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I Preface 

This book is designed for a two-semester sequence in computer science, 
beginning with what is typically known as Data Structures (CS-2) and con- 
tinuing with advanced data structures and algorithm analysis. 

The content of the CS-2 course has been evolving for some time. 
Although there is some general consensus concerning topic coverage, con- 
siderable disagreement still exists over the details. One uniformly accepted 
topic is principles of software development, most notably the concepts of 
encapsulation and information hiding. Algorithmically, all CS-2 courses 
tend to include an introduction to running-time analysis, recursion, basic 
sorting algorithms, and elementary data structures. An advanced course is 
offered at many universities that covers topics in data structures, algorithms, 
and running-time analysis at a higher level. The material in this text has been 
designed for use in both levels of courses, thus eliminating the need to pur- 
chase a second textbook. 

Although the most passionate debates in CS-2 revolve around the choice 
of a programming language, other fundamental choices need to be made, 
including 

whether to introduce object-oriented design or object-based design 
early, 
the level of mathematical rigor, 

the appropriate balance between the implementation of data struc- 
tures and their use, and 
programming details related to the language chosen. 

My goal in writing this text was to provide a practical introduction to 
data structures and algorithms from the viewpoint of abstract thinking and 
problem solving. I tried to cover all of the important details concerning the 
data structures, their analyses, and their C++ implementations, while staying 



away from data structures that are theoretically interesting but not widely 
used. It is impossible to cover in a single course all the different data struc- 
tures, including their uses and the analysis, described in this text. So, I 
designed the textbook to allow instructors flexibility in topic coverage. The 
instructor will need to decide on an appropriate balance between practice 
and theory and then choose those topics that best fit the course. As I discuss 
later in this Preface, I organized the text to minimize dependencies among 
the various chapters. 

A Unique Approach 

My basic premise is that software development tools in all languages come 
with large libraries, and many data structures are part of these libraries. I 
envision an eventual shift in emphasis of data structures courses from imple- 
mentation to use. In this book I take a unique approach by separating the 
data structures into their specification and subsequent implementation and 
take advantage of an already existing data structures library, the Standard 
Template Library (STL). 

A subset of the STL suitable for most applications is discussed in a sin- 
gle chapter (Chapter 7) in Part 11. Part 11 also covers basic analysis tech- 
niques, recursion, and sorting. Part I11 contains a host of applications that 
use the STL's data structures. Implementation of the STL is not shown until 
Part IV, once the data structures have already been used. Because the STL is 
part of C++ (older compilers can use the textbook's STL code instead-see 
Code Availability, xxix), students can design large projects early on, using 
existing software components. 

Despite the central use of the STL in this text, it is neither a book on the 
STL nor a primer on implementing the STL specifically; it remains a book 
that emphasizes data structures and basic problem-solving techniques. Of 
course, the general techniques used in the design of data structures are appli- 
cable to the implementation of the STL, so several chapters in Part IV 
include STL implementations. However, instructors can choose the simpler 
implementations in Part IV that do not discuss the STL protocol. Chapter 7, 
which presents the STL, is essential to understanding the code in Part 111. I 
attempted to use only the basic parts of the STL. 

Many instructors will prefer a more traditional approach in which each 
data structure is defined, implemented, and then used. Because there is no 
dependency between material in Parts I11 and IV, a traditional course can 
easily be taught from this book. 



Prerequisites 

Students using this book should have knowledge of either an object-oriented 
or procedural programming language. Knowledge of basic features, includ- 
ing primitive data types, operators, control structures, functions (methods), 
and input and output (but not necessarily arrays and classes) is assumed. 

Students who have taken a first course using C++ or Java may find the 
first two chapters "light" reading in some places. However, other parts are 
definitely "heavy" with C++ details that may not have been covered in intro- 
ductory courses. 

Students who have had a first course in another language should begin at 
Chapter 1 and proceed slowly. They also should consult Appendix A which 
discusses some language issues that are somewhat C++ specific. If a student 
would like also to use a C++ reference book, some recommendations are 
given in Chapter 1, pages 38-39. 

Knowledge of discrete math is helpful but is not an absolute prerequi- 
site. Several mathematical proofs are presented, but the more complex 
proofs are preceded by a brief math review. Chapters 8 and 19-24 require 
some degree of mathematical sophistication. The instructor may easily elect 
to skip mathematical aspects of the proofs by presenting only the results. All 
proofs in the text are clearly marked and are separate from the body of the 
text. 

Summary of Changes in the Second Edition 

1. Much of Part I was rewritten. In Chapter 1, primitive arrays are no 
longer presented (a discussion of them was moved to Appendix D); 
vectors are used instead, and push-back is introduced. Pointers 
appear later in this edition than in the first edition. In Chapter 2, 
material was significantly rearranged and simplified. Chapter 3 has 
additional material on templates. In Chapter 4, the discussion on 
inheritance was rewritten to simplify the initial presentation. The 
end of the chapter contains the more esoteric C++ details that are 
important for advanced uses. 

2. An additional chapter on design patterns was added in Part I. Sev- 
eral object-based patterns, including Functor, Wrapper, and Iterator, 
are described, and patterns that make use of inheritance. including 
Observer, are discussed. 

3. The Data Structures chapter in Part I1 was rewritten with the STL in 
mind. Both generic interfaces (as in the first edition) and STL inter- 
faces are illustrated in the revised Chapter 7. 



4. The code in Part I11 is based on the STL. In several places, the code 
is more object-oriented than before. The Huffman coding example 
is completely coded. 

5. In Part IV, generic data structures were rewritten to be much sim- 
pler and cleaner. Additionally, as appropriate, a simplified STL 
implementation is illustrated at the end of the chapters in Part IV. 
lmplemented components include vector, 1 is t, stack, queue, 
set, map, priority-queue, and various function objects and 
algorithms. 

Using C++ presents both advantages and disadvantages. The C++ class 
allows the separation of interface and implementation, as well as the hid- 
ing of internal details of the implementation. It cleanly supports the notion 
of abstraction. The advantage of C++ is that it is widely used in industry. 
Students perceive that the material they are learning is practical and will 
help them find employment, which provides motivation to persevere 
through the course. One disadvantage of C++ is that it is far from a perfect 
language pedagogically, especially in a second course, and thus additional 
care needs to be expended to avoid bad programming practices. A second 
disadvantage is that C++ is still not a stable language, so the various com- 
pilers behave differently. 

It might have been preferable to write the book in a language-indepen- 
dent fashion, concentrating only on general principles such as the theory of 
the data structures and referring to C++ code only in passing, but that is 
impossible. C++ code is complex, and students will need to see complete 
examples to understand some of its finer points. As mentioned earlier, a brief 
review of parts of C++ is provided in Appendix A.  Part I of the book 
describes some of C++'s more advanced features relevant to data structures. 

Several parts of the language stand out as requiring special consider- 
ation: templates, inheritance, exceptions, namespaces and other recent C++ 
additions, and the Standard Library. 1 approached this material in the follow- 
ing manner. 

Templates: Templates are used extensively. Some instructors may 
have reservations with this approach because it complicates the code, 
but I included them because they are fundamental concepts in any 
sophisticated C++ program. 
I~zheritance: I use inheritance relatively sparingly because it adds 
complications, and data structures are not a strong application area 
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for it, This edition contains less use of inheritance than in the previ- 
ous edition. However, there is a chapter on inheritance, and part of the 
design patterns chapter touches on inheritance-based patterns. For the 
most part, instructors who are eager to avoid inheritance can do so, 
and those who want to discuss inheritance will find sufficient material 
in the text. 
Exceptions: Exception semantics have been standardized and 
exceptions seem to work on many compilers. However, exceptions 
in C++ involve ugly code, significant complications (e.g., if used in 
conjunction with templates), and probably require discussing inher- 
itance. So I use them sparingly in this text. A brief discussion of 
exceptions is provided, and in some places exceptions are thrown in 
code when warranted. However, I generally do not attempt to catch 
exceptions in any Part I11 code (most of the Standard Library does 
not attempt to throw exceptions). 
Namespaces: Namespaces, which are a recent addition to C++, do not 
work correctly on a large variety of compilers. I do not attempt to use 
namespaces and I import the entire s t d  namespace when necessary 
(even though not great style, it works on the largest number of com- 
pilers). Appendix A discusses the namespace issues. 
Recent language additions: The boo1 data type is used throughout. 
The new stat ic-cas t operator is used in preference to the old-style 
cast. Finally, I use e x p l i c i t  when appropriate. For the most part, 
other additions are not used (e.g., I generally avoid using typename). 
Standard Library: As previously mentioned, the STL is used through- 
out, and a safe version (that does extra bounds checking) is available 
online (and implemented in Part IV). We also use the s t r i n g  class 
and the newer i s t r i n g s t r e a m  class that are part of the standard 
library. 

Text Organization 

In this text I introduce C++ and object-oriented programming (particularly 
abstraction) in Part I. I discuss arrays, pointers and some other C++ topics 
and then go on to discuss the syntax and use of classes, templates, and inher- 
itance. The material in these chapters was substantially rewritten. New to 
this edition is an entire chapter on design patterns. 

In Part I1 I discuss Big-Oh and algorithmic paradigms, including recur- 
sion and randomization. An entire chapter is devoted to sorting, and a sepa- 
rate chapter contains a description of basic data structures. I use the STL in 
presenting the interfaces and running times of the data structures. At this 
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point in the text, the instructor may take several approaches to present the 
remaining material, including the following two. 

I .  Discuss the corresponding implementations (either the STL ver- 
sions or the simpler versions) in Part IV as each data structure is 
described. The instructor can ask students to extend the classes in  
various ways, as suggested in the exercises. 

2. Show how the STL class is used and cover implementation at a later 
point in the course. The case studies in Part 111 can be used to sup- 
port this approach. As complete implementations are available on 
every modern C++ compiler (or on the Internet for older compil- 
ers). the instructor can use the STL in programming projects. 
Details on using this approach are given shortly. 

Part V describes advanced data structures such as splay trees, pairing 
heaps, and the disjoint set data structure, which can be covered if time per- 
mits or, more likely, in a follow-up course. 

Chapter-by-Chapter Text Organization 

Part I consists of ti ve chapters that describe some advanced features of C++ 
used throughout the text. Chapter I describes arrays, strings, pointers, refer- 
ences, and structures. Chapter 2 begins the discussion of object-oriented pro- 
gramming by describing the class mechanism in C++. Chapter 3 continues 
this discussion by examining templates, and Chapter 4 illustrates the use of 
inheritance. Several components, including strings and vectors, are written 
in these chapters. Chapter 5 discusses some basic design patterns, focusing 
mostly on object-based patterns such as function objects, wrappers and 
adapters, iterators, and pairs. Some of these patterns (most notably the wrap- 
per pattern) are used later in the text. 

Part IT focuses on the basic algorithms and building blocks. In Chapter 6 
a complete discussion of time complexity and Big-Oh notation is provided, 
and binary search is also discussed and analyzed. Chapter 7 is crucial 
because it covers the STL and argues intuitively what the running time of the 
supported operations should be for each data structure. (The implementation 
of these data structures. in both STL-style and a simplified version, is not 
provided until Part IV.  The STL is available on recent compilers.) Chapter 8 
describes recursion by ti rst introducing the notion of proof by induction. It 
also discusses divide-and-conquer, dynamic programming, and backtrack- 
ing. A section describes several recursive numerical algorithms that are used 
to implement the RSA cryptosystem. For many students, the material in the 



second half of Chapter 8 is more suitable for a follow-up course. Chapter 9 
describes. codes, and analyzes several basic sorting algorithms, including 
the insertion sort, Shellsort, mergesort, and quicksort, as well as indirect 
sorting. It also proves the classic lower bound for sorting and discusses the 
related problems of selection. Finally, Chapter 10 is a short chapter that dis- 
cusses random numbers, including their generation and use in randomized 
algorithms. 

Part 111 provides several case studies, and each chapter is organized 
around a general theme. Chapter I I illustrates several important techniques 
by examining games. Chapter 12 discusses the use of stacks in computer 
languages by examining an algorithm to check for balanced symbols and the 
classic operator precedence parsing algorithm. Complete implementations 
with code are provided for both algorithms. Chapter 13 discusses the basic 
utilities of file compression and cross-reference generation, and provides a 
complete implementation of both. Chapter 14 broadly examines simulation 
by looking at one problem that can be viewed as a simulation and then at the 
more classic event-driven simulation. Finally, Chapter 15 illustrates how 
data structures are used to implement several shortest path algorithms effi- 
ciently for graphs. 

Part IV presents the data structure implementations. Implementations 
that use simple protocols (insert, find, remove variations) are provided. 
In some cases, STL implementations that tend to use more complicated C++ 
syntax are presented. Some mathematics is used in this part, especially in 
Chapters 19-2 1,  and can be skipped at the discretion of the instructor. Chap- 
ter 16 provides implementations for both stacks and queues. First these data 
structures are implemented using an expanding array; then they are imple- 
mented using linked lists. The STL versions are discussed at the end of the 
chapter. General linked lists are described in Chapter 17. Singly linked lists 
are illustrated with a simple protocol, and the more complex STL version 
that uses doubly linked lists is provided at the end of the chapter. Chapter 18 
describes trees and illustrates the basic traversal schemes. Chapter 19 is a 
detailed chapter that provides several implementations of binary search 
trees. Initially, the basic binary search tree is shown, and then a binary 
search tree that supports order statistics is derived. AVL trees are discussed 
but not implemented; however, the more practical red-black trees and AA- 
trees are implemented. Then the STL set and map are implemented. 
Finally, the B-tree is examined. Chapter 20 discusses hash tables and imple- 
ments the quadratic probing scheme, after examination of a simpler alterna- 
tive. Chapter 21 describes the binary heap and examines heapsort and 
external sorting. The STL pr iority-queue is implemented in this chapter. 

Part Chapter V contains material suitable for use in a more advanced 
course or for general reference. The algorithms are accessible even at the 



first-year level; however, for completeness sophisticated mathematical anal- 
yses were included that are almost certainly beyond the reach of a first-year 
student. Chapter 22 describes the splay tree, which is a binary search tree 
that seems to perform extremely well in practice and is also competitive with 
the binary heap in some applications that require priority queues. Chapter 23 
describes priority queues that support merging operations and provides an 
implementation of the pairing heap. Finally, Chapter 24 examines the classic 
disjoint set data structure. 

The appendices contain additional C++ reference material. Appendix A 
describes tricky C++ issues, including some unusual operators, 110, and 
recent language changes. Appendix B lists the operators and their prece- 
dence. Appendix C summarizes some C++ libraries. Appendix D describes 
primitive arrays and strings for those who want details of what is going on 
under the hood of the vec tor  and s t r i n g  classes. 

Chapter Dependencies 

Generally speaking, most chapters are independent of each other. However, 
the following are some of the notable dependencies. 

Part I: The first three chapters should be covered in their entirety first. I 
recommend a brief discussion of inheritance in Chapter 4. Some instruc- 
tors will want to cover all of inheritance, but it is possible to get by with 
just the basics of inheritance and avoid some of the more difficult C++ 
issues that inheritance involves. Some of the object-based patterns (e.g., 
wrappers and function objects) in Chapter 5 can be discussed shortly 
after templates, or later in the course as the need arises. Some of these 
patterns are used in the chapter on sorting and in Part IV. 
Chapter 6 (Algorithm Analysis): This chapter should be covered prior 
to Chapters 7 and 9. Recursion (Chapter 8) can be covered prior to 
this chapter, but the instructor will have to gloss over some details 
about avoiding inefficient recursion. 
Chapter 7 (STL): This chapter can be covered prior to, or in conjunc- 
tion with, material in Part 111 or IV. 
Chapter 8 (Recursion): The material in Sections 8.1-8.3 should be 
covered prior to discussing recursive sorting algorithms, trees, the tic- 
tac-toe case study, and shortest-path algorithms. Material such as the 
RSA cryptosystem, dynamic programming, and backtracking (unless 
tic-tac-toe is discussed) is otherwise optional. 
Chapter 9 (Sorting): This chapter should follow Chapters 6 and 8. 
However, it is possible to cover Shellsort without Chapters 6 and 8. 



Shellsort is not recursive (hence there is no need for Chapter 8), and a 
rigorous analysis of its running time is too complex and is not cov- 
ered in the book (hence there is little need for Chapter 6). 
Chapters 16 and 17 (Stacks/Queues/Lists): These chapters may be 
covered in either order. However, I prefer to cover Chapter 16 first, 
because I believe that it presents a simpler example of linked lists. 
Chapters 18 and 19 (TreesBearch trees): These chapters can be cov- 
ered in either order or simultaneously. 

Separate Entities 

The other chapters have little or no dependencies: 

Chapter 10 (Randomization): The material on random numbers can 
be covered at any point as needed. 
Part III (Case Studies): Chapters 11-15 can be covered in conjunction 
with, or after, the STL (in Chapter 7), and in roughly any order. There 
are a few references to earlier chapters. These include Section 1 1.2 (tic- 
tac-toe), which references a discussion in Section 8.7, and Section 13.2 
(cross-reference generation), which references similar lexical analysis 
code in Section 12.1 (balanced symbol checking). 
CIzapters 20 and 21 (Hashing/Priority Queues): These chapters can 
be covered at any point. 
Part V (Advanced Data Structures): The material in Chapters 22-24 
is self-contained and is typically covered in a follow-up course. 

Mathematics 

I have attempted to provide mathematical rigor for use in CS-2 courses that 
emphasize theory and for follow-up courses that require more analysis. 
However, this material stands out from the main text in the form of separate 
theorems and, in some cases, separate sections (or subsections). Thus it can 
be skipped by instructors in courses that deemphasize theory. 

In all cases, the proof of a theorem is not necessary to the understanding 
of the theorem's meaning. This is another illustration of the separation of an 
interface (the theorem statement) from its implementation (the proof). Some 
inherently mathematical material, such as Section 8.4 (Numerical Applica- 
tions of Recursion), can be skipped without affecting comprehension of the 
rest of the chapter. 
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Course Organization 

A crucial issue in teaching the course is deciding how the materials in Parts 
11-IV are to be used. The material in Part I should be covered in depth, and 
the student should write one or two programs that illustrate the design, 
implementation, and testing of classes and generic classes-and perhaps 
object-oriented design, using inheritance. Chapter 6 discusses Big-Oh nota- 
tion. An exercise in which the student writes a short program and compares 
the running time with an analysis can be given to test comprehension. 

In the separation approach, the key concept of Chapter 7 is that different 
data structures support different access schemes with different efficiency. 
Any case study (except the tic-tac-toe example that uses recursion) can be 
used to illustrate the applications of the data structures. In this way, the stu- 
dent can see the data structure and how it is used but not how it is efficiently 
implemented. This is truly a separation. Viewing things this way will greatly 
enhance the ability of students to think abstractly. Students can also provide 
simple implementations of some of the STL components (some suggestions 
are given in the exercises in Chapter 7) and see the difference between effi- 
cient data structure implementations in the existing STL and inefficient data 
structure implementations that they will write. Students can also be asked to 
extend the case study, but, again, they are not required to know any of the 
details of the data structures. 

Efficient implementation of the data structures can be discussed after- 
ward, and recursion can be introduced whenever the instructor feels it is 
appropriate, provided it is prior to binary search trees. The details of sorting 
can be discussed at any time after recursion. At this point, the course can 
continue by using the same case studies and experimenting with modifica- 
tions to the implementations of the data structures. For instance, the student 
can experiment with various forms of balanced binary search trees. 

Instructors who opt for a more traditional approach can simply discuss 
a case study in Part I11 after discussing a data structure implementation in 
Part IV. Again, the book's chapters are designed to be as independent of 
each other as possible. 

Q Exercises 
Exercises come in various flavors; I have provided four varieties. The basic In 
Short exercise asks a simple question or requires hand-drawn simulations of an 
algorithm described in the text. The In Theory section asks questions that either 
require mathematical analysis or asks for theoretically interesting solutions to 
problems. The In Practice section contains simple programming questions, 
including questions about syntax or particularly tricky lines of code. Finally, the 
Programming Projects section contains ideas for extended assignments. 



Pedagogical Features 

Margin notes are used to highlight important topics. 
The Objects of the Game section lists important terms along with def- 
initions and page references. 
The Common Errors section at the end of each chapter provides a list 
of commonly made errors. 
References for further reading are provided at the end of most chapters. 

Code Availability 

The code in the text is fully functional and has been tested on numerous plat- 
forms. It is available from my home page h t t p  : / /www . f iu . ed~/-weiss. 
Be sure to browse the README file for information on compiler dependencies 
and bug fixes. The On the Internet section at the end of each chapter lists the 
filenames for the chapter's code. 

Instructor's Resource Guide 

An Instructor's Guide that illustrates several approaches to the material is 
available. It includes samples of test questions, assignments, and syllabi. 
Answers to select exercises are also provided. Instructors should contact 
their Addison Wesley Longman local sales representative for information on 
its availability or send an e-mail message to aw . cse@awl. corn. This guide 
is not available for sale and is available to instructors only. 
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Chapter 1 

Arrays, Pointers, and Structures 

In this chapter we discuss three features contained in many programming 
languages: arrays, pointers, and structures. Sophisticated C++ programming 
makes heavy use of pointers to access objects. Arrays and structures store 
several objects in one collection. An array stores only one type of object, but 
a structure can hold a collection of several distinct types. 

In this chapter, we show: 

why these features are important; 
how the vector  is used to implement arrays in C++; 
how the s t r i n g  is used to implement strings in C++; 
how basic pointer syntax and dynamic memory allocation are used; 
and 
how pointers, arrays, and structures are passed as parameters to 
functions. 

1 .I What Are Pointers, Arrays, and Structures? 

A pointer is an object that can be used to access another object. A pointer 
provides indirect access rather than direct access to an object. People use 
pointers in real-life situations all the time. Let us look at some examples. 

When a professor says, "Do Problem 1.1 in the textbook," the actual 
homework assignment is being stated indirectly. 
A classic example of indirect access is looking up a topic in the index 
of a book. The index tells you where you can find a full description. 
A street address is a pointer. It tells you where someone resides. A 
forwarding address is a pointer to a pointer. 
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A pointer stores an 
address where other 
data reside. 

An aggregate is a 
collection of objects 
stored in one unit. 

An array stores a 
collection of 
identically-typed 
objects. 

First-class objects 
can be manipulated in 
all the "usual ways" 
without special cases 
and exceptions. 

A unform resource locator (URL), such as http : / /www . cnn. corn, is 
a pointer. The URL tells you where a target Web page is. If the target 
Web page moves, the URL becomes stale, and points to a page that no 
longer exists. 

In all these cases a piece of information is given out indirectly by providing 
a pointer to the information. In C++ a pointer is an object that stores an 
address (i.e., a location in memory) where other data are stored. An address 
is expected to be an integer, so a pointer object can usually be represented 
internally as an (unsigned) int.1 What makes a pointer object more than 
just a plain integer is that we can access the datum being pointed at. Doing 
so is known as dereferencing the pointer. 

An aggregate is a collection of objects stored in one unit. The array is the 
basic mechanism for storing a collection of identically-typed objects. A differ- 
ent type of aggregate type is the structure, which stores a collection of objects 
that need not be of the same type. As a somewhat abstract example, consider 
the layout of an apartment building. Each floor might have a one-bedroom 
unit, a two-bedroom unit, a three-bedroom unit, and a laundry room. Thus 
each floor is stored as a structure, and the building is an array of floors. 

1.2 Arrays and Strings 

In C++ we can declare and use arrays in two basic ways. The primitive method 
is to use the built-in array. The alternative is to use a vector. The syntax for 
both methods is more or less the same; however, the vector is much easier 
and slightly safer to use than the primitive array and is preferred for most appli- 
cations. The major philosophical difference between the two is that the vector 
behaves as a first-class type (even though it is implemented in a library), 
whereas the primitive array is a second-class type. Similarly, C++ provides 
primitive strings (which are simply primitive arrays of char) and the much- 
preferred string. In this section we examine what is meant by first-class and 
second-class types and show you how to use the vector and string. 

1.2.1 First-Class Versus Second-Class Objects 

Computer Scientists who study programming languages often designate cer- 
tain language constructs as being $first-class objects or second-class objects. 
The exact definition of these terms is somewhat imprecise, but the general 
idea is that first-class objects can be manipulated in all the "usual ways" 

1. This fact is of little use in normal programming practice and in languages besides C. C++, and 
low-level assembly languages. It is used (often dangerously) by old-style C++ programmers. 



without special cases and exceptions, whereas second-class objects can be 
manipulated in only certain restricted ways. 

What are the "usual ways?" In the specific case of C++, they might 
include things like copying. Recall that an array stores a collection of 
objects. We would expect a copy of an array to copy the entire collection; 
this is not the case for the primitive array. We might also expect an array to 
know how many objects are in its collection. In other words, we would 
expect that the size of the array is part of its being. Again, this is not true for 
primitive arrays. (The reason for this is that arrays in C++ are little more 
than pointer variables, rather than their own first-class type.) We might also 
expect that when allocated arrays are no longer needed (for instance the 
function in which they are declared returns), then the memory that these 
arrays consumes is automatically reclaimed. This is true sometimes and 
false at other times for arrays, making for tricky coding. 

The primitive string may be considered even lower than a second-class 
object because it suffers all the second-class behavior of arrays. In addition, 
its comparison operators (for instance, == and <) do not do what we would 
normally expect them to do and thus have to be handled as a special case. 

Throughout the text, we use a vector and a string to provide first- 
class treatment for arrays and  string^.^ The vector and string classes are 
now part of the Standard Library and thus are part of C++. However, many 
compilers do not yet support them. We provide our own versions of vector 
i Section 3.4.2) and string (Section 2.6), and in the process, illustrate how 
their second-class counterparts are manipulated. Our vector and string 
are implemented by wrapping the second-class behavior of the built-in types 
in a class.3 This implementation is an acceptable use of the second-class 
type because the complicated second-class implementation details are hid- 
den and never seen by the user of the first-class objects. As we demonstrate 
in Chapter 2, the class allows us to define new types. Included in these types 
are functions that can be applied to objects of the new type. 

The vector and string classes in the Standard Library treat arrays 
and strings as first-class objects. A vector knows how large it is. Two 
string objects can be compared with ==, <, and so on. Both vector and 

Primitive arrays and 
strings are not first- 
class objects. 

Throughout the text, 
we use a vector and 
a string to provide 
first-class treatment 
for arrays and strings. 

2 .  The vector class contains the basic primitive array operations plus additional features. 
Thus it behaves more like a data structure than a simple array. However, its use is much 
safer than the primitive C++ array. The vector is part of the Standard Template Library 
(STL). 

3.  Appendix D contains further discussion of primitive arrays and strings if you want to see 
these details early. However, you must read Section 1.3 first. A less detailed discussion is 
given in Sections 2.6 and 3.4.2, which contain descriptions that are sufficient to show how 
the string and vector are implemented. 
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string can be copied with =. Except in special cases, you should avoid 
using the built-in C++ array and string. 

The string is a class, or the library type used for first-class strings. 
The vector is a class template, or the library type used for first-class 
arrays. We discuss classes in Chapter 2 and class templates in Chapter 3. A 
recurring theme in this text is that using a library routine does not require 
knowing anything about its underlying implementation. However, you 
may need to know how the second-class counterparts are manipulated 
because occasionally you must resort to the primitive versions. It turns out 
that both string and vector are implemented by providing an interface 
that hides the second-class behavior of the built-in types. 

1.2.2 Using the vector 

To use the standard vector, your program must include a library header file 
with 

A using directive may be needed if one has not already been provided. 
The array indexing Just as a variable must be declared before it is used in an expression and 
operator 11 provGes initialized before its value is used. so must an array. A vecto; is declared 
access to any object 
in the array. by giving it a name, in accordance with the usual identifier rules, and by tell- 

ing the compiler what type the elements are. A size can also be provided; if it 
is not, the size is zero, but vector will need to be resized later. 

Each object in the collection of objects that an array denotes can be 
accessed by use of the array indexing operator [ I .  We say that the [ 1 
operator indexes the array, meaning that it specifies which of the objects is to 
be accessed. 

Arrays are indexed In C++, arrays are always indexed starting at zero. Thus the declaration 
starting at zero. 

vectorcintl a ( 3 ) ;  / /  3 int objects: a [ O l ,  a [ l l ,  and a [ 2 1  

sets aside space to store three integers-namely, a  [ 0  1 , a  [ 11, and a  [ 2 1 ; no 
index range checking is performed in the Standard Library's vector, so an 
access out of the array index bounds is not caught by the compiler (in this 
case, the legal array indices range from 0 to 2, inclusive). Although no 
explicit run-time error may be generated, undefined and occasionally myste- 
rious behavior would occur. The vector that we implement in Section 3.4.2 
allows the programmer to turn on index range checking so that this error 
causes the program to terminate immediately with a message. (Range check- 
ing can be done by using a t  ; a .  a t  ( i ) is the same as a  [ i ] , except that an 
error is signalled if i is out-of-bounds.) 
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The size of the vector can always be obtained with the size function. The size of the 

For the preceding code fragment example, a .  size ( ) returns 3.  Note the vector can always 
be obtained with the syntax: The dot operator is used to call the vector's size function. size operator. 

The size of a vector can always be changed by calling resize. Thus 
an alternative declaration for the vector a could have been 

vector<int> a; / /  0 int objects 
a.resize( 3 ) ; / /  3 int objects: a[O], a[l], and a[2] 

Figure 1.1 illustrates the use of the vector. The program in Figure 1.1 
repeatedly chooses numbers between 1 and 100, inclusive. The output is the 
number of times that each number has o~curred .~  

Line 17 declares an array of integers that count the occurrences of each You must always be 

number. Because arrays are indexed starting at zero, the + 1 is crucial if we the 
correct array size. 

want to access the item in position DIFFERENT-NUMBERS. Without it we Off-by-one errors are 
would have an array whose indexible range was 0 to 99, and thus any access common and very 
to index 100 might~be to memory that was assigned to another object. Incor- difficult to spot. 

rect results could occur, depending on the implementation details of 
vector; we might find that the program would work perfectly on some plat- 
forms but would give wrong answers on others. 

The rest of the program is relatively straightforward. The routine rand, 
declared in stdlib. h, gives a (somewhat) random number; the manipula- 
tion at line 25 places it in the range 1 to 100, inclusive. The results are output 
at lines 28 to 30. 

The C++ standard specifies that the scope of i on line 20 ends with the 
for loop. (In other words, i should not be visible at line 24). This is differ- 
cnt from the original language specification, and some older compilers (and 
even some newer compilers) see i as being in scope at line 24. Thus we use 
different names for the loop counters.5 

1.2.3 Resizing a vector 

One limitation of primitive arrays is that, once they have been declared, their 
iize can never change. Often this is a significant restriction. We know, how- 
sver, that we can use resi ze to change the size of a vector. The technique 
used illustrates some of the efficiency issues that we address in this text. 

The using directive, shown at line 4, is a recent addition to C++ and is discussed in Appen- 
dix A.5. Other significant additions are presented in Section A.6. 

! Sote also that the STL vector has an initialization shorthand that we have not used. We 
could have written 
-'ector<int> numbers( DIFFERENT-NUMBERS + 1, 0 ) ;  

ro initialize all entries to zero and thus avoided the first for loop. 
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1 #include <stdlib.h> 
2 #include <iostream> 
3 #include <vector> 
4 using namespace std; 
5 
6 / /  Generate numbers (from 1-100). 
7 / /  Print number of occurrences of each number. 
8 int main( ) 

9 { 

10 const int DIFFERENT-NUMBERS = 100; 
11 
12 / /  Prompt for and read number of games. 
13 int totalNumbers; 
14 cout << "How many numbers to generate?: "; 

15 cin >> totalNumbers; 
16 
17 vector<int> numbers( DIFFERENT-NUMBERS + 1 ) ;  

18 
19 / /  Initialize the vector to zeros. 
20 for( int i = 0; i < numbers.size( ) ;  i++ ) 

21 numbers[ i ] = 0; 
22 
23 / /  Generate the numbers. 
24 for( int j = 0; j < totalNumbers; j++ ) 

25 numbers[ rand( ) % DIFFERENT-NUMBERS + 1 I + + ;  
26 
27 / /  Output the summary. 
28 for( int k = 1; k <= DIFFERENT-NUMBERS; k++ ) 

29 cout << k << " occurs " << numbers[ k I 
30 << I' time(s) \n"; 
31 
32 return 0; 
33 } 

Figure 1.1 Simple demonstration of arrays. 

What happens is that pointers (which we discuss later in this chapter) are 
used to give the illusion of an array that can be resized. To understand the 
algorithm does not require any knowledge of C++: all this detail is hidden 
inside the implementation of vector. 

The basic idea is shown in Figure 1.2. There, arr is representing a 10- 
element vector. Somewhere, buried in the implementation then, memory is 
allocated for 10 elements. Suppose that we would like to expand this mem- 
ory to 12 elements. The problem is that array elements must be stored in 
contiguous memory and that the memory immediately following arr might 
already be taken. So we do the following: 
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arr 

arr 

original 
(b) 

arr 

original 

(c) 

arr 

original W 
Figure 1.2 Array expansion, internally: (a) At the starting point, arr represents 

10 integers; (b) after step 1, original represents the same 10 
integers; (c) after steps 2 and 3, arr represents 12 integers, the first 
10 of which are copied from original; and (d) after step 4, the 
10 integers are freed. 

1 .  We remember where the memory for the 10-element array is (the 
purpose of original). 

2. We create a new 12-element array and have arr use it. 
3. We copy the 10 elements from original to arr; the two extra 

elments in the new arr have some default value. 
4. We inform the system that the 10-element array can be reused as it 

sees fit. 

.A moment's thought will convince you that this is an expensive operation Always expand the 

because we copy all the elements from the originally allocated array to the array a size that is 
some multiplicative 

newly allocated array. If, for instance, this array expansion is in response to con,tant times as 
reading input, expanding every time we read a few elements would be ineffi- large. Doubling is a 
cient. ~ h u i ,  when array expansion is implemented, we always make it some good choice. - 

t?l~~lriplicative constant times as large. For instance, we might expand to 
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make it twice as large. In this way, when we expand the array from N items 
to 2N items, the cost of the N copies can be apportioned over the next N 
items that can be inserted into the array without an expansion. As a result, 
this dynamic expansion is only negligibly more expensive than starting with 
a fixed size, but it is much more flexible. 

To make things more concrete, Figure 1.3 shows a program that reads an 
unlimited number of integers from the standard input and stores the result in a 
dynamically expanding array. The function declaration for getInts tells us 
that the vector is the parameter. The & in the function declaration before 
array specifies that it is a reference to the actual parameter, rather than a copy 

1 #include <iostream> 
2 #include <vector> 
3 using namespace std; 
4 
5 / /  Read an unlimited number of ints with no attempts at error 
6 / /  recovery; fill the vector parameter with the data; its size 
7 / /  after the return tells how many items were read. 
8 void getInts( vector<int> & array ) 

9 { 

10 int itemsRead = 0; 
11 int inputVal; 
12 
13 cout << "Enter any number of integers: " ;  

14 while( cin >> inputVal ) 

15 { 

16 if( itemsRead == array.size( ) ) 

17 array.resize( array.size( ) * 2 + 1 ) ;  

18 array[ itemsRead++ ] = inputVal; 
19 } 

20 array.resize( itemsRead ) ;  

21 1 
22 
23 int main( ) 

24 { 
25 vector<int> array; 
26 
27 getInts( array ) ;  

28 for( int i = 0; i < array.size( ) ;  i++ ) 

29 cout <<  array[ i ] << endl; 
30 
31 return 0; 
32 1 

Figure 1.3 Code to read an unlimited number of ints and write them out, 
using array-doubling. 
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of it. Thus all changes in the formal parameter are reflected in the actual argu- 
ment. We discuss reference parameters in more detail in Section 1.5. 

At the start of getrnts, itemsRead is set to 0. We repeatedly read 
new items at line 14. If the array is full, as indicated by a successful test at 
line 16, then the array is expanded at line 17. We resize to roughly twice 
the size of the old. We add 1 so that the initial doubling converts an array 
of 0 size to an array of size 1 .  At line 18 the actual input item is assigned to 
the array, and the number of items read is incremented. At line 20 we 
resize the array to match the number of items that were read. An alterna- 
tive is to have it emsRead be an additional reference parameter that is even- 
tually set to the new array size. When the input fails (for whatever reason), 
we merely return. The main routine calls getInts, passing a vector. The 
initial size of this vector happens to be 0. 

1.2.4 push-back: size and capacity 

The technique used in Figure 1.3 is so common that the vector has built-in 
functionality to mimic it. The basic idea is that the vector maintains not 
only a size, but also a capacity; the capacity is the amount of memory that it 
has reserved. The capacity of the vector is really an internal detail, not 
something that you need worry about. 

The push-back function increases the size by one, and adds a new item The push-back 

into the array at the appropriate position. This is a trivial operation if capacity increases 
the size by 1, adds a has not been reached. If it has, the capacity is automatically expanded, using new item to the array 

the strategy described in Section 1.2.3.6 Typically, we start the vector with a at the appropriate 
size of 0. position, expanding 

The code in Figure 1.4 shows how push-back is used in getInts; it is capacity if needed. 

clearly much simpler than the getInts function in Figure 1.3. Line 13 
resizes the vector to no elements. This may or may not reduce its capacity, 
depending on the internal implementation of vector. Note that if we do not 
resize, then new items will be placed at the end of the vector; thus items 
that were in the vector when getInts was called will still be there. 

1.2.5 Parameter-Passing Mechanisms 

Suppose that we want to pass a vector to a routine that finds the maximum 
\ alue in the array. The natural declaration for the routine would be 

6 .  Some compilers do not double the capacity. but instead expand by a small constant 
amount, thereby causing poor performance. 
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1 #include <stdlib.h> 
2 #include <iostream> 
3 #include <vector> 
4 using namespace std; 
5 
6 / /  Read an unlimited number of ints with no attempts at error 
7 / /  recovery; fill the vector parameter with the data; its size 
8 / /  after the return tells how many items were read. 
9 void getInts( vector<int> & array ) 

10 { 

11 int inpu tVal ; 
12 
13 array.resize( 0 ) ;  

14 cout << "Enter any number of integers: " ;  

15 while( cin >> inputVal ) 

16 array.push-back( inputVal ) ;  

17 1 

Figure 1.4 Code to read an unlimited number of i n t s  and write them out using 
push-back. 

Call by value is the This function declaration has a fundamental problem: The default parameter- 
default parameter- passing mechanism is call by value, whose semantics dictate that a copy be 
passing mechanism. 
The actual argument made of the actual argument and used as the formal parameter for every call 
is copied into the to f i ndMax .  Because a could be large, this operation is expensive, so call 
formal parameter. 

- 
by value is unsuitable. An alternative is to pass the parameter using call by 
reference: 

int findMax( vector<int> & a 1 ;  

The call by reference Now we can avoid the overhead of a copy. This routine is still not perfect, 
parameter-passing however, because the declaration tells the reader, and also the compiler, that 
mechanism avoids a 
copy. However, it the actual argument might be changed as result of the call to f i ndMax .  

allowschangestothe When the parameter was passed by value, we were guaranteed that the 
parameters. actual parameter would not be altered. To obtain equivalent behavior, we use 

a third form of parameter passing, call by constant reference: 

int findMax( const vector<int> & a ) ;  

The call by constant The constant reference guarantees that 
reference parameter- 
passing mechanism 
avoids a copy and 

the overhead of a copy is avoided and that 
guarantees that the the actual parameter is unchanged by the function call. 
actual parameter will 
not be changed. 
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Choosing a parameter-passing mechanism is an easily overlooked chore 
of the programmer. After all, the program is often correct no matter which 
mechanism is used. Nevertheless, in C++ choosing a parameter-passing 
mechanism carefully is important for efficiency, readability, and program 
maintenance alike. 

Call by reference is required for objects that may be altered by the 
function. 
Call by value is appropriate for small objects that should not be 
altered by the function. 
Call by constant reference is appropriate for large objects that should not 
be altered by the function. 

As we show later, in some more complex cases call by value must be 
avoided. The program can fail to compile if a wrong decision is made. 

