CallMethodException, the stack trace details from that original excep-
tion are stored for later use:

Public Sub New(ByVal message As String, ByVal ex As Exception)
MyBase.New(message, ex)
mInnerStackTrace = ex.StackTrace

End Sub

Then in the StackTrace property of CallMethodException, the stack trace for the
CallMethodException itself is combined with the stack trace from the original exception:

CHAPTER 4 ■ DATA ACCESS AND SECURITY 187

6315_c04_final.qxd 4/13/06 12:33 PM Page 187

Public Overrides ReadOnly Property StackTrace() As String
Get
Return String.Format("{0}{1}{2}", _
mInnerStackTrace, vbCrLf, MyBase.StackTrace)

End Get
End Property

The result is that the complete stack trace is available—showing the flow from the original
exception all the way back to the UI in most cases.

Csla.RunLocalAttribute Class
The data portal routes client calls to the server based on the client application’s configuration set-
tings in its config file. If the configuration is set to use an actual application server, the client call is
sent across the network using the channel adapter pattern. However, there are cases in which the
business developer knows that there’s no need to send the call across the network—even if the
application is configured that way.

The most common example of this is in the creation of new business objects. The
DataPortal.Create() method is called to create a new object, and it in turn triggers a call to the
business object’s DataPortal_Create() method, where the object can load itself with default values
from the database. But what if an object doesn’t need to load defaults from the database? In that
case, there’s no reason to go across the network at all, and it would be nice to short-circuit the call
so that particular object’s DataPortal_Create() would run on the client.

This is the purpose behind the RunLocalAttribute. A business developer can mark a data
access method with this attribute to tell Csla.DataPortal to force the call to run on the client,
regardless of how the application is configured in general. Such a business method would look
like this:

<RunLocal()> _
Private Sub DataPortal_Create(ByVal criteria As Criteria)
' set default values here

End Sub

The attribute class itself is quite straightforward:

<AttributeUsage(AttributeTargets.Method)> _
Public NotInheritable Class RunLocalAttribute
Inherits Attribute

End Class

As with all custom attributes, it inherits from System.Attribute. The <AttributeUsage()>
attribute is used to restrict this attribute so it can only be applied to methods—not classes,
properties, etc.

Csla.DataPortalEventArgs Class
The Csla.DataPortal class will raise a couple events that can be handled by the business logic or
UI code on the client. These events are raised immediately before and after the data portal calls
the server. A DataPortalEventArgs object is provided as a parameter to these events. This object
includes information of value when handling the event:

CHAPTER 4 ■ DATA ACCESS AND SECURITY188

6315_c04_final.qxd 4/13/06 12:33 PM Page 188

Public Class DataPortalEventArgs
Inherits EventArgs

Private mDataPortalContext As Server.DataPortalContext

Public ReadOnly Property DataPortalContext() As Server.DataPortalContext
Get
Return mDataPortalContext

End Get
End Property

Public Sub New(ByVal dataPortalContext As Server.DataPortalContext)
mDataPortalContext = dataPortalContext

End Sub
End Class

The DataPortalContext property returns the Csla.Server.DataPortalContext object that is
passed to the server as part of the client message. The DataPortalContext class will be implemented
later in the chapter, but it includes the user’s Principal object (if using custom authentication), the
client’s culture information, and the ClientContext and GlobalContext collections.

This information can be used by code handling the event to better understand all the informa-
tion being passed to the server as part of the client message.

Csla.DataPortal Class
The primary entry point for the entire data portal infrastructure is the Csla.DataPortal class.
Business developers use the methods on this class to trigger all the data portal behaviors. This
class is involved in both the channel adapter implementation and in handling context information.
This section will focus on the channel adapter code in the class, while the context-handling code
will be discussed later in the chapter.

The Csla.DataPortal class exposes five primary methods, described in Table 4-11, that can
be called by business logic.

Table 4-11. Methods Exposed by the Client-Side DataPortal

Method Description

Create() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Create() method

Fetch() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Fetch() method

Update() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Insert(),
DataPortal_Update(), or DataPortal_DeleteSelf() methods, as appropriate

Delete() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Delete() method

Execute() Calls Csla.Server.DataPortal, which then invokes the DataPortal_Execute()
method

The class also raises two events that the business developer or UI developer can handle. The
DataPortalInvoke event is raised before the server is called, and the DataPortalInvokeComplete
event is raised after the call the to the server has returned.

Behind the scenes, each DataPortal method determines the network protocol to be used when
contacting the server in order to delegate the call to Csla.Server.DataPortal. Of course, Csla.
Server.DataPortal ultimately delegates the call to Csla.Server.SimpleDataPortal and then to the
business object on the server.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 189

6315_c04_final.qxd 4/13/06 12:33 PM Page 189

The Csla.DataPortal class is designed to expose Shared methods. As such, it is a Module:

Public Module DataPortal

End Module

This ensures that an instance of Csla.DataPortal won’t be created.

Data Portal Events
The class defines two events, DataPortalInvoke and DataPortalInvokeComplete:

Public Event DataPortalInvoke As Action(Of DataPortalEventArgs)
Public Event DataPortalInvokeComplete As Action(Of DataPortalEventArgs)

Private Sub OnDataPortalInvoke(ByVal e As DataPortalEventArgs)
RaiseEvent DataPortalInvoke(e)

End Sub

Private Sub OnDataPortalInvokeComplete(ByVal e As DataPortalEventArgs)
RaiseEvent DataPortalInvokeComplete(e)

End Sub

These follow the standard approach by providing helper methods to raise the events.
Also notice the use of the Action(Of T) generic template. This is provided by the .NET

framework as a helper when declaring events that have a custom EventArgs subclass as a single
parameter. There’s also a corresponding EventHandler(Of T) template to help when declaring
the standard sender and EventArgs pattern for event methods.

RunLocal
In each of the five public methods, DataPortal must determine whether the business developer
has applied the <RunLocal()> attribute to the business method on their business class. The
RunLocal() method checks for the attribute, returning a Boolean indicating whether it exists
or not:

Private Function RunLocal(ByVal method As MethodInfo) As Boolean
Return Attribute.IsDefined(method, GetType(RunLocalAttribute))

End Function

While not strictly necessarily, this helper method streamlines the more complex code else-
where in the class.

Creating the Proxy Object
The primary function of Csla.DataPortal is to determine the appropriate network protocol (if any)
to be used when interacting with Csla.Server.DataPortal. Each protocol is managed by a proxy
object that implements the Csla.DataPortalClient.IDataPortalProxy interface. This interface will
be discussed shortly, but for now it is enough to know that it ensures that all proxy classes imple-
ment the methods required by Csla.DataPortal.

The proxy object to be used is defined in the application’s configuration file. That’s the
web.config file for ASP.NET applications, and myprogram.exe.config for Windows applications
(where myprogram is the name of your program). Within Visual Studio, a Windows configuration
file is named app.config, so I’ll refer to them as app.config files from here forward.

CHAPTER 4 ■ DATA ACCESS AND SECURITY190

6315_c04_final.qxd 4/13/06 12:33 PM Page 190

Config files can include an <appSettings> section to store application settings, and it is in this
section that the CSLA .NET configuration settings are located. The following shows how this section
would look for an application set to use the .NET Remoting technology:

<appSettings>
<add key="CslaDataPortalProxy"

value="Csla.DataPortalClient.RemotingProxy, Csla"/>
<add key="CslaDataPortalUrl"

value="http://servername/sitename/RemotingPortal.rem"/>
</appSettings>

Of course, servername and sitename would correspond to a real web server and virtual root.
The CslaDataPortalProxy key defines the proxy class that should be used by Csla.DataPortal.

The CslaDataPortalUrl key is defined and used by the proxy object itself. Different proxy objects
may require or support different keys for their own configuration data.

The GetDataPortalProxy() method uses this information to create an instance of the correct
proxy object:

Private mLocalPortal As DataPortalClient.IDataPortalProxy
Private mPortal As DataPortalClient.IDataPortalProxy

Private Function GetDataPortalProxy(_
ByVal forceLocal As Boolean) As DataPortalClient.IDataPortalProxy

If forceLocal Then
If mLocalPortal Is Nothing Then
mLocalPortal = New DataPortalClient.LocalProxy

End If
Return mLocalPortal

Else
If mPortal Is Nothing Then

Dim proxyTypeName As String = ApplicationContext.DataPortalProxy
If proxyTypeName = "Local" Then
mPortal = New DataPortalClient.LocalProxy

Else
Dim typeName As String = _
proxyTypeName.Substring(0, proxyTypeName.IndexOf(",")).Trim

Dim assemblyName As String = _
proxyTypeName.Substring(proxyTypeName.IndexOf(",") + 1).Trim

mPortal = DirectCast(Activator.CreateInstance(assemblyName, _
typeName).Unwrap, DataPortalClient.IDataPortalProxy)

End If
End If
Return mPortal

End If
End Function

For both local and remote proxy objects, once the proxy has been created, it is cached in a
Shared field. (Remember that all fields, methods, and properties in a Module are effectively Shared.)
This avoids recreating the proxy object for every data portal call.

If the forceLocal parameter is True, then only a local proxy is returned. The Csla.
DataPortalClient.LocalProxy object is a special proxy that doesn’t use any network protocols at
all, but rather runs the “server-side” data portal components directly within the client process.
This class will be covered later in the chapter.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 191

6315_c04_final.qxd 4/13/06 12:33 PM Page 191

When forceLocal is False, the real work begins. First, the proxy string is retrieved from the
CslaDataPortalProxy key in the config file by calling the ApplicationContext.DataPortalProxy
property. The ApplicationContext class is covered later in the chapter, but this property reads the
config file and returns the value associated with the CslaDataPortalProxy key.

If that key value is "Local", then again an instance of the LocalProxy class is created and
returned. The ApplicationContext.DataPortalProxy method also returns a LocalProxy object if
the key is not found in the config file. This makes LocalProxy the default proxy.

If some other config value is returned, then it is parsed and used to create an instance of the
appropriate proxy class:

Dim typeName As String = _
proxyTypeName.Substring(0, proxyTypeName.IndexOf(",")).Trim

Dim assemblyName As String = _
proxyTypeName.Substring(proxyTypeName.IndexOf(",") + 1).Trim

mPortal = DirectCast(Activator.CreateInstance(assemblyName, _
typeName).Unwrap, DataPortalClient.IDataPortalProxy)

In the preceding <appSettings> example, notice that the value is a comma-separated value
with the full class name on the left and the assembly name on the right. This follows the .NET
standard for describing classes that are to be dynamically loaded.

The config value is parsed to pull out the full type name and assembly name. Then
Activator.CreateInstance() is called to create an instance of the object. The .NET runtime
automatically loads the assembly if needed.

The object returned from Activator.CreateInstance() isn’t the actual proxy object. Instead,
it is an internal .NET object representing the underlying object. The Unwrap() method returns the
real proxy object that was dynamically loaded.

The final result is that the appropriate proxy object is loaded into memory and returned for
use by the code in Csla.DataPortal.

Data Access Methods
The next step is to implement the five primary methods in the client-side DataPortal. Most of the
hard work is handled by the code implemented thus far in the “Channel Adapter” section and in
the MethodCaller class, so implementing these will be pretty straightforward. All five will follow the
same basic flow:

• Get the MethodInfo for the business method to be ultimately invoked.

• Get the data portal proxy object.

• Create a DataPortalContext object.

• Raise the DataPortalInvoke event.

• Delegate the call to the proxy object (and thus to the server).

• Handle and throw any exceptions.

• Restore the GlobalContext returned from the server.

• Raise the DataPortalInvokeComplete event.

• Return the resulting business object (if appropriate).

Let’s look at the Fetch() method in detail, followed by the minor differences required to imple-
ment the other four methods.

CHAPTER 4 ■ DATA ACCESS AND SECURITY192

6315_c04_final.qxd 4/13/06 12:33 PM Page 192

Fetch

There are two Fetch() methods: a generic one to provide a strongly typed result, and the actual
implementation:

Public Function Fetch(Of T)(ByVal criteria As Object) As T
Return DirectCast(Fetch(criteria), T)

End Function

Public Function Fetch(ByVal criteria As Object) As Object

Dim result As Server.DataPortalResult

Dim method As MethodInfo = _
MethodCaller.GetMethod(_
MethodCaller.GetObjectType(criteria), "DataPortal_Fetch", criteria)

Dim proxy As DataPortalClient.IDataPortalProxy
proxy = GetDataPortalProxy(RunLocal(method))

Dim dpContext As New Server.DataPortalContext(_
GetPrincipal, proxy.IsServerRemote)

OnDataPortalInvoke(New DataPortalEventArgs(dpContext))

Try
result = proxy.Fetch(criteria, dpContext)

Catch ex As Server.DataPortalException
result = ex.Result
If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If
Throw New DataPortalException("DataPortal.Fetch " & _
My.Resources.Failed, ex.InnerException, result.ReturnObject)

End Try

If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If

OnDataPortalInvokeComplete(New DataPortalEventArgs(dpContext))

Return result.ReturnObject
End Function

The generic method simply casts the result so that the calling code doesn’t have to. Remem-
ber that the data portal can return virtually any type of object, and so the actual Fetch() method
implementation must deal with results of type Object.

Looking at the code, you should see all the steps listed in the preceding bulleted list. The first
is to retrieve the MethodInfo for the business method that will be ultimately invoked on the server:

Dim method As MethodInfo = _
MethodCaller.GetMethod(_
MethodCaller.GetObjectType(criteria), "DataPortal_Fetch", criteria)

CHAPTER 4 ■ DATA ACCESS AND SECURITY 193

6315_c04_final.qxd 4/13/06 12:33 PM Page 193

This MethodInfo object is immediately used to determine whether the <RunLocal()> attribute
has been applied to the method on the business class. This value is used as a parameter to the
GetDataPortalProxy() method, which returns the appropriate proxy object for server communication:

proxy = GetDataPortalProxy(RunLocal(method))

Next, a DataPortalContext object is created and initialized. The details of this object and the
means of dealing with context information are discussed later in the chapter.

Dim dpContext As New Server.DataPortalContext(_
GetPrincipal, proxy.IsServerRemote)

Then the DataPortalInvoke event is raised, notifying client-side business or UI logic that
a data portal call is about to take place:

OnDataPortalInvoke(New DataPortalEventArgs(dpContext))

Finally, the Fetch() call itself is delegated to the proxy object:

result = proxy.Fetch(criteria, dpContext)

All a proxy object does is relay the method call across the network to Csla.Server.DataPortal,
so you can almost think of this as delegating the call directly to Csla.Server.DataPortal, which in
turn delegates to Csla.Server.SimpleDataPortal. The ultimate result is that the business object’s
DataPortal_XYZ methods are invoked on the server.

■Note Remember that the default is that the “server-side” code actually runs in the client process on the client
workstation (or web server). Even so, the full sequence of events described here occur—just much faster than if
network communication were involved.

An exception could occur while calling the server. The most likely cause of such an exception
is that an exception occurred in the business logic running on the server, though exceptions can
also occur because of network issues or similar problems. When an exception does occur in busi-
ness code on the server, it will be reflected here as a Csla.Server.DataPortalException, which is
caught and handled:

result = ex.Result
If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If
Throw New DataPortalException("DataPortal.Fetch " & _
My.Resources.Failed, ex.InnerException, result.ReturnObject)

The Csla.Server.DataPortalException returns the business object from the server exactly as
it was when the exception occurred. It also returns the GlobalContext information from the server
so that it can be used to update the client’s context data. Ultimately, the data from the server is used
to create a Csla.DataPortalException that is thrown back to the business object. It can be handled
by the business object or the UI code as appropriate.

Notice that the Csla.DataPortalException object contains not only all the exception details
from the server, but also the business object from the server. This object can be useful when
debugging server-side exceptions.

More commonly, an exception won’t occur. In that case, the result returned from the server
includes the GlobalContext data from the server, which is used to update the context on the client:

CHAPTER 4 ■ DATA ACCESS AND SECURITY194

6315_c04_final.qxd 4/13/06 12:33 PM Page 194

If proxy.IsServerRemote Then
ApplicationContext.SetGlobalContext(result.GlobalContext)

End If

The details around context are discussed later in the chapter. With the server call complete,
the DataPortalInvokeComplete event is raised:

OnDataPortalInvokeComplete(New DataPortalEventArgs(dpContext))

Finally, the business object created and loaded with data on the server is returned to the
factory method that called DataPortal.Fetch() in the first place.

Remember that in a physical n-tier scenario, this is a copy of the object that was created on
the server. .NET serialized the object on the server, transferred its data to the client, and deserial-
ized it on the client. This object being returned as a result of the Fetch() method exists on the
client workstation and so can be used by other client-side objects and UI components in a very
efficient manner.

Create

The Create() method works in virtually the same manner as Fetch(). The only difference is in how
the type of business object is managed. When retrieving an existing object, some criteria informa-
tion is virtually always required. But when creating a new object that is to be loaded with default
values, a criteria object may or may not be useful. In many cases, there’s no need for criteria at all
when creating a new object.

However, the criteria object is central to the MethodCaller.GetObjectType() method and the
determination of the type of business object to be created. To make the criteria object optional,
Create() takes a slightly different approach. The Public methods look like this:

Public Function Create(Of T)(ByVal criteria As Object) As T
Return DirectCast(Create(GetType(T), criteria), T)

End Function

Public Function Create(Of T)() As T
Return DirectCast(Create(GetType(T), Nothing), T)

End Function

Public Function Create(ByVal criteria As Object) As Object
Return Create(MethodCaller.GetObjectType(criteria), criteria)

End Function

Again, there’s the generic version that returns a casted value. But there’s also a version that
doesn’t require a criteria object as a parameter. Finally, there’s a loosely typed version that returns
a value of type Object.

All three implementations delegate to a Private version of the method that accepts not only
the criteria object, but also a Type object specifying the type of business object to be created. The
generic versions of the method get this by calling GetType(T), while the loosely typed version uses
the same GetObjectType() method used in the Fetch() method earlier.

The private implementation of Create() follows the same structure as Fetch(), with the
exception of how it calls GetMethod() in the first step. That code is bolded here:

Private Function Create(_
ByVal objectType As Type, ByVal criteria As Object) As Object

Dim result As Server.DataPortalResult

Dim method As MethodInfo = _
MethodCaller.GetMethod(objectType, "DataPortal_Create", criteria)

CHAPTER 4 ■ DATA ACCESS AND SECURITY 195

6315_c04_final.qxd 4/13/06 12:33 PM Page 195

Because the business object type was passed in as a parameter, it can be used directly, rather
than calling MethodCaller.GetObjectType(), like in the Fetch() method.

Following this approach, when the Create() call is delegated to the proxy object (and thus to
Csla.Server.DataPortal and the other server-side code), the object type is passed as a parameter:

result = proxy.Create(objectType, criteria, dpContext)

This way, the type of business object to be created flows from the Csla.DataPortal through
to the server-side code.

Update

The Update() method is similar again, but it doesn’t get a criteria object as a parameter. Instead,
it gets passed the business object itself:

Public Function Update(ByVal obj As Object) As Object

This way, it can pass the business object to Csla.Server.DataPortal, which ultimately calls
the object’s DataPortal_Insert(), DataPortal_Update(), or DataPortal_DeleteSelf() method,
causing the object to update the database. It also checks to see if the business object inherits from
Csla.CommandBase (discussed in Chapter 5), and if so, it invokes the object’s DataPortal_Execute()
method instead.

The only major difference from Fetch() is in how the MethodInfo object is retrieved for the
business method to be called:

Dim method As MethodInfo
Dim methodName As String
If TypeOf obj Is CommandBase Then
methodName = "DataPortal_Execute"

ElseIf TypeOf obj Is Core.BusinessBase Then
Dim tmp As Core.BusinessBase = DirectCast(obj, Core.BusinessBase)
If tmp.IsDeleted Then
methodName = "DataPortal_DeleteSelf"

Else
If tmp.IsNew Then
methodName = "DataPortal_Insert"

Else
methodName = "DataPortal_Update"

End If
End If

Else
methodName = "DataPortal_Update"

End If

method = MethodCaller.GetMethod(obj.GetType, methodName)

The decision tree regarding which method to call is more complex in this case, because the
decision is based on the type of the business object involved. Therefore, the logic here is a bit
more interesting than in the Fetch() method.

If the object inherits from CommandBase, the DataPortal_Execute() method will be invoked.
If it is a subclass of Csla.Core.BusinessBase, then the method to be called is determined by the
state of the object. Any other objects (most likely a subclass of Csla.BusinessListBase) will have
their DataPortal_Update() method invoked.

The rest of the process is fundamentally the same as Create() and Fetch().

CHAPTER 4 ■ DATA ACCESS AND SECURITY196

6315_c04_final.qxd 4/13/06 12:33 PM Page 196

Execute

The Update() method includes code to call DataPortal_Execute() on a business object that
inherits from Csla.CommandBase. That’s fine, but may not be intuitive to a business developer.
The Execute() method is intended to make the data portal API more intuitive.

Since the Update() method already handles Csla.CommandBase subclasses, the Execute()
method simply delegates to Update() to do its work:

Public Function Execute(Of T As CommandBase)(ByVal obj As T) As T
Return DirectCast(Update(CObj(obj)), T)

End Function

Public Function Execute(ByVal obj As CommandBase) As CommandBase
Return DirectCast(Update(obj), CommandBase)

End Function

Notice that the parameters and types of both methods are constrained to only accept objects
that subclass Csla.CommandBase. All the real work occurs in the Update() method.

Delete

The final Csla.DataPortal method is Delete(), which is virtually identical to Fetch(). It also
receives a criteria object as a parameter, which it uses to get a Type object for the business class,
and so forth.

The Delete() method exists to support the immediate deletion of an object, without having to
retrieve the object first. Instead, it accepts a criteria object that identifies which object’s data should
be deleted. Ultimately, the server-side DataPortal calls the business object’s DataPortal_Delete()
method to perform the delete operation.

■Tip Remember that a delete operation doesn’t need to actually delete data from the database. It could just as
easily set a deleted flag on a row of data. The specific implementation of a delete operation is up to the business
developer as he codes the DataPortal_Delete() method in his object.

Nothing is returned from this method, as it doesn’t generate a business object. If the delete
operation itself fails, it should throw an exception, which will be returned to the client as an
indicator of failure.

At this point, the role of Csla.DataPortal as gateway to the data portal overall should be clear.
The other end of the channel adapter is the Csla.Server.DataPortal class, which is also the entry
point to the message router pattern. The details of Csla.Server.DataPortal will be discussed later
in the chapter, as part of the message router section. First though, let’s walk through the various
proxy and host classes that implement the four channels implemented by CSLA .NET.

Csla.Server.IDataPortalServer
Each channel comes in two parts: a proxy on the client and a host on the server. Csla.DataPortal
calls the proxy, which in turn transfers the call to the host by using its channel. The host then dele-
gates the call to a Csla.Server.DataPortal object. To ensure that all the parts of this chain can
reliably interact, there are two interfaces: Csla.Server.IDataPortalServer and Csla.
DataPortalClient.IDataPortalProxy.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 197

6315_c04_final.qxd 4/13/06 12:33 PM Page 197

The IDataPortalServer interface defines the methods common across the entire process:

Public Interface IDataPortalServer
Function Create(_
ByVal objectType As Type, _
ByVal criteria As Object, _
ByVal context As DataPortalContext) As DataPortalResult

Function Fetch(_
ByVal criteria As Object, _
ByVal context As DataPortalContext) As DataPortalResult

Function Update(_
ByVal obj As Object, _
ByVal context As DataPortalContext) As DataPortalResult

Function Delete(_
ByVal criteria As Object, _
ByVal context As DataPortalContext) As DataPortalResult

End Interface

Notice that these are the same method signatures as implemented by the methods in
Csla.DataPortal, making it very easy for that class to delegate its calls through a proxy and host
all the way to Csla.Server.DataPortal.

Csla.DataPortalClient.IDataPortalProxy
All the proxy classes implement a common Csla.DataPortalClient.IDataPortalProxy interface so
they can be used by Csla.DataPortal. This interface inherits from Csla.Server.IDataPortalServer,
ensuring that all proxy classes will have the same methods as all server-side host classes:

Public Interface IDataPortalProxy
Inherits Server.IDataPortalServer
ReadOnly Property IsServerRemote() As Boolean

End Interface

In addition to the four data methods, proxy classes need to report whether they interact with
an actual server-side host or not. As you’ll see, at least one proxy interacts with a client-side host.
Recall that in Csla.DataPortal, the IsServerRemote property was used to control whether the con-
text data was set and restored. If the “server-side” code is running inside the client process, then
much of that work can be bypassed, improving performance.

Csla.DataPortalClient.LocalProxy
The default option for a “network” channel is not to use the network at all, but rather to run the
“server-side” code inside the client process. This option offers the best performance, though pos-
sibly at the cost of security or scalability. The various trade-offs of n-tier deployments were
discussed in Chapter 1.

Even when running the “server-side” code in-process on the client, the data portal uses a
proxy for the local “channel”: Csla.DataPortalClient.LocalProxy. As with all proxy classes, this
one implements the Csla.DataPortalClient.IDataPortalProxy interface, exposing a standard set
of methods and properties for use by Csla.DataPortal.

Because this proxy doesn’t actually use a network protocol, it is the simplest of all the proxies:

CHAPTER 4 ■ DATA ACCESS AND SECURITY198

6315_c04_final.qxd 4/13/06 12:33 PM Page 198

Public Class LocalProxy

Implements DataPortalClient.IDataPortalProxy

Private mPortal As Server.IDataPortalServer = _
New Server.DataPortal

Public Function Create(_
ByVal objectType As System.Type, ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Return mPortal.Create(objectType, criteria, context)

End Function

Public Function Fetch(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Fetch

Return mPortal.Fetch(criteria, context)

End Function

Public Function Update(_
ByVal obj As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Update

Return mPortal.Update(obj, context)

End Function

Public Function Delete(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Delete

Return mPortal.Delete(criteria, context)

End Function

Public ReadOnly Property IsServerRemote() As Boolean _
Implements IDataPortalProxy.IsServerRemote
Get
Return False

End Get
End Property

End Class

All this proxy does is directly create an instance of Csla.Server.DataPortal:

Private mPortal As Server.IDataPortalServer = _
New Server.DataPortal

Each of the data methods (Create(), Fetch(), etc.) simply delegates to this object. The result
is that the client call is handled by a Csla.Server.DataPortal object running within the client
AppDomain and on the client’s thread. Due to this, the IsServerRemote property returns False.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 199

6315_c04_final.qxd 4/13/06 12:33 PM Page 199

Csla.DataPortalClient.RemotingProxy
More interesting is the .NET Remoting channel. This is implemented on the client by the
RemotingProxy class, and on the server by the RemotingPortal class. When Csla.DataPortal dele-
gates a call into RemotingProxy, it uses .NET Remoting to pass that call to a RemotingPortal object
on the server. That object then delegates the call to a Csla.Server.DataPortal object.

Because .NET Remoting automatically serializes objects across the network, the
RemotingProxy class is not much more complex than LocalProxy:

Public Class RemotingProxy

Implements DataPortalClient.IDataPortalProxy

#Region " Configure Remoting "

Shared Sub New()

' create and register a custom HTTP channel
' that uses the binary formatter
Dim properties As New Hashtable
properties("name") = "HttpBinary"

If ApplicationContext.AuthenticationType = "Windows" Then
' make sure we pass the user's Windows credentials
' to the server
properties("useDefaultCredentials") = True

End If

Dim formatter As New BinaryClientFormatterSinkProvider

Dim channel As New HttpChannel(properties, formatter, Nothing)

ChannelServices.RegisterChannel(channel, EncryptChannel)

End Sub

Private Shared ReadOnly Property EncryptChannel() As Boolean
Get
Dim encrypt As Boolean = _
(ConfigurationManager.AppSettings("CslaEncryptRemoting") = "true")

Return encrypt
End Get

End Property

#End Region

Private mPortal As Server.IDataPortalServer

Private ReadOnly Property Portal() As Server.IDataPortalServer
Get
If mPortal Is Nothing Then
mPortal = CType(_
Activator.GetObject(GetType(Server.Hosts.RemotingPortal), _
ApplicationContext.DataPortalUrl.ToString), _
Server.IDataPortalServer)

End If
Return mPortal

End Get
End Property

CHAPTER 4 ■ DATA ACCESS AND SECURITY200

6315_c04_final.qxd 4/13/06 12:33 PM Page 200

Public Function Create(_
ByVal objectType As System.Type, ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Return Portal.Create(objectType, criteria, context)

End Function

Public Function Fetch(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Fetch

Return Portal.Fetch(criteria, context)

End Function

Public Function Update(_
ByVal obj As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Update

Return Portal.Update(obj, context)

End Function

Public Function Delete(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Delete

Return Portal.Delete(criteria, context)

End Function

Public ReadOnly Property IsServerRemote() As Boolean _
Implements IDataPortalProxy.IsServerRemote
Get
Return True

End Get
End Property

End Class

In fact, the data methods themselves are identical. This is because the Portal property
abstracts the creation of the portal object itself, and because .NET Remoting offers a feature
called location transparency, which means code can call methods on a client-side proxy as
though the methods were being called directly on the server-side object. The fact that the
method call is actually relayed across the network is transparent to the client code.

The Portal property itself uses Activator.GetObject() to create an instance of a .NET Remot-
ing proxy for the server-side object:

CHAPTER 4 ■ DATA ACCESS AND SECURITY 201

6315_c04_final.qxd 4/13/06 12:33 PM Page 201

Private mPortal As Server.IDataPortalServer

Private ReadOnly Property Portal() As Server.IDataPortalServer
Get
If mPortal Is Nothing Then
mPortal = CType(_
Activator.GetObject(GetType(Server.Hosts.RemotingPortal), _
ApplicationContext.DataPortalUrl.ToString), _
Server.IDataPortalServer)

End If
Return mPortal

End Get
End Property

The Activator.GetObject() call doesn’t actually create an instance of a server-side object.
It merely creates an instance of a client-side proxy for the server object. The server configuration
controls how server-side objects are created, and in this case, one will be created for each method
call from a client.

The only other interesting bit of code is the Shared constructor, in which .NET Remoting is
configured. A Shared constructor is guaranteed to run before any method on a class is invoked,
including a regular constructor. In other words, this code will run before anything else runs within
the RemotingProxy class. This ensures that .NET Remoting is configured before any other code runs
in the proxy.

The configuration of remoting is a bit complex, as it employs some optimizations. It sets up
a custom configuration for the HttpChannel, making sure that the BinaryFormatter is used, rather
than the default SoapFormatter. The code also ensures that the user’s Windows credentials are
passed across the network if Windows authentication is being used:

' create and register a custom HTTP channel
' that uses the binary formatter
Dim properties As New Hashtable
properties("name") = "HttpBinary"

If ApplicationContext.AuthenticationType = "Windows" Then
' make sure we pass the user's Windows credentials
' to the server
properties("useDefaultCredentials") = True

End If

Dim formatter As New BinaryClientFormatterSinkProvider
Dim channel As New HttpChannel(properties, formatter, Nothing)

Finally, when the remoting channel itself is registered, it may be encrypted. Control over
whether it is encrypted is provided through an <appSettings> key named CslaEncryptRemoting,
the value of which is returned from the EncryptChannel property. This is used, along with the
Hashtable defined earlier, to configure the channel:

ChannelServices.RegisterChannel(channel, EncryptChannel)

The end result is that the client is ready to use HTTP to communicate with the server, where
a virtual root in IIS is configured to serve up Csla.Server.Hosts.RemotingPortal objects.

Csla.Server.Hosts.RemotingPortal
You’ve seen the client proxy for the .NET Remoting channel. It requires that a RemotingPortal object
be hosted on an IIS server. To expose a server-side object through remoting, that object must inherit

CHAPTER 4 ■ DATA ACCESS AND SECURITY202

6315_c04_final.qxd 4/13/06 12:33 PM Page 202

from System.MarshalByRefObject. Such objects are often referred to as MBROs (marshal-by-refer-
ence objects). This base class ensures that the object will run on the server and that it can return
information to the client so the client can create a proxy for the server-side object. Remember the
Activator.GetObject() call in RemotingProxy. That call relies on the MBRO ability to return proxy
information to the client.

The RemotingPortal object’s job is simple. It accepts a call from the client and delegates it to
an instance of Csla.Server.DataPortal:

Public Class RemotingPortal
Inherits MarshalByRefObject

Implements Server.IDataPortalServer

Public Function Create(_
ByVal objectType As System.Type, _
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Dim portal As New Server.DataPortal
Return portal.Create(objectType, criteria, context)

End Function

Public Function Fetch(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Fetch

Dim portal As New Server.DataPortal
Return portal.Fetch(criteria, context)

End Function

Public Function Update(_
ByVal obj As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Update

Dim portal As New Server.DataPortal
Return portal.Update(obj, context)

End Function

Public Function Delete(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Delete

Dim portal As New Server.DataPortal
Return portal.Delete(criteria, context)

End Function
End Class

CHAPTER 4 ■ DATA ACCESS AND SECURITY 203

6315_c04_final.qxd 4/13/06 12:33 PM Page 203

Notice that it not only inherits from MarshalByRefObject, but it also implements
IDataPortalServer. Recall that this is the common interface required to implement the com-
ponents of the channel adapter within the data portal.

Each of the methods simply accepts the client’s call, creates an instance of Csla.Server.
DataPortal, and delegates the call.

■Note I’m not doing any caching of object references on the server because the remoting object will be exposed
as a SingleCall object, meaning that a new instance is created and destroyed on every client call. This provides
optimal safety on the server by ensuring that one client doesn’t try to reuse another client’s object.

The reason this code is so simple is because remoting is doing all the hard work. Remoting
automatically deserializes the objects passed in as parameters, and serializes the objects being
returned as results. If an exception occurs on the server, remoting automatically serializes the
exception and returns it to the client instead of the normal result. As you’ll see, not all network
technologies make things quite so simple.

Chapter 8 will show how to host the RemotingPortal in IIS and use it from a client. The follow-
ing steps summarize the process:

1. Set up a virtual root in IIS.

2. Put Csla.dll into the Bin directory.

3. Add a <system.runtime.remoting> section to web.config.

The required <system.runtime.remoting> section looks like this:

<system.runtime.remoting>
<application>
<service>
<wellknown mode="SingleCall" objectUri="RemotingPortal.rem"

type="Csla.Server.Hosts.RemotingPortal, Csla"/>
</service>
<channels>
<channel ref="http">
<serverProviders>
<provider ref="wsdl"/>
<formatter ref="soap" typeFilterLevel="Full"/>
<formatter ref="binary" typeFilterLevel="Full"/>

</serverProviders>
</channel>

</channels>
</application>

</system.runtime.remoting>

This configures ASP.NET to expose the Csla.Server.Hosts.RemotingPortal class such that
clients can create instances of the class through remoting over HTTP.

Csla.DataPortalClient.EnterpriseServicesProxy
.NET Remoting is a powerful client/server technology, since it easily works with HTTP over port 80
to a web server. However, it isn’t as fast as the older Distributed COM (DCOM) protocol used by
Enterprise Services. DCOM isn’t as easy to use with firewalls, but it offers performance benefits and
additional security options that may be attractive.

CHAPTER 4 ■ DATA ACCESS AND SECURITY204

6315_c04_final.qxd 4/13/06 12:33 PM Page 204

Another advantage of using Enterprise Services is that the server-side code can be hosted in
COM+ rather than in IIS. While IIS has proven to be a highly scalable and reliable host technology,
COM+ is often preferred as a host on application servers. It isn’t always appropriate or desirable to
expose an application server via HTTP, or to install the extra components required by IIS on the
server. COM+ provides a viable alternative.

The EnterpriseServicesProxy class uses the .NET support for Enterprise Services to call a
server-side object hosted within COM+. This is a bit different from .NET Remoting, however,
because the COM references are used. To make this work nicely, EnterpriseServicesProxy is actu-
ally a base class that a client application can use to easily create an Enterprise Services client proxy.
Similarly, the corresponding server-side EnterpriseServicesPortal class is a base class that the
application can use to easily create a server-side object to host in COM+.

This way, the client application can reference its specific server-side object in COM+, ensuring
that each application is isolated from other applications using that same server.

EnterpriseServicesProxy implements IDataPortalProxy, and thus the four standard data
methods. It also defines a MustOverride method that must be implemented by the subclass to
create an instance of the appropriate COM+ server object:

Protected MustOverride Function GetServerObject() As _
Server.Hosts.EnterpriseServicesPortal

Each of the data methods simply delegates the call to this server-side object:

Public Function Fetch(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Fetch

Dim svc As Server.Hosts.EnterpriseServicesPortal = GetServerObject()
Try
Return svc.Fetch(criteria, context)

Finally
If svc IsNot Nothing Then
svc.Dispose()

End If
End Try

End Function

Notice the Try...Catch block, which ensures that the proxy for the server object is disposed.
Normally, you would expect to see a Using statement in such a case; unfortunately, COM+-hosted
objects don’t work that way.

A client application creates its own subclass with the following steps:

1. Create a Class Library project to contain both the proxy and host classes.

2. Add a subclass of Csla.Server.Hosts.EnterpriseServicesPortal to the assembly.

3. Add a subclass of Csla.DataPortalClient.EnterpriseServicesProxy to the assembly.

4. Override GetServerObject() to return an instance of the class defined in step 2.

5. Set the CslaDataPortalProxy key in the application’s config file.

You’ll see a complete example of this process in Chapter 12. A subclass of
EnterpriseServicesProxy looks like this:

CHAPTER 4 ■ DATA ACCESS AND SECURITY 205

6315_c04_final.qxd 4/13/06 12:33 PM Page 205

Public Class MyEnterpriseServicesProxy
Inherits Csla.DataPortalClient.EnterpriseServicesProxy

Protected Overrides Function GetServerObject() As _
Csla.Server.Hosts.EnterpriseServicesPortal

Return New MyEnterpriseServicesPortal
End Function

' proxy implementation provided by base class
End Class

All that’s required for a subclass is to implement the GetServerObject() method. This method
is simple to implement because the assembly references the COM+ component on the server. In
this example, the assembly contains a class named MyEnterpriseServicesPortal, which is a sub-
class of Csla.Server.Hosts.EnterpriseServicesPortal.

The CslaDataPortalProxy key in the application config file needs to look like this:

<add key="CslaDataPortalProxy"
value="MyAssembly.MyEnterpriseProxy,MyAssembly " />

where MyAssembly is the name of the assembly and namespace needed to find the application’s
custom proxy class.

Csla.Server.Hosts.EnterpriseServicesPortal
Before a client application can create a subclass of EnterpriseServicesProxy, it needs to create
an assembly containing a subclass of EnterpriseServicesPortal. The purpose of this subclass is to
provide a unique assembly name for this application within COM+. Where IIS allows you to define
numerous virtual roots that expose the same assemblies, COM+ requires different assembly names
to achieve isolation between applications.

In order to run within the Enterprise Services environment, the class inherits from
System.EnterpriseServices.ServicedComponent and has a couple Enterprise Services attributes
applied:

<EventTrackingEnabled(True)> _
<ComVisible(True)> _
Public MustInherit Class EnterpriseServicesPortal
Inherits ServicedComponent

Implements Server.IDataPortalServer

The <EventTrackingEnabled()> attribute ensures that the object reports its status to COM+
so that the “spinning balls” work properly in the management console. The <ComVisible()>
attribute is required so that the class is exposed as a COM class, allowing COM+ to interact with
it as needed.

Because EnterpriseServicesPortal is a ServicedComponent, the Csla.dll assembly needs some
extra configuration:

• The Csla project references System.EnterpriseServices.dll.

• The project/assembly is signed with a key file.

• The project includes an EnterpriseServicesSettings.cs file with some key attributes.

Figure 4-9 shows the Project Properties page where the key file is specified to sign the assembly.
Enterprise Services requires that assemblies be signed before they can run within COM+.

CHAPTER 4 ■ DATA ACCESS AND SECURITY206

6315_c04_final.qxd 4/13/06 12:33 PM Page 206

Enterprise Services also requires that an assembly include some attributes to describe how
it should be used within COM+. I prefer to put these attributes into a file named
EnterpriseServicesSettings.vb, though they can technically go into any file in the project.
The settings are as follows:

Imports System.EnterpriseServices

' EnterpriseServices settings
<Assembly: ApplicationActivation(ActivationOption.Library)>
<Assembly: ApplicationName("CSLA .NET DataPortal")>
<Assembly: Description("CSLA .NET Serviced DataPortal")>
<Assembly: ApplicationAccessControl(False)>

The ApplicationActivation() setting indicates that the assembly should run within the
process that calls it, not within a separate process hosted by COM+. This is important since
Csla.dll must be allowed to run within many different processes, including Windows Forms,
ASP.NET, and COM+.

The ApplicationName() and Description() settings are optional, but are used to describe the
COM+ component. Finally, the ApplicationAccessControl() setting indicates that COM+ shouldn’t
apply its own method-level security when clients try to call Csla.dll objects.

The EnterpriseServicesPortal class implements IDataPortalServer, and thus the four data
methods. As with RemotingPortal, these methods simply delegate the call to a Csla.Server.
DataPortal object:

Public Function Fetch(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Fetch

Dim portal As New Server.DataPortal
Return portal.Fetch(criteria, context)

End Function

CHAPTER 4 ■ DATA ACCESS AND SECURITY 207

Figure 4-9. Signing an assembly using the Project Properties designer

6315_c04_final.qxd 4/13/06 12:33 PM Page 207

Like remoting, Enterprise Services automatically serializes and deserializes objects as they
move between client and server. However, there’s one extra issue that must be covered when host-
ing within COM+. Due to the way .NET assemblies are dynamically loaded, the .NET serialization
process is unable to automatically discover business assemblies—even if they are already loaded
into memory. To overcome this problem, the class has a Shared constructor that sets up an event
handler to work around the serialization issue:

Shared Sub New()
SerializationWorkaround()

End Sub

Private Shared Sub SerializationWorkaround()
' hook up the AssemblyResolve
' event so deep serialization works properly
' this is a workaround for a bug in the .NET runtime
Dim currentDomain As AppDomain = AppDomain.CurrentDomain

AddHandler currentDomain.AssemblyResolve, _
AddressOf ResolveEventHandler

End Sub

Private Shared Function ResolveEventHandler(_
ByVal sender As Object, ByVal args As ResolveEventArgs) As [Assembly]

' get a list of all the assemblies loaded in our appdomain
Dim list() As [Assembly] = AppDomain.CurrentDomain.GetAssemblies()

' search the list to find the assemby that was not found automatically
' and return the assembly from the list
Dim asm As [Assembly]

For Each asm In list
If asm.FullName = args.Name Then
Return asm

End If
Next

' if the assembly wasn't already in the appdomain, then try to load it
Return [Assembly].Load(args.Name)

End Function

The AssemblyResolve event is raised by .NET itself when it can’t find a requested assembly. The
handler code shown here merely loops through the assemblies already loaded in the AppDomain to
find the assembly and return it. This effectively works around the serialization issue by “helping”
.NET find the assembly.

■Note The underlying issue here is that .NET maintains several lists of loaded assemblies, and the deserial-
ization process only checks some of the lists to find assemblies. Dynamically loaded assemblies aren’t found by
default, but this code solves the problem by handling the AssemblyResolve event.

The EnterpriseServicesPortal base class handles virtually all the details, allowing a subclass
to look like this:

CHAPTER 4 ■ DATA ACCESS AND SECURITY208

6315_c04_final.qxd 4/13/06 12:33 PM Page 208

<EventTrackingEnabled(True)> _
<ComVisible(True)> _
Public Class MyEnterpriseServicesPortal
Inherits Csla.Server.Hosts.EnterpriseServicesPortal

' implementation provided by base class
End Class

I refer to the assembly containing this subclass as the proxy/host assembly because it will also
contain the subclass of EnterpriseServicesProxy. However, because the assembly contains a sub-
class of EnterpriseServicesPortal, it needs to meet the requirements for any assembly hosted in
Enterprise Services, namely:

• The assembly must be signed with a key file, similar to Csla.dll (see Figure 4-9).

• The assembly must reference System.EnterpriseServices.dll.

• Like Csla.dll, the assembly must include some key <Assembly: > attributes.

I typically put the attributes required by Enterprise Services into an
EnterpriseServicesSettings.vb file in the project. The attributes look like this:

Imports System.EnterpriseServices

' EnterpriseServices settings
<Assembly: ApplicationActivation(ActivationOption.Server)>
<Assembly: ApplicationName("My Application")>
<Assembly: Description("My Application Description")>
<Assembly: ApplicationAccessControl(False)>

Replace My Application and My Application Description with an appropriate name and
description for your business application. The ApplicationActivation() setting specifies that this
component should run within a process hosted by COM+. It is this setting that allows the compo-
nent to act as a host on the server to accept calls from remote clients.

■Note The ApplicationActivation() setting here is different from the one used for Csla.dll. This is
because Csla.dll needs to run inside your application’s process, while this separate proxy/host assembly
needs to run in a COM+ process.

After building the assembly, follow these steps to install and configure the assembly for use:

1. Use the .NET command line utility regsvcs.exe to install the assembly into COM+.

2. Create a directory to store the server configuration.

3. Add application.config and application.manifest files to the directory created in step 2.

4. Use the Component Services management console to set the application root directory to
the directory created in step 2, as shown in Figure 4-10.

5. Use the Component Services management console to set any other application settings as
appropriate for your environment.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 209

6315_c04_final.qxd 4/13/06 12:33 PM Page 209

The application.config file is actually named application.config. It is a standard .NET config
file that contains the normal .NET configuration you would put into any app.config file, including
the CSLA .NET configuration settings. For instance, it might look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla"/>

</appSettings>
</configuration>

The application.manifest file is required by Enterprise Services and looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
</assembly>

At this point, you can create your client-side proxy assembly, including a subclass of
EnterpriseServicesProxy. Make sure to reference this new server-side assembly so that you can
implement the GetServerObject() method as discussed earlier. Again, a fully working example
of this process is covered in Chapter 12.

When you deploy the client application, you’ll also need to install the COM+ proxy on every
client workstation. Deployment of COM+ proxies is outside the scope of this book, but in short,
you need to use the Component Services management console on the server to create a setup msi
file for the COM+ application, and then run that msi on every client workstation.

Csla.DataPortalClient.WebServicesProxy
The final channel implemented in CSLA .NET uses Web Services as a network transport.
Unfortunately, Web Services is not designed as a client/server technology, but rather as an

CHAPTER 4 ■ DATA ACCESS AND SECURITY210

Figure 4-10. Setting the application root directory

6315_c04_final.qxd 4/13/06 12:33 PM Page 210

interop technology. Due to this, Web Services is not normally able to support the concept of
mobile objects.

The WebServicesProxy and corresponding WebServicePortal classes will overcome this limi-
tation by manually using the .NET BinaryFormatter to serialize and deserialize the objects. The
result of such serialization is a byte array, and so the web services used in this implementation
will accept byte arrays as parameters and return byte arrays as results.

Additionally, Web Services doesn’t normally return .NET exceptions with full fidelity. In a
client/server application, it is desirable to return all the details about any server-side exceptions
to the client for debugging purposes. The WebServicesProxy and WebServicePortal classes will
overcome this limitation as well.

■Note The web service channel implemented here is primarily intended to be an example of how you can
implement mobile objects using technologies less capable than remoting or Enterprise Services. You could apply
similar concepts to build a channel over raw TCP sockets, SMTP email, or other network transports.

As with all the other proxy/host combinations, WebServicesProxy has one job: to connect to the
server (web service, in this case) and deliver the client call to the server. To this end, it has a web ref-
erence to the web service.

■Note Setting up the web reference was a little tricky. Before creating the WebServicesProxy class, I had to
implement the WebServicePortal class (discussed later) and temporarily host Csla.dll in a virtual root. That
allowed me to add a web reference from the Csla project. Once that web reference was established, I was able
to create WebServicesProxy because the required types from the web service were available.

The web reference defines a WebServiceHost namespace, and within that namespace a
WebServicePortal class. These types are used to create an instance of the server object:

Private Function GetPortal() As WebServiceHost.WebServicePortal
Dim wsvc As New WebServiceHost.WebServicePortal
wsvc.Url = ApplicationContext.DataPortalUrl.ToString
Return wsvc

End Function

Notice that it explicitly sets the proxy object’s Url property based on the DataPortalUrl prop-
erty read from the client application’s <appSettings> config file section. This allows your application
to specify the URL for the server through a config file, rather than having to alter either your busi-
ness code or the code in the Csla project any time that URL changes.

Each data method then calls this web service to relay the client call to the server. But Web Ser-
vices doesn’t properly serialize object graphs for client/server purposes. Web Services uses the .NET
XmlSerializer object to serialize objects; and XmlSerializer only serializes Public read-write fields
and properties, ignoring private fields and read-only properties. It is absolutely not sufficient to
implement mobile objects as required by CSLA .NET.

To overcome this limitation, each of the data methods in WebServicesProxy explicitly uses the
.NET BinaryFormatter to serialize and deserialize objects:

Public Function Fetch(_
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Fetch

CHAPTER 4 ■ DATA ACCESS AND SECURITY 211

6315_c04_final.qxd 4/13/06 12:33 PM Page 211

Dim result As Object
Dim request As New Server.Hosts.WebServicePortal.FetchRequest
request.Criteria = criteria
request.Context = context

Using wsvc As WebServiceHost.WebServicePortal = GetPortal()
result = Deserialize(wsvc.Fetch(Serialize(request)))

End Using

If TypeOf result Is Exception Then
Throw DirectCast(result, Exception)

End If
Return DirectCast(result, Server.DataPortalResult)

End Function

Before making the web service call, the criteria object and CSLA .NET context object are
both put into a FetchRequest object, which is then serialized. The FetchRequest class is just a
data transfer object (DTO) and is defined by Csla.Server.Hosts.WebServicePortal. Both these
classes will be discussed shortly.

The Serialize() and Deserialize() methods are helper methods that invoke the
BinaryFormatter to serialize and deserialize objects. Since BinaryFormatter is used by both
remoting and Enterprise Services, this code is literally duplicating what those other technologies
do natively:

Private Shared Function Serialize(ByVal obj As Object) As Byte()
If Not obj Is Nothing Then
Using buffer As New MemoryStream
Dim formatter As New BinaryFormatter
formatter.Serialize(buffer, obj)
Return buffer.ToArray

End Using

Else
Return Nothing

End If
End Function

Private Shared Function Deserialize(ByVal obj As Byte()) As Object

If Not obj Is Nothing Then
Using buffer As New MemoryStream(obj)
Dim formatter As New BinaryFormatter
Return formatter.Deserialize(buffer)

End Using

Else
Return Nothing

End If
End Function

The Serialize() method is quite comparable to the Clone() method implemented by the
ObjectCloner class in Chapter 3, and Deserialize() simply reverses the process: converting a byte
array back into the original object graph.

Back in the Fetch() method, once the FetchRequest object is loaded with data, it is serialized
with the Serialize() helper and passed to the server:

result = Deserialize(wsvc.Fetch(Serialize(request)));

CHAPTER 4 ■ DATA ACCESS AND SECURITY212

6315_c04_final.qxd 4/13/06 12:34 PM Page 212

The result of the web service call is deserialized using the Deserialize() helper and is put
into a field of type Object. This is important because the result could either be a Csla.Server.
DataPortalResult object or a subclass of System.Exception. If an exception was thrown on the
server, it is returned to the client in serialized form; otherwise, a normal result is returned. Either
way, the Fetch() method has to handle the result:

if (result is Exception)
throw (Exception)result;

return (Server.DataPortalResult)result;

In the case of a server-side exception, the exception is rethrown on the client. Remember
that the data portal only returns Csla.Server.DataPortalException type exceptions, which con-
tain the full server-side stack trace and other details. This implementation achieves full parity
with .NET Remoting or Enterprise Services, returning the complete server-side exception details
through Web Services.

On the other hand, if a normal result was returned, then that result is simply passed back to
Csla.DataPortal so it can process it normally.

Because the Csla.dll assembly has a preexisting web reference to the Csla.Server.Hosts.
WebServicePortal class, no special client configuration is required. The client’s config file merely
needs to specify the use of the web service proxy and the server’s URL.

Csla.Server.Hosts.WebServicePortal
The WebServicesProxy calls a web service, implemented in the Csla.Server.Hosts.
WebServicePortal class. Unlike the other server-side host classes, this one doesn’t implement
IDataPortalServer. The interface exposed by the web service is quite different from
IDataPortalServer, because the web service accepts and returns byte arrays rather than native
.NET types.

You’ve already seen how the WebServicesProxy manually serializes and deserializes the data
sent to and from the web service. Now let’s look at the other end of the process. The same
Serialize() and Deserialize() helper methods are used on the server too, as you can see in the
Fetch() implementation:

<WebMethod()> _
Public Function Fetch(ByVal requestData As Byte()) As Byte()
Dim request As FetchRequest = _
DirectCast(Deserialize(requestData), FetchRequest)

Dim portal As New Server.DataPortal
Dim result As Object
Try
result = portal.Fetch(request.Criteria, request.Context)

Catch ex As Exception
result = ex

End Try
Return Serialize(result)

End Function

The method accepts a byte array as a parameter, which is immediately deserialized to create
a server-side copy of the FetchRequest object created on the client:

Dim request As FetchRequest = _
DirectCast(Deserialize(requestData), FetchRequest)

CHAPTER 4 ■ DATA ACCESS AND SECURITY 213

6315_c04_final.qxd 4/13/06 12:34 PM Page 213

The FetchRequest class is a DTO that simply defines the data to be passed from client to server
when Fetch() is called. It looks like this:

<Serializable()> _
Public Class FetchRequest

Private mCriteria As Object
Public Property Criteria() As Object
Get
Return mCriteria

End Get
Set(ByVal value As Object)
mCriteria = value

End Set
End Property

Private mContext As Server.DataPortalContext
Public Property Context() As Server.DataPortalContext
Get
Return mContext

End Get
Set(ByVal value As Server.DataPortalContext)
mContext = value

End Set
End Property

End Class

■Tip The concept of a DTO comes from Martin Fowler’s excellent book, Patterns of Enterprise Application
Architecture (Addison-Wesley Professional, 2002).

A Fetch() request requires both the criteria object and context data from the client. The
whole purpose behind the FetchRequest class is to combine all the data into a single unit that
can be easily serialized and deserialized.

Once the FetchRequest object has been deserialized, the Fetch() method on a
Csla.Server.DataPortal object is called:

result = portal.Fetch(request.Criteria, request.Context)

This is no different from any of the other host classes discussed earlier in the chapter, except
that the call is wrapped in a Try...Catch block. Remember that Web Services doesn’t pass server-
side exceptions back to the client with full fidelity. To ensure that the full details are returned, any
exceptions are caught and are specifically returned as a result to the client.

Notice how the result field is declared as type Object and ends up either containing the
DataPortalResult object from the Fetch() call, or the Exception object caught by the Try...Catch.
Either way, it is serialized and returned to the client:

Return Serialize(result)

As with WebServicesProxy, the goal here is basically to replicate the functionality that remoting
and Enterprise Services provide automatically.

Since WebServicePortal inherits from System.Web.Services.WebService, it is all ready to be
exposed as a web service. All that is needed is a virtual root and an asmx file. When a client appli-
cation wants to expose a web service data portal, it needs to do the following:

CHAPTER 4 ■ DATA ACCESS AND SECURITY214

6315_c04_final.qxd 4/13/06 12:34 PM Page 214

1. Set up a virtual root

2. Put Csla.dll into the Bin directory

3. Create an asmx file referencing WebServicePortal in the virtual directory

The asmx file needs to contain the following single line:

<%@ WebService Language="VB" Class="Csla.Server.Hosts.WebServicePortal" %>

This tells ASP.NET to find the web service implementation in the Csla.Server.Hosts.
WebServicePortal class. Recall that Csla.dll already includes a web reference to a web service
matching this description, so the client needs only to set up the appropriate Url entry in their
config file’s <appSettings> section.

At this point, you’ve seen the code that implements the channel adapter, including the Csla.
DataPortal class used by business developers and all the channel proxy and host implementations.
Let’s move on now to discuss the server-side portions of the data portal, starting with distributed
transaction support, and then moving on to the message router pattern.

Distributed Transaction Support
Though it may use different network channels to do its work, the primary job of Csla.DataPortal is
to delegate the client’s call to an object on the server. This object is of type Csla.Server.DataPortal,
and its primary responsibility is to route the client’s call to Csla.Server.SimpleDataPortal, which
actually implements the message router behavior.

The reason Csla.Server.DataPortal is involved in this process is so it can establish a distrib-
uted transactional context if requested by the business object. The CSLA .NET framework allows
a business developer to choose between manually handling transactions, using Enterprise Services
(COM+) transactions, or using System.Transactions.

The business developer indicates his preference through the use of the custom Csla.
TransactionalAttribute. Earlier in the chapter, Table 4-4 listed all the possible options when
using this attribute on a DataPortal_XYZ method.

Csla.TransactionalTypes
The TransactionalTypes enumerated list contains all the options that can be specified with the
<Transactional()> attribute when it is applied to a DataPortal_XYZ method on a business object:

Public Enum TransactionalTypes
EnterpriseServices
TransactionScope
Manual

End Enum

This type is used to define the parameter value for the constructor in Csla.
TransactionalAttribute.

Csla.TransactionalAttribute
The <Transactional()> attribute can be optionally applied to a DataPortal_XYZ method in a busi-
ness class to tell the data portal what type of transactional technology should be used when the
method is invoked by the data portal on the server. The default, if the attribute isn’t used, is
TransactionalTypes.Manual—meaning that the developer is responsible for handling any trans-
actions in his own code.

This class is a straightforward implementation of a custom attribute, inheriting from System.
Attribute:

CHAPTER 4 ■ DATA ACCESS AND SECURITY 215

6315_c04_final.qxd 4/13/06 12:34 PM Page 215

<AttributeUsage(AttributeTargets.Method)> _
Public NotInheritable Class TransactionalAttribute
Inherits Attribute

Private mType As TransactionalTypes

Public Sub New()
mType = TransactionalTypes.EnterpriseServices

End Sub

Public Sub New(ByVal transactionType As TransactionalTypes)
mType = transactionType

End Sub

Public ReadOnly Property TransactionType() As TransactionalTypes
Get
Return mType

End Get
End Property

End Class

The <AttributeUsage()> attribute restricts this new attribute so it can only be applied to meth-
ods. The parameterless constructor defaults to using TransactionalTypes.EnterpriseServices. This
is done for backward compatibility with earlier versions of CSLA .NET, in which the only option was
to use Enterprise Services. In most cases, it will be preferable to use the newer TransactionScope
option to trigger the use of System.Transactions.

Csla.Server.DataPortal
Ultimately, all client calls go through the channel adapter and are handled on the server by an
instance of Csla.Server.DataPortal. This object uses the value of the <Transactional()> attribute
(if any) on the DataPortal_XYZ method of the business class to determine how to route the call to
Csla.Server.SimpleDataPortal. The call will go via one of the following three routes:

• The Manual option routes directly to SimpleDataPortal.

• The EnterpriseServices option routes through Csla.Server.ServicedDataPortal.

• The TransactionScope option routes through Csla.Server.TransactionalDataPortal.

The Csla.Server.DataPortal object also takes care of establishing the correct context on the
server based on the context provided by the client. The details of this process are discussed later
in the chapter.

Csla.Server.DataPortal implements IDataPortalServer, and thus the four data methods.
Each of these methods follows the same basic flow:

• Set up the server’s context.

• Get the MethodInfo for the business method to be ultimately invoked.

• Check the <Transactional()> attribute on that MethodInfo object.

• Route the call based on the <Transactional()> attribute.

• Clear the server’s context.

• Return the result provided by SimpleDataPortal.

Let’s look first at the Create() method to see how this is implemented, followed by the differ-
ences in other methods.

CHAPTER 4 ■ DATA ACCESS AND SECURITY216

6315_c04_final.qxd 4/13/06 12:34 PM Page 216

Create
The Create() method implements the steps listed previously:

Public Function Create(_
ByVal objectType As System.Type, _
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Try
SetContext(context)

Dim result As DataPortalResult

Dim method As MethodInfo = _
MethodCaller.GetMethod(objectType, "DataPortal_Create", criteria)

Select Case TransactionalType(method)
Case TransactionalTypes.EnterpriseServices
Dim portal As New ServicedDataPortal
Try
result = portal.Create(objectType, criteria, context)

Finally
portal.Dispose()

End Try

Case TransactionalTypes.TransactionScope
Dim portal As New TransactionalDataPortal
result = portal.Create(objectType, criteria, context)

Case Else
Dim portal As New SimpleDataPortal
result = portal.Create(objectType, criteria, context)

End Select

ClearContext(context)
Return result

Catch
ClearContext(context)
Throw

End Try
End Function

After setting the server’s context (a topic discussed later in the chapter), the MethodInfo object
for the DataPortal_Create() method on the business class is retrieved:

Dim method As MethodInfo = _
MethodCaller.GetMethod(objectType, "DataPortal_Create", criteria)

This uses the same MethodCaller.GetMethod() implementation discussed and used earlier
in the chapter. Next, a TransactionType() helper method is called to retrieve the value of the
<Transactional()> attribute associated with this method. The helper looks like this:

CHAPTER 4 ■ DATA ACCESS AND SECURITY 217

6315_c04_final.qxd 4/13/06 12:34 PM Page 217

Private Shared Function TransactionalType(_
ByVal method As MethodInfo) As TransactionalTypes

Dim result As TransactionalTypes
If IsTransactionalMethod(method) Then
Dim attrib As TransactionalAttribute = _
DirectCast(Attribute.GetCustomAttribute(_
method, GetType(TransactionalAttribute)), _
TransactionalAttribute)

result = attrib.TransactionType

Else
result = TransactionalTypes.Manual

End If
Return result

End Function

If there is no <Transactional()> attribute on the method, then the Manual type is returned as
a default. Otherwise, the TransactionalAttribute object associated with the attribute is retrieved
and its TransactionType property value is returned.

Back in the Create() method, the resulting value is used in a Select statement to properly
route the call. If EnterpriseServices was specified, then an instance of Csla.Server.
ServicedDataPortal is created and the call is delegated to that object:

Case TransactionalTypes.EnterpriseServices
Dim portal As New ServicedDataPortal
Try
result = portal.Create(objectType, criteria, context)

Finally
portal.Dispose()

End Try

As with all Enterprise Services objects, a Try...Finally block is used to ensure that the object
is properly disposed when the call is complete. The details of the ServicedDataPortal class will be
covered shortly.

If TransactionScope was specified, then an instance of Csla.Server.TransactionalDataPortal
is created and the call is delegated to that object:

Case TransactionalTypes.TransactionScope
Dim portal As New TransactionalDataPortal
result = portal.Create(objectType, criteria, context)

The details of the TransactionalDataPortal class will be covered shortly.
Finally, the default is to allow the business developer to handle any transactions manually.

In that case, an instance of Csla.Server.SimpleDataPortal is created directly, and the call is dele-
gated to that object:

Case Else
Dim portal As New SimpleDataPortal
result = portal.Create(objectType, criteria, context)

Both ServicedDataPortal and TransactionalDataPortal delegate their calls to
SimpleDataPortal too—so in the end, all client calls are handled by SimpleDataPortal. By calling
it directly, without involving any transactional technologies, this default approach allows the
business developer to handle any transactions as she sees fit.

CHAPTER 4 ■ DATA ACCESS AND SECURITY218

6315_c04_final.qxd 4/13/06 12:34 PM Page 218

Once the Create() call is complete, the server’s context is cleared (details discussed later), and
the result is returned to the client:

Return result

If an exception occurs during the processing, it is caught, the server’s context is cleared, and
the exception is rethrown so it can be handled by Csla.DataPortal, as discussed earlier in the
chapter.

Fetch and Delete
The Fetch() and Delete() methods work basically the same as Create(). The only difference is in
how the MethodInfo object is retrieved. Remember that Create() gets the type of the business object
passed as a parameter, while Fetch() and Delete() need to infer the type based on the criteria
object. The Fetch() code looks like this:

Dim method As MethodInfo = _
MethodCaller.GetMethod(_
MethodCaller.GetObjectType(criteria), _
"DataPortal_Fetch", criteria)

This overload of GetMethod() tries to find a strongly typed DataPortal_Fetch() method with
a parameter that matches the type of the criteria object. Otherwise, it finds one with a parameter
of type Object.

The remainder of the Fetch() and Delete() methods is fundamentally identical to Create().

Update
The Update() method is more complex. This is because Update() handles BusinessBase and
CommandBase subclasses differently from other objects. The specific DataPortal_XYZ method to be
invoked varies based on the base class of the business object. This complicates the process of
retrieving the MethodInfo object:

Dim method As MethodInfo
Dim methodName As String
If TypeOf obj Is CommandBase Then
methodName = "DataPortal_Execute"

ElseIf TypeOf obj Is Core.BusinessBase Then
Dim tmp As Core.BusinessBase = DirectCast(obj, Core.BusinessBase)
If tmp.IsDeleted Then
methodName = "DataPortal_DeleteSelf"

Else
If tmp.IsNew Then
methodName = "DataPortal_Insert"

Else
methodName = "DataPortal_Update"

End If
End If

Else
methodName = "DataPortal_Update"

End If

method = MethodCaller.GetMethod(obj.GetType, methodName)

CHAPTER 4 ■ DATA ACCESS AND SECURITY 219

6315_c04_final.qxd 4/13/06 12:34 PM Page 219

The same GetMethod() call is used as in Fetch() and Delete(), but the name of the method
is determined based on the type and state of the business object itself. If the business object is
a subclass of CommandBase, then the method name is DataPortal_Execute. For any other objects
that don’t inherit from BusinessBase, the method name is DataPortal_Update.

If the business object is a subclass of BusinessBase, however, the object’s state becomes
important. If the object is marked for deletion, then the method name is DataPortal_DeleteSelf.
If the object is new, the name is DataPortal_Insert; otherwise, it is DataPortal_Update.

Once the MethodInfo object has been retrieved, the rest of the code is essentially the same as
in the other three methods.

Now let’s discuss the two remaining classes that set up an appropriate transaction context.

Csla.Server.ServicedDataPortal
The ServicedDataPortal has one job: to create a distributed COM+ transactional context within
which SimpleDataPortal (and thus the business object) will run. When a call is routed through
ServicedDataPortal, a distributed transactional context is created, ensuring that the business
object’s DataPortal_XYZ methods run within that context.

Normally, to run within a COM+ distributed transaction, an object must inherit from System.
EnterpriseServices.ServicedComponent. This is a problem for typical business objects, since you
don’t usually want them to run within COM+, and no one likes all the deployment complexity that
comes with a ServicedComponent.

ServicedDataPortal allows business objects to avoid this complexity. It does inherit from
ServicedComponent, and includes the appropriate Enterprise Services attributes to trigger the use
of a distributed transaction. But it turns out that when a ServicedComponent running in a trans-
actional context calls a normal .NET object, that object also runs in the transaction. This is true
even when the normal .NET object doesn’t inherit from ServicedComponent.

The use of this concept is illustrated in Figure 4-11.

Once the transactional context is established by ServicedDataPortal, all normal .NET objects
invoked from that point forward run within the same context.

ServicedDataPortal itself inherits from System.EnterpriseServices.ServicedComponent, and
includes some key attributes:

CHAPTER 4 ■ DATA ACCESS AND SECURITY220

Figure 4-11. Using ServicedDataPortal to wrap a business object in a transaction

6315_c04_final.qxd 4/13/06 12:34 PM Page 220

<Transaction(TransactionOption.Required)> _
<EventTrackingEnabled(True)> _
<ComVisible(True)> _
Public Class ServicedDataPortal
Inherits ServicedComponent

Implements IDataPortalServer

The <Transaction()> attribute specifies that this object must run within a COM+ transac-
tional context. If it is called by another object that already established such a context, this object
will run within that context; otherwise, it will create a new context.

The <EventTrackingEnabled()> attribute indicates that this object will interact with COM+
to enable the “spinning balls” in the Component Services management console. This is only
important (or even visible) if the data portal is running within COM+ on the server—meaning
that the EnterpriseServicesProxy is used by the client to interact with the server.

The <ComVisible()> attribute makes this class visible to COM, which is a requirement for any
class that is to be hosted in COM+.

Because ServicedDataPortal inherits from ServicedComponent, the Csla.dll assembly itself
must be configured so it can be hosted in COM+. Because the assembly already includes the Csla.
Server.Hosts.EnterpriseServicesPortal class, all the necessary configuration already exists. This
was discussed earlier in the chapter.

The class also implements the IDataPortalServer interface, ensuring that it implements the
four data methods. Each of these methods has another Enterprise Services attribute—
<AutoComplete()>:

<AutoComplete(True)> _
Public Function Create(_
ByVal objectType As System.Type, _
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Dim portal As New SimpleDataPortal
Return portal.Create(objectType, criteria, context)

End Function

The <AutoComplete()> attribute is used to tell COM+ that this method will vote to commit the
transaction unless it throws an exception. In other words, if an exception is thrown, the method
votes to roll back the transaction; otherwise, it votes to commit the transaction.

This fits with the overall model of the data portal, which relies on the business object to throw
exceptions in case of failure. The data portal uses the exception to return important information
about the failure back to the client. ServicedDataPortal also relies on the exception to tell COM+
to roll back the transaction.

Notice how the Create() method simply creates an instance of SimpleDataPortal and delegates
the call to that object. This is the same as Csla.Server.DataPortal did for manual transactions;
except in this case, SimpleDataPortal and the business object are wrapped in a distributed trans-
actional context.

The other three data methods are implemented in the same manner.

Csla.Server.TransactionalDataPortal
TransactionalDataPortal is designed in a manner very similar to ServicedDataPortal. Rather than
using Enterprise Services, however, this object uses the transactional capabilities provided by the
new System.Transactions namespace, and in particular the new TransactionScope object.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 221

6315_c04_final.qxd 4/13/06 12:34 PM Page 221

This class simply implements IDataPortalServer:

Public Class TransactionalDataPortal

Implements IDataPortalServer

This ensures that it implements the four data methods. Each of these methods follows the
same structure: create a TransactionScope object and delegate the call to an instance of
SimpleDataPortal. For instance, here’s the Create() method:

Public Function Create(_
ByVal objectType As System.Type, _
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Dim result As DataPortalResult
Using tr As New TransactionScope
Dim portal As New SimpleDataPortal
result = portal.Create(objectType, criteria, context)
tr.Complete()

End Using
Return result

End Function

The first thing this method does is create a TransactionScope object from the System.
Transactions namespace. Just the act of instantiating such an object creates a transactional con-
text. It is not a distributed transactional context, but a lighter-weight context. If the business
object interacts with more than one database, however, it will automatically become a distrib-
uted transaction.

The Using block here ensures both that the TransactionScope object will be properly disposed,
and perhaps more importantly, that the transaction will be committed or rolled back as appropri-
ate. If the object is disposed before the Complete() method is called, then the transaction is rolled
back. Again, this model relies on the underlying assumption that the business code will throw an
exception to indicate failure. This is the same model that is used by ServicedDataPortal, and really
by the data portal infrastructure overall.

Within the Using block, the code creates an instance of SimpleDataPortal and delegates the
call to that object, which in turn calls the business object. Assuming no exception is thrown by
the business object, the Complete() method is called to indicate that the transaction should be
committed.

The other three methods are implemented in the same manner. Regardless of which trans-
actional model is used, all calls end up being handled by a SimpleDataPortal object, which
implements the message router concept.

Message Router
The message router functionality picks up where the channel adapter leaves off. The channel
adapter gets the client call from the client to the server, ultimately calling Csla.Server.DataPortal.
Recall that every host class (LocalPortal, RemotingPortal, etc.) ends up delegating every method
call to an instance of Csla.Server.DataPortal. That object routes the call to a Csla.Server.
SimpleDataPortal object, possibly first setting up a transactional context.

The focus in this section of the chapter will primarily be on Csla.Server.SimplePortal,
as it is this class that implements the message router behavior to call the appropriate methods

CHAPTER 4 ■ DATA ACCESS AND SECURITY222

6315_c04_final.qxd 4/13/06 12:34 PM Page 222

on the right business object. First though, let’s take a brief look at Csla.CriteriaBase and the role
it plays in the message router implementation.

Csla.CriteriaBase
The CriteriaBase class has been discussed previously in the chapter, in the context of using it as
a base class for defining a criteria class. Here’s the code for the class:

<Serializable()> _
Public MustInherit Class CriteriaBase

Private mObjectType As Type

Public ReadOnly Property ObjectType() As Type
Get
Return mObjectType

End Get
End Property

Protected Sub New(ByVal type As Type)
mObjectType = type

End Sub
End Class

The purpose of this base class is to ensure that the data portal infrastructure has access to the
type of business object required for a create, retrieve, or delete operation. As has been discussed,
the data portal supports both nesting a criteria class within the business class itself and having the
criteria class inherit from CriteriaBase.

Csla.Server.SimpleDataPortal
The core of the message router behavior is the SimpleDataPortal class. In the final analysis, after
going through the channel adapter and transactional behaviors, all client calls end up being
handled on the server by an instance of SimpleDataPortal. This class is the counterpart to the
client-side Csla.DataPortal, since it is this class that interacts directly with the business objects
designed by the business developer.

SimpleDataPortal implements the four data methods defined by IDataPortalServer: Create(),
Fetch(), Update(), and Delete(). Each of these methods follows the same basic processing flow:

1. Create or get an instance of the business object.

2. Call the object’s DataPortal_OnDataPortalInvoke() method (if implemented).

3. Call the appropriate DataPortal_XYZ method on the object.

4. Set the object’s status (new, dirty, etc.) as appropriate.

5. Call the object’s DataPortal_OnDataPortalInvokeComplete() method (if implemented).

6. In case of exception, call the object’s DataPortal_OnDataPortalException() method
(if implemented) and throw a Csla.Server.DataPortalException.

7. Return the resulting business object (if appropriate).

Let’s look at the Create() method in detail, followed by the minor differences required to
implement the other four methods.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 223

6315_c04_final.qxd 4/13/06 12:34 PM Page 223

Create
The Create() method illustrates every step in the preceding list:

Public Function Create(_
ByVal objectType As System.Type, _
ByVal criteria As Object, _
ByVal context As Server.DataPortalContext) As Server.DataPortalResult _
Implements Server.IDataPortalServer.Create

Dim obj As Object = Nothing

Try
' create an instance of the business object
obj = Activator.CreateInstance(objectType, True)

' tell the business object we're about to make a DataPortal_xyz call
MethodCaller.CallMethodIfImplemented(_
obj, "DataPortal_OnDataPortalInvoke", _
New DataPortalEventArgs(context))

' tell the business object to fetch its data
MethodCaller.CallMethod(obj, "DataPortal_Create", criteria)

' mark the object as new
MethodCaller.CallMethodIfImplemented(obj, "MarkNew")

' tell the business object the DataPortal_xyz call is complete
MethodCaller.CallMethodIfImplemented(_
obj, "DataPortal_OnDataPortalInvokeComplete", _
New DataPortalEventArgs(context))

' return the populated business object as a result
Return New DataPortalResult(obj)

Catch ex As Exception
Try
' tell the business object there was an exception
MethodCaller.CallMethodIfImplemented(_
obj, "DataPortal_OnDataPortalException", _
New DataPortalEventArgs(context), ex)

Catch
' ignore exceptions from the exception handler

End Try
Throw New DataPortalException("DataPortal.Create " & _
My.Resources.FailedOnServer, ex, New DataPortalResult(obj))

End Try
End Function

The first step is to create an instance of the business object. This is done using the
CreateInstance() method of the System.Activator class:

obj = Activator.CreateInstance(objectType, True)

The objectType parameter is passed from the client. Recall that in Csla.DataPortal, the type
of the object to be created was determined and passed as a parameter to the Create() method.

It is also important to recognize that the constructors on business classes are not Public. They
are either Private or Protected, thus forcing the UI developer to use the factory methods to create

CHAPTER 4 ■ DATA ACCESS AND SECURITY224

6315_c04_final.qxd 4/13/06 12:34 PM Page 224

or retrieve business objects. This use of Activator.CreateInstance() tells .NET to create an instance
of the class using the constructor even though it isn’t Public.

If it isn’t already loaded into memory, the .NET runtime will automatically load the assembly
containing the business object class. This is handled automatically by Activator.CreateInstance(),
following the normal assembly-loading process always used by .NET.

■Tip To ensure .NET can find your business assembly, it must be in the same directory as the client applica-
tion’s .exe file, in the Bin directory. Alternatively, you may install the assembly into the .NET global assembly
cache (GAC).

The next step in the process is to tell the business object that it is about to be invoked by the
data portal. This is done by calling the object’s DataPortal_OnDataPortalInvoke() method:

MethodCaller.CallMethodIfImplemented(_
obj, "DataPortal_OnDataPortalInvoke", _
New DataPortalEventArgs(context))

Notice the use of the CallMethodIfImplemented() method on the MethodCaller class. This
method was discussed earlier in the chapter, and it invokes the named method if it exists on the
object, but does not throw an exception if the method isn’t there. This is a way of invoking methods
that are considered optional on the business object.

A business developer can implement this method to do any preprocessing prior to an actual
DataPortal_XYZ method being called. And that’s the very next step:

MethodCaller.CallMethod(obj, "DataPortal_Create", criteria)

This isn’t optional, so MethodCaller.CallMethod() is used. If it doesn’t find a matching
method, it will throw an exception. Recall that it tries to invoke a method that has a strongly
typed parameter matching the type of the criteria object; otherwise, it will invoke one with a
parameter of type Object.

Since the Create() method is creating a new object, the business object’s MarkNew() method
is invoked to ensure that the object’s status is set to being new and dirty:

MethodCaller.CallMethodIfImplemented(obj, "MarkNew")

Though the MarkNew() method is implemented by Csla.Core.BusinessBase, it isn’t imple-
mented by Csla.BusinessListBase; thus, it is considered optional.

■Note Technically, the data portal can be used to interact with objects that don’t inherit from a CSLA .NET
base class. While I won’t cover this in the book, any object that follows the criteria scheme and implements
the appropriate DataPortal_XYZ methods can be used with the data portal. This is another reason that call-
ing methods like MarkNew() is optional.

Now that the DataPortal_Create() method has been invoked, the object is notified that the
data portal processing is complete:

MethodCaller.CallMethodIfImplemented(_
obj, "DataPortal_OnDataPortalInvokeComplete", _
New DataPortalEventArgs(context))

CHAPTER 4 ■ DATA ACCESS AND SECURITY 225

6315_c04_final.qxd 4/13/06 12:34 PM Page 225

Finally, the newly created object is wrapped in a Csla.Server.DataPortalResult object and
returned:

Return New DataPortalResult(obj)

That concludes the normal sequence of events in the method. Of course, it is possible that an
exception occurred during the processing. In that case, the exception is caught and the object is
notified that an exception occurred:

Try
' tell the business object there was an exception
MethodCaller.CallMethodIfImplemented(_
obj, "DataPortal_OnDataPortalException", _
New DataPortalEventArgs(context), ex)

Catch
' ignore exceptions from the exception handler

End Try

This optional call to DataPortal_OnDataPortalException() is wrapped in its own Try...Catch
statement. Even if an exception occurs while calling this method, the code needs to continue.
There’s very little that could be done if the exception-handling code has an exception, so such an
exception is simply ignored.

In any case, the exception is wrapped in a Csla.Server.DataPortalException, which is thrown
back to Csla.DataPortal:

Throw New DataPortalException("DataPortal.Create " & _
My.Resources.FailedOnServer, ex, New DataPortalResult(obj))

Remember that DataPortalException contains the original exception as an InnerException,
and also traps the stack trace from the server exception so that it is available on the client. Also keep
in mind that all the proxy/host channel implementations ensure that the exception is returned to
the client with full fidelity, so Csla.DataPortal gets the full exception detail regardless of the net-
work channel used.

At this point, you should understand how the flow of the data methods is implemented. The
remaining methods follow the same flow with minor variations.

Fetch
The Fetch() method follows the same basic flow as Create(). The primary difference is in how the
business object is created. Where Create() is passed the type of the business object as a parameter,
Fetch() calls a CreateBusinessObject() helper method:

obj = CreateBusinessObject(criteria)

This helper method examines the criteria object to determine the type of business object to be
created:

Private Shared Function CreateBusinessObject(_
ByVal criteria As Object) As Object

Dim businessType As Type

If criteria.GetType.IsSubclassOf(GetType(CriteriaBase)) Then
' get the type of the actual business object
' from CriteriaBase
businessType = CType(criteria, CriteriaBase).ObjectType

CHAPTER 4 ■ DATA ACCESS AND SECURITY226

6315_c04_final.qxd 4/13/06 12:34 PM Page 226

Else
' get the type of the actual business object
' based on the nested class scheme in the book
businessType = criteria.GetType.DeclaringType

End If

' create an instance of the business object
Return Activator.CreateInstance(businessType, True)

End Function

If the criteria object inherits from Csla.CriteriaBase, then the ObjectType property is used to
get the business object type. Otherwise, it is assumed that the criteria object’s class is nested within
the business class, and so the DeclaringType property is used to determine the business class.

In either case, Activator.CreateInstance() is used to create an instance of the business object,
just as it was in the Create() method.

Once the object’s data is loaded using the DataPortal_Fetch() method, the MarkOld() method
is invoked to ensure that IsNew and IsDirty are both False.

Update
The Update() method is more complex. Remember that the Update() process adapts itself to the
type of business object being updated, so it checks to see if the object is a subclass of
BusinessBase or CommandBase and behaves appropriately. Also recall that the actual business object
is passed as a parameter to Update(), so this method doesn’t need to create an instance of the busi-
ness object at all.

Processing a BusinessBase Object

It starts right out by checking to see if the business object is a subclass of BusinessBase. If the object
is a subclass, then it is casted to type Csla.Core.BusinessBase so that the object’s state can easily be
checked:

If TypeOf obj Is Core.BusinessBase Then
Dim busObj As Core.BusinessBase = DirectCast(obj, Core.BusinessBase)
If busObj.IsDeleted Then
If Not busObj.IsNew Then
' tell the object to delete itself
MethodCaller.CallMethod(busObj, "DataPortal_DeleteSelf")

End If
' mark the object as new
MethodCaller.CallMethodIfImplemented(busObj, "MarkNew")

Else
If busObj.IsNew Then
' tell the object to insert itself
MethodCaller.CallMethod(busObj, "DataPortal_Insert")

Else
' tell the object to update itself
MethodCaller.CallMethod(busObj, "DataPortal_Update")

End If
' mark the object as old
MethodCaller.CallMethodIfImplemented(busObj, "MarkOld")

End If

CHAPTER 4 ■ DATA ACCESS AND SECURITY 227

6315_c04_final.qxd 4/13/06 12:34 PM Page 227

If the object’s IsDeleted property returns True, then the object should be deleted. It is possible
that the object is also new, in which case there’s actually nothing to delete; otherwise, the
DataPortal_DeleteSelf() method is invoked:

If busObj.IsDeleted Then
If Not busObj.IsNew Then
' tell the object to delete itself
MethodCaller.CallMethod(busObj, "DataPortal_DeleteSelf")

End If
' mark the object as new
MethodCaller.CallMethodIfImplemented(busObj, "MarkNew")

In either case, the MarkNew() method is invoked to reset the object’s state to new and dirty. The
definition of a “new” object is that its primary key value isn’t in the database—and since that data
was just deleted, the object certainly meets that criteria. The definition of a “dirty” object is that its
data values don’t match values in the database—and again, the object now certainly meets that
criteria as well.

If the object wasn’t marked for deletion, then it needs to be either inserted or updated.
If IsNew is True, then DataPortal_Insert() is invoked:

If busObj.IsNew Then
' tell the object to insert itself
MethodCaller.CallMethod(busObj, "DataPortal_Insert")

Similarly, if the object isn’t new, then DataPortal_Update() is invoked. In either case, the
object’s primary key and data values now reflect values in the database, so the object is clearly
not new or dirty. The MarkOld() method is called to set the object’s state accordingly:

MethodCaller.CallMethodIfImplemented(busObj, "MarkOld")

Processing a CommandBase Object

If the business object inherits from Csla.CommandBase, things are simpler. In this case, only the
object’s DataPortal_Execute() method is invoked:

ElseIf TypeOf obj Is CommandBase Then
' tell the object to update itself
MethodCaller.CallMethod(obj, "DataPortal_Execute")

A command object should implement all server-side code in its DataPortal_Execute() method.

Processing All Other Objects

For any other objects (most commonly subclasses of BusinessListBase), the DataPortal_Update()
method is invoked, followed by an optional call to MarkOld():

MethodCaller.CallMethod(obj, "DataPortal_Update")
MethodCaller.CallMethodIfImplemented(obj, "MarkOld")

As in Create() and Fetch(), the DataPortal_OnDataPortalInvoke() method is called before any
of this other processing, and DataPortal_OnDataPortalInvokeComplete() is called once it is all done.
The business object is returned as a result, wrapped in a DataPortalResult object.

Any exceptions are handled in the same way as in Create() or Fetch().

Delete
In contrast to Update(), the Delete() method is the simplest of the four. Like Fetch(), it creates an
instance of the business object based on the criteria object:

obj = CreateBusinessObject(criteria)

CHAPTER 4 ■ DATA ACCESS AND SECURITY228

6315_c04_final.qxd 4/13/06 12:34 PM Page 228

Then it calls DataPortal_OnDataPortalInvoke(), followed by DataPortal_Delete(), and then
DataPortal_OnDataPortalInvokeComplete(). Since the result is that the object’s data was deleted,
there’s no business object to return. Thus an empty DataPortalResult is returned:

Return New DataPortalResult

This is required to return the global context data from the server back to the client—just in
case the business object changed the global context during the delete operation.

The exception handling for Delete() is the same as in the other three methods.
That completes the SimpleDataPortal class and the message router behavior. Notice how all

client calls are automatically routed to a dynamically created business object based on the type of
business object required. SimpleDataPortal is entirely unaware of the particulars of any business
application; it blindly routes client calls to the appropriate destinations.

Context and Location Transparency
The final major area of functionality provided by the data portal is that it manages context infor-
mation to provide a level of location transparency between the client and server. Specifically, it
allows the business application to pass data from the client to the server and from the server to
the client on each data portal call, in addition to the actual call itself.

The data portal uses this capability itself in order to pass security and culture information
from the client to the server.

You’ve already seen most of the code that implements the context-passing behaviors. Csla.
DataPortal is responsible for passing the client context to the server and for updating the client’s
context with any changes from the server. Csla.Server.DataPortal is responsible for setting the
server’s context based on the data passed from the client, and for returning the global context from
the server back to the client.

To maintain the context and pass it between client and server, several objects are used. Let’s
discuss them now.

Csla.Server.DataPortalContext
Earlier in the chapter, you saw how the Csla.DataPortal class implements Shared methods used
by business developers to interact with the data portal. Each of those methods dealt with context
data—creating a DataPortalContext object to pass to the server. On the server, Csla.Server.
DataPortal uses the data in DataPortalContext to set up the server’s context to match the client.

Of course, the phrase “on the server” is relative, since the data portal could be configured to
use the LocalProxy. In that case, the “server-side” components actually run in the same process
as your client code. Obviously, the context data is already present in that case, so there’s no need
to transfer it; and the data portal includes code to short-circuit the process when the server-side
data portal components are running locally.

Creating the DataPortalContext Object
The DataPortalContext object is created and initialized in Csla.DataPortal within each data
method:

Dim dpContext As New Server.DataPortalContext(_
GetPrincipal, proxy.IsServerRemote)

The DataPortalContext object is a container for the set of context data to be passed from the
client to the server. The data it contains is defined by the fields declared in DataPortalContext:

CHAPTER 4 ■ DATA ACCESS AND SECURITY 229

6315_c04_final.qxd 4/13/06 12:34 PM Page 229

Private mPrincipal As IPrincipal
Private mRemotePortal As Boolean
Private mClientCulture As String
Private mClientUICulture As String
Private mClientContext As HybridDictionary
Private mGlobalContext As HybridDictionary

These data elements were described in Table 4-6, earlier in the chapter. The key here is that
DataPortalContext is marked as <Serializable()>, and therefore when it is serialized, all the values
in these fields are also serialized.

The values are loaded when the DataPortalContext object is created:

Public Sub New(_
ByVal principal As IPrincipal, ByVal isRemotePortal As Boolean)

If isRemotePortal Then
mPrincipal = principal
mRemotePortal = isRemotePortal
mClientCulture = _
System.Threading.Thread.CurrentThread.CurrentCulture.Name

mClientUICulture = _
System.Threading.Thread.CurrentThread.CurrentUICulture.Name

mClientContext = Csla.ApplicationContext.GetClientContext
mGlobalContext = Csla.ApplicationContext.GetGlobalContext

End If
End Sub

The two culture values are pulled directly off the client’s current Thread object. The
mClientContext and mGlobalContext values are set based on the values in Csla.ApplicationContext,
which will be discussed later.

Each of the values is exposed through a corresponding property so they can be used to set up
the context data on the server.

Setting the Server Context
The server’s context is set by Csla.Server.DataPortal as the first step in each of the four data meth-
ods. The work is handled by the SetContext() method in Csla.Server.DataPortal. This method
follows this basic flow:

1. Do nothing if the “server” code is running on the client.

2. Otherwise, call ApplicationContext to set the client and global context collections.

3. Then set the server Thread to use the client’s culture settings.

4. If using custom authentication, set the server Thread to use the IPrincipal supplied from
the client.

Let’s walk through the code in SetContext() that implements these steps. First is the check to
see if the “server” code is actually running locally in the client process (using the LocalProxy in the
channel adapter):

If Not context.IsRemotePortal Then Exit Sub

If the server code is running locally, then there’s no sense setting any context data, because it
is already set up. If the server code really is running remotely, though, the context data does need
to be set up on the server, starting by restoring the client and global context data:

CHAPTER 4 ■ DATA ACCESS AND SECURITY230

6315_c04_final.qxd 4/13/06 12:34 PM Page 230

ApplicationContext.SetContext(_
context.ClientContext, context.GlobalContext)

The ApplicationContext class will be discussed shortly. Remember that the client context
comes from the client to the server only, while the global context will ultimately be returned to
the client, reflecting any changes made on the server. The ApplicationContext also has an
ExecutionLocation property that can be used by business code to determine whether the code is
currently executing on the client or the server. This value must be set to indicate that execution
is on the server:

ApplicationContext.SetExecutionLocation(_
ApplicationContext.ExecutionLocations.Server)

Like the client context, the two culture values flow from the client to the server. They are used
to set the current Thread object on the server to match the client settings:

System.Threading.Thread.CurrentThread.CurrentCulture = _
New System.Globalization.CultureInfo(context.ClientCulture)

System.Threading.Thread.CurrentThread.CurrentUICulture = _
New System.Globalization.CultureInfo(context.ClientUICulture)

Of the two, perhaps the most important is the CurrentUICulture, as this is the setting that
dictates the language used when retrieving resource values such as those used throughout the
CSLA .NET framework.

Finally, if custom authentication is being used, the IPrincipal object representing the user’s
identity is passed from the client to the server. It must be set on the current Thread or HttpContext
as the CurrentPrincipal or User to effectively impersonate the user on the server. This is handled
by Csla.ApplicationContext:

If ApplicationContext.AuthenticationType = "Windows" Then
' When using integrated security, Principal must be Nothing
If context.Principal Is Nothing Then
' Set .NET to use integrated security
AppDomain.CurrentDomain.SetPrincipalPolicy(_
PrincipalPolicy.WindowsPrincipal)

Exit Sub

Else
Throw New System.Security.SecurityException(_
My.Resources.NoPrincipalAllowedException)

End If
End If

' We expect the Principal to be of the type BusinessPrincipal
If context.Principal IsNot Nothing Then
If TypeOf context.Principal Is Security.BusinessPrincipalBase Then
ApplicationContext.User = context.Principal

Else
Throw New System.Security.SecurityException(_
My.Resources.BusinessPrincipalException & " " & _
CType(context.Principal, Object).ToString())

End If

Else
Throw New System.Security.SecurityException(_
My.Resources.BusinessPrincipalException & " Nothing")

End If

CHAPTER 4 ■ DATA ACCESS AND SECURITY 231

6315_c04_final.qxd 4/13/06 12:34 PM Page 231

There’s a lot going on here, so let’s break it down a bit. First, there’s the check to ensure that cus-
tom authentication is being used. If Windows integrated (AD) security is being used, then Windows
itself handles any impersonation, based on the configuration of the host (IIS, COM+, etc.). In that
case, the IPrincipal value passed from the client must be Nothing, or else it is invalid, so the code
throws an exception.

■Tip The check of the principal object’s type is done to ensure that both the client and server are using the
same authentication scheme. If the client is using custom authentication and the server is using Windows inte-
grated security, this exception will be thrown. Custom authentication is discussed more fully in Chapter 5.

If the server is configured to use custom authentication, however, the rest of the code is exe-
cuted. In that case, the first step is to make sure that the client did pass a valid IPrincipal object
to the server. “Valid” in this case means that it isn’t Nothing and that the object inherits from Csla.
Security.BusinessPrincipalBase. Given a valid IPrincipal object, the server’s principal value is
set to match that of the client.

An invalid IPrincipal value results in an exception being thrown.

Clearing the Server Context
Once all the server-side processing is complete, the server clears the context values on its Thread
object. This is done to prevent other code from accidentally gaining access to the client’s context
or security information. Csla.Server.DataPortal handles this in its ClearContext() method:

Private Shared Sub ClearContext(ByVal context As DataPortalContext)
' if the dataportal is not remote then
' do nothing
If Not context.IsRemotePortal Then Exit Sub

ApplicationContext.Clear()
If ApplicationContext.AuthenticationType <> "Windows" Then
ApplicationContext.User = Nothing

End If
End Sub

This method is called at the end of each data method in Csla.Server.DataPortal. Notice that
it calls Csla.ApplicationContext to clear the client and global context values. Then if custom
authentication is being used, Csla.ApplicationContext is called to set the principal value to
Nothing, removing the IPrincipal value from the client.

Csla.Server.DataPortalResult
Using the DataPortalContext object, Csla.DataPortal and Csla.Server.DataPortal convey client
context data to the server. That’s great for the client context, client culture, and client IPrincipal,
but the global context data needs to be returned to the client when the server is done. This is han-
dled by Csla.Server.DataPortalResult on a successful call, and Csla.Server.DataPortalException
in the case of a server-side exception.

The Csla.Server.DataPortalResult object is primarily responsible for returning the business
object that was created, retrieved, or updated on the server back to the client. However, it also con-
tains the global context collection from the server:

CHAPTER 4 ■ DATA ACCESS AND SECURITY232

6315_c04_final.qxd 4/13/06 12:34 PM Page 232

Private mGlobalContext As HybridDictionary

Public ReadOnly Property GlobalContext() As HybridDictionary
Get
Return mGlobalContext

End Get
End Property

When the DataPortalResult object is created by Csla.Server.SimpleDataPortal, it automati-
cally pulls the global context data from Csla.ApplicationContext:

Public Sub New(ByVal returnObject As Object)
mReturnObject = returnObject
mGlobalContext = ApplicationContext.GetGlobalContext

End Sub

This way, the global context data is carried back to the client along with the business object.

Csla.Server.DataPortalException
Where Csla.Server.DataPortalResult returns the business object and context to the client for a
successful server-side operation, Csla.Server.DataPortalException returns that data in the case
of a server-side exception. Obviously, the primary responsibility of DataPortalException is to return
the details about the exception, including the server-side stack trace, back to the client. This infor-
mation is captured when the exception is created:

Public Sub New(_
ByVal message As String, ByVal ex As Exception, _
ByVal result As DataPortalResult)

MyBase.New(message, ex)
mInnerStackTrace = ex.StackTrace
mResult = result

End Sub

Notice that a DataPortalResult object is required as a parameter to the constructor. This
DataPortalResult object is returned to the client as part of the exception, thus ensuring that both
the business object (exactly as it was when the exception occurred) and the global context from
the server are returned to the client as well.

Csla.ApplicationContext
Both the client and global context information used by all the classes just discussed are ultimately
managed by Csla.ApplicationContext. This class is responsible for providing access to context
information to the CSLA .NET framework, the business objects, and the UI code. In many ways,
ApplicationContext is similar to the idea of HttpContext within an ASP.NET application.

Client and Global Context Collections
On the surface, it seems like maintaining a set of globally available information is easy—just use a
Shared field and be done with it. Unfortunately, things are quite a bit more complex when building
a framework that must operate in a multithreaded server environment. Remember that the server-
side components of the data portal may run in ASP.NET on an IIS server when either .NET
Remoting or Web Services are used as a network channel. And in the future, WCF (Indigo) will
run in a similar server configuration.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 233

6315_c04_final.qxd 4/13/06 12:34 PM Page 233

In these cases, the server may be supporting many clients at the same time. All the client
requests are handled by the same Windows process and by the same .NET AppDomain. It turns out
that Shared fields exist at the AppDomain level: meaning that a given Shared field is shared across all
threads in an AppDomain. This is problematic because multiple client requests are handled within
the same AppDomain, but on different threads. So Shared fields aren’t the answer.

The solution is different in ASP.NET and in any other .NET code. Either way, the .NET Frame-
work illustrates the right answer. Look at CurrentPrincipal: it is associated with the current Thread
object, which provides an answer for any code running outside of ASP.NET. Within ASP.NET, there’s
the HttpContext object, which is automatically maintained by ASP.NET itself.

So when outside ASP.NET, the answer is to associate the context data directly with the current
Thread object, and when inside ASP.NET, the context data can be stored using the HttpContext.

Let’s discuss the Thread option first. While the .NET Thread object already has a property for
CurrentPrincipal, it doesn’t have a property for CslaContext. But it does have a concept called
named slots. Every Thread object has a collection associated with it. Each entry in this collection
is referred to as a slot. Slots can be referred to by a key, or name: hence the term named slot. The
GetNameDataSlot() method on the Thread object returns access to a specific slot as an object of
type LocalDataStoreSlot. You can then use the Thread object’s GetData() and SetData() methods
to get and set data in that slot.

While this is a bit more complex than dealing with a conventional collection, you can think
of named slots as being like a collection of arbitrary values associated with a Thread object.

When running in ASP.NET, things are a bit simpler, because HttpContext has an Items col-
lection. This is a dictionary of name/value pairs that is automatically maintained by ASP.NET
and is available to your code. Within ASP.NET, this is the only safe place to put shared data like
context data, because ASP.NET may switch your code to run on different threads in certain
advanced scenarios.

Providing Public Access

The ApplicationContext class stores the client and global context data in named slots on the
current thread or in the Items collection of HttpContext. It abstracts all the complexity, simply
exposing the context data as a pair of collection objects via Public properties that can be used
by other framework code, business code, or UI code. For instance, here’s the ClientContext
property:

Public ReadOnly Property ClientContext() As HybridDictionary
Get
Dim ctx As HybridDictionary = GetClientContext()
If ctx Is Nothing Then
ctx = New HybridDictionary
SetClientContext(ctx)

End If
Return ctx

End Get
End Property

The client context data is a standard .NET HybridDictionary object: a collection of name/value
pairs much like Session in ASP.NET.

■Note HybridDictionary is used because it self-optimizes, keeping its data in an array format if there are
few elements, and switching to a hashtable if there are many elements in the collection. This provides an auto-
matic trade-off between memory consumption and fast lookup of items based on the name value.

CHAPTER 4 ■ DATA ACCESS AND SECURITY234

6315_c04_final.qxd 4/13/06 12:34 PM Page 234

The HybridDictionary is stored in a named slot or HttpContext entry called Csla.
ClientContext. When a business object or some UI code calls the ClientContext property to
get the client context collection, the value is retrieved from the slot or HttpContext by calling a
GetClientContext() helper method:

Friend Function GetClientContext() As HybridDictionary
If HttpContext.Current Is Nothing Then
Dim slot As System.LocalDataStoreSlot = _
Thread.GetNamedDataSlot("Csla.ClientContext")

Return CType(Thread.GetData(slot), HybridDictionary)

Else
Return CType(HttpContext.Current.Items("Csla.ClientContext"), _
HybridDictionary)

End If
End Function

This method is Friend because portions of the framework need lower-level access than is
provided by the standard ClientContext and GlobalContext properties.

The DataPortalContext object needs to pass the context to the server, but if the context values
have never been used, it should pass Nothing. The two public properties automatically create
instances of an empty HybridDictionary, but there’s no sense passing an empty object across when
Nothing would do better.

If this is the first time the value has been requested, it won’t exist, of course. In that case, the
value retrieved from the (previously nonexistent) slot or HttpContext item will be Nothing, and so
a new HybridDictionary is created:

If ctx Is Nothing Then
ctx = New HybridDictionary
SetClientContext(ctx)

End If

Not only is a new object created, but it is put into the named slot or HttpContext item by calling
a SetClientContext() helper method.

Private Sub SetClientContext(ByVal clientContext As HybridDictionary)
If HttpContext.Current Is Nothing Then
Dim slot As System.LocalDataStoreSlot = _
Thread.GetNamedDataSlot("Csla.ClientContext")

Threading.Thread.SetData(slot, clientContext)

Else
HttpContext.Current.Items("Csla.ClientContext") = clientContext

End If
End Sub

This makes it available to any other code running on the same thread. The
ApplicationContext.GlobalContext property works exactly the same way, storing its data in
an entry named Csla.GlobalContext.

Providing Framework-Only Access

The standard ClientContext and GlobalContext properties, along with the GetClientContext()
and GetGlobalContext() methods, provide access to the context data both publicly and to the
client-side DataPortal.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 235

6315_c04_final.qxd 4/13/06 12:34 PM Page 235

On the other end of the process, Csla.Server.DataPortal needs to take the values provided by
the client and use them to set the slots on the server’s Thread object or into the server’s HttpContext.
This is done by calling a SetContext() method:

Friend Sub SetContext(_
ByVal clientContext As HybridDictionary, _
ByVal globalContext As HybridDictionary)

SetClientContext(clientContext)
SetGlobalContext(globalContext)

End Sub

This method simply sets both the values. This works even if the values passed from the client
are Nothing, ensuring that the server context is identical to that on the client.

Similarly, Csla.Server.DataPortal needs to be able to clear the context on the server. It does
this by calling a Clear() method:

Public Sub Clear()
SetContext(Nothing, Nothing)

End Sub

Clearing the context merely means that the context values from the client should be removed
from the thread or HttpContext. The easiest way to do this is simply to set the values to Nothing.

User Property
When code is running outside ASP.NET, it relies on System.Threading.Thread.CurrentPrincipal to
maintain the user’s principal object. On the other hand, when code is running inside ASP.NET, the
only reliable way to find the user’s principal object is through HttpContext.Current.User.

Normally, this would mean that you would have to write code to detect whether HttpContext.
Current is Nothing, and only use System.Threading if HttpContext isn’t available. The User property
automates this process on your behalf:

Public Property User() As IPrincipal
Get
If HttpContext.Current Is Nothing Then
Return Thread.CurrentPrincipal

Else
Return HttpContext.Current.User

End If
End Get
Set(ByVal value As IPrincipal)
If HttpContext.Current IsNot Nothing Then
HttpContext.Current.User = value

End If
Thread.CurrentPrincipal = value

End Set
End Property

In general, Csla.ApplicationContext.User should be used in favor of using either System.
Threading or HttpContext directly, since it automatically adjusts to the environment in which your
code is running. With CSLA .NET–based applications, this is particularly important, because your
client code could be a Windows Forms application, but your server code could be running within
ASP.NET. Remember that your business objects run in both locations and so must behave properly
both inside and outside ASP.NET.

CHAPTER 4 ■ DATA ACCESS AND SECURITY236

6315_c04_final.qxd 4/13/06 12:34 PM Page 236

Config File Settings
Csla.ApplicationContext not only manages the client and global context collections, it also pro-
vides a central location for retrieval of any other context or settings values global to the application.
These values come from two locations: the application’s config file and settings that are directly
maintained in memory.

The .NET Framework already provides the System.Configuration namespace to provide
access to the application’s config file. But it is often best to encapsulate lower-level plumbing
code for commonly accessed values. The way config files are read changed from .NET 1.1 to 2.0,
directly highlighting the value of hiding the use of .NET Framework functions of this sort. By
encapsulating the use of System.Configuration, the framework needs to be changed in only one
place if Microsoft changes the approach again in the future.

Additionally, by encapsulating the reading of config values, the framework can provide mean-
ingful default values in the case that the setting isn’t found in the config file. For instance, the
DataPortalProxy property looks like this:

Public ReadOnly Property DataPortalProxy() As String
Get
Dim result As String = _
ConfigurationManager.AppSettings("CslaDataPortalProxy")

If Len(result) = 0 Then
result = "Local"

End If
Return result

End Get
End Property

If a proxy type and assembly are specified for the channel adapter, then they are returned;
otherwise, the default value of Local is returned.

Other settings that are encapsulated as properties on ApplicationContext are DataPortalUrl
and AuthenticationType.

ExecutionLocation Property
The final value maintained by ApplicationContext is a property called ExecutionLocation. This
property can be used by business code to determine whether it is currently executing on the client
or on the server.

This is particularly useful when writing data access code, since that code could run on either
the client or the server, depending on whether the channel adapter uses LocalProxy or one of the
remote proxies. Remember that LocalProxy is designed such that the “server-side” code runs on
the client!

The property value is of type ExecutionLocations, defined by the following enumerated type:

Public Enum ExecutionLocations
Client
Server

End Enum

The ExecutionLocation value is global to both the client and server, so it is stored in a field
within the Module. This is shared by all threads on the server, but that’s OK because it will always
return the Server value when on the server, and Client when on the client.

CHAPTER 4 ■ DATA ACCESS AND SECURITY 237

6315_c04_final.qxd 4/13/06 12:34 PM Page 237

Private mExecutionLocation As ExecutionLocations = ExecutionLocations.Client

Public ReadOnly Property ExecutionLocation() As ExecutionLocations
Get
Return mExecutionLocation

End Get
End Property

The value defaults to Client. This is fine, as it should only be set to Server in the case that the
Csla.Server.DataPortal class explicitly sets it to Server. Recall that in that DataPortal class there’s a
SetContext() method that only runs in the case that the server-side components really are running
on the server. In that case, it calls the SetExecutionLocation() method on ApplicationContext:

Friend Sub SetExecutionLocation(ByVal location As ExecutionLocations)
mExecutionLocation = location

End Sub

This way, the value is set to Server only when the code is known to physically be executing
in a separate AppDomain, process, and probably computer, from the client.

At this point, you have walked through all the various types and classes used to implement the
core mobile object and data access functionality in the framework.

Conclusion
This chapter has walked through the various types and classes in the framework that enable both
mobile objects and data access. The details of mobile objects are managed by a concept called the
data portal. You should understand that the data portal incorporates several areas of functionality:

• Channel adapter

• Distributed transactional support

• Message router

• Context and location transparency

The channel adapter provides for flexibility in terms of how (or if) the client communicates
with an application server to run server-side code. The distributed transactional support abstracts
the use of Enterprise Services or System.Transactions. The message router handles the routing of
client calls to your business components on the server, minimizing the coupling between client and
server by enabling a single point of entry to the server. Behind the scenes, the data portal provides
transparent context flow from the client to the server and back to the client. This includes imple-
menting impersonation when using custom authentication.

The base classes from Chapter 3 were updated to integrate with the data portal concept and to
support data access. Mostly, this revolves around the five DataPortal_XYZ methods:

• DataPortal_Create()

• DataPortal_Fetch()

• DataPortal_Update()

• DataPortal_Execute()

• DataPortal_Delete()

Chapter 3 walked through the support for editable and read-only business objects. Chapter 4
has now added on mobile object and data access concepts. Chapter 5 will complete the framework
by discussing custom authentication and by covering a set of broadly useful base classes and
objects that simplify the creation of business applications.

CHAPTER 4 ■ DATA ACCESS AND SECURITY238

6315_c04_final.qxd 4/13/06 12:34 PM Page 238

Completing the Framework

This is the third chapter covering the implementation of the CSLA .NET framework. The frame-
work is based on the concepts from Chapter 1 and the design in Chapter 2. Chapters 3 and 4 walked
through implementing support for editable and read-only business objects and collections, includ-
ing the concept of mobile objects and support for object persistence.

This chapter will conclude the implementation of the framework by completing support for
custom authentication and adding several classes that are useful when building business applica-
tions. The following topic areas will be addressed:

• Additional business base classes

• Custom authentication

• Sorting collections

• Date handling

• Common business rules

• Data access

• Reporting

• Windows data binding

• Web data binding

The additional base classes will support the execution of arbitrary code on the application
server and the retrieval of lists of name/value data. Both are common tasks in business applica-
tions, and the CommandBase and NameValueListBase classes are designed to make it easier for a
business developer to accomplish those tasks.

Custom authentication has been discussed already, and much support for the idea was put
into the data portal in Chapter 4. The code in Chapter 4 relies on a base class named
BusinessPrincipalBase, which is what will be covered in this chapter.

The BusinessListBase and ReadOnlyListBase classes in Chapter 3 provide powerful function-
ality to support data binding. But they don’t directly support sorting of the data in the collections.
It turns out to be much better to avoid sorting collections in place, and rather to provide a sorted
view of a collection instead. The SortedBindingList class provides a sorted, updatable view of any
collection implementing IList(Of T). That includes collections based on the base classes from
Chapter 3.

There are many views on what makes good UI design. One common view holds that the user
should be free to enter arbitrary text, and it is up to the application to try and make sense of the
entry. Nowhere is this truer than with date values, and the SmartDate type is designed to simplify
how a business developer uses dates and exposes them to the UI.

In Chapter 3, the BusinessBase class implemented support for validation rules. Each rule is a
method with a signature that conforms to the RuleHandler delegate. Using reflection, it is possible

239

C H A P T E R 5

■ ■ ■

6315_c05_final.qxd 4/13/06 12:36 PM Page 239

to implement a set of broadly reusable rules for common scenarios—such as the rule that a string
value is required or has a maximum length, or that a numeric value has a minimum or maximum
value. The Csla.Validation.CommonRules class implements a set of such common validation rules
that a business developer may use when appropriate.

When it comes to data access, the .NET Framework provides powerful support through
ADO.NET—yet dealing with data remains somewhat complex. For instance, database columns
often store null values, but the application wants simpler, empty values (an empty string instead
of a null, for instance). The SafeDataReader eliminates null values from the data, transforming
them into appropriate empty values instead.

Another common issue when dealing with data, especially in Web Forms and Web Services,
is that data must be copied from business objects into and out of other types of object. This is espe-
cially true when building web services, since data coming into a web service is contained in a proxy
object, and that data must be moved into or out of your business objects. The DataMapper class helps
streamline this process, reducing the amount of code you must write and maintain.

Reporting is typically handled by a report-generation tool such as SQL Reporting Services
or Crystal Reports. These tools generate their reports directly from the database. However, some-
times an application needs to generate a printout based on data in your business objects. Unfor-
tunately, most reporting tools can’t work directly with objects—they require a DataSet instead. The
ObjectAdapter is designed to use data from business objects to fill DataTable objects within a
DataSet, thus enabling the use of such reporting tools.

Much of Chapter 3 focused on ensuring that business objects support Windows Forms data
binding. Chapter 3 also added authorization code to business objects, making them aware of
whether each property can be read or changed. The ReadWriteAuthorization control helps auto-
mate the process of building a UI that enables or disables controls based on whether properties
can be read or changed.

It turns out that there’s a quirk (either a bug or an odd implementation choice) in the way
Windows Forms data binding works. The BindingSourceRefresh control helps work around this
quirk (the details will be discussed later in the chapter).

Finally, there’s the new Web Forms data binding in ASP.NET 2.0. Web Forms data binding
is now bidirectional, simplifying both the display and update of data. Unfortunately, the data
source controls provided with ASP.NET are not designed to work with objects that contain busi-
ness logic, meaning that they aren’t useful when working with CSLA .NET business objects. The
CslaDataSource control is an ASP.NET data source control that is designed to work with objects
containing business logic. This control allows the full use of Web Forms data binding with busi-
ness objects.

Additional Base Classes
Chapter 3 covered the base classes to support the creation of editable and read-only objects and
collections. While that covers most cases, business applications often need to execute arbitrary
code on the server, and almost all applications need to retrieve lists of name/value data to popu-
late combo box controls or other list controls.

CommandBase
Most applications execute some arbitrary code on the server. For instance, an application might
need to know whether a customer’s data exists in the database. The application doesn’t need to
retrieve the customer data; it just needs to confirm whether it exists.

Another example is the shipping of an order. Shipping an order can be a very intensive
process: updating the order status, relieving inventory quantities, printing a pick list document,

240 CHAPTER 5 ■ COMPLETING THE FRAMEWORK

6315_c05_final.qxd 4/13/06 12:36 PM Page 240

initiating an invoice, and more. None of this is interactive, and it all needs to be done on the
application server to efficiently interact with the database.

When building an object-oriented business logic layer, everything should be represented by
an object in the object model. Thus, operations like the preceding examples should be naturally
reflected within the object model in the Business Logic layer.

To determine whether a customer’s data is in the database, the UI developer should write
code like the following:

If Customer.Exists(id) Then

The implementation of the Exists() method obviously needs to execute some server-side code
to check whether that customer ID value exists in the database.

Similarly, the UI code to ship an order should look like this:

Order.Ship(id)

The implementation of the Ship() method needs to execute extensive server-side code to
perform the shipping process.

So the question, then, is how to implement the Exists() and Ship() methods by using objects
in the business object model. Keeping in mind that objects are defined by their behavior, it seems
likely that there will be CustomerExists and OrderShipper objects in the object model. Each of these
objects will be instantiated on the client, and then will move to the application server to run their
code.

The Csla.CommandBase base class is designed to enable this scenario, making it easy for a
business developer to create this type of object. You’ll see examples of implementing Exists()
commands in Chapter 7. The implementation of an Order.Ship() method using an OrderShipper
class might look like this:

<Serializable()> _
Public Class Order
Inherits BusinessBase(Of Order)

Public Shared Sub Ship(ByVal id As Integer)
OrderShipper.ShipOrder(id)

End Sub

<Serializable()> _
Private Class OrderShipper
Inherits CommandBase

Public Shared Sub ShipOrder(ByVal id As Integer)
DataPortal.Execute(New OrderShipper(id))

End Sub

Private mId As Integer

Private Sub New(ByVal id As Integer)
mId = id

End Sub

Protected Overrides Sub DataPortal_Execute()
' this method runs on the server and
' uses the mId value to ship the order

End Sub
End Class
End Class

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 241

6315_c05_final.qxd 4/13/06 12:36 PM Page 241

Command objects like OrderShipper are often Private nested classes within a Public business
class such as Order. They are invoked by methods in the Public business class as needed, thus pro-
viding a clean, abstract interface for the UI developer. The flow is illustrated in Figure 5-1.

The command object itself, OrderShipper, is instantiated on the client in the ShipOrder()
method. Notice that the order ID value is stored in the OrderShipper object at this point, so the
object knows which order is to be shipped.

The DataPortal.Execute() method is then called to send the command object to the applica-
tion server, where its DataPortal_Execute() method is invoked. The code to support this process
within the data portal was implemented in Chapter 4. The DataPortal_Execute() method then con-
tains all the code that is to run on the server—in this case, all the code required to ship an order.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK242

Figure 5-1. Lifetime of a command object

6315_c05_final.qxd 4/13/06 12:36 PM Page 242

Once DataPortal_Execute() is complete, the command object is returned to the client, thus
allowing the object to report on its status. While OrderShipper doesn’t do this, in Chapter 8 you’ll
see this concept used to implement Exists() commands.

The Csla.CommandBase class itself is relatively straightforward. Like all CSLA .NET base classes,
it is serializable and has a non-public constructor. It also implements the Csla.Core.ICommandObject
interface to allow polymorphic comparisons in your code:

<Serializable()> _
Public MustInherit Class CommandBase

Implements Core.ICommandObject

Protected Sub New()

End Sub
End Class

Recall that in Chapter 4, all the framework base classes were enhanced to include default
implementations of the DataPortal_XYZ methods: throwing exceptions if any of them were
invoked. The same is true of CommandBase. All the DataPortal_XYZ methods are implemented as
Private methods, except for DataPortal_Execute(), which is a Protected Overridable method:

Protected Overridable Sub DataPortal_Execute()
Throw New NotSupportedException(My.Resources.ExecuteNotSupportedException)

End Sub

Of course, the default implementation throws an exception in this method, too. The command
object only has value if the business developer overrides this method in his business class.

The DataPortal_OnDataPortalInvoke(), DataPortal_OnDataPortalInvokeComplete(), and
DataPortal_OnDataPortalException() methods are also declared as Protected and Overridable.

NameValueListBase
Most business applications need to retrieve and display lists of name/value data. Commonly, this
data is displayed in combo box or list controls, and is used to validate user entry to ensure the
values are within the list.

A common example is customer payment terms. Customers are required to pay invoices
within a certain amount of time: net 30 for 30 days, net 60 for 60 days, COD for cash on delivery,
and so forth. An application dealing with customer payments will almost certainly have a table in
the database containing the list of valid payment terms. This list will be displayed to the user on
various forms and pages, and is used to ensure that every Customer object’s PaymentTerms property
is one of the items in the list.

It is quite practical to use the ReadOnlyListBase class from Chapter 3 to create your own
name/value list. But this is such a common application requirement that it is better to create a
more targeted base class to further minimize the code required to implement name/value lists.
The Csla.NameValueListBase provides this targeted abstraction. A business developer can con-
struct a name/value list like this:

<Serializable()> _
Public Class PaymentTerms
Inherits Csla.NameValueListBase(Of Integer, String)

Private Sub New()
' require use of factory methods

End Sub

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 243

6315_c05_final.qxd 4/13/06 12:36 PM Page 243

Public Shared Function GetList() As PaymentTerms
Return DataPortal.Fetch(Of PaymentTerms)(_
New Criteria(GetType(PaymentTerms)))

End Function

Private Sub DataPortal_Fetch(ByVal criteria As Criteria)
IsReadOnly = False
' load data from database
IsReadOnly = True

End Sub
End Class

The goal of the NameValueListBase class is to allow the business developer to write as little
code as possible when implementing a strongly typed name/value list. As you can see, the devel-
oper needs only to create a Private constructor, a factory method, and the DataPortal_Fetch()
method, which contains the data access code to load the list with data.

NameValueListBase Declaration
Name/value lists are read-only collections that expose a list of child objects. Each child object
contains a name and a value. Of course, the framework doesn’t know the data types of the name
and value ahead of time, but generics can help overcome that issue. A nested NameValuePair class
will be declared within NameValueListBase, using generic type parameters to define the types for
the name and value.

The NameValueListBase class takes two generic type parameters, one for the name (key) and
the other for the value:

<Serializable()> _
Public MustInherit Class NameValueListBase(Of K, V)
Inherits Core.ReadOnlyBindingList(Of NameValuePair)

Implements ICloneable
Implements Core.IBusinessObject

It also inherits from Csla.Core.ReadOnlyBindingList, specifying that the type of item contained
in the collection is NameValueListBase(Of K, V).NameValuePair.

NameValuePair Class
The NameValuePair class defines the child objects to be contained in the collection: each of which
contains a name (key) and value. It is defined as a nested class inside the NameValueListBase class:

<Serializable()> _
Public Class NameValuePair

Private mKey As K
Private mValue As V

Public ReadOnly Property Key() As K
Get
Return mKey

End Get
End Property

CHAPTER 5 ■ COMPLETING THE FRAMEWORK244

6315_c05_final.qxd 4/13/06 12:36 PM Page 244

Public Property Value() As V
Get
Return mValue

End Get
Set(ByVal value As V)
mValue = value

End Set
End Property

Public Sub New(ByVal key As K, ByVal value As V)
mKey = key
mValue = value

End Sub
End Class

Because it is nested inside NameValueListBase, it has access to the K and V generic type param-
eters. These type parameters are used to define the types of the key and value items stored in each
child object.

Thanks to the code in the Csla.Core.ReadOnlyBindingList and in the .NET BindingList base
classes, all the hard work is already done. The NameValueListBase is now a fully functioning read-only
collection of name/value data. It even supports data binding to Windows Forms and Web Forms.

Key and Value Properties and Methods
However, it is relatively hard to use for validating data. There’s no easy way to find a value given a key,
or a key given a value. To simplify these common tasks, the class includes Key and Value properties:

Public Function Value(ByVal key As K) As V
For Each item As NameValuePair In Me
If item.Key.Equals(key) Then
Return item.Value

End If
Next
Return Nothing

End Function

Public Function Key(ByVal value As V) As K
For Each item As NameValuePair In Me
If item.Value.Equals(value) Then
Return item.Key

End If
Next
Return Nothing

End Function

The Value property accepts a key (name) and returns the value corresponding to that key. The
Key property does the reverse, accepting a value and returning the first matching key value. In either
case, if the value is not found, then the default value of the generic type is returned. If the generic
type is a reference type, this will be Nothing; otherwise, it is typically 0 or False.

