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Preface

This book is designed for a two-semester sequence in computer science,
beginning with what is typically known as Data Structures (CS-2) and con-
tinuing with advanced data structures and algorithm analysis.

The content of the CS-2 course has been evolving for some time.
Although there is some general consensus concerning topic coverage, con-
siderable disagreement still exists over the details. One uniformly accepted
topic is principles of software development, most notably the concepts of
encapsulation and information hiding. Algorithmically, all CS-2 courses
tend to include an introduction to running-time analysis, recursion, basic
sorting algorithms, and elementary data structures. An advanced course is
offered at many universities that covers topics in data structures, algorithms,
and running-time analysis at a higher level. The material in this text has been
designed for use in both levels of courses, thus eliminating the need to pur-
chase a second textbook.

Although the most passionate debates in CS-2 revolve around the choice
of a programming language, other fundamental choices need to be made,
including

* whether to introduce object-oriented design or object-based design
early,

* the level of mathematical rigor,

» the appropriate balance between the implementation of data struc-
tures and their use, and

» programming details related to the language chosen.

My goal in writing this text was to provide a practical introduction to
data structures and algorithms from the viewpoint of abstract thinking and
problem solving. 1 tried to cover all of the important details concerning the
data structures, their analyses, and their C++ implementations, while staying



away from data structures that are theoretically interesting but not widely
used. It is impossible to cover in a single course all the different data struc-
tures, including their uses and the analysis, described in this text. So, I
designed the textbook to allow instructors flexibility in topic coverage. The
instructor will need to decide on an appropriate balance between practice
and theory and then choose those topics that best fit the course. As I discuss
later in this Preface, 1 organized the text to minimize dependencies among
the various chapters.

A Unique Approach

My basic premise is that software development tools in all languages come
with large libraries, and many data structures are part of these libraries. I
envision an eventual shift in emphasis of data structures courses from imple-
mentation to use. In this book I take a unique approach by separating the
data structures into their specification and subsequent implementation and
take advantage of an already existing data structures library, the Standard
Template Library (STL).

A subset of the STL suitable for most applications is discussed in a sin-
gle chapter (Chapter 7) in Part I1. Part II also covers basic analysis tech-
niques, recursion, and sorting. Part III contains a host of applications that
use the STL’s data structures. Implementation of the STL is not shown until
Part IV, once the data structures have already been used. Because the STL is
part of C++ (older compilers can use the textbook’s STL code instead—see
Code Availability, xxix), students can design large projects early on, using
existing software components.

Despite the central use of the STL in this text, it is neither a book on the
STL nor a primer on implementing the STL specifically; it remains a book
that emphasizes data structures and basic problem-solving techniques. Of
course, the general techniques used in the design of data structures are appli-
cable to the implementation of the STL, so several chapters in Part IV
include STL implementations. However, instructors can choose the simpler
implementations in Part IV that do not discuss the STL protocol. Chapter 7,
which presents the STL, is essential to understanding the code in Part III. 1
attempted to use only the basic parts of the STL.

Many instructors will prefer a more traditional approach in which each
data structure is defined, implemented, and then used. Because there is no
dependency between material in Parts III and IV, a traditional course can
easily be taught from this book.



Prerequisites

Students using this book should have knowledge of either an object-oriented
or procedural programming language. Knowledge of basic features, includ-
ing primitive data types, operators, control structures, functions (methods),
and input and output (but not necessarily arrays and classes) is assumed.

Students who have taken a first course using C++ or Java may find the
first two chapters “light” reading in some places. However, other parts are
definitely “heavy” with C++ details that may not have been covered in intro-
ductory courses.

Students who have had a first course in another language should begin at
Chapter 1 and proceed slowly. They also should consult Appendix A which
discusses some language issues that are somewhat C++ specific. If a student
would like also to use a C++ reference book, some recommendations are
given in Chapter 1, pages 38-39.

Knowledge of discrete math is helpful but is not an absolute prerequi-
site. Several mathematical proofs are presented, but the more complex
proofs are preceded by a brief math review. Chapters 8 and 19-24 require
some degree of mathematical sophistication. The instructor may easily elect
to skip mathematical aspects of the proofs by presenting only the results. All
proofs in the text are clearly marked and are separate from the body of the
text.

Summary of Changes in the Second Edition

1. Much of Part | was rewritten. In Chapter 1, primitive arrays are no
longer presented (a discussion of them was moved to Appendix D);
vectors are used instead, and push_back is introduced. Pointers
appear later in this edition than in the first edition. In Chapter 2,
material was significantly rearranged and simplified. Chapter 3 has
additional material on templates. In Chapter 4, the discussion on
inheritance was rewritten to simplify the initial presentation. The
end of the chapter contains the more esoteric C++ details that are
important for advanced uses.

2. An additional chapter on design patterns was added in Part [. Sev-
eral object-based patterns, including Functor, Wrapper, and Iterator,
are described, and patterns that make use of inheritance. including
Observer, are discussed.

3. The Data Structures chapter in Part Il was rewritten with the STL in

mind. Both generic interfaces (as in the first edition) and STL inter-
faces are illustrated in the revised Chapter 7.

Preface m
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4. The code in Part 111 is based on the STL. In several places, the code
is more object-oriented than before. The Huffman coding example
is completely coded.

5. In Part IV, generic data structures were rewritten to be much sim-
pler and cleaner. Additionally, as appropriate, a simplified STL
implementation is illustrated at the end of the chapters in Part V.
Implemented components include vector, 1ist, stack, queue,
set, map, priority_queue, and various function objects and
algorithms.

C++

Using C++ presents both advantages and disadvantages. The C++ class
allows the separation of interface and implementation, as well as the hid-
ing of internal details of the implementation. It cleanly supports the notion
of abstraction. The advantage of C++ is that it is widely used in industry.
Students perceive that the material they are learning is practical and will
help them find employment, which provides motivation to persevere
through the course. One disadvantage of C++ is that it is far from a perfect
language pedagogically, especially in a second course, and thus additional
care needs to be expended to avoid bad programming practices. A second
disadvantage is that C++ is still not a stable language, so the various com-
pilers behave differently.

[t might have been preferable to write the book in a language-indepen-
dent fashion, concentrating only on general principles such as the theory of
the data structures and referring to C++ code only in passing, but that is
impossible. C++ code is complex, and students will need to see complete
examples to understand some of its finer points. As mentioned earlier, a brief
review of parts of C++ is provided in Appendix A. Part I of the book
describes some of C++’s more advanced features relevant to data structures.

Several parts of the language stand out as requiring special consider-
ation: templates, inheritance, exceptions, namespaces and other recent C++
additions, and the Standard Library. I approached this material in the follow-
ing manner.

» Templates: Templates are used extensively. Some instructors may
have reservations with this approach because it complicates the code,
but [ included them because they are fundamental concepts in any
sophisticated C++ program.

* [Inheritance: 1 use inheritance relatively sparingly because it adds
complications, and data structures are not a strong application area



for it. This edition contains less use of inheritance than in the previ-
ous edition. However, there is a chapter on inheritance, and part of the
design patterns chapter touches on inheritance-based patterns. For the
most part, instructors who are eager to avoid inheritance can do so,
and those who want to discuss inheritance will find sufficient material
in the text.

* Exceptions: Exception semantics have been standardized and
exceptions seem to work on many compilers. However, exceptions
in C++ involve ugly code, significant complications (e.g., if used in
conjunction with templates), and probably require discussing inher-
itance. So I use them sparingly in this text. A brief discussion of
exceptions is provided, and in some places exceptions are thrown in
code when warranted. However, I generally do not attempt to catch
exceptions in any Part III code (most of the Standard Library does
not attempt to throw exceptions).

* Namespaces: Namespaces, which are a recent addition to C++, do not
work correctly on a large variety of compilers. I do not attempt to use
namespaces and I import the entire std namespace when necessary
(even though not great style, it works on the largest number of com-
pilers). Appendix A discusses the namespace issues.

* Recent language additions: The bool data type is used throughout.
The new static_cast operator is used in preference to the old-style
cast. Finally, I use explicit when appropriate. For the most part,
other additions are not used (e.g., I generally avoid using typename).

» Standard Library: As previously mentioned, the STL is used through-
out, and a safe version (that does extra bounds checking) is available
online (and implemented in Part IV). We also use the string class
and the newer istringstream class that are part of the standard
library.

Text Organization

In this text I introduce C++ and object-oriented programming (particularly
abstraction) in Part I. I discuss arrays. pointers and some other C++ topics
and then go on to discuss the syntax and use of classes, templates, and inher-
itance. The material in these chapters was substantially rewritten. New to
this edition is an entire chapter on design patterns.

In Part IT I discuss Big-Oh and algorithmic paradigms, including recur-
sion and randomization. An entire chapter is devoted to sorting, and a sepa-
rate chapter contains a description of basic data structures. [ use the STL in
presenting the interfaces and running times of the data structures. At this
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point in the text, the instructor may take several approaches to present the
remaining material, including the following two.

1. Discuss the corresponding implementations (either the STL ver-
sions or the simpler versions) in Part IV as each data structure is
described. The instructor can ask students to extend the classes in
various ways, as suggested in the exercises.

2. Show how the STL class is used and cover implementation at a later
point in the course. The case studies in Part III can be used to sup-
port this approach. As complete implementations are available on
every modern C++ compiler (or on the Internet for older compil-
ers), the instructor can use the STL in programming projects.
Details on using this approach are given shortly.

Part V describes advanced data structures such as splay trees, pairing
heaps, and the disjoint set data structure, which can be covered if time per-
mits or, more likely, in a follow-up course.

Chapter-by-Chapter Text Organization

Part I consists of five chapters that describe some advanced features of C++
used throughout the text. Chapter 1 describes arrays, strings, pointers, refer-
ences, and structures. Chapter 2 begins the discussion of object-oriented pro-
gramming by describing the class mechanism in C++. Chapter 3 continues
this discussion by examining templates, and Chapter 4 illustrates the use of
inheritance. Several components, including strings and vectors, are written
in these chapters. Chapter 5 discusses some basic design patterns, focusing
mostly on object-based patterns such as function objects, wrappers and
adapters, iterators, and pairs. Some of these patterns (most notably the wrap-
per pattern) are used later in the text.

Part II focuses on the basic algorithms and building blocks. In Chapter 6
a complete discussion of time complexity and Big-Oh notation is provided,
and binary search is also discussed and analyzed. Chapter 7 is crucial
because it covers the STL and argues intuitively what the running time of the
supported operations should be for each data structure. (The implementation
of these data structures, in both STL-style and a simplified version, is not
provided until Part IV. The STL is available on recent compilers.) Chapter 8
describes recursion by first introducing the notion of proof by induction. It
also discusses divide-and-conquer, dynamic programming, and backtrack-
ing. A section describes several recursive numerical algorithms that are used
to implement the RSA cryptosystem. For many students, the material in the



second half of Chapter 8 is more suitable for a follow-up course. Chapter 9
describes, codes, and analyzes several basic sorting algorithms, including
the insertion sort, Shellsort, mergesort, and quicksort, as well as indirect
sorting. It also proves the classic lower bound for sorting and discusses the
related problems of selection. Finally, Chapter 10 is a short chapter that dis-
cusses random numbers, including their generation and use in randomized
algorithms.

Part 11l provides several case studies, and each chapter is organized
around a general theme. Chapter 11 illustrates several important techniques
by examining games. Chapter 12 discusses the use of stacks in computer
languages by examining an algorithm to check for balanced symbols and the
classic operator precedence parsing algorithm. Complete implementations
with code are provided for both algorithms. Chapter 13 discusses the basic
utilities of file compression and cross-reference generation, and provides a
complete implementation of both. Chapter 14 broadly examines simulation
by looking at one problem that can be viewed as a simulation and then at the
more classic event-driven simulation. Finally, Chapter 15 illustrates how
data structures are used to implement several shortest path algorithms effi-
ciently for graphs.

Part IV presents the data structure implementations. Implementations
that use simple protocols (insert, £ind, remove variations) are provided.
In some cases, STL implementations that tend to use more complicated C++
syntax are presented. Some mathematics is used in this part, especially in
Chapters 19-21, and can be skipped at the discretion of the instructor. Chap-
ter 16 provides implementations for both stacks and queues. First these data
structures are implemented using an expanding array; then they are imple-
mented using linked lists. The STL versions are discussed at the end of the
chapter. General linked lists are described in Chapter 17. Singly linked lists
are illustrated with a simple protocol, and the more complex STL version
that uses doubly linked lists is provided at the end of the chapter. Chapter 18
describes trees and illustrates the basic traversal schemes. Chapter 19 is a
detailed chapter that provides several implementations of binary search
trees. Initially, the basic binary search tree is shown, and then a binary
search tree that supports order statistics is derived. AVL trees are discussed
but not implemented; however, the more practical red—black trees and AA-
trees are implemented. Then the STL set and map are implemented.
Finally. the B-tree is examined. Chapter 20 discusses hash tables and imple-
ments the quadratic probing scheme, after examination of a simpler alterna-
tive. Chapter 21 describes the binary heap and examines heapsort and
external sorting. The STL priority_gueue is implemented in this chapter.

Part Chapter V contains material suitable for use in a more advanced
course or for general reference. The algorithms are accessible even at the
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first-year level; however, for completeness sophisticated mathematical anal-
yses were included that are almost certainly beyond the reach of a first-year
student. Chapter 22 describes the splay tree, which is a binary search tree
that seems to perform extremely well in practice and is also competitive with
the binary heap in some applications that require priority queues. Chapter 23
describes priority queues that support merging operations and provides an
implementation of the pairing heap. Finally, Chapter 24 examines the classic
disjoint set data structure.

The appendices contain additional C++ reference material. Appendix A
describes tricky C++ issues, including some unusual operators, I/O, and
recent language changes. Appendix B lists the operators and their prece-
dence. Appendix C summarizes some C++ libraries. Appendix D describes
primitive arrays and strings for those who want details of what is going on
under the hood of the vector and string classes.

Chapter Dependencies

Generally speaking, most chapters are independent of each other. However,
the following are some of the notable dependencies.

* Part I: The first three chapters should be covered in their entirety first. 1
recommend a brief discussion of inheritance in Chapter 4. Some instruc-
tors will want to cover all of inheritance, but it is possible to get by with
just the basics of inheritance and avoid some of the more difficult C++
issues that inheritance involves. Some of the object-based patterns (e.g.,
wrappers and function objects) in Chapter 5 can be discussed shortly
after templates, or later in the course as the need arises. Some of these
patterns are used in the chapter on sorting and in Part IV.

* Chapter 6 (Algorithm Analysis): This chapter should be covered prior
to Chapters 7 and 9. Recursion (Chapter 8) can be covered prior to
this chapter, but the instructor will have to gloss over some details
about avoiding inefficient recursion.

* Chapter 7 (STL): This chapter can be covered prior to, or in conjunc-
tion with, material in Part IIT or I'V.

e Chapter 8 (Recursion): The material in Sections 8.1-8.3 should be
covered prior to discussing recursive sorting algorithms, trees, the tic-
tac-toe case study, and shortest-path algorithms. Material such as the
RSA cryptosystem, dynamic programming, and backtracking (unless
tic-tac-toe is discussed) is otherwise optional.

* Chapter 9 (Sorting): This chapter should follow Chapters 6 and 8.
However, it is possible to cover Shellsort without Chapters 6 and 8.



Shellsort is not recursive (hence there is no need for Chapter 8), and a
rigorous analysis of its running time is too complex and is not cov-
ered in the book (hence there is little need for Chapter 6).

* Chapters 16 and 17 (Stacks/Queues/Lists). These chapters may be
covered in either order. However, I prefer to cover Chapter 16 first,
because I believe that it presents a simpler example of linked lists.

* Chapters 18 and 19 (Trees/Search trees): These chapters can be cov-
ered in either order or simultaneously.

Separate Entities

The other chapters have little or no dependencies:

* Chapter 10 (Randomization): The material on random numbers can
be covered at any point as needed.

» Part Il (Case Studies): Chapters 11-15 can be covered in conjunction
with, or after, the STL (in Chapter 7), and in roughly any order. There
are a few references to earlier chapters. These include Section 11.2 (tic-
tac-toe), which references a discussion in Section 8.7, and Section 13.2
(cross-reference generation), which references similar lexical analysis
code in Section 12.1 (balanced symbol checking).

* Chapters 20 and 21 (Hashing/Priority Queues): These chapters can
be covered at any point.

* Part V (Advanced Data Structures): The material in Chapters 22-24
is self-contained and is typically covered in a follow-up course.

Mathematics

[ have attempted to provide mathematical rigor for use in CS-2 courses that
emphasize theory and for follow-up courses that require more analysis.
However, this material stands out from the main text in the form of separate
theorems and, in some cases, separate sections (or subsections). Thus it can
be skipped by instructors in courses that deemphasize theory.

In all cases, the proof of a theorem is not necessary to the understanding
of the theorem’s meaning. This is another illustration of the separation of an
interface (the theorem statement) from its implementation (the proof). Some
inherently mathematical material, such as Section 8.4 (Numerical Applica-
tions of Recursion), can be skipped without affecting comprehension of the
rest of the chapter.
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Course Organization

A crucial issue in teaching the course is deciding how the materials in Parts
II-IV are to be used. The material in Part I should be covered in depth, and
the student should write one or two programs that illustrate the design,
implementation, and testing of classes and generic classes—and perhaps
object-oriented design, using inheritance. Chapter 6 discusses Big-Oh nota-
tion. An exercise in which the student writes a short program and compares
the running time with an analysis can be given to test comprehension.

In the separation approach, the key concept of Chapter 7 is that different
data structures support different access schemes with different efficiency.
Any case study (except the tic-tac-toe example that uses recursion) can be
used to illustrate the applications of the data structures. In this way, the stu-
dent can see the data structure and how it is used but not how it is efficiently
implemented. This is truly a separation. Viewing things this way will greatly
enhance the ability of students to think abstractly. Students can also provide
simple implementations of some of the STL components (some suggestions
are given in the exercises in Chapter 7) and see the difference between effi-
cient data structure implementations in the existing STL and inefficient data
structure implementations that they will write. Students can also be asked to
extend the case study, but, again, they are not required to know any of the
details of the data structures.

Efficient implementation of the data structures can be discussed after-
ward, and recursion can be introduced whenever the instructor feels it is
appropriate, provided it is prior to binary search trees. The details of sorting
can be discussed at any time after recursion. At this point, the course can
continue by using the same case studies and experimenting with modifica-
tions to the implementations of the data structures. For instance, the student
can experiment with various forms of balanced binary search trees.

Instructors who opt for a more traditional approach can simply discuss
a case study in Part III after discussing a data structure implementation in
Part IV. Again, the book’s chapters are designed to be as independent of
each other as possible.

Exercises

Exercises come in various flavors; 1 have provided four varieties. The basic In
Short exercise asks a simple question or requires hand-drawn simulations of an
algorithm described in the text. The /n Theory section asks questions that either
require mathematical analysis or asks for theoretically interesting solutions to
problems. The In Practice section contains simple programming questions,
including questions about syntax or particularly tricky lines of code. Finally, the
Programming Projects section contains ideas for extended assignments.



Pedagogical Features

* Margin notes are used to highlight important topics.

* The Objects of the Game section lists important terms along with def-
initions and page references.

* The Common Errors section at the end of each chapter provides a list
of commonly made errors.

* References for further reading are provided at the end of most chapters.

Code Availability

The code in the text is fully functional and has been tested on numerous plat-
forms. It is available from my home page http://www.fiu.edu/~weiss.
Be sure to browse the README file for information on compiler dependencies
and bug fixes. The On the Internet section at the end of each chapter lists the
filenames for the chapter’s code.

Instructor’s Resource Guide

An Instructor’s Guide that illustrates several approaches to the material is
available. It includes samples of test questions, assignments, and syllabi.
Answers to select exercises are also provided. Instructors should contact
their Addison Wesley Longman local sales representative for information on
its availability or send an e-mail message to aw.cse@awl . com. This guide
is not available for sale and is available to instructors only.
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Chapter 1

Arrays, Pointers, and Structures

In this chapter we discuss three features contained in many programming
languages: arrays, pointers, and structures. Sophisticated C++ programming
makes heavy use of pointers to access objects. Arrays and structures store
several objects in one collection. An array stores only one type of object, but
a structure can hold a collection of several distinct types.

In this chapter, we show:

* why these features are important;

* how the vector is used to implement arrays in C++;

* how the string is used to implement strings in C++;

* how basic pointer syntax and dynamic memory allocation are used;
and

* how pointers, arrays, and structures are passed as parameters to
functions.

1.1  What Are Pointers, Arrays, and Structures?

A pointer is an object that can be used to access another object. A pointer
provides indirect access rather than direct access to an object. People use
pointers in real-life situations all the time. Let us look at some examples.

* When a professor says, “Do Problem 1.1 in the textbook,” the actual
homework assignment is being stated indirectly.

* A classic example of indirect access is looking up a topic in the index
of a book. The index tells you where you can find a full description.

* A street address is a pointer. It tells you where someone resides. A
forwarding address is a pointer to a pointer.
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A pointer stores an
address where other
data reside.

An aggregate is a
collection of objects
stored in one unit.

An array stores a
collection of
identically-typed
objects.

First-class objects
can be manipulated in
all the “usual ways”
without special cases
and exceptions.

* A uniform resource locator (URL), such as http: / /www.cnn. com, is
a pointer. The URL tells you where a target Web page is. If the target
Web page moves, the URL becomes stale, and points to a page that no
longer exists.

In all these cases a piece of information is given out indirectly by providing
a pointer to the information. In C++ a pointer is an object that stores an
address (i.e., a location in memory) where other data are stored. An address
is expected to be an integer, so a pointer object can usually be represented
internally as an (unsigned) int.! What makes a pointer object more than
just a plain integer is that we can access the datum being pointed at. Doing
so is known as dereferencing the pointer.

An aggregate is a collection of objects stored in one unit. The array is the
basic mechanism for storing a collection of identically-typed objects. A differ-
ent type of aggregate type is the structure, which stores a collection of objects
that need not be of the same type. As a somewhat abstract example, consider
the layout of an apartment building. Each floor might have a one-bedroom
unit, a two-bedroom unit, a three-bedroom unit, and a laundry room. Thus
each floor is stored as a structure, and the building is an array of floors.

1.2 Arrays and Strings

In C++ we can declare and use arrays in two basic ways. The primitive method
is to use the built-in array. The alternative is to use a vector. The syntax for
both methods is more or less the same; however, the vector is much easier
and slightly safer to use than the primitive array and is preferred for most appli-
cations. The major philosophical difference between the two is that the vector
behaves as a first-class type (even though it is implemented in a library),
whereas the primitive array is a second-class type. Similarly, C++ provides
primitive strings (which are simply primitive arrays of char) and the much-
preferred string. In this section we examine what is meant by first-class and
second-class types and show you how to use the vector and string.

1.2.1 First-Class Versus Second-Class Objects

Computer Scientists who study programming languages often designate cer-
tain language constructs as being first-class objects or second-class objects.
The exact definition of these terms is somewhat imprecise, but the general
idea is that first-class objects can be manipulated in all the “usual ways”

1. This fact is of little use in normal programming practice and in languages besides C. C++, and
low-level assembly languages. It is used (often dangerously) by old-style C++ programmers.
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without special cases and exceptions, whereas second-class objects can be
manipulated in only certain restricted ways.