Because s t r i n g  and vector represent large objects, call by value is 
generally inappropriate. Instead, when these objects are parameters to a 
function, they are usually passed by reference or constant reference, depend- 
ing on whether the function is expected to alter the value of the parameter. 

1.2.6 Primitive Arrays of Constants 

Occasionally, we revert to primitive arrays when we have global constants. 
The reason is a convenient notational shorthand, illustrated by the following 
declaration of DAYS-IN-MONTH: 

zonst int DAYS-IN-MONTH[ ] = { 31, 28, 31, 30, 31, 30, 
31, 31, 30, 31, 30, 31 ) ;  

Here, the size of the primitive array is automatically initialized, and its size 
is deduced by the number of initializers that are present. If this array is glo- 
bal, the number of items can be determined by dividing the amount of 
memory used by the primitive array s i  zeof ( DAYS-IN-MONTH) by the 
amount of memory used by one item in the primitive array sizeof 
i DAYS-IN-MONTH [ 0 ] ) , as in 

const int NUM-MONTHS = sizeof(DAYS-IN-MONTH) / 
sizeof(DAYS-IN-MONTH[O]); 
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1.2.7 Multidimensional Arrays 

A multidimensional 
array is an array that 
is accessed by more 
than one index. A 
matrix class can be 
used to implement 
two-dimensional 
arrays. 

s . length ( ) returns 
the length of s; + 
and += perform string 
concatenation. 

Sometimes access to arrays needs to be based on more than one index. A 
multidimensional array is an array that is accessed by more than one 
index, and its primitive version is second-class. There is no first-class ver- 
sion in the STL. In Section 3.5, we implement a two-dimensional array with 
first-class behavior, called a matrix. The sizes of its indices are specified, 
and each element is accessed by placing each index in its own pair of brack- 
ets. For example, the declaration 

matrix<int> x( 2, 3 ) ;  / /  x has two rows and three columns 

defines the two-dimensional array x, with the first index ranging from 0 to 1 
and the second index ranging from 0 to 2 (for a total of six objects). The 
mat r ix  sets aside six memory locations for these objects: x [ 0 1 [ 0 I ,  
x [o l  [ ~ I , X [ O I  [ 2 1 , x [ 1 1  [OI ,x[11 [ l l , a n d x [ l ]  [21. 

1.2.8 The Standard Library string Type 

To use the Standard Library s t r i n g  type, you must have the include 
directive: 

As the s t r i n g  is a first-class object, input, output, copying, and com- 
parisons work as you would expect. Thus str l==str2 is t r u e  if and only 
if the values of the strings are the same. 

Each character of the s t r i n g  can be accessed by using the array index- 
ing operator (as usual, indices start at zero). The s t r i n g  provides many 
useful functions. 

If s is a s t r i n g ,  then s . l e n g t h  ( ) returns its length (i.e., the number 
of characters in its representation), and s . c-str ( ) returns a primitive 
string. A primitive string is occasionally needed to interact with other parts 
of the libraries. For instance, to open a file, a primitive string must be passed. 
Finally, the + and += operators for s t r i n g s  are defined to perform string 
concatenation (one string is tacked onto the end of another). Figure 1.5 illus- 
trates these operations. 
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1 #include <iostream> 
2 #include <string> 
3 using namespace std; 
4 
5 int main( ) 

6 { 
7 string a = "hello"; 
8 string b = "world"; 
9 string c; / /  Should be " "  

10 
11 " .  / /  Should be "hello " 

12 c += b; / /  Should be "hello world" 
13 
14 / /  Print c the easy way. 
15 cout << "c is: " << c << endl; 
16 
17 / /  Print c the primitive way. 
18 cout << "c is: " << c.c-str( ) << endl; 
19 
20 / /  Print c character-by-character. 
21 cout << "c is: "; 

22 for( int i = 0; i < c.length( ) ;  i++ ) 

23 cout << c[ i I ; 
24 cout < <  endl; 
25 
26 return 0; 
27 1 

Figure 1.5 Illustration of some s t r i n g  functions. 

Pointer Syntax in C++ 
To have a pointer point at an object, we need to know the target object's The unary address- 

memory address (that is, where it is stored). For (almost) any object obj , its Operator & 
returns the address of 

memory address is given by applying the unary address-of operator &. Thus ,, obiect. 
&ob j is the memory location that stores ob j .7 

We can declare that an object p t r  points at an i n t  object by saying 

Int *ptr; 

The value represented by p t r  is an address. As with integer objects, this 
declaration does not initialize p t r  to any particular value, so using p t r  

'. Objects stored by using the register storage class cannot be the target of the address-of 
operator. 
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before assigning anything to it invariably produces bad results (e.g., a pro- 
gram crash). Suppose that we also have the declarations 

i n t  x = 5 ;  
i n t  y = 7 ;  

We can make p t r  point at x  by assigning to p t r  the memory location where 
x  is stored. Thus 

p t r  = &x; / / LEGAL 

sets p t r  to point at x. Figure 1.6 illustrates this in two ways. In part (a) a 
memory model shows where each object is stored. In part (b) an arrow is 
used to indicate pointing. 

The unary The value of the data being pointed at is obtained by the unary derefer- 
dereferencing encing operator *. In Figure 1.6 * p t r  will evaluate to 5, which is the value 
operator * accesses 
data through a of the pointed-at variable x. To dereference something that is not a pointer is 
pointer. illegal. The * operator is the opposite of & (e.g., *&x=5 is the same as x=5 as 

long as &x is legal). Dereferencing works not only for reading values from 
an object, but also for writing new values to the object. Thus, if we say 

* p t r  = 10; / /  LEGAL 

we have changed the value of x  to 10. Figure 1.7 shows the changes that 
result and the problem with pointers: Unrestricted alterations are possible, 
and a runaway pointer can overwrite all sorts of variables unintentionally. 

We could also have initialized p t r  at declaration time by having it point 
to x: 

i n t  x = 5 ;  
i n t  y = 7 ;  
i n t  * p t r  = &x; / / LEGAL 

Figure 1.6 Pointer illustration. 
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Figure 1.7 Result of *pt r= lO 

The declaration says that x is an i n t  initialized to 5 ,  y is an i n t  initialized 
to 7, and p t r  is a pointer to an i n t  and is initialized to point at x. Let us 
look at what could have gone wrong. The following declaration sequence is 
incorrect: 

int *ptr = &x; / /  ILLEGAL: x is not declared yet 
~ n t  x = 5; 
:nt y = 7; 

Here we are using x before it has been declared, so the compiler will com- 
plain. Here is another common error: 

-nt x = 5; 
:nt y = 7; 
_nt *ptr = x; / /  ILLEGAL: x is not an address 

In this case we are trying to have p t r  point at x, but we have forgotten that a 
pointer holds an address. Thus we need an address on the right side of the 
assignment. The compiler will complain that we have forgotten the &, but its 
error message may initially appear cryptic. 

Continuing with this example, suppose that we have the correct declara- 
tion but with p t r  uninitialized: 

~ n t  x = 5; 
:nt y = 7; 
l?t *ptr; / /  LEGAL but ptr is uninitialized 

What is the value of p t r ?  As Figure 1.8 shows, the value is undefined Pointers must be 

because it was never initialized. Thus the value of * p t r  is also undefined. pointing at an Object 

before dereferencing. 
However, using * p t r  when p t r  is undefined is worse because p t r  could 
hold an address that makes absolutely no sense, thus causing a program 
crash if it is dereferenced. Even worse, p t r  could be pointing at an address 
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1 pptr X Y 

Figure 1.8 Uninitialized pointer. 

that is accessible: in which case the program will not crash immediately, but 
it will be erroneous. If * p t r  is the target of an assignment, then we would be 
accidentally changing some other data, which could result in a crash at a 
later point. This is a tough error to detect because the cause and symptom 
may be widely separated in time. 

We have already shown the correct syntax for the assignment: 

p t r  = &x; / /  LEGAL 

Suppose that we forget the address-of operator. Then the assignment 

p t r  = x;  / /  ILLEGAL: x is not an address 

rightly generates a compiler error. There are two ways to make the compiler 
be quiet. One is to use the address-of operator on the right-hand side, as in 
the correct syntax. The other method is erroneous: 

*ptr  = x ;  / /  Semantically incorrect 

Alwaysdrawa picture The compiler is quiet because the statement says that the i n t  to which p t r  
at the first sign Of is pointing should get the value of x. For instance, if p t  r is &y, then y is 
pointer trouble. 

assigned the value of x. This assignment is perfectly legal, but it does not 
make p t r  point at x. Moreover, if p t r  is uninitialized, dereferencing it is 
likely to cause a run-time error, as discussed above. This error is obvious 
from Figure 1.8. The moral is: Always draw a picture at the first sign of 
pointer trouble. 

Using * p t r = x  instead of p t r = & x  is a common error for two reasons. 
First, because it silences the compiler, programmers feel comfortable 
about using the incorrect semantics. Second, it looks somewhat like the 
syntax used for initialization at declaration time. The difference is that the 
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* at declaration time is not a dereferencing * but rather is just an indication 
that the object is a pointer type. 

Some final words before we get to some substantive uses of these ideas: ThemLLpointerhas 

First, sometimes we want to state explicitly that a pointer is pointing nowhere, value and 
never be as opposed to an undefined location. The NULL pointer points at a memory dereferenced. It is 

location that is guaranteed to be incapable of holding anything. Consequently, used to state that a 
a NULL pointer cannot be dereferenced. The symbolic constant NULL is Pointer is Pointing 

defined in several header files, and either it or an explicit zero can be used. The nowhere. 

choice is a matter of preference, although some programmers can get surpris- 
ingly testy when someone's choice does not agree with theirs. Pointers are best 
initialized to the NULL pointer because in many cases they have no default ini- 
tial values (these rules apply to other predefined types as well). 

Second, a dereferenced pointer behaves just like the object that it is 
pointing at. Thus, after the following three statements, the value stored in x 
is 15 :  

x = 5 ;  

p t r  = &x;  
* p t r  += 10;  

However, we must be cognizant of precedence rules because (as we discuss 
in Section D. 1.3) performing arithmetic not only on the dereferenced values, 
but also on the (undereferenced) pointers themselves is p ~ s s i b l e . ~  For exam- 
ple, the following two statements are very different: 

In the first statement the += operator is applied to *p t r ,  but in the second state- 
ment the ++ operator is applied to p t r .  The result of applying the ++ operator 
to p t r  is that p t r  will be changed to point at a memory location one memory 
unit larger than it used to. (We discuss these semantics in Section D.3.) 

Third, if p  t r 1 and p  t r 2  are pointers to the same type, then 

p t r l  = p t r 2 ;  

sets p t r l  to point to the same location as p t r 2 ,  whereas 

8. This capability is an unfortunate consequence of C++'s very liberal rules, which allow 
arithmetic on pointers, making use of the fact that pointers are internally stored as integers. 
We discuss the reasoning for this in Appendix D but avoid using pointer arithmetic in the 
text. Nonetheless, you need to know that it exists in case you accidentally wander into that 
part of the language (owing to a programming error on your part). 
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p t r l  x x x 

Figure 1.9 (a) lnit~al state; (b) p t r l = p t r 2  starting from initial state; 
(c) * p t r l k h p t r 2  starting from initial state. 

When you use assigns the dereferenced p t r l  the value of the dereferenced p t r2 .  Figure 1.9 
pointers, you must shows that these stateriients are quite different. Moreover, when the wrong 
know whether you are 
working with 

form is used mistakenly, the consequences might not be obvious immedi- 
addresses or the ately. In the previous examples. after the assignment, * p t r l  and * p t r 2  are 
dereferenced both 7. Similarly, the expression 
pointers. 

p t r l  = =  ptr2  

1s true if' the two pointers are polntlng at the same memory location, whereas 

is true if  the values stored at the two indicated addresses are equal. Using the 
wrong form is a common ruistake. 

The requireruent that p t r l  and p t r 2  point to the same type is a conse- 
quence of the fact that C++ is strongly typed: Different types of pointers 
cannot be mixed without an explicit type conversion, unless the user pro- 
vides an implicit type conversion. 

Finally, when pointers are declared, placement of the * and the white 
space that surrounds it are unimportant to the compiler. Pick a style that you 
like. 

1.4 Dynamic Memory Management 

Thus far. all local variables that we have used are ~utomutic. vrrriahle.~. This 
(little-used) term tells us that local variables are created when they are reached 
in the function and that they are destroyed when they are no longer in scope 
(e.g., when the function returns). Sometimes, objects need to be created in a 
different way. This different way is called ~iy1z(11~1ic 1~1e111ory u l l ~ c ( ~ f i o t ~ .  
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1.4.1 The new Operator 

Objects can be created dynamically by calling new. The n e w  operator The n e w  operator 

dynamically allocates memory and returns a pointer to the newly created dynamically all0cates 
memory.The result of 

object. new is a pointer to a 
Figure 1.10 illustrates the issues involved in dynamic memory alloca- newly created object. 

tion. However, this example is a poor use of dynamic memory; an automatic 
string should be used instead. We use it here only to illustrate dynamic 
memory allocation in a simple context. A more reasonable application (but 
no code) is shown in Section 1.6.2. 

In Figure 1.10, line 9 creates a new string object dynamically. Note 
that strptr is a pointer to a string, so the string itself is accessed by 
*strPtr, as shown on lines 10-13. The parentheses are needed at line 11 
because of precedence rules. 

1.4.2 Garbage Collection and delete 

In some languages, when an object is no longer referenced, it is subject to When an object that 

automatic garbage collection. The programmer does not have to worry about all0cated by new 
is no longer it. C++ does not have garbage collection. When an object allocated by new is referenced, the 

no longer referenced, the delete operator must be applied to the object delete operator 

(through a pointer). Otherwise, the memory that it consumes is lost (until the mustbeappliedtothe 
object (through a program terminates), which is known as a memory leak. Unfortunately, 
pointer). 

memory leaks are common occurrences in many C++ programs. Fortunately, 

1 #include <iostream> 
2 #include <string> 
3 using namespace std; 
4 
5 int main( ) 

6 ( 
7 string *strPtr; 
8 
9 strPtr = new string( "hello" ) ;  

10 cout << "The string is: " << *strPtr << endl; 
11 cout << "Its length is: " c< (*strPtr).length( ) << endl; 
12 *strPtr += " world"; 
13 cout << "Now the string is " c< *strPtr << endl; 
14 
15 delete strPtr; 
16 
17 return 0; 
18 } 

Figure 1.10 Illustration of dynamic memory allocation. 
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many sources of memory leaks can be automatically removed with care, as 
we will see later in the text. 

One important rule is not to use new when an automatic variable can be 
used instead. An automatic variable is automatically cleaned up (hence its 
name). You should never use delete on an object that was not created by 
new; if you do, run-time havoc is likely to result. The delete operator is 
illustrated at line 15. 

1.4.3 Stale Pointers, Double Deletion, and More 

One reason that programmers can get in trouble when using pointers is that 
one object may have several pointers pointing at it. Consider the following 
code: 

string *s = new string( "hello" ) ;  / /  s points at new string 
string *t = s; / /  t points there, too 
delete t; / /  The object is gone 

Nobody would deliberately write these three lines of code next to each 
other; assume that they are scattered in a complex function. Prior to the call 
to delete, we have one dynamically allocated object that has two pointers 
pointing to it. 

A stale pointer is a After the call to delete, the values of s and t (i.e., where they are 
pointer value pointing) are unchanged. However, as illustrated in Figure 1.1 1, they are 
no longer refers to a 
valid object. now stale. A stale pointer is a pointer whose value no longer refers to a 

valid object. Dereferencing s and t can lead to unpredictable results. What 
makes things especially difficult is that, although t is obviously stale, the 
fact that s is stale is much less obvious, if, as assumed, these statements are 
scattered in a complex function. Furthermore, in some situations, the mem- 
ory that was occupied by the object is unchanged until a later call to new 
claims the memory, which can give the illusion that there is no problem. 

Figure 1.1 1 Stale pointers: Because of the call to delete t, pointers s and t 
are now pointing at an object that no longer exists; a call to 
delete s would now be an illegal double deletion. 
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Dynamic Memory Management 

A second problem is the so-called double-delete. A double-delete 
occurs when we attempt to call delete on the same object more than once. 
It would occur if we now made the call 

delete s; / /  Oops - -  double delete 

because s is stale and the object that it points to is no longer valid. Trouble 
in the form of a run-time error is likely to result. 

These are the perils of dynamic memory allocation. We must be certain 
never to call delete more than once on an object-and then only after we 
no longer need it. If we don't call delete at all, we get a memory leak. And 
if we have a pointer variable and intend to call delete, we must be certain 
that the object being pointed at was created by a call to new. When we have 
functions calling functions calling other functions, keeping track of every- 
thing is not so easy. 

Finally, pointers can go stale even if no dynamic allocation is performed. 
Consider the code in Figure 1.12. 

For no good reason (except to illustrate the error), we have the function 
stupid return a pointer to a string. If stupid calls new to create a 
string, then the caller will be responsible for calling delete. Rather than 
burdening the caller, we mistakenly decided to have stupid use an auto- 
matic string, and return its address. The program compiles but may or may 
not work; it contains an error. The problem is that the value that stupid 
returns is a pointer. But the pointer is pointing at s, which no longer exists 
because it is an automatic variable and stupid has returned. When return- 
ing pointers, be sure that you have something to point to and that the some- 
thing exists after the return has been completed. 

1 string *stupid( ) 

2 I 
3 string s = "stupid"; 
4 return &s; 
5 1 
6 
7 int main( ) 

8 ( 
9 cout <<  *stupid( ) << endl; 

10 return 0; 
11 1 

A double-delete 
occurs when we 
attempt to call 
delete on the same 
object more than 
once. Trouble in the 
form of a run-time 
error is likely to 
result. 

Figure 1.12 A stale pointer: the pointee, s, does not exist after stupid returns. 
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1.5 Reference Variables 
A reference type is an 
alias and may be 
viewed as a pointer 
constant that is 
always dereferenced 
implicitly. 

Reference variables 
must be initialized at 
declaration time. 
Reference parameters 
are used to achieve 
call by reference 
instead of call by 
value. 

In addition to the pointer type. C++ has the reference type. A reference type 
is an alias for another object and may be viewed as a pointer constant that is 
always dereferenced implicitly. For instance. in the following code, c n t  
becomes a synonym for a longer, hard-to-type variable: 

int 1ongVariableName = 0; 
int & cnt = 1ongVariableName; 

cnt += 3: 

Reference variables must be initialized when they are declared. They 
cannot be changed to reference another variable because an attempted reas- 
signment via 

cnt = someOther0bject; 

assigns to the object 1 ongVariableName the value of someo the rob  j e c t .  
This approach is a poor use of reference variables but accurately reflects how 
they are used in a more general setting in which the scope of the reference 
variable is different from that of the object being referenced. One important 
case is that a reference variable can be used as a formal parameter. which 
acts as an alias for an actual argument. We previously discussed this case in 
the context of passing v e c t o r s  (see Section 1.2.5). Let us revisit parameter 
passing. 

Figure 1.13 illustrtes a swapwrong procedure that does not work 
because of call-by-value restrictions. Two correct alternatives are shown: 
The first is a routine that uses the traditional C method of passing pointers to 
avoid call-by-value restrictions; the second is a functionally identical routine 
that uses C++ reference parameters. 

The differences between reference and pointer types are summarized as 
follows. 

In the function declaration. reference parameters are used instead of 
pointers. 
In the function definition, reference parameters are implicitly derefer- 
enced, so no * operators are needed (their placement would generate 
a syntax error). 
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Reference variable;- 

1 #include <iostream> 
2 using namespace std; 
3 
4 / /  Does not work. 
5 void swapWronq ( int a, int b ) 

6 { 
7 int tmp = a; 
8 a = b; 
9 b = tmp; 

10 1 
11 
12 / I  C Style - -  using pointers. 
13 void swapPtr( int *a, int *b ) 

14 { 

15 int tmp = *a; 
16 *a = *b; 
17 *b = tmp; 
18 1 
19 
20 / /  C++  Style - -  using references. 
21 void swapRef( int & a, int & b i 
22 { 
23 int tmp = a: 
24 a = b; 
25 b = tmp; 
26 1 
27 
28 /I Simple proqram to test various swap routines. 
29 int main( ) 

30 i 
31 int x = 5; 
32 int y = 7; 
33 
34 swapwrong( x, y 1 ;  
35 tout c< ' , x="  << x < <  " y=" << y <c endl; 
36 swapptr i &x, h y  1 ; 
37 tout << " x = "  << x  << " y=" << y << endl; 
38 swapRef ( x, y 1 ;  
39 tout << " x X v  << x  << " y=" << y << endl; 
40 
41 return 0; 
42 1 

Figure 1.13 Call-by-reference parameters versus call-by-pointer parameters. 
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a In the function call to swapRef, no & is needed because an address is 
implicitly passed by virtue of the fact that the corresponding formal 
parameters are references. 
The code involving the use of reference parameters is much more 
readable. 

Reference variables are like pointer constants in that the value they store 
is the address of the object they refer to. They are different in that an auto- 
matic invisible dereference operator is applied to the reference variable. This 
difference translates into a notational convenience, especially because it 
allows parameters to be passed by reference without the excess baggage of 
the & operator on the actual arguments and the * operator that tends to clutter 
up C programs. 

Pointers can be By the way, pointers, can be passed by reference. This method is used to 
Passed by reference. allow a function to change where a pointer, passed as a parameter, is point- 
As a result, a 
function can change ing. A pointer that is passed with call by value cannot be changed to point to 
wherea pointer is a new location (because the formal parameter stores only a copy of the 
pointing. where value). We use this approach in Chapter 19 where we discuss this 

tricky issue in more detail. 
Another important issue is the choice between passing parameters by 

value or by reference. In Section 1.2.5 we discussed i t  in the context of 
v e c t o r s ,  but it applies for all types of parameters. 

1.6 Structures 

A structure stores a 
collection of 
generally dissimilar 
objects. 

Each member of the 
structure can be 
accessed by applying 
the dot ( . ) member 
operator. 

Recall that an array is a collection of identically typed objects. The array has 
two major benefits: First, we can index the array and thus we can loop over 
each item in the array; second, when using functions, we can pass the name 
of the array, thus using only one parameter to send the aggregate. 

A different type of aggregate type is the structure. A structure stores a 
collection of objects that need not be of the same type. Because the objects 
in the collection are not constrained to be of the same type, we cannot sim- 
ply loop over them as we would in an array. 

Each object in the structure is a member and is accessed by applying the 
dot member operator. The basic structure declaration is given by using the 
keyword s t r u c t ,  providing the name of the structure type and giving a 
brace-enclosed list of its members. For example, 



struct Student 

{ 
string firstNarne; 
string 1astNarne; 
int studentNum; 
double gradePointAvg; 

1 ;  

Figure 1.14 shows that Student is a structure consisting of four different 
objects. If we have the declaration 

Student s; 

the grade point average is given by s . gradePointAvg. Figure 1.15 illus- 
trates how a struct is declared, how its constituent data members are 
accessed, and how it can be passed as a parameter to a function. Note that 
structures usually are not passed by using call by value because the overhead 
of call by value can be expensive. The parameter-passing mechanism is 
determined in accordance with the discussion in Section 1.2.5. 

Figure 1 .1 4 Student structure. 
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The structure in C++ 
has been extended 
from its C 
counterpart. 

The ->  operator is 
used to access 
members of a 
pointed-at structure. 

1 t t  Print the student information. 
2 void printInfo( const Student & s i 
3 { 

4 cout < <  "ID is " << s.studentNum << endl; 
5 cout < c  "Name is " << s.firstName << " " 

6 << s.lastName << endl; 
7 tout < <  "GPA 1s ' << s.gradePointAvg << endl; 

8 1 
9 

10 ! I  Simple main. 
11 int main( i 

12 { 

13 Student mary; 
14 
15 mary. lastNarne = "Smith" ; 
16 mary. firstName = "Mary" ; 
17 mary.gradePointAvg = 4.0; 
18 mary.studentNum = 1 2 3 4 5 6 7 8 9 ;  
19 
20 printInfo( rnary 1 ;  
2 1 
22 return 0; 

23 1 

Figure 1.15 Program to illustrate the declaration of a structure, access of its data 
members, and parameter passing. 

The structure in C++ has been greatly extended from its C counterpart to 
allow functions as members, as well as restrictions on access to the mem- 
bers. This difference between C and C++ represents a major philosophical 
change. We discuss this change in the Chapter 2. For now let us stick with 
the basics of structures. 

1.6.1 Pointers to Structures 

In our discussion of advanced programming techniques. we show that fre- 
quently we need to declare a pointer to a structure and access the members 
of the pointed at structure. Suppose that we have 

Student *ptr = &s; / '  ptr points at structure s 

Then we can access the grade point average by ( *p t r ) . gradePo intAvg. 
The parentheses are absolutely necessary because the member operator, being a 
postfix operator, has higher precedence than the prefix dereferencing operator. 
The parentheses become annoying after awhile, so C++ provides an additional 
postfix operator. the - > operator, which accesses members of a pointed-at 
structure. Thus ptr ->gradePointAvg gives the same access as before. 



1.6.2 Exogenous Versus Indigenous Data 
and Shallow Versus Deep Copying 

As we demonstrate in Chapter 2, C++ allows the user to define operators on 
structures. For instance the user can write the routine with the declaration 

boo1 operator<( const Student & lhs, const Student & rhs i ;  

which returns true if the first (left-hand side) Student is less than the sec- Throughout this text, 

ond (right-hand side), according to some user-defined criterion. (Throughout We IhS and rhs 
for left-hand side and 

this text, we use lhs  and rhs for left-hand side and right-hand side, respec- right-hand side, 
tively.) Using the class mechanism discussed throughout the text, we could respectively. 

include this function as a structure member-much like a data member. 
The copy assignment operator = and the equality operator == can also be 

defined, but if we do nothing, a default definition is used for copying and 
equality comparisons become illegal. Specifically, by default a structure 
copy is implemented as a member-by-member copy. In other words, each 
member is copied from one structure to the other. 

A problem with this mechanism is illustrated by the following declaration: 

struct Teacher 
( 

string *firstName; 
string "lastblame; 
int employeeNum; 

1 ; 

Suppose that we have 

Teacher s, t; 

If we assume that t has been initialized, then the assignment s= t is a member- 
by-member copy. However, the first two members are merely pointers, so 
only the addresses are copied. The result is that s . f irstName is now shar- 
ing memory with t . f irstName; these are not independent copies of the 
string. If the call 

delete t.firstName 

is made later to recycle the dynamically allocated memory, s is in serious 
trouble. This problem is illustrated in Figure 1.16, which highlights the dif- 
ference between indigenous and exogenous data. 
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Indigenous data are 
completely contained 
by the structure. 

Exogenous data are 
not part of the 
structure but are 
accessed through a 
pointer. 

A shallow copy is a 
copy of pointers 
rather than data being 
pointed at. 

A deep copy is a copy 
of the data being 
pointed at rather than 
the pointers. 

I "Nina" I 

"Weiss" * 
Figure 1.16 Illustration of a shallow copy in which only pointers are copied. 

Indigenous data are completely contained by the structure. For 
instance, in the Student structure, the f irstName and lastName mem- 
bers are strings and are completely self-contained. The disadvantage of rep- 
resenting an object indigenously is that the size of the object is fixed, is 
usually large, and thus is expensive to copy. 

Exogenous data, by contrast, reside outside the structure and are 
accessed through a pointer. The advantage of exogenous data is that com- 
mon data can be shared among several instances; when the default assign- 
ment operator is used, the copy is only a copy of pointers and not the 
pointed-at values. Often this behavior is desirable. For instance, it is the 
default behavior in the computer language Java. 

A copy of pointers rather than the data being pointed at is known as a 
shallow copy. Similarly, the equality comparisons for exogenous data are 
shallow by default because they only compare addresses. Although a shal- 
low copy is correct on occasion, allowing a shallow copy when it is unwar- 
ranted can lead to havoc. 

To get a deep copy, in which the pointed-at values are copied, we gener- 
ally need to allocate some additional memory and then copy the derefer- 
enced pointers. Doing so requires rewriting the copy assignment operator. 
Details on implementing this procedure are presented in the next several 
chapters. Normally, we also need to supply a deep comparison operator to 
implement a deep test. (Of course, we may need to go back to using indige- 
nous data if we find that we are doing mostly deep operations.) 

1.6.3 Noncontiguous Lists: Linked Lists 

We close this chapter by discussing, in very general terms, one of the tech- 
niques we use when we discuss data structures. Earlier we showed that, by 
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using the dynamically expanding array, we can read in an arbitrary number 
of input items. This technique has one serious problem. 

Suppose that we are reading 1000-byte records and we have 1,000,000 
bytes of memory available. Also suppose that, at some point, the array holds 
400 records and is full. Then to double, we create an array of 800 records, 
copy over 400 records, and then delete the 400 records. The problem is that, in 
this intermediate step, we have both a 400- and an 800-record array in use and 
that the total of 1200 records exceeds our memory limit. In fact, we can run 
out of memory after using only roughly one third of the available memory. 

A solution to this problem is to allow the list of records to be stored non- A linked list stores 

contiguously. For each record we maintain a structure that stores the record data with a Of 

one pointer per item. 
and a pointer, next,  to the next structure in the list. The last structure has a 
NULL next pointer. We keep a pointer to both the first and last structures in 
the list. A basic example is shown in Figure 1.17. The resulting structure is 
the classic linked list; which stores datawith a cost of one pointer per item. 
The structure definition is 

struct Node 
{ 

Object item; / /  Some element 
Node *next; 

1 ;  

At any point we can print the list by using the iteration 

for( Node *p = first; p ! =  NULL; p = p->next ) 

printItem( p->item ) ;  

and at any point we can add a new last item x, as in 

last->next = new Node; / /  Attach a new Node 
last = last->next; / /  Adjust last 
last->item = x; / /  Place x in the node 
last->next = NULL; / /  It's the last, so make next NULL 

Figure 1.17 Illustration of a simple linked list. 



An arbitrary item can no longer be found in one access. Instead, we must 
scan down the list. This difference is similar to that of accessing an item on a 
compact disk (one access) or a tape (sequential). On the other hand, insert- 
ing a new element between two existing elements requires much less data 
movement in a linked list than in an array. 

We present a more detailed description of the linked list in Chapters 16 
and 17. 

Summary 

In this chapter we examined the basics of pointers, arrays, and structures. The 
pointer variable emulates the real-life indirect answer. In C++ it is an object 
that stores the address where some other data reside. The pointer is special 
because it can be dereferenced, thus allowing access to those other data. The 
NULL pointer holds the constant 0, indicating that it is not currently pointing at 
valid data. A reference parameter is an alias. It is like a pointer constant, 
except that the compiler implicitly dereferences it on every access. Refer- 
ence variables allow three forms of parameter passing: call by value, call by 
reference, and call by constant reference. Choosing the best form for a par- 
ticular application is an important part of the design process. 

An array is a collection of identically typed objects. In C++ there is a 
primitive version with second-class semantics (discussed in Chapter 3 and 
Appendix D). A vector is also part of the standard library. In both cases, no 
index range checking is performed, and out-of-bounds array accesses can 
corrupt other objects. Because primitive arrays are second-class, they cannot 
be copied by using the assignment operator. lnstead they must be copied ele- 
ment by element; however, a vector can be copied in a single assignment 
statement. A vector can be expanded as needed by calling resi ze. 

Structures are also used to store several objects, but unlike arrays, the 
objects need not be identically typed. Each object in the structure is a mem- 
ber, and is accessed by the . member operator. The -> operator is used to 
access a member of a structure that is accessed indirectly through a pointer. 

We also noted that a list of items can be stored noncontiguously by using 
a linked list. The advantage is that less space is used for large objects than in 
the array-doubling technique. The penalty is that access of the ith item is no 
longer constant-time but requires examination of i structures. 

Objects of the Game 

-> operator Allows access to members of a pointed at structure. 
(P. 28) 

address-of operator s~ Returns the address of an object. (p. 15) 
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aggregate A collection of objects stored in one unit. (p. 4 )  

array Stores a collection of identically-typed objects. (p. 4 )  
array indexing operator [ I  Provides access to any object in the 

array. (p. 6) 
call by constant reference Parameter-passing mechanism that avoids 

a copy and guarantees that the actual parameter will not be changed. 
( P  12) 

call by reference Parameter-passing mechanism that avoids a copy 
but allows changes to the actual parameter. (p .  12) 

call by value The default parameter-passing mechanism in which the 
actual argument is copied into the formal parameter. (p. 12) 

deep copy A copy of the data being pointed at rather than the pointers. 
(p .  30) 

delete operator Recycles dynamically allocated memory that is no 
longer needed. (p. 21) 

dereferencing operator * Used to access the value of data being 
pointed at. (p. 16) 

dot (.) member operator Allows access to each member of the struc- 
ture. (p. 26) 

double-delete An occurrence when we attempt to call delete on the 
same object more than once. Trouble in the form of a run-time error 
is likely to result. (p. 23) 

exogenous data Not part of the structure but are accessed through a 
pointer. (p. 30) 

first-class object An object that can be manipulated in all the "usual 
ways" without special cases and exceptions. (p. 4) 

indigenous data Completely contained by the structure. (p. 30) 

lhs and rhs Left-hand side and right-hand side, respectively. (p. 29) 
linked list Stores data with a cost of one pointer per item. (p. 3 1 ) 
matrix A type discussed in Chapter 3 that provides a first-class two- 

dimensional array. (p. 14) 

member An object contained in a structure. (p. 26) 

memory leak Memory allocated by new is not automatically recycled; 
failure to recycle causes a memory leak. (p. 2 1) 

multidimensional array An array that is accessed by more than one 
index. (p. 14) 

new operator Dynamically allocates memory. (p. 2 I ) 
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NULL pointer Has value 0 and can never be dereferenced; it is used to 
state that a pointer is pointing nowhere. (p. 19) 

pointer Stores an address where other data resides. (p. 4) 
reference type An alias that may be viewed as a pointer constant that 

is always dereferenced implicitly. (p. 24) 
shallow copy A copy of pointers rather than the data being pointed at. 

(P. 30) 
stale pointer A pointer whose value no longer refers to a valid object. 

(P. 22) 
string The library type used for first-class strings. (p. 6) 
structure Stores a collection of objects that are generally dissimilar. 

(P. 26) 
vector The library type used for first-class arrays. (p. 6) 

@ Common Errors 

1. If p t r  is uninitialized, the assignment *ptr=x is likely to cause 
problems. Always be sure that a pointer is pointing at an object 
before attempting to dereference the pointer. 

2. In a declaration, *ptr=&x initializes p t r  to point at x. In an assign- 
ment statement, *ptr=&x is wrong (unless p t r  is a pointer to a 
pointer) because the left-hand side is the dereferenced value rather 
than the pointer. The * in the declaration is not a dereferencing 
operator; instead, it is part of the type. 

3. A common error is mixing up the pointer and the value being 
pointed at. That is, p t r l==pt r2  is true if both pointers are point- 
ing at the same memory location, but *p t r l==*pt r2  is true if the 
values stored at the indicated addresses are equal. 

4. Because of precedence rules, *p t r++ increments p t r ,  not *ptr .  

5. In C++, arrays are indexed from 0 to n-1, inclusive, where n is the 
array size. However, range checking is not performed. 

6. In C++, primitive arrays cannot be copied or compared because the 
array name is merely an address. 

7. Two-dimensional arrays are indexed as A [ i I [ j I ,  not A [ i , j I .  
8. Dereferencing a pointer immediately after de le te  has been 

applied to it is an error (even though it will usually appear to work). 
9. Large objects should not be passed using call by value. Use call by 

constant reference instead. 
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10. To avoid double deletion, beware of shallow copies when deep cop- 
ies are needed. 

1 I .  Do not return a pointer or reference to a local (automatic) variable. 
Doing so has the same effect as Error 8. 

On the lnternet 

The available files for this chapter are listed below. Everything is self- 
w 

contained, and nothing is used later in the text. 

ArrayDemo.cpp Contains the source code for the example in Fig- 
ure 1.1. 

GetInts.cpp Contains the source code for the examples in Fig- 
ures 1.3 and 1.4. If RESIZE is defined, g e t I n t  s 
from Figure 1.3 is used; otherwise, Figure 1.4 is 
used. 

TestString.cpp Contains the source code for the example in Fig- 
ure 1.5. 

TestSwap.cpp Contains the source code for the swap examples in 
Figure 1.13. 

Exercises 

In Short 

1.1. Name and illustrate five operations that can be applied to pointers. 

1.2. Consider 

i n t  a ,  b; 
i n t  * p t r ;  / /  A po in t e r  
i n t  * * p t r P t r ;  / /  A po in t e r  t o  a poin ter  

p t r  = &a; 
p t r P t r  = & p t r ;  

a. Is this code legal? 
b. What are the values of * p t r  and * * p t r ~ t r ?  

c. Using no other objects besides those already declared, how can 
you alter p t r p t r  so that it points at a pointer to b without 
directly touching p t r ?  
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d. Is the following statement legal? 

p t r P t r  = p t r ;  

1.3. a. Is *&x always equal to x? If not, give an example. 
b. Is & *x always equal to x? If not, give an example. 

1.4. For the declarations 

int a = 5; 
int * p t r  = La; 

what are the values of the following? 
a. ptr 
b. *ptr 

C. ptr == a 

d. ptr == &a 

e. &ptr 
f. *a 

g. *&a 
h. **&ptr 

1.5. Give the type of each identifier declared here and the types of the 
expressions. Is any expression illegal? 
a. struct S { int a; S *b; I ;  
b. s z; 
C. S *x; 

d. vector<S> y (10) ; 
e. vector<S *> u (10) ; 
f. x->a 
g. x->b 
h. z.b 



1.6. Draw a picture that illustrates the results after processing of each of 
the following statements, which are executed sequentially. 
a. i n t  a = 3 ;  
b. i n t  & b = a ;  
c. int & c = b; 
d, b = 5 ;  
e. c = 2 :  

1.7. Is the following code legal? Why or why not? 

int a = 3; 
const int & b = a; 

1.8. What is wrong with omitting spacing in *x/ * y? 

In Practice 

1.9. Use a linked list to read an arbitrary number of strings. After the 
strings have been read, output all strings that are lexicographically 
larger than the last string read from the input. 

1.10. Repeat Exercise 1.9, using a vector with the push-back operation. 

1.11. A checksum is the 32-bit integer that is the sum of the ASCII char- 
acters in a file. Two identical files have the same checksum. Write 
a program to compute the checksum of a file that is supplied as a 
command-line argument. 

Programming Projects 

1.12. Write a program that outputs the number of characters, words, and 
lines in the files that are supplied as command-line arguments. 

1.13. Some personal computers come with a game called Minesweeper. 
The game is played on a grid, and some squares on the grid con- 
tain mines. Write a program that reads a file that contains the num- 
ber of rows and columns in the grid and then the grid. The grid 
will have squares marked o; those are mines. Other squares do not 
have mines and will have ?. Your output will output the grid. 
Mines will still have 0s. Squares that do not have mines will be 
replaced by a number that indicates the number of adjacent mines 
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Figure 1.1 8 Sample input for Exercise 1 . I  3. 

Figure 1.1 9 Sample output for Exercise 1.13. 

(the maximum will be 8). For example, is a sample input file, and 
Figure 1.19 is the corresponding output. 

References 

The base C++ language is described in [5] but is now standardized. Cur- 
rently, the standard is available online for a price of $18.00, and a hard copy 
version of the standard is also available for $175.00. You can purchase either 
athttp://webstore.ansi.org/ansidocstore/de£ault.asp(b~t 
be aware that this pointer may go stale). 

A description of the thinking behind the design of C++, as well as pro- 
posed extensions, is discussed in [I  I]. 

A host of C++ books are now available at various levels. For those with 
little programming experience, a popular choice is [4]. Books appropriate 
for those with a background in another programming language include [6], 
[8], [9], and [lo]. Advanced features of C++, including more details on some 
of the issues discussed in later chapters of this text, can be found in [I], [3], 
and [7]. Answers to many C++ questions are presented in [2]. Answers to the 
questions in [6] are given in [12]. 