Similarly, there are ContainsKey() and ContainsValue() methods:

Public Function ContainsKey(ByVal key As K) As Boolean
For Each item As NameValuePair In Me
If item.Key.Equals(key) Then
Return True

End If
Next

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 245

6315_c05_final.qxd 4/13/06 12:36 PM Page 245

Return False
End Function

Public Function ContainsValue(ByVal value As V) As Boolean
For Each item As NameValuePair In Me
If item.Value.Equals(value) Then
Return True

End If
Next
Return False

End Function

Collectively, these properties and methods make it easy for a UI or business developer to use
the name/value list to validate values and to translate between keys and values.

ICloneable Implementation
As with the framework base classes from Chapter 3, the ICloneable interface is implemented. This
is done using the Csla.ObjectCloner class:

Private Function ICloneable_Clone() As Object Implements ICloneable.Clone
Return GetClone()

End Function

<EditorBrowsable(EditorBrowsableState.Advanced)> _
Protected Overridable Function GetClone() As Object
Return ObjectCloner.Clone(Me)

End Function

Public Overloads Function Clone() As NameValueListBase(Of K, V)
Return DirectCast(GetClone(), NameValueListBase(Of K, V))

End Function

The strongly typed Clone() method is Public, while the loosely typed implementation can only
be accessed through the ICloneable interface.

Data Access
The final functionality required is support for data access. As with all business objects, the data por-
tal will be used to invoke an appropriate DataPortal_XYZ method. Since this base class only supports
read-only lists, only the DataPortal_Fetch() method is marked as Protected:

Protected Overridable Sub DataPortal_Fetch(ByVal criteria As Object)
Throw New NotSupportedException(My.Resources.FetchNotSupportedException)

End Sub

This is comparable to the functionality added to BusinessBase or ReadOnlyBase in Chapter 4.
The business developer must override or overload this method to implement the data access code
that loads the name/value data from the database.

As with the other CSLA .NET base classes, the DataPortal_OnDataPortalInvoke(), DataPortal_
OnDataPortalInvokeComplete(), and DataPortal_OnDataPortalException() methods are also
declared as Protected and Overridable.

The primary difference from the base class code added in Chapter 4 is that NameValueListBase
also includes a Protected criteria class:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK246

6315_c05_final.qxd 4/13/06 12:36 PM Page 246

<Serializable()> _
Protected Class Criteria
Inherits CriteriaBase

Public Sub New(ByVal collectionType As Type)
MyBase.New(collectionType)

End Sub
End Class

The Csla.DataPortal.Fetch() method requires a criteria object as a parameter. At a minimum,
that criteria object must provide the data portal with the type of the business object to be created.
Normally, the type can be determined by looking at the class within which the criteria class is nested,
because that is the business class itself. But in this case, the criteria class is nested inside the base
class rather than the business class itself, so that technique won’t work. The data portal would end
up trying to instantiate an instance of NameValueListBase rather than the actual business class.

This problem can be avoided because the Criteria class is a subclass of Csla.CriteriaBase.
Remember that in Chapter 4 the data portal was designed to use CriteriaBase to find the specific type
of business object to be created. The Criteria class has a constructor that requires the business devel-
oper to provide the type of the name/value list object to be created. In the following PaymentTerms
example, the factory method uses this constructor when creating the Criteria object:

Public Shared Function GetList() As PaymentTerms
Return DataPortal.Fetch(Of PaymentTerms)(_
New Criteria(GetType(PaymentTerms)))

End Function

This ensures that the data portal knows that it is a PaymentTerms object that is to be created.
This Criteria class works for the common case in which the entire set of name/value data is to
be retrieved.

■Note If the business developer needs to retrieve a filtered list, he’ll need to declare his own criteria class within
his business class; just as for any other root business object.

This concludes the NameValueListBase class. The framework now has all its base classes:
BusinessBase, BusinessListBase, ReadOnlyBase, ReadOnlyListBase, CommandBase, and
NameValueListBase. Together these provide the base functionality to create most common types
of business objects.

Custom Authentication
In Chapter 4, the data portal was implemented to support either Windows integrated (AD) or cus-
tom authentication. Either way, the result is that the current thread always has a valid principal
object and associated identity object, allowing the authorization code from Chapter 3 to verify
the user’s roles as appropriate.

When using custom authentication, the data portal requires that the custom principal object
inherit from the Csla.Security.BusinessPrincipalBase class. A business application will imple-
ment its own principal and identity classes so it can authenticate the user and load the user’s roles
as appropriate for the application.

The following shows a basic CustomPrincipal class (which makes use of a CustomIdentity class
in the subsequent code):

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 247

6315_c05_final.qxd 4/13/06 12:36 PM Page 247

<Serializable()> _
Public Class CustomPrincipal
Inherits Csla.Security.BusinessPrincipalBase

Private Sub New(ByVal identity As IIdentity)
MyBase.New(identity)

End Sub

Public Shared Function Login(_
ByVal username As String, ByVal password As String) As Boolean

Dim identity As CustomIdentity = _
CustomIdentity.GetIdentity(username, password)

If identity.IsAuthenticated Then
CustomPrincipal principal = new CustomPrincipal(identity)
Csla.ApplicationContext.User = principal

End If
Return identity.IsAuthenticated

End Function

Public Shared Sub Logout()
Dim identity As CustomIdentity = _
CustomIdentity.UnauthenticatedIdentity()

Dim principal As New CustomPrincipal(identity)
Csla.ApplicationContext.User = principal

End Sub

Public Overrides Function IsInRole(ByVal role As String) As Boolean
Dim identity As CustomIdentity = CType(Me.Identity, CustomIdentity)
Return identity.IsInRole(role)

End Function
End Class

The BusinessPrincipalBase class implements System.Security.Principal.IPrincipal, which
is the requirement for any .NET principal object. Notice that a CustomPrincipal object doesn’t really
do much work—all the hard work is handled by the identity object:

<Serializable()> _
Public Class CustomIdentity
Inherits ReadOnlyBase(Of CustomIdentity)

Implements IIdentity

Private mRoles As New List(Of String)
Private mIsAuthenticated As Boolean
Private mName As String = ""

Public ReadOnly Property AuthenticationType() As String _
Implements System.Security.Principal.IIdentity.AuthenticationType
Get
Return "Csla"

End Get
End Property

CHAPTER 5 ■ COMPLETING THE FRAMEWORK248

6315_c05_final.qxd 4/13/06 12:36 PM Page 248

Public ReadOnly Property IsAuthenticated() As Boolean _
Implements System.Security.Principal.IIdentity.IsAuthenticated
Get
Return mIsAuthenticated

End Get
End Property

Public ReadOnly Property Name() As String _
Implements System.Security.Principal.IIdentity.Name
Get
Return mName

End Get
End Property

Protected Overrides Function GetIdValue() As Object
Return mName

End Function

Friend Function IsInRole(ByVal role As String) As Boolean
Return mRoles.Contains(role)

End Function

Private Sub New()
' require use of factory methods

End Sub

<Serializable()> _
Private Class Criteria

Private mUsername As String
Public ReadOnly Property Username() As String
Get
Return mUsername

End Get
End Property

Private mPassword As String
Public ReadOnly Property Password() As String
Get
Return mPassword

End Get
End Property

Public Sub New(ByVal username As String, ByVal password As String)
mUsername = username
mPassword = password

End Sub
End Class

Friend Shared Function UnauthenticatedIdentity() As PTIdentity

Return New PTIdentity

End Function

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 249

6315_c05_final.qxd 4/13/06 12:36 PM Page 249

Friend Shared Function GetIdentity(_
ByVal username As String, ByVal password As String) As PTIdentity

Return DataPortal.Fetch(Of PTIdentity)(New Criteria(username, password))

End Function

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)
' validate user identity against the database
' and load the user's roles

End Sub
End Class

This CustomIdentity class inherits from Csla.ReadOnlyBase, and so is a fully functional busi-
ness object in its own right. This means it has a Private constructor and a factory method that the
CustomPrincipal object can call to authenticate the user. It also has another factory method that
returns an unauthenticated version of the object to support anonymous or guest users.

The DataPortal_Fetch() method needs to include the data access code to authenticate the
username and password values against the database. The mIsAuthenticated field should be set
accordingly. And if the credentials are valid, DataPortal_Fetch() must also load the user’s roles
into the mRoles list.

Chapter 8 will implement a working custom principal and identity class as part of a sample
application.

BusinessPrincipalBase
To integrate a custom principal object with the data portal, the framework provides the Csla.
BusinessPrincipalBase class. This class implements the System.Security.Principal.IPrincipal
interface, but with the intent that business developers will override the implementation to meet
their application requirements:

<Serializable()> _
Public Class BusinessPrincipalBase
Implements IPrincipal

Private mIdentity As IIdentity

Public Overridable ReadOnly Property Identity() As IIdentity _
Implements IPrincipal.Identity
Get
Return mIdentity

End Get
End Property

Public Overridable Function IsInRole(ByVal role As String) As Boolean _
Implements IPrincipal.IsInRole

Return False
End Function

Protected Sub New(ByVal identity As IIdentity)
mIdentity = identity

End Sub
End Class

CHAPTER 5 ■ COMPLETING THE FRAMEWORK250

6315_c05_final.qxd 4/13/06 12:36 PM Page 250

The Identity property is easy enough, and is a standard implementation. When the principal
object is created, an identity object must be supplied, and the Identity property merely returns a
reference to that object.

The IsInRole() method is used to determine whether the current user is in a given role. When
business developers implement custom principal and identity classes, they will write code to
retrieve and store the user’s list of roles. This means they need to override the IsInRole() method
to check that list on request.

Because all the real work occurs in the classes implemented by the business developer, this is
all the code required in BusinessPrincipalBase.

Sorting Collections
The BusinessListBase and ReadOnlyListBase classes implemented in Chapter 3 provide support
for data binding and integration with the rest of the CSLA .NET framework. But they don’t support
sorting of the data in the collections. This is intentional, as it is better to provide a sorted view of a
collection than to try and sort the collection in place.

The concept of sorting a collection in place is supported by the IBindingList interface, which
is implemented by the BindingList(Of T) base class. However, BindingList(Of T) doesn’t implement
sorting, so the sort-related methods on IBindingList provide no useful behavior.

It seems like you would want to be able to just grab any collection and sort it, but that turns
out to be quite problematic. The sort methods also allow “unsorting” by removing the sort. The
expectation is that the list will return to its original order. But this implies that the sort algorithm
is reversible, which isn’t always true. Alternatively, it requires that the collection maintain an
internal list of the items in their original order so that order can be restored. Either solution is
somewhat complex.

There’s also the issue of editing the collection while it is sorted. When new items are added, do
they go on the end of the list? In sorted or unsorted order? What happens when you remove the sort,
and where do those new items go? What if the user edits an item such that the sort order would
change? Does that item’s location change if the sort is removed?

Finally, what if you want to have different sorted views of the data at one time? Sorting in place
means only one sort can be applied at a time.

To avoid all these issues, the Csla.SortedBindingList class implements a sorted view of any
IList(Of T) collection. The IList(Of T) interface is a low-level interface defined by the .NET
Framework. This interface is used by most collection types, including arrays. This means that
SortedBindingList can be used to get a sorted view of arrays and many other types of collections—
including views of business collections based on BusinessListBase and ReadOnlyListBase.

The word view doesn’t completely convey what SortedBindingList will do. It could imply a
snapshot, or read-only view of the original collection—but that’s inaccurate. Instead, the word
view is used here in the same way a DataView provides a view of a DataTable: the “view” is live
and updatable. Changes to the view immediately affect the original collection, and changes in
the original collection are immediately reflected in the view.

This means a UI developer can write code like this:

Dim customers As CustomerList = CustomerList.GetList()
Dim sortedList As _
New SortedBindingList(Of CustomerList.CustomerInfo)(customers)

sortedList.ApplySort("Name", ListSortDirection.Ascending)

A normal customer collection is retrieved, and is then passed to the constructor of a new
SortedBindingList object. Then the ApplySort() method is used to apply a sort to the data based
on the Name property. The original collection is untouched, but sortedList now provides a sorted
view of the collection.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 251

6315_c05_final.qxd 4/13/06 12:36 PM Page 251

SortedBindingList
The SortedBindingList class implements key collection and data binding interfaces: IList(Of T),
IBindingList, and IEnumerable(Of T):

Public Class SortedBindingList(Of T)

Implements IList(Of T)
Implements IBindingList
Implements IEnumerable(Of T)

Table 5-1 describes each interface.

Table 5-1. Interfaces Implemented by SortedBindingList

Interface Description

IList(Of T) Defines an interface for collections that contain objects that can be individ-
ually accessed by index

IBindingList Defines an interface for collections that support data binding in Windows
Forms

IEnumerable(Of T) Defines an interface for collections to expose an enumerator object, which
performs simple iteration over the items in the collection

Implementing these three interfaces means that SortedBindingList implicitly implements
IList, IEnumerable, and ICollection as well. In the end, SortedBindingList looks and works like
any BindingList(Of T) collection, but behind the scenes it is merely an updatable, sorted view of
some other list or collection.

This means that SortedBindingList does not maintain its own collection of data. All the data
is maintained within the original collection. That’s why the constructor requires a reference to that
original collection and the reference is maintained in an instance field named mList:

Private mList As IList(Of T)
Private mSupportsBinding As Boolean
Private mBindingList As IBindingList
Private mSorted As Boolean
Private mInitiatedLocally As Boolean
Private mSortBy As PropertyDescriptor
Private mSortOrder As ListSortDirection = ListSortDirection.Ascending
Private mSortIndex As New List(Of ListItem)

Public Sub New(ByVal list As IList(Of T))
mList = list

If TypeOf mList Is IBindingList Then
mSupportsBinding = True
mBindingList = DirectCast(mList, IBindingList)
AddHandler mBindingList.ListChanged, AddressOf SourceChanged

End If
End Sub

Not only is the source object reference stored, but if it implements IBindingList, then it is cast
to that type, and a second reference is maintained. In that case, its ListChanged event is handled as
well. I’ll discuss handling of the ListChanged event later. First, it is important to understand some of
the key plumbing code used in SortedBindingList.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK252

6315_c05_final.qxd 4/13/06 12:36 PM Page 252

Implementing a read-only sorted view of a collection is relatively straightforward, but
implementing a view that is bidirectionally updatable is quite complex. And that’s exactly what
SortedBindingList does.

Acting As a View
Let’s look at the simple things first. The original collection, as an ICollection, has a set of proper-
ties, such as Count and SyncRoot, that are simply exposed by SortedBindingList. For instance, here’s
the Count property:

Public ReadOnly Property Count() As Integer _
Implements System.Collections.ICollection.Count, _
System.Collections.Generic.ICollection(Of T).Count
Get
Return mList.Count

End Get
End Property

This technique is repeated for all the ICollection, IList, and IEnumerable properties. The not-
able exception to this is the default property, which is quite a bit more complex and is discussed later.

If the original collection implements IBindingList, it has a broader set of properties. It might
be editable and it might not. It might allow adding of new items or not. All these capabilities are
exposed through its IBindingList interface, and SortedBindingList merely assumes the same set-
tings. For instance, here’s the AllowEdit property:

Public ReadOnly Property AllowEdit() As Boolean _
Implements System.ComponentModel.IBindingList.AllowEdit
Get
If mSupportsBinding Then
Return mBindingList.AllowEdit

Else
Return False

End If
End Get

End Property

Recall from the constructor that if the original collection doesn’t implement IBindingList, then
mSupportsBinding will be False. In that case, AllowEdit returns False because in-place editing isn’t
valid unless the original collection implements IBindingList. This technique is repeated for all the
IBindingList properties.

Applying a Sort
The IBindingList interface allows a sort to be applied to a collection, either ascending or descend-
ing, based on a single property. This is done through the ApplySort() method.

ApplySort Method

SortedBindingList implements two overloads of ApplySort(), making it possible to apply a sort
based on the string name of the property, as well as by a PropertyDescriptor as required by
IBindingList:

Public Sub ApplySort(_
ByVal propertyName As String, _
ByVal direction As System.ComponentModel.ListSortDirection)

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 253

6315_c05_final.qxd 4/13/06 12:36 PM Page 253

mSortBy = Nothing

If Len(propertyName) > 0 Then
Dim itemType As Type = GetType(T)
For Each prop As PropertyDescriptor In _

TypeDescriptor.GetProperties(itemType)
If prop.Name = propertyName Then
mSortBy = prop
Exit For

End If
Next

End If

ApplySort(mSortBy, direction)
End Sub

Public Sub ApplySort(_
ByVal [property] As System.ComponentModel.PropertyDescriptor, _
ByVal direction As System.ComponentModel.ListSortDirection) _
Implements System.ComponentModel.IBindingList.ApplySort

mSortBy = [property]
mSortOrder = direction
DoSort()

End Sub

The first overload creates a PropertyDescriptor for the named property and calls the second
overload. The second overload will also be called directly by data binding. It sets the mSortBy and
mSortOrder fields to indicate the sort parameters, and calls DoSort(). The reason these two instance
fields are used to store the parameters is that these values are also exposed by Public properties
such as SortDirection:

Public ReadOnly Property SortDirection() As _
System.ComponentModel.ListSortDirection _
Implements System.ComponentModel.IBindingList.SortDirection
Get
Return mSortOrder

End Get
End Property

The DoSort() method actually does the sorting by assembling the key values into a private
collection and then sorting those values. Associated with each key value is a reference to the corre-
sponding item in the original collection.

ListItem Class

Associating the value of the property by which to sort with a reference to the corresponding child
object in the original collection requires a key/value list, which in turn requires a key/value class.
The ListItem class maintains a relationship between a key and a reference to the corresponding
child object.

The key value is the value of the property from the child object on which the collection is to be
sorted. For example, when sorting a collection of Customer objects by their Name property, the key
value will be the contents of the Name property from the corresponding child object.

Rather than maintaining an actual object reference, ListItem maintains the index value of the
child item in the original collection. This is referred to as the base index:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK254

6315_c05_final.qxd 4/13/06 12:36 PM Page 254

Private Class ListItem
Implements IComparable(Of ListItem)

Private mKey As Object
Private mBaseIndex As Integer

Public ReadOnly Property Key() As Object
Get
Return mKey

End Get
End Property

Public Property BaseIndex() As Integer
Get
Return mBaseIndex

End Get
Set(ByVal value As Integer)
mBaseIndex = value

End Set
End Property

Public Sub New(ByVal key As Object, ByVal baseIndex As Integer)
mKey = key
mBaseIndex = baseIndex

End Sub

Public Function CompareTo(ByVal other As ListItem) As Integer _
Implements System.IComparable(Of ListItem).CompareTo

Dim target As Object = other.Key

If TypeOf Key Is IComparable Then
Return DirectCast(Key, IComparable).CompareTo(target)

Else
If Key.Equals(target) Then
Return 0

Else
Return Key.ToString.CompareTo(target.ToString)

End If
End If

End Function

Public Overrides Function ToString() As String
Return Key.ToString

End Function
End Class

In addition to associating the property value to the base index of the child object in the original
collection, ListItem implements IComparable(Of T). This interface enables the .NET Framework to
sort a collection of ListItem objects. This interface requires implementation of the CompareTo()
method, which is responsible for comparing one ListItem object to another.

Of course, it is the key value that is to be compared, so CompareTo() simply compares the value
of its Key property to the Key property from the other ListItem object. If the type of the key value
implements IComparable, then the call simply delegates to that interface:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 255

6315_c05_final.qxd 4/13/06 12:36 PM Page 255

If TypeOf Key Is IComparable Then
Return DirectCast(Key, IComparable).CompareTo(target)

Otherwise things are a bit more complex. Obviously, any objects can be compared for equality,
so that part is straightforward:

If Key.Equals(target) Then
Return 0

However, if the type of the key value doesn’t implement IComparable, then there’s no easy way
to see if one is greater than the other. To overcome this problem, both values are converted to their
string representations, which are then compared to each other:

Return Key.ToString.CompareTo(target.ToString)

While this is not perfect, it is the best we can do. And really this is an extreme edge case since
most types are comparable, including strings, numeric types, and dates. Given that most properties
are of those types, this solution works well in almost every case.

DoSort Method

Given the ListItem class and the sorting capabilities of the .NET Framework, the DoSort() method
is not hard to implement:

Private Sub DoSort()
Dim index As Integer

mSortIndex.Clear()

If mSortBy Is Nothing Then
For Each obj As T In mList
mSortIndex.Add(New ListItem(obj, index))
index += 1

Next

Else
For Each obj As T In mList
mSortIndex.Add(New ListItem(mSortBy.GetValue(obj), index))
index += 1

Next
End If

mSortIndex.Sort()
mSorted = True

OnListChanged(New ListChangedEventArgs(ListChangedType.Reset, 0))
End Sub

If mSortBy is Nothing (which is quite possible, as it is optional), then each child object is sorted
as is. In other words, it is the value of the child object itself that determines the sort order, rather
than any specific property on the child object. In this case, DoSort() loops through every item in the
original collection, creating a ListItem object for which the key value is the child object itself and
the index is the location of the child object within the original collection:

For Each obj As T In mList
mSortIndex.Add(New ListItem(obj, index))
index += 1

Next

CHAPTER 5 ■ COMPLETING THE FRAMEWORK256

6315_c05_final.qxd 4/13/06 12:36 PM Page 256

This scenario is quite common when creating a sorted view against an array of type String or
Integer, since there’s no meaning in setting an mSortBy value for those types.

For more complex child objects, however, an mSortBy value is typically supplied. In that case,
a bit of reflection is used to retrieve the specified property value from the child object. That property
value is then used as the key value for the ListItem object:

For Each obj As T In mList
mSortIndex.Add(New ListItem(mSortBy.GetValue(obj), index))
index += 1

Next

Remember that mSortBy is a System.ComponentModel.PropertyDescriptor object corresponding
to the key property. PropertyDescriptor provides a GetValue() method that retrieves the property
value from the specified child object.

Whether or not mSortBy is Nothing, the end result is a list of ListItem objects in a generic
List(Of ListItem) collection named mSortIndex. The List(Of T) class provides a Sort() method
that sorts the items in the list. Since ListItem implements IComparable(Of T), that interface is used
to order the sort, meaning that the items end up sorted based on the key property value in each
ListItem object.

Since sorting changes the order of items in the list, the view object’s ListChanged event is raised
to tell data binding that the view collection has effectively been reset. Keep in mind that the original
collection is entirely unaffected by this process, and doesn’t raise any events due to the sort being
applied.

Viewing the Sorted Values
You may be wondering how descending sorts are handled, since the Sort() method of List(Of T)
performed an ascending sort in the DoSort() method. Ascending and descending sorts are handled
by the view object’s default property.

The IList interface requires that a default property be implemented. To retrieve an item,
SortedBindingList must be able to cross-reference from the sorted position of the item to the
original position of the item in the original collection. The OriginalIndex() helper method per-
forms this cross-reference operation:

Private Function OriginalIndex(ByVal sortedIndex As Integer) As Integer
If mSortOrder = ListSortDirection.Ascending Then
Return mSortIndex.Item(sortedIndex).BaseIndex

Else
Return mSortIndex.Item(mSortIndex.Count - 1 - sortedIndex).BaseIndex

End If
End Function

The method checks to see whether the sort is ascending or descending. The supplied index
value is then cross-referenced into the mSortIndex list to find the actual index of the child item in
the original collection. In the case of an ascending sort, a straight cross-reference from the position
in mSortIndex to the original collection is used. And in the case of a descending sort, the cross-
reference process merely starts at the bottom of mSortIndex and works toward the top.

The default property simply uses this helper method to retrieve or set the object from the
original collection that corresponds to the location in the sorted index:

Default Public Overloads Property Item(ByVal index As Integer) As T _
Implements System.Collections.Generic.IList(Of T).Item
Get
If mSorted Then
Return mList(OriginalIndex(index))

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 257

6315_c05_final.qxd 4/13/06 12:36 PM Page 257

Else
Return mList(index)

End If
End Get
Set(ByVal value As T)
If mSorted Then
mList(OriginalIndex(index)) = value

Else
mList(index) = value

End If
End Set

End Property

Notice that the child object is ultimately returned from the original collection. The data in
SortedBindingList is merely used to provide a sorted cross-reference to those objects.

In the case that a sort hasn’t been applied at all, no cross-reference is performed and the child
object is returned from the original collection based directly on the index value:

Return mList(index)

The same technique is used in the Set block as well. Additionally, the IList interface requires
implementation of a loosely typed Item property:

Private Property Item1(ByVal index As Integer) As Object _
Implements System.Collections.IList.Item
Get
Return Me(index)

End Get
Set(ByVal value As Object)
Me(index) = CType(value, T)

End Set
End Property

This property delegates its work to the strongly typed default property implemented previously.

Collection Enumerator
There are two ways to get items from a collection: the default property and an enumerator. The
enumerator is used by the For...Each statement to loop through all items in the collection. Obvi-
ously, it too needs to perform a cross-reference process, so a For...Each loop goes through the
sorted index and returns the corresponding item from the original collection.

There are two steps to this process. First, the custom enumerator class must understand how
to perform the cross-reference process. Second, SortedBindingList needs to expose a
GetEnumerator() method that returns an instance of this custom enumerator (or the original
collection’s enumerator if no sort has been applied).

Custom Enumerator Class

An enumerator is an object that implements either IEnumerator or IEnumerator(Of T). These
interfaces define a Current property and MoveNext() and Reset() methods. You can think of an
enumerator object as being a cursor or pointer into the collection. Table 5-2 describes these
elements.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK258

6315_c05_final.qxd 4/13/06 12:36 PM Page 258

Table 5-2. Properties and Methods of an Enumerator Object

Member Behavior

Current Returns a reference to the current child object in the collection

MoveNext() Moves to the next child object in the collection, making that the current object

Reset() Moves to just above the top of the collection, so a subsequent MoveNext() call
moves to the very first item in the collection

When you use a For...Each statement in your code, the compiler generates code behind the
scenes to get an enumerator object from the collection, and to call the Reset(), MoveNext(), and
Current elements to iterate through the items in the collection.

Because an enumerator object is a cursor or pointer into the collection, it must maintain a cur-
rent index position. The SortedEnumerator class used by SortedBindingList also needs to know the
sort order and must have access to the original collection itself:

Private Class SortedEnumerator

Implements IEnumerator(Of T)

Private mList As IList(Of T)
Private mSortIndex As List(Of ListItem)
Private mSortOrder As ListSortDirection
Private mIndex As Integer

Public Sub New(_
ByVal list As IList(Of T), _
ByVal sortIndex As List(Of ListItem), _
ByVal direction As ListSortDirection)

mList = list
mSortIndex = sortIndex
mSortOrder = direction
Reset()

End Sub

The constructor accepts a reference to the original collection, a reference to the mSortIndex list
containing the sorted list of ListItem objects, and the sort direction. The mIndex field is used to
maintain a pointer to the current position of the enumerator within the collection.

The Reset() method simply sets index to immediately before the first item in the collection.
Of course, when using a descending sort, this is actually immediately after the last item in the col-
lection, because the enumerator will walk through the list from bottom to top in that case:

Public Sub Reset() Implements System.Collections.IEnumerator.Reset
If mSortOrder = ListSortDirection.Ascending Then
mIndex = -1

Else
mIndex = mSortIndex.Count

End If
End Sub

The MoveNext() method increments mIndex, moving to the next item in the collection. Again,
when using a descending sort, it actually decrements mIndex, thus moving from the bottom of the
collection toward the top.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 259

6315_c05_final.qxd 4/13/06 12:36 PM Page 259

Public Function MoveNext() As Boolean _
Implements System.Collections.IEnumerator.MoveNext

If mSortOrder = ListSortDirection.Ascending Then
If mIndex < mSortIndex.Count - 1 Then
mIndex += 1
Return True

Else
Return False

End If

Else
If mIndex > 0 Then
mIndex -= 1
Return True

Else
Return False

End If
End If

End Function

The MoveNext() method returns a Boolean value, returning False when there are no more items
in the collection. In other words, when it reaches the bottom of the list (or the top when doing a
descending sort), it returns False to indicate that there are no more items.

The Current property simply returns a reference to the child object corresponding to the current
value of mIndex. Of course, mIndex is pointing to an item in the sorted list, and so that value must be
cross-referenced back to an item in the original collection. This is the same as in the default property
earlier:

Public ReadOnly Property Current() As T _
Implements System.Collections.Generic.IEnumerator(Of T).Current
Get
Return mList(mSortIndex(mIndex).BaseIndex)

End Get
End Property

Private ReadOnly Property CurrentItem() As Object _
Implements System.Collections.IEnumerator.Current
Get
Return mList(mSortIndex(mIndex).BaseIndex)

End Get
End Property

Because SortedEnumerator implements IEnumerator(Of T), it actually has two Current proper-
ties—one strongly typed for IEnumerator(Of T) itself, and the other loosely typed for IEnumerator
(from which IEnumerator(Of T) inherits).

Both do the same thing, using the mIndex value to find the appropriate ListItem object in the
sorted list, and then using the BaseIndex property of ListItem to retrieve the corresponding item
in the original collection. That child object is then returned as a result.

GetEnumerator Method

Collection objects must implement a GetEnumerator() method. This is required by the IEnumerable
interface, which is the most basic interface for collection or list objects in the .NET Framework. In

CHAPTER 5 ■ COMPLETING THE FRAMEWORK260

6315_c05_final.qxd 4/13/06 12:36 PM Page 260

the case of SortedBindingList, both strongly typed and loosely typed GetEnumerator() methods
must be implemented:

Public Function GetEnumerator() As _
System.Collections.Generic.IEnumerator(Of T) _
Implements System.Collections.Generic.IEnumerable(Of T).GetEnumerator

If mSorted Then
Return New SortedEnumerator(mList, mSortIndex, mSortOrder)

Else
Return mList.GetEnumerator

End If
End Function

Private Function GetItemEnumerator() As System.Collections.IEnumerator _
Implements System.Collections.IEnumerable.GetEnumerator

Return GetEnumerator()
End Function

These methods merely return an instance of an enumerator object for use by For...Each
statements that wish to iterate through the items in the collection.

If the view is not currently sorted, then it can simply ask the original collection for its enumer-
ator. The original collection’s enumerator will already iterate through all the child objects in the
collection in their original order:

Return mList.GetEnumerator

On the other hand, if a sort has been applied, then an instance of the custom SortedEnumerator
(implemented in the preceding code) is returned:

Return New SortedEnumerator(mList, mSortIndex, mSortOrder)

Either way, the compiler-generated code for the For...Each statement has an enumerator
object that iterates through the items in the collection.

Removing the Sort
The IBindingList interface allows for removal of the sort. The result should be that the items in the
collection return to their original order. This is handled by an UndoSort() method:

Private Sub UndoSort()
mSortIndex.Clear()
mSortBy = Nothing
mSortOrder = ListSortDirection.Ascending
mSorted = False

OnListChanged(New ListChangedEventArgs(ListChangedType.Reset, 0))
End Sub

Removing a sort is just a matter of setting mSorted to False and clearing the various sort-related
fields. Most important is calling Clear() on mSortIndex, as that releases any possible object refer-
ences to items in the original collection.

Because removing the sort alters the order of items in the view, the ListChanged event is raised
to tell the UI that it needs to refresh its display of the collection.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 261

6315_c05_final.qxd 4/13/06 12:36 PM Page 261

Adding and Removing Items
Now we get to the complex issues. Remember that SortedBindingList is an updatable view of the
original collection. This means that when the user adds or removes an item from the original collec-
tion, that change is immediately reflected in the view; the view is even re-sorted, if appropriate.
Conversely, if the user adds or removes an item from the view, that change is immediately reflected
in the original collection. There’s some work involved in keeping the view and collection in sync.

Also remember that collections may raise ListChanged events as they are changed. Table 5-3
lists the add and remove operations and how they raise events.

Table 5-3. Events Raised During Add and Remove Operations

Operation Event Behavior

AddNew() Called by data binding to add an item to the end of the collection; an ItemAdded type
ListChanged event is raised by the collection

Insert() Inserts an item into the collection; an ItemAdded type ListChanged event is raised by
the collection

RemoveAt() Removes an item from the collection; an ItemDeleted type ListChanged event is
raised by the collection

A ListChanged event is raised when the user adds or removes an item from the original collection.
This event must be handled and sometimes reraised by the view. This is illustrated in Figure 5-2.

Figure 5-2 shows the simple case, in which both the original collection and the view are bound
to separate controls on the UI, and an update to the original collection is made.

However, when the user adds or removes an item through the view, the view raises a ListChanged
event as well as updating the original collection. Of course, updating the original collection triggers its
ListChanged event. If you’re not careful, this could result in duplicate events being raised, as shown in
Figure 5-3.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK262

Figure 5-2. Flow of events when the user changes the original collection

6315_c05_final.qxd 4/13/06 12:36 PM Page 262

In this case, the UI control bound to the sorted view gets the ListChanged event twice, which is
wasteful. But when the change is applied to the original collection, its event could flow back to the
view and then to the UI.

Figure 5-4 shows what should happen when the user changes the view.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 263

Figure 5-3. Duplicate events raised when the user changes the view

Figure 5-4. Flow of events with no duplicate events being raised

6315_c05_final.qxd 4/13/06 12:36 PM Page 263

Making this happen means keeping track of whether the user added or removed an object
directly in the original collection or through the view. The view needs to know whether the change
was initiated locally, on the view, or not. This is tracked by the mInitiatedLocally field, which is set
to True before SortedBindingList performs any add or remove operations on the original collection,
and is set to False when it is done.

Adding and removing items to and from the view is done through the AddNew(), Insert(), and
RemoveAt() methods. AddNew() and RemoveAt() are handled in a similar manner:

Public Function AddNew() As Object _
Implements System.ComponentModel.IBindingList.AddNew

Dim result As Object

If mSupportsBinding Then
mInitiatedLocally = True
result = mBindingList.AddNew
mInitiatedLocally = False
OnListChanged(New ListChangedEventArgs(_
ListChangedType.ItemAdded, mBindingList.Count - 1))

Else
result = Nothing

End If

Return result
End Function

Public Sub RemoveAt(ByVal index As Integer) _
Implements System.Collections.IList.RemoveAt, _
System.Collections.Generic.IList(Of T).RemoveAt

If mSorted Then
mInitiatedLocally = True
Dim baseIndex As Integer = OriginalIndex(index)
' remove the item from the source list
mList.RemoveAt(baseIndex)
' delete the corresponding value in the sort index
mSortIndex.RemoveAt(index)
' now fix up all index pointers in the sort index
For Each item As ListItem In mSortIndex
If item.BaseIndex > baseIndex Then
item.BaseIndex -= 1

End If
Next
OnListChanged(_
New ListChangedEventArgs(ListChangedType.ItemDeleted, index))

mInitiatedLocally = False

Else
mList.RemoveAt(index)

End If
End Sub

Remember that mBindingList is a reference to the original collection object’s implementation
of the IBindingList interface. So this code merely sets mInitiatedLocally to True and then dele-
gates the AddNew() call to the original collection. Similarly, the RemoveAt() call is delegated to the
original collection through its IList(Of T) interface.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK264

6315_c05_final.qxd 4/13/06 12:36 PM Page 264

I’ve also optimized the RemoveAt() implementation, so when an item is removed from the
middle of the list, the entire sorted index isn’t rebuilt. This offers substantial performance improve-
ments when dealing with larger-sized lists.

■Note The important thing here is that SortedBindingList doesn’t maintain a local copy of the collection’s
data. Instead, it delegates all calls directly to the original collection itself.

The original collection performs the requested operation and adds or removes the child object.
Of course, that triggers a ListChanged event from the original collection. Recall that in the construc-
tor of SortedBindingList, the original collection’s ListChanged event was handled by the
SourceChanged() method. I’ll cover the SourceChanged() method in a moment, and you’ll see how the
ListChanged event is suppressed when the add or remove operation is initiated by the view itself.

The Insert() method is simpler:

Public Sub Insert(ByVal index As Integer, ByVal item As T) _
Implements System.Collections.Generic.IList(Of T).Insert

mList.Insert(index, item)
End Sub

Private Sub Insert(ByVal index As Integer, ByVal value As Object) _
Implements System.Collections.IList.Insert

Insert(index, CType(value, T))
End Sub

When a new item is inserted into the view, it is really inserted into the original collection. This
results in the original collection raising its ListChanged event, and in turn the view then raises its
ListChanged event (in the SourceChanged() method in the following code). The end result is that the
view raises the ListChanged event exactly once, which is the desired goal.

Responding to Changed Data
The source collection’s ListChanged event is handled by the SourceChanged() method. This allows
SortedBindingList to re-sort the data if it is changed in the original collection, thus keeping the
view current. It also means that the event can be reraised by the view so that any UI components
bound to the sorted view are also aware that the underlying data has changed.

If no sort has been applied, then the only thing the SourceChanged() method needs to do is
reraise the event:

Private Sub SourceChanged(_
ByVal sender As Object, ByVal e As ListChangedEventArgs)

If mSorted Then
Select Case e.ListChangedType

' update sorted view based on type of change
End Select

Else
OnListChanged(e)

End If
End Sub

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 265

6315_c05_final.qxd 4/13/06 12:36 PM Page 265

The OnListChanged() method raises the ListChanged event from the SortedBindingList object.
Notice that the exact same event is raised, so in this case the UI is blissfully unaware that
SortedBindingList is a view over the original collection.

However, if the view is sorted, then things are far more complex. In this case, the view must be
updated appropriately based on the underlying change in the original collection. The ListChanged
event can indicate different types of changes, each of which must be handled in a different manner.
The code that goes in the preceding Select block takes care of these details. Let’s go through each
Case of that block.

Adding a New Item

If a new item was added to the original collection, then the sorted view must also add a new
ListItem object to the sorted index. It is possible for an item to be added in the middle or at the end
of the original collection.

If the item was added at the end of the original collection, the new ListItem object needs to
contain the new child object’s key property value and the index location of the item in the original
collection.

But if the item was inserted in the middle of the original collection, then all the cross-reference
indexes in the sort index become potentially invalid. The simplest way to ensure that they are all
correct is to call DoSort() and rebuild the sort index completely:

Case ListChangedType.ItemAdded
Dim newItem As T = mList(e.NewIndex)
If e.NewIndex = mList.Count - 1 Then
Dim newKey As Object
If mSortBy IsNot Nothing Then
newKey = mSortBy.GetValue(newItem)

Else
newKey = newItem

End If

If mSortOrder = ListSortDirection.Ascending Then
mSortIndex.Add(New ListItem(newKey, e.NewIndex))

Else
mSortIndex.Insert(0, New ListItem(newKey, e.NewIndex))

End If
If Not mInitiatedLocally Then
OnListChanged(_
New ListChangedEventArgs(_
ListChangedType.ItemAdded, SortedIndex(e.NewIndex)))

End If

Else
DoSort()

End If

The hard work occurs if the new item was added to the end of the original collection. In that
case, the item’s key property value is retrieved based on the value of mSortBy; just like in the
DoSort() method.

Then a new ListItem object is created and inserted into the list—at the end for an ascending
sort, and at the beginning for a descending sort. This ensures that the new item appears at the very
bottom of a grid or list control when the sorted view is a data source for such a UI control.

Finally, if the addition of the new item was not initiated locally, then a ListChanged event is
raised to tell the UI about the new item. This is important, because if the new item was added

CHAPTER 5 ■ COMPLETING THE FRAMEWORK266

6315_c05_final.qxd 4/13/06 12:36 PM Page 266

locally to the view, then no ListChanged event should be raised at this point; instead, the event is
raised by the local AddNew() method itself.

Removing an Item

When an item is removed from the original collection, a ListChanged event is raised.
SortedBindingList handles this event. If the removal was initiated by the original collection,
then the view is simply re-sorted:

Case ListChangedType.ItemDeleted
If Not mInitiatedLocally Then
DoSort()

End If

This is the easiest approach, since it causes automatic removal of the ListItem object corre-
sponding to the removed item, and recalculation of all the cross-reference index values between
the sorted list and the original collection.

Notice that if the removal was initiated by the view itself, then the view isn’t re-sorted. This is
because the RemoveAt() method in SortedBindingList removes both the original item and the cor-
responding ListItem object, and recalculates all the cross-reference index values.

By using a combination of delegation to the original collection and implementation of a
cross-reference scheme between the sorted list and the original list, SortedBindingList provides
a bidirectionally updatable, sorted view of any IList(Of T) array or collection.

Date Handling
One common view of good UI design holds that the user should be free to enter arbitrary text,
and it is up to the application to make sense of the entry. Nowhere is this truer than with date
values, and the SmartDate type is designed to simplify how a business developer uses dates and
exposes them to the UI.

Examples of free-form date entry are easy to find. Just look at widely used applications like
Microsoft Money or Intuit’s Quicken. In these applications, users are free to enter dates in whatever
format is easiest for them. Additionally, various shortcuts are supported; for example, the + charac-
ter means tomorrow, while – means yesterday.

Most users find this approach more appealing than being forced to enter a date in a strict for-
mat through a masked edit control, or having to always use the mouse to use a graphical calendar
control. Of course, being able to additionally support a calendar control is also a great UI design
choice.

Date handling is also quite challenging because the standard DateTime data type doesn’t have
any comprehension of an “empty” or “blank” date.

Many applications have date values that may be empty for a time and are filled in later. Con-
sider a sales order, in which the shipment date is unknown when the order is entered. That date
should remain blank or empty until an actual date is known. Without having the concept of an
empty date, an application will require the user to enter an invalid “placeholder” date until the
real date is known; and that’s just poor application design.

■Tip In the early 1990s, I worked at a company where all “far-future” dates were entered as 12/31/99. Guess
how much trouble the company had around Y2K, when all of its never-to-be-delivered orders started coming due!

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 267

6315_c05_final.qxd 4/13/06 12:36 PM Page 267

It is true that the Nullable(Of T) type can be applied to a DateTime value like this:
Nullable(Of DateTime). This allows a date to be “empty” in a limited sense. Unfortunately, that
isn’t enough for many applications, since an actual date value can’t be meaningfully compared to
Nothing. Is Nothing greater than or less than a given date? With Nullable(Of T), the answer is an
exception; which is not a very useful answer.

Additionally, data binding doesn’t deal well with Nothing values, and so exposing a Nothing
value from a business object’s property often complicates the UI code.

SmartDate
The Csla.SmartDate type is designed to augment the standard .NET DateTime type to make it easier
to work with date values. In particular, it provides the following key features:

• Automatic translation between String and DateTime types

• Translation of shortcut values to valid dates

• Understanding of the concept of an “empty” date

• Meaningful comparison between a date and an empty date

• Backward compatibility with SmartDate from the previous edition of this book

The DateTime data type is marked NotInheritable, meaning that a new type can’t inherit
from it to create a different data type. However, it is possible to use containment and delegation
to “wrap” a DateTime value with extra functionality. That’s exactly how the SmartDate type is
implemented. Like DateTime itself, SmartDate is a value type:

<Serializable()> _
Public Structure SmartDate

Implements IComparable

Private mDate As Date
Private mEmptyIsMax As Boolean
Private mFormat As String
Private mInitialized As Boolean

Notice that it has an mDate instance field, which is the underlying DateTime value of the
SmartDate.

Supporting empty date values is more complex than it might appear. An empty date still has
meaning, and in fact it is possible to compare a regular date to an empty date and get a valid result.

Consider the previous sales order example. If the shipment date is unknown, it will be empty.
But effectively, that empty date is infinitely far in the future. Were you to compare that empty ship-
ment date to any other date, the shipment date would be the larger of the two.

Conversely, there are cases in which an empty date should be considered to be smaller than
the smallest possible date.

This concept is important, as it allows for meaningful comparisons between dates and
empty dates. Such comparisons make implementation of validation rules and other business
logic far simpler. You can, for instance, loop through a set of Order objects to find all the objects
with a shipment date less than today; without the need to worry about empty dates:

For Each order As Order In OrderList
If order.ShipmentDate <= Today Then

Assuming ShipmentDate is a SmartDate, this will work great, and any empty dates will be
considered to be larger than any actual date value.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK268

6315_c05_final.qxd 4/13/06 12:36 PM Page 268

The mEmptyIsMax field keeps track of whether the SmartDate instance should consider an empty
date to be the smallest or largest possible date value. If it is True, then an empty date is considered
to be the largest possible value.

The mFormat field stores a .NET format string that provides the default format for converting
a DateTime value into a string representation.

The mInitialized field keeps track of whether the SmartDate has been initialized. Remember
that SmartDate is a Structure, not an object. This severely restricts how the type’s fields can be
initialized.

Initializing the Structure
As with any Structure, SmartDate can be created with or without calling a constructor. This means
a business object could declare SmartDate fields using any of the following:

Private mDate1 As SmartDate
Private mDate2 As New SmartDate(False)
Private mDate3 As New SmartDate(Today)
Private mDate4 As New SmartDate(Today, True)
Private mDate5 As New SmartDate("1/1/2005", True)
Private mDate6 As New SmartDate("", True)

In the first two cases, the SmartDate will start out being empty, with empty meaning that it has
a value smaller than any other date.

The mDate3 value will start out containing the current date. It if is set to an empty value later,
that empty value will correspond to a value smaller than any other date.

The next two values are initialized either to the current date or a fixed date based on a String
value. In both cases, if the SmartDate is set to an empty value later, that empty value will correspond
to a value larger than any other date.

Finally, mDate6 is initialized to an empty date value, where that value is larger than any other
date.

Handling this initialization is a bit tricky, since a Structure can’t have a default constructor. Yet
even in the case of mDate1, some initialization is required. This is the purpose of the mInitialized
instance field. It, of course, defaults to a value of False, and so can be used in the properties of the
Structure to determine whether the Structure has been initialized. As you’ll see, this allows
SmartDate to initialize itself the first time a property is called; assuming it hasn’t been initialized
previously.

All the constructors follow the same basic flow. Here’s one of them:

Public Sub New(ByVal value As String, ByVal emptyIsMin As Boolean)
mEmptyIsMax = Not emptyIsMin
Me.Text = value
mInitialized = True

End Sub

In this constructor, the Text property is used to set the date value based on the value param-
eter passed into the constructor. This includes translation of an empty String value into the
appropriate empty date value.

Also look at the emptyIsMin parameter. Remember that SmartDate actually maintains an
mEmptyIsMax field—the exact opposite of the parameter’s meaning. This is why the parameter
value is negated as mEmptyIsMax is assigned. This is a bit awkward, but necessary for preserving
backward compatibility with the SmartDate type from the previous edition of this book, and thus
previous versions of CSLA .NET.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 269

6315_c05_final.qxd 4/13/06 12:36 PM Page 269

■Note This highlights a key design consideration for frameworks in general. Backward compatibility is a key
feature of frameworks, since breaking compatibility means going through every bit of code based on the frame-
work to adjust to the change. While sometimes awkward, it is often worth adding extra code to a framework in
order to preserve backward compatibility.

The reason the field is the reverse of the property is that the default value for a SmartDate is
that EmptyIsMin is True. Given that you can’t initialize fields in a Structure, it is simpler to accept
the default value for a Boolean, which is False. Hence the use of mEmptyIsMax as a field, since if it
is False (the default), then EmptyIsMin is True by default.

Supporting Empty Dates
SmartDate already has a field to control whether an empty date represents the largest or smallest
possible date. This field is exposed as a property so that other code can determine how dates are
handled:

Public ReadOnly Property EmptyIsMin() As Boolean
Get
Return Not mEmptyIsMax

End Get
End Property

SmartDate also implements an IsEmpty property so that code can ask if the SmartDate object
represents an empty date:

Public ReadOnly Property IsEmpty() As Boolean
Get
If Not mEmptyIsMax Then
Return Me.Date.Equals(Date.MinValue)

Else
Return Me.Date.Equals(Date.MaxValue)

End If
End Get

End Property

Notice the use of the mEmptyIsMax flag to determine whether an empty date is to be considered
the largest or smallest possible date for comparison purposes. If it is the smallest date, then it is
empty if the date value equals DateTime.MinValue; if it is the largest date, it is empty if the value
equals DateTime.MaxValue.

Conversion Functions
Given this understanding of empty dates, it is possible to create a couple of functions to convert
dates to text (or text to dates) intelligently. For consistency with other .NET types, SmartDate will
also include a Parse() method to convert a String into a SmartDate. These will be Shared methods
so that they can be used even without creating an instance of SmartDate. Using these methods, a
developer can write business logic such as this:

Dim userDate As DateTime = SmartDate.StringToDate(userDateString)

Table 5-4 shows the results of this function, based on various user text inputs.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK270

6315_c05_final.qxd 4/13/06 12:36 PM Page 270

Table 5-4. Results of the StringToDate Method Based on Various Inputs

User Text Input EmptyIsMin Result of StringToDate()

String.Empty True (default) DateTime.MinValue

String.Empty False DateTime.MaxValue

Any text that can be parsed as a date True or False (ignored) A date value

StringToDate() converts a string value containing a date into a DateTime value. It understands
that an empty String should be converted to either the smallest or the largest date, based on an
optional parameter.

It also handles translation of shortcut values to valid date values. The characters ., +, and –
correspond to today, tomorrow, and yesterday, respectively. Additionally, the values t, today, tom,
tomorrow, y, and yesterday work in a similar manner. These text values are defined in the project’s
Resource.resx file, and so are subject to localization for other languages.

Here’s the code:

Public Shared Function StringToDate(ByVal value As String) As Date
Return StringToDate(value, True)

End Function

Public Shared Function StringToDate(_
ByVal value As String, ByVal emptyIsMin As Boolean) As Date

If Len(value) = 0 Then
If emptyIsMin Then
Return Date.MinValue

Else
Return Date.MaxValue

End If

ElseIf IsDate(value) Then
Return CDate(value)

Else
Select Case LCase(Trim(value))
Case My.Resources.SmartDateT, My.Resources.SmartDateToday, "."
Return Now

Case My.Resources.SmartDateY, My.Resources.SmartDateYesterday, "-"
Return DateAdd(DateInterval.Day, -1, Now)

Case My.Resources.SmartDateTom, My.Resources.SmartDateTomorrow, "+"
Return DateAdd(DateInterval.Day, 1, Now)

Case Else
Throw New ArgumentException(My.Resources.StringToDateException)

End Select
End If

End Function

Given a String of nonzero length, this function attempts to parse it directly to a DateTime field.
If that fails, then the various shortcut values are checked. If that fails as well, then an exception is
thrown to indicate that the String value couldn’t be parsed into a date.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 271

6315_c05_final.qxd 4/13/06 12:36 PM Page 271

SmartDate can translate dates the other way as well, such as converting a DateTime field into a
String and retaining the concept of an empty date. Again, an optional parameter controls whether
an empty date represents the smallest or the largest possible date. Another parameter controls the
format of the date as it’s converted to a String. Table 5-5 illustrates the results for various inputs.

Table 5-5. Results of the DateToString Method Based on Various Inputs

User Date Input EmptyIsMin Result of DateToString()

DateTime.MinValue True (default) String.Empty

DateTime.MinValue False DateTime.MinValue

DateTime.MaxValue True (default) DateTime.MaxValue

DateTime.MaxValue False String.Empty

Any other valid date True or False (ignored) String representing the date value

Add the following code to the same region:

Public Shared Function DateToString(_
ByVal value As Date, ByVal formatString As String) As String

Return DateToString(value, formatString, True)
End Function

Public Shared Function DateToString(_
ByVal value As Date, ByVal formatString As String, _
ByVal emptyIsMin As Boolean) As String

If emptyIsMin AndAlso value = Date.MinValue Then
Return ""

ElseIf Not emptyIsMin AndAlso value = Date.MaxValue Then
Return ""

Else
Return String.Format("{0:" + formatString + "}", value)

End If
End Function

This functions as a mirror to the StringToDate() method. This means it is possible to start
with an empty String, convert it to a DateTime, and then convert that DateTime back into an empty
String.

Notice that this method requires a format string, which defines how the DateTime value is
to be formatted as a String. This is used to create a complete .NET format string such as {0:d}.

Finally, there’s the Parse() method, which accepts a String value and returns a SmartDate.
There are two variations on this method:

Public Shared Function Parse(ByVal value As String) As SmartDate
Return New SmartDate(value)

End Function

Public Shared Function Parse(_
ByVal value As String, ByVal emptyIsMin As Boolean) As SmartDate

Return New SmartDate(value, emptyIsMin)
End Function

The first uses the default True value for EmptyIsMin, while the second allows the caller to specify
the value. Neither is hard to implement given the constructors already present in the code.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK272

6315_c05_final.qxd 4/13/06 12:36 PM Page 272

Text Functions
Next, let’s implement functions in SmartDate that support both text and DateTime access to the
underlying DateTime value. When business code wants to expose a date value to the UI, it will often
want to expose it as a String. (Exposing it as a DateTime precludes the possibility of the user enter-
ing a blank value for an empty date, and while that’s great if the date is required, it isn’t good for
optional date values.)

Exposing a date as text requires the ability to format the date properly. To make this manage-
able, the mFormat field is used to control the format used for outputting a date. SmartDate includes
a property so that the business developer can alter this format value to override the default:

Public Property FormatString() As String
Get
If mFormat Is Nothing Then
mFormat = "d"

End If
Return mFormat

End Get
Set(ByVal value As String)
mFormat = value

End Set
End Property

The default value is d for the short date format. This is handled in the Get block, which is
important given that the mFormat field will default to a value of Nothing unless explicitly set to
something else.

Given the FormatString property, the Text property can use the StringToDate() and
DateToString() methods to translate between text and date values. This property can be used
to retrieve or set values using String representations of dates, where an empty String is appro-
priately handled:

Public Property Text() As String
Get
Return DateToString(Me.Date, FormatString, Not mEmptyIsMax)

End Get
Set(ByVal value As String)
Me.Date = StringToDate(value, Not mEmptyIsMax)

End Set
End Property

This property is used in the constructors as well, meaning that the same rules for dealing with
an empty date apply during object initialization, as when setting its value via the Text property.

There’s one other text-oriented method to implement: ToString(). All objects in .NET have
a ToString() method, which ideally returns a useful text representation of the object’s contents.
In this case, it should return the formatted date value:

Public Overrides Function ToString() As String
Return Me.Text

End Function

Since the Text property already converts the SmartDate value to a String, this is easy to
implement.

Date Functions
It should be possible to treat a SmartDate like a regular DateTime—as much as possible, anyway.
Since it’s not possible for it to inherit from DateTime, there’s no way for it to be treated just like a

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 273

6315_c05_final.qxd 4/13/06 12:36 PM Page 273

regular DateTime. The best approximation is to implement a Date property that returns the internal
value:

Public Property [Date]() As Date
Get
If Not mInitialized Then
mDate = Date.MinValue
mInitialized = True

End If
Return mDate

End Get
Set(ByVal value As Date)
mDate = value
mInitialized = True

End Set
End Property

Notice the use of the mInitialized field to determine whether the SmartDate has been initial-
ized. If the SmartDate instance was declared without explicitly calling one of the constructors, then
it will not have been initialized, so the mDate field needs to be set before it can be returned. It is set
to DateTime.MinValue because that is the empty date when mEmptyIsMax is False (which it is by
default).

IComparable
SmartDate implements the IComparable interface, which defines a CompareTo() method. The
CompareTo() method is used by the .NET Framework in various ways, most notably to support
sorting within sorted collections and lists. This CompareTo() method is overloaded to also include
a strongly typed CompareTo() that directly accepts a SmartDate:

Public Function CompareTo(ByVal obj As Object) As Integer _
Implements IComparable.CompareTo

If TypeOf obj Is SmartDate Then
Return CompareTo(DirectCast(obj, SmartDate))

Else
Throw New ArgumentException(My.Resources.ValueNotSmartDateException)

End If
End Function

Public Function CompareTo(ByVal value As SmartDate) As Integer
If Me.IsEmpty AndAlso value.IsEmpty Then
Return 0

Else
Return Me.Date.CompareTo(value.Date)

End If
End Function

Because empty dates are maintained as DateTime.MinValue or DateTime.MaxValue, they will
automatically sort to the top or bottom of the list based on the setting of mEmptyIsMax. For ease of
use, SmartDate also includes similar CompareTo() overloads that accept String and DateTime.

Date Manipulation
SmartDate should provide arithmetic manipulation of the date value. Since the goal is to emulate a
regular DateTime data type, it should provide at least Add() and Subtract() methods:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK274

6315_c05_final.qxd 4/13/06 12:36 PM Page 274

Public Function Add(ByVal value As TimeSpan) As Date
If IsEmpty Then
Return Me.Date

Else
Return Me.Date.Add(value)

End If
End Function

Public Function Subtract(ByVal value As TimeSpan) As Date
If IsEmpty Then
Return Me.Date

Else
Return Me.Date.Subtract(value)

End If
End Function

Public Function Subtract(ByVal value As Date) As TimeSpan
If IsEmpty Then
Return TimeSpan.Zero

Else
Return Me.Date.Subtract(value)

End If
End Function

Notice the special handling of empty SmartDate values. Adding or subtracting any value to an
empty value results in an empty or zero value as appropriate. In any other case, the addition or sub-
traction is delegated to the actual underlying DateTime value in mDate.

Overloading Operators
To make SmartDate as similar to DateTime as possible, it needs to overload the operators that are
overloaded by DateTime, including equality, comparison, addition, and subtraction.

Equality

Equality and inequality operators delegate to the override of the Equals() method:

Public Overloads Overrides Function Equals(ByVal obj As Object) As Boolean
If TypeOf obj Is SmartDate Then
Dim tmp As SmartDate = DirectCast(obj, SmartDate)
If Me.IsEmpty AndAlso tmp.IsEmpty Then
Return True

Else
Return Me.Date.Equals(tmp.Date)

End If

ElseIf TypeOf obj Is Date Then
Return Me.Date.Equals(DirectCast(obj, Date))

ElseIf TypeOf obj Is String Then
Return Me.CompareTo(CStr(obj)) = 0

Else
Return False

End If
End Function

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 275

6315_c05_final.qxd 4/13/06 12:36 PM Page 275

Public Shared Operator =(_
ByVal obj1 As SmartDate, ByVal obj2 As SmartDate) As Boolean

Return obj1.Equals(obj2)
End Operator

Public Shared Operator <>(_
ByVal obj1 As SmartDate, ByVal obj2 As SmartDate) As Boolean

Return Not obj1.Equals(obj2)
End Operator

The Equals() method is relatively complex. This is because it supports the idea of comparing
a SmartDate to another SmartDate, to a String value, or to a regular DateTime value. In each case, it
honors the idea of an empty date value.

Then the equality and inequality operators simply delegate to the Equals() method. There are
overloads of the equality and inequality operators to allow a SmartDate to be directly compared to
a DateTime or String value.

Comparison

In addition to equality, it is possible to compare SmartDate values to see if they are greater than or
less than another SmartDate, String, or DateTime value. This is easily accomplished given the imple-
mentation of the CompareTo() methods earlier. For instance, here are a couple of the comparison
operators:

Public Shared Operator >(_
ByVal obj1 As SmartDate, ByVal obj2 As SmartDate) As Boolean

Return obj1.CompareTo(obj2) > 0
End Operator

Public Shared Operator <(_
ByVal obj1 As SmartDate, ByVal obj2 As SmartDate) As Boolean

Return obj1.CompareTo(obj2) < 0
End Operator

Along with greater than and less than, there are greater than or equals, and less than or equals
operators that work in a similar manner. And as with equality and inequality, there are overloads of
all these operators for String and DateTime comparison as well.

Addition and Subtraction

The Add() and Subtract() methods implemented earlier are also made available through operators:

Public Shared Operator +(_
ByVal start As SmartDate, ByVal span As TimeSpan) As SmartDate

Return New SmartDate(start.Add(span), start.EmptyIsMin)
End Operator

Public Shared Operator -(_
ByVal start As SmartDate, ByVal span As TimeSpan) As SmartDate

Return New SmartDate(start.Subtract(span), start.EmptyIsMin)
End Operator

CHAPTER 5 ■ COMPLETING THE FRAMEWORK276

6315_c05_final.qxd 4/13/06 12:36 PM Page 276

Public Shared Operator -(_
ByVal start As SmartDate, ByVal finish As SmartDate) As TimeSpan

Return start.Subtract(finish.Date)
End Operator

Combined, all these methods and operators mean that a SmartDate can be treated almost
exactly like a DateTime.

Database Format
The final bit of code in SmartDate exists to help simplify data access. This is done by implementing
a method that allows a SmartDate value to be converted to a format suitable for writing to the data-
base. Though SmartDate already has methods to convert a date to text and text to a date, it doesn’t
have any good way of getting a date formatted properly to write to a database. Specifically, it needs
a way to either write a valid date or write a null value if the date is empty.

In ADO.NET, a null value is usually expressed as DBNull.Value, so it is possible to implement
a method that returns either a valid DateTime object or DBNull.Value:

Public ReadOnly Property DBValue() As Object
Get
If Me.IsEmpty Then
Return DBNull.Value

Else
Return Me.Date

End If
End Get

End Property

Since SmartDate already implements an IsEmpty() property, the code here is pretty straightfor-
ward. If the value is empty, DBNull.Value is returned, which can be used to put a null value into a
database via ADO.NET. Otherwise, a valid date value is returned.

At this point, you’ve seen the implementation of the core SmartDate functionality. While using
SmartDate is certainly optional, it does offer business developers an easy way to handle dates that
must be represented as text, and to support the concept of an empty date. Later in the chapter, the
SafeDataReader will also include some data access functionality to make it easy to save and restore
a SmartDate from a database.

This same approach can be used to make other data types “smart” if you so desire. Even with
the Nullable(Of T) support from the .NET Framework, dealing with empty values often requires
extra coding, which is often most efficiently placed in a framework class like SmartDate.

Common Business Rules
The BusinessBase class implemented in Chapter 3 includes support for validation rules. Each rule
is a method with a signature that conforms to the RuleHandler delegate. A business object can
implement business rules conforming to this delegate, and then associate those rule methods
with the properties of the business object.

Most applications use a relatively small, common set of validation rules—such as that a string
value is required or has a maximum length, or that a numeric value has a minimum or maximum
value. Using reflection, it is possible to create highly reusable rule methods—which is the purpose
behind the Csla.Validation.CommonRules class.

Obviously, using reflection incurs some performance cost, so these reusable rule methods may
or may not be appropriate for every application. However, the code reuse offered by these methods

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 277

6315_c05_final.qxd 4/13/06 12:36 PM Page 277

is very powerful, and most applications won’t be adversely affected by this use of reflection. In the
end, whether you decide to use these rule methods or not is up to you.

■Tip If reflection-based rules are problematic for your application, you can implement hard-coded rule methods
on a per-object basis.

If you find the idea of these reusable rules appealing and useful, you may opt to create your
own library of reusable rules as part of your application. In that case, you’ll want to add a class to
your project similar to CommonRules, and you can use the rule methods from CommonRules as a guide
for building your own reusable rule methods.

CommonRules
The RuleHandler delegate specifies that every rule method accepts two parameters: a reference to
the object containing the data, and a RuleArgs object that is used to pass extra information into and
out of the rule method.

The base RuleArgs object has a PropertyName property that provides the rule method with the
name of the property to be validated. It also includes a Description property that the rule method
should set for a broken rule to describe why the rule was broken.

StringRequired
The simplest type of rule method is one that doesn’t require any information beyond that provided
by the basic RuleArgs parameter. For instance, the StringRequired() rule method only needs a ref-
erence to the object containing the value and the name of the property to be validated:

Public Function StringRequired(_
ByVal target As Object, ByVal e As RuleArgs) As Boolean

Dim value As String = _
CStr(CallByName(target, e.PropertyName, CallType.Get))

If Len(value) = 0 Then
e.Description = _
String.Format(My.Resources.StringRequiredRule, e.PropertyName)

Return False

Else
Return True

End If
End Function

A CallByName() helper method is used to abstract the use of reflection to retrieve the property
value based on the property name. It simply uses reflection to get a PropertyInfo object for the
specified property, and then uses it to retrieve the property value.

If the property value is an empty string, then the rule is violated, so the Description property
of the RuleArgs object is set to describe the nature of the rule. Then False is returned from the rule
method to indicate that the rule is broken. Otherwise, the rule method simply returns True to indi-
cate that that rule is not broken.

This rule is used within a business object by associating it with a property. A business object
does this by overriding the AddBusinessRules() method defined by BusinessBase. Such code would
look like this (assuming a Using statement for Csla.Validation):

CHAPTER 5 ■ COMPLETING THE FRAMEWORK278

6315_c05_final.qxd 4/13/06 12:36 PM Page 278

<Serializable()> _
Public Class Customer
Inherits BusinessBase(Of Customer)

Protected Overrides Sub AddBusinessRules()
ValidationRules.AddRule(_
AddressOf CommonRules.StringRequired, "Name")

End Sub
' rest of class…

End Class

This associates the rule method with the Name property so that the PropertyHasChanged() call
within the property’s Set block will automatically invoke the rule. You’ll see this and other rule
methods used in Chapter 8 within the sample application’s business objects.

StringMaxLength
A slightly more complex variation is one in which the rule method needs extra information beyond
that provided by the basic RuleArgs parameter. In these cases, the RuleArgs class must be subclassed
to create a new object that adds the extra information. A rule method to enforce a maximum length
on a string, for instance, requires the maximum length value.

Custom RuleArgs Class

Here’s a subclass of RuleArgs that provides the maximum length value:

Public Class MaxLengthRuleArgs
Inherits RuleArgs

Private mMaxLength As Integer

Public ReadOnly Property MaxLength() As Integer
Get
Return mMaxLength

End Get
End Property

Public Sub New(ByVal propertyName As String, ByVal maxLength As Integer)
MyBase.New(propertyName)
mMaxLength = maxLength

End Sub

Public Overrides Function ToString() As String
Return MyBase.ToString & "!" & mMaxLength.ToString

End Function
End Class

All subclasses of RuleArgs will follow this basic structure. First, the extra data to be provided is
stored in a field and exposed through a property:

Private mMaxLength As Integer

Public ReadOnly Property MaxLength() As Integer
Get
Return mMaxLength

End Get
End Property

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 279

6315_c05_final.qxd 4/13/06 12:36 PM Page 279

The data provided here will obviously vary based on the needs of the rule method. The con-
structor must accept the name of the property to be validated, and of course, the extra data. The
property name is provided to the RuleArgs base class, and the extra data is stored in the field
declared in the preceding code:

Public Sub New(ByVal propertyName As String, ByVal maxLength As Integer)
MyBase.New(propertyName)
mMaxLength = maxLength

End Sub

Finally, the ToString() method is overridden. This is required. Recall that in Chapter 3, this
value is used to uniquely identify the corresponding rule within the list of broken rules for an
object. The ToString() value of the RuleArgs object is combined with the name of the rule method
to generate the unique rule name.

This means that the ToString() implementation must return a string representation of the rule
that is unique within a given business object. Typically, this can be done by combining the name of
the rule (from the RuleArgs base class) with whatever extra data you are storing in your custom
object:

Public Overrides Function ToString() As String
Return MyBase.ToString & "!" & mMaxLength.ToString

End Function

The RuleArgs base class implements a ToString() method that returns a relatively unique
value (the name of the property). By combining this with the extra data stored in this custom class,
the resulting name should be unique within the business object.

Rule Method

With the custom RuleArgs class defined, it can be used to implement a rule method. The
StringMaxLength() rule method looks like this:

Public Function StringMaxLength(ByVal target As Object, _
ByVal e As RuleArgs) As Boolean

Dim max As Integer = DirectCast(e, MaxLengthRuleArgs).MaxLength
If Len(CallByName(_

target, e.PropertyName, CallType.Get).ToString) > max Then
e.Description = _
String.Format(My.Resources.StringMaxLengthRule, e.PropertyName, max)

Return False
Else
Return True

End If
End Function

This is similar to the StringRequired() rule method, except that the RuleArgs parameter is cast
to the MaxLengthRuleArgs type so that the MaxLength value can be retrieved. That value is then com-
pared to the length of the specified property from the target object to see if the rule is broken or not.

■Note It might seem like the RuleArgs parameter should just be of type MaxLengthRuleArgs. But it is impor-
tant to remember that this method must conform to the RuleHandler delegate defined in Chapter 3; and that
defines the parameter as type RuleArgs.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK280

6315_c05_final.qxd 4/13/06 12:36 PM Page 280

A business object’s AddBusinessRules() method would associate a property to this rule like this:

Protected Overrides Sub AddBusinessRules()
ValidationRules.AddRule(_
AddressOf CommonRules.StringMaxLength, _
New CommonRules.MaxLengthRuleArgs("Name", 50))

End Sub

Remember that in Chapter 3 the ValidationRules.AddRule() method included an overload that
accepted a rule method delegate along with a RuleArgs object. In this case, the RuleArgs object is an
instance of MaxLengthRuleArgs, initialized with the property name and the maximum length allowed
for the property.

The CommonRules class includes other similar rule method implementations that you may choose
to use as is, or as the basis for creating your own library of reusable rules for an application.

Data Access
Almost all applications employ some data access. Obviously, the CSLA .NET framework puts heavy
emphasis on enabling data access through the data portal, as described in Chapter 4. Beyond the
basic requirement to create, read, update, and delete data, however, there are other needs.

During the process of reading data from a database, many application developers find them-
selves writing repetitive code to eliminate null database values. SafeDataReader is a wrapper around
any ADO.NET data reader object that automatically eliminates any null values that might come from
the database.

When creating many web applications using either Web Forms or Web Services, data must be
copied into and out of business objects. In the case of Web Forms data binding, data comes from
the page in a dictionary of name/value pairs, which must be copied into the business object’s prop-
erties. With Web Services, the data sent or received over the network often travels through simple
data transfer objects (DTOs). The properties of those DTOs must be copied into or out of a business
object within the web service. The DataMapper class contains methods to simplify these tasks.

SafeDataReader
Null values should be allowed in database columns for only two reasons. The first is when the busi-
ness rules dictate that the application cares about the difference between a value that was never
entered and a value that is zero (or an empty string). In other words, the end user actually cares
about the difference between "" and null, or between 0 and null. There are applications where this
matters—where the business rules revolve around whether a field ever had a value (even an empty
one) or never had a value at all.

The second reason for using a null value is when a data type doesn’t intrinsically support the
concept of an empty field. The most common example is the SQL DateTime data type, which has no
way to represent an empty date value; it always contains a valid date. In such a case, null values in
the database column are used specifically to indicate an empty date.

Of course, these two reasons are mutually exclusive. When using null values to differentiate
between an empty field and one that never had a value, you need to come up with some other
scheme to indicate an empty DateTime field. The solution to this problem is outside the scope of
this book—but thankfully, the problem itself is quite rare.

The reality is that very few applications ever care about the difference between an empty value
and one that was never entered, so the first scenario seldom applies. If it does apply to your applica-
tion, then dealing with null values at the database level isn’t an issue, because you’ll use nullable
types from the database all the way through to the UI. In this case, you can ignore SafeDataReader
entirely, as it has no value for your application.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 281

6315_c05_final.qxd 4/13/06 12:36 PM Page 281

But for most applications, the only reason for using null values is the second scenario, and this
one is quite common. Any application that uses date values, and for which an empty date is a valid
entry, will likely use null to represent an empty date.

Unfortunately, a whole lot of poorly designed databases allow null values in columns where
neither scenario applies, and we developers have to deal with them. These are databases that con-
tain null values even if the application makes no distinction between a 0 and a null.

Writing defensive code to guard against tables in which null values are erroneously allowed
can quickly bloat data access code and make it hard to read. To avoid this, the SafeDataReader class
takes care of these details automatically, by eliminating null values and converting them into a set
of default values.

As a rule, data reader objects are NotInheritable, meaning that you can’t simply subclass an
existing data reader class (such as SqlDataReader) and extend it. However, like the SmartDate class
with DateTime, it is quite possible to encapsulate, or “wrap,” a data reader object.

Creating the SafeDataReader Class
To ensure that SafeDataReader can wrap any data reader object, it relies on the root System.Data.
IDataReader interface that’s implemented by all data reader objects. Also, since SafeDataReader is
to be a data reader object, it must implement that interface as well:

Public Class SafeDataReader

Implements IDataReader

Private mDataReader As IDataReader

Protected ReadOnly Property DataReader() As IDataReader
Get
Return mDataReader

End Get
End Property

Public Sub New(ByVal dataReader As IDataReader)
mDataReader = dataReader

End Sub

The class defines a field to store a reference to the real data reader that it is encapsulating.
That field is exposed as a Protected property as well, allowing for subclasses of SafeDataReader in
the future.

There’s also a constructor that accepts the IDataReader object to be encapsulated as a
parameter.

This means that ADO.NET code in a business object’s DataPortal_Fetch() method might
appear as follows:

Dim dr As New SafeDataReader(cm.ExecuteReader)

The ExecuteReader() method returns an object that implements IDataReader (such as
SqlDataReader) that is used to initialize the SafeDataReader object. The rest of the code in
DataPortal_Fetch() can use the SafeDataReader object just like a regular data reader object
because it implements IDataReader. The benefit, though, is that the business object’s data
access code never has to worry about getting a null value from the database.

The implementation of IDataReader is a lengthy business—it contains a lot of methods—
so I’m not going to go through all of it here. Instead I’ll cover a few methods to illustrate how the
overall class is implemented.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK282

6315_c05_final.qxd 4/13/06 12:36 PM Page 282

GetString

There are two overloads for each method that returns column data: one that takes an ordinal col-
umn position, and the other that takes the string name of the property. This second overload is a
convenience, but makes the code in a business object much more readable. All the methods that
return column data are “null protected” with code like this:

Public Function GetString(ByVal name As String) As String
Dim index As Integer = Me.GetOrdinal(name)
Return Me.GetString(index)

End Function

Public Overridable Function GetString(ByVal i As Integer) As String _
Implements IDataReader.GetString

If mDataReader.IsDBNull(i) Then
Return ""

Else
Return mDataReader.GetString(i)

End If
End Function

If the value in the database is null, the method returns some more palatable value—typically,
whatever passes for “empty” for the specific data type. If the value isn’t null, it simply returns the
value from the underlying data reader object.

For String values, the empty value is String.Empty; for numeric types, it is 0; and for Boolean
types, it is False. You can look at the full code for SafeDataReader to see all the translations.

Notice that the GetString() method that actually does the translation of values is marked as
Overridable. This allows you to override the behavior of any of these methods by creating a sub-
class of SafeDataReader.

The GetOrdinal() method translates the column name into an ordinal (numeric) value, which
can be used to actually retrieve the value from the underlying IDataReader object. GetOrdinal()
looks like this:

Public Function GetOrdinal(ByVal name As String) As Integer _
Implements System.Data.IDataReader.GetOrdinal

Return mDataReader.GetOrdinal(name)
End Function

Every data type supported by IDataReader (and there are a lot of them) has a pair of methods
that reads the data from the underlying IDataReader object, replacing null values with empty default
values as appropriate.

GetDateTime and GetSmartDate

Most types have “empty” values that are obvious, but DateTime is problematic as it has no “empty”
value:

Public Function GetDateTime(ByVal name As String) As Date
Dim index As Integer = Me.GetOrdinal(name)
Return Me.GetDateTime(index)

End Function

Public Overridable Function GetDateTime(ByVal i As Integer) As Date _
Implements System.Data.IDataReader.GetDateTime

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 283

6315_c05_final.qxd 4/13/06 12:36 PM Page 283

If mDataReader.IsDBNull(i) Then
Return Date.MinValue

Else
Return mDataReader.GetDateTime(i)

End If
End Function

The minimum date value is arbitrarily used as the “empty” value. This isn’t perfect, but it
does avoid returning a null value or throwing an exception. A better solution may be to use the
SmartDate type instead of DateTime. To simplify retrieval of a date value from the database into
a SmartDate, SafeDataReader implements two variations of a GetSmartDate() method:

Public Function GetSmartDate(ByVal name As String) As SmartDate
Dim index As Integer = Me.GetOrdinal(name)
Return Me.GetSmartDate(index, True)

End Function

Public Overridable Function GetSmartDate(ByVal i As Integer) As SmartDate
Return GetSmartDate(i, True)

End Function

Public Function GetSmartDate(_
ByVal name As String, ByVal minIsEmpty As Boolean) As SmartDate

Dim index As Integer = Me.GetOrdinal(name)
Return Me.GetSmartDate(index, minIsEmpty)

End Function

Public Overridable Function GetSmartDate(_
ByVal i As Integer, ByVal minIsEmpty As Boolean) As SmartDate

If mDataReader.IsDBNull(i) Then
Return New SmartDate(minIsEmpty)

Else
Return New SmartDate(mDataReader.GetDateTime(i), minIsEmpty)

End If
End Function

Data access code in a business object can choose either to accept the minimum date value
as being equivalent to “empty,” or to retrieve a SmartDate that understands the concept of an
empty date:

Dim myDate As SmartDate = dr.GetSmartDate(0)

or

Dim myDate As SmartDate = dr.GetSmartDate(0, False)

GetBoolean

Likewise, there is no “empty” value for the Boolean type:

Public Function GetBoolean(ByVal name As String) As Boolean
Dim index As Integer = Me.GetOrdinal(name)
Return Me.GetBoolean(index)

End Function

CHAPTER 5 ■ COMPLETING THE FRAMEWORK284

6315_c05_final.qxd 4/13/06 12:36 PM Page 284

Public Overridable Function GetBoolean(ByVal i As Integer) As Boolean _
Implements System.Data.IDataReader.GetBoolean

If mDataReader.IsDBNull(i) Then
Return False

Else
Return mDataReader.GetBoolean(i)

End If
End Function

The code arbitrarily returns a False value in this case.

Other Methods

The IDataReader interface also includes a number of methods that don’t return column values, such
as the Read() method:

Public Function Read() As Boolean Implements IDataReader.Read
Return mDataReader.Read

End Function

In these cases, it simply delegates the method call down to the underlying data reader object
for it to handle. Any return values are passed back to the calling code, so the fact that
SafeDataReader is involved is entirely transparent.

The SafeDataReader class can be used to simplify data access code dramatically, any time an
object is working with tables in which null values are allowed in columns where the application
doesn’t care about the difference between an empty and a null value. If your application does care
about the use of null values, you can simply use the regular data reader objects instead.

DataMapper
Later in this chapter, you’ll see the implementation of a CslaDataSource control that allows busi-
ness developers to use Web Forms data binding with CSLA .NET–style business objects. When
Web Forms data binding needs to insert or update data, it provides the data elements in the form
of a dictionary object of name/value pairs. The name is the name of the property to be updated,
and the value is the value to be placed into the property of the business object.

Copying the values isn’t hard—the code looks something like this:

cust.FirstName = e.Values("FirstName").ToString
cust.LastName = e.Values("LastName").ToString
cust.City = e.Values("City").ToString

Unfortunately, this is tedious code to write and debug; and if your object has a lot of properties,
this can add up to a lot of lines of code. An alternative is to use reflection to automate the process of
copying the values.

■Tip If you feel that reflection is too slow for this purpose, you can continue to write all the mapping code by
hand. Keep in mind, however, that data binding uses reflection extensively anyway, so this little bit of additional
reflection is not likely to cause any serious performance issues.

A similar problem exists when building Web Services. Business objects should not be returned
directly as a result of a web service, as that would break encapsulation. In such a case, your business
object interface would become part of the web service interface, preventing you from ever adding or
changing properties on the object without running the risk of breaking any clients of the web service.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 285

6315_c05_final.qxd 4/13/06 12:36 PM Page 285

Instead, data should be copied from the business object into a DTO, which is then returned to
the web service client. Conversely, data from the client often comes into the web service in the form
of a DTO. These DTOs are often created based on WSDL or an XSD defining the contract for the data
being passed over the web service.

The end result is that the code in a web service has to map property values from business
objects to and from DTOs. That code often looks like this:

cust.FirstName = dto.FirstName
cust.LastName = dto.LastName
cust.City = dto.City

Again, this isn’t hard code to write, but it’s tedious and could add up to many lines of code.
The DataMapper class uses reflection to help automate these data-mapping operations, from

either a collection implementing IDictionary or an object with Public properties.
In both cases, it is possible or even likely that some properties can’t be mapped. Business

objects often have read-only properties, and obviously it isn’t possible to set those values. Yet the
IDictionary or DTO may have a value for that property. It is up to the business developer to deal
on a case-by-case basis with properties that can’t be automatically mapped.

The DataMapper class will accept a list of property names to be ignored. Properties matching
those names simply won’t be mapped during the process. Additionally, DataMapper will accept a
Boolean flag that can be used to suppress exceptions during the mapping process. This can be
used simply to ignore any failures.

Setting Values
The core of the DataMapper class is the SetValue() method. This method is ultimately responsible
for putting a value into a specified property of a target object:

Private Sub SetValue(_
ByVal target As Object, ByVal propertyName As String, _
ByVal value As Object)

Dim propertyInfo As PropertyInfo = _
target.GetType.GetProperty(propertyName)

Dim pType As Type = Utilities.GetPropertyType(propertyInfo.PropertyType)
If value Is Nothing Then
propertyInfo.SetValue(target, value, Nothing)

Else
If pType.Equals(value.GetType) Then
' types match, just copy value
propertyInfo.SetValue(target, value, Nothing)

Else
' types don't match, try to coerce types
If pType.Equals(GetType(Guid)) Then
propertyInfo.SetValue(target, New Guid(value.ToString), Nothing)

Else
propertyInfo.SetValue(target, _
Convert.ChangeType(value, pType), Nothing)

End If
End If

End If
End Sub

CHAPTER 5 ■ COMPLETING THE FRAMEWORK286

6315_c05_final.qxd 4/13/06 12:36 PM Page 286

Reflection is used to retrieve a PropertyInfo object corresponding to the specified property
on the target object. The specific type of the property’s return value is retrieved using a
GetPropertyType() helper method in the Utilities class. That helper method exists to deal with
the possibility that the property could return a value of type Nullable(Of T). If that happens, the
real underlying data type (behind the Nullable(Of T) type) must be returned. Here’s the
GetPropertyType() method:

Public Function GetPropertyType(ByVal propertyType As Type) As Type

Dim type As Type = propertyType
If (type.IsGenericType AndAlso _
(type.GetGenericTypeDefinition Is GetType(Nullable))) Then

Return type.GetGenericArguments(0)
End If

Return type
End Function

If Nullable(Of T) isn’t involved, then the original type passed as a parameter is simply returned.
But if Nullable(Of T) is involved, then the first generic argument (the value of T) is returned instead:

Return type.GetGenericArguments(0)

This ensures that the actual data type of the property is used rather than Nullable(Of T).
Back in the SetValue() method, the PropertyInfo object has a SetValue() method that sets the

value of the property, but it requires that the new value have the same data type as the property itself.
Given that the values from an IDictionary collection or a DTO may not exactly match the

property types on a business object, DataMapper.SetValue() attempts to coerce the original type
to the property type before setting the property on the target object.

To do this, it retrieves the type of the target property. If the new value is not Nothing, then the
type of the new value is compared to the type of the property to see if they match:

If pType.Equals(value.GetType) Then
' types match, just copy value
propertyInfo.SetValue(target, value, Nothing)

If they do match, then the property is set to the new value. If they don’t match, then there’s an
attempt to coerce the new value to the same type as the property:

' types don't match, try to coerce types
If pType.Equals(GetType(Guid)) Then
propertyInfo.SetValue(target, New Guid(value.ToString), Nothing)

Else
propertyInfo.SetValue(target, _
Convert.ChangeType(value, pType), Nothing)

End If

For most common data types, the Convert.ChangeType() method will work fine. It handles
string, date, and primitive data types in most cases. But Guid values won’t convert using that tech-
nique (because Guid doesn’t implement IConvertible), so they are handled as a special case, by
using ToString() to get a string representation of the value, and using that to create a new instance
of a Guid object.

If the coercion fails, Convert.ChangeType() will throw an exception. In such a case, the business
developer will have to manually set that particular property; adding that property name to the list of
properties ignored by DataMapper.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 287

6315_c05_final.qxd 4/13/06 12:36 PM Page 287

Mapping from IDictionary
A collection that implements IDictionary is effectively a name/value list. The DataMapper.Map()
method assumes that the names in the list correspond directly to the names of properties on the
business object to be loaded with data. It simply loops through all the keys in the dictionary,
attempting to set the value of each entry into the target object:

Public Sub Map(_
ByVal source As System.Collections.IDictionary, _
ByVal target As Object, _
ByVal suppressExceptions As Boolean, _
ByVal ParamArray ignoreList() As String)

Dim ignore As New List(Of String)(ignoreList)
For Each propertyName As String In source.Keys
If Not ignore.Contains(propertyName) Then
Try
SetValue(target, propertyName, source.Item(propertyName))

Catch ex As Exception
If Not suppressExceptions Then
Throw New ArgumentException(_
String.Format("{0} ({1})", _
My.Resources.PropertyCopyFailed, propertyName), ex)

End If
End Try

End If
Next

End Sub

While looping through the key values in the dictionary, the ignoreList is checked on each
entry. If the key from the dictionary is in the ignore list, then that value is ignored.

Otherwise, the SetValue() method is called to assign the new value to the specified property
of the target object.

If an exception occurs while a property is being set, it is caught. If suppressExceptions is True,
then the exception is ignored; otherwise it is wrapped in an ArgumentException. The reason for wrap-
ping it in a new exception object is so the property name can be included in the message returned to
the calling code. That bit of information is invaluable when using the Map() method.

Mapping from an Object
Mapping from one object to another is done in a similar manner. The primary exception is that the
list of source property names doesn’t come from the keys in a dictionary, but rather must be retrieved
from the source object.

■Note The Map() method can be used to map to or from a business object.

The GetSourceProperties() method retrieves the list of properties from the source object:

Private Function GetSourceProperties(_
ByVal sourceType As Type) As PropertyInfo()

CHAPTER 5 ■ COMPLETING THE FRAMEWORK288

6315_c05_final.qxd 4/13/06 12:36 PM Page 288

Dim result As New Generic.List(Of PropertyInfo)
Dim props As PropertyDescriptorCollection = _
TypeDescriptor.GetProperties(sourceType)

For Each item As PropertyDescriptor In props
If item.IsBrowsable Then
result.Add(sourceType.GetProperty(item.Name))

End If
Next
Return result.ToArray

End Function

This method filters out methods that are marked as <Browsable(False)>. This is useful when
the source object is a CSLA .NET–style business object, as the IsDirty, IsNew, and similar properties
from BusinessBase are automatically filtered out. The result is that GetSourceProperties() returns
a list of properties that are subject to data binding.

First, reflection is invoked by calling the GetProperties() method to retrieve a collection of
PropertyDescriptor objects. These are similar to the more commonly used PropertyInfo objects,
but they are designed to help support data binding. This means they include an IsBrowsable prop-
erty that can be used to filter out those properties that aren’t browsable.

A PropertyInfo object is added to the result list for all browsable properties, and then that
result list is converted to an array and returned to the calling code.

The calling code is an overload of the Map() method that accepts two objects rather than an
IDictionary and an object:

Public Sub Map(_
ByVal source As Object, _
ByVal target As Object, _
ByVal suppressExceptions As Boolean, _
ByVal ParamArray ignoreList() As String)

Dim ignore As New List(Of String)(ignoreList)
Dim sourceProperties As PropertyInfo() = _
GetSourceProperties(source.GetType)

For Each sourceProperty As PropertyInfo In sourceProperties
Dim propertyName As String = sourceProperty.Name
If Not ignore.Contains(propertyName) Then
Try
SetValue(target, propertyName, _
sourceProperty.GetValue(source, Nothing))

Catch ex As Exception
If Not suppressExceptions Then
Throw New ArgumentException(_
String.Format("{0} ({1})", _
My.Resources.PropertyCopyFailed, propertyName), ex)

End If
End Try

End If
Next

End Sub

The source object’s properties are retrieved into an array of PropertyInfo objects:

Dim sourceProperties As PropertyInfo() = _
GetSourceProperties(source.GetType)

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 289

6315_c05_final.qxd 4/13/06 12:36 PM Page 289

Then the method loops through each element in that array, checking each one against the list
of properties to be ignored. If the property isn’t in the ignore list, the SetValue() method is called to
set the property on the target object. The GetValue() method on the PropertyInfo object is used
to retrieve the value from the source object:

SetValue(target, propertyName, _
sourceProperty.GetValue(source, Nothing))

Exceptions are handled (or ignored) just like they are when copying from an IDictionary.
While the DataMapper functionality may not be useful in all cases, it is useful in many cases,

and can dramatically reduce the amount of tedious data-copying code a business developer needs
to write to use data binding in Web Forms or to implement Web Services.

Reporting
When discussing report generation and objects, it is important to divide the idea of report genera-
tion into two groups: small reports and large reports.

Some enterprise resource planning (ERP) and manufacturing resource planning (MRP) systems
make exactly this distinction: small reports are often called lists, while large reports are called reports.
Lists can be generated at any time and are displayed immediately on the client, while reports are typ-
ically generated in the background and are later displayed through a viewer or printed out.

Of course, the exact delineation between a “small” and a “large” report varies. Ultimately, small
reports require small enough amounts of data that it’s reasonable to transfer that data to the client
immediately upon a user request. Large reports require too much data to transfer to the client imme-
diately, or they take too long to generate to have the user’s machine (or browser) tied up while waiting
for it to complete.

The problem faced with reporting is twofold. First, pulling back large amounts of data from
the server to the client just to generate a report is slow. In fact, it is a just a poor idea and should be
avoided. Large reports should be generated using report engines that physically run on or near the
database server to minimize the amount of data transferred across the network.

Second, for reports that require smaller data sets that can be efficiently returned to the client
machine, few of the major report engine tools support data binding against custom objects. Reports
generated with popular tools such as Crystal Reports or Active Reports can only be generated against
ADO.NET objects such as the DataSet.

■Tip To be fair, these report engines also work in an “unbound” mode, in which you have the opportunity to sup-
ply the data to populate the report manually. This technique can certainly be used with business objects. You can
write code to pull the data out of your objects and provide that data to the report engine as it generates the report.
The trouble is that this is a lot of work, especially when compared to just binding the report to a DataSet.

Microsoft SQL Server 2005 Reporting Services and Developer Express Xtra Reports both support
data binding against objects in a manner similar to Windows Forms. Ideally, in the future, more of
the major report engine vendors will support data binding against objects just like Windows Forms
and Web Forms do, but that’s not the case today. At present, you can either generate the report from
a DataSet or use the engines in unbound mode and provide the data manually.

To enable the use of major report-generation tools, the ObjectAdapter class implements a con-
verter to load a DataSet with data from objects. It allows you to convert an object into a DataSet. You
can then generate reports in standard report engines such as Crystal Reports or Active Reports by
using that DataSet.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK290

6315_c05_final.qxd 4/13/06 12:36 PM Page 290

This approach is useful for lists, but not reports. By my definition, lists require relatively small
amounts of data, so it’s acceptable to transfer that data to a client and generate the report there.
Reports, on the other hand, require processing large amounts of data, and the closer you can do this
to the database, the better. In this case, directly using Crystal Enterprise or some other server-based
reporting tool to generate the report physically close to or in the database is often the best solution.

ObjectAdapter
The Csla.Data.ObjectAdapter class is a utility that generates a DataSet (or more accurately, a
DataTable in a DataSet) based on an object (or a collection of objects). This isn’t terribly difficult,
because reflection can be used to get a list of the properties or fields on the objects, and then loop
through the objects’ properties to populate the DataTable with their values.

ObjectAdapter is somewhat similar to a data adapter object such as OleDbDataAdapter, in that
it implements a Fill() method that fills a DataSet with data from an object or a collection.

To implement a Fill() method that copies data from a source, such as a business object, into
a DataSet, ObjectAdapter needs to support a certain amount of basic functionality. In ADO.NET,
data is stored in a DataTable, and then that DataTable is held in a DataSet. This means that object
data will be copied into a DataTable object.

To do this, ObjectAdapter needs to get a list of the properties exposed by the source object.
That list will be used to define the list of columns to be created in the target DataTable object.
Alternatively, it will also support the concept of a preexisting DataTable that already contains
columns. In that case, ObjectAdapter will attempt to find properties in the source object that
match the columns that already exist in the target DataTable object.

Also, rather obviously, the data values from the original data source must be retrieved. Reflec-
tion will be used to do this because it allows dynamic retrieval of the values.

Operational Scope
Figure 5-5 illustrates the possible data sources supported by the ObjectAdapter class.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 291

Figure 5-5. Data sources supported by ObjectAdapter

6315_c05_final.qxd 4/13/06 12:36 PM Page 291

■Tip The code could be simplified by only supporting binding to an object—but by supporting any valid data
source (including ADO.NET objects, or arrays of simple values), it provides a more flexible solution.

Ultimately, a list of column, property, or field names will be retrieved from the data source,
whether that be a DataView, an array or a collection, simple types (such as Integer or String), or
complex types (such as a Structure or an object).

In the end, all data sources implement the IList interface that’s defined in the .NET Frame-
work. However, sometimes some digging is required to find that interface; or it must be added by
creating a collection. Some data source objects, such as a DataSet, don’t expose IList directly.
Instead, they expose IListSource, which can be used to get an IList. In the case of simple types
such as a string or a business object, an ArrayList is created and the item is placed inside it, thus
providing an IList with which to work.

Fill Method
Like the OleDbDataAdapter, the ObjectAdapter implements a Fill() method (actually, several
overloads of Fill() for easy use). In the end, though, they all route to a single Fill() method that
fills a DataTable from data in a source object:

Public Sub Fill(ByVal dt As DataTable, ByVal source As Object)
If source Is Nothing Then
Throw New ArgumentException(My.Resources.NothingNotValid)

End If

Dim columns As List(Of String) = GetColumns(source)
If columns.Count < 1 Then Exit Sub

' create columns if needed
For Each column As String In columns
If Not dt.Columns.Contains(column) Then
dt.Columns.Add(column)

End If
Next

' get an IList and copy the data
CopyData(dt, GetIList(source), columns)

End Sub

The first thing this method does is get a list of column names (typically, the public properties
and fields) from the data source. It does this by calling a GetColumns() method (which will be cov-
ered later).

Next, the target DataTable is checked to ensure that it has a column corresponding to every
column name retrieved from GetColumns(). If any columns are missing, they are added to the
DataTable:

For Each column As String In columns
If Not dt.Columns.Contains(column) Then
dt.Columns.Add(column)

End If

This ensures that all properties or fields from the data source have a column in the DataTable
so they can be copied. With that done, all that remains is to initiate the copy of data from the source
object to the DataTable:

CopyData(dt, GetIList(source), columns)

CHAPTER 5 ■ COMPLETING THE FRAMEWORK292

6315_c05_final.qxd 4/13/06 12:36 PM Page 292

Unfortunately, this is complicated slightly by the fact that the source object could be one of
several object types. The GetIList() method sorts that out and ensures that it is an IList that is
passed to the CopyData() method.

GetIList() looks like this:

Private Function GetIList(ByVal source As Object) As IList

If TypeOf source Is IListSource Then
Return CType(source, IListSource).GetList

ElseIf TypeOf source Is IList Then
Return CType(source, IList)

Else
' they gave us a regular object - create a list
Dim col As New ArrayList
col.Add(source)
Return CType(col, IList)

End If
End Function

If the source object implements the IListSource interface, then its GetList() method is used
to retrieve the underlying IList. This is typically the case with a DataTable, for instance.

If the source object directly implements IList, then it is simply cast and returned.
Otherwise, the source object is assumed to be a simple type (such as String), a Structure,

or an object. In order to return an IList in this case, an ArrayList is created, the source object is
added to the ArrayList, and it is returned as the result. Since ArrayList implements IList, the
end result is that an IList is returned.

■Note This is the same technique used by the BindingSource object in Windows Forms data binding when
a simple type or object is provided as a data source for data binding.

Getting the Column Names
The Fill() method calls a GetColumns() method to retrieve a list of the column names from the
source object. If the source object is an ADO.NET DataView, it really will return a list of column
names. But more commonly, the source object will be a business object, in which case the list of
public properties and fields is returned.

GetColumns Method

The GetColumns() method determines the type of the source object and dispatches the work to
type-specific helper methods:

Private Function GetColumns(_
ByVal source As Object) As List(Of String)

Dim result As List(Of String)
' first handle DataSet/DataTable
Dim innerSource As Object
Dim iListSource As IListSource = TryCast(source, IListSource)
If iListSource IsNot Nothing Then
innerSource = iListSource.GetList

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 293

6315_c05_final.qxd 4/13/06 12:36 PM Page 293

Else
innerSource = source

End If

Dim dataView As DataView = TryCast(innerSource, DataView)
If dataView IsNot Nothing Then
result = ScanDataView(CType(innerSource, DataView))

End If

' now handle lists/arrays/collections
Dim iEnumerable As IEnumerable = _
TryCast(innerSource, IEnumerable)

If iEnumerable IsNot Nothing Then
Dim childType As Type = _
Utilities.GetChildItemType(innerSource.GetType)

result = ScanObject(childType)

Else
' they gave us a regular object
result = ScanObject(innerSource.GetType)

End If
Return result

End Function

As in GetIList(), if the source object implements IListSource, then its GetList() method is
called to retrieve the underlying IList object.

ScanDataView Method

Next, that object is checked to see if it is a DataView. If so, a ScanDataView() method is called to pull
the column names off the DataView object:

Private Function ScanDataView(ByVal ds As DataView) As List(Of String)

Dim result As New List(Of String)

Dim field As Integer

For field = 0 To ds.Table.Columns.Count - 1
result.Add(ds.Table.Columns(field).ColumnName)

Next
Return result

End Function

This is the simplest scenario, since the DataView object provides an easy interface to retrieve
the list of columns.

GetChildItemType Method

If the source object isn’t a DataView, but does directly implement the IEnumerable interface, then the
type of the child object is retrieved using a helper method from the Utilities class, named
GetChildItemType():

Dim iEnumerable As IEnumerable = _
TryCast(innerSource, IEnumerable)

If iEnumerable IsNot Nothing Then
Dim childType As Type = _
Utilities.GetChildItemType(innerSource.GetType)

result = ScanObject(childType)

CHAPTER 5 ■ COMPLETING THE FRAMEWORK294

6315_c05_final.qxd 4/13/06 12:36 PM Page 294

The Utilities.GetChildItemType() helper method checks to see if the type is an array. If so, it
returns the array’s element type—otherwise, it scans the properties of listType to find the default
property (otherwise known as an indexer):

Public Function GetChildItemType(ByVal listType As Type) As Type
Dim result As Type = Nothing
If listType.IsArray Then
result = listType.GetElementType()

Else
Dim indexer As DefaultMemberAttribute = _
CType(Attribute.GetCustomAttribute(listType, _
GetType(DefaultMemberAttribute)), DefaultMemberAttribute)

If indexer IsNot Nothing Then
For Each prop As PropertyInfo In listType.GetProperties(_
BindingFlags.Public Or _
BindingFlags.Instance Or _
BindingFlags.FlattenHierarchy)
If prop.Name = indexer.MemberName Then
result = Utilities.GetPropertyType(prop.PropertyType)

End If
Next

End If
End If
Return result

End Function

The default property can be identified because it will have the <DefaultMember()> attribute
added by the compiler. If a default property is found, the type returned by that default property is
returned as a result. If neither the array nor default property approaches work, then it isn’t possible
to determine the type of the child object, so null is returned.

ScanObject Method

Back in the GetColumns() method, a ScanObject() method is called, passing the type of the child
object as a parameter. The ScanObject() uses reflection against that type. If you recall, the
GetColumns() method itself might also call ScanObject() if it detects that the source object wasn’t
a collection but was a single, complex Structure or object:

' the source is a regular object
result = ScanObject(innerSource.GetType)

The ScanObject() method uses reflection much like you’ve seen in other methods within the
framework. But in this case, it not only assembles a list of public properties, but also of public fields:

Private Function ScanObject(ByVal sourceType As Type) As List(Of String)
Dim result As New List(Of String)

' retrieve a list of all public properties
Dim props As PropertyInfo() = sourceType.GetProperties()
If UBound(props) >= 0 Then
For column As Integer = 0 To UBound(props)
If props(column).CanRead Then
result.Add(props(column).Name)

End If
Next

End If

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 295

6315_c05_final.qxd 4/13/06 12:36 PM Page 295

' retrieve a list of all public fields
Dim fields As FieldInfo() = sourceType.GetFields()
If UBound(fields) >= 0 Then
For column As Integer = 0 To UBound(fields)
result.Add(fields(column).Name)

Next
End If

Return result
End Function

Given that this code is similar to other code you’ve seen earlier in the book, I won’t go through
it in detail. In the end, it returns a list of column names by finding the names of all public properties
and fields.

Copying the Data
The last step in the Fill() method is to call a CopyData() method to copy the data from the source
list to the DataTable. The list of column names from GetColumns() is also passed as a parameter, and
that list is used to retrieve the data from each item in the source list.

Private Sub CopyData(_
ByVal dt As DataTable, _
ByVal ds As IList, ByVal columns As List(Of String))

' load the data into the DataTable
dt.BeginLoadData()
For index As Integer = 0 To ds.Count - 1
Dim dr As DataRow = dt.NewRow
For Each column As String In columns
Try
dr(column) = GetField(ds(index), column)

Catch ex As Exception
dr(column) = ex.Message

End Try
Next
dt.Rows.Add(dr)

Next
dt.EndLoadData()

End Sub

Before doing any changes to the DataTable object, its BeginLoadData() method is called. This tells
the DataTable that a batch of changes are about to happen, so it suppresses its normal event-handling
process. This not only makes the changes more efficient to process, but avoids the possibility of the UI
doing a refresh for every little change to the DataTable.

Then the method loops through all the items in the source list. For each item, a new DataRow object
is created, the values are copied from the source object, and the DataRow is added to the DataTable. The
GetField() method, which is key to this process, is discussed in the following section.

When all the data has been copied into the DataTable, its EndLoadData() method is called. This
tells the object that the batch of changes is complete so it can resume its normal event, index, and
constraint processing.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK296

6315_c05_final.qxd 4/13/06 12:36 PM Page 296

GetField Method

The workhorse of CopyData() is the GetField() method. This method retrieves the specified column
property or field value from the source object. Given that the source object could be a simple or
complex type, GetField() is relatively long:

Private Shared Function GetField(_
ByVal obj As Object, ByVal fieldName As String) As String

Dim result As String
Dim dataRowView As DataRowView = TryCast(obj, DataRowView)
If dataRowView IsNot Nothing Then
' this is a DataRowView from a DataView
result = dataRowView.Item(fieldName).ToString

ElseIf TypeOf obj Is ValueType AndAlso obj.GetType.IsPrimitive Then
' this is a primitive value type
result = obj.ToString

Else
Dim tmp As String = TryCast(obj, String)
If tmp IsNot Nothing Then
' this is a simple string
result = obj.ToString

Else
' this is an object or Structure
Try
Dim sourcetype As Type = obj.GetType

' see if the field is a property
Dim prop As PropertyInfo = sourcetype.GetProperty(fieldName)

If prop Is Nothing OrElse Not prop.CanRead Then
' no readable property of that name exists - check for a field
Dim field As FieldInfo = sourcetype.GetField(fieldName)

If field Is Nothing Then
' no field exists either, throw an exception
Throw New System.Data.DataException(_
My.Resources.NoSuchValueExistsException & " " & fieldName)

Else
' got a field, return its value
result = field.GetValue(obj).ToString

End If

Else
' found a property, return its value
result = prop.GetValue(obj, Nothing).ToString

End If

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 297

6315_c05_final.qxd 4/13/06 12:36 PM Page 297

Catch ex As Exception
Throw New System.Data.DataException(_
My.Resources.ErrorReadingValueException & " " & fieldName, ex)

End Try
End If

End If
Return result

End Function

One of the supported data sources is an ADO.NET DataView. A DataView contains a list of
DataRowView objects. Because of this, GetField() handles DataRowView objects as follows:

Dim dataRowView As DataRowView = TryCast(obj, DataRowView)
If dataRowView IsNot Nothing Then
' this is a DataRowView from a DataView
result = dataRowView.Item(fieldName).ToString

The source list might also be an array of simple values such as Integer. In that case, a simple
value is returned:

ElseIf TypeOf obj Is ValueType AndAlso obj.GetType.IsPrimitive Then
' this is a primitive value type
result = obj.ToString

Similarly, the data source might be an array of String data, as shown here:

Dim tmp As String = TryCast(obj, String)
If tmp IsNot Nothing Then
' this is a simple string
result = obj.ToString

If the data source was none of these, then it’s a more complex type—a Structure or an object.
In this case, there’s more work to do, since reflection must be used to find the property or field and
retrieve its value. The first thing to do is get a Type object in order to provide access to type informa-
tion about the source object, as follows:

' this is an object or Structure
Try
Dim sourcetype As Type = obj.GetType

The code then checks to see if there’s a Property with the name of the specified column, as
shown here:

' see if the field is a property
Dim prop As PropertyInfo = sourcetype.GetProperty(fieldName)
If prop Is Nothing OrElse Not prop.CanRead Then

If there’s no such property (or if the property isn’t readable), then the assumption is that there’s
a matching field instead. However, if there is a readable property, its value is returned:

Else
' found a property, return its value
result = prop.GetValue(obj, Nothing).ToString

On the other hand, if no readable property is found, then a similar process is used to look for
a field:

' no readable property of that name exists - check for a field
Dim field As FieldInfo = sourcetype.GetField(fieldName)
If field Is Nothing Then

CHAPTER 5 ■ COMPLETING THE FRAMEWORK298

6315_c05_final.qxd 4/13/06 12:36 PM Page 298

If there’s no field by this name, then an exception is thrown to indicate that the GetField()
method was unsuccessful:

Throw New System.Data.DataException(_
My.Resources.NoSuchValueExistsException & " " & fieldName)

However, if there is a matching field, then its value is returned, as follows:

' got a field, return its value
result = field.GetValue(obj).ToString

If any other exception occurs during the process, it is caught and included as an inner excep-
tion. The reason for doing this is so the exception message can include the field name that failed
to make debugging easier:

Catch ex As Exception
Throw New System.Data.DataException(_
My.Resources.ErrorReadingValueException & " " & fieldName, ex)

End Try

The end result is that the GetField() method will return a property or field value from a row
in a DataView, from an array of simple values, or from a Structure or an object.

At this point, the ObjectAdapter is complete. Client code can use the Fill() methods to copy
data from virtually any object or collection of objects into a DataTable. Once the data is in a
DataTable, commercial reporting engines such as Crystal Reports or Active Reports can be used
to generate reports against the data.

Windows Data Binding
Much of the focus in Chapter 3 was on ensuring that business objects support Windows Forms data
binding. That support from the objects is useful, but can be made even more useful by adding some
functionality to each form. This can be done using a type of Windows Forms control called an
extender control.

Extender controls are added to a form, and they in turn add properties and behaviors to other
controls on the form, thus extending those other controls. A good example of this is the ErrorProvider
control, which extends other controls by adding the ability to display an error icon with a tooltip
describing the error.

ReadWriteAuthorization
Chapter 3 added authorization code to business objects, making them aware of whether each
property can be read or changed. The CanReadProperty() and CanWriteProperty() methods were
made Public so that code outside the object could easily determine whether the current user is
allowed to get or set each property on the object. One primary user of this functionality is the UI,
which can decide to alter its appearance to give users clues as to whether they are able to view or
alter each piece of data.

While this could be done by hand for each control on every form, the ReadWriteAuthorization
control helps automate the process of building a UI that enables or disables controls based on
whether properties can be read or changed.

If a control is bound to a property, and the user does not have read access to that property due
to authorization rules, the ReadWriteAuthorization control will disable that control. It also adds a
handler for the control’s Format event to intercept the value coming from the data source, substitut-
ing an empty value instead. The result is that data binding is prevented from displaying the data to
the user.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 299

6315_c05_final.qxd 4/13/06 12:36 PM Page 299

Similarly, if the user doesn’t have write access to a property, ReadWriteAuthorization will
attempt to mark any controls bound to that property as being read-only (or failing that, disabled);
ensuring that the user can’t attempt to alter the property value.

Like all Windows Forms components, extender controls inherit from System.ComponentModel.
Component. Additionally, to act as an extender control, the ReadWriteAuthorization control must
implement the IExtenderProvider interface:

<DesignerCategory("")> _
<ProvideProperty("ApplyAuthorization", GetType(Control))> _
Public Class ReadWriteAuthorization
Inherits System.ComponentModel.Component

Implements IExtenderProvider

Public Sub New(ByVal container As System.ComponentModel.IContainer)
container.Add(Me)

End Sub

The <ProvideProperty()> attribute is quite important. It specifies that ReadWriteAuthorization
extends components of type Control by adding an ApplyAuthorization property to them. In other
words, when a ReadWriteAuthorization control is on a form, all other controls on the form get a
dynamically added ApplyAuthorization property. Figure 5-6 shows a text box control’s Properties
window with the dynamically added ApplyAuthorization property.

The UI developer can set this property to True or False to indicate whether the
ReadWriteAuthorization control should apply authorization rules to that particular control.
You’ll see how this works as the control is implemented.

The <DesignerCategory()> attribute is just used to help Visual Studio decide what kind of
visual designer to use when editing the control. The value used here specifies that the default
designer should be used.

The class also implements a constructor that accepts an IContainer parameter. This con-
structor is required for extender controls, and is called by Windows Forms when the control is
instantiated. Notice that the control adds itself to the container as required by the Windows
Forms infrastructure.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK300

Figure 5-6. ApplyAuthorization property added to textBox1

6315_c05_final.qxd 4/13/06 12:36 PM Page 300

IExtenderProvider
The IExtenderProvider interface defines just one method: CanExtend(). This method is called by
Windows Forms to ask the extender control whether it wishes to extend any given control. Windows
Forms automatically calls CanExtend() for every control on the form:

Public Function CanExtend(_
ByVal extendee As Object) As Boolean _
Implements IExtenderProvider.CanExtend

If IsPropertyImplemented(extendee, "ReadOnly") OrElse _
IsPropertyImplemented(extendee, "Enabled") Then

Return True

Else
Return False

End If
End Function

The ReadWriteAuthorization control can extend any control that implements either a ReadOnly
or an Enabled property. This covers most controls, making ReadWriteAuthorization broadly useful.
If the potential target control implements either of these properties, a True result is returned to indi-
cate that the control will be extended.

The IsPropertyImplemented() method is a helper that uses reflection to check for the existence
of the specified properties on the target control:

Private Shared Function IsPropertyImplemented(ByVal obj As Object, _
ByVal propertyName As String) As Boolean

If obj.GetType.GetProperty(propertyName, _
BindingFlags.FlattenHierarchy Or _
BindingFlags.Instance Or _
BindingFlags.Public) IsNot Nothing Then

Return True

Else
Return False

End If
End Function

ApplyAuthorization Property
The <ProvideProperty()> attribute on ReadWriteAuthorization specified that an
ApplyAuthorization property would be dynamically added to all controls extended by
ReadWriteAuthorization. Of course, the controls being extended really have no knowledge of
this new property or what to do with it. All the behavior associated with the property is con-
tained within the extender control itself.

The extender control manages the ApplyAuthorization property by implementing both
GetApplyAuthorization() and SetApplyAuthorization() methods. These methods are called by
Windows Forms to get and set the property value for each control that has been extended. The
Get and Set are automatically prepended by Windows Forms to call these methods.

To manage a list of the controls that have been extended, a Dictionary object is used:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 301

6315_c05_final.qxd 4/13/06 12:36 PM Page 301

Private mSources As New Dictionary(Of Control, Boolean)

Public Function GetApplyAuthorization(_
ByVal source As Control) As Boolean

If mSources.ContainsKey(source) Then
Return mSources.Item(source)

Else
Return False

End If

End Function

Public Sub SetApplyAuthorization(_
ByVal source As Control, ByVal value As Boolean)

If mSources.ContainsKey(source) Then
mSources.Item(source) = value

Else
mSources.Add(source, value)

End If
End Sub

When Windows Forms indicates that the ApplyAuthorization property has been set for a par-
ticular extended control, the SetApplyAuthorization() method is called. This method records the
value of the ApplyAuthorization property for that particular control, using the control itself as the
key value within the Dictionary.

Conversely, when Windows Forms needs to know the property value of ApplyAuthorization
for a particular control, it calls GetApplyAuthorization(). The value for that control is retrieved
from the Dictionary object and returned. If the control can’t be found in the Dictionary, then
False is returned, since that control is obviously not being extended.

The end result here is that the ReadWriteAuthorization control maintains a list of all the con-
trols it extends, along with their ApplyAuthorization property values. In short, it knows about all
the controls it will affect, and whether it should be affecting them or not.

Applying Authorization Rules
At this point, the extender control’s basic plumbing is complete. It gets to choose which controls to
extend, and maintains a list of all the controls it does extend, along with the ApplyAuthorization
property value for each of those controls.

When the UI developer wants to enforce authorization rules for the whole form, she can
do so by triggering the ReadWriteAuthorization control. To allow this, the control implements a
ResetControlAuthorization() method. This method is Public, so it can be called by code in the
form itself. Typically, this method will be called immediately after a business object has been
loaded and bound to the form, or immediately after the user has logged into or out of the applica-
tion. It is also a good idea to call it after adding a new business object to the database, since some
objects will change their authorization rules to be different for an old object than for a new object.
You’ll see how this works in Chapter 9 in the Windows Forms UI for the sample application.

The ResetControlAuthorization() method loops through all the items in the list of extended
controls. This is the Dictionary object maintained by Get/SetApplyAuthorization, as discussed ear-
lier. The ApplyAuthorization value for each control is checked, and if it is true, then authorization
rules are applied to that control:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK302

6315_c05_final.qxd 4/13/06 12:36 PM Page 302

Public Sub ResetControlAuthorization()
For Each item As KeyValuePair(Of Control, Boolean) In mSources
If item.Value Then
' apply authorization rules
ApplyAuthorizationRules(item.Key)

End If
Next

End Sub

To apply the authorization rules, the code loops through the target control’s list of data bind-
ings. Each Binding object represents a connection between a property on the control and a data
source, so it is possible to get a reference to the data source through the DataSource property:

Private Sub ApplyAuthorizationRules(ByVal control As Control)
For Each binding As Binding In control.DataBindings
' get the BindingSource if appropriate
If TypeOf binding.DataSource Is BindingSource Then
Dim bs As BindingSource = CType(binding.DataSource, BindingSource)
' get the BusinessObject if appropriate
If TypeOf bs.DataSource Is Csla.Core.BusinessBase Then
Dim ds As Csla.Core.BusinessBase = _

CType(bs.DataSource, Csla.Core.BusinessBase)
' get the object property name
Dim propertyName As String = _
binding.BindingMemberInfo.BindingField

ApplyReadRules(control, binding, propertyName, _
ds.CanReadProperty(propertyName))

ApplyWriteRules(control, binding, propertyName, _
ds.CanWriteProperty(propertyName))

ElseIf TypeOf bs.DataSource Is Csla.Core.IReadOnlyObject Then
Dim ds As Csla.Core.IReadOnlyObject = _
CType(bs.DataSource, Csla.Core.IReadOnlyObject)

' get the object property name
Dim propertyName As String = _
binding.BindingMemberInfo.BindingField

ApplyReadRules(control, binding, propertyName, _
ds.CanReadProperty(propertyName))

End If
End If

Next
End Sub

If the data source is a subclass of Csla.Core.BusinessBase, then both the ApplyReadRules() and
ApplyWriteRules() methods are called to change the target control’s state based on whether the
current user is authorized to read and write the property. If the data source implements Csla.Core.
IReadOnlyObject, then only the ApplyReadRules() method is called, as it is assumed that all proper-
ties are read-only due to the nature of the object itself. It is also assumed that the UI developer is
only using read-only controls for these read-only property values.

Notice that both ApplyReadRules() and ApplyWriteRules() accept the target control, the
Binding object, the property name, and a Boolean indicating whether the user is authorized to
perform the particular operation (read or write). This ensures that these methods have all the
information they need to know how to alter the target control’s appearance.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 303

6315_c05_final.qxd 4/13/06 12:36 PM Page 303

ApplyReadRules Method

Finally, we get to the heart of the matter: altering the target control. If the user is not allowed to read
the property value, the target control must not display the value. To prevent display of the value, two
things are done to the target control: it is disabled, and any values coming from the data source to
the control are intercepted and replaced with an empty value.

Disabling the control is easily accomplished by setting its Enabled property to False. All con-
trols have an Enabled property, so this is not an issue. Intercepting all values from the data source
before they reach the control is more complex. Fortunately, data binding offers a solution through
the Format event. All Binding objects have both Format and Parse events, which can be used to alter
data as it moves from the data source to the control and then back to the data source.

The Format event is raised after the data value has been read from the data source, but before
the value is provided to the control. The idea is that a UI developer can handle this event and use it
to format the value for display. In this case, however, the value will simply be replaced with a default
empty value instead, thus ensuring that the control never gets the real value that the user isn’t
authorized to see.

To handle the Format event, a method is required:

Private Sub ReturnEmpty(_
ByVal sender As Object, ByVal e As ConvertEventArgs)
e.Value = GetEmptyValue(e.DesiredType)

End Sub

Private Function GetEmptyValue(ByVal desiredType As Type) As Object
Dim result As Object = Nothing
If desiredType.IsValueType Then
result = Activator.CreateInstance(desiredType)

End If
Return result

End Function

The ReturnEmpty() method handles the Format event. It then calls GetEmptyValue() to get an
empty value appropriate for the data type of the value read from the data source. That empty value
is returned through e.Value. The result is that data binding puts this empty value—rather than the
original value from the data source—into the control.

Within the ApplyReadRules() method, if the user is not authorized to read the property, the
control is disabled and the event handler is set up:

ctl.Enabled = False
AddHandler binding.Format, AddressOf ReturnEmpty

' clear the value displayed by the control
Dim propertyInfo As PropertyInfo = _
ctl.GetType.GetProperty(binding.PropertyName, _
BindingFlags.FlattenHierarchy Or _
BindingFlags.Instance Or _
BindingFlags.Public)

If propertyInfo IsNot Nothing Then
propertyInfo.SetValue(ctl, _
GetEmptyValue(_
Utilities.GetPropertyType(propertyInfo.PropertyType)), _
New Object() {})

End If

Of course, the control might have already contained a value, and if so, that value must
be removed. To do this, the type of the property value is retrieved using reflection, and the

CHAPTER 5 ■ COMPLETING THE FRAMEWORK304

6315_c05_final.qxd 4/13/06 12:36 PM Page 304

GetEmptyValue() method is called to get an appropriate empty value. This value is then placed
into the control, overwriting any previous value the control may have had.

The reverse of the process occurs if the user is allowed to read the property. In that case, the
control is enabled and the Format event handler is removed:

Dim couldRead As Boolean = ctl.Enabled
ctl.Enabled = True
RemoveHandler binding.Format, AddressOf ReturnEmpty
If Not couldRead Then binding.ReadValue()

Additionally, if the control was disabled before this code was run, it is assumed that the control
doesn’t contain a valid value. The ReadValue() method on the Binding object is called to force data
binding to reload the control with the value from the data source.

ApplyWriteRules Method

The ApplyWriteRules() method is very similar to ApplyReadRules(), but takes a slightly different
approach. In this case, users may be able to view the data, but they certainly can’t be allowed to edit
the data. If the control implements a ReadOnly property, then it can be set to False; otherwise, the
control must be entirely disabled through the use its Enabled property.

As an optimization, if the control is a Label, the method immediately exits. Because Label
controls are so common, and they are read-only by definition, it is worth this special check.

The preference is to use the control’s ReadOnly property if it is implemented by the control.
Reflection is used to get a PropertyInfo object corresponding to the control’s ReadOnly property:

' enable/disable writing of the value
Dim propertyInfo As PropertyInfo = _
ctl.GetType.GetProperty("ReadOnly", _
BindingFlags.FlattenHierarchy Or _
BindingFlags.Instance Or _
BindingFlags.Public)

If propertyInfo IsNot Nothing Then
Dim couldWrite As Boolean = _
Not CBool(propertyInfo.GetValue(ctl, New Object() {}))

propertyInfo.SetValue(ctl, Not canWrite, New Object() {})
If Not couldWrite AndAlso canWrite Then binding.ReadValue()

If a ReadOnly property is found, then it is set to True or False depending on whether the user
is allowed or denied write access to the business object property:

propertyInfo.SetValue(ctl, Not canWrite, New Object() {})

First, though, the value of the control’s ReadOnly property is retrieved. If it is False, that means
that the user was already able to edit the control—the user could write, so couldWrite is True. This
is important, because if the user was unable to edit the control, and now is able to edit the control,
data binding needs to be told to reload the data from the data source into the control:

If Not couldWrite AndAlso canWrite Then binding.ReadValue()

Otherwise, it is possible for the user to be placed into an empty control even though there
really is a value in the business object’s property.

If the control doesn’t have a ReadOnly property, then the Enabled property is used as a fallback.
The same procedure is used, just with the Enabled property instead:

Dim couldWrite As Boolean = ctl.Enabled
ctl.Enabled = canWrite
If Not couldWrite AndAlso canWrite Then binding.ReadValue()

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 305

6315_c05_final.qxd 4/13/06 12:36 PM Page 305

The end result is that when the user is denied write access to a business object’s property, con-
trols bound to that property are either set to ReadOnly or are disabled. And if the user is denied read
access to a business object’s property, controls bound to that property are disabled and empty val-
ues are placed in the control, rather than any real values from the business object.