What are the “‘usual ways?” In the specific case of C++, they might Primitive arrays and
include things like copying. Recall that an array stores a collection of  Strings are not first-
objects. We would expect a copy of an array to copy the entire collection; class objects.
this is not the case for the primitive array. We might also expect an array to
know how many objects are in its collection. In other words, we would
expect that the size of the array is part of its being. Again, this is not true for
primitive arrays. (The reason for this is that arrays in C++ are little more
than pointer variables, rather than their own first-class type.) We might also
expect that when allocated arrays are no longer needed (for instance the
function in which they are declared returns), then the memory that these
arrays consumes is automatically reclaimed. This is true sometimes and
false at other times for arrays, making for tricky coding.

The primitive string may be considered even lower than a second-class
object because it suffers all the second-class behavior of arrays. In addition,
its comparison operators (for instance, == and <) do not do what we would
normally expect them to do and thus have to be handled as a special case.

Throughout the text, we use a vector and a string to provide first- Throughout the text,
class treatment for arrays and strings.2 The vector and string classes are :’Z:iii "?gt:’:; ?d":
now part of the Standard Library and thus are part of C++. However, many first-classgtre:tment
compilers do not yet support them. We provide our own versions of vector for arrays and strings.
(Section 3.4.2) and string (Section 2.6), and in the process, illustrate how
their second-class counterparts are manipulated. Our vector and string
are implemented by wrapping the second-class behavior of the built-in types
in a class.? This implementation is an acceptable use of the second-class
type because the complicated second-class implementation details are hid-
den and never seen by the user of the first-class objects. As we demonstrate
in Chapter 2, the class allows us to define new types. Included in these types
are functions that can be applied to objects of the new type.

The vector and string classes in the Standard Library treat arrays
and strings as first-class objects. A vector knows how large it is. Two
string objects can be compared with ==, <, and so on. Both vector and

2. The vector class contains the basic primitive array operations plus additional features.
Thus it behaves more like a data structure than a simple array. However, its use is much
safer than the primitive C++ array. The vector is part of the Standard Template Library
(STL).

3. Appendix D contains further discussion of primitive arrays and strings if you want to see
these details early. However, you must read Section 1.3 first. A less detailed discussion is
given in Sections 2.6 and 3.4.2, which contain descriptions that are sufficient to show how
the string and vector are implemented.
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The array indexing
operator [] provides
access to any object
in the array.

Arrays are indexed
starting at zero.

string can be copied with =. Except in special cases, you should avoid
using the built-in C++ array and string.

The string is a class, or the library type used for first-class strings.
The vector is a class template, or the library type used for first-class
arrays. We discuss classes in Chapter 2 and class templates in Chapter 3. A
recurring theme in this text is that using a library routine does not require
knowing anything about its underlying implementation. However, you
may need to know how the second-class counterparts are manipulated
because occasionally you must resort to the primitive versions. It turns out
that both string and vector are implemented by providing an interface
that hides the second-class behavior of the built-in types.

1.2.2 Using the vector

To use the standard vector, your program must include a library header file
with

#include <vector>

A using directive may be needed if one has not already been provided.

Just as a variable must be declared before it is used in an expression and
initialized before its value is used, so must an array. A vector is declared
by giving it a name, in accordance with the usual identifier rules, and by tell-
ing the compiler what type the elements are. A size can also be provided; if it
is not, the size is zero, but vector will need to be resized later.

Each object in the collection of objects that an array denotes can be
accessed by use of the array indexing operator [1. We say that the []
operator indexes the array, meaning that it specifies which of the objects is to
be accessed.

In C++, arrays are always indexed starting at zero. Thus the declaration

vector<int> a(3); // 3 int objects: a0}, al[l]l, and al2]

sets aside space to store three integers—namely, a[0], a[1],and a[2]; no
index range checking is performed in the Standard Library’s vector, so an
access out of the array index bounds is not caught by the compiler (in this
case, the legal array indices range from 0 to 2, inclusive). Although no
explicit run-time error may be generated, undefined and occasionally myste-
rious behavior would occur. The vector that we implement in Section 3.4.2
allows the programmer to turn on index range checking so that this error
causes the program to terminate immediately with a message. (Range check-
ing can be done by using at; a.at (i) is the same as a[1i], except that an
error is signalled if i is out-of-bounds.)



Arrays and Strings

The size of the vector can always be obtained with the size function. The size of the

For the preceding code fragment example, a.size () returns 3. Note the Vector can always
tax: The dot tor i dt 1 th tor’ . f ti be obtained with the

syntax: The dot operator is used to call the vector’s size function. size operator,
The size of a vector can always be changed by calling resize. Thus

an alternative declaration for the vector a could have been

vector<int> a; // 0 int objects
a.resize( 3 ); // 3 int objects: al[0], a[l]l, and a[2]

Figure 1.1 illustrates the use of the vector. The program in Figure 1.1
repeatedly chooses numbers between 1 and 100, inclusive. The output is the
number of times that each number has occurred.4

Line 17 declares an array of integers that count the occurrences of each  You must always be
number. Because arrays are indexed starting at zero, the + 1 is crucial if we :g:‘:ez :‘::’a'a’:i::e
want to access the item in position DIFFERENT_NUMBERS. Without it we Off-by-one g"ors'are
would have an array whose indexible range was O to 99, and thus any access common and very
to index 100 might be to memory that was assigned to another object. Incor-  difficult to spot.
rect results could occur, depending on the implementation details of
vector; we might find that the program would work perfectly on some plat-
forms but would give wrong answers on others.

The rest of the program is relatively straightforward. The routine rand,
declared in stdlib.h, gives a (somewhat) random number; the manipula-
tion at line 25 places it in the range 1 to 100, inclusive. The results are output
at lines 28 to 30.

The C++ standard specifies that the scope of i on line 20 ends with the
Zor loop. (In other words, i should not be visible at line 24). This is differ-
ent from the original language specification, and some older compilers (and
even some newer compilers) see i as being in scope at line 24. Thus we use
difterent names for the loop counters.>

1.2.3 Resizing a vector

One limitation of primitive arrays is that, once they have been declared, their
size can never change. Often this is a significant restriction. We know, how-
ever, that we can use resize to change the size of a vector. The technique
used illustrates some of the efficiency issues that we address in this text.

< The using directive, shown at line 4, is a recent addition to C++ and is discussed in Appen-
dix A.5. Other significant additions are presented in Section A.6.

£ Note also that the STL vector has an initialization shorthand that we have not used. We
could have written
~ector<int> numbers( DIFFERENT_NUMBERS + 1, 0 );
to initialize all entries to zero and thus avoided the first £or loop.
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#include <stdlib.h>
#include <iostream>
#include <vector>

using namespace std;

// Generate numbers (from 1-100).
// Print number of occurrences of each number.
int main( )

const int DIFFERENT_NUMBERS = 100;

// Prompt for and read number of games.
int totalNumbers;
cout << "How many numbers to generate?: ";
cin >> totalNumbers;

vector<int> numbers( DIFFERENT_NUMBERS + 1 );

// Initialize the vector to zeros.
for( int 1 = 0; 1 < numbers.size( ); 1i++ )
numbers[ i ] = 0;

// Generate the numbers.
for( int j = 0; j < totalNumbers; Jj++ )
numbers|[ rand( ) % DIFFERENT_NUMBERS + 1 ]++;

// Output the summary.
for( int k = 1; k <= DIFFERENT_NUMBERS; k++ )
cout << k << " occurs " << numbers|[ k ]
<< " time(s)\n";

return 0;

Figure 1.1 Simple demonstration of arrays.

What happens is that pointers (which we discuss later in this chapter) are
used to give the illusion of an array that can be resized. To understand the
algorithm does not require any knowledge of C++: all this detail is hidden

inside the implementation of vector.

The basic idea is shown in Figure 1.2. There, arr is representing a 10-
element vector. Somewhere, buried in the implementation then, memory is
allocated for 10 elements. Suppose that we would like to expand this mem-
ory to 12 elements. The problem is that array elements must be stored in
contiguous memory and that the memory immediately following arr might

already be taken. So we do the following:
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arr \\
(a)
arr \>
original 7
(b)
arr ——
original //'
()
arr —
(d)
original //'

Figure 1.2 Array expansion, internally: (a) At the starting point, arr represents
10 integers; (b) after step 1, original represents the same 10
integers; (c) after steps 2 and 3, arxr represents 12 integers, the first
10 of which are copied from original; and (d) after step 4, the
10 integers are freed.

1. We remember where the memory for the 10-element array is (the
purpose of original).
2. We create a new 12-element array and have arr use it.

3. We copy the 10 elements from original to arr; the two extra
elments in the new arr have some default value.

4. We inform the system that the 10-element array can be reused as it
sees fit.

A moment’s thought will convince you that this is an expensive operation  Always expand the
because we copy all the elements from the originally allocated array to the arvayto alts_'zl? “:?" Is

. . . I some multiplicative
new!y ancated array. If, for 1ns'tance, this array expansion is in response 10 onstant times as
reading input, expanding every time we read a few elements would be ineffi-  large. Doubling is a
cient. Thus, when array expansion is implemented, we always make it some good choice.

multiplicative constant times as large. For instance, we might expand to
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make it twice as large. In this way, when we expand the array from N items
to 2N items, the cost of the N copies can be apportioned over the next N
items that can be inserted into the array without an expansion. As a result,
this dynamic expansion is only negligibly more expensive than starting with
a fixed size, but it is much more flexible.

To make things more concrete, Figure 1.3 shows a program that reads an
unlimited number of integers from the standard input and stores the result in a
dynamically expanding array. The function declaration for getInts tells us
that the vector is the parameter. The & in the function declaration before
array specifies that it is a reference to the actual parameter, rather than a copy

#include <iostream>
#include <vector>
using namespace std;

// Read an unlimited number of ints with no attempts at error
// recovery; fill the vector parameter with the data; its size
// after the return tells how many items were read.
void getInts( vector<int> & array )
{

int itemsRead = 0;

int inputval;

cout << "Enter any number of integers: ";
while( cin >> inputval )

{

if( itemsRead == array.size{ ) )
array.resize( array.size( ) * 2 + 1 );
array|[ itemsRead++ ] = inputVval;

}

array.resize( itemsRead );

int main( )}
vector<int> array;

getInts( array );

for( int 1 = 0; 1 < array.size( ); i++ )
cout << arrayl i1 ] << endl;
return 0;

}

Figure 1.3 Code to read an unlimited number of ints and write them out,

using array-doubling.
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of it. Thus all changes in the formal parameter are reflected in the actual argu-
ment. We discuss reference parameters in more detail in Section 1.5.

At the start of getInts, itemsRead is set to 0. We repeatedly read
new items at line 14. If the array is full, as indicated by a successful test at
line 16, then the array is expanded at line 17. We resize to roughly twice
the size of the old. We add 1 so that the initial doubling converts an array
of 0 size to an array of size 1. At line 18 the actual input item is assigned to
the array, and the number of items read is incremented. At line 20 we
resize the array to match the number of items that were read. An alterna-
tive is to have i temsRead be an additional reference parameter that is even-
tually set to the new array size. When the input fails (for whatever reason),
we merely return. The main routine calls getInts, passing a vector. The
initial size of this vector happens to be 0.

1.2.4 push_back: size and capacity

The technique used in Figure 1.3 is so common that the vector has built-in

functionality to mimic it. The basic idea is that the vector maintains not

only a size, but also a capacity; the capacity is the amount of memory that it

has reserved. The capacity of the vector is really an internal detail, not

something that you need worry about.

The push_back function increases the size by one, and adds a new item The push_back
into the array at the appropriate position. This is a trivial operation if capacity ~function increases
. o . . the size by 1, adds a

has not been reached. If it has, the capacity is automatically expanded, using

. . i . : new item to the array
the strategy described in Section 1.2.3.6 Typically, we start the vector with a  at the appropriate

size of 0. position, expanding
The code in Figure 1.4 shows how push_back is used in get Ints;itis capacity if needed.

clearly much simpler than the getInts function in Figure 1.3. Line 13

resizes the vector to no elements. This may or may not reduce its capacity,

depending on the internal implementation of vector. Note that if we do not

resize, then new items will be placed at the end of the vector; thus items

that were in the vector when get Ints was called will still be there.

1.2.5 Parameter-Passing Mechanisms

Suppose that we want to pass a vector to a routine that finds the maximum
value in the array. The natural declaration for the routine would be

_at findMax{ vector<int> a );

A. Some compilers do not double the capacity, but instead expand by a small constant
amount, thereby causing poor performance.
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Figure 1.4

Call by value is the
default parameter-
passing mechanism.
The actual argument
is copied into the
formal parameter.

The call by reference
parameter-passing
mechanism avoids a
copy. However, it
allows changes to the
parameters.

The call by constant
reference parameter-
passing mechanism
avoids a copy and
guarantees that the
actual parameter will
not be changed.

#include <stdlib.h>
#include <iostream>
#include <vector>

using namespace std;

// Read an unlimited number of ints with no attempts at error
// recovery; fill the vector parameter with the data;
// after the return tells how many items were read.
void getInts( vector<int> & array )

{

its size

int inputval;

)i
"Enter any number of integers: ";
cin >> inputVal )

array.push_back( inputval

array.resize( 0
cout <<
while(
)
}

Code to read an unlimited number of ints and write them out using
push_back.

This function declaration has a fundamental problem: The default parameter-
passing mechanism is call by value, whose semantics dictate that a copy be
made of the actual argument and used as the formal parameter for every call
to findMax. Because a could be large, this operation is expensive, so call
by value is unsuitable. An alternative is to pass the parameter using call by
reference:

int findMax( vector<int> & a );

Now we can avoid the overhead of a copy. This routine is still not perfect,
however, because the declaration tells the reader, and also the compiler, that
the actual argument might be changed as result of the call to findMax.
When the parameter was passed by value, we were guaranteed that the
actual parameter would not be altered. To obtain equivalent behavior, we use
a third form of parameter passing, call by constant reference:

int findMax( const vector<int> & a );

The constant reference guarantees that

* the overhead of a copy is avoided and that
* the actual parameter is unchanged by the function call.
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Choosing a parameter-passing mechanism is an easily overlooked chore
of the programmer. After all, the program is often correct no matter which
mechanism is used. Nevertheless, in C++ choosing a parameter-passing
mechanism carefully is important for efficiency, readability, and program
maintenance alike.

* Call by reference is required for objects that may be altered by the
function.

* Call by value is appropriate for small objects that should not be
altered by the function.

* Call by constant reference is appropriate for large objects that should not
be altered by the function.

As we show later, in some more complex cases call by value must be
avoided. The program can fail to compile if a wrong decision is made.

Because string and vector represent large objects, call by value is
generally inappropriate. Instead, when these objects are parameters to a
function, they are usually passed by reference or constant reference, depend-
ing on whether the function is expected to alter the value of the parameter.

1.2.6 Primitive Arrays of Constants

Occasionally, we revert to primitive arrays when we have global constants.
The reason is a convenient notational shorthand, illustrated by the following
declaration of DAYS_IN_MONTH:

const int DAYS_IN_MONTH[ ] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 };

Here, the size of the primitive array is automatically initialized, and its size
is deduced by the number of initializers that are present. If this array is glo-
bal, the number of items can be determined by dividing the amount of
memory used by the primitive array sizeof (DAYS_IN_MONTH) by the
amount of memory used by one item in the primitive array sizeof
{DAYS_IN_MONTH[O]), asin

~onst int NUM_MONTHS = sizeof (DAYS_IN_MONTH) /
sizeof (DAYS_IN_MONTH[O]) ;
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A multidimensional
array is an array that
is accessed by more
than one index. A
matrixclass can be
used to implement
two-dimensional
arrays.

s.length () returns
the lengthof s; +
and += perform string
concatenation.

1.2.7 Multidimensional Arrays

Sometimes access to arrays needs to be based on more than one index. A
multidimensional array is an array that is accessed by more than one
index, and its primitive version is second-class. There is no first-class ver-
sion in the STL. In Section 3.5, we implement a two-dimensional array with
first-class behavior, called a matrix. The sizes of its indices are specified,
and each element is accessed by placing each index in its own pair of brack-
ets. For example, the declaration

matrix<int> x( 2, 3 ); // x has two rows and three columns

defines the two-dimensional array x, with the first index ranging from O to 1
and the second index ranging from O to 2 (for a total of six objects). The
matrix sets aside six memory locations for these objects: x[0] [0],
x[0]01],x[0][2],%x[11[0],x[1][1],andx[1][2].

1.2.8 The Standard Library string Type

To use the Standard Library string type, you must have the include
directive:

#include <string>

As the string is a first-class object, input, output, copying, and com-
parisons work as you would expect. Thus strl==str2 is true if and only
if the values of the strings are the same.

Each character of the string can be accessed by using the array index-
ing operator (as usual, indices start at zero). The string provides many
useful functions.

If sis a string, then s.length () returns its length (i.e., the number
of characters in its representation), and s.c_str () returns a primitive
string. A primitive string is occasionally needed to interact with other parts
of the libraries. For instance, to open a file, a primitive string must be passed.
Finally, the + and += operators for strings are defined to perform string
concatenation (one string is tacked onto the end of another). Figure 1.5 illus-
trates these operations.
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1 #include <iostream>
2 #include <string>
3 using namespace std;
4
5 int main( )
6 {
7 string a = "hello";
8 string b = "world";
9 string c; // Should be ""
10
11 c=a+ ""; // Should be "hello "
12 c += b; // Should be "hello world"
13
14 // Print c the easy way.
15 cout << "c is: " << c << endl;
16
17 // Print ¢ the primitive way.
18 cout << "c is: " << c.c_str( ) << endl;
19
20 // Print ¢ character-by-character.
21 cout << "¢ is: ";
22 for( int i = 0; i < c.length( ); i++ )
23 cout << c[ i ];
24 cout << endl;
25
26 return 0;
27 1}
Figure 1.5 lHustration of some string functions.

1.3 Pointer Syntax in C++

To have a pointer point at an object, we need to know the target object’s
memory address (that is, where it is stored). For (almost) any object obj, its
memory address is given by applying the unary address-of operator &. Thus
&ob7 is the memory location that stores ob3.’

We can declare that an object ptr points at an int object by saying

int *ptr;

The value represented by ptr is an address. As with integer objects, this
declaration does not initialize ptr to any particular value, so using ptr

7. Objects stored by using the register storage class cannot be the target of the address-of
operator.

The unary address-
of operator &
returns the address of
an object.
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The unary
dereferencing
operator * accesses
data through a
pointer.

before assigning anything to it invariably produces bad results (e.g., a pro-
gram crash). Suppose that we also have the declarations

int x 5;
int vy = 7;

We can make ptr point at x by assigning to ptr the memory location where
x is stored. Thus

ptr = &X; // LEGAL

sets ptr to point at x. Figure 1.6 illustrates this in two ways. In part (a) a
memory model shows where each object is stored. In part (b) an arrow is
used to indicate pointing.

The value of the data being pointed at is obtained by the unary derefer-
encing operator *. In Figure 1.6 *ptr will evaluate to 5, which is the value
of the pointed-at variable x. To dereference something that is not a pointer is
illegal. The * operator is the opposite of & (e.g., *&x=5 is the same as x=5 as
long as &x is legal). Dereferencing works not only for reading values from
an object, but also for writing new values to the object. Thus, if we say

*ptr = 10; // LEGAL

we have changed the value of x to 10. Figure 1.7 shows the changes that
result and the problem with pointers: Unrestricted alterations are possible,
and a runaway pointer can overwrite all sorts of variables unintentionally.

We could also have initialized ptr at declaration time by having it point
to x¢

int x = 5;

int v = 7;
int *ptr = &X; // LEGAL
(&x) 1000 | x=5
(&y) 1004 | y=7 ——® 5 7
ptr X 0%
(&ptr) 1200 | 1000 (b)
()

Figure 1.6 Pointer illustration.
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(&x) 1000 x=10
(&y) 1004 | y=7 — 1 = 10 7
ptr X Y
{(&ptr) 1200 ptr = &x = 1000 (b)
(a)

Figure 1.7 Result of *ptr=10.

The declaration says that x is an int initialized to 5, y is an int initialized
to 7, and ptr is a pointer to an int and is initialized to point at x. Let us
look at what could have gone wrong. The following declaration sequence is
incorrect:

int *ptr = &x; // ILLEGAL: x is not declared yet
int x = 5;
int vy = 7;

Here we are using x before it has been declared, so the compiler will com-
plain. Here is another common error:

nt x = 5;
nty =7;
nt *ptr = x; // ILLEGAL: x 1s not an address

In this case we are trying to have ptr point at x, but we have forgotten that a
pointer holds an address. Thus we need an address on the right side of the
assignment. The compiler will complain that we have forgotten the &, but its
error message may initially appear cryptic.

Continuing with this example, suppose that we have the correct declara-
tion but with ptr uninitialized:

nt x = 5;
at y = 7;
int *ptr; // LEGAL but ptr is uninitialized

What is the value of ptr? As Figure 1.8 shows, the value is undefined Pointers must be

because it was never initialized. Thus the value of *ptr is also undefined. Peinting at an object
. . . before dereferencing.

However, using *ptr when ptr is undefined is worse because ptr could

hold an address that makes absolutely no sense, thus causing a program

crash if it is dereferenced. Even worse, ptr could be pointing at an address
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Always draw a picture
at the first sign of
pointer trouble.

(&x) 1000 | x=5
(5v) 1004 | y=7 5 7
ptr b Y
(&ptr) 1200 | ptr="? (b)
(a)

Figure 1.8 Uninitialized pointer.

that is accessible, in which case the program will not crash immediately, but
it will be erroneous. If *ptr is the target of an assignment, then we would be
accidentally changing some other data, which could result in a crash at a
later point. This is a tough error to detect because the cause and symptom
may be widely separated in time.

We have already shown the correct syntax for the assignment:

ptr = &x; // LEGAL
Suppose that we forget the address-of operator. Then the assignment
ptr = x; // ILLEGAL: x is not an address

rightly generates a compiler error. There are two ways to make the compiler
be quiet. One is to use the address-of operator on the right-hand side, as in
the correct syntax. The other method is erroneous:

*ptr = x; // Semantically incorrect

The compiler is quiet because the statement says that the int to which ptr
is pointing should get the value of x. For instance, if ptr is &y, then y is
assigned the value of x. This assignment is perfectly legal, but it does not
make ptr point at x. Moreover, if ptr is uninitialized, dereferencing it is
likely to cause a run-time error, as discussed above. This error is obvious
from Figure 1.8. The moral is: Always draw a picture at the first sign of
pointer trouble.

Using *ptr=x instead of ptr=&x is a common error for two reasons.
First, because it silences the compiler, programmers feel comfortable
about using the incorrect semantics. Second, it looks somewhat like the
syntax used for initialization at declaration time. The difference is that the
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* at declaration time is not a dereferencing * but rather is just an indication
that the object is a pointer type.

Some final words before we get to some substantive uses of these ideas: The NULL pointer has
First, sometimes we want to state explicitly that a pointer is pointing nowhere, Value 0 and should
as opposed to an undefined location. The NULL pointer points at a memory z:::f:::nced. Itis
location that is guaranteed to be incapable of holding anything. Consequently, used to state that a
a NULL pointer cannot be dereferenced. The symbolic constant NULL is pointer is pointing
defined in several header files, and either it or an explicit zero can be used. The nowhere.
choice is a matter of preference, although some programmers can get surpris-
ingly testy when someone’s choice does not agree with theirs. Pointers are best
initialized to the NULL pointer because in many cases they have no default ini-
tial values (these rules apply to other predefined types as well).

Second, a dereferenced pointer behaves just like the object that it is
pointing at. Thus, after the following three statements, the value stored in x
1S 15:

x = 5;
ptr = &X;
*ptr += 10;

However, we must be cognizant of precedence rules because (as we discuss
in Section D.1.3) performing arithmetic not only on the dereferenced values,
but also on the (undereferenced) pointers themselves is possible.® For exam-
ple, the following two statements are very different:

*ptr += 1;
*ptr++;

In the first statement the += operator is applied to *ptxr, but in the second state-
ment the ++ operator is applied to ptr. The result of applying the ++ operator
to ptr is that ptr will be changed to point at a memory location one memory
unit larger than it used to. (We discuss these semantics in Section D.3.)