Some of the material in this chapter is adapted from the presentation in 
[131. 
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Chapter 2 

I Objects and Classes 

In this chapter we begin a discussion of object-oriented programming and 
show why C++ is more than just C with a few bells and whistles added. The 
basic mechanism for accomplishing object-oriented programming in C++ is 
the class. 

In this chapter, we show: 

how C++ uses the class to achieve encapsulation and information 
hiding; 
how classes are implemented; and 
several examples of classes, including classes used to manipulate 
rational numbers and strings 

2.1 What Is Object-Oriented Programming? 

Object-oriented programming appears to be emerging as the dominant para- 
digm. In this section we discuss some of the things that C++ provides in the 
way of object-oriented support and mention some of the principles of object- 
oriented programming. 

At the heart of object-oriented programming is the object. An object is An object is an entity 

an entity-an instance of a data type-that has structure and state. Each that has structure and 
state. Each object 

object defines operations that may access or manipulate that state. One fea- defines operations 
ture of object-oriented programming is that user-defined types should that may access or 
behave the same way as predefined (or built-in) types. When we work with manipulate that state- 

any of the basic data types in a language, such as the integer, character, or 
floating-point number, we take certain things for granted. 

We can declare new objects, possibly with initialization. 
We can copy or test for equality. 
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An object is also an 
atomic unit: Its parts 
cannot be dissected 
by the general users 
of the object. 

Information hiding 
makes 
implementation 
details, including 
components of an 
object, inaccessible. 

Encapsulation is the 

We can perform input and output on these objects. 
If the object is an automatic variable, then when the function it is 
declared in terminates the object goes away. 
We can perform type conversions when appropriate, and the compiler 
complains when they are inappropriate. 

Additionally, we view the object as an atomic unit, whose parts cannot 
be dissected by the general user. Most of us would not even think of fiddling 
with the bits that represent a floating-point number and would find it com- 
pletely ridiculous to try to increment some floating-point object by altering 
its internal representation ourselves. 

The atomicity principle is known as information hiding. In other 
words, the user does not have direct access to the parts of the object nor their 
implementations; they can be accessed only indirectly by functions supplied 
with the object. We can view each object as coming with the warning "Do 
not open-no user-serviceable parts inside." In real life most people who try 
to fix things that have such a warning wind up doing more harm than good. 
In this respect programming mimics the real world. The grouping of data 
and the operations that apply to them to form an aggregate, while hiding 
implementation details of the aggregate, is known as encapsulation. 

A second important goal of object-oriented programming is to support 
groupingof dataand code reuse. Just as engineers use components over and over in their 
the operations that 
apply to them to form designs, programmers should be able to reuse objects rather than repeat- 
an aggregate, while edly reimplementing them. When we have an implementation of the exact -- - 
hiding implements- object that we needto use, doing so is a simple matter. The challenge is to 
tion details of the 
aggregate. 

use an existing object when the object needed is not an exact match but is 
merely very similar. 

C++ provides several mechanisms to support this goal. One is the tem- 
plate mechanism: If the implementation is identical except for the basic type 
of the object, a template can be used to describe the basic functionality. For 
instance, a procedure can be written to swap two items; the logic is indepen- 
dent of the types of objects being swapped, and so a template can be used. 
(We discuss templates in Chapter 3.) 

The inheritance mechanism allows us to extend the functionality of an 
object. In other words, we can create new types with extended properties of 
the original type. Inheritance goes a long way toward our goal of code reuse. 
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Another important object-oriented principle is polymorphism. A poly- The use of 

morphic object can hold objects of several different types. When opera- inheritance create 
hierarchies tions are applied to the polymorphic type, the operation appropriate to the distinguishes object- 

actual stored type is automatically selected. In C++ polymorphism is oriented 
implemented as part of inheritance. Polymorphism allows us to implement programming from 

object-based new types (classes) that share common logic. The use of inheritance to cre- 
programming, 

ate these hierarchies distinguishes object-oriented programming from 
- - 

object-based programming, which involves the use of encapsulation and 
information hiding but not inheritance. (We discuss inheritance and poly- 
morphism in Chapter 4.) 

In this chapter we describe how C++ uses classes to achieve encapsula- A class is the same as 

tion and information hiding. A class is the same as a structure except that, by a Structure except 
that, by default, all 

default, all members are inaccessible to the general user of the class. members are 
Because functions that manipulate the object's state are members of the inaccessible. 
class, they are accessed by use of the dot member operator ( . )-just like any 
other structure member-and thus are called member functions. These 
functions are also called methods. 

In object-oriented terminology, when we make a call to a member func- Functions can be 

tion, we are passing a message the object. Besides syntax and improved Supplied as 
members; these 

support for principles such as information hiding, the most obvious differ- member functions 
ence between object-oriented programming in C++ and typical C procedural manipulate the 

programming is philosophical: In C++ the object is in charge. object's state. 

2.2 Basic class Syntax 

In this section we discuss the basic syntax of C++ classes. More complicated 
issues are discussed in later sections of this chapter. 

2.2.1 Class Members 

To recap briefly, a class in C++ consists of its members. These members can 
be either data or functions. The functions are called member functions. Each 
instance of a class is an object. Each object contains the data components 
specified in the class (unless the data components are s t a t i c ,  a detail that 
can be safely ignored for now). A member function is used to act on an 
object. Member functions are also called methods.' 

As an example, Figure 2.1 presents the I n t c e l l  class. In this class, 
each instance of ~ n t c e l l - a n  I n t c e l l  object-contains a single data 
member, s t o r e d v a l u e .  Everything else in this particular class is a method. 

I .  We use the terms member function and method synonymously. 
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1 / /  A class for simulating an integer memory cell. 
2 
3 class IntCell 
4 I 
5 public: 
6 
7 / /  Construct the IntCell. Initial value is 0. 
8 Intcell ( ) 

9 I storedvalue = 0; 1 
10 
11 / /  Construct the IntCell. Initial value is initialvalue. 
12 IntCell( int initialvalue ) 

13 { storedvalue = initialvalue; I 
14 
15 / /  Return the stored value. 
16 int read( ) 

17 { return storedvalue; I 
18 
19 / /  Change the stored value to x. 
20 void write( int x ) 

21 { storedvalue = x; 1 
22 
23 private: 
24 int storedvalue; 
25 I ;  

Figure 2.1 A complete declaration of an Intcell class. 

In our example, there are four methods. Two of these methods are read and 
write. The other two are special methods known as constructors. Let us 
look at some key features of this class declaration. 

A public member is First, note the labels public and private. These labels determine vis- 
visibletoallroutines ibility of class members.  In this example,  everything except the 
and may be accessed 
by any method in any storedvalue data member is public; storedvalue is private. A 
class. public member is visible to all routines and may be accessed by any 

method in any class. A private member is not visible to nonclass routines 
and may be accessed only by methods in its class (an exception to this rule is 
discussed in Section 2.3.4). Typically, data members are declared private, 
thus restricting access to internal details of the class, while methods intended 
for general use are made public. Restricting access is also known as infor- 
mation hiding. Figure 2.2 shows the viewpoint from outside the class. 
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Figure 2.2 IntCell members: read and write are accessible, but 
storedvalue is hidden. 

By using private data members, we can change the internal represen- A private member is 

tation of the-object, without affecting other parts of the program that use the visible to 
nonclass routines 

object. We can do so because the object is accessed through the public and may be accessed 
member functions, whose viewable behavior remains unchanged. The users only by methods in its 
of the class do not need to know the internal details of how the class is class. 

implemented. In many cases having this access leads to trouble. For 
instance, in a class that stores dates bymonth, day, and year, if we make the 
month, day, and year private, we prohibit an outsider from setting these 
data members to illegal dates, such as February 29, 2001. Methods strictly 
for internal use can (and should) be private. In fact, in a class, all mem- 
bers are private by default, so the initial pub1 ic is required. 

Second, there are two constructors. A constructor is a method that A constructor 

describes how an instance of the class is created. If no constructor is explic- describes how an 
object is declared and 

itly defined, one that initializes the data members using language defaults is 
automatically generated. 

The IntCell class defines two constructors. The first is called if no n the initialization 

Darameter is s~ecified. The second is called if an int Darameter is ~rovided not match any 
constructors, the 

and uses that int to initialize the storedvalue member. If the declaration compiler 
of an IntCell object does not match any of the known constructors, the 
compiler complains. 

2.2.2 Extra Constructor Syntax and Accessors 

Although the class works as written, some extra syntax can make the code bet- 
ter. Four changes are shown in Figure 2.3 (we omit comments for brevity). 

Default Parameters 
The IntCell constructor illustrates the default parameter. As a result, two 
~ n t ~ e l  1 constructors are still defined. One accepts an ini t ialva lue. The 
other is the zero-parameter constructor, which is implied because the one- 
parameter constructor says that ini t ialvalue is optional by having a 
default value. The default value of 0 signifies that 0 is used if no parameter is 
provided. Default parameters can be used in any function, but they are most 
commonly used in constructors. 
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1 / /  A class for simulating an integer memory cell. 
2 
3 class IntCell 
4 { 

5 public: 
6 explicit IntCell( int initialvalue = 0 ) 

7 : storedValue( initialvalue ) { 1 
8 int read( ) const 
9 { return storedvalue; 1 

10 void write( int x ) 

11 { storedvalue = x; 1 
12 
13 private: 
14 int storedvalue; 
15 1 ;  

Figure 2.3 IntCell class with revisions. 

Initializer List 
The Intcell constructor uses an initializer list (Figure 2.3, line 7) prior to 
the body of the constructor. The initializer list is used to specify nondefault 
initialization of each data member in an object directly. In Figure 2.3, there 
is hardly a difference, but using initializer lists instead of an assignment 
statement in the body saves time when the data members are class types that 
have complex initializations. In some cases it is required. For instance, if a 
data member is const (meaning that i t  cannot be changed after the object 
has been constructed), then the data member's value can be initialized only 
in the initializer list. Also, if a data member is itself a class type that does not 
have a zero-parameter constructor, then it must be initialized in the initial- 
izer list. We discuss these details in Section 2.3.1. 

The explicit Constructor 
The IntCell constructor is explicit. You should generally make all one- 
parameter constructors explicit to avoid behind the scenes type conversions. 
Otherwise, C++'s somewhat lenient rules allow type conversions without 
explicit casting operations. Usually, this behavior is unwanted-it destroys 
strong typing and can lead to hard-to-find bugs. Consider the following: 

IntCell obj; / /  obj is an IntCell 
obj = 37; / /  Should not compile: type mismatch 

This code fragment constructs an Intcell object obj and then performs an 
assignment statement. But the assignment statement should not work, 
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because the right-hand side of the assignment operator is not another 
Intcell. Instead, ob j 's write method should have been used. However, 
C++ has lenient rules. Normally, a one-parameter constructor defines an 
implicit type conversion, in which a temporary object is created that makes 
an assignment (or parameter to a function) compatible. In this case, the com- 
piler would attempt to convert 

obj = 37; / /  Should not compile: type mismatch 

IntCell temp = 37; 
obj = temp; 

Note that the one-parameter constructor can be used to construct temp. 
The use of explicit means that a one-parameter constructor cannot be 
used to generate an implicit temporary. Thus, because ~ntcell's construc- 
tor is declared explicit, the compiler will correctly complain of a type 
mismatch. 

In Sections 2.3.2 and 2.6, we present cases in which the lenient rules are 
helpful. That usually occurs in the context of operator overloading (e.g., hav- 
ing = = make sense). 

The explicit keyword is new, and not all compilers support it. How- 
ever, the preprocessor can be used to replace all occurrences of explicit 
with white space,2 so there's no reason not to put explicit in your code. 

Constant Member Function 
A method that examines but does not change the state of its object is an A method that does - 
accessor. A member function that changes the state of an object is a muta- change the state 

of its object is an tor (it mutates the state of the object). In the typical class that stores a collec- access,, 
tion of objects, for instance, isEmpty is an accessor, and makeEmpty is a 
mutator. 

In C++, we can mark each member function as being an accessor or a A constant member - 
mutator. Doing so is an important part of the design process and should not is a 

that does not change 
be viewed as simply a comment. Indeed, not doing so has important seman- ,,, data 
tic consequences. For instance, mutators cannot be applied to constant m;mbers. 
objects. By default, all member functions are mutators. To make a member 
function an accessor, we must add the keyword const after the closing 
parenthesis that ends the parameter type list. The result is a constant member 

2. Use the statement 
#define explicit 
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The function 
signature includes 
the types of 
paremeters, including 
const and & 
directives, but not the 
return type. 

The interface 
describes what can 
be done to an object. 
The implementation 
represents the 
internal processes by 
which the interface 
specifications are 
met. 

function. A constant member function is a function that does not change 
any class data members. 

The const-ness (whether the cons t is or is not present after the closing 
parenthesis) is part of the signature, and cons t can have many different 
meanings. The function declaration can have const in three different con- 
texts. Only the cons t after a closing parenthesis signifies an accessor. The 
other uses are in parameter passing (Section 1.2.5) and the return type (see, 
for instance, Section 2.2.4). The function signature includes the types of 
parameters, including const and & directives, but not the return type. 

In the IntCell class read is clearly an accessor: It does not change the 
state of the IntCell. Thus it is made a constant member function at line 8. 
If a member function is marked as an accessor but has an implementation 
that changes the value of any data member, a compiler error is g ~ n e r a t e d . ~  

2.2.3 Separation of Interface and Implementation 

The class presented in Figure 2.3 contains all the correct syntactic con- 
structs. However, in C++, separating the class interface from its implementa- 
tion is more common. The interface lists the class and its members (data 
and functions) and describes what can be done to an object. The implemen- 
tation represents the internal processes by which the interface specifications 
are met. 

If a class had many function members and these functions were nontriv- 
ial, having to write all the function definitions inside the class declaration 
would be unreasonable. The more typical mechanism is to provide the mem- 
ber function declarations in the class declaration and then define them later, 
using a normal function syntax augmented with the class name and scope 
operator : : . This mechanism separates the class interface from the class 
implementation, which is a recurring theme throughout this text. 

Because the interface represents the class design and tells us what can be 
done to an object, the syntax of C++ allows the class declaration to specify 
the properties of its member functions. In conjunction with good naming 
conventions, this approach can greatly reduce the amount of commenting 
that is necessary. Even so, the interface should be accompanied by com- 
ments that specify what may be done to objects of the class. As far as the 
class user is concerned, the internal details of how the implementation does 
these tasks are not important. In this separation, a change in the implementa- 
tion can be confined to the source file that contains the implementation. 
Because this source file does not need to be #included by the users of the 

3. Data members can be marked mutable to indicate that const-ness should not apply to 
them. This feature is new and is not supported on all compilers. 



Basic class Syntax 

class (only the interface needs to be seen), separating the implementation 
from the interface can lead to easier program maintainence by reducing 
compile times and source file dependencies. Further, the implementation 
source code need not be distributed by the program designers. It can be pre- 
compiled and left in libraries. 

Figure 2.4 shows the class interface for Intcell, Figure 2.5 shows the 
implementation, and Figure 2.6 shows a main routine that uses the 
IntCell. 

Preprocessor Commands 
The interface is typically placed in a file that ends with . h. Source code that Use #ifndef and 

requires knowledge of the interface must #include the interface file, which #endif 
the contents of a here means that both the implementation file and the file that contains main header file and 

have the #include directive. Occasionally, a complicated project will have prevent multiple 
files that contain other files, and there is the danger that an interface might be inclusion. 

read twice in the course of compiling a file. This action can be illegal. To 
guard against it, each header file uses the preprocessor to define a symbol 
when the class interface is read, as shown on the first two lines in Figure 2.4. 
The symbol name, -1ntcel1-H-, should not appear in any other file; usu- 
ally we construct it from the filename. The first line of the interface file tests 
if the symbol is undefined. If so, the file is processed. Otherwise, by skip- 
ping to the #endif, the file is not processed because we know that we have 
already read the file. 

1 #ifndef -1ntCell-H- 
2 #define -1ntCell-H- 
3 
4 / /  A class for simulating an integer memory cell. 
5 
6 class IntCell 
7 ( 
8 public: 
9 explicit IntCell( int initialvalue = 0 ) ;  

10 int read( ) const; 
11 void write ( int x ) ; 

12 
13 private: 
14 int storedvalue; 
15 1; 
16 
17 #endif 

Figure 2.4 IntCell class interface, in the file 1ntCell.h. 
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1 #include "1ntCell.h" 
2 
3 / /  Construct the IntCell with initialvalue. 
4 IntCell::IntCell( int initialvalue ) 

5 : storedValue( initialvalue ) 

6 { 

7 1 
8 
9 / /  Return the stored value. 

10 int IntCell::read( const 
11 { 
12 return storedvalue; 

13 
14 
15 / /  Store x. 
16 void IntCell: :write ( int x ) 

17 { 
18 storedvalue = x; 
19 1 

Figure 2.5 IntCell class implementation in file 1ntCell.cpp. 

1 #include "1ntCell.h" 
2 
3 int main( ) 

4 I 
5 IntCell m; / /  Or, IntCell m( 0 ) ; but not IntCell m( ) ; 

6 
7 m.write( 5 ) ;  

8 cout << "Cell contents: " << m.read( ) << endl; 
9 

10 return 0; 
11 

Figure 2.6 Program that uses IntCell in file TestlntCell.cpp. 

Scope Operator 
The scope operator In the implementation file, which typically ends in . cpp, . cc ,  or . C, each 
: : is used refer member function must identifv the class that it is Dart of. Otherwise, it would --- - 

the scope. In a class 
member function the be assumed that the function is in the global scope (and many errors would 
scope is the class. result). The syntax is ClassName : : member. The scope operator : : is used 

to refer to the scope. In a class member function, as here, the scope is the class. 
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Signatures Must Match Exactly 
The signature of an implemented member function must match exactly the const member 

signature listed in the class interface. Recall that whether a member func- function declarations 
u are part of the tion is an accessor (via the const at the end) or a mutator is part of the signature. 

signature. Thus an error would result if, for example, the cons t was omit- 
ted from (exactly) one of the read signatures in Figures 2.4 and 2.5. Note 
that default parameters are specified in the interface and are omitted in the 
implementation. 

Objects Are Declared Like Primitive Qpes 
In C++, an object is declared just like a primitive type. On the one hand, the 
following are legal declarations of an Intcell object: 

IntCell ob j 1; / /  Zero parameter constructor 
IntCell obj2( 12 ) ;  / /  One parameter constructor 

On the other hand, the following are incorrect: 

IntCell obj3 = 37; / /  Constructor is explicit 
IntCell obj4 ( ) ; / /  Function declaration 

The declaration of ob j 3 is illegal because the one-parameter constructor 
is explicit. It would be legal otherwise. (In other words, a declaration that 
uses the one-parameter constructor must use the parentheses to signify the 
initial value.) The declaration for obj 4 states that it is a function (defined 
elsewhere) that takes no parameters and returns an Intcell. 

2.2.4 The Big Three: Destructor, Copy Constructor, 
and operator= 

In C++, classes come with three special functions already written for you: the 
destructor, copy constructor, and operator=. In many cases you can accept 
the default behavior provided by the compiler. Sometimes you cannot. 

Destructor 
The destructor is called whenever an object goes out of scope or is sub- The destructortells 

jected to a delete. Typically, the only responsibility of the de&ctor is to an Object is 
destroyed when it free any resources that were allocated by the constructor or other member exits scope and frees 

functions during the use of the object. That includes calling delete for any resources when an 
corresponding news, closing any files that were opened, and so on. The Obiectexitsscope. 

default simply applies the destructor to each data member. 
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The copy constructor 
is called when an 
object is passed or 
returned by value. 

By default, the copy 
constructor is a 
member-by-member 
application of copy 
constructors. 

The copy assignment 
operator operator= 
is used to copy 
objects. 

Copy Constructor 
A special constructor required to construct a new object, initialized to a copy 
of the same type of object, is the copy constructor. For any object, such as 
an IntCell object, a copy constructor is called 

for a declaration with initialization, such as 

but not 

B = C; / /  Assignment operator, discussed later 

when an object is passed using call by value (instead of by & or 
const &), which, as mentioned in Section 1.2.5, usually should not 
be done anyway. 
when an object is returned by value (instead of by & or cons t &) 

The first case is the simplest to understand because the constructed objects 
were explicitly requested. The second and third cases construct temporary 
objects that are never seen by the user. Even so, a construction is a construc- 
tion, and in both cases we are copying an object into a newly created object. 

By default the copy constructor is implemented by applying copy con- 
structors to each data member in turn. For data members that are primitive 
types (e.g., int, double, or pointers), simple assignment is done, as for the 
storedvalue data member in our Intcell class. For data members that 
are themselves class objects, the copy constructor for each data member's 
class is applied to that data member. 

The operator= 
The copy assignment operator, operator=, is used to copy objects. It is 
called when = is applied to two objects after have both been previously con- 
structed. The expression lhs=rhs is intended to copy the state of rhs into 
lhs. By default the operator= is implemented by applying operator= to 
each data member in turn. 

Problems with the Defaults 
If we examine the Intcell class, we see that the defaults are perfectly 
acceptable and so we do not have to do anything, which is often the case. If a 
class consists of data members that are exclusively primitive types and 
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objects for which the defaults make sense, the class defaults usually do make 
sense. Thus a class whose data members are int, double, vector<int>, 
string, and even vector<string> can accept the defaults. 

The main problem occurs in a class that contains a data member that is a 
pointer. Let us sketch the problem and a solution now and provide more spe- 
cifics when we implement the string class in Section 2.6. 

Suppose that the class contains a single data member that is a pointer. 
This pointer points at a dynamically allocated object. The default destructor 
for pointers does nothing (for good reason-recall that we must call delete 
ourselves). Furthermore, the copy constructor and operator= both copy 
not the objects being pointed at, but simply the value of the pointer. Thus we 
simply have two class instances that contain pointers that point to the same 
object. As discussed in Section 1.6.2, this condition is a so-called shallow 
copy. Typically, we would expect a deep copy, in which a clone of the entire 
object is made. Thus, when a class contains pointers as data members and 
deep semantics are important, we typically must implement the destructor, 
operator=, and copy constructor ourselves. 

For IntCell, the signatures of these operations are 

-IntCell( ) ; / /  destructor 
IntCell( const IntCell & rhs ) ;  / /  copy constructor 
const IntCell & operator=( const IntCell & rhs ) ;  

Although the defaults for Intcell are acceptable, we can write the 
implementations anyway, as shown in Figure 2.7. For the destructor, after 
the body has been executed, the destructors are called for the data members, 
so the default is an empty body. For the copy constructor, the default is an 
initializer list of copy constructors, followed by execution of the body. 

operator= is the most interesting. Line 15 is an alias test, to make sure 
that we are not copying to ourselves. Assuming that we are not, we apply 
operator= to each data member (at line 16). We then return a reference to 
the current object, at line 17, so assignments can be chained, as in a=b=c. 
(The return is actually a constant reference so that the nonsensical (a=b) =c 
is disallowed by the compiler). Let us look at the uses of the keyword this 
in more detail. 

An additional keyword in C++, the pointer t h i s  points at the current 
object. Think of the pointer this as a homing device that, at any instant in 
time, tells you where you are. Consequently, *this is the current object, 
and returning *this achieves the desired result. Under no circumstances 
will the compiler knowingly allow you to modify this. The return at line 17 
uses *this. The other use of this is at line 15. 

Assignment 
operators generally 
return constant 
references. 

The default 
destructor is a 
member-by-member 
application of 
destructors. 

The pointer this 
points at the current 
object. It is used to 
return a constant 
reference for 
assignment operators 
and also to test for 
aliasing. 
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1 IntCell: :-IntCell( ) 

2 I 
3 / /  Does nothing since IntCell contains only an int data 
4 / /  member. If IntCell contained any class objects their 
5 / /  destructors would be called. 
6 } 
7 
8 IntCell::IntCell( const IntCell & rhs ) 

9 : storedValue( rhs.storedValue ) 

10 I 
11 } 

12 
13 const IntCell & IntCell::operator=( const IntCell & rhs ) 

14 I 
15 if( this ! =  &rhs ) / /  Standard alias test 
16 storedvalue = rhs.storedValue; 
17 return *this; 
18 } 

Figure 2.7 The defaults for the Big Three. 

Aliasing is a special 
case that occurs 
when the same object 
appears in more than 
one role. 

Either implement a 
good copy 
constructor or 
disable it. Placing the 
declaration in the 
private section 
disables the copy 
constructor. 

The expression a=a is logically a nonoperation (a no-op). In some cases, 
although not here, failing to treat it as a special case can result in the destruc- 
tion of a. For example, consider a program that copies one file to another. A 
normal algorithm begins by truncating the target file to zero length. If no 
check is performed to verify that the source and target file are indeed differ- 
ent, then the source file will be truncated-hardly a desirable feature. Thus 
when copying, the first thing you should do is check for this special case, 
known as aliasing, which occurs when the same object appears in more than 
one role. 

In the routines that we write, if the defaults make sense, we always 
accept them. However, if the defaults do not make sense, we need to imple- 
ment the destructor, and operator=, and the copy constructor. When the 
default does not work, we can generally implement the copy constructor by 
mimicking normal construction and then calling operator=. Another often 
used option is to give a reasonable working implementation of the copy con- 
structor but then place it in the private section, to disallow call by value. 

When the Defaults Do Not Work 
The most common situation in which the defaults do not work occurs when 
a data member is a pointer type and the pointee is allocated by some object 
member function (e.g., the constructor). For example, suppose that we 
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1 class IntCell 
2 { 
3 public: 
4 explicit IntCell( int initialvalue = 0 ) 

5 ( storedvalue = new int( initialvalue ) ;  } 

6 
7 int read( ) const; 
8 { return "storedvalue; } 
9 void write ( int x ) ; 

10 { *storedValue = x; } 

11 
12 private: 
13 int "storedvalue; 
14 } ;  

Figure 2.8 The data member is a pointer; the defaults are no good. 

1 int f (  ) 

2 I 
3 IntCell a ( 2 ) ; 

4 IntCell b = a; 
5 IntCell c; 
6 
7 c = b; 
8 a.write( 4 ) ;  

9 tout << a.read( ) << end1 << b.read( ) << endl 
10 << c.read( ) << endl; 
11 return 0; 
12 1 

Figure 2.9 Simple function that exposes problems in Figure 2.8. 

implement the Intcell by dynamically allocating an int, as shown in Fig- 
ure 2.8. For simplicity, we do not separate the interface and implementation. 

Problems with this approach are exposed in Figure 2.9. First, the output 
is three 4s, even though logically only a should be 4. The problem is that the 
default operator= and copy constructor copy the pointer storedvalue. 
Thus a. storedvalue, b.  storedvalue, and c . storedvalue all point at 
the same int value. These copies are shallow: that is, the pointers rather 
than the pointees are copied. A second less obvious problem is a memory 
leak. The int initially allocated by a's constructor remains allocated and 
needs to be reclaimed. The int allocated by c's constructor is no longer ref- 
erenced by any pointer variable. It also needs to be reclaimed, but we no 
longer have a pointer to it. 

To fix these problems, we implement the Big Three. The result (with the 
interface and implementation separated) is shown in Figure 2.10. Generally 
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1 class IntCell 
2 { 
3 public: 
4 explicit IntCell( int initialvalue = 0 ) ;  

5 
6 IntCell( const IntCell & rhs ) ;  

7 -IntCell( ) ; 

8 const 1ntCel1 & operator=( const 1ntCel1 & rhs ) ;  

9 
10 int read( ) const; 
11 void write( int x ) ;  

12 
13 private: 
14 int *storedValue; 

15 1 ;  
16 
17 IntCell::IntCell( int initialvalue ) 

18 
19 storedvalue = new int( initialvalue ) ;  

20 1 
21 
22 IntCell::IntCell( const IntCell & rhs ) 

23 { 
24 storedvalue = new int( *rhs.stored~alue ) ; 
25 } 
26 
27 Intcell: : -IntCell( ) 

28 { 

29 delete storedvalue; 
30 1 
3 1 
32 const IntCell & IntCell::operator=( const IntCell & rhs ) 

33 { 
34 if( this ! =  &rhs ) 

35 *storedValue = *rhs.storedValue; 
36 return *this; 

37 1 
38 
39 int IntCell::read( ) const 

40 I 
41 return *storedValue; 

42 1 
43 
44 void IntCell::write( int x ) 

45 { 
46 *storedValue = x; 
47 1 

Figure 2.10 Data member is a pointer; Big Three need to be written. 
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speaking, if a destructor is necessary to reclaim memory, the defaults for 
copy assignment and copy construction are not acceptable. 

If the class contains data members that do not have the ability to copy 
themselves, the default operator= will not work. We show some examples 
of this lack later in the text, starting with the string class in Section 2.6. 

2.2.5 Default Constructor 

If no user-declared constructors are provided for a class, a default construc- 
tor is automatically generated. The default takes no parameters and is essen- 
tially a member-by-member application of each member's no-parameter 
constructor, with language defaults for the primitive members. 

2.3 Additional C++ Class Features 

Now that we have discussed the basics of classes, we examine some addi- 
tional related issues, including 

a second look at the distinction between initialization and assignment, 
implicit type conversions for classes, 
more details of operator overloading, 
input and output, including the friend concept, and 
private global variables (known as private static class members). 

To illustrate these concepts, we design a class called Rational that 
manipulates rational numbers. A properly designed rational number class 
allows us to use rational numbers as easily as any of the built-in types, such 
as integers, doubles, or characters. Extending the types to which an operator 
can be applied is known as operator overloading. In Figure 2.11, the pro- 
gram reads a sequence of rational numbers and outputs their average and 
maximum. If we replace the word Rational with double (and use int for 
IntType at lines 24 and 27), the program requires no other changes to com- 
pile and run. 

Examining main, we can see the use of an explicit type conversion (the 
comparison at line 24 and the division at line 27, in which an IntType is 
converted to a ~ational). The other notable feature is the overloading of 
the input and output stream operators on lines 15, 17, 25, and 27. 

Figures 2.12 and 2.13 show the interface for the Rational class. We 
attempted to give a complete listing of the operations that might be expected. 
However, providing actual implementations of all these operations does 

The default 
constructor is a 
member-by-member 
application of a no- 
parameter 
constructor. 

Extending the types 
to which an operator 
can be applied is 
known as operator 
overloading. 



1 #include "Rational. h" 
2 #include <iostream> 
3 using namespace std; 
4 
5 / /  Rational number test program. 
6 int main( ) 

7 { 
8 Rational x; 
9 Rational sum = 0; 

10 Rational max = 0; 
11 int n = 0; 
12 
13 cout << "Type as many rationals as you want" << endl; 
14 
15 while( cin >> x ) 

16 ( 

17 cout << "Read " << x << endl; 
18 sum += x; 
19 if( x > max ) 

20 max = x; 
21 n++ ; 
22 1 
23 cout << "Read " << n << " rationals << endl; 
24 if ( max > IntType ( 0 ) ) 

25 cout << "Largest positive number is " << max << endl; 
26 if( n > 0 ) 

27 cout << "Average is " << sum / IntType( n ) << endl; 
28 
29 return 0; 
30 1 

Figure 2.1 1 Simple main routine for using rational numbers. 

require a substantial amount of coding, so in the discussion that follows, we 
implement a representative subset of the member functions. 

Recall that a rational number consists of a numerator and a denomina- 
tor. The data members of the class are numer and denom, representing the 
numerator and denominator, respectively. We use IntType to represent 
their type. The type IntType could be an int, although that restricts the 
range of rationals that can be represented, especially as intermediate calcula- 
tions could easily overflow an int. (In Exercise 2.26 you are asked to imple- 
ment a general IntType, which is a lot more work than it seems.) Some 
systems come with an equivalent class. 

We maintain the invariant that the denominator is never negative and 
that the rational number is expressed in the lowest form. Thus, the result of 
81-12 would be represented with a numerator of -2 and a denominator of 3. 
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1 / /  Rational class interface: support operations for rationals. 
2 / /  
3 / /  CONSTRUCTION: with (a) no initializer, or (b) an integer 
4 / /  that specifies the numerator, or (c) two integers 
5 / /  specifying numerator and denominator, or 
6 / /  (d) another Rational. 
7 / /  
8 /,I ***************PUBLIC OPERATIONS********************** 

9 / /  =, +=, -=  , /= ,  *=  - ->  Usual assignment 

10 / /  +, -, / ,  * - ->  Usual binary arithmetic 
11 / /  < ,  < = ,  > ,  >=, == , . I =  - ->  Usual relational and equality 
12 / /  ++, --, +, -, ! - ->  Usual prefix, postfix, unary 
13 / /  >> and << - ->  Input and output 
14 / /  double toDouble ( ) - ->  Return double equivalent 
15 
16 #include <iostream> 
17 using namespace std; 
18 
19 typedef long IntType; / /  Better method is in Chapter 3 
20 
21 class Rational 
22 I 
23 public: 
24 / /  Constructors 
25 Rational( const IntType & numerator = 0 ) 

26 : numer( numerator ) ,  denom( 1 ) i 1 
27 Rational( const IntType & numerator, 
28 const IntType & denominator ) 

29 : numer( numerator ) ,  denom( denominator ) 

30 { f ixSigns ( ) ; reduce ( ) ; 1 
31 Rational( const Rational & rhs ) 

32 : numer ( rhs .numer ) , denom ( rhs .denom ) { 1 
33 
34 / /  Destructor 
35 -Rational( ) { } 

36 
37 / /  Assignment Ops (implementation in Figure 2.15) 
38 const Rational & operator= ( const Rational & rhs 1 ;  
39 const Rational & operator+=( const Rational & rhs ) ;  

40 const Rational & operator-=( const Rational & rhs ) ;  

41 const Rational & operator/=( const Rational & rhs ) ;  

42 const Rational & operator*=( const Rational & rhs 1 ;  
43 
44 / /  Math Binary Ops (implementation in Figure 2.16) 
45 Rational operator+( const Rational & rhs ) const; 
46 Rational operator-( const Rational & rhs ) const; 
47 Rational operator/( const Rational & rhs ) const; 
48 Rational operator*( const Rational & rhs ) const; 

Figure 2.12 The Rational class interface (part 1). 
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/ /  Relational & Equality Ops (implemented in Figure 2.17) 
boo1 operator< ( const Rational & rhs ) const; 
bool operator<=( const Rational & rhs ) const; 
bool operator> ( const Rational & rhs ) const; 
bool operator>=( const Rational & rhs ) const; 
bool operator==( const Rational & rhs ) const; 
bool operator!=( const Rational & rhs ) const; 

/ /  Unary Operators (implemented in Figures 2.18 and 2.19) 
const Rational & operator++( ) ;  i /  Prefix 
Rational operator++( int ) ;  / /  Postfix 
const Rational & operator--( ) ;  / /  Prefix 
Rational operator-- ( int ) ; / / Postfix 
const Rational & operator+( ) const; 
Rational operator-( ) const; 
bool operator! ( ) const; 

/ /  Member Function 
double toDouble( ) const / /  Do the division 

{ return static-cast<double>( numer ) / denom; ) 

/ /  1/0 friends: privacy is waived (see Figure 2.20) 
friend ostream & operator<< ( ostream & out, 

const Rational & value ) ;  

friend istream & operator>> ( istream & in, 
Rational & value ) ;  

private : 
/ /  A rational number is represented by a numerator and 
/ /  denominator in reduced form 

IntType numer; / /  The numerator 
IntType denom; / /  The denominator 

void fixsigns ( ) ; 

void reduce ( ) ; 

1 ;  

/ /  Ensures denom >= 0 
/ /  Ensures lowest form 

Figure 2.13 The Rational class interface (part 2). 

We allow denom to be 0, to represent either in£ inity or -in£ inity 
(even if numer is also 0). These invariants are maintained internally by 
applying f ixsigns and reduce, as appropriate. Those routines are 
shown in Figure 2.14. The gcd routine computes the greatest common divi- 
sor of two integers (the first of which rnight be negative). For instance 
gcd ( 3  5,45) is 5. Computing the greatest common divisor is an interesting 
problem in its own right and is discussed in Section 8.4. 



Additional C++ Class Features 

1 void Rational::fixSigns( ) 
2 i 
3 if( denom < 0 ) 

4 i 
5 denom = -denom; 
6 numer = -numer; 
7 } 

8 } 
9 

10 void Rational::reduce( ) 
11 { 

12 IntType d = 1; 
13 
14 if( denom ! =  0 && numer ! =  0 ) 

15 d = gcd( numer, denom ) ;  

16 
17 if( d >  1 ) 

18 i 
19 numer / =  d; 
20 denom / =  d; 
21 } 

22 1 

Figure 2.14 Private member routines to keep R a t i o n a l s  in normalized format. 

The remainder of this section is devoted to examining C++ features that 
are used in this class-namely, initialization lists, type conversions, operator 
overloading, and input and output. 

2.3.1 Initialization Versus Assignment 
in the Constructor Revisited 

Line 25 of the R a t i o n a l  class interface (see Figure 2.12) initializes as 

Rational( const IntType & numerator = 0 ) 

: numer( numerator ) ,  denom( 1 ) { 1 

Recall that the sequence preceding the braces is the initializer list. Alterna- 
tively, the constructor could be written as 

Rational( const IntType & numerator = 0 ) 

{ numer = numerator; denom = 1; 1 
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Simple initialization 
of class members 
using initializer lists 
is preferable to 
assignment in the 
constructor. 

Members are 
initialized in the order 
they are declared, not 
in the order they are 
encountered in the 
initialization list. 
Generally, it is best to 
avoid writing code 
that depends on this 
fact. 

The difference between the two is as follows. The form in the class inter- 
face, which uses an initializer list to specify data member initialization, ini- 
tializes numer and denom using the one in t -parameter  constructor. 
Because the body of the constructor is empty, no further operations are per- 
formed. The alternative form initializes numer and denom by using the no- 
parameter constructor. The reason is that any member not specified in the 
initializer list is initialized using a zero-parameter constructor. The copy 
assignment operator is then called to perform the two assignments that are 
in the body of the Rational constructor. Imagine that IntType is itself a 
class that represents arbitrary precision integers. In that case the alternative 
form is wasteful because it first initializes numer and denom to Os, only to 
overwrite them with assignment copies. This procedure could have impor- 
tant repercussions, such as requiring the costly expansion of a dynamically 
allocated block of memory (we demonstrate this requirement in the 
string class in Section 2.6). 

Because initialization of each class member should usually be done with 
its own constructor, when possible you should use explicit initializer lists. 
Note, however, that this form is intended for simple cases only. If the initial- 
ization is not simple (e.g., if it allocates memory or error checks are needed), 
use an assignment. Among other things, the order of evaluation of the initial- 
izer list is given by the order in which class data members are listed. In our 
case, numer is initialized before denom only because it appears earlier in the 
listing of data members (of course, this does not apply to assignments in the 
body of the constructor). If the initialization of numer depended on the ini- 
tialization of denom being done first, we would have to switch their declara- 
tion order. If we were to do this, we would need to comment that there is an 
order dependency. If possible, you should avoid order dependencies. 

Initializer Lists Can Be Mandatory 
An initializer list is required in three common situations. 

1. If any data member does not have a zero-parameters constructor, 
the data member must be initialized in the initializer list. 

2. Constant data members must be initialized in the initializer list. A 
constant data member can never be assigned to after the object is 
constructed. An example might be the social security number in an 
Employee class. Each Employee has his or her own social security 
number data member, but presumably the social security number 
never changes. 
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3. A data member that is a reference variable (for instance an 
istream &) must be initialized in the constructor. 

2.3.2 Type Conversions 

C++ has rules that allow the mixing of types. For instance, if i is an int and A type conversion - - - 
d is a double, d=i is allowed. This is known as an implicit type conver- creates a 

object of a new type. sion because it is performed without the use of an explicit type conversion 
operator. A temporary tmp is created from i and then is used as the right- 
hand side of the assignment. Some languages do not allow implicit type con- 
version because of the danger of accidental usage and weakening the notion 
of strong typing. However, forcing all type conversions to be explicit tends 
to load code with conversions, sometimes unnecessarily. 

A type conversion creates a temporary object of a new type. In C++ the 
rules for type conversion follow this general principle: If you can construct 
an object of type tl by providing an object of another type t2, then a type 
conversion from t2 to tl is guaranteed to follow the same semantics. In the 
case of the Rational class, any appearance of an IntType object is 
implicitly converted to a (temporary) Rational when needed, as in the pre- 
viously cited examples in main (Figure 2.1 1 ,  lines 24 and 27). The tempo- 
rary is created by executing the constructor. If you do not want implicit type 
conversions, declare your one-parameter constructors to be expl i c i t. 