BindingSourceRefresh
The BindingSourceRefresh control is also an extender control, but its purpose is quite different from
the ReadWriteAuthorization control. It turns out that there’s a quirk (either a bug or an odd imple-
mentation choice) in the way Windows Forms data binding works. The BindingSourceRefresh
control helps work around this quirk.

The quirk is that when data is changed in a business object, data binding doesn’t always dis-
play the changes in the controls on the form. This occurs in the following sequence of events:

1. The user edits a value in a bound control.

2. Data binding puts the user’s new value into the business object.

3. The business object alters the value in the property Set block.

4. The business object raises its PropertyChanged event.

You would expect that data binding would handle the PropertyChanged event, realize that the
property’s data has changed, and then update the control with the new value. And that does happen
for all controls except the current control. In other words, the PropertyChanged event causes data
binding to refresh all other controls on the form except the control that initiated the change in the
first place.

Obviously, this can be problematic. Consider a TextBox control that is bound to a business
object property that uses a SmartDate. Remember that SmartDate accepts the + character and replaces
it with tomorrow’s date. Due to this data binding quirk, when the user enters a + character, that value
is put into the business object, which translates it to tomorrow’s date—but that new value is not dis-
played to the user. The user continues to see the + character.

What’s even more confusing for users is that if they edit a different control, then the previous
control will be updated with tomorrow’s date. Remember that data binding updates everything
except the current control when it gets a PropertyChanged event.

This is the problem BindingSourceRefresh is intended to solve. It does so by interacting
with the BindingSource control that manages the data binding for a given business object. While
ReadWriteAuthorization extended controls like TextBox and Label, BindingSourceRefresh extends
BindingSource controls.

The plumbing code in this control is virtually identical to ReadWriteAuthorization. It inherits
from Component and implements IExtenderProvider:

<DesignerCategory("")> _
<ProvideProperty("ReadValuesOnChange", GetType(BindingSource))> _
Public Class BindingSourceRefresh
Inherits System.ComponentModel.Component

Implements IExtenderProvider

In this case, however, controls on the form gain a new ReadValuesOnChange property. The
CanExtend() method returns True only for BindingSource controls:

Public Function CanExtend(ByVal extendee As Object) As Boolean _
Implements IExtenderProvider.CanExtend

If TypeOf extendee Is BindingSource Then
Return True

CHAPTER 5 ■ COMPLETING THE FRAMEWORK306

6315_c05_final.qxd 4/13/06 12:36 PM Page 306

Else
Return False

End If
End Function

The control also implements GetReadValuesOnChange() and SetReadValuesOnChange() methods,
using a private Dictionary to keep track of the property values for each extended control. This is the
same concept as was used in ReadWriteAuthorization, with one twist. When SetReadValuesOnChange()
is called, it not only stores the ReadValuesOnChange property value, but it immediately interacts with
the control being extended:

Public Sub SetReadValuesOnChange(_
ByVal source As BindingSource, ByVal value As Boolean)

If mSources.ContainsKey(source) Then
mSources.Item(source) = value

Else
mSources.Add(source, value)

End If
If value Then
'hook
AddHandler source.BindingComplete, AddressOf Source_BindingComplete

Else
'unhook
RemoveHandler source.BindingComplete, AddressOf Source_BindingComplete

End If
End Sub

What it is doing here is adding or removing an event handler for the BindingSource control’s
BindingComplete event. This event is raised by a BindingSource control after all controls have had
their values updated through data binding.

Well, all controls except the current one, of course. The Source_BindingComplete() method
takes the extra step of forcing the BindingSource control to refresh the value for the current binding
as well:

Private Sub Source_BindingComplete(_
ByVal sender As Object, ByVal e As BindingCompleteEventArgs)

e.Binding.ReadValue()
End Sub

The BindingComplete event includes a BindingCompleteEventArgs parameter, and that parame-
ter includes a reference to the currently active Binding object. It is this Binding object that isn’t
refreshed automatically when data binding gets a PropertyChanged event from the underlying data
source. By calling its ReadValue() method, this code forces data binding to read the value from the
data source and update the current control’s display as well.

The BindingSourceRefresh control should be used to force data refreshes for all BindingSource
controls bound to detail forms. It isn’t necessary when only complex controls such as a GridView or
ListBox are bound to the object. You’ll see this control in action in Chapter 9.

Web Forms Data Binding
Web Forms data binding in ASP.NET 2.0 is bidirectional, meaning that data is copied from the data
source into the web form’s controls, and then from those controls back into the data source (either
a preexisting instance, or a newly created instance) on a postback. This is powerful, as it simplifies
both the display and update of data.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 307

6315_c05_final.qxd 4/13/06 12:36 PM Page 307

Unfortunately, the data source controls provided with ASP.NET are not designed to work with
objects that contain business logic—meaning that they aren’t useful when working with CSLA .NET
business objects. To overcome this limitation, the CslaDataSource control is an ASP.NET data source
control that is designed to work with objects containing business logic. This control allows the full
use of Web Forms data binding with rich business objects.

Data source controls in ASP.NET have two major areas of functionality: runtime and design
time. Runtime functionality is the actual data binding implementation—it copies data from the
data source to the controls and back again. Design time functionality exists to support Visual Studio
2005, allowing developers to graphically create web pages using common controls like the
DataGridView and DetailsView when they are bound to the data source control.

It turns out that implementing runtime functionality is relatively straightforward, but provid-
ing design time functionality is more complex. Table 5-6 lists the classes required to implement the
CslaDataSource control’s runtime and design time support.

Table 5-6. Classes Required to Implement the CslaDataSource Control

Class Description

Csla.Web.CslaDataSource The data source control itself; used directly by the UI
developer

Csla.Web.CslaDataSourceView Provides the actual implementation of data binding for
CslaDataSource

Csla.Web.CslaDataSourceDesigner The Visual Studio designer for CslaDataSource

Csla.Web.CslaDesignerDataSourceView Provides schema information and sample data for the
designer

Csla.Web.ObjectSchema The schema object for a business object, responsible
for returning an instance of ObjectViewSchema

Csla.Web.ObjectViewSchema Provides actual information about a business object;
specifically information about all the business object’s
bindable properties

Csla.Web.Design.ObjectFieldInfo Maintains information about a specific field in the
object schema

The detailed design issues around building an ASP.NET data source control are outside the
scope of this book. Nonetheless, I’ll walk quickly through the code in these classes to call out the
highlights of the implementation.

First, though, it is helpful to understand the relationship between all these classes. Figure 5-7
shows how they are related.

The UI developer drags a CslaDataSource control onto a Web Form and interacts with it. While
in Visual Studio, all that interaction is actually coordinated by CslaDataSourceDesigner, though in
reality all the hard work is done by CslaDesignerDataSourceView.

When a control such as GridView is bound to the CslaDataSource, it requests schema informa-
tion about the data source. This schema information is created and returned by the ObjectSchema,
ObjectViewSchema, and ObjectFieldInfo objects.

Finally, at runtime, the web form interacts with CslaDataSource to perform the actual data
binding. All the hard work is actually handled by CslaDataSourceView, an instance of which is
managed by the CslaDataSource control.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK308

6315_c05_final.qxd 4/13/06 12:36 PM Page 308

CslaDataSource
The CslaDataSource class is the primary entry point at both design time and runtime. This is the
object that a developer places on his web form when building a page. But really it is primarily a
coordinator that connects all the pieces of the data source control together.

This starts with the declaration of the class itself, in which a <Designer()> attribute is used
to connect CslaDataSource to CslaDataSourceDesigner within Visual Studio:

<Designer(GetType(Csla.Web.Design.CslaDataSourceDesigner))> _
<ToolboxData("<{0}:CslaDataSource runat=""server""></{0}:CslaDataSource>")> _
Public Class CslaDataSource
Inherits DataSourceControl

Within the class itself, the code is largely concerned with providing the ASP.NET data binding
infrastructure with a reference to the CslaDataSourceView object, and relaying events from the
CslaDataSourceView back to the UI. Basically, CslaDataSource is merely a go-between at runtime,
and a way of finding CslaDataSourceDesigner at design time.

The only bit of functionality that a UI developer will see is that CslaDataSource declares and
raises four events. The UI developer must respond to these events to provide the interaction with
the business object. Table 5-7 lists the events.

Table 5-7. Events Raised by the CslaDataSource Control

Event Description

SelectObject Requests that the UI provide a reference to the business object that is the data
source

InsertObject Requests that the UI insert a new business object based on the data from the
form

UpdateObject Requests that the UI update a business object with the data from the form,
based on the key value provided

DeleteObject Requests that the UI delete the business object based on the key value provided

These four events are directly analogous to the four method names required by the ASP.NET
ObjectDataSource. Rather than using reflection to invoke a set of methods, I opted to raise events,
as I feel that this is an easier programming model. With the ObjectDataSource, the UI developer

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 309

Figure 5-7. Relationship between the classes in CslaDataSource

6315_c05_final.qxd 4/13/06 12:36 PM Page 309

must implement four methods (or defer to those in an ADO.NET TableAdapter); while with
CslaDataSource, the developer simply handles these four events.

There is a custom EventArgs object for each of the events: SelectObjectArgs, InsertObjectArgs,
UpdateObjectArgs, and DeleteObjectArgs, respectively. Each one provides properties that are used
within the event handler.

Handling the Events in a Page
For instance, a SelectObject event handler may look like this:

Protected Sub CustomerDataSource_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles CustomerDataSource.SelectObject

e.BusinessObject = Customer.NewCustomer()
End Sub

Notice that SelectObjectArgs defines a BusinessObject property, which must be set to the
object that is to be used as a data source.

A typical UpdateObject event handler is a bit different:

Protected Sub CustomerDataSource_UpdateObject(_
ByVal sender As Object, ByVal e As Csla.Web.UpdateObjectArgs) _
Handles CustomerDataSource.UpdateObject

Dim obj As Customer = Customer.GetCustomer(e.Keys("Id").ToString)
Csla.Data.DataMapper.Map(e.Values, obj)
obj.Save()
e.RowsAffected = 1

End Sub

The e.Keys value is a name/value list of key values. The Id key value is used to load the customer
object from the database, and then the DataMapper class is used to map the values from e.Values
(another name/value list) to the properties of the object.

If you wanted to implement a type of field-level concurrency, the e.OldValues list contains the
values from the data source when the form was loaded.

InsertObjectArgs exposes only e.Values, while DeleteObjectArgs exposes only e.Keys. The usage
of both these events is comparable to UpdateObject:

Protected Sub CustomerDataSource_InsertObject(_
ByVal sender As Object, ByVal e As Csla.Web.InsertObjectArgs) _
Handles CustomerDataSource.InsertObject

Dim obj As Customer = Customer.NewCustomer()
Csla.Data.DataMapper.Map(e.Values, obj)
obj.Save()
e.RowsAffected = 1

End Sub

Protected Sub CustomerDataSource_DeleteObject(_
ByVal sender As Object, ByVal e As Csla.Web.DeleteObjectArgs) _
Handles CustomerDataSource.DeleteObject

Customer.DeleteCustomer(e.Keys("Id").ToString)
e.RowsAffected = 1

End Sub

CHAPTER 5 ■ COMPLETING THE FRAMEWORK310

6315_c05_final.qxd 4/13/06 12:36 PM Page 310

All the custom EventArgs objects except SelectObjectArgs include a RowsAffected property
that the event handler should set to indicate how many rows of data were affected by the operation.

In Chapter 10, you’ll see complete examples of these event handlers, including exception han-
dling and the use of Session to reduce the number of hits on the database.

Event Declaration
Each event is declared in CslaDataSource, along with a method to raise that event. For instance,
here’s the SelectObject event and related method:

Public Event SelectObject As EventHandler(Of SelectObjectArgs)

Friend Sub OnSelectObject(ByVal e As SelectObjectArgs)
RaiseEvent SelectObject(Me, e)

End Sub

EventHandler(Of T) is a generic template in the .NET Framework that simplifies the declara-
tion of event handler type events. Notice that the OnSelectObject() method is Friend in scope. It
will only be called by CslaDataSourceView, and shouldn’t be visible to UI or business developers.

CslaDataSourceView
The real work of data binding at runtime is handled by the CslaDataSourceView. ASP.NET gets a
reference to this object through CslaDataSource, but it is this object that actually interacts with the
data source. The object maintains a reference to the CslaDataSource control that created it, along
with the assembly name and type name of the business object to which it is bound:

Public Class CslaDataSourceView
Inherits DataSourceView

Private mOwner As CslaDataSource
Private mTypeName As String
Private mTypeAssemblyName As String

The class inherits from System.Web.UI.DataSourceView, and so is required (at a minimum) to
override the ExecuteSelect() method. It also overrides ExecuteInsert(), ExecuteUpdate(), and
ExecuteDelete().

ASP.NET calls these methods to trigger the appropriate operation at the appropriate time. For
instance, when a control’s data binding requires data, ASP.NET invokes the ExecuteSelect() method,
and when data is to be inserted, it invokes the ExecuteInsert() method.

ExecuteInsert
CslaDataSourceView doesn’t actually do much work. Rather, it calls methods on CslaDataSource to
have it raise the four data access methods. The event handlers in the page then do the real work.
For instance, here’s the ExecuteInsert() method:

Protected Overrides Function ExecuteInsert(_
ByVal values As System.Collections.IDictionary) As Integer

' tell the page to insert the object
Dim args As New InsertObjectArgs(values)
mOwner.OnInsertObject(args)
Return args.RowsAffected

End Function

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 311

6315_c05_final.qxd 4/13/06 12:36 PM Page 311

An instance of InsertObjectArgs is created and initialized with the values list. This is a list of
name/value pairs for all the data elements from the web page (provided by ASP.NET), which pre-
sumably correspond to properties on the business object.

Then the OnInsertObject() method on CslaDataSource is called. That method simply raises the
InsertObject method so the web form can handle the event to create a new business object and
insert it into the database.

ExecuteSelect
The ExecuteUpdate() and ExecuteDelete() methods are quite similar, but ExecuteSelect() is a bit
more complex:

Protected Overrides Function ExecuteSelect(_
ByVal arguments As System.Web.UI.DataSourceSelectArguments) As _
System.Collections.IEnumerable

' get the object from the page
Dim args As New SelectObjectArgs
mOwner.OnSelectObject(args)
Dim obj As Object = args.BusinessObject

Dim result As Object
If arguments.RetrieveTotalRowCount Then
If obj Is Nothing Then
result = 0

ElseIf TypeOf obj Is IList Then
result = CType(obj, IList).Count

ElseIf TypeOf obj Is IEnumerable Then
Dim temp As IEnumerable = CType(obj, IEnumerable)
Dim count As Integer = 0
For Each item As Object In temp
count += 1

Next
result = count

Else
result = 1

End If

Else
result = obj

End If

' if the result isn't IEnumerable then
' wrap it in a collection
If Not TypeOf result Is IEnumerable Then
Dim list As New ArrayList
list.Add(result)
result = list

End If

' now return the object as a result
Return CType(result, IEnumerable)

End Function

CHAPTER 5 ■ COMPLETING THE FRAMEWORK312

6315_c05_final.qxd 4/13/06 12:36 PM Page 312

The first bit of complexity comes because ExecuteSelect() can be called either to retrieve a
data source or to retrieve the number of rows in the data source. If it is asked to retrieve the row
count, the method still must call OnSelectObject() on CslaDataSource so the UI event handler can
return the business object:

' get the object from the page
Dim args As New SelectObjectArgs
mOwner.OnSelectObject(args)
Dim obj As Object = args.BusinessObject

These lines of code are run in every case. If the business object is to be retrieved, then it is
returned as a result, but if the row count was requested, then the following code is used to get the
number of items in the business object and return that number as a result, rather than the business
object itself:

If arguments.RetrieveTotalRowCount Then
If obj Is Nothing Then
result = 0

ElseIf TypeOf obj Is IList Then
result = CType(obj, IList).Count

ElseIf TypeOf obj Is IEnumerable Then
Dim temp As IEnumerable = CType(obj, IEnumerable)
Dim count As Integer = 0
For Each item As Object In temp
count += 1

Next
result = count

Else
result = 1

End If

If the business object reference is Nothing, there are zero rows of data. If the object imple-
ments the IList interface, the count is simply retrieved from the object; while if it only
implements IEnumerable, the code loops through all items in the list and counts them. Other-
wise, the business object is not a collection at all, so obviously the result is 1.

Regardless of whether the method is returning the business object or the row count, Web Forms
data binding requires that the data source be IEnumerable—the most basic interface for a collection or
list in .NET. The challenge is that many business objects are simple objects, like Customer or Invoice;
and of course, the row count is a simple int value. These values don’t implement IEnumerable, and so
can’t be directly returned as a result.

The ExecuteSelect() method overcomes this issue by checking to see if the result to be
returned implements IEnumerable; if not, it wraps the result in an ArrayList collection:

' if the result isn't IEnumerable then
' wrap it in a collection
If Not TypeOf result Is IEnumerable Then
Dim list As New ArrayList
list.Add(result)
result = list

End If

' now return the object as a result
Return CType(result, IEnumerable)

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 313

6315_c05_final.qxd 4/13/06 12:36 PM Page 313

In most cases, the end result is that the business object created by the UI event handler is
returned as a result (possibly wrapped in an ArrayList object). In other cases, the row count is
returned instead, as requested by ASP.NET.

The CslaDataSource and CslaDataSourceView classes are the only ones required to support run-
time operations. But they don’t provide designer support within Visual Studio, and that is an integral
part of the web development experience. That’s where the rest of the classes come into play.

CslaDataSourceDesigner
The CslaDataSourceDesigner class is the counterpart to CslaDataSource. Like CslaDataSource,
CslaDataSourceDesigner is little more than a switchboard, routing calls to the
CslaDesignerDataSourceView object where the real work occurs.

In its role as go-between, CslaDataSourceDesigner maintains references to the CslaDataSource
control itself, and to the CslaDesignerDataSourceView object:

Public Class CslaDataSourceDesigner
Inherits DataSourceDesigner

Private mControl As CslaDataSource = Nothing
Private mView As CslaDesignerDataSourceView = Nothing

CslaDataSourceDesigner is also responsible for telling the Web Forms page designer what capa-
bilities are supported by the control. For instance, the CanRefreshSchema property is used by Visual
Studio to determine whether the refresh schema option is available for the data source control, as
in Figure 5-8. CslaDataSource does support this capability, so the property returns True:

Public Overrides ReadOnly Property CanRefreshSchema() As Boolean
Get
Return True

End Get
End Property

As with CslaDataSource and CslaDataSourceView, however, the real work of providing design
time support is handled by the view class: CslaDesignerDataSourceView.

CslaDesignerDataSourceView
The CslaDesignerDataSourceView object is really in control of what capabilities Visual Studio offers
to the developer for a given data source. This object is responsible for providing the information
listed in Table 5-8.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK314

Figure 5-8. Refresh schema link enabled for a CslaDataSource control

6315_c05_final.qxd 4/13/06 12:36 PM Page 314

Table 5-8. Information Provided by CslaDesignerDataSourceView

Information Description

Object schema Schema information describing the properties of the data source (busi-
ness object)

Sample data Sample data for display in controls during design time; must match the
object schema

Object capabilities Flags indicating whether the data source supports various capabilities
(such as insert, update, and delete)

Control capabilities Flags indicating whether the control supports various capabilities (such
as retrieving the row count)

Object Schema
The object schema information is created and returned through the ObjectSchema class, so
CslaDesignerDataSourceView merely needs to delegate the work:

Public Overrides ReadOnly Property Schema() As IDataSourceViewSchema
Get
Return New ObjectSchema(_
mOwner.DataSourceControl.TypeAssemblyName, _
mOwner.DataSourceControl.TypeName).GetViews(0)

End Get
End Property

I’ll discuss ObjectSchema shortly. The schema information returned here is used by Visual Stu-
dio so that controls like DetailsView can be aware of the columns/properties provided by the data
source, along with their data types and other information.

Sample Data
More interesting is the GetDesignTimeData() method, which returns sample data to populate con-
trols like GridView at design time. This method is really the heart of CslaDesignerDataSourceView:

Public Overrides Function GetDesignTimeData(_
ByVal minimumRows As Integer, _
ByRef isSampleData As Boolean) As IEnumerable

Dim schema As IDataSourceViewSchema = Me.Schema
Dim result As New DataTable

' create the columns
For Each item As IDataSourceFieldSchema In schema.GetFields
result.Columns.Add(item.Name, item.DataType)

Next

' create sample data
For index As Integer = 1 To minimumRows
Dim values(result.Columns.Count - 1) As Object
Dim colIndex As Integer = 0
For Each col As DataColumn In result.Columns
If col.DataType.Equals(GetType(String)) Then
values(colIndex) = "abc"

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 315

6315_c05_final.qxd 4/13/06 12:36 PM Page 315

ElseIf col.DataType.Equals(GetType(Date)) Then
values(colIndex) = Today.ToShortDateString

ElseIf col.DataType.Equals(GetType(Boolean)) Then
values(colIndex) = False

ElseIf col.DataType.IsPrimitive Then
values(colIndex) = index

ElseIf col.DataType.Equals(GetType(Guid)) Then
values(colIndex) = Guid.Empty

ElseIf col.DataType.IsValueType Then
values(colIndex) = _
Activator.CreateInstance(col.DataType)

Else
values(colIndex) = Nothing

End If
colIndex += 1

Next
result.LoadDataRow(values, LoadOption.OverwriteChanges)

Next

isSampleData = True
Return CType(result.DefaultView, IEnumerable)

End Function

The data returned by this method must be in an IEnumerable list. The easiest way to create a set
of tabular data is to use an ADO.NET DataTable object, so this method calls the Schema property to
get an ObjectViewSchema object (which implements the IDataSourceViewSchema interface) represent-
ing the schema of the business object. That information is then used to construct a DataTable with
columns matching the properties of the business object:

Dim schema As IDataSourceViewSchema = Me.Schema
Dim result As New DataTable

' create the columns
For Each item As IDataSourceFieldSchema In schema.GetFields
result.Columns.Add(item.Name, item.DataType)

Next

The minimumRows parameter passed into the method indicates the number of rows of sample
data that are to be created. With an empty DataTable created, the code simply loops to create the
specified number of rows, inserting each one into the DataTable. Each common data type is pro-
vided with a default value that is displayed to the developer at design time. Then the DefaultView
for the DataTable is returned as an IEnumerable value so that the data can be displayed.

Figure 5-9 shows an example of sample data displayed in a DetailsView control.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK316

Figure 5-9. Sample data displayed in a DetailsView control

6315_c05_final.qxd 4/13/06 12:36 PM Page 316

Object Capabilities
Visual Studio needs to know the capabilities of the data source so that it can provide the UI devel-
oper with appropriate options at design time. Specifically, it relies on the following properties:

• CanDelete

• CanInsert

• CanUpdate

Figure 5-10 shows how these properties are used by Visual Studio to provide the set of options
to the business developer.

The options to enable inserting, editing (updating), and deleting are all driven by the proper-
ties discussed here. If CanInsert returns False, for instance, then the Enable Inserting option won’t
be visible to the business developer within Visual Studio.

Both BusinessBase and BusinessListBase are used to create editable objects, thus automati-
cally supporting delete, insert, and update operations. Recall that in Chapter 3 both these classes
implement the Csla.Core.IEditableObject interface, making it easy to determine if the business
object class is one of these types. For instance, the CanUpdate property looks like this:

Public Overrides ReadOnly Property CanUpdate() As Boolean
Get
Dim objType As Type = CslaDataSource.GetType(_
mOwner.DataSourceControl.TypeAssemblyName, _
mOwner.DataSourceControl.TypeName)

If GetType(Csla.Core.IUndoableObject).IsAssignableFrom(objType) Then
Return True

Else
Return False

End If
End Get

End Property

The CanDelete and CanInsert properties are similar. The property calls a GetType() method
on CslaDataSource to retrieve a Type object representing the type of the business object. Here’s the
code for that helper method in CslaDataSource:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 317

Figure 5-10. Data source options presented to the developer by Visual Studio

6315_c05_final.qxd 4/13/06 12:36 PM Page 317

Friend Overloads Shared Function [GetType](_
ByVal assemblyName As String, ByVal typeName As String) As Type

If Len(assemblyName) > 0 Then
Dim asm As Assembly = Assembly.Load(assemblyName)
Return asm.GetType(typeName, True, True)

Else
Return Type.GetType(typeName, True, True)

End If
End Function

This helper method accepts the assembly name and type name, and then uses reflection to
load the assembly and get a Type object for the specified type.

This Type object is then used by the CanUpdate property to determine whether the business
type implements Csla.Core.IEditableObject:

If GetType(Csla.Core.IUndoableObject).IsAssignableFrom(objType) Then

If so, the property returns True; otherwise it returns False—assuming that the business object
is a read-only object.

Control Capabilities
The capabilities of the control itself must also be returned. These capabilities are reflected by the
following properties:

• CanRetrieveTotalRowCount

• CanPage

• CanSort

Visual Studio uses these options in the same way it uses the object capabilities discussed
earlier: to control the options available to the UI developer.

Earlier in the chapter, the ExecuteSelect() method in CslaDataSourceView included code
to support retrieval of the row count, so CanRetrieveTotalRowCount will return True.

The other two methods will return False because CslaDataSource doesn’t include code to
manage paging or sorting of data.

This completes CslaDesignerDataSourceView, which is used by the Web Form designer in
Visual Studio to provide the UI developer with a rich design time experience. Of course, the Schema
property in this class relies entirely on the capabilities provided by the ObjectSchema class.

ObjectSchema
Following the theme set forth by CslaDataSource and CslaDataSourceDesigner, ObjectSchema is pri-
marily a go-between or coordinator. It delegates all the real work to ObjectViewSchema.

When ObjectSchema is instantiated, it accepts the assembly and type names for the business
class, and those are stored in instance fields:

Private mTypeAssemblyName As String = ""
Private mTypeName As String = ""

Public Sub New(ByVal assemblyName As String, ByVal typeName As String)
mTypeAssemblyName = assemblyName
mTypeName = typeName

End Sub

CHAPTER 5 ■ COMPLETING THE FRAMEWORK318

6315_c05_final.qxd 4/13/06 12:36 PM Page 318

The GetViews() method then creates and returns an instance of ObjectViewSchema, which is
also provided with the assembly and type name for the business object:

Public Function GetViews() As _
System.Web.UI.Design.IDataSourceViewSchema() _
Implements System.Web.UI.Design.IDataSourceSchema.GetViews

Return New IDataSourceViewSchema() _
{New ObjectViewSchema(mTypeAssemblyName, mTypeName)}

End Function

ObjectViewSchema is responsible for retrieving and returning the business object’s schema
information.

ObjectViewSchema
ObjectViewSchema implements the System.Web.UI.Design.IDataSourceViewSchema interface, mak-
ing it responsible for retrieving and exposing the schema information about the data source (in
this case, the business object). To that end, ObjectViewSchema maintains the assembly and type
name for the business object:

Public Class ObjectViewSchema
Implements IDataSourceViewSchema

Private mTypeAssemblyName As String = ""
Private mTypeName As String = ""

ASP.NET retrieves the schema information by calling the GetFields() method defined by the
IDataSourceViewSchema interface. This method returns an array of objects that implement the
IDataSourceFieldSchema interface from the System.Web.UI.Design namespace. The ObjectFieldInfo
class discussed later implements this interface.

The GetFields() method is the only Public method in ObjectViewSchema:

Public Function GetFields() As _
System.Web.UI.Design.IDataSourceFieldSchema() _
Implements System.Web.UI.Design.IDataSourceViewSchema.GetFields

Dim result As New Generic.List(Of ObjectFieldInfo)
Dim t As Type = CslaDataSource.GetType(mTypeAssemblyName, mTypeName)
If GetType(IEnumerable).IsAssignableFrom(t) Then
' this is a list so get the item type
t = Utilities.GetChildItemType(t)

End If
Dim props As PropertyDescriptorCollection = _
TypeDescriptor.GetProperties(t)

For Each item As PropertyDescriptor In props
If item.IsBrowsable Then
result.Add(New ObjectFieldInfo(item))

End If
Next
Return result.ToArray

End Function

This method gets a Type object representing the business object type by calling the
CslaDataSource.GetType() helper method discussed earlier. It then checks to see if that type is
a collection, and if so, it calls the GetChildItemType() helper method from the Utilities class to
find the type of the child objects in that collection:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 319

6315_c05_final.qxd 4/13/06 12:36 PM Page 319

Dim t As Type = CslaDataSource.GetType(mTypeAssemblyName, mTypeName)
If GetType(IEnumerable).IsAssignableFrom(t) Then
' this is a list so get the item type
t = Utilities.GetChildItemType(t)

End If

At this point, the method has a Type object corresponding to the type of business object
(either the object itself, or the child objects in a collection). The method then gets a collection
of PropertyDescriptor objects, each one representing a property of the business object:

Dim props As PropertyDescriptorCollection = _
TypeDescriptor.GetProperties(t)

Each of the PropertyDescriptor methods is checked to see if the corresponding property is
marked as <Browsable(False)>, in which case the IsBrowsable property will return False. Those
properties are ignored. All other properties are used to create an instance of an ObjectFieldInfo
object, which represents that property’s schema information:

For Each item As PropertyDescriptor In props
If item.IsBrowsable Then
result.Add(New ObjectFieldInfo(item))

End If

In the end, an array of these ObjectFieldInfo objects is returned as a result:

Return result.ToArray

Each element in this array contains schema information about a business object property that
is available for data binding.

ObjectFieldInfo
The ObjectFieldInfo class maintains schema information about a single property on a business
object. One of these objects is created for each bindable property on a business object, and is
returned to ASP.NET through the GetFields() method of ObjectViewSchema.

The ObjectFieldInfo class implements the System.Web.UI.Design.IDataSourceFieldSchema
interface as required by ASP.NET. This is a lengthy interface that defines a number of properties that
provide information about the column/property. Many of these properties are designed specifically
for columns from a DataTable, and have little meaning when applied to elements of a business
object’s interface, while others are valid in both cases.

The ObjectFieldInfo class maintains a set of instance fields to hold information about the
business object property:

Public Class ObjectFieldInfo
Implements System.Web.UI.Design.IDataSourceFieldSchema

Private mField As PropertyDescriptor
Private mPrimaryKey As Boolean
Private mIsIdentity As Boolean
Private mIsNullable As Boolean
Private mLength As Integer

Public Sub New(ByVal field As PropertyDescriptor)
mField = field
GetDataObjectAttribute()

End Sub

Most of these values come from a <DataObjectField()> attribute that the business object
developer can apply to properties of a business object.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK320

6315_c05_final.qxd 4/13/06 12:36 PM Page 320

DataObjectField Attribute
The <DataObjectField()> attribute comes from the System.ComponentModel namespace and can be
used on a business object’s property like this:

<DataObjectField(True, True, False)> _
Public ReadOnly Property Id() As Guid
Get
CanReadProperty(True)
return mId

End Get
End Property

In this example, the attribute specifies that the Id property is a primary key, represents
the identity of the object, and is not nullable. Table 5-9 lists the possible parameters for the
<DataObjectField()> attribute.

Table 5-9. Parameters for the DataObjectField() Attribute

Parameter Description

primaryKey Indicates whether the property acts as a primary key value for the object

isIdentity Indicates whether the property uniquely identifies the object within a parent
collection

isNullable Indicates whether the property is nullable

length Provides the maximum length of the property in bytes

The GetDataObjectAttributes() helper method retrieves this attribute from the business
object’s property and sets the corresponding instance fields:

Private Sub GetDataObjectAttribute()
Dim attribute As DataObjectFieldAttribute = _

CType(mField.Attributes.Item(GetType(DataObjectFieldAttribute)), _
DataObjectFieldAttribute)

If (Not attribute Is Nothing) Then
With attribute
mPrimaryKey = .PrimaryKey
mIsIdentity = .IsIdentity
mIsNullable = .IsNullable
mLength = .Length

End With
End If

End Sub

Each of these values is exposed as a property through the IDataSourceFieldSchema interface.
For instance, here’s the PrimaryKey property:

Public ReadOnly Property PrimaryKey() As Boolean _
Implements System.Web.UI.Design.IDataSourceFieldSchema.PrimaryKey
Get
Return mPrimaryKey

End Get
End Property

Visual Studio can use these properties to assist the UI developer in building an appropriate
interface for the business object’s properties.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 321

6315_c05_final.qxd 4/13/06 12:36 PM Page 321

The Nullable property is a bit more complex, however, because it is sometimes possible to
detect that a property is nullable even without the use of the <DataObjectField()> attribute. This
is due to the nullable support built into .NET 2.0:

Public ReadOnly Property Nullable() As Boolean _
Implements System.Web.UI.Design.IDataSourceFieldSchema.Nullable
Get
Dim t As Type = Me.mField.PropertyType
If Not t.IsValueType OrElse mIsNullable Then
Return True

End If
If t.IsGenericType Then
Return (t.GetGenericTypeDefinition Is GetType(Nullable))

End If
Return False

End Get
End Property

A property can be nullable if it is a reference type or if mIsNullable is True. It can also be
nullable if the property is declared using the Nullable(Of T) generic type.

Other Property Information
The IDataSourceFieldSchema interface defines other properties as well. Some of these properties
have little meaning for a business object. For instance, there’s no way to determine meaningful
values for Scale and Precision based on a business object’s property, so these just return -1:

Public ReadOnly Property Scale() As Integer _
Implements System.Web.UI.Design.IDataSourceFieldSchema.Scale
Get
Return -1

End Get
End Property

Other properties can be determined based on information from the PropertyDescriptor
object passed into the ObjectFieldInfo constructor. That PropertyDescriptor object provides
information about the specific business object property. The property’s name, for instance, can
be directly retrieved:

Public ReadOnly Property Name() As String _
Implements System.Web.UI.Design.IDataSourceFieldSchema.Name
Get
Return mField.Name

End Get
End Property

Getting the Property’s Data Type
The DataType property is a bit complex. It must deal with the possibility that the business object’s
property was declared with the Nullable(Of T) generic type. Fortunately, the Utilities.
GetPropertyType() method discussed earlier in the chapter deals with that case, so it is called
to ensure that the correct type is returned:

CHAPTER 5 ■ COMPLETING THE FRAMEWORK322

6315_c05_final.qxd 4/13/06 12:36 PM Page 322

Public ReadOnly Property DataType() As System.Type _
Implements System.Web.UI.Design.IDataSourceFieldSchema.DataType
Get
Return Utilities.GetPropertyType(mField.PropertyType)

End Get
End Property

The ObjectSchema, ObjectViewSchema, and ObjectFieldInfo objects combine to provide
ASP.NET with schema information about the business object when requested through the
CslaDesignerDataSourceView object’s Schema property.

Together with all the other classes related to CslaDataSource, the end result is a fully func-
tional data source control that understands CSLA .NET–style business objects. UI developers
can use this control to leverage the data binding support of ASP.NET Web Forms when working
with rich business objects.

Conclusion
This chapter concludes creation of the CSLA .NET framework. Over the past three chapters, you
have learned how to support a wide variety of functionality to support the development of business
objects. This chapter combined a wide range of capabilities, including the following:

• Additional business base classes

• Custom authentication

• Collection sorting

• Date handling

• Common business rules

• Data access

• Reporting

• Windows data binding

• Web data binding

Combined with the support for editable and read-only business objects from Chapter 3, and
the data access and mobile object support from Chapter 4, these capabilities make it relatively
easy to build a powerful object-oriented business layer for an application.

The remainder of the book will focus on how to use this framework to create business
objects, as well as a variety of UIs for those objects, including Windows Forms, Web Forms, and
Web Services.

CHAPTER 5 ■ COMPLETING THE FRAMEWORK 323

6315_c05_final.qxd 4/13/06 12:36 PM Page 323

6315_c05_final.qxd 4/13/06 12:36 PM Page 324

Object-Oriented Application Design

Chapters 1 and 2 discussed the concepts behind distributed, object-oriented systems, and the
.NET technologies that make them practical to implement with reasonable effort. Then, Chapters 3
through 5 covered the design and implementation of CSLA .NET, a framework upon which you can
build distributed, object-oriented applications; thereby avoiding the complexities of the underlying
technologies while creating each business class or user interface.

Chapter 7 will discuss the basic structure of business objects based on CSLA .NET. Chapter 8
will put that knowledge to use to implement a set of sample business objects for an application to
track projects and resources assigned to projects. Chapter 9 will walk through the implementation
of a Windows Forms UI, and in Chapter 10, a Web Forms UI will be implemented based on these
objects. Chapter 11 will discuss the creation of a Web Services interface so the business objects can
be used by other applications through the standard SOAP protocol.

This chapter will focus on the object-oriented application design process, using a sample sce-
nario and application that will be implemented through the rest of the book. The design process
in this chapter will result in a design for the business objects, and for an underlying database.

Obviously, the challenge faced in designing and building a sample application in a book like
this is that the application must be small enough to fit into the space available, and yet be complex
enough to illustrate the key features I want to cover. To start with, here’s a list of the key features that
I want to focus on:

• Creation of a business object

• Implementation of business validation rules

• Implementation of business authorization rules

• Transactional and nontransactional data access

• Parent-child relationships between objects

• Many-to-many relationships between objects

• Use of name/value lists

• Use of custom CSLA .NET authentication

In this chapter, I’ll focus on the design of the application by using some example user sce-
narios, which are generally referred to as use cases. Based on those use cases, I’ll develop a list of
potential business objects and relationships. This information will be refined to develop a class
design for the application. Based on the scenarios and object model, a relational database will be
designed to store the data.

As I mentioned in Chapter 2, object-oriented design and relational design aren’t the same
process, and you’ll see in this case how they result in two different models. To resolve these models,
the business objects will include object-relational mapping (ORM) when they are implemented in

325

C H A P T E R 6

■ ■ ■

6315_c06_final.qxd 4/7/06 2:21 PM Page 325

Chapter 8. This ORM code will reside in the DataPortal_XYZ methods of the business objects, and
will translate the data between the relational and object-oriented models as each object is retrieved
or updated.

Application Requirements
There are many ways to gather application requirements, but in general there are three main areas
of focus from which you can choose:

• Data analysis and data flow

• UI design and storyboarding

• Business concept and process analysis

The oldest of the three is the idea that an application can be designed by understanding the
data it requires, and how that data must flow through the system. While this approach can work, it
isn’t ideal when trying to work with object-oriented concepts, because it focuses less on business
ideas and more on raw data. It’s often a very good analysis approach when building applications
that follow a data-centric architecture.

■Note The data-focused analysis approach often makes it hard to relate to users well. Very few users under-
stand database diagrams and database concepts, so there’s a constant struggle as the business language and
concepts are translated into and out of relational, data-oriented language and concepts.

The idea of basing application analysis around the UI came into vogue in the early-to-mid 1990s
with the rise of rapid application development (RAD) tools such as Visual Basic, PowerBuilder, and
Delphi. It was subsequently picked up by the web development world, though in that environment,
the term “storyboarding” was often used to describe the process. UI-focused analysis has the benefit
of being very accessible to the end user—users find it very easy to relate to the UI and how it will flow.

The drawback to this approach is that there’s a tendency for business validation and processing
to end up being written directly into the UI. Not that this always happens, but it’s a very real prob-
lem—primarily because UI-focused analysis frequently revolves around a UI prototype, which
includes more and more business logic as the process progresses, until developers decide just to
use the prototype as the base for the application, since so much work has already been done.

■Tip Obviously, people can resist this trend and make UI-focused design work, but it takes a great deal of
discipline. The reality is that a lot of great applications end up crippled because this technique is used.

Another drawback to starting with the UI is that users often see the mocked-up UI in a demon-
stration and assume that the application is virtually complete. They don’t realize that the bulk of the
work comes from the business and data access logic that must still be created and tested behind the
UI. The result is that developers are faced with tremendous and unrealistic time pressure to deliver
on the application, since from the user’s perspective, it’s virtually complete already.

The third option is to focus on business concepts and process flow. This is the middle road in
many ways, since it requires an understanding of how the users will interact with the system, the
processes that the system must support, and (by extension) the data that must flow through the
system to make it all happen. The benefit of this approach is that it’s very business focused, allowing
both the analyst and the end users to talk the language of business, thereby avoiding computer

326 CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN

6315_c06_final.qxd 4/7/06 2:21 PM Page 326

concepts and terminology. It also lends itself to the creation of object-oriented designs, because the
entities and concepts developed during analysis typically turn into objects within the application.

The drawback to this approach is that it doesn’t provide users with the look and feel of the UI,
or the graphical reinforcement of how the system will actually work from their perspective. Nor
does it produce a clear database design, thereby leaving the database analyst to do more work in
order to design the database.

Personally, I use a blend of the business concept and UI approaches. I place the strongest
emphasis on the business concept and process flow, while providing key portions of the UI via a
prototype, so that the user can get the feel of the system. Since end users have such a hard time
relating to database diagrams, I almost never use data-focused analysis techniques, instead leaving
the database design process to flow from the other analysis techniques.

In this chapter, I’ll make use of the business concept and process-flow techniques. It’s difficult
to storyboard the application at this stage, because we’ll be developing both Windows Forms and
Web Forms user interfaces, along with a web service application interface. The starting point, then,
is to create a set of use case descriptions based on how the users (or other applications) will interact
with the system.

Use Cases
Let’s create a set of imaginary use cases for the project-tracking system. In a real application, these
would be developed by interviewing key users and other interested parties. The use cases here are
for illustration purposes.

■Tip This application is relatively simple. A real project-tracking system would undoubtedly be more complex,
but it is necessary to have something small enough to implement within the context of this book. Remember that
my focus is on illustrating how to use CSLA .NET to create business objects, child objects, and so forth.

Though not mentioned specifically in the following use cases, this system will be designed to
accommodate large numbers of users. In Chapter 9, for instance, the Windows Forms UI will use
the mobile object features of CSLA .NET to run the application in a physical n-tier deployment with
an application server. This physical architecture will provide for optimum scalability. In Chapter 10,
the Web Forms UI will make use of the CSLA .NET framework’s ability to run the application’s UI,
business logic, and data access all on the web server. Again, this provides the highest-scaling and
best-performing configuration, because you can easily add more web servers as needed to support
more users.

Project Maintenance
Since this is a project-tracking system, there’s no surprise that the application must work with proj-
ects. Here are some use cases describing the users’ expectations.

Adding a Project

A project manager can add projects to the system. Project data must include key information,
including the project’s name, description, start date, and end date. A project can have a unique
project number, but this isn’t required, and the project manager shouldn’t have to deal with it.
The project’s name is the field by which projects are identified by users, so every project must
have a name.

The start and end dates are optional. Many projects are added to the system so that a list of
them can be kept, even though they haven’t started yet. Once a project has been started, it should

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 327

6315_c06_final.qxd 4/7/06 2:21 PM Page 327

have a start date, but no end date. When the project is complete, the project manager can enter an
end date. These dates will be used to report on the average lengths of the projects, so obviously the
end date can’t be earlier than the start date.

Every project also has a list of the resources assigned to it (see the “Assigning a Resource”
section later in this chapter).

Editing a Project

Project managers can edit any existing projects. The manager chooses from a list of projects, and
can then edit that project. They need the ability to change the project’s start and end dates, as well
as its description. They also need to be able to change the resources assigned to the project (see the
“Assigning a Resource” section later in this chapter).

Removing a Project

Project managers or administrators must be able to remove projects. There is no need to keep his-
torical data about deleted projects, so such data should be completely removed from the system.
The user should just choose from a list of projects, confirm his choice, and the project should be
removed.

Resource Maintenance
At this point, the system not only tracks projects, but also tracks the resources assigned to each project.
For the purposes of this simple example, the only project resources tracked are the people assigned to
the projects. With further questioning of the users, a set of use cases revolving around the resources can
be developed, without reference (yet) to the projects in which they may be involved.

Adding a Resource

We don’t want to replicate the Human Resources (HR) database, but we can’t make use of the HR
database because the HR staff won’t give us access. We just want to be able to keep track of the peo-
ple we can assign to our projects. All we care about is the person’s name and employee ID. Obviously,
each person must have an employee ID and a valid name.

Resources can be added by project managers or supervisors. It would be really nice to be able
to assign a person to a project at the same time as the person is being added to the application (see
the “Assigning a Resource” section later in this chapter).

Editing a Resource

Sometimes, a name is entered incorrectly and needs to be fixed, so project managers and super-
visors need to be able to change the name.

Removing a Resource

When an employee is let go or moves to another division, we want to be able to remove him from
the system. Project managers, supervisors, and administrators should be able to do this. Once
they’re gone, we don’t need any historical information, so they should be totally removed.

Assigning a Resource
As we were talking to the users to gather information about the previous use cases, the users walked
through the requirements for assigning resources to projects. Since this process is common across
several other processes, we can centralize it into a use case that’s referenced from the others.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN328

6315_c06_final.qxd 4/7/06 2:21 PM Page 328

The project managers and supervisors need to be able to assign a resource to a project. When
we do this, we need to indicate the role that the resource is playing in the project. We have a list of
the roles, but we might need to change the list in the future. We also want to know when the resource
was assigned to the project.

Sometimes, a resource will switch from one role to another, so we need to be able to change the
role at any time. Equally, a resource can be assigned to several projects at one time. (We often have
people working part-time on several projects at once.)

Lastly, we need to be able to remove an assignment. This happens when an employee is let go
or moves to another division (see the “Removing a Resource” section earlier in this chapter); but we
also often move people around from project to project. There’s no need to keep track of who used to
be on a project, because we only use this system for tracking current projects and the resources
assigned to them right now.

Maintaining a List of Roles
Resources are assigned to projects to fill a specific role. The list of possible roles needs to be main-
tainable by end users: specifically administrators.

External Access
During conversations with users, we discovered that a number of them are highly technical, and are
already skeptical of our ability to create all the UI options they desire. They indicated high interest
in having programmatic access to the database, or to our business objects. In other words, we have
some power users who are used to programming in Access and know a bit of VBA, and they want to
write their own reports, and maybe their own data entry routines.

■Tip This same scenario would play out if there’s a requirement to provide access to the application to business
partners, customers, vendors, or any external application outside our immediate control.

Obviously, there are serious issues with giving other people access to the application’s data-
base—especially read-write access. Unless all the business logic is put into stored procedures, this
sort of access can’t be safely provided.

Likewise, there are issues with providing direct access to the business objects. This is safer in
some ways, because the objects implement the business logic and validation; but it’s problematic
from a maintenance perspective. If other people are writing code to interact directly with the busi-
ness objects, then the objects can’t be changed without breaking their code. Since the other people
are outside of our control, it means that the project tracker application can never change its object
model.

Of course, this is totally unrealistic. It is a virtual guarantee that there will be future enhance-
ments and requests for changes to the system, which will undoubtedly require changes to the
business objects. Fortunately, Web Services offers a clean solution. If web services are treated just
like any another interface (albeit a programmatic one) to the application, they can be used to easily
provide access to the application without allowing external programs to directly interact with the
application’s database or business objects.

In Chapter 11, I’ll revisit these ideas, showing how to implement a set of web services so that
external applications can safely interact with the application in a loosely coupled manner.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 329

6315_c06_final.qxd 4/7/06 2:21 PM Page 329

Object Design
At this point, the key requirements for the application have been gathered from the use cases. Based
on these use cases, it is possible to create an object-oriented design. There are a variety of techniques
used in object-oriented design (you may have heard of CRC cards and decomposition, in addition to
others), and in this chapter, I’ll use ideas from both decomposition and CRC cards. A form of decom-
position will be used to identify the “nouns” in the use cases, and then narrow down which of these
are actual business objects. These objects will be described in terms of their class, responsibility, and
collaborators (CRC).

Initial Design
The first step in the process, then, is to assemble a list of the nouns in the use case write-ups. By
using a bit of judgment, you can eliminate a few nouns that are obviously not objects, but still end
up with a good-sized list of potential business objects or entities, as shown in Table 6-1.

Table 6-1. Potential Entities Discovered in the Initial Design

Project manager Project Project number

Project name Start date End date

Administrator List of projects Employee

Resource Employee name Employee ID

Supervisor List of assignments Role

List of roles Assignment Date assigned

List of resources List of assigned resources

Using your understanding of the business domain (and probably through further discussion
with business users and fellow designers), the options can be narrowed. Some of these aren’t objects,
but rather data elements or security roles. These include the following:

• Project manager

• Administrators

• Supervisor

■Tip I am assuming there’s already an object to deal with a user’s role. Such an object will be created by sub-
classing the Csla.Security.BusinessPrincipalBase class later in the chapter. But these security roles should
not be confused with the role a resource (person) plays on a project—they’re two very different concepts.

Pulling out these nouns, along with those that are likely to be just data fields (such as project
name and employee ID), you can come up with a smaller list of likely business objects, allowing you
to start creating a basic class diagram or organizing the classes using CRC cards. Table 6-2 lists the
high-level CRC data for each potential object.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN330

6315_c06_final.qxd 4/7/06 2:21 PM Page 330

Table 6-2. Potential Objects and Their Associated Class Names

Potential Class Responsibility Collaborators

Project Adds and edits a valid project ProjectResources

Resource Adds and edits a valid resource ResourceAssignments,
Employee

Employee Adds and edits a valid employee None

ProjectList Gets a read-only list of projects Project

ResourceList Gets a read-only list of resources Resource

ProjectResources Maintains a list of resources assigned to a project Resource, RoleList

ResourceAssignments Maintains a list of projects to which a resource is Project, RoleList
assigned

RoleList Gets a read-only list of roles Role

Role Provides read-only role data None

RoleEditList Maintains a list of roles in the system RoleEdit

RoleEdit Adds and edits a valid role None

One key aspect of CRC-based design is that an object’s responsibility should be short and to the
point. Long, complex responsibility descriptions are an indication that the object model is flawed,
and that the complicated object should probably be represented by a set of simpler objects that col-
laborate to achieve the goal.

The diagram should also include relationships between the entities in the diagram. For the
most part, these relationships can be inferred from the use case descriptions—for instance, we can
infer that a “list of projects” will likely contain Project objects; and that a Project object will likely
contain a “list of assigned resources,” which in turn will likely contain Resource objects.

Note that I use the word likely here, rather than will. We’re still very much in a fluid design stage
here, so nothing is yet certain. We have a list of potential objects, and we’re inferring a list of poten-
tial relationships.

Figure 6-1 is an illustration of how these objects relate to each other.
Looking at the CRC list and this diagram, there is some indication that there’s more work to do.

There are several issues that you should look for and address, including duplicate objects, trivial
objects, objects that have overly complex relationships in the diagram, and places that can be opti-
mized for performance.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 331

6315_c06_final.qxd 4/7/06 2:21 PM Page 331

Revising the Design
The following list indicates some of the things to address:

• Resource and Employee could be duplicates. It isn’t clear that Resource adds anything to
Employee, so the two can probably be merged into one class.

• Based on the use case description, we know that RoleList is a name/value list, which directly
implies the Role is just a name/value placeholder. Given Csla.NameValueListBase, this can
be simplified.

• The relationship between Project, ProjectResources, Resource, and ResourceAssignments
is very complex. In fact, it forms a loop of references, which is always a danger sign.

• The RoleList object isn’t used by any other objects in the model. Given that the use cases
indicate that resources are assigned to projects based on a specific role, this is suspicious.

• The use cases for ProjectList and ResourceList indicate that they’re primarily used for
selection of objects, not for editing all the projects or resources in the system. Actually load-
ing all the Project or Resource objects just so that the user can make a simple selection is
expensive, performance-wise, so this design should be reviewed.

• It is clear that when the list of roles is edited, any RoleList objects need to know about the
changes so that they can read the new data. This is not explicitly stated in a use case, but is
an inferred requirement.

In the early stages of any object-design process, there will be duplicate objects, or potential
objects that end up being mere data fields in other objects. Usually, a great deal of debate will ensue
during the design phase as all the people involved in the design process thrash out which objects

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN332

Figure 6-1. Possible class diagram for the project tracker application

6315_c06_final.qxd 4/7/06 2:21 PM Page 332

are real, which are duplicates, and which should be just data fields. This is healthy and important,
though obviously some judgment must be exercised to avoid analysis paralysis, whereby the design
stalls entirely due to the debate.

Let’s discuss this in a bit more detail.

Duplicate Objects
First, you should identify duplicate objects that have basically the same data and relationships (like
Resource and Employee). In this case, Employee can be eliminated in favor of Resource, since that’s
the term used most often in the use case descriptions (and thus, presumably, most used by the end
users).

In most scenarios, the end users will have numerous terms for some of their concepts. It’s your
job, as part of the analysis process, to identify when multiple terms really refer to the same concepts
(objects) and to clarify and abstract the appropriate meaning.

Trivial Objects
The Role object may not be required either. Fundamentally, a Role is just a string value, presumably
with an associated key value. This is the specific scenario for which the NameValueListBase class in
the CSLA .NET framework is designed. That base class makes it easy to implement name/value lists.

■Tip My characterization of the Role value is based on the use cases assembled earlier. If you intuitively feel
that this is overly simplistic or unrealistic, then you should revisit the use cases and your users to make sure that
you haven’t missed something. For the purposes of this book, I’ll assume that the use cases are accurate, and that
the Role field really is a simple name/value pair.

Note that I’m not suggesting elimination of the RoleEdit class. While NameValueListBase can be
used to create read-only name/value lists, RoleEdit and RoleEditList are used to edit the role data.
They can’t be automated away like a simple name/value pair.

Like the process of removing duplicates, the process of finding and removing trivial objects is
as much an art as it is a science. It can be the cause of plenty of healthy debate!

Overly Complex Relationships
Although it’s certainly true that large and complex applications often have complex relationships
between classes and objects, those complex relationships should always be carefully reviewed.

As a general rule, if relationship lines are crossing each other or wrapping around each other
in a diagram like Figure 6-1, you should review those relationships to see if they need to be so
complex. Sometimes, it’s just the way things have to be, but more often, this is a sign that the
object model needs some work. Though relying on the aesthetics of a diagram may sound a bit
odd, it is a good rule of thumb.

In this case, there’s a pretty complex relationship between Project, ProjectResources,
Resource, and ResourceAssignments. It is, in fact, a circular relationship, in which all these objects
refer to the other objects in an endless chain. In a situation like this, you should always be looking
for a way to simplify the relationships. What you’ll often find is that the object model is missing a
class: one that doesn’t necessarily flow directly from the use cases, but is required to make the
object model workable.

The specific problem caused by the circular relationship in Figure 6-1 becomes very apparent
when an object is to be loaded from the database. At that time it will typically also load any child
objects it contains. With an endless loop of relationships, that poses a rather obvious problem!

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 333

6315_c06_final.qxd 4/7/06 2:21 PM Page 333

There must be some way to short-circuit the process, and the best way to do this is to introduce
another object into the mix.

In the object model thus far, what’s missing is a class that actually represents the assignment
of a resource to a project. At this point, there’s no object responsible for assigning a resource to a
project, so there’s an entire behavior from the use cases that’s missing in the object model.

Additionally, there’s data described in the use cases that isn’t yet reflected in the object model,
such as the role of a resource on a particular project, or the date that the resource was assigned to
a project. These data fields can’t be kept in the Project object, because a project will have many
resources filling many different roles at different times. Similarly, they can’t be kept in the Resource
object, because a resource may be assigned to many projects at different times and in different roles.

Adding an Assignment Class

The need for another object—an Assignment object—is clear. This object’s responsibility is to assign
a resource to a project.

Figure 6-2 shows an updated diagram, including the changes thus far.

However, we’re still not done. The Assignment class itself just became overly complex, because
it’s used within two different contexts: from the list of resources assigned to a project, and from the
list of projects to which a resource is assigned. This is typically problematic. Having a single object
as a child of two different collections makes for very complicated implementation and testing, and
should be avoided when possible.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN334

Figure 6-2. Revised class diagram for the project tracker application

6315_c06_final.qxd 4/7/06 2:21 PM Page 334

Beyond that, think about its responsibility in the diagram in Figure 6-2. Assignment is now
responsible for assigning a resource to a project AND for associating a project with a resource. When
used from ProjectResources, it has the first responsibility, and when used from
ResourceAssignments, it has the second responsibility. Sure, the responsibilities are similar, but
they are different enough that it matters.

There’s also an issue with data. A Project object uses the ProjectResources collection to get
a list of resources assigned to the project. This implies that the Assignment object contains infor-
mation about the resource assigned to the project.

Yet a Resource object uses the ResourceAssignments collection to get a list of projects to which
the resource is assigned. This implies that the Assignment object contains information about the
project to which the resource is assigned.

The fact that both behavioral and data conflicts exist means that the object model remains
flawed.

There are two possible solutions. The list objects (ProjectResources and ResourceAssignments)
could be combined into a single list of Assignment objects, or there could be two different objects
representing assignments. To resolve this, we need to think about the different behaviors that are
required when approaching the concept of assignments from Project and from Resource.

Assigning a Resource to a Project

Based on the use cases, resources can be assigned to projects. This implies that the user has identi-
fied the project and wishes to assign a resource to it. It also implies that a project has a collection
of assigned resources: hence the ProjectResources collection in the object model.

But what behavior and information would a user expect from the items in the
ProjectResources collection?

Certainly, one behavior is to return the list of resources assigned to the project. Another behav-
ior is to allow a new resource to be assigned to the project, implying something like an Assign()
method that accepts the Id property from a Resource.

It is also worth considering what information should be provided to the user. When viewing
or editing a Project, the list of assigned resources should probably show something like this:

• Resource ID

• Resource name

• Date assigned to the project

• Role of the resource on the project

This means that ProjectResources, and the items returned by ProjectResources, might look
something like Figure 6-3.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 335

Figure 6-3. The ProjectResources collection and the ProjectResource child object

6315_c06_final.qxd 4/7/06 2:21 PM Page 335

Though not visible in Figure 6-3, the Assign() method accepts a resourceId parameter to iden-
tify the resource being assigned to the project.

Given this analysis, let’s consider the behaviors and information required to assign a project to
a resource—basically the same process, but starting with a Resource instead of a Project.

Assigning a Project to a Resource

The use cases provide for the idea that a user could start by identifying a resource rather than a
project. In this case, the user can still associate a project with the resource by selecting a project.
This implies that the Resource object has a collection of projects to which the resource is assigned.
The object model thus far represents this collection as ResourceAssignments.

Let’s consider the behaviors and information for the ResourceAssignments collection and the
items it would contain.

In this case, the user starts with a Resource and wishes to assign the resource to a project. So
the ResourceAssignments object will have a couple behaviors: listing the projects to which the
resource is assigned, and assigning the resource to a new project. This can probably be handled
by an AssignTo() method that accepts the Id property of a Project.

The items in ResourceAssignments have the behavior of returning information about the proj-
ect assigned to the resource. The information of value to a user is likely the following:

• Project ID

• Project name

• Date assigned to the project

• Role of the resource on the project

Figure 6-4 shows the potential ResourceAssignments object and what its items might look like.

The AssignTo() method accepts a projectId parameter to identify the project to which the
resource should be assigned.

Can the Classes Be Merged?

It is important to notice that the objects described by Figure 6-3 and Figure 6-4 are similar, but they
are not the same. Yet they do share at least some common information, if not behavior. Both child
classes contain Assigned and Role properties, implying that there’s commonality between them.

Such commonality is not justification for combining the two classes into one, because their
behaviors are distinctly different. The items in ProjectResources have one responsibility: managing
information about a resource assigned to a project. The items in ResourceAssignments have a differ-
ent responsibility: managing information about a project to which a resource is assigned.

While this difference may seem subtle, it is a difference nonetheless. It is tempting to consider
that the two classes could be merged into one, as shown in Figure 6-5.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN336

Figure 6-4. The ResourceAssignments collection and the ResourceAssignment child object

6315_c06_final.qxd 4/7/06 2:21 PM Page 336

Of course, ProjectName isn’t valid if the user got to this object from a Project object, but it is
valid if she got here through a Resource object. The same is true for several other properties.

Perhaps business logic could be added to properties to throw exceptions if they were called from
an inappropriate context. But the obvious complexity of this sort of logic should give you pause. The
problem is that one object is trying to handle more than one responsibility. Such a scenario means
that the object model is flawed. Going down such a path will lead to complex, hard-to-maintain code.

■Note Historically, this sort of complex code was referred to as spaghetti code. It turns out that with improper
object design, it is very possible to end up with spaghetti code in business objects. The result is terrible, and is
exactly what good object design is intended to prevent!

It should be quite clear at this point that merging the two collections or their child objects into
a single set of objects isn’t the right answer. They have different responsibilities, and so they should
be separate objects.

But this leaves one glaring issue: what about the common properties and any common busi-
ness logic they might require? How can two objects use the same data without causing duplication
of business logic?

Dealing with Common Behaviors and Information

When designing relational databases, it is important to normalize the data. There are many aspects
to normalization, but one of the most basic and critical is avoiding redundant data. A given data
element should exist exactly once in the data model. And that’s great for relational modeling.

Unfortunately, many people struggle with object design because they try to apply relational
thinking to objects. But object design is not the same as relational design. Where the goal with rela-
tional design is to avoid duplication of data, the goal of object design is quite different.

There’s no problem with a data field being used or exposed by different objects. I realize this
may be hard to accept. We’ve all spent so many years being trained to think relationally that it’s
often very hard to break away and think in terms of objects. Yet creating a good object model
requires changing this mode of thought.

■Caution Object design isn’t about normalizing data. It is about normalizing behavior.

The goal in object design is to ensure that a given behavior exists only once within the object
model. Simple examples of behavior include the idea of a string being required, or one value being
larger than another. More complex behaviors might be the calculation of a tax or discount amount.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 337

Figure 6-5. Merged child items with assignment information

6315_c06_final.qxd 4/7/06 2:21 PM Page 337

Each behavior should exist only once in the object model, though it may be used from many differ-
ent objects.

This is why collaboration is so critical to good object design. For example, one object—the
DiscountCalculator—will implement the complex calculation for a discount. Many other objects
may need to determine the discount, and so they collaborate with DiscountCalculator to find that
value. In this manner, the behavior exists exactly once in the model.

Dealing with Common Information

So the real question isn’t whether the Assigned and Role properties can be put into a common
object—that’s relational thinking. Instead, the question is whether those properties have common
behaviors (business rules or logic) that can be put into a common object.

As it turns out, the Role property must be validated to ensure that any new value is a real role.
Since the Role property can be set in both ProjectResource and ResourceAssignment, that behavior
could be duplicated.

A better answer is to normalize that behavior, putting it into a central object. Let’s call this
new object Assignment, since it will be responsible for centralizing the code common to assign-
ments of projects to resources, and resources to projects. Then both ProjectResource and
ResourceAssignment can collaborate with Assignment to ensure that the Role property is validated.

This means that Assignment will contain the rule method that implements the role-validation
behavior. In Chapter 3, the CSLA .NET framework defined the RuleHandler delegate to support
exactly this type of scenario.

Given a ValidRole() rule method in Assignment, both ProjectResource and ResourceAssignment
merely have to associate that rule method with their Role properties to share the common behavior.
Figure 6-6 illustrates this relationship.

The code to do exactly this is in Chapter 8.

Dealing with Common Behaviors

The responsibility of the Assignment object from Figure 6-6 is to manage the association between
a project and resource.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN338

Figure 6-6. ProjectResource and ResourceAssignment collaborating with Assignment

6315_c06_final.qxd 4/7/06 2:21 PM Page 338

This means that the Assignment object’s behavior could include the idea of associating a project
with a resource. This is a broader behavior than that provided by ProjectResources, which assigns a
resource to a project; or by ResourceAssignments, which assigns a project to a resource. In fact, the
behavior of Assignment is more general, and encompasses the needs of both other objects.

Of course, the real work of dealing with a resource assigned to a project, or a project associated
with a resource, is handled by the ProjectResource and ResourceAssignment classes. The collection
classes really just add and remove these child objects, leaving it to the child objects to handle the
details.

The end result is that ProjectResource, to fulfill its behavior, can ask Assignment to do the
actual work, as shown in Figure 6-7. The same is true of ResourceAssignment. The implication is that
Assignment could have a method such as AddAssignment() that accepts a project’s Id property and
a resource’s Id property, along with the role the resource will play on the project.

■Tip Object models should be simple and intuitive, even when underlying behaviors are complex. By centralizing
common behaviors using objects internal to the business layer, a simpler and more tailored public interface can be
exposed to the UI developer.

Similarly, ProjectResource and ResourceAssignment have behaviors that involve removing a
resource from a project or removing a project from a resource. Assignment, then, will have a more
general behavior to remove an association between a project and a resource.

Figure 6-7 shows the full extent of Assignment, including all the methods that implement
behaviors common to both ProjectResource and ResourceAssignment.

At this point, all the common behaviors from ProjectResource and ResourceAssignment have
been normalized into a single location in the object model.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 339

Figure 6-7. Objects collaborating with Assignment

6315_c06_final.qxd 4/7/06 2:21 PM Page 339

Optimizing for Performance
Part of object design includes reviewing things to ensure that the model won’t lead to poor perform-
ance. This isn’t really a single step in the process, as much as something that should be done on a
continual basis during the whole process. However, once you think the object model is complete,
you should always pause to review it for performance issues.

One primary performance issue with many object models deals with the use of relational
thinking when designing the objects. Normalizing data within the object model is perhaps the
most common flaw causing performance issues. Due to the design of ProjectResource,
ResourceAssignment, and Assignment, the object model has already eliminated this issue by normal-
izing behavior instead of data. This helps avoid loading entire business objects just to display a
couple of common data elements.

There is, however, another performance issue in the model. The ProjectList and
ResourceList collection objects, as modeled, retrieve collections of Project and Resource business
objects so that some of their data can be displayed in a list. Based on the use cases, the user then
selects one of the objects and chooses to view, edit, or remove that object.

From a purely object-oriented perspective, it’s attractive to think that you could just load a
collection of Project objects and allow the user to pick the one he wants to edit. However, this
could be very expensive, because it means loading all the data for every Project object, including
each project’s list of assigned resources, and so forth. As the user adds, edits, and removes Project
objects, you would potentially have to maintain your collection in memory too.

Practical performance issues dictate that you’re better off creating a read-only collection that
contains only the information needed to create the user interface. (This is one of the primary rea-
sons why CSLA .NET includes the ReadOnlyListBase class, which makes it very easy to create such
objects.)

This stems from behavioral design. The responsibility of a Resource object is to add and edit
a valid resource. The responsibility of a ResourceList object is to get a read-only list of resources.
It is clear that these responsibilities are in conflict. To use a Resource object as a child of
ResourceList, it would need to be read-only—yet its whole purpose is to add and edit data!

Obviously ResourceList and ProjectList must contain child objects other than Resource and
Project. Instead, the ProjectList and ResourceList objects should contain child objects that con-
tain only the data to be displayed, in read-only format. These new child objects will have
responsibilities appropriate to their purpose. ResourceInfo, for instance, will be responsible for
returning read-only information about a resource.

■Tip As discussed earlier, if there are common business rules or logic for properties exposed in such read-only
objects, the common behaviors should be normalized into another object.

Figure 6-8 shows the two collection objects with their corresponding read-only child objects.
The ProjectInfo object is responsible for providing read-only information about a project,

while the ResourceInfo object provides read-only information about a resource. By loading the
minimum amount of data required to meet these responsibilities, these objects provide a high-
performance solution and follow good behavioral object design.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN340

6315_c06_final.qxd 4/7/06 2:21 PM Page 340

Inter-Object Collaboration
The object model has a RoleList object, responsible for providing a read-only list of role data. It
also has a Roles object, responsible for editing the list of roles in the application. While these two
objects have very distinct responsibilities, they do have a point of interaction that should be
addressed.

Though not required by any use case from a user, the RoleList object can, and probably
should, be cached. The list of roles won’t change terribly often, and yet the RoleList object will be
used frequently to populate UI controls and to validate data from the user. There’s no sense hitting
the database every time to get the same data over and over.

You’ll see how to easily implement the caching in Chapter 8, but first, there’s a design issue to
consider: what happens when the user edits the list of roles using the Roles object? In such a case,
the RoleList object will be inaccurate.

■Note There’s a related issue too, which is when another user edits the list of roles. That issue is harder to
solve, and requires either periodic cache expiration or some mechanism by which the database can notify the
client that the roles have changed. Solving this problem is outside the scope of this discussion, however.

It is relatively trivial to have the Roles object notify RoleList to tell it that the data has changed.
In such a case, RoleList can simply invalidate its cache so the data is reloaded on the next request.
Again, the implementation of this behavior is shown in Chapter 8.

From an object model perspective, however, this means that there is interaction between Roles
and RoleList. From a CRC perspective, this means that Roles collaborates with RoleList to expire
the cache when appropriate.

Reviewing the Design
The final step in the object design process is to compare the new class diagram with the original use
case descriptions in order to ensure that everything described in each use case can be accomplished
through the use of these objects. Doing so helps to ensure that the object model covers all the user
requirements. The complete object model is shown in Figure 6-9, with the updated CRC information
shown in Table 6-3.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 341

Figure 6-8. The read-only collection objects, ProjectList and ResourceList

6315_c06_final.qxd 4/7/06 2:21 PM Page 341

The solid-lined arrows in Figure 6-9 indicate collaboration between objects, illustrating how
many of them work together to provide the required functionality. The dashed lines show naviga-
tion between objects. For instance, if you have a ProjectInfo object, it is possible to navigate from
there to a Project, typically by calling a GetProject() method.

While navigation between objects isn’t strictly necessary, it is often of great benefit to UI devel-
opers. Consider that a UI developer will get access to a ProjectInfo object when the user selects a
project from a control in the UI. In most cases, the next step is to load the associated Project so that
the user can view or edit the data. Providing navigational support directly in the object model
makes this trivial to implement within the UI.

Table 6-3. Final List of Objects and Their Responsibilities

Potential Class Responsibility Collaborators

Project Adds and edits a valid project ProjectResources,
CommonRules

ProjectResources Maintains a list of resources assigned to a project ProjectResource

ProjectResource Manages assignment of a resource to a project Assignment,
CommonRules,
Resource

Resource Adds and edits a valid resource ResourceAssignments,
CommonRules

ResourceAssignments Maintains a list of projects to which a resource is ResourceAssignment
assigned

ResourceAssignment Manages a project to which a resource is assigned Assignment,
CommonRules, Project

Assignment Manages association of a project and a resource RoleList

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN342

Figure 6-9. Final project tracker object model

6315_c06_final.qxd 4/7/06 2:21 PM Page 342

Potential Class Responsibility Collaborators

ProjectList Gets a read-only list of projects ProjectInfo

ProjectInfo Provides read-only information for a project Project

ResourceList Gets a read-only list of resources ResourceInfo

ResourceInfo Provides read-only information for a resource Resource

RoleList Gets a read-only list of roles None

Roles Maintains a list of roles in the system Role, RoleList

Role Adds and edits a valid role None

If you review the use cases, you should find that the objects can be used to accomplish all of
the tasks and processes described in the following list:

• Users can get a list of projects.

• Users can add a project.

• Users can edit a project.

• Users can remove a project.

• Users can get a list of resources.

• Users can add a resource.

• Users can edit a resource.

• Users can remove a resource.

• Users can assign a resource to a project (and vice versa).

• When a resource is assigned to a project, users can specify the role that the resource will play
on the project.

Custom Authentication
Though the objects required to service the business problem have been designed, there’s one area
left to address. For this application, I want to show how to use custom authentication. Perhaps this
requirement became clear due to a user requirement to support users external to our organization;
users that aren’t in our corporate domain or Active Directory (AD).

The topic of authentication has been discussed several times in the book thus far, and you
should remember that CSLA .NET supports Windows integrated (AD) authentication—in fact, that’s
the default. But it also supports custom authentication, allowing the business developer to create
custom .NET principal and identity objects that authenticate the user using credentials stored in a
database, LDAP server, or other location.

To this end, the object model will include two objects: PTPrincipal and PTIdentity. They are
shown in Figure 6-10.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 343

Figure 6-10. Business objects subclassing BusinessListBase

6315_c06_final.qxd 4/7/06 2:21 PM Page 343

PTPrincipal is a .NET principal object, and acts as the primary entry point for custom authen-
tication and role-based authorization. PTIdentity is a .NET identity object and is responsible for
representing the user’s identity.

At this point, the object model can be considered complete.

Using CSLA .NET
The class diagrams created so far have focused entirely on the business domain—which is a good
thing. Ideally, you should always start by focusing on business issues, and deferring much of the
technical design to a later stage in the process. Users typically don’t understand (or care about) the
technical issues behind the scenes, such as how you are going to implement the Cancel buttons, or
how to retrieve data from the database.

Of course, the business developer cares about these issues—but these issues can be dealt with
after the basic object modeling is complete, once you have a good understanding of the business
issues and confidence that your model can meet the requirements laid out in the use cases.

At this point in the book, we also have the significant advantage of having designed and built
a business framework. This means spending less time figuring out how to design or implement the
features included in the framework. By relying on CSLA .NET, developers gain the benefits listed in
Table 6-4.

Table 6-4. Benefits Gained by Using CSLA .NET

Feature Description

Smart data Business data is encapsulated in objects along with its asso-
ciated business logic, so developers are never working with
raw, unprotected data, and all business logic is centralized
for easy maintenance.

Easy object creation Developers use standard .NET object-oriented programming
techniques to create business objects.

Flexible physical configuration Data access runs locally or on an application server, without
changing business code.

Object persistence Clearly defined methods contain all data access code.

Optimized data access Objects only persist themselves if their data has been
changed. It’s easy to select between various transaction tech-
nologies to balance between performance and features.

Optional n-level undo capabilities Support for complex Windows Forms interfaces is easy, while
also supporting high-performance web interfaces.

Business rule management Reduces the code required to implement business rules.

Authorization rule management Reduces the code required to implement per-property
authorization.

Simple UI creation With full support for both Windows Forms and Web Forms
data binding, minimal code is required to create sophisti-
cated user interfaces (see Chapters 9 and 10).

Web service support Developers can readily create a web service interface for the
application, so that other applications can directly tap into
the application’s functionality (see Chapter 11).

Custom authentication Makes it easy to select between Windows integrated security
and CSLA .NET custom security. It’s also easy to customize
CSLA .NET custom security to use preexisting security data-
bases. In either case, standard .NET security objects are used,
providing a standard way to access user security information.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN344

6315_c06_final.qxd 4/7/06 2:21 PM Page 344

To use CSLA .NET, developers merely need to determine which base classes to inherit from
when creating each business class. For example, some business objects will be editable objects that
can be loaded directly by the user. These need to inherit from BusinessBase, as shown in Figure 6-11.

By subclassing BusinessBase, all these objects gain the full set of business object capabilities
implemented in Chapters 3 through 5.

The model also includes objects that are collections of business objects, and they should inherit
from BusinessListBase, as shown in Figure 6-12.

BusinessListBase supports the undo capabilities implemented for BusinessBase; the two base
classes work hand in hand to provide this functionality.

As shown in Figure 6-13, the two objects that list read-only data for the user inherit from
ReadOnlyListBase.

This base class provides the support objects need for retrieving data from the database without
the overhead of supporting undo or business rule tracking. Those features aren’t required for read-
only objects.

The ProjectInfo and ResourceInfo classes don’t inherit from any CSLA .NET base classes. As
you’ll see in Chapters 7 and 8, they must be marked with the <Serializable()> attribute, but they
don’t need to inherit from a special base class just to expose a set of read-only properties.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 345

Figure 6-11. Business objects subclassing BusinessBase

Figure 6-12. Business objects subclassing BusinessListBase

6315_c06_final.qxd 4/7/06 2:21 PM Page 345

Next, there’s the RoleList object, which is a read-only list of name/value data. Although this
could be implemented using ReadOnlyListBase, Chapter 5 added a better alternative into the frame-
work—the NameValueListBase class, as shown in Figure 6-14.

This base class is designed to make it as easy as possible to create read-only lists of text values,
so it’s ideal for building the RoleList class.

Finally, there are the two custom authentication objects: PTPrincipal and PTIdentity.
Figure 6-15 shows these objects along with their CSLA .NET base classes.

PTPrincipal inherits from Csla.Security.BusinessPrincipalBase, ensuring that it implements
the System.Security.Principal.IPrincipal interface, and also that it will work with the data portal,
as implemented in Chapter 4. A required property from the IPrincipal interface is Identity, which
provides a reference to a .NET identity object—in this case, PTIdentity.

The PTIdentity object inherits from ReadOnlyBase. It exposes only read-only data, and so this is
a natural fit.

All of these classes will be implemented in Chapter 8. During that process, you’ll see how to use
the CSLA .NET framework to simplify the process of creating business objects.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN346

Figure 6-13. Read-only list objects subclassing ReadOnlyListBase

Figure 6-14. RoleList subclassing NameValueListBase

6315_c06_final.qxd 4/7/06 2:21 PM Page 346

Database Design
It’s a rare thing to be able to design a database specifically for an application. More often than not,
the databases already exist, and developers must deal with their existing design. At best, you might
be able to add some new tables or columns.

This is one reason why ORM is a key concept for object-oriented development. The object
model designed earlier in the chapter matches the business requirements without giving any con-
sideration to the database design. An important step in the development process is to create code
that translates the data from the databases into the objects, and vice versa. That code will be
included in Chapter 8 as the business objects are implemented.

In this chapter, let’s create a database for use by the project-tracking application. One thing to
note is that even though the database is created specifically for this application, the data model will
not match the object model exactly. A good relational model and a good object model are almost
never the same thing.

■Tip Speaking of good relational models, I strongly recommend that database design be done by a professional
DBA, not by software developers. While many software developers are reasonably competent at database design,
there are many optimizations and design choices that are better made by a DBA. The database design shown here
is that of a software developer, and I’m sure a DBA would see numerous ways to improve or tweak the results to
work better in a production setting.

To make development and testing relatively easy, this will be a SQL Server 2005 Express data-
base. As you’ll see in Chapter 8, you write the data access code for each object, so neither CSLA .NET
nor your business objects are required to use SQL Server 2005 Express or any other specific data-
base. You can use any data storage technology you choose behind your objects. In most cases, your
applications will use production database servers such as SQL Server 2005 Enterprise Edition,
Oracle, or DB2, rather than the more limited Express Edition used here.

The database will include tables, along with some stored procedures to enable database access
from code. Additionally, there will be a second database to contain security information for use by
the PTIdentity object.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 347

Figure 6-15. Objects supporting custom authentication

6315_c06_final.qxd 4/7/06 2:21 PM Page 347

■Tip If you’re using a database other than SQL Server 2005 Express, you should translate the table creation and
stored procedures to fit with your environment. You can find the database, table, and stored procedure scripts in
the PTData project in the code download from www.apress.com.

While stored procedures may or may not offer any performance benefits, I believe they are a
critical part of any business application. Stored procedures provide an abstract, logical interface to
the database. They provide a level of indirection between the business objects and the underlying
table structures, and thus they reduce coupling between the data management and business layers
in your application. In short, stored procedures help make applications more maintainable over
time.

That said, you’ll notice that none of these stored procedures are complex, and every effort is
made to keep business logic out of the database and in the business objects. Putting the business
logic in both the objects and the database is just another way to duplicate business logic, which
increases maintenance costs for the application as a whole.

Creating the Databases
The PTracker database will contain tables and stored procedures to persist the data for the business
objects in the object model designed earlier in the chapter. This is a SQL Server 2005 Express data-
base, and so you can think of it as being just another file in your project.

To create the database, open Visual Studio and create a new Class Library project named PTDB.
I won’t have you build this project at any point, so the project settings and Class1.vb file can be
ignored. The purpose of this project is just so you can use Visual Studio to set up the database.

Choose Project ➤ Add New Item, and choose the SQL Database option. As shown in Figure 6-16,
name the file and click Add.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN348

Figure 6-16. Adding the PTracker database in Visual Studio

6315_c06_final.qxd 4/7/06 2:21 PM Page 348

Visual Studio will force you to walk through the process of creating a DataSet for the new data-
base. You can walk through or cancel that wizard as you choose. It is not required for anything
covered in this book.

Repeat the process to add a Security.mdf database as well. The end result is that you’ll have
two databases in the project—and more importantly, in the Server Explorer window, as shown in
Figure 6-17.

Table creation can also be done within Server Explorer: just right-click the Tables node under
the database, and choose New Table. This will bring up a table designer in VS .NET, with which you
can define the columns for the new table.

Once the columns, keys, and indexes have been set up, save the changes by closing the designer
or clicking the Save button in the toolbar. At this point, you’ll be prompted to provide a name for the
table, and it will be added to the database.

PTracker Database
Follow this process to add each of the following four tables to the database.

Roles
The Roles table will store the list of possible roles a resource can fill when assigned to a project—it
simply contains an Id value and the name of the role. Figure 6-18 shows the VS .NET designer with
these columns added, and the Id column configured as the primary key.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 349

Figure 6-17. The PTracker and Security databases in Server Explorer

Figure 6-18. Design of the Roles table

6315_c06_final.qxd 4/7/06 2:21 PM Page 349

Notice that none of the columns allow null values. There’s no business requirement to differen-
tiate between an empty value and one that was never entered, so null values would make no sense.

The table also has a LastChanged column, which will be used to implement optimistic, first-write-
wins concurrency in Chapter 8. It is of type timestamp, and so provides a unique, auto-incrementing
value every time a row is inserted or updated. All the tables in the PTracker database will have this
type of column.

Projects
The Projects table will contain the data for each project in the system. The columns for this table
are shown in Figure 6-19.

The Id column is set up as the primary key, and it’s of type uniqueidentifier, which is a Guid
type in .NET.

There are many ways to create primary key columns in tables, including using auto-
incrementing numeric values or user-assigned values. However, the use of a uniqueidentifier is
particularly powerful when working with object-oriented designs. Other techniques don’t assign the
identifier until the data is added to the database, or they allow the user to provide the value, which
means that you can’t tell if it collides with an existing key value until the data is added to the data-
base. With a uniqueidentifier, however, the business developer can write code to assign the primary
key value to an object as the object is created. There’s no need to wait until the object is inserted
into the database to get or confirm the value. If the value isn’t assigned ahead of time, the database
will supply the value.

Notice that the two datetime fields allow null values. The null value is used here to indicate
an empty value for a date. The Description column is also allowed to be null. This isn’t because of
any business requirement, but rather because it is quite common for database columns to allow
null values in cases in which they’re meaningless. Chapter 8 will illustrate how to easily ignore
any null values in this column.

The Description column is of type varchar(MAX), so that it can hold a blob of text data. This
field allows the user to enter a lengthy description of the project, if so desired.

Resources
The Resources table will hold the data for the various resources that can be assigned to a project.
The columns for this table are shown in Figure 6-20.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN350

Figure 6-19. Design of the Projects table

6315_c06_final.qxd 4/7/06 2:21 PM Page 350

Once again, the Id column is the primary key—it’s an int that is configured as an identity col-
umn using the Column Properties window, as shown in Figure 6-21.

This table has now been given an identity key; the code in Chapter 8 will demonstrate how to
support this concept within your business objects.

As with the Description field in the Projects table, the LastName and FirstName columns allow
null values even though they have no business meaning. Again, this is merely to illustrate how to
build business objects to deal with real-world database designs and their intrinsic flaws.

Assignments
Finally, there’s the Assignments table. A many-to-many relationship exists between projects and
resources—a project can have a number of resources assigned to it, and a resource can be assigned
to a number of projects.

The way you can represent this relationally is to create a link table that contains the primary
keys of both tables. In this case, it will also include information about the relationship, including the
date of the assignment and the role that the resource plays in the project, as shown in Figure 6-22.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 351

Figure 6-20. Design for the Resources table

Figure 6-21. Making the Id column an identity column

Figure 6-22. Design for the Assignments table

6315_c06_final.qxd 4/7/06 2:21 PM Page 351

The first two columns here are the primary keys from the Projects and Resources tables; when
combined, they make up the primary key in the link table. Though the Assigned column is of
datetime type, null values are not allowed. This is because this value can’t be empty—a valid date
is always required. The Role column is also a foreign key, linking back to the Roles table. The data in
this table will be used to populate the ProjectResource and ResourceAssignment objects discussed
earlier in the chapter.

This really drives home the fact that a relational model isn’t the same as an object-oriented
model. The many-to-many relational design doesn’t match up to the object model that represents
much of the same data. The objects are designed around normalization of behavior, while the data
model is designed around normalization of data.

Database Diagrams
Server explorer in Visual Studio supports the creation of database diagrams, which are stored in the
database. These diagrams not only illustrate the relationships between tables, but also tell SQL Server
how to enforce and work with those relationships.

Under the PTracker.mdf node in Server Explorer, there’s a node for Database Diagrams. Right-
click this entry and choose New Diagram. Visual Studio will prompt you for the tables to be included
in the diagram. Highlight all of them, and click Add and Close.

The result is a designer window in which the tables are shown as a diagram. You can drag and
drop columns from tables to other tables in order to indicate relationships. For example, drag and
drop the Id field from Projects to the ProjectID field in the Assignments table. This will bring up a
Tables and Columns dialog box, in which you can specify the nature of this relationship, as shown
in Figure 6-23. Click OK to create the relationship.

Do the same to link the Resources table to Assignments. You can also link the Roles table’s Id
column to the Role column in Assignments, thereby allowing the database to ensure that only valid
roles can be added to the table.

The resulting diagram should appear in a way that’s similar to Figure 6-24.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN352

Figure 6-23. Creating a relationship between Assignments and Projects

6315_c06_final.qxd 4/7/06 2:21 PM Page 352

Save the diagram to the database, naming it PTrackerRelationships. VS .NET will then ask
whether to update the tables. Remember that these relationships are reflected as formal constraints
within the database itself, so this diagram directly impacts the database design.

Stored Procedures
Whenever possible, database access should be performed through stored procedures. Stored proce-
dures offer powerful security control over the database, and—perhaps most importantly—provide
an abstraction layer between the physical structure of the database and the logical way in which it
is used. The business objects created in Chapter 8 will make use of stored procedures for their data-
base interaction.

You can use Server Explorer to add the stored procedures to the database by right-clicking the
Stored Procedures node under the database, and choosing Add New Stored Procedure. This will
bring up a designer window in which you can write the stored procedure code. When you close the
designer, the stored procedure will be added to the database.

getProjects
The getProjects procedure will return the project data to populate the ProjectList object as
follows:

CREATE PROCEDURE getProjects
AS
SELECT Id, Name
FROM Projects
RETURN

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 353

Figure 6-24. Database diagram for the PTracker database

6315_c06_final.qxd 4/7/06 2:21 PM Page 353

It simply returns basic data about all of the projects in the system. The use cases didn’t specify
details about the order in which the projects should be listed in a project list, so I haven’t included
an ORDER BY clause here. Developers may have to do so during the testing process, as users typically
add such requirements during that phase.

existsProject
The existsProject procedure is used to determine if a project’s data is in the database:

CREATE PROCEDURE dbo.existsProject
(
@id uniqueidentifier
)

AS
SELECT COUNT(*)
FROM Projects WHERE Id=@id
RETURN

The procedure just returns the number of projects with a matching Id value.

getProject
The getProject procedure retrieves the information for a single project. This is a relatively complex
proposition, since a Project object needs to retrieve not only the core project data, but also the list
of resources assigned to the project.

This could be done by making two stored procedures and calling both of them to populate the
business objects, but this can be reduced to a single database call by putting both SELECT statements
in a single stored procedure. The stored procedure will then return two result sets, which can be
read within the business object’s code:

CREATE PROCEDURE getProject
(
@id uniqueidentifier

)
AS
SELECT Id,Name,Started,Ended,
Description,LastChanged

FROM Projects
WHERE Id=@id

SELECT ResourceId,LastName,
FirstName,Assigned,Role,
Assignments.LastChanged AS LastChanged

FROM Resources,Assignments
WHERE ProjectId=@id AND ResourceId=Id
RETURN

Notice how the second SELECT statement merges data from both the Assignments table and the
Resources table. Remember that the ProjectResource object will expose some resource data as read-
only properties, so that data must be returned here.

To some degree, I’m putting ORM logic in the stored procedures by designing them to make it
easy for the data access code in each business object to populate the objects. This isn’t essential—you
could write more complex code in the business objects—but it is a good idea, when you can do it.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN354

6315_c06_final.qxd 4/7/06 2:21 PM Page 354

■Tip In many cases, applications must be built without the option of altering the structure of the database, or
even its stored procedures. When that happens, all of the ORM logic must be written within the business objects.
The end result is the same; it’s merely a matter of where the ORM logic resides.

addProject
The addProject procedure is called to add a record to the Projects table, as follows:

CREATE PROCEDURE addProject
(
@id uniqueidentifier,
@name varchar(50),
@started datetime,
@ended datetime,
@description text,
@description varchar(MAX),
@newLastChanged timestamp output

)
AS
INSERT INTO Projects
(Id,Name,Started,Ended,Description)
VALUES
(@id,@name,@started,@ended,@description)

SELECT @newLastChanged = LastChanged
FROM Projects WHERE Id=@id
RETURN

Note that this only adds the record to the Projects table; a separate stored procedure adds
records to the Assignments table.

This stored procedure not only includes an INSERT statement, but also a SELECT statement that
loads an output parameter value. This is required to support concurrency. Recall that all the tables
in the database include a timestamp column, which is automatically incremented each time a row
is inserted or updated. As you’ll see in Chapter 8, the business object must keep track of this value.
Since the value changes any time the row changes, the value is returned as the result of any INSERT
or UPDATE operation.

updateProject
Not only are records added to the Projects table, but the application must allow them to be
changed. The updateProject procedure provides this capability, as shown here:

CREATE PROCEDURE updateProject
(
@id uniqueidentifier,
@name varchar(50),
@started datetime,
@ended datetime,
@description varchar(MAX),
@lastChanged timestamp,
@lastChanged timestamp,
@newLastChanged timestamp output

)

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 355

6315_c06_final.qxd 4/7/06 2:21 PM Page 355

AS
UPDATE Projects
SET
Name=@name,
Started=@started,
Ended=@ended,
Description=@description

WHERE Id=@id
AND LastChanged=@lastChanged

IF @@ROWCOUNT = 0
RAISERROR('Row has been edited by another user', 16, 1)

SELECT @newLastChanged = LastChanged
FROM Projects WHERE Id=@id
RETURN

Again, this procedure only updates the record in the Projects table; the related records in the
Assignments table are updated separately.

Notice the @lastChanged parameter required by the procedure. This represents the last known
timestamp value for the row. In Chapter 8, you’ll see how this value is maintained by the business
object.

When the object attempts to update the row, it provides the last known value for the
LastChanged column. If that value hasn’t changed in the database, then no other user has updated
the row since the object read its data. But if the value has changed in the database, then some other
user did change the data in the row since the object read the data. First-write-wins optimistic con-
currency specifies that this second update can’t be allowed, because it could overwrite changes
made by that other user.

The UPDATE statement itself uses this parameter in the WHERE clause to ensure that the row is only
updated if the value matches. The procedure then checks to see if the row was actually updated. If no
rows were updated, it raises an error, which shows up as a database exception in the data access code
of the business object.

On the other hand, if the update goes through and the row is changed, then a SELECT statement
is executed to return the new value of the LastChanged column as an output parameter, so that the
object can maintain the new value to allow possible future updates.

deleteProject
The deleteProject procedure deletes the appropriate record from the Projects table, and also
removes any related records from the Assignments table. When creating the relationships between
tables in the database diagram, the default is to not automatically cascade deletions to child tables:

CREATE PROCEDURE deleteProject
(
@id uniqueidentifier

)
AS
DELETE Assignments
WHERE ProjectId=@id

DELETE Projects
WHERE Id=@id
RETURN

If you set up your table relationships to cascade deletes automatically, then obviously the pre-
ceding stored procedure would only delete the data in the Projects table.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN356

6315_c06_final.qxd 4/7/06 2:21 PM Page 356

Though this procedure updates multiple tables, it does not include transactional code.
Although you could manage the transaction at this level, you can gain flexibility by allowing the
business object to manage the transaction.

Using the CSLA .NET framework, you have the option to run the data access code within a
System.Transactions transactional context, to run it within an Enterprise Services distributed
transaction, or to manually manage the transaction. When using either System.Transactions or
Enterprise Services, transactional statements in the stored procedures will cause exceptions to
occur. If you opt to handle the transactions manually, you can choose to put the transactional
statements here in the stored procedure, or use an ADO.NET Transaction object within the
business object’s data access code.

addAssignment
When adding or editing a project or a resource, the user may also add or change the associated data
in the Assignments table. The addAssignment procedure adds a new record as follows:

CREATE PROCEDURE addAssignment
(
@projectID uniqueidentifier,
@resourceID varchar(10),
@assigned datetime,
@role int,
@newLastChanged timestamp output

)
AS
INSERT INTO Assignments
(ProjectId,ResourceId,Assigned,Role)
VALUES
(@projectId,@resourceId,@assigned,@role)

SELECT @newLastChanged = LastChanged
FROM Assignments
WHERE ProjectId=@projectId AND ResourceId=@resourceId
RETURN

This procedure may be called during the adding or editing of either a Project or a Resource
object in the application.

Like addProject, this procedure ends with a SELECT statement that returns the new value of
the LastChanged column for the row as an output parameter. This value must be maintained by the
business object to allow for future updates of the row using the updateAssignment stored procedure.

updateAssignment
Likewise, there’s a requirement to update records in the Assignments table:

CREATE PROCEDURE updateAssignment
(
@projectId uniqueidentifier,
@resourceId int,
@assigned datetime,
@role int,
@lastChanged timestamp,
@newLastChanged timestamp output

)

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 357

6315_c06_final.qxd 4/7/06 2:21 PM Page 357

AS
UPDATE Assignments
SET
Assigned=@assigned,
Role=@role

WHERE ProjectId=@projectId AND ResourceId=@resourceId
AND LastChanged=@lastChanged

IF @@ROWCOUNT = 0
RAISERROR('Row has been edited by another user', 16, 1)

SELECT @newLastChanged = LastChanged
FROM Assignments
WHERE ProjectId=@projectId AND ResourceId=@resourceId
RETURN

As with addAssignment, this may be called when updating data from either a Project or a
Resource object.

Notice the @lastChanged parameter. It is used in the same way the parameter was used in
updateProject: to implement first-write-wins optimistic concurrency. If the UPDATE statement
succeeds, the new value of the LastChanged column is returned as a result through an output
parameter so that the business object can maintain the new value.

deleteAssignment
As part of the process of updating a project or resource, it is possible that a specific record will be
deleted from the Assignments table. An assignment is a child entity beneath a project or resource;
and a user can remove a resource from a project, or a project from a resource. In either case, that
specific assignment record must be removed from the database:

CREATE PROCEDURE deleteAssignment
(
@projectId uniqueidentifier,
@resourceId int

)
AS
DELETE Ass ignments
WHERE ProjectId=@projectId AND ResourceId=@resourceId
RETURN

This completes the operations that can be performed on the Assignments data. Notice that
there’s no getAssignments procedure. This is because assignments are always children of a project
and a resource. The business objects never retrieve just a list of assignments, except as part of retriev-
ing a project or resource. The getProject procedure, for instance, also retrieves a list of assignments
associated with the project.

getResources
The ResourceList object needs to be able to retrieve a list of basic information about all the records
in the Resources table, as follows:

CREATE PROCEDURE getResources
AS
SELECT Id,LastName,FirstName
FROM Resources
RETURN

This information will be used to populate the read-only ResourceList business object.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN358

6315_c06_final.qxd 4/7/06 2:21 PM Page 358

existsResource
The existsResource procedure is used to determine if a resource’s data is in the database:

CREATE PROCEDURE dbo.existsResource
(
@id int
)

AS
SELECT COUNT(*)
FROM Resources WHERE Id=@id
RETURN

Like existsProject, the procedure just returns the number of resource rows with a matching
Id value.

getResource
The Resource object needs to be able to get detailed information about a specific record in the
Resources table, along with its associated data from the Assignments table. This is very similar to
the getProject procedure. Here, too, two result sets are returned from the stored procedure:

CREATE PROCEDURE getResource
(
@id int

)
AS
SELECT Id,LastName,FirstName,LastChanged
FROM Resources
WHERE Id=@id

SELECT ProjectId,Name,Assigned,Role,
Assignments.LastChanged AS LastChanged

FROM Projects,Assignments
WHERE ResourceId=@id AND ProjectId=Id
RETURN

The second SELECT statement returns data not only from the Assignments table, but also from
the Projects table. This data will be provided as read-only properties in the ResourceAssignment
object. By combining the two SELECT statements into a single stored procedure, the Resource object
can make a single database call to retrieve all the data it requires.

addResource
When a new Resource object is created and saved, its data needs to be inserted into the Resources
table:

CREATE PROCEDURE addResource
(
@lastName varchar(50),
@firstName varchar(50),
@newId int output,
@newLastChanged timestamp output

)

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 359

6315_c06_final.qxd 4/7/06 2:21 PM Page 359

AS
INSERT INTO Resources
(LastName,FirstName)
VALUES
(@lastName,@firstName)

SELECT @newId = Id, @newLastChanged = LastChanged
FROM Resources WHERE Id=SCOPE_IDENTITY()
RETURN

Remember that the Id column in the Resources table is an identity column. This means its
value is automatically assigned by the database when a new row is inserted. The built-in
SCOPE_IDENTITY() function is used to retrieve the generated key value, and that value is returned
in an output parameter, as a result of the stored procedure. In Chapter 8, you’ll see how this
value is retrieved by the Resource object so that the object becomes aware of the new value. Also,
as in addProject, the new value for the LastChanged column is returned to the object.

The associated addAssignment procedure, which can be used to add related records to the
Assignments table, was created earlier.

updateResource
Likewise, there’s a need to update data in the Resources table, as shown here:

CREATE PROCEDURE updateResource
(
@id int,
@lastName varchar(50),
@firstName varchar(50),
@lastChanged timestamp,
@newLastChanged timestamp output

)
AS
UPDATE Resources
SET
LastName=@lastName,
FirstName=@firstName

WHERE Id=@id
AND LastChanged=@lastChanged

IF @@ROWCOUNT = 0
RAISERROR('Row has been edited by another user', 16, 1)

SELECT @newLastChanged = LastChanged
FROM Resources WHERE Id=@id
RETURN

This procedure will be called when an existing Resource object is edited and saved.

deleteResource
A Resource object can be removed from the system. This means removing not only the record from
the Resources table, but also the associated records from the Assignments table, as shown here:

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN360

6315_c06_final.qxd 4/7/06 2:21 PM Page 360

CREATE PROCEDURE deleteResource
(
@id int

)
AS
DELETE Assignments
WHERE ResourceId=@id

DELETE Resources
WHERE Id=@id
RETURN

This procedure works the same as deleteProject.

getRoles
The getRoles procedure will return the list of roles to populate the RoleList and Roles objects as
follows:

CREATE PROCEDURE [dbo].[getRoles]
AS
SELECT Id,Name,LastChanged
FROM Roles
RETURN

All the role data is returned as a result of this procedure. Though RoleList and Roles use the
data differently, they both use the same set of values.

addRole
The addRole procedure adds a new entry to the Roles table:

CREATE PROCEDURE [dbo].[addRole]
(
@id int,
@name varchar(50),
@newLastChanged timestamp output

)
AS
INSERT INTO Roles
(Id,Name)
VALUES
(@id,@name)

SELECT @newLastChanged = LastChanged
FROM Roles WHERE Id=@id
RETURN

This stored procedure is called by the Role object when it needs to insert its data into the data-
base. As with the other add procedures, this one returns the new value of the LastChanged column
for use by the business object.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 361

6315_c06_final.qxd 4/7/06 2:21 PM Page 361

updateRole
The updateRole procedure updates an existing entry in the Roles table:

CREATE PROCEDURE [dbo].[updateRole]
(
@id int,
@name varchar(50),
@lastChanged timestamp,
@newLastChanged timestamp output

)
AS
UPDATE Roles
SET
Name=@name

WHERE Id=@id
AND LastChanged=@lastChanged

IF @@ROWCOUNT = 0
RAISERROR('Row has been edited by another user', 16, 1)

SELECT @newLastChanged = LastChanged
FROM Roles WHERE Id=@id
RETURN

This stored procedure is called by the Role object when it needs to update the data in the
database.

deleteRole
The deleteRole procedure removes an entry from the Roles table:

CREATE PROCEDURE [dbo].[deleteRole]
(
@id int

)
AS
DELETE Roles
WHERE Id=@id
RETURN

This stored procedure is called by the Role object when it needs to remove a row of data from
the database.

At this point, stored procedures exist to do every bit of data access. In Chapter 8, the business
objects will implement data access code using ADO.NET that makes use of these stored procedures.

Security Database
With the PTracker database complete, let’s wrap up the chapter by creating the tables and stored
procedures for the Security database. This database will be used by the PTIdentity object to per-
form custom authentication of a user’s credentials. Assuming the user is valid, the user’s roles will
be loaded into the business object so they can be used for authorization as the application is used.

The PTPrincipal and PTIdentity objects will be implemented in Chapter 8. In most cases,
you’ll be creating similar custom security objects—but designed to use your preexisting security
database tables. The database created in this chapter and the objects created in Chapter 8 exist pri-
marily to demonstrate the basic process required for creating your own objects.

Figure 6-25 shows the two tables in the database, along with their relationship.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN362

6315_c06_final.qxd 4/7/06 2:21 PM Page 362

In the Users table, Username and Password are both varchar(20) columns, as is the Role column
in the Roles table. Only the Password column allows null values. All other values are required. Of
course, a password should be required as well, but for this simple example, it is left as optional.

Finally, there’s a Login stored procedure:

CREATE PROCEDURE Login
(
@user varchar(20),
@pw varchar(20)

)
AS
SELECT Username
FROM Users
WHERE Username=@user AND Password=@pw;

SELECT R.Role
FROM Users AS U INNER JOIN Roles AS R ON

R.UserName = U.UserName
WHERE U.Username = @user and U.Password = @pw
RETURN

This procedure is called by PTIdentity to authenticate the user and retrieve the user’s list of
roles. As you’ll see in Chapter 8, PTIdentity determines whether the user’s credentials are valid or
not by finding out whether any data is returned from this stored procedure. If no data is returned,
then the user’s credentials are assumed to be invalid and the user is not authenticated.

On the other hand, if the stored procedure does return data, then PTIdentity stores that data,
especially the list of roles to which the user belongs. This list of security roles (not to be confused
with the project roles from the PTracker database) is then used for authorization throughout the
application. The CanReadProperty() and CanWriteProperty() methods on each business object rely
on this data.

Conclusion
This chapter has started the process of building a sample application that will make use of the CSLA
.NET framework. It’s a simple project-tracking application that maintains a list of projects and a list
of resources, and allows the resources to be assigned to the projects.

The application’s design used an object-oriented analysis technique that involved creating use
cases that described the various ways in which the users need to interact with the system. Based on
the use cases, and by using elements of CRC-style design, a list of potential business objects was
created and refined.

That object list was then used to create a preliminary class diagram that showed the classes,
their key data fields, and their relationships. Based on the diagram, our understanding of the busi-
ness domain, and the use cases, we were able to refine the design to arrive at a final class diagram
that describes the business classes that will comprise the application.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN 363

Figure 6-25. Database diagram for the Security database

6315_c06_final.qxd 4/7/06 2:21 PM Page 363

The next step was to determine the appropriate CSLA .NET base classes from which each
business object should inherit. The editable business objects inherit from BusinessBase, and the
collections of editable child objects inherit from BusinessListBase. The lists of read-only data
inherit from ReadOnlyListBase, each of which contain simple child objects that don’t inherit from
a CSLA .NET base class at all. The list of simple name/value role data inherits from
NameValueListBase.

Finally, a simple relational database was created to store the data for the application. In most
applications, the database already exists, but in this case, we had the luxury of creating a database
from scratch. Even so, it’s interesting to note the differences between the object model and the
relational model, thus highlighting the fact that a good object-oriented model and a good rela-
tional model are almost never the same.

Chapter 7 will discuss the basic structure of each type of business object directly supported by
CSLA .NET. The chapter will also walk through a code template for each type. Then, Chapter 8 will
implement the business objects designed in this chapter, and Chapter 9 will show how to build a
Windows Forms UI based on those objects. In Chapter 10, a comparable Web Forms UI will be built,
and Chapter 11 will walk through the construction of a Web Services interface that reuses the exact
same objects. Finally, Chapter 12 will show how to host the server-side data portal components on
various application server technologies.

CHAPTER 6 ■ OBJECT-ORIENTED APPLICATION DESIGN364

6315_c06_final.qxd 4/7/06 2:21 PM Page 364

Using the CSLA .NET Base Classes

This chapter will discuss, in detail, how to implement business objects based on the CSLA .NET
framework. To a large degree, this chapter will tie together everything in the book so far; it will illus-
trate how to write code to create business objects, and make the most of the thought, design, and
coding that’s been covered.

Chapter 8 will implement the objects for the sample application designed in Chapter 6. But
before jumping headlong into implementing actual business objects, it is important to have a solid
understanding of how to use each of the base classes provided by the framework implemented in
Chapters 3 through 5.

This chapter will cover the life cycle of each type of business object in general terms. Then I’ll
get into code, creating a basic template showing the structure of each type of object:

• Editable root

• Editable child

• Editable, “switchable” (i.e., root or child) object

• Editable root collection

• Editable child collection

• Read-only object

• Read-only collection

• Command object

• Name/value list

Though the templates are not complete business object implementations, each one illustrates
the basic structure you need to follow when creating that type of business object. You can use this
information to create class templates or code snippets for use in Visual Studio to make your devel-
opment experience more productive.

Business Object Life Cycle
Before getting into the code structure for the business objects, it’s worth spending some time to
understand the life cycle of those objects. By life cycle, I mean the sequence of methods and events
that occur as the object is created and used. Although it isn’t always possible to predict the business
properties and methods that might exist on an object, there’s a set of steps that occur during the
lifetime of every business object.

Typically, an object is created by UI code, whether that’s Windows Forms, Web Forms, or a web
service. Sometimes, an object may be created by another object, which will happen when there’s a
using relationship between objects, for instance.

365

C H A P T E R 7

■ ■ ■

6315_c07_final.qxd 4/7/06 2:19 PM Page 365

Object Creation
Whether editable or read-only, all root objects go through the same basic creation process. (Root
objects are those that can be directly retrieved from the database, while child objects are retrieved
within the context of a root object, though never directly.)

As I discussed in Chapter 4, it’s up to the root object to invoke methods on its child objects and
child collections so that they can load their own data from the database. Usually, the root object actu-
ally calls the database and gets all the data back, and then provides that data to the child objects and
collections so that they can populate themselves. From a purely object-oriented perspective, it might
be ideal to have each object encapsulate the logic to get its own data from the database, but in reality
it’s not practical to have each object independently contact the database to retrieve one row of data.

Root Object Creation
Root objects are created by calling a factory method, which is a method that’s called in order to cre-
ate an object. These will be Shared methods on the class. The Shared method will use the data portal
to load the object with default values. The following steps outline the process of creating a new root
object:

1. The factory method is called.

2. The factory method calls DataPortal.Create() to get the business object.

3. The data portal uses its channel adapter and message router functionality as described in
Chapter 4; the result is that the data portal creates a new instance of the business object.

4. The business object can do basic initialization in the constructor.

5. The DataPortal_Create() method is called, and this is where the business object imple-
ments data access code to load its default values.

6. The business object is returned.

7. From the business object’s perspective, two methods are called, as follows:

• The default constructor

• DataPortal_Create()

This is illustrated in Figure 7-1.
If the object doesn’t need to retrieve default values from the database, the <RunLocal()> attri-

bute can be used to short-circuit the data portal so the object initialization occurs locally.
To the UI code, of course, there’s no difference—that code just calls the factory method and

gets an object back:

Dim root As Root = Root.NewRoot()

From the business object’s perspective, most of the work occurs in the DataPortal_Create()
method, where the object’s values are initialized.

366 CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES

6315_c07_final.qxd 4/7/06 2:19 PM Page 366

Child Object Creation
Child objects are usually created when the UI code calls an Add() method on the collection object
that contains the child object. Ideally, the child class and the collection class will be in the same
assembly, so the Shared factory methods on a child object can be scoped as Friend, rather than
Public. This way, the UI can’t directly create the object, but the collection object can create the
child when the UI calls the collection’s Add() method.

The CSLA .NET framework doesn’t actually dictate this approach. Rather, it’s a design choice
on my part because I feel that it makes the use of the business objects more intuitive from the UI
developer’s perspective. It’s quite possible to allow the UI code to create child objects directly, by
making the child factory methods Public; the collection’s Add() method would then accept a pre-
built child object as a parameter. I think that’s less intuitive, but it’s perfectly valid, and you can
implement your objects that way if you choose.

■Note Child objects can optionally be created through data binding, in which case the addition is handled by
overriding the AddNewCore() method in the collection class.

As with the root objects, you may or may not need to load default values from the database
when creating a child object.

■Tip If you don’t need to retrieve default values from the database, you could have the collection object create
the child object directly, using the New keyword. For consistency, however, it’s better to stick with the factory
method approach so that all objects are created the same way.

The steps to create a child object that doesn’t need to load itself with default values from the
database are as follows:

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 367

Figure 7-1. Creating a root object

6315_c07_final.qxd 4/7/06 2:19 PM Page 367

1. The factory method (Friend scope) is called.

2. The factory method creates the object locally by using the New keyword and possibly passing
parameter values.

3. The child object does any initialization in the constructor method.

4. The child object is returned.

5. From the child object’s perspective, only one method is called, as follows:

• Any constructor

This is illustrated in Figure 7-2.

Once the child object has been created and added to the parent, the UI code can access the
child via the parent’s interface. Typically, the parent will provide a default property that allows the
UI to access child objects directly.

Though the factory method is called by the parent object rather than the UI code, this is the
same process that’s used to create a root object. The same is true if the object needs to load itself
with default values from the database.

1. The factory method (Friend scope) is called.

2. The factory method calls DataPortal.Create() to get the child business object.

3. The data portal uses its channel adapter and message router functionality as described in
Chapter 4; the result is that the data portal creates a new instance of the business object.

4. The child object can do basic initialization in the constructor method.

5. The DataPortal_Create() method is called, and this is where the child object implements
data access code to load its default values.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES368

Figure 7-2. Child object–creation process with no data access

6315_c07_final.qxd 4/7/06 2:19 PM Page 368

6. The child object is returned. Again, the factory method is called by the collection object
rather than the UI, but the rest of the process is the same as with a root object.

7. From the child object’s perspective, two methods are called, as follows:

• The default constructor

• DataPortal_Create()

This is illustrated in Figure 7-3.

Note that in either of these cases, the UI code is the same: it calls the Add() method on the
parent object, and then interacts with the parent’s interface to get access to the newly added child
object. The UI is entirely unaware of how the child object is created (and possibly loaded with
default values).

Also note that the parent object is unaware of the details. All it does is call the factory method
on the child class and receive a new child object in return. All the details about how the child object
got loaded with default values are encapsulated within the child class.

Object Retrieval
Retrieving an existing object from the database is similar to the process of creating an object that
requires default values from the database. Only a root object can be retrieved from the database
directly by code in the user interface. Child objects are retrieved along with their parent root object,
not independently.

Root Object Retrieval
To retrieve a root object, the UI code simply calls the Shared factory method on the class, providing
the parameters that identify the object to be retrieved. The factory method calls
DataPortal.Fetch(), which in turn creates the object and calls DataPortal_Fetch(), as follows:

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 369

Figure 7-3. Creating a child object using data access

6315_c07_final.qxd 4/7/06 2:19 PM Page 369

1. The factory method is called.

2. The factory method calls DataPortal.Fetch() to get the business object.

3. The data portal uses its channel adapter and message router functionality as described in
Chapter 4; the result is that the data portal creates a new instance of the business object.

4. The business object can do basic initialization in the constructor method.

5. The DataPortal_Fetch() method is called; this is where the business object implements
data access code to retrieve the object’s data from the database.

6. The business object is returned.

7. From the business object’s perspective, two methods are called, as follows:

• The default constructor

• DataPortal_Fetch()

Figure 7-4 illustrates the process.

It’s important to note that the root object’s DataPortal_Fetch() is responsible not only for
loading the business object’s data, but also for starting the process of loading the data for its child
objects.

Chapter 6 implemented stored procedures to return the root object’s data and also all the child
object data—two result sets from a single stored procedure. This means that when the root object
calls the stored procedure to retrieve its data, it will also get the data for its child objects, so it must
cause those to be created as well.

The key thing to remember is that the data for the entire object, including its child objects, is
retrieved when DataPortal_Fetch() is called. This avoids having to go back across the network to
retrieve each child object’s data individually. Though the root object gets the data, it’s up to each
child object to populate itself based on that data. Let’s dive one level deeper and discuss how child
objects load their data.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES370

Figure 7-4. Retrieving an existing root object

6315_c07_final.qxd 4/7/06 2:19 PM Page 370

Child Object Retrieval
The retrieval of a child object is quite different from the retrieval of a root object, because the data
portal isn’t directly involved. Instead, as stated earlier, the root object’s DataPortal_Fetch() method
is responsible for loading not only the root object’s data, but also the data for all child objects. It
then calls methods on the child objects, passing the preloaded data as parameters so the child
objects can load their fields with data. The sequence of events goes like this:

1. The root object’s DataPortal_Fetch() creates the child collection using a Shared factory
method on the collection class (scoped as Friend), and it passes a data reader object as
a parameter.

2. The child collection implements a Private constructor to load its data. This method uses
the data reader provided as a parameter.

3. The child collection’s constructor loops through the records in the data reader, performing
the following steps for each record:

a. The child collection creates a child object by calling a factory method on the child class,
passing the data reader as a parameter.

b. The child object’s factory method calls its own Private constructor, passing the data
reader as a parameter, to load itself with data.

c. The collection object adds the child object to its collection.

4. At the end of the data reader, the child collection and all child objects are fully populated.

Figure 7-5 is a sequence diagram that illustrates how this works. Note that this diagram occurs
during the process of loading the root object’s data. This means that this diagram is really an expan-
sion of the previous sequence diagram for retrieving a root object!

Updating Editable Objects
For read-only objects, retrieval is the only data access concept required. Editable business objects
and editable collections (those deriving from BusinessBase and BusinessListBase) support update,
insert, and delete operations as well.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 371

Figure 7-5. Loading child objects with data

6315_c07_final.qxd 4/7/06 2:19 PM Page 371

Adding and Editing Root Objects
After an object is created or retrieved, the user will work with the object, changing its values by
interacting with the user interface. At some point, the user may click the OK or Save button, thereby
triggering the process of updating the object into the database. The sequence of events at that point
is as follows:

1. The UI calls the Save() method on the business object.

2. The Save() method calls DataPortal.Update().

3. DataPortal.Update() calls the DataPortal_Insert() or DataPortal_Update() method on the
business object as appropriate; those methods contain the data access code needed to
insert or update the data into the database.

4. During the insert or update process, the business object’s data may change.

5. The updated business object is returned as a result of the Save() method.

6. From the business object’s perspective, two methods are called:

• Save()

• Either DataPortal_Insert() or DataPortal_Update()

Figure 7-6 illustrates this process.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES372

Figure 7-6. Adding or updating a root object

6315_c07_final.qxd 4/7/06 2:19 PM Page 372

The Save() method is implemented in BusinessBase and BusinessListBase, and typically requires
no change or customization. Remember that the framework’s Save() method includes checks to ensure
that objects can only be saved if IsValid and IsDirty are True. This helps to optimize data access by
preventing the update of invalid or unchanged data.

■Tip If you don’t like this behavior, your business class can override the framework’s Save() method and
replace that logic with other logic.

All the data access code that handles the saving of the object is located in DataPortal_Insert()
or DataPortal_Update(). Recall that in Chapter 4 the data portal implementation included logic to
check the object’s IsNew and IsDeleted properties to properly route any update operation to the
appropriate DataPortal_XYZ method. Deleting a root object will be discussed later.

■Note It’s important to recall that when the server-side DataPortal is remote, the updated root object returned
to the UI is a new object. The UI must update its references to use this new object in lieu of the original root object.

Note that the DataPortal_XYZ methods are responsible not only for saving the object’s data, but
also for starting the process of saving all the child object data. Calling the data portal does not save
child objects; they are saved because their root parent object directly calls Friend-scoped Insert(),
Update(), or DeleteSelf() methods on each child collection or object, thereby causing them to save
their data.

Adding, Editing, and Deleting Child Objects
Child objects are inserted, updated, or deleted as part of the process of updating a root parent
object. To support this concept, child collections implement a Friend method named Update().
Child objects within a collection implement Friend methods, named Insert(), Update(), and
DeleteSelf(), that can be called by the collection during the update process. It is helpful for related
root, child, and child collection classes to be placed in the same project (assembly) so that they can
use Friend scope in this manner.

The sequence of events to add, edit, or delete a child object is as follows:

1. The root object’s DataPortal_XYZ method calls the child collection’s Update() method; the
parent object is passed as a parameter so that child objects can use root object property val-
ues as needed (such as for foreign key values).

2. The child collection’s Update() method loops through all the deleted child objects in the col-
lection, calling each deleted object’s DeleteSelf() method.

3. The child collection’s Update() method loops through all its active child objects, calling each
child object’s Insert() or Update() method based on the child object’s IsNew property value.

4. At this point, all the child object data has been inserted, updated, or deleted as required.

5. From the perspective of the child collection object, just one method is called, as follows:

• Update()

6. From the perspective of each child object, one of three methods is called, as follows:

• Insert()

• Update()

• DeleteSelf()

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 373

6315_c07_final.qxd 4/7/06 2:19 PM Page 373

Figure 7-7 illustrates this process. Remember that this diagram is connected with the previous
diagram showing the update of a root object. The events depicted in this diagram occur as a result
of the root object’s DataPortal_Insert() or DataPortal_Update() being called, as shown earlier in
Figure 7-6.

The Insert() and Update() methods often accept parameters. Typically, the root object’s pri-
mary key value is a required piece of data when saving a child object (since it would be a foreign key
in the table), and so a reference to the root object is typically passed as a parameter to the collec-
tion’s Update() method, and then to each child object’s Insert() or Update() method.

Passing a reference to the root object is better than passing any specific property value, because it
helps to decouple the root object from the child object. Using a reference means that the root object
doesn’t know or care what actual data is required by the child object during the update process—that
information is encapsulated within the child class.

Also, when implementing transactions manually using ADO.NET, rather than System.
Transactions or Enterprise Services, the ADO.NET transaction object will also need to be passed
as a parameter so that each child object can update its data within the same transaction as the root
object.

■Tip In most cases, the use of System.Transactions will provide the best trade-off between performance and
simplicity of data access code.

Deleting Root Objects
While child objects are deleted within the context of the root object that’s being updated, deletion
of root objects is a bit different. Recall that the data portal was implemented to support both imme-
diate and deferred deletion of a root object.

Immediate Deletion

Immediate deletion occurs when the UI code calls a Shared delete method on the business class,
providing parameters that define the object to be deleted: typically, the same criteria that would be
used to retrieve the object.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES374

Figure 7-7. Adding, updating, and deleting child objects in a collection

6315_c07_final.qxd 4/7/06 2:19 PM Page 374

Most applications will use immediate deletion for root objects. The sequence of events flows
like this:

1. The Shared delete method is called.

2. The Shared delete method calls DataPortal.Delete().

3. DataPortal.Delete() creates the business object using reflection.

4. DataPortal.Delete() calls the DataPortal_Delete() method on the business object, which
contains the code needed to delete the object’s data (and any related child data, and so on).

5. From the business object’s perspective, two methods are called, as follows:

• The default constructor

• DataPortal_Delete()

Figure 7-8 illustrates the process of immediate deletion.

Since this causes the deletion of a root object, the delete process must also remove any data for
child objects. This can be done through ADO.NET data access code, through a stored procedure, or
by the database (if cascading deletes are set up on the relationships). In the example application,
child data is deleted by the stored procedures created in Chapter 6.

Deferred Deletion

Deferred deletion occurs when the business object is loaded into memory and the UI calls a method
on the object to mark it for deletion. Then when the Save() method is called, the object is deleted
rather than being inserted or updated.

The sequence of events flows like this:

1. The object is loaded by the UI.

2. The UI calls a method to mark the object for deletion (that method must call
MarkDeleted()).

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 375

Figure 7-8. Immediate deletion of a root object

6315_c07_final.qxd 4/7/06 2:19 PM Page 375

3. The UI calls the object’s Save() method.

4. The Save() method invokes the data portal just like it does to do an insert or update
(as discussed earlier).

5. The data portal ultimately calls the object’s DataPortal_DeleteSelf() method.

6. Typically, the DataPortal.DeleteSelf() method calls the object’s DataPortal_Delete()
method, which contains the code needed to delete the object’s data (and any related child
data, and so on).

7. From the business object’s perspective, one method is called, as follows:

• DataPortal_DeleteSelf()

Figure 7-9 illustrates the process of deferred deletion. Note that this is a simplified diagram,
since the complete process is analogous to adding or updating a root object as discussed earlier.

The CSLA .NET framework supports both deletion models to provide flexibility for the UI
developer. It is up to the business object author to decide which model to support by implementing
either a Shared or an instance delete method on the object.