Third, if ptr1 and ptr2 are pointers to the same type, then

ptrl = ptr2;
sets ptrl to point to the same location as ptr2, whereas

*ptrl = *ptr2;

8. This capability is an unfortunate consequence of C++’s very liberal rules, which allow
arithmetic on pointers, making use of the fact that pointers are internally stored as integers.
We discuss the reasoning for this in Appendix D but avoid using pointer arithmetic in the
text. Nonetheless, you need to know that it exists in case you accidentally wander into that
part of the language (owing to a programming error on your part).
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When you use
pointers, you must
know whether you are
working with
addresses or the
dereferenced
pointers.

——®{ 5 5 —_ 7

ptrl X ptrl ble ptrl bl

—— 7 — 7 —r— 7

ptr2 Y ptr2 Y ptr2 b
(a) (b) (c)

Figure 1.9 (a) Initial state; (b) ptrl=ptr2 starting from initial state;
(c) *ptrl="*ptr2 starting from initial state.

assigns the dereferenced ptri1 the value of the dereferenced ptr2. Figure 1.9
shows that these statements are quite different. Moreover, when the wrong
form is used mistakenly, the consequences might not be obvious immedi-
ately. In the previous examples, after the assignment, *ptrl and *ptr2 are
both 7. Similarly, the expression

ptrl == ptr2
is true if the two pointers are pointing at the same memory location, whereas
*ptrl == *ptr2

is true if the values stored at the two indicated addresses are equal. Using the
wrong form is a common mistake.

The requirement that ptrl and ptr2 point to the same type is a conse-
quence of the fact that C++ is strongly typed: Different types of pointers
cannot be mixed without an explicit type conversion, unless the user pro-
vides an implicit type conversion.

Finally, when pointers are declared, placement of the * and the white

space that surrounds it are unimportant to the compiler. Pick a style that you
like.

1.4 Dynamic Memory Management

Thus far, all local variables that we have used are automatic variables. This
(little-used) term tells us that local variables are created when they are reached
in the function and that they are destroyed when they are no longer in scope
(e.g., when the function returns). Sometimes, objects need to be created in a
different way. This different way is called dynamic memory allocation.
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1.4.1 The new Operator

Objects can be created dynamically by calling new. The new operator
dynamically allocates memory and returns a pointer to the newly created
object.

Figure 1.10 illustrates the issues involved in dynamic memory alloca-
tion. However, this example is a poor use of dynamic memory; an automatic
string should be used instead. We use it here only to illustrate dynamic
memory allocation in a simple context. A more reasonable application (but
no code) is shown in Section 1.6.2.

In Figure 1.10, line 9 creates a new string object dynamically. Note
that strPtr is a pointer to a string, so the string itself is accessed by
*strPtr, as shown on lines 10-13. The parentheses are needed at line 11
because of precedence rules.

1.4.2 Garbage Collection and delete

In some languages, when an object is no longer referenced, it is subject to
automatic garbage collection. The programmer does not have to worry about
it. C++ does not have garbage collection. When an object allocated by new is
no longer referenced, the delete operator must be applied to the object
(through a pointer). Otherwise, the memory that it consumes is lost (until the
program terminates), which is known as a memory leak. Unfortunately,
memory leaks are common occurrences in many C++ programs. Fortunately,

1 #include <iostream>
2 #include <string>
3 using namespace std;
4
5 int main( )
6 {
7 string *strPtr;
8
9 SstrPtr = new string( "hello" );
10 cout << "The string is: " << *strPtr << endl;
11 cout << "Its length is: " << (*strPtr).length( ) << endl;
12 *strPtr += " world";
13 cout << "Now the string is " << *strPtr << endl;
14
15 delete strPtr;
16
17 return 0;
18 3}
Figure 1.10 lllustration of dynamic memory allocation.

The new operator
dynamically allocates
memory. The result of
new is a pointer to a
newly created object.

When an object that
is allocated by new
is no longer
referenced, the
delete operator
must be applied to the
object (through a
pointer).
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A stale pointer is a
pointer whose value
no longer refers to a
valid object.

many sources of memory leaks can be automatically removed with care, as
we will see later in the text.

One important rule is not to use new when an automatic variable can be
used instead. An automatic variable is automatically cleaned up (hence its
name). You should never use delete on an object that was not created by
new; if you do, run-time havoc is likely to result. The delete operator is
illustrated at line 15.

1.4.3 Stale Pointers, Double Deletion, and More

One reason that programmers can get in trouble when using pointers is that
one object may have several pointers pointing at it. Consider the following
code:

string *s = new string( "hello" ); // s points at new string
string *t = s; // t points there, too
delete t; // The object is gone

Nobody would deliberately write these three lines of code next to each
other; assume that they are scattered in a complex function. Prior to the call
to delete, we have one dynamically allocated object that has two pointers
pointing to it.

After the call to delete, the values of s and t (i.e., where they are
pointing) are unchanged. However, as illustrated in Figure 1.11, they are
now stale. A stale pointer is a pointer whose value no longer refers to a
valid object. Dereferencing s and t can lead to unpredictable results. What
makes things especially difficult is that, although t is obviously stale, the
fact that s is stale is much less obvious, if, as assumed, these statements are
scattered in a complex function. Furthermore, in some situations, the mem-
ory that was occupied by the object is unchanged until a later call to new
claims the memory, which can give the illusion that there is no problem.

Figure 1.11  Stale pointers: Because of the call to delete t, pointers s and t
are now pointing at an object that no longer exists; a call to
delete s would now be an illegal double deletion.
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A second problem is the so-called double-delete. A double-delete A double-delete
occurs when we attempt to call delete on the same object more than once. ~96€urs when we

. attempt to call
It would occur if we now made the call delete on the same

object more than
delete s; // Oops -- double delete once. Trouble in the

form of a run-time
because s is stale and the object that it points to is no longer valid. Trouble error is likely to

in the form of a run-time error is likely to result. resuit.

These are the perils of dynamic memory allocation. We must be certain
never to call delete more than once on an object—and then only after we
no longer need it. If we don’t call delete at all, we get a memory leak. And
if we have a pointer variable and intend to call delete, we must be certain
that the object being pointed at was created by a call to new. When we have
functions calling functions calling other functions, keeping track of every-
thing is not so easy.

Finally, pointers can go stale even if no dynamic allocation is performed.
Consider the code in Figure 1.12.

For no good reason (except to illustrate the error), we have the function
stupid return a pointer to a string. If stupid calls new to create a
string, then the caller will be responsible for calling delete. Rather than
burdening the caller, we mistakenly decided to have stupid use an auto-
matic string, and return its address. The program compiles but may or may
not work; it contains an error. The problem is that the value that stupid
returns is a pointer. But the pointer is pointing at s, which no longer exists
because it is an automatic variable and stupid has returned. When return-
ing pointers, be sure that you have something to point to and that the some-
thing exists after the return has been completed.

string *stupid( )

{
string s = "stupid";
return &s;

int main{( )

{
cout << *stupid( )} << endl;
return 0;

1
2
3
4
5
6
7
8
9
10
1 )

Figure 1.12 A stale pointer: the pointee, s, does not exist after stupid returns.
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A reference type is an
alias and may be
viewed as a pointer
constant that is
always dereferenced
implicitly.

Reference variables
must be initialized at
declaration time.
Reference parameters
are used to achieve
call by reference
instead of call by
value.

1.5 Reference Variables

In addition to the pointer type, C++ has the reference type. A reference type
is an alias for another object and may be viewed as a pointer constant that is
always dereferenced implicitly. For instance, in the following code, cnt
becomes a synonym for a longer, hard-to-type variable:

int longVariableName = 0;
int & cnt = longVariableName;

cnt += 3;

Reference variables must be initialized when they are declared. They
cannot be changed to reference another variable because an attempted reas-
signment via

cnt = someOtherObject;

assigns to the object 1ongVariableName the value of someOtherObject.
This approach is a poor use of reference variables but accurately reflects how
they are used in a more general setting in which the scope of the reference
variable is different from that of the object being referenced. One important
case is that a reference variable can be used as a formal parameter, which
acts as an alias for an actual argument. We previously discussed this case in
the context of passing vectors (see Section 1.2.5). Let us revisit parameter
passing.

Figure 1.13 illustrtes a swapWrong procedure that does not work
because of call-by-value restrictions. Two correct alternatives are shown:
The first is a routine that uses the traditional C method of passing pointers to
avoid call-by-value restrictions; the second is a functionally identical routine
that uses C++ reference parameters.

The differences between reference and pointer types are summarized as
follows.

* In the function declaration, reference parameters are used instead of
pointers.
¢ In the function definition, reference parameters are implicitly derefer-

enced, so no * operators are needed (their placement would generate
a syntax error).



CoO~NOTEWN =

PO PLPWWWWWWWWWWNNRNNMNNNOMNNNDND = = o =
N 20 O0ONOPNDON=-2O0OWONODRPLPWNLQOQOWOINOOGOAWN=0O

Figure 1.13  Call-by-reference parameters versus call-by-pointer parameters.

#include <iostream>
using namespace std;

// Does not work.

void swapWrong( int a, int b )
{
int tmp = a;
a = b;
b = tmp;
}
// C Style -- using pointers.
void swapPtr( int *a, int *b )
{
int tmp = *a;
*a = *b;
*b = tmp;
}
// C++ Style -- using references.
void swapRef( int & a, int & b )

{

int tmp = a:

a = b;
b = tmp;
}
// Simple program to test various

int main( )

{

int x = 5;

int vy = 7;

swapWrong( X, y );

cout << "x=" << X << " y=" <<
swapPtr( &x, &y );

cout << "x=" << X << " y=" <<
swapRef ( x, y );

cout << "x=" << X << " y=" <<
return 0;

}

swap

Yy <<

y <<

Yy <<

routines.

endl;

endl;

endl;

Reference Variables E
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Pointers can be
passed by reference.
As aresult,a
function can change
where a pointer is
pointing.

A structure stores a
collection of
generally dissimilar
objects.

Each member of the
structure can be
accessed by applying
the dot (.) member
operator.

* In the function call to swapRef, no & is needed because an address is
implicitly passed by virtue of the fact that the corresponding formal
parameters are references.

¢ The code involving the use of reference parameters is much more
readable.

Reference variables are like pointer constants in that the value they store
is the address of the object they refer to. They are different in that an auto-
matic invisible dereference operator is applied to the reference variable. This
difference translates into a notational convenience, especially because it
allows parameters to be passed by reference without the excess baggage of
the & operator on the actual arguments and the * operator that tends to clutter
up C programs.

By the way, pointers, can be passed by reference. This method is used to
allow a function to change where a pointer, passed as a parameter, is point-
ing. A pointer that is passed with call by value cannot be changed to point to
a new location (because the formal parameter stores only a copy of the
where value). We use this approach in Chapter 19 where we discuss this
tricky issue in more detail.

Another important issue is the choice between passing parameters by
value or by reference. In Section 1.2.5 we discussed it in the context of
vectors, but it applies for all types of parameters.

1.6 Structures

Recall that an array is a collection of identically typed objects. The array has
two major benefits: First, we can index the array and thus we can loop over
each item in the array; second, when using functions, we can pass the name
of the array, thus using only one parameter to send the aggregate.

A different type of aggregate type is the structure. A structure stores a
collection of objects that need not be of the same type. Because the objects
in the collection are not constrained to be of the same type, we cannot sim-
ply loop over them as we would in an array.

Each object in the structure is a member and is accessed by applying the
dot member operator. The basic structure declaration is given by using the
keyword struct, providing the name of the structure type and giving a
brace-enclosed list of its members. For example,




struct Student
{
string firstName;
string lastName;
int studentNum;
double gradePointAvg;
Y

Figure 1.14 shows that Student is a structure consisting of four different
objects. If we have the declaration

Student s;

the grade point average is given by s.gradePointAvg. Figure 1.15 illus-
trates how a struct is declared, how its constituent data members are
accessed, and how it can be passed as a parameter to a function. Note that
structures usually are not passed by using call by value because the overhead
of call by value can be expensive. The parameter-passing mechanism is
determined in accordance with the discussion in Section 1.2.5.

gradePointAvg

. =

Figure 1.14 Student structure.

- S;trﬁztur;;
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// Print the student information.
void printInfo( const Student & s )
{
cout << "ID is " .studentNum << endl;
cout << "Name is " .firstName << " "
.lastName << endl;
cout << "GPA is " .gradePointAvg << endl;
}

oCo~NOOTOEWN =

10 // Simple main.

11 int main( )

12 ¢

13 Student mary;

14

15 mary.lastName = "Smith";
16 mary.firstName = "Mary";
17 mary.gradePointAvg = 4.0;
18 mary.studentNum = 123456789;
19

20 printInfo( mary );

21

22 return 0;

23

Figure 1.15 Program to illustrate the declaration of a structure, access of its data
members, and parameter passing.

The structure in C++ The structure in C++ has been greatly extended from its C counterpart to

;‘as b_‘t’e'ée’“e"ded allow functions as members, as well as restrictions on access to the mem-

rom its . . . . .

counterpart. bers. This dlfference bptween C'and C++ represents a major phllogophu.:al
change. We discuss this change in the Chapter 2. For now let us stick with
the basics of structures.

1.6.1 Pointers to Structures

In our discussion of advanced programming techniques, we show that fre-
quently we need to declare a pointer to a structure and access the members
of the pointed at structure. Suppose that we have

Student *ptr = &s; // ptr points at structure s

The -> operator is Then we can access the grade point average by (*ptr) .gradePointAvg.
used to access The parentheses are absolutely necessary because the member operator, being a

members of a

pointed-at structure. postfix operator, has higher precedence than the prefix dereferencing operator.

The parentheses become annoying after awhile, so C++ provides an additional
postfix operator, the -> operator, which accesses members of a pointed-at
structure. Thus ptr->gradePointAvg gives the same access as before.




1.6.2 Exogenous Versus Indigenous Data
and Shallow Versus Deep Copying

As we demonstrate in Chapter 2, C++ allows the user to define operators on
structures. For instance the user can write the routine with the declaration

bool operator<( const Student & lhs, const Student & rhs );

which returns true if the first (left-hand side) Student is less than the sec-
ond (right-hand side), according to some user-defined criterion. (Throughout
this text. we use 1hs and rhs for left-hand side and right-hand side, respec-
tively.) Using the class mechanism discussed throughout the text, we could
include this function as a structure member—much like a data member.

The copy assignment operator = and the equality operator == can also be
defined, but if we do nothing, a default definition is used for copying and
equality comparisons become illegal. Specifically, by default a structure
copy is implemented as a member-by-member copy. In other words, each
member is copied from one structure to the other.

A problem with this mechanism is illustrated by the following declaration:

struct Teacher

{
string *firstName;
string *lastName;
int employeeNum;

};
Suppose that we have
Teacher s, t;

If we assume that t has been initialized, then the assignment s=t is a member-
by-member copy. However, the first two members are merely pointers, so
only the addresses are copied. The result is that s. firstName is now shar-
ing memory with t . firstName; these are not independent copies of the
string. If the call

delete t.firstName

is made later to recycle the dynamically allocated memory, s is in serious
trouble. This problem is illustrated in Figure 1.16, which highlights the dif-
ference between indigenous and exogenous data.

Structures‘m

Throughout this text,
we use lhs and rhs
for feft-hand side and
right-hand side,
respectively.
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Indigenous data are
completely contained
by the structure.

Exogenous data are
not part of the
structure but are
accessed through a
pointer.

A shallow copy is a
copy of pointers
rather than data being
pointed at.

A deep copy is a copy
of the data being
pointed at rather than
the pointers.

“Ninau

firstName

S lastName t

“Weiss”

12345

12345

Figure 1.16 lllustration of a shallow copy in which only pointers are copied.

Indigenous data are completely contained by the structure. For
instance, in the Student structure, the firstName and lastName mem-
bers are strings and are completely self-contained. The disadvantage of rep-
resenting an object indigenously is that the size of the object is fixed, is
usually large, and thus is expensive to copy.

Exogenous data, by contrast, reside outside the structure and are
accessed through a pointer. The advantage of exogenous data is that com-
mon data can be shared among several instances; when the default assign-
ment operator is used, the copy is only a copy of pointers and not the
pointed-at values. Often this behavior is desirable. For instance, it is the
default behavior in the computer language Java.

A copy of pointers rather than the data being pointed at is known as a
shallow copy. Similarly, the equality comparisons for exogenous data are
shallow by default because they only compare addresses. Although a shal-
low copy is correct on occasion, allowing a shallow copy when it is unwar-
ranted can lead to havoc.

To get a deep copy, in which the pointed-at values are copied, we gener-
ally need to allocate some additional memory and then copy the derefer-
enced pointers. Doing so requires rewriting the copy assignment operator.
Details on implementing this procedure are presented in the next several
chapters. Normally, we also need to supply a deep comparison operator to
implement a deep test. (Of course, we may need to go back to using indige-
nous data if we find that we are doing mostly deep operations.)

1.6.3 Noncontiguous Lists: Linked Lists

We close this chapter by discussing, in very general terms, one of the tech-
niques we use when we discuss data structures. Earlier we showed that, by



using the dynamically expanding array, we can read in an arbitrary number
of input items. This technique has one serious problem.

Suppose that we are reading 1000-byte records and we have 1,000,000
bytes of memory available. Also suppose that, at some point, the array holds
400 records and is full. Then to double, we create an array of 800 records,
copy over 400 records, and then delete the 400 records. The problem is that, in
this intermediate step, we have both a 400- and an 800-record array in use and
that the total of 1200 records exceeds our memory limit. In fact, we can run
out of memory after using only roughly one third of the available memory.

A solution to this problem is to allow the list of records to be stored non-
contiguously. For each record we maintain a structure that stores the record
and a pointer, next, to the next structure in the list. The last structure has a
NULL next pointer. We keep a pointer to both the first and last structures in
the list. A basic example is shown in Figure 1.17. The resulting structure is
the classic linked list, which stores data with a cost of one pointer per item.
The structure definition is

struct Node
{
Object item; // Some element
Node *next;
}i
At any point we can print the list by using the iteration

for( Node *p = first; p != NULL; p = p->next )
printItem( p->item );

and at any point we can add a new last item x, as in

last->next = new Node; // Attach a new Node

_ast = last->next; // Adjust last
_ast->item = x; // Place x in the node
_ast->next = NULL; // It's the last, so make next NULL
—T T T
Ao:———>Al:———>A2:— A3:—1
| | -

First Last

Figure 1.17  lllustration of a simple linked list.

Structures

A linked list stores
data with a cost of
one pointer per item.



m Arrays, Pointers, and Structures

An arbitrary item can no longer be found in one access. Instead, we must
scan down the list. This difference is similar to that of accessing an item on a
compact disk (one access) or a tape (sequential). On the other hand, insert-
ing a new element between two existing elements requires much less data
movement in a linked list than in an array.

We present a more detailed description of the linked list in Chapters 16
and 17.

Summary

In this chapter we examined the basics of pointers, arrays, and structures. The
pointer variable emulates the real-life indirect answer. In C++ it is an object
that stores the address where some other data reside. The pointer is special
because it can be dereferenced, thus allowing access to those other data. The
NULL pointer holds the constant 0, indicating that it is not currently pointing at
valid data. A reference parameter is an alias. It is like a pointer constant,
except that the compiler implicitly dereferences it on every access. Refer-
ence variables allow three forms of parameter passing: call by value, call by
reference, and call by constant reference. Choosing the best form for a par-
ticular application is an important part of the design process.

An array is a collection of identically typed objects. In C++ there is a
primitive version with second-class semantics (discussed in Chapter 3 and
Appendix D). A vector is also part of the standard library. In both cases, no
index range checking is performed, and out-of-bounds array accesses can
corrupt other objects. Because primitive arrays are second-class, they cannot
be copied by using the assignment operator. Instead they must be copied ele-
ment by element; however, a vector can be copied in a single assignment
statement. A vector can be expanded as needed by calling resize.

Structures are also used to store several objects, but unlike arrays, the
objects need not be identically typed. Each object in the structure is a mem-
ber, and is accessed by the . member operator. The -> operator is used to
access a member of a structure that is accessed indirectly through a pointer.

We also noted that a list of items can be stored noncontiguously by using
a linked list. The advantage is that less space is used for large objects than in
the array-doubling technique. The penalty is that access of the ith item is no
longer constant-time but requires examination of i structures.

<o
'ﬁa‘a Objects of the Game

-> operator Allows access to members of a pointed at structure.
(p. 28)
address-of operator & Returns the address of an object. (p. 15)
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aggregate A collection of objects stored in one unit. (p. 4)

array Stores a collection of identically-typed objects. (p. 4)

array indexing operator [1 Provides access to any object in the
array. (p. 6)

call by constant reference Parameter-passing mechanism that avoids
a copy and guarantees that the actual parameter will not be changed.
(p. 12)

call by reference Parameter-passing mechanism that avoids a copy
but allows changes to the actual parameter. (p. 12)

call by value The default parameter-passing mechanism in which the
actual argument is copied into the formal parameter. (p. 12)

deep copy A copy of the data being pointed at rather than the pointers.
(p. 30)

delete operator Recycles dynamically allocated memory that is no
longer needed. (p. 21)

dereferencing operator * Used to access the value of data being
pointed at. (p. 16)

dot (.) member operator Allows access to each member of the struc-
ture. (p. 26)

double-delete  An occurrence when we attempt to call delete on the
same object more than once. Trouble in the form of a run-time error
is likely to result. (p. 23)

exogenous data Not part of the structure but are accessed through a
pointer. (p. 30)

first-class object An object that can be manipulated in all the “usual
ways” without special cases and exceptions. (p. 4)

indigenous data Completely contained by the structure. (p. 30)
lhs and rhs Left-hand side and right-hand side, respectively. (p. 29)
linked list Stores data with a cost of one pointer per item. (p. 31)

matrix A type discussed in Chapter 3 that provides a first-class two-
dimensional array. (p. 14)

member An object contained in a structure. (p. 26)

memory leak Memory allocated by new is not automatically recycled:
failure to recycle causes a memory leak. (p. 21)

multidimensional array An array that is accessed by more than one
index. (p. 14)

new operator Dynamically allocates memory. (p. 21)
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NULL pointer Has value 0 and can never be dereferenced; it is used to
state that a pointer is pointing nowhere. (p. 19)

pointer Stores an address where other data resides. (p. 4)

reference type An alias that may be viewed as a pointer constant that
is always dereferenced implicitly. (p. 24)

shallow copy A copy of pointers rather than the data being pointed at.
(p. 30)

stale pointer A pointer whose value no longer refers to a valid object.
(p. 22)

string The library type used for first-class strings. (p. 6)

structure Stores a collection of objects that are generally dissimilar.
(p. 26)

vector The library type used for first-class arrays. (p. 6)

Common Errors

1. If ptr is uninitialized, the assignment *ptr=x is likely to cause
problems. Always be sure that a pointer is pointing at an object
before attempting to dereference the pointer.

2. Inadeclaration, *ptr=&x initializes ptr to point at x. In an assign-
ment statement, *ptr=&x is wrong (unless ptr is a pointer to a
pointer) because the left-hand side is the dereferenced value rather
than the pointer. The * in the declaration is not a dereferencing
operator; instead, it is part of the type.

3. A common error is mixing up the pointer and the value being
pointed at. That is, ptrl==ptr2 is true if both pointers are point-
ing at the same memory location, but *ptrl==*ptr2 is true if the
values stored at the indicated addresses are equal.