A technical point: In our case, even though a conversion is defined for 
int to IntType and one is defined from IntType to Rational, transitiv- 
ity does not hold. Thus these two conversions do not imply a third conver- 
sion from int to Rational. This lack of transitivity is why the type 
conversion from int to IntType is performed in Figure 2.1 1 at lines 24 and 
27. We could attempt to provide a constructor for Rational that takes an 
int, which would solve our problems by providing the third type conver- 
sion. However, if IntType is an int, that approach provides two identical 
constructors, and the compiler will complain about the ambiguity. 

We can also define a type conversion by overloading operator ( ) . For 
instance, we can specify a type conversion from Rational to int by writ- 
ing the member function 

A constructor defines 
an automatic type 
conversion. 

Conversions are not 
transitive. 

Conversions can also 
be defined as member 
functions, but do not 
overdo them or 
ambiguity can result. 

operator int ( ) const 
{ return denom == 1 ? numer : int( longDecimal( ) ) ;  ) 
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1 const Rational & Rational::operator=( const Rational & rhs ) 

2 { 

3 if( this ! =  &rhs ) 

4 { 

5 numer = rhs .numer; 
6 denom = rhs.denom; 
7 1 
8 return *this; 
9 1 

10 
11 const Rational & Rational::operator+=( const Rational & rhs ) 

12 I 
13 numer = numer * rhs.denom + rhs.numer * denom; 
14 denom = denom * rhs.denom; 
15 reduce( ) ; 

16 
17 return *this; 
18 ) 

Figure 2.1 5 Assignment operators (two of five) for the Rational class. 

Overloading the type conversion operator in this way is not recommended. 
Too many implicit conversions can easily get you in trouble; again, ambigu- 
ity can result. We present an example of this problem in Section 9.9 

2.3.3 Operator Overloading 

We examine the operators in the same order given in the class interface. 
Many of the operators, such as the assignment operators, use no new princi- 
ples. Two of them are shown in Figure 2.15. However, we do have to be 
careful. For example, lines 13 and 14 cannot be interchanged. For the corre- 
sponding / = operator, we need to use temporaries. 

A binary arithmetic The next group of operators are the binary arithmetic operators. A 
operator usually binary arithmetic operator usually returns an object by value because the 
returns an object by 
value because the result is stored in a temporary. It also can be implemented by calling the cor- 
result is stored in a responding assignment operator. A simple implementation is provided in 
temporary- It can be Figure 2.1 6 for the addition operator. Note how we use a previously defined 
implemented by 
calling the 

operator, an excellent general technique. 
corresponding An interesting technical issue here is the return type. As usual, we have 

- 

assignment operator. three choices: We can return by value, by reference, or by constant refer- 
ence. A return by reference is certainly wrong: We cannot allow expressions 
such as (a+b) =c because a+b is not a named object; the assignment could 
at best be meaningless. 
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1 Rational Rational::operator+( const Rational & rhs ) const 
2 ( 
3 Rational answer( *this ) ;  / /  Initialize answer with *this 
4 answer += rhs ; I l Add t h e  second operand 
5 return answer ; / /  Return answer by copy 
6 1 

Figure 2.16 Mathematical binary operators (one of four) for the R a t i o n a l  class. 

1 boo1 Rational::operator==( const Rational & rhs ) const 
2 I 
3 return numer * rhs.denom == denom * rhs.numer; 
4 1 

Figure 2.17 Relational and equality operators (one of six) for the R a t i o n a l  
class. 

Because the += operator returns a c o n s t  & and a copy takes more time 
than a constant reference return, we appear to be doing the wrong thing. 
Why not return a constant reference? The answer is that the reference would 
refer to an automatic object, and when the procedure returns, the object is 
destroyed (by the destructor). Thus answer cannot be referenced. Returning 
a pointer to an automatic variable is a common C mistake. Analogously, 
returning a reference to an automatic variable ordinarily would be a common 
C++ mistake, but most C++ compilers flag the error at compile time. 

What if we use a s t a t i c  local variable for answer?  There are two 
problems-one is easy to fix, and one isn't easy to fix. The easy-to-fix prob- 
lem is that the initialization is performed only once (the object is created 
only once). We can fix it with an additional assignment statement. The real 
problem is that for any four rationals, an expression such as 

is always true because the values being compared are references to the same 
s t a t i c  object. Thus we see that what we have done is the only correct 
approach. Hence a statement such as 

must call a copy constructor to copy answer into a temporary variable and 
then call a copy assignment operator to copy the temporary into r l .  Many 
compilers optimize out the temporary and thus the copy constructor. 

Next, are the equality and relational operators. A typical routine is shown 
in Figure 2.17. For the equality operators == and ! =, we can do better by 
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Prefix and postfix ++ 
and -- operators 
have different 
semantics. The prefix 
member function is 
specified by an empty 
parameter list.The 
postfix form has an 
unused int 
parameter. 

1 const Rational & Rational::operator++( ) / /  Prefix form 
2 ( 
3 numer += denom; 
4 return *this; 
5 1 
6 
7 Rational Rational::operator++( int ) / /  Postfix form 
8 1 
9 Rational tmp = *this; 
10 numer += denom; 
11 return tmp; 
12 1 

Figure 2.18 Prefix and postfix operators (two of four) for the Rational class. 

avoiding the expensive (and potentially overflowing) multiplication and 
directly comparing numerators and denominators. We leave this for you to 
do as an exercise (see Exercise 2.16), with a warning that you have to be 
careful when the numerator or denominator is 0. 

We continue with the ++ and - - operators and examine the incrementing 
operator. In C++ there are two kinds: prefix (before the operand) and postfix 
(after the operand). Both add I to an object, but the result of the expression 
(which is meaningful if used in a larger expression) is the new value in the 
prefix form and the original value in the postfix form. As they are completely 
different in semantics and precedence, we need to write separate routines for 
each form. They have the same name, so they must have different signatures 
to be distinguished. We give them different signatures by specifying an empty 
parameter list for the prefix form and a single (anonymous) int parameter 
for the postfix form. Then ++x calls the zero-parameter operator++; and 
x++ calls the one-parameter operator++. The int parameter is never 
used; it is present only to give a different signature. 

The prefix and postfix forms shown in Figure 2.18 add 1 by increasing 
numer by the value of denom. In the prefix form we can then return *this 
by constant reference, as for the assignment operators. The postfix form 
requires that we return the initial value of *this, and thus we use a tempo- 
rary. Because of the temporary, we have to return by value instead of refer- 
ence. Even if the copy constructor for the return is optimized away, the use 
of the temporary suggests that, in many cases, the prefix form will be faster 
than the postfix form. 

The three remaining unary operators have straightforward implementa- 
tions, as shown in Figure 2.19. operator! returns true if the object is zero 
by applying ! to the numerator. Unary operator+ evaluates to the current 
object; a constant reference return can be used here. operator- returns the 
negative of the current object by creating a new object whose numerator is 
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1 boo1 Rational : : operator ! ( ) const 
2 I 
3 return !numer; 
4 1 
5 
6 const Rational & Rational::operator+( ) const 
7 I 
8 return *this; 
9 1 

10 
11 Rational Rational: :operator-( ) const 
12 { 

13 return Rational( -numer, denom ) ;  

14 1 

Figure 2.19 Additional unary operators (three of three) for the Rational class. 

the negative of the current object. The return must be by copy because the 
new object is a local variable. However, a trap lurks in operator-. If the 
word Rational is omitted from line 13, the comma operator evaluates 
( -numer, denom 1 as denom, and then an implicit conversion gives the 
rational denom/ 1, which is returned. 

What Can Be Overloaded? 
In C++, all but four operators can be overloaded. The four nonoverloadable 
operators are . , . *, ? : , and s i zeo f. Operator precedence cannot be 
changed. That is, a+b*c is always a+ (b*c) . Arity (whether an operator is 
unary or binary) cannot be changed so, for example, we cannot write a unary 
/ operator or a binary - operator. Finally, only existing operators can be 
overloaded, and new operators cannot be created. 

2.3.4 Input and Output and Friends 

The remaining operators in the Rational class are << and >>, which, as 
discussed in Appendix A, are used for output and input. When we make the 
call 

cout << rl; / /  Output Rational rl 

the operator<< takes an os tream and a Rational as parameters. Both 
parameters are passed by reference. The operator<< returns a reference to 
an ostream so that output calls can be concatenated. A similar situation 
occurs for the operator>>, the only significant difference being that the 
Rational parameter is not a constant reference. 



Input and output can Consequently, we arrive at the following prototypes for operator<< 
be defined by and operator>>: 
overloading << and 

ostream & operator<<( ostream & out, const Rational & r ) ;  

istream & operator>>( istream & in, Rational & r ) ;  

These are not member functions because, when they are called, a Rational 
is not the controlling object. The only class that these could possibly be 
members of would be the ostream or istream class, in which case the first 
parameter would not be present. For example, ostream has a member func- 
tion for int output: 

ostream & operator<<( int value ) ;  

Needless to say, we cannot add member functions to ostream every time 
we design a new class. Consequently, the input and output functions for 
Rational are stand-alone functions and are not members of any class. They 
are declared in global scope and are used just like any other function. 

Figure 2.20 shows the implementation of these functions. Note again 
that no scope resolution operator is attached to their names. The input rou- 
tine reads a fraction or a single integer, as appropriate, and then normalizes 
the fraction. We have not attempted any of the error checking required in a 
serious implementation. Likewise, the output routine is fairly simple and 
works by calling-preexisting output routines as needed.4 

Friends are functions You may have noticed something strange in Figure 2.20: If numer and 
that are exempt from denom are private data members, how can a nonmember function access it? 
the usual private 
access restrictions. Under normal circumstances it cannot. To get around that restriction, we 

specified in the class interface (at lines 71 to 74 in Figure 2.13) that these 
functions are friends, which are exempt from the usual privte access restric- 
tions. Notice that only the class can give additional access, and so this does 
not violate information-hiding principles. In general, classes should not have 
too many friends. Section 2.4.1 discusses an alternate strategy and Exercise 
2.32 asks you to rewrite the Rational class to avoid the use of friends. 

2.4 Some Common Idioms 

In this section we discuss three idioms: 

1. a technique that allows us to write global functions without using 
friend declarations: 

4. lnput and output are discussed in Section A.2. 
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1 istream & operator>>( istream & in, Rational & value ) 

2 i 
3 in >> value.numer; 
4 value.denom = 1; 
5 
6 char ch; 
7 in.get ( ch ) ; 

8 
9 if( !in.eof( ) ) 

10 I 
11 if( ch == ' / I  ) 

12 i 
13 in > >  value.denom; 
14 value.fixSigns( ) ;  

15 value. reduce ( ) ; 

16 1 
17 else 
18 in.putback( ch ) ;  / /  unread ch 
19 1 
20 
21 return in; 
22 1 
23 
24 ostream & operator<<( ostream & out, const Rational & value ) 

25 i 
26 if( value.denom ! =  0 ) 

27 i 
28 out << value.numer; 
29 if( value.denom ! =  1 ) 

30 out << ' / '  << value.denom; 
31 return out; 
32 1 
33 
34 / /  Messy code for denom == 0 
35 if ( value. numer == 0 ) 

36 out << "indeterminate"; 
37 else 
38 { 

39 if( value.numer < 0 ) 

40 out << I - I  ; 

41 out << "infinity"; 
42 1 
43 return out; 
44 I 

Figure 2.20 110 friends for the Rational class. 
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2. use of static data members, which are data shared among all 
instances of the class; and 

3. enum, which is a way to store integer class constants. 

2.4.1 Avoiding Friends 

As we discussed at the end of Section 2.3, classes should have as few friends 
as possible. We can get by with few friend functions if the class's public 
member functions have enough flexibility, which typically is the case. 

Two functions that are prime candidates for friendship are the input and 
output functions. The input function can often be rewritten by reading basic 
data, using the data to construct an object, and then copying the object into 
the reference parameter that is to be the target. For example, here is how we 
can write operator>> for the IntCell class: 

istream & operator>> ( istream & in, IntCell & val ) 

I 
int x; 

in >> x; 
if ( !in. fail ( ) ) 

val = IntCell( x ) ; 

return in; 
1 

Output can often be performed by calling accessors. However, a more 
common technique is to add the public member function print to the class. 
print outputs in exactly the format required by operator<<. The signa- 
ture of the print member function is 

public : 
void print( ostream & out = cout ) const; 

We can then implement operator<< by calling print: 

ostream & operator<< ( ostream & out, const IntCell & x ) 

{ 
x.print ( out ) ; 

return out; 
1 

A complete example of this procedure is shown in Figure 2.28. 
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2.4.2 Static Class Members 

Suppose that we have an obiect that we want all the members of the Rational A staticclass member 
A A 

class to share. For instance, suppose that we want to keep track of the number essentially a global 
variable visible only 

of Rational objects that are currently active. What we need is essentially a to class members. 
single global variable because any class member will be local to the instance 
of each object, whereas all the ~ational instances will share and have access 
to the global object. Unfortunately. a global variable also allows access to 
everyone else, violating information hiding principles. In C++ we can 
declare a static class member.5 A static class member is essentially a global 
variable visible only to class members (if declared private) and whose scope 
is the same as a class member, not a data member. In other words, there is 
one static member per class instead of one data member per object. 

Our example would work as follows. In the private section of the 
Rational class, we declare 

private : 
static int activeInstances: 

We could then increment activeInstances in the constructor and decre- 
ment it in the destructor. In the program, where we normally place defini- 
tions of global objects, we need to place the defining declaration 

int Rationa1::activeInstances = 0: 

2.4.3 The enum Trick for Integer Class Constants 

Occasionally we need a classwide constant. For instance, consider the con- 
stant ios : : in. Here, in is a constant that is shared among all instances of 
the class ios. We can always simply use the same syntax as in Section 2.4.2. 
putting the word const in front of the type (in both the class interface and 
defining declaration). 

If the object is an integral type, two shorthand options are available. 
First, we can avoid the defining declaration by providing the value in the 
interface, as in 

pub1 ic : 
static const int RED = 0; 
static const int BLACK = 1; 

5. A static class member is different from a static local variable. A static local variable is a 
variable that exists inside a function but has lifetime that extends for the entire program. 
Think of it as a global variable that is accessible only from inside the function in which is 
declared. 
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Unfortunately, this is a recent language addition and does not work on all 
compilers. An alternative is the enum trick, which we use in Exercise 2.23: 

public: 
enum { RED = 0, BLACK = 1 1 ;  

2.5 Exceptions 

When we design classes for use by others (or even just ourselves), we are 
often confronted with a problem: How can class methods report error condi- 
tions back to the user of the class? 

One possibility is to have the method print an error message and then 
continue on. This solution is not a reasonable because it is likely to allow the 
program to keep running while in a bad state. Alternatively, we can print a 
message and terminate the program, which is often a rather drastic solution 
to put in a library routine. For instance if you are trying to load a Web page 
and the page cannot be found, you would not want that to cause your 
browser to exit automatically. So you want the method to inform the caller 
that an error has occurred and let the caller decide what to do. The caller 
then has the option of terminating the program, attempting error recovery, or 
passing the problem up the chain to its caller. So how does a method tell the 
caller that there is a problem? 

Several techniques have been popular in the past. One technique is to set 
a variable to indicate failure. For instance, in the 110 package, the istream 
classes will set a class variable to indicate an 110 failure. Calls to the f a i  1, 
good, bad, and eof methods simply query the state of this variable. How- 
ever, this solution has several weaknesses, two of which are that the pro- 
grammer can easily forget to test the state of the variable, leading to 
unpredictable results, and that the programmer must clear the error state 
before continuing. 

Another popular technique is to have a method return an error code, but 
this solution also has several weaknesses. First, the programmer can ignore 
the return value, leading to unpredictable results. (For example, many C pro- 
grammers routinely ignore the return value of printf, leading to problems 
when UO errors occurred on output.) Second, there may be no natural return 
value. For instance, if a method performs division, what return value can be 
used to signal a divide by zero error? 

A third alternative is to pass an additional parameter by reference to 
store the error condition. This option solves the problem of running out of 
unique return values, but it leaves intact the possibility that errors might be 
ignored. The fourth option is to use exceptions. 
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An exception is an object that stores information transmitted outside the An exception is an 

normal return sequence. An exception is propagated back through the calling that 
information 

sequence until some routine catches it. An exception is used to signal excep- transmitted outside 
tional occurrences, such as errors. the normal return 

Any object (for instance an i n t )  can be an exception object; however, sequenceand is used 
to signal exceptional defining a class that stores the exception's transmitted information is more 
occurrences, such as 

common. The throw statement is used to propagate an exception, as in errors. 

throw 3; / /  Throw an int object with value 3 
throw IntCell( 3 ) ;  / /  Throw an IntCell with state 3 
throw IntCell ( ) ; / /  Throw an IntCell with state 0 

An exception object can be allowed to propagate uncaught. In that case, 
the program terminates.6 For truly exceptional occurrences, such as being 
out of memory, or using an out-of-range index for a v e c t o r  or s t r i n g  this 
action is reasonable. In fact, our implementation of the s t r i n g  and v e c t o r  
classes both throw an exception when that occurs (unfortunately, the Stan- 
dard Library implementations do no error checking). 

In this text, we use exceptions only for programming errors. Thus we do 
not need to catch exceptions. Other applications could require catching 
exceptions and performing some error recovery. In those cases, a more care- 
ful design of the exception objects is required, as is an understanding of the 
syntax for catching exceptions. The design of these exception objects typi- 
cally involves inheritance. Thus, we defer additional discussion of exception 
handling until we cover inheritance in Chapter 4.7 

Although the theory of exceptions is nice (and they are handled well in 
other languages, such as Java), exceptions were a late addition to C++. Con- 
sequently, they are not properly integrated into the C++ libraries (the I t0  
libraries do not use exceptions), and unexpected interactions occur between 
exceptions and other language features, most notably templates. This is why 
we use exceptions only to signal errors that we expect to be unrecoverable. 

2.6 A string Class 

Recall from Chapter 1 that C++ has two types of strings. The first is the prim- 
itive string, or C-style string (inherited from the C programming language), 
which is a null-terminated array of characters. The second is a s t r i n g  class 

6. If the exception is not caught, the standard function terminate is called; typically, 
terminate stops the program abnormally. A replacement for terminate can be 
installed. 

7. Sections 4.1, 4.2.2, and 4.2.3 illustrate concepts of inheritance by discussing how excep- 
tion classes are written and used. 



that was added to the language as part of the Standard Library. If your com- 
piler has a string class you should use it; it will probably be very efficient. 
Otherwise, you have to choose between the C-style string or providing your 
own. 

A C-style string uses an array of characters to represent a string. A special 
character, the null terminator, ends a string; it is represented by \ 0 . Thus 
the string "abc " is stored in an array of char, with the first four positions 
containing ' a ' , b , c , and \ 0 . Anything following the null terminator 
is not considered part of the string. Because an array name is just a pointer, 
C-style strings cannot be manipulated like first-class objects. Instead, to 
copy strings we must use the function s trcpy. The user must guarantee that 
the target array is large enough to store the string being copied into it; other- 
wise, runtime errors that are difficult to debug are likely to result. This 
approach makes manipulating C-style strings tedious and error-prone. To 
compare C-style strings, we use strcmp. We can access individual charac- 
ters in the string by array indexing, but the index is unchecked. 

The string class can be implemented by storing a primitive array 
(buffer) as a data member. Recall that a primitive array is a second-class 
object, implemented as a pointer to a block of memory large enough to store 
the array objects. Because the primitive array is represented as a pointer, the 
size of the array is unknown and needs to be maintained in a separate vari- 
able, buff erlength. 

Memory for the array is obtained by calling the new [ ] operator. This 
call occurs in the constructor and the assignment operators operator= and 
operator+=. The memory needs to be reclaimed by calling delete [ I . 
This call occurs in the destructor and in both assignment operators. (Note 
that calls to new [ I are always matched by calls to delete [ I .) 

For concrete syntax, refer back to Section 1.2.3, where we described 
abstractly how to expand primitive array arr from size 10 to size 12. Recall 
that we had the following series of operations shown again as Figure 2.21. 

1 .  We remember where the memory for the 10-element array is (the 
purpose of original). 

2. We create a new 12-element array and have arr use it. 
3. We copy the 10 elements from original to arr; the two extra ele- 

ments in the new arr have some default value. 
4. We inform the system that the 10-element array can be reused as it 

sees fit. 
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arr 
(a) 

arr 
(b) 

original I 'T 

arr 
(c) 

original 

arr 

original W 
Figure 2.21 Array expansion, internally: (a) At the starting point, arr 

represents 10 integers; (b) after step 1, original represents the 
same 10 integers; (c) after steps 2 and 3, arr represents 12 
integers, the first 10 of which are copied from original; and 
(d) after step 4, the 10 integers are freed. 

These four steps translate as follows: 

int "original = arr; / /  Step 1 
arr = new int[ 12 1; / /  Step 2 

for( int i = 0; i < 10; i++ ) / /  Step 3 
arr [ i ] = original [ i ] ; 

delete [ ] original; / /  Step 4 

Our string class interface is shown in Figure 2.22. To avoid conflicts 
with the string. h header file, we store the interface in mystring. h. As 
promised, three data members store the C-style string, the length of the string, 
and the size of the array that stores the string. The array size is at least 1 larger 
than the string length, but it could be more. We provide two accessors (c-s tr 
and length) that return the C-style string and string length. operator+= 
appends rhs to the current string. A set of nonclass functions are also pro- 
vided for 110 and comparison. The I10 functions are not class members 
because the string is not a first parameter. operator [ 1 is used to access 
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1 #ifndef -MY-STRING-H- 
2 #define MY-STRING-H- 
3 
4 #include <iostream.h> / /  Old-sty1e.h file 
5 
6 class string 
7 { 

8 public: 
9 string ( char ch ) ; / /  Constructor 

10 string( const char *cstring = n "  ) ;  / /  Constructor 
11 string( const string & str ) ;  / /  Copy constructor 
12 -string( ) / /  Destructor 
13 { delete [ I buffer; 1 
14 

const string & operator= ( const string & rhs ) ;  / /  Copy 
const string & operator+=( const string & rhs ) ;  / /  Append 

const char *c-str( ) const / /  Return C-style string 
{ return buffer; 1 

int length( ) const / /  Return string length 
{ return strlength; ) 

char operator[]( int k ) const;// Accessor operator[] 
char & operator [ 1 ( int k ) ; / /  Mutator operator [ I  

private : 
int strlength; / /  length of string ( #  of characters) 
int bufferlength; / /  capacity of buffer 
char "buffer; / /  storage for characters 

I ;  

ostream & operator<<( ostream & out, const string & str ) ;  

istream & operator>>( istream & in, string & str ) ;  

istream & getline( istream & in, string & str, 
char delim = '\n' ) ;  

bool operator==( const string & lhs, const string & rhs ) ;  

bool operator!=( const string & lhs, const string & rhs ) ;  

bool operator< ( const string & lhs, const string & rhs ) ;  

bool operator<=( const string & lhs, const string & rhs ) ;  

bool operator> ( const string & lhs, const string & rhs ) ;  

bool operator>=( const string & lhs, const string & rhs ) ;  

Figure 2.22 mystring.h. 
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1 #include <string.h> 
2 #include "mystring. h" 
3 
4 string::string( const char * cstring ) 

5 { 
6 if( cstring == NULL ) / /  If NULL pointer 
7 cstring = " " ;  / /  use empty string 
8 strLength = strlen( cstring ) ;  / /  Get length of cstring 
9 bufferLength = strLength + 1; / /  Set length with ' \ O r  

10 buffer = new char[ bufferLength 1 ;  / /  Allocate prim string 
11 strcpy( buffer, cstring ) ;  / /  Do the copy 
12 1 
13 
14 string: :string ( char ch ) 

15 { 
16 strLength = 1; 
17 bufferLength = strLength + 1; 
18 buffer = new char[ bufferLength 1 ;  
19 buffer[ 0 ] = ch; 
20 buffer[ 1 ] = '\0'; 
21 1 
22 
23 string::string( const string & str ) 

24 { 
25 strLength = str.length( ) ;  / /  Get length of str 
26 bufferLength = strLength + 1; / /  Set length with ' \ O '  
27 buffer = new char[ bufferLength 1 ;  / /  Allocate prim string 
28 strcpy( buffer, str.buffer ) ;  / /  Do the copy 
29 

Figure 2.23 string.cpp (part 1): Constructors. 

individual characters in the string. There are two versions; we explain why 
there are when we discuss their implementation. 

The comparison functions are deliberately not implemented as class 
members. Implementing them outside the class allows the left-hand side of 
the comparison operator to be a C-style string or a string. If one of the 
operands for a comparison operator is a C-style string, a temporary string 
will be constructed (by calling the string constructor, which is deliberately 
not declared explicit). Thus, if strl and str2 are strings, strl== 
str2, strl=="abU, "abn==str2 arelegal. Ifthecomparison functions 
were class members (in which case we would write only the rhs parameter), 
" ab" ==str2 would not be legal. 

The constructors are shown in Figure 2.23 and are relatively straightfor- 
ward: They initialize the three data members. The assignment operators 
(Figure 2.24) are much more tricky because they involve two issues. First, 
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1 const string & string::operator=( const string & rhs ) 

2 { 
3 if( this ! =  &rhs ) / /  Alias test 
4 { 

5 if( bufferLength < rhs.length( ) + 1 ) / /  If no room 
6 ( 

7 / /  Reclaim old array, compute new size, 
8 / /  allocate new array 
9 delete [ ] buffer; 

10 bufferLength = rhs.length( ) + 1; 
11 buffer = new char[ bufferLength 1; 
12 1 
13 strLength = rhs.length( ) ; / /  Set new length 
14 strcpy( buffer, rhs.buffer ) ;  / /  Do the copy 
15 1 
16 return *this; / /  Return reference to self 
17 1 
18 
19 const string & string::operator+=( const string & rhs ) 

20 { 

21 if( this == &rhs ) / /  Alias test: if s+=s 
22 ( 

23 string copy( rhs ) ;  / /  Make a copy of rhs 
24 return "this += copy; / /  Append copy; avoid alias 
25 
26 
27 int newLength = length( ) + rhs.length( ) ;  

28 if( newLength >= bufferLength ) / /  If not enough room 
29 { 

30 / /  Begin the expansion: Allocate more room; use 
31 I /  2x space so repeated calls to += are efficient 
32 bufferLength = 2 * ( newLength + 1 ) ;  

33 char *oldBuffer = buffer; / /  Save ptr for old array 
34 buffer = new char[ bufferLength 1 ;  / /  Alloc new array 
35 strcpy( buffer, oldBuffer ) ;  / /  Do the copy 
36 delete [ I oldBuffer; / /  Reclaim old array 
37 } 

38 
39 strcpy( buffer + length( ) ,  rhs.buffer ) ;  / /  Append rhs 
40 strLength = newlength; / /  Set new length 
41 return "this; / /  Return reference to self 
42 1 

Figure 2.24 string.cpp (part 2): Assignment operators. 
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1 char & string::operator[ I( int k ) 

2 { 

3 if( k < 0 ( I k >= strLength ) 

4 throw StringIndexOutOfBoundsException( ) ;  

5 return buffer[ k 1 ;  
6 1 
7 
8 char string::operator[ ] (  int k ) const 
9 I 
10 if ( k < 0 1 I k >= strLength ) 

11 throw StringIndexOutOfBoundsException( ) ; 

12 return buffer[ k 1 ;  
13 1 

Figure 2.25 string.cpp (part 3): Indexing operators. 

we may need to expand buffer if the resulting string will not fit. Second, 
we must be careful to handle aliasing. Omitting the alias test for opera- 
tor+= could create a stale pointer (i.e., a pointer to memory that has already 
been deleted) for str+=str if a resize of buffer is required. 

The use of operator+= is time consuming if a sequence of concatena- 
tions that cause resizing are present. To avoid this problem, we sacrifice 
space and make the new buffer twice as large as it needs to be. This logic is 
the same as that used in array-doubling (see Section 1.2.3). 

The array indexing operators are shown in Figure 2.25. If the index is 
out of bounds, a StringIndexOutOfBounds exception object is thrown. 
This class is one of many exception classes provided in the online code, and 
we discuss its design at various points in Section 4.2. The main issue for the 
array indexing operator is the return type. 

We know that operator [ I should return an entity of type char. Should 
we use return by value, by reference, or by constant reference? Immediately 
we eliminate return by constant reference because the returned entity is a 
primitive type and thus is small. Thus we are down to return by reference or 
by value. Let us consider the following method (ignore the possibility of 
aliasing or incompatible sizes, neither of which affects the algorithm). 

void reversecopy( const string & from, string & to ) 

int len = from.size( ) ;  

to = from; 
for( int i = 0 ;  i < len; i++ ) 

to[ i ] = from[ len - 1 - i 1 ;  
I 
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1 ostream & operator<<( ostream & out, const string & str ) 

2 i 
3 return out << str.c-str( ) ;  

4 } 

5 
6 istream & operator>>( istream & in, string & str ) 

7 I 
8 char ch; 
9 str = ' I " ;  

10 in >> ch; 
11 
12 if( !in.fail( ) ) 

13 I 
14 do 
15 i 
16 str += ch; 
17 in.get( ch ) ;  

18 } while ( !in. fail ( ) && ! isspace ( ch ) ) ; 

19 
20 if( isspace( ch ) ) / /  put whitespace back on stream 
21 in.putback( ch i ;  
22 } 

23 
24 return in; 

25 1 
26 
27 istream & getline( istream & in, string & str, char delim ) 

28 I 
29 char ch; 
30 str = N U .  , / /  empty string; build one char at-a-time 

31 
32 while( in.get ( ch ) && ch ! = delim ) 

33 str += ch; 
34 
35 return in; 

36 } 

Figure 2.26 string.cpp (part 4): 110 functions. 

In the reversecopy function, we attempt to copy each char in from 
into the corresponding position in string to. (Ignore the fact that this is 
not the best way to do it.) Clearly, if operator [ 1 returns a value, then 
to [ i 1 cannot appear on the left-hand side of the assignment statement. 
Thus operator [ ] should return a reference. But then even though from is 
a constant string an expression such as from [ i ] =to [ i ] would still com- 
pile because from [ i ] would be a simple reference and thus modifiable. 
Oops! 
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1 bool operator==( const string & lhs, const string & rhs ) 

2 { 

3 return strcrnp( 1hs.c-str( ) ,  rhs.c-str( ) ) == 0 ;  

4 1 
5 
6 bool operator!=( const string & lhs, const string & rhs ) 

7 I 
8 return strcmp( 1hs.c-str( ) ,  rhs.c-str( ) ) ! =  0 ;  

9 1 
10 
11 bool operator<( const string & lhs, const string & rhs ) 

12 I 
13 return strcrnp( 1hs.c-str( ) , rhs.c-str ( ) ) < 0 ;  

14 I 
15 
16 bool operator<=( const string & lhs, const string & rhs ) 

17 i 
18 return strcmp( 1hs.c-str( ) ,  rhs.c-str( ) ) <=  0 ;  
19 1 
20 
21 bool operator>( const string & lhs, const string & rhs ) 

22 I 
23 return strcmp( 1hs.c-str( ) ,  rhs.c-str( ) ) > 0 ;  

24 } 

25 
26 bool operator>=( const string & lhs, const string & rhs ) 

27 I 
28 return strcrnp( 1hs.c-str( ) ,  rhs.c-str( ) ) >= 0 ;  

29 1 

Figure 2.27 string.cpp (part 5): Comparison operators. 

So what we really need is for o p e r a t o r  [ 1 to return a constant refer- 
ence for f rom-but also a value for t o .  In other words, we need two ver- 
sions of o p e r a t o r  [ 1 that differ only in their return types. Although that is 
not allowed, there is a loophole: Member function const-ness (i.e., whether a 
function is an accessor or a mutator) is part of the signature, so we can have 
the accessor version of o p e r a t o r  [ 1 return a value and have the mutator 
version return the simple reference. Then all is well-which is why we have 
two versions of o p e r a t o r  [ 1 .  

Figure 2.26 shows the 110 operators. There is no limit on the length of 
the input. Note that, because these functions are not class members, they 
cannot and do not access any private data. 

The comparison operators are shown in Figure 2.27. They simply call 
strcmp on the C-style strings. Again we must use an accessor to get the C-style 
strings because b u f f e r  is a private data member and these operators are not 
class members. 
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An inefficiency of the string class is its reliance on implicit type con- 
versions. That is, if a C-style string (or string constant) is passed to the com- 
parison operators or assignment operators, a temporary is generated. This 
action can add significant overhead to running time. A solution to this prob- 
lem is to write additional functions that take a C-style string as a parameter. 
Thus we could add global functions 

bool operator>=( const char * lhs, const string & rhs ) ;  

bool operator>=( const string & lhs, const char * rhs ) ;  

and class member functions 

const string & operator= ( const char * rhs ) ;  

const string & operator+=( const char * rhs ) ;  

It might also be worthwhile to add an overloaded operator+= that accepts 
a single char as a parameter to avoid those type conversions. 

2.7 Recap: What Gets Called and What Are 
the Defaults? 

In this section we summarize what gets called in various circumstances. 
First, for initialization we have the following examples: 

string r; / /  string( ) 

string s = "Hello"; / /  string( const char * ) 

string t = s; / /  string( const string & ) 

Next, we have cases where there are exact matches: 

r = t; / /  operator=( const string & ) 

s += I; / /  operator+=( const string & ) 

r[O] = 'J'; / /  operator[] followed by character copy 

In this case, the nonconstant operator [ ] is used. Here is an example that 
involves an implicit call to a constructor to create a temporary object: 

if( r == "Jello" ) / /  string( const char * ) to 
/ /  create temporary; then operator== 

Note, however, that newer versions of the compiler will not perform this 
conversion if the corresponding formal parameter is a (nonconstant) refer- 
ence. In other words, if we have 

bool operator==( const string & lhs, string & rhs ) ;  
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" Jello" fails to match rhs. The reason is that the declaration of == is stat- 
ing that rhs may be altered, which does not make sense if rhs is merely a 
temporary copy of " Jello " . Furthermore, for operators that are class mem- 
bers, the first actual parameter must be an exact match. 

The copy constructor is also called if a string is passed by value to a 
function expecting a string or is returned by copy. Thus if the declaration for 
== was 

boo1 operator==( string lhs, string rhs ) ;  

then r would be copied to lhs by a call to the string copy constructor, and 
" Jel lo " would be copied to rhs by a call to the string (const char * ) 
constructor. 

Other examples in which a string constructor is called are 

vector<string> array( 100 ) ;  / /  100 calls 
string *ptrl = new string; / /  1 call 
string *ptr2 = new string( "junk" ) ;  / /  1 call 
string *ptr3 = new string( s ) ;  / /  1 call 
string *ptr4 = new string[ 100 1 ;  / /  100 calls 

but not 

string *ptr = new string( 100 ) ;  / /  No string(int) 
string & ref = s; / /  0 call: reference 

If any of the members required are placed in the private section, the cor- 
responding operations become illegal. The operators most commonly placed 
in the private section are the copy constructor and operator=. 

You also need to understand what happens when you fail to provide a 
default constructor, copy constructor, destructor, or operator=. If you do 
not provide any constructors, a default zero-parameter constructor is created. 
It performs a member-by-member construction of the class data members. If 
you provide a string ( cons t char * ) constructor but no string ( ) 

constructor, you merely disallow uninitialized string definitions. 
If you do not provide a copy constructor, a default copy constructor is cre- 

ated. It performs member-by-member copy construction. Note that if the copy 
constructor is disabled for some member, this approach generates a compiler error. 

If you do not provide a destructor, a default destructor is created and 
performs member-by-member destruction (in inverse order of the member 
declarations). 

Finally, if you do not provide operator=, a default is created and per- 
forms member-by-member copying, using each member's operator=. AS 
with the copy constructor, if operator= is disabled for some member, a 
compiler error is generated. 
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2.8 Composition 

Once we have some classes, we can use objects of these classes as data 
members of other classes. This practice is called composition. 

As an example, Figure 2.28 illustrates a few methods of the Employee 
class. Once the classes that define the data members have implemented 
operator<<, writing operator<< for our new class is a simple matter. We 
could easily have added other data members. For instance, if a Date class is 
written, we can add a hired data member of type Date. 

1 class Employee 
2 { 
3 public: 
4 void setvalue( const string & n, double s ) 

5 { name = n; salary = s; } 

6 
7 void print( ostream & out = cout ) const 
8 ( out << name << M ( "  << salary << ' I ) " ;  ) 

9 
10 / I  Other general accessors and mutators, not shown 
11 private: 
12 string name; 
13 double salary; 
14 1 ;  
15 
16 / /  Define an output operator for Employee. 
17 ostream & operator<< ( ostream & out, const Employee & rhs ) 

18 { 
19 rhs .print ( out ) ; 

20 return out; 
21 > 
22 
23 int main( ) 

24 ( 

25 vector<Employee> v( 3 ) ;  

26 
27 V [  0 ] . setvalue ( "Bill Clinton", 200000.00 ) ; 

28 V[ 1 ].setvalue( "Bill Gates", 2000000000.00 ) ;  

29 V [  2 1 .setvalue( "Billy the Marlin", 60000.00 ) ; 

30 
31 for( int i = 0; i < v.size( ) ;  i++ ) 

32 cout << v[ i ] <<  endl; 
33 
34 return 0; 
35 1 

Figure 2.28 Illustration of composition. 
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Summary 

In this chapter we described the C++ class construct. The class is the C++ 
mechanism used to create new types. Through it we can 

define construction and destruction of objects, 

define copy semantics, 
define input and output operations, 

overload almost all operators, 
define implicit and explicit type conversion operations (sometimes a 
bad thing), and 
provide for information hiding and atomicity. 

The class consists of two parts: the interface and the implementation. 
The interface tells the user of the class what the class does. The implementa- 
tion does it. The implementation frequently contains proprietary code and in 
some cases is distributed only in precompiled form. 

Information hiding can be enforced by using the private section in the 
interface. Initialization of objects is controlled by the constructor functions, 
and the destructor function is called when an object goes out of scope. The 
destructor typically performs clean up work, closing files and freeing mem- 
ory. Finally, when implementing a class, the use of const and correct 
parameter passing mechanisms, as well as the decision about whether to 
accept a default for the Big Three, write our own Big Three, or completely 
disallow copying is crucial for not only efficiency but also in some cases, 
correctness. 