Disposing and Finalizing Objects
Most business objects contain moderate amounts of data in their fields. For these, the default .NET
default garbage collection behavior is fine. With that behavior, you don’t know exactly when an
object will be destroyed and its memory reclaimed. But that’s almost always OK, because this is
exactly what garbage collection is designed to do.

However, the default garbage collection behavior may be insufficient when objects hold onto
“expensive” or unmanaged resources until they’re destroyed. These resources include things like
open database connections, open files on disk, synchronization objects, handles, and any other
objects that already implement IDisposable. These are things that need to be released as soon as
possible in order to prevent the application from wasting memory or blocking other users who
might need to access a file or reuse a database connection. If business objects are written properly,
most of these concerns should go away. Data access code should keep a database connection open

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES376

Figure 7-9. Deferred deletion of a root object

6315_c07_final.qxd 4/7/06 2:19 PM Page 376

for the shortest amount of time possible, and the same is true for any files the object might open on
disk. However, there are cases in which business objects can legitimately contain an expensive
resource—something like a multi-megabyte image in a field, perhaps.

Implementing IDisposable
In such cases, the business object should implement the IDisposable interface, which will allow the
UI code to tell the business object to release its resources. This interface requires that the object
implement a Dispose() method to actually release those resources:

<Serializable()> _
Public Class MyBusinessClass
Inherits BusinessBase(Of MyBusinessClass)

Implements IDisposable

Private mDisposedValue As Boolean

Protected Sub Dispose(ByVal disposing As Boolean)
If Not mDisposedValue Then
If disposing Then
' free unmanaged resources

End If
End If
' free shared unmanaged resources
mDisposedValue = True

End Sub

Public Sub Dispose() Implements IDisposable.Dispose
Dispose(True)
GC.SuppressFinalize(Me)

End Sub

Protected Overrides Sub Finalize()
Dispose(False)

End Sub
End Class

The UI code can now call the object’s Dispose() method (or employ a Using statement) when
it has finished using the object, at which point the object will release its expensive resources.

Note, however, that if a business object is retrieved using a remote data portal configuration,
the business object would be created and loaded on the server. It’s then returned to the client as
discussed in Chapter 4. The result, however, is that there’s a copy left in memory on the server.

Because of this, there’s no way to call the business object’s Dispose() method on the server.
To avoid this scenario, any time that the data portal may be configured to run outside of the client
process, the business object designs must avoid any requirement for a Dispose() method. Happily,
this is almost never an issue with a properly designed business object, since all database connec-
tions or open files should be closed in the same method from which they were opened.

■Note If you’re calling a remote data portal, you must avoid object designs that require IDisposable.
Alternatively, you can modify the SimpleDataPortal class to explicitly call Dispose() on your business
objects on the server.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 377

6315_c07_final.qxd 4/7/06 2:19 PM Page 377

Business Class Structure
As you’ve seen, business objects follow the same sequence of events for creation, retrieval, and
updates. Because of this, there’s a structure and a set of features that are common to all of them.
Although the structure and features are common, however, the actual code will vary for each busi-
ness object. Due to the consistency in structure, however, there’s great value in providing some
foundations that make it easier for the business developer to know what needs to be done.

Also, there are differences between editable and read-only objects, and between root and
child objects. After discussing the features common to all business objects, I’ll create “templates”
to illustrate the structure of each type of business object that you can create based on CSLA .NET.

Common Features
There are some common features or conventions that should be followed when coding any busi-
ness classes that will inherit from the CSLA .NET base classes. These are as follows:

• <Serializable()> attribute

• Common regions

• Private default constructor

• Criteria class

Let’s briefly discuss each of these requirements.

The Serializable Attribute
All business objects must be unanchored so that they can move across the network as needed.
This means that they must be marked as serializable by using the <Serializable()> attribute, as
shown here:

<Serializable()> _
Public Class MyBusinessClass

End Class

This is required for all business classes that inherit from any of the CSLA .NET base classes.
It’s also required for any objects that are referenced by business objects. If a business object refer-
ences an object that isn’t serializable, then you must be sure to mark its field with the
<NonSerialized()> attribute to prevent the serialization process from attempting to serialize that
object. If you don’t do this, the result will be a runtime exception from the .NET Framework.

Common Regions
When writing code in VS .NET, the #Region directive can be used to place code into collapsible
regions. This helps organize the code, and allows you to look only at the code pertaining to a spe-
cific type of functionality.

All business collection classes will have a common set of regions, as follows:

• Factory Methods

• Data Access

and so classes derived from BusinessListBase and ReadOnlyListBase will follow this basic structure:

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES378

6315_c07_final.qxd 4/7/06 2:19 PM Page 378

<Serializable()> _
Public Class MyCollectionClass
Inherits Csla.baseclass(Of MyCollectionClass, MyChildType)

#Region " Factory Methods "

#End Region

#Region " Data Access "

#End Region
End Class

All non-collection (editable and read-only) classes will have the following set of regions:

• Business Methods

• Validation Rules

• Authorization Rules

• Factory Methods

• Data Access

This means that the skeletal structure of a business object, with these regions, is as follows:

<Serializable()> _
Public Class MyBusinessClass
Inherits Csla.baseclass(Of MyBusinessClass)

#Region " Business Methods "

#End Region

#Region " Validation Rules "

#End Region

#Region " Authorization Rules "

#End Region

#Region " Factory Methods "

#End Region

#Region " Data Access "

#End Region
End Class

Command objects that inherit from CommandBase will have the following regions:

• Authorization Rules

• Client-side Code

• Factory Methods

• Server-side Code

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 379

6315_c07_final.qxd 4/7/06 2:19 PM Page 379

<Serializable()> _
Public Class MyCommandClass
Inherits Csla.CommandBase

#Region " Authorization Rules "

#End Region

#Region " Client-side Code "

#End Region

#Region " Factory Methods "

#End Region

#Region " Server-side Code "

#End Region
End Class

And name/value list objects that inherit from NameValueListBase will typically have the following
regions:

• Factory Methods

• Data Access

<Serializable()> _
Public Class MyListClass
Inherits Csla.NameValueListBase(Of KeyType, ValueType)

#Region " Factory Methods "

#End Region

#Region " Data Access "

#End Region
End Class

The Business Methods region will contain the methods that are used by UI code (or other client
code) to interact with the business object. This includes any properties that allow retrieval or chang-
ing of values in the object, as well as methods that operate on the object’s data to perform business
processing.

The Validation Rules region will contain the AddBusinessRules() method, and any custom rule
methods required by the object.

The Authorization Rules region will contain the AddAuthorizationRules() method. It will also
contain a standard set of Shared methods indicating whether the current user is authorized to get,
add, save, or delete this type of business object.

The Factory Methods region will contain the Shared factory methods to create or retrieve the
object, along with the Shared delete method (if the object is an editable root object). It will also
contain the default constructor for the class, which must be scoped as non-Public (i.e., Private
or Protected) to force the use of the factory methods when creating the business object.

The Data Access region will contain the DataPortal_XYZ methods. It will also contain the
Criteria class used to create, retrieve, or delete the object.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES380

6315_c07_final.qxd 4/7/06 2:19 PM Page 380

Your business objects may require other code that doesn’t fit neatly into these regions, and you
should feel free to add extra regions if needed. But these regions cover the vast majority of code
required by typical business objects, and in most cases they’re all you’ll need.

Private Default Constructor
All business objects will be implemented to make use of the class-in-charge scheme discussed in
Chapter 1. Factory methods are used in lieu of the New keyword, which means that it’s best to pre-
vent the use of New, thereby forcing the UI developer to use the factory methods instead.

The data portal mechanism, as implemented in Chapter 4, requires business classes to include
a default constructor. As I reviewed the create, fetch, update, and delete processes for each type of
object earlier in this chapter, each sequence diagram showed how the server-side data portal cre-
ated an instance of the business object. This is done using a technique that requires a default
constructor.

By making the default constructor Private or Protected (and by not creating other Public con-
structors), you ensure that UI code must use the factory methods to get an instance of any object:

' ...
#Region " Factory Methods "

Private Sub New()
' require use of factory methods

End Sub

#End Region
' ...

This constructor both prevents the New keyword from being called by code outside this class
and provides the data portal with the ability to create the object via reflection. Your classes might
also include other constructors, but this one is required for all objects.

Criteria Class
Root objects must have a Criteria class. Also, any child object that loads its own default values
from the database can have an optional Criteria class if needed.

Criteria classes can be nested classes within the business class or they can inherit from Csla.
CriteriaBase. In most cases, it is simplest to nest the Criteria class within the business class. The
Csla.CriteriaBase approach is intended primarily for use with code-generation tools.

The Criteria class simply contains the data that’s required to identify the specific object to
be retrieved or the default data to be loaded. Since it’s passed by value to the data portal, this class
must be marked as <Serializable()>.

■Tip Technically, the Criteria class can have any name, as long as it’s <Serializable()>, and is either
nested in the business class or inherits from CriteriaBase. Some objects may have more than one criteria class,
each one defining a different set of criteria that can be used to retrieve the object.

Since this class is no more than a way to ferry data to the data portal, it doesn’t need to be
fancy. Typically, it’s implemented with a constructor to make it easier to create and populate the
object all at once. For example, here’s a Criteria class that includes an EmployeeID field:

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 381

6315_c07_final.qxd 4/7/06 2:19 PM Page 381

' ...
#Region " Data Access "

<Serializable()> _
Private Class Criteria
Private mEmployeeId As String
Public ReadOnly Property EmployeId() As String
Get
Return mEmployeeId

End Get
End Property

Public Sub New(ByVal employeeId As String)
mEmployeeId = employeeId

End Sub
End Class
' ...

An equivalent criteria class can be created by subclassing CriteriaBase (only the changed lines
are in bold):

<Serializable()> _
Public Class MyBusinessClass
Inherits Csla.baseclass(Of MyBusinessClass)

' ...
#Region " Data Access "

<Serializable()> _
Protected Class Criteria
Inherits Csla.CriteriaBase
Private mEmployeeId As String
Public ReadOnly Property EmployeId() As String
Get
Return mEmployeeId

End Get
End Class

Public Sub New(ByVal employeeId As String)
MyBase.New(GetType(MyBusinessClass))
mEmployeeId = employeeId

End Sub
End Class
' ...

All Criteria classes are constructed using one of these two schemes. Nested criteria classes
are scoped as Private because they are only needed within the context of the business class. The
CriteriaBase class is typically used by code-generation tools, in which case the class is typically
Protected in scope so that it is available to subclasses as well.

■Note Code generation is outside the scope of this book. For good information on code generation, including the
rationale behind CriteriaBase, please refer to Kathleen Dollard’s book, Code Generation in Microsoft .NET
(Apress, 2004).

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES382

6315_c07_final.qxd 4/7/06 2:19 PM Page 382

Even though the Criteria object is passed through the data portal, it’s passed as a type Object,
so the DataPortal code doesn’t need access to the object’s code. This is ideal, because it means that
UI developers, or other business object developers, won’t see the Criteria class, thus improving the
business object’s overall encapsulation.

The Criteria classes shown thus far include a constructor that accepts the criteria data value.
This is done to simplify the code that will go into the Shared factory methods. Rather than forcing
the business developer to create a Criteria object and then load its values, this constructor allows
the Criteria object to be created and initialized in a single statement. In many cases, this means
that a Shared factory method will contain just one line of code! For instance:

Public Shared Function GetProject(ByVal id As Guid) As Project
Return DataPortal.Fetch(Of Project)(New Criteria(id))

End Sub

Many Criteria classes will contain a single value (as in the examples here), but they can be
more complex, providing for more control over the selection of the object to be retrieved. If you
have a root collection in which you’re directly retrieving a collection of child objects, the Criteria
class may not define a single object, but rather act as a search filter that returns the collection
populated with all matching child objects.

In other cases, an object may have no criteria data at all. In that case, a Criteria class is still
required, but it would be empty:

<Serializable()> _
Private Class Criteria

End Class

The factory methods can still create an instance of this Criteria class and pass it to the data
portal. In this case, the Criteria object doesn’t provide any criteria data beyond the type of the
business object to be retrieved. This is typically used when retrieving a root collection object for
which you want all the child objects in the database returned at all times. I’ll use this technique
to create the ProjectList and ResourceList collection classes in Chapter 8.

Class Structures
At this point in the chapter, I’ve walked through the life cycle of typical business objects, so you
know the sequence of events that will occur as they are created, retrieved, updated, and deleted.
I’ve also discussed the code concepts and structures that are common to all business classes. Now
let’s dive in and look at the specific coding structure for each type of business class that you can
create based on the CSLA .NET framework. These include the following:

• Editable root

• Editable child

• Editable, “switchable” (i.e., root or child) object

• Editable root collection

• Editable child collection

• Read-only object

• Read-only collection

• Command object

• Name/value list

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 383

6315_c07_final.qxd 4/7/06 2:19 PM Page 383

For each of these object types, I’ll create the basic starting code that belongs in the class. In a
sense, these are the templates from which business classes can be built.

■Tip You can use this code to create either snippets or class templates for use in Visual Studio. The Csla\
Snippets subdirectory in the code download (available from www.apress.com) contains a set of sample snippets
you may find valuable.

Editable Root Business Objects
The most common type of object will be the editable root business object, since any object-oriented
system based on CSLA .NET will typically have at least one root business object or root collection.
(Examples of this type of object include the Project and Resource objects discussed in Chapter 8.)
These objects often contain collections of child objects, as well as their own object-specific data.

As well as being common, an editable object that’s also a root object is the most complex object
type, so its code template covers all the possible code regions. The basic structure for an editable
root object, with example or template code in each region, is as follows:

<Serializable()> _
Public Class EditableRoot
Inherits BusinessBase(Of EditableRoot)

#Region " Business Methods "

' TODO: add your own fields, properties and methods
Private mId As Integer

Public Property Id() As Integer
Get
CanReadProperty(True)
Return mId

End Get
Set(ByVal value As Integer)
CanWriteProperty(True)
If mId <> value Then
mId = value
PropertyHasChanged()

End If
End Set

End Property

Protected Overrides Function GetIdValue() As Object
Return mId

End Function

#End Region

#Region " Validation Rules "

Protected Overrides Sub AddBusinessRules()

' TODO: add validation rules
'ValidationRules.AddRule(Nothing, "")

End Sub

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES384

6315_c07_final.qxd 4/7/06 2:19 PM Page 384

#End Region

#Region " Authorization Rules "

Protected Overrides Sub AddAuthorizationRules()

' TODO: add authorization rules
'AuthorizationRules.AllowWrite("", "")

End Sub

Public Shared Function CanAddObject() As Boolean
Return ApplicationContext.User.IsInRole("")

End Function

Public Shared Function CanGetObject() As Boolean
Return ApplicationContext.User.IsInRole("")

End Function

Public Shared Function CanEditObject() As Boolean
Return ApplicationContext.User.IsInRole("")

End Function

Public Shared Function CanDeleteObject() As Boolean
Return ApplicationContext.User.IsInRole("")

End Function

#End Region

#Region " Factory Methods "

Public Shared Function NewEditableRoot() As EditableRoot
Return DataPortal.Create(Of EditableRoot)()

End Function

Public Shared Function GetEditableRoot(ByVal id As Integer) As EditableRoot
Return DataPortal.Create(Of EditableRoot)(New Criteria(id))

End Function

Public Shared Sub DeleteEditableRoot(ByVal id As Integer)
DataPortal.Delete(New Criteria(id))

End Sub

Private Sub New()
' require use of factory methods

End Sub

#End Region

#Region " Data Access "

<Serializable()> _
Private Class Criteria
Private mId As Integer
Public ReadOnly Property Id() As Integer
Get
Return mId

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 385

6315_c07_final.qxd 4/7/06 2:19 PM Page 385

End Get
End Property
Public Sub New(ByVal id As Integer)
mId = id

End Sub
End Class

Private Overloads Sub DataPortal_Create(ByVal criteria As Criteria)
' load default values

End Sub

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)
' load values

End Sub

Protected Overrides Sub DataPortal_Insert()
' insert values

End Sub

Protected Overrides Sub DataPortal_Update()
' update values

End Sub

Protected Overrides Sub DataPortal_DeleteSelf()
DataPortal_Delete(New Criteria(mId))

End Sub

Private Overloads Sub DataPortal_Delete(ByVal criteria As Criteria)
' delete values

End Sub

#End Region

End Class

You must define the class, including making it serializable, giving it a name, and having it
inherit from BusinessBase.

The Business Methods region includes all member or instance field declarations, along with
any business-specific properties and methods. These properties and methods typically interact
with the instance fields, performing calculations and other manipulation of the data based on the
business logic.

Notice the GetIdValue() method, which is required when inheriting from BusinessBase. This
method should return a unique identifying value for the object. The value is directly returned by the
default ToString() method in BusinessBase, and is used in the implementation of the Equals() and
GetHashCode() methods as well. For details, refer to Chapter 3.

The Validation Rules region, at a minimum, overrides the AddBusinessRules() method. In this
method, you call ValidationRules.AddRule() to associate rule methods with properties. This region
may also include custom rule methods for rules that aren’t already available in
Csla.Validation.CommonRules or in your own library of rule methods.

The Authorization Rules region overrides the AddAuthorizationRules() method and imple-
ments a set of Shared authorization methods.

The AddAuthorizationRules() method should include calls to methods on the
AuthorizationRules object: AllowRead(), AllowWrite(), DenyRead(), and DenyWrite(). Each one
associates a property with a list of roles that are to be allowed read and write access to that
property.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES386

6315_c07_final.qxd 4/7/06 2:19 PM Page 386

The Shared authorization methods are CanGetObject(), CanAddObject(), CanEditObject(), and
CanDeleteObject(). These methods should check the current user’s roles to determine whether the
user is in a role that allows or denies the particular operation. The purpose of these methods is so
the UI developer can easily determine whether the current user can get, add, update, or delete this
type of object. That way, the UI can enable, disable, or hide controls to provide appropriate visual
cues to the end user.

Since these are Shared methods, there’s no way to make them part of the BusinessBase class,
and they must be directly declared and implemented in each business class.

In the Factory Methods region, there are Shared factory methods to create, retrieve, and delete
the object. Of course, these are just examples that must be changed as appropriate. The parameters
accepted and Criteria object used must be tailored to match the identifying criteria for your partic-
ular business object.

Finally, the Data Access region includes the Criteria class and the DataPortal_XYZ methods.
These methods must include the code to load defaults, retrieve object data, update object data, and
delete object data, as appropriate. In most cases, this will be done through ADO.NET, but this code
could just as easily be implemented to read or write to an XML file, call a web service, or use any
other data store you can imagine.

The <RunLocal()> attribute is for objects that do not load default values from the database
when they are created. The use of the <RunLocal()> attribute on DataPortal_Create() is optional,
and is used to force the data portal to always run the method locally. When this attribute is used,
the DataPortal_Create() method should not access the database, because it may not be running
in a physical location where the database is available.

The <Transactional()> attributes on the methods that insert, update, or delete data specify
that those methods should run within a System.Transactions transactional context. You may opt
instead to use the TransactionTypes.EnterpriseServices setting to run within a COM+ distributed
transaction, or TransactionTypes.Manual to handle your own transactions using ADO.NET.

■Tip Many organizations use an abstract, metadata-driven data access layer. In environments like this, the
business objects don’t use ADO.NET directly. This works fine with CSLA .NET, since the data access code in
the DataPortal_XYZ methods can interact with an abstract data access layer just as easily as it can interact
with ADO.NET directly.

The key thing to note about this code template is that there’s very little code in the class that’s
not related to the business requirements. Most of the code implements business properties, valida-
tion, and authorization rules or data access. The bulk of the nonbusiness code (code not specific to
your business problem) is already implemented in the CSLA .NET framework.

Immediate or Deferred Deletion

As implemented in the template, the UI developer can delete the object by calling the Shared delete
method and providing the criteria to identify the object to be deleted. Another option is to imple-
ment deferred deletion, whereby the object must be retrieved, marked as deleted, and then updated
in order for it to be deleted. The object’s data is then deleted as part of the update process.

To support deferred deletion, simply remove the Shared delete method:

'Public Shared Sub DeleteEditableRoot(ByVal id As Integer)
' DataPortal.Delete(New Criteria(id))
'End Sub

Then, the only way to delete the object is by calling the Delete() method on an instance of the
object and updating that object to the database by calling Save().

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 387

6315_c07_final.qxd 4/7/06 2:19 PM Page 387

Editable Child Business Objects
Most applications will have some editable child objects, or even grandchild objects. Examples of
these include the ProjectResource and ResourceAssignment objects. In many cases, the child objects
are contained within a child collection object, which I’ll discuss later. In other cases, the child object
might be referenced directly by the parent object. Either way, the basic structure of a child object is
the same; in some ways, this template is very similar to the editable root:

<Serializable()> _
Public Class EditableChild
Inherits BusinessBase(Of EditableChild)

#Region " Business Methods "

' TODO: add your own fields, properties and methods
Private mId As Integer

Public Property Id() As Integer
Get
CanReadProperty(True)
Return mId

End Get
Set(ByVal value As Integer)
CanWriteProperty(True)
If mId <> value Then
mId = value
PropertyHasChanged()

End If
End Set

End Property

Protected Overrides Function GetIdValue() As Object
Return mId

End Function

#End Region

#Region " Validation Rules "

Protected Overrides Sub AddBusinessRules()
' TODO: add validation rules
'ValidationRules.AddRule(Nothing, "")

End Sub

#End Region

#Region " Authorization Rules "

Protected Overrides Sub AddAuthorizationRules()
' TODO: add authorization rules
'AuthorizationRules.AllowWrite("", "")

End Sub

#End Region

#Region " Factory Methods "

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES388

6315_c07_final.qxd 4/7/06 2:19 PM Page 388

Friend Shared Function NewEditableChild() As EditableChild
' TODO: change to use New keyword if not loading defaults
'Return New EditableChild
Return DataPortal.Create(Of EditableChild)()

End Function

Friend Shared Function GetEditableChild(_
ByVal dr As SqlDataReader) As EditableChild
Return New EditableChild(dr)

End Function

Private Sub New()
MarkAsChild()

End Sub

Private Sub New(ByVal dr As SqlDataReader)
MarkAsChild()
Fetch(dr)

End Sub

#End Region

#Region " Data Access "

Protected Overrides Sub DataPortal_Create(ByVal criteria As Object)
' TODO: load default values, or remove method

End Sub

Private Sub Fetch(ByVal dr As SqlDataReader)
' TODO: load values
MarkOld()

End Sub

Friend Sub Insert(ByVal parent as Object)
' TODO: insert values
MarkOld()

End Sub

Friend Sub Update(ByVal parent as Object)
' TODO: update values
MarkOld()

End Sub

Friend Sub DeleteSelf()
' TODO: delete values
MarkNew()

End Sub

#End Region

End Class

As with all business classes, this one is serializable and inherits from a CSLA .NET base class.
The fact that it is a child object is specified by the MarkAsChild() method calls in each constructor
within the object.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 389

6315_c07_final.qxd 4/7/06 2:19 PM Page 389

The Business Methods region is the same as with a root object: it simply implements the prop-
erties and methods required by the business rules. Similarly, the Validation Rules region is the same
as with a root object.

The Authorization Rules region is simpler, as it only implements the AddAuthorizationRules()
method. Control over retrieving, adding, updating, and deleting child objects is controlled by the
parent object or collection, so no Shared methods are needed here for that purpose.

The Factory Methods region is a bit different. The factory methods are Friend rather than
Public, as they should only be called by the parent object, not by the UI code. Also, there’s no need
for a Shared delete method because BusinessBase implements a DeleteChild() method that is auto-
matically called by BusinessListBase when the child is removed from a collection.

Notice that the NewEditableChild() method invokes the data portal to create the child object.
This allows the child object to load itself with default values from the database when it is created.
I’ll discuss an alternative approach that avoids using the database shortly.

The GetEditableChild() method uses the New keyword to create an instance of the child object.
See how it accepts a data reader as a parameter and passes it to the constructor. The idea is that the
parent object will have already retrieved the necessary data from the database, and is providing it to
the child object through this parameter. That parameterized constructor then calls a Fetch()
method in the Data Access region where the object loads its data.

If you are using a data store other than a relational database, the data reader parameter would
be replaced by some other type of object. For instance, if the object’s data is being loaded from an
XML document, the parameter would likely be an XmlNode that contains the child object’s data.

The biggest difference from a root object comes in the Data Access region. The DataPortal_
Create() method is implemented to support the loading of default values from the database on the
creation of a new child object, but no other DataPortal_XYZ methods are implemented.

Instead, there’s a Private Fetch() method to load the object with data, and Friend methods
named Insert(), Update(), and DeleteSelf() to handle insert, update, and delete operations. These
mirror the functionality of the DataPortal_XYZ methods, but they are called by the parent object
rather than by the data portal.

Notice that Insert() and Update() both accept a reference to the parent object as a parameter.
The assumption is that any child object will need data from the parent while being inserted or
updated into the database. Most often, the parent contains a foreign key value required by the child
object during data access.

■Note Typically, the parent parameter will be strongly typed, based on the class of the parent object itself.

As an example, the ProjectResource child object will need the Id property from its parent
Project object so that it can store it as a foreign key in the database. By getting a reference to its
parent Project object, the ProjectResource gains access to that value as needed.

The Fetch(), Insert(), and Update() methods all call MarkOld() when they are done, because
the object’s data in memory matches that in the database at those points, so the object is neither
new nor dirty. The DeleteSelf() method calls MarkNew() as it completes, because the object’s pri-
mary key value is not in the database at that point, so the object qualifies as a new object.

Object Creation Without Defaults

As implemented, the template uses DataPortal.Create() to load the child object with default values
from the database. As discussed earlier, if the object doesn’t need to load default values from the
database, the code can be implemented more efficiently by changing the Shared factory method to
create the child object directly:

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES390

6315_c07_final.qxd 4/7/06 2:19 PM Page 390

Friend Shared Function NewEditableChild() As EditableChild
Return New EditableChild

End Function

Then the DataPortal_Create() method can be removed, since it won’t be used. The default
constructor is then used to set any default values that are hard-coded into the class.

Switchable Objects
It’s possible that some classes must be instantiated as root objects on some occasions and as child
objects on others. This can be handled by conditionally calling MarkAsChild(), based on how the
object is being created.

■Note In most cases, the need for a switchable object indicates a flawed object model. While there are excep-
tions for which this makes sense, you should carefully examine your object model to see if there’s a simpler
solution before implementing a switchable object.

Conditionally calling MarkAsChild() typically can’t be done in the default constructor,
because there’s no way to determine whether the object is being created as a root or a child object
at that point. Instead, you need to go back to your object’s life cycle to see where you can make
this decision. In fact, since the default is for an object to be a root object, all you need to do is
determine the paths by which a child object can be created, and make sure to call MarkAsChild()
only in those cases.

The template for creating a “switchable” object is the same as the editable root template, with
the following exceptions:

• Dual criteria objects

• Dual create and fetch factory methods

• Dual create and fetch data access methods

Let’s discuss each change in turn.

Dual Criteria Classes

The object’s criteria must now include a flag to indicate whether the object is being created as a root
or a child object (this is in addition to any object-specific criteria fields in this class). This can be
done either by adding an actual flag field to the Criteria class or by creating a second criteria class.
I prefer the second approach as it makes the code simpler overall.

Remember that for a child object, the criteria class is only used for the create operation, and so
it typically doesn’t need any actual criteria data. The result is that there are two criteria classes; for
example:

<Serializable()> _
Private Class RootCriteria
Private mId As Integer
Public ReadOnly Property Id() As Integer
Get
Return mId

End Get
End Property

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 391

6315_c07_final.qxd 4/7/06 2:19 PM Page 391

Public Sub New(ByVal id As Integer)
mId = id

End Sub

Public Sub New()

End Sub
End Class

<Serializable()> _
Private Class ChildCriteria

End Class

These two classes will be used to differentiate the way the object should be created.

Dual Factory Methods

Instead of single factory methods to create and retrieve the object, there will be two methods for
each operation: one Public, the other Friend.

Public Shared Function NewSwitchable() As SwitchableObject
Return DataPortal.Create(Of SwitchableObject)(New RootCriteria())

End Function

Friend Shared Function NewSwitchableChild() As SwitchableObject
Return DataPortal.Create(Of SwitchableObject)(New ChildCriteria())

End Function

Public Shared Function GetSwitchableRoot(_
ByVal id As Integer) As SwitchableObject

Return DataPortal.Create(Of SwitchableObject)(New RootCriteria(id))
End Function

Friend Shared Function GetSwitchableChild(_
ByVal dr As SqlDataReader) As SwitchableObject

Return New SwitchableObject(dr)
End Function

Notice how the NewSwitchable() methods are each designed. The Public version (used to cre-
ate a root object) uses the RootCriteria object, while the Friend version (called by a parent object
to create a child object) uses ChildCriteria. The DataPortal_Create() methods, which follow, are
called based on the type of the criteria object.

The two GetSwitchable() methods are even more different. The Public one is called by UI code
to retrieve a root object. In this case, the data portal is called to retrieve the object based on the sup-
plied criteria. The Friend one follows the pattern for child objects, accepting a data reader from the
parent object and passing it along to a Private constructor, which in turn calls a Private Fetch()
method.

Dual Data Access Methods

The data access methods that handle create and fetch operations are different for a root and child
object. Because of this, these methods are duplicated in a switchable object. In most cases, they can
delegate to a shared implementation that is private to the class. For instance:

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES392

6315_c07_final.qxd 4/7/06 2:19 PM Page 392

Private Overloads Sub DataPortal_Create(ByVal criteria As RootCriteria)
DoCreate()

End Sub

Private Overloads Sub DataPortal_Create(ByVal criteria As ChildCriteria)
MarkAsChild()
DoCreate()

End Sub

Private Sub DoCreate()
' load default values from database here

End Sub

Notice how the overload of DataPortal_Create() that accepts a ChildCriteria object calls
MarkAsChild(), while the other does not. This ensures that the object is marked as a child object
when appropriate.

Similarly, the data-retrieval operations are duplicated:

Private Overloads Sub DataPortal_Fetch(ByVal criteria As RootCriteria)
' TODO: create data reader to load values
Using dr As SqlDataReader = Nothing
DoFetch(dr)

End Using
End Sub

Private Sub Fetch(ByVal dr As SqlDataReader)
MarkAsChild()
DoFetch(dr)

End Sub

Private Sub DoFetch(ByVal dr As SqlDataReader)
' TODO: load values

End Sub

If the object is being loaded from the UI, then it is treated as a root object and DataPortal_
Fetch() is called, passing in appropriate criteria. This method opens the database, and sets up and
executes a database command object to get back a data reader. That data reader is then passed to
a central DoFetch() helper method to copy the data from the data reader into the object’s fields.

On the other hand, if the object is being loaded from a parent object as a child, then its para-
meterized constructor is called, which in turn calls the Fetch() method. This method calls
MarkAsChild() to mark the object as a child, and then the DoFetch() helper is called to copy the
data from the data reader into the object’s fields.

Object Creation Without Defaults

When creating the object using the New keyword instead of calling DataPortal.Create(), the Friend
factory method can directly call MarkAsChild(), as shown here:

Friend Shared Function NewSwitchableChild() As SwitchableObject
Dim obj As New SwitchableObject
obj.MarkAsChild()
Return obj

End Function

From the parent object’s perspective, there’s no difference—it just calls the factory method;
but this approach is faster because it doesn’t load default values from the database.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 393

6315_c07_final.qxd 4/7/06 2:19 PM Page 393

Editable Root Collection
At times, applications need to retrieve a collection of child objects directly. To do this, you need to
create a root collection object. For instance, the application may have a Windows Forms UI consist-
ing of a DataGridView control that displays a collection of Contact objects. If the root object is a
collection of child Contact objects, the UI developer can simply bind the collection to the
DataGridView, and the user can do in-place editing of the objects within the grid.

This approach means that all the child objects are handled as a single unit in terms of data access.
They are loaded into the collection to start with, so the user can interact with all of them, and then
save them all at once when all edits are complete. This is only subtly different from having a regular
root object that has a collection of child objects. Figure 7-10 shows the regular root object approach
on the left and the collection root object approach on the right.

This approach isn’t recommended when there are large numbers of potential child objects,
because the retrieval process can become too slow, but it can be very useful in cases where you can
specify criteria to limit the number of objects returned. To create an editable root collection object,
use a template like this:

<Serializable()> _
Public Class EditableRootList
Inherits BusinessListBase(Of EditableRootList, EditableChild)

#Region " Authorization Rules "

Public Shared Function CanAddObject() As Boolean
' TODO: customize to check user role
Return ApplicationContext.User.IsInRole("")

End Function

Public Shared Function CanGetObject() As Boolean
' TODO: customize to check user role
Return ApplicationContext.User.IsInRole("")

End Function

Public Shared Function CanEditObject() As Boolean
' TODO: customize to check user role
Return ApplicationContext.User.IsInRole("")

End Function

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES394

Figure 7-10. Comparing simple root objects (left) and collection root objects (right)

6315_c07_final.qxd 4/7/06 2:19 PM Page 394

Public Shared Function CanDeleteObject() As Boolean
' TODO: customize to check user role
Return ApplicationContext.User.IsInRole("")

End Function

#End Region

#Region " Factory Methods "

Public Shared Function NewEditableRootList() As EditableRootList
Return New EditableRootList()

End Function

Public Shared Function GetEditableRootList(ByVal id As Integer) As EditableRootList
Return DataPortal.Fetch(Of EditableRootList)(New Criteria(id))

End Function

Private Sub New()
' require use of factory methods

End Sub

#End Region

#Region " Data Access "

<Serializable()> _
Private Class Criteria
Private mId As Integer
Public ReadOnly Property Id() As Integer
Get
Return mId

End Get
End Property
Public Sub New(ByVal id As Integer)
mId = id

End Sub
End Class

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)

' TODO: load values
RaiseListChangedEvents = False
Using dr As SqlDataReader = Nothing
While dr.Read
Add(EditableChild.GetEditableChild(dr))

End While
End Using
RaiseListChangedEvents = True

End Sub

Protected Overrides Sub DataPortal_Update()

RaiseListChangedEvents = False
For Each item As EditableChild In DeletedList
item.DeleteSelf()

Next
DeletedList.Clear()

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 395

6315_c07_final.qxd 4/7/06 2:19 PM Page 395

For Each item As EditableChild In Me
If item.IsNew Then
item.Insert(Me)

Else
item.Update(Me)

End If
Next
RaiseListChangedEvents = True

End Sub

#End Region

End Class

The Authorization Rules region contains the standard Shared methods discussed earlier for
editable root objects. Since collection objects don’t have detailed properties, there’s no need or
support for the AddAuthorizationRules() method.

The Factory Methods region implements factory methods to create, retrieve, and (optionally)
delete the collection. The create method simply uses the New keyword to create an instance of the
collection. There’s no need to load default values for the collection itself. The retrieve and delete
methods rely on the data portal to do much of the work, ultimately delegating the call to the
appropriate DataPortal_XYZ method.

In the Data Access region, the DataPortal_Fetch() method is responsible for getting the data
from the database, typically via a data reader. It then calls the Shared factory method of the child
class for each row in the data reader, thereby allowing each child object to load its data. The Shared
factory method in the child class calls its own Private constructor to actually load the data from
the data reader.

The DataPortal_Update() method must loop through all the child objects contained in the
deleted object collection, calling each object’s DeleteSelf() method in turn. An alternative is to
have the collection object dynamically generate a SQL statement to delete all the items in the
DeleteList with a single call. The specific implementation is up to the business developer and
may vary depending on the database design.

Once the child objects have been deleted from the database, that list is cleared. Then the active
child objects are either inserted or updated based on their IsNew property value.

■Note It’s critical that the deleted child objects be processed first.

It’s quite possible for the user to delete a child object from the collection, and then add a new
child object with the same primary key value. This means that the collection will have the original
child object marked as deleted in the list of deleted child objects, and the new child object in the list
of active objects. This new object will have its IsNew property set to True because it’s a new object.
If the original child object isn’t deleted first, the insertion of the new child object will fail.

Thus, the code first processes the list of deleted child objects, and then moves on to process the
list of active child objects.

Both the DataPortal_Fetch() and DataPortal_Update() methods set the
RaiseListChangedEvents property to False before changing the collection, and then restore it to
True once the operation is complete. Setting this property to False tells the base BindingList(Of T)
class to stop raising the ListChanged event. When doing batches of updates or changes to a collec-
tion, this can increase performance.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES396

6315_c07_final.qxd 4/7/06 2:19 PM Page 396

Editable Child Collection
The most common type of collection is one that is contained within a parent object to manage
a collection of child objects for that parent; like ProjectResources and ResourceAssignments in the
sample application.

■Tip Note that the parent object here might be a root object, or it might be a child itself—child objects can be
nested, if that’s what the business object model requires. In other words, this concept supports not only root-child,
but also child-grandchild and grandchild-to-great-grandchild relationships.

A child collection class inherits from BusinessListBase and calls MarkAsChild() during its cre-
ation process to indicate that it’s operating in child mode. This also means that it won’t be directly
retrieved or updated by the DataPortal, but instead will be retrieved or updated by its parent object:

<Serializable()> _
Public Class EditableChildList
Inherits BusinessListBase(Of EditableChildList, EditableChild)

#Region " Factory Methods "

Friend Shared Function NewEditableChildList() As EditableChildList
Return New EditableChildList

End Function

Friend Shared Function GetEditableChildList(_
ByVal dr As SqlDataReader) As EditableChildList

Return New EditableChildList(dr)
End Function

Private Sub New()
MarkAsChild()

End Sub

Private Sub New(ByVal dr As SqlDataReader)
MarkAsChild()
Fetch(dr)

End Sub

#End Region

#Region " Data Access "

Private Sub Fetch(ByVal dr As SqlDataReader)

RaiseListChangedEvents = False
While dr.Read
Add(EditableChild.GetEditableChild(dr))

End While
RaiseListChangedEvents = True

End Sub

Friend Sub Update(ByVal parent As Object)

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 397

6315_c07_final.qxd 4/7/06 2:19 PM Page 397

RaiseListChangedEvents = False
For Each item As EditableChild In DeletedList
item.DeleteSelf()

Next
DeletedList.Clear()

For Each item As EditableChild In Me
If item.IsNew Then
item.Insert(parent)

Else
item.Update(parent)

End If
Next
RaiseListChangedEvents = True

End Sub

#End Region

End Class

As you can see, this code is very similar to a root collection in structure. The differences start
with the factory methods. Since only a parent object can create or fetch an instance of this class, the
Shared factory methods are scoped as Friend. The Shared method to create an object simply returns
a new collection object. As with the EditableChild template, the constructor calls MarkAsChild() to
indicate that this is a child object.

Likewise, the Shared method to load the child collection with data creates a new collection
object and then calls a parameterized constructor just like in the EditableChild template. That con-
structor calls a Fetch() method to load the data.

The Update() method is identical to the DataPortal_Update() method in the EditableRootList.
It loops through the list of deleted child objects, calling their DeleteSelf() methods, and then loops
through the active child objects, calling Insert() or Update() as appropriate.

Notice, however, that the Update() method accepts a reference to the parent object as a param-
eter, and this value is provided to the child objects’ Insert() and Update() methods. As discussed
earlier, this allows the child objects to use data from the parent object as needed for things like for-
eign key values and so forth.

Read-Only Business Objects
Sometimes, an application may need an object that provides data in a read-only fashion. For a read-
only list of data, there’s ReadOnlyListBase; but if the requirement is for a single object containing
read-only data, it should inherit from ReadOnlyBase. This is one of the simplest types of object to
create, since it does nothing more than retrieve and return data, as shown here:

<Serializable()> _
Public Class ReadOnlyRoot
Inherits ReadOnlyBase(Of ReadOnlyRoot)

#Region " Business Methods "

Private mId As Integer

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES398

6315_c07_final.qxd 4/7/06 2:19 PM Page 398

Public ReadOnly Property Id() As Integer
Get
CanReadProperty(True)
Return mId

End Get
End Property

Protected Overrides Function GetIdValue() As Object

Return mId

End Function

#End Region

#Region " Authorization Rules "

Protected Overrides Sub AddAuthorizationRules()

' TODO: add authorization rules
'AuthorizationRules.AllowRead("", "")

End Sub

Public Shared Function CanGetObject() As Boolean
' TODO: customize to check user role
'Return ApplicationContext.User.IsInRole("")
Return True

End Function

#End Region

#Region " Factory Methods "

Public Shared Function GetReadOnlyRoot(ByVal id As Integer) As ReadOnlyRoot
Return DataPortal.Create(Of ReadOnlyRoot)(New Criteria(id))

End Function

Private Sub New()
' require use of factory methods

End Sub

#End Region

#Region " Data Access "

<Serializable()> _
Private Class Criteria
Private mId As Integer
Public ReadOnly Property Id() As Integer
Get
Return mId

End Get
End Property
Public Sub New(ByVal id As Integer)
mId = id

End Sub
End Class

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 399

6315_c07_final.qxd 4/7/06 2:19 PM Page 399

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)
' load values

End Sub

#End Region

End Class

Like other business objects, a read-only object will have instance fields that contain its data.
It will typically also have read-only properties or methods that allow client code to retrieve values.
As long as they don’t change the state of the object, these may even be calculated values.

Like editable objects, read-only objects must override the GetIdValue() method and provide
a unique identifying value for the object. This value is used by the Equals(), GetHashCode(), and
ToString() implementations in the ReadOnlyBase class. If those implementations are inadequate
for your needs, you can override them and provide your own implementations.

The AddAuthorizationRules() method only needs to add roles for read access, since no proper-
ties should be implemented to allow altering of data. It also includes a CanGetObject() method so
that the UI can enable or disable options based on that result.

In the Factory Methods region, there’s just one factory method that retrieves the object by call-
ing DataPortal.Fetch(). This means there’s also a Criteria class, which should be modified to
contain the criteria data needed to select the correct object for retrieval.

The Data Access region just contains DataPortal_Fetch(). Of course, there’s no need to support
updating or deleting of a read-only object.

Read-Only Collections of Objects
Applications commonly retrieve read-only collections of objects. The CSLA .NET framework
includes the ReadOnlyListBase class to help create read-only collections. It throws an exception any
time there’s an attempt to change which items are in the collection by adding or removing objects.

■Note The template shown here is for the most common scenario: a read-only root collection. You can adapt
this to provide a read-only child collection if desired.

However, there’s no way for the collection object to stop client code from interacting with the
child objects themselves. Typically, the items in the collection will expose only read-only proper-
ties and methods. If read-write objects are put into the collection, client code will be able to alter
their data. A read-only collection only guarantees that objects can’t be added or removed from the
collection.

The child objects may be derived from ReadOnlyBase, but more often they will be simple
objects that don’t inherit from any CSLA .NET base class. The only requirements for these child
objects is that they are implemented with read-only properties and that they are marked as
<Serializable()>.

The code for a typical read-only collection object looks like this:

<Serializable()> _
Public Class ReadOnlyList

Inherits ReadOnlyListBase(Of ReadOnlyList, ReadOnlyChild)

#Region " Authorization Rules "

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES400

6315_c07_final.qxd 4/7/06 2:19 PM Page 400

Public Shared Function CanGetObject() As Boolean
' TODO: customize to check user role
'Return ApplicationContext.User.IsInRole("")
Return True

End Function

#End Region

#Region " Factory Methods "

Public Shared Function GetList(ByVal filter As String) As ReadOnlyList
Return DataPortal.Fetch(Of ReadOnlyList)(New Criteria(filter))

End Function

Private Sub New()
' require use of factory methods

End Sub

#End Region

#Region " Data Access "

<Serializable()> _
Private Class Criteria

Private mFilter As String
Public ReadOnly Property Filter() As String
Get
Return mFilter

End Get
End Property

Public Sub New(ByVal filter As String)
mFilter = filter

End Sub
End Class

Protected Overrides Sub DataPortal_Fetch(ByVal criteria As Object)

RaiseListChangedEvents = False
IsReadOnly = False
' load values
Using dr As SqlDataReader = Nothing
While dr.Read
Add(ReadOnlyChild.GetReadOnlyChild(dr))

End While
End Using
IsReadOnly = True
RaiseListChangedEvents = True

End Sub

#End Region

End Class

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 401

6315_c07_final.qxd 4/7/06 2:19 PM Page 401

In the Authorization Rules region, there’s just the CanGetObject() method for use by UI code.
In the Factory Methods region, there’s a factory method to return a collection loaded with data.

It calls DataPortal.Fetch(), and so there’s a Criteria class as well as a Private constructor. This is
no different from the classes you’ve looked at already.

Finally, the DataPortal_Fetch() method loads the object with data from the database. To do
this, the IsReadOnly flag is set to False, the data is loaded from the database, and then IsReadOnly
is set to True. When IsReadOnly is set to True, any attempt to add or remove items from the collec-
tion will result in an exception being thrown. Temporarily setting it to False allows the code to
insert all the appropriate child objects into the collection.

Also note that RaiseListChangedEvents is set to False and then True in a similar manner. To
improve performance, this suppresses the raising of ListChanged events while the data is being
loaded.

Command Objects
Command objects can be used in many ways. They may be called directly by UI code to execute
arbitrary code on the application server, but even more often they are used within other business
objects to execute code on the application server. A primary example is when a normal editable
business object wants to implement an Exists() command. You’ll see an example of this concept
in the Project and Resource objects in Chapter 8.

If the UI is to directly use the object, the class will be Public, while if it is to be used within the
context of another business object, it will be a Private nested class within that business object.
Either way, the structure of a command object is the same, as shown here:

<Serializable()> _
Public Class CommandObject
Inherits CommandBase

#Region " Authorization Rules "

Public Shared Function CanExecuteCommand() As Boolean

' to see if user is authorized
'Return Csla.ApplicationContext.User.IsInRole("")
Return True

End Function

#End Region

#Region " Client-side Code "

Private mResult As Boolean

Public ReadOnly Property Result() As Boolean
Get
Return mResult

End Get
End Property

Private Sub BeforeServer()
' implement code to run on client
' before server is called

End Sub

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES402

6315_c07_final.qxd 4/7/06 2:19 PM Page 402

Private Sub AfterServer()
' implement code to run on client
' after server is called

End Sub

#End Region

#Region " Factory Methods "

Public Shared Function TheCommand() As Boolean

Dim cmd As New CommandObject
cmd.BeforeServer()
cmd = DataPortal.Execute(Of CommandObject)(cmd)
cmd.AfterServer()
Return cmd.Result

End Function

Private Sub New()
' require use of factory methods

End Sub

#End Region

#Region " Server-side Code "

Protected Overrides Sub DataPortal_Execute()

' implement code to run on server
' here - and set result value(s)
mResult = True

End Sub

#End Region

End Class

This class structure is quite a bit different from anything you’ve seen so far.
The Authorization Rules region isn’t bad—it just implements a CanExecuteCommand() method so

that the UI can easily determine whether the current user is authorized to execute the command.
The Factory Methods region is similar in structure to many of the other templates shown thus

far, but its implementation is different. Rather than passing a Criteria object to the server, the
Execute() method creates and initializes an instance of the command object itself. That instance
is then sent to the server through the data portal, which invokes the DataPortal_Execute() method
on the server.

The Execute() method also calls the BeforeServer() and AfterServer() methods, which are
found in the Client-side Code region.

The idea behind this is that the command object can be initialized on the client with any data
required to perform the server-side processing. In fact, the object could do some processing or data
gathering on the client before or after it is transferred to the server through the data portal. The
client-side code may be as complex as needed to prepare to run the server-side code.

Then the data portal moves the object to the application server and calls the DataPortal_
Execute() method in the Server-side Code region. The code in this method runs on the server and

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 403

6315_c07_final.qxd 4/7/06 2:19 PM Page 403

can do any server-side work. This might be something as simple as doing a quick database
lookup, or it might be a complex server-side workflow. The code in this method can create and
interact with other business objects (all on the server of course). It can interact directly with the
database, or any other server-side resources, such as the server’s file system or third-party soft-
ware installed on the server.

Command objects are powerful because they provide high levels of flexibility for running both
client and server code in a coordinated manner.

Name/Value List Objects
Perhaps the simplest business object to create is a name/value list that inherits from the
NameValueListBase class in the CSLA .NET framework. The base class provides almost all the
functionality needed, except the actual data access and factory method.

Because name/value list data is often very static, changing rarely, it is often desirable to cache
the data. This can be done in the factory method, as shown in the template:

<Serializable()> _
Public Class NameValueList
Inherits NameValueListBase(Of Integer, String)

#Region " Factory Methods "

Private Shared mList As NameValueList

Public Shared Function GetList() As NameValueList
If mList Is Nothing Then
mList = DataPortal.Fetch(Of NameValueList) _
(New Criteria(GetType(NameValueList)))

End If
Return mList

End Function

Public Shared Sub InvalidateCache()
mList = Nothing

End Sub

Private Sub New()
' require use of factory methods

End Sub

#End Region

#Region " Data Access "

Protected Overrides Sub DataPortal_Fetch(ByVal criteria As Object)

RaiseListChangedEvents = False
IsReadOnly = False
' TODO: load values
Using dr As SqlDataReader = Nothing
While dr.Read
Add(New NameValueListBase(Of Integer, String). _
NameValuePair(dr.GetInt32(0), dr.GetString(1)))

End While
End Using
IsReadOnly = True
RaiseListChangedEvents = True

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES404

6315_c07_final.qxd 4/7/06 2:19 PM Page 404

End Sub

#End Region

End Class

The Factory Methods region declares a Shared field to hold the list once it is retrieved. Notice
how the factory method returns the cached list if it is present; only calling the data portal to retrieve
the data if the list is Nothing. There’s also an InvalidateCache() method that can be called to force a
reload of the data if needed.

This caching behavior is optional—if it doesn’t fit your need, then use a factory method like
this:

Public Shared Function GetNameValueList() As NameValueList
Return DataPortal.Fetch(Of NameValueList) _
(New Criteria(GetType(NameValueList)))

End Function

The Data Access region contains only a DataPortal_Fetch() method, which connects to the
database and retrieves the name/value data. The NameValueListBase class defines a strongly typed
NameValuePair class, which is used to store each element of data. For each row of data from the
database, a NameValuePair object is created and added to the collection.

Notice the use of the IsReadOnly property to temporarily unlock the collection and then relock
it so it becomes read-only once the data has been loaded. The RoleList class in the sample applica-
tion in Chapter 8 illustrates a complete implementation of a name/value list.

Conclusion
This chapter has discussed the basic concepts and requirements for all business classes based on
CSLA .NET. I discussed the life cycle of business objects, and walked through the creation, retrieval,
update, and delete processes.

The basic structure of each type of business class was covered. There are common require-
ments, including making all the classes serializable, implementing a common set of code regions
for clarity of code, including a Private constructor, and having a nested Criteria class. There are
also specific structures or templates for each type of business object, including the following:

• Editable root

• Editable child

• Switchable object

• Editable root collection

• Editable child collection

• Read-only object

• Read-only collection

• Command object

• Name/value list

Chapter 8 will implement the sample project tracker application classes based on these
concepts and templates.

CHAPTER 7 ■ USING THE CSLA .NET BASE CLASSES 405

6315_c07_final.qxd 4/7/06 2:19 PM Page 405

6315_c07_final.qxd 4/7/06 2:19 PM Page 406

Business Object Implementation

This chapter will implement the business objects designed in Chapter 6 by following the business
object coding structures from Chapter 7. This chapter will illustrate how to write code to create
business objects that enjoy all the features and capabilities built into the CSLA .NET framework.
The great thing is that almost all the code in the business objects will be business focused. Each
business class will largely consist of three areas:

• UI-focused business properties and methods

• Shared factory methods to support the class-in-charge model (as discussed in Chapter 1)

• Data access methods (DataPortal_XYZ, as discussed in Chapter 4)

The object model created in Chapter 6 includes editable objects and collections, parent-child
collection relationships, read-only lists, a name/value list, and command objects. It also makes use
of custom authentication, requiring the creation of custom principal and identity objects. The cus-
tom identity object will be a read-only object.

In the end, the sample application makes use of every CSLA .NET base class available.
In this chapter, I won’t walk through all the code in the ProjectTracker business object library.

Instead, I’ll focus on providing examples of how to implement common types of business objects
and how to establish various object relationships. For the complete code, please refer to the code
download for this book, available at www.apress.com.

ProjectTracker Objects
Chapter 6 covered the creation of an object model for the sample project-tracking application.
This object model, shown in Figure 8-1, includes some editable root business objects (Project
and Resource), some editable child objects (ProjectResource and ResourceAssignment), some
collections of child objects (ProjectResources and ResourceAssignments), and a name/value list
(RoleList). It also includes two read-only collections (ProjectList and ResourceList) and an
editable root collection (Roles).

The solid arrows indicate using relationships, where one object uses another for some
purpose—either as a parent-child relationship or for collaboration. The dashed lines indicate
navigation, where a method exists so that the UI developer can easily get a reference to the target
object. Of course, Chapter 6 has complete details on the object model.

By implementing these objects, you should get a good feel for the practical process of taking
the class templates from Chapter 7 and applying them to the creation of real business classes.

407

C H A P T E R 8

■ ■ ■

6315_c08_final.qxd 4/7/06 2:00 PM Page 407

Setting Up the Project
Technically, business classes can be placed in a Class Library, Windows Application, or website-
type project in Visual Studio. But to get the full advantages of mobile objects and the CSLA .NET
framework, they really must be placed in a Class Library project.

By putting the business classes in a DLL, it becomes possible for the business objects to be
used by various different “front ends.” This is important, because Chapters 9 through 11 will use
exactly the same business DLL to create Windows Forms, Web Forms, and Web Services interfaces.
It’s equally important in “real-world” applications, since they too often have multiple interfaces.
Even if an application starts with a single interface, the odds are good that at some time in the
future, it will need a new one.

I prefer to collect all my projects under a single Visual Studio solution, including the business
library, the Windows and Web UI projects, and the Web Service project. To this end, you’ll find all
the code in a ProjectTracker20vb solution in the code download, with each project and website
contained inside.

The ProjectTracker.Library Class Library project is a library of business classes based on
the design from Chapter 6. This library contains all the business logic for the ProjectTracker
application.

The code in ProjectTracker.Library uses the CSLA .NET framework, and so the project refer-
ences Csla.dll. This is a file reference that is set up through the Add Reference dialog box, as shown
in Figure 8-2.

408 CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION

Figure 8-1. ProjectTracker application classes

6315_c08_final.qxd 4/7/06 2:00 PM Page 408

This makes the CSLA .NET framework available for use within the project, and is typically all
that is required.

However, remember that Csla.dll includes code that might run in Enterprise Services (COM+).
In particular, this includes both the ServicedDataPortal and EnterpriseServicesPortal components
of the data portal, as discussed in Chapter 4. If you choose to use the Enterprise Services features, then
you may need to reference System.EnterpriseServices.dll as well.

The specific case in which this is required is if you configure the data portal to run locally
in the client process and you mark your DataPortal_XYZ methods with <Transactional
(TransactionTypes.EnterpriseServices)>. This combination causes the direct use of a
ServicedComponent within the client process, and so requires a reference to System.
EnterpriseServices.dll. It also has the side effect of requiring that Csla.dll be registered with
COM+, which is handled automatically if the user is an administrator on the client workstation,
but otherwise must be done manually by an administrator using the regsvcs.exe command line
utility (or as part of a standard msi setup process).

■Note Enterprise Services (COM+) isn’t supported on Windows 98 or Windows ME. If you plan to configure the
data portal to run locally in the client process on older client workstations, you must not use the <Transactional
(TransactionTypes.EnterpriseServices)> attribute on your data access methods.

If you don’t use the <Transactional(TransactionTypes.EnterpriseServices)> attribute on
your DataPortal_XYZ methods, no code will use Enterprise Services in the client process, and so
you don’t have to worry about these details.

I’ll discuss the use of the EnterpriseServicesPortal through the data portal in Chapter 12, as
it has its own unique set of requirements.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 409

Figure 8-2. Referencing the Csla.dll assembly

6315_c08_final.qxd 4/7/06 2:00 PM Page 409

Business Class Implementation
The business classes implemented here follow the object-oriented design created in Chapter 6.
That chapter identified not only the classes to be created, but also which CSLA .NET base classes
each one will subclass.

I’ll walk through the first few classes in detail. The other classes will be very similar, so for
those, I’ll discuss only the key features. Of course, the complete code for all classes is available
in the code download for the book.

Project
The Project class is an editable root class that represents a single project in the application. It will
follow the EditableRoot template, as discussed in Chapter 7. This means that it inherits from
BusinessBase, as shown in Figure 8-3.

Since this is the first business class to be created, I’ll walk through the code in complete detail.
You can assume that subsequent classes follow a similar structure overall.

The Project class will use a number of .NET and CSLA .NET features. To make this easier,
a number of namespaces are imported at the project level (through the References tab in the
My Project designer). These include:

• System.Data

• System.Data.SqlClient

• Csla

• Csla.Data

These references are used to simplify the code in the class. For instance, the data access code
will interact with SQL Server, so the project needs to import the System.Data.SqlClient namespace.
And of course, CSLA .NET features are used, so namespaces are brought in for that as well.

The class itself is contained within the default ProjectTracker.Library namespace and is
declared as follows:

<Serializable()> _
Public Class Project
Inherits BusinessBase(Of Project)

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION410

Figure 8-3. The Project class subclasses BusinessBase

6315_c08_final.qxd 4/7/06 2:00 PM Page 410

The BusinessBase class requires one generic type parameter. This is the type of the business
object itself, and is used to provide strongly typed Save() and Clone() methods for the object as
discussed in Chapter 3.

The class will contain the standard code regions discussed in Chapter 7:

• Business Methods

• Validation Rules

• Authorization Rules

• Factory Methods

• Data Access

The class also has a region named Exists. This region implements an Exists() method that can
be used to determine if a specific project’s data exists in the database. I’ll discuss the code in the
Exists region at the end of the chapter.

Let’s walk through each region in turn.

Business Methods
The Business Methods region includes the declaration of all instance fields, along with the proper-
ties and methods that implement business logic around those fields. Since Project is a parent class,
it will also include some special code designed to work well with its child objects.

Instance Field Declarations

The field declarations are as follows:

Private mId As Guid = Guid.NewGuid
Private mName As String = ""
Private mStarted As New SmartDate
Private mEnded As New SmartDate(False)
Private mDescription As String = ""
Private mTimestamp(7) As Byte

Private mResources As ProjectResources = _
ProjectResources.NewProjectResources()

The String fields are all initialized to "". By default, the value would be Nothing, but that causes
problems with data binding, especially in Windows Forms. It is very important that String type
instance fields be initialized to some non-Nothing value.

■Note All String instance fields should be initialized with a default value when they’re declared. This is
because Windows Forms data binding throws a runtime exception when attempting to data bind against string
properties that return Nothing.

Also notice that the date values are of type SmartDate, rather than just DateTime. The object is
taking advantage of the Csla.SmartDate class that understands empty dates. The code specifies that
mStarted should treat an empty date as the minimum possible date value, while mEnded will treat it
as the maximum value.

Each Project object contains a collection of ProjectResource child objects. When a Project
object is created, an empty child collection is also created by calling the appropriate factory method

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 411

6315_c08_final.qxd 4/7/06 2:00 PM Page 411

on the collection. The NewProjectResources() method creates an empty collection, ensuring that
child objects can be added as required.

The result is that the instance fields are declared and initialized so the object is immediately
useful for things like data binding, setting property values, or adding child objects.

Read-Only Properties

The bulk of the code in the Business Methods region for most objects will be the properties. Some
objects may include complex methods implementing business logic, but virtually all objects include
properties to allow the UI to view or update the object’s values.

The Id property of the Project is read-only. It also represents the object’s unique primary key
value in the database:

<System.ComponentModel.DataObjectField(True, True)> _
Public ReadOnly Property Id() As Guid
Get
CanReadProperty(True)
Return mId

End Get
End Property

Since this is the primary key for the data in the database, the value can also be considered to
be a unique identifier for the object itself. The DataObjectField attribute is used to specify that the
property is both a primary key and an identity value. This attribute is used by data binding, and in
particular by the CslaDataSource ASP.NET control created in Chapter 5. The attribute is optional,
but is useful for helping to identify the nature of primary key properties.

Notice the use of the CanReadProperty() method in the get block. This code uses the overload
created in Chapter 3, telling the method to throw a System.Security.SecurityException if the current
user is not authorized to read the property. This is the simplest way to use the authorization function-
ality built into CSLA .NET. You could also opt to manually check the result with code like this:

If CanReadProperty() Then
Return mId

Else
' take appropriate action

End If

This approach allows you to do something other than throw the default exception. You would
write your code in the Else clause to cover the case in which the user isn’t authorized to read the
property. A third approach, which avoids the use of System.Diagnostics to determine the name of
the property, is as follows:

If CanReadProperty("Id") Then
Return mId

Else
' take appropriate action

End If

Notice that in this case, the name of the property is specified as literal text. This reduces the
maintainability of the code, but has a marginal performance benefit by avoiding the System.
Diagnostics call used by the previous overloads. You can determine whether the performance
gain is worth the maintainability loss for your particular application.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION412

6315_c08_final.qxd 4/7/06 2:00 PM Page 412

■Tip If you are using code generation or code snippets to create your business classes, there’s no real cost to
using a literal value here. Since the code generator creates the code automatically, the likelihood of bugs due
to typos is very small, and you may opt to use the literal in order to gain optimal performance.

The Id property illustrates several things: a read-only property, a primary identity key value,
and the use of the CanReadProperty() calling options.

Read-Write Properties

Now let’s try something a bit more interesting by creating a read-write property, Name:

Public Property Name() As String
Get
CanReadProperty(True)
Return mName

End Get
Set(ByVal Value As String)
CanWriteProperty(True)
If mName <> Value Then
mName = Value
PropertyHasChanged()

End If
End Set

End Property

Since this is neither a primary key nor an identity value, there’s no immediate need to use the
DataObjectField attribute. You may still opt to use this attribute on your properties to provide this
extra information for other purposes, such as automated unit testing.

The Get block is virtually identical to that in the Id property. In fact, the Get block for properties
will always be the same—the only difference being the name of the instance field that’s returned.

The Set block deserves some discussion, however. First, notice the CanWriteProperty()
method call. The options for calling CanWriteProperty() are the same as for CanReadProperty(),
so you can take more control or use a literal name for the property if you so desire. Regardless,
the idea is that the object’s property value is only changed if the user is authorized to write to
this property.

Assuming the user is authorized to change the property value, the code checks to see if the
provided value is actually new. If it’s the same as the value already in the object, then there’s no
sense in any work being done.

So, if the user is authorized to change the value, and the value is different from what is already
in the object, then the new value is stored in the object. It is important to realize that this occurs
before any validation code runs. This means that the object could end up storing invalid values.
That’s OK, though, because the object has an IsValid property that can be used to determine
whether any validation rules are currently being violated by values in the object.

The PropertyHasChanged() method is where the validation rules are actually invoked. This
method performs a sequence of steps:

1. It checks the validation rules for the property.

2. It sets the object’s IsDirty flag to True.

3. It raises a PropertyChanged event for data binding.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 413

6315_c08_final.qxd 4/7/06 2:00 PM Page 413

Like CanReadProperty(), the PropertyHasChanged() method uses System.Diagnostics to
determine the name of the current property, which incurs a marginal performance hit. If this is
a problem for you, the code can be changed to provide the literal name of the property:

PropertyHasChanged("Name")

Again, this is a trade-off between performance and maintainability; you’ll have to determine
which is most important for your application.

The validation rules to be checked are associated with the property in the AddBusinessRules()
method, which is implemented later in the chapter. Most rule methods assume that the value to
be validated is already in the object’s property, which is why it is important that the instance field
be set to the new value before the validation rules are invoked.

The IsDirty property indicates whether the object’s data has been changed. Since a new value
has been put into the object, this property must now return True.

Finally, since the object’s data has changed, any UI bound to the object through data binding
must update its display. This is done by raising a PropertyChanged event, as discussed in Chapter 3.
The PropertyHasChanged() method takes care of this automatically.

■Note Whenever the value of an instance field changes, you need to call PropertyHasChanged() for any
properties that have changed values. This ensures that the object’s state and the state of any data-bound UI
components are changed or updated as appropriate.

You can also have other objects handle the PropertyChanged event if they need to respond to a change
in a business object’s state. For instance, this technique can be used to automatically have a parent object
recalculate values when its child objects are changed.

Most read-write properties look just like the preceding Name property. For instance, here’s the
Description property:

Public Property Description() As String
Get
CanReadProperty(True)
Return mDescription

End Get
Set(ByVal Value As String)
CanWriteProperty(True)
If mDescription <> Value Then
mDescription = Value
PropertyHasChanged()

End If
End Set

End Property

Notice that it is identical to the Name property, other than working with a different instance
field. The vast majority of property methods will look exactly like this. In fact, you can find a code
snippet for both read-only and read-write properties in the Snippets subdirectory in the CSLA .NET
code download.

■Tip You can manually install the snippet files for use in Visual Studio 2005. By default, you should copy them
to the Visual Basic\My Code Snippets directory under My Documents\Visual Studio 2005\
Code Snippets. I typically put them in a Csla directory beneath My Code Snippets.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION414

6315_c08_final.qxd 4/7/06 2:00 PM Page 414

SmartDate Properties

So far, you’ve seen how to implement properties for type Guid and String. Most types follow this
same approach, with obvious small variation for formatting of values and so forth. But dates are
a tougher issue.

One way to deal with dates is to expose them as DateTime values directly. This works well for
date values that are required, for which an empty date isn’t an option. And of course, it only works
well if you are binding the property to a date-aware control. Unfortunately, most of the date-aware
controls don’t allow the user to just type a free-form date value, and so they aren’t really very good
for any sort of heads-down data entry scenarios.

The SmartDate class from Chapter 5 is intended to help solve this dilemma by making it easy
for a business class to expose a date value as a String, yet also be able to treat it like a date. Addi-
tionally, SmartDate allows for empty date values—it gives you the option of treating an empty date
as the smallest or largest possible date for the purposes of comparison.

The Started and Ended properties utilize the SmartDate data type. Here’s the Started property:

Public Property Started() As String
Get
CanReadProperty(True)
Return mStarted.Text

End Get
Set(ByVal Value As String)
CanWriteProperty(True)
If mStarted <> Value Then
mStarted.Text = Value
ValidationRules.CheckRules("Ended")
PropertyHasChanged()

End If
End Set

End Property

I’ll discuss the CheckRules() method call shortly. First, let’s focus on how the property is con-
structed. Notice that it is a String property, so it can be data bound to any text input control. This
means the user can enter the date value in any format that can be parsed, including the shortcuts
added to SmartDate in Chapter 5 (such as + for tomorrow).

The Get block returns the Text property of the mStarted field, thus returning the date value as
a string, formatted based on the format string set in mStarted (by default it is d, the short date
format).

The Set block sets the Text property, automatically triggering the parsing algorithm built
into SmartDate. That way, the value is stored as a date internal to SmartDate itself. This is impor-
tant because it allows SmartDate values to be compared to each other, as well as to DateTime
values. This comparison capability will be used later when the validation rules are implemented
in Project.

The end result is that the UI sees a String property, but all the features and functionality of
a date type are available inside the business class.

The Ended property is declared the same way, but works with the mEnded field instead.

Interdependent Properties

Sometimes an object will have properties that are interdependent, or at least have interdependent
validation logic. The Started and Ended properties are good examples of this case. Later on, you’ll
see how to implement a business validation rule saying that the value of Ended must not be earlier
than the value of Started—a project can’t end before it begins.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 415

6315_c08_final.qxd 4/7/06 2:00 PM Page 415

This complicates matters slightly, because a change to either property can affect the validity
of the other value. Suppose that Started and Ended begin with valid dates, but then Ended is
changed to a date earlier than Started. At that point, the Ended property is invalid; but so is the
Started property. Because the properties are interdependent, both should become invalid when
the interdependent rule is violated. Similarly, if the interdependent rule later becomes unbroken,
both properties should become valid.

This is the purpose behind the CheckRules() method call in the Started property’s Set block:

Set(ByVal Value As String)
CanWriteProperty(True)
If mStarted <> Value Then
mStarted.Text = Value
ValidationRules.CheckRules("Ended")
PropertyHasChanged()

End If
End Set

Remember that this code is in the Started property, and the call to CheckRules() is specifically
forcing the validation rules for the Ended property to be executed. The Set block in the Ended prop-
erty is a mirror image:

Set(ByVal Value As String)
CanWriteProperty(True)
If mEnded <> Value Then
mEnded.Text = Value
ValidationRules.CheckRules("Started")
PropertyHasChanged()

End If
End Set

In each case, the property value is updated based on the new input, and then the validation
rules for the other interdependent property are checked. Then PropertyHasChanged() runs, which
checks the validation rules for this property. This code simply ensures that, in addition to the
current property, the interdependent property’s rules are checked as well.

The result is that any interdependent business rules are run on both properties, so both
properties will become invalid or valid as appropriate.

Child Collection Properties

The final business property in this region provides client code with access to the collection of child
objects:

Public ReadOnly Property Resources() As ProjectResources
Get
Return mResources

End Get
End Property

The collection itself is exposed as a read-only property, but since it is an editable collection
derived from BusinessListBase, the UI code will be able to add and remove child items as needed.

Overriding GetIdValue

The BusinessBase class defines a MustOverride GetIdValue() method. This means that the method
must be implemented by any subclass, such as Project. The purpose behind the GetIdValue()
method is to allow BusinessBase to implement the standard System.Object overrides: Equals(),
GetHashCode(), and ToString().

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION416

6315_c08_final.qxd 4/7/06 2:00 PM Page 416

To do this, some unique identifier for the object is required, and so this is the value that is
returned from GetIdValue():

Protected Overrides Function GetIdValue() As Object
Return mId

End Function

Remember from Chapter 3 that this value must not return Nothing, or else an exception will
be thrown by the BusinessBase class. The value you return from this method is used to determine
if this object is equal to another object of the same type (i.e., is this Project object equal to another
Project object?). It is also returned as the result of ToString(), so anyone calling ToString() on
a Project will get that object’s mId value as a result (in string form of course).

While you must override GetIdValue() because it is MustOverride, overriding ToString(),
Equals(), and GetHashCode() is entirely optional. Default overrides for these methods already exist
in BusinessBase. If your object has different requirements for any of these three methods, it can
directly override those methods and provide its own implementation.

Overriding IsValid and IsDirty

Before we move on, there’s one last bit of work that this region must include. Project is a parent
object that has a collection of child objects, and so the default behavior for IsValid and IsDirty
from BusinessBase won’t work.

■Note The default IsValid and IsDirty properties must be enhanced for all objects that subclass
BusinessBase and contain child objects.

A parent object is valid only if it is in a valid state and if all of its child objects are in a valid
state. Likewise, a parent object is dirty if its own data has been changed or if any of its child objects
or collections have been changed. To handle this properly, the IsValid and IsDirty methods must
be overridden to provide a slightly more sophisticated implementation of each:

Public Overrides ReadOnly Property IsValid() As Boolean
Get
Return MyBase.IsValid AndAlso mResources.IsValid

End Get
End Property

Public Overrides ReadOnly Property IsDirty() As Boolean
Get
Return MyBase.IsDirty OrElse mResources.IsDirty

End Get
End Property

In the case of IsValid, the Project object is checked to see if it is invalid. If it is, then the result
is False and there’s no need to check the child collection. Otherwise, the child collection’s IsValid
property is checked, which triggers a check of all the child objects it contains. If any child object is
invalid, then the result is False.

IsDirty is similar. In this case, the Project object is checked, and if it has been changed, then
the result is True. But if the Project itself hasn’t been changed, then the child collection object’s
IsDirty property is checked, triggering a check of all child objects it contains. If any child object has
been changed, then the result is True.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 417

6315_c08_final.qxd 4/7/06 2:00 PM Page 417

Validation Rules
The Validation Rules region implements the AddBusinessRules() method to associate validation
rules to properties of the business object. As discussed in Chapter 3, validation rules are imple-
mented as rule methods that conform to the Csla.Validation.RuleHandler delegate.

This region also implements any custom rule methods for the object. The rule methods
provided in Csla.Validation.CommonRules are designed to handle most common validation
requirements, but some objects have rules that aren’t implemented in the CommonRules class.

AddBusinessRules

Let’s look first at the AddBusinessRules() implementation:

Protected Overrides Sub AddBusinessRules()
ValidationRules.AddRule(_
AddressOf Validation.CommonRules.StringRequired, "Name")

ValidationRules.AddRule(_
AddressOf Validation.CommonRules.StringMaxLength, _
New Validation.CommonRules.MaxLengthRuleArgs("Name", 50))

ValidationRules.AddRule(AddressOf StartDateGTEndDate, "Started")
ValidationRules.AddRule(AddressOf StartDateGTEndDate, "Ended")

End Sub

This method is automatically invoked by the CSLA .NET framework any time validation rules
need to be associated with the object’s properties. The method should only contain a series of
ValidationRules.AddRule() method calls as shown here.

Each call to AddRule() associates a validation rule with a property. In the simple case, this
means associating a rule method like StringRequired to a property like Name:

ValidationRules.AddRule(_
AddressOf Validation.CommonRules.StringRequired, "Name")

With this done, any time PropertyHasChanged() is called by the Name property, or
ValidationRules.CheckRules() is called anywhere in the object, the rule will be applied to the
Name property by executing the StringRequired method. The implementation for this method
was covered in Chapter 5.

■Note The rule will also be applied if ValidationRules.CheckRules() is called with no parameters, as that
causes the validation rules for all properties to be checked.

Other rules are a bit more complex, requiring extra parameter values to operate. This is the
case with the StringMaxLength rule, for instance:

ValidationRules.AddRule(_
AddressOf Validation.CommonRules.StringMaxLength, _
New Validation.CommonRules.MaxLengthRuleArgs("Name", 50))

Notice that in this case, a MaxLengthRuleArgs object is created, supplying both the name of
the property against which the rule is to be run and the maximum length for a valid String.

Both of the rules so far have been in the CommonRules class. But Project has a custom rule
method as well: StartDateGTEndDate. This rule is associated with both the Started and Ended
properties:

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION418

6315_c08_final.qxd 4/7/06 2:00 PM Page 418

ValidationRules.AddRule(AddressOf StartDateGTEndDate, "Started")
ValidationRules.AddRule(AddressOf StartDateGTEndDate, "Ended")

As you’ll see, this custom rule compares the two date values to ensure that the project doesn’t
end before it begins.

Custom Rule Methods

Chapter 5 discussed the CommonRules class and the rule methods it contains. The basic concepts
behind implementing a rule method were discussed at that time. The core requirement for all rule
methods is that they conform to the Csla.Validation.RuleHandler delegate signature. They also
must return True if the rule is unbroken and False if it is broken. Additionally, if the rule is broken,
e.Description should be set to provide a human-readable description of the problem.

None of the rules in CommonRules are designed to ensure that one SmartDate value is greater
than another, and so Project implements this as a custom rule:

Private Function StartDateGTEndDate(_
ByVal target As Object, ByVal e As Validation.RuleArgs) As Boolean

If mStarted > mEnded Then
e.Description = "Start date can't be after end date"
Return False

Else
Return True

End If
End Function

This rule method is comparable to those in the CommonRules class, but it doesn’t use reflec-
tion to do its work. It doesn’t need to because it is inside the Project class and thus has direct
access to all the fields in the object. The code can directly access the mStarted and mEnded
instance fields to do the comparison.

If the project start date is greater than the project end date, then the rule is broken and the
method returns False; otherwise it returns True.

This method is invoked by the PropertyHasChanged() and CheckRules() calls in the Set blocks
of the Started and Ended properties.

It is important to notice that this rule method uses two different property values in the
object, thus creating an interdependent relationship between those properties. The property
implementations discussed earlier included extra code to deal with this interdependency, and
that type of code is required any time you implement a single rule method that deals with mul-
tiple property values.

Authorization Rules
The Authorization Rules region implements the AddAuthorizationRules() method, along with
a standard set of Shared methods for use by the UI.

AddAuthorizationRules

Like AddBusinessRules(), the AddAuthorizationRules() method is called automatically by the
CSLA .NET framework any time the authorization rules for the object need to be configured. This
method contains only a series of calls to AuthorizationRules, specifying which security roles are
allowed or denied read and write access to each property:

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 419

6315_c08_final.qxd 4/7/06 2:00 PM Page 419

Protected Overrides Sub AddAuthorizationRules()
AuthorizationRules.AllowWrite("Name", "ProjectManager")
AuthorizationRules.AllowWrite("Started", "ProjectManager")
AuthorizationRules.AllowWrite("Ended", "ProjectManager")
AuthorizationRules.AllowWrite("Description", "ProjectManager")

End Sub

In this example, there are no restrictions on who can read properties, so there are no calls to
AllowRead() or DenyRead(). Recall from Chapter 3 that if no roles are specified for allow or deny,
then all users are allowed access.

■Tip If the default implementation for authorization as implemented in Chapter 3 doesn’t meet your needs, the
business object can override the CanReadProperty() and CanWriteProperty() methods from BusinessBase,
and you can implement your own algorithm.

But there are restrictions on who can change property values. In particular, only users in the
ProjectManager role are allowed to change any properties on the object, so each property is associ-
ated with this role. For instance:

AuthorizationRules.AllowWrite("Name", "ProjectManager")

Remember, the ProjectManager role is a security role, and so it is either a Windows domain
or Active Directory group, or a custom security role loaded when the user is authenticated. This
sample application uses custom authentication, so the user’s roles come from a SQL Server
database.

The AllowWrite() method, like all the methods on AuthorizationRules, accepts the property
name, followed by a comma-separated list of the roles allowed to alter this property. The list of
roles is a ParamArray parameter, making it easy to specify several roles on one line.

Authorization Methods

The CanReadProperty() and CanWriteProperty() methods make it easy to implement authorization
on a per-property basis, both within the object’s property code and from the UI (remember that
these two methods are Public in scope). While this is important, it isn’t enough.

A typical UI will have menus or links that allow the user to view, add, edit, and remove data in
various ways. If the user isn’t authorized to do those things, then the menus or links should be hid-
den or disabled in the UI, providing the user with clear visual cues that they aren’t allowed to
perform the action.

The implication is that the UI needs some way to know ahead of time whether a user will be
allowed to view, add, edit, or delete a given type of data; or in this case, object. It makes no sense to
force the UI to create an instance of the object to find out what the user is authorized to do; instead,
Shared methods are implemented so that the UI can effectively ask the business class. This is the
purpose behind the following methods:

• CanGetObject()

• CanAddObject()

• CanEditObject()

• CanDeleteObject()

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION420

6315_c08_final.qxd 4/7/06 2:00 PM Page 420

While it would be nice if these methods were part of a standard interface, it isn’t possible to
define Shared methods through an interface, so that’s not an option. Nor is it possible to define
Shared methods in a base class like BusinessBase and then override them in a subclass. Instead,
it is necessary to manually implement them in every business class.

■Note Of course, you can change the names of these methods to suit your own needs. The only thing to keep
in mind is that they should be named the same on every one of your business objects to simplify the creation and
maintenance of your UI code.

Each of the methods simply checks the user’s roles to determine if the user is in a role author-
ized to perform the operation. For instance, here’s the CanAddObject() method:

Public Shared Function CanAddObject() As Boolean
Return Csla.ApplicationContext.User.IsInRole("ProjectManager")

End Function

Only users in the ProjectManager role are allowed to add Project objects to the application.
The CanDeleteObject() method is a bit more complex:

Public Shared Function CanDeleteObject() As Boolean
Dim result As Boolean
If Csla.ApplicationContext.User.IsInRole("ProjectManager") Then
result = True

End If
If Csla.ApplicationContext.User.IsInRole("Administrator") Then
result = True

End If
Return result

End Function

Based on the use cases from Chapter 6, users in either the ProjectManager or Administrator
roles are allowed to delete Project objects.

These methods will be used in Chapters 9 and 10 to enable and disable various menu options
and links to provide the user with visual cues as to what options are available based on their role.
The methods will also be used later in this chapter so that the Project object’s methods prevent
unauthorized users from retrieving, updating, or deleting the object.

Factory Methods
The next step in creating the object is to write the code that will allow the UI to create, retrieve, and
delete a Project object. As discussed in Chapter 1, factory methods are used to provide these capa-
bilities.

Additionally, the default constructor is declared with non-Public scope (either Private or
Protected) to force the use of the factory methods for creating or retrieving the object. While this
is not strictly necessary, it is a good thing to do. Without making the constructor Private, it is far
too easy for a UI developer to forget to use the factory method and to instead use the New keyword
to create the object—leading to bugs in the UI code.

Finally, though it isn’t technically a factory method, the Save() method from BusinessBase
is overridden to add authorization checking.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 421

6315_c08_final.qxd 4/7/06 2:00 PM Page 421

Factory Methods

Let’s start by looking at the factory methods themselves:

Public Shared Function NewProject() As Project
If Not CanAddObject() Then
Throw New System.Security.SecurityException(_
"User not authorized to add a project")

End If
Return DataPortal.Create(Of Project)()

End Function

Public Shared Function GetProject(ByVal id As Guid) As Project
If Not CanGetObject() Then
Throw New System.Security.SecurityException(_
"User not authorized to view a project")

End If
Return DataPortal.Fetch(Of Project)(New Criteria(id))

End Function

Public Shared Sub DeleteProject(ByVal id As Guid)
If Not CanDeleteObject() Then
Throw New System.Security.SecurityException(_
"User not authorized to remove a project")

End If
DataPortal.Delete(New Criteria(id))

End Sub

The NewProject() method creates a new instance of Project, which loads default values from
the database if required. To do this, it simply calls DataPortal.Create() to trigger the data portal
process, as discussed in Chapter 7 and implemented in Chapter 4. First though, the CanAddObject()
method is called to determine whether the user is authorized to add a new Project to the system.
If the user isn’t authorized, there’s no sense even creating a new instance of the object.

■Tip Ideally, this authorization exception would never be thrown. Good UI design dictates that the UI should
hide or disable the options that would allow a user to add a new object if they aren’t authorized to do so. If that
is done properly, the user should never be able to even attempt to create a new object if they aren’t authorized.
This call to CanAddObject() is defensive, and exists just in case a bug creeps into the UI.

The GetProject() factory method retrieves an existing Project object, which is populated
with data from the database. This method accepts the primary key value for the data as a parame-
ter and passes it to DataPortal.Fetch() through a new Criteria object. The Criteria object will be
discussed later.

The data portal ultimately creates a new Project object and calls its DataPortal_Fetch()
method to do the actual data access. The Criteria object is passed through this process, so the
DataPortal_Fetch() method will have access to the Guid key value.

Of course, the CanGetObject() method is called first to ensure that the user is authorized to
view the data.

There’s also a Shared method to allow immediate deletion of a Project. The CanDeleteObject()
method is called first to ensure that the user is authorized to delete the data. DeleteProject()
accepts the primary key value for the data and uses it to create a Criteria object. It then calls
DataPortal.Delete() to trigger the deletion process, ultimately resulting in the object’s DataPortal_
Delete() method being invoked to do the actual deletion of the data.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION422

6315_c08_final.qxd 4/7/06 2:00 PM Page 422

Non-Public Constructor

As noted earlier, all business objects must include a default constructor, as shown here:

Private Sub New()
' require use of factory methods

End Sub

This is straight out of the template from Chapter 7. It ensures that client code must use the
factory methods to create or retrieve a Project object, and it provides the data portal with a con-
structor that it can call via reflection.

Overriding Save

The default implementation for Save() is good—it checks to ensure that the object is valid and dirty
before saving. But it isn’t sufficient in all cases, especially when there’s authorization logic to be
applied. Checking authorization on the client is ideal because it means that no attempt to save the
object occurs if the user isn’t authorized.

Keep in mind, however, that Save() is called for adding, updating, and deleting the object.
The authorization checks must take that into account:

Public Overrides Function Save() As Project
If IsDeleted AndAlso Not CanDeleteObject() Then
Throw New System.Security.SecurityException(_
"User not authorized to remove a project")

ElseIf IsNew AndAlso Not CanAddObject() Then
Throw New System.Security.SecurityException(_
"User not authorized to add a project")

ElseIf Not CanEditObject() Then
Throw New System.Security.SecurityException(_
"User not authorized to update a project")

End If
Return MyBase.Save

End Function

There are three different security checks here based on the state of the object. If the object
is marked for deletion, CanDeleteObject() is checked. If the object is new, then CanAddObject() is
checked, and otherwise, CanEditObject() is checked.

As with the checks in the factory methods, this authorization code shouldn’t ever throw an
exception, because the UI should have prevented the user from getting this far. But bugs occur, so
these checks are very important. And in Chapter 11, you’ll see how these checks are directly lever-
aged when implementing a web service interface.

In the end, if the user is allowed to do the delete, add, or update operation, then MyBase.Save()
is called to do the actual work.

Data Access
The Data Access region defines the Criteria object used by the factory methods, and imple-
ments the DataPortal_XYZ methods that support the creation, retrieval, addition, updating, and
deletion of a Project object’s data. Because this is an editable object, it will implement all the
possible methods:

• DataPortal_Create()

• DataPortal_Fetch()

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 423

6315_c08_final.qxd 4/7/06 2:00 PM Page 423

• DataPortal_Insert()

• DataPortal_Update()

• DataPortal_DeleteSelf()

• DataPortal_Delete()

First though, let’s look at the Criteria class.

Criteria

The factory methods discussed earlier create instances of a Criteria object. Factory methods use
a Criteria object to pass the criteria required to load the object through the data portal to the cor-
responding DataPortal_XYZ method. The criteria data for a Project is a Guid value: its primary key
in the database.

The criteria data for a simple object is often a single value—though your database may use
multipart keys, in which case it would include multiple values. Criteria data for collection objects
is often more complex, since it typically provides a filter rather than a specific key value.

The Criteria class itself is Private, since it is only used within Project. Also, it is a nested class,
which allows the data portal to determine that this is criteria for a Project object. An alternative
would be to have it inherit from Csla.CriteriaBase, in which case the business object type would
be specified in the constructor. However, the CriteriaBase option is designed primarily for use by
code generation tools, and so the nested class approach is used here:

<Serializable()> _
Private Class Criteria

Private mId As Guid
Public ReadOnly Property Id() As Guid
Get
Return mId

End Get
End Property

Public Sub New(ByVal id As Guid)
mId = id

End Sub
End Class

Notice that the class is marked with the <Serializable()> attribute, so the data portal can
transfer the object from the client to the server as needed.

To make the factory methods easier to implement, this class includes a constructor that
accepts the criterion as a parameter. That value is stored within the object and is exposed as a
read-only property. The DataPortal_XYZ methods will make use of this property value to interact
with the appropriate data in the database.

With the Criteria class defined, let’s move on to discuss the DataPortal_XYZ methods
themselves.

In this sample application, the data access code is relatively straightforward. Keep in mind,
however, that these routines could be much more complex, interacting with multiple databases,
merging data from various sources, and doing whatever is required to retrieve and update data
in your business environment.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION424

6315_c08_final.qxd 4/7/06 2:00 PM Page 424

Handling Transactions

As discussed in Chapters 2 and 4, the data portal supports three transactional models: manual,
Enterprise Services, and System.Transactions. The preferred model for performance and simplicity
is System.Transactions, and so that is the model used in the sample application.

This means that each method that updates data will be decorated with the <Transactional
(TransactionTypes.TransactionScope)> attribute. Since this tells the data portal to wrap the code
in a TransactionScope object, there’s no need to write any ADO.NET or stored procedure trans-
actional code. All the transaction details are handled by the TransactionScope object from System.
Transactions.

As you look at the data access code, notice that it never actually catches any exceptions. The
code leverages Using blocks to ensure that database connection, command, and data reader objects
are disposed properly, but no exceptions are caught. The reasons for this are twofold:

• First, the code uses the <Transactional()> attribute, which causes it to run within a System.
Transactions transactional context. An exception automatically causes the transaction to be
rolled back, which is exactly the desired result. If the exceptions were caught, then the trans-
action wouldn’t be rolled back, and the application would misbehave.

• Second, if an exception occurs, normal processing shouldn’t continue. Instead, the client
code needs to be notified that the operation failed, and why. Returning the exception to
the client code allows the client code to know that there was a problem during data access.
The client code can then choose how to handle the fact that the object couldn’t be created,
retrieved, updated, or deleted. Remember that the original exception is wrapped in a
DataPortalException, which includes extra information that can be used by the client
when handling the exception.

DataPortal_Create

The DataPortal_Create() method is called by the data portal when it is asked to create a new
Project object. In some cases, this method will load the new object with default values from the
database, and in simpler cases, it may load hard-coded defaults or set no defaults at all.

The Project object has no need for loading default values, so the DataPortal_Create() method
simply loads some default, hard-coded values rather than talking to the database:

<RunLocal()> _
Private Overloads Sub DataPortal_Create(ByVal criteria As Criteria)
mId = Guid.NewGuid
Started = CStr(Today)
ValidationRules.CheckRules()

End Sub

The method is decorated with the <RunLocal()> attribute because it doesn’t do any data
access, but rather sets hard-coded or calculated default values. If the method did load default
values from the database, then the <RunLocal()> attribute would not be applied, causing the data
portal to run the code on the application server. With the <RunLocal()> attribute on the method,
the data portal short-circuits its processing and runs this method locally.

■Tip In a more complex object, in which default values come from the database, this method would contain
ADO.NET code that retrieves those values and uses them to initialize the object’s fields. In that case, the
<RunLocal()> attribute would not be used.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 425

6315_c08_final.qxd 4/7/06 2:00 PM Page 425

Notice how the code directly alters the instance fields of the object. For instance, the mId field
is set to a new Guid value. Since the Id property is read-only, this is the only way to load the Id
property with a new value. While the Started property is read-write and could be set through the
property, it is more efficient and consistent to directly set the mStarted field.

Since not all properties can be set, it is best to be consistent and always set fields directly.
Additionally, the ValidationRules.CheckRules() call will apply all the validation rules in the entire
object. Setting a property causes the validation rules for that property to be checked, so setting
property values would cause validation rules to be run twice, which is wasteful. Setting the fields
and then calling CheckRules() means validation rules are run only once.

Of course, the default values set in a new object might not conform to the object’s validation
rules. In fact, the Name property starts out as an empty String value, which means it is invalid, since
that is a required property. Remember that this was specified in the AddBusinessRules() method by
associating this property with the StringRequired rule method.

To ensure that all validation rules are run against the newly created object’s data,
ValidationRules.CheckRules() is called. Calling this method with no parameters causes it to run
all the validation rules associated with all properties of the object, as defined in the object’s
AddBusinessRules() method.

The end result is that the new object has been loaded with default values, and those values
have been validated. The new object is then returned by the data portal to the factory method
(NewProject() in this case), which typically returns it to the UI code.

DataPortal_Fetch

More interesting and complex is the DataPortal_Fetch() method, which is called by the data portal
to tell the object that it should load its data from the database (or other data source). The method
accepts a Criteria object as a parameter, which contains the criteria data needed to identify the
data to load:

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
cm.CommandType = CommandType.StoredProcedure
cm.CommandText = "getProject"
cm.Parameters.AddWithValue("@id", criteria.Id)

Using dr As New SafeDataReader(cm.ExecuteReader)
dr.Read()
With dr
mId = .GetGuid("Id")
mName = .GetString("Name")
mStarted = .GetSmartDate("Started", mStarted.EmptyIsMin)
mEnded = .GetSmartDate("Ended", mEnded.EmptyIsMin)
mDescription = .GetString("Description")
.GetBytes("LastChanged", 0, mTimestamp, 0, 8)

' load child objects
.NextResult()
mResources = ProjectResources.GetProjectResources(dr)

End With
End Using

End Using
End Using

End Sub

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION426

6315_c08_final.qxd 4/7/06 2:00 PM Page 426

This method is not marked with either the <RunLocal()> or <Transactional()> attributes.
Since it does interact with the database, <RunLocal()> is inappropriate. That attribute could pre-
vent the data portal from running this code on the application server, causing runtime errors
when the database is inaccessible. Also, since this method doesn’t update any data, it doesn’t
need transactional protection, and so there’s no need for the <Transactional()> attribute.

You should also notice that no exceptions are caught by this code. If the requested Id value
doesn’t exist in the database, the result will be a SQL exception, which will automatically flow back
through the data portal to the UI code, contained within a DataPortalException. This is intentional,
as it allows the UI to have full access to the exception’s details so that the UI can decide how to
notify the user that the data doesn’t exist in the database.

The first thing the method does is open a connection to the database:

Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()

Database.PTrackerConnection is a call to a helper class in ProjectTracker.Library. This helper
simply abstracts the process of retrieving the database connection string. It uses System.
Configuration to get the data, and looks like this:

Public ReadOnly Property PTrackerConnection() As String
Get
Return ConnectionStrings("PTracker").ConnectionString

End Get
End Property

Because the ConfigurationManager is used in this code, a reference to System.Configuration.
dll is required by ProjectTracker.Library. This PTrackerConnection property is merely a conven-
ience to simplify the code in business objects. You may use a similar concept in your code if you
choose.

Then, within a Using block, a SqlCommand object is initialized to call the getProject stored
procedure:

Using cm As SqlCommand = cn.CreateCommand
cm.CommandType = CommandType.StoredProcedure
cm.CommandText = "getProject"
cm.Parameters.AddWithValue("@id", criteria.Id)

Note the use of the criteria parameter. This is the Criteria object that was created in the
GetProject() factory method, and so it provides access to the criteria data supplied to the factory
method by the UI. The SqlCommand object is then executed to return a data reader:

Using dr As New SafeDataReader(cm.ExecuteReader)

Rather than using a SqlDataReader, this code creates an instance of the Csla.Data.
SafeDataReader class. This provides automatic protection from errant null values in the data,
and also enables support for the SmartDate data type.

The data reader is then used to populate the object’s fields like this:

With dr
mId = .GetGuid("Id")
mName = .GetString("Name")
mStarted = .GetSmartDate("Started", mStarted.EmptyIsMin)
mEnded = .GetSmartDate("Ended", mEnded.EmptyIsMin)
mDescription = .GetString("Description")
.GetBytes("LastChanged", 0, mTimestamp, 0, 8)

The SmartDate values are retrieved using the SafeDataReader object’s GetSmartDate() method,
which automatically handles the translation of null values into appropriate empty date values.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 427

6315_c08_final.qxd 4/7/06 2:00 PM Page 427

Also notice that the LastChanged column is retrieved and placed into the mTimestamp Byte
array. This value is never exposed outside the object, but is maintained for later use if the object is
updated. Recall from Chapter 6 that LastChanged is a timestamp value in the database table, and
is used by the updateProject stored procedure to implement first-write-wins optimistic concur-
rency. The object must be able to provide updateProject with the original timestamp value that
was in the table when the data was first loaded.

At this point, the Project object’s fields have been loaded. But Project contains a collection
of child objects, and they need to be loaded as well. Remember that the getProject stored proce-
dure returns two result sets: the first with the project’s data; the second with the data for the child
objects. The NextResult() method of the data reader moves to the second result set so that the
child collection object can simply loop through all the rows, creating a child object for each:

.NextResult()
mResources = ProjectResources.GetProjectResources(dr)

End With

Now that the object contains data loaded directly from the database, it is an “old” object. The
definition of an old object is that the primary key value in the object matches a primary key value
in the database. In Chapter 4, the data portal was implemented to automatically call the object’s
MarkOld() method after DataPortal_Fetch() is complete. That ensures that the object’s IsNew and
IsDirty properties will return False.

DataPortal_Insert

The DataPortal_Insert() method handles the case in which a new object needs to insert its
data into the database. It is invoked by the data portal as a result of the UI calling the object’s
Save() method when the object’s IsNew property is True.

As with all the methods that change the database, this one is marked with the
<Transactional()> attribute to ensure that the code is transactionally protected:

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Insert()
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
cm.CommandText = "addProject"
DoInsertUpdate(cm)

End Using
End Using
' update child objects
mResources.Update(Me)

End Sub

As with DataPortal_Fetch(), this method opens a connection to the database and creates
a SqlCommand object. However, it turns out that both the addProject and updateProject stored
procedures take almost the same set of parameters. To consolidate code, a DoInsertUpdate()
helper method is called to load the common parameters and to execute the SqlCommand object.
That method looks like this:

Private Sub DoInsertUpdate(ByVal cm As SqlCommand)
With cm
.CommandType = CommandType.StoredProcedure
.Parameters.AddWithValue("@id", mId)
.Parameters.AddWithValue("@name", mName)
.Parameters.AddWithValue("@started", mStarted.DBValue)
.Parameters.AddWithValue("@ended", mEnded.DBValue)

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION428

6315_c08_final.qxd 4/7/06 2:00 PM Page 428

.Parameters.AddWithValue("@description", mDescription)
Dim param As New SqlParameter("@newLastChanged", SqlDbType.Timestamp)
param.Direction = ParameterDirection.Output
.Parameters.Add(param)

.ExecuteNonQuery()

mTimestamp = CType(.Parameters("@newLastChanged").Value, Byte())
End With

End Sub

The DataPortal_Insert() method already set the stored procedure name on the SqlCommand
object, so this helper method only needs to add parameters to the object, loading it with the
object’s data. It then executes the stored procedure.

Recall from Chapter 6 that both the addProject and updateProject stored procedures per-
form a SELECT statement to return the updated LastChanged column value. This value is read as
a result of the stored procedure call so that the object can update the mTimestamp field with the
new value from the database. As with DataPortal_Fetch(), the object needs to have the current
value of the timestamp for any future updates to the database.

Back in DataPortal_Insert(), once the insert operation is complete, the Project object’s data
is in the database. However, a Project contains child objects, and their data must be added to the
database as well. This is handled by calling an Update() method on the child collection object:

mResources.Update(Me)

This method is scoped as Friend and is intended for use only by the Project object. It loops
through all the child objects in the collection, inserting each one into the database. You’ll see the
code for this Update() method later in the chapter.

Once DataPortal_Insert() is complete, the data portal automatically invokes the MarkOld()
method on the object, ensuring that the IsNew and IsDirty properties are both False. Since the
object’s primary key value in memory now matches a primary key value in the database, it is not
new; and since the rest of the object’s data values match those in the database, it is not dirty.

DataPortal_Update

The DataPortal_Update() method is very similar to DataPortal_Insert(), but it is called by the data
portal in the case that IsNew is False. It too opens a database connection and creates a SqlCommand
object, and then calls DoInsertUpdate() to execute the updateProject stored procedure:

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Update()
If MyBase.IsDirty Then
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
cm.CommandText = "updateProject"
cm.Parameters.AddWithValue("@lastChanged", mTimestamp)
DoInsertUpdate(cm)

End Using
End Using

End If
' update child objects
mResources.Update(Me)

End Sub

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 429

6315_c08_final.qxd 4/7/06 2:00 PM Page 429

However, the updateProject stored procedure requires one extra parameter not required by
addProject: the timestamp value for the LastChanged column:

cm.Parameters.AddWithValue("@lastChanged", mTimestamp)

This is required for the first-write-wins optimistic concurrency implemented by the stored
procedure. The goal is to ensure that multiple users can’t overwrite each other’s changes to the data.
Other than adding this one extra parameter to the SqlCommand object, the DataPortal_Update()
method is very similar to DataPortal_Insert().

DataPortal_DeleteSelf

The final method that the data portal may invoke when the UI calls the object’s Save() method is
DataPortal_DeleteSelf(). This method is invoked if the object’s IsDeleted property is True and its
IsNew property is False. In this case, the object needs to delete itself from the database.

Remember that there are two ways objects can be deleted: through immediate or deferred
deletion. Deferred deletion is when the object is loaded into memory, its IsDeleted property is set
to True, and Save() is called. Immediate deletion is when a factory method is called and passes cri-
teria identifying the object to the DataPortal.Delete() method.

In the case of immediate deletion, the data portal ultimately calls DataPortal_Delete(), pass-
ing the Criteria object to that method so it knows which data to delete. Deferred deletion calls
DataPortal_DeleteSelf(), passing no Criteria object because the object is fully populated with
data already.

■Note Implementing the DataPortal_DeleteSelf() method is only required if your object supports deferred
deletion. In the Project object, deferred deletion is not supported, but I am implementing the method anyway to
illustrate how it is done.

The simplest way to implement DataPortal_DeleteSelf() is to create a Criteria object and
delegate the call to DataPortal_Delete():

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_DeleteSelf()
DataPortal_Delete(New Criteria(mId))

End Sub

You might wonder why the data portal couldn’t do this for you automatically. But remember
that the data portal has no idea what values are required to identify your business object’s data.
Even if you assume that GetIdValue() returns the complete primary key value for the object, there’s
no automatic way by which the data portal can create and properly initialize the specific Criteria
object for every business object you might create. Thus, you must create the Criteria object and
pass it to DataPortal_Delete().

DataPortal_Delete

The final data portal method is DataPortal_Delete(). This method is called from two possible
sources—if immediate deletion is used, the UI will call the Shared deletion method, which will call
DataPortal_Delete(); and if deferred deletion is used, then DataPortal_Delete() is called by
DataPortal_DeleteSelf(). A Criteria object is passed as a parameter, identifying the data to be
deleted. Then it’s just a matter of calling the deleteProject stored procedure as follows:

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION430

6315_c08_final.qxd 4/7/06 2:00 PM Page 430

<Transactional(TransactionalTypes.TransactionScope)> _
Private Overloads Sub DataPortal_Delete(ByVal criteria As Criteria)
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
With cm
.Connection = cn
.CommandType = CommandType.StoredProcedure
.CommandText = "deleteProject"
.Parameters.AddWithValue("@id", criteria.Id)
.ExecuteNonQuery()

End With
End Using

End Using
End Sub

The method just opens a database connection, configures a SqlCommand object to call the
deleteProject stored procedure, and executes the command.

In the download code, you’ll also see a code region for an Exists command, which I’ll discuss
later in the chapter.

ProjectResources
A Project object contains a collection of child objects, each one representing a resource assigned
to the project. The collection is maintained by a ProjectResources collection object, which is cre-
ated by inheriting from Csla.BusinessListBase. The ProjectResources class has three regions:

• Business Methods

• Factory Methods

• Data Access

The Business Methods region contains the Assign() method that assigns a resource to the
project. It also contains some helpful overloads of common methods, such as a Contains()
method that accepts the Id value of a Resource. This is useful because the Contains() method
provided by BusinessListBase() only accepts a ProjectResource object; but as you’ll see in
Chapters 9 and 10, the UI code needs to see if the collection contains a ResourceInfo object
based on its Id value.

The Factory Methods region contains a set of Friend-scoped factory methods for use by the
Project object in creating and loading the collection with data. Finally, the Data Access region
implements code to load the collection with data, and to save the child objects in the collection
into the database.

Before getting into the regions, let’s take a look at the class declaration:

<Serializable()> _
Public Class ProjectResources
Inherits BusinessListBase(Of ProjectResources, ProjectResource)

Like all business classes, this one is serializable. It also inherits from a CSLA .NET base class—
in this case, BusinessListBase. The BusinessListBase class requires two generic type parameters.

The first one is the type of the collection itself. That value is used to provide strongly typed
methods such as Clone() and Save().

The second one is the type of the child objects contained within the collection. That value is
used to make the collection itself strongly typed and affects many methods on the collection,
including the Item property, Remove(), Contains(), and others.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 431

6315_c08_final.qxd 4/7/06 2:00 PM Page 431

Business Methods
The Business Methods region contains a set of methods that provide business functionality for use
by UI code. In many cases, these methods are overloads of methods common to all collections, but
they accept parameters that provide much simpler use for the UI developer. The methods are listed
in Table 8-1.

Table 8-1. Business Methods in ProjectResources

Method Description

Assign Assigns a resource to the project

GetItem Returns a child object based on a resource Id value

Remove Removes a child object based on a resource Id value

Contains Searches for a child object based on a resource Id value

ContainsDeleted Searches for a deleted child object based on a resource Id value

Of all these methods, only Assign() is truly required. All the other methods merely provide
simpler access to the collection’s functionality. Still, that simpler access translates into much less
code in the UI, so it is well worth implementing in the object.

Assign

The Assign() method assigns a resource to the project. It accepts a resource Id value as a parame-
ter, and adds a new ProjectResource object to the collection representing the assignment of the
resource:

Public Sub Assign(ByVal resourceId As Integer)
If Not Contains(resourceId) Then
Dim resource As ProjectResource = _
ProjectResource.NewProjectResource(resourceId)

Me.Add(resource)

Else
Throw _
New InvalidOperationException("Resource already assigned to project")

End If
End Sub

A resource can only be assigned to a project one time, so the collection is first checked to see
if it contains an entry with that same resource Id value. Notice that the simpler Contains() over-
load is useful—I’ll get to its implementation shortly.

Assuming the resource isn’t already assigned, a new ProjectResource child object is created
and initialized by calling the NewProjectResource() factory method. Notice that the resource Id
value is passed to the new child object, establishing the proper connection between the project
and resource. The child object is then added to the collection, completing the process.

This means the UI code to add a resource to a project looks like this:

project.Resources.Assign(resourceId)

where resourceId is the primary key of the Resource to be assigned.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION432

6315_c08_final.qxd 4/7/06 2:00 PM Page 432

GetItem

Collections have an Item property that provides access to individual items in the collection based
on a numeric index value. It is often also useful to be able to get at a specific child object based on
other data in the child objects themselves. In this case, it will be necessary to retrieve a child item
based on the Id property of the resource that was assigned to the project, and this requires a
method that accepts the Id property and returns the corresponding child object:

Public Function GetItem(ByVal resourceId As Integer) As ProjectResource
For Each res As ProjectResource In Me
If res.ResourceId = resourceId Then
Return res

End If
Next
Return Nothing

End Function

In principle, this method operates much like a default Item property—but the Item property’s
parameter is a positional index, while the GetItem() method’s parameter indicates the Id value of
the resource. Simply overloading the Item property would be a cleaner solution, but this isn’t pos-
sible because the Item property accepts an Integer, and so does this new “overload.” The result
would be a duplicate method signature, and so this must be a method rather than an overload of
the Item property.

Remove, Contains, and ContainsDeleted

Collections that inherit from BusinessListBase automatically have Remove(), Contains(), and
ContainsDeleted() methods. Each of these accepts a reference to a child object as a parameter,
and often that is sufficient.

For this collection, however, it turns out that the UI code in Chapters 9 and 10 is much simpler
if it is possible to remove or check for a child object based on a resource Id property value rather
than a child object reference. To provide this capability, each of these three methods is overloaded
with a different implementation. For instance, here’s the Remove() method:

Public Overloads Sub Remove(ByVal resourceId As Integer)
For Each res As ProjectResource In Me
If res.ResourceId = resourceId Then
Remove(res)
Exit For

End If
Next

End Sub

This method accepts the resourceId value as a parameter, and that value is used to locate
the child object (if any) in the collection. The Contains() and ContainsDeleted() overloads fol-
low the same basic approach.

Not all collections will need overloads of this type, but such overloads are often useful to
simplify the use of the collection and reduce code in the UI.

Factory Methods
The Factory Methods region contains two factory methods and a Private constructor, much like
the Project class.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 433

6315_c08_final.qxd 4/7/06 2:00 PM Page 433

Factory Methods

The two factory methods are declared as Friend scope since they are not for use by the UI code.
Rather, they are intended for use by the Project object that contains the collection:

Friend Shared Function NewProjectResources() As ProjectResources
Return New ProjectResources

End Function

Friend Shared Function GetProjectResources(_
ByVal dr As SafeDataReader) As ProjectResources

Return New ProjectResources(dr)
End Function

In both cases, the factory methods simply use the New keyword to create and return a new
instance of the collection object.

The NewProjectResources() method returns an empty, new collection. This method is called
by Project when a new Project object is created.

GetProjectResources() is used to load the collection with child objects based on data from the
database. It is called from DataPortal_Fetch() in the Project class when a Project object is in the
process of being loaded from the database. This method accepts a data reader as a parameter, and
that data reader is provided to the constructor, which is responsible for loading the collection with
data. That parameterized constructor is found in the Data Access region.

Constructor

The default constructor, called from NewProjectResources(), is located in the Factory Methods
region, just like it is in the template from Chapter 7:

Private Sub New()
MarkAsChild()

End Sub

The fact that MarkAsChild() is called here is very important. Remember that the
ProjectResources collection is contained within a Project object and is a child of that Project.
Due to this, the collection object must be marked as a child object as it is created. The
BusinessListBase code relies on this information to make sure that the object behaves properly
as a child of another object.

The GetProjectResources() factory method also calls a constructor, passing it a data reader
object:

Private Sub New(ByVal dr As SafeDataReader)
MarkAsChild()
Fetch(dr)

End Sub

This method also calls MarkAsChild(), and then calls a Fetch() method, which will actually
load the object’s data from the data reader.

Data Access
The Data Access region in a child collection object is quite different from that of any root object
like Project. Remember that the data portal never directly interacts with child objects, leaving it
instead to the root object to initiate all data access in its children. In this case, that means that the

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION434

6315_c08_final.qxd 4/7/06 2:00 PM Page 434

Project object is responsible for initiating all data access activity in its child ProjectResources
collection.

Recall that in the DataPortal_XYZ methods of Project, calls were made to the
GetProjectResources() factory method and to an Update() method on the collection.

Loading Data

In the DataPortal_Fetch() method of Project, a call is made to the GetProjectResources() factory
method in ProjectResources. That factory method calls a parameterized constructor, passing a
data reader that contains the collection of data for the child objects to be loaded into the collec-
tion. That constructor then calls the following Fetch() method to load the object with data:

Private Sub Fetch(ByVal dr As SafeDataReader)
Me.RaiseListChangedEvents = False
While dr.Read()
Me.Add(ProjectResource.GetResource(dr))

End While
Me.RaiseListChangedEvents = True

End Sub

This method loops through all the items in the data reader, using each row of data to create
a new ProjectResource child object. I’ll discuss the GetResource() factory method later in the chap-
ter, but you can see that it accepts the data reader object as a parameter so the new child object can
populate itself with data from the current row.

As discussed in Chapter 7, the RaiseListChangedEvents property is set to False and then True
to suppress the ListChanged events that would otherwise be raised as each item is added.

Updating Data

The DataPortal_Insert() and DataPortal_Update() methods of Project call the collection’s
Update() method. This method is Friend in scope, as it is intended only for use by the parent
Project object. The Update() method is responsible for deleting, inserting, and updating all the
child objects in the collection into the database. More precisely, it is responsible for asking each
child object to do the appropriate operation.

This means looping through both the list of child objects marked for deletion and the list of
active objects that may require insert or update operations:

Friend Sub Update(ByVal project As Project)
Me.RaiseListChangedEvents = False
' update (thus deleting) any deleted child objects
For Each obj As ProjectResource In DeletedList
obj.DeleteSelf(project)

Next
' now that they are deleted, remove them from memory too
DeletedList.Clear()

' add/update any current child objects
For Each obj As ProjectResource In Me
If obj.IsNew Then
obj.Insert(project)

Else
obj.Update(project)

End If
Next
Me.RaiseListChangedEvents = True

End Sub

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 435

6315_c08_final.qxd 4/7/06 2:00 PM Page 435

First, the code loops through the list of deleted child objects, telling each one to remove its data
from the database:

For Each obj As ProjectResource In DeletedList
obj.DeleteSelf(project)

Next

Once that’s done, the DeletedList is cleared:

DeletedList.Clear()

This is done because the items have actually been deleted from the database, and so they are
no longer needed in memory either. This step keeps the objects in memory in sync with the data in
the database.

Then the code loops through all the child objects in the active list. These objects are obviously
not marked for deletion (or they would have been in DeletedList), so they are either inserted or
updated based on their individual IsNew property values:

For Each obj As ProjectResource In Me
If obj.IsNew Then
obj.Insert(project)

Else
obj.Update(project)

End If
Next

In many ways, this approach mirrors the behavior of the data portal as implemented in
Chapter 4. The state of the child object is used to determine which specific data access method
to call.

This completes the ProjectResources collection code.

ProjectResource
A Project contains a child collection: ProjectResources. The ProjectResources collection contains
ProjectResource objects. As designed in Chapter 6, each ProjectResource object represents a
resource that has been assigned to the project.

Also remember from Chapter 6 that ProjectResource shares some behaviors with
ResourceAssignment, and those common behaviors were factored out into an Assignment object.
As you look through the code in ProjectResource, you’ll see calls to the behaviors in Assignment,
as ProjectResource collaborates with that other object to implement its own behaviors. I’ll discuss
the Assignment class after ProjectResource.

ProjectResource is an editable child object, and so that is the template (from Chapter 7) that
I’ll follow here. Editable child objects have the following code regions:

• Business Methods

• Validation Rules

• Authorization Rules

• Factory Methods

• Data Access

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION436

6315_c08_final.qxd 4/7/06 2:00 PM Page 436

The class is declared as follows:

<Serializable()> _
Public Class ProjectResource
Inherits BusinessBase(Of ProjectResource)

Implements IHoldRoles

As with Project, the class inherits from BusinessBase, providing the type of the business object
itself as the type parameter.

The class also implements an interface: IHoldRoles. This interface will be defined in the
Assignments class later in the chapter, and it defines a Role property. This interface will be used by
code that validates the Role property value.

Business Methods
The Business Methods region is constructed in the same manner as Project. It contains instance
field declarations and any properties or methods that interact with those fields.

The instance fields used in this object are as follows:

Private mResourceId As Integer
Private mFirstName As String = ""
Private mLastName As String = ""
Private mAssigned As New SmartDate(Today)
Private mRole As Integer
Private mTimestamp(7) As Byte

As with Project, notice that string fields are initialized to an empty value.
The properties declared in this class are identical in structure to those in the Project class,

so I won’t list their code here. They call the CanReadProperty() method in the Get blocks and the
CanWriteProperty() method in the Set blocks. Also in the Set blocks, once the value has been
updated, the PropertyHasChanged() method is called to trigger validation rules, set the object’s
IsDirty property to True, and raise the PropertyChanged event for data binding.

This object includes one property that’s unique: FullName. This property is a combination of
the FirstName and LastName properties, and provides an easy way to get at a preformatted com-
bination of the two:

Public ReadOnly Property FullName() As String
Get
If CanReadProperty("FirstName") AndAlso CanReadProperty("LastName") Then
Return LastName & ", " & FirstName

Else
Throw _
New System.Security.SecurityException("Property read not allowed")

End If
End Get

End Property

Because this property returns values from two other properties, the CanReadProperty() method
is explicitly called for those two properties. This helps simplify the authorization rules for the object
as a whole, and prevents a user from accidentally seeing a value they aren’t authorized to view.

Validation Rules
The Validation Rules region is much like that in Project, in that it implements the
AddBusinessRules() method and could include custom rule methods. In this case, however, the one
custom rule required by ProjectResource is also required by ResourceAssignment. Since the rule is

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 437

6315_c08_final.qxd 4/7/06 2:00 PM Page 437

a form of common behavior, its implementation is located in the Assignment class. So the only
code here is AddBusinessRules():

Protected Overrides Sub AddBusinessRules()
ValidationRules.AddRule(AddressOf Assignment.ValidRole, "Role")

End Sub

The ValidRole rule from the Assignment class is associated with the Role property. That rule is
designed to ensure that the Role property is set to a value corresponding to a role in the RoleList
collection (which will be discussed later in the chapter). The IHoldRoles interface will be used to
allow the ValidRule method to access the Role property.

Authorization Rules
The Authorization Rules region implements the AddAuthorizationRules() method, establishing the
roles authorized to read and write each property. For this object, the only restriction is that the Role
property can only be changed by a ProjectManager:

Protected Overrides Sub AddAuthorizationRules()
AuthorizationRules.AllowWrite("Role", "ProjectManager")

End Sub

The CanReadProperty() and CanWriteProperty() method calls in all the properties automati-
cally check any authorization settings established here.

Factory Methods
Like ProjectResources, this object has two factory methods scoped as Friend. These methods are
intended for use only by the parent object: ProjectResources.

The NewProjectResource() factory method accepts a resourceId value as a parameter. That
value is used to retrieve the corresponding Resource object from the database:

Friend Shared Function NewProjectResource(_
ByVal resourceId As Integer) As ProjectResource

Return New ProjectResource(_
Resource.GetResource(resourceId), RoleList.DefaultRole)

End Function

The Resource object is needed to initialize the new ProjectResource object with all its data,
including the resource’s first and last name.

Also notice how the default role is retrieved from the RoleList class by calling a DefaultRole()
method. It is the responsibility of the RoleList object to deal with the details around roles, includ-
ing what role is the default for a newly assigned resource.

The constructor method called here initializes the new object based on the information
provided.

The GetResource() factory method is called by ProjectResources as it is being loaded with data
from the database. Recall that ProjectResources gets a data reader and loops through all the rows in
that data reader, creating a new ProjectResource for each row. To do this, it calls the GetResource()
factory method:

Friend Shared Function GetResource(_
ByVal dr As SafeDataReader) As ProjectResource

Return New ProjectResource(dr)
End Function

Again, the data reader is passed through to a constructor, which loads the object’s fields with
data from the current row in the data reader.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION438

6315_c08_final.qxd 4/7/06 2:00 PM Page 438

Constructor
All business objects must have a non-Public default constructor. Since ProjectResource is a child
of ProjectResources, the constructor must call MarkAsChild():

Private Sub New()
MarkAsChild()

End Sub

As with ProjectResources, this ensures that the object behaves properly as a child of another
object.

When a resource is newly assigned to a project, the NewProjectResource() factory method is
called. It, in turn, calls a constructor to initialize the new object:

Private Sub New(ByVal resource As Resource, ByVal role As Integer)
MarkAsChild()
With resource
mResourceId = .Id
mLastName = .LastName
mFirstName = .FirstName
mAssigned.Date = Assignment.GetDefaultAssignedDate
mRole = role

End With
End Sub

As with all constructors in a child object, MarkAsChild() is called to mark this as a child object.
Then the object’s fields are set to appropriate values based on the Resource object and default role
value passed in as parameters.

Finally, the GetProjectResource() factory method calls a constructor to create the object, pass-
ing a data reader object as a parameter:

Private Sub New(ByVal dr As SafeDataReader)
MarkAsChild()
Fetch(dr)

End Sub

This method calls MarkAsChild() to mark the object as a child object, and then calls a Fetch()
method to do the actual data loading.

Data Access
The Data Access region contains the code to initialize a new instance of the class when created as
a new object or loaded from the database. It also contains methods to insert, update, and delete the
object’s data in the database.

Loading an Existing Object
When a Project is being loaded from the database, it calls ProjectResources to load all the child
objects. ProjectResources loops through all the rows in the data reader supplied by Project, creat-
ing a ProjectResource child object for each row. That data reader is ultimately passed into the
Fetch() method where the object’s fields are set:

Private Sub Fetch(ByVal dr As SafeDataReader)
With dr
mResourceId = .GetInt32("ResourceId")
mLastName = .GetString("LastName")
mFirstName = .GetString("FirstName")
mAssigned = .GetSmartDate("Assigned")

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 439

6315_c08_final.qxd 4/7/06 2:00 PM Page 439

mRole = .GetInt32("Role")
.GetBytes("LastChanged", 0, mTimestamp, 0, 8)

End With
MarkOld()

End Sub

This code is very similar to the code in Project to load the object’s fields from the data reader.
Each field is loaded, including the timestamp value for this row in the database; thus enabling imple-
mentation of first-write-wins optimistic concurrency for the child objects, as well as the Project
object itself.

Notice the call to MarkOld() at the end of the method. Since the object is now populated with
data directly from the database, it is not new or dirty. The MarkOld() method sets the IsNew and
IsDirty property values to False. In root objects, this is handled by the data portal; but in child
objects, you need to manually call the method.

Inserting Data
When ProjectResources is asked to update its data into the database, it loops through all the child
objects. Any child objects with IsDeleted set to False and IsNew set to True have their Insert()
method called. The child object is responsible for inserting its own data into the database:

Friend Sub Insert(ByVal project As Project)
' if we're not dirty then don't update the database
If Not Me.IsDirty Then Exit Sub

Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
mTimestamp = Assignment.AddAssignment(_
cn, project.Id, mResourceId, mAssigned, mRole)

MarkOld()
End Using

End Sub

If the object’s data hasn’t been changed, then the database isn’t altered. There’s no sense updat-
ing the database with the same values it already contains.

In Chapter 6, the object design process revealed that ProjectResource and ResourceAssignment
both create a relationship between a project and a resource using the same data in the same way.
Due to this, the Insert() method delegates most of its work to an AddAssignment() method in the
Assignment class.

You may be wondering why this method opens a connection to the database. Didn’t Project
open a connection already? If you look back at the Project class, you’ll see that its code closes the
connection before updating any child objects. I’m relying on the database connection pooling
available in .NET to make this code perform well.

Later in the chapter, I’ll show how the Resource object and its ResourceAssignment child objects
are implemented to share a common database connection. That complicates the code a bit, but
may offer some minor performance gains. By looking at both approaches, you can choose which
one suits your needs the best.