4. Because of precedence rules, *ptr++ increments ptr, not *ptr.

5. In C++, arrays are indexed from 0 to n-1, inclusive, where n is the
array size. However, range checking is not performed.

6. In C++, primitive arrays cannot be copied or compared because the
array name is merely an address.

7. Two-dimensional arrays are indexed as A[i] [j],notA[i,]].
8. Dereferencing a pointer immediately after delete has been
applied to it is an error (even though it will usually appear to work).

9. Large objects should not be passed using call by value. Use call by
constant reference instead.



10.

On the Internet

To avoid double deletion, beware of shallow copies when deep cop-
ies are needed.

11. Do not return a pointer or reference to a local (automatic) variable.
Doing so has the same effect as Error 8.
On the Internet é

The available files for this chapter are listed below. Everything is self-
contained, and nothing is used later in the text.

ArrayDemo.cpp Contains the source code for the example in Fig-

ure 1.1.

Getlnts.cpp Contains the source code for the examples in Fig-

ures 1.3 and 1.4. If RESIZE is defined, getInts
from Figure 1.3 is used; otherwise, Figure 1.4 is

used.

TestString.cpp Contains the source code for the example in Fig-
ure 1.5.

TestSwap.cpp Contains the source code for the swap examples in
Figure 1.13.

Exercises @

1.1.
1.2

In Short

Name and illustrate five operations that can be applied to pointers.

Consider

int a, b;
int *ptr; // A pointer
int **ptrPtr; // A pointer to a pointer

ptr = &a;
ptrPtr = &ptr;

a. Is this code legal?

b. What are the values of *ptr and **ptrpPtr?

c. Using no other objects besides those already declared, how can
you alter ptrPtr so that it points at a pointer to b without
directly touching ptr?
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1.3.

14.

1.5.

d. Is the following statement legal?

ptrPtr = ptr;

a. Is *&x always equal to x? If not, give an example.
b. Is &*x always equal to x? If not, give an example.

For the declarations

int a = 5;
int *ptr = &a;

what are the values of the following?
ptr

*ptr

ptr == a

ptr == &a

&ptr

*a

*&a

**&ptr

50k -0 80 o

Give the type of each identifier declared here and the types of the
expressions. Is any expression illegal?
struct S { int a; S *b; };
S z;

S *x;

vector<S> y(10);

vector<S *> u(l0);

X->a

x->b

z.b

z.a

*z.a

(*z) .a

x->b-z.b

Y->a

y([1]

vI[l].a

y[1l].b

uf2]

*ul2]

ul2]->a

ul2]->b

ull10]
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1.6.

1.7.

1.8.

1.9.

1.10.
1.11.

1.12.

1.13.

V. &z
W. &X
X. u

Yy v

Draw a picture that illustrates the results after processing of each of
the following statements, which are executed sequentially.
int a = 3;
int & a;
int & ¢ = b;
b =25

2

oo o

Cc =
Is the following code legal? Why or why not?

int a = 3;
const int & b = a;

What is wrong with omitting spacing in *x/*y?

In Practice

Use a linked list to read an arbitrary number of strings. After the
strings have been read, output all strings that are lexicographically
larger than the last string read from the input.

Repeat Exercise 1.9, using a vector with the push_back operation.

A checksum is the 32-bit integer that is the sum of the ASCII char-
acters in a file. Two identical files have the same checksum. Write
a program to compute the checksum of a file that is supplied as a
command-line argument.

Programming Projects

Write a program that outputs the number of characters, words, and
lines in the files that are supplied as command-line arguments.

Some personal computers come with a game called Minesweeper.
The game is played on a grid, and some squares on the grid con-
tain mines. Write a program that reads a file that contains the num-
ber of rows and columns in the grid and then the grid. The grid
will have squares marked o; those are mines. Other squares do not
have mines and will have 2. Your output will output the grid.
Mines will still have os. Squares that do not have mines will be
replaced by a number that indicates the number of adjacent mines

Exercises
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55

20?77?77
o?7?07?
??7070
00707
20?7?77

O b WN =

Figure 1.18 Sample input for Exercise 1.13.

20211
03302
34040
oo4do2
30311

b WN =

Figure 1.19  Sample output for Exercise 1.13.

(the maximum will be 8). For example, is a sample input file, and
Figure 1.19 is the corresponding output.
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Chapter 2

Objects and Classes

In this chapter we begin a discussion of object-oriented programming and
show why C++ is more than just C with a few bells and whistles added. The
basic mechanism for accomplishing object-oriented programming in C++ is
the class.

In this chapter, we show:

* how C++ uses the class to achieve encapsulation and information
hiding;
* how classes are implemented; and

* several examples of classes, including classes used to manipulate
rational numbers and strings

2.1 What Is Object-Oriented Programming?

Object-oriented programming appears to be emerging as the dominant para-
digm. In this section we discuss some of the things that C++ provides in the
way of object-oriented support and mention some of the principles of object-
oriented programming.

At the heart of object-oriented programming is the object. An object is
an entity—an instance of a data type—that has structure and state. Each
object defines operations that may access or manipulate that state. One fea-
ture of object-oriented programming is that user-defined types should
behave the same way as predefined (or built-in) types. When we work with
any of the basic data types in a language, such as the integer, character, or
floating-point number, we take certain things for granted.

* We can declare new objects, possibly with initialization.
* We can copy or test for equality.

An object is an entity
that has structure and
state. Each object
defines operations
that may access or
manipulate that state.



An object is also an

atomic unit: Its parts
cannot be dissected
by the general users
of the object.

Information hiding
makes
implementation
details, including
components of an
object, inaccessible.

Encapsulation is the
grouping of data and
the operations that
apply to them to form
an aggregate, while
hiding implementa-
tion details of the
aggregate.

Obijects and Classes

* We can perform input and output on these objects.

 If the object is an automatic variable, then when the function it is
declared in terminates the object goes away.

* We can perform type conversions when appropriate, and the compiler
complains when they are inappropriate.

Additionally, we view the object as an atomic unit, whose parts cannot
be dissected by the general user. Most of us would not even think of fiddling
with the bits that represent a floating-point number and would find it com-
pletely ridiculous to try to increment some floating-point object by altering
its internal representation ourselves.

The atomicity principle is known as information hiding. In other
words, the user does not have direct access to the parts of the object nor their
implementations; they can be accessed only indirectly by functions supplied
with the object. We can view each object as coming with the warning “Do
not open—no user-serviceable parts inside.” In real life most people who try
to fix things that have such a warning wind up doing more harm than good.
In this respect programming mimics the real world. The grouping of data
and the operations that apply to them to form an aggregate, while hiding
implementation details of the aggregate, is known as encapsulation.

A second important goal of object-oriented programming is to support
code reuse. Just as engineers use components over and over in their
designs, programmers should be able to reuse objects rather than repeat-
edly reimplementing them. When we have an implementation of the exact
object that we need to use, doing so is a simple matter. The challenge is to
use an existing object when the object needed is not an exact match but is
merely very similar.

C++ provides several mechanisms to support this goal. One is the tem-
plate mechanism: If the implementation is identical except for the basic type
of the object, a template can be used to describe the basic functionality. For
instance, a procedure can be written to swap two items; the logic is indepen-
dent of the types of objects being swapped, and so a template can be used.
(We discuss templates in Chapter 3.)

The inheritance mechanism allows us to extend the functionality of an
object. In other words, we can create new types with extended properties of
the original type. Inheritance goes a long way toward our goal of code reuse.
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Another important object-oriented principle is polymorphism. A poly-
morphic object can hold objects of several different types. When opera-
tions are applied to the polymorphic type, the operation appropriate to the
actual stored type is automatically selected. In C++ polymorphism is
implemented as part of inheritance. Polymorphism allows us to implement
new types (classes) that share common logic. The use of inheritance to cre-
ate these hierarchies distinguishes object-oriented programming from
object-based programming, which involves the use of encapsulation and
information hiding but not inheritance. (We discuss inheritance and poly-
morphism in Chapter 4.)

In this chapter we describe how C++ uses classes to achieve encapsula-
tion and information hiding. A class is the same as a structure except that, by
default, all members are inaccessible to the general user of the class.
Because functions that manipulate the object’s state are members of the
class, they are accessed by use of the dot member operator (. )—just like any
other structure member—and thus are called member functions. These
functions are also called methods.

In object-oriented terminology, when we make a call to a member func-
tion, we are passing a message to the object. Besides syntax and improved
support for principles such as information hiding, the most obvious differ-
ence between object-oriented programming in C++ and typical C procedural
programming is philosophical: In C++ the object is in charge.

2.2 Basic class Syntax

In this section we discuss the basic syntax of C++ classes. More complicated
issues are discussed in later sections of this chapter.

2.2.1 Class Members

To recap briefly, a class in C++ consists of its members. These members can
be either data or functions. The functions are called member functions. Each
instance of a class is an object. Each object contains the data components
specified in the class (unless the data components are static, a detail that
can be safely ignored for now). A member function is used to act on an
object. Member functions are also called methods.!

As an example, Figure 2.1 presents the IntCell class. In this class,
each instance of IntCell—an IntCell object—contains a single data
member, storedvalue. Everything else in this particular class is a method.

1. We use the terms member function and method synonymously.

The use of
inheritance to create
hierarchies
distinguishes object-
oriented
programming from
object-based
programming.

A class is the same as
a structure except
that, by default, all
members are
inaccessible.

Functions can be
supplied as additional
members; these
member functions
manipulate the
object’s state.
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// A class for simulating an integer memory cell.

class IntCell
{
public:

// Construct the IntCell. Initial value is 0.
IntCell( )
{ storedvalue = 0; }

// Construct the IntCell. Initial value is initialValue.
IntCell( int initialValue )
{ storedvalue = initialvValue; )}

// Return the stored value.
int read( )
{ return storedvalue; }

// Change the stored value to x.
void write( int x )
{ storedvalue = x; }

private:
int storedvalue;
Y

Figure 2.1 A complete declaration of an IntCell class.

A public member is
visible to all routines
and may be accessed
by any method in any
class.

In our example, there are four methods. Two of these methods are read and
write. The other two are special methods known as constructors. Let us
look at some key features of this class declaration.

First, note the labels public and private. These labels determine vis-
ibility of class members. In this example, everything except the
storedvalue data member is public; storedvalue is private. A
public member is visible to all routines and may be accessed by any
method in any class. A private member is not visible to nonclass routines
and may be accessed only by methods in its class (an exception to this rule is
discussed in Section 2.3.4). Typically, data members are declared private,
thus restricting access to internal details of the class, while methods intended
for general use are made public. Restricting access is also known as infor-
mation hiding. Figure 2.2 shows the viewpoint from outside the class.
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IntCell members: read and write are accessible, but
storedValue is hidden.

Figure 2.2

By using private data members, we can change the internal represen-
tation of the object, without affecting other parts of the program that use the
object. We can do so because the object is accessed through the public
member functions, whose viewable behavior remains unchanged. The users
of the class do not need to know the internal details of how the class is
implemented. In many cases having this access leads to trouble. For
instance, in a class that stores dates by month, day, and year, if we make the
month, day, and year private, we prohibit an outsider from setting these
data members to illegal dates, such as February 29, 2001. Methods strictly
for internal use can (and should) be private. In fact, in a class, all mem-
bers are private by default, so the initial public is required.

Second, there are two constructors. A constructor is a method that
describes how an instance of the class is created. If no constructor is explic-
itly defined, one that initializes the data members using language defaults is
automatically generated.

The IntcCell class defines two constructors. The first is called if no
parameter is specified. The second is called if an int parameter is provided
and uses that int to initialize the storedvalue member. If the declaration
of an IntCell object does not match any of the known constructors, the
compiler complains.

2.2.2 Extra Constructor Syntax and Accessors

Although the class works as written, some extra syntax can make the code bet-
ter. Four changes are shown in Figure 2.3 (we omit comments for brevity).

Default Parameters

The IntCell constructor illustrates the default parameter. As a result, two
IntCell constructors are still defined. One accepts an initialvalue. The
other is the zero-parameter constructor, which is implied because the one-
parameter constructor says that initialvalue is optional by having a
default value. The default value of 0 signifies that O is used if no parameter is
provided. Default parameters can be used in any function, but they are most
commonly used in constructors.

~ Basic clégs‘yn}am

A private member is
not visible to
nonclass routines
and may be accessed
only by methods in its
class.

A constructor
describes how an
object is declared and
initialized.

If the initialization
does not match any
constructors, the
compiler complains.
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1 // A class for simulating an integer memory cell.
2

3 class IntCell

4 {

5 public:

6 explicit IntCell( int initialvalue = 0 )
7 storedValue( initialvalue ) { }

8 int read( ) const

9 { return storedvalue; }

10 void write( int x )

11 { storedvalue = x; }

12

13 private:

14 int storedvalue;

15 3;

Figure 2.3 IntCell class with revisions.

Initializer List

The IntCell constructor uses an initializer list (Figure 2.3, line 7) prior to
the body of the constructor. The initializer list is used to specify nondefault
initialization of each data member in an object directly. In Figure 2.3, there
is hardly a difference, but using initializer lists instead of an assignment
statement in the body saves time when the data members are class types that
have complex initializations. In some cases it is required. For instance, if a
data member is const (meaning that it cannot be changed after the object
has been constructed), then the data member’s value can be initialized only
in the initializer list. Also, if a data member is itself a class type that does not
have a zero-parameter constructor, then it must be initialized in the initial-
izer list. We discuss these details in Section 2.3.1.

The explicit Constructor

The IntCell constructor is explicit. You should generally make all one-
parameter constructors explicit to avoid behind the scenes type conversions.
Otherwise, C++’s somewhat lenient rules allow type conversions without
explicit casting operations. Usually, this behavior is unwanted—it destroys
strong typing and can lead to hard-to-find bugs. Consider the following:

IntCell obj; // obj is an IntCell
obj = 37; // Should not compile: type mismatch

This code fragment constructs an IntCell object obj and then performs an
assignment statement. But the assignment statement should not work,
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because the right-hand side of the assignment operator is not another
IntCell. Instead, obj’s write method should have been used. However,
C++ has lenient rules. Normally, a one-parameter constructor defines an
implicit type conversion, in which a temporary object is created that makes
an assignment (or parameter to a function) compatible. In this case, the com-
piler would attempt to convert

obj = 37; // Should not compile: type mismatch

to

IntCell temp = 37;
obj = temp;

Note that the one-parameter constructor can be used to construct temp.
The use of explicit means that a one-parameter constructor cannot be
used to generate an implicit temporary. Thus, because IntCell’s construc-
tor is declared explicit, the compiler will correctly complain of a type
mismatch.

In Sections 2.3.2 and 2.6, we present cases in which the lenient rules are
helpful. That usually occurs in the context of operator overloading (e.g., hav-
ing == make sense).

The explicit keyword is new, and not all compilers support it. How-
ever, the preprocessor can be used to replace all occurrences of explicit
with white space,? so there’s no reason not to put explicit in your code.

Constant Member Function

A method that examines but does not change the state of its object is an A method that does
accessor. A member function that changes the state of an object is a muta- not change the state
tor (it mutates the state of the object). In the typical class that stores a collec- gi::s‘;zlf ctisan
tion of objects, for instance, isEmpty is an accessor, and makeEmpty is a

mutator.

[n C++, we can mark each member function as being an accessor or a A constant member
mutator. Doing so is an important part of the design process and should not ~ functionis a function
be viewed as simply a comment. Indeed, not doing so has important seman- that does not change

* any class data
tic consequences. For instance, mutators cannot be applied to constant  members.
objects. By default, all member functions are mutators. To make a member
function an accessor, we must add the keyword const after the closing
parenthesis that ends the parameter type list. The result is a constant member

2. Use the statement
#define explicit
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The function
signature includes
the types of
paremeters, including
const and &
directives, but not the
return type.

The interface
describes what can
be done to an object.
The implementation
represents the
internal processes by
which the interface
specifications are
met.

function. A constant member function is a function that does not change
any class data members.

The const-ness (whether the const is or is not present after the closing
parenthesis) is part of the signature, and const can have many different
meanings. The function declaration can have const in three different con-
texts. Only the const after a closing parenthesis signifies an accessor. The
other uses are in parameter passing (Section 1.2.5) and the return type (see,
for instance, Section 2.2.4). The function signature includes the types of
parameters, including const and & directives, but not the return type.

In the IntCell class read is clearly an accessor: It does not change the
state of the IntCell. Thus it is made a constant member function at line 8.
If a member function is marked as an accessor but has an implementation
that changes the value of any data member, a compiler error is generated.?

2.2.3 Separation of Interface and Implementation

The class presented in Figure 2.3 contains all the correct syntactic con-
structs. However, in C++, separating the class interface from its implementa-
tion is more common. The interface lists the class and its members (data
and functions) and describes what can be done to an object. The implemen-
tation represents the internal processes by which the interface specifications
are met.

If a class had many function members and these functions were nontriv-
ial, having to write all the function definitions inside the class declaration
would be unreasonable. The more typical mechanism is to provide the mem-
ber function declarations in the class declaration and then define them later,
using a normal function syntax augmented with the class name and scope
operator : :. This mechanism separates the class interface from the class
implementation, which is a recurring theme throughout this text.

Because the interface represents the class design and tells us what can be
done to an object, the syntax of C++ allows the class declaration to specify
the properties of its member functions. In conjunction with good naming
conventions, this approach can greatly reduce the amount of commenting
that is necessary. Even so, the interface should be accompanied by com-
ments that specify what may be done to objects of the class. As far as the
class user is concerned, the internal details of how the implementation does
these tasks are not important. In this separation, a change in the implementa-
tion can be confined to the source file that contains the implementation.
Because this source file does not need to be #included by the users of the

3. Data members can be marked mutable to indicate that const-ness should not apply to
them. This feature is new and is not supported on all compilers.
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class (only the interface needs to be seen), separating the implementation
from the interface can lead to easier program maintainence by reducing
compile times and source file dependencies. Further, the implementation
source code need not be distributed by the program designers. It can be pre-
compiled and left in libraries.

Figure 2.4 shows the class interface for IntCell, Figure 2.5 shows the
implementation, and Figure 2.6 shows a main routine that uses the
IntCell.

Preprocessor Commands

The interface is typically placed in a file that ends with .h. Source code that Use #ifndef and
requires knowledge of the interface must #include the interface file, which ~#endif to enclose
here means that both the implementation file and the file that contains main ::;::p :ﬁ:t:n‘:: 2
have the #include directive. Occasionally, a complicated project will have  prevent muitiple
files that contain other files, and there is the danger that an interface might be  inclusion.

read twice in the course of compiling a file. This action can be illegal. To

guard against it, each header file uses the preprocessor to define a symbol

when the class interface is read, as shown on the first two lines in Figure 2.4.

The symbol name, _IntCell_H_, should not appear in any other file; usu-
ally we construct it from the filename. The first line of the interface file tests
if the symbol is undefined. If so, the file is processed. Otherwise, by skip-
ping to the #endi £, the file is not processed because we know that we have

already read the file.

#ifndef _IntCell_H_
#define _IntCell_H_

// A class for simulating an integer memory cell.

class IntCell
{

public:

explicit IntCell( int initialvalue = 0 );

10 int read( ) const;
1 void write{ int x );
12
13 private:
14 int storedvalue;
15 );
16
17 #endif

©COONOG &L WN =

Figure 2.4 IntCell class interface, in the file IntCell.h.
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The scope operator
: : is used to refer to
the scope. In a class
member function the
scope is the class.

#include "IntCell.h"

1
2
3 // Construct the IntCell with initialvalue.
4 IntCell::IntCell( int initialvValue )

5 : storedvalue( initialvValue )

6 |

7 1}

8

©

// Return the stored value.
10 int IntCell::read( ) const
11 ¢

12 return storedvalue;

13 }

14

15 // Store x.

16 void IntCell::write( int x )
17 {

18 storedvValue = x;

19 }

Figure 2.5 IntCell class implementation in file IntCell.cpp.

1 #include "IntCell.h"

2

3 int main( )

4 ¢

5 IntCell m; // Or, IntCell m( 0 ); but not IntCell m({ );
6

7 m.write( 5 };

8 cout << "Cell contents: " << m.read( ) << endl;
9

10 return 0;

11

Figure 2.6 Program that uses IntCell in file TestintCell.cop.

Scope Operator

In the implementation file, which typically ends in .cpp, .cc, or .C, each
member function must identify the class that it is part of. Otherwise, it would
be assumed that the function is in the global scope (and many errors would
result). The syntax is ClassName: :member. The scope operator : : is used
to refer to the scope. In a class member function, as here, the scope is the class.




Basic class Syntax

Signatures Must Match Exactly

The signature of an implemented member function must match exactly the const member
signature listed in the class interface. Recall that whether a member func-  function declarations
tion is an accessor (via the const at the end) or a mutator is part of the :ir;n':::r:_f the
signature. Thus an error would result if, for example, the const was omit-

ted from (exactly) one of the read signatures in Figures 2.4 and 2.5. Note

that default parameters are specified in the interface and are omitted in the

implementation.

Objects Are Declared Like Primitive Types

In C++, an object is declared just like a primitive type. On the one hand, the
following are legal declarations of an IntCell object:

IntCell objl; // Zero parameter constructor
IntCell obj2( 12 ); // One parameter constructor

On the other hand, the following are incorrect:

IntCell obij3 = 37; // Constructor is explicit
IntCell objd( ); // Function declaration

The declaration of ob33 is illegal because the one-parameter constructor
is explicit. It would be legal otherwise. (In other words, a declaration that
uses the one-parameter constructor must use the parentheses to signify the
initial value.) The declaration for ob7j4 states that it is a function (defined
elsewhere) that takes no parameters and returns an IntCell.

2.2.4 The Big Three: Destructor, Copy Constructor,
and operator=

In C++, classes come with three special functions already written for you: the
destructor, copy constructor, and operator=. In many cases you can accept
the default behavior provided by the compiler. Sometimes you cannot.

Destructor

The destructor is called whenever an object goes out of scope or is sub-  The destructor tells
jected to a delete. Typically, the only responsibility of the destructor is to how an object is
free any resources that were allocated by th tructor or other member ~ Sestroyed when it

ree any urces that were allocated by the constructor or other me exits scope and frees
functions during the use of the object. That includes calling delete for any resources when an
corresponding news, closing any files that were opened, and so on. The object exits scope.

default simply applies the destructor to each data member.
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The copy constructor
is called when an
object is passed or
returned by value.

By default, the copy
constructor is a
member-by-member
application of copy
constructors.

The copy assignment
operatoroperator=
is used to copy
objects.

Copy Constructor

A special constructor required to construct a new object, initialized to a copy
of the same type of object, is the copy constructor. For any object, such as
an IntCell object, a copy constructor is called

o for a declaration with initialization, such as

IntCell B = C;
IntCell B( C );

but not

B = C; // Assignment operator, discussed later

e when an object is passed using call by value (instead of by & or
const &), which, as mentioned in Section 1.2.5, usually should not
be done anyway.

¢ when an object is returned by value (instead of by & or const &)

The first case is the simplest to understand because the constructed objects
were explicitly requested. The second and third cases construct temporary
objects that are never seen by the user. Even so, a construction is a construc-
tion, and in both cases we are copying an object into a newly created object.

By default the copy constructor is implemented by applying copy con-
structors to each data member in turn. For data members that are primitive
types (e.g., int, double, or pointers), simple assignment is done, as for the
storedvalue data member in our IntCell class. For data members that
are themselves class objects, the copy constructor for each data member’s
class is applied to that data member.

The operator=

The copy assignment operator, operator=, is used to copy objects. It is
called when = is applied to two objects after have both been previously con-
structed. The expression 1hs=rhs is intended to copy the state of rhs into
1hs. By default the operator= is implemented by applying operator= to
each data member in turn.