Objects of the Game 
#endif and #ifndef Are used to enclose the contents of a header 

file and prevent multiple inclusion. (p. 49) 
accessor A method that examines but does not change the state of its 

object. (p. 47) 
aliasing A special case that occurs when the same object appears in 

more than one role. (p. 54) 
atomic unit An object, whose parts cannot be dissected by the general 

users of the object. (p. 42) 
class The same as a structure except that, by default, all members are 

inaccessible to the general user of the class. (p. 43) 
constant member function A function that does not change any class 

data members. (p. 47) 
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constructor A method that describes how an object is declared and 
initialized, that is, created. The default constructor is a member-by- 
member application of a no-parameter constructor. (p. 45) 

copy assignment operator, operator= Used to copy objects. (p. 52) 

copy constructor Called when an object is passed or returned by value 
or initialized with an object of the same class. By default, the copy 
constructor is a member-by-member application of copy construc- 
tors. (p. 52) 

destructor Called when an object exits scope and frees resources allo- 
cated by the constructor or other member functions during the use of 
the object. The default destructor is a member-by-member applica- 
tion of destructors. (p. 5 1) 

encapsulation The grouping of data and the operations that apply to 
them to form an aggregate while hiding implementation details of 
the aggregate. (p. 42) 

exception An object that stores information that is transmitted outside 
the normal return sequence and is used to signal exceptional occur- 
rences, such as errors. (p. 73) 

friends Functions that are exempt from the usual private access 
restrictions. (p. 68) 

implementation Represents the internal processes by which the inter- 
face specifications are met. (p. 48) 

implicit type conversion A type conversion performed without the 
use of an explicit type conversion operator. (p. 63) 

information hiding Makes implementation details, including compo- 
nents of an object, inaccessible. (p. 42) 

initializer list Specifies nondefault initialization of each data member 
in an object directly. (p. 62) 

input and output stream operators Can be defined by overloading 
<< and >>. (p. 68) 

interface Describes what can be done to an object. (p. 48) 

member functions Functions supplied as additional members that 
manipulate the object's state; also known as a method. (p. 43) 

methods Another name for member functions. (p. 43) 

mutator A method that changes the state of an object. (p. 47) 

null terminator The special character that ends a primitive string; it is 
represented by \ o . (p. 74) 
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object An entity that has structure and state and defines operations 
that may access or manipulate that state; an instance of a class. 
( P  41) 

object-based programming Uses the encapsulation and information 
hiding features of objects but does not use inheritance. (p. 43) 

object-oriented programming Distinguished from object-based pro- 
gramming by the use of inheritance to form hierarchies of classes. 
(P- 43) 

operator overloading Extending the types to which an operator can 
be applied. (p. 57) 

primitive string A null-terminated array of characters. You must allo- 
cate an extra spot for the null terminator. (p. 74) 

private member A member that is not visible to nonclass routines and 
may be accessed only by methods in its class. (p. 45) 

public member A member that is visible to all routines and may be 
accessed by any method in any class. (p. 44) 

scope operator : : Used to refer to the scope. In a class member func- 
tion, the scope is the class. (p. 50) 

signature Includes the types of parameters in the function, including 
const and & directives, but not the return type. (p. 48) 

static class member Essentially a global variable visible only to class 
members. (p. 71) 

this A pointer that points at the current object. It is used to return a 
constant reference for assignment operators and also to test for 
aliasing. (p. 53) 

type conversion Creates a temporary object of a new type. A con- 
structor defines an automatic type conversion. (p. 63) 

Common Errors 

1. Forgetting that the class interface ends with a semicolon can lead to 
strange error messages. 

2. The declaration Rational r ( ) ; does not call the zero-parameter 
constructor. Instead it is a declaration that function r accepts no 
parameters and returns a Rational. 

3. The default copy is a shallow copy. If data members are pointers to 
dynamically allocated objects, the default generally is unacceptable 
and should either be changed or disabled. 

4. Failure to test for aliasing in assignment operators can lead to 
errors. 
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The class member function definitions must be preceded by a class 
name and scope operator. Otherwise, they will not be recognized as 
class members. Exported class objects (e.g., ios : : in) also require 
the class name and scope operator. 
A common programming error is using the incorrect parameter- 
passing mechanism. 
Forgetting to free memory in a destructor can lead to memory leaks. 
Several errors are associated with the input and output routines (>> 
and ii) for classes. First, they may need to be friends. If they are 
not friends, the declarations must be placed in the interface file after 
the class declaration. A stream reference should be returned in both 
cases. A common error is to use cin or cout instead of the stream 
passed as a parameter. 
The interface should be enclosed by an #if ndef / #endi f pair 
to avoid double scanning. 
Constant class members can be initialized only in the constructor 
initializer list (they cannot be assigned to). 
Reference class members can be initialized only in the constructor 
initializer list. 
All instances of const (except in the return type) are parts of the 
signature. Specifying a function as a constant member in the inter- 
face but not in the implementation generates an error-that the non- 
member function was not declared in the interface. Similar rules 
apply with parameters. 
Private members cannot be accessed outside the class. By default, 
class members are private. 
Type conversions can lead to trouble. One problem is that they can 
lead to ambiguities when exact matches are not found and approxi- 
mate matches are examined. Additionally, in some cases substan- 
tial overhead is required for accepting implicit conversions. 
Exact matches are needed for reference parameters. Some compil- 
ers give only cryptic warnings. 
If a declaration for a constructor or destructor is provided, an 
implementation must also be provided. Otherwise, the compiler 
will complain when the object is declared. If a declaration for a 
member function is provided, the implementation may be omitted if 
no attempt is made to use the member function. This approach 
allows incremental implementation of the class. 
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17. Functions that return new objects (e.g., operator+) must return 
them by copy. Functions that return existing objects (e.g., 
operator+=) should use constant reference returns unless a refer- 
ence return is warranted. 

18. The pointer this is a pointer constant and may not be altered. 
19. Using inline functions can lead to many errors. Public inline func- 

tions must be defined in the interface file, and some compilers will 
not allow them in certain cases (e.g., if they throw an exception). 
Public inline functions should be avoided unless they can be proved 
to yield a substantial speed benefit. 

20. Prefix and postfix ++ are different operators. Using one form when 
only the other form is implemented by the class is an error. 

21. For static class members, in addition to the class declaration a sin- 
gle definition should be provided outside the class. 

On the lnternet 

The string class is used in several other routines. Consequently, there is no 
main to test it. The files that are available are 

6 
Interface file for the IntCell class, as shown in 
Figure 2.4. 
Implementation file for the IntCell class, as 
shown in Figure 2.5. 
Test routine file for the Intcell class, as shown in 
Figure 2.6. 
The incorrect IntCell shown in Figures 2.8 and 
2.9. 
The correct Intcell shown in Figure 2.10. 
Interface file for the Rational class. 
Implementation of the Rational class. 
Test routine for the Rational class, as shown in 
Figure 2.1 1. 
Interface file for the string class, as shown in 
Figure 2.22. 
Casual implementation of the string class. 
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- Exercises w 
In Short 

2.1. What is information hiding? What is encapsulation? How does C++ 
support these concepts? 

2.2. Explain the public and private sections of the class. 

2.3. Describe the roles of the constructor and destructor. 

2.4. What is the difference between a copy constructor and a copy 
assignment operator? 

2.5. If a class provides no constructor and no destructor, what is the 
result? 

2.6. When is it acceptable not to provide a destructor? operator=? 
copy constructor? 

2.7. Explain the benefits and liabilities of inline functions. 

2.8. What restrictions are placed on operator overloading? 

2.9. What is a friend function? 

2.10. For a class ClassName, what declarations are needed to perform 
input and output? Where are the function definitions placed? 

2.11. In the following code fragment, which functions are called at each 
line and what is the semantic meaning? 

Rational a; 
Rational b = 3; 
Rational c( 4 ,  3 ) ;  

Rational d( 0 ) ;  

Rational e = ( 4, 3 ) ; 

Rational f ( ) ; 

Rational *g = new Rational( 4, 3 ) ;  

Rational *h = new Rational( 5 ) ;  

Rational *i = new Rational[ 5 I ;  
vector<Rational> j (  10 ) ;  

vector<Rational> k[ 10 I ;  

2.12. For the definitions of g, h, and i in Exercise 2.1 1, what needs to be 
done to avoid a memory leak? 

2.13. What does the s i zeo f  operator do when applied on a class that has 
private members? 
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In Theory 

2.14. Some compilers complain if a class's members are all private and it 
has no friends. Why? 

2.15. Why can't the following be used to indicate the copy constructor for 
the Rational class ? 

Rational( Rational rhs ) ;  

In Practice 

2.16. Add the following improvements to the Rational class. 
a. Rewrite operator== and operator ! = to avoid 

multiplications. 
NI N2 Nl  N2 N1 N 2  

b. Implement - x - as - x - . Reduce - and then - 
Dl  0 2  0 2  Dl 0 2  D l  

prior to the multiplication. The result need not be reduced. 
why? What is the advantage of this scheme? 

c. What other operations are affected by this rearrangement? 
d. Overload A to perform exponentiation. What are some of the 

problems that can occur? What is the value of 1 +2 A 3 when A is 
overloaded for exponentiation? 

2.17. Additional routines are required for the string class so that tempo- 
raries are not created when a char * is involved. 
a. For the class interface presented in Figure 2.22, how many addi- 

tional routines are needed? 
b. Implement some subset of these routines. 

2.18. Define operator ( ) (with two parameters) to return a substring. 
For example, the output resulting from 

string s = "abcd"; 
cout << s( 1, 2 ) ;  

is bc (after all of the implicit conversions are applied). 
a. What is the return type? 
b. Implement the substring operator. 
c. Is there a substantial difference between the following two 

alternatives? 

/ /  Alternative 1 
string subStr = s (  1, 2 ) ;  
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/ /  Alternative 2 
string subStr; 
subStr = s( 1, 2 ) ;  

2.19. Let s be a string, 
a. Is the typical C mistake s= a I caught by the compiler? Why or 

why not? 
b. What functions are called in s + = a ? 

2.20. Suppose that we add a constructor allowing the user to specify the 
initial size for the internal buffer. Describe an implementation of this 
constructor and then explain what happens when the user attempts 
to declare a string with a buffer size of 0. 

2.21. Add operations to allow the copy assignment of a single char and 
concatenation of char. Make them efficient; do not simply call 
existing routines. 

2.22. A combination lock has the following basic properties: The combina- 
tion (a sequence of three numbers) is hidden; the lock can be opened 
by providing the combination; and the combination can be changed but 
only by someone who knows the current combination. Design a class 
with public member functions open and changecombo and private 
data members that store the combination. The combination should be 
set in the constructor. Disable copying of combination locks. 

Programming Projects 

Implement a simple Date class.You should be able to represent any 
date from January 1, 1800, through December 3 1, 2500, subtract 
two dates, increment a date by a number of days, and compare two 
dates by using <. A Date is represented internally as the number of 
days since some starting time, which here is the first day of 1800, 
making most operations except for 110 trivial. 

The rule for leap years is: A year is a leap year if it is divisible by 
4, and not divisible by 100 unless it is also divisible by 400. Thus 
1800, 1900, and 21 00 are not leap years, but 2000 is. The input 
operation must check the validity of the input. The output operation 
must check the validity of the Date. The Date could be bad if a + 
or - operator caused it to go out of range. 

Figure 2.29 gives a class specification skeleton for the Date 
class. Several items are missing, including public and private 
keywords, const and &, and I/O interfaces. Before you begin cod- 
ing the interface, you must make some decisions: 
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1 class Date 
2 1: 
3 enum { FIRST-YEAR = 1800, MAX-YEAR = 2500 ) ;  

4 
5 int totalDays; / /  Days since 1/1/1800 
6 
7 / /  Constructor. 
8 Date( int y = FIRST-YEAR, int m = 1, int d = 1 j ;  

9 
10 / /  Assignment operator (instead of + )  

11 Date operator+=( int days j ;  

12 
13 / /  Binary operators. 
14 int operator- ( Date right ) ;  

15 boo1 operator<( Date right j ;  

16 1 ;  

Figure 2.29 Class specification skeleton for Date (Exercise 2.23). 

where to use const and/or & (think about this very carefully); 
whether you are willing to accept the defaults for the copy 
assignment and copy constructor operators; 
how you will interface for input and output; and 
what should and should not be private. 

Once you have decided on the interface, you can do an implementa- 
tion. The difficult part is converting between the internal and exter- 
nal representations of a date. What follows is a possible algorithm. 
Set up two arrays that are static data members (the defining declara- 
tions are placed where globals would be). 

static int Date::DAYS-TILL-FIRST-OF-MONTH [ 1 = 
{ 0, 31, 59, . .  . 1 ;  

static int Date::DAYS-TILL-JAN1 [ ] = 

{ . . .  1 ;  

The first array, DAYS-TILL-FIRST-OF-MONTH, will contain the 
number of days until the first of each month in a nonleap year. Thus 
it contains 0, 31, 59, 90, and so on. The second array, 
DAY S-TILL- JAN^, will contain the number of days until the first of 
each year, starting with FIRST-YEAR. Thus it contains 0, 365, 730, 
1095, 1460, 1826, and so on because 1800 is not a leap year but 
1804 is. You should have your program initialize this array once. If 
you choose this algorithm, you will need to add corresponding static 
class declarations in the interface. In any of the member functions 
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you will be able to access these arrays as you would any member. 
For nonmember friends, you will have to use the scope resolution 
operator. For nonmember nonfriends, these items will not be visible. 
You can then use the array to convert from the internal to external 
representations. 

2.24. Implement an INT class. Use a single int as the private data. Sup- 
port all the operations that can be applied to an int and allow both 
initialization by an int and no initialization. Explain whether you 
need or can accept the default copy constructor, destructor, and copy 
assignment operator. 

2.25. Continue Exercise 2.24. 
a. Modify the += operator (and by inference the binary + operator) 

to detect overflow. To do so, change the internal representation 
to an unsigned int, and store a sign bit separately. Print a 
warning message if an overflow is detected (or throw an excep- 
tion if you can). 

b. Modify the -= operator to detect overflow. 
c. Modify the / = operator to detect division by 0. 
d. Modify the unary minus operator to detect overflow (there is 

only one case wherein this happens). 
e. Modify the bit shift operators to print an illegal message if the 

second parameter is either negative or not smaller than the num- 
ber of bits in an unsigned int. 

2.26. Suppose that you want to modify the *=  operator to detect overflow. 
Redo Exercise 2.25 by changing the internal representation to use 
two data members: One stores the leading bits, and the other stores 
the trailing bits. For example, for 32 bit integers, X = 216 H + L, 
where H and L are 16 bits each. 

2.27. hplement a complete IntType class. Maintain an IntType as a 
sufficiently large array. For this class the difficult operation is divi- 
sion, followed closely by multiplication. Begin by writing the class 
interface. Once again, you need to decide on an internal representa- 
tion, the operations to be supported, how to pass parameters, 
whether you are willing to accept the default for copy assignment 
and copy construction, how you will provide 110, how you will pro- 
vide an implicit conversion from an i n t  to an IntType, and what 
should and should not be private. Do not even think about writing an 
actual implementation until you have thought through the interface 
design. Only then should you begin the task of writing the actual 
algorithms to implement the class. 
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2.28. Implement a Complex number class. Recall that a complex number 
consists of a real and an imaginary part. Support the same opera- 
tions as the Rational class, when meaningful (e.g., operator< is 
not meaningful). Add member functions to extract the real and 
imaginary parts. 

2.29. Implement a FUZZY class. Fuzzy logic defines true, false, and 
maybe. The AND operator returns the weaker of its two parameters, 
and the OR operator returns the stronger. Define constants 
FUZZ~::TRUE, FUZZ~::FALSE, and FUZZ~::MAYBE and support 
&&, ( 1 ,  ! (for NOT), and VO operations. Also provide a type con- 
version to int SO that the FUZZY can be used to express a condition 
(in an if, while, and so on). 

2.30. Implement some of the following improvements to the string 
class. 
a. Add ! (which is false if the string is zero length). 
b. Add the * and * = operators to expand into multiple copies. For 

instance, if s is equal to " ab" , then s * =3 turns s into " ababab" . 
c. Add the left shift operator, which shifts the string x positions. 

Can you think of a way to alter the class implementation to 
make shifting a fast operation? 

d. Add lowercase and uppercase member functions. 

2.31. Index range checking costs the user time and space but greatly 
improves software reliability. Write a program that reads a large dic- 
tionary, storing each word in a string. Then access each character 
in the array of strings. Measure the time cost of range checking by 
running the program twice-once with range checking on and again 
with it disabled. Also measure the difference in space usage. Use a 
preprocessor conditional to disable range checking on access. 

2.32. Add setvalue and print member functions to the Rational 
class. Then rewrite operator>> and operator< < so that they are 
not friends of Rational. 
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Chapter 3 

Templates 

An important goal of object-oriented program is to support code reuse. In 
this chapter we introduce one mechanism, the C++ template, that is used to 
further this goal. The template allows us to write routines that work for arbi- 
trary types without having to know, as we write the routines, what these 
types will be. Although this approach is supported somewhat by the use of 
the typede f facility, the template is more powerful than the typedef. 

In this chapter, we show: 

what a template is and how it differs from the typedef, 

how to write some useful function templates, 

how to write class templates, and 
what the limitations of templates are. 

3.1 What Is a Template? 

Consider the problem of finding the largest item in an array of items. A sim- 
ple algorithm is the sequential scan, in which we examine each item in order, 
keeping track of the maximum. As is typical of many algorithms, the 
sequential scan algorithm is type-independent. That is, the logic of this algo- 
rithm does not depend on the type of items stored in the array. The same 
logic works for an array of integers, floating-point numbers, or any type for 
which comparison can be meaningfully defined. 

Throughout this text, we describe algorithms and data structures that are 
type-independent. Swapping, sorting, and searching are classic examples of 
type-independent algorithms. When we write C++ code for a type-indepen- 
dent algorithm or data structure, we would prefer to write the code once, 
rather than recode it for each different type. 

In this chapter we describe how to write type-independent algorithms 
(also known as generic algorithms) in C++. We use a template to write these 



The typedef is a 
simple mechanism to 
allow generic 
routines. However, it 
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want routines with 
two different types. 

A function template is 
a design for a 
function. 

Instantiation of a 
template with a 
particular type, 
logically creates a 
new function. 

Only one instantiation 
is created for each 
parameter-type 
combination. 

algorithms. We begin by discussing function templates and then examine 
class templates. 

3.2 Function Templates 
Suppose that we want to write a swap routine in Figure 1.13 for doubles 
instead of in t s .  The logic is identical; we just need to change the type decla- 
rations. One way to do so is to write the swap routine for an arbitrary 
Object and then issue the appropriate typedef.  The typedef is a simple 
mechanism to allow generic routines, as shown in Figure 3.1. 

Suppose, however, that we want to use swap for both i n t  and double. 
Certainly this use would be acceptable because the two swap routines would 
have different signatures. However, the typedef would not work because 
Object cannot assume both i n t  and double simultaneously. Fortuitously, 
C++ provides templates that make it possible to write a routine that can be 
used for both types. 

A function template is not an actual function; instead, it is a design, or 
pattern, for what could become an actual function. For example, a template 
for a swap routine is shown in Figure 3.2. This design is expanded (much 
like a preprocessor macro) as needed to provide an actual routine. If a call to 
swap with two i n t  parameters is made, the compiler will generate a routine 
from this template, using lines 4-9, with i n t  replacing Ob j ec  t .  

This expansion instantiates the function template. In other words, 
instantiation of a template with a particular type logically creates a new 
function. The compiler must now verify that the instantiation is legal C++. 
Some of the checking may have been performed when the template was 
defined. For example, missing semicolons and unbalanced parentheses are 
easy to check, but some checks cannot be performed that early. For instance, 
o p e r a t o r =  might be disallowed for the instantiated type, and that check 
could only be performed at the point of instantiation. In that case the swap 
operation could not work. If the instantiated type does not have a copy con- 
structor but does have opera tor= ,  we could rewrite the swap template in 
Figure 3.2 to avoid the copy constructor. Thus there is occasionally a trade- 
off between requiring more operations to be supported by the template 
parameter and code compactness (and/or efficiency). 

Figure 3.3 shows the swap template in use. Each call to swap with pre- 
viously unseen parameter types generates new instantiations. Thus if there 
are two calls to swap ( i n t ,  i n t )  and one call to swap (double,  double) ,  
then there are two instantiations of the swap template: one with ob j e c t  of 
i n t  and another with Object  of double. (Note: swap is part of the STL, 
so some compilers may object. The online code uses the name swap to avoid 
potential conflicts.) 
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1 typedef double Object; 
2 
3 / /  Standard swap routine. 
4 void swap( Object & lhs, Object & rhs 
5 I 
6 Object tmp = lhs; 
7 lhs = rhs; 
8 rhs = tmp; 
9 } 

Figure 3.1 The s w a p  routine, using typedef s .  

1 / /  swap function template. 
2 / /  Object: must have copy constructor and operator=. 
3 template <class Object> 
4 void swap( Object & lhs, Object & rhs ) 

5 { 

6 Object tmp = lhs; 
7 lhs = rhs; 
8 rhs = tmp; 
9 1 

Figure 3.2 The s w a p  function template. 

1 / /  Exercise the swap function template. 
2 int main( ) 

3 I 
4 int x = 5; 
5 int y = 7; 
6 double a = 2; 
7 double b = 4; 
8 
9 swap( x, y ) ;  / /  Instantiates swap with int 

10 swap( x, y ) ;  / /  Uses already instantiated swap with int 
11 swap( a, b ) ;  / /  Instantiates swap with double 
12 cout <<  x <<  " " << y << endl; 
13 cout << a << " " << b << endl; 
14 / /  swap( x, b ) ;  / /  Illegal: no match 
15 
16 return 0; 
17 1 

Figure 3.3 Using the s w a p  function template. 



3.3 A Sorting Function Template 

Swapping is a classic example of a routine that is type-independent and thus 
well suited for a template implementation. In this section we write a function 
template that sorts and show how a ma in  routine uses it. 

Our simple program reads a sequence of integers (until the end of input or 
bad input is detected), sorts them, and outputs them. If we change our minds 
and decide that we want a sequence of floating-point numbers or s t r i n g  
objects, then we expect only a one-word change (at one location) in the entire 
program.' Sorting is accomplished by a simple sort function template. 

~nsertion sort is a Sorting is implemented by an algorithm known as insertion sort. Inser- 
simple sorting tion sort is a simple sorting algorithm that is appropriate for small inputs. It 
algorithm that is 
appropriate for small is generally considered to be a good solution if only a few elements need 
inputs. sorting because it is such a short algorithm and the time required to sort is 

not likely to be an issue. However, if we are dealing with a large amount of 
data, insertion sort is a poor choice because it is too time consuming. In that 
case better algorithms should be used, as discussed in Chapter 9. The inser- 
tion sort algorithm is coded in Figure 3.4. We use this routine in Section 4.3. 

Insertion sort works as follows. In the initial state the first element, con- 
sidered by itself, is sorted. In the final state all elements (assume that there 
are N), considered as a group, are to have been sorted. Figure 3.5 shows that 
the basic action of insertion sort is to sort the elements in positions 0 through 
p (where p ranges from 1 through N - 1). In each stage p increases by 1 .  
That is what the outer loop at line 7 in Figure 3.4 is controlling. 

When the body of the f o r  loop is entered at line 9, we are guaranteed 
that the elements in array positions 0 through p- 1 have already been sorted 
and that we need to extend this to positions 0 to p. Figure 3.6 gives us a 
closer look at what has to be done, detailing only the relevant part of the 
array. At each step the element in boldface type needs to be added to the pre- 
viously sorted part of the array. We can easily do that by placing it in a tem- 
porary variable and sliding all the elements that are larger than i t  one 
position to the right. Then we can copy the temporary variable into the 
former position of the leftmost relocated element (indicated by lighter shad- 
ing on the following line). We keep a counter j ,  which is the position to 
which the temporary variable should be written back. Every time an element 
is slid, j decreases by 1 .  Lines 9-1 4 implement this process. 

I .  Of course, this minimal change would also be true of the typede f . If our program were 
more complex and required two types of sorts, the typedef would be inadequate. 



A Sorting Function Template 

1 / /  insertionsort: sort items in array a. 
2 / /  Comparable: must have copy constructor, operator=, 
3 / /  and operator<. 
4 template <class Comparable> 
5 void insertionsort( vector<Comparable> & a ) 

6 { 
7 for( intp = 1; p < a.size( ) ;  p++ ) 

8 { 

9 Comparable tmp = a[ p I ;  
10 int j ;  
11 
12 for( j = p ;  j > 0 && tmp < a[ j - 1 I ;  j-- ) 

13 a[ j I = a [  j - 1 1 ;  
14 a[ j I = tmp; 
15 1 
16 I 

Figure 3.4 Insertion sort template. 

Figure 3.5 Basic action of insertion sort (shaded part is sorted). 

Figure 3.6 A closer look at the action of insertion sort (dark shading indicates the 
sorted area; light shading is where the new element was placed). 



Always check the 
boundary cases. 

The instantiated type 
does not always make 
sense. In that case an 
error may be noticed 
at the instantiation 
point, or in some 
cases the code is 
legal but erroneous. 

We must verify that this insertion sort works in two boundary cases. 
First, in Figure 3.6, if the boldface element already is the largest in the 
group, it is copied to the temporary variable and then back immediately- 
and thus is correct. If the boldface element is the smallest in the group, the 
entire group moves over, and the temporary is copied into array position 0. 
We just need to be careful not to run past the end of the array. Thus we can 
be sure that, when the outer for loop terminates, the array has been sorted. 

Now that we have the support functions, we can write main. The code 
for it is shown in Figure 3.7. 

We can use templates to have sorting at our fingertips for any type. How- 
ever, the instantiated type does not always make sense. Let us look at some 
different types. 

1. double: No problem; a two-line change in main and everything 
works well. 

2. Rational: No problem; a two-line change in main and everything 
works well. 

3. char * (primitive strings): Serious problem; the operator= and 
operator< do not make sense, so the program won't work. Specif- 
ically, we cannot just read into a char * object without first setting 

1 #include <iostream> 
2 #include <vector> 
3 using namespace std; 
4 
5 / /  Read an arbitrary number of items, sort and print them. 
6 int main( ) 

7 ( 

8 vector<int> array; / /  The array 
9 int x; / /  An item to read 

10 
11 cout << "Enter items to sort: " <<  endl; 
12 while( cin >> x ) 

13 array. push-back ( x ) ; 

14 
15 insertionsort( array ) ;  

16 
17 cout << "Sorted items are: " <<  endl; 
18 for( int i = 0; i < array.size( ) ;  i++ ) 

19 cout << array[ i ] << endl; 
20 
21 return 0; 
22 1 

Figure 3.7 The main routine to read some integers, sort them, and output 
them. 
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Class Templates 

aside memory. Assuming that we have done so, the sort won't work 
because operator< for two char * objects compares their mem- 
ory locations. 

4. string: A possible efficiency problem; the algorithm will work, 
but it could be overly expensive to use because of repeated calls to 
operator= and excessive string copies. We discuss a solution to 
this problem in Chapter 9 (it involves moving pointers rather than 
the actual string objects). Note that many string implementa- 
tions optimize string copies by using an extra level of pointers, in 
which case there is no inefficiency problem. 

5. A type for which operator< or some other needed operator is 
not defined: This lack of definition generates an error at link 
time. At that point, the linker will notice that operator< has not 
been implemented. Note that this occurs even if operator> is 
implemented. 

6. A type for which operator= is disallowed via placement in the 
private section: This generates an error at compile time when the 
template is instantiated. 

As a result, good practice requires placing in a comment a list of the condi- 
tions that must be satisfied by the template parameter. Throughout this text, 
we use Object and Comparable as template types. For Object, we 
assume that zero-parameter constructors and both a copy constructor and 
copy assignment operator are available. For Comparable, we require that, 
in addition to the properties satisfied by Object, the operator< also be 
available. If additional operations are needed, we specify them in a com- 
ment. On occasion we omit long comments to save space. if they are merely 
restating the assumptions we present here. 

Class Templates 

In this section we show how to create and use class templates. As vector is Classes can be 

actually a class template, we have already been using class templates. At the but the 
syntax is onerous. 

end of this chapter, we provide an implementation of vector. But first, we 
use a simpler example to illustrate the syntax and show how to template the 
Intcell class from Section 2.2. 

3.4.1 A MemoryCell Template 

Figure 3.8 shows a template version of the Intcell class previously 
depicted in Figure 2.1. Here, we use the more generic name, MemoryCell. In 



1 / /  MemoryCell template class interface: 
2 / /  simulate one Object RAM. 
3 1 1  
4 / /  Object: must have zero-parameter constructor and operator= 
5 / /  CONSTRUCTION: with (a) no initializer, or 
6 / /  (b) an Object, or 
7 / /  (c) another MemoryCell 
8 / /  ******************PUBLIC OPERATIONS********************** 

9 / /  Object read( ) - ->  Return stored value 
10 / /  void write( Object x ) - ->  Place x as stored value 
11 
12 template <class Object> 
13 class MemoryCell 
14 I 
15 public: 
16 explicit MemoryCell( const Object & initVal = Object( ) ) 

17 : storedValue( initVal ) ( 1 
18 
19 / /  Public member functions 
20 const Object & read( ) const 
21 { return storedvalue; ) 

22 void write( const Object & x ) 

23 { storedvalue = x; ) 

24 
25 private: 
26 Object storedvalue; 
27 1 ;  

Figure 3.8 Complete declaration of the MemoryCell class. 

this version we do not separate the interface and implementation in order to 
illustrate the most basic syntax. We revise this code shortly to do so because, 
as we discussed in Section 2.3, such separation is usually preferable. 

A class template must The class template syntax is similar to the function template syntax; we 
have the tAplate merely add a template specification (shown on line 12 in Figure 3.8). Note 
specification prior to 
the interface. Objects that write accepts a parameter passed by constant reference and that read 
of a class template returns its parameter by constant reference. When possible, constant refer- 
type must be ences should be used instead of calllreturn by value because, if Object is a 
instantiated with the 
template parameters. 

large object, making a copy could be inefficient (or illegal if the copy con- 
structor for ob j ec t is either disabled or not defined). Do not use constant 
reference returns blindly, however. Remember that you cannot return a refer- 
ence to an automatic variable. Figure 3.9 shows a simple main that uses the 
class template. 
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1 / /  Exercise the MemoryCell class. 
2 int main( ) 

3 I 
4 MemoryCell<int> m; 
5 
6 m.write( 5 1 ;  
7 cout < <  'ICeil contents are " <<  m.read( ) << endl; 
8 
9 return 0; 

10 1 

Figure 3.9 A simple test routine to show how MemoryCell objects are 
accessed. 

You need to take note of two features of this routine. First, in the com- 
mented description of the interface, we do not specify whether a function is a 
constant member or how parameters are passed. To do so would merely dupli- 
cate information clearly specified in the interface code. Second, ob j ect must 
have a zero-parameter constructor because the default constructor is used for 
MemoryCell, and it is a member-by-member call of the zero-parameter 
constructors. 

If we implement class templates as a single unit, there is little syntax 
baggage. Many class templates, in fact, are implemented this way because 
currently separate compilation of templates does not work well on many 
platforms. Therefore, in many cases, the entire class with its implementation 
must be placed in a . h file. Popular implementations of the STL follow this 
strategy. 

However, eventually, separate compilation will work, and separating the 
class template's interface and implementation as for classes in Chapter 2 
will be better. Unfortunately, this approach adds some syntax baggage. 

Figure 3.10 shows the interface for the class template. That part is, of Each member 

course, simple enough because it is identical to the entire class that we have function must be 
declared as a already shown in Figure 3.9, with the inline implementations removed. For template. 

the implementation, we have a collection of function templates. Thus each 
function must include the template line, and when we use the scope operator, 
the name of the class must be instantiated with the template argument. In 
Figure 3.1 1, then, the name of the class is MemoryCell<Obj ect>. 

Figure 3.12 gives a layout of the general format used. Boldface items are 
to be typed exactly as shown. Although the syntax seem innocuous enough, 
it can get fairly substantial. For instance, to define operator= in the inter- 
face requires no extra baggage. In the implementation, we would have the 
horrendous code shown in Figure 3.13. 



1 / /  Memory cell interface; same as in Figure 3.8. 
2 
3 template <class Object> 
4 class MemoryCell 
5 { 

6 public: 
7 explicit MemoryCell( const Object & initVal = Object( ) ) ;  

8 const Object & read( ) const; 
9 void write( const Object & x ) ;  

10 
11 private: 
12 Object storedvalue; 
13 1 ;  

Figure 3.1 0 The MemoryCell class template interface. 

1 / /  Implementation of the class members. 
2 
3 #include "Mem0ryCell.h" 
4 
5 template <class Object> 
6 MemoryCell<Object>: :MemoryCell( const Object & initVal 
7 : storedvalue ( initVal ) 

8 { 

9 1 
10 
11 template <class Object> 
12 const Object & MemoryCell<Object>::read( ) const 
13 { 
14 return storedvalue; 
15 1 
16 
17 template <class Object> 
18 void MemoryCell<Object>::write( const Object & x ) 

19 { 

20 storedvalue = x; 
21 } 

Figure 3.1 1 The MemoryCell class template implementation. 
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1 / /  Typical template interface. 
2 template <class Object> 
3 class ClassName 
4 { 

5 public: 
6 / /  Public members 
7 private: 
8 / /  Private members 
9 1; 

10 
11 
12 / /  Typical member implementation. 
13 template <class Object> 
14 ReturnType 
15 ClassName<Object>::MemberName( Parameter List ) / *  const * /  

16 { 

17 / /  Member body 
18 1 

Figure 3.12 Typical layout for template interface and member functions. 

1 template <class Object> 
2 const MemoryCell<Object> & 

3 MemoryCell<Object>::operator=( const MemoryCell<Object> & rhs ) 

4 ( 

5 if ( this ! =  &rhs ) 

6 storedvalue = rhs.storedValue; 
7 return *this; 
8 1 

Figure 3.13 Illustration of template syntax for opera tor= 

Typically, the declaration part of the more complex functions no longer 
fit on one line and need to be split as in Figure 3.13. 

Even if the interface and implementation of the class template are sepa- 
rated, few compilers will automatically handle separate compilation cor- 
rectly. The simplest, most portable, solution is to add an # inc lude  directive 
at the end of the interface file to import the implementation. It is added to the 
online code (for class templates only). Alternative solutions involve adding 
explicit instantiations for each type as a separate . cpp file. These details 
change rapidly, so you should consult the compiler's documentation to find 
the proper alternative. 



3.4.2 Implementing the vector Class Template 

we can use templates Our next example is a complete class that supports arrays in the manner of 
to design a safe, most programming languages. It provides index range checking, allows 
dynamically 
expanding array. copying between identically typed arrays, and supports dynamically chang- 

ing array sizes. Because the s t r i n g  class in Section 2.6 supported similar 
operations, the only new item is the use of templates in this class. 

Our v e c t o r  class supports array indexing, resizing, and copying and 
performs index range checking (the STL version does not). Because crucial 
functions are inlined, you can expect this version to be as efficient as the 
STL version, except for the overhead of index range checking. The class 
uses the symbol NO-CHECK, which if defined, causes the range checking 
code not to be compiled. All compilers provide options to define symbols as 
part of the compilation command; check your compiler's documentation for 
details. All code in the text makes use of the v e c t o r  class. However you can 
use the STL version or this version; all member functions in this v e c t o r  
class are present in the STL version. 

The v e c t o r  class is implemented by storing a primitive array (ob j e c  t s)  
as a data member. Recall once again that a primitive array is a second-class 
object, implemented as a pointer to a block of memory large enough to store 
the array objects. Because the primitive array is represented as a pointer, the 
size of the array is unknown and needs to be maintained in a separate variable 
( thecapac i ty ) .  Memory for the array is obtained by calling the new [ I oper- 
ator, which occurs in the constructor, the assignment operator, and the 
r e s e r v e  operation. The memory needs to be reclaimed by d e l e t e  [ I ,  which 
occurs in the destructor and the assignment and reserve operations (for 
assignment, the old array is reclaimed before allocation of the new array; in 
r e s e r v e ,  the old array is reclaimed afier allocation of the new array). 

The class interface, shown in Figure 3.14, includes implementations of 
the functions that are one-liners, so as to avoid the overhead of function 
calls. The compiler can aggressively inline these functions. Normally, doing 
so is not worthwhile, but fast v e c t o r  operations are certain to be crucial in 
any application. The remaining member functions are shown in Figure 3.15. 

3.5 Templates of Templates: A matrix Class 

As mentioned in Section 1.2.7, the C++ library does not provide first-class 
multidimensional arrays. However, we can write quickly a reasonable class 
to support two-dimensional arrays. We call this class a m a t r i x .  The basic 
idea is to use a v e c t o r  of v e c t o r s .  The code for the m a t r i x  class is 
shown in Figure 3.16. 



1 / /  vector class interface. Supports construction with 
2 / /  initial size (default is O), automatic destruction, 
3 / /  access of the current size, array indexing via [ I ,  deep 
4 / /  copy, and resizing. Index range checking is performed 
5 / /  unless NO-CHECK is defined. 
6 
7 template <class Object> 
8 class vector 
9 { 

10 public: 
11 explicit vector( int initsize = 0 ) 

12 : thesize( initsize ) ,  theCapacity( initsize ) 

13 { objects = new Object [ thecapacity I ; } 

14 vector( const vector & rhs ) : objects( NULL ) 

15 { operator= ( rhs ) ; } 

16 -vector ( ) 

17 { delete [ I objects; ) 

18 
19 Object & operator [ 1 ( int index ) 

20 i 
21 #ifndef NO-CHECK 
22 if( index < 0 ( (  index >= size( ) ) 

23 throw ArrayIndexOutOfBoundsException( ) ;  

24 #endi f 

25 return objects [ index I ; 
26 1 
27 
28 const Object & operator[] ( int index ) const 
29 { 

30 #ifndef NO-CHECK 
31 if( index < 0 I I index >= size( ) ) 

32 throw ArrayIndexOutOfBoundsException( ) ;  

33 #endif 
34 return objects [ index I ; 
35 } 

36 
37 const vector & operator= ( const vector & rhs ) ;  

38 void resize( int newsize ) ;  

39 void reserve( int newcapacity ) ;  

40 void push-back( const Object & x ) ; 

41 int size( ) const 
42 { return thesize; ) 

43 int capacity ( ) const 
44 { return thecapacity; 1 
45 
46 private: 
47 int thesize; 
48 int thecapacity; 
49 Object * objects; 
50 1 ;  

Figure 3.14 The vect0r.h file. 



1 #include "vector.hU 
2 
3 template <class Object> 
4 const vector<Object> & 

5 vector<Object>::operator=( const vector<Object> & rhs ) 

6 
7 if ( this ! =  &rhs ) / /  Alias test 
8 ( 

9 delete [ ] objects; / /  Reclaim old 
10 thesize = rhs.size( ) ;  / /  Copy size 
11 thecapacity = rhs.capacity( ) ;  / /  and capacity 
12 objects = new Object[ capacity( ) 1 ;  / /  Allocate 
13 for( int k = 0; k < size( ) ;  k++ ) / /  Copyitems 
14 objects[ k 1 = rhs.objects[ k I; 
15 } 

16 return *this; / /  Return reference toself 
17 1 
18 
19 template <class Object> 
20 void vector~0bject~::push~back( const Object & x ) 

21 ( 

22 if( thesize == thecapacity ) / /  If no room 
23 reserve( 2 * thecapacity + 1 ) ;  / / Make room 
24 objects[ thesize++ I = x; / /  Add x 
25 1 
26 
27 template <class Object> 
28 void vector<Object>::resize( int newsize ) 

29 ( 
30 if( newsize > thecapacity ) / /  If expanding 
31 reserve( newsize * 2 ) ;  / /  Get space 
32 thesize = newsize; / /  Set size 
33 } 

34 
35 template <class Object> 
36 void vector<Object>::reserve( int newcapacity ) 

37 I 
38 Object *oldArray = objects; / /  Save old 
39 int numToCopy = newcapacity < thesize ? / /  Compute # to 
40 newcapacity : thesize; / /  copy 
41 
42 objects = new Object[ newcapacity 1 ;  / /  Allocate new 
43 for( int k = 0; k < numToCopy; k++ ) / /  Copy items 
44 objects[ k I = oldArray[ k ] ; 

45 
46 thesize = numToCopy / /  Set size 
47 thecapacity = newcapacity; / /  Set capacity 
48 
49 delete [ I oldArray; / /  Reclaim old 
50 1 

Figure 3.15 The vector.cpp file. 



Templates of Templates: A matrix Class 

1 template <class Object> 
2 class matrix 
3 { 

4 public: 
5 matrix( int rows, int cols ) : array( rows ) 

6 { 

7 for( int i = 0; i < rows; i++ ) 

8 array [ i I . resize ( cols ) ; 

9 ) 

10 
11 / /  Copy constructor -- not really needed. 
12 matrix ( const matrix & rhs ) : array ( rhs.array ) { ) 

13 
14 const vector<Object> & operator[]( int row ) const 
15 { return array[ row 1 ;  ) 

16 vector<Object> & operator[]( int row ) 

17 { return array [ row ] ; ) 

18 
19 int numrows( ) const 
20 { return array.size( ) ;  1 
21 int numcols( ) const 
22 { return numrows( ) > 0 ? array[ 0 ].size( ) : 0; 1 
23 
24 void push-back( const vector<Objectz & newRow ) 

25 { array.push-back( newRow ) ;  ) 

26 
27 private: 
28 vector< vector<Object> > array; 
29 1; 

Figure 3.16 A complete matrix class. 