Updating Data
The Update() method is very similar to Insert(). It too opens a database connection and then dele-
gates the call to a method in the Assignment class: UpdateAssignment(). This is because the data
updated by ProjectResource is the same as ResourceAssignment, so the common behavior is fac-
tored out into the Assignment class.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION440

6315_c08_final.qxd 4/7/06 2:00 PM Page 440

Deleting Data
Finally, there’s the DeleteSelf() method. Like Update() and Insert(), it too opens a database con-
nection and delegates the work to the Assignment class. There is one important difference in this
method, however, in that it not only skips out if IsDirty is False, but also if IsNew is True:

If Me.IsNew Then Exit Sub

The reason for checking IsNew is to prevent the code from trying to delete data in the database
that the object knows isn’t there. Remember that the definition of a “new” object is one in which the
object’s primary key value in memory doesn’t exist in the database. If it isn’t in the database, then
there’s no sense trying to delete it.

This completes the ProjectResource class, and really the whole Project object family. Of
course, you don’t quite have the whole picture yet, because ProjectResource collaborates with
both Assignment and RoleList to do its work. I’ll discuss those classes next.

Assignment
The Assignment class contains the behaviors common to both ProjectResource and
ResourceAssignment, as designed in Chapter 6. Figure 8-4 shows the collaboration relationship
between these objects.

Since Assignment only implements behaviors and contains no data, it is declared as a Module:

Friend Module Assignment

Notice that it doesn’t inherit from any CSLA .NET base classes. It has no need, since it is merely
a collection of common behaviors. Specifically, it contains a business method, a custom validation
rule, and a set of data access methods.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 441

Figure 8-4. Objects collaborating with Assignment

6315_c08_final.qxd 4/7/06 2:00 PM Page 441

Business Methods
When a resource is associated with a project, the date of that association is recorded. Though it
may seem somewhat trivial, the code to determine that date value is a common behavior between
ProjectResource and ResourceAssignment, so it is implemented in the Assignment class:

Public Function GetDefaultAssignedDate() As Date
Return Today

End Function

This is an example of the concept of normalization of behavior I discussed in Chapter 6.

Validation Rules
Similarly, both ProjectResource and ResourceAssignment have a Role property, allowing the role of
the resource on the project to be changed. When that value is changed, it must be validated. Of
course, this is handled by implementing a rule method conforming to the RuleHandler delegate
defined by CSLA .NET. This is common behavior, so it is implemented in Assignment:

Public Function ValidRole(_
ByVal target As Object, ByVal e As RuleArgs) As Boolean

Dim role As Integer = CType(target, IHoldRoles).Role

If RoleList.GetList.ContainsKey(role) Then
Return True

Else
e.Description = "Role must be in RoleList"
Return False

End If
End Function

This method uses the IHoldRoles interface to retrieve the value of the Role property from the
specified target object. This interface is defined like this:

Friend Interface IHoldRoles
Property Role() As Integer

End Interface

Notice that the interface is Friend in scope. It is only used within this assembly by the
ValidRole() method, so there’s no need to expose it as a public interface. Since both
ProjectResource and ResourceAssignment implement this interface, the ValidRole() method
has strongly typed access to the Role property on both objects.

Using the retrieved role value, the RoleList collection is asked whether it contains an entry
with that value as a key. If it does, then the role is valid; otherwise, it is not valid, so e.Description
is set to indicate the nature of the problem and False is returned as a result.

The RoleList object automatically caches the list of roles, so only the first call to GetList()
by the application goes to the database, and subsequent calls are handled from the in-memory
cache.

Data Access
The Assignment class also implements the data access behaviors common between both
ProjectResource and ResourceAssignment. The AddAssignment() and UpdateAssignment() methods
are very similar, in that they both create a SqlCommand object and then call a DoAddUpdate() helper
method. Here’s the UpdateAssignment() method:

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION442

6315_c08_final.qxd 4/7/06 2:00 PM Page 442

Public Function UpdateAssignment(ByVal cn As SqlConnection, _
ByVal projectId As Guid, ByVal resourceId As Integer, _
ByVal assigned As SmartDate, ByVal newRole As Integer, _
ByVal timestamp() As Byte) As Byte()

Using cm As SqlCommand = cn.CreateCommand()
cm.CommandText = "updateAssignment"
cm.Parameters.AddWithValue("@lastChanged", timestamp)
Return DoAddUpdate(_
cm, projectId, resourceId, assigned, newRole)

End Using
End Function

The only differences between UpdateAssignment() and AddAssignment() are the name of the
stored procedure to be called and the fact that AddAssignment() doesn’t add a timestamp parameter
to the SqlCommand object. The timestamp value is only needed for updates to deal with optimistic
concurrency.

All the real work occurs in DoAddUpdate():

Private Function DoAddUpdate(ByVal cm As SqlCommand, _
ByVal projectId As Guid, ByVal resourceId As Integer, _
ByVal assigned As SmartDate, _
ByVal newRole As Integer) As Byte()

cm.CommandType = CommandType.StoredProcedure
cm.Parameters.AddWithValue("@projectId", projectId)
cm.Parameters.AddWithValue("@resourceId", resourceId)
cm.Parameters.AddWithValue("@assigned", assigned.DBValue)
cm.Parameters.AddWithValue("@role", newRole)
Dim param As New SqlParameter("@newLastChanged", SqlDbType.Timestamp)
param.Direction = ParameterDirection.Output
cm.Parameters.Add(param)

cm.ExecuteNonQuery()

Return CType(cm.Parameters("@newLastChanged").Value, Byte())
End Function

This method loads the parameters into the SqlCommand object and then executes it to call the
proper stored procedure. Both the addAssignment and updateAssignment stored procedures were
implemented in Chapter 6 to return the updated timestamp value for the row. That value is returned
as an output parameter so the business object can store the new value.

The Assignment class illustrates how to normalize behavior through collaboration, helping to
ensure that a given behavior is only implemented once within the business layer.

RoleList
The final object used by Project, ProjectResources, ProjectResource, and Assignment is the
RoleList collection. This is a name/value list based on the Roles table from Chapter 6. The name
(key) values are of type Integer, while the values are the String names of each role.

The CSLA .NET framework includes the NameValueListBase class to help simplify the creation
of name/value list objects. Such objects are so common in business applications that it is worth
having a base class to support this one specialized scenario.

Chapter 7 includes a template for name/value list classes, and RoleList will follow that tem-
plate. It includes the Business Methods, Factory Methods, and Data Access regions. The class is
declared like this:

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 443

6315_c08_final.qxd 4/7/06 2:00 PM Page 443

<Serializable()> _
Public Class RoleList
Inherits NameValueListBase(Of Integer, String)

Notice the generic type parameters. The first specifies the data type of the name or key, while
the second specifies the data type of the value. These data types are used to define the name and
value types of the NameValuePair child objects contained in the collection.

Business Methods
The only business method in this class is DefaultRole(), which returns the default role for a
resource newly assigned to a project. Not all name/value collections will provide a method to
specify the default role, but it is often helpful. Recall that this method is used by ProjectResource
as a new ProjectResource object is created. Here’s the method:

Public Shared Function DefaultRole() As Integer
Dim list As RoleList = GetList()
If list.Count > 0 Then
Return list.Items(0).Key

Else
Throw New NullReferenceException(_
"No roles available; default role can not be returned")

End If
End Function

The implementation in this application is very simplistic, as it just returns the first item in the
collection. In a more complex application, the default value might be specified in the database.

Factory Methods
As in the template from Chapter 7, RoleList implements a form of caching to minimize load on
the database. The GetList() factory method stores the collection in a Shared field and returns it
if the object has already been loaded. It only goes to the database if the cache field is Nothing:

Private Shared mList As RoleList

Public Shared Function GetList() As RoleList
If mList Is Nothing Then
mList = DataPortal.Fetch(Of RoleList) _
(New Criteria(GetType(RoleList)))

End If
Return mList

End Function

Remember that NameValueListBase defines a Criteria class, so one doesn’t need to be declared
in every business class. As long as no filtering is required, that basic Criteria class can be used; and
it meets the needs of RoleList just fine.

■Note If you do need to filter the name/value list results, you’ll need to declare your own criteria class in the
Data Access region just like you would with any other root object.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION444

6315_c08_final.qxd 4/7/06 2:00 PM Page 444

In case the cache needs to be flushed at some point, there’s also an InvalidateCache() method:

Public Shared Sub InvalidateCache()
mList = Nothing

End Sub

By setting the Shared cache value to Nothing, the cache is reset. The next time any code calls
the GetList() method, the collection will be reloaded from the database. This InvalidateCache()
method will be called by the Roles collection later in the chapter.

Of course, there’s also a non-Public constructor in the class to enforce the use of the factory
method to retrieve the object.

Data Access
Finally, there’s the DataPortal_Fetch() method that loads the data from the database into the
collection:

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)
Me.RaiseListChangedEvents = False
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
cm.CommandType = CommandType.StoredProcedure
cm.CommandText = "getRoles"

Using dr As New SafeDataReader(cm.ExecuteReader)
IsReadOnly = False
With dr
While .Read()
Me.Add(New NameValuePair(_
.GetInt32("id"), .GetString("name")))

End While
End With
IsReadOnly = True

End Using
End Using

End Using
Me.RaiseListChangedEvents = True

End Sub

As with the DataPortal_Fetch() method in Project, the code here opens a connection to the
database, sets up a SqlCommand object, and executes it to get a SafeDataReader object. The code then
loops through that data reader and creates a new NameValuePair object for each row.

Since the collection is normally read-only, the IsReadOnly property is set to False before load-
ing the data and then restored to True once the data has been loaded.

The result is a fully populated name/value list containing the data from the Roles table in the
database.

This completes the Project object family, including all collaboration objects. Next, I’ll walk
briefly through the Resource object family.

Resource and Related Objects
The other primary root object in the object model is Resource. Like Project, a Resource object can
be directly created, retrieved, or updated. It also contains a list of child objects.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 445

6315_c08_final.qxd 4/7/06 2:00 PM Page 445

Since I’ve already walked through the creation of an editable root business object in detail,
there’s no need to do the same for the Resource class. However, there are two primary areas of differ-
ence that should be discussed.

Where the Projects table uses a uniqueidentifier as a primary key, the Resources table uses
an int identity column. This means that the database is responsible for assigning the primary key
value for any new Resource objects.

Additionally, just to show how it is done, I have implemented the Resource,
ResourceAssignments, and ResourceAssignment objects to share a common database connection.
Where every object in the Project family opens and closes its own database connection, the
objects in the Resource family pass a common SqlConnection object between them when doing
data access. While this complicates the code somewhat, it may offer some minor performance
gains. You can choose the approach that best fits your needs.

Using an Identity Column
Many databases are designed to use identity columns, where the database is responsible for assign-
ing primary key values to rows of data as they are inserted. While the Guid approach used in Project
is somewhat simpler to implement, Resource illustrates how to work with identity columns.

The changes are limited to the Data Access region of the code, and in particular the
DataPortal_Insert() method. Where the updateResource stored procedure simply returns the
updated timestamp for the row, addResource also returns the newly created identity value:

SELECT Id, LastChanged FROM Resources WHERE Id=SCOPEmIdENTITY()

This means DataPortal_Insert() needs to retrieve that value and update the object’s mId field:

<Transactional(TransactionalTypes.TransactionScope)> _
Protected Overrides Sub DataPortal_Insert()
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
With cm
.CommandType = CommandType.StoredProcedure
.CommandText = "addResource"
With cm
.Parameters.AddWithValue("@lastName", mLastName)
.Parameters.AddWithValue("@firstName", mFirstName)
Dim param As New SqlParameter("@newId", SqlDbType.Int)
param.Direction = ParameterDirection.Output
.Parameters.Add(param)
param = New SqlParameter("@newLastChanged", SqlDbType.Timestamp)
param.Direction = ParameterDirection.Output
.Parameters.Add(param)

.ExecuteNonQuery()

mId = CInt(.Parameters("@newId").Value)
mTimestamp = CType(.Parameters("@newLastChanged").Value, Byte())

End With

' update child objects
mAssignments.Update(cn, Me)

End With
End Using

End Using
End Sub

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION446

6315_c08_final.qxd 4/7/06 2:00 PM Page 446

The method opens the database connection and sets up the SqlCommand object. When the com-
mand is executed, it returns both the @newId and @newLastChanged column values, which are used to
set the mId and mTimestamp fields in the object. The result is that the Resource object’s Id property
reflects the value assigned by the database as soon as the data is added to the database.

Notice that the child objects are updated after this value has been retrieved, which means that
all the child ResourceAssignment objects will have access to their parent object’s Id value. This is
important since they use this value as a foreign key.

Sharing a Database Connection
If you look at the preceding DataPortal_Insert() method, you’ll notice that the child object col-
lection’s Update() method is called before the database connection is closed. In fact, the
SqlConnection object is passed as a parameter to the Update() method along with a reference
to the Resource object itself:

mAssignments.Update(cn, Me)

The idea behind this is to make the connection available to the child objects so a connection
doesn’t have to be opened and closed for each object.

The .NET Framework provides database connection pooling, so talking about “opening and
closing” database connections isn’t really meaningful. Just because your code “closes” or “disposes”
a SqlConnection object doesn’t mean the connection is actually closed; in fact, it usually isn’t closed,
but rather is simply returned to the connection pool for later reuse.

What this means is that it typically isn’t worth worrying about the frequency of opening and
closing the database connection, since your code is really just reusing an already open connection
anyway.

But if you want to eke out that tiny extra bit of performance, you may want to share the con-
nection. Also, if you are implementing manual ADO.NET transactions, you’ll want to follow the flow
of code I’m showing here; though you would pass the SqlTransaction object as a parameter rather
than the SqlConnection object. SqlTransaction objects contain a reference to the underlying
SqlConnection, so passing a SqlTransaction provides all the information needed to initialize
SqlCommand objects to use the same connection and transaction.

The principle remains consistent, however. The Update() method in ResourceAssignments
accepts the open SqlConnection object and passes it to each ResourceAssignment child object’s
data access method:

Friend Sub Update(ByVal cn As SqlConnection, ByVal resource As Resource)
Me.RaiseListChangedEvents = False
' update (thus deleting) any deleted child objects
For Each item As ResourceAssignment In DeletedList
item.DeleteSelf(cn, resource)

Next
' now that they are deleted, remove them from memory too
DeletedList.Clear()

' add/update any current child objects
For Each item As ResourceAssignment In Me
If item.IsNew Then
item.Insert(cn, resource)

Else
item.Update(cn, resource)

End If
Next
Me.RaiseListChangedEvents = True

End Sub

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 447

6315_c08_final.qxd 4/7/06 2:00 PM Page 447

Finally, in the Insert(), Update(), and DeleteSelf() methods of ResourceAssignment, this open
connection is used. For instance, here’s the Insert() method:

Friend Sub Insert(ByVal cn As SqlConnection, ByVal resource As Resource)
' if we're not dirty then don't update the database
If Not Me.IsDirty Then Exit Sub

mTimestamp = Assignment.AddAssignment(_
cn, mProjectId, resource.Id, mAssigned, mRole)

MarkOld()
End Sub

As with ProjectResource, the real work is delegated to the Assignment class. But notice that
no database connection is opened in this Insert() method because an open connection was
passed in as a parameter.

The ResourceAssignments and ResourceAssignment objects are otherwise totally comparable
to ProjectResources and ProjectResource, so I won’t cover their code in detail here. You can look
at the code for these classes by downloading the code for the book.

ProjectList and ResourceList
The ProjectList and ResourceList classes are both read-only collections of read-only data. They
exist to provide the UI with an efficient way to get a list of projects and resources for display to
the user.

On the surface, it might seem that you could simply retrieve a collection of Project or Resource
objects and display their data. But that would mean retrieving a lot of data that the user may never
use. Instead, it’s more efficient to retrieve a small set of read-only objects for display purposes, and
then retrieve an actual Project or Resource object once the user has chosen which one to use.

The CSLA .NET framework includes the ReadOnlyListBase class, which is designed specifically
to support this type of read-only list. Such a collection typically contains objects that inherit from
ReadOnlyBase.

Because these two read-only collections are so similar in implementation, I’m only going to
walk through the ResourceList class in this chapter. You can look at the code for ProjectList in
the code download.

The ResourceList class inherits from Csla.ReadOnlyListBase:

<Serializable()> _
Public Class ResourceList
Inherits ReadOnlyListBase(Of ResourceList, ResourceInfo)

ReadOnlyListBase requires two generic type parameters. The first is the type of the collection
object itself and is used to create the strongly typed Clone() method.

The second is the type of the child objects contained in the collection: ResourceInfo. This is
a separate class that implements simple read-only properties to expose the resource data. Let’s
quickly look at that class before continuing with the implementation of ResourceList itself.

ResourceInfo Class
The ResourceList class is a collection of ResourceInfo objects. Each ResourceInfo object provides
read-only access to a subset of data from the Resources table. The class is defined like this:

<Serializable()> _
Public Class ResourceInfo
Inherits ReadOnlyBase(Of ResourceInfo)

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION448

6315_c08_final.qxd 4/7/06 2:00 PM Page 448

It inherits from ReadOnlyBase, which requires one generic type parameter: the type of the
business object. This type parameter is used to implement the strongly typed Clone() method.
By inheriting from ReadOnlyBase, the class automatically gains implementations of the standard
System.Object overrides: Equals(), GetHashCode(), and ToString().

The class implements a Business Methods region and a Constructors region. There’s no need
for Data Access, because the data will be loaded by the ResourceList parent collection.

Business Methods

The ResourceInfo object exposes two properties: Id and Name:

Private mId As Integer
Private mName As String

Public Property Id() As Integer
Get
Return mId

End Get
Friend Set(ByVal Value As Integer)
mId = Value

End Set
End Property

Public Property Name() As String
Get
Return mName

End Get
Friend Set(ByVal Value As String)
mName = Value

End Set
End Property

Protected Overrides Function GetIdValue() As Object
Return mId

End Function

Notice that the properties are read-only, so the values can’t be changed by UI code. The
implementation of GetIdValue() is required by ReadOnlyBase, and it should return a unique
value for the child object within the collection. This value is used to implement the standard
System.Object overrides.

In this particular case, the default implementation of ToString() isn’t sufficient. While the
unique identifier for this object comes from mId, the ToString() method should return the value
from mName. To resolve this, the ToString() method is overridden:

Public Overrides Function ToString() As String
Return mName

End Function

This is important, because when the collection is data bound to a list control like a ListBox,
it is the ToString() value that will be displayed to the user.

Constructors

The class has two constructors: the default constructor to prevent direct creation of the object, and
a parameterized constructor used by ResourceList to load the object with data:

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 449

6315_c08_final.qxd 4/7/06 2:00 PM Page 449

Private Sub New()
' require use of factory methods

End Sub

Friend Sub New(ByVal dr As SafeDataReader)
mId = dr.GetInt32("Id")
mName = String.Format("{0}, {1}", _
dr.GetString("LastName"), dr.GetString("FirstName"))

End Sub

The first constructor exists merely to prevent the UI developer from accidentally using the
New keyword to create an instance of this class. The result is that the UI developer is prevented from
directly creating an instance of the object.

The second constructor is called by DataPortal_Fetch() in ResourceList to initialize the new
child object with data for display.

This completes the ResourceInfo object. It is a very small, simple object designed to efficiently
expose read-only data to the UI for display. Now let’s return to the implementation of the
ResourceList class, which contains a collection of these ResourceInfo objects.

Factory Methods
The ResourceList collection exposes one factory method: GetResourceList(). This factory method
simply uses the data portal to retrieve the list of data. For this example, no criteria is used, so the
entire list is retrieved:

Public Shared Function GetResourceList() As ResourceList
Return DataPortal.Fetch(Of ResourceList)(New Criteria)

End Function

Of course, there’s also a non-Public constructor to require the use of the factory method.

Data Access
The GetResourceList() factory method calls the data portal, which in turn ultimately calls the
ResourceList object’s DataPortal_Fetch() method to load the collection with data. The Criteria
object passed from the factory to DataPortal_Fetch() is the simplest implementation possible:

<Serializable()> _
Private Class Criteria
' no criteria - we retrieve all resources

End Class

Since no criteria values are required, the class is just an empty implementation. The class itself
is still required, because the data portal uses it to determine what type of object is to be retrieved
when DataPortal.Fetch() is called.

The DataPortal_Fetch() method itself is like the others you’ve seen in the chapter:

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)
RaiseListChangedEvents = False
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
With cm
.CommandType = CommandType.StoredProcedure
.CommandText = "getResources"

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION450

6315_c08_final.qxd 4/7/06 2:00 PM Page 450

Using dr As New SafeDataReader(.ExecuteReader)
IsReadOnly = False
While dr.Read()
Dim info As New ResourceInfo(dr)
Me.Add(info)

End While

IsReadOnly = True
End Using

End With
End Using

End Using
RaiseListChangedEvents = True

End Sub

It opens a connection to the database, sets up a SqlCommand, and executes that command to
get back a SafeDataReader object. The code then loops through the data reader, creating an
instance of ResourceInfo for each row of data:

Dim info As New ResourceInfo(dr)
Me.Add(info)

The data reader object is passed to each new object’s constructor so it can initialize itself with
data as appropriate. Once each child object has been created and initialized, it is added to the
collection.

Since ResourceList is a read-only collection, the IsReadOnly property is set to False before
loading the data and True once the loading is complete.

The end result is a fully populated list of the resources in the database that can be displayed
to the user by the UI.

Roles
The RoleList object provides a read-only, cached list of roles that a resource can hold when
assigned to a project. But that list of roles needs to be maintained, and that is the purpose behind
the Roles collection. This is an editable root collection that contains a list of editable child Role
objects.

The Roles class illustrates how to create an editable root collection based on the template code
from Chapter 7. The class inherits from BusinessListBase:

<Serializable()> _
Public Class Roles
Inherits BusinessListBase(Of Roles, Role)

The first generic type parameter specifies the type of the collection itself, while the second
provides the type of the child objects contained in the collection.

An editable root collection has Business Methods, Authorization Rules, Factory Methods, and
Data Access regions. By this point, you’ve seen good examples of each region, so I’ll just focus on
the parts that are unique for a root collection. For instance, the Authorization Rules region
includes only the Shared authorization rules discussed earlier in the chapter, so I’ll bypass talking
about that code here.

Business Methods
The Roles class implements an overloaded Remove() method that accepts a role’s Id value rather
than a Role object. This simplifies removal of child objects, especially in the Web Forms UI that will
be created in Chapter 10.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 451

6315_c08_final.qxd 4/7/06 2:00 PM Page 451

Public Overloads Sub Remove(ByVal id As Integer)
For Each item As Role In Me
If item.Id = id Then
Remove(item)
Exit For

End If
Next

End Sub

It also implements a GetRoleById() method to retrieve a child Role object based on the role
Id value:

Public Function GetRoleById(ByVal id As Integer) As Role
For Each item As Role In Me
If item.Id = id Then
Return item

End If
Next
Return Nothing

End Function

Again, this exists to simplify the creation of the Web Forms UI.
Finally, and probably of most interest, is the AddNewCore() override:

Protected Overrides Function AddNewCore() As Object
Dim item As Role = Role.NewRole
Add(item)
Return item

End Function

When using Windows Forms data binding, it is possible to allow grid controls to automatically
add new items to a collection when the user moves to the last row of the grid. The collection object
itself controls whether this option is available, and the Roles collection supports the concept. Turn-
ing the option on is done in the collection’s constructor, but if the option is turned on, then the
object must override AddNewCore(), as shown here.

■Note This option is not enabled for ProjectResources or ResourceAssignments because it isn’t possible
to add a new ProjectResource or ResourceAssignment child object to those collections without first gather-
ing extra information from the user (specifically the resource or project to be assigned). You can only allow a
grid control to add new child objects if you can implement AddNewCore() to create a new child object with no
user interaction.

The AddNewCore() method is called by data binding when a new item needs to be added to
the collection. The method is responsible for creating a new child object, adding it to the collec-
tion, and returning it as a result.

It is important to realize that this puts a serious constraint on the child objects, since it
must be possible to create them without user input. In other words, it must be possible to create
a child object based purely on default values provided by your code or from the database. If your
child object has a parameterless factory method (like the NewRole() method in the preceding
AddNewCore() method) for creating a new object, then you are ready to go.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION452

6315_c08_final.qxd 4/7/06 2:00 PM Page 452

Factory Methods
The Factory Methods region implements a GetRoles() factory method, which just calls the data portal
like the other factory methods you’ve seen. It also implements a non-Public constructor to require use
of the factory method. But the constructor contains an extra line of code that is quite important:

Private Sub New()
Me.AllowNew = True

End Sub

AllowNew is a Protected property defined by BindingList; the base class of BusinessListBase.
Setting this to True allows Windows Forms data binding to automatically add new child objects to
the collection. Typically, this happens when the collection is bound to an editable grid control in
the UI. Table 8-2 lists the properties you can use to control the behavior of an editable collection.

Table 8-2. Properties Used to Control an Editable Collection

Property Description

AllowNew If True, Windows Forms data binding can automatically add new child objects to the col-
lection. It requires that you override the AddNewCore() method, and defaults to False.

AllowEdit If True, Windows Forms data binding will allow in-place editing of child objects in a
grid control. It defaults to True.

Though a collection can opt to implement a Shared delete method to delete all the items in the
database, that isn’t a requirement for Roles, so it doesn’t have such a method.

Data Access
The Data Access region has some unique code. The reason for this is not that the collection is an
editable root, but rather that the Roles collection needs to invalidate the cache of any RoleList
object when the list of roles is changed. In other words, when Save() is called on a Roles collection,
any cached RoleList object must be reloaded from the database to get the new values.

Other than this requirement, the data access code is quite straightforward, so let’s focus on the
cache invalidation code.

Invalidating the Client-Side Cache

First, the Save() method itself is overridden. This is partially because it implements authorization
code just like you saw in the Project class. But it also adds code to invalidate the RoleList cache:

Public Overrides Function Save() As Roles
' see if save is allowed
If Not CanEditObject() Then
Throw New System.Security.SecurityException(_
"User not authorized to save roles")

End If

' do the save
Dim result As Roles
result = MyBase.Save()
' this runs on the client and invalidates
' the RoleList cache
RoleList.InvalidateCache()
Return result

End Function

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 453

6315_c08_final.qxd 4/7/06 2:00 PM Page 453

The bold lines show where the cache is invalidated. Notice that it happens after the call to
MyBase.Save(), because that is the point at which you know that the database has been updated.

But there’s a subtler detail to putting the code at this location. Remember that MyBase.Save()
invokes the data portal, which potentially transfers the object to an application server to save its
data. By the time the MyBase.Save() method returns, the updated object has been returned to the
client.

In other words, putting the code in this particular location ensures that it is the client-side
cache that is invalidated by calling RoleList.InvalidatedCache().

Invalidating the Server-Side Cache

Perhaps even subtler is the fact that there could be a cached RoleList collection on both the client
and server. Keep in mind that CSLA .NET enables mobile objects, and that means that business
object code can run on the client and on the server. If a business object has server-side code that
uses a RoleList, that will cause a RoleList object to be created and cached on the server.

If you look back at the ValidRole() rule method in Assignment, you’ll see that it calls the
GetList() factory on RoleList, loading a list of roles. If any business rule validation occurs for
either a ProjectResource or ResourceAssignment object on the server, that would cause the list to
be loaded and cached on the server. Though that doesn’t occur in ProjectTracker, it is a very com-
mon scenario in many applications.

The great thing about the way the mobile objects works is that caching the RoleList on client
and server is automatic. You’ll note that there’s no special code to make that happen. But it does
mean a bit of extra work in the Roles collection to ensure that any server-side cache is also flushed.

Recall from Chapter 4 that the data portal will optionally invoke the DataPortal_
OnDataPortalInvoke() and DataPortal_OnDataPortalInvokeComplete() methods if your business
object implements them. The former is invoked before any DataPortal_XYZ method is called, and
the latter is invoked afterward. You can use this method to run code on the server after the
DataPortal_Update() method is complete:

Protected Overrides Sub DataPortal_OnDataPortalInvokeComplete(_
ByVal e As Csla.DataPortalEventArgs)

If ApplicationContext.ExecutionLocation = _
ApplicationContext.ExecutionLocations.Server Then
' this runs on the server and invalidates
' the RoleList cache
RoleList.InvalidateCache()

End If
End Sub

Of course, the data portal could be configured to run the “server-side” code locally in the client
process, in which case there’s no point invalidating the cache here, since the Save() method will
take care of it. That’s why the code checks the ExecutionLocation to see if it’s actually running on an
application server. If so, it calls RoleList.InvalidateCache() to invalidate any server-side cache of
role data.

Role
The Roles object is an editable root collection that contains a list of editable child Role objects.
Each Role object is an editable child, and so it is very similar in structure to ProjectResource and
ResourceAssignment.

The design decision that makes this object unique and interesting is that its key value, Id, is
a user-entered value. Unlike Project (in which the value is automatically generated by the object)

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION454

6315_c08_final.qxd 4/7/06 2:00 PM Page 454

or Resource (in which the value is generated by the database), this object’s key value must be
directly entered by the user.

From a data access perspective, this isn’t overly complex. The Roles table views the Id col-
umn as a primary key, so it already ensures that duplicate values aren’t allowed in the database.
Of course, sending the object all the way to the database to find out about a validation rule being
violated is wasteful. It is far better to detect the condition as soon as a duplicate key value is
entered.

Additionally, the user shouldn’t have to guess to find an appropriate value when adding a new
role to the application. When a new Role object is created, it can set its Id property to an appro-
priate default value.

Setting a Default Value
The Id property contains code to find a default value if the Id property has never been set to a value:

Public Property Id() As Integer
Get
CanReadProperty(True)
If Not mIdSet Then
' generate a default id value
mIdSet = True
Dim parent As Roles = CType(Me.Parent, Roles)
Dim max As Integer = 0
For Each item As Role In parent
If item.Id > max Then
max = item.Id

End If
Next
mId = max + 1

End If
Return mId

End Get
Set(ByVal value As Integer)
CanWriteProperty(True)
If Not mId.Equals(value) Then
mIdSet = True
mId = value
PropertyHasChanged()

End If
End Set

End Property

If the Id property is read, and it hasn’t been set prior to this point, then the code loops through
the objects in the parent Roles collection to find the maximum value for any existing Id property,
and then it sets mId to that value plus one:

Dim parent As Roles = CType(Me.Parent, Roles)
Dim max As Integer = 0
For Each item As Role In parent
If item.Id > max Then
max = item.Id

End If
Next
mId = max + 1

Your first thought might be that this should be done in the object’s constructor. The problem with
that is that the Parent property in the base class isn’t set to a valid value when the constructor runs.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 455

6315_c08_final.qxd 4/7/06 2:00 PM Page 455

■Note Both the data portal and .NET serialization create the object using constructors that can’t provide param-
eters such as the parent object reference. This is why, as discussed in Chapter 3, BusinessListBase includes
code to call a SetParent() method on its child objects at key points in the object’s life cycle.

Since the default value can’t be set in the constructor, it is set in the Id property on the first
request for the value—unless the value has been set previously, either through the property Set
block or when the data was loaded from the database.

Preventing Duplicate Values
The requirement to have no duplicate Id property values is simply a validation rule and so it is
implemented as a rule method in the Role object’s Validation Rules region:

Private Function NoDuplicates(ByVal target As Object, _
ByVal e As Csla.Validation.RuleArgs) As Boolean

Dim parent As Roles = CType(Me.Parent, Roles)
For Each item As Role In parent
If item.Id = mId AndAlso Not ReferenceEquals(item, Me) Then
e.Description = "Role Id must be unique"
Return False

End If
Next
Return True

End Function

When this rule is run, it loops through the list of Role objects in the parent Roles collection
to see if any other child object has the same Id value. If there’s a match, the method returns False;
otherwise it returns True.

The rule method is associated with the Id property in the AddBusinessRules() method:

Protected Overrides Sub AddBusinessRules()
ValidationRules.AddRule(_
AddressOf Csla.Validation.CommonRules.StringRequired, "Name")

ValidationRules.AddRule(AddressOf NoDuplicates, "Id")
End Sub

This custom rule ensures that duplicate Id values are caught as they are entered, so that the
data doesn’t have to be sent to the database to find out about the problem. As you’ll see in
Chapter 9, this is particularly nice in a Windows Forms UI, since the user gets instant and automatic
feedback about what is wrong.

Implementing Exists Methods
The first object discussed in the chapter was Project, and I covered all the code in that class except
for the Exists() command implementation. Many objects can benefit from implementation of an
Exists() command, as it allows the UI to quickly and easily determine if a given object’s data is in
the database without having to fully instantiate the object itself. Ideally, a UI developer could write
conditional code like this:

If Project.Exists(productId) Then

Implementing an Exists() command also provides an opportunity to make use of
Csla.CommandBase to create a command object. This makes sense, since all an Exists() command
needs to do is run a stored procedure in the database and report on the result.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION456

6315_c08_final.qxd 4/7/06 2:00 PM Page 456

Exists Method
The Project class itself has a Shared method called Exists(), which is Public, so it can be called
from UI code:

Public Shared Function Exists(ByVal id As Guid) As Boolean
Dim result As ExistsCommand
result = DataPortal.Execute(Of ExistsCommand)(New ExistsCommand(id))
Return result.Exists

End Function

While this code is somewhat like other factory methods, it is different in one key way. It cre-
ates an instance of an ExistsCommand object, and has the data portal execute the object on the
application server:

result = DataPortal.Execute(Of ExistsCommand)(New ExistsCommand(id))

Notice how the id parameter value is used to initialize the ExistsCommand object as it is created.
The important thing to understand is that the ExistsCommand object is created and initialized on the
client, and then the data portal transfers the object to the server where the object’s DataPortal_
Execute() method is run.

This means that a command object can do work on the client, then do work on the server,
and then do more work on the client. In this particular case, it is initialized on the client, executes
a stored procedure on the server, and then exposes the result as a property back on the client.

That result value is returned as the result of the Exists() method.

ExistsCommand Class
The real work occurs in the command object itself: ExistsCommand. The ExistsCommand class inherits
from Csla.CommandBase and is declared as a Private nested class within Project:

<Serializable()> _
Private Class ExistsCommand
Inherits CommandBase

Not all command objects are nested within other business classes, but in this case, it makes
sense. There’s no need for the UI developer to be aware of the ExistsCommand class or its implemen-
tation details; they only need to know about the Project.Exists() method.

In other cases, you may have Public command objects that are directly used by the UI. A good
example would be a ShipOrder object that is responsible for shipping a sales order. It is quite realis-
tic to expect that the UI would want to directly ship a sales order, and so there’s value in being able
to call a ShipOrder.Ship(orderId) method.

Command objects, whether Public or Private, tend to be very simplistic in terms of their
structure. ExistsCommand declares some instance fields, one property, and a constructor:

Private mId As Guid
Private mExists As Boolean

Public ReadOnly Property Exists() As Boolean
Get
Return mExists

End Get
End Property

Public Sub New(ByVal id As Guid)
mId = id

End Sub

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 457

6315_c08_final.qxd 4/7/06 2:00 PM Page 457

The constructor initializes the mId field, so that value is available when the command is exe-
cuted on the server. The mExists field is set as a result of the command running on the server and
is exposed through the Exists property.

The code that runs on the server is entirely contained within the DataPortal_Execute()
method:

Protected Overrides Sub DataPortal_Execute()
Using cn As New SqlConnection(Database.PTrackerConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
cm.CommandType = CommandType.Text
cm.CommandText = "SELECT Id FROM Projects WHERE Id=@id"
cm.Parameters.AddWithValue("@id", mId)

Dim count As Integer = CInt(cm.ExecuteScalar)
mExists = (count > 0)

End Using
End Using

End Sub

Of course, the code in DataPortal_Execute() could be as complex as you require. It might cre-
ate and interact with business objects on the server; or it might use server-side resources such as
the file system, a high-powered CPU or specialized third-party hardware, or software installed on
the server. In this case, the code works directly against the database to execute the existsProject
stored procedure to determine if the data exists in the database:

Dim count As Integer = CInt(cm.ExecuteScalar)
mExists = (count > 0)

Really, the data portal does most of the hard work with command objects. When DataPortal.
Execute() is called on the client, the command object is copied to the server and its DataPortal_
Execute() method is invoked. Once that method completes, the data portal copies the object back
to the client, thus allowing the client to get any information out of the command object.

The Exists() command in the Resource class is implemented in the same manner.
At this point, you should understand how all the business objects in ProjectTracker.Library are

implemented. The only classes yet to be discussed are the ones supporting custom authentication.

Custom Authentication
Applications may use either Windows integrated (AD) or custom authentication.

Using Windows integrated security requires no extra coding in the business layer, and the
only code required in the UI is to tell .NET to use Windows authentication, by calling AppDomain.
CurrentDomain.SetPrincipalPolicy() in Windows Forms, or in the web.config file for Web Forms
or Web Services.

Custom authentication requires some extra code in the business layer, however, because
custom principal and identity classes must be created. The details of the design were discussed
in Chapter 6, so I’ll focus on the implementation here.

PTPrincipal
PTPrincipal is a custom principal object that can be assigned as the current principal on the Thread
object and in the HttpContext. Chapters 9 and 10 will demonstrate how to configure the Thread and
HttpContext to use this object in the UI, but first you should understand how the PTPrincipal class
is created.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION458

6315_c08_final.qxd 4/7/06 2:00 PM Page 458

Within .NET, the principal object is the centerpiece for authorization. The object must
implement System.Security.Principal.IPrincipal, which defines an Identity property and
an IsInRole() method. Default implementations are implemented in Csla.Security.
BusinessPrincipalBase, and so PTPrincipal inherits from that class:

<Serializable()> _
Public Class PTPrincipal
Inherits Csla.Security.BusinessPrincipalBase

Principal objects typically have a constructor that accepts the identity object that represents
the user’s identity, and PTPrincipal is no exception:

Private Sub New(ByVal identity As IIdentity)
MyBase.New(identity)

End Sub

The BusinessPrincipalBase class also has a constructor that requires an identity object. This
object is used to implement the Identity property in that base class, so it doesn’t need to be imple-
mented in PTPrincipal.

The IsInRole() method is a bit more complex, however. To implement this method, the prin-
cipal object must have the list of roles to which the user belongs. Of course, the identity object
actually represents the user’s identity and profile, and so it most likely contains the list of roles for
the user as well. Certainly, that is how I choose to implement my custom objects, and so PTIdentity
maintains the user’s roles. This means that PTPrincipal can simply delegate the call to its identity
object:

Public Overrides Function IsInRole(ByVal role As String) As Boolean
Dim identity As PTIdentity = DirectCast(Me.Identity, PTIdentity)
Return identity.IsInRole(role)

End Function

The result indicates whether the user is in the specified role or not.

Login and Logout
The UI will need to collect the user’s credentials and initiate any login or logout process. However,
the actual login and logout process can be encapsulated within PTPrincipal to help simplify the
code in the UI. To do this, Shared methods named Login() and Logout() are implemented in the
class. This allows the UI to write code like this:

If PTPrincipal.Login(username, password) Then

End If

and this:

PTPrincipal.Logout

Login

The Login() method is the more complex of the two. It creates an instance of PTIdentity and uses
that identity object to create a new PTPrincipal object:

Public Shared Function Login(_
ByVal username As String, ByVal password As String) As Boolean

Dim identity As PTIdentity = PTIdentity.GetIdentity(username, password)
If identity.IsAuthenticated Then

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 459

6315_c08_final.qxd 4/7/06 2:00 PM Page 459

Dim principal As New PTPrincipal(identity)
Csla.ApplicationContext.User = principal

End If
Return identity.IsAuthenticated

End Function

Notice that PTIdentity has a factory method; in fact, it is derived from Csla.ReadOnlyBase and
so is a full-fledged business object. The username and password parameters are passed to the
PTIdentity object’s factory method. Of course, the factory method calls the data portal, which ulti-
mately invokes the DataPortal_Fetch() method in PTIdentity. As you’ll see, that method validates
the credentials against the database.

With a PTIdentity object created, its IsAuthenticated property can be checked to see if the
user’s credentials were valid. If they were valid, the identity object is used to create a new
PTPrincipal object, and that object is set to be the current principal by using the
ApplicationContext object’s User property, as discussed in Chapter 4:

Dim principal As New PTPrincipal(identity)
Csla.ApplicationContext.User = principal

If the credentials weren’t valid, then the current principal value is left unchanged.
In any case, the IsAuthenticated value is returned as a result so that the UI code can take

appropriate steps based on whether the user was successfully logged in or not.

Logout

The Logout() method is much simpler. All it needs to do is ensure that the current principal value
is set to an unauthenticated principal object—that means a principal object whose identity object
has an IsAuthenticated property which returns False:

Public Shared Sub Logout()
Dim identity As PTIdentity = PTIdentity.UnauthenticatedIdentity
Dim principal As New PTPrincipal(identity)
Csla.ApplicationContext.User = principal

End Sub

To achieve this result, an unauthenticated PTIdentity object is created by calling a special fac-
tory method for that purpose. That identity object is then used to create a new PTPrincipal object,
and it is set as the current principal by setting ApplicationContext.User.

The reason for creating an unauthenticated PTPrincipal rather than an unauthenticated
GenericPrincipal (a built-in .NET type) is to support anonymous or guest users. Recall from
Chapter 4 that the data portal will only accept principal objects that subclass
BusinessPrincipalBase when custom authentication is used. This means the data portal will
throw an exception if a GenericPrincipal is passed to the application server. So if the application
is to support anonymous (i.e., unauthenticated) users, then the principal must be an unauthen-
ticated PTPrincipal, as shown here.

PTIdentity
As you’ve seen, PTPrincipal isn’t overly complex. It leaves most of the work to PTIdentity, including
implementing the IsInRole() functionality and verification of the user’s credentials.

PTIdentity is a read-only object, and so it inherits from Csla.ReadOnlyBase. It is also a .NET
identity object, so it must implement System.Security.Principal.IIdentity:

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION460

6315_c08_final.qxd 4/7/06 2:00 PM Page 460

<Serializable()> _
Public Class PTIdentity
Inherits ReadOnlyBase(Of PTIdentity)

Implements IIdentity

Being a read-only root object, PTIdentity follows the appropriate template from Chapter 7,
including Business Methods, Factory Methods, and Data Access regions. It doesn’t implement an
Authorization Rules region because it has no authorization rules.

Business Methods
Because PTIdentity implements the IIdentity interface, it is required to implement the
AuthenticationType, IsAuthenticated, and Name properties:

Private mIsAuthenticated As Boolean
Private mName As String = ""

Public ReadOnly Property AuthenticationType() As String _
Implements System.Security.Principal.IIdentity.AuthenticationType
Get
Return "Csla"

End Get
End Property

Public ReadOnly Property IsAuthenticated() As Boolean _
Implements System.Security.Principal.IIdentity.IsAuthenticated
Get
Return mIsAuthenticated

End Get
End Property

Public ReadOnly Property Name() As String _
Implements System.Security.Principal.IIdentity.Name
Get
Return mName

End Get
End Property

These are all read-only properties and are quite straightforward. Also, because it is a subclass
of ReadOnlyBase, the class must implement the GetIdValue() method:

Protected Overrides Function GetIdValue() As Object
Return mName

End Function

Finally, the code in PTPrincipal requires that PTIdentity implement an IsInRole() method to
determine whether the user is in a specified role:

Private mRoles As New List(Of String)

Friend Function IsInRole(ByVal role As String) As Boolean
Return mRoles.Contains(role)

End Function

This method is Friend in scope because it is only intended for use by PTPrincipal. All it does is
determine whether the specified rule exists in the list of roles for the user. That list is populated in
DataPortal_Fetch(), assuming the user’s credentials are valid.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 461

6315_c08_final.qxd 4/7/06 2:00 PM Page 461

Factory Methods
Like all read-only root objects, PTIdentity implements a factory method so it can be created.
In fact, it implements two factory methods: one to verify a set of credentials, and one to return
an unauthenticated identity object to support the concept of anonymous users.

The UnauthenticatedIdentity() factory method is simple:

Friend Shared Function UnauthenticatedIdentity() As PTIdentity
Return New PTIdentity

End Function

Because mIsAuthenticated defaults to False, mName defaults to an empty value, and mRoles
defaults to being an empty list, simply creating an instance of the object is enough to provide an
unauthenticated identity object with no username and no roles.

The GetIdentity() factory, on the other hand, creates a Criteria object and calls the data
portal so that the DataPortal_Fetch() method can verify the supplied username and password
parameter values:

Friend Shared Function GetIdentity(_
ByVal username As String, ByVal password As String) As PTIdentity

Return DataPortal.Fetch(Of PTIdentity)(New Criteria(username, password))
End Function

This is a standard factory method to retrieve an object populated from the database.

Data Access
The DataPortal_Fetch() method actually performs the authentication: verifying the user’s creden-
tials against the values in the database. In a real application, you should store passwords as hashed
or encrypted values; but for a sample application, it is simpler to store them as clear text.

The Criteria object passed from the GetIdentity() factory method to DataPortal_Fetch()
is the most complex in the application:

<Serializable()> _
Private Class Criteria
Private mUsername As String
Private mPassword As String

Public ReadOnly Property Username() As String
Get
Return mUsername

End Get
End Property

Public ReadOnly Property Password() As String
Get
Return mPassword

End Get
End Property

Public Sub New(ByVal username As String, ByVal password As String)
mUsername = username
mPassword = password

End Sub
End Class

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION462

6315_c08_final.qxd 4/7/06 2:00 PM Page 462

Of course, “complex” is a relative term. Obviously, there’s nothing overly complex about a class
that exposes two read-only properties. But this illustrates how the Criteria object concept can be
used to pass complex criteria to the DataPortal_XYZ methods as needed.

The DataPortal_Fetch() method itself accepts this Criteria object and calls the Login stored
procedure created in Chapter 6:

Private Overloads Sub DataPortal_Fetch(ByVal criteria As Criteria)
Using cn As New SqlConnection(Database.SecurityConnection)
cn.Open()
Using cm As SqlCommand = cn.CreateCommand
cm.CommandText = "Login"
cm.CommandType = CommandType.StoredProcedure
cm.Parameters.AddWithValue("@user", criteria.Username)
cm.Parameters.AddWithValue("@pw", criteria.Password)
Using dr As SqlDataReader = cm.ExecuteReader()
If dr.Read() Then
mName = criteria.Username
mIsAuthenticated = True
If dr.NextResult Then
While dr.Read
mRoles.Add(dr.GetString(0))

End While
End If

Else
mName = ""
mIsAuthenticated = False

End If
End Using

End Using
End Using

End Sub

The method uses standard ADO.NET data access code. It opens a connection to the database
(calling a Database.SecurityConnection helper to get the connection string for the security data-
base). Then it sets up a SqlCommand object, loading it with the Username and Password properties
from the Criteria object.

When the command is executed, the resulting data reader object will either contain data or it
won’t—if it contains data, then the user’s credentials were valid, otherwise they were invalid. Given
valid credentials, the object’s fields are loaded with data from the database, and the list of roles are
loaded into the mRoles collection:

mName = criteria.Username
mIsAuthenticated = True
If dr.NextResult Then
While dr.Read
mRoles.Add(dr.GetString(0))

End While
End If

On the other hand, if the credentials were not valid, the object’s fields are set to appropriate
values for an unauthenticated identity:

mName = ""
mIsAuthenticated = False
mRoles.Clear()

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION 463

6315_c08_final.qxd 4/7/06 2:00 PM Page 463

The end result is a populated PTIdentity object: either authenticated or unauthenticated.
Either way, the object is returned to the client where it can be used to create a PTPrincipal object
to support authorization activities within the business objects and the UI.

Conclusion
This chapter implemented the business objects designed in Chapter 6, using the templates and
concepts discussed in Chapter 7. The result is ProjectTracker.Library, the business layer for the
sample ProjectTracker application, including the following:

• Project

• ProjectResources

• ProjectResource

• Resource

• ResourceAssignments

• ResourceAssignment

• Assignment

• RoleList

• Roles

• Role

The library also includes classes to support custom authentication:

• PTPrincipal

• PTIdentity

This business library will be used to create Windows Forms, Web Forms, and Web Services
interfaces in the next three chapters.

CHAPTER 8 ■ BUSINESS OBJECT IMPLEMENTATION464

6315_c08_final.qxd 4/7/06 2:00 PM Page 464

Windows Forms UI

Up to this point, the focus has been on the business layer of the application. Chapters 6 through 8
walked through the design and creation of business objects and logic. Now let’s shift gears and look
at how a user interface can be created based on those business objects. This chapter will describe a
Windows Forms interface.

Windows Forms is a flexible technology that can be used to create a great many types of user
interfaces, as evidenced by the fact that there are entire books on Windows Forms UI development.
I won’t rehash that sort of material in this book; what I want to focus on here is how to make effec-
tive use of business objects and collections to create Windows Forms displays and entry forms.

When creating the CSLA .NET framework, quite a bit of effort was spent to allow business
objects to support Windows Forms development. The business objects themselves are focused
on modeling the business behaviors described in the use cases from Chapter 6. At the same
time, the fact that they inherit from CSLA .NET base classes means they possess quite a few
important features that are very useful for creating a Windows Forms UI. Most important is the
support for Windows Forms data binding. Although you could certainly write your own code to
move the data between properties of business objects and the controls on a form, it’s far easier
to use data binding whenever possible.

The user interface is centered around user controls. Each form will be created as a user control,
rather than a Form object. That way, each form can be dynamically loaded into many styles of inter-
face, including the multiple document interface (MDI), multipane user interfaces such as Microsoft
Outlook, the single document interface (SDI), and other styles. The style in this chapter uses a sin-
gle Form object that hosts the controls, showing just one at a time. This provides the user with a
simple, easily understandable interface.

The important thing is that the chapter will illustrate the use of user controls, and how to
dynamically host them. You can easily adapt this code to implement a wide variety of different UI
styles.

But above all, my focus in this chapter is to show how easy it is to create an interface, given that
the business objects already implement all the business logic, including validation, manipulation,
authorization, and data access. The result is that there’s only minimal code in the UI, and that code
is focused only on user interaction.

The chapter starts by laying out the basic design of the interface, and then walks through the
common behaviors of the menu, status display, and authentication. Once that’s done, I’ll discuss
the creation of forms to view and edit data using the DataGridView and detail controls. I’ll also show
how to create and use dialog forms.

Interface Design
The UI application can be found within the ProjectTracker solution. The project is named PTWin.
The design of the PTWin interface is that of a single main form with a menu and status bar. This

465

C H A P T E R 9

■ ■ ■

6315_c09_final.qxd 4/7/06 2:12 PM Page 465

main form dynamically loads user controls and displays them to the user. Figure 9-1 shows what the
main form looks like.

Notice that the menu bar includes menus that deal with projects, resources, roles, and authen-
tication. When the user chooses a menu option, a user control is dynamically loaded into the main
area of the form. Figure 9-2 shows the application while the user is editing a project.

466 CHAPTER 9 ■ WINDOWS FORMS UI

Figure 9-1. Appearance of the main form

Figure 9-2. Editing a project

6315_c09_final.qxd 4/7/06 2:12 PM Page 466

Of course, there are some dialog windows used to collect input from the user as well, but the bulk
of the application’s functionality centers around the use of user controls hosted by the main form.

Table 9-1 lists the forms and controls that make up the interface.

Table 9-1. Forms and User Controls in PTWin

Form/Control Type Description

MainForm Form The main form for the application

LoginForm Form A login dialog to collect user credentials

RolesEdit Control Allows the user to edit the list of roles

ProjectSelect Form A dialog prompting the user to select from a list of projects

ProjectEdit Control Allows the user to view, add, or edit a project

ResourceSelect Form A dialog prompting the user to select from a list of resources

ResourceEdit Control Allows the user to view, add, or edit a resource

It is very important that you understand that all the data binding and business functionality
covered in this chapter works exactly the same with regular forms as it does with user controls. I am
using user controls in this chapter because I think it is a best practice for Windows Forms UI design,
but this has no impact on the way data binding is used to create the UI against the business objects
created in Chapter 8.

The user control approach taken in this chapter gives you a great deal of flexibility. You can
host the user controls, as shown in this chapter, you can host them in child forms in an MDI inter-
face, or you can host them in panes in a multipane interface. In short, by creating your “forms” as
user controls, you gain the flexibility to use them in many different types of UI design.

User Control Framework
Dynamically loading a user control isn’t difficult. The code needs to follow this basic process:

1. Create the control.

2. Add the control to the form’s Controls collection.

3. Set the control’s properties for size/position.

4. Make the control visible (Visible = True).

5. Set the control’s z-order (BringToFront()).

This is simple enough—however, integrating the user controls into the main form display
nicely requires some extra work. In particular, the UI in this chapter supports the following:

• A Documents menu

• Notification when the user logs in or out

• Bringing an existing control forward when appropriate

• Centralized status text and cursor handling

Let’s quickly discuss what I mean by each of these bullet points. If you look at Figure 9-1, you’ll
notice that there’s a Documents item on the menu bar, but it’s disabled. In Figure 9-2, it’s enabled.
This is because there’s now a document (user control) loaded in the application. In fact, multiple
documents can be loaded at the same time, and this Documents menu allows the user to switch
between them.

CHAPTER 9 ■ WINDOWS FORMS UI 467

6315_c09_final.qxd 4/7/06 2:12 PM Page 467

■Note This application uses a Documents menu rather than a Windows menu because the menu allows the
user to switch between various documents, not between windows. If you were creating a user interface in which
the user chooses to display or arrange different windows, you would name the menu “Windows.”

Both figures also show that the user is logged in with the name rocky, and that there’s a Logout
button available on the menu bar. Look back at Figure 9-2 and notice how the user is allowed to edit
the fields in the form. Now look at Figure 9-3, in which the user is not allowed to edit any of the fields.

The reason for this is that the user isn’t logged in. This is clearly shown in the menu bar, which
now has a Login button instead of a Logout button.

To make this authorization behavior work, the main form must be able to notify all the
loaded user controls when the current user logs in or out. That way, each user control can enable
and disable its controls based on the authorization properties of the business object being edited
by the form. The hard work is actually handled by the ReadWriteAuthorization control created in
Chapter 5. Still, each user control must be notified about the fact that the user logged in or out so
that the authorization code can be triggered.

If the user has a number of documents open in the application, he can only see the one in
front—the active document. He could easily try to open the same document a second time, and
this should result in the already open document being brought to the front to be the new active
document.

For instance, suppose the user opens project A. Then he opens some other projects and
resources, so project A is no longer active. Then suppose the user again tries to open project A.
In that case, the application won’t open a new document—rather, it will find the already open
document for project A and will make it the active document.

Finally, as the user interacts with a document, many things may happen, some of which can
take a while. The user may load or save data, start a complex computing task, or any number of

CHAPTER 9 ■ WINDOWS FORMS UI468

Figure 9-3. Viewing a project

6315_c09_final.qxd 4/7/06 2:12 PM Page 468

things that may take some time. When this happens, the main form’s status bar should show text
telling the user what is going on, and the mouse cursor should change to indicate that the appli-
cation is busy.

It is not good to write code in every user control to handle the details of the Documents menu.
This code must detect login/logout activity, avoid duplicate documents, and display status to the
user. That is all plumbing code that should be written once and reused by user controls.

Although my intent with this chapter isn’t to create a full-blown Windows Forms UI framework,
these issues must be addressed for a basically decent user experience.

User Control Design
The user will primarily interact with user controls hosted within the main form. In Visual Studio,
each user control is really just like a regular form. Visual Studio even provides a user control designer
surface, which you can use to create the user control just like you would normally create a form.

In order to support the features discussed in the previous section, each user control needs
some common functionality. To provide this functionality with the minimum amount of manual
coding, the PTWin project includes a WinPart control. Each user control inherits from WinPart, rather
than directly from UserControl.

The WinPart base control implements behaviors common to all user controls that are to be
hosted in the main form, including the following:

• Overrides for common System.Object methods

• Event notification for the process of closing

• Event notification when the current user’s principal object is changed

By inheriting from WinPart, a user control can often include no extra code beyond a simple
GetIdValue() method, which must be implemented to return a unique identifier for the instance
of the user control. In most cases, this method simply returns the business object being edited by
the form.

All other code in a typical user control centers around user interaction—dealing with button
clicks, text changes, and so forth.

Application Configuration
The application needs to provide some basic configuration information through the application’s
configuration file.

In the client application configuration file, you can either provide connection strings so that
the application can interact with the database directly, or you can configure the data portal to com-
municate with a remote application server. The basic concept here was discussed in Chapter 4
when the channel adapter implementation was covered. Recall that the data portal supports three
possible channels: remoting, Enterprise Services, and Web Services. You can create your own chan-
nels as well if none of these meet your needs.

In Chapter 1, I discussed the trade-offs between performance, scalability, fault tolerance, and
security that come with various physical n-tier configurations. The most scalable solution for an
intelligent client UI is to use an application server to host the data access layer, while the most
performant solution is to run the data portal locally in the client process. In this chapter, I’ll show
first how to run the data portal locally, and then remotely using each available channel. Chapter 12
will demonstrate how to create the three types of remote data portal hosts for use by the PTWin
application.

The configuration is controlled by the application’s configuration file. In the Visual Studio proj-
ect, this is named App.config.

CHAPTER 9 ■ WINDOWS FORMS UI 469

6315_c09_final.qxd 4/7/06 2:12 PM Page 469

■Note Naming the file App.config is important. VS .NET will automatically copy the file into the appropriate
Bin directory, changing the name to match that of the program. In this case, it will change the name to PTWin.
exe.config as it copies it into the Bin directories. This occurs each time the project is built in Visual Studio.

The App.config file is an XML file that contains settings to configure the application. You use
different XML depending on how you want the application configured.

Authentication
The way authentication is handled by CSLA .NET is controlled through the configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />

</appSettings>
</configuration>

The CslaAuthentication key shown here specifies the use of custom authentication. Chapter 8
implemented the PTPrincipal and PTIdentity classes specifically to support custom authentica-
tion, and the UI code in this chapter will use custom authentication as well.

If you want to use Windows authentication, change the configuration to the following:

<add key="CslaAuthentication" value="Windows" />

Of course, that change would require coding changes. To start, the PTPrincipal and PTIdentity
classes should be removed from ProjectTracker.Library, as they would no longer be needed. Also,
the login/logout functionality implemented in this chapter would become unnecessary. Specifically,
the Login form and the code to display that form would be removed from the UI project.

Local Data Portal
The configuration file also controls how the application uses the data portal. To make the client
application interact directly with the database, use the following (with your connection string
changed to the connection string for your database):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />

</appSettings>
<connectionStrings>
<add name="PTracker" connectionString="your connection string"
providerName="System.Data.SqlClient" />

<add name="Security" connectionString="your connection string"
providerName="System.Data.SqlClient" />

</connectionStrings>
</configuration>

Because LocalProxy is the default for the data portal, no actual data portal configuration is
required, so the only settings in the configuration file are to control authentication and to provide
the database connection strings.

CHAPTER 9 ■ WINDOWS FORMS UI470

6315_c09_final.qxd 4/7/06 2:12 PM Page 470

Remote Data Portal (with Remoting)
To make the data portal use an application server and communicate using the remoting channel,
use the following configuration:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.RemotingProxy, Csla"/>

<add key="CslaDataPortalUrl"
value="http://localhost/RemotingHost/RemotingPortal.rem"/>

</appSettings>
<connectionStrings>
</connectionStrings>

</configuration>

The key lines for remoting configuration are in bold. Of course, you need to change localhost
to the name of the application server on which the data portal host is installed. Also, the
RemotingHost text needs to be replaced with the name of your virtual root on that server.

Before using this configuration, the remoting host virtual root must be created and configured.
I’ll show how this is done in Chapter 12.

Remote Data Portal (with Enterprise Services)
Similarly, to use the Enterprise Services channel, the configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="EnterpriseServicesHost.EnterpriseServicesProxy,

EnterpriseServicesHostvb"/>
</appSettings>
<connectionStrings>
</connectionStrings>

</configuration>

Before using this configuration, an Enterprise Services host must be created and registered
with COM+. The resulting COM+ application must be registered with COM on each client work-
station. The basic steps were discussed in Chapter 4, and I’ll show how this is done in Chapter 12.

Remote Data Portal (with Web Services)
Finally, to use Web Services, the configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.WebServicesProxy, Csla"/>

CHAPTER 9 ■ WINDOWS FORMS UI 471

6315_c09_final.qxd 4/7/06 2:12 PM Page 471

<add key="CslaDataPortalUrl"
value="http://localhost/WebServicesHost/WebServicePortal.asmx"/>

</appSettings>
<connectionStrings>
</connectionStrings>

</configuration>

As with remoting, you need to change localhost and WebServicesHost to the actual server
name and virtual root name used by your application. Also, the virtual root and Web Service asmx
file must be created and configured. I’ll show how this is done in Chapter 12.

The most important thing to realize about the application configuration is that the data portal
can be changed from local to remote (using any of the network channels) with no need to change
any UI or business object code.

PTWin Project Setup
The UI application can be found within the ProjectTracker solution. The project is named PTWin.

The project references the ProjectTracker.Library project, along with Csla.dll.
ProjectTracker.Library is a project reference, while Csla.dll is a file reference. When building

applications using the CSLA .NET framework, it is best to establish a file reference to the framework
assembly, but use project references between the UI and any business assemblies. This makes debug-
ging easier overall, because it helps prevent accidental changes to the CSLA .NET framework project
while enabling fluid changes to both the business objects and UI code.

Let’s go through the creation of the Windows Forms UI. First, I’ll discuss the code in the main
form and the WinPart base control. Then I’ll cover the process of logging a user in and out.

With the common code out of the way, I’ll discuss the process of maintaining the roles and
project data in detail. At that point, you should have a good understanding of how to create lookup
dialogs, and both grid-based and detail forms.

User Control Framework
The main edit forms in the application are user controls that inherit from the WinPart base control.
This base control provides functionality that is used by the main form when it needs to interact with
the user controls it contains. The end result is that the main form can implement the Documents
menu, notify user controls when the user logs in or out, and handle other basic interactions the user
would expect.

WinPart
All user controls that are to be displayed on MainForm must inherit from the WinPart base control.
This control adds common behaviors used by the code in MainForm to manage the display. It inherits
from UserControl:

Public Class WinPart
Inherits System.Windows.Forms.UserControl

GetIdValue
Somewhat like the BusinessBase class in CSLA .NET, WinPart implements a GetIdValue() method
that should be overridden by all user controls. The value returned in this method is used as a unique
identifier for the control, and is used to implement the standard System.Object overrides of Equals(),
GetHashCode(), and ToString(). The GetIdValue() method is declared like this:

CHAPTER 9 ■ WINDOWS FORMS UI472

6315_c09_final.qxd 4/7/06 2:12 PM Page 472

Protected Overridable Function GetIdValue() As Object
Return Nothing

End Function

The Equals() method is a bit odd, as it has to act differently at design time than at runtime:

Public Overrides Function Equals(ByVal obj As Object) As Boolean
If Me.DesignMode Then
Return MyBase.Equals(obj)

Else
Dim id As Object = GetIdValue()
If Me.GetType.Equals(obj.GetType) AndAlso id IsNot Nothing Then
Return CType(obj, WinPart).GetIdValue.Equals(id)

Else
Return False

End If
End If

End Function

When controls are loaded into Visual Studio at design time, they don’t run in the same environ-
ment as when they’re loaded into the running application. Sometimes this can cause odd errors in
your code at design time, and this is one such case. It seems that Visual Studio calls the Equals()
method at design time in such a way that the new implementation of the method throws an excep-
tion. Checking the DesignMode property allows the code to see if the control is being used in Visual
Studio, so it can just use the default behavior from the base class.

Closing the Control
When a user control is closed, it needs to notify MainForm so that the control can be gracefully
removed from the list of active user controls. To do this, WinPart declares an event and implements
a Close() method:

Public Event CloseWinPart As EventHandler

Protected Sub Close()
RaiseEvent CloseWinPart(Me, EventArgs.Empty)

End Sub

This way, the UI code in the user control can call the Close() method to close the user control.
Raising the CloseWinPart event tells MainForm to remove the control from the active list and dispose
the user control.

Login/Logout Notification
Finally, when the user logs into or out of the application, MainForm needs to notify all active user
controls of that change. This is required so that the UI code in each user control can perform any
authorization activities based on the new user identity.

As you’ll see shortly, MainForm loops through all active user controls when the user logs in or
out, calling an OnCurrentPrincipalChanged() method on each user control. This method is imple-
mented in WinPart:

Protected Friend Overridable Sub OnCurrentPrincipalChanged(_
ByVal sender As Object, ByVal e As EventArgs)

RaiseEvent CurrentPrincipalChanged(sender, e)
End Sub

CHAPTER 9 ■ WINDOWS FORMS UI 473

6315_c09_final.qxd 4/7/06 2:12 PM Page 473

It is both Overridable and raises a CurrentPrincipalChanged event, declared as follows:

Protected Event CurrentPrincipalChanged As EventHandler

If the developer of a user control needs to respond to a login/logout event, they can either
override OnCurrentPrincipalChanged() or handle the CurrentPrincipalChanged event. Either way,
they’ll be notified that the CurrentPrincipal property of the Thread object has changed.

MainForm
The MainForm form is the core of the application in that it provides the menu and status bar, and
hosts the user controls for display to the user. It coordinates the flow of the entire application.
Figure 9-4 shows the layout of MainForm.

The Resources menu has three items comparable to those in the Projects menu, while the
Admin menu has a single item: Edit Roles. The code behind each of these menu items will be dis-
cussed later in the chapter as the business functionality is implemented. For now, I want to focus
on hosting the user controls, the Documents menu, the status bar, and the Login button.

Hosting the User Controls
What isn’t immediately obvious from Figure 9-4 is that the main region of the form contains a
Panel control. All the user controls are actually contained within this Panel control rather within
than MainForm itself. This is done so that resizing events can be handled more easily, and the overall
hosting process can be simplified.

The Panel control’s Dock property is set to Fill, so it automatically fills the available space in
the form, even if the form is resized.

CHAPTER 9 ■ WINDOWS FORMS UI474

Figure 9-4. MainForm layout

6315_c09_final.qxd 4/7/06 2:12 PM Page 474

Loading/Adding User Controls

When a new user control is dynamically loaded (because the user chooses to view/edit a project,
resource, or role), it needs to be created, added to the host’s Controls collection, positioned, and
sized to fit the client area of MainForm. The same thing happens when MainForm is resized, since all
the user controls it contains need to be resized accordingly.

This process is split into two parts: adding a user control and showing a user control. The rea-
son for the split is that when a new user control is added, it must be displayed. But already-loaded
user controls also must be displayed through the Documents menu.

The AddWinPart() method adds a user control to the Panel control:

Private Sub AddWinPart(ByVal part As WinPart)
AddHandler part.CloseWinPart, AddressOf CloseWinPart
part.BackColor = ToolStrip1.BackColor
Panel1.Controls.Add(part)
Me.DocumentsToolStripDropDownButton.Enabled = True
ShowWinPart(part)

End Sub

Remember that all user controls will inherit from the WinPart base control—hence the naming
of the AddWinPart() method and the type of the parameter.

The CloseWinPart() method is hooked to handle the user control’s CloseWinPart event. I’ll dis-
cuss this method shortly—but for now, you should know that its purpose is to properly remove the
user control from MainForm.

The user control’s BackColor property is set to match the color scheme of MainForm. Then, the
user control is added to the Controls collection of the panel. This effectively adds the user control
to the form. Then ShowWinPart() is called to display the user control.

Finally, the Documents menu option is enabled. At this point, it’s known that there’s at least
one user control hosted by MainForm, so the Documents menu should be available to the user.

The ShowWinPart() method makes sure that the user control is properly positioned and sized;
then it makes it visible:

Private Sub ShowWinPart(ByVal part As WinPart)
part.Dock = DockStyle.Fill
part.Visible = True
part.BringToFront()
Me.Text = "Project Tracker - " & part.ToString

End Sub

Remember that the Panel control’s Dock property is set to Fill, so the Panel control automati-
cally fills the available space—even when MainForm is resized. The user control is contained within
the Panel control and its Dock property is also set to Fill. This means that the user control is auto-
matically resized along with the Panel control, so it always fills the client area of MainForm.

Next, the user control is made visible and is brought to the front: its z-order is set so that the
user control is on top of all other controls in the Panel control. These two steps ensure that the user
control is visible and active.

Finally, the caption text of MainForm itself is changed to reflect the ToString() value of the newly
active user control. If you look back at Figures 9-2 and 9-3, you’ll notice that MainForm displays the
name of the Project object being edited. You’ll see how this flows from the ToString() value of the
user control later in the chapter.

Removing User Controls

Recall how the AddWinPart() method sets up the CloseWinPart() method to handle the user con-
trol’s CloseWinPart event. That event is raised by the user control when it is closed, and MainForm
uses the event to properly remove the user control from the Panel control’s Controls collection:

CHAPTER 9 ■ WINDOWS FORMS UI 475

6315_c09_final.qxd 4/7/06 2:12 PM Page 475

Private Sub CloseWinPart(ByVal sender As Object, ByVal e As EventArgs)
Dim part As WinPart = CType(sender, WinPart)
RemoveHandler part.CloseWinPart, AddressOf CloseWinPart
part.Visible = False
Panel1.Controls.Remove(part)
part.Dispose()
If DocumentCount = 0 Then
Me.DocumentsToolStripDropDownButton.Enabled = False
Me.Text = "Project Tracker"

Else
' Find the first WinPart control and set
' the main form's Text property accordingly.
' This works because the first WinPart
' is the active one.
For Each ctl As Control In Panel1.Controls
If TypeOf ctl Is WinPart Then
Me.Text = "Project Tracker - " + CType(ctl, WinPart).ToString
Exit For

End If
Next

End If
End Sub

When a user control is removed, other work is required as well. The user control’s Dispose()
method is called, and the caption text on MainForm is reset (because there’s almost certainly a new
active user control now). If there’s no longer an active user control, then the caption text is set
accordingly.

Also notice that the CloseWinPart event is unhooked. This is an important step, because han-
dling an event sets up an object reference behind the scenes, and failing to unhook events can
cause memory leaks (by keeping objects in memory when they are no longer needed).

Resizing User Controls

When MainForm is resized, the Panel control’s Resize event is automatically raised. The following
code handles that event to resize all the hosted user controls:

Private Sub Panel1_Resize(_
ByVal sender As Object, ByVal e As System.EventArgs) Handles Panel1.Resize

For Each ctl As Control In Panel1.Controls
If TypeOf ctl Is WinPart Then
ctl.Size = Panel1.ClientSize

End If
Next

End Sub

With the ability to add, remove, and resize user controls, the code in MainForm covers most of
the capabilities required. Of course, there’s the implementation of the Documents menu itself to
consider.

Documents Menu
The Documents menu is a drop-down menu listing all the active documents (user controls) cur-
rently hosted by the main form. If there are no active user controls, then the menu is disabled.
When the user selects an item from the list, that particular user control becomes the active user
control.

CHAPTER 9 ■ WINDOWS FORMS UI476

6315_c09_final.qxd 4/7/06 2:12 PM Page 476

The DropDownOpening event is raised when the user clicks the Documents menu option to open
the list. Handling this event allows the code to populate the list before it is displayed to the user:

Private Sub DocumentsToolStripDropDownButton_DropDownOpening(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles DocumentsToolStripDropDownButton.DropDownOpening

Dim items As ToolStripItemCollection = _
DocumentsToolStripDropDownButton.DropDownItems

For Each item As ToolStripItem In items
RemoveHandler item.Click, AddressOf DocumentClick

Next
items.Clear()
For Each ctl As Control In Panel1.Controls
If TypeOf ctl Is WinPart Then
Dim item As New ToolStripMenuItem()
item.Text = CType(ctl, WinPart).ToString
item.Tag = ctl
AddHandler item.Click, AddressOf DocumentClick
items.Add(item)

End If
Next

End Sub

Remember that the menu item is only enabled if there are one or more items in the Controls
collection of the Panel control. Notice that a reference to each user control is put into the Tag prop-
erty of the corresponding ToolStripMenuItem object.

If the user clicks an item in the list, a Click event is raised and handled to make the selected
user control the active control:

Private Sub DocumentClick(ByVal sender As Object, ByVal e As EventArgs)
Dim ctl As WinPart = CType(CType(sender, ToolStripItem).Tag, WinPart)
ShowWinPart(ctl)

End Sub

The Tag property of the menu item references the user control associated with that item, so this
code needs only to cast the Tag value and make the control visible by calling the ShowWinPart()
method discussed earlier.

This wraps up the code in MainForm that deals with the user controls and the Documents menu.
Now let’s see how the status bar display and mouse cursor changes are handled.

Status Bar
MainForm has a StatusStrip control at the bottom, so the user can be informed about any long-
running activity that is occurring. Also, when a long-running activity is going on, the mouse cursor
should be changed to indicate that the application is busy.

An easy way to handle this is to create an object that implements IDisposable. This object
would update both the status display and mouse cursor, and then reset them when it is disposed.
The result is that anywhere in the UI, code can be written like this:

Using busy As New StatusBusy("Working…")
' do long-running task here

End Using

When the object is created, it sets the status display on MainForm, and it resets the text when it
is disposed. Similarly, when the object is created, it sets the mouse cursor to a busy cursor, and
resets it when disposed.

CHAPTER 9 ■ WINDOWS FORMS UI 477

6315_c09_final.qxd 4/7/06 2:12 PM Page 477

To do this, it needs to be able to access the MainForm object. Fortunately VB 2005 supports
default instances for forms. If your application has exactly one instance of a specific form, such
as MainForm, then you can just refer to it by name anywhere in the project. Using this feature, the
MainForm object can be used by any code in the UI, including the StatusBusy class:

Public Class StatusBusy

Implements IDisposable

Private mOldStatus As String
Private mOldCursor As Cursor

Public Sub New(ByVal statusText As String)

mOldStatus = MainForm.StatusLabel.Text
MainForm.StatusLabel.Text = statusText
mOldCursor = MainForm.Cursor
MainForm.Cursor = Cursors.WaitCursor

End Sub

' IDisposable
Private disposedValue As Boolean = False ' To detect redundant calls

Protected Overridable Sub Dispose(ByVal disposing As Boolean)
If Not Me.disposedValue Then
If disposing Then
MainForm.StatusLabel.Text = mOldStatus
MainForm.Cursor = mOldCursor

End If
End If
Me.disposedValue = True

End Sub

Public Sub Dispose() Implements IDisposable.Dispose
' Do not change this code.
' Put cleanup code in Dispose(ByVal disposing As Boolean) above.
Dispose(True)
GC.SuppressFinalize(Me)

End Sub
End Class

When a StatusBusy object is created, it sets the status text and mouse cursor, storing the old
values for later use:

mOldStatus = MainForm.StatusLabel.Text
MainForm.StatusLabel.Text = statusText
mOldCursor = MainForm.Cursor
MainForm.Cursor = Cursors.WaitCursor

Then, when the object is disposed, the status text and cursor are reset to their previous values:

MainForm.StatusLabel.Text = mOldStatus
MainForm.Cursor = mOldCursor

This is one of the simplest ways to implement powerful status notification and cursor handling
for the user in a Windows Forms UI.

CHAPTER 9 ■ WINDOWS FORMS UI478

6315_c09_final.qxd 4/7/06 2:12 PM Page 478

Login Button
The final bit of common functionality implemented in MainForm allows the user to log into or out of
the application. It is important to realize that the ProjectTracker application allows unauthorized
or guest users to view certain data, and so the user can interact with the application even if they
haven’t logged in.

The login process is triggered when the application first loads, and when the user clicks the
Login button on the menu. In both cases, a DoLogin() method is called to handle the actual
login/logout behavior:

Private Sub DoLogin()
ProjectTracker.Library.Security.PTPrincipal.Logout()

If Me.LoginToolStripButton.Text = "Login" Then
LoginForm.ShowDialog(Me)

End If

Dim user As System.Security.Principal.IPrincipal = _
Csla.ApplicationContext.User

If user.Identity.IsAuthenticated Then
Me.LoginToolStripLabel.Text = "Logged in as " & user.Identity.Name
Me.LoginToolStripButton.Text = "Logout"

Else
Me.LoginToolStripLabel.Text = "Not logged in"
Me.LoginToolStripButton.Text = "Login"

End If

' reset menus, etc.
ApplyAuthorizationRules()

' notify all documents
For Each ctl As Control In Panel1.Controls
If TypeOf ctl Is WinPart Then
CType(ctl, WinPart).OnCurrentPrincipalChanged(Me, EventArgs.Empty)

End If
Next

End Sub

Before doing anything else, this method ensures that the CurrentPrincipal property of the
Thread is set to an unauthenticated PTPrincipal object:

ProjectTracker.Library.Security.PTPrincipal.Logout()

This way, if the user’s credentials are invalid, she can at least use the application as an
unauthenticated user. Recall that the data portal requires that the principal object inherit from
Csla.Security.BusinessPrincipalBase. PTPrincipal meets this requirement, and so the current
principal is set to an unauthenticated PTPrincipal object by calling the Logout() method.

Next, the text of the button on the menu is checked. If the text is Login, then a login process
is initiated. The login process is actually handled by a Login dialog form, which is shown to the user
as a modal dialog. That dialog prompts the user for her credentials and calls PTPrincipal.Login()
(as implemented in Chapter 8) to validate them.

The result is that the CurrentPrincipal property on the Thread object will either be an authen-
ticated PTPrincipal or an unauthenticated PTPrincipal. The status of the principal object is used
to determine whether the user is logged in or not:

CHAPTER 9 ■ WINDOWS FORMS UI 479

6315_c09_final.qxd 4/7/06 2:12 PM Page 479

If user.Identity.IsAuthenticated Then
Me.LoginToolStripLabel.Text = "Logged in as " & user.Identity.Name
Me.LoginToolStripButton.Text = "Logout"

Else
Me.LoginToolStripLabel.Text = "Not logged in"
Me.LoginToolStripButton.Text = "Login"

End If

If the user was authenticated, then the button text is changed to Logout and the user’s name
is displayed in the menu. Otherwise, the button text is changed to Login, and text indicating that the
user isn’t logged in is displayed.

In any case, an ApplyAuthorizationRules() method is called so that MainForm can update its
display based on the user’s identity (or lack thereof). Then all the active user controls are notified
that the principal has changed:

' reset menus, etc.
ApplyAuthorizationRules()

' notify all documents
For Each ctl As Control In Panel1.Controls
If TypeOf ctl Is WinPart Then
CType(ctl, WinPart).OnCurrentPrincipalChanged(Me, EventArgs.Empty)

End If
Next

Each user control is responsible for handling this event and responding appropriately. Recall
that the WinPart base control implements the OnCurrentPrincipalChanged() method and subse-
quently raises a Protected event to the code in the user control.

The ApplyAuthorizationRules() method in MainForm is responsible for enabling and disabling
menu items. This method is somewhat long and repetitive, so I won’t show the whole thing, but
here’s the code to enable/disable one menu item:

Me.NewProjectToolStripMenuItem.Enabled = _
Project.CanAddObject

Notice how the actual authorization check is delegated to the Shared method of the Project
business class. These methods were discussed in Chapter 8, and were implemented specifically to
enable scenarios like this. The idea is that MainForm has no idea whether particular users or roles are
authorized to add Project objects. Instead, the Project class itself has that knowledge, and MainForm
simply asks Project whether the current user is authorized.

The end result is good separation of concerns: Project is concerned with whether users can
and can’t add objects, while MainForm is concerned with the UI details of enabling and disabling
controls.

Login Form
The DoLogin() method in MainForm calls a Login dialog form to collect and authenticate the user’s
credentials. After gathering credentials from the user, this dialog form will call PTPrincipal.Login()
to do the authentication itself.

Figure 9-5 shows the Login form layout.

CHAPTER 9 ■ WINDOWS FORMS UI480

6315_c09_final.qxd 4/7/06 2:12 PM Page 480

All the work occurs when OK is clicked. At that point, the credentials entered by the user are
verified:

Private Sub OK_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles OK.Click

Using busy As New StatusBusy("Verifying credentials...")
ProjectTracker.Library.Security.PTPrincipal.Login(_

Me.UsernameTextBox.Text, Me.PasswordTextBox.Text)
End Using
Me.Close()

End Sub

Notice the use of the StatusBusy object to update the status text and mouse cursor. Also
notice the simplicity of this code. Since PTPrincipal.Login() does all the work of authenticating
the user, there’s just not much work to do in the UI. This is a theme you’ll see throughout the rest
of the chapter.

Using Windows Integrated Security
If you wanted to use Windows integrated security, you wouldn’t need a login form because the
client workstation already knows the user’s identity. Instead, you would need to add a bit of code
to MainForm so that as it loads, the CurrentPrincipal is configured with a WindowsPrincipal object.

The following code shows how to detect the authentication mode and adapt to use either
Windows or custom authentication appropriately:

Private Sub MainForm_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

If Csla.ApplicationContext.AuthenticationType = "Windows" Then
AppDomain.CurrentDomain.SetPrincipalPolicy(_
System.Security.Principal.PrincipalPolicy.WindowsPrincipal)

Else
DoLogin()

End If
If DocumentCount = 0 Then
Me.DocumentsToolStripDropDownButton.Enabled = False

End If
ApplyAuthorizationRules()

End Sub

CHAPTER 9 ■ WINDOWS FORMS UI 481

Figure 9-5. Layout of the Login form

6315_c09_final.qxd 4/7/06 2:12 PM Page 481

Calling SetPrincipalPolicy() to set the WindowsPrincipal option tells the .NET runtime to
return the current WindowsPrincipal object for the CurrentPrincipal property of the Thread.

■Note If you use Windows integrated security, and you are using a remote data portal, you must make sure to
change the server configuration file to also use Windows security. If the data portal is hosted in IIS, the virtual root
must be set to disallow anonymous access, thereby forcing the client to provide IIS with the Windows identity from
the client workstation via integrated security.

Business Functionality
With the common functionality in MainForm, WinPart, StatusBusy and Login covered, we can move
on to the business functionality itself. As I mentioned earlier, I’ll walk through the RolesEdit user
control, the ProjectSelect dialog, and the ProjectEdit user control in some detail. ResourceSelect
and ResourceEdit are available in the download and follow the same implementation approach.

All of these forms and user controls will be created using the new data binding capabilities
built into Visual Studio 2005. These capabilities allow the UI developer to literally drag-and-drop
business classes or properties onto the form to create the controls and set up data binding. The
developer productivity gained through this approach is simply amazing.

The detail edit forms (ProjectEdit and ResourceEdit) will also make use of the
ReadWriteAuthorization and BindingSourceRefresh controls created in Chapter 5, as well as the
standard Windows Forms ErrorProvider control. All three controls are extender controls, adding
important extra capabilities to the other controls on each form or user control.

Let’s start by looking at the business code in MainForm that displays the other forms and user
controls.

MainForm
You’ve already seen the code in MainForm that exists to provide common functionality around the
user controls, authentication, and authorization. But the form also implements the menu options
to add, edit, and delete project and resource data, and to edit the list of roles.

Displaying User Controls
Thanks to the common code discussed earlier, none of these menu options are difficult to imple-
ment. For instance, when the user chooses the menu option to edit the list of roles, the code simply
checks to see if the RolesEdit user control is already loaded. If it is, the existing user control is made
active; otherwise, a new one is created and displayed:

Private Sub EditRolesToolStripMenuItem_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles EditRolesToolStripMenuItem.Click

' see if this form is already loaded
For Each ctl As Control In Panel1.Controls
If TypeOf ctl Is RolesEdit Then
ShowWinPart(CType(ctl, WinPart))
Exit Sub

End If
Next

CHAPTER 9 ■ WINDOWS FORMS UI482

6315_c09_final.qxd 4/7/06 2:12 PM Page 482

' it wasn't already loaded, so show it
AddWinPart(New RolesEdit)

End Sub

A slightly more complex variation occurs when the user clicks the menu to add a project or
resource. In both cases, a new instance of the appropriate business object is created and is passed
to a new instance of the appropriate user control. For example, when the user opts to add a new
project, this code is run:

Private Sub NewProjectToolStripMenuItem_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles NewProjectToolStripMenuItem.Click

Using busy As New StatusBusy("Creating project...")
AddWinPart(New ProjectEdit(Project.NewProject))

End Using
End Sub

Project.NewProject() is called to create the new Project object, and it is then passed to the
constructor of a ProjectEdit user control. That user control, now populated with data from the
Project object, is then added to the list of active user controls and displayed.

Editing an Existing Object
Even more complex is the process of editing an existing project or resource. This is because in both
cases, the user must be prompted to select the specific item to edit. The ProjectSelect and
ResourceSelect dialog forms are used to prompt the user for the particular object he wishes to
edit. Here’s the code behind the menu option to edit a resource:

Private Sub EditResourceToolStripMenuItem_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles EditResourceToolStripMenuItem.Click

Dim dlg As New ResourceSelect
dlg.Text = "Edit Resource"
If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
' get the project id
ShowEditResource(dlg.ResourceId)

End If
End Sub

The code for editing a project is virtually identical, but obviously uses ProjectSelect instead.
This code displays the dialog using the ShowDialog() method and checks its result value. If the

user clicks the OK button in the dialog, then the selected ResourceId value is retrieved from the dia-
log form and is passed to a ShowEditResource() method.

ShowEditResource() checks to see if this resource is already visible in a user control, and if so,
it makes that the active user control. Otherwise, the method takes care of retrieving the business
object from the database and adding a new ResourceEdit user control to MainForm:

Public Sub ShowEditResource(ByVal resourceId As Integer)
' see if this project is already loaded
For Each ctl As Control In Panel1.Controls
If TypeOf ctl Is ResourceEdit Then
Dim part As ResourceEdit = CType(ctl, ResourceEdit)
If part.Resource.Id.Equals(resourceId) Then
' project already loaded so just
' display the existing winpart

CHAPTER 9 ■ WINDOWS FORMS UI 483

6315_c09_final.qxd 4/7/06 2:12 PM Page 483

ShowWinPart(part)
Exit Sub

End If
End If

Next

' the resource wasn't already loaded
' so load it and display the new winpart
Using busy As New StatusBusy("Loading resource...")
Try
AddWinPart(New ResourceEdit(Resource.GetResource(resourceId)))

Catch ex As Csla.DataPortalException
MessageBox.Show(ex.BusinessException.ToString, _
"Error loading", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Catch ex As Exception
MessageBox.Show(ex.ToString, _
"Error loading", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

End Try
End Using

End Sub

The code to find an existing ResourceEdit user control for this resource loops through all the
controls hosted in the Panel control. Those items that are of type ResourceEdit are checked to see
if the Resource object they are editing has the same Id value as the one just selected by the user.

Assuming no matching ResourceEdit user control is found, the requested Resource object is
loaded from the database. This object is passed to a new ResourceEdit user control, which is dis-
played in MainForm:

AddWinPart(New ResourceEdit(Resource.GetResource(resourceId)))

Any exceptions are handled so that the user is notified about the problem; otherwise, the user
is free to move ahead and view or edit the Resource object’s data.

Deleting an Object
Deleting a project or resource is a similar process. The user is prompted to select the item to delete.
Then he is asked if he is sure he wants to delete the item, and finally the item is deleted. The code to
delete projects and resources is quite comparable; here’s the code to delete a Resource object:

Private Sub DeleteResourceToolStripMenuItem_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles DeleteResourceToolStripMenuItem.Click

Dim dlg As New ResourceSelect
dlg.Text = "Delete Resource"
If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then
' get the resource id
Dim resourceId As Integer = dlg.ResourceId

If MessageBox.Show("Are you sure?", "Delete resource", _
MessageBoxButtons.YesNo, MessageBoxIcon.Question, _
MessageBoxDefaultButton.Button2) = _
Windows.Forms.DialogResult.Yes Then

CHAPTER 9 ■ WINDOWS FORMS UI484

6315_c09_final.qxd 4/7/06 2:12 PM Page 484

Using busy As New StatusBusy("Deleting resource...")
Try
Resource.DeleteResource(resourceId)

Catch ex As Csla.DataPortalException
MessageBox.Show(ex.BusinessException.ToString, _
"Error deleting", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Catch ex As Exception
MessageBox.Show(ex.ToString, _
"Error deleting", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

End Try
End Using

End If
End If

End Sub

Though this looks like a lot of code, there are really only a couple lines of importance—the rest
provide the user with feedback during the process or implement exception handling. To start with,
the user is prompted for the Resource to delete:

Dim dlg As New ResourceSelect
dlg.Text = "Delete Resource"
If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then

If the user clicks the OK button, the ResourceId value is retrieved from the ResourceSelect dia-
log form, and the user is asked if he is sure he wants to delete the object. Assuming he confirms the
deletion, the Resource class is used to delete the object:

Resource.DeleteResource(resourceId)

Because the business classes implement all the data access, the code in the UI is entirely
focused on the user experience—not on adding, retrieving, or deleting data.

RolesEdit
The RolesEdit user control allows an authorized user to edit the roles a resource can hold when
assigned to a project. The simplest way to create such data maintenance forms is with the
DataGridView control, because it can be directly bound to an editable root collection object such
as ProjectTracker.Library.Roles.

Using a Business Class As a Data Source
To bind controls to an object, choose the Data ➤ Add New Data Source menu option in Visual Studio
to bring up the Data Source Configuration Wizard. Choose the Object option in the first step, as shown
in Figure 9-6.

CHAPTER 9 ■ WINDOWS FORMS UI 485

6315_c09_final.qxd 4/7/06 2:12 PM Page 485

The next step in the wizard is to select the business class that will be the data source. All types
in the current project and any referenced projects are listed. As shown in Figure 9-7, they are
grouped by namespace.

CHAPTER 9 ■ WINDOWS FORMS UI486

Figure 9-6. Choosing an object data source

Figure 9-7. Selecting the data source business class

6315_c09_final.qxd 4/7/06 2:12 PM Page 486

■Tip This wizard uses reflection to get this list, so the assemblies must be compiled before the classes will show
up in this list. Make sure to build your solution before running the Data Source Configuration Wizard.

At this point, you can finish the wizard to add the class as a data source. The data sources
appear in the Data Sources window. If this window isn’t available, you can open it by using the
Data ➤ Show Data Sources menu item in Visual Studio. Figure 9-8 shows the Data Sources window
after all the root classes from Chapter 8 have been added as data sources.

Notice how the classes are grouped by namespace to help you find them more easily. The
illustration in Figure 9-8 shows the Roles class expanded to show its properties. When doing drag-
and-drop data binding, you can drag entire classes or individual properties onto the form.

In the case of the RolesEdit user control, the entire class was dragged onto the form, causing
Visual Studio to create a DataGridView control. This control is bound to a rolesBindingSource
object, which was also automatically added by Visual Studio. The resulting display is shown in
Figure 9-9.

■Tip The BindingSource controls appear in the component tray at the bottom of the designer in Visual Studio.

The new data binding in Windows Forms uses BindingSource controls. These controls sit between
all the data-bound controls in the UI and the actual data source object—in this case, Roles.

CHAPTER 9 ■ WINDOWS FORMS UI 487

Figure 9-8. ProjectTracker.Library classes in the Data Sources window

6315_c09_final.qxd 4/7/06 2:12 PM Page 487

The first thing you might notice about Figure 9-9 is the ToolStrip control across the top. This
BindingNavigator control is added by Visual Studio when you drag your first data source onto the
form, and it provides VCR-like behaviors for the associated BindingSource control.

I don’t use any BindingNavigator controls in the ProjectTracker application. To get rid of them,
you can select them in the designer or in the component tray at the bottom of the designer, and
press the Delete key. Of course, there’s still the need for Save and Cancel buttons, so I add them as
normal Button controls. Figure 9-10 shows the resulting form layout.

Looking at Figure 9-10, you’ll see that data binding automatically picked up the properties
from the child object, Role, contained within the Roles collection. Thanks to the
<Browsable(False)> attributes applied to the CSLA .NET base class properties in Chapter 3, they
are automatically ignored by data binding, so only the actual business properties appear.

CHAPTER 9 ■ WINDOWS FORMS UI488

Figure 9-9. RolesEdit user control with data-bound DataGridView

Figure 9-10. Final layout of the RolesEdit user control

6315_c09_final.qxd 4/7/06 2:12 PM Page 488

WinPart Code
One drawback to using a custom base control rather than UserControl is that Visual Studio has no
direct support for adding subclasses of a custom control. So what you need to do to add a WinPart-
derived user control is choose the Project ➤ Add User Control menu option to add a standard user
control to the project. Then change the control to inherit from WinPart instead of UserControl. This
means the declaration of RolesEdit looks like this:

Public Class RolesEdit
Inherits WinPart

The one bit of code that every subclass of WinPart needs to implement is the GetIdValue()
method. Since there can really only be one instance of EditRoles, it simply returns human-readable
text for display in the Documents menu:

Protected Overrides Function GetIdValue() As Object
Return "Edit Roles"

End Function

This allows the WinPart base control to automatically handle the System.Object overrides for
the user control. For instance, this text is returned through the user control’s ToString() method,
which is used by MainForm to populate the display of the Documents menu.

Authorization
The RolesEdit authorization code is perhaps the simplest in the application. This user control
doesn’t support a read-only mode, so if the user isn’t authorized to edit the list of roles, then the
form can’t be available.

MainForm already disables the menu to prevent the user from getting to the user control if she
isn’t authorized, but there’s still the possibility that the user could log out while the user control is
loaded. In that case, the user control needs to close itself to prevent the now unauthorized user
from editing the roles. To implement this, the CurrentPrincipalChanged event is handled:

Private Sub RolesEdit_CurrentPrincipalChanged(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.CurrentPrincipalChanged

If Not Roles.CanEditObject Then
Me.Close()

End If
End Sub

The Roles class is asked whether the current user is authorized to edit the object, and if the
user isn’t authorized, then the user control is immediately closed.

Loading the Form
When the RolesEdit user control is loaded, it retrieves a new Roles object and makes it the current
data source for the rolesBindingSource object; which in turn means it becomes the current data
source for the DataGridView control:

Private mRoles As Admin.Roles

Private Sub RolesEdit_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

CHAPTER 9 ■ WINDOWS FORMS UI 489

6315_c09_final.qxd 4/7/06 2:12 PM Page 489

Try
mRoles = Admin.Roles.GetRoles

Catch ex As Csla.DataPortalException
MessageBox.Show(ex.BusinessException.ToString, _
"Error loading", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Catch ex As Exception
MessageBox.Show(ex.ToString, _
"Error loading", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

End Try

If mRoles IsNot Nothing Then
Me.RolesBindingSource.DataSource = mRoles

End If
End Sub

Most of this code exists to gracefully handle exceptions. Only two lines really matter:

mRoles = Admin.Roles.GetRoles

and

Me.RolesBindingSource.DataSource = mRoles

The first retrieves the Roles object, and the second sets the data source using that object. Setting
the DataSource property of the BindingSource control automatically connects all the data-bound
controls on the form to the underlying data source object. The result is that data in the object is dis-
played in the controls and is available for editing by the user.

Of course, the exception-handling code is important too. If an exception occurs during the
normal data portal processing, including within the DataPortal_Fetch() method of the Roles
object, a Csla.DataPortalException will be thrown. To get at the original exception thrown by the
business code, use the BusinessException property. Remember that you can also use the
BusinessObject property to get a reference to the business object as it was when the exception
was thrown—a fact that can be very useful for debugging.

It is far less likely that any other exception will be thrown, but I’ve included code showing how
to catch those exceptions as well. If you look at the client-side DataPortal code from Chapter 4,
you’ll see that very little code executes that can throw exceptions other than a DataPortalException,
so other types of exceptions typically only occur during development and debugging.

Saving the Data
When the user clicks the Save button, the data needs to be saved. This is the most complex bit of
processing the UI developer should have to write. The complexity comes because the object may
be updated during the update process, and it is possible for the update process to fail part of the
way through—possibly leaving the object in an invalid or indeterminate state.

For instance, suppose Jeff edits a number of roles in the Roles object. And suppose Marie has
edited the last role in the list and saved her change. When Jeff saves his changes, all the data will be
saved (updating the timestamp values in each Role object) until the update process hits that last
role. At that point, a concurrency issue is detected and an exception is thrown. The database trans-
action handles rolling back the database to a valid state, but all those Role objects now have invalid
timestamp values in memory. Somehow the Roles object needs to be reset to the state it was in
before Save() was called.

CHAPTER 9 ■ WINDOWS FORMS UI490

6315_c09_final.qxd 4/7/06 2:12 PM Page 490

Another issue occurs if the data portal is configured to run locally in the client process. In that
case, the object is not serialized to a server, but is rather updated in place on the client. It is possible
that the business object could raise PropertyChanged or ListChanged events while it is being updated,
causing the UI to refresh during the data update process. Not only does that incur performance
costs, but sometimes code in the UI might respond to those events in ways that cause bugs.

To avoid these issues, the following process is followed:

1. Turn off events from the BindingSource controls.

2. Clone the business object.

3. Save the clone of the business object.

4. Rebind the BindingSource controls to the new object returned from Save(), if necessary.

5. Turn on events from the BindingSource controls.

Turning off and on the events from the BindingSource controls ensures that any events from
the data source won’t be cascaded up to the UI during the update process. This is important,
because otherwise an exception will occur when rebinding the BindingSource controls to the new
object returned from Save(). As you’ll see, this rebinding requires that the DataSource property
first be set to Nothing, which of course isn’t a valid data source for the UI.

The reason for cloning the business object is so an exact copy of the object can be saved to the
database. It is this exact copy of the object that has its fields changed during the update process. If
the update fails, then the original object remains intact and unchanged, but if the update succeeds,
then the Save() method returns the successfully updated version of the object, including any new
field values.

Here’s the code for the Save button on the RolesEdit user control:

Private Sub SaveButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles SaveButton.Click

Me.RolesBindingSource.RaiseListChangedEvents = False
Dim temp As Admin.Roles = mRoles.Clone
Try
mRoles = temp.Save
Me.Close()

Catch ex As Csla.DataPortalException
MessageBox.Show(ex.BusinessException.ToString, _
"Error saving", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Catch ex As Exception
MessageBox.Show(ex.ToString, _
"Error saving", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Finally
Me.RolesBindingSource.RaiseListChangedEvents = True

End Try
End Sub

The first line of code turns off event processing for the BindingSource control:

Me.RolesBindingSource.RaiseListChangedEvents = False

CHAPTER 9 ■ WINDOWS FORMS UI 491

6315_c09_final.qxd 4/7/06 2:12 PM Page 491

You would do this for every BindingSource control on the form if there were more than one.
In ProjectEdit, for instance, there are two such controls bound to editable data.

The next line of code creates a clone of the business object:

Dim temp As Admin.Roles = mRoles.Clone

This is easily done, since all CSLA .NET business objects automatically support the Clone()
method. Remember that this method copies the object and all child objects it contains. In this case,
it copies the Roles object and all the Role objects in the collection.

Then the copy of the object is saved:

mRoles = temp.Save

Notice that the result of the Save() method is stored in the original mRoles field, which overwrites
the original value. If no exception occurs during the Save() call, the original object is replaced by the
resulting updated object. Remember that most insert and update operations do change the object’s
data, at least updating the timestamp values for concurrency.

If the user control was not immediately closed, you would rebind the BindingSource object to
the new business object returned from the Save() method by adding these lines of code immedi-
ately after the Save() method call:

Me.RolesBindingSource.DataSource = Nothing
Me.RolesBindingSource.DataSource = mRoles

You can’t simply set the DataSource property to a new object. You must first set the property to
Nothing, and then to the new object. If you don’t do this, the BindingSource will not bind to the new
object and will silently remain bound to the old object, resulting in hard-to-debug problems in your
application.

In this case, the form is closed immediately upon successfully saving the data, so the UI is not
re-bound. Instead, the user control’s Close() method is called:

Me.Close()

The Save() call and closing of the user control (or rebinding of the BindingSource control)
occurs in a Try block. If an exception occurs during the Save() call, the mRoles field will not be set
to a new value, meaning it will retain the original value it had to start with.

Additionally, in the case of an exception, the user control isn’t closed (or if the UI is being
re-bound, that rebinding won’t occur). This means that the BindingSource control will still be
bound to the original, unchanged, object. This is exactly the desired behavior, since it means
that the UI controls are still bound to an object in a valid state (even though it apparently can’t
be saved for some reason). The Catch blocks contain code to display the exception details to the
user as discussed earlier.

Finally, whether an exception occurs or not, event handling is reenabled for the BindingSource
control:

Me.RolesBindingSource.RaiseListChangedEvents = True

This must occur for data binding to behave properly, either against the newly updated object,
or in the case of an exception, the original object.

Simplified Saving with a Remote Data Portal
If you know that you’ll be using a remote data portal rather than running the data portal locally in
the client process, you can avoid some of the work I just discussed. This is because when you use
a remote data portal, the object is automatically copied from the client to the application server,
effectively doing the cloning for you.

CHAPTER 9 ■ WINDOWS FORMS UI492

6315_c09_final.qxd 4/7/06 2:12 PM Page 492

In that case, the Save button code would look like this:

Private Sub SaveButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles SaveButton.Click

Me.RolesBindingSource.RaiseListChangedEvents = False
Try
mRoles = mRoles.Save
Me.Close()

Catch ex As Csla.DataPortalException
MessageBox.Show(ex.BusinessException.ToString, _
"Error saving", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Catch ex As Exception
MessageBox.Show(ex.ToString, _
"Error saving", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Finally
Me.RolesBindingSource.RaiseListChangedEvents = True

End Try
End Sub

Notice that the Clone() method call is gone, and the original object in mRoles is saved directly.
If this succeeds without an exception, a newly updated copy of the object is returned from Save(),
and the BindingSource controls are re-bound to that new object.

But if an exception does occur, then no new object is returned and the mRoles field will con-
tinue to point to the original object, as it was before Save() was called! Similarly, an exception will
prevent the rebinding of the BindingSource controls, so they continue to point to the original object
as well.

Again, this alternate approach is valid if you only use a remote data portal configuration. But
in that case, it is a good change to make since it avoids making an extra clone of the object before
calling Save(), and so is better for performance.

If you are (or might be) using a local data portal configuration, you should manually clone the
object to ensure that the UI ends up bound to a valid object in the case of an exception during data
processing.

Closing the Form
Since the mRoles field is local to the RolesEdit user control, closing the user control is as simple as
calling the Protected Close() method:

Private Sub CancelButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles CancelButton.Click

Me.Close()
End Sub

As you’ll see, more complex user controls like ProjectEdit require a bit more work before
closing.

This completes the code in RolesEdit. The important thing to note about this form is the com-
parative simplicity of the code. It implements GetIdValue(), loads the business object and makes

CHAPTER 9 ■ WINDOWS FORMS UI 493

6315_c09_final.qxd 4/7/06 2:12 PM Page 493

it a data source, and implements code to save the object. All the authorization, validation, and other
business logic is entirely in the business object, leaving the code in the UI to focus purely on user
interaction.

Project List
When the user wants to edit or remove a project from the system, she’ll need to be presented with a
list of projects. The ProjectList business object was created for this purpose, so the infrastructure
already exists to retrieve the project data. All the UI needs to do is provide a dialog box to display the
information.

The user may be prompted to select a project from the list in various places in the application,
so the dialog form will be very focused: it will simply display the list of projects and allow the user to
select one. This way, the form can be reused anywhere the user must choose a project. Figure 9-11
shows the layout of the ProjectSelect form.

Displaying the Data
When the form is loaded, it populates its display with a list of projects:

Private Sub ProjectSelect_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

DisplayList(ProjectList.GetProjectList)

End Sub

Private Sub DisplayList(ByVal list As ProjectList)

Dim sortedList As New Csla.SortedBindingList(Of ProjectInfo)(list)
sortedList.ApplySort("Name", ListSortDirection.Ascending)
Me.ProjectListBindingSource.DataSource = sortedList

End Sub

CHAPTER 9 ■ WINDOWS FORMS UI494

Figure 9-11. Layout of the ProjectSelect form

6315_c09_final.qxd 4/7/06 2:12 PM Page 494

Notice how the DisplayList() helper method uses SortedBindingList to sort the results before
they are displayed:

Dim sortedList As New Csla.SortedBindingList(Of ProjectInfo)(list)
sortedList.ApplySort("Name", ListSortDirection.Ascending)

The user can also get a filtered list of projects. The NameTextBox control allows for optional
filtering of the displayed list. This value will be provided to the GetProjectList() factory method
of ProjectList when the associated button is clicked:

Private Sub GetListButton_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles GetListButton.Click

DisplayList(ProjectList.GetProjectList(NameTextBox.Text))
End Sub

In this case, DisplayList() is passed a filtered ProjectList object, and its data is sorted and
displayed to the user.

Data Binding the ListBox
The primary control on the form is a simple ListBox that is data bound to the ProjectList object.
This binding was set up using drag-and-drop binding from the Data Sources window.

Recall that dragging the Roles collection onto the designer resulted in a DataGridView control.
That is the default control, but you can change that in the Data Sources window before dragging the
data source onto the designer. Doing that requires customizing the list of controls available from
the Data Sources window. Figure 9-12 shows the Customize menu option you would use.

This option brings up a dialog in which you can specify which controls should be available in
the menu for your data source. You would then select that option from the list and drag the object
onto the form.

But I think it is easier to use connect-the-dots data binding instead. To do this, just drag a
ListBox control from the normal toolbox onto the designer. Size and position it as you desire, then
drag the ProjectList object from the Data Sources window onto the already existing ListBox
control.

Visual Studio adds a ProjectListBindingSource control to the designer, and the data binding
properties of the ListBox control are automatically linked to that BindingSource control.

Either approach is fine, and the end result is the same: your form has a ListBox control that
is data bound to the ProjectList business object. Figure 9-13 shows the Data properties for the
ListBox control.

CHAPTER 9 ■ WINDOWS FORMS UI 495

Figure 9-12. Customization option in the Data Sources window

6315_c09_final.qxd 4/7/06 2:12 PM Page 495

The DataSource property points to the ProjectListBindingSource control. Again, this follows
the new data binding approach, with which UI controls are bound to BindingSource controls, which
in turn are bound to the underlying data source itself.

Also notice the DisplayMember and ValueMember properties. DisplayMember indicates the prop-
erty value from the data source that will be displayed to the user. ValueMember indicates the property
from the data source that will be invisibly maintained for each item in the ListBox control.

The ListBox control has a SelectedValue property that you can use to get the ValueMember
value for the currently selected item in the ListBox. This makes it very easy to retrieve the Id
value for the project that the user selected from the list.

Selecting a Project
When ProjectSelect is displayed, it presents the user with a list of projects. At this point, the user
can either select one and click OK, or click Cancel. Either way, the DialogResult property is set and
the form is closed. For instance, here’s the code for the Cancel button:

Private Sub Cancel_Button_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles Cancel_Button.Click

Me.Close()
End Sub

The DialogResult property is set to Cancel (because the DialogResult property of the Cancel
button is set to Cancel) and the form is closed. The code that displayed this dialog in the first place
can retrieve the DialogResult value like this:

If dlg.ShowDialog = DialogResult.OK Then

CHAPTER 9 ■ WINDOWS FORMS UI496

Figure 9-13. Data properties for the ListBox control

6315_c09_final.qxd 4/7/06 2:12 PM Page 496

The DialogResult value from the dialog form’s code flows through as the result of the
ShowDialog() method call in this calling code.

If the user clicks the OK button, things are a bit more interesting. The code behind the OK
button stores the SelectedValue property from the ListBox control, sets the DialogResult value,
and closes the form:

Private mProjectId As Guid

Private Sub OK_Button_Click(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles OK_Button.Click

mProjectId = CType(Me.ProjectListListBox.SelectedValue, Guid)
Me.Close()

End Sub

The value of SelectedValue needs to be stored so that it can be retrieved by the calling code.
After all, the reason this ProjectSelect dialog was called in the first place was to allow the user to
select that value! The OK button’s DialogResult property is set to OK, indicating that the user clicked
the OK button, and then the form is closed to return control to the code that called the dialog.

The final bit of code is a read-only ProjectId property:

Public ReadOnly Property ProjectId() As Guid
Get
Return mProjectId

End Get
End Property

It is important to realize that closing a form doesn’t destroy the object; it merely causes the
form to no longer be displayed. This means that the code that created and displayed the
ProjectSelect dialog still has a valid reference to the ProjectSelect dialog object, even after it has
been closed. The calling code can then retrieve the selected ProjectId value, somewhat like this:

Dim projectId As Guid
Using dlg As New ProjectSelect
If dlg.ShowDialog = DialogResult.OK Then
projectId = dlg.ProjectId

End If
End Using

With this small bit of effort, the ProjectSelect dialog is complete and can be used any time
the user needs to select a project. The form is highly reusable, because ProjectSelect doesn’t care
what’s done with the selected value; it simply allows the user to select a project.

ProjectEdit
The final item I’ll cover in detail is the ProjectEdit user control. In some ways, this is like RolesEdit,
because it inherits from WinPart and is hosted in MainForm. But the goal here is to show how a detail
form can be created, along with using a DataGridView for editing child objects.

Figure 9-14 shows the layout of the ProjectEdit user control.

CHAPTER 9 ■ WINDOWS FORMS UI 497

6315_c09_final.qxd 4/7/06 2:12 PM Page 497

As you can see, this form has a set of Label and TextBox controls so the user can view and edit
information in the Project object itself. It also uses a DataGridView control to display the
ProjectResource objects. That DataGridView will also allow the user to change the role a resource
plays on a project. Additionally, the values in the FullName column will be displayed as hyperlinks
to make it easy for the user to bring up the associated ResourceEdit user control for that resource.

Implementing the functionality behind this form is more complex than RolesEdit or
ResourceSelect. But still, the focus is entirely on user interaction and the flow of the UI, not on
authorization, validation, or other business behaviors already implemented in the business
objects.

Creating the Controls
The controls shown in Figure 9-14 were all added using drag-and-drop data binding. The Label and
TextBox controls were added by dragging the Project object from the Data Sources window onto the
designer, after setting some options in the Data Sources window.

Binding to the Project Class

Figure 9-15 shows the Data Sources window with the Projects node expanded and being changed
to create a details form.

CHAPTER 9 ■ WINDOWS FORMS UI498

Figure 9-14. Layout of the ProjectEdit user control

6315_c09_final.qxd 4/7/06 2:12 PM Page 498

Notice the icon next to the Project node: it represents a details form rather than the default grid
display icon you see next to ProjectList, Resource, and the other object nodes. This change occurred
because I chose the Details option from the menu for the Project node.

When an object is set to use details mode, the individual control types of the properties for that
object come into play. When the object is dragged onto the designer, controls for each property will
be created. In fact, a pair of controls is created: a Label displaying the property name and another
control to display the property value itself. This second control is indicated by the icons you see
next to each property node in the Data Sources window.

The Id property on a Project object is read-only, and so it should be displayed in a Label rather
than an editable control. Figure 9-16 shows how the Id property’s control is changed from TextBox
to Label.

Once the object node is set to details mode and all its properties are set to use the correct
control types, the object is simply dragged onto the designer. Visual Studio creates a
ProjectBindingSource, all the controls for the properties, and of course the BindingNavigator
control.

CHAPTER 9 ■ WINDOWS FORMS UI 499

Figure 9-15. Project node ready to create a details form

Figure 9-16. Changing the Id property to display in a Label

6315_c09_final.qxd 4/7/06 2:12 PM Page 499

You can then resize and reposition the controls to get the display you require. The layout in
Figure 9-14 shows the result after I’ve repositioned the controls, resized them, set their Anchor
properties, and changed their tab order to match the new layout. And of course, I’ve removed the
BindingNavigator control.

But at no point did I need to worry about setting up the data binding for any controls; Visual
Studio handled that automatically. My only concern is the appearance of the UI itself.

■Note If you prefer, you could put the controls on the form manually, directly from the toolbox. Then you could
use connect-the-dots binding to drag each object property from the Data Sources window onto the controls to set
up the data binding. Or if you really like manual work, you could manually set the data properties on each control
through the Properties window. Regardless of which approach you take, the results are the same: the controls are
data bound to the ProjectBindingSource control, which in turn will be bound to a Project object.

You may be wondering why the Started and Ended properties are bound to TextBox controls
rather than a specialized date-entry control. As discussed in Chapter 5, it is often preferable to allow
the user to enter dates as he or she chooses—especially for heads-down data entry. Given the extra
parsing capabilities of SmartDate, this makes even more sense, since the user can simply press -, .,
or + to get yesterday, today, or tomorrow’s date.

■Tip If you prefer to use a specialized date-entry control, you are best off avoiding the use of SmartDate, and
instead exposing the business object properties using the DateTime data type directly.

Adding a RoleListBindingSource Control

Before configuring the DataGridView control that is bound to the Resources collection, another
BindingSource control is required. The Roles column in the grid is a combo box column, listing the
available roles a resource can play on a project. This list is easily populated by the RoleList object
created in Chapter 8—but for it to be available for data binding, there must be a BindingSource con-
trol in the component tray.

You can drag a BindingSource control onto the designer directly from the toolbox (it’s in the
Data group of the toolbox). Figure 9-17 shows how to set the DataSource property of the new con-
trol to the RoleList object (assuming you’ve added your business objects to the Data Sources
window as discussed earlier in this chapter).

I’ve also changed the name of the control to RoleListBindingSource to match the default nam-
ing convention used by Visual Studio when an object is dragged directly onto the designer.

CHAPTER 9 ■ WINDOWS FORMS UI500

6315_c09_final.qxd 4/7/06 2:12 PM Page 500

Binding to the Resources Collection

You’ve already seen how to create a DataGridView in the RolesEdit form. The only difference in
ProjectEdit is that the Resources node within the Project node represents the child objects. It is
that node that you drag onto the designer to create the DataGridView control and set up the data
binding.

Notice that a ResourcesBindingSource control is automatically added in the component tray,
and the DataGridView control is bound to that new BindingSource control. Each business object
must have its own BindingSource control because each BindingSource control is responsible for
managing the information in a single object or collection.

Some design work is required to get the DataGridView control to appear as desired. By default,
it shows all the properties of the ProjectResource objects, as shown in Figure 9-18.

CHAPTER 9 ■ WINDOWS FORMS UI 501

Figure 9-17. Setting the DataSource property on a BindingSource control

Figure 9-18. Default display of the DataGridView for the Resources collection

6315_c09_final.qxd 4/7/06 2:12 PM Page 501

This doesn’t match the appearance of the control shown in Figure 9-14. Given the FullName
property, there’s no need to also display FirstName and LastName. Additionally, the end user
shouldn’t have to see the ResourceId property, since it is really an internal value for use by the
application itself.

On top of those simple formatting changes, the FullName column should be a hyperlink col-
umn so that the user can click on a name to open an editor for that resource. And the Role column
needs to be a combo box so that the user can select the role from a list of valid options.

To make these changes, edit the columns in the control by choosing the Edit Columns option,
as shown in Figure 9-19.

Using the Edit Columns dialog, you can remove and rearrange columns to get the desired
appearance. You can also change the column properties and types for specific columns. For
instance, the ResourceId column has its Visible property set to False, and the FullName column
has its column type changed to DataGridViewLinkColumn.

The most interesting change is to the Role column, which is changed to a
DataGridViewComboBoxColumn. Making this change means that the data source used to populate
the list of items must be specified. Figure 9-20 shows the data properties for this column.

CHAPTER 9 ■ WINDOWS FORMS UI502

Figure 9-19. Choosing the Edit Columns option for a DataGridView control

Figure 9-20. Data properties for the Role column

6315_c09_final.qxd 4/7/06 2:12 PM Page 502

The DataSource property is set to the RoleListBindingSource control discussed earlier. You
can also just set up the data binding entirely from within the Edit Columns dialog, in which case
RoleListBindingSource would be added by Visual Studio at this point, instead of manually like
I demonstrated earlier.

Also notice that the DisplayMember and ValueMember properties are set to appropriate values.
DisplayMember indicates which property of the data source will be displayed to the user, while
ValueMember indicates the property of the data source that will be associated with the Role property
of the ProjectResource object in the grid’s row.

In other words, each row of the DataGridView represents a single ProjectResource object, which
has a Role property of type int. That property is bound to the Role column in the grid, and is linked
to the ValueMember property of the RoleList object. The end result is that the DisplayMember value
corresponding to the ValueMember from the Role property is shown to the user. And if the user selects
a different item, that item’s ValueMember is used to set the Role property of the ProjectResource
object.

ErrorProvider Control

The ProjectEdit user control includes an ErrorProvider control in the component tray. This exten-
der control is bound to the same data source as the detail controls on the form, and it automatically
displays information about any validation errors in the business object. Figure 9-21 shows the case
in which a project’s Ended property has been set to an earlier date than the Started property.

The error icons next to the two date fields, along with the tooltip text, come from the
ErrorProvider control. Of course, it gets its information from the Project object itself—through
the IDataErrorInfo interface implemented by BusinessBase in Chapter 3.

The ErrorProvider control was simply dragged from the toolbox onto the designer, and its
DataSource property set to the ProjectBindingSource control, as shown in Figure 9-22.

CHAPTER 9 ■ WINDOWS FORMS UI 503

Figure 9-21. The ErrorProvider control displaying validation error information

6315_c09_final.qxd 4/7/06 2:12 PM Page 503

The important property here is DataSource, which is set to the same BindingSource control as
the detail controls in the UI itself. Everything else is handled automatically by either the business
object or the ErrorProvider control itself.

ReadWriteAuthorization Control

In Figures 9-2 and 9-3, at the beginning of the chapter, I showed how the ProjectEdit display
changes based on whether the user is authorized to edit a Project object or not. While some
manual coding is required to achieve that effect, much of the hard work is handled by the Csla.
Windows.ReadWriteAuthorization control discussed in Chapter 5.

Like the ErrorProvider control, this control is an extender control, meaning that it adds extra
behaviors to normal controls like Label and TextBox. In this case, the behaviors are to change those
controls so that they disallow editing or even viewing of data based on the authorization rules spec-
ified in the underlying business object.

You’ll find a ReadWriteAuthorization control in the component tray of ProjectEdit. Just by
being on the designer, this control adds an ApplyAuthorization property to the controls for editing
project data. For instance, Figure 9-23 shows the new ApplyAuthorization property that has been
added to the NameTextBox control.

By setting this property to True, the UI developer has indicated that the
ReadWriteAuthorization control should automatically set this control’s ReadOnly property to True
if the user isn’t authorized to edit the Name property. If the user isn’t even authorized to read the
property value, the ReadWriteAuthorization control will prevent the value from being displayed
at all.

I’ll discuss the code used to trigger the authorization behaviors later, but as you’ll see, the
ReadWriteAuthorization control radically simplifies the process of creating the UI.

CHAPTER 9 ■ WINDOWS FORMS UI504

Figure 9-22. Properties for the ErrorProvider control

6315_c09_final.qxd 4/7/06 2:12 PM Page 504

BindingSourceRefresh Control

The final control I want to discuss is the Csla.Windows.BindingSourceRefresh control. This control
was discussed in Chapter 5, and it exists to work around an unfortunate behavior in Windows Forms
data binding.

The issue occurs when the user edits a value in a control, such as a TextBox, and tabs off that
control. The data in the control is put into the business object’s property through data binding. But
if the object then changes the value, that change is not shown in the UI. This is particularly prob-
lematic with the SmartDate properties on the Project object, since the user could enter +, expecting
to see tomorrow’s date. But due to this issue, the user would continue to see the + character even
though the business object does have the right date value internally!

The BindingSourceRefresh control is designed to eliminate this issue. You’ll find this control in
the component tray of the designer. Unlike ErrorProvider and ReadWriteAuthorization, which add
behaviors to controls like Label or TextBox, this control adds behaviors to the BindingSource con-
trols on the form.

For instance, Figure 9-24 shows the ProjectBindingSource control with the new
ReadValuesOnChange property. This property should be set to True for any BindingSource controls
used by detail controls like TextBox. It can be set to False for BindingSource controls that only pro-
vide data to a list or grid control like DataGridView, because those controls don’t have the same
quirky behavior.

At this point, you should understand how all the detail and grid controls were added to
ProjectEdit. You should also understand how the RoleListBindingSource is used to populate the
combo box display in the DataGridView, and how the three extender controls are used to easily
implement advanced features. Now let’s discuss the code behind the form.

CHAPTER 9 ■ WINDOWS FORMS UI 505

Figure 9-23. ApplyAuthorization property on the NameTextBox control

6315_c09_final.qxd 4/7/06 2:12 PM Page 505

WinPart Code
Because ProjectEdit inherits from WinPart, it must override the GetIdValue() method:

Protected Overrides Function GetIdValue() As Object
Return mProject

End Function

Remember that this method is supposed to return a unique identifying value for the user con-
trol; and the best thing to use is the business object being edited. By using the business object itself
as the unique identifier, the code in MainForm can ensure that any attempt by the user to open a sec-
ond user control to edit the same Project object will simply result in the original user control being
brought to the forefront.

There’s one more thing to do, though. Recall that MainForm calls ToString() on the identifier
value to populate the display in the Documents menu. Yet calling ToString() on a Project object
will return the object’s Id value: a Guid. This is obviously not desirable, since it would be preferable
to show the object’s Name property value. To solve this, the ToString() method is overridden to
return that value:

Public Overrides Function ToString() As String
Return mProject.Name

End Function

This way, the Documents menu will show the project’s Name rather than its Id.