Problems with the Defaults

If we examine the IntCell class, we see that the defaults are perfectly
acceptable and so we do not have to do anything, which is often the case. If a
class consists of data members that are exclusively primitive types and
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objects for which the defaults make sense, the class defaults usually do make
sense. Thus a class whose data members are int, double, vector<int>,
string, and even vector<string> can accept the defaults.

The main problem occurs in a class that contains a data member that is a
pointer. Let us sketch the problem and a solution now and provide more spe-
cifics when we implement the string class in Section 2.6.

Suppose that the class contains a single data member that is a pointer.
This pointer points at a dynamically allocated object. The default destructor
for pointers does nothing (for good reason—recall that we must call delete
ourselves). Furthermore, the copy constructor and operator= both copy
not the objects being pointed at, but simply the value of the pointer. Thus we
simply have two class instances that contain pointers that point to the same
object. As discussed in Section 1.6.2, this condition is a so-called shallow
copy. Typically, we would expect a deep copy, in which a clone of the entire
object is made. Thus, when a class contains pointers as data members and
deep semantics are important, we typically must implement the destructor,
operator=, and copy constructor ourselves.

For IntCell, the signatures of these operations are

~IntCell( ); // destructor
IntCell( const IntCell & rhs ); // copy constructor
const IntCell & operator=( const IntCell & rhs );

Although the defaults for IntCell are acceptable, we can write the
implementations anyway, as shown in Figure 2.7. For the destructor, after
the body has been executed, the destructors are called for the data members,
so the default is an empty body. For the copy constructor, the default is an
initializer list of copy constructors, followed by execution of the body.

operator= is the most interesting. Line 15 is an alias test, to make sure
that we are not copying to ourselves. Assuming that we are not, we apply
operator= to each data member (at line 16). We then return a reference to
the current object, at line 17, so assignments can be chained, as in a=b=c.
(The return is actually a constant reference so that the nonsensical (a=b)=c
is disallowed by the compiler). Let us look at the uses of the keyword this
in more detail.

An additional keyword in C++, the pointer this points at the current
object. Think of the pointer this as a homing device that, at any instant in
time, tells you where you are. Consequently, *this is the current object,
and returning *this achieves the desired result. Under no circumstances
will the compiler knowingly allow you to modify this. The return at line 17
uses *this. The other use of this is at line 15.

Assignment
operators generally
return constant
references.

The default
destructor is a
member-by-member
application of
destructors.

The pointer this
points at the current
object. It is used to
return a constant
reference for
assignment operators
and also to test for
aliasing.
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Aliasing is a special
case that occurs
when the same object
appears in more than
one role.

Either implement a
good copy
constructor or
disable it. Placing the
declaration in the
private section
disables the copy
constructor.

1 IntCell::~IntCell( )
2
3 // Does nothing since IntCell contains only an int data
4 // member. If IntCell contained any class objects their
5 // destructors would be called.
6 }
7
8 IntCell::IntCell( const IntCell & rhs )
9 storedvalue( rhs.storedvValue )
10 {
1 3
12
13 const IntCell & IntCell::operator={ const IntCell & rhs )
14 {
15 if( this !'= &rhs ) // Standard alias test
16 storedvValue = rhs.storedvValue;
17 return *this;
18
Figure 2.7 The defaults for the Big Three.

The expression a=a is logically a nonoperation (a no-op). In some cases,
although not here, failing to treat it as a special case can result in the destruc-
tion of a. For example, consider a program that copies one file to another. A
normal algorithm begins by truncating the target file to zero length. If no
check is performed to verify that the source and target file are indeed differ-
ent, then the source file will be truncated—hardly a desirable feature. Thus
when copying, the first thing you should do is check for this special case,
known as aliasing, which occurs when the same object appears in more than
one role.

In the routines that we write, if the defaults make sense, we always
accept them. However, if the defaults do not make sense, we need to imple-
ment the destructor, and operator=, and the copy constructor. When the
default does not work, we can generally implement the copy constructor by
mimicking normal construction and then calling operator=. Another often
used option is to give a reasonable working implementation of the copy con-
structor but then place it in the private section, to disallow call by value.

When the Defaults Do Not Work

The most common situation in which the defaults do not work occurs when
a data member is a pointer type and the pointee is allocated by some object
member function (e.g., the constructor). For example, suppose that we
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1 class IntCell

2 {

3 public:

4 explicit IntCell( int initialvalue = 0 )
5 { storedvValue = new int( initialvalue ); }
6

7 int read( ) const;

8 { return *storedvValue; }

9 void write( int x );

10 { *storedvalue = x; }

11

12 private:

13 int *storedvValue;

14 3;

Figure 2.8 The data member is a pointer; the defaults are no good.

1 int £( )

2 {

3 IntCell a( 2 );

4 IntCell b = a;

5 IntCell c;

6
7 ¢ = b;

8 a.write( 4 );

9 cout << a.read( ) << endl << b.read( ) << endl
10 << c.read( ) << endl;
1 return 0;

12 }

Figure 2.9 Simple function that exposes problems in Figure 2.8.

implement the IntCell by dynamically allocating an int, as shown in Fig-
ure 2.8. For simplicity, we do not separate the interface and implementation.

Problems with this approach are exposed in Figure 2.9. First, the output
is three 4s, even though logically only a should be 4. The problem is that the
default operator= and copy constructor copy the pointer storedvalue.
Thus a.storedvalue, b.storedvalue, and c. storedvalue all point at
the same int value. These copies are shallow: that is, the pointers rather
than the pointees are copied. A second less obvious problem is a memory
leak. The int initially allocated by a’s constructor remains allocated and
needs to be reclaimed. The int allocated by c’s constructor is no longer ref-
erenced by any pointer variable. It also needs to be reclaimed, but we no
longer have a pointer to it.

To fix these problems, we implement the Big Three. The result (with the
interface and implementation separated) is shown in Figure 2.10. Generally
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1 class IntCell

2 {

3 public:

4 explicit IntCell( int initialvalue = 0 );
5

6 IntCell( const IntCell & rhs );

7 ~IntCell( };

8 const IntCell & operator=( const IntCell & rhs );
9

10 int read( ) const;

11 void write( int x );

12

13 private:

14 int *storedvalue;

15 };

16

17 IntCell::IntCell( int initialvValue )

18 {

19 storedvalue = new int( initialvalue );
20 1

21

22 IntCell::IntCell( const IntCell & rhs )

23 |

24 storedvValue = new int( *rhs.storedvalue );
25

26

27 IntCell::~IntCell( )

28 {

29 delete storedvalue;

30 )

31

32 const IntCell & IntCell::operator=( const IntCell & rhs
33 ¢

34 if( this != &rhs )

35 *storedValue = *rhs.storedValue;
36 return *this;

37

38

39 int IntCell::read( ) const

40

4 return *storedvalue;

42

43

44 void IntCell::write( int x )

45 ¢

46 *storedvValue = X;

47

Figure 2.10 Data member is a pointer; Big Three need to be written.




speaking, if a destructor is necessary to reclaim memory, the defaults for
copy assignment and copy construction are not acceptable.

If the class contains data members that do not have the ability to copy
themselves, the default operator= will not work. We show some examples
of this lack later in the text, starting with the string class in Section 2.6.

2.2.5 Default Constructor

If no user-declared constructors are provided fora class, a default construc-
tor is automatically generated. The default takes no parameters and is essen-
tially a member-by-member application of each member’s no-parameter
constructor, with language defaults for the primitive members.

2.3 Additional C++ Class Features

Now that we have discussed the basics of classes, we examine some addi-
tional related issues, including

* asecond look at the distinction between initialization and assignment,
 implicit type conversions for classes,

* more details of operator overloading,

« input and output, including the friend concept, and

« private global variables (known as private static class members).

To illustrate these concepts, we design a class called Rational that
manipulates rational numbers. A properly designed rational number class
allows us to use rational numbers as easily as any of the built-in types, such
as integers, doubles, or characters. Extending the types to which an operator
can be applied is known as operator overloading. In Figure 2.11, the pro-
gram reads a sequence of rational numbers and outputs their average and
maximum. If we replace the word Rational with double (and use int for
IntType at lines 24 and 27), the program requires no other changes to com-
pile and run.

Examining main, we can see the use of an explicit type conversion (the
comparison at line 24 and the division at line 27, in which an IntType is
converted to a Rational). The other notable feature is the overloading of
the input and output stream operators on lines 15, 17, 25, and 27.

Figures 2.12 and 2.13 show the interface for the Rational class. We
attempted to give a complete listing of the operations that might be expected.
However, providing actual implementations of all these operations does

Additional G++ Class Features

The default
constructor is a
member-by-member
application of a no-
parameter
constructor.

Extending the types
to which an operator
can be applied is
known as operator
overloading.



Objects and Classes

#include "Rational.h"
#include <iostream>
using namespace std;

// Rational number test program.
int main( )
{

Rational x;

Rational sum

Rational max

int n = 0;

OCoONOTOALWN =

cout << "Type as many rationals as you want" << endl;

while( cin >> x )
{

cout << "Read " << x << endl;

sum += X;

if( x > max )

max = X;

n++;
}
cout << "Read " << n << " rationals << endl;
if( max > IntType( 0 ) )

cout << "Largest positive number is " << max << endl;
if(n>0)

cout << "Average is " << sum / IntType( n ) << endl;

return 0;

30

Figure 2.11  Simple main routine for using rational numbers.

require a substantial amount of coding, so in the discussion that follows, we
implement a representative subset of the member functions.

Recall that a rational number consists of a numerator and a denomina-
tor. The data members of the class are numer and denom, representing the
numerator and denominator, respectively. We use IntType to represent
their type. The type IntType could be an int, although that restricts the
range of rationals that can be represented, especially as intermediate calcula-
tions could easily overflow an int. (In Exercise 2.26 you are asked to imple-
ment a general IntType, which is a lot more work than it seems.) Some
systems come with an equivalent class.

We maintain the invariant that the denominator is never negative and
that the rational number is expressed in the lowest form. Thus, the result of
8/-12 would be represented with a numerator of —2 and a denominator of 3.




Additional C++ Class Features

1 // Rational class interface: support operations for rationals.
2 //

8 // CONSTRUCTION: with (a) no initializer, or (b) an integer
4 // that specifies the numerator, or (c) two integers

5 // specifying numerator and denominator, or

6 // (d) another Rational.

7 //

8 // ***************PUBLIC OPERATIONS**********************

9 // =, +=, -=, /=, *= --> Usual assignment )

10 // +, -, /7, * --> Usual binary arithmetic

11 // <, <=, >, >=, ==, I= --> Usual relational and equality
12 // ++, --, +, -, ! --> Usual prefix, postfix, unary
13 // >> and << --> Input and output

14 // double toDouble( ) --> Return double eguivalent

15

16 #include <iostream>
17 using namespace std;

18

19 typedef long IntType; // Better method is in Chapter 3
20

21 class Rational

22 {

23 public:

24 // Constructors

25 Rational ( const IntType & numerator = 0 )

26 : numer ( numerator ), denom( 1 ) { )}

27 Rational ( const IntType & numerator,

28 const IntType & denominator )

29 : numer ( numerator ), denom{ denominator )

30 { fixSigns( ); reducel( ); }

31 Rational ( const Rational & rhs )

32 : numer ( rhs.numer ), denom{ rhs.denom ) { }

33

34 // Destructor

35 ~Rational( ) { }

36

37 // Assignment Ops (implementation in Figure 2.15)
38 const Rational & operator= ( const Rational & rhs );
39 const Rational & operator+=( const Rational & rhs );
40 const Rational & operator-=( const Rational & rhs );
41 const Rational & operator/=( const Rational & rhs );
42 const Rational & operator*=( const Rational & rhs );
43

44 // Math Binary Ops (implementation in Figure 2.16)
45 Rational operator+( const Rational & rhs ) const;

46 Rational operator-( const Rational & rhs ) const;

47 Rational operator/( const Rational & rhs ) const;

48 Rational operator*( const Rational & rhs ) const;

Figure 2.12 The Rational class interface (part 1).
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49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

// Relational & Equality Ops (implemented in Figure 2.17)

bool operator< ( const Rational & rhs ) const;
bool operator<=( const Rational & rhs ) const;
bool operator> ( const Rational & rhs ) const;
bool operator>=( const Rational & rhs ) const;
bool operator==( const Rational & rhs ) const;
bool operator!=( const Rational & rhs ) const;

// Unary Operators (implemented in Figures 2.18 and 2.19)

const Rational & operator++( ); // Prefix
Rational operator++( int ); // Postfix
const Rational & operator--( ); // Prefix
Rational operator--( int ); // Postfix
const Rational & operator+( ) const;

Rational operator-( ) const;

bool operator!( ) const;

// Member Function
double toDouble( ) const // Do the division
{ return static_cast<double>( numer ) / denom; }

// I/0 friends: privacy is waived (see Figure 2.20)

friend ostream & operator<< ( ostream & out,
const Rational & value );
friend istream & operator>> ( istream & in,

Rational & value );

private:
// A rational number is represented by a numerator and
// denominator in reduced form

IntType numer; // The numerator
IntType denom; // The denominator
void fixSigns( ); // Ensures denom >= 0
void reduce( ); // Ensures lowest form

84 3;

Figure 2.13 The Rational class interface (part 2).

We allow denom to be 0, to represent either infinity or —infinity
(even if numer is also 0). These invariants are maintained internally by
applying fixSigns and reduce, as appropriate. Those routines are
shown in Figure 2.14. The gcd routine computes the greatest common divi-
sor of two integers (the first of which might be negative). For instance
gcd(35,45) is 5. Computing the greatest common divisor is an interesting
problem in its own right and is discussed in Section 8.4.
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1 void Rational::fixSigns( )
2 {

3 if( denom < 0 )

4 {

5 denom = -denom;

6 numer = -numer;

7 }

8 )

9

10 void Rational::reduce( )
11 ¢

12 IntType d = 1;

13

14 if( denom != 0 && numer != 0 )
15 d = gcd( numer, denom );
16

17 1if(d > 1)

18 (

19 numer /= d;

20 denom /= d;

21 }

22 )

Figure 2.14  Private member routines to keep Rat ionals in normalized format.

The remainder of this section is devoted to examining C++ features that
are used in this class—namely, initialization lists, type conversions, operator
overloading, and input and output.

2.3.1 Initialization Versus Assignment
in the Constructor Revisited
Line 25 of the Rational class interface (see Figure 2.12) initializes as

Rational{ const IntType & numerator = 0 )
: numer { numerator )}, denom( 1 ) { }

Recall that the sequence preceding the braces is the initializer list. Alterna-
tively, the constructor could be written as

Rational ( const IntType & numerator = 0 )
{ numer = numerator; denom = 1; }
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Simple initialization
of class members
using initializer lists
is preferable to
assignment in the
constructor.

Members are
initialized in the order
they are declared, not
in the order they are
encountered in the
initialization list.
Generally, it is best to
avoid writing code
that depends on this
fact.

The difference between the two is as follows. The form in the class inter-
face, which uses an initializer list to specify data member initialization, ini-
tializes numer and denom using the one int-parameter constructor.
Because the body of the constructor is empty, no further operations are per-
formed. The alternative form initializes numer and denom by using the no-
parameter constructor. The reason is that any member not specified in the
initializer list is initialized using a zero-parameter constructor. The copy
assignment operator is then called to perform the two assignments that are
in the body of the Rational constructor. Imagine that IntType is itself a
class that represents arbitrary precision integers. In that case the alternative
form is wasteful because it first initializes numer and denom to 0s, only to
overwrite them with assignment copies. This procedure could have impor-
tant repercussions, such as requiring the costly expansion of a dynamically
allocated block of memory (we demonstrate this requirement in the
string class in Section 2.6).

Because initialization of each class member should usually be done with
its own constructor, when possible you should use explicit initializer lists.
Note, however, that this form is intended for simple cases only. If the initial-
ization is not simple (e.g., if it allocates memory or error checks are needed),
use an assignment. Among other things, the order of evaluation of the initial-
izer list is given by the order in which class data members are listed. In our
case, numer is initialized before denom only because it appears earlier in the
listing of data members (of course, this does not apply to assignments in the
body of the constructor). If the initialization of numer depended on the ini-
tialization of denom being done first, we would have to switch their declara-
tion order. If we were to do this, we would need to comment that there is an
order dependency. If possible, you should avoid order dependencies.

Initializer Lists Can Be Mandatory

An initializer list is required in three common situations.

1. If any data member does not have a zero-parameters constructor,
the data member must be initialized in the initializer list.

2. Constant data members must be initialized in the initializer list. A
constant data member can never be assigned to after the object is
constructed. An example might be the social security number in an
Employee class. Each Employee has his or her own social security
number data member, but presumably the social security number
never changes.
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3. A data member that is a reference variable (for instance an
istream &) must be initialized in the constructor.

2.3.2 Type Conversions

C++ has rules that allow the mixing of types. For instance, if i isan int and A type conversion
d is a double, d=1 is allowed. This is known as an implicit type conver- creates atemporary
sion because it is performed without the use of an explicit type conversion object of a new type.
operator. A temporary tmp is created from i and then is used as the right-
hand side of the assignment. Some languages do not allow implicit type con-
version because of the danger of accidental usage and weakening the notion
of strong typing. However, forcing all type conversions to be explicit tends
to load code with conversions, sometimes unnecessarily.
A type conversion creates a temporary object of a new type. In C++ the A constructor defines
rules for type conversion follow this general principle: If you can construct —an automatic type
an object of type t1 by providing an object of another type t2, then a type conversion.
conversion from t2 to t1 is guaranteed to follow the same semantics. In the
case of the Rational class, any appearance of an IntType object is
implicitly converted to a (temporary) Rational when needed, as in the pre-
viously cited examples in main (Figure 2.11, lines 24 and 27). The tempo-
rary is created by executing the constructor. If you do not want implicit type
conversions, declare your one-parameter constructors to be explicit.
A technical point: In our case, even though a conversion is defined for Conversions are not
int to IntType and one is defined from IntType to Rational, transitiv- transitive.
ity does not hold. Thus these two conversions do not imply a third conver-
sion from int to Rational. This lack of transitivity is why the type
conversion from int to IntType is performed in Figure 2.11 at lines 24 and
27. We could attempt to provide a constructor for Rational that takes an
int, which would solve our problems by providing the third type conver-
sion. However, if TntType is an int, that approach provides two identical
constructors, and the compiler will complain about the ambiguity.
We can also define a type conversion by overloading operator (). For Conversions can also
instance, we can specify a type conversion from Rational to int by writ- bedefinedas member

ine th ber f i functions, but do not
1Ing the member Tunction overdo them or

ambiguity can result.
operator int ( ) const

{ return denom == 1 ? numer : int( longDecimal{ } ); }
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A binary arithmetic
operator usually
returns an object by
value because the
result is stored in a
temporary. It can be
implemented by
calling the
corresponding

assignment operator.

1 const Rational & Rational::operator=( const Rational & rhs
2 {
3 if( this != &rhs )
4 {
5 numer = rhs.numer;
6 denom = rhs.denom;
7 }
8 return *this;
9 }
10

11 const Rational & Rational::operator+=( const Rational & rhs
12 {

13 numer = numer * rhs.denom + rhs.numer * denom;
14 denom = denom * rhs.denom;

15 reduce( );

16

17 return *this;

18 }

Figure 2.15 Assignment operators (two of five) for the Rational class.

)

Overloading the type conversion operator in this way is not recommended.
Too many implicit conversions can easily get you in trouble; again, ambigu-
ity can result. We present an example of this problem in Section 9.9.

2.3.3 Operator Overloading

We examine the operators in the same order given in the class interface.
Many of the operators, such as the assignment operators, use no new princi-
ples. Two of them are shown in Figure 2.15. However, we do have to be
careful. For example, lines 13 and 14 cannot be interchanged. For the corre-
sponding /= operator, we need to use temporaries.

The next group of operators are the binary arithmetic operators. A
binary arithmetic operator usually returns an object by value because the
result is stored in a temporary. It also can be implemented by calling the cor-
responding assignment operator. A simple implementation is provided in
Figure 2.16 for the addition operator. Note how we use a previously defined
operator, an excellent general technique.

An interesting technical issue here is the return type. As usual, we have
three choices: We can return by value, by reference, or by constant refer-
ence. A return by reference is certainly wrong: We cannot allow expressions
such as (a+b) =c because a+b is not a named object; the assignment could
at best be meaningless.
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1 Rational Rational::operator+( const Rational & rhs )} const

2 {

3 Rational answer( *this ); // Initialize answer with *this
4 answeyr += rhe; {{ B33 the second operand

5 return answer; // Return answer by copy

6 }

Figure 2.16 Mathematical binary operators (one of four) for the Rational class.

1 bool Rational::operator==( const Rational & rhs ) const
2

3 return numer * rhs.denom == denom * rhs.numer:

4

}

Figure 2.17 Relational and equality operators (one of six) for the Rational
class.

Because the += operator returns a const & and a copy takes more time
than a constant reference return, we appear to be doing the wrong thing.
Why not return a constant reference? The answer is that the reference would
refer to an automatic object, and when the procedure returns, the object is
destroyed (by the destructor). Thus answer cannot be referenced. Returning
a pointer to an automatic variable is a common C mistake. Analogously,
returning a reference to an automatic variable ordinarily would be a common
C++ mistake, but most C++ compilers flag the error at compile time.

What if we use a static local variable for answer? There are two
problems—one is easy to fix, and one isn’t easy to fix. The easy-to-fix prob-
lem is that the initialization is performed only once (the object is created
only once). We can fix it with an additional assignment statement. The real
problem is that for any four rationals, an expression such as

{ rl + ¥2 ) == ( r3 + rd )

is always true because the values being compared are references to the same
static object. Thus we see that what we have done is the only correct
approach. Hence a statement such as

rl = r2 + r3;

must call a copy constructor to copy answer into a temporary variable and
then call a copy assignment operator to copy the temporary into r1. Many
compilers optimize out the temporary and thus the copy constructor.

Next, are the equality and relational operators. A typical routine is shown
in Figure 2.17. For the equality operators == and !=, we can do better by
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Prefix and postfix ++
and - - operators
have different
semantics. The prefix
member function is
specified by an empty
parameter list. The
postfix form has an
unused int
parameter.

1 const Rational & Rational::operator++( ) // Prefix form
2 {

3 numer += denom;

4 return *this;

5 }

6

7 Rational Rational::operator++( int ) // Postfix form
8 {

9 Rational tmp = *this;

10 numer += denom;

11 return tmp;

12

Figure 2.18 Prefix and postfix operators (two of four) for the Rational class.

avoiding the expensive (and potentially overflowing) multiplication and
directly comparing numerators and denominators. We leave this for you to
do as an exercise (see Exercise 2.16), with a warning that you have to be
careful when the numerator or denominator is 0.

We continue with the ++ and - - operators and examine the incrementing
operator. In C++ there are two kinds: prefix (before the operand) and postfix
(after the operand). Both add 1 to an object, but the result of the expression
(which is meaningful if used in a larger expression) is the new value in the
prefix form and the original value in the postfix form. As they are completely
different in semantics and precedence, we need to write separate routines for
each form. They have the same name, so they must have different signatures
to be distinguished. We give them different signatures by specifying an empty
parameter list for the prefix form and a single (anonymous) int parameter
for the postfix form. Then ++x calls the zero-parameter operator++; and
x++ calls the one-parameter operator++. The int parameter is never
used; it is present only to give a different signature.