3.5.1 The Data Members, Constructor, and Basic Accessors 

The matrix is represented by an array data member declared to be a Be sure that you have 

vector of vec tor<0b j ec t>. Note that, in the declaration of array, white Space between > and 
> when instantiating 

space must separate the two > characters; otherwise, the compiler will inter- layers of templates. 
pret the >> token as a shift operation. In other words, we must write 

vector~vector~0bject~ > array; / /  white space needed 

The constructor first constructs array, as having rows entries each 
of type vectoriob j ec t >. Since each entry of array is constructed 
with the zero-parameter constructor, it follows that each entry of array is 
a vectoriobject> of size 0. Thus we have rows zero-length vectors of 
Object. 
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The body of the constructor is then entered and each row is resized to have 
cols columns. Thus the constructor terminates with what appears to be a two- 
dimensional array. The numrows and nl-lmcols accessors are then easily 
implemented as shown. We also provide a push-back method that adds a 
new row; it is trivially implemented by a call to the underlying vector's 
push-bac k. 

3.5.2 operator [ I  

The idea of operator [ 1 is that, if we have a matrix m, then m [ i 1 should 
return a vector corresponding to row i of matrix m. If it does, m [ i ] [ j ] gives 
the entry in position j for vector m [ i 1 .  using the normal vector indexing 
operator. Thus the matrix operator [I is to return a vector<Object>, 
not an Object. 

We use the now standard trick of writing both an accessor and a mutator 
version of operator [ I that differ in their return types. The accessor ver- 
sion of operator [ I returns a constant reference, and the mutator version 
returns the simple reference. 

3.5.3 Destructor, Copy Assignment, 
and Copy Constructor 

The destructor, operator=, and copy constructor defaults are all acceptable 
because the only data member is a vector, for which the Big-Three are 
meaningfully defined. Thus we have all the code needed for a fully function- 
ing matrix class. Some compilers that have template bugs may require a 
trivial implementation of the copy constructor. For that reason only, a copy 
constructor is provided. 

3.6 Fancy Templates 

Our discussion of templates has only scratched the surface. The template 
facility of C++ has recently been expanded. Many of the new additions are 
used to implement the STL. Unfortunately, many also do not work every- 
where. We discuss three advanced features, but only the first works on most 
platforms. 

3.6.1 Multiple Template Parameters 

The proposed template facility allows multiple instantiation parameters, 
such as 
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template <class KeyType, class ValueType> 
class Map 
{ 

Here the Map template requires two types for instantiation. For instance, to 
declare a Map that takes a city name (which is a string) as the item to 
search for and returns a zip code (which is an int) as the lookup value, we 
can declare 

In fact. map (lowercase m) is part of the STL, and we provide an implementa- 
tion of it in Part IV. 

3.6.2 Default Template Parameters 

Just as functions can have default parameters, templates can have default 
template types. Here is an example: 

template <class KeyType, class ValueType=string> 
class Map 
( 

We can now make the following declarations: 

Default template parameters are widely used in the STL. Unfortunately, 
not all compilers support them. 

3.6.3 The Reserved Word typename 

A recent addition to the C++ Standard allows the use of the new reserved 
word t ypename instead of class in the template parameter list. In other 
words, we can write 

template <typename Object> 
class MemoryCell 

{ 



Everything else is the same. The logic is that class is misleading because 
the template can be expanded with both class types and primitive types. 
However, not all compilers support typename, and the language designer 
suggests sticking with class. Who are we to argue? 

There is a second use of typename, and it is shown in Figure 7.6, and 
discussed in Chapter 7, footnote 3. 

3.7 Bugs Associated with Templates 

We close our discussion of templates with some warnings. Templates are a 
relatively recent addition to the language, and not all the details have been 
completely worked out. Many compilers have bugs or unimplemented fea- 
tures that are a direct consequence of templates. We will describe some of 
the bugs that were noticed in the preparation of this text (note that some, or 
possibly none, might apply in your case). 

3.7.1 Bad Error Messages and Inconsistent Rules 

The rules on when templates need instantiation seem to change frequently, 
and compiler writers are having a hard time keeping up with the changes. 
You may find that your compiler is accepting old syntax, and when you port 
to another system it will complain that you have forgotten an explicit instan- 
tiation or, in some cases, provided an instantiation that you should not have. 
Some compilers do not accept current syntax, such as the explicit instantia- 
tion of a function template call. 

3.7.2 Template-Matching Algorithms 

Sometimes, the matching algorithm breaks when templates are involved. 
The most common example is that of function templates. 

3.7.3 Nested Classes in a Template 

Not all compilers support the nesting of classes in class templates. If yours 
does not, you will have to unnest the classes and make the original outer 
class a friend of the original inner class. Because some compilers do not sup- 
port nested classes in templates, we use them sparingly in our code. 
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3.7.4 Static Members in Class Templates 

Many compilers fail to handle correctly static methods and data members in 
class templates. As a result, we avoid their use in our code. 

Summary 

In this chapter we provided a brief discussion of the C++ template facilities. 
Templates allow us to write general classes and functions, thus helping us 
achieve the goal of code reuse. We use templates throughout the text. 

In Chapter 4 we look at another important mechanism for code reuse: 
inheritance. 

Objects of the Game 

insertion sort A simple sorting algorithm that is appropriate for small 
inputs. (p. 100) 

instantiation Replacement of generic types of a template with a spe- 
cific type or types, which logically creates a new function or class. 
(P. 98) 

template A template is a design for code and allows us to write rou- 
tines that work for arbitrary types without having to know what 
these types will be. (p. 98) 

typedef A simple mechanism to allow generic routines. (p. 98) 

Common Errors 

1. The template line must precede the template class interface and 
each member function definition. 

2. A common error is forgetting an instantiation of a template, which 
occurs frequently in member function definitions. The definition 
shown in Figure 3.12 is typical of the instantiations that are 
required. 

3. When instantiating a class template with an object that is itself a 
class template, white space must be used to separate successive > s. 
Otherwise, >> is interpreted as a shift operator. 

4. When writing class templates, you must be especially careful about 
parameter-passing mechanisms. Avoid passing unknown types by 
copying. Use either reference or constant reference types. Always 
assume that you are working with a large object. 



5. Sometimes when a template is instantiated, an ambiguity develops. 
For instance, if we have two constructors, ~(int) and 
T ( Ob j ect ) , for class template T and ob j ect is an int, we have 
an ambiguity. When designing classes, be sure that no ambiguities 
can develop. 

6. When a class template is instantiated, all needed operations must be 
available. For instance, the insertion sort template needs to have 
operator< defined for whatever Comparable is instantiated. 
Otherwise, an error will be detected at link time. Clearly state what 
conditions must be satisfied by the template parameters. 

7. If a class template uses call by value and the instantiated type has a 
disabled copy constructor, a compile-time error will be detected. 

8. All the errors that occur for classes also occur for class templates. 
9. Be aware of the limitations of your compiler. Many compilers still 

have buggy template implementations. 
10. Generally, function templates do not separately compile. 

Q On the Internet 

The available files are: 

Illustrates the swap funcion template. 
Contains insertionsort and main, shown 
in Figures 3.4-3.7. 
Contains the MemoryCell class (template)* 
interface shown in Figure 3.10. 
Contains the MemoryCell class implementation. 
Contains a program to test MemoryCell. 
Contains the vector class interface shown in 
Figure 3.14. (The actual class is slightly more 
complex, as described in Chapter 7.) 
Contains the vector class implementation. 
Contains the matrix class shown in Fig- 
ure 3.16. 

2. Throughout the text often we will omit the word template for brevity, when the meaning 
is implied. 



Exercises 

Exercises 

In Short 

3.1. Write a function template to sort three Comparable objects. 

3.2. When templates are used, what types of errors are detected when the 
function template is scanned? What errors are detected when the 
function is instantiated? 

3.3. Describe the syntax for class templates. 

In Practice 

3.4. Write function templates min and max, each of which accepts two 
parameters. 

3.5. Write function templates min and max, each of which accepts a 
vector. 

3.6. In many situations operator< is defined for an object, but you also 
need operaton. Assume that operator== is unavailable. 
Explore the possibility of writing an operator> template that calls 
operator<. 

A SingleBuf fer class supports get and put. The SingleBuffer 
stores a single item and a data member that indicates whether the 
SingleBuf f er is logically empty. A put may be applied only to an 
empty buffer and inserts an item to the buffer. A get may be applied 
only to a nonempty buffer and deletes and returns the contents of the 
buffer. Write a class template to implement SingleBuf f er. Throw 
an exception to signal an error. What is the return type of get and 
why? 

Programming Projects 

3.8. Implement an insertion sort that takes a primitive array and its size 
as a single parameter. 

3.9. Implement a routine that reads an arbitrary number of ob j ec ts and 
stores them in a vector. 

3.10. Add a resize member function and a zero-parameter constructor 
to the matrix class. 



- 

Templates 

3.11. Write a class template for the Rational class in Chapter 2. The 
numerator and denominator should have a generic type. 

3.12. Modify the vector class as follows. 
a. Add a function that returns a reference to the internal array. 
b. Add a constructor that takes a primitive array and a size. 
c. Allow the vector to be constructed with a lower and upper 

bound that represent the valid index range. The size of the array 
is upper-lower+l. 

d. Add a function, f ill, that fills all entries with a given value. 



Chapter 4 

I lnheritance 

As mentioned in Chapter 2, an important goal of object-oriented program- 
ming is code reuse. Just as engineers use components over and over in their 
designs, programmers should be able to reuse objects rather than repeatedly 
reimplementing them. In Chapter 3 we described one mechanism for reuse 
provided by C++: the template. Templates are appropriate if the basic func- 
tionality of the code is type-independent. The other mechanism for code 
reuse is inheritance. Inheritance allows us to extend the functionality of an 
object. In other words, we can create new types with extended (or restricted) 
properties of the original type. lnheritance goes a long way toward meeting 
the goal for code reuse. 

In this chapter, we show: 

how the general principles of inheritance and the object-oriented con- 
cept of polymorphism relate to code reuse, 
how inheritance is implemented in C++, 
how a collection of classes can be derived from a single abstract class, 
and 
how run-time binding decisions, rather than compile-time linking 
decisions, can be made for these classes. 

4.1 What Is Inheritance? 
On one level inheritance is the fundamental object-oriented principle governing In an IS-A 

the reuse of code among related classes. Inheritance models the IS-A relation- relationship~ the 
derived class is a 

ship. In an IS-A relationship, the derived class is a (variation of the) base class. of the) base 
For example, a Circle IS-A Shape and a Car IS-A Vehicle. However, an Ellipse class. 
IS-NOT-A Circle. Inheritance relationships form hierarchies. For instance, we 
can extend Car to other classes, as a Foreigncar IS-A Car (and pays tariffs) and 
a Domesticcar IS-A Car (and does not pay tariffs), and so on. 



In a HAS-A Another type of relationship is a HAS-A (or IS-COMPOSED-OF) rela- 
relationship, the tionship. In a HAS-A relationship, the derived class has a (instance of the) 
derived class has a 
(instance of the) base base class. This type of relationship does not possess the properties that 
class. Composition is would be natural in an inheritance hierarchy. An example of a HAS-A rela- 
used to model HAS-A tionship is that a car HAS-A steering w h e e l . ~ ~ e n e r a l l ~ , ~ ~ ~ - ~  relationships 
relationships. should not be modeled by inheritance. Instead, they should be modeled with 

the technique of composition, in which the components are simply made pri- 
vate data fields. 

The C++ language itself makes some use of inheritance in implementing 
its class libraries. Two examples are exceptions and files. 

Exceptions. C++ defines in <stdexcept> the class exception. 
There are several kinds of exceptions, including bad-alloc and 
bad-cas t. Figure 4.1 illustrates some of the classes in the 
exception hierarchy. Each is a separate class, but for all of them, 
the what method can be used to return a (primitive) string that details 
an error message. 
I/O. As shown in Figure 4.2, the streams hierarchy (istream, 
i fstream, etc.) uses inheritance. The streams hierarchy is more com- 
plex than shown. 

In addition, systems such as Visual C++ and Borland CBuilder provide 
class libraries that can be used to design graphical user interfaces (GUIs). 
These libraries, which define components such as buttons, choice-lists, text- 
areas, and windows (all in different flavors), make heavy use of inheritance. 

In all cases, the inheritance models an IS-A relationship. A button IS-A 
component. A bad-cas t IS-A except ion. An if stream IS-A is tream 
(but not vice-versa!). Because of IS-A relationships, the fundamental property 

range-error 
4---- 

f y bad-cast 
except ion 

bad-alloc 

\ 4- inval id-argument 

Figure 4.1 Part of the exception hierarchy. 



What Is Inheritance? 

i s t r i n g s t r e a m  

istream 
/ 

------ 
i f  stream 

4--- 
f stream 

i o s t r e a m  
--, iOk / r i n g  stream 

s t r i n g s t r e a m  

os t ream e 
o f s t r e a m  

Figure 4.2 Part of the streams hierarchy. 

of inheritance guarantees that any method that can be performed by 
i s t r eamcan  also be performed by i f s t r e a m a n d  that an i fs t reamobject  
can always be referenced by an is tream reference. Note that the reverse is 
not true. This is why 110 operations are typically written in terms of 
istream and os t ream.  

Because w h a t  is a method available in the e x c e p t i o n  class, if we need 
to catch various exceptions (see Figure 4.1) we can use a c a t c h  handler and 
write: 1 

catch( const exception & e ) I cout <<  e.what( ) << endl; 

If e references a bad-cast  object, the call to e .what ( ) makes sense. The 
reason is that an e x c e p t i o n  object supports the what  method, and a 
bad-cast  IS-A e x c e p t i o n ,  meaning that it supports at least as much as 
e x c e p t i o n .  Depending on the circumstances of the class hierarchy, the 
w h a t  method could be invariant or it could be specialized for each different 
class. When a method is invariant over a hierarchy-that is, it always has the 
same functionality for all classes in the hierarchy-we avoid having to 
rewrite an implementation of a class method. 

1. Exceptions are handled by try/catch blocks. An illustration of the syntax is shown 
later in this chapter in Figure 4.7. Code that might throw the exception is placed in a try 
block, and the exception is handled in a catch block. Because the exception object is 
passed into the catch block, any public methods defined for the exception object can be 
used on it and any public data defined in the exception object can be examined. 



lnheritance 

In polymorphism a 
variable can reference 
objects of several 
different types. When 
operations are 
applied to the 
variable, the 
operation appropriate 
to the referenced 
object is 
automatically 
selected. 

Inheritance allows the 
derivation of classes 
from a base class 
without disturbing the 
implementation of the 
base class. 

A derived class is a 
completely new class 
that inherits the 
properties, public 
methods, and 
implementations of 
the class from which 
it was derived. 

If X IS-A Y, then Xis a 
subclass of Y and Y is 
a superclass of X. 
These relationships 
are transitive. 

The call to what also illustrates an important object-oriented principle 
known as polymorphism, which is the ability of a reference variable to ref- 
erence objects of several different types. When operations are applied to the 
variable, the operation that is appropriate to the actual referenced object is 
automatically selected. The same is true for pointer variables (recall that a 
reference really is a pointer). In the case of an except ion reference, a run 
time decision is made: The what method for the object that e actually refer- 
ences at run time is the one used. This action is known as dynamic, or late, 
binding. Unfortunately, although dynamic binding is the preferred behavior, 
it is not the default in C++. This language flaw leads to complications. 

Inheritance is the process of deriving a class from a base class without 
disturbing the implementation of the base class. The base class is the founda- 
tion for inheritance. A derived class is a completely new class that inherits all 
the properties of the base class, with all the public methods available to the 
base class becoming public methods-with identical implementations--of the 
derived class. The derived class can then add data members and additional 
methods and change the meaning of the inherited methods. However, the 
base class is completely unaffected by any changes that are made in the 
derived class. Thus, in designing the derived class, brealung the base class is 
impossible, which greatly simplifies the task of software maintenance. 

A derived class is type compatible with its base class. In other words, a 
reference variable of the base class type may reference an object of the 
derived class, but not vice versa (and similarly for pointers). Sibling classes 
(i.e., classes derived from a common class) are not type compatible. 

As mentioned earlier, the use of inheritance typically generates a hierar- 
chy of classes. Figure 4.1 illustrated a small part of the exception hierar- 
chy. Note that range-error is indirectly, rather than directly, derived from 
exception. This fact is transparent to the user of the classes because IS-A 
relationships are transitive. In other words, if X IS-A Y and Y IS-A Z, then 
X IS-A Z. The exception hierarchy highlights the typical design approach 
of factoring commonalities into base classes and then specializing in the 
derived classes. In this hierarchy, we say that the derived class is a subclass 
of the base class and the base class is a superclass of the derived class. These 
relationships are transitive. 

The arrows in the hierarchy diagrams reflect the modern convention of 
pointing toward the top (or root) of the hierarchy. The stream hierarchy illus- 
trates some fancier design decisions. Among other things, commonality 
among is tream and os t ream is factored out and placed in ios. Also, 
iostream inherits from both istream and ostream, illustrating multiple 
inheritance. 

In the next several sections we examine the following issues. 



lnheritance Basics 

What syntax is used to derive a new class from an existing base class? 

How does this derivation affect public or private status? 
How do we specialize a method? 

How do we factor common differences into an abstract class and then 
create a hierarchy? 
How do we specify that dynamic binding be used? 
How can we-and should we-derive a new class from more than 
one class (multiple inheritance)? 

4.2 lnheritance Basics 
Because a derived class inherits all the properties of a base class, it can then Public inheritance 

add data members, disable functions, alter functions, and add new functions, an IS-A 
relationship. becoming a completely new class. A typical layout for inheritance is shown 

in Figure 4.3, with C++ tokens shown in boldface. The form of inheritance 
described here and used almost exclusively throughout the text is public 
inheritance, the process by which all public members of the base class 
remain public in the derived class. Note that the word pub l i c  after the 
colon on line 1 signifies public inheritance. Without it, we have private Private inheritance 

inheritance, the process occasionally used to implement a HAS-A relation- za'?i:!;s-A 
ship: even public members of the base class remain hidden. What we want, 
though, is public inheritance because it models an IS-A relationship. Let us 
briefly describe a derived class. 

Generally all data are private, so we just add additional data members 
in the derived class by specifying them in the private section. 

1 class Derived : public Base 
2 { 
3 / /  Any members that are not listed are inherited unchanged 
4 / /  except for constructor, destructor, 
5 / /  copy constructor, and operator= 
6 public: 
7 / /  Constructors, and destructors if defaults are not good 
8 / /  Base members whose definitions are to change in Derived 
9 / /  Additional public member functions 

10 private: 
11 / /  Additional data members (generally private) 
12 / /  Additional private member functions 
13 / /  Base members that should be disabled in Derived 
14 1 ;  

Figure 4.3 General layout of public inheritance. 
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Inheritance 

The derived class 
inherits all member 
functions from the 
base class. It may 
accept them, disallow 
them, or redefine 
them. Additionally, it 
can define new 
functions. 

Any base class member functions not specified in the derived class 
are inherited unchanged, with the following exceptions: constructor, 
destructor, copy constructor, and operator=. For them the typical 
defaults apply, with the inherited portion considered to be a member. 
Thus by default a copy constructor is applied to the inherited portion 
(considered to be a single entity) and then member by member. We 
present more specifics in Section 4.2.6. 
Any base class member function that is declared in the derived class' 
private section is disabled in the derived class.' 
Any base class member function declared in the derived class's public 
section requires an overriding definition that will be applied to objects 
of the derived class. 
Additional member functions can be added in the derived class. 

4.2.1 Visibility Rules 

Recall that any member declared with private visibility is accessible only to 
methods of the class. Thus any private member? in the base class are not 
accessible to the derived class. 

Occasionally, we want the derived class to have access to the base class 
members. There are several options. One is to use public access. However, it 
allows access to other classes in addition to derived classes. Another is to use 
a friend declaration, but this approach is also poor design and would require 
friend declaration for each derived class. 

A protected class If we want to allow access only to derived classes, we can make mem- 
member is private bers protected. A protected class member is private to every class except a 
every class except a 
derived class. derived class. However, declaring data members as protected or public vio- 

lates the spirit of encapsulation and information hiding and is generally done 
only as a matter of programming expediency. A better alternative usually is 
to write accessor and mutator methods. But, if a protected declaration allows 
you to avoid convoluted code, then using it is not unreasonable. In this text, 
we use protected data members precisely for this reason. We also use pro- 
tected methods in this text, which allows a derived class to inherit an internal 
method without making it accessible outside the class hierarchy. Figure 4.4 
shows the visibility of members in certain situations. 

2. This is bad style because it violates the IS-A relationship: The derived class can no longer 
do everything that the base class can. 
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Derived class member function accessing M Yes Yes No 

main, accessing B.M 1 Yes 
NO 1 NO 1 

Public Inheritance Situation 

Base class member function accessing M 

I main, accessing D.M 1 yes I NO I NO I 

Public 

Yes 

Figure 4.4 Access rules that depend on M's visibility in the base class. 

Derived class member function accessing 6.M 

4.2.2 The Constructor and Base Class Initialization 

Protected 

Yes 

Constructors should be defined for each derived class. If no constructor is writ- 
ten, a single zero-parameter default constructor is generated. This constructor 
will call the base class zero-parameter constructor for the inherited portion and 
then apply the default initialization for any additional data members. 

Constructing a derived class object by first constructing its inherited por- 
tion is standard practice. In fact, it is done by default even if an explicit 
derived class constructor is given. This action is natural because encapsula- 
tion means that the inherited portion is a single entity, and the base class 
constructor tells us how to initialize this single entity. 

Base class constructors can be explicitly called by name in the initializer 
list. Thus the default constructor for a derived class, in reality, is 

Private 

Yes 

B is an object of the base class; D is an object of the publicly derived class; M is a 
member of the base class. 

Yes 

If no constructor is 
written, a single zero- 
parameter default 
constructor is 
generated that calls 
the base class zero- 
parameter 
constructor for the 
inherited portion and 
then applies the 
default initialization 
for any additional 
data members. 

The base class initializer can be called with parameters that match a A base class 

base class constructor. As an example,  Figure 4.5 illustrates the initializerisusedtO 
call the base class 

Underf 1owException class that could be used in implementing data  constructor^ 

No 

1 class UnderflowException : public underflow-error 
2 { 

3 public: 
4 UnderflowException( const string & msg = " "  ) 

5 : underflow-error( msg.c-str( ) ) { } 

6 1 ;  

No 

Figure 4.5 Constructor for the new exception class Underflow that uses 
base class initializer list. 



structures. The Underf lowExcept ion is thrown when an attempt 
is made to extract  something from an empty data structure.  An 
Underf 1owException object is constructed by providing an optional 
string. The underf low-error class specification requires a primitive 
string, so we need to use an initializer list. As the Under f 1 owExcept i on 
object adds no data members, the construction method is simply to use the 
underf low-error constructor to construct the inherited portion. 

If the base class initializer is not provided. an automatic call to the base 
class constructor with no parameters is generated. If there is no such base 
class constructor, a compiler error results. Thus. in this case, initializer lists 
might be mandatory. 

4.2.3 Adding Members 

Because a derived class inherits from its base class the behavior of the base 
class, all methods defined for the base class are now defined for the derived 
class. In this section we examine the consequences of adding extra methods 
and data members. 

Our vector class in Section 3.4.2 throws an exception if an out-of- 
bounds index is detected. The only information that it passes back is that 
an error has occurred. Let us look at an alternative that we could have used 
(note that exception and <stdexcept> are relatively new language 
additions, which is why we elected not to use them in the remainder of this 
text). The alternative stores information about what went wrong inside the 
exception object, providing accessors to get this information. However. it 
still IS-A exception, meaning that it can be used any place that an 
exception can be used. The new class is shown in Figure 4.6. 

The BadIndex class has one constructor and three methods (in addition 
to defaults for copying and destruction that we ignore for now). The con- 
structor accepts two parameters. It initializes the inherited exception por- 
tion by using a zero-parameter constructor. It then uses the two parameters 
to store the index that caused the error and the size of the vector. Presum- 
ably, the vector has code such as 

/ /  See Figure 3.14 
Object & operator[]( int index ) 

if( index < 0 I I index >= size( ) ) 

throw BadIndex( index, size( ) ) ;  

return objects[ index 1 ;  
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1 / /  Example of a derived class that adds new members. 
2 
3 class BadIndex : public exception 
4 { 

5 public: 
6 BadIndex( int idx, int sz ) 

7 : index( idx ) ,  size( sz ) { ) 

8 
9 int getIndexi ) const 

10 { return index; ) 

11 int getsize( ) const 
12 { return size; ) 

13 
14 private: 
15 int index; 
16 int size; 
17 1 ;  

Figure 4.6 The BadIndex class, derived from the exception class. 

The three methods available for BadIndex are get Index, get Si ze, 
and what. The behavior of wha t is unchanged from the exception class. 

Besides the new functionality, BadIndex has two data members in addi- 
tion to the data members inherited from exception. What data were inher- 
ited from exception? The answer is, We do not know (unless we look at the 
exception class design). Moreover, if the inherited data are private, they are 
inaccessible. However, we do not need to know. Furthermore, our design 
works regardless of the underlying data representation in exception. Thus 
changes to the private implementation of exception will not require any 
changes to BadIndex. 

Figure 4.7 shows how the BadIndex class could be used. If there is a 
BadIndex exception thrown, it is caught at lines 11 - 15, and information 
about it can be printed by calling the exception's public member functions. 
Note that, as a BadIndex IS-A exception, at line 1 1  we could catch it 
with an except ion reference.-? We could also apply the what method to get 
some information. However, we could not apply the getIndex and 
getsize methods because they are not defined for all except ion objects. 

Because the predefined exception class is a recent language addition, 
the online code has a collection of exceptions rooted at class DSException. 

3. Even though the BadIndex object is an automatic variable in operator [ I ,  it can be 
caught by reference because thrown objects are guaranteed longer lifetimes than normal 
function arguments. 



1 / /  Use the BadIndex exception. 
2 int main( ) 

3 { 

4 NewVector<int> v( 10 ) ;  

5 
6 t ry 
7 { 

8 for( int i = 0; i <= v.size( ) ; i++ ) / /  off-by-one 
9 v[ i 1 = 0; 

10 1 
11 catch( const BadIndex & e ) 

12 I 
13 cout << e.what( ) << " ,  index=" << e.getIndex( ) 

14 << I ! ,  size=" << e.getSize( ) << endl; 
15 1 
16 
17 return 0; 
18 1 

Figure 4.7 Using the BadIndex class. 

4.2.4 Overriding a Method 

The derived class We can override methods from the base class in the derived class by simply 
must have providing a derived class method with the same signature. A derived class 

the same or 
compatible return method must have the same or compatible return type (the notion of a com- 
type and signature. patible return type is new and is discussed in Section 4.4.4.) 
partial overriding Sometimes we want the derived class method to invoke the base class 
involves calling a method to augment a base class method rather than doing something entirely 
base class method 
with the scope different. This is known as partial overriding. The scope operator can be 
operator. used to call a base class method. Here is an example: 

class Workaholic : public Worker 
1 

public : 
void dowork( ) 

{ 

Worker::doWork( ) ;  / /  Work like a Worker 
drinkCof fee ( ) ; / /  Take a break 
Worker::doWork( ) ;  / /  Work like a Worker some more 

1 
1; 



-- 
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4.2.5 Static and Dynamic Binding 

Figure 4.8 illustrates the fact that we can declare Worker and Workaholic In static binding,the - 
objects in the same scope because the compiler can deduce which dowork decision about which 

function to use to method to apply. Here, w is a Worker and wh is a Workahol ic, so the deter- resolve overload is 
mination of which dowork is used in the two calls at line 4 is computable at made at compile time. 
compile time. We call the decision made at compile time about which func- 
tion to use to resolve an overload static bindingloverloading. 

However, the code in Figure 4.9 is more complicated. If x is zero, we 
create a Worker object; otherwise, we create a Workaholic object. Recall 
that, as a Workaholic IS-A Worker, a Workaholic can be accessed by a 
pointer to a Worker. Any method that we might call for Worker will have a 
meaning for Workaholic objects. Hence, public inheritance automatically 
defines a type conversion from a pointer to a derived class to a pointer to the 
base class. Thus we can declare that wptr is a pointer to the base class 
Worker and then dynamically allocate either a Worker or Workaholic 
object for it to point at. When we get to line 9, which dowork gets called? 

1 Worker w; 
2 Workaholic wh; 
3 . . .  
4 w. doWork ( ) ; wh. doWork ( ) ; 

Figure 4.8 The Worker and Workaholic classes, with calls to dowork that 
are done automatically and correctly. 

Worker "wptr ;  
cin >> x; 
if( x ! =  0 )  

wptr = new Workaholic ( ) ; 

else 
wptr = new Worker ( ) ; 

. . . 
wptr->dowork ( ) ; / /  Which doWork is used? 

Figure 4.9 The Worker and Workaholic objects accessed though a pointer 
to a Worker; which version of dowork is used depends on 
whether dowork is declared virtual in Worker. 



If a member function 
is declared to be 
virtual, dynamic 
binding is used. The 
decision about which 
function to use to 
resolve an overload is 
made at run time, if it 
cannot be determined 
at compile time. 

In general, if a 
function is redefined 
in a derived class, it 
should be declared 
virtual in the base 
class. 

Static binding is used 
for a nonvirtual 
function when the 
function is invariant 
over the inheritance 
hierarchy. 

The decision about which dowork to use can be made at compile time 
or at run time. If the decision is made at compile time (static binding), we 
must use worker's dowork because that is the type of *wptr at compile 
time. If wptr is actually pointing at Workaholic, this decision is wrong. 
Because the type of object that wptr is actually pointing at can be deter- 
mined only as the program runs, this decision must be made at run time. A 
run-time decision to apply the method corresponding to the actual refer- 
enced object is called dynamic binding. As discussed earlier in this chapter, 
it is almost always the preferred course of action. 

However a run-time decision incurs some run-time overhead because it 
requires that the program maintain extra information and that the compiler 
generate code to perform the test. This overhead was once thought to be sig- 
nificant and, although other languages such as Smalltalk and Objective C 
use dynamic binding by default, C++ does not. 

Instead, you must ask for it by specifying that the function is virtual. A 
virtual function uses dynamic binding if a compile-time binding decision is 
impossible to make. A nonvirtual function will always use static binding. 
The default, as we implied earlier, is that functions are nonvirtual. This con- 
dition is unfortunate because we now know that the overhead is relatively 
minor. As a result, a nonvirtual function should be used only when the func- 
tion is invariant over the inheritance hierarchy. 

Virtualness is inherited, so it can be indicated in the base class. Thus if 
the base class declares that a function is virtual (in its declaration), the deci- 
sion can be made at run time; otherwise, it is made at compile time. For 
example, in the exception class, the what method is virtual. The derived 
classes require no further action to have dynamic binding apply for what 
method calls. 

Consequently, for the program fragment in Figure 4.9, the answer to our 
earlier question depends entirely on whether we declared dowork as virtual 
in the Worker class (or higher in the hierarchy). Note that if dowork is not 
virtual in the Worker class (or higher in the hierarchy), but is later made vir- 
tual in Wor kaho 1 i c, then accesses through pointers and references to 
Worker will still use static binding. To make a run-time decision, we would 
have to place the keyword virtual at the start of the dowork declaration in 
the Worker class interface (the rest of the class is omitted for brevity): 

class Worker 
{ 

public : 
virtual void dowork( ) ;  

1 ;  
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As a general rule, if a function is overridden in a derived class, it should 
be declared v i r t u a l  in the base class to ensure that the correct function is 
selected when a pointer to an object is used. 

To summarize: Static binding is used by default, and dynamic binding is 
used for virtual functions if the binding cannot be resolved at compile time. 
However, a run-time decision is needed only when an object is accessed 
through a pointer or reference to a base class. 

4.2.6 The Default Constructor, Copy Constructor, Copy 
Assignment Operator, and Destructor 

Two issues surround the default constructor, copy constructor, and copy The publiclprivate 

assignment operator: First, if we do nothing, are these operators private or Of the default 
constructor, copy public? Second, if they are public, what are their semantics? constructor, and copy 

We assume public inheritance and that these functions were public in assignment operator, 
the base class. What happens if we omit them from the derived class? We likeallotherri~embers 

know that they will be public, but what will their semantics be? For classes is inherited. 

we know that defaults exist for the simple constructor, the copy construc- 
tor, and the copy assignment operator. Specifically, the default is to apply 
the appropriate operation to each member in the class. Thus, as we have 
shown, if a copy assignment operator is not specified in a class, i t  is 
defined as a member-by-member copy. The same rules apply to inherited 
classes. For instance, 

cons t  BadIndex & ope ra to r= (  cons t  BadIndex & r h s  ) ;  

is not explicitly defined, so it is implemented by a call to o p e r a t o r =  for the n adefault destructor, 

base class, followed by copying of any additional data members. 
What is true in terms of visibility for any member function is, in effect, 

true for these operators. Thus, if o p e r a t o r =  is disabled by being placed in 
the private section in the base class, it is still disabled. The same holds for 
the copy constructor and default constructor. The reasoning, however, is 
slightly different. In effect, o p e r a t o r =  is disabled because a public default 
o p e r a t o r =  is generated. However, by default, o p e r a t o r =  is applied to the 
inherited portion and then member by member. Because o p e r a t o r =  for the 
base class is disabled, the first step becomes illegal. Thus placing default 
constructors, copy constructors, and o p e r a t o r =  in the private section of the 
base class has the effect of disabling them in the derived class (even though 
technically they are public in the derived class). 

copy constructor, or 
copy assignment 
operator is publicly 
inherited but not 
defined in the derived 
class, then by default 
the operator is 
applied to each 
member. 



4.2.7 Constructors and Destructors: Virtual or Not Virtual? 

Constructors are The answer to the question of whether constructors and destructors should 
never virtual. be virtual or not virtual is that constructors are never virtual and that destruc- 

tors should always be made virtual if they are being used in a base class and 
should be nonvirtual otherwise. The reasoning is as follows. 

In an inheritance For constructors a v i r t u a l  label is meaningless. We can always deter- 
hierarchy the mine at compile time what we are constructing. As a result, declaring a con- 
destructor should 
always be virtual. structor virtual is forbidden by the Standard. Destructors need to be 

v i r t u a l  to ensure that the destructor for the actual object is called. Other- 
wise. if the derived class consists of some additional members that have 
dynamically allocated memory, that memory will not be freed by the base 
class destructor. In a sense the destructor is no different from any other 
member function. For example, in Figure 4.10, suppose that the base class 
contains s t r i n g s  name1 and name2. Automatically, its destructor calls the 
destructors for these strings, so we are tempted to accept the default. In the 
derived class we have an additional s t r i n g ,  newName. Its destructor auto- 
matically calls new~ame's destructor and then the base class destructor. So 
everything appears to work. 

However, if the destructor for the base class is used for an object of the 
derived class, only those items that are inherited are destroyed. The destructor 
for the additional data member newName cannot possibly be called because 
the destructor for the base class is oblivious to new~ame's existence. 

Thus, even if the default destructor seems to work, it actually does not 
work if there is inheritance. In an inheritance hierarchy, then, the base class 
constructor should always be virtual. Even if it is a trivial destructor, it 
should be written anyway, with a virtual declaration and empty body. When 
the destructor is virtual, we are certain that a run-time decision will be used 
to choose the destructor appropriate to the object being deleted. 

Figure 4.1 1 shows the class interface for e x c e p t i o n .  Note how the 
destructor is virtual. 

Base Class name2 

Derived Class 
name 1 
name2 

t - - - - - - - newName 1 
Figure 4.10 Calling the base class destructor does not free memory associated 

with newName. 



1 / /  Interface for class exception in <exception>. 
2 
3 class exception 
4 I 
5 public: 
6 exception( ) ; 

7 exception( const exception & rhs ) ;  

8 
9 virtual -exception( ) ; 

10 
11 const exception & operator=( const exception & rhs ) ;  

12 
13 virtual const char * what( ) ;  

14 
15 private: 
16 / /  implementation-defined 
17 1 ;  

Figure 4.1 1 Interface for the class except ion. 

4.2.8 Abstract Methods and Classes 

So far, we have shown that some methods are invariant over a hierarchy and 
that other methods can have their meanings changed over the hierarchy. A 
third possibility is that a method is meaningful for the derived classes and 
that an implementation must be provided for the derived classes; however, 
that implementation is not meaningful for the base class. In this case, we can 
declare the base class method to be abstract. 

An abstract method is declared in the base class and always defined in An abstract method 

the derived class. It says (in the base class), what all class objects in the hier- has meaningfu1 
definition and is thus 

archy can do and must eventually implement. It does not provide a default always defined in the 
implementation, so each derived class must provide its own implementation. derived class. 

A class that has at least one abstract method is called an abstract class. 
Because the behavior of an abstract class is not completely defined, abstract 
classes can never be instantiated. When a derived class fails to override an 
abstract method with an implementation, the method remains abstract in the 
derived class. As a result, the derived class remains abstract, and the com- 
piler reports an error if an attempt to instantiate the abstract derived class is 
made. 

An example is an abstract class Shape, which we use in a larger exam- 
ple later in this chapter. We derive specific shapes, such as Circle and 
Rectangle, from Shape. We can then derive a square as a special 
Rectangle. Figure 4.12 shows the class hierarchy that results. 



Rectangle 

Square tl 
Figure 4.12 The hierarchy of shapes used in an inheritance example. 

The Shape class can have data members that are common to all classes. 
In a more extensive example, they could include the coordinates of the 
object's extremities. The class declares and provides a definition for meth- 
ods, such as positionof, that are independent of the actual type of object; 
posit ionof would be an invariant method. It also declares methods that 
apply for each particular type of object. Some of these methods make no 
sense for the abstract class Shape. For instance, computing the area of an 
abstract object is difficult; the area method could be an abstract method. 

A class with at least Because the existence of at least one abstract method makes the base class 
One abstract abstract, its creation is disallowed. In other words, a Shape object cannot itself 
is an abstract class. 

be created; only the derived objects can. However, as usual, a Shape can point 
to or reference any concrete derived object, such as a Ci rc  1 e or Rectangle. 
Thus 

Shape *a, *b; 
a = new Circle ( 3.0 ) ; / / Legal 
b = new Shape( "circle" ) ;  / /  Illegal 

An abstract class Figure 4.13 shows the code for the abstract class Shape. At line 30, we 
Object can never be declare a string that stores the type of shape. This method is used only for 
constructed. 
However, we still the derived classes. The member is private, so the derived classes do not have 
provide a constructor direct access to it. The rest of the class specifies a collection of methods. 
that can be called by The constructor never actually gets called directly because Shape is an 
derived classes. abstract class. We need a constructor, however, so that the derived class can 

call it to initialize the private members. The Shape constructor sets the inter- 
nal name data member. Note the virtual destructor, in accordance with the 
discussion in Section 4.2.7. 



-- -- 

Inheritance Bas~cs 

1 / /  Abstract base class for shapes. 
2 / /  
3 / /  CONSTRUCTION: is not allowed; Shape is abstract. 
4 / /  
5 / /  X***X**********C**PUBLIC OpERATIONS****X************* 

6 / /  double area( ) - ->  Return the area (abstract) 
7 / I  bool operator< ( rhs ) - ->  Compare 2 Shape objects by area 
8 / /  void print( out = cout) - - >  Standard print method 
9 

10 #include <iostream> 
11 #include <string> 
12 using namespace std; 
13 
14 class Shape 
15 { 
16 public: 
17 Shape( const string & shapeName = " "  ) 

18 : name ( shapeName ) { } 

19 virtual -Shape ( ) i ) 

20 
21 virtual double area( ) const = 0; 
22 
23 boo1 operator< ( const Shape & rhs ) const 
24 ( return area( ) < rhs.area( 1 ;  1 
25 
26 virtual void print( ostream & out = cout ) const 
27 { out <<  name << " of area " << area( ) ;  1 
28 
29 private: 
30 string name; 
31 > ;  

Figure 4.13 The abstract base class Shape. 