Loading the User Control
A parameterized constructor is used to create the form, allowing the calling code to pass in a refer-
ence to the Project object that is to be viewed or edited. This constructor sets the DataSource
properties of the BindingSource controls to initiate data binding:

CHAPTER 9 ■ WINDOWS FORMS UI506

Figure 9-24. The ReadValuesOnChange property on the ProjectBindingSource control

6315_c09_final.qxd 4/7/06 2:12 PM Page 506

Private WithEvents mProject As Project

Public Sub New(ByVal project As Project)

InitializeComponent()

mProject = project
mProject.BeginEdit()

Me.RoleListBindingSource.DataSource = RoleList.GetList
Me.ProjectBindingSource.DataSource = mProject

ApplyAuthorizationRules()
End Sub

First though, it stores the object reference in an instance field for later use. It also calls the busi-
ness object’s BeginEdit() method, thus invoking the n-level undo capability discussed in Chapter 3.
This method call tells the object to take a snapshot of its current state, so the object can be restored
to this exact state later if the user clicks the Cancel or Close button without saving the data first.

With that done, data binding is initialized:

Me.RoleListBindingSource.DataSource = RoleList.GetList
Me.ProjectBindingSource.DataSource = mProject

The DataSource property of RoleListBindingSource is set to a RoleList object. If this is the first
time GetList() has been called, this will incur a call to the database; otherwise, the collection is
returned from the cache implemented in Chapter 8.

The DataSource property of projectBindingList is set to the Project object passed into the
constructor as a parameter. By accepting this object as a parameter, ProjectEdit can be used to
add new objects, or edit or view existing objects. It isn’t concerned with where the object came
from, just that it is a Project object that is to be displayed or edited. This technique increases the
reusability of the ProjectEdit user control.

Notice that the DataSource of ResourcesBindingSource is not explicitly set. This is because the
Windows Forms designer understands the relationship between the Project object and its
Resources property, and sets up the binding automatically.

The last line of code in the constructor calls ApplyAuthorizationRules(), which is responsible
for applying all authorization rules to the controls on the form.

Authorization Rules
Authorization rules are applied in two cases: as the form loads, and any time the user logs into or
out of the application. This second scenario causes a CurrentPrincipalChanged event to be raised,
and that event is handled in the code:

Private Sub ProjectEdit_CurrentPrincipalChanged(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.CurrentPrincipalChanged

ApplyAuthorizationRules()
End Sub

Like in the constructor, the ApplyAuthorizationRules() method is called to actually apply the
rules and update the display. Of course, not much code is required in ApplyAuthorizationRules()
because the ReadWriteAuthorization control will do most of the hard work. The only real code in
the method exists to deal with the various buttons on the form (which aren’t data bound) and the
DataGridView control:

CHAPTER 9 ■ WINDOWS FORMS UI 507

6315_c09_final.qxd 4/7/06 2:12 PM Page 507

Private Sub ApplyAuthorizationRules()
' have the controls enable/disable/etc
Me.ReadWriteAuthorization1.ResetControlAuthorization()

Dim canEdit As Boolean = _
ProjectTracker.Library.Project.CanEditObject

' enable/disable appropriate buttons
Me.OKButton.Enabled = canEdit
Me.ApplyButton.Enabled = canEdit
Me.Cancel_Button.Enabled = canEdit
Me.AssignButton.Enabled = canEdit
Me.UnassignButton.Enabled = canEdit

' enable/disable role column in grid
Me.ResourcesDataGridView.Columns(2).ReadOnly = Not canEdit

End Sub

The call to ResetControlAuthorization() tells the ReadWriteAuthorization control to loop
through all the detail controls and apply authorization rules to any that have their
ApplyAuthorization property set to True. Recall from Chapter 5 that ReadWriteAuthorization relies
entirely on the CanReadProperty() and CanWriteProperty() methods of the business object to deter-
mine whether the current user is authorized to read or write each property. Thus, this one line of
code is able to completely enable or disable all the detail controls on the whole form.

The code then enables or disables the buttons that would allow the user to save the object. The
Shared method CanEditObject() is called to ask the Project class itself whether the current user can
edit project data, so the UI really has no idea about the authorization rules themselves; its only con-
cern is to properly update the display to give the user appropriate visual cues.

Finally, if the user isn’t authorized to edit project data, the Roles column in the DataGridView is
set to be read-only. Not that the user could save any changes they might make, but there’s no sense
letting the user think they can change values when they can’t actually save them.

Saving the Data
Notice that ProjectEdit has four buttons: Save, Apply, Cancel, and Close. Normally, an applica-
tion wouldn’t have all these buttons, but I want to illustrate how each one is implemented so you
understand the options available to you when implementing detail forms. The goal is to highlight
some of the capabilities of the n-level undo functionality discussed in Chapter 3.

The actual save process is the same for a Project object as it was for the Roles object earlier in
the chapter:

1. Turn off events from the BindingSource controls.

2. Clone the business object.

3. Save the clone of the business object.

4. Rebind the BindingSource controls to the new object returned from Save().

5. Turn on events from the BindingSource controls.

The SaveProject() method implements this process. Because this form supports both the
Save and Apply buttons, the rebinding of the UI controls is optional. Rebinding the UI is controlled
by a rebind parameter passed to the method:

CHAPTER 9 ■ WINDOWS FORMS UI508

6315_c09_final.qxd 4/7/06 2:12 PM Page 508

Private Sub SaveProject(ByVal rebind As Boolean)
Using busy As New StatusBusy("Saving...")
' stop the flow of events
Me.ProjectBindingSource.RaiseListChangedEvents = False
Me.ResourcesBindingSource.RaiseListChangedEvents = False

' do the save
Dim temp As Project = mProject.Clone
temp.ApplyEdit()
Try
mProject = temp.Save
mProject.BeginEdit()
If rebind Then
' rebind the UI
Me.ProjectBindingSource.DataSource = Nothing
Me.ResourcesBindingSource.DataSource = Me.ProjectBindingSource
Me.ProjectBindingSource.DataSource = mProject
ApplyAuthorizationRules()

End If

Catch ex As Csla.DataPortalException
MessageBox.Show(ex.BusinessException.ToString, _
"Error saving", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Catch ex As Exception
MessageBox.Show(ex.ToString, _
"Error saving", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

Finally
Me.ProjectBindingSource.RaiseListChangedEvents = True
Me.ResourcesBindingSource.RaiseListChangedEvents = True

End Try
End Using

End Sub

The BindingSource controls that are bound to the business objects about to be updated have
their events turned off:

Me.ProjectBindingSource.RaiseListChangedEvents = False
Me.ResourcesBindingSource.RaiseListChangedEvents = False

Then the Project object is cloned and ApplyEdit() is called on the clone. Remember that
BeginEdit() was called in the constructor, causing the business object to take a snapshot of its data.
At this point, the user has obviously decided that he like the changes he has made, so the snapshot
is no longer required. Calling ApplyEdit() commits the changes to the object in memory, in prepa-
ration for saving those changes to the database.

As with the Roles object, it is the clone that is saved, so if any exception occurs during the
Save() call, the original object remains intact and valid. On the other hand, if no exception occurs
during the Save() call, the mProject field is updated with a reference to a Project object that con-
tains the updated data.

The BeginEdit() method is called on this new Project object, telling the object that it is about
to be edited so that it can take a snapshot of its values. This is the same as in the constructor, and is
the key to making n-level undo function properly. Having the object take a snapshot of its data
before it is edited allows the Cancel button to be implemented properly (as discussed later).

CHAPTER 9 ■ WINDOWS FORMS UI 509

6315_c09_final.qxd 4/7/06 2:13 PM Page 509

The BindingSource controls are then re-bound to this new object:

Me.ProjectBindingSource.DataSource = Nothing
Me.ResourcesBindingSource.DataSource = Me.ProjectBindingSource
Me.ProjectBindingSource.DataSource = mProject

Again, binding to the Resources property is handled automatically, though you do need
to explicitly unbind ResourcesBindingSource by setting its DataSource property to
Me.ProjectBindingSource.

With that done, the ApplyAuthorizationRules() method is called. The reason for this is that
authorization rules for a new object could be different from an old object; and now that the object
has been saved to the database, its status could have changed. Remember that the authorization
rules are inside the object, not in the UI. The UI code should call ApplyAuthorization() rules any
time an object might be expected to change its authorization rules.

Before exiting the SaveProject() method, whether an exception occurred or not, the
BindingSource controls have their event handling turned back on:

Me.ProjectBindingSource.RaiseListChangedEvents = True
Me.ResourcesBindingSource.RaiseListChangedEvents = True

All business objects should be saved following this same basic flow. Also remember the dis-
cussion from the Roles object regarding how you can avoid calling Clone() if you know that the data
portal will always be configured to use an application server.

■Note The process is a bit different for Web Forms and Web Services interfaces.

With the SaveProject() method, the code behind the buttons now becomes quite straightfor-
ward. The only difference between the Save and Apply buttons is whether the user control is closed
after the data is saved:

Private Sub OKButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles OKButton.Click

SaveProject(False)
Me.Close()

End Sub

Private Sub ApplyButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ApplyButton.Click

SaveProject(True)
End Sub

Recall that the SaveProject() method calls ApplyEdit() on the object before saving it to the
database, which applies any changes made by the user. It also calls BeginEdit() before rebinding
the object to the UI, so n-level undo is always available. Finally, the object is only re-bound to the
UI if the rebind parameter is True, so the rebinding is only done when the Apply button is clicked.

The Close and Cancel buttons are also quite similar:

Private Sub Cancel_Button_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Cancel_Button.Click

mProject.CancelEdit()
End Sub

CHAPTER 9 ■ WINDOWS FORMS UI510

6315_c09_final.qxd 4/7/06 2:13 PM Page 510

Private Sub CloseButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles CloseButton.Click

mProject.CancelEdit()
Me.Close()

End Sub

Both call the CancelEdit() method on the Project object, telling the object to restore its state
to the point when BeginEdit() was last called. The only difference is that the Close button causes
the user control to be closed, while the Cancel button leaves it open.

The call to CancelEdit() in the Close button is important. At first glance, it might seem unnec-
essary, but remember that in some types of UI, other forms could be displaying this same object at
the same time. Calling CancelEdit() here ensures that the displays in those other forms are updated
to reflect the reversal of any edits done to the object’s state.

You can play with the Apply and Cancel buttons to experiment with n-level undo. Run the
application and edit a project. Then make some changes to various data, possibly even adding or
removing ProjectResource child objects in the DataGridView. Then click the Cancel button to see all
your changes go away as the object restores its state to the last BeginEdit() call.

Or make some changes, click Apply, and then make some more changes. Then click Cancel to
see the object reset itself to the point at which Apply was clicked (because that caused BeginEdit()
to be called).

Most UI styles don’t require the full capabilities of n-level undo, but almost all Windows Forms
UI designs need at least single-level undo. The n-level undo capabilities provided by CSLA .NET
enable both simple and advanced UI scenarios with a common code base.

Editing a Resource
The DataGridView has a FullName column, which is set to be a hyperlink. When the user clicks on an
item in this column, the application should open a ResourceEdit user control so the user can view
or edit the data for that resource.

■Note I won’t discuss ResourceEdit in detail, but you can look at the code in the download. It is fundamentally
equivalent to ProjectEdit in its construction.

Getting the correct Resource object is easy, because the ProjectResource object implements
a GetResource() method. When the user clicks the hyperlink, the code gets the selected ResourceId
value from the DataGridView control and passes that value to the ShowEditResource() method on
MainForm:

Private Sub ResourcesDataGridView_CellContentClick(_
ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
Handles ResourcesDataGridView.CellContentClick

If e.ColumnIndex = 1 And e.RowIndex > -1 Then
Dim resourceId As Integer = _
CInt(Me.ResourcesDataGridView.Rows(e.RowIndex).Cells(0).Value)

MainForm.ShowEditResource(resourceId)
End If

End Sub

CHAPTER 9 ■ WINDOWS FORMS UI 511

6315_c09_final.qxd 4/7/06 2:13 PM Page 511

Calling ShowEditResource() is important, because if this Resource object is already being edited
in a ResourceEdit user control, then that user control will be made active. Otherwise, the Resource
object will be loaded from the database and displayed in a new ResourceEdit user control.

The end result is that the user can easily navigate to any of the resources assigned to the proj-
ect. Comparable functionality exists in the ResourceEdit user control, which allows the user to easily
navigate to any project to which the resource is assigned.

Assigning and Unassigning Resources
The last bit of functionality in the application is the ability to add and remove child ProjectResource
objects from the Resources collection. Editing of the child objects is handled automatically by data
binding, but there are buttons on the user control to allow the user to assign and unassign resources
on the project.

The user is prompted to select the resource to assign to the project by using the ResourceSelect
dialog form:

Private Sub AssignButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles AssignButton.Click

Dim dlg As New ResourceSelect
If dlg.ShowDialog = DialogResult.OK Then
Try
mProject.Resources.Assign(dlg.ResourceId)

Catch ex As InvalidOperationException
MessageBox.Show(ex.ToString, _
"Error assigning", MessageBoxButtons.OK, _
MessageBoxIcon.Information)

Catch ex As Exception
MessageBox.Show(ex.ToString, _
"Error assigning", MessageBoxButtons.OK, _
MessageBoxIcon.Exclamation)

End Try
End If

End Sub

If the user clicks the OK button in the dialog, the ResourceId value is retrieved from the dialog
and passed to the Assign() method of the Resources collection. Remember from Chapter 8 that this
Assign() method takes care of all the details of assigning a resource to a project.

When the new item is added to the Resources collection, the data binding support built into
the Csla.BusinessListBase class automatically notifies the UI that the collection has changed, so
the DataGridView immediately displays the new row of data.

The Unassign button finds the DataGridView row currently selected and retrieves the
ResourceId value from that row. The Remove() method on the Resources collection is then called
to remove that item from the collection:

Private Sub UnassignButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles UnassignButton.Click

If Me.ResourcesDataGridView.SelectedRows.Count > 0 Then
Dim resourceId As Integer = _
CInt(Me.ResourcesDataGridView.SelectedRows(0).Cells(0).Value)

mProject.Resources.Remove(resourceId)
End If

End Sub

CHAPTER 9 ■ WINDOWS FORMS UI512

6315_c09_final.qxd 4/7/06 2:13 PM Page 512

Remember that n-level undo is active, so the item is not really deleted, but rather is moved to
the DeletedList within the collection. If the user later clicks the Cancel or Close buttons, the item
will be restored to the collection. Similarly, any newly added items will be automatically removed
from the collection when those buttons are clicked.

Conclusion
This chapter has walked through the process of creating a basic Windows Forms UI using the busi-
ness objects from Chapter 8. Obviously, there are many ways to create a UI using Windows Forms,
so the goal of this chapter was to highlight how you can use data binding to easily create grid-based
and detail forms to view and edit object data.

The ProjectEdit user control also illustrates how to leverage the n-level undo support built
into CSLA .NET business objects. This capability is also used by the DataGridView control to provide
in-place editing of data.

The key point to take from this chapter is that when you create your business layer using busi-
ness objects, the UI developer doesn’t need to worry about validation or authorization rules, data
access, or most other complex issues. The UI developer can focus on user interaction, the look and
feel of the application, and so forth. The result is a high degree of separation between the UI layer
and the business layer.

At the same time, because the objects use the data portal mechanism to retrieve and update
data, the application is able to exploit the capabilities of mobile objects: running business logic on
both the client workstation and an application server as appropriate. Better still, you can simply
change the application configuration file to switch between various physical n-tier configurations
to meet different performance, scalability, reliability, and security requirements. Chapter 12 will
show how to implement the various application server hosts for each network channel.

First though, Chapter 10 will cover the implementation of a Web Forms UI based on the same
set of business objects. Although there are obvious differences between the Windows Forms and
Web Forms environments, total reuse of the business logic and data access code is achieved in the
move from one UI type to the next.

CHAPTER 9 ■ WINDOWS FORMS UI 513

6315_c09_final.qxd 4/7/06 2:13 PM Page 513

6315_c09_final.qxd 4/7/06 2:13 PM Page 514

Web Forms UI

Chapter 9 covered the creation of a Windows Forms UI based on the ProjectTracker business
objects. But .NET also supports web development through ASP.NET and the Web Forms technology.
In this chapter, the same business objects are used to create a Web Forms interface with functional-
ity comparable to the Windows Forms interface.

While Web Forms can be used to create many different user interfaces, this chapter isn’t
intended to act as a tutorial on web development in ASP.NET. Instead, I’ll focus on how business
objects are used within a web application, including state management and data binding.

■Tip ASP.NET is the .NET web server component that hosts web forms, web services, and other server-side
handlers in Internet Information Services (IIS). ASP.NET is a very broad and flexible technology. Web forms are
hosted within ASP.NET and provide “normal” web development capabilities.

As with the Windows Forms interface in Chapter 9, I won’t walk through the details of every
web form in the application. Instead, I’ll walk through a representative sample to illustrate key
concepts.

In particular, I’ll discuss the following:

• Basic site design

• The use of forms-based authentication

• Adding and editing roles

• Adding and editing project data

However, before getting into the design and development of the Web Forms UI itself, I need to
discuss some of the basic concepts around the use of business objects in web development.

Web Development and Objects
Historically, the world of web development has been strongly resistant to the use of “stateful”
objects behind web pages, and not without reason. In particular, using such objects without careful
forethought can be very bad for website performance. Sometimes, however, it’s suggested that
instead of a stateful object, you should use a DataSet—which is itself a very large, stateful object!
Most people don’t think twice about using one of those for web development.

Clearly then, stateful objects aren’t inherently bad—it’s how they’re designed and used that
matters. Business objects can be very useful in web development, but it is necessary to look care-
fully at how such objects are conceived and employed.

515

C H A P T E R 1 0

■ ■ ■

6315_c10_final.qxd 4/7/06 1:51 PM Page 515

■Note Objects can work very well in web development, if they’re designed and used properly.

In general terms, web applications can choose from three basic data access models, as shown
in Figure 10-1.

Using the data reader directly can be very beneficial if the data set is relatively small and the
page processing is fast, because the data is taken directly from the database and put it into the page.
There’s no need to copy the data into an in-memory container (such as a DataSet or business object)
before putting it into the page output. This is illustrated in Figure 10-2.

However, if the data set is large or the page processing is slow, using a data reader becomes a
less attractive option. Using one requires the database connection to remain open longer, causing
an increase in the number of database connections required on the server overall, and thereby
decreasing scalability.

Direct use of a data reader also typically leads to code that’s harder to maintain. A data reader
doesn’t offer the ease of use of the DataSet or a business object. Nor does it provide any business
logic or protection for the data, leaving it up to the UI code to provide all validation and other
business processing.

■Note In most cases, use of the DataSet or a business object will offer better scalability when compared to
direct use of a data reader, and will result in code that’s easier to maintain.

516 CHAPTER 10 ■ WEB FORMS UI

Figure 10-1. The three basic data access models

Figure 10-2. Data flowing directly from a data reader into a web form

6315_c10_final.qxd 4/7/06 1:51 PM Page 516

Having discounted the use of a data reader in all but a few situations, the question becomes
whether to use the DataSet or a business object as a stateful, in-memory data container. These
options are similar in that the data is loaded from a data reader into the stateful object, and from
there into the page, as illustrated in Figure 10-3.

This means that, in general, you can expect similar performance characteristics from the
DataSet and business objects. However, business objects are often actually more lightweight than
the ADO.NET DataSet object. This is because business objects are specific to the data they contain,
and don’t need to retain all the metadata required by the DataSet object.

Better yet, business objects provide access not only to the application’s data, but also to its
business logic. As discussed in Chapter 1, business objects can be thought of as smart data. They
encapsulate the business logic and the data so that the UI doesn’t need to worry about potential
data misuse.

Overall, business objects provide the high-scalability characteristics of the DataSet, without
the overhead. They offer a better use of database connections than the data reader, though at the
cost of some performance in certain situations. When compared to both other technologies, busi-
ness objects enable a much higher level of reuse and easier long-term maintenance, making them
the best choice overall.

State Management
The Achilles’ heel of web development is state management. The original design of web technology
was merely for document viewing, not the myriad purposes for which it’s used today. Because of
this, the issue of state management was never thought through in a methodical way. Instead, state
management techniques have evolved over time in a relatively ad hoc manner.

Through this haphazard process, some workable solutions have evolved, though each requires
trade-offs in terms of performance, scalability, and fault tolerance. The primary options at your dis-
posal are as follows:

• State is maintained on the web server.

• State is transferred from server to client to server on each page request.

• State is stored in temporary files or database tables.

Whether you use a DataSet, a data reader, or business objects to retrieve and update data is
immaterial here—ultimately, you’re left to choose one of these three state management strategies.
Table 10-1 summarizes the strengths and weaknesses of each.

CHAPTER 10 ■ WEB FORMS UI 517

Figure 10-3. Data loaded into an intermediate object, followed by the web form

6315_c10_final.qxd 4/7/06 1:51 PM Page 517

Table 10-1. State Management Strategies

Approach Strengths Weaknesses

State stored on web server Easy to code and use. Works well Use of global fields/data is poor
with business objects. programming practice. Scalability

and fault tolerance via a web farm
requires increased complexity of
infrastructure.

State transferred to/from client Scalability and fault tolerance are Hard to code, requires a lot of
easily achieved by implementing a manual coding to implement.
web farm. Performance can be a problem

over slow network links.

State stored in file/database Scalability and fault tolerance are Increased load on database server
easily achieved by implementing since state is retrieved/stored on
a web farm. A lot of state data or each page hit. Requires manual
very complex data can be easily coding to implement. Data
stored. cleanup must be implemented to

deal with abandoned state data.

CHAPTER 10 ■ WEB FORMS UI518

As you can see, all of these solutions have more drawbacks than benefits. Unfortunately, in the
more than ten years that the Web has been a mainstream technology, no vendor or standards body
has been able to provide a comprehensive solution to the issue of dealing with state data. All you
can do is choose the solution that has the lowest negative impact on your particular application.

Let’s go into some more detail on each of these techniques, in the context of using business
objects behind web pages.

State on the Web Server
First, you can choose to keep state on the web server. This is easily accomplished through the use
of the ASP.NET Session object, which is a name/value collection of arbitrary data or objects.
ASP.NET manages the Session object, ensuring that each user has a unique Session, and that the
Session object is available to all Web Forms code on any page request.

This is by far the easiest way to program web applications. The Session object acts as a global
repository for almost any data that you need to keep from page to page. By storing state data on the
web server, you enable the type of host-based computing that has been done on mainframes and
minicomputers for decades.

As I’ve already expressed, however, there are drawbacks. Session is a global repository for each
user, but as any experienced programmer knows, the use of global fields is very dangerous and can
rapidly lead to code that’s hard to maintain. If you choose to use Session to store state, you must
be disciplined in its use to avoid these problems.

The use of Session also has scalability and fault tolerance ramifications.

Using a Web Farm in ASP.NET
Achieving scalability and fault tolerance typically requires implementation of a web farm: two or
more web servers that are running exactly the same application. It doesn’t matter which server han-
dles each user page request, because all the servers run the same code. This effectively spreads the
processing load across multiple machines, thus increasing scalability. You also gain fault tolerance,
since if one machine goes down, the remaining server(s) will simply take over the handling of user
requests.

What I just described is a fully load-balanced web farm. However, because state data is often
maintained directly on each web server, the preceding scenario isn’t possible. Instead, web farms

6315_c10_final.qxd 4/7/06 1:51 PM Page 518

are often configured using “sticky sessions.” Once a user starts using a specific server, the user
remains on that server because that’s where their data is located. This provides some scalability,
because the processing load is still spread across multiple servers, but it provides very limited fault
tolerance. If a server goes down, all the users attached to that server also go down.

To enable a fully load-balanced web farm, no state can be maintained on any web server. As
soon as user state is stored on a web server, users become attached to that server to the extent that
only that server can handle their web requests. By default, the ASP.NET Session object runs on the
web server in the ASP.NET process. This provides optimal performance because the state data is
stored in process with the application’s code, but this approach doesn’t allow implementation of
a fully load-balanced web farm.

Instead, the Session object can be run in a separate process on the same web server. This can
help improve fault tolerance, since the ASP.NET process can restart, and users won’t lose their state
data. However, this still doesn’t result in a fully load-balanced web farm, so it doesn’t help with scal-
ability. Also, there’s a performance cost because the state data must be serialized and transferred
from the state management process to the ASP.NET process (and back again) on every page request.

As a third option, ASP.NET allows the Session object to be maintained on a dedicated, separate
server, rather than on any specific web server. This state server can maintain the state data for all
users, making it equally accessible to all web servers in a web farm. This does mean that you can
implement a fully load-balanced web farm, in which each user request is routed to the least-loaded
web server. As shown in Figure 10-4, no user is ever “stuck” on a specific web server.

With this arrangement, you can lose a web server with minimal impact. Obviously, users in
the middle of having a page processed on that particular server will be affected, but all other users
should be redirected to the remaining live servers transparently. All the users’ Session data will
remain available.

As with the out-of-process option discussed previously, the Session object is serialized so that
it can be transferred to the state server machine efficiently. This means that all objects referenced by
Session are also serialized—which isn’t a problem for CSLA .NET–style business objects, since
they’re marked as <Serializable()>.

CHAPTER 10 ■ WEB FORMS UI 519

Figure 10-4. Load-balanced web server farm with centralized state server

6315_c10_final.qxd 4/7/06 1:51 PM Page 519

■Note When using this approach, all state must be maintained in <Serializable()> objects.

In this arrangement, fault tolerance is significantly improved, but if the state server goes down,
then all user state is lost. To help address this, you can put the Session objects into a SQL Server
database (rather than just into memory on the state server), and then use clustering to make the
SQL Server fault tolerant as well.

Obviously, these solutions are becoming increasingly complex and costly, and they also worsen
performance. By putting the state on a separate state server, the application now incurs network
overhead on each page request, since the user’s Session object must be retrieved from the state
server by the web server so that the Web Forms code can use the Session data. Once each page is
complete, the Session object is transferred back across the network to the state server for storage.

Table 10-2 summarizes these options.

Table 10-2. Session Object Storage Locations

Location of State Data Performance, Scalability, and Fault Tolerance

Session in process High performance; low scalability; low fault tolerance; web farms must
use sticky sessions; fully load-balanced web farms not supported

Session out of process Decreased performance; low scalability; improved fault tolerance
(ASP.NET process can reset without losing state data); web farms must
use sticky sessions; fully load-balanced web farms not supported

Session on state server Decreased performance; high scalability; high fault tolerance

In conclusion, while storing state data on the web server (or in a state server) provides the sim-
plest programming model, you must make some obvious sacrifices with regard to complexity and
performance in order to achieve scalability and fault tolerance.

Transferring State to or from the Client
The second option to consider is transferring all state from the server to the client, and back to the
server again, on each page request. The idea here is that the web server never maintains any state
data—it gets all state data along with the page request, works with the data, and then sends it back
to the client as part of the resulting page.

This approach provides high scalability and fault tolerance with very little complexity in your
infrastructure: since the web servers never maintain state data, you can implement a fully load-
balanced web farm without worrying about server-side state issues. On the other hand, there are
some drawbacks.

First of all, all the state data is transferred over what is typically the slowest link in the system:
the connection between the user’s browser and the web server. Moreover, that state is transferred
twice for each page: from the server to the browser, and then from the browser back to the server.
Obviously, this can have serious performance implications over a slow network link (like a modem),
and can even affect an organization’s overall network performance due to the volume of data being
transferred on each page request.

The other major drawback is the complexity of the application’s code. There’s no automatic
mechanism that puts all state data into each page; you must do that by hand. Often this means cre-
ating hidden fields on each page in which you can store state data that’s required, but that the user
shouldn’t see. The pages can quickly become very complex as you add these extra fields.

This can also be a security problem. When state data is sent to the client, that data becomes
potentially available to the end user. In many cases, an application’s state data will include internal

CHAPTER 10 ■ WEB FORMS UI520

6315_c10_final.qxd 4/7/06 1:51 PM Page 520

information that’s not intended for direct consumption by the user. Sometimes, this information
may be sensitive, so sending it to the client could create a security loophole in the system. Although
you could encrypt this data, that would incur extra processing overhead and could increase the size
of the data sent to/from the client, so performance would be decreased.

To avoid such difficulties, applications often minimize the amount of data stored in the page by
re-retrieving it from the original database on each page request. All you need to keep in the page,
then, is the key information to retrieve the data and any data values that have changed. Any other
data values can always be reloaded from the database. This solution can dramatically increase the
load on your database server, but continues to avoid keeping any state on the web server.

In conclusion, while this solution offers good scalability and fault tolerance, it can be quite
complex to program, and can often result in a lot of extra code to write and maintain. Additionally,
it can have a negative performance impact, especially if your users connect over low-speed lines.

State in a File or Database
The final solution to consider is the use of temporary files (or database tables of temporary data) in
which you can store state data. Such a solution opens the door to other alternatives, including the
creation of data schemas that can store state data so that it can be retrieved in parts, reported against,
and so forth. Typically, these activities aren’t important for state data, but they can be important if
you want to keep the state data for a long period of time.

Most state data just exists between page calls, or at most, for the period of time during which
the user is actively interacting with the site. Some applications, however, keep state data for longer
periods of time, thereby allowing the user’s “session” to last for days, weeks, or months. Persistent
shopping carts and wish lists are examples of long-term state data that’s typically stored in a mean-
ingful format in a database.

Whether you store state as a single BLOB of data or in a schema, storing it in a file or a database
provides good scalability and fault tolerance. It can also provide better performance than sending
the state to and from the client workstation, since communicating with a database is typically faster
than communicating with the client. In situations like these, the state data isn’t kept on the client or
the web server, so you can create fully load-balanced web farms, as shown in Figure 10-5.

CHAPTER 10 ■ WEB FORMS UI 521

Figure 10-5. Load-balanced web farm with centralized state database

6315_c10_final.qxd 4/7/06 1:51 PM Page 521

■Tip As I mentioned earlier, one way to implement a centralized state database is to use the ASP.NET Session
object and configure it so that the data is stored in a SQL Server database. If you just want to store arbitrary state
data as a single chunk of data in the database, then this is probably the best solution.

The first thing you’ll notice is that this diagram is virtually identical to the state server diagram
discussed earlier, and it turns out that the basic model and benefits are indeed consistent with that
approach. The application gains scalability and fault tolerance because you can implement a web
farm, whereby the web server that’s handling each page request retrieves state from the central
database. Once the page request is complete, the data is stored in the central state database. Using
clustering technology, you can make the database server itself fault tolerant, thereby minimizing
it as a single point of failure.

In conclusion, though this approach offers a high degree of scalability and fault tolerance, if
you implement the retrieval and storage of the state data by hand, it increases the complexity of
your code. There are also performance implications, since all state data is transferred across a net-
work and back for each page request—and then there’s the cost of storing and retrieving the data
in the database itself.

In the final analysis, determining which of the three solutions to use depends on the specific
requirements of your application and environment. For most applications, using the ASP.NET
Session object to maintain state data will offer the easiest programming model and the most flexi-
bility. You can achieve optimal performance by running it in process with your pages, or achieve
optimal scalability and fault tolerance by having the Session object stored in a SQL Server database
on a clustered database server. There are shades of compromise in between.

■Note ASP.NET allows you to switch between three different state-handling models by simply changing the
website’s web.config file (assuming you already have a SQL Server database server available in your environ-
ment). For an excellent overview of this feature, see “Understanding session state modes + FAQ” in Microsoft’s
ASP.NET forums (http://forums.asp.net/7504/ShowPost.aspx).

The key is that CSLA .NET–style business objects are serializable, so the Session object can
serialize them as needed. Even if you choose to implement your own BLOB-based file or data-stor-
age approach, the fact that the objects are serializable means that the business objects can be easily
converted to a byte stream that can be stored as a BLOB. If the objects were not serializable, the
options would be severely limited.

For the sample application, I’ll use the Session object to help manage state data; but I’ll use
it sparingly, because overuse of global fields is a cardinal sin!

Interface Design
The UI application can be found within the ProjectTracker solution. The project is named PTWeb.
The PTWeb interface uses a master page to provide consistency across all the pages in the site. The
Default.aspx page provides a basic entry point to the website. Figure 10-6 shows what the page
layout looks like.

CHAPTER 10 ■ WEB FORMS UI522

6315_c10_final.qxd 4/7/06 1:51 PM Page 522

Notice that the navigation area on the left provides links dealing with projects, resources, and
roles. An authentication link is provided near the top-right of the page. When the user clicks a link,
the user is directed to an appropriate content page. Figure 10-7 shows the user editing a project.

CHAPTER 10 ■ WEB FORMS UI 523

Figure 10-6. Appearance of Default.aspx

6315_c10_final.qxd 4/7/06 1:51 PM Page 523

Table 10-3 lists the forms and controls that make up the interface.

Table 10-3. Web Forms in PTWeb

Form/Control Description

Default The main page for the application

Login A login page to collect user credentials

RolesEdit Allows the user to edit the list of roles

ProjectList Allows the user to select and delete projects

ProjectEdit Allows the user to view, add, or edit a project

ResourceList Allows the user to select and delete resources

ResourceEdit Allows the user to view, add, or edit a resource

All of the pages dealing with business data use the exact same objects as the Windows Forms UI
in Chapter 9. The same ProjectTracker.Library assembly created in Chapter 8 is used for the Win-
dows, web, and Web Services interfaces in this book. The web forms using those objects are built
using data binding, relying on the CslaDataSource control discussed in Chapter 5.

CHAPTER 10 ■ WEB FORMS UI524

Figure 10-7. Editing a project

6315_c10_final.qxd 4/7/06 1:51 PM Page 524

Application Configuration
The site needs to provide some basic configuration information through the web.config file. This
includes configuring the data portal or database connection strings. It also includes configuring the
CslaDataSource control.

In the web.config file, you can either provide connection strings so that the site can interact
with the database directly, or you can configure the data portal to communicate with a remote
application server. The basic concept here was discussed in Chapter 4 when the channel adapter
implementation was covered. Recall that the data portal supports three possible channels: remot-
ing, Enterprise Services, and Web Services. You can create your own channels as well if none of
these meet your needs.

In Chapter 1, I discussed the trade-offs between performance, scalability, fault tolerance, and
security that come with various physical n-tier configurations. In most cases, the optimal solution
for a web UI is to run the data portal locally in the client process. However, for security reasons, it
may be desirable to run the data portal remotely on an application server. Chapter 12 will demon-
strate how to create the three types of remote data portal hosts for use by the PTWeb application.

The web.config file is an XML file that contains settings to configure the website. You use differ-
ent XML depending on how you want the site configured.

CslaDataSource Control
The data binding in this chapter will rely on the CslaDataSource control discussed in Chapter 5.
In order to use this control in Web Forms, the site needs to define a control prefix for any controls
in Csla.dll. I’ll use the prefix csla.

This prefix is defined either in each web form, or in web.config. Since most pages will use the
control, it is best to define the prefix in web.config so that it’s available site-wide. You’ll find this
element within the <pages> element:

<controls>
<add tagPrefix="csla" namespace="Csla.Web" assembly="Csla"/>

</controls>

This globally defines the csla prefix to refer to the Csla.Web namespace from Csla.dll. With
this done, all pages in the website can use the prefix like this:

<csla:CslaDataSource id="MyDataSource" runat="server"/>

Authentication
The way authentication is handled by CSLA .NET is controlled through web.config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />

</appSettings>
</configuration>

The CslaAuthentication key shown here specifies the use of custom authentication. Chapter 8
implemented the PTPrincipal and PTIdentity classes specifically to support custom authentication,
and the UI code in this chapter will use custom authentication as well.

If you want to use Windows authentication, change the configuration to this:

<add key="CslaAuthentication" value="Windows" />

CHAPTER 10 ■ WEB FORMS UI 525

6315_c10_final.qxd 4/7/06 1:51 PM Page 525

Of course, that change would require coding changes. To start, the PTPrincipal and PTIdentity
classes should be removed from ProjectTracker.Library, as they would no longer be needed. Also,
the login/logout functionality implemented in this chapter would become unnecessary. Specifi-
cally, the Login form and the code to display that form would be removed from the UI project.

Local Data Portal
The web.config file also controls how the application uses the data portal. To have the website
interact directly with the database, use the following (with your connection string changed to the
connection string for your database):

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />

</appSettings>
<connectionStrings>
<add name="PTracker" connectionString="your connection string"
providerName="System.Data.SqlClient" />

<add name="Security" connectionString="your connection string"
providerName="System.Data.SqlClient" />

</connectionStrings>

Because LocalProxy is the default for the data portal, no actual data portal configuration is
required, so the only settings in the configuration file are to control authentication and to provide
the database connection strings.

■Tip In the code download for this book, the PTracker and Security database files are in the solution directory,
not in the website’s App_Data directory. This means that you can’t use a local data portal from the website without
first copying the database files into the App_Data directory and changing the connection strings accordingly.

Remote Data Portal (with Remoting)
To have the data portal use an application server and communicate using the remoting channel, the
configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.RemotingProxy, Csla"/>

<add key="CslaDataPortalUrl"
value="http://localhost/RemotingHost/RemotingPortal.rem"/>

</appSettings>
<connectionStrings>
</connectionStrings>

The key lines for remoting configuration are in bold. Of course, you need to change localhost
to the name of the application server on which the data portal host is installed, and the
RemotingHost text needs to be replaced with the name of your virtual root on that server.

Before using this configuration, the remoting host virtual root must be created and configured.
I’ll show how this is done in Chapter 12.

CHAPTER 10 ■ WEB FORMS UI526

6315_c10_final.qxd 4/7/06 1:51 PM Page 526

Remote Data Portal (with Enterprise Services)
Similarly, to use the Enterprise Services channel, the configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="EnterpriseServicesHost.EnterpriseServicesProxy,

EnterpriseServicesHostvb"/>
</appSettings>
<connectionStrings>
</connectionStrings>

Before using this configuration, an Enterprise Services host must be created and registered
with COM+. The resulting COM+ application must be registered with COM on each client work-
station. The basic steps were discussed in Chapter 4, and I’ll show how this is done in Chapter 12.

Remote Data Portal (with Web Services)
Finally, to use Web Services, the configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.WebServicesProxy, Csla"/>

<add key="CslaDataPortalUrl"
value="http://localhost/WebServicesHost/WebServicePortal.asmx"/>

</appSettings>
<connectionStrings>
</connectionStrings>

As with remoting, you need to change localhost and WebServicesHost to the actual server
name and virtual root name used by your application. Also, the virtual root and web service asmx
file must be created and configured. I’ll show how this is done in Chapter 12.

The most important thing to realize about the site configuration is that the data portal can be
changed from local to remote (using any of the network channels) with no need to change any UI
or business object code.

PTWeb Site Setup
The UI application can be found within the ProjectTracker solution. The project is named PTWeb.

The site references the ProjectTracker.Library project, as shown in Figure 10-8. This causes
Visual Studio to automatically put the associated Csla.dll files into the Bin directory as well,
because Csla.dll is referenced by ProjectTracker.Library.

CHAPTER 10 ■ WEB FORMS UI 527

6315_c10_final.qxd 4/7/06 1:51 PM Page 527

Hosting in IIS
The PTWeb website will only run within IIS, not within the ASP.NET Development Server (commonly
known as Cassini or VS Host). The reason for this is explained later in the chapter, in the “Forms-
Based Authentication” section.

To host a website in IIS during development, you need to take the following steps:

1. Set up a virtual root in IIS that points to the directory containing the PTWeb project files.

2. Set the virtual root to use ASP .NET 2.0, using the ASP.NET tab of the virtual root properties
dialog in the IIS management console.

3. Set the website’s start options using the project properties dialog in Visual Studio 2005.
Change the setting to use a custom server so it starts up using IIS with a URL such as
http://localhost/PTWeb.

With the basic website setup complete, let’s go through the creation of the Web Forms UI.
First, I’ll discuss the use of a master page, and then I’ll cover the process of logging a user in and
out using forms-based authentication.

With the common code out of the way, I’ll discuss the process of maintaining the roles and
project data in detail. At that point, you should have a good understanding of how to create both
grid-based and detail pages.

Master Page
To ensure that all pages in the site have the same basic layout, navigation, and authentication
options, a master page is used. The master page provides these consistent elements, and all the
rest of the pages in the site are content pages. This means they fit within the context of the master
page itself, adding content where appropriate.

CHAPTER 10 ■ WEB FORMS UI528

Figure 10-8. Referencing ProjectTracker.Library

6315_c10_final.qxd 4/7/06 1:51 PM Page 528

Look back at Figures 10-6 and 10-7 to see the visual appearance of the pages. Both Default.
aspx and ProjectEdit.aspx are content pages, adding their content to that already provided by
MasterPage.master:

<%@ Master Language="VB" CodeFile="MasterPage.master.vb"
Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head runat="server">
<title>Untitled Page</title>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1" />

</head>
<body>
<form id="form1" runat="server">
<div id="mainTable">
<div id="header">
<asp:Label ID="PageTitle" runat="server">
</asp:Label>

</div>
<div id="navigation">
<div id="navigationContent">
<asp:TreeView ID="TreeView1" runat="server"
DataSourceID="SiteMapDataSource1"
ShowExpandCollapse="False" SkipLinkText="" >
<NodeStyle CssClass="nav" />

</asp:TreeView>
</div>

</div>
<div id="subnavigation">
<div id="logout">
<asp:LoginStatus ID="LoginStatus1"
runat="server"/>

</div>
</div>
<div id="content">
<asp:ContentPlaceHolder id="ContentPlaceHolder1"
runat="server">

</asp:ContentPlaceHolder>
</div>

</div>
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
ShowStartingNode="False" />

</form></body>
</html>

MasterPage.master defines the header/title bar at the top of the page. The area immediately
beneath the header/title bar contains the Login button, and there is a navigation area down the left.
Perhaps most importantly, it also defines a content area containing a ContentPlaceHolder control:

<asp:ContentPlaceHolder id="ContentPlaceHolder1"
runat="server">

</asp:ContentPlaceHolder>

This is the area where content pages provide their content, and it is the main body of the page.
You’ll see how each content page provides content for this area later in the chapter.

CHAPTER 10 ■ WEB FORMS UI 529

6315_c10_final.qxd 4/7/06 1:51 PM Page 529

Theme Support
ASP.NET 2.0 supports the concept of themes for a website, where the visual appearance of the site
is defined by a theme: a group of files in a theme-specific subdirectory beneath the App_Themes
directory in the virtual root. A theme is a group of style sheets, graphics, and control skins that
describe the appearance of a site. A given site can have many themes, and you can even allow the
user to choose between them if you so desire.

Notice how all of the regions in the master page are set up using div tags. No appearance char-
acteristics are specified in the page itself. Instead, the actual appearance is defined by a CSS style
sheet contained within the current theme for the site. The PTWeb site includes and uses a Basic
theme. The use of the Basic theme is set up in web.config:

<pages theme="Basic" styleSheetTheme="Basic">

The theme property sets the default runtime theme, while styleSheetTheme sets the theme for
use at design time in Visual Studio. The styleSheetTheme property should be removed when the
website is deployed to a production server.

The files defining this theme are in the App_Themes/Basic folder beneath the virtual root. You
should notice that the names of the css and skin files match the name of the theme folder itself.
Having the names match allows ASP.NET to automatically realize that it needs to use these files
when the theme is selected for the website. The files in this theme are listed in Table 10-4.

Table 10-4. Files in the Basic Theme

File Description

Basic.css The style sheet for the site

Basic.skin The skins for GridView, DetailsView, and Login controls

Images\background.jpg The background graphic for the header region

Images\corner.png The graphic for the rounded corner in the upper-left

Combined, these files define the look and feel of the site. This includes defining the appearance
of the regions in MasterPage.master. For instance, the header region is defined in the css file like this:

#header
{
background-image: url('images/background.jpg');
background-repeat: no-repeat;
height: 64px;
line-height: 60px;
text-align: left;
color: #FFFFFF;
font-family:
Verdana, Arial, Helvetica, sans-serif;
font-size: 36px;
font-weight: bold;
font-style: italic;
padding-left: 10px

}

A control skin defines the appearance of specific controls in the website, such as GridView,
TextBox, and so forth. For instance, the appearance of the Login control is defined in the skin file
like this:

CHAPTER 10 ■ WEB FORMS UI530

6315_c10_final.qxd 4/7/06 1:51 PM Page 530

<asp:Login runat="server" BackColor="#DEDEDE" BorderColor="Black"
BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"
Font-Size="10pt">
<TitleTextStyle BackColor="Black" Font-Bold="True"
Font-Names="Verdana" Font-Size="10pt"
ForeColor="White" />

</asp:Login>

Each type of control in Web Forms has different options you can set in a skin file, allowing
you to set the appearance of each control in many ways.

By making the site theme-enabled, you can easily change the appearance of the site later
by creating a new theme directory and similar theme files, and setting the theme property in
web.config to use the new theme.

Header Region
The header region of the page is the title area across the top. It contains a single Label control
named PageTitle. This control displays the title of the current content page, based on the Title
property set for that page. The following code is included in MasterPage.master to load this value:

Protected Sub Page_Load(_
ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

PageTitle.Text = Page.Title
End Sub

As each content page loads, not only does the Load event for the content page run, but so does
the Load event for the master page. This means that code can be placed in the master page to run
when any content page is loaded—in this case, to set the title at the top of the page.

Navigation Region
The navigation region displays the navigation links down the left side of each page. To do this, a
web.sitemap file and associated SiteMapDataSource control are used to load the overall structure of
the site into memory. This data is then data bound to a TreeView control for display to the user.

The web.sitemap file is an XML file that contains a node for each page to be displayed in the
navigation region:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap
xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode url="" title="" description="">
<siteMapNode url="~/Default.aspx" title="Home"

description="Main page" />
<siteMapNode url="~/ProjectList.aspx" title="Project list"

description="Project list" />
<siteMapNode url="~/ResourceList.aspx" title="Resource list"

description="Resource list" />
<siteMapNode url="~/RolesEdit.aspx" title="Project roles"

description="Project roles" />
</siteMapNode>

</siteMap>

The site map concept can be used to define hierarchical website structures, but in this case,
I’m using it to define a flat structure. Notice how each <siteMapNode> element defines a page—
except the first one. That root node is required in the file, but since I’m defining a flat structure,

CHAPTER 10 ■ WEB FORMS UI 531

6315_c10_final.qxd 4/7/06 1:51 PM Page 531

it really doesn’t represent a page and is just a placeholder. If you were to define a hierarchical page
structure, that node would typically point to Default.aspx.

Notice that MasterPage.master includes a SiteMapDataSource control:

<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
ShowStartingNode="False" />

This special data control automatically reads the data from the web.sitemap file and makes it
available to controls on the page. The ShowStartingNode property is set to False, indicating that the
root node in web.sitemap is to be ignored. That’s perfect, because that node is empty and shouldn’t
be displayed.

In this case, a TreeView control in the navigation region is bound to the SiteMapDataSource, so
it displays the items listed in web.sitemap to the user.

LoginStatus Control
In the subnavigation region of MasterPage.master, you’ll see a LoginStatus control:

<asp:LoginStatus ID="LoginStatus1"
runat="server"/>

This is one of the login controls provided with ASP.NET 2.0, and its purpose is to allow the user
to log into and out of the site. The control automatically displays the word Login if the user is logged
out, and Logout if the user is logged in. When clicked, it also automatically redirects the user to a
login web page defined in web.config. I’ll cover the web.config options later.

Because the control automatically directs the user to the appropriate login page to be logged
in, no code is required for that process. However, code is required to handle the case in which the
user clicks the control to be logged out. This code goes in the master page:

Protected Sub LoginStatus1_LoggingOut(_
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.LoginCancelEventArgs) _
Handles LoginStatus1.LoggingOut

ProjectTracker.Library.Security.PTPrincipal.Logout()
Session("CslaPrincipal") = Csla.ApplicationContext.User
System.Web.Security.FormsAuthentication.SignOut()

End Sub

This code covers a lot of ground. First, the Logout() method of PTPrincipal is called, which sets
the current principal on the current Thread object to an unauthenticated PTPrincipal object. This
was discussed in Chapter 8 and used in PTWin in Chapter 9.

However, when the user is logged in, their principal object is stored in a Session field so it can
be easily reloaded on every page request. The details on how this works are discussed later in the
chapter. When the user logs out, that Session field is updated to reference the new principal object.

■Note If you want to avoid Session, you can choose to reload the user’s identity and roles from the security
database on every page request. While that avoids the use of Session, it can put a substantial workload on your
security database server. In PTWeb, I have opted to use Session to minimize the load on the database.

The final step is to tell ASP.NET itself that the user is no longer authenticated. This is done
by calling FormsAuthentication.SignOut(). This method invalidates the security cookie used by
ASP.NET to indicate that the user has been authenticated. The result is that ASP.NET sees the user
as unauthenticated on all subsequent page requests.

CHAPTER 10 ■ WEB FORMS UI532

6315_c10_final.qxd 4/7/06 1:51 PM Page 532

This covers the logout process, but the login process requires some more work. While the
LoginStatus control handles the details of directing the user to a login page, that page must be
created.

Login Page
Like the PTWin smart client, the PTWeb site is designed to use custom authentication, so I can illus-
trate the custom authentication support provided by CSLA .NET. I’ll also briefly discuss the use of
Windows integrated security and the ASP.NET membership service.

In Web Forms, when using custom authentication, you need to configure the site appropriately
using web.config, and implement a login web page to collect and validate the user’s credentials.
That’s the purpose behind Login.aspx.

Forms-Based Authentication
When using forms-based authentication, users are often automatically redirected to a login form
before being allowed to access any other pages. Alternatively, anonymous users can be allowed to
use the site, and they can choose to log into the site to gain access to extra features or functionality.
The specific behaviors are defined by web.config.

Before moving on, remember that the following implementation only works within IIS. The
ASP.NET Development Server provided with Visual Studio has various limitations; among them is
the inability to load custom security objects from assemblies in the Bin directory. This means you
can’t use the ASP.NET Development Server to test or debug custom principal objects, custom mem-
bership providers, or other custom security objects if they’re in an assembly referenced from the
project.

Though this is an unfortunate limitation, it can be argued that the ASP.NET Development
Server is not intended for anything beyond hobbyist or casual usage, and that IIS should be used
for any serious business development.

■Note An alternative solution is to install the assembly containing your custom principal and identity classes into
the .NET Global Assembly Cache (GAC). For PTWeb, this would mean giving ProjectTracker.Library a strong
name and using the gacutil.exe command line utility to install the assembly into the GAC. ProjectTracker.
Library would need to be updated in the GAC after each time you build the assembly. I find that using IIS is a far
simpler solution than using the GAC.

Configuring the Site

Using forms-based security in ASP.NET means that web.config includes elements like this:

<authentication mode="Forms">
<forms loginUrl="Login.aspx" name="ptracker"/>

</authentication>
<authorization>
<allow users="*"/>

</authorization>

This tells ASP.NET to use forms-based authentication (mode="Forms"), yet to allow unauthenti-
cated users (<allow users="*"/>).

CHAPTER 10 ■ WEB FORMS UI 533

6315_c10_final.qxd 4/7/06 1:51 PM Page 533

■Note To require users to log in before seeing any pages, replace <allow users="*"/> with
<deny users="?"/>.

It is important that you also ensure that the security on the virtual root itself (within IIS) is con-
figured to allow anonymous users. If IIS blocks anonymous users, then it doesn’t really matter what
kind of security you use within ASP.NET.

■Note Remember that IIS security runs first, and then any ASP.NET security is applied.

With the web.config options shown previously, users can use the site without logging in, but
the concept of logging in is supported. The goal is the same as with PTWin in Chapter 9: allow all
users to perform certain actions, and allow authenticated users to perform other actions based
on their roles.

When a user chooses to log in, the <forms> tag specifies that he will be directed to Login.aspx,
which will collect and validate their credentials. Figure 10-9 shows the appearance of Login.aspx.

CHAPTER 10 ■ WEB FORMS UI534

Figure 10-9. Layout of the Login page

6315_c10_final.qxd 4/7/06 1:51 PM Page 534

Now this is where things get kind of cool. There is no code behind Login.aspx. This page uses
the ASP.NET Login control:

<asp:Login ID="Login1" runat="server">
</asp:Login>

This control is designed to automatically use the default ASP.NET membership provider for
the site.

■Caution The user’s credentials flow from the browser to the web server in clear text—they are not automati-
cally encrypted. Due to this, it is recommended that Login.aspx be accessed over an SSL (Secure Sockets Layer)
connection so that data traveling to and from the browser is encrypted during the login process.

You can write code to handle the events of the Login control if you desire, but a membership
provider offers a cleaner solution overall. Of course, the membership provider that comes with
ASP.NET doesn’t understand PTPrincipal and PTIdentity objects, so PTWeb includes its own custom
membership provider.

Custom Membership Provider

A membership provider is an object that inherits from System.Web.Security.MembershipProvider
to handle all aspects of membership. These aspects include:

• Validating user credentials

• Adding a new user

• Deleting a user

• Changing a user’s password

• And more . . .

Of course, PTPrincipal doesn’t understand all these things, and ProjectTracker.Library
doesn’t implement a full set of membership objects either. If you want to support all these capa-
bilities, you should create your own security library with appropriate objects.

But PTPrincipal does understand how to validate a user’s credentials. Fortunately, it is pos-
sible to implement a subset of the complete membership provider functionality, and that’s what
I do in PTWeb.

The PTMembershipProvider class is in the App_Code directory, so ASP.NET automatically com-
piles it and makes it available to the website. This class inherits from MembershipProvider and
overrides the ValidateUser() method:

Public Class PTMembershipProvider
Inherits MembershipProvider

Public Overrides Function ValidateUser(_
ByVal username As String, ByVal password As String) As Boolean

If PTPrincipal.Login(username, password) Then
System.Web.HttpContext.Current.Session("CslaPrincipal") = _
Csla.ApplicationContext.User

Return True

CHAPTER 10 ■ WEB FORMS UI 535

6315_c10_final.qxd 4/7/06 1:51 PM Page 535

Else
Return False

End If
End Function

' other methods …
End Class

All other methods are overridden to throw an exception indicating that they aren’t imple-
mented by this provider.

Notice how the ValidateUser() method already accepts username and password parameters.
This is convenient because the Login() method of PTPrincipal accepts those parameters as well.
The code simply calls the Login() method and records the result; True if the user was logged in,
False otherwise.

Remember from Chapter 8 that the Login() method sets the User property of Csla.
ApplicationContext, thus automatically setting either the Thread object’s CurrentPrincipal
property or the HttpContext.Current.User property to an authenticated PTPrincipal if the user’s
credentials were valid; otherwise, it is set to an unauthenticated PTPrincipal. Since this code will
be running within ASP.NET, it is the HttpContext value that is set to the user’s principal.

The code then sets a Session field, CslaPrincipal, to contain this principal value so that it
will be available to subsequent pages.

Then the result value is returned. The ASP.NET membership infrastructure relies on this
return value to know whether the user’s credentials were valid or not.

Before this custom membership provider can be used, it must be defined in web.config as
follows:

<membership defaultProvider="PTMembershipProvider">
<providers>
<add name="PTMembershipProvider"
type="PTMembershipProvider"
enablePasswordRetrieval="false"
enablePasswordReset="false"
requiresQuestionAndAnswer="false"
applicationName="/"
requiresUniqueEmail="false"
passwordFormat="Clear"
description="Stores and retrieves membership
data using CSLA .NET business objects."

/>
</providers>

</membership>

By making PTMembershipProvider the default provider, this definition tells ASP.NET to auto-
matically use it for any membership activities, including validating a user’s credentials.

Reloading the Principal

At this point, you’ve seen how the user can log in or out using the LoginStatus control on the
master page. And you’ve seen how Login.aspx and the custom membership provider are used
to gather and validate the user’s credentials.

But how does the principal object carry forward from page to page? Remember that the web
technologies are stateless by default, and it is up to the web developer to manually implement state
management as she chooses. Unfortunately, this extends to the user’s identity as well.

The forms-based security infrastructure provided by ASP.NET writes an encrypted cookie to
the user’s browser. That cookie contains a security ticket with a unique identifier for the user, the

CHAPTER 10 ■ WEB FORMS UI536

6315_c10_final.qxd 4/7/06 1:51 PM Page 536

user’s name, and an expiration time. This cookie flows from the browser to the web server on each
page request, so that basic information is available.

Notice, however, that the cookie doesn’t include the principal and identity objects. That is
because those objects could be quite large, and in some cases, might not even be serializable.
Though PTPrincipal and PTIdentity are serializable, they could still be large enough to pose a
problem if you tried to write them to the cookie. Cookies have a size limit, and remember that
PTIdentity contains an array with all the role names for the user. Given a large number of roles
or lengthy role names, this could easily add up to a lot of bytes of data.

■Note It is possible to serialize the principal and identity objects into the cookie (if the objects are serializable).
Doing so isn’t recommended, however, due to the size limitations on cookies.

It is quite possible to reload PTPrincipal and PTIdentity from the security database on every
page request. Remember that the ASP.NET security cookie contains the username value, and you
already know that the user was authenticated. All you would need is another stored procedure in
the database that returns the user information based on username alone; no password would be
provided or checked. Similarly, another Shared method like Login() would be implemented in
PTPrincipal to load the objects based only on the username value.

There are two drawbacks to this. First, reloading this data from the security database on every
page request could cause a serious performance issue. The security database could get overloaded
with all the requests. Second, there’s an obvious security risk in implementing methods that allow
loading user identities without having to supply the password. While that functionality wouldn’t be
exposed to the end user, it makes it easier for accidental bugs or malicious back-door code to creep
into your website.

This is why I use Session to store the principal object in PTWeb. The user’s credentials are vali-
dated, and the resulting principal object is placed in a Session field named CslaPrincipal. On all
subsequent page requests, this value is retrieved from Session and is used to set both the current
Thread and HttpContext object’s principals.

The work occurs in Global.asax, as this file contains the event handlers for all events leading
up to a page being processed. In this case, it is the AcquireRequestState event that is used:

Protected Sub Application_AcquireRequestState(_
ByVal sender As Object, ByVal e As System.EventArgs)

Dim principal As System.Security.Principal.IPrincipal
Try
principal = _
CType(Session("CslaPrincipal"), System.Security.Principal.IPrincipal)

Catch
principal = Nothing

End Try

If principal Is Nothing Then
' didn't get a principal from Session, so
' set it to an unauthenticted PTPrincipal
ProjectTracker.Library.Security.PTPrincipal.Logout()

Else
' use the principal from Session
Csla.ApplicationContext.User = principal

End If
End Sub

CHAPTER 10 ■ WEB FORMS UI 537

6315_c10_final.qxd 4/7/06 1:51 PM Page 537

The reason for using the AcquireRequestState event, rather than the more obvious
AuthenticateRequest event, is that Session isn’t initialized when AuthenticateRequest is raised,
but it usually is initialized when AcquireRequestState is raised.

The code first attempts to retrieve the principal object from Session. This can result in an
exception if Session doesn’t exist, and so the value would end up being Nothing. Also, if this is the
first page request by the user, the Session field will return Nothing. So the outcome is either a valid
PTPrincipal object or Nothing.

If the resulting principal value is Nothing, PTPrincipal.Logout() is called to set the current
principal as an unauthenticated PTPrincipal, and the HttpContext is set to use that same principal
object. This supports the idea of an unauthenticated anonymous guest user. Both the web and
business library code have access to valid, if unauthenticated, principal objects, and can apply
authorization code as needed. Additionally, by having the current principal be a valid PTPrincipal
object, a remote data portal can be invoked and the application server will impersonate the unau-
thenticated user identity so that code can apply authorization rules as well.

On the other hand, if a principal object is retrieved from Session, then that value is set as the
current principal.

Using Windows Integrated Security
If you wanted to use Windows integrated security, you wouldn’t need Login.aspx, the custom mem-
bership provider, or the code in Global.asax, because the user’s identity is already known. The user
provided his Windows credentials to the browser, which in turn provided them to the web server.

This means that the virtual root in IIS must be configured to disallow anonymous users, thus
forcing the user to provide credentials to access the site. It is IIS that authenticates the user and
allows authenticated users into the site.

To have ASP.NET use the Windows identity from IIS, web.config must be configured correctly:

<authentication mode="Windows"/>
<identity impersonate="true"/>

The authentication mode is set to Windows, indicating that ASP.NET should defer all authenti-
cation to the IIS host. Setting the impersonate property to true tells ASP.NET to impersonate the
user authenticated by IIS.

■Note If you use Windows integrated security, and you are using a remote data portal, you must make sure to
change the application server configuration file to also use Windows security. If the data portal is hosted in IIS, the
virtual root must be set to disallow anonymous access, thereby forcing the client to provide IIS with the Windows
identity from the web server via integrated security.

Using the ASP.NET Membership Service
ASP.NET 2.0 not only supports the broad concept of membership as used previously, but it provides
a complete membership service, including all the code to make it work.

The membership service is most often used with the SQL membership provider that comes
with ASP.NET. This provider requires that you use a predefined database schema, along with the
membership objects provided by Microsoft to manage and interact with the database. By default,
ASP.NET will use a Microsoft SQL Server 2005 Express database in the virtual root’s App_Data direc-
tory, but you can override that behavior to have it use another Microsoft SQL Server database if
needed.

The other membership provider shipped with ASP.NET is a connector to Active Directory (AD).
It does the same thing, but stores the user information in AD instead of a SQL database.

CHAPTER 10 ■ WEB FORMS UI538

6315_c10_final.qxd 4/7/06 1:51 PM Page 538

Using the Membership Service with a Local Data Portal

If you are running the data portal in the client process, you can use the SQL membership provider
without any special effort. In that case, the web server will interact directly with the database.

Of course, you don’t need PTPrincipal or PTIdentity, because ASP.NET provides its own prin-
cipal and identity types. Similarly, you don’t need to manually handle the logout event of the
LoginStatus control or put any code in Global.asax.

In short, it just works. All the authorization code in CSLA .NET will use the ASP.NET principal
object to call IsInRole(), so all the prebuilt authorization functionality just works.

Using the Membership Service with a Remote Data Portal

Things are a bit more complex if you are using a remote data portal on an application server. There
are two things to consider here. First, the SQL membership provider talks directly to the security
database, knowing nothing about application servers. If you want to use the application server, the
approach taken in PTWeb is better. Second, the data portal will only accept principal objects that
inherit from Csla.Security.BusinessPrincipalBase, and of course the ASP.NET membership prin-
cipal types don’t do that.

The first problem is one of application architecture, and you need to decide if it makes sense
for you to have the security mechanism talk directly to a database while your business code uses
an application server to talk to the business database.

The second problem can be overcome with just a bit of code. You need to wrap the ASP.NET
membership principal in a CSLA .NET–style principal. There are two parts to this. First, you need
a custom principal class; second, you need to add some code to Global.asax.

A custom principal class to wrap the ASP.NET principal object would look like this:

<Serializable()> _
Public Class MembershipPrincipal
Inherits Csla.Security.BusinessPrincipalBase

Private mPrincipal As System.Security.Principal.IPrincipal

Public Sub New(ByVal principal As System.Security.Principal.IPrincipal)
MyBase.New(principal.Identity)
mPrincipal = principal

End Sub

Public Overrides Function IsInRole(ByVal role As String) As Boolean
Return mPrincipal.IsInRole(role)

End Function
End Class

The code in Global.asax takes the ASP.NET principal and wraps it in a MembershipPrincipal:

Protected Sub Application_AcquireRequestState(_
ByVal sender As Object, ByVal e As System.EventArgs)

Csla.ApplicationContext.User =
New MembershipPrincipal(HttpContext.Current.User)

End Sub

This code sets the ApplicationContext object’s User property to use the new
MembershipPrincipal. This way, the original user information and list of roles are preserved, but
the actual principal object used by the application inherits from BusinessPrincipalBase. The result
is that the data portal can impersonate the web user on the application server.

CHAPTER 10 ■ WEB FORMS UI 539

6315_c10_final.qxd 4/7/06 1:51 PM Page 539

At this point, you should have an understanding of how the website is organized. It references
ProjectTracker.Library and uses a master page and theme to provide a consistent, manageable
appearance for the site. It also uses a mix of ASP.NET login controls and the prebuilt ProjectTracker
security objects to implement custom authentication.

Now let’s move on and discuss the pages that provide actual business behaviors.

Business Functionality
With the common functionality in the master page, Login.aspx, and Global.asax covered, it is
possible to move on to the business functionality itself. As I mentioned earlier, I’ll walk through
the RolesEdit, ProjectList, and ProjectEdit web forms in some detail. ResourceList and
ResourceEdit are available in the download and follow the same implementation approach.

All of these web forms will be created using the new data binding capabilities built into
ASP.NET 2.0 and the CslaDataSource control discussed in Chapter 5. These capabilities allow the
web developer to easily link controls on the form to business objects and their properties. The
developer productivity gained through this approach is simply amazing.

Other key technologies I’ll be using are the MultiView control and the associated View control.
These controls make it easy for a single page to present multiple views to the user, and are often
very valuable when building pages for editing data.

Finally, remember that all these pages are content pages. This means that they fit within the
context of a master page—in this case, MasterPage.master. As you’ll see, the tags in a content page
are a bit different from those in a simple web form.

RolesEdit Form
The RolesEdit.aspx page is a content page, so its Page directive looks like this:

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master"
AutoEventWireup="false" CodeFile="RolesEdit.aspx.vb"
Inherits="RolesEdit" title="Project Roles" %>

Notice the MasterPageFile property, which points to MasterPage.master. Also notice the Title
property, which sets the page’s title. It is this value that is used in the master page’s Load event han-
dler to set the title text in the header region of the page.

Figure 10-10 shows what the page looks like in Visual Studio.
The grey Content title bar across the top of the main page body won’t be visible at runtime.

It is visible at design time to remind you that you are editing a content area in the page. If you look
at the page’s source, you’ll see that all the page content is contained within a Content control:

<asp:Content ID="Content1"
ContentPlaceHolderID="ContentPlaceHolder1" Runat="Server">
<%-- page content goes here --%>

</asp:Content>

The ContentPlaceHolderID property links this content to the ContentPlaceHolder1 control in
the master page. This scheme means that a master page can define multiple content placeholders,
and a content page can have multiple Content controls—one for each placeholder.

CHAPTER 10 ■ WEB FORMS UI540

6315_c10_final.qxd 4/7/06 1:51 PM Page 540

MultiView Control
The MultiView control contains two View controls, named MainView and InsertView. Only one of
these views will be active (visible) at any time, so this form really defines two different views for the
user.

Within your code, you select the view by setting the ActiveViewIndex property of the MultiView
control to the numeric index of the appropriate View control. Of course, using a numeric value like
this doesn’t lead to maintainable code, so within the page, I define an enumerated type with text
values corresponding to each View control:

Private Enum Views
MainView = 0
InsertView = 1

End Enum

The Views type will be used to change the page view as needed.

Error Label
Beneath the MultiView control in Figure 10-10 is a Label control with its ForeColor set to Red. The
purpose behind this control is to allow the page to display error text to the user in the case of an
exception.

As you’ll see, the data access code uses Try...Catch blocks to catch exceptions that occur dur-
ing any data updates (insert, update, or delete). The text of the exception is displayed in ErrorLabel
so it is visible to the user.

CHAPTER 10 ■ WEB FORMS UI 541

Figure 10-10. Layout of the RolesEdit page

6315_c10_final.qxd 4/7/06 1:51 PM Page 541

Using a Business Object As a Data Source
In Chapter 5, I discussed the CslaDataSource control, and how it overcomes the limitations of the
standard ObjectDataSource control. The RolesEdit page uses this control, making it relatively easy
to bind the Roles collection from ProjectTracker.Library to a GridView control on the page.

The RolesDataSource data source control is defined on the page like this:

<csla:CslaDataSource ID="RolesDataSource" runat="server"
TypeAssemblyName="ProjectTracker.Library"
TypeName="ProjectTracker.Library.Admin.Roles">

</csla:CslaDataSource>

The TypeAssemblyName and TypeName properties define the assembly containing the business
class and the business class type, respectively. These two properties provide the control with
enough information so that it can load the Roles type and determine the properties that will be
exposed by child objects in the collection.

Of course, to get this data source control onto the web form, you can simply drag the
CslaDataSource control from the toolbox onto the designer surface and set its properties through
the Properties window in Visual Studio.

Then, when the GridView and DetailsView controls are placed on the form, you can use their
pop-up Tasks menu to select the data source control, as shown in Figure 10-11.

You can either write the tags yourself or use the designer support built into Visual Studio.

Caching the Object in Session
To optimize the performance of the website, business objects are stored in Session. While they
could be retrieved directly from the database when needed, storing them in Session reduces the
load on the database server.

To minimize the number of objects maintained in Session, all pages use the same Session
field to store their business objects: currentObject. This way, only one business object is stored
in Session at any time, and that is the object being actively used by the current page.

Of course, browsers have a Back button, which means that the user could navigate back to
some previous page that expects to be using a different type of object than the current page. For
instance, the user could be editing a Project object, and then start editing a Resource object.
Session would have originally contained the Project, but then would contain the Resource.

If the user then used the Back button to return to the ProjectEdit page, Session could still
have the Resource object in the currentObject field. This possibility is very real, and must be dealt

CHAPTER 10 ■ WEB FORMS UI542

Figure 10-11. Choosing a data source for a GridView or DetailsView

6315_c10_final.qxd 4/7/06 1:51 PM Page 542

with by checking the type of the object retrieved from Session to see if it is the type the page actu-
ally needs. If not, then the correct object must be retrieved from the database.

In RolesEdit, the GetRoles() method performs this task:

Private Function GetRoles() As ProjectTracker.Library.Admin.Roles
Dim businessObject As Object = Session("currentObject")
If businessObject Is Nothing OrElse _
Not TypeOf businessObject Is ProjectTracker.Library.Admin.Roles Then
businessObject = _
ProjectTracker.Library.Admin.Roles.GetRoles

Session("currentObject") = businessObject
End If
Return CType(businessObject, ProjectTracker.Library.Admin.Roles)

End Function

The code retrieves the currentObject item from Session. If the result is Nothing, or if the result-
ing object isn’t a Roles object, then a new Roles object is retrieved by calling the Roles.GetRoles()
factory method. That newly retrieved object is placed in Session, making it the current object.

In any case, a valid Roles object is returned as a result.

Selecting an Object
The SelectObject event is raised when the web page needs data from the data source—the Roles
object, in this case. The page must handle the event and return the requested data object:

Protected Sub RolesDataSource_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles RolesDataSource.SelectObject

Dim obj As ProjectTracker.Library.Admin.Roles = GetRoles()
e.BusinessObject = obj

End Sub

The GetRoles() helper method is called to retrieve the Roles collection object. Then the Roles
object is returned to the RolesDataSource control by setting the e.BusinessObject property. The
data source control then provides this object to the ASP.NET data binding infrastructure so it can be
used to populate any UI controls bound to the data control. In this case, that’s the GridView control
in MainView. That control is declared like this:

<asp:GridView ID="GridView1" runat="server"
AutoGenerateColumns="False"
DataSourceID="RolesDataSource"
DataKeyNames="Id">
<Columns>
<asp:BoundField DataField="Id" HeaderText="Id"
ReadOnly="True" SortExpression="Id" />

<asp:BoundField DataField="Name" HeaderText="Name"
SortExpression="Name" />

<asp:CommandField ShowDeleteButton="True"
ShowEditButton="True" />

</Columns>
</asp:GridView>

The DataSourceID property establishes data binding to the RolesDataSource control.
The DataKeyNames property specifies the name of the property on the business object that

acts as a primary key for the object. For a Role object, this is Id. Remember the use of the
DataObjectField attribute on the Id property in Chapter 8, which provides a hint to Visual Studio
that this property is the object’s unique key value.

CHAPTER 10 ■ WEB FORMS UI 543

6315_c10_final.qxd 4/7/06 1:51 PM Page 543

The first two columns in the GridView control are bound to properties from the data source:
Id and Name, respectively. The third column is a CommandField, which automatically adds Delete
and Edit links next to each element in the list. The Delete link automatically triggers DeleteObject
to delete the specified object. The Edit link puts the row into in-place edit mode, allowing the
user to edit the data in the selected row. If the user accepts his updates, the UpdateObject event
is automatically raised. No code beyond that handling those events is required to support either
of these links.

Of course, you don’t have to deal with all these tags if you don’t want to. Most of the code in
the CslaDataSource control exists to support the graphical designer support in Visual Studio. Look
back at Figure 10-10 and notice how the GridView control displays the Id, Name, and command
columns. I configured the control entirely using the Visual Studio designer and setting properties
on the controls.

Figure 10-12 shows the Fields dialog for the GridView control.

Notice that the Available fields box contains a list of the potentially bound fields from the data
source: Id and Name. The CslaDataSource control’s designer support returns this list by using reflec-
tion against the data source object as discussed in Chapter 5. You can use this dialog to choose which
columns are displayed, to control the way they are displayed, to rearrange their order, and more.

Inserting an Object
The MainView contains not only a GridView control, but also a LinkButton control named
AddRoleButton. This button allows the user to add a new Role object to the Roles collection.
To do this, the current View is changed to InsertView:

Protected Sub AddRoleButton_Click(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles AddRoleButton.Click

CHAPTER 10 ■ WEB FORMS UI544

Figure 10-12. Fields dialog for a GridView control

6315_c10_final.qxd 4/7/06 1:51 PM Page 544

Me.DetailsView1.DefaultMode = DetailsViewMode.Insert
MultiView1.ActiveViewIndex = Views.InsertView

End Sub

This changes the page to appear as shown in Figure 10-13.

Look at the address bar in the browser; see how it is still RolesEdit.aspx even though the
display is entirely different from Figure 10-10. This illustrates the power of the MultiView control,
which allows a user to remain on a single page to view, edit, and insert data.

The control shown here is a DetailsView control, which is data bound to the same
RolesDataSource control as the GridView earlier. This control is declared in a manner very similar
to the GridView:

<asp:DetailsView ID="DetailsView1" runat="server"
AutoGenerateRows="False" DataSourceID="RolesDataSource"
DefaultMode="Insert" Height="50px" Width="125px"
DataKeyNames="Id">
<Fields>
<asp:BoundField DataField="Id" HeaderText="Id"
SortExpression="Id" />

<asp:BoundField DataField="Name" HeaderText="Name"
SortExpression="Name" />

<asp:CommandField ShowInsertButton="True" />
</Fields>

</asp:DetailsView>

It is bound to RolesDataSource, and its DataKeyNames property specifies that the Id property is
the unique identifier for the object. The <Fields> elements define the rows in the control much as
columns are defined in a GridView.

If the user enters values for a new role and clicks the Insert link in the DetailsView control, the
InsertObject event is raised by RolesDataSource. This event is handled in the page to add the new
role to the Roles collection:

CHAPTER 10 ■ WEB FORMS UI 545

Figure 10-13. The RolesEdit.aspx page when a new role is being added

6315_c10_final.qxd 4/7/06 1:51 PM Page 545

Protected Sub RolesDataSource_InsertObject(_
ByVal sender As Object, ByVal e As Csla.Web.InsertObjectArgs) _
Handles RolesDataSource.InsertObject

Try
Dim obj As Roles = GetRoles()
Dim role As Role = obj.AddNew
Csla.Data.DataMapper.Map(e.Values, role)
Session("currentObject") = obj.Save
e.RowsAffected = 1

Catch ex As Csla.DataPortalException
Me.ErrorLabel.Text = ex.BusinessException.Message
e.RowsAffected = 0

Catch ex As Exception
Me.ErrorLabel.Text = ex.Message
e.RowsAffected = 0

End Try
End Sub

This code retrieves the current Roles object and then calls its AddNew() method to add a new
child Role object. Recall that in Chapter 8 the AddNewCore() method was implemented to enable
easy adding of child objects to the collection. The Public AddNew() method ultimately results in
a call to AddNewCore(), which adds an empty child object to the collection.

This new child object is populated with data using the DataMapper object from Chapter 5:

Csla.Data.DataMapper.Map(e.Values, role)

All new values entered by the user are provided to the event handler through e.Values. The
Map() method uses reflection to copy those values to the corresponding properties on the object.
If you want to avoid this use of reflection, you can replace this line with code like this:

role.Id = CInt(e.Values("Id"))
role.Name = CStr(e.Values("Name"))

For this simple object, this code isn’t too onerous, but for larger objects you could end up
writing a lot of code to copy each value into the object’s properties.

Either way, once the data from e.Values has been put into the object’s properties, the object’s
Save() method is called to update the database.

■Note This follows the typical web model of updating the database any time the user performs any action, and
results in a lot more database access than the equivalent Windows Forms implementation from Chapter 9. You
could defer the call to Save() by putting a Save button on the form and having the user click that button to
commit all changes.

Once the Save() method is complete, the resulting (updated) Roles object is put into Session.
This is very important because the result of Save() is a new Roles object, and that new object must
be used in place of the previous one on subsequent pages. For instance, the newly added role data
generated a new timestamp value in the database, which can only be found in this new Roles object.

CHAPTER 10 ■ WEB FORMS UI546

6315_c10_final.qxd 4/7/06 1:51 PM Page 546

This completes the insert operation, but the MultiView control is still set to display the
InsertView. It needs to be reset to display MainView. That is done by handling the ItemInserted
event from the DetailsView control:

Protected Sub DetailsView1_ItemInserted(_
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.DetailsViewInsertedEventArgs) _
Handles DetailsView1.ItemInserted

MultiView1.ActiveViewIndex = Views.MainView
Me.GridView1.DataBind()

End Sub

The ActiveViewIndex is changed so that the MainView is displayed when the page refreshes.
Also, the GridView control in MainView is told to refresh its data by calling its DataBind() method.

Calling DataBind() causes the GridView to refresh its display so that it shows the newly added
Role object. Behind the scenes, this triggers a call to RolesDataSource, causing it to raise its
SelectObject event.

Figure 10-13 also shows a Cancel link. If the user clicks that link, she likewise needs to be returned
to MainView. When the user clicks Cancel, it triggers a ModeChanged event on the DetailsView control:

Protected Sub DetailsView1_ModeChanged(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles DetailsView1.ModeChanged

MultiView1.ActiveViewIndex = Views.MainView
End Sub

So, whether the user clicks Insert or Cancel, she ends up back at the main display of the list
of roles.

Updating an Object
As shown in Figure 10-10, the CommandField column in the GridView control includes both Delete
and Edit links for each row. I’ll get to the Delete link shortly, but for now let’s focus on the Edit link.
When the user clicks the Edit link on a row, the GridView allows the user to edit that row’s data, as
shown in Figure 10-14.

CHAPTER 10 ■ WEB FORMS UI 547

6315_c10_final.qxd 4/7/06 1:51 PM Page 547

The user can edit the Name column only. The Id column is set to read-only:

<asp:BoundField DataField="Id" HeaderText="Id"
ReadOnly="True" SortExpression="Id" />

When done, the user can click either the Update or Cancel links on the row. If the user clicks
Update, then the UpdateObject event is raised by RolesDataSource to trigger the data update. This
event is handled in the page:

Protected Sub RolesDataSource_UpdateObject(_
ByVal sender As Object, ByVal e As Csla.Web.UpdateObjectArgs) _
Handles RolesDataSource.UpdateObject

Try
Dim obj As Roles = GetRoles()
Dim role As Role = obj.GetRoleById(CInt(e.Keys.Item("Id")))
role.Name = e.Values.Item("Name").ToString
Session("currentObject") = obj.Save
e.RowsAffected = 1

Catch ex As Csla.DataPortalException
Me.ErrorLabel.Text = ex.BusinessException.Message
e.RowsAffected = 0

Catch ex As Exception
Me.ErrorLabel.Text = ex.Message
e.RowsAffected = 0

End Try
End Sub

CHAPTER 10 ■ WEB FORMS UI548

Figure 10-14. The RolesEdit.aspx page when a role is being edited

6315_c10_final.qxd 4/7/06 1:51 PM Page 548

This code is quite similar to that for the insert operation discussed earlier, though in this case,
the specific Role object that was edited is retrieved from the collection:

Dim role As Role = obj.GetRoleById(CInt(e.Keys.Item("Id")))

e.Keys contains all the values from the page that correspond to the properties defined in the
GridView control’s DataKeyNames property. Recall that the only property set in DataKeyNames was Id,
so that’s the only value provided through e.Keys. This value is passed to the GetRoleById() method
to retrieve the correct Role object.

■Note Update and delete operations require that appropriate business object property names be specified in
the GridView or DetailsView control’s DataKeyNames property.

Since only one property can be edited, I opted not to use DataMapper and to set the property
value manually. However, in a more complex edit scenario in which many properties are edited,
you may choose to use DataMapper to simplify the code.

Finally, the Roles object’s Save() method is called to commit the user’s changes to the data-
base. As with the insert process, the new Roles object returned from Save() is put into Session for
use on all subsequent page requests.

Deleting an Object
Having seen how the update process works, you can probably guess how the delete process
works. The user can click the Delete link next to a row in the GridView control. When they do so,
RolesDataSource raises the DeleteObject event, which is handled in the page:

Protected Sub RolesDataSource_DeleteObject(_
ByVal sender As Object, ByVal e As Csla.Web.DeleteObjectArgs) _
Handles RolesDataSource.DeleteObject

Try
Dim obj As Roles = GetRoles()
Dim id As Integer = CInt(e.Keys.Item("Id"))
obj.Remove(id)
Session("currentObject") = obj.Save
e.RowsAffected = 1

Catch ex As Csla.DataPortalException
Me.ErrorLabel.Text = ex.BusinessException.Message
e.RowsAffected = 0

Catch ex As Exception
Me.ErrorLabel.Text = ex.Message
e.RowsAffected = 0

End Try
End Sub

The Id value for the Role object to delete is retrieved from e.Keys and used to call the Remove()
method on the Roles collection. Recall from Chapter 8 that this overload of Remove() accepts the
Id value of the Role object.

Of course, the child object is merely marked for deletion, and isn’t removed until the Save()
method is called on the Roles object itself. Again, the resulting Roles object returned from Save()
is put into Session for use on subsequent page requests.

CHAPTER 10 ■ WEB FORMS UI 549

6315_c10_final.qxd 4/7/06 1:51 PM Page 549

At this point, you should understand the basic process for creating a grid-based data form that
supports viewing, inserting, editing and deleting data. The only thing left to do in RolesEdit is to
add support for authorization.

Authorization
The RolesEdit authorization code is perhaps the simplest in the application. If the user isn’t author-
ized to edit the Roles object, then the CommandField column in the GridView control shouldn’t be
shown; and if the user can’t add a new role, then the LinkButton for adding a new object shouldn’t
be shown.

When the page is loaded, an ApplyAuthorizationRules() method is called:

Protected Sub Page_Load(_
ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If Not IsPostBack Then
ApplyAuthorizationRules()

Else
Me.ErrorLabel.Text = ""

End If
End Sub

Private Sub ApplyAuthorizationRules()
Me.GridView1.Columns(_
Me.GridView1.Columns.Count - 1).Visible = Roles.CanEditObject

Me.AddRoleButton.Visible = Roles.CanAddObject
End Sub

The ApplyAuthorizationRules() method asks the Roles class whether the current user is
authorized to edit the object or add new roles. If the user isn’t authorized, then the appropriate
controls’ Visible properties are set to False, and the controls are thereby hidden.

Since the user is then unable to put the GridView control into edit mode or ask it to delete an
item, the display effectively becomes read-only. Similarly, without the LinkButton for adding a new
item, the user can’t switch the MultiView to InsertView; so again the page becomes a simple read-
only page.

As you can see, creating a simple grid-based edit page requires relatively little work. You add
a data control, bind the GridView and possibly a DetailsView control to the data, and write a bit of
code. Most of the code in this page exists to react to user actions as they indicate that data is to be
inserted, edited, or deleted.

ProjectList Form
The ProjectList web form is responsible for displaying the list of projects to the user and allowing
the user to choose a specific project to view or edit. From this page, the user can also delete a proj-
ect and choose to add a new project. Figure 10-15 shows the layout of ProjectList.

CHAPTER 10 ■ WEB FORMS UI550

6315_c10_final.qxd 4/7/06 1:51 PM Page 550

It is important to realize that the GridView control actually has three columns: Id, Name, and the
CommandField column with the Delete links:

<Columns>
<asp:BoundField DataField="Id" HeaderText="Id"
SortExpression="Id" Visible="False" />

<asp:HyperLinkField DataNavigateUrlFields="Id"
DataNavigateUrlFormatString="ProjectEdit.aspx?id={0}"
DataTextField="Name" HeaderText="Name" />

<asp:CommandField ShowDeleteButton="True"
SelectText="Edit" />

</Columns>

The Id column has its Visible property set to False, so it is there, but invisible. Also notice
that the Name column is a HyperLinkField, not a simple BoundField. This makes each project name
appear to the user as a hyperlink, though in reality it is more like a LinkButton—when the user
clicks a project name, a SelectedIndexChanged event is raised from the GridView control.

Also of importance is the fact that the GridView control’s DataKeyNames property is set to Id, so
the Id property is specified as the unique identifier for each row of data. Without setting this prop-
erty, the Delete link can’t work.

The view, edit, and add operations are all handled by ProjectEdit, so ProjectList is really just
responsible for redirecting the user to that other page as appropriate. The delete operation is han-
dled directly from ProjectList through a CommandField column in the GridView control.

Notice that the GridView control displays paging links near the bottom. This is because paging
is enabled for the control, as shown in Figure 10-16.

CHAPTER 10 ■ WEB FORMS UI 551

Figure 10-15. Layout of ProjectList

6315_c10_final.qxd 4/7/06 1:51 PM Page 551

You can also set the GridView control’s PageSize property to control how many items are shown
on each page. All the paging work is done by the GridView control itself, which is fine because the
ProjectList business object will be maintained in Session, so the user can move from page to page
without hitting the database each time.

Figure 10-17 shows the properties of the CslaDataSource control used on the page.

Like the RolesDataSource control in RolesEdit, the TypeAssemblyName and TypeName properties
are set to point to the appropriate class within ProjectTracker.Library. This data source control
will be used to retrieve the list of projects and to delete a project if the user clicks a Delete link.

Loading the Data
When the GridView control needs data, it asks ProjectListDataSource for the data. The data source
control in turn raises its SelectObject event, which is handled in the page:

Protected Sub ProjectListDataSource_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles ProjectListDataSource.SelectObject

e.BusinessObject = GetProjectList()
End Sub

CHAPTER 10 ■ WEB FORMS UI552

Figure 10-16. Enabling paging for the GridView control

Figure 10-17. Properties for the ProjectListDataSource control

6315_c10_final.qxd 4/7/06 1:51 PM Page 552

As in RolesEdit, this page caches the business object in Session. The details of that process are
handled by GetProjectList():

Private Function GetProjectList() As ProjectTracker.Library.ProjectList
Dim businessObject As Object = Session("currentObject")
If businessObject Is Nothing OrElse _

Not TypeOf businessObject Is ProjectList Then
businessObject = ProjectTracker.Library.ProjectList.GetProjectList
Session("currentObject") = businessObject

End If
Return CType(businessObject, ProjectTracker.Library.ProjectList)

End Function

This method is the same as the GetRoles() method discussed earlier, except that it ensures
that a valid ProjectList object is returned instead of a Roles object.

This code allows the GridView control to populate itself with pages of data for display as
needed.

Viewing or Editing a Project
The Name column in the GridView control was set up as a HyperLinkField, meaning that the user sees
the values as a set of hyperlinks. If the user clicks on one of the project names, the browser directly
navigates to the ProjectEdit.aspx page, passing the selected Id value as a parameter on the URL.

Adding a Project
The ProjectList page contains a LinkButton to allow the user to add a new project. If the user clicks
this button, a Click event is raised:

Protected Sub NewProjectButton_Click(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles NewProjectButton.Click

'allow user to add a new project
Response.Redirect("ProjectEdit.aspx")

End Sub

The ProjectEdit page takes care of viewing, editing, and adding Project objects, so all this
code does is redirect the user to ProjectEdit. Notice that no parameter is provided to the page on
the URL, and this is what tells ProjectEdit to create a new Project rather than to view or edit an
existing one.

Deleting a Project
The GridView control has a CommandField column, which automatically creates a Delete link for each
row of data. If the user clicks a Delete link, the GridView deletes that row of data by calling its data
source control, ProjectListDataSource. The result is a DeleteObject event handled in the page:

Protected Sub ProjectListDataSource_DeleteObject(_
ByVal sender As Object, ByVal e As Csla.Web.DeleteObjectArgs) _
Handles ProjectListDataSource.DeleteObject

Try
ProjectTracker.Library.Project.DeleteProject(_
New Guid(e.Keys("Id").ToString))

e.RowsAffected = 1

CHAPTER 10 ■ WEB FORMS UI 553

6315_c10_final.qxd 4/7/06 1:51 PM Page 553

Catch ex As Csla.DataPortalException
Me.ErrorLabel.Text = ex.BusinessException.Message
e.RowsAffected = 0

Catch ex As Exception
Me.ErrorLabel.Text = ex.Message
e.RowsAffected = 0

End Try
End Sub

Again, the DataKeyNames property being set in the GridView means that the Id column value
from the row automatically flows into this event handler through e.Keys. That value is converted
to a Guid object so that the Shared DeleteProject() method on the Project class can be called. The
result is immediate deletion of the related project data.

Authorization
Having discussed all the core business functionality of the page, let’s look at the authorization code.
Like in RolesEdit, the authorization rules themselves are in the business class, and the UI code sim-
ply uses that information to enable and disable various UI controls as the page loads:

Protected Sub Page_Load(_
ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If Not IsPostBack Then
ApplyAuthorizationRules()

Else
Me.ErrorLabel.Text = ""

End If
End Sub

Private Sub ApplyAuthorizationRules()
Me.GridView1.Columns(_
Me.GridView1.Columns.Count - 1).Visible = _
Project.CanDeleteObject

NewProjectButton.Visible = _
ProjectTracker.Library.Project.CanAddObject

End Sub

When the page is loaded, the ApplyAuthorizationRules() method makes sure that the
CommandField column in the GridView is only visible if the user is authorized to delete Project
objects. It also hides the NewProjectButton control if the user isn’t allowed to add Project objects.

The end result is that a user who can’t delete or add data is still allowed to view the list of
projects, and they can even click on a project’s name to get more details in the ProjectEdit page.

ProjectEdit Form
At this point, you’ve seen how to create two different types of grid-based web forms. The pages so
far have illustrated in-place editing, adding of new items, and displaying a list of items for selection
or deletion. The final web form I’ll discuss in this chapter is ProjectEdit, which is a detail form that
allows the user to view and edit details about a specific object.

Like RolesEdit, this form uses a MultiView control. Figure 10-18 shows the MainView layout, and
Figure 10-19 shows the AssignView layout. There’s also a Label control and some CslaDataSource
controls on the page itself, below the MultiView. These are shown in Figure 10-20.

CHAPTER 10 ■ WEB FORMS UI554

6315_c10_final.qxd 4/7/06 1:51 PM Page 554

MainView includes a DetailsView control to allow display and editing of the Project object’s
properties. This control is data bound to the ProjectDataSource control shown in Figure 10-20, and
so it is effectively data bound to the current Project object.

The Id row is set to read-only, since the Project object’s Id property is a read-only property.
The Description row is a TemplateField, which allows the use of a TextBox control with its TextMode
property set to MultiLine:

<asp:TemplateField HeaderText="Description"
SortExpression="Description">
<EditItemTemplate>
<asp:TextBox ID="TextBox1" TextMode="MultiLine"
Width="100%" runat="server"
Text='<%# Bind("Description") %>'></asp:TextBox>

</EditItemTemplate>
<InsertItemTemplate>
<asp:TextBox ID="TextBox1" TextMode="MultiLine"
Width="100%" runat="server"
Text='<%# Bind("Description") %>'></asp:TextBox>

</InsertItemTemplate>
<ItemTemplate>
<asp:TextBox ID="TextBox1" TextMode="MultiLine"
ReadOnly="true" Width="100%" runat="server"
Text='<%# Bind("Description") %>'></asp:TextBox>

</ItemTemplate>
</asp:TemplateField>

CHAPTER 10 ■ WEB FORMS UI 555

Figure 10-18. Layout of MainView in ProjectEdit

6315_c10_final.qxd 4/7/06 1:51 PM Page 555

Notice that even the ItemTemplate, which controls what is displayed in view mode, uses a
TextBox control—but with its ReadOnly property set to true. This allows the user to see the entire
text of the Description property, even if it is quite long.

Finally, the DetailsView control has a CommandField row, which allows the user to delete, edit,
and add a Project.

Beneath the DetailsView control is a GridView to list the resources assigned to the project.
This control is data bound to the ResourcesDataSource control shown in Figure 10-20. It is effec-
tively data bound to the Resources property of the current Project object; meaning that it is bound
to a collection of ProjectResource objects. Remember that each type of business object must have
its own CslaDataSource control in order to act as a data source.

The GridView control also has an ResourceId column, which is not visible. Its DataKeyNames
property is set to ResourceId, specifying that the ResourceId column contains the unique identify-
ing value for each row. The Name and Assigned columns are read-only, while the Role column is
a TemplateField:

<asp:TemplateField HeaderText="Role" SortExpression="Role">
<EditItemTemplate>
<asp:DropDownList ID="DropDownList1" runat="server"
DataSourceID="RoleListDataSource"
DataTextField="Value" DataValueField="Key"
SelectedValue='<%# Bind("Role") %>'>

</asp:DropDownList>
</EditItemTemplate>
<ItemTemplate>
<asp:DropDownList ID="DropDownList2" runat="server"
DataSourceID="RoleListDataSource"
DataTextField="Value" DataValueField="Key"
Enabled="False" SelectedValue='<%# Bind("Role") %>'>

</asp:DropDownList>
</ItemTemplate>

</asp:TemplateField>

Notice how the DropDownList controls are data bound to the RoleListDataSource control
shown in Figure 10-20. This data source control provides access to a RoleList business object, so
the DropDownList controls are populated with the list of roles a resource can play on a project. This
way, ASP.NET does all the hard work of mapping the Key values for each role to the corresponding
human-readable text value. The numeric Key values are stored in the business objects, while the
text values are displayed on the page.

The GridView control also has a CommandField column so that the user can edit or remove
assignments. Of course, “remove” in this case really means unassign, but those details are handled
by the business object, not the UI.

Finally, there’s a LinkButton to allow the user to assign a new resource to the project. When the
user clicks that button, the view is switched so that the user see AssignView, where he or she can
select the resource to assign. The layout of that view is shown in Figure 10-19.

AssignView is comparatively straightforward. It contains a GridView control that is data
bound to the ResourceListDataSource control. Effectively, this means the GridView is bound to
a ResourceList business object, so it displays the list of resources to the user. The CommandField
column in the GridView provides a Select link, so the user can select the resource to be assigned.

There’s also a LinkButton at the bottom to allow the user to cancel the operation and return to
MainView without assigning a resource at all.

Finally, Figure 10-20 shows the bottom of the page, beneath the MultiView control.

CHAPTER 10 ■ WEB FORMS UI556

6315_c10_final.qxd 4/7/06 1:51 PM Page 556

The CslaDataSource controls are used by the various DetailsView and GridView controls dis-
cussed previously. And of course, the ErrorLabel control is a simple Label control that has its
ForeColor property set to Red. The exception-handling code in the form uses this control to display
details about any exceptions to the user.

Now let’s go through the implementation of the page. I’ll do this a bit differently than with
the previous pages, because by now you should understand how the pieces fit together using data
binding.

Caching the Project Object in Session
The RolesEdit and ProjectList forms implement methods to retrieve the central business object
from Session, or to retrieve it from the database as necessary. This not only implements a type of
cache to reduce load on the database, but it provides support for the browser’s Back button as well.
The same thing is done in ProjectEdit:

Private Function GetProject() As Project
Dim businessObject As Object = Session("currentObject")
If businessObject Is Nothing OrElse _

Not TypeOf businessObject Is Project Then
Try
Dim idString As String = Request.QueryString("id")
If Not String.IsNullOrEmpty(idString) Then
Dim id As New Guid(idString)
businessObject = Project.GetProject(id)

CHAPTER 10 ■ WEB FORMS UI 557

Figure 10-19. Layout of AssignView in ProjectEdit

Figure 10-20. Other controls in ProjectEdit

6315_c10_final.qxd 4/7/06 1:51 PM Page 557

Else
businessObject = Project.NewProject

End If
Session("currentObject") = businessObject

Catch ex As System.Security.SecurityException
Response.Redirect("ProjectList.aspx")

End Try
End If
Return CType(businessObject, Project)

End Function

As before, if there’s no object in Session, or if the object isn’t a Project, then a Project is
retrieved from the database. But the code here is a bit more complex than in the other forms.

Notice that the Request.QueryString property is used to get the id value (if any) passed in on
the page’s URL. If an id value is passed into the page, then that value is used to retrieve an existing
Project:

Dim id As New Guid(idString)
businessObject = Project.GetProject(id)

Otherwise, a new Project is created for the page:

businessObject = Project.NewProject

Either way, the resulting object is placed into Session and is also returned as a result from the
method.

It is possible for a user to navigate directly to ProjectEdit.aspx, providing no id value on the
URL. In such a case, the user might not be authorized to add a Project, and so a SecurityException
would result. In that case, the user is simply redirected to the ProjectList page, where he can safely
view the list of projects.

Saving a Project
In this form, the Project object is saved in many scenarios, including:

• Inserting the project

• Editing the project

• Assigning a resource

• Unassigning a resource

• Deleting the project

To simplify the code overall, the SaveProject() method handles the common behaviors in all
those cases:

Private Function SaveProject(ByVal project As Project) As Integer
Dim rowsAffected As Integer
Try
Session("currentObject") = project.Save()
rowsAffected = 1

Catch ex As Csla.Validation.ValidationException
Dim message As New System.Text.StringBuilder
message.AppendFormat("{0}
", ex.Message)

CHAPTER 10 ■ WEB FORMS UI558

6315_c10_final.qxd 4/7/06 1:51 PM Page 558

If project.BrokenRulesCollection.Count = 1 Then
message.AppendFormat("* {0}: {1}", _
project.BrokenRulesCollection(0).Property, _
project.BrokenRulesCollection(0).Description)

Else
For Each rule As Csla.Validation.BrokenRule In _

project.BrokenRulesCollection
message.AppendFormat(_
"* {0}: {1}
", rule.Property, rule.Description)

Next
End If
Me.ErrorLabel.Text = message.ToString
rowsAffected = 0

Catch ex As Csla.DataPortalException
Me.ErrorLabel.Text = ex.BusinessException.Message
rowsAffected = 0

Catch ex As Exception
Me.ErrorLabel.Text = ex.Message
rowsAffected = 0

End Try
Return rowsAffected

End Function

This method accepts the Project as a parameter and calls its Save() method. As always, the
resulting object is placed in Session to replace the old version of the object. In case of an exception,
the ErrorLabel text is updated.

The code here is the same as in the other pages, but it is worth consolidating in this page (and
in ResourceEdit) because of the many places the Project object is saved.

ProjectDataSource
The ProjectDataSource control takes care of data binding that deals with the Project object
itself. The page handles its DeleteObject, InsertObject, SelectObject, and UpdateObject events.
For instance, the SelectObject handler looks like this:

Protected Sub ProjectDataSource_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles ProjectDataSource.SelectObject

e.BusinessObject = GetProject()
End Sub

Thanks to the GetProject() method discussed earlier, this method is very simple to imple-
ment. The delete, insert, and update events are also comparatively simple due to the SaveProject()
method. For instance, here’s the InsertObject event handler:

Protected Sub ProjectDataSource_InsertObject(_
ByVal sender As Object, ByVal e As Csla.Web.InsertObjectArgs) _
Handles ProjectDataSource.InsertObject

Dim obj As Project = GetProject()
Csla.Data.DataMapper.Map(e.Values, obj, "Id")
e.RowsAffected = SaveProject(obj)

End Sub

CHAPTER 10 ■ WEB FORMS UI 559

6315_c10_final.qxd 4/7/06 1:51 PM Page 559

The current Project object is retrieved from Session (or pulled from the database), and the
new values entered by the user are mapped into the object’s properties using the DataMapper from
Chapter 5. Then SaveProject() is called to save the project and update Session with the newly
updated data.

The update operation works in a similar manner, so I won’t detail it here.

Deleting the Project

DeleteObject is a bit different:

Protected Sub ProjectDataSource_DeleteObject(_
ByVal sender As Object, ByVal e As Csla.Web.DeleteObjectArgs) _
Handles ProjectDataSource.DeleteObject

Try
Project.DeleteProject(New Guid(e.Keys("Id").ToString))
Session("currentObject") = Nothing
e.RowsAffected = 1

Catch ex As Csla.DataPortalException
Me.ErrorLabel.Text = ex.BusinessException.Message
e.RowsAffected = 0

Catch ex As Exception
Me.ErrorLabel.Text = ex.Message
e.RowsAffected = 0

End Try
End Sub

If the user clicks the link in the DetailsView control to delete the project, the DeleteObject
event is raised. e.Keys contains the Id row value from the DetailsView, because the DataKeyNames
property on the control is set to Id. This value is used to create a Guid, which is then passed to the
Shared DeleteProject() method to delete the project. Of course, this immediately deletes the
Project using the data portal, and so proper exception handling is implemented to display any
exception messages in ErrorLabel.

Once the Project has been deleted, it makes no sense to leave the user on ProjectEdit. If the
delete operation is successful, the DetailsView control raises an ItemDeleted event:

Protected Sub DetailsView1_ItemDeleted(_
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.DetailsViewDeletedEventArgs) _
Handles DetailsView1.ItemDeleted

Response.Redirect("ProjectList.aspx")
End Sub

The user is simply redirected to ProjectList, where she should no longer see the deleted
project in the list.

ResourcesDataSource
The ResourcesDataSource control takes care of data binding dealing with the Resources collection
from the Project object. The GridView control in MainView is bound to this control, and the page
handles its DeleteObject, SelectObject, and UpdateObject events.

CHAPTER 10 ■ WEB FORMS UI560

6315_c10_final.qxd 4/7/06 1:51 PM Page 560

There’s no need to handle the InsertObject event, because the GridView isn’t used to dynami-
cally add ProjectResource objects to the collection. I’ll discuss adding a new child object shortly.

The SelectObject event handler returns the collection of ProjectResource objects for the
Project:

Protected Sub ResourcesDataSource_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles ResourcesDataSource.SelectObject

Dim obj As Project = GetProject()
e.BusinessObject = obj.Resources

End Sub

It first gets the current Project object by calling GetProject(). Then it simply provides the
Resources collection to the data source control, which in turn provides it to any UI controls
requiring the data.

The DeleteObject and UpdateObject event handlers are worth exploring a bit. The DeleteObject
handler gets the ResourceId value from the GridView control through e.Keys and uses that value to
remove the ProjectResource object from the collection:

Protected Sub ResourcesDataSource_DeleteObject(_
ByVal sender As Object, ByVal e As Csla.Web.DeleteObjectArgs) _
Handles ResourcesDataSource.DeleteObject

Dim obj As Project = GetProject()
Dim rid As Integer = CInt(e.Keys("ResourceId"))
obj.Resources.Remove(rid)
e.RowsAffected = SaveProject(obj)

End Sub

The current Project object is retrieved, and then the Remove() method is called on the
Resources collection to remove the specified child object. SaveProject() is then called to commit
the change.

UpdateObject is a bit more complex:

Protected Sub ResourcesDataSource_UpdateObject(_
ByVal sender As Object, ByVal e As Csla.Web.UpdateObjectArgs) _
Handles ResourcesDataSource.UpdateObject

Dim obj As Project = GetProject()
Dim rid As Integer = CInt(e.Keys("ResourceId"))
Dim res As ProjectResource = obj.Resources.GetItem(rid)
Csla.Data.DataMapper.Map(e.Values, res)
e.RowsAffected = SaveProject(obj)

End Sub

In this case, the actual child object is retrieved from the Resources collection. Then the values
entered into the GridView by the user are pulled from e.Values and are mapped into the child object
using DataMapper. And finally, SaveProject() is called to commit the changes.

Assigning a Resource to the Project

The GridView isn’t used to insert new ProjectResource child objects, so ResourcesDataSource will
never raise its InsertObject method. Users are allowed to assign a new user to the project by click-
ing a LinkButton control. In that case, the MultiView is changed to display AssignView so that the
user can select the resource to be assigned:

CHAPTER 10 ■ WEB FORMS UI 561

6315_c10_final.qxd 4/7/06 1:51 PM Page 561

Protected Sub AddResourceButton_Click(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles AddResourceButton.Click

Me.MultiView1.ActiveViewIndex = Views.AssignView
End Sub

Once AssignView is displayed, the user can either select a resource or click the Cancel button.
If the user selects a resource, the resource is assigned to the project:

Protected Sub GridView2_SelectedIndexChanged(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles GridView2.SelectedIndexChanged

Dim obj As Project = GetProject()
Try
obj.Resources.Assign(CInt(Me.GridView2.SelectedDataKey.Value))
If SaveProject(obj) > 0 Then
Me.GridView1.DataBind()
Me.MultiView1.ActiveViewIndex = Views.MainView

End If

Catch ex As InvalidOperationException
ErrorLabel.Text = ex.Message

End Try
End Sub

To make the assignment, the current Project object is retrieved. Then the Resources collec-
tion’s Assign() method is called, passing the SelectedDataKey value from the GridView control as
a parameter. This GridView control, which displays the list of resources, has its DataKeyNames prop-
erty set to Id, so SelectedDataKey returns the Id value of the selected resource.

Once the assignment is made, SaveProject() is called to commit the change. If SaveProject()
succeeds, it will return a value greater than 0. And in that case, the GridView control in MainView,
which displays the list of assigned resources, is told to refresh its data by calling DataBind().
Remember that ASP.NET tries to optimize data access, and so GridView and DetailsView controls
don’t refresh their data from the data source on every postback. You need to explicitly call
DataBind() to force this refresh to occur.

Several things could go wrong during this whole process. The resource might already be
assigned, or the SaveProject() method could fail due to some data error. Of course, SaveProject()
already does its own exception handling and displays any exception messages to the user through
the ErrorLabel control.

But if the user attempts to assign a duplicate resource to the project, the Assign() method will
raise an InvalidOperationException. This is caught and the message text is displayed to the user.
Notice that in that case, the user is not sent back to MainView, but remains on AssignView so that
the user can choose a different resource to assign if desired.

The simplest course of action occurs if the user clicks the Cancel LinkButton control:

Protected Sub CancelAssignButton_Click(_
ByVal sender As Object, ByVal e As System.EventArgs) _
Handles CancelAssignButton.Click

Me.MultiView1.ActiveViewIndex = Views.MainView
End Sub

In that case, the user is simply directed back to the MainView display.

CHAPTER 10 ■ WEB FORMS UI562

6315_c10_final.qxd 4/7/06 1:51 PM Page 562

RoleListDataSource
RoleListDataSource is used by the GridView control in MainView. It provides access to the list of roles
a resource can play on a project. This data isn’t cached in the UI because the RoleList object handles
caching automatically (see Chapter 8 for details). Also, because RoleList is read-only, the only event
that needs to be handled is SelectObject:

Protected Sub RoleListDataSource_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles RoleListDataSource.SelectObject

e.BusinessObject = RoleList.GetList
End Sub

The GetList() method returns the list of roles, either from the cache or the database. The
beauty of this approach is that the UI code doesn’t know or care whether the database was used
to get the data; it just uses the result.

■Note Because the RoleList object is cached in a Shared field, the cached object is shared by all users of the
website. A Shared field is global to the AppDomain, and so is effectively global to the entire website. In this case,
that’s a good thing, because it means the RoleList object is retrieved once for all users—but this is a detail you
should keep in mind when working with data that should be per-user instead of shared.

ResourceListDataSource
The ResourceListDataSource is used by the GridView control in AssignView to display a list of
resources in the database. It is bound to the ResourceList business object, which is read-only—
meaning that only the SelectObject event needs to be handled:

Protected Sub ResourceListDataSource_SelectObject(_
ByVal sender As Object, ByVal e As Csla.Web.SelectObjectArgs) _
Handles ResourceListDataSource.SelectObject

e.BusinessObject = ProjectTracker.Library.ResourceList.GetResourceList
End Sub

I’m making no special effort to cache the results of GetResourceList(), nor does that method
do caching on its own. This is intentional.

Users will most likely come to ProjectEdit to view a project’s details. Rarely will they opt to
assign a new resource to a project—so I made a conscious decision here to keep my code simple
and just get the list each time it is needed.

If it turns out later that users are assigning far more resources than anticipated, and that
retrieving ResourceList is a performance bottleneck, then the implementation can be changed
to do some caching—in the UI, or in ResourceList itself.

Either way, I tend to default to implementing simpler code, and only make it more complex
when application usage patterns prove that some other solution is required.

Authorization
At this point, you’ve seen almost all the code in ProjectEdit. The rest of the code primarily deals
with authorization, though there’s a bit of UI magic as well.

CHAPTER 10 ■ WEB FORMS UI 563

6315_c10_final.qxd 4/7/06 1:52 PM Page 563

When the page loads, an ApplyAuthorizationRules() method is called:

Protected Sub Page_Load(_
ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load

If Not IsPostBack Then
ApplyAuthorizationRules()

Else
Me.ErrorLabel.Text = ""

End If
End Sub

Private Sub ApplyAuthorizationRules()

' project display
If Project.CanEditObject Then
Dim obj As Project = GetProject()
If obj.IsNew Then
Me.DetailsView1.DefaultMode = DetailsViewMode.Insert

Else
Me.DetailsView1.DefaultMode = DetailsViewMode.Edit

End If
Me.AddResourceButton.Visible = Not obj.IsNew

Else
Me.DetailsView1.DefaultMode = DetailsViewMode.ReadOnly
Me.AddResourceButton.Visible = False

End If
Me.DetailsView1.Rows(Me.DetailsView1.Rows.Count - 1).Visible = _
Project.CanEditObject

' resources display
Me.GridView1.Columns(Me.GridView1.Columns.Count - 1).Visible = _
Project.CanEditObject

End Sub

As with the previous forms, various controls, GridView columns, and DetailsView rows are
made visible or invisible depending on the authorization values returned from the business objects.

Additionally, the mode of the DetailsView control is set based on the business object’s IsNew
property:

If obj.IsNew Then
Me.DetailsView1.DefaultMode = DetailsViewMode.Insert

Else
Me.DetailsView1.DefaultMode = DetailsViewMode.Edit

End If

This ensures that the user gets the right set of options in the CommandField row of the
DetailsView control based on whether they are adding or editing the object.

Finally, it is possible for the object’s authorization rules to change depending on whether
it is new or old. Though not strictly an authorization rule, setting the DetailsView control’s
DetailsViewMode property, as shown previously, is an example. This means that when the object
changes from new to old, then authorization rules should be rechecked.

CHAPTER 10 ■ WEB FORMS UI564

6315_c10_final.qxd 4/7/06 1:52 PM Page 564

The DetailsView control automatically raises an event when this happens. To be complete, the
page actually handles both the ItemInserted and ItemUpdated events from the DetailsView control:

Protected Sub DetailsView1_ItemInserted(_
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.DetailsViewInsertedEventArgs) _
Handles DetailsView1.ItemInserted

Dim project As Project = GetProject()
Response.Redirect("ProjectEdit.aspx?id=" & project.Id.ToString)

End Sub

Protected Sub DetailsView1_ItemUpdated(_
ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.DetailsViewUpdatedEventArgs) _
Handles DetailsView1.ItemUpdated

ApplyAuthorizationRules()
End Sub

When an item is updated, the authorization rules are rechecked, ensuring that the display
is appropriate for a new or an old object. The insert operation is a bit more complex, however,
because the URL query string used to reach the page doesn’t include the Project object’s Id prop-
erty value. By forcing the browser to redirect to the page with the Id value, the GetProject() method
will work properly to retrieve the now-existing object from the database if needed.

As noted earlier, the ResourceEdit and ResourceList forms are very comparable to ProjectEdit
and ProjectList, so I won’t cover them in this chapter. You can look at their code in the download
for the book. This completes the PTWeb UI, so you should now have a good understanding of how to
create both Windows Forms and Web Forms interfaces based on business objects.

Conclusion
This chapter has discussed the creation of a basic Web Forms UI based on the business objects
from Chapter 8. As with the Windows Forms technology in Chapter 9, there are many ways to
create a Web Forms interface, and the one I’ve created here is just one option among many.

The key is that the business objects automatically enforce all business rules and provide
business processing so that the UI doesn’t need to include any of that code. As you can see, it is
very possible to create two very different user interfaces based on exactly the same set of busi-
ness objects, data access code, and database design.

As shown here, the website is configured for optimal performance, running the Session and
the data portal in the same process as the web forms. You could increase scalability and fault toler-
ance by moving Session into its own process, or onto a state server. You could potentially increase
security by running the data portal server components on a separate application server. In either
case, all you need to do is change some settings in Web.config; the UI code and business objects
will work in all these scenarios.

In Chapter 11, I’ll show how you can create another type of interface to the business objects by
using Web Services. Then Chapter 12 will show how to create remote data portal hosts for remoting,
Enterprise Services, and Web Services.

CHAPTER 10 ■ WEB FORMS UI 565

6315_c10_final.qxd 4/7/06 1:52 PM Page 565

6315_c10_final.qxd 4/7/06 1:52 PM Page 566

Web Services Interface

One of the most hyped technologies to be linked with .NET is Web Services. Over the past few
years, this has evolved into the widely discussed concept of service-oriented architecture (SOA).
All the hype and confusion around SOA has in turn given way to service orientation (SO), putting
the concept more on a par with object orientation.

Regardless of your choice of terminology or views on SOA, there’s no doubt that when web
services are used appropriately, they are very useful. It’s important to realize, however, that web
services are fundamentally just a text format for data interchange—they’re not designed to simplify
the process of creating object-oriented systems.

In my view, web services are just another type of interface to applications. I’ve already dis-
cussed Windows Forms and Web Forms interfaces, which allow a user to access an application
as shown in Figure 11-1.

Web services are another type of interface that the application can make available. The pri-
mary difference is that a web service interface is designed for use by other applications, not by
users directly. Another application can use web services to get or update data in your application.
This other application that’s consuming your data may or may not have users of its own. This con-
cept is illustrated in Figure 11-2.

567

C H A P T E R 1 1

■ ■ ■

Figure 11-1. Using Windows Forms and Web Forms interfaces

Figure 11-2. Using a web service interface

6315_c11_final.qxd 4/7/06 2:25 PM Page 567

■Note I fully realize that Web Services is being sold as offering much more than just another type of interface
to your application. As such, I’ll discuss my rationale some more before implementing the web services in this
chapter.

In this chapter, I’ll provide a short overview of Web Services as a technology. Then I’ll quickly
review Web Services and SOA to lay out the two primary ways people approach the design of web
services: service-oriented and component-based. Then I’ll discuss the creation of a Web Services
interface for the ProjectTracker business objects in order to illustrate how business objects can
support the creation of web services. That implementation will illustrate how to create both
service-oriented and component-based web services.

Overview of Web Services
At an abstract level, web services enable one application to call procedures or methods in another
application. On the face of it, this is similar to the aims of Remote Procedure Call (RPC), DCOM,
Remote Method Invocation (RMI), Internet Inter-ORB Protocol (IIOP), and .NET Remoting—all
of these technologies enable one application to invoke procedures in another application.

■Note It’s also possible to view these technologies as a way for two components in the same application to
interact with each other. While this is definitely a common use for the other technologies I mention, it isn’t the
intended use of web services. Web services are designed for cross-application communication, not cross-
component communication. This is because the focus of web services is interoperability. Due to this focus, web
services don’t offer the same performance or features as the other more platform-specific technologies listed.

Additionally, ASP.NET Web Services uses the Hypertext Transfer Protocol (HTTP) for commu-
nication between one application and another, and the SOAP standard for packaging the data
transferred over HTTP.

The following discussion is intended to provide some high-level background information
on Web Services. As you’ll see, a typical .NET developer rarely needs to worry directly about these
details, because the .NET Framework and Visual Studio take care of them.

The SOAP Standard
The SOAP standard defines the format and structure of the data packets (messages) that are sent
back and forth between the applications involved. There are two primary types of message:

• A procedure call

• The results of a procedure call

When an application wants to call a procedure or a method in another application, it con-
structs a SOAP message that describes the method to be called and provides any parameter data.
Any results from the procedure are likewise packed up into a SOAP message that’s returned to the
original application.

SOAP defines a couple of important things that must go into a message:

• The format of the data that’s being transferred

• An envelope of metadata around the data that’s being transferred

568 CHAPTER 11 ■ WEB SERVICES INTERFACE

6315_c11_final.qxd 4/7/06 2:25 PM Page 568

The SOAP data format is designed to be supported by virtually any platform. It defines a rich set
of data types, including numbers, strings, arrays, and so forth. Data of these types can be encoded
into a standard XML format that can be understood by any platform that supports SOAP. The format
is designed for interoperability, which means that most platforms will have more complex data types
or structures that can’t be readily encoded into SOAP XML.

The SOAP envelope contains metadata describing the nature and purpose of the message. You
can think of the envelope as being like a “header” for the actual data; it’s a little like an HTTP header.
The envelope, which is extensible, can be quite complex. This means that you can add arbitrary addi-
tional data into the envelope—a feature I’ll use later in the chapter to pass security credentials along
with each method call.

Message-Based Communication
A key point to remember is that SOAP only defines the XML that makes up the message; it doesn’t
describe how that message should be delivered from one application to another. It’s up to some
other mechanism to deliver a SOAP-formatted request message from one application (the con-
sumer) to the other (the service). The service application then runs the requested procedure. Any
results from that procedure are packaged into another SOAP-formatted message, which is returned
to the consumer (as shown in Figure 11-3).

The most common approach today is for the applications to communicate via HTTP, but the
SOAP data format can be transferred via email, MSMQ, raw sockets, text files, instant-messaging
technology, or any other way that you can think of to get the data from one application to the other.

SOAP and Web Services
This, then, is where web services come into play. Web services allow consumers to connect to them
using HTTP. Each procedure call is an isolated event in which the consumer connects to the service,
makes the call, and gets back the result.

However, using web services over HTTP is about more than just passing SOAP XML messages
back and forth. While that’s at the core of the process, there are a number of supporting features
that are very important, including the following:

• Describing the nature of a web service

• Generating consumer-side proxies for a web service

• Discovering the web services on a machine

• Managing directories of web services

CHAPTER 11 ■ WEB SERVICES INTERFACE 569

Figure 11-3. XML messages are passed to and from the service.

6315_c11_final.qxd 4/7/06 2:25 PM Page 569

Describing a web service means generating a list of all the procedures (often called web meth-
ods) that are available to consumers, along with the data types of the parameters those procedures
require, and the data types of any return values. There’s a standard for describing this information:
Web Services Description Language (WSDL). WSDL is an XML dialect that describes a web service.
When you (or Visual Studio on your behalf) need information about a web service, the first step is
to retrieve a WSDL document.

The primary reason for retrieving a WSDL document is to create a consumer-side proxy for the
web service: an object on the consumer machine that looks like the web service. Any method calls
made on this proxy are automatically packaged into SOAP XML and sent to the service application,
as shown in Figure 11-4. This is really no different from how you use client-side proxy objects in
remoting, DCOM, or any other similar technology.

SOAP, Web Services, and the .NET Framework
Most .NET developers don’t think about the creation of SOAP messages and envelopes. Nor do they
really think about the details of delivering a SOAP message via HTTP. All this is handled by the .NET
Framework and its support for web services.

To create a service (an application that exposes web services), you simply create a Web Services
project in Visual Studio and write some code. Alternatively, you can just add a web service to an
existing ASP.NET web application. In either case, apart from adding a couple of special attributes
to the code, you don’t usually have to do any difficult work.

For instance, you might write the following code in a web service within an ASP.NET
application:

<System.Web.Services.WebService(_
Namespace:="http://ws.lhotka.net/PTService/ProjectTracker")> _

Public Class ProjectTracker
Inherits System.Web.Services.WebService

<WebMethod(Description="Get Resource Name")> _
Public Function GetResourceName(ByVal id As String) As String
Return Resource.GetResource(id).Name

End Function
End Class

Visual Studio automatically generates all the extra files needed to provide access to this
method via Web Services. This includes the ability to generate WSDL descriptions for the web
service dynamically.

Equally, a typical .NET developer doesn’t need to worry about creating consumer-side proxy
objects. When using Visual Studio, simply add a web reference to the web service. Visual Studio

CHAPTER 11 ■ WEB SERVICES INTERFACE570

Figure 11-4. Web service interaction is abstracted behind a proxy object.

6315_c11_final.qxd 4/7/06 2:25 PM Page 570

then automatically retrieves the WSDL describing the web service and generates the proxy. If you
are not using Visual Studio, the .NET Framework offers the soapsuds.exe command line utility,
which can also create the proxy.

Because of the tight integration of Web Services into the .NET Framework and Visual Studio,
developers can avoid dealing with the details of publishing and consuming web services. This
means that you can focus on how to use them in your business applications, rather than worrying
about how to make them.