The prefix and postfix forms shown in Figure 2.18 add 1 by increasing
numer by the value of denom. In the prefix form we can then return *this
by constant reference, as for the assignment operators. The postfix form
requires that we return the initial value of *this, and thus we use a tempo-
rary. Because of the temporary, we have to return by value instead of refer-
ence. Even if the copy constructor for the return is optimized away, the use
of the temporary suggests that, in many cases, the prefix form will be faster
than the postfix form.

The three remaining unary operators have straightforward implementa-
tions, as shown in Figure 2.19. operator! returns true if the object is zero
by applying ! to the numerator. Unary operator+ evaluates to the current
object; a constant reference return can be used here. operator- returns the
negative of the current object by creating a new object whose numerator is
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1 bool Rational::operator!( ) const

2 {

3 return !numer;

4

5

6 const Rational & Rational::operator+( ) const
7 {

8 return *this;

9 )

10

11 Rational Rational::operator-( ) const
12 ¢

13 return Rational ( -numer, denom );
14 )

Figure 2.19  Additional unary operators (three of three) for the Rational class.

the negative of the current object. The return must be by copy because the
new object is a local variable. However, a trap lurks in operator-. If the
word Rational is omitted from line 13, the comma operator evaluates
(-numer, denom as denom, and then an implicit conversion gives the
rational denom/ 1, which is returned.

What Can Be Overloaded?

In C++, all but four operators can be overloaded. The four nonoverloadable
operators are ., .*, ?:, and sizeof. Operator precedence cannot be
changed. That is, a+b*c is always a+ (b*c). Arity (whether an operator is
unary or binary) cannot be changed so, for example, we cannot write a unary
/ operator or a binary ~ operator. Finally, only existing operators can be
overloaded, and new operators cannot be created.

2.3.4 Input and Output and Friends

The remaining operators in the Rational class are << and >>, which, as
discussed in Appendix A, are used for output and input. When we make the
call

cout << rl; // Output Rational rl

the operator<< takes an ostream and a Rational as parameters. Both
parameters are passed by reference. The operator<< returns a reference to
an ostream so that output calls can be concatenated. A similar situation
occurs for the operator>>, the only significant difference being that the
Rational parameter is not a constant reference.
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Input and output can
be defined by
overloading << and
>>.

Friends are functions
that are exempt from
the usual private
access restrictions.

Consequently, we arrive at the following prototypes for operator<<
and operator>>:

ostream & operator<<( ostream & out, const Rational & r );
istream & operator>>( istream & in, Rational & r );

These are not member functions because, when they are called, a Rational
is not the controlling object. The only class that these could possibly be
members of would be the ostream or i stream class, in which case the first
parameter would not be present. For example, ostream has a member func-
tion for int output:

ostream & operator<<( int value );

Needless to say, we cannot add member functions to ostream every time
we design a new class. Consequently, the input and output functions for
Rational are stand-alone functions and are not members of any class. They
are declared in global scope and are used just like any other function.

Figure 2.20 shows the implementation of these functions. Note again
that no scope resolution operator is attached to their names. The input rou-
tine reads a fraction or a single integer, as appropriate, and then normalizes
the fraction. We have not attempted any of the error checking required in a
serious implementation. Likewise, the output routine is fairly simple and
works by calling the preexisting output routines as needed.*

You may have noticed something strange in Figure 2.20: If numer and
denom are private data members, how can a nonmember function access it?
Under normal circumstances it cannot. To get around that restriction, we
specified in the class interface (at lines 71 to 74 in Figure 2.13) that these
functions are friends, which are exempt from the usual privte access restric-
tions. Notice that only the class can give additional access, and so this does
not violate information-hiding principles. In general, classes should not have
too many friends. Section 2.4.1 discusses an alternate strategy and Exercise
2.32 asks you to rewrite the Rational class to avoid the use of friends.

2.4 Some Common Idioms

In this section we discuss three idioms:

I. a technique that allows us to write global functions without using
friend declarations;

4. Input and output are discussed in Section A.2.
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1 istream & operator>>( istream & in, Rational & value )
2 {

3 in >> value.numer;

4 value.denom = 1;

5

6 char ch;

7 in.get( ch );

8

9 if( !'in.eof( ) )

10 {

11 if( ch == '/" )

12 {

13 in >> value.denom;

14 value.fixSigns( );

15 value.reduce( );

16 }

17 else

18 in.putback( ch ); // unread ch
19 }

20

21 return in;

22

23

24 ostream & operator<<( ostream & out, const Rational & value )
25

26 if( value.denom != 0 )

27 {

28 out << value.numer;

29 if ( value.denom != 1 )

30 out << '/' << value.denom;
31 return out;

32 }

33

34 // Messy code for denom == 0
35 if( value.numer == )

36 out << "indeterminate";

37 else

38 {

39 if( value.numer < 0 )

40 out << '-';

41 out << "infinity";

42 }

43 return out;

44

Figure 2.20 /O friends for the Rational class.
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2. use of static data members, which are data shared among all
instances of the class; and

3. enum, which is a way to store integer class constants.

2.4.1 Avoiding Friends

As we discussed at the end of Section 2.3, classes should have as few friends
as possible. We can get by with few friend functions if the class’s public
member functions have enough flexibility, which typically is the case.

Two functions that are prime candidates for friendship are the input and
output functions. The input function can often be rewritten by reading basic
data, using the data to construct an object, and then copying the object into
the reference parameter that is to be the target. For example, here is how we
can write operator>> for the IntCell class:

istream & operator>> ( istream & in, IntCell & val )

{

int x;
in >> x;
if( tin.fail( ) )

val = IntCell({ x );

return in;

Output can often be performed by calling accessors. However, a more
common technique is to add the public member function print to the class.
print outputs in exactly the format required by operator<<. The signa-
ture of the print member function is

public:
void print( ostream & out = cout ) const;

We can then implement operator<< by calling print:
ostream & operator<< ( ostream & out, const IntCell & x )
{

x.print( out );
return out;

A complete example of this procedure is shown in Figure 2.28.
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2.4.2 Static Class Members

Suppose that we have an object that we want all the members of the Rational A static class member
class to share. For instance, suppose that we want to keep track of the number s essentially a global
, . . . . variable visible only
of Rational objects that are currently active. What we need is essentially a oo o0
single global variable because any class member will be local to the instance
of each object, whereas all the Rational instances will share and have access
to the global object. Unfortunately, a global variable also allows access to
everyone else, violating information hiding principles. In C++ we can
declare a static class member.> A static class member is essentially a global
variable visible only to class members (if declared private) and whose scope
is the same as a class member, not a data member. In other words, there is
one static member per class instead of one data member per object.
Our example would work as follows. In the private section of the
Rational class, we declare

private:
static int activeInstances;

We could then increment activelInstances in the constructor and decre-
ment it in the destructor. In the program, where we normally place defini-
tions of global objects, we need to place the defining declaration

int Rational::activeInstances = 0;

2.4.3 The enum Trick for Integer Class Constants

Occasionally we need a classwide constant. For instance, consider the con-
stant ios: :in. Here, in is a constant that is shared among all instances of
the class ios. We can always simply use the same syntax as in Section 2.4.2,
putting the word const in front of the type (in both the class interface and
defining declaration).

If the object is an integral type, two shorthand options are available.
First, we can avoid the defining declaration by providing the value in the
interface, as in

public:
static const int RED = O0;

static const int BLACK 1;

5. A static class member is different from a static local variable. A static local variable is a
variable that exists inside a function but has lifetime that extends for the entire program.
Think of it as a global variable that is accessible only from inside the function in which is
declared.
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Unfortunately, this is a recent language addition and does not work on all
compilers. An alternative is the enum trick, which we use in Exercise 2.23:

public:
enum { RED = 0, BLACK =1 };

2.5 Exceptions

When we design classes for use by others (or even just ourselves), we are
often confronted with a problem: How can class methods report error condi-
tions back to the user of the class?

One possibility is to have the method print an error message and then
continue on. This solution is not a reasonable because it is likely to allow the
program to keep running while in a bad state. Alternatively, we can print a
message and terminate the program, which is often a rather drastic solution
to put in a library routine. For instance if you are trying to load a Web page
and the page cannot be found, you would not want that to cause your
browser to exit automatically. So you want the method to inform the caller
that an error has occurred and let the caller decide what to do. The caller
then has the option of terminating the program, attempting error recovery, or
passing the problem up the chain to its caller. So how does a method tell the
caller that there is a problem?

Several techniques have been popular in the past. One technique is to set
a variable to indicate failure. For instance, in the I/O package, the istream
classes will set a class variable to indicate an I/O failure. Calls to the fail,
good, bad, and eof methods simply query the state of this variable. How-
ever, this solution has several weaknesses, two of which are that the pro-
grammer can easily forget to test the state of the variable, leading to
unpredictable results, and that the programmer must clear the error state
before continuing.

Another popular technique is to have a method return an error code, but
this solution also has several weaknesses. First, the programmer can ignore
the return value, leading to unpredictable results. (For example, many C pro-
grammers routinely ignore the return value of printf, leading to problems
when I/O errors occurred on output.) Second, there may be no natural return
value. For instance, if a method performs division, what return value can be
used to signal a divide by zero error?

A third alternative is to pass an additional parameter by reference to
store the error condition. This option solves the problem of running out of
unique return values, but it leaves intact the possibility that errors might be
ignored. The fourth option is to use exceptions.
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An exception is an object that stores information transmitted outside the  An exception is an
normal return sequence. An exception is propagated back through the calling Pﬁle"‘ t:‘_at stores
. . . . . . Intformation
sequence until some routine catches it. An exception is used to signal excep- .0 ved outside
tional occurrences, such as errors. the normal return
Any object (for instance an int) can be an exception object; however, sequence and is used

: . . . .. i ti
defining a class that stores the exception’s transmitted information is more ~© Signal exceptional
occurrences, such as

common. The throw statement is used to propagate an exception, as in errors.
throw 3; // Throw an int object with value 3

throw IntCell( 3 ); // Throw an IntCell with state 3

throw IntCell( ); // Throw an IntCell with state 0

An exception object can be allowed to propagate uncaught. In that case,
the program terminates.® For truly exceptional occurrences, such as being
out of memory, or using an out-of-range index for a vector or string this
action is reasonable. In fact, our implementation of the string and vector
classes both throw an exception when that occurs (unfortunately, the Stan-
dard Library implementations do no error checking).

In this text, we use exceptions only for programming errors. Thus we do
not need to catch exceptions. Other applications could require catching
exceptions and performing some error recovery. In those cases, a more care-
ful design of the exception objects is required, as is an understanding of the
syntax for catching exceptions. The design of these exception objects typi-
cally involves inheritance. Thus, we defer additional discussion of exception
handling until we cover inheritance in Chapter 4.7

Although the theory of exceptions is nice (and they are handled well in
other languages, such as Java), exceptions were a late addition to C++. Con-
sequently, they are not properly integrated into the C++ libraries (the I/O
libraries do not use exceptions), and unexpected interactions occur between
exceptions and other language features, most notably templates. This is why
we use exceptions only to signal errors that we expect to be unrecoverable.

2.6 A string Class

Recall from Chapter | that C++ has two types of strings. The first is the prim-
itive string, or C-style string (inherited from the C programming language),
which is a null-terminated array of characters. The second is a string class

6. If the exception is not caught, the standard function terminate is called; typically,
terminate stops the program abnormally. A replacement for terminate can be
installed.

7. Sections 4.1, 4.2.2, and 4.2.3 illustrate concepts of inheritance by discussing how excep-
tion classes are written and used.
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that was added to the language as part of the Standard Library. If your com-
piler has a string class you should use it; it will probably be very efficient.
Otherwise, you have to choose between the C-style string or providing your
own.

A C-style string uses an array of characters to represent a string. A special
character, the null terminator, ends a string; it is represented by ' \0'. Thus
the string "abc" is stored in an array of char, with the first four positions
containing 'a', 'b', '‘c', and '\ 0. Anything following the null terminator
is not considered part of the string. Because an array name is just a pointer,
C-style strings cannot be manipulated like first-class objects. Instead, to
copy strings we must use the function strcpy. The user must guarantee that
the target array is large enough to store the string being copied into it; other-
wise, runtime errors that are difficult to debug are likely to result. This
approach makes manipulating C-style strings tedious and error-prone. To
compare C-style strings, we use strcmp. We can access individual charac-
ters in the string by array indexing, but the index is unchecked.

The string class can be implemented by storing a primitive array
(buffer) as a data member. Recall that a primitive array is a second-class
object, implemented as a pointer to a block of memory large enough to store
the array objects. Because the primitive array is represented as a pointer, the
size of the array is unknown and needs to be maintained in a separate vari-
able, bufferLength.

Memory for the array is obtained by calling the new[] operator. This
call occurs in the constructor and the assignment operators ocperator= and
operator+=. The memory needs to be reclaimed by calling deletel].
This call occurs in the destructor and in both assignment operators. (Note
that calls to new[] are always matched by calls to delete[].)

For concrete syntax, refer back to Section 1.2.3, where we described
abstractly how to expand primitive array arr from size 10 to size 12. Recall
that we had the following series of operations shown again as Figure 2.21.

1. We remember where the memory for the 10-element array is (the
purpose of original).

2. We create a new 12-element array and have arr use it.

3. We copy the 10 elements from original to arr; the two extra ele-
ments in the new arr have some default value.

4. We inform the system that the 10-element array can be reused as it
sees fit.
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arr

(a) ]
arr

(b)

original

arr —

(¢

| —V
original /'/'

arr —1

(d)
original —

Figure 2.21  Array expansion, internally; (a) At the starting point, arr
represents 10 integers; (b) after step 1, original represents the
same 10 integers; (c) after steps 2 and 3, arr represents 12
integers, the first 10 of which are copied from original; and
(d) after step 4, the 10 integers are freed.

These four steps translate as follows:

int *original = arr; // Step 1

arr = new int[ 12 1; // Step 2

for( int 1 = 0; 1 < 10; 1i++ ) // Step 3
arr[ 1 ] = originall 1 ];

delete [ ] original; // Step 4

Our string class interface is shown in Figure 2.22. To avoid conflicts
with the string.h header file, we store the interface in mystring.h. As
promised, three data members store the C-style string, the length of the string,
and the size of the array that stores the string. The array size is at least 1 larger
than the string length, but it could be more. We provide two accessors (c_str
and length) that return the C-style string and string length. operator+=
appends rhs to the current string. A set of nonclass functions are also pro-
vided for 1/0 and comparison. The I/O functions are not class members
because the string is not a first parameter. operator [] is used to access
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// Old-style.

string( const char *cstring = ""

] buffer; }

(

)i

const

const string & operator+=( const

const

) cons

)

/7
/7

t

)
) :

h file

string
string

// Constructor
// Constructor
// Copy constructor

// Destructor

& rhs );
)

& rhs

// Copy
// Append

// Return C-style string

// Return string length

const;// Accessor operator[]
// Mutator operator|]

length of string (# of
capacity of buffer
storage for characters

1 #ifndef _MY STRING_H_
2 #define _MY_STRING_H_
3

4 #include <iostream.h>
5

6 class string

7 {

8 public:

9 string( char ch );
10

1 string( const string & str
12 ~string( )

13 { delete [

14

15 const string & operator=
16

17

18 const char *c_str(
19 { return buffer;
20 int length( )

21 { return strLength; }
22

23 char operator (] (
24 char & operator[] (
25

26 private:

27 int strLength;

28 int bufferLength;
29 char *buffer;

30 1);

31

32 ostream & operator<<(
33 istream & operator>>(
34 istream & getline( istream & in,

37 bool
38 bool
39 bool
40 bool
41 bool
42 bool

operator==(
operator!=(
operator< (
operator<=(
operator> (
operator>=(

44 #endif

Figure 2.22  mystring.h.
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string & str,

string
string
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1 #include <string.h>

2 #include "mystring.h"

3

4 string::string( const char * cstring )

5 {

6 if( cstring == NULL ) // If NULL pointer

7 cstring = ""; // use empty string

8 strLength = strlen( cstring ); // Get length of cstring
9 bufferLength = strLength + 1; // Set length with '\0'
10 buffer = new char[ bufferLength ]; // Allocate prim string
1 strcpy( buffer, cstring ); // Do the copy

12

13

14 string::string( char ch )

15 ¢

16 strLength = 1;

17 bufferLength = strLength + 1;

18 buffer = new char[ bufferLength ];

19 buffer[ 0 1 = ch;

20 buffer[ 1 1 = '\0';

21 )

22

23 string::string( const string & str )

24 ¢

25 strLength = str.length( ); // Get length of str

26 bufferLength = strLength + 1; // Set length with '\Q0"'
27 buffer = new char([ bufferLength |; // Allocate prim string
28 strcpy( buffer, str.buffer ); // Do the copy

29

Figure 2.23  string.cpp (part 1): Constructors.

individual characters in the string. There are two versions; we explain why
there are when we discuss their implementation.

The comparison functions are deliberately not implemented as class
members. Implementing them outside the class allows the left-hand side of
the comparison operator to be a C-style string or a string. If one of the
operands for a comparison operator is a C-style string, a temporary string
will be constructed (by calling the string constructor, which is deliberately
not declared explicit). Thus, if strl and str2 are strings, stri==
str2, strl=="ab", "ab"==str2 are legal. If the comparison functions
were class members (in which case we would write only the rhs parameter),
"ab"==str2 would not be legal.

The constructors are shown in Figure 2.23 and are relatively straightfor-
ward: They initialize the three data members. The assignment operators
(Figure 2.24) are much more tricky because they involve two issues. First,
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1
2
3
4
5
6
7
8

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

const string & string::operator={( const string & rhs )
{
if( this != &rhs ) // Alias test
{
if( bufferLength < rhs.length( ) + 1 ) // If no room

{
// Reclaim old array, compute new size,
// allocate new array
delete [ ] buffer;
bufferLength = rhs.length( ) + 1;
buffer = new char|[ bufferLength ];
}

strLength = rhs.length( ); // Set new length
strepy( buffer, rhs.buffer ); // Do the copy

}

return *this; // Return reference to self

const string & string::operator+=( const string & rhs )

{

if( this == &rhs ) // Alias test: if s+=s
{
string copy( rhs ); // Make a copy of rhs
return *this += copy; // Append copy; avoid alias
}
int newLength = length( ) + rhs.length( );
if( newLength >= bufferLength ) // I1f not enough room

// Begin the expansion: Allocate more room; use
// 2x space so repeated calls to += are efficient
bufferLength = 2 * ( newLength + 1 );

char *oldBuffer = buffer; // Save ptr for old array
buffer = new char|[ bufferLength 1; // Alloc new array
strcpy ( buffer, oldBuffer ); // Do the copy
delete [ ] oldBuffer; // Reclaim old array
}
strcepy( buffer + length( ), rhs.buffer ); // Append rhs
strLength = newLength; // Set new length
return *this; // Return reference to self

}

Figure 2.24  string.cpp (part 2): Assignment operators.
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1 char & string::operator[ ]1( int k )

2 {

3 if( k < 0 || k >= strLength )

4 throw StringIndexOutOfBoundsException( );
5 return buffer[ k ];

6 }

7

8 char string::operator[ ]1( int k ) const

9 {

10 if( k < 0 || k »>= strLength )

11 throw StringIndexOutOfBoundsException( );
12 return buffer|[ k ];

13 }

Figure 2.25  string.cpp (part 3): Indexing operators.

we may need to expand buf fer if the resulting string will not fit. Second,
we must be careful to handle aliasing. Omitting the alias test for opera-
tor+= could create a stale pointer (i.e., a pointer to memory that has already
been deleted) for str+=str if a resize of buf fer is required.

The use of operator+= is time consuming if a sequence of concatena-
tions that cause resizing are present. To avoid this problem, we sacrifice
space and make the new buffer twice as large as it needs to be. This logic is
the same as that used in array-doubling (see Section 1.2.3).

The array indexing operators are shown in Figure 2.25. If the index is
out of bounds, a StringIndexOutOfBounds exception object is thrown.
This class is one of many exception classes provided in the online code, and
we discuss its design at various points in Section 4.2. The main issue for the
array indexing operator is the return type.

We know that operator [ ] should return an entity of type char. Should
we use return by value, by reference, or by constant reference? Immediately
we eliminate return by constant reference because the returned entity is a
primitive type and thus is small. Thus we are down to return by reference or
by value. Let us consider the following method (ignore the possibility of
aliasing or incompatible sizes, neither of which affects the algorithm).

void reverseCopy( const string & from, string & to )

{

int len = from.size( );
to = from;
for( int i = 0; i < len; i++ )

to[ 1 ] = from[ len - 1 - 1 ];
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ostream & operator<<( ostream & out, const string & str )
{
return out << str.c_str( );

}

1
2
3
4
5
6 istream & operator>>{ istream & in, string & str )
7 {

8

9

10

char ch;
str = "";
in >> ch;
1
12 if( tin.fail( ) )
13 {
14 do
15 {
16 str += ch;
17 in.get( ch );
18 } while( !'in.fail( ) && !isspace( ch ) );
19
20 if( isspace( ch ) ) // put whitespace back on stream
21 in.putback( ch );
22 }
23
24 return in;
25 }
26
27 istream & getline( istream & in, string & str, char delim )
28 {
29 char ch;
30 str = ""; // empty string; build one char at-a-time
31
32 while( in.get( ch ) && ch != delim )
33 str += ch;
34
35 return in;
36 )

Figure 2.26  string.cpp (part 4): /O functions.

In the reverseCopy function, we attempt to copy each char in from
into the corresponding position in string to. (Ignore the fact that this is
not the best way to do it.) Clearly, if operator[] returns a value, then
to[i] cannot appear on the left-hand side of the assignment statement.
Thus operator[] should return a reference. But then even though from is
a constant string an expression such as from[i]=to[i] would still com-
pile because from[i] would be a simple reference and thus modifiable.
Oops!




bool operator=={( const string & lhs, const string & rhs )

{

return strcmp( lhs.c_str( ), rhs.c_str( ) ) == 0;

bool operator!=( const string & lhs, const string & rhs )

{

return strcmp( lhs.c_str{ ), rhs.c_str( ) ) '= 0;

Co~NOOTOLWN =

10

11 bool operator<{ const string & lhs, const string & rhs )
12 ¢

13 return strcmp{ lhs.c_str( ), rhs.c_str( } ) < 0;

14

15

16 bool operator<=( const string & lhs, const string & rhs )
17 |

18 return strcmp( lhs.c_str( ), rhs.c_str( ) ) <= 0;

19 3

20

21 bool operator>( const string & lhs, const string & rhs )
22 {

23 return strcmp{ lhs.c_str( ), rhs.c_str( ) ) > 0;

24 }

25

26 bool operator>=( const string & lhs, const string & rhs )
27 {

28 return strcmp( lhs.c_str( ), rhs.c_str( ) ) >= 0;

29

Figure 2.27  string.cpp (part 5): Comparison operators.

So what we really need is for operator[] to return a constant refer-
ence for from—but also a value for to. In other words, we need two ver-
sions of operator[] that differ only in their return types. Although that is
not allowed, there is a loophole: Member function const-ness (i.e., whether a
function is an accessor or a mutator) is part of the signature, so we can have
the accessor version of operator[] return a value and have the mutator
version return the simple reference. Then all is well—which is why we have
two versions of operator[].

Figure 2.26 shows the /O operators. There is no limit on the length of
the input. Note that, because these functions are not class members, they
cannot and do not access any private data.

The comparison operators are shown in Figure 2.27. They simply call
strcmp on the C-style strings. Again we must use an accessor to get the C-style
strings because buf fer is a private data member and these operators are not
class members.