Line 21 of Figure 4.13 declares the abstract method area. A method is An abstract method is 

declared abstract by specifying that i t  is virtual and by supplying = 0 in a'S0 known as a pure 
virtual function in 

the interface in place of an implementation. Because of the syntax, an c++. 
abstract method is also known as a pure virtual function in C++. As with 
all virtual methods, a run-time decision selects the appropriate area in a 
derived class. The area method is an abstract method because no meaning- 
ful default could be specified for an inherited class that chose not to define 
its own. 

The comparison method shown at lines 23 to 24 is not abstract because 
it can be meaningfully applied for all derived classes. In fact, its definition is 
invariant throughout the hierarchy of shapes, so we did not make it virtual. 



1 / /  Output routine for Shape. 
2 ostream & operator<< ( ostream & out, const Shape & rhs ) 

3 { 

4 rhs.print( out ) ;  

5 return out; 
6 1 

Figure 4.14 Output routine for Shape, which includes its name and area. 

The print method, shown at lines 26 and 27, prints out the name of the 
shape and its area. Although it appears to be invariant now, we make it vir- 
tual just in case we change our mind later on. The code for operator<< is 
written in Figure 4.14. 

Before continuing, let us summarize the three types of member functions. 

1. Nonvirtual functions. Overloading is resolved at compile time. To 
ensure consistency when pointers to objects are used, we generally 
use a nonvirtual method only when the function is invariant over the 
inheritance hierarchy (i.e., when the method is never redefined). 
Constructors are always nonvirtual, as mentioned in Section 4.2.7. 

2. Virtual ,functions. Overloading is resolved at run time. The base 
class provides a default implementation that may be overridden by 
the derived classes. Destructors should be virtual, as mentioned in 
Section 4.2.7. 

3. Pure virtual functions. Overloading is resolved at run time. The 
base class provides no implementation and is abstract. The absence 
of a default requires either that the derived classes provide an 
implementation or that the derived classes themselves be abstract. 

4.3 Example: Expanding the Shape Class 

In this section we implement the derived Shape classes and show how they 
are used in a polymorphic manner. The following problem is used: 

SORTING SHAPES 
READ N SHAPES (CIRCLES, SQUARES, OR RECTANGLES) AND OUTPUT THEM 

SORTED BY AREA. 

The implementation of the derived classes, shown in Figure 4.15, is 
short and illustrates almost nothing that we have not already discussed. The 
only new item is square, which is derived from Rectangle, which itself is 



Example: Expanding the Shape Class 

1 / /  Circle, Square, Rectangle class interfaces; 
2 / /  all based on Shape. 
3 / /  
4 / /  CONSTRUCTION: with (a) no initializer or (b) radius (for 
5 / /  circle), side length (for square), length and width 
6 / /  (for rectangle) . 
7 / /  ******************puBLIC OPERATIONS********************** 

8 / /  double area ( ) - - >  Implements Shape pure virtual area 
9 

10 const double PI = 3.1415927; 
11 
12 class Circle : public Shape 

13 ( 
14 public: 
15 Circle( double rad = 0.0 ) 

16 : Shape ( "circle" ) , radius( rad ) { 1 
17 double area( ) const 
18 ( return PI * radius * radius; 1 
19 
20 private: 
21 double radius; 
22 1 ;  
23 
24 class Rectangle : public Shape 
25 I 
26 public: 
27 Rectangle( double len = 0.0, double wid = 0.0 ) 

28 : Shape( "rectangle" ) , length( len ) , width( wid ) I 1 
29 double area( ) const 
30 { return length * width; } 

31 
32 private: 
33 double length; 
34 double width; 
35 1 ;  
36 
37 class Square : public Rectangle 
38 ( 
39 public: 
40 Square( double side = 0.0 ) 

41 : Rectangle( side, side ) { 1 
42 I ;  

Figure 4.15 Complete Circ le ,  Rec tang1 e, and Square classes. 



derived from Shape. This derivation is done exactly like all the others. In 
implementing these classes, we must 

1. provide a new constructor; 
2. examine each virtual function to decide whether we are willing to 

accept its defaults (for each virtual function whose defaults we do 
not like, we must write a new definition); 

3. write a definition for each pure virtual function; and 
4. write additional member functions if appropriate. 

For each class, we provide a simple constructor that allows initialization 
with basic dimensions ie.g., radius f i r  circles and side lengths for rectangles 
and squares). We first initialize the inherited portion by calling the base ciass 
initializer. Each class is required to provide an area method because Shape 
has declared that it is an abstract method. If the area method is not provided 
for some class, an error will be detected at compile time. The reason is that, 
if an implementation of area is missing, a derived class will itself be 
abstract. Note that square can inherit the area method from Rectangle, 
so it does not provide a redefinition. Note also that its name internally is now 
"rectangle". 

We can only declare Now that we have written the classes, we are ready to solve the original 
arrays Of pointers to problem. What we would like to do is declare an array of Shapes. But we can- 
base classes because 
the size of the base not declare one Shape, much less an array of them, for two reasons. First, 
class is usually Shape is an abstract base class, so a Shape object does not exist. Even if 
smaller than the size 
of the derived class. It 
can never be larger. 

Shape was not abstract, which would be the case if it defined an area func- 
tion, we still could not reasonably declare an array of Shapes. The reason is 
that the basic Shape has one data member, Circle adds a second data mem- 
ber, Rectangle adds a third data member, and so on. The basic Shape is not 
large enough to hold all of the possible derived types, so we need an array of 
pointers to Shape. In Figure 4.16, we attempt this approach; however, it does 
not quite work because we get in trouble at the sorting stage. 

Let us examine the logic in Figure 4.16 and then correct the deficiency. 
First, we read the objects. At line 17 we are actually reading a character and 
then the dimensions of some shape, creating a shape, and finally assigning a 
pointer to point at the newly created shape. Figure 4.17 shows a bare-bones 
implementation. So far so good. 

We then call insertionsort to sort the shapes. Recall that we already 
have an insertionsort template from Section 3.3. Because array is an 
array of pointers to shapes, we expect that it will work as long as we provide 
a comparison routine with the declaration 

int operator<( const Shape * lhs, const Shape * rhs ) ;  



-- 
Example: Expanding the Shape Class 

1 #include <iostream> 
2 #include <vector> 
3 using namespace std; 
4 
5 / /  main: read shapes and output in increasing order of area. 
6 / /  Error checks omitted for brevity. DOES NOT WORK. 
7 int main( ) 

8 { 
9 int numShapes; 

10 cin >> numshapes; 
11 vector<Shape *> array( numShapes ) ;  / /  Array of Shape * 
12 
13 I /  Read the shapes 
14 for( int i = 0; i < numShapes; i++ ) 

15 ( 

16 cout << "Enter a shape: " ;  

17 cin >> array[ i 1 ;  
18 1 
19 
20 insertionsort( array ) ;  

21 
22 cout << "Sorted by increasing size:" << endl; 
23 for ( int j = 0; j < numShapes; j++ ) 

24 cout << *array[ j I << endl; 
25 
26 return 0; 
27 } 

Figure 4.16 The main routine to read shapes and output them in increasing 
order of area. Does not work. 

Unfortunately, that does not work because insert ionsor t uses the ~f a class is 

operator< that already exists for pointers. That operator compares the instantiated with 
pointer types, shallow 

addresses being pointed at, which guarantees that the array will be unaltered are 
(because a [ i ] is always stored at a lower address than a [ j I if i< j). 

To make this approach work, we need to define a new class that hides Deep comparison 
- - 

the fact that the objects we are storing and sorting are pointers, as shown in Semantics can be 
obtained by 

Figure 4.18. The PtrToShape object stores the pointer to a Shape and pro- designing a class to 
vides a comparison function that compares Shapes rather than pointers. It store the pointer. 

does this by dereferencing both pointers and calling the Shape operator< 
on the resulting Shape objects. Note that we make excessive calculations to 
compute areas. Avoiding this excess is left for you to do as Exercise 4.13. 
Note also that, in general, we must call delete to reclaim the memory con- 
sumed by the Shape objects. 

The PtrToShape class also overloads the unary * operator so that a 
PtrToShape object looks just like a pointer to a Shape. We can add more 



1 / /  Create an appropriate Shape object based on input. 
2 / /  The user types 'c', Is', or 'r' to indicate the shape 
3 / /  and then provides dimensions when prompted. 
4 / /  A zero-radius circle is returned for any error. 
5 istream & operator>>( istream & in, Shape * & s ) 

6 ( 
7 char ch; 
8 double dl, d2 ; 
9 

10 in.get ( ch ) ; / /  First character represents shape 
11 switch( ch ) 

12 ( 

13 case 'c': 
14 in >> dl; 
15 s = new Circle( dl ) ;  

16 break; 
17 
18 case ' r ' : 
19 in >> dl >> d2; 
20 s = new Rectangle( dl, d? ) ;  

21 break; 
22 
23 case ' s ' : 

24 in >> dl; 
25 s = new Square( dl ) ;  

26 break; 
27 
28 case '\n' : 

29 return in >> s; / /  Newline; try again 
30 
31 default: 
32 cerr << "Needed one of c, r, or s" << endl; 
33 s = new Circle; / /  Radius is 0 
34 break; 
35 1 
36 
37 return in; 
38 1 

Figure 4.17 A simple input routine for reading a pointer to a Shape. 



-- -- 

Example: Expanding the Shape Class 

1 struct PtrToShape 
2 I 
3 Shape *ptr; 
4 
5 boo1 operator< ( const PtrToShape & rhs ) const 
6 { return *ptr < *rhs.ptr; } 
7 
8 const Shape & operator*( ) const 
9 { return *ptr; } 

10 } ;  

11 
12 / /  main: read shapes and output in increasing order of area. 
13 / /  Error checks omitted for brevity. 
14 int main( ) 

15 I 
16 int numshapes; 
17 cout << "Enter number of shapes: "; 

18 cin >> numshapes; 
19 
20 / /  Read the shapes 
21 vector<PtrToShape> array( numshapes ) ;  

22 
23 for( int i = 0; i < numshapes; i++ ) 

24 ( 

25 cout << "Enter a shape (c, r, or s with dimensions) : " ;  

26 cin >> array [ i ] .ptr; 
27 } 

28 
29 insertionsort( array ) ;  

30 cout << "Sorted by increasing size:" << endl; 
31 for ( int j = 0; j < numshapes; j++ ) 

32 cout << *array[ j I << endl; 
33 
34 for( int k = 0; k < numshapes; k++ ) 

35 delete array [ k ] .ptr; 
36 
37 return 0; 
38 1 

Figure 4.18 The main routine reads shapes and outputs them in increasing order of area. 



ineinbers to hide information better, but we prefer to keep things as short as 
possible. The idea of wrapping a pointer inside a class is a common design 
pattern, which we look at in Section 5.3. 

4.4 Tricky C++ Details 

Inheritance in C++ has numerous subtle points. We discuss some of them in 
this section. 

4.4.1 Static Binding of Parameters 

In c++, the Dynamic binding means that the member function that is appropriate for the 
parameters to a object being operated on is used. However, it does not mean that the absolute 
method are always 
deduced statically, at 

best match is performed for all parameters. Specifically, in C++, the paraine- 
compile time. ters to a method are always deduced statically, at coinpile time. 

Consider the code in Figure 4.19. In the whichFoo method, a call is 
made to f oo. But which f oo is called? We expect the answer to depend on 
the run-time types of a r g l  and arg2. 

1 class Derived; / /  Incomplete declaration 
2 
3 class Base 
4 i 
5 public: 
6 virtual void foo( const Base & x ) ;  / i METHOD A 
7 virtual void foo( const Derived & x ) ;  / /  METHOD B 

8 1 ;  
9 

10 class Derived : public Base 

11 ( 

12 public: 
13 virtual void foo( const Base & x ) ;  / /  METHOD C 
14 virtual void foo( const Derived & x ) ;  / /  METHOD D 

15 } ;  
16 
17 void whichFoo( Base & argl, Base & arg2 ) 

18 ( 

19 argl.foo( arg2 ) ;  

20 } 

Figure 4.19 An illustration of static binding for parameters. 



- -- -- 

Tricky C++ ~ e t a i l s m  

Because parameters are always matched at compile time, the type to 
which arg2 is actually referencing does not matter. The f oo that we match 
is 

virtual void foo( const Base & x ) ;  / /  METHOD A or C 

The only issue is whether to use the Base or Derived version. That is the 
decision made at run-time when the object that argl references is known. 

Static binding has important ramifications. Consider the following situa- 
tion in which we overload the output operator for both a base class and 
derived class: 

ostream & operator<< i ostream & out, const Base & x ) ;  

ostream & operator<< ( ostream & out, const Derived & x ) ;  

Suppose that we now try to call the output function: 

Base *b = new Derived; 
cout << *b << endl; 

Because parameters are statically deduced, output (unfortunately) uses the 
operator<< that takes a Base parameter. 

However, recall that we have been recommending that the class define a 
grint method and then implement operator<< by calling the print 
method. If we use this approach, we need only to write operator<< for the 
base class: 

ostream & operator<< ( ostream & out, const Base & x ) 

x.print( out ) ;  / /  print is deduced at run time 
return out; 

1 

Now the base class and derived class each provide their own version of the 
print method. The operator<< is called for all Base and Derived objects. 
However, when that happens, the call to print uses dynamic binding! 

4.4.2 Default Parameters 

Default parameters are statically bound, meaning that they are deduced at Changing the default 

compile time. Changing the default value in a derived class is unsafe value in a derived 
class is unsafe. 

because doing so can create an inconsistency with virtual functions, which 
are bound at run time. 



4.4.3 Derived Class Methods Hide Base Class Methods 

An annoying feature of C++ is illustrated in Figure 4.20. In the code, we 
have a base class and a derived class. The base class declares a function 
named bar with zero parameters. The derived class adds a function named 
bar with one parameter. 

In test, we illustrate the various calls that can be made. At line 15, we 
attempt to call the zero-parameter bar through a Base reference. We expect this 
call to work and it does. Note that the actual object being acted on could be a 
Derived object. At the next line, we attempt to call the one-parameter bar 
through a Base reference. Because this function is not defined for Base objects, 
the call must fail-and indeed, the line does not compile. The one-parameter 
bar must be called through a Derived reference, as shown on line 17. 

So far, so good. Now comes the unexpected part. If we call the zero- 
parameter bar with a Derived reference, the code does not compile. This 
result is unexpected because the code at line 15 compiles and a Derived 
IS-A Base. 

What has happened appears to be a language flaw. When a method is 
declared in a derived class, it hides all methods of the same name in the base 
class. Thus bar is no longer accessible through a Derived reference, even 
though it would be accessible through a Base reference: 

Base & tmp = arg2; tmp.bar( ) ;  / /  Legal! 

/ / METHOD A 

1 class Base 
2 i 
3 public: 
4 virtual void bar( ) ;  

5 } ;  

6 
7 class Derived : public Base 
8 { 
9 public: 

10 void bar ( int x ) ; / /  METHOD B 

11 1 ;  
12 
13 void test( Base & argl, Derived & arg2 ) 

14 I 
15 argl .bar ( ) ; / /  Compiles, as expected. 
16 argl.bar( 4 ) ;  / /  Does not compile, as expected. 
17 arg2.bar( 4 ) ;  / /  Compiles, as expected. 
18 arg2. bar ( ) ; / /  Does not compile. Not expected. 
19 1 

Figure 4.20 An illustration of hiding. 
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Tricky C++ Details 

There are two ways around this problem. One way is to override the 
zero-parameter bar in Derived, with an implementation that calls the Base 
class version. In other words. in Derived we add 

void bar( ) { Base::bar( ) ;  } / /  In class Derived 

The other method is newer and does not work on all compilers. In it we 
introduce the base class member function into the derived class scope with a 
using declaration: 

using Base::bar; / /  In class Derived 

The most important reason you should be aware of this rule is that many 
compilers will issue a warning when you hide a member function. A signa- 
ture indicates whether a function is an accessor, so if the base class function 
is an accessor (a constant member function) and the derived class function is 
not, you have usually made an error, and this warning is how the compiler 
might let you know about it. Pay attention to these warnings. 

4.4.4 Compatible Return Types for Overridden Methods 

Return types present an important difficulty. Consider the following opera- 
tor, defined in a base class: 

virtual const Base & operator++( ) ;  

The derived class inherits it as 

const Base & operator++( ) ;  

but that is not really what we want. If we have a return type in the derived 
class, it ought to be a constant reference to the derived type. not to the base 
type. Thus the operator++ inherited is not the one we want. Instead, we 
would like to override operator++ with 

const Derived & operator++( ) ;  

Recall that overriding a function means writing a new function with the If the original return 

same signature. Under original C++ rules, the return type of the new and 'ype is a pointer (Or 
reference) to 6, the overridden function had to match exactly. new return type may 

Under the new rules, the return type may be relaxed. This means if the be a pointer (or 

original return type is a pointer (or reference) to B, the new return type may reference) to D9 
provided D is a be a pointer (or reference) to D, provided D is a publicly derived class of B. 
publicly derived 

This condition corresponds to our normal expectation of IS-A relationships. of 6. 



Private inheritance 
means that even 
public members of 
the base class are 
hidden. 

Composition is 
preferred to private 
inheritance. In 
composition, class B 
is said to be 
composed of class A 
(and other objects). 

Although the default 
is private inheritance, 
it should be avoided. 

Friendship is not 
inherited. 

4.4.5 Private lnheritance 

Private inheritance means that even public members of the base class are 
hidden. That seems like a silly idea, doesn't it? In fact it is, if we are talking 
about implementing an IS-A relationship. Private inheritance is thus gener- 
ally used to implement a HAS-A relationship (that is, a derived class D has 
or uses a base class B). 

In many cases we can get by without using inheritance. Instead, we can 
use composition, making an object of class B a member of class D and, if 
necessary, making D a friend of B. Composition is preferable to private 
inheritance, but occasionally the latter is more expedient or slightly faster 
(because it avoids a layer of function calls). For the most part, you should 
avoid private inheritance unless it greatly simplifies some coding logic or 
can be justified on performance grounds. However, in Section 5.3.3, we 
demonstrate an appropriate and typical use of private inheritance. 

Recall that by default, private inheritance is used. If we omitted the key- 
word public on line 3 of Figure 4.6, we would have private inheritance. In 
that case the public member functions of exception would still be inher- 
ited, but they would be private members of BadIndex and could not be 
called by users of BadIndex. Thus the what method would not be visible. 
The type compatibility of base class and derived class pointers and refer- 
ences described earlier does not apply for nonpublic inheritance. Thus, in the 
following code, a BadIndex exception would not be caught: 

c a t c h (  cons t  exception & e  ) { cout << e .wha t (  ) <<  end l ;  ) 

4.4.6 Friends 

Are friends of a class still friends in a derived class? The answer is no. For 
example, suppose that F is a friend of class B, and D is derived from B. Sup- 
pose also that D has nonpublic member M. Then, in class D, F does not have 
access to M. However, the inherited portion of B is accessible to F in class 
D. Figure 4.21 summarizes the results. Note that D can declare that F is also 
a friend, in which case all of D's members would be visible. 

4.4.7 Call by Value and Polymorphism Do Not Mix 

Consider the following statement. Assume that BadIndex is publicly inher- 
ited from exception and suppose that it has overridden the what method: 

c a t c h (  exception e  ) { cout << ? .what (  ) << endl ;  1 
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Figure 4.21 Friendship is not inherited. 

Public Inheritance Situation 

F accessing B. MB 

Faccessing D. MD 

F accessing D. MB 

Note that e is passed by using call by value. Now suppose that a BadIndex 
exception has been thrown. Which what method gets called? The answer is 
not what we want. 

When we use call by value, the actual argument is always copied into the 
formal parameter. Thus the BadIndex object is copied into e by using e's 
operator=, so only the exception component of BadIndex is copied. The 
loss of inherited data when a derived class object is copied into a base class 
object is known as slicing. In any event, the type of e is exception, and so it 
is the exception class's what method that is called, and it is acting on a 
trimmed portion of the BadIndex object. The moral of the story: Polymor- 
phism and call by value do not mix. 

4.5 Multiple lnheritance 

B is an object of the base class; D is an object of the publicly derived class; MB is a 
member of the base class. MD is a member of the derived class. Fis a friend of the 
base class (but not the derived class). 

Public 

Yes 

Yes 

Yes 

In all the inheritance examples presented so far, we derived one class from a 
single base class. In multiple inheritance a class may be derived from more 
than one base class. For example, in the iostream library, an iostream 
(which allows both reading and writing) is derived from both an istream 
and an ostream. As a second example, a university has several classes of 
people, including students and employees. But some people are both stu- 
dents and employees. The StudentEmployee class could be derived from 
both the Student class and the Employee class; each of those classes could 
be derived from the abstract base class universityperson. 

In multiple inheritance the new class inherits members from all its base 
classes. This result leads to some immediate problems that you need to 
watch for. 

Slicing is the loss of 
inherited data 
members when a 
derived class object 
is copied into a base 
class object. 

Protected 

Yes 

No 

Yes 

Multiple inheritance is 
the process of 
deriving a class from 
several base classes. 
(We do not use 
multiple inheritance 
in this text.) 

Private 

Yes 

No 

Yes 

Suppose that Univers i typerson has class members name and ssn 
and that they are inherited by Student and Employee. However, as 



StudentEmployee inherits the data members from both Student 
and Employee, we get two copies of name and ssn unless we use 
virtual inheritance, as in 

class Student : virtual public Universityperson I . . . ) ;  
class Employee :virtual public UniversityPerson I . . . ) ;  
class StudentEmployee : public Student, 

public Employee I . . . ) ;  

What if Student and Employee have member functions that are 
augmented to Employee but have the same signatures? For instance, 
the credit function, not given in Universityperson, is added to 
Student to mean the number of credit hours for which a student is 
currently registered. For employees the function returns the number 
of vacation days still left. Consider the following: 

UniversityPerson *p = new StudentEmployee; 
cout << p->Student::credits( ) ;  / /  OK 
cout << p-zEmployee::credits( ) ;  / /  OK 
cout << p->credits( ) ;  / /  Ambiguous 

Suppose that universi typerson defines a virtual member function f 
that and Student redefines it. However, Employee and 
StudentEmployee do nothing. Then, for p defined in the preceding 
example, is p->f ( )ambiguous? In that example the answer is no 
because Universityperson is a virtual base class with respect to 
Student; consequently, Student : : f ( ) is said to dominate 
Universityperson: : f ( ) , and there is no ambiguity. Ambiguity 
would occur if we did not use virtual inheritance for Student. 

Does all this make your head spin? Most of these problems tend to sug- 
gest that multiple inheritance is a tricky feature that requires careful analysis 
before you use it. Generally speaking, multiple inheritance is not needed 
nearly as often as you might suspect, but when it is needed it is extremely 
important. Although the rules for multiple inheritance are carefully defined 
in the language standard, it is also an unfortunate fact that many compilers 
have bugs associated with this feature (especially in conjunction with other 
features). 

We will not use multiple inheritance in this text. The most common (and 
safe) way to use multiple inheritance is to inherit only from classes that 
define no data members and no implementations. Such classes specify proto- 
cols only, and most of the ambiguity problems described above go away. 

You should avoid general use of multiple inheritance in C++ until you 
are extremely comfortable with simple inheritance and virtual functions; 



Summary ' 

many object-oriented languages (such as Smalltalk, Object Pascal, Objective 
C, and Ada) do not support multiple inheritance, so you can live without it. 

Summary 

lnheritance is a powerful feature that allows the reuse of code. However, be 
sure that functions applied to objects created at run time through the new oper- 
ator are bound at run time. This feature is known as dynamic binding, and the 
use of virtual functions is required to ensure that run-time decisions are made. 
Reread this chapter as often as necessary to ensure that you understand the dis- 
tinctions among nonvirtual functions (in which the same definition applies 
throughout the inheritance hierarchy and thus compile-time decisions are cor- 
rect), virtual functions (in which the default provided in the base class can be 
overwritten in the derived class; run-time decisions are made if needed), and 
pure virtual functions (which have no default definition). 

In this chapter we also described the programming technique of wrap- 
ping a variable inside a class (Figure 4.18) and mentioned the occasional 
usefulness of private inheritance. These techniques are two examples of 
design patterns that we encounter over and over again. In Chapter 5 we dis- 
cuss some common design patterns. 

Objects of the Game 

abstract class A class with at least one pure virtual function. (p. 134) 
abstract method A method that has no meaningful definition and is 

thus always defined in the derived class. (p. 133) 
base class The foundation for inheritance. (p. 122) 
composition Mechanism preferred to private inheritance when an 

IS-A relationship does not hold. In composition, an object of class B 
is said to be composed of an object of class A (and other objects). 
(P. 146) 

derived class A completely new class that inherits all the properties of 
a base class, with all the public methods and identical implementa- 
tions of the base class. (p. 122) 

dynamic binding A run-time decision to apply the method corre- 
sponding to the actual referenced object. Used when a member 
function is declared to be virtual and the correct method cannot be 
determined at compile time. (p. 130) 

HAS-A relationship The derived class has a (property of the) base 
class. (p. 120) 



inheritance The process of deriving a class from a base class without 
disturbing the implementation of the base class. It also allows the 
design of class hierarchies, such as exception. (p. 122) 

IS-A relationship The derived class is a (variation of the) base class. 
(P. 1 19) 

multiple inheritance The process of deriving a class from several 
base classes. (p. 147) 

nonvirtual function Used when the function is invariant over the 
inheritance hierarchy. Static binding is used for nonvirtual func- 
tions. (p. 129) 

partial overriding The act of augmenting a base class method to per- 
form additional, but not entirely different, tasks. The scope operator 
is used to call a base class method. (p. 128) 

polymorphism The ability of a reference or pointer variable to refer- 
ence or point to objects of several different types. When operations 
are applied to the variable, the operation that is appropriate to the 
actual referenced object is automatically selected. (p. 122) 

private inheritance The process occasionally used to implement a 
HAS-A relationship. Even public members of the base class are hid- 
den. (p. 146) 

protected class member Accessible by a derived class but private to 
every other class. (p. 124) 

public inheritance The process by which all public members of the 
base class remain public in the derived class. Public inheritance 
models an IS-A relationship. (p. 123) 

pure virtual function An abstract method. (p. 135) 
slicing The loss of inherited data when a derived class object is copied 

into a base class object. (p. 147) 
static bindingloverloading The decision about which function to use 

made at compile time. (p. 129) 
virtual function A function for which dynamic binding is used. It 

should be used if the function is redefined in the inheritance hierar- 
chy. (p. 130) 

@ Common Errors 

1. Inheritance is private by default. A common error is to omit the 
keyword public, which is needed to specify public inheritance. 



2. If a base class member function is redefined in a derived class, it 
should be made virtual. Otherwise, the wrong function could be 
called when accessed through a poinler or reference. 

3. Base class destructors should be declared as virtual functions. Oth- 
erwise, the wrong destructor may get called in some cases. 

4. Constructors can never be declared virtual. 

5 .  Objects of an abstract base class cannot be instantiated. 

6. If the derived class fails to implement any inherited pure virtual 
function, the derived class becomes abstract and cannot be instanti- 
ated, even if it makes no attempts to use the undefined pure virtual 
function. 

7. Never redefine a default parameter for a virtual function. Default 
parameters are bound at compile time, which can create an incon- 
sistency with virtual functions that are bound at run time. 

8. To access a base class member, the scope resolution must be used. 
Otherwise, the scope is the current class. 

9. Friendship is not inherited. 

10. In a derived class, the inherited base class members can be initial- 
ized only as an aggregate in a constructor's initializer list. If these 
members are public or protected, they may later be read or assigned 
to individually. 

1 1 .  A common error is to declare a virtual destructor in an abstract base 
class but not provide an implementation (virtual-~ase ( ) or 
virtual-~ase ( )  =O). Both are wrong because the derived class 
destructor needs to call the base class destructor. If nothing needs to 
be done, then use { as the definition. 

12. If a constructor declaration is provided in the base class, provide the 
definition, too, for the same reason as in the destructor case. 

13. The return type in a derived class cannot be redefined to be different 
from the base class unless they are both pointer or both reference 
types, and the new return type is type-compatible with the original. 

14. If the base class has a constant member function F and the derived 
class attempts to define a nonconstant member function F with an 
otherwise identical signature, the compiler will warn that the 
derived F hides the base F. Heed the warning and find a way to 
work around it. 



Inheritance 

On the Internet 

Three self-contained files and a set of exception classes are available. 

Except.h Contains the exception hierarchy. 
Shape.cpp The Shape example. 
StaticBinding.cpp Contains the code in Figure 4.19 illustrating that 

parameters are statically bound. 
Hiding.cpp Contains the code shown in Figure 4.20, illustrat- 

ing how methods are hidden. 

Exercises 
- 

In Short 

4.1. Explain the rules for when to use virtual and nonvirtual functions. 

4.2. Which members of an inherited class can be used in the derived 
class? What members become public for users of the derived class? 

4.3. What is the default type of inheritance? 

4.4. What is private inheritance? What is composition? 

4.5. Consider the program presented in Figure 4.22. 
a. Which accesses are illegal? 
b. Make main a friend of class Base. Which accesses are illegal? 
c. Make main a friend of both Base and Derived. Which 

accesses are illegal? 
d. Write a three-parameter constructor for Base. Then write a five- 

parameter constructor for Derived. 
e. The class Derived consists of five integers. Which are accessi- 

ble to the class ~erived? 
f. The class Derived is passed a Base object. Which of the Base 

object members can the Derived class access? 

4.6. Explain polymorphism. 

4.7. Explain dynamic binding and when it is used. 

4.8. What is a pure virtual function? 

4.9. When should a constructor be virtual? 

4.10. When should a destructor be virtual? 

4.11. What is meant by parameters being statically bound? 



Exercises 

1 class Base 
2 { 
3 public: 
4 int bPubl ic ; 
5 protected: 
6 int bprotect ; 
7 private: 
8 int bprivate; 
9 1 ;  

10 
11 class Derived : public Base 
12 ( 

13 public: 
14 int dPublic; 
15 private: 
16 int dPrivate; 
17 } ;  

18 
19 int main( ) 

20 I 
21 Base b; 
22 Derived d; 
23 
24 cout << b.bPublic << " " << b.bProtect << " " <<  b.bPrivate 
25 << ' ' << d.dPublic << " " << d.dPrivate << endl; 
26 
27 return 0; 
28 } 

Figure 4.22 Program to test visibility. 

In Practice 

4.12. For the Shape example in Section 4.3 modify readshape and 
main by throwing and catching an exception (instead of creating a 
circle of radius zero) when an input error is detected. 

Programming Projects 

4.13. Rewrite the Shape hierarchy to store the area as a data member and 
have it computed by the constructor. Make a rea  a nonvirtual func- 
tion that returns only the value of this data member. 

4.14. Add the concept of a position to the Shape hierarchy by including 
coordinates as data members. Then add a distance member function. 



4.15. Write an abstract base class for Date and its derived class 
GregorianDate. 

4.16. Implement a taxpayer hierarchy that consists of a Taxpayer abstract 
class and the nonabstract classes Single payer and Marriedpayer. 
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Chapter 5 

Design Patterns 

In earlier chapters, we emphasized that a central goal of object-oriented pro- 
gramming is the support of code reuse. In this chapter we examine the tan- 
gential, but equally important, concept of idea reuse: the reuse of basic 
programming and design technique, rather than the reuse of actual code. 
Many of these techniques are known as design patterns. 

In this chapter, we show: 

the importance of design patterns; 
several examples of object-based design patterns, including the Func- 
tor, Adapter, Wrapper, Iterator, Composite, and Observer patterns; 
some sophisticated C++ programming tricks; and 
a brief discussion of object-oriented (inheritance-based) design 
patterns. 

5.1 What Is a Pattern? 
Although software design and programming are often difficult challenges, A design pattern 

many experienced software engineers argue that software engineering really describes a problem 
that occurs over and 

has only a relatively small set of basic problems. Perhaps this is an under- in 
statement, but it is true that many basic problems are encountered over and engineering and then 
over in software ~roiects .  Software engineers who are familiar with these describes the . ., ., 

solution in a problems, and in particular, the efforts of other programmers in solving 
generic 

these problems, have the advantage of not needing to "reinvent the wheel." manner to be 
The idea of a design pattern is to document a problem and its solution applicable in a wide 

so that others can take advantage of the collective experience of the entire variety Of contexts. 

software engineering community. Writing a pattern is much like writing a 
recipe for a cookbook; many common patterns have been written and, 
rather than expending energy reinventing the wheel, programmers can use 
these patterns to write better programs. Thus a design pattern describes a 
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problem that occurs over and over in software engineering and then 
describes the solution in a sufficiently generic manner as to be applicable in 
a wide variety of contexts. 

Like a recipe, design patterns usually follow a format. There are several 
formats for designing a pattern. Typically, a design pattern consists of 

1. the pattern name; 
2. the problem, including a specification of the problem the pattern 

solves, an explanation of why this problem is important, some 
applications of the problem, and examples of known uses; 

3. the solution, including a description of the classes in the patterns, 
possibly with a structure diagram, a generic (language independent) 
implementation of the pattern, with language-specific issues as 
appropriate, and sample code; and 

4. consequences, including the results and trade-offs of using the pat- 
tern and a discussion of related patterns. 

In this chapter, we discuss several patterns that are commonly used in 
object-based data structures. Our pattern specifications are not as formal as 
those just mentioned, but where reasonable, we provide some code and 
pointers to the use of the pattern elsewhere in the text. Toward the end of the 
chapter, we present some object-oriented patterns. 

5.2 The Functor (Function Objects) 

In Chapter 3, we showed how function templates can be used to write 
generic algorithms. As an example, the function template in Figure 5.1 can 
be used to find the maximum item in an array. 

However, the template has an important limitation: It works only 
for objects that have an operator< function defined, and it uses that 
operator< as the basis for all comparison decisions. In many situations 
this approach is not feasible. As an example, consider the Rectangle class 
in Figure 5.2. 

The Rectangle class does not have an operator<. The main reason 
that it doesn't is the number of plausible alternatives, so deciding on a good 
meaning for operator< is difficult. We could base the comparison on area, 
perimeter, length, width, and so on. As we showed in the Shape example in 
Section 4.3, once we have written operator< as a member function, we are 
stuck with it. 

Even without operator< as a member function, we could still write a 
two-parameter nonmember operator< and separate the comparison from the 
Rectangle class. Thus each time we write a new program, we can specify a 



The Functor (Function objects)- 

1 / /  Generic findMax for Comparables; uses natural order. 
2 / /  precondition: a.size( ) > 0. 
3 template <class Comparable> 
4 const Comparable & findMax( const vector<Comparable> & a ) 

5 I 
6 int maxIndex = 0; 
7 
8 for( int i = 1; i < a.size( ) ;  i++ ) 

9 if ( a[ maxIndex I < a[ i I 
10 maxIndex = i; 
11 
12 return a [ maxIndex I ; 
13 1 

Figure 5.1 A generic f indMax algorithm, which works only for Comparable 
objects and uses their natural order. 

1 / /  A simple rectangle class. 
2 
3 class Rectangle 
4 i 
5 public : 
6 Rectangle( int len = 0, int wid = 0 ) 

7 : length( len ) ,  width( wid ) { } 

8 
9 int getlength( ) const 

10 { return length; 1 
11 
12 int getwidth( ) const 
13 { return width; } 

14 
15 void print( ostream & out = cout ) const 
16 { out << "Rectangle " <c getlength( ) << " by " 
17 << getwidth ( ) ; } 

18 
19 private: 
20 int length; 
2 1 int width; 

22 1 ;  
23 
24 ostream & operator<< ( ostream & out, const Rectangle & rhs ) 

25 { 

26 rhs.print( out ) ; 

27 return out; 
28 1 

Figure 5.2 The Rectangle class, which does not have a meaningful opera tor<  
function. 
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The function object 
contains a method 
specified by the 
generic algorithm. An 
instance of the class 
is passed to the 
algorithm. 

Functor is another 
name for a function 
object. 

version of operatori for it. This approach is a slight improvement, but we can 
write only one operator< for a program. What if we want to have findMax, 
for example, work with several different comparison alternatives? 

The solution to the problem is to pass the comparison function as a sec- 
ond parameter to f indMax and have f indMax use the comparison function 
instead of assuming the existence of an operator<. Thus f indMax will 
now have two parameters: a vector of Object (which need not have any 
operatori defined), and a comparison function. 

The main issue left is how to pass the comparison function. Some lan- 
guages, including C++, allow parameters to be functions (actually they are 
pointers to functions). However, this solution often is inefficient and is not 
available in all object-oriented languages. 

Instead, a solution that works in all object-oriented languages is to use a 
function object. 

The function object-also call a functor-often contains no data but 
does contain a single method with a given name specified by the generic 
algorithm (in this case findMax). The object, which is simply an instance of 
the single-method class is then passed to the algorithm, which in turn calls 
the single method of the function object. We can design different compari- 
son functions by simply declaring new classes. Each new class contains a 
different implementation of the agreed-upon single method. An example is 
shown in Figure 5.3. 

The method f indMax now takes two parameters, the second of which is 
the function object. As shown on line 1 I ,  f indMax expects the function 
object to implement a method named isLessThan. (Specifically, i t  is 
expecting that isLessThan takes two parameters, both of type compatible 
with Ob j ec t, for whatever ob j ect turns out to be.) As the name of the 
function object parameter is comp, line I I calls the comparison function by 
comp. isLessThan. What is the type of comp? It can be any type (that has 
an isLessThan method), so we know that its type is a second template 
parameter. We use the symbolic name Comparator to signify its role. 
(~unctor would work also, but Comparator is a more specific name for 
this function object.) 

Once we've written f indMax, it can be called in main. To do so, we 
need to pass to f indMax a vector of Rectangle objects and a function 
object that has an isLessThan method. We implement a new class 
LessThanByWidth, which contains the required method. That method 
returns a Boolean, indicating whether the first rectangle is less than the sec- 
ond rectangle on the basis of widths. The main method simply passes an 
instance of LessThanByWidth to f indMax. 
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1 / /  Generic findMax, with a function object. 
2 / /  Uses a named method in the function object. 
3 / /  Precondition: a.size( ) > 0. 
4 template <class Object, class Comparator> 
5 const Object & findMax( const vector<Object> & a, 
6 Comparator comp ) 

7 I 
8 int maxIndex = 0; 
9 

10 for( int i = 1; i < a.size( ) ;  i++ ) 

11 if( comp.isLessThan( a[ maxIndex I ,  a[ i I ) ) 

12 maxIndex = i; 
13 
14 return a[ maxIndex 1 ;  
15 1 
16 
17 
18 / /  Compare object: ordering by length. 
19 class LessThanByWidth 
20 { 

21 public: 
22 boo1 isLessThan( const Rectangle & lhs, 
23 const Rectangle & rhs ) const 
24 { return lhs.getWidth( ) < rhs.getWidth( 1 ;  1 
25 } ;  

26 
27 int main ( ) 

28 I 
29 vector<Rectangle> a; 
30 . . . 
31 cout << findMax( a, LessThanByWidth( ) ) < <  endl; 
32 . . . 
33 1 

Figure 5.3 Example of a function object that does not use function call operator 
overloading. 

Observe that the LessThanByWidth object has no data members, Function objectscan 

which, as we've already stated, is usually true of function objects. Therefore be passed by using 
call by value.Their 

function objects are often passed by using call by value. Observe also that be inlined. 
when the f indMax template is expanded, the type of comp is known. Hence 
the definition of comp. isLessThan is also known. An aggressive compiler 
can perform the inline optimization of replacing the function call to 
cornp. isLessThan with the actual definition. In many cases, the ability of 
the compiler to perform this inline optimization can significantly decrease 
running time. 
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1 / /  Generic findMax, with a C++-style function object 
2 / /  Precondition: a.size( ) > 0. 
3 template <class Object, class Comparator> 
4 const Object & findMax( const vector<Object> & a, 
5 Comparator isLessThan ) 

6 ( 
7 int maxIndex = 0; 
8 
9 for( int i = 1; i < a.size( ) ;  i++ ) 

10 if ( isLessThan ( a [ maxIndex I , a [ i I ) ) 

11 maxIndex = i; 
12 
13 return a[ maxIndex 1 ;  
14 } 

Figure 5.4 The method f indMax with a C++-style function object. 

The function object technique is an illustration of a pattern encountered 
over and over, not just in C++, but in any language that has objects. In C++, 
an additional coding trick makes the code look much better in the generic 
algorithm and only slightly worse in the function object's class. 