Now that you have a basic understanding of the technologies behind Web Services, let’s discuss
the two architectural worldviews most commonly used when discussing Web Services.

Web Services and SOA
No chapter on Web Services can avoid discussing the relationship (or lack thereof) between Web
Services and SOA or SO.

SOA and SO purists argue up and down that service orientation and Web Services are separate,
but somewhat related, things—that the concepts should be thought of more like salt and sugar.
Both are useful on their own, and in some cases, they may be combined successfully.

Certainly, it is true that SOA is independent from Web Services. SOA is really independent from
technology or any implementation-specific concepts. It describes a set of high-level architectural con-
cepts and perhaps some best practices. You can use the ideas of SOA in business process engineering
as easily as in software engineering. My point is that SOA is not a technology-related concept and
really isn’t connected with Web Services.

Service orientation, on the other hand, is an attempt to map some of those SOA concepts into
technology—along the lines of mapping object orientation to technology. Ideally, service orienta-
tion encompasses analysis, architecture, design, and programming aspects of software.

Still, even service orientation isn’t tied to Web Services, because a service can be implemented
using a wide variety of technologies, including the following:

• Queuing software (such as MSMQ or MQSeries)

• Email (SMTP and POP)

• TCP sockets

• Instant messenger (IM) protocols such as Jabber

• Microsoft Enterprise Services

• .NET Remoting

• Web Services

I specifically put Web Services last to emphasize that it is but one option among many. Of
course, the reality is that most people directly link Web Services to SOA or any other discussion of
service orientation. If you bring up service orientation in a conversation, almost everyone will just
assume you are talking only about Web Services.

This broadly accepted misunderstanding is unfortunate, and threatens to undermine the
long-term benefits of service orientation.

Services vs. Components
A more productive way to frame the discussion is to look at the two competing ways to design a web
service:

• As a component

• As a service

CHAPTER 11 ■ WEB SERVICES INTERFACE 571

6315_c11_final.qxd 4/7/06 2:25 PM Page 571

Though the difference between these two worldviews may seem subtle on the surface, they are
very much in conflict. You will be best served if you choose one of the two worldviews and consis-
tently use it in your web service design within a given application.

■Note The example web services implemented later in this chapter are a mix of both approaches. They are
not intended to convince you to mix the worldviews, but rather they are intended to show you how to implement
either approach.

Keep in mind that my intent with this discussion is not to paint one worldview as being inher-
ently superior to the other. Both are valid in different scenarios, though I must say that my personal
bias does lean toward taking a service-oriented approach.

Web Services as Components
You can view a web service as a component, along the same lines that you would think of a compo-
nent in MTS or COM+. This is totally logical, and is probably the most common way people look
at web services.

A well-designed component is a collection of classes, each of which exposes a set of atomic,
stateless methods. Typically, all the methods in a class are related to each other in some logical
manner, though nothing really enforces that except good design practices. Table 11-1 defines the
terms atomic and stateless.

Table 11-1. Definition of Atomic and Stateless

Term Definition

Atomic A method that has no dependencies on methods called prior to or subsequent to its
being called

Stateless A method that maintains no state, and so behaves consistently when called repeatedly
with the same or different parameters

Having components implement atomic, stateless methods is a best practice that evolved as
the industry used MTS and COM+ over the past decade. While those technologies support other
models, it has become an accepted best practice to implement methods in this manner.

The classes and methods of a component define that component’s interface. An interface is
a strong contract that the component makes with all callers. That interface contract can’t be
changed without all calling code being changed as well.

You can think of a web service in exactly the same way. A web service contains one or more
classes. Each class contains one or more methods. These methods should be designed to be atomic
and stateless. This one-to-one match between the design view of a component and a web service
is why most people design their web services just like they have designed MTS/COM+ components
for the past many years.

In a service-oriented worldview, a web service has classes that expose methods. These meth-
ods, taken together, form an API (application program interface). The idea is that the web service
is an application, and these methods describe how another application can interact.

However, the legacy of MTS/COM+ continues. Those technologies were widely used for client/
server implementations, and the components they hosted were most commonly viewed as part of
the application, not as a separate application.

CHAPTER 11 ■ WEB SERVICES INTERFACE572

6315_c11_final.qxd 4/7/06 2:25 PM Page 572

Today, most people design their web services as part of a bigger application, not as a separate
application. In other words, web services are most commonly used to implement a client/server
model, rather than a service-oriented model.

These methods typically have a strongly typed, parameter-based signature. Each method can
really be thought of as a procedure that is invoked by the client of the web service. For instance:

Public AddCustomer(ByVal id As Integer, ByVal firstName As String, _
ByVal lastName As String, ByVal add1 As String, ByVal addr2 As String, _
ByVal city As String, ByVal zipCode As String) As Boolean

This is natural when defining a strongly typed API for components, especially if those compo-
nents are designed to be used in a client/server or an n-tier environment. The result is that web
services become a way of remotely calling procedures. In very loose terms, they can be thought of as
an RPC technology.

Thinking of web services as a way of implementing a strongly typed, contractual interface that
is designed around an n-tier or a client/server model is exactly what I mean when I refer to compo-
nent-based web service design.

Web Services As Services
You can also view a web service as a service. The fact that the word “service” is in the name of the
technology might lead you to believe that they are all services, but that’s not really true.

A service is an autonomous entity that performs some processing operation. You communicate
with a service by sending and receiving messages. In today’s world, those messages are almost always
XML documents or fragments, though nothing in SOA mandates the use of XML.

Of course, web services do mandate the use of XML, so when implementing service-oriented web
services, the messages are always XML. That said, .NET supports web services in such a way that you’ll
often interact with a strongly typed proxy object, rather than ever seeing the XML yourself.

■Note I argue that this is a good thing. XML was never intended for human consumption, and a good program-
ming toolset should always provide higher-level abstractions so programmers don’t have to deal with XML directly.

Autonomy

The first big thing to realize is that services are autonomous. Technically, this means self-governing,
but in the case of a service, it means totally independent. It means that the service is a thing unto
itself and is not part of some other application. It is not a tier in an n-tier model.

This is entirely unlike the typical view of MTS/COM+ components, which are almost always
viewed as being a tier in an n-tier or a client/server application.

Instead, a service is an application. Other applications (including other services) may interact
with it, but the service stands alone.

The primary outcome of this view is that a service never trusts the data provided by any caller.
I don’t mean trust in just a security sense, but also in a semantic sense. Even data coming from an
authenticated and authorized caller could be incorrect; either accidentally or maliciously. A service
always validates and recalculates data from external sources. Services are paranoid.

Basing your services on business objects like those in this book works out well in this model,
because all your business logic is in those objects. If the service merely provides an interface to
the objects, then all the validation, calculation, and even authorization is automatically handled
by the objects themselves.

CHAPTER 11 ■ WEB SERVICES INTERFACE 573

6315_c11_final.qxd 4/7/06 2:25 PM Page 573

Message-Based Communication

The other primary element of service orientation is that services communicate through messages.
In short, this typically means that the method signature of a service-oriented web service looks
like this:

Public Function AddCustomer(ByVal request As RequestMsg) As ResponseMsg

ResponseMsg and RequestMsg are formally defined message data types that represent XML
messages sent between the caller and the service. In many cases, the messages are defined by an
XSD schema.

Within a .NET application, however, the messages are almost always exposed as strongly typed
proxy classes. So ResponseMsg might be defined like this:

Public Class ResponseMsg

Private mResult As Boolean
Public Property Result() As Boolean
Get
Return mResult

End Get
Set(ByVal value As Boolean)
mResult = value

End Set
End Property

End Class

Notice that this is just a really fancy or complex way of returning the same Boolean value
that was returned in the component-based AddCustomer() web method. The benefit here is that
the return type starts out as a complex, formally defined type. It is comparatively easy to add
more return information to ResponseMsg than it would be to return more information from the
previous AddCustomer() implementation.

Similarly, RequestMsg would look something like this:

Public Class RequestMsg

Private mId As Integer
Public Property Id() As Integer
Get
Return mId

End Get
Set(ByVal value As Integer)
mId = value

End Set
End Property
' other fields/properties go here…

End Class

Again, this is just another way of packaging all the parameters from the earlier AddCustomer()
web method. And the benefit is the same; it is easier to add new elements to RequestMsg than to
add them to the component-based model.

Perhaps more importantly is the benefit to versioning. The component-based approach suffers
from the same limitation as COM did, in that you can’t change the API. If your parameters are all
exposed individually, the odds of having to change the API to add or change elements over time is
quite high. To do this, you’ll almost certainly end up creating AddCustomer2() and AddCustomerEx()
methods—that sort of thing.

CHAPTER 11 ■ WEB SERVICES INTERFACE574

6315_c11_final.qxd 4/7/06 2:25 PM Page 574

With a service-oriented message-based model, you can just add extra optional elements to
RequestMsg and ResponseMsg. The API never changes, because the AddCustomer() method always
accepts a single parameter and returns a single result.

Again, both the component-based and service-oriented worldviews are valid and useful in
different scenarios. My goal here isn’t to provide comprehensive coverage of SOA, SO, or even Web
Services, as there are entire books on each of these topics. Rather, my goal is to provide you with
some very basic background on the concepts before walking through the implementation of the
web services to expose the ProjectTracker sample business objects.

Designing a Web Services Interface
In many ways, a Web Services interface is easier to construct than a Windows Forms or Web Forms
interface because there’s no need to worry about any issues of display or user interaction. Those are
the responsibility of the calling application. All the web service needs to worry about is providing an
interface that allows the developer of a consumer application to access the information and func-
tionality provided by this application’s business logic and data.

In designing a web service, the following four primary issues must be addressed:

• Whether to use a component-based or service-oriented design

• How to organize the web methods into classes

• What data to expose and accept

• How to handle authentication

Component-Based vs. Service-Oriented Design
I’ve already provided a high-level overview of these two models, and as I stated earlier in the chap-
ter, I’ll demonstrate both. In your applications, I recommend that you choose one model or the
other and use it consistently, as that will provide a Web Services interface that is much easier to
understand and consume.

It’s possible to subdivide the ProjectTracker application’s functionality in many different ways.
For example, you could be very specific and provide a set of discrete services, such as those listed in
Table 11-2.

Table 11-2. Possible Web Methods

Add project Get project Remove project Change project name

Change project start Change project end Add resource Get resource
date date

Remove resource Change resource first Change resource last Get list of projects
name name

Get list of resources Change project Add resource to Remove resource from
description project project

Add project to resource Remove project from Change role of and so on . . .
resource resource on project

Following this approach, you could end up writing a rather large number of web methods!
Although it’s perfectly possible to do that, you might instead consider consolidating some of these
operations into web methods with broader functionality, as follows:

CHAPTER 11 ■ WEB SERVICES INTERFACE 575

6315_c11_final.qxd 4/7/06 2:25 PM Page 575

• Get a list of projects

• Get details for a project

• Add or update a project

• Delete a project

• Get a list of resources

• Get details for a resource

• Add or update a resource

• Delete a resource

This is a smaller list of discrete operations, and by having fewer operations, there’s less code
to maintain. Moreover, this approach provides a higher level of abstraction—a consumer has no
idea what happens when it requests details for a project, and over time you may change how that
process works without having any impact on the consumers. Perhaps most importantly, having
a small number of operations tends to improve performance, since a client application needs to
make fewer cross-network method calls to get its work done.

The web methods implemented in this chapter fall into two categories. Those designed with
a component-based approach are as follows:

• AddProject()

• EditProject()

• ChangeResource()

• AssignResource()

Those designed with a service-oriented, message-based approach are as follows:

• GetProjectList()

• GetProject()

• GetResourceList()

• GetResource()

This should give you an idea how both are handled.

Grouping Web Methods into Web Services
Under the .NET Framework, web methods are grouped together within a URL such as http://
server/root/projecttracker.asmx, where projecttracker.asmx is the page or file that contains
a class in the web service. Within a given virtual root on a given web server, there can be any num-
ber of such web service classes, each with its own set of web methods.

This, then, is a decision point in the design: should you put all the web methods into a single
web service class, or put each web method in its own web service class, or something in between?
Unfortunately, there’s no hard-and-fast rule to guide the decision.

In this context, one way to view a web service is as a component that happens to be accessed
via Internet technologies. A component is a container for similar groupings of functionality (COM
or .NET components typically contain a group of related classes), so likewise a web service “com-
ponent” should contain a group of related web methods. Of course, all the functionality in an
application is related in some way; the question is whether it should be broken into multiple web
services—perhaps one for project-related tasks and one for resource-related tasks.

CHAPTER 11 ■ WEB SERVICES INTERFACE576

6315_c11_final.qxd 4/7/06 2:25 PM Page 576

However, there’s another angle to this question that you need to consider before making a
decision, and that’s the consumer. Consumers don’t reference an entire virtual root; they reference
a specific web service (asmx file). The more granular you make the web service classes, the more dif-
ferent references the developer of the consumer will need to make in order to use the web methods.

Because of this, I prefer to group related web methods into web service classes based on the
likely usage pattern of consumer developers. Since the web methods will all be related within the
context of the ProjectTracker application, I’m following basic component design concepts; and
since the web services are an interface to the application, I’m also taking into account the needs
of the end user (the consumer application developer).

For the ProjectTracker sample application, this means putting all the web methods into a
single web service class. They are all related to each other, so they naturally fit into a component.
More importantly, it’s likely that any consumer will be dealing with both projects and resources,
and there’s no sense in forcing the consumer developer to establish two separate references just
to use all the web methods.

Returning and Accepting Data
The next issue is how to return complex business data. The data exists in the ProjectTracker.
Library business objects, but it needs to be returned to the consumer via SOAP-formatted XML.

In many sample web services, the web methods return simple data types such as Integer or
String, but that doesn’t match the needs of most applications. In the ProjectTracker example, com-
plex data must be returned, such as an array or a collection of project data. And the project data
itself isn’t a simple data type—it consists of multiple data fields.

There are a couple of approaches to consider, as follows:

• Returning the business objects directly, tying the data format directly to the object interface

• Using a formal facade to separate the data format from the business object interface

As you’ll see, the more formal approach is superior, but to be thorough, let’s discuss the first
option, too.

Returning Business Objects Directly
It may seem tempting to return a business object (or an array of business objects) as a result of a web
method. Why go through the work of copying the data from the business object into some formal data
structure just so that data structure can be converted into XML to be returned to the consumer? After
all, the .NET Web Services infrastructure can automatically examine a business class and convert all
the Public read-write properties and Public fields of the object to XML, as shown in Figure 11-5.

CHAPTER 11 ■ WEB SERVICES INTERFACE 577

Figure 11-5. Directly returning a business object’s data to the consumer

6315_c11_final.qxd 4/7/06 2:25 PM Page 577

Unfortunately, there are two flaws with this approach that make it untenable. First and most
important is the fact that doing this directly ties the business object’s interface to the web service
interface. This restricts the ability to change, enhance, and maintain business objects over time. If
the business object is directly exposed, then the object’s interface becomes part of the web service
interface. This means that the object’s interface is part of the contract established by publishing the
web service. This is almost never acceptable, as it breaks any concept of encapsulation and separa-
tion of interface from implementation.

Second, make careful note of the fact that only the public, read-write properties, and public
fields are exposed. Non-public properties aren’t exposed. Read-only properties (such as Id on the
Project and Resource objects) aren’t exposed. This is because the Web Services implementation
in ASP.NET relies on the XmlSerializer object to convert objects into and out of XML, and the
XmlSerializer has limitations on what it will and won’t serialize. Unless you’re willing to compro-
mise your object model’s design specifically to accommodate the requirements of web service
design, you won’t be able to expose the data you choose via Web Services.

Beyond this, Web Services requires that objects to be converted to and from XML expose a
public default constructor. If the class doesn’t provide a public default constructor, you’ll get a
runtime exception when attempting to access the web service. The design of CSLA .NET busi-
ness objects specifically precludes the use of public default constructors, as they always use
Shared factory methods to create instances of the business objects.

Due to these drawbacks, directly exposing the business objects isn’t a good practice. The
answer instead is to create a facade around the business objects that can separate the public
interface of the web service from the interface of the business objects. This facade can be con-
structed so that its properties and fields are always available for serialization into XML.

Returning Formal Data Structures
You can easily create a formal data structure to define the external interface of a web service by
using a class. The data structure of the class will define the public interface of the web service,
meaning that the web service interface is separate from the business object interface. The web
service and this formal definition form a facade so that consumers of the web service don’t know
or care about the specific interface of the business object.

For instance, you can define a class that describes the data for a project like this:

Public Class ProjectData

Private mId As Guid
Private mName As String
Private mStarted As String
Private mEnded As String
Private mDescription As String

Public Property Id() As Guid
Get
Return mId

End Get
Set(ByVal value As Guid)
mId = value

End Set
End Property
' remaining properties...

End Class

Then you can have the project-related web methods return a result of this type—or even an
array of results of this type. When this is returned as a result from a web method, its data will be

CHAPTER 11 ■ WEB SERVICES INTERFACE578

6315_c11_final.qxd 4/7/06 2:25 PM Page 578

converted into SOAP-formatted XML that’s returned to the consumer. Figure 11-6 illustrates what
I’m talking about doing here.

When consumers reference the web service, they will gain access to the definition of this type
via the WSDL data that’s associated with the service. This means that the consumer will have infor-
mation about the data being returned in a very clear and concise format.

■Tip When creating a consumer for the web service, Visual Studio uses this information to create a proxy class
that mirrors the data structure. This gives consumer developers the benefits of IntelliSense, so that they can easily
understand what data is required or returned from the web methods.

Authentication
The final consideration is authentication and security. Of course, there are many types and layers
of security, but what I’m focusing on here is how to use either CSLA .NET or Windows integrated
security to identify the users and their roles.

Even though the “user” in this case is a remote application, that application must still identify
itself so that the business objects can apply their authorization rules. In short, a valid principal and
identity object must be established to identify the calling application in some way.

The remote consumer may use a hard-coded username and password, or prompt its actual
user for credentials. What that application does is entirely its business, and really has nothing to
do with the web service. All the web service can do is ensure that the consumer provides valid
credentials so a principal and identity can be created. The business objects contain the authen-
tication rules to do the rest.

If you opt to use Windows integrated security, you’ll need to configure IIS to disallow
anonymous access to the virtual root containing the web service. You’ll also add an <identity
impersonate="true" /> element into the <system.web> section of the site’s web.config file so that
ASP.NET knows to impersonate the user account of the calling application. This will force the
consumer to provide valid Windows credentials in order to interact with the web service.

CHAPTER 11 ■ WEB SERVICES INTERFACE 579

Figure 11-6. Using a facade to define the data returned to the consumer

6315_c11_final.qxd 4/7/06 2:25 PM Page 579

No extra work is required in the web service or business object code, other than ensuring that
the web.config file in the web service virtual root has the <appSettings> entry to configure CSLA
.NET to use Windows security.

■Tip Windows integrated security is probably not a viable option in most cases. It’s relatively unlikely that
unknown clients on unknown platforms will be authenticated within your Windows domain. While the CSLA .NET
architecture does support this option, using it would mean that consumers must start out with valid Windows
domain accounts with which they can authenticate to your web server.

CSLA .NET security requires a bit more work, but avoids any necessity for the remote con-
sumer (or its users) to have Windows domain user accounts in your environment. To implement
CSLA .NET security, IIS should be left with the default configuration that allows anonymous users
to access the virtual root. You must then include code in the web service to ensure that the calling
code provides a username and password, which can be validated using the PTPrincipal class in
the ProjectTracker.Library—just like in the Windows Forms and Web Forms interfaces.

The harder question is how to get the username and password from the consumer, and there
are two basic approaches to an answer. The first of these is to have each web method include user-
name and password parameters. Each time the consumer calls a web method, it would need to
provide values for these two parameters (along with any other parameters the method requires).
Within the web method, those two parameters could be passed to PTPrincipal.Login() to see if
the credentials are valid.

Although this can work, it pollutes the parameter lists of all the web methods. Each method
ends up with these two extra parameters that really have nothing to do with the method itself. This
is far from ideal.

The other approach is to use the SOAP header to pass the information from consumer to
server outside the context of the method, but as part of the same exchange of data. In other words,
the username and password information will piggyback on the method call, but won’t be part of
the method call.

■Tip Web Services Extensions (WSE) offers a more advanced implementation of this concept. WSE includes
the ability to encrypt the credentials over the network. In the future, Windows Communication Foundation (WCF
or Indigo) will provide a similar advanced implementation. If you are going to pass credentials to web services,
it is best to use one of these technologies that already provide the implementation.

This is a standard technique for passing extra information along with method calls. It’s sup-
ported by the SOAP standard, and therefore by all SOAP-compliant client-development tools.
What this means is that it’s a perfectly acceptable approach—in fact, it’s the preferred approach.
I’ll use it in the sample interface in this chapter.

One thing you need to keep in mind with this implementation is that the user’s credentials
are authenticated on every web service call. This could cause substantial load on your security
database. Technologies such as WSE and WCF offer more advanced authentication options that
may be more appropriate in many cases.

CHAPTER 11 ■ WEB SERVICES INTERFACE580

6315_c11_final.qxd 4/7/06 2:25 PM Page 580

Web Service Implementation
The web service implementation can be found in the ProjectTracker solution. It is named
PTWebService. As with the Windows Forms and Web Forms interfaces, I won’t go through every
method in detail. Instead I’ll pick out some representative methods that highlight the concepts
and you can examine the rest at your leisure.

Application Configuration
The website hosting the web service needs to provide some basic configuration information
through the web.config file. In the web.config file, you can either provide connection strings so
that the site can interact with the database directly, or you can configure the data portal to com-
municate with a remote application server.

The basic concept here was discussed in Chapter 4 when the channel adapter implementa-
tion was covered. Recall that the data portal supports four possible channels: local, remoting,
Enterprise Services, and Web Services. You can create your own channels as well if none of these
meet your needs.

In Chapter 1, I discussed the trade-offs between performance, scalability, fault tolerance, and
security that come with various physical n-tier configurations. In most cases, the optimal solution
for a web UI is to run the data portal locally in the client process. However, for security reasons, it
may be desirable to run the data portal remotely on an application server. Chapter 12 will demon-
strate how to create the three types of remote data portal hosts for use by the PTWeb application.

The web.config file is an XML file that contains settings to configure the website. You use dif-
ferent XML depending on how you want the site configured.

Authentication
The way authentication is handled by CSLA .NET is controlled through web.config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />

</appSettings>
</configuration>

The CslaAuthentication key shown here specifies the use of custom authentication. Chapter 8
implemented the PTPrincipal and PTIdentity classes specifically to support custom authentica-
tion, and the UI code in this chapter will use custom authentication as well.

If you want to use Windows authentication, change the configuration to this:

<add key="CslaAuthentication" value="Windows" />

Of course, that change would require coding changes. To start, the PTPrincipal and PTIdentity
classes should be removed from ProjectTracker.Library, as they would no longer be needed. Also,
the virtual root would need to disallow anonymous users, and ASP.NET would need to be config-
ured to impersonate the caller. Beyond that, the CslaCredentials custom SOAP header and related
code discussed in this chapter would not be used.

Local Data Portal
To have the web service interact directly with the database, use the following (with your connection
string changed to the connection string for your database):

CHAPTER 11 ■ WEB SERVICES INTERFACE 581

6315_c11_final.qxd 4/7/06 2:25 PM Page 581

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />

</appSettings>
<connectionStrings>
<add name="PTracker" connectionString="your connection string"
providerName="System.Data.SqlClient" />

<add name="Security" connectionString="your connection string"
providerName="System.Data.SqlClient" />

</connectionStrings>

Because LocalProxy is the default for the data portal, no actual data portal configuration is
required, so the only settings in the configuration file are to control authentication and to provide
the database connection strings.

■Tip In the code download for this book (available at www.apress.com), the PTracker and Security database
files are in the solution directory, not in the website’s App_Data directory. This means that you can’t use a local
data portal from the website without first copying the database files into the App_Data directory and changing
the connection strings accordingly.

Remote Data Portal (with Remoting)
To have the data portal use an application server and communicate using the remoting channel,
the configuration would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.RemotingProxy, Csla"/>

<add key="CslaDataPortalUrl"
value="http://localhost/RemotingHost/RemotingPortal.rem"/>

</appSettings>
<connectionStrings>
</connectionStrings>

The key lines for remoting configuration are in bold. Of course, you need to change
localhost to the name of your application server on which the data portal host is installed,
and the RemotingHost text needs to be replaced with the name of your virtual root on that server.

Before using this configuration, the remoting host virtual root must be created and configured.
I’ll show how this is done in Chapter 12.

CHAPTER 11 ■ WEB SERVICES INTERFACE582

6315_c11_final.qxd 4/7/06 2:25 PM Page 582

Remote Data Portal (with Enterprise Services)
Similarly, the configuration for using the Enterprise Services channel would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="EnterpriseServicesHost.EnterpriseServicesProxy,

EnterpriseServicesHostvb"/>
</appSettings>
<connectionStrings>
</connectionStrings>

Before using this configuration, an Enterprise Services host must be created and registered
with COM+. The resulting COM+ application must be registered with COM on each client work-
station. The basic steps were discussed in Chapter 4, and I’ll show how this is done in Chapter 12.

Remote Data Portal (with Web Services)
Finally, the configuration for using Web Services would look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.WebServicesProxy, Csla"/>

<add key="CslaDataPortalUrl"
value="http://localhost/WebServicesHost/WebServicePortal.asmx"/>

</appSettings>
<connectionStrings>
</connectionStrings>

As with remoting, you need to change localhost and WebServicesHost to the actual server
name and virtual root name used by your application. Also, the virtual root and web service asmx
file must be created and configured. I’ll show how this is done in Chapter 12.

The most important thing to realize about the site configuration is that the data portal can be
changed from local to remote (using any of the network channels) with no need to change any UI
or business object code.

PTWebService Site Setup
The website references the ProjectTracker.Library project as shown in Figure 11-7. This causes
Visual Studio to automatically put the associated Csla.dll files into the Bin directory as well,
because Csla.dll is referenced by ProjectTracker.Library.

CHAPTER 11 ■ WEB SERVICES INTERFACE 583

6315_c11_final.qxd 4/7/06 2:25 PM Page 583

Hosting in IIS
The PTWebService website will only run within IIS, not within ASP.NET Development Server (com-
monly known as Cassini or VS Host).

ASP.NET Development Server (provided with Visual Studio) has various limitations—among
them is the inability to load custom security objects from assemblies in the Bin directory. This
means you can’t use ASP.NET Development Server to test or debug custom principal objects, cus-
tom membership providers, or other custom security objects if they are in an assembly referenced
from the project.

Though this is an unfortunate limitation, it can be argued that ASP.NET Development Server is
not intended for anything beyond hobbyist or casual usage, and that IIS should be used for any seri-
ous business development.

■Note An alternative solution is to install the assembly containing your custom principal and identity classes
into the .NET Global Assembly Cache (GAC). For PTWebService, this would mean giving ProjectTracker.
Library a strong name and using the gacutil.exe command line utility to install the assembly into the GAC.
ProjectTracker.Library would need to be updated in the GAC after each time you build the assembly. I find
that using IIS is a far simpler solution than using the GAC.

To host a website in IIS during development, you need to take the following steps:

1. Set up a virtual root in IIS, pointing to the directory containing the PTWebService project files.

2. Set the virtual root to use ASP .NET 2.0 using the ASP.NET tab of the Virtual Root Properties
dialog in the IIS management console.

3. Set the website’s start options using the Project Properties dialog in Visual Studio 2005.
Change the setting to use a custom server so that it starts up using IIS with a URL such as
http://localhost/PTWebService.

CHAPTER 11 ■ WEB SERVICES INTERFACE584

Figure 11-7. Referencing ProjectTracker.Library

6315_c11_final.qxd 4/7/06 2:25 PM Page 584

Now let’s go through the creation of the web service interface. I’ll start by discussing the
authentication scheme, then move on to component-based web methods and wrap up by dis-
cussing service-oriented, message-based web methods. Once the web service has been covered,
I’ll briefly discuss the client application that calls the web service.

PTService
In .NET, a web service typically comes in two parts: the asmx file and an associated code file. The
PTService.asmx file is really just a pointer to the code file:

<%@ WebService Language="VB"
CodeBehind="~/App_Code/PTService.vb" Class="PTService" %>

All the interesting work happens in the code file, PTService.vb. This file can be found in the
App_Code folder beneath the virtual root, and it contains the web service class, within which are
all the web methods a consumer will use. I’ll cover many of those web methods later, but here
I want to show the declaration of the class itself:

<WebService(Namespace:="http://ws.lhotka.net/")> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Public Class PTService
Inherits System.Web.Services.WebService

The class inherits from the WebService base class, and thus is a web service class. The
<WebService()> attribute specifies the logical namespace for the web service. The domain name of
the namespace is a meaningful value that corresponds to a specific organization. (You should use
your organization’s domain here instead of ws.lhotka.net.) This URI location doesn’t need to exist,
it just needs to be unique to your organization. Each web service needs a unique XML namespace
to identify it so that client applications can distinguish it from other services on the Web.

The <WebServiceBinding()> attribute is placed here by Visual Studio when the web service is
added to the application. It can be used to provide advanced control over the public interface
exposed by the web service, and isn’t directly relevant to this chapter.

Authentication
Earlier in the chapter, I discussed the authorization options available. While in a production appli-
cation, you should probably use WSE or WCF, I’ll show you how to pass credentials in the SOAP
header using the web service support built into Visual Studio 2005.

To use custom authentication, include the following line in the <appSettings> element:

<add key="CslaAuthentication" value="Csla"/>

■Tip You could also use the Windows integrated security model, as described earlier. However, if you decide to
go down that route, you must not implement the security code shown here.

When using custom authentication, the Login() method of PTPrincipal will be called to vali-
date the username and password values provided by the consumer that’s calling the web service.

As discussed earlier, this could be done by putting username and password parameters on
every web method, but that would pollute the parameter lists of the methods. Instead, a SOAP
header can be used to transfer the values. This is a standard SOAP concept, and it’s easily imple-
mented in .NET code (on both the server and consumer).

CHAPTER 11 ■ WEB SERVICES INTERFACE 585

6315_c11_final.qxd 4/7/06 2:25 PM Page 585

■Tip Note that the username and password will be passed in clear text in the SOAP envelope. To encrypt this
data for additional security, you may want to use the .NET Framework’s cryptography support, expose the web
service over SSL, or use WSE.

The following three steps are required in order to set up and use the SOAP header for security
credentials:

1. Implement a SoapHeader class that defines the data required from the consumer.

2. Apply a <SoapHeader()> attribute to all web methods that require authentication,
indicating that the web method requires the custom SOAP header.

3. Implement a method that takes the username and password values and uses them
to authenticate the user, and set up the principal object on the current Thread.

Let’s walk through the implementation of these steps.

CslaCredentials Class
SoapHeader is just a class that defines some fields of data that are to be included in the XML header
data of a SOAP message. In this case, two values are needed: username and password. These values
are passed in the SOAP header along with any method call requiring authentication. The SoapHeader
class clearly defines this requirement:

Public Class CslaCredentials
Inherits SoapHeader

Public Username As String
Public Password As String

End Class

The class itself is very simple—it just defines the two required data fields, as shown here:

Public Username As String
Public Password As String

More important is the fact that it inherits from System.Web.Services.Protocols.SoapHeader.
This means that the CslaCredentials object’s values will be automatically populated by the .NET
runtime, based on the data in the SOAP header that’s provided as part of the method call. To make
this happen, a <SoapHeader()> attribute will be applied to each web method in the web service to
indicate that the SOAP header data should be loaded into a CslaCredentials object.

Credentials Field

Within the PTService class, the code declares a CslaCredentials field, as follows:

Public Credentials As New CslaCredentials

This step is required because the actual data values will be placed into this object. There’s
no magic here—each web method that needs access to the user’s credentials will have a
<SoapHeader()> attribute that tells ASP.NET to load the SOAP header data into this specific object.

The use of this field, combined with the fact that the CslaCredentials class is Public in scope,
means that the CslaCredentials type is included as part of the web service’s WSDL definition.

The result is that any consumers referencing the web service will have full access to the type
information, so they will clearly see the required username and password values.

CHAPTER 11 ■ WEB SERVICES INTERFACE586

6315_c11_final.qxd 4/7/06 2:25 PM Page 586

■Tip When creating the consumer with Visual Studio, the consumer-side proxy class is created automatically for
CslaCredentials, thus dramatically simplifying the process of providing the data. You’ll see an example of this
later in the chapter.

SoapHeader Attribute
With the SoapHeader class and corresponding field defined, any consumer that references the web
service will have a clearly defined structure into which the username and password values can be
placed. By default, web methods don’t require SOAP headers. The <SoapHeader()> attribute is
applied to a web method to indicate that it does require a specific SOAP header.

This attribute accepts a parameter that links the SOAP header to a specific SoapHeader field
declared in the web service class—in this case, to the Credentials field of type CslaCredentials.

This means that any web methods requiring authentication will be declared like this:

<WebMethod(Description="A sample method")> _
<SoapHeader("Credentials")> _
Public Sub SampleMethod()
' Web method implementation code goes here

End Sub

When this method is invoked by a consumer, the .NET runtime uses reflection to find a field
called Credentials. It then uses reflection against that Credentials field to discover its type. Based
on that type information, it looks at the SOAP header data to find the SOAP header that matches
that type, and takes the appropriate data out of the SOAP header and uses it to populate the field.

This SOAP XML might look something like this (the CslaCredentials header is displayed in
bold):

POST /PTservice/projecttracker.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: 574
SOAPAction: "http://ws.lhotka.net/PTWebService/ProjectTracker/GetResourceList"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Header>
<CslaCredentials xmlns="http://ws.lhotka.net/PTWebService/ProjectTracker">
<Username>string</Username>
<Password>string</Password>

</CslaCredentials>
</soap:Header>
<soap:Body>
<GetResourceList xmlns="http://ws.lhotka.net/PTWebService/ProjectTracker" />

</soap:Body>
</soap:Envelope>

That data is used to create a CslaCredentials object, which is provided to PTService through
the Credentials field. Then the web method itself is called.

CHAPTER 11 ■ WEB SERVICES INTERFACE 587

6315_c11_final.qxd 4/7/06 2:25 PM Page 587

■Note Notice that the <SoapHeader()> attribute indicates a required SOAP header, so the web method can
only be called by a consumer that provides this information.

This means that by the time the web method code is running, the Credentials field will be
loaded with the username and password values provided by the consumer via the SOAP header.

Validating the Credentials
At this point, you should understand how to require a consumer to provide a username and a pass-
word, and how to make those values available to your web service code through a field declared in
the web service class.

Given this information, it is now possible to use the username and password values to authen-
ticate the caller by using PTPrincipal.Login(). This method was discussed in Chapter 8. It validates
the caller’s credentials and sets the current principal object to the resulting PTPrincipal. Since this
code is running inside ASP.NET, Csla.ApplicationContext sets the HttpContext.Current.User prop-
erty with this value.

As with the PTWeb interface in Chapter 10, it is also important to set the User property from
the current HttpContext. Though the business objects and most of the .NET Framework rely on the
Thread object to get the current principal, most web-related code relies on HttpContext.Current.
User instead. Setting both values ensures that all code will use the same principal object.

The Security class in the App_Code directory contains a Login() helper method to take care
of the details:

Public Sub Login(ByVal credentials As CslaCredentials)
If Len(credentials.Username) = 0 Then
Throw New System.Security.SecurityException(_
"Valid credentials not provided")

End If

' set to unauthenticated principal
PTPrincipal.Logout()

With credentials
PTPrincipal.Login(.Username, .Password)

End With

If Not Csla.ApplicationContext.User.Identity.IsAuthenticated Then
' the user is not valid, raise an error
Throw New System.Security.SecurityException("Invalid user or password")

End If
End Sub

This method accepts the CslaCredentials object created by .NET and uses its values to call
PTPrincipal.Login(). If the credentials are valid, then the current principal is set to use the new
principal object. Otherwise, an exception is thrown to notify the caller that their credentials were
invalid.

All of this work ensures that only valid, authenticated users gain access to the web methods,
provided that those methods have the following structure:

CHAPTER 11 ■ WEB SERVICES INTERFACE588

6315_c11_final.qxd 4/7/06 2:25 PM Page 588

<WebMethod(Description="A sample method")> _
<SoapHeader("Credentials")> _
Public Sub SampleMethod()
' user credentials required.
Security.Login(Credentials)

' Web method implementation code goes here
End Sub

Web methods that don’t require authentication simply don’t use the <SoapHeader()> attribute
or call Security.Login(). Instead they call a different method, Security.UseAnonymous():

Public Sub UseAnonymous()
ProjectTracker.Library.Security.PTPrincipal.Logout()

End Sub

Remember from Chapter 8 that PTPrincipal.Logout() sets the current principal value to an
unauthenticated PTPrincipal. A remote data portal will only accept a principal object that inherits
from Csla.Security.BusinessPrincipalBase, and so this code ensures that the current principal is
such a principal object.

With the authentication scheme covered, let’s move on to discuss the implementation of actual
web methods.

Component-Based Web Methods
First, let’s look at how you can construct component-based or API-style web methods. These are
methods designed in much the same way you might have designed methods for MTS or COM+
components over the past decade or so. Each method accepts a set of strongly typed parameters
and returns a strongly typed result.

In the PTWebService project, you’ll find several methods of this type, including the following:

• AddProject()

• EditProject()

• ChangeResourceName()

• AssignResource()

All of these web methods follow the same basic structure, so I’ll just walk through one of them:
AddProject().

AddProject
The AddProject() web method allows a caller to add a new project to the system. To avoid breaking
encapsulation, the actual Project class is never exposed to the consumer of the web service. Instead,
a set of detailed parameters are exposed, making it clear to the consumer what data is required
when adding a project:

<WebMethod(Description:="Add a project")> _
<SoapHeader("Credentials")> _
Public Function AddProject(_
ByVal name As String, ByVal started As String, ByVal ended As String, _
ByVal description As String) As ProjectData

CHAPTER 11 ■ WEB SERVICES INTERFACE 589

6315_c11_final.qxd 4/7/06 2:25 PM Page 589

' user credentials required
Security.Login(Credentials)

Try
Dim proj As Project = Project.NewProject
With proj
.Name = name
.Started = started
.Ended = ended
.Description = description

End With
proj = proj.Save

Dim result As New ProjectData
Csla.Data.DataMapper.Map(proj, result, "Resources")
Return result

Catch ex As Csla.DataPortalException
Throw ex.BusinessException

Catch ex As Exception
Throw New Exception(ex.Message)

End Try
End Function

Since this method alters data, it requires that the caller provide credentials for authentication:

<SoapHeader("Credentials")> _

The first thing the code does is validate these credentials:

Security.Login(Credentials)

If the credentials aren’t valid, the Login() method throws an exception, so any code subsequent
to this point can be assured that the credentials were valid.

However, it is important to realize that the Project object will still apply its normal authoriza-
tion rules based on these credentials. In other words, the web method code is not responsible for
preventing an unauthorized user from adding a new project, because the Project object itself takes
care of those details.

Thanks to the fact that all validation and authorization is in the Project object, the web method
code is very straightforward. It creates a new Project, loads the parameter values from the caller
into the object’s properties, and then calls the Save() method to commit the change:

Dim proj As Project = Project.NewProject
With proj
.Name = name
.Started = started
.Ended = ended
.Description = description

End With
proj = proj.Save

This is all within a Try...Catch block. Notice that the Catch blocks simply rethrow the excep-
tions. You could add logging code here if desired, but you should remember to rethrow the exception
as well. When exceptions are thrown from within the web service class itself, the message text from
the exception is automatically returned to the consumer so that it gets some information about
what went wrong.

CHAPTER 11 ■ WEB SERVICES INTERFACE590

6315_c11_final.qxd 4/7/06 2:25 PM Page 590

If no exception occurs and the Save() call succeeds, then the updated project data is returned
to the caller. To do this, a ProjectData object is created, loaded with the data from the Project object,
and returned as a result:

Dim result As New ProjectData
Csla.Data.DataMapper.Map(proj, result, "Resources")
Return result

The DataMapper functionality discussed in Chapter 5 is used to copy the values from Project
into ProjectData. If you want to avoid that use of reflection, you can write code to manually copy
each property value.

The first question you might ask is why this code doesn’t simply return the Project object itself.
But remember that this is problematic for three reasons. First, Project has at least one read-only
property (Id), and that value wouldn’t be returned, thanks to the way Web Services serializes objects
into XML. Second, that would break encapsulation by directly tying the internal implementation of
the web service to its external interface. Finally, the Project class doesn’t have a default constructor,
which means the XmlSerializer can’t serialize the object.

ProjectData Class

The ProjectData class offers a clear, abstract, and formal interface to the caller that is separate from
the interface of Project itself. The ProjectData class is a data transfer object (DTO). This means that
it is composed purely of Public read-write properties, with no internal code. In other words, this
class should exactly match the code created by Visual Studio when it creates a proxy class for a web
service.

In fact, if you are using XSD schemas to define the XML transferred to and from the caller, you
can generate this class using the xsd.exe command line utility. In PTWebService, I wrote the class by
hand, and it looks like this:

Public Class ProjectData

Private mId As Guid
Private mName As String
Private mStarted As String
Private mEnded As String
Private mDescription As String
Private mResources As New Generic.List(Of ProjectResourceData)

Public Property Id() As Guid
Get
Return mId

End Get
Set(ByVal value As Guid)
mId = value

End Set
End Property
' other properties go here

End Class

You can get the complete code from the download for this book.
Not only does this class include properties corresponding to those of Project, but it also

includes a List(Of ProjectResourceData) field. I’ll discuss this later, as this class will also be used
by GetProjectList() and GetProject().

As you can see, component-based methods like AddProject() are relatively easy to implement.
They simply accept a set of strongly typed parameters, potentially call Security.Login(), and then

CHAPTER 11 ■ WEB SERVICES INTERFACE 591

6315_c11_final.qxd 4/7/06 2:25 PM Page 591

let the business objects do all the hard work. The code in AddProject() relies on the fact that the
Project object will throw exceptions for any authorization violations, and that its Save() method
will throw an exception if the object’s validation rules are violated by the data provided from the
consumer.

Now let’s move on to look at service-oriented, message-based web method implementations.

Service-Oriented Web Methods
As discussed earlier, the primary definition of a service-oriented web method is that it accepts
and returns messages. These messages are typically XML structures, but within .NET they are rep-
resented as strongly typed classes. You can create these classes by hand, or generate them from an
XSD schema by using the xsd.exe command line utility.

The service-oriented web methods in PTWebService include the following:

• GetProjectList()

• GetProject()

• GetResourceList()

• GetResource()

They all work essentially the same way, and so I’ll only walk through two of them in this
chapter: GetProjectList() and GetProject().

It is important to realize that even though my examples in this chapter focus on retrieving
data, you can use service-oriented techniques to implement methods like AddProject() (described
earlier). AddProject() could just as easily have accepted a single message, rather than a long list of
parameters, as it does in this chapter. Similarly, the GetProject() implementation shown following
could accept strongly typed parameters rather than a request message.

My point is that you can switch between models, and the code in this chapter is primarily
intended to show you how to implement each approach so that you can choose which is appro-
priate for your application.

GetProjectList
The GetProjectList() web method is intended to return a list of the projects in the ProjectTracker
application. A consumer application can use this data however it wishes, and this method will allow
anonymous access with no authentication. Recall that the ProjectList business object applies no
authorization rules, and both the PTWin and PTWeb interfaces allow anonymous users access to the
list of projects (and the list of resources through ResourceList).

This method provides an opportunity to see the simplest message-based implementation, and
also demonstrates how to create a web method that doesn’t use the custom authentication mecha-
nism implemented earlier:

<WebMethod(Description:="Get a list of projects")> _
Public Function GetProjectList() As ProjectData()
' anonymous access allowed
Security.UseAnonymous()

Try
Dim list As ProjectList = ProjectList.GetProjectList
Dim result As New List(Of ProjectData)
For Each item As ProjectInfo In list
Dim info As New ProjectData
Csla.Data.DataMapper.Map(item, info)
result.Add(info)

CHAPTER 11 ■ WEB SERVICES INTERFACE592

6315_c11_final.qxd 4/7/06 2:25 PM Page 592

Next
Return result.ToArray

Catch ex As Csla.DataPortalException
Throw ex.BusinessException

Catch ex As Exception
Throw New Exception(ex.Message)

End Try
End Function

Notice that there’s no <SoapHeader()> attribute and no call to Security.Login(). Instead there’s
a call to Security.UseAnonymous():

Security.UseAnonymous()

Thus, any consumer can call this web method and get back data.

■Tip If you are using Windows integrated security, then security is applied at the virtual root level by IIS and
always applies to all web services within that virtual root. In that case, you do not have the flexibility to allow
anonymous users for some methods and not for others.

The method accepts no parameters, because it always returns all the projects in the database.
The result is returned as an array of ProjectData objects. The ProjectData class was discussed
earlier, during the implementation of AddProject().

This array is populated by looping through all the items in a ProjectList object and using
DataMapper to copy the properties from each ProjectTracker.Library.ProjectInfo child object
in the collection to a List(Of ProjectData) object. That list is then converted to an array, which
is returned as a result:

Dim list As ProjectList = ProjectList.GetProjectList
Dim result As New List(Of ProjectData)
For Each item As ProjectInfo In list
Dim info As New ProjectData
Csla.Data.DataMapper.Map(item, info)
result.Add(info)

Next
Return result.ToArray

Web Services can’t serialize complex collection types into XML, but it can serialize arrays with-
out a problem. That is the reason for converting the List(Of ProjectData) into an array before
returning it as a result.

GetProject
The GetProject() web method is a bit more interesting, because it returns the list of resources
assigned to the project along with the rest of the project’s information. Again, viewing project data
isn’t a restricted behavior, so no authentication is required, and Security.UseAnonymous() is called:

<WebMethod(Description:="Get a project")> _
Public Function GetProject(ByVal request As ProjectRequest) As ProjectData
' anonymous access allowed
Security.UseAnonymous()

CHAPTER 11 ■ WEB SERVICES INTERFACE 593

6315_c11_final.qxd 4/7/06 2:25 PM Page 593

Try
Dim proj As Project = Project.GetProject(request.Id)
Dim result As New ProjectData
Csla.Data.DataMapper.Map(proj, result, "Resources")
For Each resource As ProjectResource In proj.Resources
Dim info As New ProjectResourceData
Csla.Data.DataMapper.Map(resource, info, "FullName")
result.AddResource(info)

Next
Return result

Catch ex As Csla.DataPortalException
Throw ex.BusinessException

Catch ex As Exception
Throw New Exception(ex.Message)

End Try
End Function

The body of this method retrieves the Project object based on the information provided
through the request parameter:

Dim proj As Project = Project.GetProject(request.Id)

ProjectRequest Class

The parameter is of type ProjectRequest:

Public Class ProjectRequest

Private mId As Guid

Public Property Id() As Guid
Get
Return mId

End Get
Set(ByVal value As Guid)
mId = value

End Set
End Property

End Class

You can think of this object in much the same way as you would a criteria object for the data
portal. By using a complex type for a parameter rather than a simpler type like Integer or Guid, the
GetProject() method is easier to extend or change over time. Due to the way Web Services serializes
objects into and out of XML, you can add extra properties to ProjectRequest over time without
breaking existing consumers. This type of flexibility is powerful, as it means the GetProject() method
can evolve over time with less impact on consumers as compared to an API-style approach based on
individual strongly typed parameters.

Unfortunately, you can’t remove properties, rename them, or change their data types over time
without forcing changes in the code that consumes your web service. The rules for changing Web
Services interfaces are basically the same as the rules were for COM interfaces in Visual Basic 6; you
can add to an interface, but any change or removal of existing interface elements will force con-
sumers of your web service to update their software to compensate.

CHAPTER 11 ■ WEB SERVICES INTERFACE594

6315_c11_final.qxd 4/7/06 2:25 PM Page 594

Copying the Properties

Once the Project object is available, DataMapper is used to copy the properties from Project into
a ProjectData object:

Csla.Data.DataMapper.Map(proj, result, "Resources")

The ProjectData class was discussed earlier when creating the AddProject() web method.
Once the Project object’s data has been copied, the code loops through all the

ProjectResource objects in the Project object’s Resources collection. Each of these objects has
its property values mapped to a ProjectResourceData object, which is added to the ProjectData
object:

For Each resource As ProjectResource In proj.Resources
Dim info As New ProjectResourceData
Csla.Data.DataMapper.Map(resource, info, "FullName")
result.AddResource(info)

Next

You’ve seen the ProjectData class and how it contains a List(Of ProjectResourceData) field.
The AddResource() method simply adds the item to this field:

Public Sub AddResource(ByVal resource As ProjectResourceData)
mResources.Add(resource)

End Sub

Let’s look at the ProjectResourceData class and how it is used in ProjectData. This will make
it clear why the AddResource() method is implemented as shown here.

ProjectResourceData Class

ProjectResourceData is also a simple DTO:

Public Class ProjectResourceData

Private mResourceId As Integer
Private mFirstName As String
Private mLastName As String
Private mAssigned As String
Private mRole As Integer

Public Property ResourceId() As Integer
Get
Return mResourceId

End Get
Set(ByVal value As Integer)
mResourceId = value

End Set
End Property
' other properties declared here

End Class

You can see the complete code in the download for this book. Each ProjectResourceData object
contains the data to be returned to the consumer for each ProjectResource business object.

CHAPTER 11 ■ WEB SERVICES INTERFACE 595

6315_c11_final.qxd 4/7/06 2:25 PM Page 595

ProjectResources Property

The really interesting challenge, however, is that Web Services can’t serialize a List(Of T) into XML;
so back in ProjectData, the List(Of ProjectResourceData) field is exposed as a property using the
following code:

Public Property ProjectResources() As ProjectResourceData()
Get
If mResources.Count > 0 Then
Return mResources.ToArray

Else
Return Nothing

End If
End Get
Set(ByVal value As ProjectResourceData())
mResources = New Generic.List(Of ProjectResourceData)(value)

End Set
End Property

Notice how this property exposes an array of type ProjectResourceData externally, but main-
tains a List(Of ProjectResourceData) internally. It is easier to deal with a List(Of T) than an array,
which is why the internal representation is a List(Of T).

This is also why the AddResource() method is used to add elements to the
List(Of ProjectResourceData) field. Since that field is never exposed publicly as a List(Of T),
there’s no way for the GetProject() method to directly add items to the list.

Back in GetProject(), the resulting ProjectData, along with its list of ProjectResourceData
objects, is returned to the consumer as a result:

Return result

As with all the other web methods, this one implements exception handling to rethrow any
exceptions so that the exception message text is provided to the consumer for its use.

At this point, you should understand how to create component-based or API-style web meth-
ods. And you should understand how to create service-oriented, message-based web methods.
You can look at the rest of the code in the code download for this book.

The result is that you now have a web service interface to some of the ProjectTracker func-
tionality. Consumers can now call these web methods to interact with the application’s business
logic and data. These consumers may be running on any hardware platform or OS, and may be
written in virtually any programming language. Those details don’t matter in any meaningful way.

The important thing is that any consumers will interact with the ProjectTracker data through
the business logic in the business objects, including validation, authentication, and authorization—
thereby making it difficult for a consumer to misuse the data or functionality.

Web Service Consumer Implementation
The thing about creating web services is that it’s not a very satisfying experience. There’s nothing to
see—no visual reinforcement that you’ve accomplished anything.

While ASP.NET includes functionality to generate a test page for web services automatically,
that isn’t of much use with PTWebService. The test page created by ASP.NET is only useful for testing
web services that accept simple data types as parameters, and it doesn’t have any provision for han-
dling custom SOAP headers. This means the test page can only be used to call the GetProjectList(),
GetResourceList(), and GetRoles() web methods.

CHAPTER 11 ■ WEB SERVICES INTERFACE596

6315_c11_final.qxd 4/7/06 2:25 PM Page 596

■Note Remember that PTWebService uses custom authentication, and so you must host the website in IIS,
not in ASP.NET Development Server. To do this, set up a virtual root in IIS pointing to the PTWebService directory
in order to run the web service code.

Still, there is value in that, since you can use this capability to quickly determine whether your
web service works at all. Simply use the browser to navigate to the web service asmx file. Enter
http://localhost/PTWebService/PTService.asmx, for example, into the address box, and you’ll get
an informational display about the web service and its capabilities, similar to what’s shown in
Figure 11-8.

If you then click one of the links for a web method, you’ll get details about that method.
For instance, clicking the GetResourceList() method brings up a display similar to the one in
Figure 11-9.

CHAPTER 11 ■ WEB SERVICES INTERFACE 597

Figure 11-8. Example output from the PTWebService test web page

6315_c11_final.qxd 4/7/06 2:25 PM Page 597

With simple web methods, this display includes the ability to invoke the method from within
the browser. For example, Figure 11-10 shows the result of clicking the Invoke button to execute the
GetResourceList() web method.

CHAPTER 11 ■ WEB SERVICES INTERFACE598

Figure 11-9. WSDL for the GetResourceList web method

6315_c11_final.qxd 4/7/06 2:25 PM Page 598

Your results may vary, of course, depending on the data in your database.

A Simple Smart Client
To further illustrate how to call PTWebService, and in particular to show how to deal with the custom
SOAP header for authentication, the ProjectTracker solution contains a PTServiceClient project.
This is a bare-bones smart client application that acts as a consumer for PTWebService. Figure 11-11
shows what the application looks like when running.

CHAPTER 11 ■ WEB SERVICES INTERFACE 599

Figure 11-10. Results of invoking the GetResourceList method

6315_c11_final.qxd 4/7/06 2:25 PM Page 599

My goal with this application isn’t to create a complete consumer. I want to use this application
to show how to consume a basic web service, and how to set up and pass credentials through the
custom SOAP header.

As shown in Figure 11-12, PTServiceClient has a web reference to PTService.

CHAPTER 11 ■ WEB SERVICES INTERFACE600

Figure 11-11. The PTWebService client application

Figure 11-12. Web reference to PTService

6315_c11_final.qxd 4/7/06 2:25 PM Page 600

The URL behavior for this reference is set to Dynamic in the Properties window. This means that
the URL for the web service is maintained in the app.config file:

<applicationSettings>
<PTServiceClient.My.MySettings>
<setting name="PTServiceClient_PTService_PTService"

serializeAs="String">
<value>http://localhost/PTWebService/PTService.asmx</value>

</setting>
</PTServiceClient.My.MySettings>

</applicationSettings>

The <applicationSettings> element is part of the configuration functionality provided by
System.Configuration in .NET 2.0, and it is automatically used by Visual Studio when you set the
URL behavior property to Dynamic for a web reference.

When you add a web reference to your project, Visual Studio uses the WSDL description for
the web service to determine all the types it exposes, including CslaCredentials, ProjectData, and
the other types accepted as parameters or returned as results from the web methods. Visual Studio
uses this information to create proxy classes for all these types, so they can be used in the con-
sumer code as though they were local classes.

Calling a Web Method
The data binding support in Windows Forms works against the proxy classes generated for a web
service. This means you can add a type like ProjectData to the Data Sources window much like
Project was added in Chapter 9. Figure 11-13 shows the Data Source Configuration Wizard listing
all the types from the PTService web reference.

When you go to add a data source to the Data Sources window, the first step in the wizard
includes the option to add a web service as a data source, as shown in Figure 11-14.

CHAPTER 11 ■ WEB SERVICES INTERFACE 601

6315_c11_final.qxd 4/7/06 2:25 PM Page 601

CHAPTER 11 ■ WEB SERVICES INTERFACE602

Figure 11-13. Types available from the PTService web reference

Figure 11-14. Adding a web service as a data source

6315_c11_final.qxd 4/7/06 2:25 PM Page 602

While you can use this option, it gets you exactly the same result as if you manually add the
web reference and then add the proxy objects as object data sources. In other words, web service
proxy objects are always object data sources, regardless of whether you add them using the web
service or object options in the Data Source Configuration Wizard.

Once the proxy types are in the Data Sources window, you can drag and drop them onto a form
just like you would with any business object. This is how the PTServiceClient UI was built.

For each type you drag onto the form, Visual Studio creates a corresponding BindingSource
object in the form’s component tray. The UI controls are bound to the BindingSource control, and
that BindingSource control is bound to your data.

Just like in Chapter 9, you need to write a bit of code to set the DataSource property of each
BindingSource object. For instance, when the client’s form loads, the following code is run:

Private Sub MainForm_Load(_
ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

Using svc As New PTService.PTService
Me.ProjectInfoBindingSource.DataSource = svc.GetProjectList
Me.ResourceInfoBindingSource.DataSource = svc.GetResourceList
Me.RoleInfoBindingSource.DataSource = svc.GetRoles

End Using
End Sub

First, an instance of PTService is created:

Using svc As New PTService.PTService

Notice that it is within a Using block, so the object is properly disposed when the code is
through with it. Then the project, resource, and role data is retrieved from the web service. Each
resulting object is used to set a DataSource property, ultimately populating the three DataGridView
controls across the top of the form shown in Figure 11-11.

Of course, this is the simple case, since these three web methods don’t require authentication.
Let’s look at the case in which a method does require authentication using the custom SOAP header.

Providing Credentials for Authentication
To supply a SOAP header, the consumer needs to create an instance of the SoapHeader class; in this
case, that means CslaCredentials. This object has its properties loaded with appropriate username
and password values, and it is then attached to the consumer-side proxy for the web service.

To streamline this process throughout the client application, the code is centralized in a
SetCredentials() helper method:

Private Sub SetCredentials(ByVal svc As PTService.PTService)
Dim credentials As New PTService.CslaCredentials
credentials.Username = UsernameTextBox.Text
credentials.Password = PasswordTextBox.Text
svc.CslaCredentialsValue = credentials

End Sub

First, a CslaCredentials object is created and loaded with values:

Dim credentials As New PTService.CslaCredentials
credentials.Username = UsernameTextBox.Text
credentials.Password = PasswordTextBox.Text

Because the CslaCredentials class was exposed by the web service, Visual Studio automatically
created a consumer-side proxy class for it, used here.

CHAPTER 11 ■ WEB SERVICES INTERFACE 603

6315_c11_final.qxd 4/7/06 2:25 PM Page 603

The WSDL definition for the web service also indicated that there are web methods that require
this as a SOAP header, so Visual Studio automatically added a CslaCredentialsValue property to the
consumer-side proxy. To pass a CslaCredentials object to the server as a SOAP header, all you need
to do is set this CslaCredentialsValue property!

svc.CslaCredentialsValue = credentials

With that done, it becomes relatively easy to call a web method that requires authentication.
For instance, the following code is called to assign a resource to a project:

Using svc As New PTService.PTService
SetCredentials(svc)
Try
' do the assignment
svc.AssignResource(_
CInt(Me.ResourceIdLabel.Text), New Guid(Me.ProjectIdLabel.Text))

' refresh the detail view
Dim request As New PTService.ProjectRequest
request.Id = New Guid(Me.ProjectIdLabel.Text)
Me.ProjectDetailBindingSource.DataSource = svc.GetProject(request)

Catch ex As Exception
MessageBox.Show(ex.Message, "Assign resource", _
MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

End Try
End Using

As before, an instance of the web service proxy is created:

Using svc As New PTService.PTService

Before doing anything else, however, the credentials are attached to this object:

SetCredentials(svc)

Now all web method calls within this Using block will automatically have the custom SOAP
header with the credentials passed to the server. So when AssignResource() is called, it can authen-
ticate the credentials, and the business objects can authorize the action based on the roles for the
supplied username:

svc.AssignResource(_
CInt(Me.ResourceIdLabel.Text), New Guid(Me.ProjectIdLabel.Text))

Interestingly, the custom SOAP header is also passed to the subsequent GetProject() call:

Me.ProjectDetailBindingSource.DataSource = svc.GetProject(request)

This doesn’t cause any problem. The GetProject() web method doesn’t have a <SoapHeader()>
attribute, so the custom SOAP header is simply ignored by the server-side code.

You can look through the rest of the client code in the code download for the book. At this
point, however, you should understand how to set up web service proxy objects as data sources
for Windows Forms, how to call simple web methods, and how to call web methods that require
a custom SOAP header.

CHAPTER 11 ■ WEB SERVICES INTERFACE604

6315_c11_final.qxd 4/7/06 2:25 PM Page 604

Conclusion
Web services enable the creation of another type of interface to business objects. Rather than
exposing an interface directly to users, as with Windows forms or web forms, web services expose
an interface for use by other, external applications. Those applications can call your web methods
to leverage the business functionality and data provided by your application and its business
objects.

You can design your web services along the lines of MTS or COM+ components, effectively
creating a public API for your application. In such a case, most people tend to think of the web
service as implementing a tier in an n-tier or a client/server model.

In many cases, it is better to follow service-oriented thinking, which specifies that a service
(web service or otherwise) is an autonomous entity—an independent application, not a tier within
a larger application. Service orientation also specifies that your web methods should communicate
using a message-based approach, for which a web method accepts a complex type as a message,
and returns a complex type as a resulting message.

In this chapter, I demonstrated how to create web methods using both approaches, so you can
decide which works best in your application.

The example web service and client illustrate how you can expose all the functionality of your
business objects without duplicating business logic in the web service interface itself. The valida-
tion, authentication, and other business logic is all encapsulated entirely in the business objects.

Chapter 12 will close the book by showing how to create remote data portal hosts for remoting,
Web Services, and Enterprise Services. These remote hosts can be used by the Windows Forms, Web
Forms, and Web Services interfaces you’ve seen in the last three chapters.

CHAPTER 11 ■ WEB SERVICES INTERFACE 605

6315_c11_final.qxd 4/7/06 2:25 PM Page 605

6315_c11_final.qxd 4/7/06 2:25 PM Page 606

Implementing Remote Data
Portal Hosts

In Chapters 9 through 11, you saw how to implement Windows Forms, Web Forms, and Web
Services interfaces to a common set of business objects. In each chapter, I briefly discussed the
configuration options available in terms of running the server-side data portal components on
the client or on an application server.

What I haven’t discussed yet in detail is how to set up application servers to host the server-
side data portal components and your business objects. As discussed in Chapter 4, the data portal
implements a channel adapter pattern, allowing you to communicate from the client to the appli-
cation server using .NET Remoting, Web Services, or Enterprise Services. It is also possible for you
to create your own custom channel proxy and host if these standard technologies aren’t sufficient
for your needs.

It is my intent to provide a WCF (Windows Communication Foundation, or Indigo) channel
proxy and host when that technology becomes available. You’ll be able to find further information
at www.lhotka.net/cslanet.

I want to be very clear, however, that I believe you should only use a remote data portal to
achieve scalability, security, or fault tolerance objectives. As I discussed in Chapter 1, adding physi-
cal tiers to an application is a double-edged sword. You lose performance and increase complexity
by adding tiers, so you should have a strong reason for doing so.

In this chapter, I will walk through the process of setting up and using three data portal
application server hosts:

• .NET Remoting

• Web Services

• Enterprise Services

Though no code changes are required in your UI or business objects, each application server
will require a slightly different set of steps to work.

In general terms, though, the process for each is similar:

1. Set up the host on the server.

2. Make your business object assembly available to that host.

3. Configure the client to use the new host.

To a large degree, the implementation of the data portal in Chapter 4 already took care of the
hard parts, so these steps are relatively straightforward in each case.

Before creating each host, I want to spend a short time discussing why you might choose each
of the channel technologies.

607

C H A P T E R 1 2

■ ■ ■

6315_c12_final.qxd 4/7/06 2:23 PM Page 607

Data Portal Channel Comparison
Thanks to the way the data portal channel adapter functionality was implemented in Chapter 4,
there is no functional difference between using .NET Remoting, Web Services, or Enterprise Services
as used by your UI or business objects. In other words, you can switch between any of these chan-
nels and your application will continue to function in exactly the same manner.

So how do you decide which to use?

Factors for Comparison
As it turns out, there are some differences in performance and other behaviors, which you can use
to decide between the channels. Table 12-1 lists the key differences.

Table 12-1. Functional Comparison of Channel Technologies (1 = worst, 4 = best)

Factor Remoting Web Services Enterprise Services

Performance 3 2 4

Security 2 2 4

Host technology IIS or custom IIS COM+

Firewall-friendliness 2 2 1

Ease of deployment 2 2 1

Ease of implementation 2 2 1

Notice that neither open standards nor interop are listed here. This is because the data portal
is serializing your business objects across the network, so the only way that the data on the other end
of the wire can be understood is if the data is deserialized back into your business classes. The data
portal is an n-tier client/server concept, and neither interop nor XML standards on the network
matter within this context.

■Tip If interop and readable XML are requirements for your application, you should use the concepts discussed
in Chapter 11 to create a web service interface on top of your business objects.

However, for n-tier client/server applications, the factors listed in Table 12-1 are typically very
important. Let’s discuss each factor in turn.

Performance
When it comes to performance, you can find a wealth of opinions and a number of conflicting
studies on the Web telling you what’s faster and slower.

In general terms, though, you’ll find that both remoting and Web Services are of relatively
comparable performance. This makes sense because they are both web-based technologies and
share a lot of common underpinnings within .NET. The reason I give remoting slightly higher
marks than Web Services is because remoting transfers the serialized object data in a binary for-
mat that is substantially smaller than the Base64 encoded format used by Web Services.

■Tip You may be able to employ compression technologies when using Web Services to get similar or even
smaller chunks of data on the network. Of course, that would mean an increase in CPU use on both client and
server, so you need to test to see if this makes sense for you.

608 CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS

6315_c12_final.qxd 4/7/06 2:23 PM Page 608

Perhaps more importantly, you’ll find that Enterprise Services is substantially faster than either
remoting or Web Services.

Of course, when it comes to performance, environmental factors make a big difference. What
is your network topology? Your network load? Your server load? Due to these variables, you should
do your own testing to determine which channel technology provides you with the best perform-
ance overall.

Security
The term “security” spans a wide area. In this case, I am talking about security in terms of knowing
that the data came from the client, and whether the data is encrypted as it moves across the net-
work between the client and server.

Both remoting and Web Services can use SSL (Secure Sockets Layer) communication over
HTTP, which is typically the easiest and best way to provide a secure communication channel for
these technologies.

If you are using the TCP channel and implement a custom host application, remoting also
offers the ability to do its own encryption. This option is not available with the HTTP channel, so
in that case you should use SSL.

Enterprise Services offers various levels of data encryption on the wire, and so has the most
flexibility and capabilities in this area. Additionally, enabling secure communication using Enter-
prise Services is often easier than configuring SSL on a web server. If you are running in a Windows
domain, just set your COM+ application properties as shown in Figure 12-1.

This is often far easier than the process required to enable SSL on a web server.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 609

Figure 12-1. Using packet privacy in Enterprise Services

6315_c12_final.qxd 4/7/06 2:23 PM Page 609

Host Technology
The host technology used by an application server can weigh heavily in some server environments.
Some organizations disallow the use of IIS on certain types of servers.

Both remoting and Web Services can be hosted in IIS; technically within ASP.NET on IIS.
This is an ideal configuration for remoting, since it gains all the benefits of running within IIS
and ASP.NET. And it is the only real option for Web Services.

Remoting can also be hosted in a custom application of your design. Typically this would be
a Windows service. I don’t recommend this course of action, because you would need to duplicate
a large percentage of IIS to achieve comparable levels of manageability, security, runtime monitor-
ing, and so forth. In most cases, it is far preferable to use remoting within the context of IIS and
ASP.NET.

Enterprise Services can only be hosted in COM+, because Enterprise Services is really just a
wrapper around the existing COM+ services. This means that your server does not need IIS to host
the data portal in Enterprise Services.

Firewall-Friendliness
Some organizations use internal firewall technology that makes the use of DCOM, and thus the
Enterprise Services channel, problematic. The Enterprise Services channel uses DCOM as its net-
work transport—and while it is technically possible to make DCOM work through a firewall, most
organizations opt for a more firewall-friendly technology.

Both remoting and Web Services can use HTTP over port 80, and thus they are firewall-friendly
by default. Even when using SSL, most firewalls allow that traffic as well.

When hosted in a custom host like a Windows Service, remoting can be configured to use raw
TCP sockets over arbitrary ports. In that case, remoting would require extra firewall configuration
to allow that traffic to flow. Again, I recommend hosting remoting in IIS, in which case this is not
an issue.

Ease of Deployment
There are two aspects to deployment: client and server. Simple client deployment typically means
that there is no need to register components, thus providing support for XCOPY deployment and
ClickOnce. Server deployment is never “simple,” but the goal is for deployment to be as easy and
straightforward as possible.

When it comes to client deployment, both remoting and Web Services are trivial. Neither
require special components or registration of any sort. They merely require that the client’s con-
figuration specify the data portal channel to be used, including the URL of the application server.

Enterprise Services is a bit more complex because the COM+ server application must be regis-
tered on the client. While this merely means running an extra msi installer on the client workstation
or client web server, this extra step definitely complicates deployment of client applications.

On the server, all three technologies are relatively comparable. In the case of remoting
(hosted in IIS) and Web Services, you need to set up and configure a virtual root in IIS. With
Enterprise Services, you need to set up and configure a COM+ application using the server’s
Component Services tool.

Of course, if you choose to implement a custom host for remoting, it is up to you to ensure that
server deployment and management is straightforward.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS610

6315_c12_final.qxd 4/7/06 2:23 PM Page 610

Ease of Implementation
Finally, there’s the ease of implementation. As I mentioned earlier, neither your UI nor business
object code varies depending on the data portal channel, so what I’m talking about here is the ease
with which you implement the data portal host to run on the application server.

Remoting and Web Services have the edge here, because virtually all their implementation was
done in Chapter 4. With remoting, all you need to do is add some lines to web.config on the server;
while with Web Services, you need to create a one-line asmx file. Either approach is trivial.

Enterprise Services requires more work because COM+ has no concept of virtual roots. If you
want to set up a COM+ application on the server with a unique name, you need a specific Enter-
prise Services component to put into that COM+ application. In other words, you can’t put Csla.dll
into COM+ multiple times and be able to configure each instance separately—something that you
can do with virtual roots in IIS.

Due to this, you’ll need to do some simple coding to create a unique Enterprise Services assem-
bly for your particular application. Again, most of the work was done in Chapter 4, but this is an
extra bit of work you need to do once for each business application you create (if you want to create
an Enterprise Services data portal host).

In the final analysis, it is up to you which data portal channel technology to choose. The
important thing to remember is that you can switch from one to the other without breaking your
UI or business object code. This means you can try one channel and switch to another later if you
determine it would better fit your needs. This flexibility will become particularly important once
Microsoft releases WCF, since it should provide you with a largely transparent migration path to
that technology.

.NET Remoting
The .NET Remoting technology provides good performance with easy deployment and configura-
tion. This is typically my first choice when implementing a remote data portal. The easiest and best
way to set up an application server to host your business objects through remoting is to use IIS and
ASP.NET.

■Note As I mentioned earlier, I recommend hosting .NET Remoting within IIS and ASP.NET. While you can create
your own custom remoting host, I won’t discuss that option here.

To set up an application server for your application, follow these steps:

1. Create an empty web project in Visual Studio.

2. Add a reference to your business assembly or assemblies.

3. Ensure Csla.dll is in the Bin directory.

4. Add a web.config file.

5. Add a <system.runtime.remoting> element to expose the data portal.

6. Configure the client.

Let’s walk through each step to set up a remoting host for the ProjectTracker sample
application.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 611

6315_c12_final.qxd 4/7/06 2:23 PM Page 611

Implementation
The ProjectTracker solution in the code download for this book (available at www.apress.com)
includes the virtual root and web.config file discussed in the following sections.

Creating the Virtual Root
The RemotingHost project in the ProjectTracker solution started out as an empty web project, cre-
ated as shown in Figure 12-2.

This allows Visual Studio to properly set up the directory as needed for ASP.NET.

■Note You can use the ASP.NET Development Server during development if you choose. While hosting Web
Forms and Web Services interfaces is problematic due to assembly load issues, I typically do my development
for remoting using this host rather than IIS.

To this empty website I added the appropriate references, and a web.config file to configure
remoting to expose the Csla.Server.Hosts.RemotingProxy class.

Referencing Assemblies
When running, the remoting host needs access to your business classes from your business assem-
bly or assemblies. What this means in practice is that your business assemblies must be in the Bin
subdirectory of the virtual root.

You can copy them there manually, but an easy way to get them into the Bin directory is to have
the project reference them in Visual Studio. This way, any time you change your business objects

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS612

Figure 12-2. Creating an empty website

6315_c12_final.qxd 4/7/06 2:23 PM Page 612

and rebuild the solution, the updated assemblies are automatically copied into the Bin directory by
Visual Studio.

The Csla.dll assembly must also be in the Bin directory. Since ProjectTracker.Library refer-
ences Csla.dll, Visual Studio automatically copies it into the Bin directory because ProjectTracker.
Library is referenced. If you opt to copy your business assemblies manually into the Bin directory,
you’ll need to either explicitly reference Csla.dll or manually copy it into the Bin directory as well.

Configuring web.config
With the virtual root set up and the required assemblies in the Bin directory, all that remains is to
configure ASP.NET to use remoting. This is done by adding a <system.runtime.remoting> element to
web.config. Of course, when starting with an empty website, you need to add a web.config file first.

The required <system.runtime.remoting> section looks like this:

<system.runtime.remoting>
<application>
<service>
<wellknown mode="SingleCall" objectUri="RemotingPortal.rem"

type="Csla.Server.Hosts.RemotingPortal, Csla"/>
</service>
<channels>
<channel ref="http">
<serverProviders>
<provider ref="wsdl"/>
<formatter ref="soap" typeFilterLevel="Full"/>
<formatter ref="binary" typeFilterLevel="Full"/>

</serverProviders>
</channel>

</channels>
</application>

</system.runtime.remoting>

This configures ASP.NET to expose the Csla.Server.Hosts.RemotingPortal class such that
clients can create instances of the class through remoting over HTTP.

■Note There are many different options for configuring remoting. I won’t cover them all here, but instead I’ll
focus only on those used in the previous configuration code. For more information on remoting, I recommend you
look at Ingo Rammer’s book, Advanced .NET Remoting in VB .NET (Apress, 2002).

When configuring remoting, the <wellknown> element identifies a server-side (anchored) class
that can be used by clients. When using this element, you must decide between the two different
operation modes:

• If the mode attribute is set to SingleCall, each method call from any client will cause the
server to create a new object that will handle just that one method call. The object isn’t
reused in any way after that, and is destroyed automatically via the .NET garbage-collection
mechanism.

• If the mode attribute is set to Singleton, all method calls from all clients will be handled by a
single object running on the server. Many method calls may be handled on different threads
at the same time, meaning that the application’s code would have to be entirely safe for mul-
tithreading.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 613

6315_c12_final.qxd 4/7/06 2:23 PM Page 613

Implementing an object for the Singleton mode can be very complex, because you have to
deal with multithreading issues. Typically, this means using thread-synchronization objects, which
will almost always reduce performance and increase complexity.

For most server-side behavior, SingleCall is ideal because each method call is handled by
a newly created object that has its own thread. You don’t need to worry about threading issues, or
about one client interfering with another in some way.

Having selected a mode, you need to define the URI that will be used to access the server-side
object. This URI is combined with the server name and virtual root to construct a URL that clients
can use to call the server. The URL is in the form http://yourserver/yourvroot/testserver.rem,
where yourserver is the name of your server and yourvroot is the name of your virtual root.

■Note The .rem extension is important. When ASP.NET is installed on a server, it configures IIS to route .rem
and .soap extensions to the remoting subsystem. Either extension will work, as they’re both configured to do the
same thing.

Finally, you need to tell the remoting subsystem which specific class and DLL this URL refers
to. The type attribute is somewhat cryptic because it accepts a string that contains the full name
(including namespaces) of the class, a comma, and then the name of the assembly (DLL) that con-
tains the class. Note that the assembly name doesn’t include the .dll extension.

With the well-known endpoint defined, clients can call the server. However, to allow for full
serialization of complex object graphs, remoting must be told to allow any type to be serialized.
This is the purpose behind the XML in the <channels> element. This XML sets the typeFilterLevel
attribute to Full for both the SoapFormatter and BinaryFormatter in the .NET Framework. As these
are the two formatters supported by remoting, this ensures that all serializable objects can flow
through to the data portal.

Configuring the Client
At this point, the application server is configured and is ready for use by clients. The same applica-
tion server can be used by Windows Forms, Web Forms, and Web Services clients—even all at once,
if you choose. The only requirement is that both the application server and clients have the same
version of your business assemblies installed.

To configure a Windows Forms client, you need to edit the app.config file. To configure either
a Web Forms or Web Service client, you need to edit the web.config file.

In either case, the configuration file should contain the following bold lines:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.RemotingProxy, Csla"/>

<add key="CslaDataPortalUrl"
value="http://localhost/RemotingHost/RemotingPortal.rem"/>

</appSettings>
<connectionStrings>
</connectionStrings>

</configuration>

The CslaDataPortalProxy element specifies that the data portal should use the remoting
channel, and the CslaDataPortalUrl element specifies the URL of the server. You’ll need to
replace localhost with the name (and possibly the TCP port) of your server, and RemotingHost

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS614

6315_c12_final.qxd 4/7/06 2:23 PM Page 614

with the name of your virtual root. Also remember that XML is case sensitive, so double-check
to make sure you enter the text exactly as shown here.

Of course, web.config should also include the connection strings for the database in the
<connectionStrings> element. You can see an example in the code download for the book.

Encrypting Data on a TCP Channel
If you do implement a custom remoting host and opt to use the TCP channel rather than the HTTP
channel, you can optionally also include the following element within the <appSettings> block:

<add key="CslaEncryptRemoting"
value="true"/>

Adding this element tells the RemotingProxy class to automatically encrypt data sent across the
network. This option is not available when using the HTTP channel, so in that case, you should use
SSL to secure the channel.

At this point, you should understand how to set up an application server to use remoting, and
how to configure a client to use that server.

Web Services
Web Services is often preferred over remoting because it provides interoperability with external
systems. That use of Web Services was discussed in Chapter 11, and really has no bearing on the
data portal.

The data portal is designed to be an n-tier client/server technology that allows you to add
a physical tier so your logical business layer can run on both the client and application server as
needed. Because of this, the data portal isn’t designed with interop in mind, but rather with high-
level functionality to clone object graphs across the network. Thus, at first glance, the data portal
and Web Services appear to be entirely incompatible.

Yet I am frequently asked to provide Web Services support for the data portal, primarily by
architects and developers forced to use Web Services by management that doesn’t understand its
intended purpose. In other words, Web Services is sometimes mandated as a network transport
even when the technology really make no sense. That is the primary reason CSLA .NET provides
data portal support for Web Services.

As discussed in Chapter 4, the WebServicesProxy directly uses the BinaryFormatter to serialize
the object graph for transmission. Although it does use Web Services to transport the data, the data
itself is a byte array created and consumed by the BinaryFormatter on either end of the connection.
By using this technique, the WebServicesProxy is able to provide all the high-level functionality of
remoting or Enterprise Services while still technically using the Web Services network transport.

To set up an application server for your application, follow these steps:

1. Create a Web Services project in Visual Studio.

2. Add a reference to your business assembly or assemblies.

3. Ensure Csla.dll is in the Bin directory.

4. Edit the asmx file to refer to WebServicesProxy.

5. Configure the client.

Of course, web.config will also include the connection strings for the database in the
<connectionStrings> element. You can see an example in the code download for the book.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 615

6315_c12_final.qxd 4/7/06 2:23 PM Page 615

■Note You can put the asmx file discussed here into almost any ASP.NET website. There’s nothing special about
web service projects or sites, so it is technically possible to even host the data portal web service through a web-
site like PTWeb from Chapter 10 if you wanted. However, most people prefer to keep the data portal physically
separate from their UI code.

Let’s walk through each step to set up a Web Services host for the ProjectTracker sample
application.

Implementation
The ProjectTracker solution in the code download for this book includes the Web Services project
discussed here.

Creating the Web Service Project
The WebServicesHost project in the ProjectTracker solution was created as a web service project,
as shown in Figure 12-3.

This allows Visual Studio to properly set up the directory as needed for ASP.NET.

■Note You can use ASP.NET Development Server during development if you choose. While hosting Web Forms
and Web Services interfaces is problematic due to assembly load issues, it is not a problem when hosting the data
portal. I typically do my development using this host rather than IIS.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS616

Figure 12-3. Creating a web service project

6315_c12_final.qxd 4/7/06 2:23 PM Page 616

I altered this basic web service website by adding the appropriate references and changing the
asmx file to expose the Csla.Server.Hosts.WebServicesProxy class.

Referencing Assemblies
As when using remoting, the web service host needs access to your business classes from your
business assembly or assemblies. What this means in practice is that your business assemblies
must be in the Bin subdirectory of the virtual root.

Again, you can copy them manually, but an easy way to get them into the Bin directory is to
have the project reference them in Visual Studio. That way, any time you change your business
objects and rebuild the solution, the updated assemblies are automatically copied into the Bin
directory by Visual Studio.

The Csla.dll assembly must also be in the Bin directory. Since ProjectTracker.Library refer-
ences Csla.dll, Visual Studio automatically copies it into the Bin directory because ProjectTracker.
Library is referenced. If you opt to copy your business assemblies manually into the Bin directory,
you’ll need to either explicitly reference Csla.dll or manually copy it into the Bin directory as well.

The asmx File
By default, a new web service project has a Service1.asmx file, and an associated Service1.vb file
in the App_Code directory.

CSLA .NET already includes the WebServicesProxy class discussed in Chapter 4. It provides the
full web service functionality required by the data portal, so all the website really needs is an asmx
file referring to that code. To get such a file, you can either edit Service1.asmx or add a new asmx file
to the project. In any case, the code-behind file (Service1.vb) can be deleted, as it won’t be used.

In the WebServicesHost project, you’ll find a WebServicePortal.asmx file with the following
code:

<%@ WebService Language="VB" Class="Csla.Server.Hosts.WebServicePortal" %>

This points the WebServicePortal web service to use the code from Chapter 4, thus providing
access to the data portal functionality.

Configuring the Client
At this point, the application server is configured and is ready for use by clients. The same applica-
tion server can be used by Windows Forms, Web Forms, and Web Services clients—even all at once
if you choose. The only requirement is that both the application server and clients have the same
version of your business assemblies installed.

As with the previous options, to configure a Windows Forms client, you need to edit the app.
config file. To configure either a Web Forms or Web Services client, you need to edit the web.config
file.

In either case, the configuration file should contain the following bold lines:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="Csla.DataPortalClient.WebServicesProxy, Csla"/>

<add key="CslaDataPortalUrl"
value="http://localhost/WebServicesHost/WebServicePortal.asmx"/>

</appSettings>

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 617

6315_c12_final.qxd 4/7/06 2:23 PM Page 617

<connectionStrings>
</connectionStrings>

</configuration>

The CslaDataPortalProxy element specifies that the data portal should use the Web Services
channel, and the CslaDataPortalUrl element specifies the URL of the server. You’ll need to replace
localhost with the name of your server, and WebServicesHost with the name of your virtual root.
Also remember that XML is case sensitive, so double-check to make sure you enter the text exactly
as shown here.

At this point, you should understand how to set up an application server to use Web Services,
and how to configure a client to use that server.

Enterprise Services
The Enterprise Services channel uses DCOM as its network transport. The primary advantage of
DCOM is that it offers superior performance over Web Services and remoting. It is sometimes also
easier to encrypt data on the wire using Enterprise Services than it is to set up SSL on web servers,
which is how you would encrypt the data for remoting (using the IIS host) or Web Services.

Of the three technologies supported by CSLA .NET, Enterprise Services is the most complex to
use, since it requires that you create a custom assembly for your application, and that you install
that assembly into COM+ on the server. You must also register that COM+ application on each
client before it can be used.

To set up an application server for your application, follow these steps:

1. Create an Enterprise Services proxy/host assembly for your application.

2. Reference Csla.dll and your business assemblies.

3. Install your proxy/host assembly into COM+ on the server.

4. Create a configuration directory for the code on the server.

5. Configure the COM+ application on the server.

6. Export the COM+ application to create and install msi.

7. Configure the client.

Let’s walk through each step to set up an Enterprise Services host for the ProjectTracker
sample application.

Creating the Proxy/Host Assembly
The ProjectTracker solution in the code download for this book includes the Enterprise Services
proxy/host assembly and its related files as discussed here. Once I’ve walked through the steps to
create the proxy/host assembly, I’ll show how to install it in COM+ and how to export a client setup
msi from COM+.

The proxy/host assembly is used by the client to call the server, so it contains a proxy object.
The client calls that proxy object, which in turn calls the host object on the server. The assembly
also contains the host object, which is actually installed in COM+ on the application server. This is
illustrated in Figure 12-4.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS618

6315_c12_final.qxd 4/7/06 2:23 PM Page 618

There are a number of steps to create the proxy/host assembly. Let’s walk through each step.

Configuring the Class Library Project
The EnterpriseServicesHostvb project in the ProjectTracker solution is a normal Class Library
project. It is designed so that it can be hosted in Enterprise Services, which means following these
steps after creating a Class Library:

1. Reference System.EnterpriseServices.dll.

2. Sign the assembly.

3. Add an EnterpriseServicesSettings.vb file with special attributes.

In order to use the features of Enterprise Services, your assembly must reference System.
EnterpriseServices.dll. Additionally, to be installed in COM+, the assembly must have a strong
name, which really means that it must be signed with a key file by setting the project’s properties
as shown in Figure 12-5.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 619

Figure 12-4. Client calling the server through a proxy and host

Figure 12-5. Signing the assembly

6315_c12_final.qxd 4/7/06 2:23 PM Page 619

You can either create a key file directly within the project properties window or use a preexist-
ing key file. Typically, an organization will have a common key file that is used to sign all assemblies
created by that organization.

This allows the assembly to be installed in COM+ so that it is available through Enterprise
Services.

The project also includes an EnterpriseServicesSettings.vb file. I added this file to the proj-
ect as a class and simply replaced the class code with the special attributes required by Enterprise
Services to define how the assembly should be treated by COM+. Here are the settings in that file:

<Assembly: ApplicationActivation(ActivationOption.Server)>
<Assembly: ApplicationName("ProjectTracker20vb Portal")>
<Assembly: Description("Project Tracker DataPortal host")>
<Assembly: ApplicationAccessControl(False)>

The ApplicationActivation() setting indicates that the assembly should run in a server process,
not within the process that called the assembly. This is important, since the proxy/host assembly is
to be hosted by COM+ on the server.

The ApplicationName() and Description() settings are optional, but are used to describe the
COM+ component. Finally, the ApplicationAccessControl() setting indicates that COM+ shouldn’t
apply its own method-level security when clients try to call the data portal.

Referencing Assemblies
When running, the Enterprise Services data portal host needs access to your business classes from
your business assembly or assemblies. To make them available, the proxy/host assembly references
ProjectTracker.Library.

It also references Csla.dll so that the CSLA .NET framework is available both to the proxy/host
code and for the business code in ProjectTracker.Library.

EnterpriseServicesProxy Class
The proxy class is used by the client-side DataPortal to communicate with the server. Chapter 4
covered the implementation of a base class, EnterpriseServicesProxy, that is designed to simplify
the creation of a proxy class for your application. In fact, all your code needs to do is override a sin-
gle method. Here’s the proxy class from the ProjectTracker solution:

Public Class EnterpriseServicesProxy
Inherits Csla.DataPortalClient.EnterpriseServicesProxy

Protected Overrides Function GetServerObject() As _
Csla.Server.Hosts.EnterpriseServicesPortal

Return New EnterpriseServicesPortal
End Function

End Class

The code from Chapter 4 can do all the work, but the one bit of information it doesn’t have auto-
matically is a reference to the server-side host object. That is the purpose of the GetServerObject()
method: to return a reference to the server-side object.

Notice that the code here simply uses the New keyword. That is possible because the installation
of the COM+ application’s msi on the client will automatically redirect any attempt to create an
EnterpriseServicesPortal object to the application server. This leverages the same location trans-
parency capability provided by DCOM for the past decade or more.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS620

6315_c12_final.qxd 4/7/06 2:23 PM Page 620

As you’ll see shortly, the client application’s configuration file will reference this
EnterpriseServicesProxy type, telling the data portal to use this custom class as a proxy for com-
munication with the server. First, though, let’s finish creating the proxy/host assembly itself.

EnterpriseServicesPortal Class
The host class runs within COM+ on the application server. Again, Chapter 4 discussed a base
class, EnterpriseServicesPortal, that is designed to do all the actual work. That base class makes
creation of a server-side host trivial, since all you need to do is create an empty class that inherits
from the base:

<EventTrackingEnabled(True)> _
<ComVisible(True)> _
Public Class EnterpriseServicesPortal
Inherits Csla.Server.Hosts.EnterpriseServicesPortal

' no code needed - implementation is in the base class
End Class

It may seem odd to create an empty class like this, but it is the class name and its containing
assembly that are really important. Remember that COM+ has no concept of a virtual root, so
there’s no way to directly host Csla.dll multiple times in COM+. The EnterpriseServicesHostvb
assembly and this EnterpriseServicesPortal class exist specifically to act as wrappers around
Csla.dll to provide a unique name for COM+.

All the functionality is already written in CSLA .NET as discussed in Chapter 4.
Notice that this class is decorated with a couple of attributes. The <EventTrackingEnabled()>

attribute tells COM+ to monitor the object and display tracking information in the component serv-
ices console. In short, this attribute turns on the “spinning balls” in COM+. The <ComVisible()>
attribute is required for making the class available to COM+. Remember that at its core, COM+ is
still a COM-based technology.

That’s all you need to do with this class. The fact that the assembly is signed, combined with
the settings in the EnterpriseServicesSettings.vb file, means that the assembly can be built and
installed into COM+. First, though, let’s discuss how to configure the assembly—providing database
connection strings, for instance.

COM+ Configuration Files
COM+ 1.5 and higher allows you to provide separate configuration files (essentially like app.config
or web.config) for each COM+ application. This is an important feature available on Windows XP
and Windows Server 2003 (and higher), because without it you could only provide one configura-
tion file for all COM+-hosted .NET code.

To use this feature, you need to create two files for your Enterprise Services assembly:

• application.config

• application.manifest

The application.config file is actually named “application.config.” It is a standard .NET con-
fig file that contains the normal .NET configuration that you would put into any app.config file,
including the CSLA .NET configuration settings. For instance, it might look like this:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla"/>

</appSettings>
</configuration>

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 621

6315_c12_final.qxd 4/7/06 2:23 PM Page 621

Most likely, you’ll need to add a <connectionStrings> element with the connection strings for
your database. You can see an example in the code download for this book.

The application.manifest file is required by Enterprise Services and looks like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<assembly xmlns="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
</assembly>

These two files are part of the EnterpriseServicesHostvb project in the ProjectTracker solu-
tion. However, when you deploy the assembly to the application server, these files need to go in
a directory so that they can be referenced from COM+.

Installing the Proxy/Host into COM+
At this point, you’ve seen how to create the proxy/host assembly, including all the references and
extra steps required to make it work with COM+. The final step is to register the assembly with
COM+ on your application server, and then to configure the COM+ application.

Registering a .NET assembly into COM+ is done using the regsvcs.exe command line utility.
In a Visual Studio 2005 command prompt window, navigate to the directory containing
EnterpriseServicesHostvb.dll and type the following command:

> regsvcs EnterpriseServicesHostvb.dll

This will install the assembly into COM+. It will put the assembly into a COM+ application
with the name based on the ApplicationName attribute in EnterpriseServicesSettings.vb:
ProjectTracker20vb Portal. Figure 12-6 shows the result in the Component Services management
console.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS622

Figure 12-6. Proxy/host component installed in COM+

6315_c12_final.qxd 4/7/06 2:23 PM Page 622

There are two key bits of configuration you should do before using the component. First, you
should set the COM+ application to run under a user account appropriate for your environment.
This is done in the properties window for the application, as shown in Figure 12-7.

As shown in Figure 12-7, you should change the identity for the application to a specific user
account. That user account should have appropriate access to the database or other data sources
(such as XML files) on your application server.

Second, you need to configure the application root directory property on the Activation tab
in the Properties window, as shown in Figure 12-8.

The application root directory must point to the location on the server where you put the
application.config and application.manifest files discussed earlier. Obviously, the user account
you set up on the Identity tab must have access to this directory.

At this point, your application server is ready for use. The assembly is registered with COM+,
and the COM+ application is set up appropriately for your environment. The next task is to make
an msi install program that can be run on each client so they have access to the server component.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 623

Figure 12-7. Setting the identity account for the service

6315_c12_final.qxd 4/7/06 2:23 PM Page 623

Creating the Setup Program
To create a setup program (msi) for your proxy/host assembly, you need to right-click the COM+
application node in the component services console; in this case, the ProjectTracker20vb Portal
node. Choose Export from the pop-up menu. This brings up the Application Export Wizard. The
important step in the wizard is shown in Figure 12-9.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS624

Figure 12-8. Setting the application root directory for the component

Figure 12-9. Exploring the COM+ application to create a client install

6315_c12_final.qxd 4/7/06 2:23 PM Page 624

Make sure to choose the application proxy option, as shown in Figure 12-9, and provide a path
and name for the msi file to be created. The result will be both msi and cab files that you can use to
set up clients to use the server.

Client Setup
There are two steps to configure a client to use the Enterprise Services application server host, both
of which are quite straightforward:

1. Run the COM+ application msi.

2. Configure the client application to use the host.

Installing the COM+ Application
To configure the client to use the COM+ application created earlier, simply run the msi file created
through the Component Services Application Export Wizard. This registers the COM+ application
on the client, including setting up the Windows registry entries necessary for the client to find the
correct application server on the network.

Configuring the Client
The only remaining step is to configure the client application itself. The clients could be Windows
Forms, Web Forms, and Web Services clients—even all at once if you choose. The only requirement
is that both the application server and clients have the same version of your business assemblies
installed.

To configure a Windows Forms client, you need to edit the app.config file. To configure either
a Web Forms or Web Services client, you need to edit the web.config file.

In either case, the configuration file should contain the following highlighted lines:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<appSettings>
<add key="CslaAuthentication" value="Csla" />
<add key="CslaDataPortalProxy"
value="EnterpriseServicesHost.EnterpriseServicesProxy,

EnterpriseServicesHostvb"/>
</appSettings>
<connectionStrings>
</connectionStrings>

</configuration>

The CslaDataPortalProxy element specifies that the data portal should use the proxy class
created earlier: EnterpriseServicesProxy. Remember, this is not the CSLA .NET base class, but your
custom class in your application’s specific proxy/host assembly. Notice that the assembly name is
EnterpriseServicesHostvb in the preceding example.

That’s all there is to it. You don’t need to specify the server name or any other details, because
the Windows registry already contains that information based on the msi run in the previous step.

At this point, you should understand how to set up an application server to use Enterprise
Services, and how to install the associated COM+ application on each client so that each client
can use the server.

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS 625

6315_c12_final.qxd 4/7/06 2:23 PM Page 625

Conclusion
As discussed in Chapter 4, the data portal implements a channel adapter pattern, allowing you to
select between four technologies for communicating with the server-side data portal components:

• Local

• Remoting

• Web Services

• Enterprise Services

It is also possible to create your own custom network channel by implementing
DataPortalClient.IDataPortalProxy on the client, and Server.IDataPortalServer on the server,
just as was done in Chapter 4 to create the four proxy/host combinations listed previously.

In this chapter, you’ve seen how to configure an application server to host each of the three
remote channels: remoting, Web Services, and Enterprise Services. And you’ve seen how to con-
figure client applications to use those hosts.

Whether you use a remote data portal or not, the framework and concepts discussed in this
book should enable you to create applications using object-oriented design concepts while lev-
eraging the power of .NET. Your objects will support data binding in Windows Forms and Web
Forms, along with support for encapsulation of validation and authorization logic, in a clear and
concise manner.

I’ve thoroughly enjoyed exploring these concepts with you, and wish you the best as you
develop your software.

Code well, have fun!

CHAPTER 12 ■ IMPLEMENTING REMOTE DATA PORTAL HOSTS626

6315_c12_final.qxd 4/7/06 2:24 PM Page 626

■Numbers and symbols
.NET Framework

see alphabetized as NET Framework
see also CSLA .NET framework

.NET Remoting
see remoting
see also remote data portals

5-layer logical architecture
see under logical architecture

■A
AcceptChanges method, 112, 157–158
AccessType enumeration, 140
AcquireRequestState event, 537, 538
Active Directory (AD)

see also Windows integrated security
authentication, 57
message objects, 74

Active Reports, 290
Add method

BrokenRulesCollection class, 138
BrokenRulesList class, 136
BusinessListBase class, 62
creating child objects, 367, 369
SmartDate type, 274, 276

AddAssignment method, 443
addAssignment procedure, PTracker, 357
AddAuthorizationRules method

BusinessBase class, 126, 128
editable root business objects, 386
implementing Project class, 419–420
implementing ProjectResource class, 438
read-only business objects, 400

AddBusinessRules method
BusinessBase class, 278, 281
implementing Project class, 418–419, 426
implementing ProjectResource class, 437
implementing Role class, 456
object-editing methods in BusinessBase, 120
ValidationRules object managing rules, 126

adding objects
child objects, 373
root objects, 372

AddNew method
SortedBindingList class, 262, 264

AddNewCore method
implementing Roles class, 452

AddProject method, PTWebService, 589–592
addProject procedure, PTracker, 355
AddResource method, 595, 596
addResource procedure, PTracker, 359
addRole procedure, PTracker, 361
AddRule method

associating rules with properties, 135

implementing Project class, 418
ValidationRules class, 281

AddWinPart method
Panel control, 475

Admin menu, 474
ADO .NET

null values, 277
AJAX web pages

security and external applications, 7
AllowEdit property

controlling editable collection, 453
SortedBindingList class, 253

AllowNew property
controlling editable collection, 453
implementing Roles class, 453

AllowRead method
associating roles with properties, 142

AllowRemove value
ReadOnlyBindingList class, 131

AllowWrite method
associating roles with properties, 142
implementing Project class, 420

anchored objects, 28
description, 55
when to use, 30

app.config file
implementing .NET Remoting, 614
implementing Enterprise Services, 625
implementing Web Services, 617
importance of naming file app.config, 470

application
use of term in this book, 1

application architecture
redundant servers, 8

application configuration
Web Forms interface design, 525–527

authentication, 525
CslaDataSource control, 525
local data portal, 526
remote data portal (with Enterprise

Services), 527
remote data portal (with remoting), 526
remote data portal (with Web Services), 527

web service implementation, 581–583
authentication, 581
local data portal, 581
remote data portal (with Enterprise

Services), 583
remote data portal (with remoting), 582
remote data portal (with Web Services), 583

web.config file, 525
Windows Forms interface design, 469–472

authentication, 470
local data portals, 470

Index

627

6315_idx_final.qxd 4/7/06 5:27 PM Page 627

remote data portal (with Enterprise
Services), 471

remote data portal (with remoting), 471
remote data portal (with Web Services), 471

application data
managing business logic, 18

application design, 325–364
application requirements, 326–329
behavioral object-oriented design, 51–52
CSLA .NET framework, 58–89
custom authentication, 57
database design, 347–363
importance of, 33
integrated authorization, 58
logical/physical architecture, 2
models for UI developer, 43–47

class in charge (Factory pattern) model, 45–47
object in charge model, 45
UI in charge, 43–44

n-level undo functionality, 37–40
n-tier design complexity, 3
object design, 330–344
object-oriented goals, 36–58
object persistence and object-relational

mapping, 50–57
preserving encapsulation, 53–55
strongly typed collections of child objects, 41–42
supporting data binding, 47–50
supporting physical n-tier models, 55–57
tracking broken business rules, 40–41
tracking whether object state has changed, 41
user control design, 469
Web Forms user interface, 522–540
Windows Forms user interface, 465–472

application framework
architectures and frameworks, 33

application requirements, 326–329
alternatives for gathering requirements, 326

business concepts and process flow design,
326

data focused design, 326
UI focused design, 326

application servers
data portal application server hosts, 607
scalability of physical model, 5

application.config file
EnterpriseServicesPortal class, 210
implementing Enterprise Services, 621

application.manifest file
EnterpriseServicesPortal class, 210
implementing Enterprise Services, 622

ApplicationAccessControl property
EnterpriseServicesPortal class, 207
implementing Enterprise Services, 620

ApplicationActivation property
EnterpriseServicesPortal class, 207, 209
implementing Enterprise Services, 620

ApplicationContext class, 233–238
client and global context collections, 233–236

providing framework access, 235
providing public access, 234–235

config file settings, 237
context passing and location transparency, 173
DataPortalProxy property, 237

ExecutionLocation property, 237
setting server context, 231
User property, 236

ApplicationName property
EnterpriseServicesPortal class, 207
implementing Enterprise Services, 620

Apply button
ProjectEdit saving data, 508, 510, 511

ApplyAuthorization property
added to textBox, 300
ReadWriteAuthorization control, 300, 301–302,

504
ApplyAuthorizationRules method

Login button, 480
ProjectEdit authorization rules, 507
ProjectEdit saving data, 510
ProjectEdit web form, 564
ProjectList web form, 554
RolesEdit web form, 550

ApplyEdit method
BusinessBase class, 105, 119–120
BusinessListBase class, 105
deleting and undeleting child objects, 151, 153,

158
edit level, 148
IEditableObject interface, 120
ProjectEdit saving data, 509
UndoableBase class, 66, 122

ApplyReadRules method
ReadWriteAuthorization control, 303, 304–305

ApplySort method
SortedBindingList class, 253

ApplyWriteRules method
ReadWriteAuthorization control, 303, 305–306

AppServer object
UI in charge model, 43, 44

architectures
5-layer logical architecture, 8–13
complexity of n-tier design, 3
frameworks and, 33

high-level guidelines, 36
logical and physical architectures, 1–18
logical model, 4
physical model, 4–8
relationship between logical/physical models,

4–8
security and external applications, 7

ArrayList collection type, 42
arrays

ToArray method, MemoryStream class, 110
asmx file

implementing Web Services, 616, 617
ASP.NET

data binding, 311
data source controls, 308
description, 515
IIS security and, 534
switching between state-handling models, 522
using web farm in ASP.NET, 518–520

ASP.NET Development Server
limitations, 533

ASP.NET membership service, 538–540
using with local data portal, 539
using with remote data portal, 539

■INDEX628

6315_idx_final.qxd 4/7/06 5:27 PM Page 628

ASP.NET Web Services, 568
assemblies

implementing .NET Remoting, 612
implementing Enterprise Services, 618–625
implementing Web Services, 617
referencing Csla.dll assembly, 409
taking snapshot of data, 106

AssemblyResolve event
EnterpriseServicesPortal class, 208

Assign method, Resources collection
assigning resources to projects, 562
assigning/unassigning resources, 512
implementing ProjectResources class, 432

Assignment class
dealing with common behaviors, 338
final class list for PTracker, 342
normalizing common behavior, 338
revising complex relationships, 334

Assignment class, PTracker, 441–443
Business Methods region, 442
Data Access region, 442–443
Validation Rules region, 442

assignments
addAssignment procedure, 357
deleteAssignment procedure, 358
updateAssignment procedure, 357

Assignments table, PTracker, 351
AssignResource method

smart client providing credentials for
authentication, 604

AssignView control
assigning resources to projects, 561, 562
ProjectEdit web form, 556

atomic method, 572
AttributeUsage attribute

NotUndoableAttribute class, 104
RunLocalAttribute class, 188
TransactionalAttribute class, 216

authentication
Active Directory, 57
CslaAuthentication key, 470
custom authentication, 57, 247–251

implementing business objects, 458–464
designing Web Service interface, 579–580
smart client providing credentials for, 603–604
Web Forms interface design, 525

forms-based authentication, 533–538
web service implementation, 585–589

application configuration, 581
CslaCredentials class, 586
SoapHeader attribute, 587–588
validating credentials, 588–589

Windows Forms interface design, 470
AuthenticationType property

implementing PTIdentity class, 461
authorization

integrated authorization, 58, 85–86
RolesEdit user control, 489

authorization methods
implementing Project class, 420–421

authorization rules
BusinessBase class, 128–130
BusinessBase class functionality, 113
CSLA .NET design benefits, 344

extender control applying, 302–306
ProjectEdit control, 507–508
ProjectEdit web form, 563–565
ProjectList web form, 554
ReadOnlyBase class, 160
ReadWriteAuthorization control, 302–306
RolesEdit web form, 550

Authorization Rules region, 380
command objects, 403
editable child business objects, 390
editable root business objects, 386
editable root collections, 396
implementing business classes, 419–421
implementing Project class, 419–421

AddAuthorizationRules method, 419–420
authorization methods, 420–421

implementing ProjectResource class, 438
implementing Roles class, 451
read-only collections, 402

AuthorizationRules class, 140–143
associating roles with properties, 142
BusinessBase class and, 128
CanReadProperty method, 128
checking roles, 142
description, 94
GetRolesForProperty method, 141
retrieving roles, 141
RolesForProperty class and, 139

AutoComplete attribute
ServicedDataPortal class, 221

autonomy
web services as services, 573

■B
background.jpg file

files in Basic theme, 530
backward compatibility, 270
base classes

see also classes
business (CSLA .NET) framework, 93
business framework, 60
BusinessBase class, 60–62, 112–130, 143–146
BusinessListBase class, 62, 146–159
BusinessPrincipalBase class, 250–251
CommandBase class, 62–63, 240–243
enhancing for data access, 173–181
factory methods and criteria, 175–176
inheriting from non-generic base classes, 60
NameValueListBase class, 63–64, 243–247
ReadOnlyBase class, 63, 159–160
ReadOnlyListBase class, 63, 160–161
UndoableBase class, 65–66

base index, 254
BaseIndex property

ListItem class, 260
Basic theme, 530
Basic.css file, 530
Basic.skin file, 530
BeginEdit method

BusinessBase class, 105, 119–120
BusinessListBase class, 105
deleting and undeleting child objects, 151, 153,

158

■INDEX 629

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 629

edit level, 148
IEditableObject interface, 120, 121, 122
ProjectEdit loading user controls, 507
ProjectEdit saving data, 509, 510
UndoableBase class, 65, 66

BeginLoadData method
DataTable class, 296

behaviors
behavioral object-oriented design, 51
data portals, 77–83
dealing with common behaviors, 338
normalizing common behavior, 337, 338
relational and object modeling, 50

bi-directional data updates, 81
BinaryFormatter class

cloning serializable object, 100
serializing and stacking Hashtable, 110
serializing object state, 100

BindableBase class, 67, 100–104
class diagram for, 68
description, 94
OnPropertyChanged method, 103
OnUnknownPropertyChanged method, 103

binding
see data binding

Binding object
Format event, 304
Parse event, 304

BindingComplete event
BindingSource control, 307

BindingList class, 67
class diagram for, 68
inheriting from, 48
SortedBindingList class, 89

BindingNavigator control, 488
BindingSource control

adding RoleListBindingSource control, 500
BindingComplete event, 307
CanExtend method, 306
data binding, 293, 306
RolesEdit saving data, 491, 492
saving data with remote data portal, 493
setting DataSource property on, 501
smart client calling web method, 603
using business class as data source, 487

BindingSourceRefresh control, 306–307, 505
extender controls, 306
ReadValuesOnChange property, 306, 505
using GetReadValuesOnChange method, 307
using SetReadValuesOnChange method, 307
Windows data binding, 307
Windows Forms data binding, 306

Boolean data type
empty values, 284

broken rules
IDataErrorInfo interface, 127
maintaining list of broken rules, 137
ValidationRules object managing, 126

BrokenRule class, 137
description, 94
function, 69
maintaining list of broken rules, 70

BrokenRulesCollection class, 137–138
Add method, 138

description, 94
function, 69
GetFirstBrokenRule method, 138
maintaining list of broken rules, 70
Remove method, 138
ToString method, 138

BrokenRulesList class
checking validation rules, 136

Browsable attribute
IsDirty property, BusinessBase class, 115
IsValid property, BusinessBase class, 117

business class structure, 378–405
common regions, 378–381
Criteria class, 381–383
private default constructor, 381
Serializable attribute, 378

business classes, implementing PTracker, 410–464
Assignment class, 441–443
Exists method, 456–457
ExistsCommand class, 457–458
main areas of each class, 407
Project class, 410–431
ProjectList class, 448
ProjectResource class, 436–441
ProjectResources class, 431–436
ProjectTracker application classes, 408
ProjectTracker objects, 407–409
PTIdentity class, 460–464
PTPrincipal class, 458–460
Resource class, 445–448
ResourceInfo class, 448–450
ResourceList class, 448–451
Role class, 454–456
RoleList class, 443–445
Roles class, 451–454
using business class as data source, 485–488

business concepts and process flow design
creating use case descriptions, 327–329

project maintenance, 327–328
resource maintenance, 328–329

gathering application requirements, 326, 327
maintaining list of roles, 329
programmatic access, 329

business framework
see CSLA .NET framework

business framework base classes, 60
business functionality, Web Forms, 540–565

ProjectEdit form, 554–565
ProjectList form, 550–554
RolesEdit form, 540–550

business functionality, Windows Forms, 482–513
creating forms as user controls, 467
MainForm form, 482–485
ProjectEdit control, 497–513
ProjectList object, 494–497
RolesEdit control, 485–494

business logic
authorization, 58
business object centralizing, 26
business objects, 22–25
encapsulation, 54
locating in multiple layers, 18, 19
locations for validation and manipulation

business and data access tier, 20

■INDEX630

6315_idx_final.qxd 4/7/06 5:27 PM Page 630

common locations illustrated, 19
data management layer, 19
user interface, 20

locations for validation and manipulation,
18–22

managing, 18–32
mobile objects, 25–32
object-oriented programming, 164
shared between UI and data access layers, 28
sharing across tiers, 21
tracking broken business rules, 40–41

business logic layer
5-layer logical architecture, 10–11
description of role, 13
high security web client, 17
high-scalability smart client, 14
managing business logic, 18–32
mobile objects and logical architecture, 27
tied to UI and data access layers, 27

Business Methods region, 380
editable child business objects, 390
editable root business objects, 386
implementing Assignment class, 442
implementing business classes, 411–417
implementing Project class, 411–417

child collection properties, 416
instance field declarations, 411
interdependent properties, 415–416
overriding GetIdValue method, 416
overriding IsDirty method, 417
overriding IsValid method, 417
read-only properties, 412–413
read-write properties, 413–414
SmartDate properties, 415

implementing ProjectResource class, 437
implementing ProjectResources class, 431,

432–433
Assign method, 432
Contains method, 433
ContainsDeleted method, 433
GetItem method, 433
Remove method, 433

implementing PTIdentity class, 461
implementing ResourceInfo class, 449
implementing RoleList class, 444
implementing Roles class, 451–452

business objects, 22–25
see also mobile objects
business class structure, 378–405
centralizing business logic, 26, 27
command objects, 402–404
common regions, 378–381
component parts of, 24
composed of state/implementation/interface, 24
CSLA .NET design benefits, 344
CSLA .NET framework, 59–64
CSLA .NET in design process, 345
data portal returning updated business object

to UI, 82
data transfer, 27
description, 22, 23
designing Web Service interface

returning and accepting data, 579
determining type of, in data portal request, 187

editable child business objects, 388–391
editable child collections, 397–398
editable root business objects, 384–387
editable root collections, 394–396
encapsulation, 22
framework classes used by business developers,

59
IEditableObject interface, 47
implementing business objects, 407–464
invoking methods on, 185
loading from database, 173
locating specific method, 181
managing persistence to data store, 54
models for UI developer, 43–47
name/value list objects, 404–405
object design, 22, 330

potential objects and associated class
names, 331

read-only business objects, 398–400
read-only collections, 400–402
referencing business object, 134
sending to data portal to be inserted/updated, 81
Serializable attribute, 378
serialization, 100
smart data and, 23
snapshot of, 105
structure with common regions, 379
switchable business objects, 391–393
UML sequence diagram for immediate deletion

of, 84
UML sequence diagram for updating of, 82
UML sequence diagram illustrating creation of,

79
UML sequence diagram illustrating retrieval of,

80
user interface interacting with, 78
using business object as data source

RolesEdit web form, 542
web service data transfers, 577
wrapping in transaction, 220

business objects, life cycle of, 365–377
adding/editing root objects, 372–373
adding/editing/deleting child objects, 373–374
creating child objects, 367–369
creating root objects, 366
deleting root objects, 374–376
object creation, 366–369
object disposal, 376–377
object retrieval, 369–371
retrieving child objects, 371
retrieving root objects, 369–370
updating editable objects, 371–376

business rules
see also rules
common business rules, 277–281
CSLA .NET design benefits, 344
method signature for, 70
tracking broken business rules, 40–41, 68

BusinessBase class, 60–62, 112–130, 143–146
authorization rules, 128–130
AuthorizationRules object and, 128
CSLA .NET in design process, 345
description, 94
functional areas implemented in, 113

■INDEX 631

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 631

ICloneable interface, 130
implementing Project class, 411
inheriting from non-generic base classes, 60
methods

AddAuthorizationRules, 126, 128
AddBusinessRules, 126, 278, 281
ApplyEdit, 105
BeginEdit, 105
CancelEdit, 105
CanReadProperty, 128
CanWriteProperty, 128
Clone, 145
data access methods, 61
exception handling, 61
MarkAsChild, 61, 123
object-editing methods, 119–120
pre- and post-processing, 61
PropertyHasChanged, 279
Save, 80–83, 174, 177
SetParent, 124

n-level undo functionality, 65, 119–122
overriding System.Object, 144–145
properties

IsChild, 124
IsDeleted, 118
IsDirty, 115–117
IsNew, 114–115
IsSavable, 117
IsValid, 117
object status properties, 114
Parent, 124

purpose, 60
root/parent/child behaviors, 123–125
tracking business rules, 68
tracking object status, 113–118
UndoableBase class and, 65
Update method processing, 227–228
validation rules, 125–128
ValidationRules object and, 126–127

BusinessListBase class, 62, 146–159
BindingList class, 67
business objects subclassing, 345
deleted object collection, 150
deleting and undeleting child objects, 150–158
description, 94
edit level tracking, 148
functional areas implemented in, 146
ICloneable interface, 158–159
IEditableCollection interface, 66, 98
methods

AcceptChanges, 157–158
Add method, 62
ApplyEdit, 105, 158
BeginEdit, 105, 158
CancelEdit, 105, 158
ContainsDeleted, 150
CopyState, 155
DeleteChild, 154
InsertItem, 150
Remove, 62
RemoveChild, 149
Save, 174, 177
UnDeleteChild, 154
UndoChanges, 155–157

n-level undo functionality, 148–150
properties

EditLevelAdded, 150
IsChild, 148

purpose, 60
reacting to Insert/Remove/Clear operations,

149
root/child behaviors, 147–148
sorting collections, 67
tracking object status, 147

BusinessPrincipalBase class, 250–251
Identity property, 251
interface implemented, 248
IsInRole method, 251
principal and identity objects, 84

buttons
Login button, 479–480

byte streams
converting Hashtable to, 110

■C
caching

InvalidateCache method, 405, 445, 454
ProjectEdit web form, 557–558
RolesEdit web form, 542–543

CallByName helper method, 278
CallMethod method

MethodCaller class, 185–186
SimpleDataPortal implementing data methods,

225
CallMethodException class

channel adapter behaviors, 187–188
types required for channel adapter, 166

CallMethodIfImplemented method
MethodCaller class, 186
SimpleDataPortal implementing data methods,

225
CanAddObject method

editable root business objects, 387
implementing Project class, 420, 422

Cancel button
ProjectEdit saving data, 510, 511

CancelEdit method
BusinessBase class, 105, 119–120
BusinessListBase class, 105
deleting and undeleting child objects, 151, 153
edit level, 148
IEditableObject interface, 120, 121, 122
ProjectEdit saving data, 511
UndoableBase class, 65, 66

CanDelete property
data source controls, 317

CanDeleteObject method
editable root business objects, 387
implementing Project class, 420, 422

CanEditObject method
editable root business objects, 387
implementing Project class, 420
ProjectEdit authorization rules, 508

CanExtend method
BindingSource control, 306
IExtenderProvider interface, 301

■INDEX632

6315_idx_final.qxd 4/7/06 5:27 PM Page 632

CanGetObject method
editable root business objects, 387
implementing Project class, 420
read-only business objects, 400

CanInsert property
data source controls, 317

CanReadProperty method
BusinessBase class, 128, 129
implementing Project class, 412, 414, 420
implementing ProjectResource class, 437, 438
integrated authorization, 85, 86
IReadOnlyObject interface, 99
ReadOnlyBase class, 160

CanRetrieveTotalRowCount property
data source controls, 318

CanUpdate property
data source controls, 317

CanWriteProperty method
BusinessBase class, 128, 129
implementing Project class, 413, 420
implementing ProjectResource class, 437, 438
integrated authorization, 85, 86

catch block
try ... catch block, 590

ChangeType method
DataMapper class setting values, 287

channel adapter behaviors
CallMethodException class, 187–188
DataPortal class, 189–197
DataPortalEventArgs class, 188–189
EnterpriseServicesPortal class, 206–210
EnterpriseServicesProxy class, 204–206
IDataPortalProxy interface, 198
IDataPortalServer interface, 197
LocalProxy class, 198–199
MethodCaller class, 181–187
RemotingPortal class, 202–204
RemotingProxy class, 200–202
RunLocalAttribute class, 188
WebServicePortal class, 213–215
WebServicesProxy class, 210–213

channel adapter design pattern, 165–166
data portal combining patterns, 165
types required for channel adapter, 166

channels
.NET Remoting channel, 611–615
data portal comparison of, 608–611

ease of deployment, 610
ease of implementation, 611
factors for comparison, 608
firewall friendliness, 610
host technology, 610
performance, 608
security, 609

Enterprise Services channel, 618–625
Web Services channel, 615–618

channels element
implementing .NET Remoting, 614

CheckRules method
BrokenRulesCollection class, 138
checking validation rules, 135, 136
implementing Project class, 416, 418, 426
maintaining list of broken rules, 137

child collection properties
implementing Project class, 416

child objects
adding/editing/deleting, 373–374
base class for creating editable, 143
BusinessBase indicating object is child, 61
BusinessListBase class, 147
cascading call to, 109
collections, 66
creating, 367–369
definition, 123
deleting and undeleting, 150–158
description, 123
edit level tracking for child objects, 125
editable child business objects, 388–391
editable child collections, 397–398
IEditableObject interface, 120
IsChild property, 123
LineItem as example, 61
MarkAsChild method, 123
n-level undo functionality, 38, 148
object creation without defaults, 390
read-only collections, 400
RemoveChild method, 149
retrieving, 371
root/parent/child behaviors, 123–125
strongly typed collections of child objects,

41–42
switchable business objects, 391–393
UndoableBase class, 66

class-in-charge (Factory pattern) model, 45–47
business objects, 381
Shared factory methods, 46, 47

classes
see also base classes
business class structure, 378–405
business framework base classes, 60
complete code for, 94
Criteria class, 381–383
CslaDataSource class, 309–311
CslaDataSourceDesigner class, 314
CslaDataSourceView class, 311–314
CslaDesignerDataSourceView class, 314–318
DataMapper class, 87, 285–290
final class list for PTracker, 342
implementing PTracker business classes

see business classes, implementing PTracker
ListItem class, 254–256
namespace organization, 89–91
NameValuePair class, 244
ObjectAdapter class, 87, 291–299
ObjectFieldInfo class, 320–323
ObjectViewSchema class, 319–320
primary base classes, 91
required to support editable/read-only business

objects, 93
SafeDataReader class, 87, 281–285
SmartDate class, 88
SortedBindingList class, 89, 252–267
SortedEnumerator class, 259

classes, PTracker
merging similar objects, 336

clean objects
IsNew property, BusinessBase class, 114

■INDEX 633

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 633

ClearContext method
DataPortal class, 232

ClearItems method
ReadOnlyBindingList class, 131

client configuration
implementing .NET Remoting, 614
implementing Enterprise Services, 625
implementing Web Services, 617

client models
high scalability smart client, 14
high security web client, 17
optimal performance smart client, 13
optimal performance web client, 15

Client-side Code region
command objects, 403

client side context data
message objects, 74

client side DataPortal, 72–73
data portal functionality, 72
methods, 72
RunLocal attribute, 72

client side proxy classes, 73
data portal functionality, 72

client-side cache
invalidating client-side cache, 453

ClientContext collection
DataPortalContext class, 171

ClientContext property
ApplicationContext class, 234, 235

ClientCulture
DataPortalContext class, 171

ClientUICulture
DataPortalContext class, 171

Clone method
BusinessBase class, 145
ICloneable interface, 130
implementing ICloneable interface, 246

cloning
BusinessBase class, 113, 130, 145
BusinessListBase class, 146, 158
GetClone method, 130
ICloneable interface, 130, 158
ObjectCloner class, 130
ReadOnlyBase class, 160
ReadOnlyListBase class, 161
serialization, 100

Close button
ProjectEdit saving data, 510, 511

Close method
closing RolesEdit user control, 493
RolesEdit saving data, 492
WinPart base control, 473