A string Class w
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An inefficiency of the string class is its reliance on implicit type con-
versions. That is, if a C-style string (or string constant) is passed to the com-
parison operators or assignment operators, a temporary is generated. This
action can add significant overhead to running time. A solution to this prob-
lem is to write additional functions that take a C-style string as a parameter.
Thus we could add global functions

bool operator>=( const char * lhs, const string & rhs );
bool operator>=( const string & lhs, const char * rhs );

and class member functions

const string & operator= ( const char * rhs );
const string & operator+=( const char * rhs );

It might also be worthwhile to add an overloaded operator+= that accepts
a single char as a parameter to avoid those type conversions.

2.7 Recap:What Gets Called and What Are
the Defaults?

In this section we summarize what gets called in various circumstances.
First, for initialization we have the following examples:

string r; // string( )
string s = "Hello"; // string( const char * )
string t = s; // string( const string & )

Next, we have cases where there are exact matches:

r = t; // operator=( const string & )
S += r; // operator+=( const string & )
r(0] = 'J'; // operator[] followed by character copy

In this case, the nonconstant operator [] is used. Here is an example that
involves an implicit call to a constructor to create a temporary object:

if( r == "Jello" ) // string( const char * ) to
// create temporary; then operator==

Note, however, that newer versions of the compiler will not perform this
conversion if the corresponding formal parameter is a (nonconstant) refer-
ence. In other words, if we have

bool operator==( const string & lhs, string & rhs );
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"Jello" fails to match rhs. The reason is that the declaration of == is stat-
ing that rhs may be altered, which does not make sense if rhs is merely a
temporary copy of "Jello". Furthermore, for operators that are class mem-
bers, the first actual parameter must be an exact match.

The copy constructor is also called if a string is passed by value to a
function expecting a string or is returned by copy. Thus if the declaration for
== was

bool operator==( string lhs, string rhs );

then r would be copied to 1hs by a call to the string copy constructor, and
"Jello" would be copied to rhs by acall to the string (const char *)
constructor.

Other examples in which a string constructor is called are

vector<string> array( 100 ); // 100 calls

string *ptrl = new string; // 1 call

string *ptr2 = new string( "junk" ); // 1 call

string *ptr3 = new string( s ); // 1 call

string *ptrd4 = new string([ 100 1; // 100 calls

but not

string *ptr = new string( 100 ); // No string(int)
string & ref = s; // 0 call: reference

If any of the members required are placed in the private section, the cor-
responding operations become illegal. The operators most commonly placed
in the private section are the copy constructor and operator=.

You also need to understand what happens when you fail to provide a
default constructor, copy constructor, destructor, or operator=, If you do
not provide any constructors, a default zero-parameter constructor is created.
It performs a member-by-member construction of the class data members. If
you provide a string ( const char * ) constructor but no string( )
constructor, you merely disallow uninitialized string definitions.

If you do not provide a copy constructor, a default copy constructor is cre-
ated. It performs member-by-member copy construction. Note that if the copy
constructor is disabled for some member, this approach generates a compiler error.

If you do not provide a destructor, a default destructor is created and
performs member-by-member destruction (in inverse order of the member
declarations).

Finally, if you do not provide operator=, a default is created and per-
forms member-by-member copying, using each member’s operator=. As
with the copy constructor, if operator= is disabled for some member, a
compiler error is generated.
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2.8 Composition

Once we have some classes, we can use objects of these classes as data
members of other classes. This practice is called composition.

As an example, Figure 2.28 illustrates a few methods of the Employee
class. Once the classes that define the data members have implemented
operator<<, writing operator<< for our new class is a simple matter. We
could easily have added other data members. For instance, if a Date class is
written, we can add a hired data member of type Date.

1 class Employee

2 {

3 public:

4 void setvValue( const string & n, double s )
5 { name = n; salary = s; }

6

7 void print( ostream & out = cout ) const

8 { out << name << " (" << galary << ")"; }
9

10 // Other general accessors and mutators, not shown
11 private:

12 string name;

13 double salary;

14 3;

15

16 // Define an output operator for Employee.
17 ostream & operator<< ( ostream & out, const Employee & rhs )

18 {

19 rhs.print( out );

20 return out;

21 3}

22

23 int main( )

24 |

25 vector<Employee> v( 3 );

26

27 v[ 0 ].setValue( "Bill Clinton", 200000.00 );
28 v[ 1 ].setValue( "Bill Gates", 2000000000.00 );
29 v[ 2 1.setvValue( "Billy the Marlin", 60000.00 };
30

31 for( int i = 0; 1 < v.size( ); i++ )

32 cout << v[ i ] << endl;

33

34 return 0;

35 3

Figure 2.28 lllustration of composition.




Summary

In this chapter we described the C++ class construct. The class is the C++
mechanism used to create new types. Through it we can

* define construction and destruction of objects,
* define copy semantics,

* define input and output operations,

* overload almost all operators,

* define implicit and explicit type conversion operations (sometimes a
bad thing), and

*» provide for information hiding and atomicity.

The class consists of two parts: the interface and the implementation.
The interface tells the user of the class what the class does. The implementa-
tion does it. The implementation frequently contains proprietary code and in
some cases is distributed only in precompiled form.

Information hiding can be enforced by using the private section in the
interface. Initialization of objects is controlled by the constructor functions,
and the destructor function is called when an object goes out of scope. The
destructor typically performs clean up work, closing files and freeing mem-
ory. Finally, when implementing a class, the use of const and correct
parameter passing mechanisms, as well as the decision about whether to
accept a default for the Big Three, write our own Big Three, or completely
disallow copying is crucial for not only efficiency but also in some cases,
correctness.

Objects of the Game

#endif and #ifndef Are used to enclose the contents of a header
file and prevent multiple inclusion. (p. 49)

accessor A method that examines but does not change the state of its
object. (p. 47)

aliasing A special case that occurs when the same object appears in
more than one role. (p. 54)

atomic unit An object, whose parts cannot be dissected by the general
users of the object. (p. 42)

class The same as a structure except that, by default, all members are
inaccessible to the general user of the class. (p. 43)

constant member function A function that does not change any class
data members. (p. 47)

Summary m
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constructor A method that describes how an object is declared and
initialized, that is, created. The default constructor is a member-by-
member application of a no-parameter constructor. (p. 45)

copy assignment operator, operator= Used to copy objects. (p. 52)

copy constructor Called when an object is passed or returned by value
or initialized with an object of the same class. By default, the copy
constructor is a member-by-member application of copy construc-
tors. (p. 52)

destructor Called when an object exits scope and frees resources allo-
cated by the constructor or other member functions during the use of
the object. The default destructor is a member-by-member applica-
tion of destructors. (p. 51)

encapsulation The grouping of data and the operations that apply to
them to form an aggregate while hiding implementation details of
the aggregate. (p. 42)

exception An object that stores information that is transmitted outside
the normal return sequence and is used to signal exceptional occur-
rences, such as errors. (p. 73)

friends Functions that are exempt from the usual private access
restrictions. (p. 68)

implementation Represents the internal processes by which the inter-
face specifications are met. (p. 48)

implicit type conversion A type conversion performed without the
use of an explicit type conversion operator. (p. 63)

information hiding Makes implementation details, including compo-
nents of an object, inaccessible. (p. 42)

initializer list Specifies nondefault initialization of each data member
in an object directly. (p. 62)

input and output stream operators Can be defined by overloading
<< and >>. (p. 68)

interface Describes what can be done to an object. (p. 48)

member functions Functions supplied as additional members that
manipulate the object’s state; also known as a method. (p. 43)

methods Another name for member functions. (p. 43)
mutator A method that changes the state of an object. (p. 47)

null terminator The special character that ends a primitive string; it is
represented by '\0'. (p. 74)
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object An entity that has structure and state and defines operations
that may access or manipulate that state; an instance of a class.
(p. 41)

object-based programming Uses the encapsulation and information
hiding features of objects but does not use inheritance. (p. 43)

object-oriented programming Distinguished from object-based pro-
gramming by the use of inheritance to form hierarchies of classes.
(p. 43)

operator overloading Extending the types to which an operator can
be applied. (p. 57)

primitive string A null-terminated array of characters. You must allo-
cate an extra spot for the null terminator. (p. 74)

private member A member that is not visible to nonclass routines and
may be accessed only by methods in its class. (p. 45)

public member A member that is visible to all routines and may be
accessed by any method in any class. (p. 44)

scope operator : : Used to refer to the scope. In a class member func-
tion, the scope is the class. (p. 50)

signature Includes the types of parameters in the function, including
const and & directives, but not the return type. (p. 48)

static class member Essentially a global variable visible only to class
members. (p. 71)

this A pointer that points at the current object. It is used to return a
constant reference for assignment operators and also to test for
aliasing. (p. 53)

type conversion Creates a temporary object of a new type. A con-
structor defines an automatic type conversion. (p. 63)

Common Errors

1. Forgetting that the class interface ends with a semicolon can lead to
strange error messages.

2. The declaration Rational r( ) ; does not call the zero-parameter
constructor. Instead it is a declaration that function r accepts no
parameters and returns a Rational.

3. The default copy is a shallow copy. If data members are pointers to
dynamically allocated objects, the default generally is unacceptable
and should either be changed or disabled.

4. Failure to test for aliasing in assignment operators can lead to
errors.
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10.

1.

12.

13.

14.

15.

16.

The class member function definitions must be preceded by a class
name and scope operator. Otherwise, they will not be recognized as
class members. Exported class objects (e.g., 10s: : in) also require
the class name and scope operator.

A common programming error is using the incorrect parameter-
passing mechanism.

Forgetting to free memory in a destructor can lead to memory leaks.
Several errors are associated with the input and output routines (>>
and <<) for classes. First, they may need to be friends. If they are
not friends, the declarations must be placed in the interface file after
the class declaration. A stream reference should be returned in both
cases. A common error is to use cin or cout instead of the stream
passed as a parameter.

The interface should be enclosed by an #ifndef / #endif pair
to avoid double scanning.

Constant class members can be initialized only in the constructor
initializer list (they cannot be assigned to).

Reference class members can be initialized only in the constructor
initializer list.

All instances of const (except in the return type) are parts of the
signature. Specifying a function as a constant member in the inter-
face but not in the implementation generates an error—that the non-
member function was not declared in the interface. Similar rules
apply with parameters.

Private members cannot be accessed outside the class. By default,
class members are private.

Type conversions can lead to trouble. One problem is that they can
lead to ambiguities when exact matches are not found and approxi-
mate matches are examined. Additionally, in some cases substan-
tial overhead is required for accepting implicit conversions.

Exact matches are needed for reference parameters. Some compil-
ers give only cryptic warnings.

If a declaration for a constructor or destructor is provided, an
implementation must also be provided. Otherwise, the compiler
will complain when the object is declared. If a declaration for a
member function is provided, the implementation may be omitted if
no attempt is made to use the member function. This approach
allows incremental implementation of the class.



18.
19.

20.

21.

Functions that return new objects (e.g., operator+) must return
them by copy. Functions that return existing objects (e.g.,
operator+=) should use constant reference returns unless a refer-
ence return is warranted.

The pointer this is a pointer constant and may not be altered.
Using inline functions can lead to many errors. Public inline func-
tions must be defined in the interface file, and some compilers will
not allow them in certain cases (e.g., if they throw an exception).
Public inline functions should be avoided unless they can be proved
to yield a substantial speed benefit.

Prefix and postfix ++ are different operators. Using one form when
only the other form is implemented by the class is an error.

For static class members, in addition to the class declaration a sin-
gle definition should be provided outside the class.

On the Internet

The string class is used in several other routines. Consequently, there is no
main to test it. The files that are available are

IntCell.h Interface file for the TntCell class, as shown in
Figure 2.4.
IntCell.cpp Implementation file for the IntCell class, as

shown in Figure 2.5.

TestIntCell.cpp Test routine file for the IntCell class, as shown in

Figure 2.6.
BuggyIntCell.cpp The incorrect IntCell shown in Figures 2.8 and
2.9.
DeepIntCell.cpp  The correct IntCell shown in Figure 2.10.
Rational.h Interface file for the Rational class.
Rational.cpp Implementation of the Rational class.
RatMain.cpp Test routine for the Rational class, as shown in
Figure 2.11.
mystring.h Interface file for the string class, as shown in
Figure 2.22.

string.cpp Casual implementation of the string class.

On the Internet E
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@ Exercises

2.1.

2.2,
2.3.
24.

2.5.

2.6.

2.7.
2.8.
2.9.
2.10.

2.11.

2.12.

In Short

What is information hiding ? What is encapsulation? How does C++
support these concepts?

Explain the public and private sections of the class.
Describe the roles of the constructor and destructor.

What is the difference between a copy constructor and a copy
assignment operator?

If a class provides no constructor and no destructor, what is the
result?

When is it acceptable not to provide a destructor? operator=?
copy constructor?

Explain the benefits and liabilities of inline functions.
What restrictions are placed on operator overloading?
What is a friend function?

For a class ClassName, what declarations are needed to perform
input and output? Where are the function definitions placed?

In the following code fragment, which functions are called at each
line and what is the semantic meaning?

Rational a;

Rational b = 3;
Rational c( 4, 3 );
Rational d( 0 );
Rational e = ( 4, 3 );
Rational f( );
Rational *g = new Rational( 4, 3 );
Rational *h = new Rational( 5 );
Rational *i new Rational[ 5 ];
vector<Rational> j( 10 );
vector<Rational> k[ 10 ];

For the definitions of g, h, and i in Exercise 2.11, what needs to be
done to avoid a memory leak?

2.13. What does the sizeof operator do when applied on a class that has

private members?



2.14.

2.15.

2.16.

2.17.

2.18.

In Theory

Some compilers complain if a class’s members are all private and it
has no friends. Why?

Why can’t the following be used to indicate the copy constructor for
the Rational class ?

Rational( Rational rhs );

In Practice

Add the following improvements to the Rational class.
a. Rewrite operator== and operator!=to avoid

multiplications.
N1 N2 N1 N2 N1 N2
b. Implement Dl X D2 & oo X Dl Reduce Do and then D1

prior to the multiplication. The result need not be reduced.
Why? What is the advantage of this scheme?

c. What other operations are affected by this rearrangement?

d. Overload ~ to perform exponentiation. What are some of the
problems that can occur? What is the value of 1+2~3 when ~ is
overloaded for exponentiation?

Additional routines are required for the string class so that tempo-

raries are not created when a char * is involved.

a. For the class interface presented in Figure 2.22, how many addi-
tional routines are needed?

b. Implement some subset of these routines.

Define operator () (with two parameters) to return a substring.
For example, the output resulting from

string s = "abcd";
cout << s( 1, 2 });

is be (after all of the implicit conversions are applied).

a. What is the return type?

b. Implement the substring operator.

c. Is there a substantial difference between the following two
alternatives?

// Alternative 1
string subStr = s( 1, 2 );

Exercises u
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2.19.

2.20.

2.21.

2.22,

2.23.

// Alternative 2
string subStr;
subStr = s{( 1, 2 );

Let s be a string,

a. Is the typical C mistake s="a" caught by the compiler? Why or
why not?

b. What functions are called in s+="a"?

Suppose that we add a constructor allowing the user to specify the
initial size for the internal buffer. Describe an implementation of this
constructor and then explain what happens when the user attempts
to declare a string with a buffer size of 0.

Add operations to allow the copy assignment of a single char and
concatenation of char. Make them efficient; do not simply call
existing routines.

A combination lock has the following basic properties: The combina-
tion (a sequence of three numbers) is hidden; the lock can be opened
by providing the combination; and the combination can be changed but
only by someone who knows the current combination. Design a class
with public member functions open and changeCombo and private
data members that store the combination. The combination should be
set in the constructor. Disable copying of combination locks.

Programming Projects

Implement a simple Date class.You should be able to represent any
date from January 1, 1800, through December 31, 2500, subtract
two dates, increment a date by a number of days, and compare two
dates by using <. A Date is represented internally as the number of
days since some starting time, which here is the first day of 1800,
making most operations except for I/O trivial.

The rule for leap years is: A year is a leap year if it is divisible by
4, and not divisible by 100 unless it is also divisible by 400. Thus
1800, 1900, and 2100 are not leap years, but 2000 is. The input
operation must check the validity of the input. The output operation
must check the validity of the Date. The Date could be bad if a +
or — operator caused it to go out of range.

Figure 2.29 gives a class specification skeleton for the Date
class. Several items are missing, including public and private
keywords, const and &, and I/0 interfaces. Before you begin cod-
ing the interface, you must make some decisions:



1 class Date

2 {

3 enum { FIRST_YEAR = 1800, MAX_YEAR = 2500 };

4

5 int totalDays; // Days since 1/1/1800
6

7 // Constructor.

8 Date( int y = FIRST_YEAR, int m = 1, int d = 1 );
9

10 // Assignment operator (instead of +)

1 Date operator+=( int days );

12

13 // Binary operators.

14 int operator- ( Date right );

15 bool operator<( Date right );

16 1;

Figure 2.29 Class specification skeleton for Date (Exercise 2.23).

* where to use const and/or & (think about this very carefully);

» whether you are willing to accept the defaults for the copy
assignment and copy constructor operators;

* how you will interface for input and output; and

* what should and should not be private.

Once you have decided on the interface, you can do an implementa-
tion. The difficult part is converting between the internal and exter-
nal representations of a date. What follows is a possible algorithm.
Set up two arrays that are static data members (the defining declara-
tions are placed where globals would be).

static int Date::DAYS_TILL_FIRST_OF_MONTH [ ] =
{ 0, 31, 59, ... };

static int Date::DAYS_TILL_JAN1l { ] =
{ ... Y

The first array, DAYS_TILL_FIRST OF_MONTH, will contain the
number of days until the first of each month in a nonleap year. Thus
it contains 0, 31, 59, 90, and so on. The second array,
DAYS_TILL_JANI, will contain the number of days until the first of
each year, starting with FIRST_VYEAR. Thus it contains 0, 365, 730,
1095, 1460, 1826, and so on because 1800 is not a leap year but
1804 is. You should have your program initialize this array once. If
you choose this algorithm, you will need to add corresponding static
class declarations in the interface. In any of the member functions

Exercises n
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2.24.

2.25.

2.26.

2.27.

you will be able to access these arrays as you would any member.
For nonmember friends, you will have to use the scope resolution
operator. For nonmember nonfriends, these items will not be visible.
You can then use the array to convert from the internal to external
representations.

Implement an INT class. Use a single int as the private data. Sup-
port all the operations that can be applied to an int and allow both
initialization by an int and no initialization. Explain whether you
need or can accept the default copy constructor, destructor, and copy
assignment operator.

Continue Exercise 2.24.

a. Modify the += operator (and by inference the binary + operator)
to detect overflow. To do so, change the internal representation
to an unsigned int, and store a sign bit separately. Print a
warning message if an overflow is detected (or throw an excep-
tion if you can).

. Modify the -= operator to detect overflow.

Modify the /= operator to detect division by 0.

d. Modify the unary minus operator to detect overflow (there is
only one case wherein this happens).

e. Modify the bit shift operators to print an illegal message if the

second parameter is either negative or not smaller than the num-
ber of bits in an unsigned int.

oo

Suppose that you want to modify the *= operator to detect overflow.
Redo Exercise 2.25 by changing the internal representation to use
two data members: One stores the leading bits, and the other stores
the trailing bits. For example, for 32 bit integers, X = 216 H + L,
where H and L are 16 bits each.

Implement a complete IntType class. Maintain an IntType as a
sufficiently large array. For this class the difficult operation is divi-
sion, followed closely by multiplication. Begin by writing the class
interface. Once again, you need to decide on an internal representa-
tion, the operations to be supported, how to pass parameters,
whether you are willing to accept the default for copy assignment
and copy construction, how you will provide 1/O, how you will pro-
vide an implicit conversion from an int to an IntType, and what
should and should not be private. Do not even think about writing an
actual implementation until you have thought through the interface
design. Only then should you begin the task of writing the actual
algorithms to implement the class.



2.28.

2.29.

2.30.

2.31.

2.32.

Implement a Complex number class. Recall that a complex number
consists of a real and an imaginary part. Support the same opera-
tions as the Rational class, when meaningful (e.g., operator< is
not meaningful). Add member functions to extract the real and
imaginary parts.

Implement a Fuzzy class. Fuzzy logic defines true, false, and
maybe. The AND operator returns the weaker of its two parameters,
and the OR operator returns the stronger. Define constants
Fuzzy::TRUE, Fuzzy: :FALSE, and Fuzzy: :MAYBE and support
&&, ||, ! (for NOT), and I/O operations. Also provide a type con-
version to int so that the Fuzzy can be used to express a condition
(inan if, while, and so on).

Implement some of the following improvements to the string

class.

a. Add ! (which is false if the string is zero length).

b. Add the * and *= operators to expand into multiple copies. For
instance, if s is equal to "ab", then s*=3 turns s into "ababab".

c. Add the left shift operator, which shifts the string x positions.
Can you think of a way to alter the class implementation to
make shifting a fast operation?

d. Add lowercCase and upperCase member functions.

Index range checking costs the user time and space but greatly
improves software reliability. Write a program that reads a large dic-
tionary, storing each word in a string. Then access each character
in the array of strings. Measure the time cost of range checking by
running the program twice—once with range checking on and again
with it disabled. Also measure the difference in space usage. Use a
preprocessor conditional to disable range checking on access.

Add setvalue and print member functions to the Rational
class. Then rewrite operator>> and operator<< so that they are
not friends of Rational.

Exercises m
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Chapter 3

Templates

An important goal of object-oriented program is to support code reuse. In
this chapter we introduce one mechanism, the C++ template, that is used to
further this goal. The template allows us to write routines that work for arbi-
trary types without having to know, as we write the routines, what these
types will be. Although this approach is supported somewhat by the use of
the typedef facility, the template is more powerful than the typedef.

In this chapter, we show:

» what a template is and how it differs from the typedef,
* how to write some useful function templates,

* how to write class templates, and

* what the limitations of templates are.

3.1 What Is a Template?

Consider the problem of finding the largest item in an array of items. A sim-
ple algorithm is the sequential scan, in which we examine each item in order,
keeping track of the maximum. As is typical of many algorithms, the
sequential scan algorithm is type-independent. That is, the logic of this algo-
rithm does not depend on the type of items stored in the array. The same
logic works for an array of integers, floating-point numbers, or any type for
which comparison can be meaningfully defined.

Throughout this text, we describe algorithms and data structures that are
type-independent. Swapping, sorting, and searching are classic examples of
type-independent algorithms. When we write C++ code for a type-indepen-
dent algorithm or data structure, we would prefer to write the code once,
rather than recode it for each different type.

In this chapter we describe how to write type-independent algorithms
(also known as generic algorithms) in C++. We use a template to write these
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The typedefis a
simple mechanism to
allow generic
routines. However, it
is unsuitable if we
want routines with
two different types.

A function template is
a design for a
function.

Instantiation of a
template with a
particular type,
logically creates a
new function.

Only one instantiation
is created for each
parameter-type
combination.

algorithms. We begin by discussing function templates and then examine
class templates.

3.2 Function Templates

Suppose that we want to write a swap routine in Figure 1.13 for doubles
instead of ints. The logic is identical; we just need to change the type decla-
rations. One way to do so is to write the swap routine for an arbitrary
Object and then issue the appropriate typedef. The typedef is a simple
mechanism to allow generic routines, as shown in Figure 3.1.

Suppose, however, that we want to use swap for both int and double.
Certainly this use would be acceptable because the two swap routines would
have different signatures. However, the typedef would not work because
Object cannot assume both int and double simultaneously. Fortuitously,
C++ provides templates that make it possible to write a routine that can be
used for both types.

A function template is not an actual function; instead, it is a design, or
pattern, for what could become an actual function. For example, a template
for a swap routine is shown in Figure 3.2. This design is expanded (much
like a preprocessor macro) as needed to provide an actual routine. If a call to
swap with two int parameters is made, the compiler will generate a routine
from this template, using lines 4-9, with int replacing Object.

This expansion instantiates the function template. In other words,
instantiation of a template with a particular type logically creates a new
function. The compiler must now verify that the instantiation is legal C++.
Some of the checking may have been performed when the template was
defined. For example, missing semicolons and unbalanced parentheses are
easy to check, but some checks cannot be performed that early. For instance,
operator= might be disallowed for the instantiated type, and that check
could only be performed at the point of instantiation. In that case the swap
operation could not work. If the instantiated type does not have a copy con-
structor but does have operator=, we could rewrite the swap template in
Figure 3.2 to avoid the copy constructor. Thus there is occasionally a trade-
off between requiring more operations to be supported by the template
parameter and code compactness (and/or efficiency).

Figure 3.3 shows the swap template in use. Each call to swap with pre-
viously unseen parameter types generates new instantiations. Thus if there
are two calls to swap (int, int) and one call to swap (double, double),
then there are two instantiations of the swap template: one with Object of
int and another with Object of double. (Note: swap is part of the STL,
so some compilers may object. The online code uses the name Swap to avoid
potential conflicts.)
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typedef double Object;

1

2

3 // Standard swap routine.

4 void swap( Object & lhs, Object & rhs )
5 {

6 Object tmp = lhs;

7 lhs = rhs;

8 rhs = tmp;

9 }

Figure 3.1 The swap routine, using typedefs.

1 // swap function template.

2 // Object: must have copy constructor and operator=.
3 template <class Object>

4 void swap( Object & lhs, Object & rhs )

5 {

6 Object tmp = lhs;

7 lhs = rhs;

8 rhs = tmp;

9

}

Figure 3.2 The swap function template.

1 // Exercise the swap function template.
2 int main( )

3 {

4 int x = 5;

5 int vy = 7;

6 double a = 2;

7 double b = 4;

8

9 swap( x, Yy ); // Instantiates swap with int

10 swap( x, v ); // Uses already instantiated swap with int
1 swap( a, b ); // Instantiates swap with double
12 cout << x << " " << y << endl;

13 cout << a << " " << b << endl;

14 // swap( x, b ); // Illegal: no match

15

16 return 0;

17 3

Figure 3.3 Using the swap function template.
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Insertion sort is a
simple sorting
algorithm that is
appropriate for small
inputs.

3.3 A Sorting Function Template

Swapping is a classic example of a routine that is type-independent and thus
well suited for a template implementation. In this section we write a function
template that sorts and show how a main routine uses it.

Our simple program reads a sequence of integers (until the end of input or
bad input is detected), sorts them, and outputs them. If we change our minds
and decide that we want a sequence of floating-point numbers or string
objects, then we expect only a one-word change (at one location) in the entire
program.! Sorting is accomplished by a simple sort function template.

Sorting is implemented by an algorithm known as insertion sort. Inser-
tion sort is a simple sorting algorithm that is appropriate for small inputs. It
is generally considered to be a good solution if only a few elements need
sorting because it is such a short algorithm and the time required to sort is
not likely to be an issue. However, if we are dealing with a large amount of
data, insertion sort is a poor choice because it is too time consuming. In that
case better algorithms should be used, as discussed in Chapter 9. The inser-
tion sort algorithm is coded in Figure 3.4. We use this routine in Section 4.3.

Insertion sort works as follows. In the initial state the first element, con-
sidered by itself, is sorted. In the final state all elements (assume that there
are N), considered as a group, are to have been sorted. Figure 3.5 shows that
the basic action of insertion sort is to sort the elements in positions 0 through
p (where p ranges from 1 through N - 1). In each stage p increases by 1.
That is what the outer loop at line 7 in Figure 3.4 is controlling.

When the body of the for loop is entered at line 9, we are guaranteed
that the elements in array positions 0 through p-1 have already been sorted
and that we need to extend this to positions 0 to p. Figure 3.6 gives us a
closer look at what has to be done, detailing only the relevant part of the
array. At each step the element in boldface type needs to be added to the pre-
viously sorted part of the array. We can easily do that by placing it in a tem-
porary variable and sliding all the elements that are larger than it one
position to the right. Then we can copy the temporary variable into the
former position of the leftmost relocated element (indicated by lighter shad-
ing on the following line). We keep a counter j, which is the position to
which the temporary variable should be written back. Every time an element
is slid, j decreases by 1. Lines 9-14 implement this process.

1. Of course, this minimal change would also be true of the typedef. If our program were
more complex and required two types of sorts, the typedef would be inadequate.
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1 // insertionSort: sort items in array a.

2 // Comparable: must have copy constructor, operator=,
3 /v and operator<.

4 template <class Comparable>

5 void insertionSort( vector<Comparable> & a )

6 {

7 for( int p = 1; p < a.size( ); p++ )

8 {

9 Comparable tmp = al p ];

10 int j;

11

12 for( j =p; 3 >0 && tmp < al j -1 1; j--)
13 al 31 =alj-11;

14 al j 1 = tmp;

15 }

16 )

Figure 3.4 Insertion sort template.

Array Position 0|1|12|3|4]|5
Initial State 8 5/9|2|6|3
Aftera[0..1] is sorted 5§ 8|92 |63
Aftera[0..2] is sorted 51892 |63
After a[0..3] is sorted 25|89 6|3
Aftera[0..4] is sorted 2 |- 6116 |89 3
Aftera[0..5] is sorted poased W 5 - -

Figure 3.5 Basic action of insertion sort (shaded part is sorted).

Array Position 0(1,2|3|4|5
Initial State 8 5
Aftera[0..1] is sorted 5 8|9
Aftera[0..2] is sorted 5(8|9]|2
Aftera (0. .3] is sorted 2518|196
After a[0..4] is sorted 2 5|6 8193
After a[0..5] is sorted 2|13|5|6(8]|89

Figure 3.6 A closer look at the action of insertion sort (dark shading indicates the
sorted area; light shading is where the new element was placed).
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Always check the
boundary cases.

The instantiated type
does not always make
sense. In that case an
error may be noticed
at the instantiation
point, or in some
cases the code is
legal but erroneous

We must verify that this insertion sort works in two boundary cases.
First, in Figure 3.6, if the boldface element already is the largest in the
group, it is copied to the temporary variable and then back immediately—
and thus is correct. If the boldface element is the smallest in the group, the
entire group moves over, and the temporary is copied into array position 0.
We just need to be careful not to run past the end of the array. Thus we can
be sure that, when the outer £or loop terminates, the array has been sorted.

Now that we have the support functions, we can write main. The code
for it is shown in Figure 3.7.

We can use templates to have sorting at our fingertips for any type. How-
ever, the instantiated type does not always make sense. Let us look at some
different types.

1. double: No problem; a two-line change in main and everything
works well.

2. Rational: No problem; a two-line change in main and everything
works well.

3. char * (primitive strings): Serious problem; the operator= and
operator< do not make sense, so the program won’t work. Specif-
ically, we cannot just read into a char * object without first setting

1 #include <iostream>

2 #include <vector>

3 using namespace std;

4

5 // Read an arbitrary number of items, sort and print them.
6 int main( )

7 {

8 vector<int> array; // The array

9 int x; // An item to read
10

1 cout << "Enter items to sort: " << endl;
12 while( cin >> x )

13 array.push_back( x );

14

15 insertionSort( array );

16

17 cout << "Sorted items are: " << endl;

18 for( int i = 0; i < array.size( ); i++ )
19 cout << array[ i ] << endl;

20

21 return 0;

22 )

Figure 3.7  The main routine to read some integers, sort them, and output
them.
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aside memory. Assuming that we have done so, the sort won’t work
because operator< for two char * objects compares their mem-
ory locations.

4. string: A possible efficiency problem; the algorithm will work,
but it could be overly expensive to use because of repeated calls to
operator= and excessive string copies. We discuss a solution to
this problem in Chapter 9 (it involves moving pointers rather than
the actual string objects). Note that many string implementa-
tions optimize string copies by using an extra level of pointers, in
which case there is no inefficiency problem.

5. A type for which operator< or some other needed operator is
not defined: This lack of definition generates an error at link
time. At that point, the linker will notice that operator< has not
been implemented. Note that this occurs even if operators> is
implemented.

6. A type for which operator= is disallowed via placement in the
private section: This generates an error at compile time when the
template is instantiated.

As a result, good practice requires placing in a comment a list of the condi-
tions that must be satisfied by the template parameter. Throughout this text,
we use Object and Comparable as template types. For Object, we
assume that zero-parameter constructors and both a copy constructor and
copy assignment operator are available. For Comparable, we require that,
in addition to the properties satisfied by Object, the operator< also be
available. If additional operations are needed, we specify them in a com-
ment. On occasion we omit long comments to save space, if they are merely
restating the assumptions we present here.

3.4 Class Templates

In this section we show how to create and use class templates. As vector is Classes can be
actually a class template, we have already been using class templates. At the ~templated, but the
end of this chapter, we provide an implementation of vector. But first, we syntax|s onerouis.
use a simpler example to illustrate the syntax and show how to template the

IntCell class from Section 2.2.

3.4.1 A MemoryCell Template

Figure 3.8 shows a template version of the IntCell class previously
depicted in Figure 2.1. Here, we use the more generic name, MemoryCell. In
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// MemoryCell template class interface:

!/ simulate one Object RAM.

/'

// Object: must have zero-parameter constructor and operator=
// CONSTRUCTION: with (a) no initializer, or

/7 (b) an Object, or

// (c) another MemoryCell

// ******************PUBLIC OPERATIONS**********************
// Object read( ) --> Return stored value

// void write( Object x ) --> Place x as stored value

CoONOGHRWN=

QU Y
N = O

template <class Object>

class MemoryCell

{

15 public:

16 explicit MemoryCell( const Object & initval = Object( ) )
17 : storedvalue( initval ) { }
18

19 // Public member functions
20 const Object & read( ) const
21 { return storedvalue; }

22 void write( const Object & x )
23 { storedvalue = x; }

24

25 private:

26 Object storedvalue;

27 };

— ok
& w

Figure 3.8 Complete declaration of the MemoryCell class.

this version we do not separate the interface and implementation in order to
illustrate the most basic syntax. We revise this code shortly to do so because,
as we discussed in Section 2.3, such separation is usually preferable.
A class template must The class template syntax is similar to the function template syntax; we
have the template  merely add a template specification (shown on line 12 in Figure 3.8). Note
specification prior to .
the interface. Objects that write accepts a parameter passed by constant reference and that read
of a class template returns its parameter by constant reference. When possible, constant refer-
type must be ences should be used instead of call/return by value because, if Object is a
;::;?;;:‘;g:g‘;g: large object, making a copy could be inefficient (or illegal if the copy con-
structor for Object is either disabled or not defined). Do not use constant
reference returns blindly, however. Remember that you cannot return a refer-
ence to an automatic variable. Figure 3.9 shows a simple main that uses the
class template.
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1 // Exercise the MemoryCell class.
2 int main( )

3 {

4 MemoryCell<int> m;

5

6 m.write( 5 );

7 cout << "Cell contents are " << m.read{ ) << endl;
8

9 return 0;

10 )

Figure 3.9 A simple test routine to show how MemoryCell objects are
accessed.

You need to take note of two features of this routine. First, in the com-
mented description of the interface, we do not specify whether a function is a
constant member or how parameters are passed. To do so would merely dupli-
cate information clearly specified in the interface code. Second, Object must
have a zero-parameter constructor because the default constructor is used for
MemoryCell, and it is a member-by-member call of the zero-parameter
constructors.

If we implement class templates as a single unit, there is little syntax
baggage. Many class templates, in fact, are implemented this way because
currently separate compilation of templates does not work well on many
platforms. Therefore, in many cases, the entire class with its implementation
must be placed in a .h file. Popular implementations of the STL follow this
strategy.

However, eventually, separate compilation will work, and separating the
class template’s interface and implementation as for classes in Chapter 2
will be better. Unfortunately, this approach adds some syntax baggage.

Figure 3.10 shows the interface for the class template. That part is, of
course, simple enough because it is identical to the entire class that we have
already shown in Figure 3.9, with the inline implementations removed. For
the implementation, we have a collection of function templates. Thus each
function must include the template line, and when we use the scope operator,
the name of the class must be instantiated with the template argument. In
Figure 3.11, then, the name of the class is MemoryCell<Object>.

Figure 3.12 gives a layout of the general format used. Boldface items are
to be typed exactly as shown. Although the syntax seem innocuous enough,
it can get fairly substantial. For instance, to define operator= in the inter-
face requires no extra baggage. In the implementation, we would have the
horrendous code shown in Figure 3.13.

Each member
function must be
declared as a
template.

105
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1 // Memory cell interface; same as in Figure 3.8.
2

3 template <class Object>

4 class MemoryCell

5 {

6 public:

7 explicit MemoryCell( const Object & initvVal = Object(
8 const Object & read( ) const;

9 void write( const Object & x );

10

11 private:

12 Object storedvValue;

13 };

Figure 3.10 The MemoryCell class template interface.

// Implementation of the class members.

#include "MemoryCell.h"

MemoryCell<Object>: :MemoryCell( const Object & initval )

1

2

3

4

5 template <class Object>

6

7 storedvalue( initval )
8

9

11 template <class Object>
12 const Object & MemoryCell<Object>::read( ) const
13 {

14 return storedValue;

17 template <class Object>

18 void MemoryCell<Object>::write( const Object & x )
19 ¢

20 storedvalue = x;

21 }

Figure 3.11 The MemoryCell class template implementation.

)

);
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Class Templates

// Typical template interface.
template <class Object>
class ClassName
{
public:
// Public members
private:
// Private members

// Typical member implementation.
template <class Object>
ReturnType
ClassName<Object>: :MemberName( Parameter List ) /* const */
{
// Member body
}

Figure 3.12  Typical layout for template interface and member functions.

O~NOODBWN =

template <class Object>
const MemoryCell<Object> &
MemoryCell<Object>: :operator={ const MemoryCell<Object> & rhs )
{

if( this != &rhs )

storedvValue = rhs.storedvValue;

return *this;

}

Figure 3.13 Illustration of template syntax for operator=.

Typically, the declaration part of the more complex functions no longer

fit on one line and need to be split as in Figure 3.13.

Even if the interface and implementation of the class template are sepa-

rated, few compilers will automatically handle separate compilation cor-
rectly. The simplest, most portable, solution is to add an #include directive
at the end of the interface file to import the implementation. It is added to the
online code (for class templates only). Alternative solutions involve adding
explicit instantiations for each type as a separate .cpp file. These details
change rapidly, so you should consult the compiler’s documentation to find
the proper alternative.
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We can use templates
to design a safe,
dynamically
expanding array.

3.4.2 Implementing the vector Class Template

Our next example is a complete class that supports arrays in the manner of
most programming languages. It provides index range checking, allows
copying between identically typed arrays, and supports dynamically chang-
ing array sizes. Because the string class in Section 2.6 supported similar
operations, the only new item is the use of templates in this class.

Our vector class supports array indexing, resizing, and copying and
performs index range checking (the STL version does not). Because crucial
functions are inlined, you can expect this version to be as efficient as the
STL version, except for the overhead of index range checking. The class
uses the symbol NO_CHECK, which if defined, causes the range checking
code not to be compiled. All compilers provide options to define symbols as
part of the compilation command; check your compiler’s documentation for
details. All code in the text makes use of the vector class. However you can
use the STL version or this version; all member functions in this vector
class are present in the STL version.

The vector class is implemented by storing a primitive array (objects)
as a data member. Recall once again that a primitive array is a second-class
object, implemented as a pointer to a block of memory large enough to store
the array objects. Because the primitive array is represented as a pointer, the
size of the array is unknown and needs to be maintained in a separate variable
(theCapacity). Memory for the array is obtained by calling the new[ ] oper-
ator, which occurs in the constructor, the assignment operator, and the
reserve operation. The memory needs to be reclaimed by delete[], which
occurs in the destructor and the assignment and reserve operations (for
assignment, the old array is reclaimed before allocation of the new array; in
reserve, the old array is reclaimed after allocation of the new array).

The class interface, shown in Figure 3.14, includes implementations of
the functions that are one-liners, so as to avoid the overhead of function
calls. The compiler can aggressively inline these functions. Normally, doing
so is not worthwhile, but fast vector operations are certain to be crucial in
any application. The remaining member functions are shown in Figure 3.15.

3.5 Templates of Templates: A matrix Class

As mentioned in Section 1.2.7, the C++ library does not provide first-class
multidimensional arrays. However, we can write quickly a reasonable class
to support two-dimensional arrays. We call this class a matrix. The basic
idea is to use a vector of vectors. The code for the matrix class is
shown in Figure 3.16.
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//

vector class interface. Supports construction with m

initial size (default is 0), automatic destruction,
access of the current size, array indexing via [], deep
copy, and resizing. Index range checking is performed

unless NO_CHECK 1s defined.

template <class Object>
class vector

{

b

public:
explicit vector( int initSize = 0 )
theSize( initSize ), theCapacity( initSize )
{ objects = new Object[ theCapacity 1; }
vector( const vector & rhs ) : objects( NULL )
{ operator=( rhs ); }
~vector ( )
{ delete [ ] objects; }
Object & operator[]( int index )
{
#i1ifndef NO_CHECK
if( index < 0 || index >= size( ) )
throw ArrayIndexOutOfBoundsException( );
#endif

return objects[ index ];
}

const Object & operator[]( int index ) const
{
#i1fndef NO_CHECK

if{ index < 0 || index >= size( ) )
throw ArrayIndexOutOfBoundsException( );
#endif
return objects([ index J;
}
const vector & operator= { const vector & rhs );

void resize( int newSize );
void reserve( int newCapacity );
void push_back( const Object & x );

int size( ) const
{ return theSize; )}
int capacity( ) const

{ return theCapacity; }

private:

int theSize;
int theCapacity;
Object * objects;

Figure 3.14 The vector.h file.




#include "vector.h"

template <class Object>
const vector<Object> &

-
QWO NOOHBEWN=

vector<Object>: :operator=( const vector<Object> & rhs )

{
if( this != &rhs ) // Alias test
delete [ ] objects; // Reclaim old
theSize = rhs.size( ); // Copy size
11 theCapacity = rhs.capacity( ); // and capacity
12 objects = new Object[ capacity( ) ]1; // Allocate
13 for( int k = 0; k < size( ); k++ ) // Copy items
14 objects[ k ] = rhs.objects[ k 1;
15 }
16 return *this; // Return reference toself
17 3
18
19 template <class Object>
20 void vector<Object>::push_back( const Object & x )
21 ¢
22 if( theSize == theCapacity ) // If no room
23 reserve( 2 * theCapacity + 1 ); // Make room
24 objects[ theSize++ ] = x; // Add x
25 }
26
27 template <class Object>
28 void vector<Object>::resize( int newSize )
29 ¢
30 if( newSize > theCapacity ) // If expanding
31 reserve( newSize * 2 ); // Get space
32 theSize = newSize; // Set size
33 }
34
35 template <class Object>
36 void vector<Object>::reserve( int newCapacity )
37 {
38 Object *oldArray = objects; // Save old
39 int numToCopy = newCapacity < theSize ? // Compute # to
40 newCapacity theSize; // copy
M
42 objects = new Object[ newCapacity J]; // Allocate new
43 for( int k = 0; kK < numToCopy; k++ ) // Copy items
44 objects[ k | = oldarrayl k 1;
45
46 theSize = numToCopy // Set size
47 theCapacity = newCapacity; // Set capacity
48
49 delete [ 1 oldArray; // Reclaim old
50 }

Figure 3.15 The vector.cpp file.



Templates of Templates: A matrix Class

1 template <class Object>

2 class matrix

3 {

4 public:

5 matrix{ int rows, int cols ) : array( rows )

6 {

7 for( int 1 = 0; 1 < rows; 1++ )

8 arrayl 1 ].resize( cols );

9 }

10

11 // Copy constructor -- not really needed.

12 matrix( const matrix & rhs ) : array( rhs.array ) { }
13

14 const vector<Object> & operator[]( int row ) const
15 { return array[ row ]; }

16 vector<Object> & operator[]( int row )

17 { return arrayl[ row ]; }

18

19 int numrows( ) const

20 { return array.size( ); }

21 int numcols( ) const

22 { return numrows( ) > 0 ? array[ 0 ].size( ) : 0; }
23

24 void push_back( const vector<Object> & newRow )

25 { array.push_back( newRow ); 1}

26

27 private:

28 vector< vector<Object> > array;

29 3;

Figure 3.16 A complete matrix class.

3.5.1 The Data Members, Constructor, and Basic Accessors

The matrix is represented by an array data member declared to be a  Be sure that you have
vector of vector<Object>. Note that, in the declaration of array, white —SPace between > and

. . R > when instantiating
space must separate the two > characters; otherwise, the compiler will inter- layers of templates.
pret the >> token as a shift operation. In other words, we must write

vector<vector<Object> > array; // white space needed

The constructor first constructs array, as having rows entries each
of type vector<Object>. Since each entry of array is constructed
with the zero-parameter constructor, it follows that each entry of array is
a vector<object> of size 0. Thus we have rows zero-length vectors of
Object.
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The body of the constructor is then entered and each row is resized to have
cols columns. Thus the constructor terminates with what appears to be a two-
dimensional array. The numrows and numcols accessors are then easily
implemented as shown. We also provide a push_back method that adds a
new row; it is trivially implemented by a call to the underlying vector’s
push_back.

3.5.2 operator|]

The idea of operator[] is that, if we have amatrix m, thenm([i] should
return a vector corresponding to row i of matrix m. If it does, m{1] [j] gives
the entry in position j for vector m[1i], using the normal vector indexing
operator. Thus the matrix operator[] is to return a vector<Object>,
not an Object.

We use the now standard trick of writing both an accessor and a mutator
version of operator [] that differ in their return types. The accessor ver-
sion of operator[] returns a constant reference, and the mutator version
returns the simple reference.

3.5.3 Destructor, Copy Assignment,
and Copy Constructor

The destructor, operator=, and copy constructor defaults are all acceptable
because the only data member is a vector, for which the Big-Three are
meaningfully defined. Thus we have all the code needed for a fully function-
ing matrix class. Some compilers that have template bugs may require a
trivial implementation of the copy constructor. For that reason only, a copy
constructor is provided.

3.6 Fancy Templates

Our discussion of templates has only scratched the surface. The template
facility of C++ has recently been expanded. Many of the new additions are
used to implement the STL. Unfortunately, many also do not work every-
where. We discuss three advanced features, but only the first works on most
platforms.

3.6.1  Multiple Template Parameters

The proposed template facility allows multiple instantiation parameters,
such as



Fancy Templates m

template <class KeyType, class ValueType>
class Map

{

}i

Here the Map template requires two types for instantiation. For instance, to
declare a Map that takes a city name (which is a string) as the item to
search for and returns a zip code (which is an int) as the lookup value, we
can declare

Map<string, int> zipCodes;

In fact, map (lowercase m) is part of the STL, and we provide an implementa-
tion of it in Part IV.

3.6.2 Default Template Parameters

Just as functions can have default parameters, templates can have default
template types. Here is an example:

template <class KeyType, class ValueType=string>
class Map

{

Y

We can now make the following declarations:

Map<int, int> ml; // KeyType==int, ValueType==int
Map<int> m2; // KeyType==int, ValueType==string

Default template parameters are widely used in the STL. Unfortunately,

not all compilers support them.

3.6.3 The Reserved Word typename

A recent addition to the C++ Standard allows the use of the new reserved
word typename instead of class in the template parameter list. In other
words, we can write

template <typename Object>
class MemoryCell

{

i
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Everything else is the same. The logic is that class is misleading because
the template can be expanded with both class types and primitive types.
However, not all compilers support typename, and the language designer
suggests sticking wi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>