CloseWinPart method
Panel control, 475, 476

code download
Diagrams folder, 95
Resources.resx file, 96

code reuse
architectures and frameworks, 33
focusing on most productive areas, 35
reflection, 277
validation rules, 41

collaboration
behavioral object-oriented design, 51

collections
ArrayList and List(Of T) types compared, 42
BusinessListBase class, 62
BusinessListBase class and sorting, 67
cascading call to, 109
child objects, 66
deleted object collection, 150
editable child collections, 397–398
editable root collections, 394–396
getting items from, 258
IBindingList interface, 48
properties controlling editable collections, 453
read-only collections, 400–402
ReadOnlyListBase class, 63
sorting collections, 251–267
state and, 155
strongly typed collections of child objects,

41–42
column names

ObjectAdapter class getting, 293–296
COM (Component Object Model)

security and internal applications, 6
COM-based technologies

optimal performance web client, 16
COM+ applications

implementing Enterprise Services, 625
COM+ transactional context

distributed transaction support, 220
command object

lifetime of, 242
command objects, 402–404

common regions, 379
CommandBase class, 62–63, 240–243

purpose, 60
CommandBase object

Update method processing, 228
common business rules, 277–281
common regions, 378–381
CommonRules class, 278

function, 69
implementing common rules, 70
implementing Project class, 418
purpose, 277
rule methods, 281
RuleHandler delegate, 278

CompareTo method
ListItem class, 255
SmartDate type, 274, 276

Complete method
TransactionalDataPortal class, 222

complex relationships, revising, 333–339
adding Assignment class, 334
adding ProjectResources class, 335
adding ResourceAssignments class, 336
dealing with common behaviors, 338
merging similar objects, 336
normalizing common behavior, 337, 338

component-based architecture
service-oriented design compared, 575–576
web methods, PTracker, 576

component-based web methods
AddProject web method, 589–592
PTWebService project, 589
web service implementation, 589–592

■INDEX634

6315_idx_final.qxd 4/7/06 5:27 PM Page 634

Component Object Model (COM)
security and internal applications, 6

component-based, scalable, logical architecture
see CSLA.NET framework

components
description, 576
services vs. components, 571
web services as components, 572–573

ComVisible attribute
EnterpriseServicesPortal class, 206
implementing Enterprise Services, 621
ServicedDataPortal class, 221

configuration files, 190
ApplicationContext class managing, 237
implementing Enterprise Services, 621

Configuration namespace, 237
configurations

high scalability smart client, 14
high security web client, 17
implementing .NET Remoting, 614
implementing Enterprise Services, 625
implementing Web Services, 617
optimal performance smart client, 13
optimal performance web client, 15

configuring site
forms-based authentication, 533–535

connection pooling
high-scalability smart client, 15
optimal performance web client, 16
Resource class sharing database connection,

447–448
scalability of physical model, 5

connections
opening database connections, 447

constructors
implementing ResourceInfo class, 449
non public constructor, 423
private default constructor, 381
ProjectResource class, 439
ProjectResources class, 434
using factory methods, 381

consumer applications
grouping web methods into web services, 577
IntelliSense, 579
message-based communication, 569
SOAP and web services, 569
Web Service authentication, 580
web service consumer implementation,

596–604
consumer-side proxy objects

soapsuds.exe utility, 571
Visual Studio and, 570
web services, 570

Contains method
implementing ProjectResources class, 432, 433

ContainsDeleted method
BusinessListBase class, 150
implementing ProjectResources class, 432, 433

ContainsKey method
NameValueListBase class, 245

ContainsValue method
NameValueListBase class, 245

Content control
RolesEdit web form, 540

content pages
master page and, 528

ContentPlaceHolder control
master page, 529

ContentPlaceHolderID property
RolesEdit web form, 540

context data/information, 170–173
ApplicationContext class, 233–238
ClearContext method, DataPortal class, 232
client and global context collections, 233–236
context and exception data flow to/from server,

171
data access, 229–238
DataPortalContext class, 171, 229–232
DataPortalException class, 172, 233
DataPortalResult class, 172, 232–233
message objects, 74
SetContext method, DataPortal class, 230
types required to implement, 173

control skin, 530
controls

see also user controls
adding subclasses of custom control, 489
BindingSourceRefresh control, 306–307, 505
Close method, WinPart, 473
control bound to a property, 299
creating forms as user controls, 467

not Form objects, 465
creating ProjectEdit controls, 498–505
defining control prefix, 525
displaying user controls, 482–483
ErrorProvider control, 503
loading/adding user controls, 475
MainForm hosting user controls, 474–476
ProjectEdit control, 467, 497–513
ReadWriteAuthorization control, 299–306, 504
removing user controls, 475
resizing user controls, 476
ResourceEdit control, 467, 511
RoleListBindingSource control, 500
RolesEdit control, 467, 485–494
user control framework, Windows Forms,

472–482
interface design, 467–469

WinPart base control, 472–474
cookies

reloading principal objects, 537
CopyData method

ObjectAdapter class, 296–299
CopyState method, UndoableBase class, 105–111

avoiding double-processing of fields, 108
cascading call to child objects or collections, 109
deleting and undeleting child objects, 155
getting list of fields, 108
serializing and stacking Hashtable, 110
skipping NotUndoable fields, 109
stacking data, 105
taking snapshot of data, 106–108
taking snapshot of regular fields, 109

CopyStateComplete method
UndoableBase class, 108

Core folder, CSLA .NET project, 95
Core namespace, Csla

see Csla.Core namespace

■INDEX 635

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 635

corner.png file, Basic theme, 530
Count property

SortedBindingList class, 253
CRC cards

aspects of initial design, 331
object design, 330

Create method, DataPortal class
see DataPortal_Create method

CreateInstance method, Activator class
SimpleDataPortal implementing data methods,

224, 227
creating objects

child objects, 367–369
object creation without defaults, 393
root objects, 366

credentials
Login button, 479
security in physical model, 5
smart client providing, 603–604
validating, web service implementation,

588–589
Credentials field, SoapHeader attribute

web service implementation, 587
criteria, 175–176

Protected criteria class, 246
Criteria class, 381–383

dual criteria classes, 391
factory methods and criteria, 176
implementing RoleList class, 444
inheriting from CriteriaBase, 176
instantiating correct business class, 247
naming, 381
nested criteria class, 176
read-only business objects, 400

criteria information
creating criteria object, 74
data passed to/from server for data portal

operations, 74
determining type of class in which criteria

nested, 75
server side data portal, 75

Criteria object
DataPortal_Create method using, 77, 79
DataPortal_DeleteSelf method using, 83
DataPortal_Fetch method using, 79, 80, 247
implementing data access methods, 195
implementing Project class, 424
purpose, 176
SimpleDataPortal implementing data methods,

227
criteria parameter

implementing Project class, 427
CriteriaBase class

code-generation tools, 382
Criteria class and, 381, 382
implementing Project class, 424
message router functionality, 223
types required for message router, 168

Crystal Reports, 290
reporting against objects, 87

CSLA .NET framework
see also Csla namespace
attributes

NotUndoableAttribute, 66

business framework base classes, 60
business object design benefits, 344
business objects, 59–64
classes

BindableBase, 67, 100–104
BindingList, 67
BindingSourceRefresh, 306–307, 505
BrokenRule, 69
BrokenRulesCollection, 69, 137–138
BusinessBase, 60–62, 112–130, 143–146
BusinessListBase, 62, 146–159
BusinessPrincipalBase, 84, 250–251
CommandBase, 62–63, 240–243
CommonRules, 69
CslaDataSource, 309–311
CslaDataSourceDesigner, 314
CslaDataSourceView, 311–314
CslaDesignerDataSourceView, 314–318
CustomIdentity, 85
DataMapper, 86, 87, 285–290
DataPortal, 71–83, 189–197
DataPortalContext, 229–232
DataPortalEventArgs, 188–189
DataPortalException, 233
ListItem, 254–256
MethodCaller, 181–187
NameValueListBase, 63–64, 243–247
NameValuePair, 244
ObjectAdapter, 86, 87, 291–299
ObjectFieldInfo, 320–323
ObjectSchema, 318
ObjectViewSchema, 319–320
ReadOnlyBase, 63, 159–160
ReadOnlyBindingList, 130–131
ReadOnlyCollectionBase, 448
ReadOnlyListBase, 63, 160–161
ReadWriteAuthorization, 299–306, 504
RuleArgs, 69, 132–133
RuleHandler, 69
RuleMethod, 133–134
RunLocalAttribute, 188
SafeDataReader, 86, 87, 281–285
SmartDate, 86, 88, 268–277
SortedBindingList, 86, 89, 252–267
SortedEnumerator, 259
TransactionalAttribute, 215–216
TransactionalDataPortal, 221–222
TransactionalTypes, 170
UndoableBase, 65–66, 104–112
ValidationException, 69, 138–139
ValidationRules, 69, 134–137

classes for creating, 93
classes used by business developers, 59
command objects, 402–404
common business rules, 277–281
custom authentication, 84–85, 247–251
data access, 281–290
data binding, 67
data handling, 267–277
data portals, 71–83
distributed transactions, 215–222
editable child business objects, 388–391
editable child collections, 397–398
editable root business objects, 384–387

■INDEX636

6315_idx_final.qxd 4/7/06 5:27 PM Page 636

editable root collections, 394–396
framework design, 58–89
generic types, 97
helper types and classes, 86–89
implementing PTracker business classes

see business classes, implementing PTracker
integrated authorization, 85–86
list of object types, 383
localization, 95
message router, 167
methods

CanReadProperty, 85
CanWriteProperty, 85

n-level undo functionality, 64–66
name/value list objects, 404–405
namespaces, 89–91

Csla, 90, 143–161
Csla.Core, 90, 96–131
Csla.Data, 90
Csla.DataPortalClient, 90
Csla.Properties, 90
Csla.Security, 90, 139–143
Csla.Server, 90
Csla.Server.Hosts, 90
Csla.Validation, 90, 131–139
Csla.Web, 90
Csla.Web.Design, 90
Csla.WebServiceHost, 90
Csla.Windows, 90
naming convention, 90

polymorphism, 97
read-only business objects, 398–400
read-only collections, 400–402
referencing Csla.dll assembly, 409
report generation, 290–299
SmartDate type, 268–277
sorting collections, 251–267
switchable objects, 391–393
using in design process, 344–346
validation rules, 68–71
Web Service authentication, 580

CSLA .NET project
creating directory structure, 95
folders in, table of, 95
saving blank Csla solution, 95
setting up, 94–96

Csla namespace, 143–161
see also CSLA .NET framework
ApplicationContext class, 173, 233–238
BusinessBase class, 60–62, 112–130, 143–146
BusinessListBase class, 62, 146–159
BusinessPrincipalBase class, 250–251
CommandBase class, 62–63, 240–243
CriteriaBase class, 168, 381, 382
DataPortal class, 166, 189–197
DataPortalContext class, 173, 229–232
DataPortalEventArgs class, 166, 188–189
DataPortalException class, 173, 233
DataPortalResult class, 173, 232–233
description, 90
MethodCaller class, 166, 168, 181–187
NameValueListBase class, 243–247
ReadOnlyBase class, 159–160
ReadOnlyListBase class, 160–161

RunLocalAttribute class, 166, 188
SmartDate type, 268–277
TransactionalAttribute class, 170, 215–216
TransactionalTypes class, 170

Csla.Core namespace, 96–131
BindableBase class, 100–104
BusinessBase class, 112–130
description, 90
IBusinessObject interface, 97
ICommandObject interface, 99
IEditableCollection interface, 98
IReadOnlyCollection interface, 99
IReadOnlyObject interface, 99
IUndoableObject interface, 97–98
NotUndoableAttribute class, 104
ObjectCloner class, 99–100
purpose, 96
ReadOnlyBindingList class, 130–131
UndoableBase class, 104–112

Csla.Data namespace
description, 90
ObjectAdapter class, 291–299

Csla.DataPortalClient namespace
description, 90
EnterpriseServicesProxy class, 166, 204–206
IDataPortalProxy interface, 166, 198
LocalProxy class, 166, 198–199
RemotingProxy class, 166, 200–202
WebServicesProxy class, 166, 210–213

Csla.dll assembly
defining control prefix, 525
PTWebService site setup, 583
PTWin project setup, 472
referencing Csla.dll assembly, 409

Csla.Properties namespace, 90
Csla.Security namespace, 139–143

AccessType enumeration, 140
AuthorizationRules class, 140–143
description, 90
RolesForProperty class, 139–140

Csla.Server namespace
CallMethodException class, 166, 187–188
DataPortal class, 166
description, 90
IDataPortalServer interface, 166, 197
ServicedDataPortal class, 170
SimpleDataPortal class, 168
TransactionalDataPortal class, 170

Csla.Server.Hosts namespace
description, 90
EnterpriseServicesPortal class, 166, 206–210
RemotingPortal class, 166, 202–204
WebServicePortal class, 166, 213–215

Csla.Validation namespace, 131–139
BrokenRule class, 137
BrokenRulesCollection class, 137–138
description, 90
RuleArgs class, 132–133
RuleHandler delegate, 132
RuleMethod class, 133–134
ValidationException class, 138–139
ValidationRules class, 134–137

Csla.Web namespace, 90
Csla.Web.Design namespace, 90

■INDEX 637

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 637

Csla.WebServiceHost namespace, 90
Csla.Windows namespace, 90
CslaAuthentication key

custom authentication, 581
importance of naming file App.config, 470
web.config file, 525

CslaCredentials class
smart client providing credentials for

authentication, 603
web service implementation, 586

CslaCredentials field, PTService class
web service implementation, 586, 587

CslaDataPortalProxy element
implementing .NET Remoting, 614
implementing Enterprise Services, 625
implementing Web Services, 618

CslaDataPortalProxy key, 191
EnterpriseServicesProxy class, 205, 206

CslaDataPortalUrl element
implementing .NET Remoting, 614
implementing Web Services, 618

CslaDataPortalUrl key, 191
CslaDataSource class, 309–311

CslaDataSource control, 308
Designer attribute, 309
event declaration, 311
GetType method, 319
handling events in a page, 310
Web Forms data binding, 309–311

CslaDataSource control, 308
classes required to implement, 308
CslaDataSource class, 308, 309–311
CslaDataSourceDesigner class, 308, 314
CslaDataSourceView class, 308, 311–314
CslaDesignerDataSourceView class, 308, 314–318
DeleteObject event, 309
EventArgs objects, 310
events raised by, 309
InsertObject event, 309
ObjectFieldInfo class, 308, 320–323
ObjectSchema class, 308, 318–319
ObjectViewSchema class, 308, 319–320
ProjectEdit web form, 557
refresh schema link enabled for, 314
relationship between classes in, 309
SelectObject event, 309
UpdateObject event, 309
Web Forms interface design, 525

CslaDataSourceDesigner class, 314
CslaDataSource control, 308
Web Forms data binding, 314

CslaDataSourceView class, 311–314
CslaDataSource control, 308
ExecuteInsert method, 311
ExecuteSelect method, 312–314
Web Forms data binding, 311–314

CslaDesignerDataSourceView class, 314–318
CslaDataSource control, 308
GetDesignTimeData method, 315–316
information provided by, 315
ObjectSchema class, 315
Web Forms data binding, 314–318

CSS style sheet
master page theme, 530

cultures
see also localization
setting server context, 231

Current property
IEnumerator interface, 259, 260

CurrentPrincipal property, Thread class
Login button, 479

CurrentPrincipalChanged event
ProjectEdit authorization rules, 507
RolesEdit authorization, 489
WinPart base control, 474

CurrentUICulture setting
setting server context, 231

custom authentication, 57, 247–251
CSLA .NET design benefits, 344
CSLA .NET framework, 84–85

objects supporting, 347
CslaAuthentication key, 470, 581
custom principal object inheritance, 247
implementing business objects, 458–464
message objects, 74
object design, 343
PTIdentity class, 460–464
PTPrincipal class, 458–460
setting server context, 231, 232
web service implementation, 585

custom controls
adding subclasses of custom control, 489

custom membership provider
forms-based authentication, 535–536

custom rule methods
implementing Project class, 419

customer payment terms, 243
CustomIdentity class, 250

GetIdentity method, 85
UnauthenticatedIdentity method, 85

CustomPrincipal class, 247
identity object and, 248

■D
d date format, 273
data

business logic as smart data, 23
managing business logic, 18

data access, 281–290
adding to CSLA .NET framework, 163
basic data access models, 516
channel adapter behaviors, 181–215
common regions, 378
context and location transparency, 229–238
CSLA .NET design benefits, 344
data portals, 72
DataMapper class, 285–290
distributed transaction support, 215–222
enhancing base classes, 173–181
message router functionality, 222–229
NameValueListBase class, 246–247
SafeDataReader class, 281–285
SmartDate type, 277

data access layer
5-layer logical architecture, 11–12
description of role, 13
encapsulation of business objects, 32

■INDEX638

6315_idx_final.qxd 4/7/06 5:27 PM Page 638

high scalability smart client, 14
high security web client, 17
mobile objects and logical architecture, 25, 27
security, 14

data access methods
BusinessBase class, 61
DataPortal class implementing, 192–197
dual data access methods, 392

Data Access region
editable child business objects, 390
editable root business objects, 387
editable root collections, 396
implementing Assignment class, 442–443
implementing business classes, 423–431
implementing Project class, 423–431

Criteria object, 424
DataPortal_Create method, 425–426
DataPortal_Delete method, 430–431
DataPortal_DeleteSelf method, 430
DataPortal_Fetch method, 426–428
DataPortal_Insert method, 428–429
DataPortal_Update method, 429–430
handling transactions, 425

implementing ProjectResource class, 439–441
deleting data, 441
inserting data, 440
loading existing object, 439
updating data, 440

implementing ProjectResources class, 431,
434–436

loading data, 435
updating data, 435

implementing PTIdentity class, 462–464
implementing ResourceList class, 450–451
implementing RoleList class, 445
implementing Roles class, 453–454

invalidating client-side cache, 453
name/value list objects, 405
read-only business objects, 400
regions, 380
using identity column, 446

data access tier
locating business logic in, 20

data binding
.NET Framework interfaces, 67
application design supporting, 47–50
ASP.NET, 311
benefits of using in .NET, 47
BindableBase class, 67, 100
binding ProjectEdit control to Project class,

498–500
BindingSource control, 306
BindingSource object, 293
BindingSourceRefresh control, 306
BusinessBase class, 113
collection interfaces required to support, 48
creating child objects, 367
creating forms as user controls, 467
CSLA .NET framework, 67
data binding ListBox, 495–496
DetailsView control, 545
enabling objects for, 47–48
events and serialization, 48
grid-based binding, 48

GridView control, 544
IBindingList interface, 48, 67
IDataErrorInfo interface, 50, 127
IEditableObject interface, 47, 120
INotifyPropertyChanged interface, 48, 67, 100
IsDirty property, BusinessBase class, 115
loading RolesEdit control, 490
Nothing values, 268
ProjectEdit control binding to Resources

collection, 501–503
ProjectEdit loading user controls, 506
PropertyChanged event, 306
public properties, 104
ReadOnlyBindingList class, 130
report engines, 290
ResourcesDataSource control, 560
RolesEdit saving data, 491
saving data with remote data portal, 493
SortedBindingList class, 252
Web Forms, 47, 307–323
Windows Forms, 47, 299–307

data centric object model, 53
data contention

performance of physical model, 5
data creation

DataPortal_Create method, 77–79
data focused design

gathering application requirements, 326
Data folder, CSLA .NET project, 95
data management tier

see data storage and management layer
Data namespace, Csla, 90
data portals

application server hosts, 607
areas of functionality, 72
behaviors/methods, 77–83
benefits of, 72
channel adapter design pattern, 165–166
channels, factors for comparison, 608–611

ease of deployment, 610
ease of implementation, 611
firewall friendliness, 610
host technology, 610
performance, 608
security, 609

client side DataPortal, 72–73
client side proxy classes, 72, 73
consistent entry point to application server, 71
context information, 170–173
CSLA .NET framework, 71–83
data access, 56
data passed to/from server for data portal

operations, 74
description, 163
design patterns, 165
designing for data access, 164–173
distributed transactions, 169, 168–170
flow of client call through, 165
implementing remote data portal hosts,

607–626
.NET Remoting channel, 611–615
Enterprise Services channel, 618–625
Web Services channel, 615–618

location transparency, 173

■INDEX 639

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 639

message objects, 72, 73–75
message router design pattern, 167–168
methods exposed by data portal server, 167
remote data portals, 377

implementing remote data portal hosts,
61–625

when to use, 607
saving data with remote data portal, 49– 493
server side data portal, 72, 75–77
server side host classes, 72, 75
support for distributed transactions, 215–222
transaction models, 76
types supporting transactional technologies in,

169
using ASP.NET membership service with, 539
Web Forms interface design

local data portals, 526
remote data portal (with Enterprise

Services), 527
remote data portal (with remoting), 526
remote data portal (with Web Services), 527

web service implementation
local data portal, 581
remote data portal (with Enterprise

Services), 583
remote data portal (with remoting), 582
remote data portal (with Web Services), 583

Windows Forms interface design
local data portals, 470
remote data portal (with Enterprise

Services), 471
remote data portal (with remoting), 471
remote data portal (with Web Services), 471

Data properties, Role column
binding to Resources collection, 503

data reader objects
basic data access models, 516
IDataReader interface, 282

data removal
DataPortal_DeleteSelf method, 83

data retrieval
DataPortal_Fetch method, 79–80

data source controls
ASP.NET, 308
control capabilities, 318
CslaDataSource controls, 557
object capabilities, 317
ProjectDataSource control, 559–560
ProjectListDataSource control, 552
ResourceListDataSource control, 563
ResourcesDataSource control, 560–562
RoleListDataSource control, 563
RolesDataSource control, 542
using business class as data source, 485–488
using business object as data source

RolesEdit web form, 542
Data Sources window, 495
data stacking

CopyState method, UndoableBase class, 105
serializing and stacking Hashtable, 110

data storage and management layer
5-layer logical architecture, 12–13
description of role, 13
locating business logic in, 19

data structures
designing Web Service interface

returning formal data structures, 578
data transfer objects (DTOs), 591

DataMapper class, 281
data updates

bi-directional, 81
DataPortal_Update method, 80–83

database connections
using identity column, 447

database design, 347–363
creating databases, 348–349
PTracker database, 349

database diagrams
PTracker database, 352, 353
Security database, 363

database format
SmartDate type, 277

DataBind method
GridView control, 547

DataGrid control
IEditableObject interface, 120

DataKeyNames property
DetailsView control

RolesEdit web form, 545
GridView control

ProjectEdit web form, 556
ProjectList web form, 551
RolesEdit web form, 543, 549

DataMapper class, 87, 285–290
description, 86
GetSourceProperties method, 288
Map method, 288
mapping from an object, 288
mapping from IDictionary, 288
SetValue method, 286, 288

DataObjectField attribute
implementing Project class, 412, 413
ObjectFieldInfo class, 321–322
parameters for, 321

DataPortal class
see also data portals
channel adapter behaviors, 181, 189–197, 215
creating proxy object, 190–192
description, 163
determining network protocol, 190
distributed transaction support, 216–220
events

DataPortalInvoke, 189, 190
DataPortalInvokeComplete, 189, 190

implementing data access methods, 192–197
methods, 178

ClearContext, 232
Create, 77–79, 178, 189, 195–196, 217–219
Delete, 178, 189, 197, 219
DeleteSelf, 83, 178
Execute, 178, 189, 197
Fetch, 79–80, 178, 189, 193–195, 219
Insert, 178
OnDataPortalException, 179
OnDataPortalInvoke, 178
OnDataPortalInvokeComplete, 179
RunLocal, 190

■INDEX640

6315_idx_final.qxd 4/7/06 5:27 PM Page 640

SetContext, 230
Update, 80–83, 178, 189, 196, 219–220

methods exposed by data portal server, 167
remote server-side DataPortal, 373
RunLocal attribute, 190
transactional contexts, 169
TransactionalAttribute, 169
types required for channel adapter, 166
using MethodCaller class methods, 181

DataPortal folders, CSLA .NET project, 95
DataPortalClient namespace, Csla, 90
DataPortalContext class, 229–232

clearing server context, 232
context and exception data flow to/from server,

171
context data within, 171
context passing and location transparency, 173
creating DataPortalContext object, 229–230
implementing data access methods, 194
providing public access to contexts, 235
setting server context, 230–232

DataPortalContext property, 189
DataPortalEventArgs class

channel adapter behaviors, 188–189
types required for channel adapter, 166

DataPortalException class, 233
context data within, 172
context passing and location transparency, 173
SimpleDataPortal implementing data methods,

226
DataPortalException type

WebServicesProxy class, 213
DataPortalInvoke event

DataPortal class, 189, 190
implementing data access methods, 194

DataPortalInvokeComplete event
DataPortal class, 189, 190
implementing data access methods, 195

DataPortalProxy property
ApplicationContext class, 237

DataPortalResult class, 232–233
context data within, 172
context passing and location transparency, 173
DataPortalException class, 172
SimpleDataPortal implementing data methods,

226
DataPortalUrl property

WebServicesProxy class, 211
DataPortal_Create method, 77–79

see also DataPortal_Xyz methods
child object creation without defaults, 390
creating child objects, 368
creating root objects, 366
data passed to/from server for data portal

operations, 74
distributed transaction support, 217–219
dual data access methods, 393
editable root business objects, 387
IDataPortalServer, 198
implementing data access methods, 195–196
implementing Project class, 425–426
purpose, 167, 178, 189
RunLocalAttribute class, 188

server side data portal, 75
SimpleDataPortal class, 224–226

DataPortal_Delete method
see also DataPortal_Xyz methods
data passed to/from server for data portal

operations, 74
deferred deletion, 83
deleting root objects, 375
distributed transaction support, 219
IDataPortalServer, 198
immediate deletion, 83
implementing data access methods, 197
implementing Project class, 430–431
IsDeleted property, 118
purpose, 167, 178, 189
server side data portal, 75
SimpleDataPortal class, 228–229

DataPortal_DeleteSelf method, 82, 83
see also DataPortal_Xyz methods
deleting child objects, 373
deleting root objects, 376
editable child business objects, 390
editable root collections, 396
implementing Project class, 430
implementing ProjectResource class, 441
processing BusinessBase object, 228
purpose, 178

DataPortal_Execute method
see also DataPortal_Xyz methods
data passed to/from server for data portal

operations, 74
description, 243
implementing data access methods, 197
implementing ExistsCommand class, 458
processing CommandBase object, 228
purpose, 167, 178, 189
shipping an order, 242

DataPortal_Fetch method, 79–80
see also DataPortal_Xyz methods
criteria object, 247
custom authentication, 250
data passed to/from server for data portal

operations, 74
distributed transaction support, 219
dual data access methods, 393
editable child objects, 390
editable root collections, 396
IDataPortalServer, 198
implementing data access methods, 193–195
implementing Project class, 422, 426–428
implementing ProjectResource class, 439
implementing ProjectResources class, 435
implementing PTIdentity class, 462, 463
implementing ResourceList class, 450
implementing RoleList class, 445
purpose, 167, 178, 189
read-only collections, 402
retrieving child objects, 371
retrieving root objects, 369, 370
server side data portal, 75
SimpleDataPortal implementing data methods,

227
using criteria, 180
WebServicePortal class, 213, 214

■INDEX 641

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 641

DataPortal_Insert method
see also DataPortal_Xyz methods
adding/editing root objects, 372, 373
DataPortal class, 178
editable child business objects, 390
implementing Project class, 428–429
implementing ProjectResource class, 440
inserting child objects, 373, 374
processing BusinessBase object, 228
purpose, 178
sharing database connection, 448
using identity column, 446

DataPortal_OnDataPortalException method, 179
see also DataPortal_Xyz methods
CSLA .NET base classes, 246
SimpleDataPortal implementing data methods,

223, 226
DataPortal_OnDataPortalInvoke method, 178

see also DataPortal_Xyz methods
CSLA .NET base classes, 246
implementing Roles class, 454
SimpleDataPortal implementing data methods,

223, 225
DataPortal_OnDataPortalInvokeComplete

method, 179
see also DataPortal_Xyz methods
CSLA .NET base classes, 246
SimpleDataPortal implementing data methods,

223
DataPortal_Update method, 80–83

see also DataPortal_Xyz methods
adding/editing root objects, 372, 373
data passed to/from server for data portal

operations, 74
distributed transaction support, 219–220
editable child business objects, 390
editable child collections, 398
editable root collections, 396
IDataPortalServer, 198
implementing data access methods, 196
implementing Project class, 429–430
implementing ProjectResource class, 440
implementing ProjectResources class, 435
implementing Roles class, 454
processing BusinessBase object, 228
processing other objects, 228
purpose, 167, 178, 189
server side data portal, 75
sharing database connection, 447
SimpleDataPortal class, 227–228
updating child objects, 373, 374

DataPortal_Xyz methods
CommandBase class implementing, 243
editable root business objects, 387
NameValueListBase class, 246
overriding methods, 180
Protected Overridable methods, 180
read-only objects, 180
saving child object data, 373
scope, 180
setting up ProjectTracker, 409
SimpleDataPortal implementing data methods,

223, 225
table of, stating purpose, 178

Transactional attribute, 215, 216
TransactionalTypes enumeration, 215
using criteria, 180

DataRowView class/object, 298
DataSet object

basic data access models, 516, 517
business logic and, 23
IList interface, 292
ObjectAdapter class filling, 86, 87
passing between business logic and data access

layers, 26
report generation, 290

DataSource property, BindingSource control
data binding ListBox, 496
loading RolesEdit control, 490
ProjectEdit loading user controls, 507
RolesEdit saving data, 491, 492
setting, 501
smart client calling web method, 603

DataSourceID property
GridView control, 543

DataTable class/object
BeginLoadData method, 296
CslaDesignerDataSourceView class, 316
EndLoadData method, 296
ObjectAdapter class filling, 86, 87

DataType property
ObjectFieldInfo class, 322

DataView class/object, 298
date functions

SmartDate type, 273
date handling, 267–277

empty/blank dates, 267
SmartDate type, 268–277

date manipulation
SmartDate type, 274

Date property
DateTime type, 274

dates
see also SmartDate class/type
database access for writing, 277
date conversion functions, 270–272
working with empty date values, 88, 270

DateTime data type
Date property, 274
empty date values, 283
empty fields, 281
GetDateTime method, 283
implementing Project class, 415
inheritance from, 268
SmartDate class/type, 86, 88, 268

DateToString method
SmartDate type, 272, 273

DCOM (Distributed Component Object Model)
implementing Enterprise Services, 618
security and internal applications, 6

debugging
message objects, 74

DeclaringType property
SimpleDataPortal implementing data methods,

227
decomposition

object design, 330
Default form, 524

■INDEX642

6315_idx_final.qxd 4/7/06 5:27 PM Page 642

default value
Role class setting, 455–456

Default.aspx, 523
content pages, 529

DefaultRole method
implementing ProjectResource class, 438
implementing RoleList class, 444

deferred approach
IsDeleted property, BusinessBase class, 118

deferred deletion, 83
editable root business objects, 387
root objects, 375–376

delegates
behavioral object-oriented design, 51
declaring events to avoid serialization issues,

101, 102
described, 40
events and, 49
RuleHandler delegate, 132

Delete method, DataPortal class
see DataPortal_Delete method

deleteAssignment procedure, PTracker, 358
DeleteChild method

BusinessListBase class, 150
deleting and undeleting child objects, 154
editable child business objects, 390
IsDeleted property, BusinessBase class, 118

deleted object collection
BusinessListBase class, 150

DeletedList
deleting and undeleting child objects, 151
implementing ProjectResources class, 436

DeleteObject event
CslaDataSource control, 309
ProjectDataSource control, 560
ProjectListDataSource control, 553
ResourcesDataSource control, 561
RolesDataSource control, 549
RolesEdit web form, 550

DeleteObject event handler, 310
deleteProject procedure, PTracker, 356
deleteResource procedure, PTracker, 360
deleteRole procedure, PTracker, 362
DeleteSelf method, DataPortal class

see DataPortal_DeleteSelf method
deleting objects

child objects, 373
editable root business objects, 387
IsDeleted property, 118
root objects, 374–376

deferred deletion, 375–376
immediate deletion, 374–375

demilitarized zone (DMZ), 17
DenyRead method

associating roles with properties, 142
DenyWrite method

associating roles with properties, 142
deployment

data portal channel comparison, 610
Description column

Projects table, PTracker, 350
Description property

EnterpriseServicesPortal class, 207
implementing Enterprise Services, 620

implementing Project class, 414
RuleArgs class, 133, 278

Deserialize method, 212, 213
design

see application design
Design namespace, Csla.Web, 90
design patterns

channel adapter design pattern, 165–166
message router design pattern, 167–168

Designer attribute
CslaDataSource class, 309

DesignerCategory attribute
ReadWriteAuthorization control, 300

DesignMode property
WinPart base control, 473

DetailsView control, 316
ItemDeleted event, 560
ItemInserted event, 547
ModeChanged event, 547
ProjectEdit web form, 555, 560, 564, 565
RolesDataSource control, 545

Diagrams folder, code download, 95
DialogResult property

selecting project, 496
dialogs

see forms
directory structure, CSLA .NET project, 95
dirty objects

IsDirty property, 115–117
DisplayList helper method, 495
DisplayMember property

binding to Resources collection, 503
data binding ListBox, 496

Dispose method
IDisposable interface, 377
user controls, 476

disposing of objects, 376–377
IDisposable interface, 377

distributed applications
mobile objects, 25–32
passing by reference/value, 31
procedural model, 25

distributed architectures
architectures and frameworks, 33
logical and physical architectures, 1–18
managing business logic, 18–32

Distributed Component Object Model (DCOM)
security and internal applications, 6

distributed transactions, 168–170
COM+ transactional context, 220
DataPortal class, 216–220
description, 168
Microsoft Distributed Transaction Coordinator

(DTC), 168
ServicedDataPortal class, 220–221
support for, 215–222
TransactionalAttribute class, 215–216
TransactionalDataPortal class, 221–222
TransactionalTypes enumeration, 215
TransactionScope object, 169
wrapping business object in transaction, 220

DMZ (demilitarized zone), 17
DNA (Windows Distributed interNet Architecture),

4

■INDEX 643

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 643

DoAddUpdate helper method, 442, 443
Dock property

Panel control, 474
Documents menu

DropDownOpening event, 477
MainForm Windows form, 476–477
Tag property, 477
using Windows menu or, 468

DoFetch helper method, 393
DoInsertUpdate helper method, 428
DoLogin method

Login button, 479
domains, 22
domains of trust

hackers, 6
security and external applications, 7
security and internal applications, 6
surface area, 5

DoSort method
ListItem class, 256–257
SortedBindingList class, 254

DropDownList controls
ProjectEdit web form, 556

DropDownOpening event
Documents menu, 477

dual criteria classes
switchable business objects, 391

dual data access methods, 392
dual factory methods, 392
duplicate objects

revising PTracker design, 333
duplicate values

Role class preventing, 456

■E
edit level, 148
editable child business objects, 388–391

object creation without defaults, 390
editable child collections, 397–398
editable collections

properties controlling, 453
editable objects

classes required to support, 93
creating, 60
edit level tracking

BusinessListBase class, 148
for child objects, 125

IEditableObject interface, 120–122
object-editing methods in BusinessBase, 119
updating, 371–376

editable root business objects, 384–387
editable root collections, 394–396
editing objects

child objects, 373
root objects, 372

EditLevel property
edit level tracking for child objects, 125
UndoableBase class, 111

EditLevelAdded property
BusinessListBase class, 150

EditorBrowsable attribute, 103, 142
Employee class

potential class for PTracker, 331
revising project tracker design, 332

empty date values
SmartDate type, 270

empty fields
DateTime data type, 281
null values and, 281

empty values
Boolean data type, 284
DateTime data type, 283
GetEmptyValue method, 304, 305
ReturnEmpty method, 304
SmartDate type, 284

EmptyIsMin parameter
SmartDate type, 269, 270

Enabled property
ReadWriteAuthorization control, 304, 305

encapsulation
architecture and framework guidelines, 36
business logic, 54
CSLA .NET design benefits, 344
data access layer, 32
description, 22, 53
mobile/business objects, 32
performance and, 55
preserving, 53–55
state and, 109
user interface layer, 32
web services returning objects, 285

EncryptChannel property
RemotingProxy class, 202

encryption
data portal channel comparison, 609
implementing .NET Remoting, 615

Ended property
implementing Project class, 415, 416

EndEdit method, IEditableObject, 121
EndLoadData method

DataTable class, 296
Enterprise Services

client side proxy classes, 73
implementing remote data portal hosts,

618–625
client setup, 625
COM+ configuration files, 621
comparison of factors between channels,

608–611
configuring class library project, 619
configuring client, 625
creating proxy/host assembly, 618–625
creating setup program, 624
EnterpriseServicesPortal class, 621
EnterpriseServicesProxy class, 620
installing COM+ application, 625
installing proxy/host into COM+, 622–623
referencing assemblies, 620

remote data portal with
Web Forms interface design, 527
web service implementation, 583
Windows Forms interface design, 471

server side host classes, 75
EnterpriseServices transaction type, 76

DataPortal transactional contexts, 170
routing call to data portal, 216

EnterpriseServicesHostvb assembly
implementing Enterprise Services, 621

■INDEX644

6315_idx_final.qxd 4/7/06 5:27 PM Page 644

EnterpriseServicesHostvb project
implementing Enterprise Services, 619, 622

EnterpriseServicesPortal class
application.config file, 210
application.manifest file, 210
ApplicationAccessControl property, 207
ApplicationActivation property, 207, 209
ApplicationName property, 207
AssemblyResolve event, 208
channel adapter behaviors, 206–210
ComVisible attribute, 206
Description property, 207
EventTrackingEnabled attribute, 206
implementing Enterprise Services, 621
types required for channel adapter, 166

EnterpriseServicesProxy class
channel adapter behaviors, 204–206
GetServerObject method, 205, 206
implementing Enterprise Services, 620
types required for channel adapter, 166

entities
PTracker initial design, 330

enumerators
collection enumerator, 258
custom enumerator class, 258
GetEnumerator method, 260
getting items from collections, 258
IEnumerator interface, 258
properties and methods of Enumerator object,

259
Equals method

overriding System.Object, 144, 145
SmartDate type, 275
WinPart base control, 473

Error property
IDataErrorInfo interface, 128

ErrorLabel control
RolesEdit web form, 541

ErrorProvider control, 503
properties, 504

EventArgs objects
CslaDataSource control, 310
handling events in a page, 310, 311

EventHandler(Of T), 311
events

AssemblyResolve event, 208
CslaDataSource control, 309
data binding, 48
DataPortalInvoke, 190
DataPortalInvokeComplete, 190
declaration in CslaDataSource control, 311
declaring to avoid serialization issues, 101, 102
delegates and, 49
inheritance and, 103
PropertyChanged event, 100
serializing objects that declare, 100

EventTrackingEnabled attribute
EnterpriseServicesPortal class, 206
implementing Enterprise Services, 621
ServicedDataPortal class, 221

exception handling
BusinessBase class method, 61
DataPortalException class, 233
implementing data access methods, 194

loading RolesEdit control, 490
message objects, 74
ValidationException class, 138

exceptions
CallMethodException, 187
context and exception data flow to/from server,

171
Execute method, DataPortal class

see DataPortal_Execute method
ExecuteInsert method

CslaDataSourceView class, 311
ExecuteReader method

creating SafeDataReader object, 282
ExecuteSelect method

CslaDataSourceView class, 312–314
ExecutionLocation property

ApplicationContext class, 237
setting server context, 231

Exists method
possible implementation of, 241
Project class, 456–457
Resource class, 458

Exists property
ExistsCommand class, 458

Exists region
implementing business classes, 411
implementing Project class, 411

ExistsCommand class, PTracker, 457–458
Exists method initializing object, 457

existsProject procedure, PTracker, 354
existsResource procedures, PTracker, 359
extender controls

ApplyAuthorization property, 301–302
applying authorization rules, 302–306
BindingSourceRefresh control, 306
GetApplyAuthorization method, 301, 302
IExtenderProvider interface, 301
inheritance, 300
SetApplyAuthorization method, 301, 302
Windows Forms data binding, 299

external applications
security in physical model, 6

■F
facade

designing Web Service interface, 579
Factory design pattern

class in charge model, 45–47
factory methods, 175–176

common regions, 378
creating child objects, 367, 368
creating root objects, 366
CustomIdentity class, 250
dual factory methods, 392
editable child collections, 398
implementing Project class, 422
implementing ProjectResources class, 434

Factory Methods region, 380
command objects, 403
editable child business objects, 390
editable root business objects, 387
editable root collections, 396
implementing business classes, 421–423

■INDEX 645

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 645

implementing Project class, 421–423
factory methods, 422
non public constructor, 423
overriding Save method, 423

implementing ProjectResource class, 438–439
implementing ProjectResources class, 431,

433–434
constructor, 434
factory methods, 434

implementing PTIdentity class, 462
implementing ResourceList class, 450
implementing RoleList class, 444–445
implementing Roles class, 453
name/value list objects, 405
read-only business objects, 400
read-only collections, 402

fault tolerance
data access tier and, 11
optimal performance web client, 16
physical model, 7–8

redundant servers, 8
Fetch method, DataPortal class

see DataPortal_Fetch method
Fetch method, SimpleDataPortal class

message router functionality, 226–227
FetchRequest class/object, 212

WebServicePortal class, 213, 214
fields

avoiding double-processing of fields, 108
getting list of fields, 108
skipping NotUndoable fields, 109
taking snapshot of regular fields, 109

Fill method
ObjectAdapter class, 87, 291, 292–293

filtered list
retrieving, 247

finalizing objects, 376–377
firewalls

data portal channel comparison, 610
demilitarized zone, 17

folders
CSLA .NET project, 95

forceLocal parameter, 191
Form object

creating forms as user controls not Form
objects, 465

Format event
Binding object, 304

forms
creating forms as user controls, 467
Login form, 467, 480–482
MainForm form, 467, 474–480, 482–485
ProjectSelect form, 467, 496
ResourceSelect form, 467

forms-based authentication
configuring site, 533–535
custom membership provider, 535–536
login page, 533–538
reloading principal object, 536–538

forms, PTWeb
Default form, 524
Login form, 524
ProjectEdit web form, 524
ProjectList web form, 524

ResourceEdit web form, 524
ResourceList web form, 524
RolesEdit form, 524

frameworks
see also CSLA .NET framework
architectures and, 33

high-level guidelines, 36
namespace organization, 89–91
overview, 58

Friend scope
ObjectCloner class, 100
taking snapshot of data, 108

■G
garbage collection

disposing and finalizing objects, 376
generic types

BusinessListBase class, 146
CSLA .NET framework, 97
overriding System.Object, 145
polymorphism, 60, 97

generics
BusinessBase class, 143
introduction, 42
ReadOnlyBase class, 159
System.Collections.Generic namespace, 41

Get block
implementing Project class, 413, 415
implementing ProjectResource class, 437

GetApplyAuthorization method
extender controls, 301, 302

GetBoolean method
SafeDataReader class, 284

GetChildItemType method
ObjectAdapter class using, 294
Utilities class, 294, 319

GetClone method
ICloneable interface, 130, 145, 159

GetColumns method
ObjectAdapter class, 293

GetDataObjectAttributes method, 321
GetDataPortalProxy method, 191

implementing data access methods, 194
GetDateTime method

DateTime data type, 283
GetDesignTimeData method

CslaDesignerDataSourceView class, 315–316
GetEditableChild method

editable child business objects, 390
GetEmptyValue method, 304, 305
GetEnumerator method

SortedBindingList class, 260
GetField method

ObjectAdapter class, 297–299
GetFields method

ObjectViewSchema class, 319
GetFirstBrokenRule method

BrokenRulesCollection class, 138
GetHashCode method

overriding System.Object, 144, 145
WinPart base control, 472

GetIdentity method
CustomIdentity class, 85
implementing PTIdentity class, 462

■INDEX646

6315_idx_final.qxd 4/7/06 5:27 PM Page 646

GetIdValue method
editable root business objects, 386
implementing Project class, 416
implementing PTIdentity class, 461
implementing ResourceInfo class, 449
overriding System.Object, 144, 145
read-only business objects, 400
WinPart base control, 472–473

GetIList method
ObjectAdapter class, 293

GetItem method
implementing ProjectResources class, 432, 433

GetList factory method
implementing RoleList class, 444

GetMethod method
MethodCaller class, 181–185

GetNameDataSlot method, Thread object
client and global context collections, 234

GetObjectType method
MethodCaller class, 187

GetOrdinal method
SafeDataReader class, 283

GetProject method, PTWebService
copying properties from Project into

ProjectData, 595
implementing Project class, 422
ProjectEdit web form, 557
ProjectRequest class, 594
ProjectResourceData class, 595
ProjectResources property,

ProjectResourceData class, 596
service-oriented web methods, 593–596
smart client providing credentials for

authentication, 604
getProject procedure, PTracker, 354

implementing Project class, 428
GetProjectList method, PTWebService

ProjectList web form, 553
service-oriented web methods, 592–593

GetProjectResource method
implementing ProjectResource class, 439

GetProjectResources method
implementing ProjectResources class, 434

getProjects procedure, PTracker, 353
GetPropertyType method

DataMapper class setting values, 287
Utilities class, 322

GetReadValuesOnChange method
BindingSourceRefresh control using, 307

GetResource method
implementing ProjectResource class, 438

getResource procedure, PTracker, 359
GetResourceList method

implementing ResourceList class, 450
web service consumer implementation, 597,

598
getResources procedure, PTracker, 358
GetRoleById method

implementing Roles class, 452
GetRoles method

implementing Roles class, 453
RolesEdit web form, 543

getRoles procedure, PTracker, 361

GetRolesForProperty method
AccessType enumeration, 140
AuthorizationRules class, 141

GetRulesForProperty method
associating rules with properties, 135

GetServerObject method
EnterpriseServicesProxy class, 205, 206
implementing Enterprise Services, 620

GetSmartDate method
implementing Project class, 427
SafeDataReader class, 284

GetSourceProperties method
DataMapper class, 288

GetString method
SafeDataReader class, 283

GetSwitchable methods
dual factory methods, 392

GetType method
CslaDataSource class, 319
data source controls, 317

GetValue method
returning objects, 109, 290

GetViews method
ObjectSchema class, 319

Global Assembly Cache (GAC)
alternative to IIS, 533

global context data
DataPortalResult class, 232–233

GlobalContext collection
DataPortalContext class, 171
DataPortalResult class, 172
implementing data access methods, 194

GlobalContext property, ApplicationContext class
providing public access to contexts, 235

granularity
object-oriented performance, 25

graphical user interface (GUI)
presentation layer and UI, 9

grid-based binding, 48
GridView control

columns, 551
DataBind method, 547
DataKeyNames property, 549, 551
enabling paging for, 552
Fields dialog for, 544
PageSize property, 552
ProjectEdit web form, 556

assigning resources to projects, 562
RolesEdit web form, 543

GUI (graphical user interface)
presentation layer and UI, 9

Guid class
class in charge model, 46

■H
hackers

domains of trust, 6
Hashtable object

re-creating, 111
restoring object’s state data, 112
serializing and stacking, 110
taking snapshot of regular fields, 109

HasReadAllowedRoles method
checking roles, 142

■INDEX 647

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 647

header region
appearance in MasterPage.master, 530
master page, 531

helper types and classes
CSLA .NET framework, 86–89

high scalability smart client
5-layer logical architecture, 14
summary of architecture, 25

high security web client
5-layer logical architecture, 17
summary of architecture, 25

host technology
data portal channel comparison, 610

hosts
hosting PTWeb site in IIS, 528
hosting PTWebService implementation in IIS,

584
implementing remote data portal hosts,

607–626
server side host classes, 72

Hosts namespace, Csla.Server, 90
HTTP

using web services over HTTP, 569
HybridDictionary class, 234, 235

taking snapshot of data, 108

■I
IBindingList interface, 67

data binding, 48, 67
SortedBindingList class, 252, 253
sorting collections, 251, 253

IBusinessObject interface, 97
description, 93

ICancelAddNew interface, 67, 149
ICloneable interface, 246

BusinessBase class implementing, 130
BusinessListBase class, 158–159
Clone method, 130, 145
GetClone method, 145
ReadOnlyBase class, 160
ReadOnlyListBase class, 161

ICollection interface, 253
ICommandObject interface, 99

CommandBase class implementing, 243
description, 93

IComparable interface
Key property, 255
SmartDate type, 274

Id property
implementing Project class, 412
implementing Role class, 455, 456

IDataErrorInfo interface, 67
data binding, 50, 67
maintaining list of broken rules, 70
tracking broken business rules, 41
validation rules, 127

IDataPortalProxy interface
channel adapter behaviors, 198
types required for channel adapter, 166

IDataPortalServer interface
channel adapter behaviors, 197
method definition, 198
types required for channel adapter, 166

IDataReader interface
data reader objects, 282
Read method, 285

IDataSourceFieldSchema interface
Nullable property, 322
Precision property, 322
PrimaryKey property, 321
Scale property, 322

identity column
Resource class using, 446–447

identity element
Web Service authentication, 579

identity objects, 84
CustomIdentity class, 250
CustomPrincipal class and, 248
PTIdentity class, 460–464

Identity property
BusinessPrincipalBase class, 251
implementing PTPrincipal class, 459

IDictionary interface
DataMapper mapping from, 288

IDisposable interface
Dispose method, 377
disposing and finalizing objects, 377
remote data portals, 377

IEditableCollection interface, 98
BusinessListBase class, 66
description, 93
RemoveChild method, 98
SuppressMessage attribute, 98

IEditableObject interface, 67, 120–122
data binding, 47, 67
description, 93
methods, 121
object-editing methods, 119

IEnumerable interface
ExecuteSelect method, 313

IEnumerable(Of T) interface
SortedBindingList class, 252

IEnumerator interface, 258
Current property, 259, 260
MoveNext method, 259, 260
Reset method, 259

IEnumerator(Of T)
SortedEnumerator class, 260

IExtenderProvider interface
CanExtend method, 301
ReadWriteAuthorization control, 301

IHoldRoles interface
implementing Assignment class, 442
implementing ProjectResource class, 437

IIdentity interface, 84
IIS (Internet Information Services)

ASP.NET Development Server compared, 533
ASP.NET security and, 534
hosting PTWeb site in IIS, 528
hosting PTWebService implementation in IIS,

584
server side host classes, 75
using remote data portal with, 482

IList interface
data sources implementing, 292
indexer, 257
SortedBindingList class sorting, 86, 89

■INDEX648

6315_idx_final.qxd 4/7/06 5:27 PM Page 648

IList(Of T) interface
SortedBindingList class, 251, 252

IListSource interface
data sources implementing, 292

immediate approach
IsDeleted property, 118

immediate deletion, 83
editable root business objects, 387
root objects, 374–375

impersonation, 57
description, 170
Web Service authentication, 579

implementation
data portal channel comparison, 611
remote data portal hosts

.NET Remoting, 611–615
Enterprise Services, 618–625
web services, 615–618

web services, 581–596
implementation code

business objects, 24
indexers

IList interface, 257
Indigo, 44, 607
inheritance

avoiding double-processing of fields, 108
BindableBase class, 101
BrokenRulesCollection class, 137
BusinessBase class, 113
BusinessListBase class, 146
events and, 103
extender controls, 300
ICommandObject interface, 99
IUndoableObject interface, 98
polymorphism, 97
ReadOnlyBindingList class, 130

InnerException
DataPortalException class, 172
SimpleDataPortal implementing data methods,

226
INotifyPropertyChanged interface, 67

data binding, 48, 67, 100
PropertyChanged event, 100
UndoableBase class, 105

Insert method
SortedBindingList class, 262, 265

Insert method, DataPortal class
see DataPortal_Insert method

inserting data
ExecuteInsert method, 311

InsertItem method
BusinessListBase class, 150
deleting and undeleting child objects, 154
RemoveChild method overriding, 149

InsertObject event
CslaDataSource control, 309
ProjectDataSource control, 559
ResourcesDataSource control, 561
RolesDataSource control, 544–547

InsertObject event handler, 310
InsertView control

RolesEdit web form, 541
instance field changes

PropertyHasChanged method, 414

instance field declarations
implementing Project class, 411

integrated authorization, 58
CSLA .NET framework, 85–86

IntelliSense
consumer applications, 579
methods appearing in, 103

inter object collaboration
revising PTracker design, 341

interdependent properties
implementing Project class, 415–416

interface design, Web Forms, 522–540
application configuration, 525–527
login page, 533–540
master page, 528–533
PTWeb site setup, 527–528

interface design, Windows Forms, 465–472
application configuration, 469–472
PTWin project setup, 472
user control design, 469
user control framework, 467–469

interfaces
BindableBase class, 100
business objects, 24
BusinessBase class, 113
BusinessListBase class, 146
definition, 572
security and external applications, 7
UndoableBase class, 105

internal applications
security in physical model, 6

Internet Information Services
see IIS

InvalidateCache method
implementing RoleList class, 445
implementing Roles class, 454
name/value list objects, 405

Invoice objects
n-level undo functionality, 38, 39

IPrincipal interface, 84
DataPortalContext class, 171

IPrincipal value
setting server context, 231, 232

IRaiseItemChangedEvents interface, 67
IReadOnlyCollection interface, 93, 99
IReadOnlyObject interface, 93, 99
IsAuthenticated property, 460, 461
IsChild property

BusinessBase class, 124
BusinessListBase class, 148
MarkAsChild method, 123

IsDeleted property, BusinessBase class, 118
description, 114
implementing ProjectResource class, 440

IsDirty method
implementing Project class, 417

IsDirty property, BusinessBase class, 115–117
Browsable attribute, 115
BusinessListBase class, 147
description, 114
implementing Project class, 414

IsEmpty property
SmartDate type, 270, 277

■INDEX 649

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 649

ISerializable interface
creating mobile objects in .NET, 30

isIdentity parameter
DataObjectField attribute, 321

IsInRole method
BusinessPrincipalBase class, 251
implementing PTIdentity class, 461
implementing PTPrincipal class, 459
RolesForProperty class, 140

IsNew property
editable root collections, 396

IsNew property, BusinessBase class, 114–115
isNullable parameter

DataObjectField attribute, 321
IsPropertyImplemented method

ReadWriteAuthorization control using, 301
IsReadAllowed method

checking roles, 143
RolesForProperty class, 139

IsReadDenied method
RolesForProperty class, 140

IsReadOnly property
implementing ResourceList class, 451
name/value list objects, 405
read-only collections, 402
ReadOnlyBindingList class, 131

IsRemotePortal flag
DataPortalContext class, 171

IsSavable property, BusinessBase class, 117
description, 114

IsValid method
implementing Project class, 417

IsValid property
BusinessBase class, 117
BusinessListBase class, 147
description, 114
maintaining list of broken rules, 70

IsWriteAllowed method
RolesForProperty class, 140

IsWriteDenied method
RolesForProperty class, 140

ItemDeleted event
DetailsView control, 560

ItemInserted event
DetailsView control, 547

IUndoableObject interface, 97–98
IEditableCollection interface, 66
UndoableBase class, 66, 105

■J
JavaScript

object-orientation, 7
security and external applications, 7
user interface and presentation layer, 9

Just-in-Time (JIT) compiler
avoiding double-processing of fields, 108

■K
K parameter

see also Key property
NameValueListBase class, 244
NameValuePair class, 245

key collection
SortedBindingList class, 252

Key property
IComparable interface, 255
ListItem class, 255
NameValueListBase class, 245

key/value pairs
Key property, 245
ListItem class, 254
NameValuePair class, 244
ReadOnlyListBase class, 243
Value property, 245

■L
LANs (local area networks), 6
LastChanged column

Roles table, PTracker, 350
layers

see also n-tier architecture
5-layer logical architecture, 8–13
business logic layer, 10–11

managing business logic, 18–32
data access layer, 11–12
data storage and management layer, 12–13
encapsulation of business objects, 32
locating business logic in multiple layers, 18–22
logical and physical architectures, 2
object-orientation within, 25
presentation layer, 9
sharing business logic across tiers, 21
user interface layer, 9–10

length parameter
DataObjectField attribute, 321

life cycle, business objects
see business objects, life cycle of

LineItem objects
n-level undo functionality, 38, 40

link tables, 351
LinkButton control

RolesEdit web form, 544
List(Of T) class

Sort method, 257
List(Of T) collection type

description, 42
web service implementation, 596

ListBox control
data binding, 495–496
properties, 496

ListChanged events
SortedBindingList class, 262, 265, 266

item added to collection, 266
item removed from collection, 267

ListItem class, 254–256
BaseIndex property, 260
CompareTo method, 255
DoSort method, 256–257
Key property, 255

lists, 290
local area networks (LANs)

security and internal applications, 6
local objects, 28

when to use, 30

■INDEX650

6315_idx_final.qxd 4/7/06 5:27 PM Page 650

localization
see also cultures
CSLA .NET framework, 95
description, 170

LocalProxy class
channel adapter behaviors, 198–199
data portals, 526
types required for channel adapter, 166

location transparency, 173
ApplicationContext class, 237
data access, 229–238
ExecutionLocation property, 237
types required to implement, 173
User property, 236

logical architecture
5-layer logical architecture, 8–13

applying logical architecture, 13–17
business logic layer, 10–11
data access layer, 11–12
data storage and management layer, 12–13
deployed in secure web configuration, 17
deployed on load-balanced web farm, 16
high scalability smart client, 14
high security web client, 17
illustrated, 9
in secured environment with web farm, 17
managing business logic, 18–32
optimal performance smart client, 13
optimal performance web client, 15
presentation layer, 9
running on single machine, 14
table summarizing, 13
used for web applications, 16
user interface, 9
user interface layer, 10
with separate application and database

servers, 15
with separate database server, 14

layers and physical architecture, 2
benefit of separating layers, 2
defaulting to number of physical tiers, 2

logical and physical architectures, 1–18
logical model, rules for, 4
logical n-layer architecture, 2
mapped to technologies, 35
mobile objects and, 27
relationship between logical/physical models,

4–8
Login button

DoLogin method, 479
MainForm Windows form, 479–480

Login control
skin file definition of, 530

Login form
brief description, 467
description, 524
user control framework, 480–482

Login method, PTPrincipal class, 459–460
forms-based authentication, 536
Login form, 480, 481
validating credentials, 588
Web Service authentication, 580
web service implementation, 585

Login method, Security class
validating credentials, 588, 589
web service implementation, 590

login page
ASP.NET membership service, 538–540
forms-based authentication, 533–538
SSL encryption, 535
Web Forms user interface design, 533–540
Windows integrated security, 538

Login procedure, PTracker security, 363
login/logout notification

WinPart base control, 473
LoginStatus control

master page, 532
Logout method, PTPrincipal class, 460

LoginStatus control, 532
web service implementation, 589

loop of references
revising PTracker design, 332

■M
MainForm Windows form

brief description, 467
business functionality, 482–485
deleting project/resource, 484–485
displaying user controls, 482–483
Documents menu, 476–477
editing existing project/resource, 483
editing project/resource, 484
hosting user controls, 474–476

loading/adding user controls, 475
removing user controls, 475
resizing user controls, 476

Login button, 479–480
Panel control, 474
Status Bar, 477–478
user control framework, 474–480
Windows integrated security, 481

MainView control
ProjectEdit web form, 554, 555
RolesEdit web form, 541

Manual transaction type, 77
DataPortal transactional contexts, 170
description, 76
routing call to data portal, 216

many-to-many relationships
projects and resources, 351

Map method
DataMapper class, 288

mapping
object-relational mapping, 52–53

MarkAsChild method, 123
dual data access methods, 393
editable child collections, 397
implementing ProjectResource class, 439
implementing ProjectResources class, 434
indicating object is child, 61
switchable business objects, 391, 393

MarkClean method
IsDirty property, BusinessBase class, 115

MarkDeleted method
deleting root objects, 375
IsDeleted property, BusinessBase class, 118

■INDEX 651

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 651

MarkDirty method
IsDirty property, BusinessBase class, 115, 116

MarkNew method
editable child business objects, 390
IsNew property, BusinessBase class, 114
processing BusinessBase object, 228
SimpleDataPortal implementing data methods,

225
MarkOld method

editable child business objects, 390
IsDirty property, BusinessBase class, 115
IsNew property, BusinessBase class, 114

marshaling, 28
master page

ContentPlaceHolder control, 529
files in Basic theme, 530
header region, 531
LoginStatus control, 532
navigation region, 531
theme support, 530–531
Web Forms user interface design, 528–533

MasterPage.master, 529
appearance of regions in, 530
subnavigation region, 532

MasterPageFile property
RolesEdit web form, 540

MaxLengthRuleArgs object
implementing Project class, 418

mBindingEdit field, 122
MBRO (marshal-by-reference object)

RemotingPortal class, 203
mBrokenRules field

maintaining list of broken rules, 137
mDate field, 268, 269
Me keyword

object in charge model, 45
Save method, BusinessBase class, 80

membership provider
forms-based authentication, 535–536

MemoryStream class
converting to byte array, 110
ToArray method, 110

mEmptyIsMax field, 269, 270
menus

Admin menu, 474
Documents menu, 476–477
Projects menu, 474
Resources menu, 474
using Documents menu or Windows menu, 468

message-based communication, 569
web services as services, 574–575

message objects, 73–75
data portal functionality, 72

message router design pattern, 167–168
data portal combining patterns, 165
server side data portal, 75
types required for message router, 168

message routers, 222–229
CriteriaBase class, 223
CSLA .NET framework, 167
flow of client call through, 167
SimpleDataPortal class, 223–229

messages
services and, 573

method signatures
business rules, 70
delegates, 40

MethodCaller class, 181–187
CallMethod method, 185–186
CallMethodIfImplemented method, 186
GetMethod method, 181–185
GetObjectType method, 187
types required for channel adapter, 166
types required for message router, 168

MethodImpl attribute
IsDirty property, BusinessBase class, 117

MethodInfo object
Create method, DataPortal class, 217
DataPortal_Xyz methods, 216
Delete method, DataPortal class, 219
Fetch method, DataPortal class, 219
implementing data access methods, 193
Update method, DataPortal class, 219

methods
atomic method, 572
stateless method, 572

mExists field, 458
mFormat field, 269
Microsoft Distributed Transaction Coordinator,

168
mId field, 458
middle tier

locating business logic in, 20
mInitialized field, 269, 274
mIsAuthenticated value, 462
mName value, 462
mNeverCommitted field, 122
mobile objects, 25–29, 30–32

see also business objects
.NET Framework, 26
creating in .NET, 30
description, 55
encapsulation, 32
logical architecture, 27
passing by reference, 30–32
passing by value, 32
performance, 29
sharing business logic across tiers, 21
smart data, 26
supporting physical n-tier models, 55
when to use, 30

mode attribute, wellknown element
implementing .NET Remoting, 613

ModeChanged event
DetailsView control, 547

models
see also architectures
class in charge (Factory pattern), 45–47
data centric object model, 53
logical model, 4
models for UI developer, 43–47
object in charge model, 45
physical model, 4–8
relational and object modeling, 50, 51
supporting physical n-tier models, 55–57
transaction models, 76
UI in charge, 43–44

■INDEX652

6315_idx_final.qxd 4/7/06 5:27 PM Page 652

Modules
client side DataPortals, 72
ObjectCloner class, 100

MoveNext method
IEnumerator interface, 259, 260

mParent field, 124
mRoles collection, 463
mRoles value, 462
mSortBy value, 256, 257
mSortIndex value, 257
multiple users

high scalability smart client, 14
MultiView control

ProjectEdit web form, 554
RolesEdit web form, 541

MustInherit keyword
BindableBase class, 102
description, 102
UndoableBase class, 105

MustOverride keyword, 416, 417
data portal methods, 179

MustOverride method
overriding System.Object, 144

■N
n-level undo functionality, 37–40

AcceptChanges method, 157–158
BusinessBase class, 65, 113, 119–122
BusinessListBase class, 146, 148–150
CopyState method, 155
CSLA .NET framework, 64–66
edit level tracking

BusinessListBase class, 148
for child objects, 125

IEditableObject interface, 120–122
IUndoableObject interface, 98
NotUndoableAttribute, 66
object-editing methods, 119
reacting to Insert/Remove/Clear operations, 149
requirement for, 104
separating into Core.UndoableBase, 64
serialization, 64
stacking data, 105
strongly typed collections of child objects, 42
UndoableBase class, 104, 105
UndoChanges method, 155–157

n-tier architecture
see also logical architecture
architecture and framework guidelines, 36
channel adapter design pattern, 165–166
complexity of n-tier design, 3
description, 2
implementing data access methods, 195
implementation factors for remote data portal

hosts, 608–611
redundant servers, 8
supporting physical n-tier models, 55–57

Name property
implementing Project class, 413
implementing PTIdentity class, 461

name/value list objects, 404–405
common regions, 380
filtering results, 444
RoleList class, 443

name/value pairs
see key/value pairs

namespaces, 89–91
Configuration, 237
Csla, 90, 143–161
CSLA .NET framework, 90

primary base classes, 91
Csla.Core, 90, 96–131
Csla.Data, 90
Csla.DataPortalClient, 90
Csla.Properties, 90
Csla.Security, 90, 139–143
Csla.Server, 90
Csla.Server.Hosts, 90
Csla.Validation, 90, 131–139
Csla.Web, 90
Csla.Web.Design, 90
Csla.WebServiceHost, 90
Csla.Windows, 90
implementing Project class, 410
namespace organization, 89–91
ProjectTracker.Library, 410
System.Collections.Generic namespace, 41
System.ComponentModel.BindingList

namespace, 42
System.Object, 144–145

NameTextBox control
displaying data, 495

NameValueListBase class, 63–64, 243–247
ContainsKey method, 245
ContainsValue method, 245
data access, 246–247
declaring, 244
ICloneable interface, 246
implementing RoleList class, 443
Key property, 245
key/value pairs, 243
NameValuePair class and, 244
parameters, 244
Protected criteria class, 246
purpose, 60
RoleList class subclassing, 346
Value property, 245

NameValuePair class, 244
name/value list objects, 405

naming conventions
App.config file, 470
CSLA .NET framework namespaces, 90

navigation region
master page, 531

.NET Framework
see also CSLA .NET framework
data binding interfaces, 67
functionality discussed, 36
mobile objects, 26
SOAP, web services, and, 570

.NET Remoting
see remoting
see also remote data portals

network contention, 5
network latency, 5
network protocol

DataPortal methods determining, 189, 190

■INDEX 653

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 653

network transport
data portals, 72

New keyword
creating child objects, 367
object creation without defaults, 393
object in charge model, 45
using factory methods instead, 381

new objects
IsNew property, 114–115

NewEditableChild method
editable child business objects, 390

NewProject method
implementing Project class, 422

NewProjectResources method
implementing Project class, 412
implementing ProjectResource class, 438, 439
implementing ProjectResources class, 434

NewSwitchable methods
dual factory methods, 392

NextResult method
implementing Project class, 428

NoDuplicates rule method
implementing Role class, 456

non-collection classes
common regions, 379

non-serializable objects
handling events raised by serializable object, 50

NonSerialized attribute, 49, 378
declaring events to avoid serialization issues, 101

normalization
behavioral object-oriented design, 51, 52
normalizing common behavior, 337, 338
relational and object modeling, 50

Nothing values
see also null values
data binding, 268
GetMethod method listing parameter types, 184

NotUndoable attribute, 66, 104
marking field as, 106
mBindingEdit field, 122
skipping NotUndoable fields, 109
taking snapshot of data, 106

NotUndoableAttribute class, 104
AttributeUsage attribute, 104
description, 94

null values
see also Nothing values
ADO .NET and, 277
DateTime data type, 281
empty fields and, 281
helper class handling, 87
poorly designed databases, 282
reasons for allowing, 281
SafeDataReader class, 281
SafeDataReader class handling, 86
working with empty date values, 88

Nullable property
IDataSourceFieldSchema interface, 322

Nullable(Of DateTime) generic type
working with empty date values, 88

Nullable(Of T) generic type
DataMapper class setting values, 287
date handling, 268
handling null values, 87

■O
object creation without defaults, 393
object database

data access layer, 12
object design, 330–344

CRC cards, 330
custom authentication, 343
decomposition, 330
encapsulation, 22
initial steps for PTracker, 330–331
normalizing behavior, 337
possible class diagram for PTracker, 332
potential objects and associated class names,

331
revising PTracker design, 332–343

duplicate objects, 333
inter object collaboration, 341
performance optimization, 340
reviewing design, 341–343
revising complex relationships, 333–339
trivial objects, 333

object graph, 100
object in charge model, 45
object models

behaviors and, 339, 340
description, 50
final PTracker object model, 342

object persistence
see persistence

object status
see state

object types
list of, 383

object-oriented applications
architecture and framework guidelines, 36
behavioral object-oriented design, 51–52
core object-oriented concepts, 37
design goals, 36–58
distributed architectures and, 25, 26
JavaScript and, 7
logical and physical architectures, 1–18
mobile objects, 25
reason for creating, 22

object-oriented design, 325–364
object-oriented models

relational models and, 352
object-oriented programming

primary goal of, 164
object-relational mapping

see ORM
ObjectAdapter class, 87, 291–299

CopyData method, 296–299
copying data, 296–299
data sources supported by, 291
description, 86
Fill method, 87, 291, 292–293
GetColumns method, 293
GetField method, 297–299
GetIList method, 293
getting column names, 293–296
report generation, 291–299
ScanDataView method, 294
ScanObject method, 295

■INDEX654

6315_idx_final.qxd 4/7/06 5:27 PM Page 654

scope, 291
using GetChildItemType method, 294

ObjectCloner class, 99–100
description, 93, 130
implementing ICloneable interface, 246

ObjectFieldInfo class, 320–323
CslaDataSource control, 308
DataObjectField attribute, 321–322
DataType property, 322
instance fields, 320
other property information, 322
Web Forms data binding, 320–323

objects
anchored objects, 28
BusinessBase overriding System.Object, 144–145
creating editable objects, 60
creating objects, 366–369
creating read only objects, 63
deleted object collection, 150
disposing and finalizing objects, 376–377
enabling objects for data binding, 47–48
life cycle of business objects, 365–377
list of object types, 383
local objects, 28
mobile objects, 29
object persistence and object-relational

mapping, 50–57
passing by value, 29
ProjectTracker objects, 407–409
relational and object modeling, 50
retrieving objects, 369–371
root objects, 61
strongly typed collections of child objects,

41–42
tracking object status, 113–118, 147
tracking whether state has changed, 41
updating editable objects, 371–376
when to use local/anchored/mobile, 30

ObjectSchema class, 318
CslaDataSource control, 308
CslaDesignerDataSourceView class, 315
GetViews method, 319
Web Forms data binding, 318–319

ObjectType property
SimpleDataPortal implementing data methods,

227
ObjectViewSchema class, 319–320

CslaDataSource control, 308
GetFields method, 319
Web Forms data binding, 319–320

OnCurrentPrincipalChanged method
WinPart base control, 473

OnDataPortalException method
see DataPortal_OnDataPortalException method

OnDataPortalInvoke method
see DataPortal_OnDataPortalInvoke method

OnDataPortalInvokeComplete method
see DataPortal_OnDataPortalInvokeComplete

method
OnDeserialized attribute, 127
OnListChanged method

SortedBindingList class, 266
OnPropertyChanged method

BindableBase class, 103

OnSelectObject method, 311
OnUnknownPropertyChanged method

BindableBase class, 103
IsDirty property, BusinessBase class, 115

optimal performance
see under performance

OrderShipper class
possible implementation of, 241

OriginalIndex helper method
viewing sorted values, 257

ORM (object-relational mapping), 52–53
separation of ORM logic into persistence object,

54
stored procedures, 354

overloading operators
SmartDate type, 275–277

Overridable methods
data portal methods, 179
description, 116, 129

Overrides keyword
data portal methods, 180

overriding Save method
implementing Project class, 423

■P
Page directive

RolesEdit web form, 540
PageSize property

GridView control, 552
PageTitle control

header region, 531
Panel control

AddWinPart method, 475
CloseWinPart method, 475, 476
Dock property, 474
MainForm Windows form, 474
Resize event, 476
ShowWinPart method, 475

parameter types
GetMethod method listing, 184

parent objects
description, 123
root/parent/child behaviors, 123–125

parent parameter
editable child business objects, 390

Parent property, BusinessBase class, 124
implementing Role class, 455

Parse event
Binding object, 304

Parse method
SmartDate type, 270, 272

passing by reference
calling an object by reference, 28
description, 28
mobile objects, 30–32

passing by value
class in charge model, 46
description, 29
mobile objects, 32
original idea of, 31

performance
data portal channel comparison, 608
description, 4

■INDEX 655

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 655

encapsulation and, 55
high-scalability smart client, 14
mobile objects, 29

passing by reference, 32
object-oriented applications, 25
optimal performance smart client, 13
optimal performance web client, 15
physical model, 4
revising PTracker design, 340

persistence
business objects managing persistence to data

store, 54
CSLA .NET design benefits, 344
data portals and, 71, 72
loading data using public properties, 54
object-relational mapping and, 50–57
separation of ORM logic into persistence object,

54
physical architecture

description, 2
layers and logical architecture, 2
logical and physical architectures, 1–18
physical model, 4–8

performance, 4
scalability, 4

physical n-tier architecture
logical n-layer architecture and, 2

physical n-tier architecture benefits, 3
relationship between logical/physical models,

4–8
physical configuration

CSLA .NET design benefits, 344
physical models

fault tolerance, 7–8
security, 5–7

external applications, 6–7
internal applications, 6

supporting n-tier models, 55–57
points of failure

fault tolerance in physical model, 7
polymorphism

CSLA .NET framework, 97
description, 60
generic types, 60, 97
IBusinessObject interface, 97
IReadOnlyCollection interface, 99
IReadOnlyObject interface, 99
IUndoableObject interface, 97
polymorphic behavior, 60
ReadOnlyBase class, 159

Portal property
RemotingProxy class, 201

portals
see data portals

pre- and post-processing methods
BusinessBase class, 61

Precision property
IDataSourceFieldSchema interface, 322

presentation layer
5-layer logical architecture, 9
description of role, 13
separating presentation layer and UI logic, 9
user interface and, 9

various presentation technologies, 9
web clients, 15

primaryKey parameter
DataObjectField attribute, 321

PrimaryKey property
IDataSourceFieldSchema interface, 321

Principal object
DataPortalContext class, 171

principal objects, 84
custom principal object

inheritance, 247
integrating with data portal, 250

CustomPrincipal class, 247
forms-based authentication, 536–538
Login button, 479

Private constructor
DataPortal_Create method, 78
private default constructor, 381

Private instance fields
encapsulation and performance, 55

Private keyword
business object interface, 25

procedural model
distributed architectures, 25

process flow design
see business concepts and process flow design

programmatic access
use case for PTracker, 329

Project class, PTracker, 410–431
AddAuthorizationRules method, 419–420
AddBusinessRules method, 418–419
authorization methods, 420–421
Authorization Rules region, 419–421
binding ProjectEdit control to, 498–500
Business Methods region, 411–417
child collection properties, 416
Criteria object, 424
custom rule methods, 419
Data Access region, 423–431
DataPortal_Create method, 425–426
DataPortal_Delete method, 430–431
DataPortal_DeleteSelf method, 430
DataPortal_Fetch method, 426–428
DataPortal_Insert method, 428–429
DataPortal_Update method, 429–430
Exists method, 456–457
ExistsCommand class, 457–458
factory methods, 422
Factory Methods region, 421–423
final class list for PTracker, 342
handling transactions, 425
instance field declarations, 411
interdependent properties, 415–416
non public constructor, 423
overriding GetIdValue method, 416
overriding IsDirty method, 417
overriding IsValid method, 417
overriding Save method, 423
potential class for PTracker, 331
read-only properties, 412–413
read-write properties, 413–414
revising complex relationships, 333, 335
saving project, 558–559
SmartDate properties, 415

■INDEX656

6315_idx_final.qxd 4/7/06 5:27 PM Page 656

Validation Rules region, 418–419
web service implementation, 590

project maintenance
use case for PTracker, 327–328

adding a project, 327
editing a project, 328
removing a project, 328

project tracker application
see PTracker application

project tracker database
see PTracker database

project tracker project
see ProjectTracker project

ProjectData class
copying properties from Project, 595
web service implementation, 591–592

ProjectDataSource control, 559–560
DeleteObject event, 560

ProjectEdit control, 497–513
adding RoleListBindingSource control, 500
authorization rules, 507–508
binding to Project class, 498–500
binding to Resources collection, 501–503
BindingSourceRefresh control, 505
brief description, 467
creating controls, 498–505
ErrorProvider control, 503
loading user control, 506–507
ReadWriteAuthorization control, 504
saving data, 508–511
WinPart code, 506

ProjectEdit web form, 554–565
assigning resources to projects, 561–562
authorization rules, 563–565
caching project object in Session, 557–558
description, 524
MultiView control, 554
ProjectDataSource control, 559–560
ResourceListDataSource control, 563
ResourcesDataSource control, 560–562
RoleListDataSource control, 563
SaveProject method, 558
saving project, 558–559

ProjectEdit.aspx
content pages, 529

ProjectInfo class
final class list for PTracker, 343
inheritance, 345

ProjectList class
business functionality, Windows Forms,

494–497
data binding ListBox, 495–496
displaying data, 494–495
final class list for PTracker, 343
implementing business classes, 448
object design, 340
potential class for PTracker, 331
revising PTracker design, 332
selecting project, 496–497

ProjectList web form, 550–554
adding projects, 553
authorization rules, 554
deleting projects, 553
description, 524

GetProjectList method, 553
loading data, 552
viewing/editing projects, 553

ProjectListDataSource control
DeleteObject event, 553
properties, 552
SelectObject event, 552

ProjectManager role
implementing Project class, 420

ProjectRequest class
GetProject method, PTWebService, 594

ProjectResource class, 436–441
Authorization Rules region, 438
Business Methods region, 437
constructor, 439
Data Access region, 439–441
deleting data, 441
editable child business objects, 390
Factory Methods region, 438–439
final class list for PTracker, 342
inserting data, 440
loading existing object, 439
updating data, 440
Validation Rules region, 437–438

ProjectResourceData class
GetProject method, PTWebService, 595

ProjectResources class, 431–436
Assign method, 432
Business Methods region, 431, 432–433
constructor, 434
Contains method, 433
ContainsDeleted method, 433
Data Access region, 431, 434–436
dealing with common behaviors, 339
factory methods, 434
Factory Methods region, 431, 433–434
final class list for PTracker, 342
GetItem method, 433
loading data, 435
merging similar objects, 336
normalizing common behavior, 338
potential class for PTracker, 331
Remove method, 433
revising complex relationships, 333, 335
updating data, 435

ProjectResources property, ProjectResourceData
class

GetProject method, PTWebService, 596
projects

addProject procedure, 355
assigning resources to projects, 561–562
deleteProject procedure, 356
deleting project, 484–485
editing project, 483, 484
existsProject procedure, 354
getProject procedure, 354
getProjects procedure, 353
selecting project, 496–497
updateProject procedure, 355

Projects menu, 474
Projects table, PTracker, 350

primary key, 446
ProjectSelect form

brief description, 467

■INDEX 657

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 657

displaying data, 494–495
editing project, 483
layout of, 494
selecting project, 496–497

ProjectSelect_Load method
displaying data, 494

ProjectTracker application classes, 408
ProjectTracker objects, 407–409
ProjectTracker project

library of business classes, 408
referencing Csla.dll assembly, 409
setting up, 408–409

ProjectTracker.Library business objects
web service data transfers, 577–579

ProjectTracker.Library namespace
implementing Project class, 410

ProjectTracker.Library project
PTWin project setup, 472
referencing, 528

properties
DataMapper class mapping data between, 86, 87
GetProject method copying, 595

Properties namespace, Csla, 90
PropertyChanged event

business objects and, 103
data binding, 306
implementing ProjectResource class, 437
INotifyPropertyChanged interface, 100
IsDirty property, BusinessBase class, 115, 116
objects handling, 414

PropertyHasChanged method
BusinessBase class, 279
implementing Project class, 413, 414, 416, 418
implementing ProjectResource class, 437
instance field changes, 414
IsDirty property, BusinessBase class, 116, 117

PropertyInfo object
DataMapper class mapping from object, 289,

290
ReadOnly property, 305

PropertyName property
RuleArgs class, 133, 278

Protected criteria class, 246
protected method

raising PropertyChanged event, 103
protected scope

taking snapshot of data, 108
ProvideProperty attribute

ReadWriteAuthorization control, 300
proxy classes/objects

data portal functionality, 72
DataPortal class and, 190–192
EnterpriseServicesProxy class, 204
IDataPortalProxy interface, 198
implementing data access methods, 194
LocalProxy class, 198
managing network protocols, 190
RemotingProxy class, 200
smart client application, 601
smart client calling web method, 603
WebServicesProxy class, 210

proxy/host assembly
implementing Enterprise Services, 618–625
installing into COM+, 622

PTIdentity class, 460–464
Business Methods region, 461
creating instance of, 459, 460
custom authentication, 343
Data Access region, 462–464
Factory Methods region, 462
inheritance, 346
IsAuthenticated property, 460
Login procedure, 363
reloading principal objects, 537
Security database, 362
using Windows authentication, 525

PTMembershipProvider class
forms-based authentication, 535

PTPrincipal class, 458–460
custom authentication, 343
forms-based authentication, 535
inheritance, 346
Login method, 459–460
Logout method, 460
reloading principal objects, 537
using Windows authentication, 525

PTracker application
application requirements, 326–329
database design, 347–363
final class list for PTracker, 342
grouping web methods into web services, 577
implementing business classes

see business classes, implementing PTracker
initial design, 330–331

potential entities discovered during, 330
object design, 330–344
possible class diagram for, 332
potential objects and associated class names,

331
PTWebService implementation, 581–596
revising design, 332–343

duplicate objects, 333
inter object collaboration, 341
performance optimization, 340
reviewing design, 341–343
revising complex relationships, 333–339
trivial objects, 333

use cases for, 327–329
programmatic access, 329
project maintenance, 327–328
resource maintenance, 328–329
role maintenance, 329

using CSLA .NET, 344–346
Web Forms user interface

see Web Forms user interface, PTracker
web methods

component-based approach, 576
initial list of possible web methods, 575
service-oriented approach, 576

Windows Forms user interface
see Windows Forms user interface, PTracker

PTracker database
Assignments table, 351
code download, 526
creating, 348–349
database design, 349
database diagrams, 352, 353
Projects table, 350

■INDEX658

6315_idx_final.qxd 4/7/06 5:27 PM Page 658

Resources table, 350
Roles table, 349
stored procedures, 353

addAssignment, 357
addProject, 355
addResource, 359
addRole, 361
deleteAssignment, 358
deleteProject, 356
deleteResource, 360
deleteRole, 362
existsProject, 354
existsResource, 359
getProject, 354
getProjects, 353
getResource, 359
getResources, 358
getRoles, 361
updateAssignment, 357
updateProject, 355
updateResource, 360
updateRole, 362

PTrackerConnection property
implementing Project class, 427

PTService web reference
smart client calling web method, 601

PTService.asmx file
web service implementation, 585

PTServiceClient project
smart client application, 599

PTWeb project
application configuration, 525–527
business functionality, 540–565
hosting PTWeb site in IIS, 528
interface design, 522–540
login page, 533–540
master page, 528–533
ProjectEdit web form, 554–565
ProjectList web form, 550–554
RolesEdit web form, 540–550
site setup, 527–528
web forms in PTWeb, 524

PTWebService project
AddProject method, 589–592
component-based web methods, 589
GetProject method, 593–596
GetProjectList method, 592–593
service-oriented web methods, 592
smart client application, 599–604

calling web method, 601–603
providing credentials for authentication,

603–604
web service consumer implementation, 596,

597
web service implementation, 581–596

PTWebService website
web service implementation, 583–585

hosting in IIS, 584
PTWin project

application configuration, 469–472
business functionality, 482–513
forms and user controls, table of, 467
interface design, 465–472
setup, 472

user control design, 469
user control framework, 467–469, 472–482

Public constructor
DataPortal_Create method, 78

Public keyword
business object interface, 24, 25

public properties
data binding, 104

■R
RAD (rapid application development) tools

UI focused design, 326
RaiseListChangedEvents property

editable root collections, 396
read-only collections, 402

Read method
IDataReader interface, 285

read-only business objects, 398–400
read-only collections, 400–402
read-only objects

classes required to support, 93
creating, 63

read-only properties
implementing Project class, 412–413

read-write properties
implementing Project class, 413–414

ReadOnly property
PropertyInfo object, 305
ReadWriteAuthorization control, 305

ReadOnlyBase class, 63, 159–160
authorization rules, 160
description, 94
ICloneable interface, 160
purpose, 60

ReadOnlyBindingList class, 130–131
AllowRemove value, 131
ClearItems method, 131
description, 94
IsReadOnly property, 131
RemoveItem method, 131

ReadOnlyCollectionBase class
read-only lists, 448

ReadOnlyListBase class, 63, 160–161
description, 94
ICloneable interface, 161
implementing ResourceList class, 448
key/value pairs, 243
object design, 340
purpose, 60
read-only collections, 400
read-only list objects subclassing, 346

ReadValuesOnChange property
BindingSourceRefresh control, 306, 505

ReadWriteAuthorization control, 299–306, 504
ApplyAuthorization property, 300, 301–302, 504
applying authorization rules, 302–306
ApplyReadRules method, 303, 304–305
ApplyWriteRules method, 303, 305–306
DesignerCategory attribute, 300
Enabled property, 304, 305
IExtenderProvider interface, 301
ProjectEdit authorization rules, 508
ProvideProperty attribute, 300

■INDEX 659

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 659

ReadOnly property, 305
ResetControlAuthorization method, 302
using IsPropertyImplemented method, 301
Windows Forms data binding, 299–306

redundant servers
fault tolerance in physical model, 8

reference
see passing by reference

referencing assemblies
implementing .NET Remoting, 612
implementing Enterprise Services, 620
implementing Web Services, 617

reflection
BindableBase class, 104
data portal methods, 179
ScanObject method, 295
server side data portal using, 78
taking snapshot of data, 106
too slow, 285
UndoableBase class, 104
validation rules, 277

#Region directive, 378
data access, 378
factory methods, 378

regions
appearance in MasterPage.master, 530
Authorization Rules region, 380
Business Methods region, 380
Client-side Code region, 403
common regions, 378–381
Data Access region, 380
Factory Methods region, 380
Server-side Code region, 403
Validation Rules region, 380

regsvcs.exe utility
implementing Enterprise Services, 622
setting up ProjectTracker, 409

relational databases
creating relationship between tables, 352
object persistence, 50–57
object-relational mapping, 52–53
relational and object modeling, 50

relational models
database design, 347
object-oriented models and, 352

relationships, PTracker
revising complex relationships, 333–339

.rem extension, 614
remote data portals

implementing remote data portal hosts,
611–625

comparison of factors between channels,
608–611

configuring client, 614
configuring web.config, 613
creating virtual root, 612
encrypting data on TCP channel, 615
referencing assemblies, 612

saving data with, 492–493
Web Forms interface design, 526, 527
web service implementation, 582
when to use, 607
Windows Forms interface design, 471
Windows integrated security, 538

remoting
client side proxy classes, 73
RemotingPortal class, 204

RemotingHost project
implementing .NET Remoting, 612

RemotingPortal class
channel adapter behaviors, 202–204
implementing .NET Remoting, 613
types required for channel adapter, 166

RemotingProxy class
channel adapter behaviors, 200–202
EncryptChannel property, 202
Portal property, 201
types required for channel adapter, 166

Remove method
BrokenRulesCollection class, 138
BrokenRulesList class, 136
BusinessListBase class, 62
implementing ProjectResources class, 432, 433
implementing Roles class, 451
Resources collection, 512

RemoveAt method
SortedBindingList class, 262, 264, 265

RemoveChild method
BusinessListBase class, 149
IEditableCollection interface, 98

RemoveItem method
BusinessListBase class, 150
ReadOnlyBindingList class, 131
RemoveChild method overriding, 149

report engines, 290
data binding, 290
working in unbound mode, 290

report generation, 290–299
generating large reports, 290
lists and reports compared, 290
ObjectAdapter class, 291–299

reports, 290
RequestMsg class

services communication, 574
requirements

application requirements, 326–329
Reset method

IEnumerator interface, 259
ResetControlAuthorization method

ProjectEdit authorization rules, 508
ReadWriteAuthorization control, 302

Resize event
Panel control, 476

Resource class, PTracker, 445–448
deleting resource, 484, 485
Exists method, 458
final class list for PTracker, 342
potential class for PTracker, 331
revising complex relationships, 333, 335
revising PTracker design, 332
sharing database connection, 447–448
using identity column, 446–447

resource editor, Visual Studio, 96
resource maintenance

adding/assigning/editing/removing, 328
use case for PTracker, 328–329

ResourceAssignment class
final class list for PTracker, 342

■INDEX660

6315_idx_final.qxd 4/7/06 5:27 PM Page 660

ResourceAssignments class
dealing with common behaviors, 339
final class list for PTracker, 342
merging similar objects, 336
normalizing common behavior, 338
potential class for PTracker, 331
revising complex relationships, 333, 335, 336

ResourceEdit control
brief description, 467
code download, 482
editing resource, 484
editing resources, 511

ResourceEdit web form, 524
ResourceInfo class, PTracker

Business Methods region, 449
constructors, 449
final class list for PTracker, 343
implementing business classes, 448–450
implementing ResourceList class, 451
inheritance, 345

ResourceList class, PTracker, 448–451
Data Access region, 450–451
Factory Methods region, 450
final class list for PTracker, 343
object design, 340
potential class for PTracker, 331
revising PTracker design, 332

ResourceList web form, 524
ResourceListDataSource control, 563

SelectObject event, 563
resources

addResource procedure, 359
assigning resources to projects, 561–562
assigning/unassigning, 512
deleteResource procedure, 360
deleting resource, 484–485
editing resource, 483, 484
existsResource procedure, 359
getResource procedure, 359
getResources procedure, 358
ResourceEdit editing resources, 511
security roles and resource roles, 330
updateResource procedure, 360

Resources collection
assigning/unassigning resources, 512
ProjectEdit control binding to, 501–503

Resources menu, 474
Resources table, PTracker, 350

primary key, 446
Resources.resx file

code download, 96
ResourcesBindingSource control

binding to Resources collection, 501
ResourcesDataSource control, 560–562

assigning resources to projects, 561–562
DeleteObject event, 561
InsertObject event, 561
SelectObject event, 561
UpdateObject event, 561

ResourceSelect form
brief description, 467
code download, 482
deleting resource, 485
editing resource, 483

ResponseMsg class
services communication, 574

retrieving objects
child objects, 371
root objects, 369–370

ReturnEmpty method, 304
ReturnObject

DataPortalResult class, 172
reusable code

see code reuse
Role class, PTracker, 454–456

final class list for PTracker, 343
normalizing common behavior, 338
potential class for PTracker, 331
preventing duplicate values, 456
setting default value, 455–456
Validation Rules region, 456

Role property
implementing Assignment class, 442

RoleEdit class
potential class for PTracker, 331

RoleEditList class
potential class for PTracker, 331

RoleList class, PTracker, 443–445
Business Methods region, 444
Data Access region, 445
Factory Methods region, 444–445
final class list for PTracker, 343
implementing Assignment class, 442
implementing ProjectResource class, 438
invalidating server-side cache, 454
object design, 341
potential class for PTracker, 331
revising PTracker design, 332

RoleListBindingSource control, 500
RoleListDataSource control, 563

SelectObject event, 563
roles

addRole procedure, 361
associating roles with properties, 142
AuthorizationRules object, 129
checking roles, 142
deleteRole procedure, 362
getRoles procedure, 361
integrated authorization, 58
retrieving roles, 141
security roles and resource roles, 330
updateRole procedure, 362
use case for PTracker, 329

Roles class, PTracker, 451–454
Business Methods region, 451–452
Data Access region, 453–454
Factory Methods region, 453
final class list for PTracker, 343
implementing Role class, 455
invalidating client-side cache, 453
invalidating server-side cache, 454

Roles table
PTracker, 349
Security database, 363

RolesDataSource control
DeleteObject event, 549
DetailsView control, 545
InsertObject event, 544–547

■INDEX 661

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 661

RolesEdit web form, 542
SelectObject event, 543–544
UpdateObject event, 547–549

RolesEdit control, 485–494
adding subclasses of custom control, 489
authorization code, 489
brief description, 467
closing form, 493
loading, 489–490
saving data, 490–492
saving data with remote data portal, 492–493
using business class as data source, 485–488
WinPart code, 489

RolesEdit web form, 540–550
authorization rules, 550
caching object in Session, 542–543
Content control, 540
ContentPlaceHolderID property, 540
DeleteObject event, 550
deleting objects, 549–550
description, 524
ErrorLabel control, 541
GetRoles method, 543
inserting objects, 544–547
MultiView control, 541
Page directive, 540
RolesDataSource control, 542
selecting objects, 543–544
updating objects, 547–549
using business object as data source, 542
View controls, 541

RolesEdit_Load method
loading RolesEdit control, 489–490

RolesForProperty class, 139–140
description, 94
IsInRole method, 140
IsReadAllowed method, 139
IsReadDenied method, 140
IsWriteAllowed method, 140
IsWriteDenied method, 140

root directory
implementing Enterprise Services, 623

root objects
adding/editing, 372–373
base class for creating editable, 143
creating, 366
definition, 123
deleting, 374–376, 387
description, 61, 123
editable root business objects, 384–387
editable root collections, 394–396
Invoice as example, 61
retrieving, 369–370
root/parent/child behaviors, 123–125
switchable business objects, 391–393

root/child behaviors
BusinessListBase class, 146, 147–148

root/parent/child behaviors
BusinessBase class, 113, 123–125

routers
message router functionality, 222–229

RuleArgs class, 132–133
custom RuleArgs class, 279
description, 94

Description property, 133, 278
function, 69
implementing StringMaxLength method, 280
managing rule methods, 70
PropertyName property, 133, 278
subclassing, 279
ToString method, 280

RuleArgs parameter
StringRequired method, 278
type, 280

RuleHandler class
description, 94
function, 69
method signature for business rules, 70

RuleHandler delegate, 132
CommonRules class, 278
implementing Project class, 419

RuleMethod class, 133–134
description, 94

rules
see also business rules
associating rules with properties, 135
authorization rules, 128–130, 160
checking validation rules, 135–136
common business rules, 277–281
custom rule methods, 419
definition, 68
maintaining list of broken rules, 137
managing rules for properties, 134–135
reflection based or hard coded, 278
validation rules, 125–128

RulesList dictionary
checking validation rules, 136

RunLocal attribute
client side DataPortal, 72
creating root objects, 366
DataPortal class, 190
editable root business objects, 387
implementing Project class, 425, 427

RunLocal method
DataPortal class, 190

RunLocalAttribute class
channel adapter behaviors, 188
types required for channel adapter, 166

■S
SafeDataReader class, 87, 281–285

creating, 282
description, 86
GetBoolean method, 284
GetOrdinal method, 283
GetSmartDate method, 284
GetString method, 283
helper class handling null values, 87

savable objects
IsSavable property, BusinessBase class, 117

Save button
ProjectEdit saving data, 508

Save method, 176–178
adding/editing root objects, 373
BusinessBase class, 80–83, 174, 177
BusinessListBase class, 174, 177
implementing Project class, 411, 423

■INDEX662

6315_idx_final.qxd 4/7/06 5:27 PM Page 662

implementing Roles class, 453, 454
ProjectEdit saving data, 509
RolesEdit saving data, 490–492
rules implemented by, 177
saving data with remote data portal, 492–493
supporting Web Services, 177
triggering Insert/Update/Delete operation, 81

SaveProject method
ProjectEdit saving data, 508–511
ProjectEdit web form, 558, 562

scalability
description, 4
high scalability smart client, 14, 25
performance and, 14
physical model, 4, 5

scalable smart client
5-layer logical architecture, 14

Scale property
IDataSourceFieldSchema interface, 322

ScanDataView method
ObjectAdapter class, 294

ScanObject method
ObjectAdapter class, 295

scope
DataPortal_Xyz methods, 180
ObjectAdapter class, 291

SCOPE_IDENTITY function, 360
security

CSLA .NET design benefits, 344
CSLA .NET framework, 580
custom authentication, 57, 84–85
data access layer, 14
data portal channel comparison, 609
data portals, 72
forms-based authentication, 533–538
high security web client, 17, 25
physical model, 5–7

external applications, 6–7
internal applications, 6

principal and identity objects, 84
security roles and resource roles, 330
Web Service authentication, 579–580
Windows integrated authentication, 57
Windows integrated security, 538

Security database, 362–363
code download, 526

Security folder, CSLA .NET project, 95
Security namespace, Csla

see Csla.Security namespace
security trust boundary

security and external applications, 6
SelectedValue property

data binding ListBox, 496
selecting project, 497

selecting data
ExecuteSelect method, 312–314

SelectObject event
CslaDataSource control, 309
ProjectDataSource control, 559
ProjectEdit web form, 559
ProjectListDataSource control, 552
ResourceListDataSource control, 563
ResourcesDataSource control, 561

RoleListDataSource control, 563
RolesDataSource control, 543–544

SelectObject event handler, 310
semantic trust boundary

security and external applications, 6
Serializable attribute, 378

BindableBase class and, 102
creating mobile objects in .NET, 30
Criteria class and, 381
implementing Project class, 424
n-level undo functionality, 64
objects raising events conflict, 49
passing mobile objects by reference, 31
ProjectInfo and ResourceInfo classes, 345
UndoableBase class, 105

serialization
business objects, 100
cloning, 100
data binding, 48
EnterpriseServicesPortal class, 208
n-level undo functionality, 64
OnDeserialized attribute, 127
serializing and stacking Hashtable, 110
taking snapshot of data, 108
WebServicesProxy class, 211

Serialize method, 212
server context

DataPortalContext clearing, 232
DataPortalContext setting, 230–232

Server namespace, Csla, 90
server-side cache

invalidating server-side cache, 454
Server-side Code region

command objects, 403
server-side data portal, 75–77

data portal functionality, 72
message objects, 74
using reflection, 78

server-side host classes, 75
client side proxy classes and, 73
data portal functionality, 72

Server.Hosts namespace, Csla, 90
servers

application servers, 5, 607
service applications

creating, 570
message-based communication, 569

service-orientation
see SO (service-orientation)

ServicedDataPortal class
distributed transaction support, 220–221
types required to implement transactional

support, 170
services

description, 573
services vs. components, 571
technologies implementing, 571
web services as services, 573–575

autonomy, 573
message-based communication, 574–575

Session object
avoiding, 532
caching object in Session, 542–543
caching project object in Session, 557–558

■INDEX 663

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 663

reloading principal objects, 537, 538
state management options summary, 522
storage locations for, 520
storing state on web server, 518
using web farm in ASP.NET, 519, 520

Set block
implementing Project class, 413, 415, 416
implementing ProjectResource class, 437

SetApplyAuthorization method
extender controls, 301, 302

SetClientContext helper method
providing public access to contexts, 235

SetContext method, DataPortal class
providing framework access to contexts, 236
setting server context, 230

SetCredentials method, 603
SetParent method, BusinessBase class, 124
SetReadValuesOnChange method

BindingSourceRefresh control using, 307
SetTarget method

object-editing methods in BusinessBase, 120
referencing business object, 134

setup program
implementing Enterprise Services, 624

SetValue method
DataMapper class, 286, 288, 290

Shared authorization methods
editable root business objects, 387

Shared constructor, 202
Shared factory methods

class in charge model, 46, 47
Create method, DataPortal class, 78
creating child objects, 367
editable child collections, 398
editable root collections, 396
retrieving child objects, 371
user interface interacting with, 78

Shared fields
client and global context collections, 234

Shared methods
implementing Project class, 420, 421

Ship method, Order class
possible implementation of, 240, 241

ShowDialog method
editing project/resource, 483

ShowEditResource method
editing project/resource, 483, 484
ResourceEdit editing resources, 512

ShowWinPart method
Panel control, 475

SignOut method
FormsAuthentication class, 532

SimpleDataPortal class
Create method, 224–226
data methods defined by IDataPortalServer, 223
Delete method, 228–229
Fetch method, 226–227
message router functionality, 223–229
types required for message router, 168
Update method, 227–228

processing BusinessBase object, 227–228
processing CommandBase object, 228

single-tier configurations
optimal performance smart client, 13

SingleCall value
implementing .NET Remoting, 613, 614

Singleton value
implementing .NET Remoting, 613, 614

SiteMapDataSource control
navigation region, master page, 532

skins
Basic.skin file, 530
control skin, 530

small reports, 290
smart client application

calling web method, 601–603
providing credentials for authentication,

603–604
web service consumer implementation,

599–604
smart client models

high-scalability smart client, 14
optimal performance smart client, 13

smart data
business objects as, 23
CSLA .NET design benefits, 344
mobile objects, 26

SmartDate class/type, 88, 268–277
Add method, 274, 276
CompareTo method, 274, 276
data access, 277
database format, 277
date conversion functions, 270–272
date functions, 273
date handling, 267–277
date manipulation, 274
DateToString method, 272, 273
description, 86
empty date values, 268, 270, 284
EmptyIsMin parameter, 269, 270
Equals method, 275
IComparable interface, 274
implementing Project class, 415
initializing Structure, 269–270
IsEmpty property, 270, 277
mDate field, 268
mEmptyIsMax field, 269, 270
mFormat field, 269
mInitialized field, 269, 274
overloading operators, 275–277
Parse method, 270, 272
StringToDate method, 273, 270–271
Subtract method, 274, 276
text functions, 273
Text property, 273
ToString method, 273

SmartDate properties, Project class
BindingSourceRefresh control, 505
implementing Project class, 415

snapshots
AcceptChanges method, 112
business objects, 105
CopyState method, 105
marking field as NotUndoable, 106
skipping NotUndoable fields, 109
stacking data, 105
taking snapshot of data, 106–108
taking snapshot of regular fields, 109

■INDEX664

6315_idx_final.qxd 4/7/06 5:27 PM Page 664

snippet files, 414
SO (service-orientation)

component-based design compared, 575–576
description, 6, 571
security and external applications, 6
service-oriented web methods

GetProject method, 593–596
GetProjectList method, 592–593
PTWebService project, 592
web service implementation, 592–596

services communication, 574
versioning, 574
web services as components, 572

SOA (service-oriented architecture)
description, 571
web methods, PTracker, 576
web services and SOA, 571–575

SOAP
.NET Framework and, 570
SOAP data format, 569
SOAP envelope, 569
SOAP headers, 585, 586
SOAP messages, 568
SOAP standard, 568
using web services over HTTP, 569
Web Service authentication, 580
web services and SOAP, 569

SoapHeader attribute
smart client providing credentials, 604
web service implementation, 586, 587–588

SoapHeader class
smart client providing credentials, 603
web service implementation, 586

soapsuds.exe utility, 571
solutions

saving blank Csla solution, 95
Sort method

List(Of T) class, 257
SortedBindingList class, 89, 252–267

acting as a view, 253
adding and removing items, 262–265
description, 86
displaying data, 495
interfaces implemented by, 252
item added to collection, 266
item removed from collection, 267
ListChanged events, 262, 263, 265, 266
local copy of the collection’s data, 265
methods

AddNew, 262, 264
ApplySort, 253
DoSort, 254
GetEnumerator, 260
Insert, 262, 265
OnListChanged, 266
RemoveAt, 262, 264, 265
SourceChanged, 265
UndoSort, 261

properties
AllowEdit, 253
Count, 253

view, use of the word, 251
viewing sorted values, 257

SortedEnumerator class, 259
IEnumerator(Of T), 260

sorting collections, 251–267
ascending and descending sorts, 257
IBindingList interface, 253
item added to collection, 266
item removed from collection, 267
removing sort, 261

SourceChanged method
SortedBindingList class, 265

Source_BindingComplete method
BindingSource control, 307

SQL membership provider, 538, 539
SqlConnection object, 447
SqlDataReader class

handling null values, 87
SqlTransaction object

sharing database connection, 447
SSL (Secure Sockets Layer)

login page encryption, 535
Stack(Of T) class

stacking data, 105
stacking data

CopyState method, UndoableBase class, 105
serializing and stacking Hashtable, 110

StackTrace property
DataPortalException class, 172, 173

StartDateGTEndDate method
implementing Project class, 418, 419

Started property
implementing Project class, 415, 416

state
BindableBase object, 103
business objects, 24
collections and, 155
CopyState method, 105, 155
edit level and, 148
encapsulation and, 109
n-level undo functionality, 39
object status properties, 114
PropertyHasChanged method, 414
restoring object’s state data, 112
tracking object status, 113–118, 147

BusinessBase class, 113
BusinessListBase class, 146

tracking whether object state has changed, 41
undo and broken business rules, 41
web development, 515

state management
implementing centralized state database, 522
strategies for web development, 518, 517–522

storing state data in file or database, 518,
521–522

storing state on web server, 518–520
transferring state to/from client, 518,

520–521
switching between state-handling models, 522
using web farm in ASP.NET, 518–520

state server
using web farm in ASP.NET, 519

stateless method, 572
Status Bar

MainForm Windows form, 477–478
StatusBusy class, 478

■INDEX 665

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 665

stored procedures, PTracker, 353
addAssignment, 357
addProject, 355
addResource, 359
addRole, 361
deleteAssignment, 358
deleteProject, 356
deleteResource, 360
deleteRole, 362
existsProject, 354
existsResource, 359
getProject, 354
getProjects, 353
getResource, 359
getResources, 358
getRoles, 361
Login, 363
updateAssignment, 357
updateProject, 355
updateResource, 360
updateRole, 362

storyboarding
UI focused design, 326

String fields
initializing for Project class, 411

StringMaxLength rule
implementing Project class, 418

StringMaxLength rule method
Rule Args class implementing, 280

StringRequired method
RuleArgs parameter, 278

StringToDate method
SmartDate type, 270–271, 273

strong typing
BusinessBase class, 144

method implementations, 61
BusinessListBase class, 62
IBusinessObject interface, 97
ReadOnlyListBase class, 63
strongly typed collections of child objects,

41–42
Structure

initializing SmartDate type, 269–270
styleSheetTheme property, 530
SubClass class

taking snapshot of data, 106
subclasses

adding subclasses of custom control, 489
subnavigation region

MasterPage.master, 532
Subtract method

SmartDate type, 274, 276
SuppressMessage attribute

IEditableCollection interface, 98
surface area

domains of trust, 5
switchable business objects, 391–393

dual criteria classes, 391
dual data access methods, 392
dual factory methods, 392
object creation without defaults, 393

■T
T type, 42
Tag property

Documents menu, 477
target parameter

referencing business object, 134
technologies

logical tiers mapped to, 35
text functions

SmartDate type, 273
Text property

SmartDate type, 273
theme property, 530
themes

master page, 530–531
threads

client and global context collections, 233, 234
setting server context, 230, 231

tiers
see layers
see also n-tier architecture

Title property
RolesEdit web form, 540

ToArray method
MemoryStream class, 110

ToolStrip control, 488
ToString method

BrokenRulesCollection class, 138
implementing Project class, 417
implementing ResourceInfo class, 449
overriding System.Object, 144, 145
ProjectEdit control calling, 506
Rule Args class, 280
SmartDate type, 273
WinPart base control, 472

transaction models
data portals, 76

Transactional attribute
COM+ and Windows 98/ME, 409
Create method, DataPortal class, 217, 218
DataPortal_Xyz methods, 215, 216
implementing Project class, 425, 427, 428
ServicedDataPortal class, 221
setting up ProjectTracker, 409

Transactional attributes
editable root business objects, 387

transactional contexts
DataPortal class, 169

transactional technologies
types supporting, in data portals, 169

TransactionalAttribute
DataPortal class, 169
server side data portal, 76

TransactionalAttribute class
distributed transaction support, 215–216
types required to implement transactional

support, 170
TransactionalDataPortal class, 170, 221–222
TransactionalTypes class, 170
TransactionalTypes enumeration, 215
transactions

controlling transactional behavior at method
level, 76

■INDEX666

6315_idx_final.qxd 4/7/06 5:27 PM Page 666

handling transactions, 425
routing calls through transactional wrappers, 77
types required to implement transactional

support, 170
TransactionScope object, 76

Create method, DataPortal class, 218
DataPortal transactional contexts, 170
distributed transactions, 169
implementing Project class, 425
routing call to data portal, 216
TransactionalAttribute class, 216
TransactionalDataPortal class, 222

TransactionType helper method
Create method, DataPortal class, 217

trivial objects
revising PTracker design, 333

trust, 6
business logic layer, 10
domains of trust, 5, 6, 7

Try ... Catch block
web service implementation, 590

type attribute, wellknown element
implementing .NET Remoting, 614

TypeAssemblyName property
RolesDataSource control, 542

TypeName property
RolesDataSource control, 542

types
complete code for, 94
strongly typed collections of child objects,

41–42

■U
UI

see user interface
UI focused design, 326
UI layer

see user interface layer, 9
UML sequence diagram

creation of new business object, 79
immediate deletion of business object, 84
retrieval of existing business object, 80
updating business object, 82

unanchored objects
see mobile objects

UnauthenticatedIdentity method
CustomIdentity class, 85
implementing PTIdentity class, 462

UnDeleteChild method, 154
undo

CSLA .NET design benefits, 344
n-level undo functionality, 37–40, 119–122

UndoableBase class, 65–66, 104–112
avoiding double-processing of fields, 108
cascading call to child objects or collections,

109
child objects and, 66
description, 94
EditLevel property, 111
getting list of fields, 108
IUndoableObject interface, 66, 98
methods

AcceptChanges, 112
ApplyEdit, 66

BeginEdit, 65
CancelEdit, 65
CopyState, 105–111
CopyStateComplete, 108
UndoChanges, 111–112

n-level undo functionality, 104
namespace organization, 90
NotUndoableAttribute and, 66
re-creating Hashtable object, 111
restoring object’s state data, 112
separating n-level undo into, 64
Serializable attribute, 105
serializing and stacking Hashtable, 110
skipping NotUndoable fields, 109
stacking data, 105
taking snapshot of data, 106
taking snapshot of regular fields, 109

UndoChanges method, UndoableBase class,
111–112

deleting and undeleting child objects, 155–157
EditLevel property, 111
re-creating Hashtable object, 111
restoring object’s state data, 112

UndoChangesComplete method
object-editing methods in BusinessBase, 120

UndoSort method
SortedBindingList class, 261

uniqueidentifier type
Projects table, PTracker, 350

Update method, DataPortal class
see DataPortal_Update method

UpdateAssignment method
implementing Assignment class, 442

updateAssignment procedure, PTracker, 357
UpdateObject event

CslaDataSource control, 309
ProjectDataSource control, 559
ResourcesDataSource control, 561
RolesDataSource control, 547–549

UpdateObject event handler, 310
updateProject procedure, PTracker, 355

implementing Project class, 430
updateResource procedure, PTracker, 360
updateRole procedure, PTracker, 362
use case descriptions

decomposition of, 330
project maintenance, 327–328
resource maintenance, 328–329

use cases for PTracker, 327–329
UseAnonymous method, Security class, 593
user control design, Windows Forms, 469
user control framework, Windows Forms, 472–482

interface design, 467–469
Login form, 480–482
MainForm form, 474–480
WinPart base control, 472–474

user controls
displaying user controls, 482–483
loading/adding user controls, 475
MainForm hosting, 474–476
ProjectEdit loading, 506–507
removing user controls, 475
resizing user controls, 476

■INDEX 667

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 667

user identity
see impersonation

user interface (UI)
architecture and framework guidelines, 36
CSLA .NET design benefits, 344
data portal returning updated business object

to, 82
interacting with business objects, 78
models for UI developer, 43–47
UI focused design, 326
UI in charge model, 43–44
user interface design, Web Forms

see Web Forms user interface, PTracker
user interface design, Windows Forms

see Windows Forms user interface, PTracker
user interface layer

5-layer logical architecture, 9–10
business logic layer separation, 10
description of role, 13
encapsulation of business objects, 32
locating business logic in, 20
mobile objects and logical architecture, 27
presentation layer and UI, 9
separating presentation layer and UI logic, 9
Web Forms validation controls, 20
Windows and Web Forms, 9, 10

user profile
custom authentication, 57

User property
ApplicationContext class, 236
HttpContext class, 588

Users table
Security database, 363

Using block
TransactionScope object disposal, 222

Utilities class
GetChildItemType method, 294, 319
GetPropertyType method, 322

■V
V parameter

NameValueListBase class, 244
NameValuePair class, 245
Value property, 245

valid objects
IsValid property, BusinessBase class, 117

ValidateUser method
PTMembershipProvider class, 536

validation
managing business logic, 18
validating credentials, 588–589

Validation folder, CSLA .NET project, 95
Validation namespace, Csla

see Csla.Validation namespace
validation rules

BusinessBase class, 113, 125–128
classes implementing behavior, 69
CSLA .NET framework, 68–71
IDataErrorInfo interface, 127
implementing common rules, 70
maintaining list of broken rules, 70
managing rule methods, 70
method signatures, 40
reusable code, 41

Validation Rules region, 380
editable child business objects, 390
editable root business objects, 386
implementing Assignment class, 442
implementing business classes, 418–419
implementing Project class, 418–419

AddBusinessRules method, 418–419
custom rule methods, 419

implementing ProjectResource class, 437–438
implementing Role class, 456

ValidationException class, 138–139
function, 69
managing rule methods, 70

ValidationRules class, 134–137
AddRule method, 281
associating rules with properties, 135
BusinessBase class and, 126–127
checking validation rules, 135–136
description, 94
function, 69
maintaining list of broken rules, 70, 137
managing rule methods, 70
managing rules for properties, 134–135
object-editing methods in BusinessBase, 120
referencing business object, 134
RuleMethod class and, 133

ValidRole method
implementing Assignment class, 442
implementing Roles class, 454

value
see passing by value

Value property
NameValueListBase class, 245

ValueMember property
binding to Resources collection, 503
data binding ListBox, 496

versioning
service-orientation, 574

View controls
RolesEdit web form, 541

views
SortedBindingList class, 251, 253

virtual root
implementing .NET Remoting, 612

Visual Studio resource editor, 96

■W
web based applications

undo functionality, 40
user interface and presentation layer, 9

web client models
high security web client, 17
optimal performance web client, 15

web development
state management and, 517–522

storing state data in file or database,
521–522

storing state on web server, 518–520
transferring state to/from client, 520–521

state management strategies, 518
stateful objects and, 515
using web farm in ASP.NET, 518–520

■INDEX668

6315_idx_final.qxd 4/7/06 5:27 PM Page 668

web farms
load-balanced with centralized state database,

519, 521
using web farm in ASP.NET, 518–520

Web Forms
architecture and framework guidelines, 36
data binding, 47
UI code, 10
validation in user interface, 20
web forms in PTWeb, 524

Web Forms data binding, 307–323
CslaDataSource class, 309–311
CslaDataSourceDesigner class, 314
CslaDataSourceView class, 311–314
CslaDesignerDataSourceView class, 314–318
ObjectFieldInfo class, 320–323
ObjectSchema class, 318–319
ObjectViewSchema class, 319–320

Web Forms user interface, PTracker, 515–565
application configuration, 525–527
business functionality, 540–565
interface design, 522–540

hosting PTWeb site in IIS, 528
login page, 533–540
master page, 528–533
ProjectEdit form, 554–565
ProjectList form, 550–554
PTWeb site setup, 527–528
RolesEdit form, 540–550
state management, 517–522

storing state data in file or database, 521–522
storing state on web server, 518–520
transferring state to/from client, 520–521

web methods, 570
component-based web methods, 589–592
grouping into web services, 576
service-oriented web methods, 592–596
web service implementation, 585

Web namespace, Csla, 90
web pages

CslaDataSource handling events in, 310
web service implementation, 581–596

application configuration, 581–583
authentication, 581
local data portal, 581
remote data portal (with Enterprise

Services), 583
remote data portal (with remoting), 582
remote data portal (with Web Services), 583

authentication, 585–589
CslaCredentials class, 586
SoapHeader attribute, 587–588
validating credentials, 588–589

component-based web methods, 589–592
ProjectData class, 591–592
PTService.asmx file, 585
PTWebService website, 583–585
service-oriented web methods, 592–596

web services, 567–605
.NET Framework and, 570
architecture and framework guidelines, 36
ASP.NET Web Services, 568
client side proxy classes, 73
consumer applications, 569

consumer-side proxy objects, 570
CSLA .NET design benefits, 344
designing Web Service interface, 575–580

authentication, 579–580
component-based vs. service-oriented,

575–576
grouping web methods into web services, 576
property types exposed, 578
returning and accepting data, 577–579
returning business objects directly, 577
returning formal data structures, 578

implementing remote data portal hosts, 615–618
asmx file, 617
comparison of factors between channels,

608–611
configuring client, 617
creating Web Service project, 616
implementation, 616–618
reference assemblies, 617

introduction and overview, 567–571
message-based communication, 569
procedures available to consumer applications,

570
remote data portal with

Web Forms interface design, 527
web service implementation, 583
Windows Forms interface design, 471

returning objects and encapsulation, 285
Save method supporting, 177
security and internal applications, 6
service applications, 569, 570
services vs. components, 571
SOA and web services, 571–575
SOAP and web services, 569
SOAP standard, 568
standard for describing information, 570
using web services over HTTP, 569
web service consumer implementation,

596–604
smart client application, 599–604

web services as components, 572–573
web services as services, 573–575

autonomy, 573
message-based communication, 574–575

Web Services Description Language (WSDL), 570
Web Services Extensions (WSE), 580
web sites

configuring using forms-based authentication,
533–535

web.config file
application configuration, 525
authentication, 525
custom membership provider, 536
data portals, 526
defining control prefix, 525
implementing .NET Remoting, 613, 614
implementing Enterprise Services, 625
implementing Web Services, 617
Web Service authentication, 579
web service implementation, 581

Web.Design namespace, Csla, 90
web.sitemap file

navigation region, master page, 531, 532

■INDEX 669

Find
itfasterathttp://superindex.apress.com

/

6315_idx_final.qxd 4/7/06 5:27 PM Page 669

WebService attribute
PTService.asmx file, 585

WebServiceBinding attribute
PTService.asmx file, 585

WebServiceHost namespace, Csla, 90, 211
WebServicePortal class

channel adapter behaviors, 213–215
types required for channel adapter, 166

WebServicesHost project
implementing Web Services, 616

WebServicesProxy class
channel adapter behaviors, 210–213
DataPortalUrl property, 211
types required for channel adapter, 166

wellknown element
implementing .NET Remoting, 613

Windows authentication
CslaAuthentication key, 470
Web Forms interface design, 525

Windows Communication Foundation (WCF), 44,
607

Windows data binding
BindingSourceRefresh control, 307

Windows Distributed interNet Architecture, 4
Windows Forms

architecture and framework guidelines, 36
data binding, 47
description, 465
n-level undo functionality, 104
UI code, 9, 10

Windows Forms data binding, 299–307
BindingSourceRefresh control, 306
extender controls, 299
ReadWriteAuthorization control, 299–306

Windows Forms user interface, PTracker, 465–513
business functionality, 482–513
creating forms as user controls not Form

objects, 465
interface design, 465–472

application configuration, 469–472
PTWin project setup, 472
user control design, 469
user control framework, 467–469

MainForm form, 482–485
ProjectEdit control, 497–513
ProjectList object, 494–497
RolesEdit control, 485–494
user control framework, 472–482

Login form, 480–482
MainForm form, 474–480
WinPart base control, 472–474

Windows integrated authentication, 57
Windows integrated security

anonymous users, 593
context data, 172
login page, 538
message objects, 74
principal and identity objects supporting, 84
setting server context, 232
using, 481
using remote data portal with, 482
Web Service authentication, 579, 580
web service implementation, 585

Windows menu
using Documents menu or, 468

Windows namespace, Csla, 90
WinPart base control, 472–474

adding subclasses of a custom control, 489
AddWinPart method, 475
Close method, 473
CloseWinPart method, 475, 476
Equals method, 473
GetIdValue method, 472–473
login/logout notification, 473
OnCurrentPrincipalChanged method, 473
ProjectEdit control and, 506
RolesEdit control and, 489
ShowWinPart method, 475
user control design, 469

WSDL (Web Services Description Language), 570

■X
XmlSerializer object, 211

designing Web Service interface, 578

■INDEX670

6315_idx_final.qxd 4/7/06 5:27 PM Page 670

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

6315_idx_final.qxd 4/7/06 5:27 PM Page 671

	Expert VB 2005 Business Objects, Second Edition
	Contents
	CHAPTER 1 Distributed Architecture
	CHAPTER 2 Framework Design
	CHAPTER 3 Business Framework Implementation
	CHAPTER 4 Data Access and Security
	CHAPTER 5 Completing the Framework
	CHAPTER 6 Object-Oriented Application Design
	CHAPTER 7 Using the CSLA .NET Base Classes
	CHAPTER 8 Business Object Implementation
	CHAPTER 9 Windows Forms UI
	CHAPTER 10 Web Forms UI
	CHAPTER 11 Web Services Interface.
	CHAPTER 12 Implementing Remote Data Portal Hosts.
	INDEX