The better looking f indMax is shown in Figure 5.4. It contains two 
basic changes. 

Line 10 now has the call to isLessThan, apparently without a con- 
trolling object. 
The method isLessThan is the parameter to f indMax. 

It appears that we are passing the method directly to f indMax and bypass- 
ing the function object. But that is not what is actually happening. Instead, 
we used the C++ trick of overloading the function call operator in the func- 
tion object itself. That is, because isLessThan is an object, line 10, which 
reads as 

if ( isLessThan ( a [ maxIndex I , a [ i I ) ) 

is actually interpreted as 

if ( isLessThan.operator() ( a[ maxIndex 1 ,  a[ i I ) ) 

The operator ( ) is The operator ( ) is the function call operator, much like operator [ I is 
the function call the array indexing operator. With this piece of C++ syntax, we can implement 
operator. various function objects in Figure 5.5. In Figure 5.6, we show a simple main  

that places some Rectangle objects in a vector and then, using the func- 
tion objects of types defined in Figure 5.5, finds the maximum Rectangle, 
first on the basis of length and then on the basis of area. 
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1 / /  Compare object: ordering by length. 
2 class LessThanByLength 
3 I 
4 public: 
5 boo1 operator( ) ( const Rectangle & lhs, 
6 const Rectangle & rhs ) const 
7 { return lhs.getLength( ) < rhs.getLength( ) ;  I 
8 1 ;  
9 

10 
11 / /  Compare object: ordering by area. 
12 class LessThanByArea 
13 { 
14 public: 
15 boo1 operator( ) ( const Rectangle & lhs, 
16 const Rectangle & rhs ) const 
17 { return lhs.getLength( ) * lhs.getWidth( ) < 
18 rhs. getlength ( ) * rhs. getwidth ( ) ; 1 
19 1; 

Figure 5.5 Use of two C++-style function objects to compare Rectangle 
objects. 

1 #include <iostream> 
2 #include <vector> 
3 using namespace std; 
4 
5 / /  main: create four rectangles. 
6 / /  find the max, using two different criteria. 
7 int main( ) 

8 I 
9 vector<Rectangle> a; 

10 
11 a.push-back( Rectangle( 1, 10 ) ) ;  

12 a.push-back( Rectangle( 10, 1 ) ) ;  

13 a.push-back( Rectangle( 5 ,  5 ) 1 ;  
14 a.push-back( Rectangle( 4, 6 ) ) ;  

15 
16 cout << "Largest length:\n\tU 
17 << findMax( a, LessThanByLength( ) ) << endl; 
18 cout << "Largest area:\n\tU 
19 << findMax( a, LessThanByArea( ) << endl; 
20 
2 1 return 0; 

22 1 

Figure 5.6 Sample program that illustrates f indMax with two different 
comparison functions. 
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5.3 Adapters and Wrappers 

A wrapper class 
stores a primitive 
type and adds 
operations that the 
primitive type does 
not support or does 
not support correctly. 

An adapter class is 
used when the 
interface of a class is 
not exactly what is 
needed. 

The Pointer stores, 
as a data member, a 
pointer to a 
Comparable. 

When we implement algorithms, we often run into a language typing prob- 
lem: We have an object of one type, but the language syntax requires an 
object of a different type. Sometimes a type conversion works, but often we 
need a little more. 

For instance, in Section 4.3, we showed that sorting pointers to shapes 
did not quite work because operator< is already defined for pointers. Con- 
sequently, we needed to define a new class that stored the pointer and 
defined a meaningful operator<. 

This technique illustrates the basic theme of a wrapper class, which 
typically stores a primitive type and adds operations that the primitive type 
either does not support or does not support correctly. A similar concept is an 
adapter class, which is typically used when the interface of a class is not 
exactly what is needed and provides a wrapping effect while changing the 
interface (in a manner similar to electrical adapters). 

One difference between wrappers and adapters is that often an adapter is 
implemented by private inheritance. implementation via private inheritance 
often is not available for wrapper classes that wrap a primitive (and therefore 
a nonclass) type. In this section we illustrate some uses of wrapper classes 
and also provide an example of an adapter class. 

5.3.1 Wrapper for Pointers 

Here, we illustrate two wrapper templates for pointers. Our first template is 
based on the Shape example in Section 4.3. We use it when we discuss indi- 
rect sorting in Section 9.9. The second example illustrates a casual imple- 
mentation of the newly standardized autostr class. This wrapper is used 
to add limited destructorlike behavior to pointers. 

Pointers for Sorting 
Our first wrapper is the class template Pointer, shown in Figure 5.7. The 
Pointer stores, as a data member, a pointer to a Comparable. We can then 
provide a comparison operator for the Pointer type. 

The data member pointee is declared in the private section at line 17. 
The constructor for the Pointer class requires an initial value for pointee 
(which defaults to NULL if omitted), shown at line 7. 
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1 / /  Class that wraps a pointer variable for sorting. 
2 
3 template <class Comparable> 
4 class Pointer 
5 ( 
6 public: 
7 explicit Pointer( Comparable *rhs = NULL ) 

8 : pointee( rhs ) { } 

9 boo1 operator<( const Pointer & rhs ) const 
10 { return *pointee < *rhs.pointee; } 
11 operator Comparable * ( ) const 
12 { return pointee; 1 
13 Comparable * get( ) const 
14 { return pointee; 1 
15 
16 private: 
17 Comparable *pointee; 
18 1 ;  

Figure 5.7 The Pointer class, which wraps a pointer variable for sorting. 

Classes that encapsulate the behavior of a pointer are called smart 
pointer classes. This class is smarter than a plain pointer because it auto- 
matically initializes itself to NULL if no initial value is provided. 

Implementing operator< is identical to the approach used in the 
PtrToShape class in Figure 4.18. As was done there, we just apply the < 
operator to the Comparable objects that are being pointed at. Note that this 
is not circular logic. The (template) operator< at line 9 in the class 
Pointer compares two Pointer types; the call at line 10 compares two 
Comparable types. 

Line 11 shows bizarre C++ syntax at its finest: the type conversion oper- 
ator. This method defines a type conversion from Pointer<Comparable> 
to Comparable * .  The implementation is simple enough: We just return 
pointee at line 12, allowing us to get at the pointer. Although we could 
have used a named member function, such as get, at line 13, this type con- 
version simplifies the largeob j ec t Sort algorithm presented later in Fig- 
ure 9.9. 

These type conversions are great when they work, but they can cause 
unexpected problems. Consider the code in Figure 5.8. We provided 
operator ! =, and to avoid any suspicious compiler bugs, we wrote it as a 
real function instead of a function template. 

Classes that 
encapsulate the 
behavior of a pointer 
are called smart 
pointer classes. 

Type conversions can 
cause unexpected 
problems. 
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1 / /  Define ! =  for two Pointer<int> objects. 
2 boo1 operator!= ( const Pointer<int> & lhs, 
3 const Pointer<int> & rhs ) 

4 { 

5 return lhs < rhs I I rhs < lhs; 
6 1 
7 
8 int main( ) 

9 I 
10 int *p = new int ( 3 ) ; 

11 Pointer<int> q (  new int( 4 ) ) ;  

12 
13 if( q ! =  p ) / /  Compare pointed-at objects??? 
14 cout << "q  and p are different" << endl; 
15 return 0 ;  

16 1 

Figure 5.8 Ambiguity with dual-direction type conversions. 

Suppose that the constructor at line 7 in Figure 5.7 was not declared 
with explicit. In this case line 13 in Figure 5.8 would not compile 
because an ambiguity would be created. We can either convert q to an int * 
and use the ! = operator defined for primitive pointer variables, or we can 
promote p to a Pointer<int>, using the constructor, and then use the ! = 

defined for Pointer<int. This ambiguity is a direct consequence of the 
fact that two types have implicit conversions to each other. This is a dual- 
direction implicit conversion. 

Avoid dual-direction There are lots of ways out of this quandary (for instance, you can make 
implicit the Pointer constructor explicit as was done in Figure 5.7).  You should 
in any nontrivial 
class. generally avoid dual-direction implicit conversions in any nontrivial class. If 

you always use explicit or never use type conversion operators, you 
won't have this problem. 

The recently adopted C++ standard contains a new wrapper class called the 
auto-gtr, which helps automatically delete dynamically allocated objects. 
This class is intended to help solve three common C++ pointer problems. 

The auto-g tr  Recall that, if an ob-ject is dynamically allocated by a call to new, it must 
wraps a eventually be freed by a call to delete. Otherwise, we can have a memory 
its destructor calls 
delete. (or other resource) leak. The autostr helps do this task automatically by 
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wrapping the pointer inside the auto-ptr class and then having the 
auto-ptr destructor call delete. The auto-ptr class is designed for 
three scenarios. 

In the first scenario, inside a function a local pointer variable allocates, scenario I : We need 

via new, an object that has local scope only. When the function returns, the a local 
dynamically allocated 

object is expected to be freed by a call to delete. Typical code looks like: object. 

void func i ) 
I 

Object *obj = new Object( . . .  ) ;  

. . .  
delete obj; 

1 

This code seems simple enough, but some dangers are lurking. If f unc has 
multiple returns, we must ensure that delete is always reached. And if 
func throws an uncaught exception, the delete never occurs. However, as 
destructors are always called when a function exits (even if via an uncaught 
exception), if the pointer is wrapped inside an ob-ject whose destructor calls 

- - 

delete, the memory will be reclaimed. 
The second scenario is a function that allocates an object and returns a scenario 2: We need 

pointer to it. The caller is now expected to call delete when it no longer an Object 
created and returned 

needs the object. Typical code looks like: from a completed 
function call. 

Object *funcl( ) 

i 
Object *objl = new Object( . . . 1 ;  

. . . 
return objl; 

void func( ) 

i 
Object *obj = funcl( i ; 

. . .  
delete obj; 

1 

This scenario has problems similar to those of the first scenario (we must be 
sure to reach the delete in all cases). except that we must ensure that 
delete is not called in f uncl. 



Scenario 3: We need A third scenario is a function that allocates an object and then calls 
to delete a another function, with the expectation that the other function will clean up, 
dynamically allocated 
object created by the in 
calling function. 

v o i d  f u n c (  Object  *obj  ) 

. . . 
d e l e t e  o b j ;  

1 

vo id  f u n c l (  ) 

Object  * o b j l  = new O b j e c t (  . . .  ) ;  

Do not use 
auto-ptr for more 
than intended by its 
designers. 

The destructor calls 
delete if it owns the 
pointee. 

The release 
method gives up 
ownership of the 
pointee. 

Here funcl creates an object, sends a pointer to it to func and expects 
func to eventually call delete. These tasks are all that auto-ptr is 
expected to be used for. Fancier automatic garbage collection requires more 
sophisticated logic. 

The basic property of the auto-ptr wrapper is as follows. It wraps the 
pointer variable (thus storing the value of the pointer as the pointee data 
member). It also indicates whether it is the owner of the pointer (as a Bool- 
ean isowner). If it is the owner, then when its destructor is called it must 
apply the delete operator to the pointer. When a copy is performed, owner- 
ship is transferred. 

Figure 5.9 illustrates our version, the AutoPointer. The basic con- 
structor is shown starting at line 7. It simply sets pointee and isowner. 
The destructor calls the private member function free, which itself calls 
delete if the AutoPointer is the owner (of pointee). Lines 37 and 38 
implement some of the same logic used in the Pointer class earlier in this 
section. The code in lines 33 to 36 implements the dereferencing operator 
(which is the equivalent of *pointee) and - >  (which is the equivalent of 
pointee). 

Only three other methods are left: release, the copy constructor, and 
operator=. The release method (lines 39 and 40) gives up ownership, 
but otherwise behaves like get. It can be called when control is transferred 
by a copy operation. 

Thus, in the copy constructor at lines LO and 1 1 ,  instead of copy- 
i n g  the  po in te r  va lue  wi th  pointee=rhs .pointee, we use  
rhs . pointee . release ( ) on the right-hand side. rhs's ownership is 
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1 / /  Class that wraps a local pointer variable. 
2 
3 template <class Object> 
4 class AutoPointer 
5 i 
6 public: 
7 explicit AutoPointer( Object *rhs = NULL 1 
8 : isowner( rhs ! =  NULL ) , pointeej rhs I I 1 
9 
10 AutoPointer( AutoPointer & rhs ) : isowner( rhs.is0wner ) 
1 1  { pointee = rhs.release( ) ;  1 
12 
13 -AutoPointer ( ) 

14 I free( 1 ;  1 
15 
16 const AutoPointer & operator= ( AutoPointer & rhs ) 

17 i 
18 if ( this ! =  &rhs ) 

19 ( 

20 Object *other = rhs.get( ) ;  

21 if( other ! =  pointee ) / /  Different pointees, so 
22 i 
23 free( 1 ;  / /  Give up current pointer 
24 isowner = rhs.is0wner; / /  Assume ownership 
25 1 
26 else if( rhs.is0wner ) / /  Same pointers 
27 i sOwner = true ; / /  If rhs owned it, now I do 
28 pointee = rhs.release( ) ; / /  Copy pointee, rhs drops ownership 
29 } 

30 return *this; 
3 1 1 
32 
33 Object & operator* ( ) const 
34 i returri *get ( 1 ; 1 
35 Object "perator-> ( ) const 
36 i return get( 1 ;  } 

37 Object * get( ) const 
38 { returr~ pointee; 1 
39 Object * release( 
40 { isowner = false; return pointee; 1 
41 
42 private: 
43 Object "pointee; 
44 boo1 isowner; 
45 
46 void free ( 1 
47 { if( isowner ) delete pointee; 1 
48 ) ;  

Figure 5.9 The auto-ptr class (we use the name ~utopointer) 
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relinquished by the call to release and transferred to the newly constructed 
object via the initializer list. 

The most complicated routine is the copy assignment operator, shown at 
lines 16-3 1 .  The main complication is that, before copying into the target, 
we must call delete on the target's current pointee if the target owns it 
(and the target's current pointee is different from the new pointee). 

The code is extremely tricky; almost any change breaks it. After taking 
care of aliasing (line 18), we have two basic cases. Either both pointees are 
the same or they are different. If they are different, then the target pointee is 
freed (line 23), we assume ownership if rhs had ownership (line 24), and 
then we copy the pointee (line 28). Note carefully, that at line 28, rhs 
always gives up ownership if it had it. Otherwise, the pointees are different. 
In that case, if rhs had ownership, we take it over (line 27) prior to copying 
the pointee (line 28) (and relinquishing ownership). Note also that if the cur- 
rent AutoPointer had ownership at the start, then it still does. 

Member templates The main difference between this implementation and the implementa- 
allow us to declare tion in the C++ standard is behavior under inheritance. S~ecificallv, let us 
member function 
templates, using consider the classes Base and Derived, as usual. Although a Derived* 
additional template value can be copied into a Base* value, an AutoPointer<Der ived> 
types. object cannot be copied into a AutoPointer<Base> object in our imple- 

mentation. Adding this functionality requires using member templates, 
which allow us to declare member function templates, using additional tem- 
plate types. For instance, the copy constructor would look like: 

template <class Otherobject> 
AutoPointer( AutoPointer<OtherObject> h rhs j 

: isowner( rhs.is0wner ) { pointee = rhs.release( j ;  1 

The main difference In this scenario, we define the construction (no longer a copy constructor) of 
between this an AutoPointer of one type with an autopointer of any other type. 
implementation and 
the implementation in However, the assignment statement will generate a compiler error if the 
the C++ standard is underlying pointees are not type compatible. 
behavior under Although this is a neat solution, member templates unfortunately are a 
inheritance. recent language addition that is not supported on all compilers. 

5.3.2 A Constant Reference Wrapper 

A reference variable Reference variables in C++ are different from pointer variables in several 
must reference an ways. One important difference is that, whereas pointer variables can point 
object. Sometimes 
this requirement is at either an object or NULL, a reference variable must reference an object. 
unfortunate. Sometimes this requirement is unfortunate. For instance, when we search for 

an object in an arbitrary container, we may want to return a reference to it. 
But what if the object is not found? 
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1 / /  Class that wraps a constant reference variable. 
2 / /  Useful for return value from a container find method. 
3 
4 template <class Object> 
5 class Cref 
6 I 
7 public: 
8 Cref ( ) : obj ( NULL ) { } 

9 explicit Cref( const Object & x ) : obj ( &x ) { 1 
10 
11 const Object & get( ) const 
12 { 

13 if ( isNull( ) ) 

14 throw NullPointerException( ) ;  

15 else 
16 return *obj; 
17 } 

18 
19 boo1 isNull( ) const 
20 ( return obj == NULL; } 

21 
22 private: 
23 const Object *obj; 
24 1 ;  

Figure 5.10 Constant reference wrapper. 

The solution, as usual, is to wrap the behavior of a reference variable C r e f  wraps the 

inside a class. Our class, Cref, shown in Figure 5.10, mimics a constant ref- Of a 
reference variable 

erence variable. (Alternatively, we could implement a simple reference class inside a class. 
and even use inheritance to make the reference and constant reference 
classes type compatible; we leave this for you to do as Exercise 5.18.) The 
implementation is short. 

We store a pointer to the referenced obiect as a private data member. The C r e f  provides an 

pointer is initialized in the constructor. but it is NULL if Cref is constructed isNull that 
returns true if the 

with no parameters. We provide a get method that returns the constant ref- reference is 
erence and an i sNull method that returns true if the null reference is being represented. 

being represented. 

5.3.3 Adapters: Changing an Interface 

The adapter pattern is used to change the interface of an existing class to Theadapter pattern is 

conform to another. Sometimes it is used to provide a simpler interface, change the 
interface of an either with fewer methods or easier-to-use methods. At other times it is used class to 
conform to another. 
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1 / /  A class for simulating a memory cell. 
2 
3 template <class Object> 
4 class Storagecell : private MemoryCell<Object> 
5 { 

6 public: 
7 explicit Storagecell( const Object & initialvalue 
8 = Object( ) ) 

9 : MemoryCell<Object>( initialvalue ) { 1 
10 
11 const Object & get( ) const 
12 ( return read( ) ;  1 
13 void put( const Object & x ) 

14 ( write( x ) ; 1 
15 1 ;  

Figure 5.11 An adapter class that changes the MemoryCell interface to use get 
and put. 

simply to change some method names. In either case, the implementation 
technique is similar. 

For example, in our MemoryCell class in Section 3.4 we use read and 
write. But what if we wanted the interface to use get and put instead? There 
are two reasonable alternatives. One is to use composition. Doing so, however 
means, for instance, that a call to get will then call read, thus adding an extra 
layer of overhead. The other alternative is to use private inheritance. 

We use private inheritance to implement the new class, s toragecell, 
in Figure 5.1 1. Its methods are implemented by calls to the base class meth- 
ods. As discussed in Section 4.4.5, in private inheritance, public methods in 
the base class are private in the derived class. Thus, as Figure 5.12 illus- 
trates, the only visible methods are the storagecell constructor, get, and 
put. 

lterators 
An iterator is the Consider the problem of printing the elements in a collection. Typically, the 
Object that collection is an array, so assuming that the object v is an expanded vector 
iteration of a 
collection. template, its contents are easily printed with code like 

for( int i = 0; i < v.size( ) ;  i++ ) 

cout << v [ i I << endl; 
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1 int main( ) 

2 i 
3 StorageCell<int> ml; 
4 StorageCell<string> m2 ( "hello" ) ; 
5 
6 ml.put( 37 ) ;  

7 m2.put( m2.get( ) + " world" ) ;  

8 cout << ml.get( ) << end1 << m2.get( ) <c endl; 
9 

10 / /  The next line does not compile if uncornrnented. 
11 / /  cout << ml.read( ) << endl; 
12 return 0; 
13 1 

Figure 5.12 An illustration of private inheritance, in which the MemoryCe11 
methods are no longer visible. 

In this loop, i is an iterator. An iterator is the object used to control the iter- 
ation of a collection. However, using the integer i as an iterator constrains 
the design: We can store the collection only in an arraylike structure. A more 
flexible alternative is to design an iterator class that encapsulates a position 
inside a collection. The iterator class provides methods to step through the 
collection. 

The key is the concept of programming to an interface: We want the When we program to 

code that performs access of the container to be as independent of the type an we write 
code that uses the 

of the container as possible. To get this code we only use methods that are most abstract 
common to all containers and their iterators. methods. These 

Of the many different possible iterator designs, we describe three here, methodsare then 
applied to actual in increasing order of complexity. Iterators are a core component of the STL, 

and their design is similar (but of course, slightly more complex) to our sec- 
ond design in Section 5.4.2. In Chapter 7, we discuss STL iterators. They are 
used throughout the case studies in Part 111, and some implementations of 
these iterators and the collections that they iterate are provided in Part IV. 

5.4.1 lterator Design 1 

In our first iterator design we use only three methods. The container class The ge t I t e ra to r  

is required to provide a get Iterator method, which returns an appropri- method returns an 
appropriate iterator 

ate iterator for the collection. The iterator class has the other two methods: for the collection. 
hasNext returns true if the iteration has not yet been exhausted; and next 
returns the next item in the collection (and in the process, advances the 
notion of the current position). This iterator interface matches one that is 
provided in the Java programming language. 
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1 int main( ) 

2 { 
3 MyVector<int> v; 
4 
5 v.push-back( 3 ) ;  

6 v.push-back( 2 ) ;  

7 
8 cout << "Vector contents: " << endl; 
9 

10 VectorIterator<int> itr = v.getIterator( ) ;  

11 while( itr .hasNext ( ) ) 

12 cout << itr.next( ) << endl; 
13 
14 return 0 ;  

15 1 

Figure 5.13 The main method to illustrate iterator design 1. 

1 template <class Object> 
2 class VectorIterator; 
3 
4 / /  Same as the vector, but has a getIterator method. 
5 / /  No extra data, no overridden methods, so non-virtual 
6 / /  destructor in original vector is OK! 
7 
8 template <class Object> 
9 class MyVector : public vectoriObject> 

10 { 
11 public: 
12 explicit Myvector( int size = 0 ) 

13 : vectoriObject>( size ) { } 

14 
15 VectorIterator<Object> getIterator( ) const 
16 { return VectorIteratoriObject>( this ) ;  1 
17 } ;  

Figure 5.14 The MyVector class, designs 1 and 2. 

To illustrate the implementation of this design, we write the collection 
and iterator class templates, MyVec tor and vector It era tor, respec- 
tively. W e  show their use in Figure 5.13 and the code for MyVector in Fig- 
ure 5.14. To simplify matters, we inherit from the vector class. The only 
difference between MyVec tor and vector is its get I terator method. 
(The use of inheritance here has nothing to do with the iterator pattern.) 
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1 / /  A passive iterator class. Steps through its MyVector. 
2 
3 template <class Object> 
4 class VectorIterator 
5 ( 

6 public: 
7 VectorIterator( const MyVector<Object> *v ) 

8 : owner( v ) ,  count( 0 j ( 1 
9 

10 boo1 hasNext( ) const 
11 { return count ! =  owner->size( ) ;  1 
12 
13 const Object & next ( j 

14 return (*owner) [ count++ 1 ;  } 

15 
16 private: 
17 const MyVector<Object> *owner; 
18 int count; 
19 I ;  

Figure 5.15 Implementation of the Vector1 terator, design 1 

The getIterator method simply returns a new iterator; note that the The iterator is 

iterator must have information about the container that it is iterating over. with a 
pointer to the 

Thus the iterator is constructed with a pointer to the vector. The only other that it 
method in MyVector is the constructor, which simply calls the base class iterates over. 
constructor. Because we are using public inheritance, it would be proper to 
change the vector class's destructor to be virtual, if possible. However, in 
this case it does not matter because MyVector adds no extra data members. 
As a result, this case turns out to be a nice example of public inheritance. 

Lines 1 and 2 represent an incomplete class declaration. This particular An incomplete class 

declaration states that VectorIterator is a class template, but it does not is 
necessary when two 

provide the class definition. However, this declaration is enough to make line or ,,,, c,asses refer 
16 compile. An incomplete class declaration is used to inform the compiler to each circularly. 

of a class and is necessary when two or more classes refer to each circularly. 
Figure 5.15 shows the code for vector ~t erator. The iterator keeps 

both a variable (count) that represents the current position in the vector 
and a pointer to the vector. The implementation of the constructor and two 
member functions is straightforward. The constructor directly initializes 
the data members in the initializer list, hasNext simply compares the cur- 
rent position with the vector size, and next uses the current position to 
index the array (and then advances the current position). Note the use of 
const throughout-to ensure that this iterator makes no attempt to modify 
the container. 
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The second design 
puts more 
functionality in the 
iterator. 

The STL iterator has 
some commonality 
with our second 
design, but there also 
are some important 
differences. 

An inheritance-based 
iteration scheme 
defines an iterator 
abstract base class. 
Clients program to 
this interface. 

5.4.2 lterator Design 2 

A limitation of our first iterator design is the relatively limited interface. 
Resetting the iterator to the beginning is impossible, and the next method 
couples access of an item with advancing. Our second design, shown in Fig- 
ure 5.16. puts more functionality in the iterator but leaves the MyVec tor 
class unchanged. 

The STL iterator has some commonality with our second design. but 
there also are some important differences. Lt is similar in that the methods to 
advance and retrieve are separate. It 1s different in that the STL iterator can 
make changes to the underlying collection. 

Another difference is that the STL iterator does not have isValld or 
reset methods. Instead. the container has a method to return an invalid iter- 
ator and a method to return an iterator representing the starting point. We can 
test whether an iterator is in an invalid state by comparing it with the invalid 
iterator given by the container. We can reset the iterator by copying the start- 
ing point iterator into it. The STL also makes extensive use of operator over- 
loading. For example, advance is replaced with operator++. Details of 
using STL iterators are presented in Chapter 7. 

5.4.3 Inheritance-Based lterators and Factories 

In the iterators that we have designed so far we have managed to abstract the 
concept of iteration into an iterator class. This approach is good, because it 
means that, if the collection changes from an array-based collection to some- 
thing else, we do not need to change the basic code, as in lines 38 and 39 in 
Figure 5.16. 

This is a significant improvement, but changes from an array-based col- 
lection to something else also require that we change all the declarations of 
the iterator. For instance, in Figure 5.16. we would need to change line 33. 
We discuss an alternative to doing that in this section. 

Our basic idea is to define an abstract base class Iterator. Corre- 
sponding to each different kind of container is an iterator that implements 
the Iterator protocol. In our example. this approach gives three classes: 
MyVec tor, I tera tor, and vec tor1 terator. The relationship that holds 
is VectorIterator IS-A I terator. The reason we use this approach is 
that each container can now create an appropriate iterator but pass it back as 
an abstract Iterator. To iterate through the container, we must use only 
methods defined in the abstract Iterator class. The technique of using 
classes by writing in terms of the most abstract interface is known as pro- 
gramming to an interface. 



1 / /  A passive iterator class. Steps through its Myvector. 
2 
3 template <class Object> 
4 class VectorIterator 
5 i 
6 public: 
7 VectorIterator[ const ~y~ector<Object> *v ) 

8 : owner ( v ) , count( 0 ) { } 

9 
10 void reset ( ) 

11 { count = 0; } 
12 
13 boo1 isValid( ) const 
14 { return count < owner->size( ) ;  } 

15 
16 void advance ( ) 

17 { count++; 1 
18 
19 const Object & retrieve( ) const 
20 { return ("owner) [ count I ; 1 
21 
22 private: 
23 const MyVector<Object> *owner; 
24 int count; 
25 1; 
26 
27 int main( ) 

28 i 
29 MyVector<int> v; 
30 
31 v.push-back[ 3 ) ;  

32 v.push-back( 2 ) ;  

33 VectorIterator<int> itr = v.getIterator( ) ;  

34 
35 for( int i = 0; i < 2; i++ ) 

36 { 

37 cout << "Vector contents: " <<  endl; 
38 for( itr.reset( ) ;  itr.isValid( ) ;  itr.advance( ) ) 

39 cout << itr.retrieve( ) <<  endl; 
40 1 
41 
42 return 0; 
43 3 

Figure 5.16 A new VectorIterator, with some additional functionality, and a 
test program. 
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The inheritance- 
based scheme 
introduces pointers 
(or references). The 
iterators are now 
allocated by new. 

A factory method 
creates a new 
concrete instance but 
returns it by using a 
pointer (or reference) 
to the abstract class. 

1 template <class Object> 
2 class Iterator; 
3 
4 template <class Object> 
5 class VectorIterator; 
6 
7 / /  Same as the vector, but has a getIterator method. 
8 / /  No extra data, no overridden methods, so non-virtual 
9 / /  destructor in original vector is OK! 

10 
11 template <class Object> 
12 class MyVector : public vector<Object> 
13 I 
14 public: 
15 explicit Myvector( int size = 0 ) 

16 : vector<Object>( size ) { } 

17 
18 Iterator<Object> *getIterator( ) const 
19 { return new VectorIterator<Object>( this ) ;  1 
20 1; 

Figure 5.17 An inheritance-based iterator design, in which getIterator 
returns a pointer to an iterator. 

Figure 5.17 shows the new MyVector, which returns a pointer to an 
Iterator object that is dynamically constructed by calling new. Because 
Vector1 terator IS-A I terator, we can safely do so. Note that the use 
of inheritance and polymorphism require that we introduce pointers or refer- 
ences. Doing so muddies the code a bit, which is one reason why the STL is 
template based, rather than inheritance based. 

Because getIterator creates and returns a new Iterator object, 
whose actual type is unknown, it is commonly called a factory method. In 
general, a factory method creates a new concrete instance but returns it by 
using a pointer (or reference) to the abstract class. The iterator classes are 
shown in Figure 5.18. First, we have the abstract class Iterator, which 
serves simply to establish the protocol by which all subclasses of Iterator 
can be accessed. The protocol is specified with pure virtual functions. As 
usual, we have a virtual destructor. In order to keep the code short, we use 
the simplest protocol-that seen in design I (Section 5.4.1 ). 

This version of ~ e c  t or I t era t or is essentially identical to the original 
implementation shown in Figure 5.15, except that it is a derived class of 
Iterator. 
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1 / i  A passive iterator class protocol. 
2 / i  Steps through its container. 
3 
4 template <class Object> 
5 class Iterator 
6 { 
7 public: 
8 virtual -Iterator( ) { 1 
9 

10 virtual boo1 hasNext( ) const = 0; 
11 virtual const Object & next( ) = 0; 
12 } ;  

13 
14 
15 / /  A concrete implementation of the iterator. 
16 / /  Could have been nested inside of Myvector! 
17 
18 template <class Object> 
19 class VectorIterator : public IteratoriObject> 
20 I 
21 public: 
22 VectorIterator( const MyVector<Object> *v ) 

23 : owner ( v ) , count ( 0 ) { } 

24 
25 boo1 hasNext( ) const 
26 { return count ! =  owner->size( ) ;  1 
27 
28 const Object & next( ) 

29 { return (*owner)[ count++ 1 ;  } 

30 
31 private: 
32 const MyVectoriObject> "owner; 
33 int count; 

34 1 ;  

Figure 5.18 The iterator abstract class and a concrete implementation. 

Figure 5.19 demonstrates how the inheritance-based iterators are used. At Nowhere in main is 

line 10, the declaration of i tr : is now a pointer to an I terator. Nowhere in there any of 
the actual iterator 

main is there any mention of the actual VectorIterator type. In fact, we 
type. 

could have written vector1 terator as a nested class in the private section 
of ~ y ~ e c  t or. The fact that a vec t or1 t erat or exists does not affect any cli- 
ents of the MyVector class. This is a neat design and illustrates nicely the idea 
of hiding an implementation and programming to an interface. 

The changes to main are relatively minimal. Lines 1 1 and 12 change 
because we must use operator-> instead of the dot operator. 
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1 int main( ) 

2 { 

3 MyVector<int> v; 
4 
5 v.push-back( 3 ) ;  

6 v.push-back( 2 ) ;  

7 
8 cout << "Vector contents: " << endl; 
9 

10 Iterator<int> *itr = v.getIterator( ) ;  

11 while( itr->hasNext( ) ) 

12 cout << itr->next( ) << endl; 
13 
14 delete itr; 
15 
16 return 0; 
17 1 

Figure 5.19 An illustration of the use of iterators in inheritance-based design. 

The dynamically Line 14 illustrates a disadvantage: The dynamically allocated iterator 
allocated iterator must be reclaimed by calling d e l e t e .  Remembering to do so all the time is 
must be reclaimed by 
calling delete. annoying. However, if we examine this situation closely, we can see a classic 

application of scenario #2 for the a u t o - p t r .  Recall from Section 5.3.1 
- - 

(page 165) that in this scenario an object is allocated inside a function (in 
this case, g e t ~ t e r a t o r )  and is returned to the caller. The caller is responsi- 
ble for handling d e l e t e ,  which is exactly the situation in Figure 5.19. Thus 
although inconvenient, there is some support in the language to make our 
life easier. 

By the way, recall that at the end of Section 5.3.1 (beginning on page 
168), we explained that our version of ~ u t  o ~ o i n t e r  differed from the STL 
a u t o -  p t r  because that version allows any compatible pointers to be 
wrapped, whereas our version requires an exact type match. We also 
explained that member templates could be used to loosen the requirement of 
an exact type match. Looking at how a u t o - p t r  would be used here, we see 
that we would need to do the following. 

1. In Figure 5.19, line 10, i t r  would be an a u t o - p t r ,  and line 14 
would disappear. 

2. In Figure 5.17, g e t I t e r a t o r  would be rewritten to return an 
a u t o - p t r  (line 18), and the result of new would be wrapped 
inside an a u t o - p t r  (line 19). 
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These changes to getIterator give the implementation that replaces 
lines 18-19 of Figure 5.17. 

auto-ptr<Iterator<Object> > getIterator( ) const 
{ return a u t o q t r < I t e r a t o r < O b j e c t >  > (  new 

VectorIterator<Object>( this ) ) ;  ) 

The construction of an auto- ptr<I terator<Obj ect> >, with a 
Vec tor1 terator<Ob j ec t z pointer, implies that we need the STL version. 

5.5 Composite (Pair) 
In most languages, a function can return only a single object. What do we 
do if we need to return two or more objects? There are two possibilities: 
One is to use reference variables; the other is to combine the objects into a 
single s truct (or class). The most common situation in which multiple 
objects need to be returned is the case of two objects. So a common design 
pattern, the Composite pattern, stores two objects in one entity. We return 
them as a pair. 

In addition to the situation just described, pairs are useful for imple- 
menting maps and dictionaries. In both these abstractions, we maintain 
key-value pairs: Pairs are added to the map or dictionary; we then search 
for a key, returning its value. One common way to implement a map is to 
use a set, in which we have a collection of items and search for a match. If 
the items are pairs-and the match criterion is based exclusively on the 
key component of the pair-we can easily write an adapter class that con- 
structs a map on the basis of the set. We explore this idea in more detail in 
Chapter 19. 

The STL defines a pair class. An implementation is shown in Fig- 
ure 5.20. Note that it is a class only in the technical sense; the data members 
are public. 

5.6 Observer 
Our last pattern is the Observer pattern, the use of which involves a subject 
and a set of observers; the observers are informed whenever something 
interesting happens to the subject. The number of observers can vary as the 
application runs and can be large. 

A simplistic example of an Observer pattern is a windowing operating 
system, such as Windows or Mac 01s. When a window is created or maxi- 
mized, it covers other windows. The windows that are covered are now 
observers in the sense that they want to be informed when the newly created 

A common design 
pattern is to return 
two objects as a pair. 

Pairs are useful for 
implementing key- 
value pairs in maps 
and dictionaries. 

The STL defines a 
pair class. 

The Observer pattern 
involves a subject 
and a set of 
observers. The 
observers are 
informed whenever 
something interesting 
happens to the 
subject. 
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1 / /  Class (more like a struct) that stores 
2 / /  a pair of objects. 
3 
4 template <class Typel, class Type2> 
5 class pair 
6 I 
7 public: 
8 Type1 first; 
9 Type2 second; 

10 pair( const Type1 & f = Typel( ) ,  

11 const Type2 & s = Type2 ( ) ) 

12 : first( f ) ,  second( s )  { } 

13 1 ;  

Figure 5.20 The pair class (basically the same as the STL version). 

window is minimized or destroyed-or simply moved-as this action might 
require that the previously hidden windows b e  redrawn. 

Another example might be a class that wraps pointers. Several wrapper 
objects may be sharing a pointee that is pointing at some dynamically allo- 
cated object. If one instance of the wrapper calls delete on the dynamically 
allocated object, the other wrappers have stale pointers, which gives unde- 
fined behavior that can be hard to detect. A solution is that when the delete 
is performed, we inform all the wrappers that are looking at that deleted 
object, perhaps setting their pointees to NULL to ensure defined behavior. 

Figure 5.21 contains an abstract base class Observer and a base class 
(which could be abstract, but is not) for the observee Subject. 

The Observer The Observer abstract class specifies a protocol: when something 
abstract class interesting happens, Observer is told about it by having its update method 
specifies a protocol: 
when something called. A subclass can override update to handle the interesting occurrence. 
interesting happens, For instance, in our windowing example, the observer windows will have - . .  

Observer is told their u~date method called when the window that was coverinrr it is no u 

about it by having its 
update method 

longer in the way. The update method could redraw an appropriate portion 
called. of the screen. 
The Subject class The Subject class is not abstract (but see Exercise 5.7). Instead it 
defines meth0ds defines methods to add an observer, remove an observer, and notify all 
add an observer, 
remove an observer, observers that something has happened. It does so by keeping an internal list 
and notify all of all registered observers (possibly in a vector). The implementations of 
observers that addobserver and removeobserver are in the online code. 
something has 
happened. An illustration of the Observer pattern in action is shown in Figure 5.22. 

There we have a subject, which is a Timer object, and we have ~ c h o  
objects, which are the interested observers. The Timer object has a tick 
method; whenever the tick method is called, any ~ c h o  objects that are 
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1 class Subject; 
2 
3 class Observer 
4 { 

5 public: 
6 virtual -Observer( ) { } 

7 virtual void update( Subject "observee ) = 0; 

8 } ;  
9 

10 class Subject 
11 I 
12 public: 
13 virtual -Subject( ) { } 

14 
15 / /  Add obs to the set of observers; see online code. 
16 virtual void addobserver( Observer *obs ) ;  

17 
18 / /  Remove obs from the set of observers. 
19 virtual void removeobserver( Observer *obs ) ;  

20 
21 / /  Call the update method for all observers. 
22 virtual void notifyAll( ) 

23 { 

24 for( int i = 0; i < observers.size( ) ;  i++ ) 

25 observers [ i ] ->update ( this ) ; 

26 I 
27 
28 private: 
29 vector<Observer *>  observers; 
30 } ;  

Figure 5.21 Abstract classes for Observer and a base class for the observee 
Subject. 

observing the Timer object are notified, and their update method is called. 
In our example, the update method simply prints a message, allowing us to 
see that the notification occurred. 

The Timer class is often used to implement callback functions. A call- A callback function is 

back function is a function that is registered to be called at a later time. In a that is 
u registered to be the Observer pattern update is such a function. called at a later time. 

Here, the update method in the various ~ c h o  objects are called back 
when tick occurs. In a typical application, we have a set of actions that 
are to occur regularly, perhaps every hour. Each action registers itself with 
the Timer, and when the clock strikes a new hour, all registered actions 
are executed. 
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1 / /  Timer class: tick method calls f i o t l f y .  
2 
3 class Timer : public Subject 
4 { 
5 public: 
6 void tick( ) 

7 { notifyAll( ) ;  ) 

8 } ;  
9 

10 
11 / /  Echo class: this in an observer. 
12 / /  It is constructed with a Timer object; when 
13 / /  the Timer object ticks, update is 
14 / /  automatically called. 
15 
16 class Echo : public Observer 
17 I 
18 public: 
19 Echo( int id, Timer *t ) : myId( id ) ,  observee( t ) 

20 { observee->addobserver( this ) ;  } 

2 1 
22 -Echo( ) 

23 { observee->removeobserver( this ) ;  } 

24 
25 void update( Subject *s ) 

26 { if( observee == s ) cout << myId << endl; 
27 
28 private: 
29 int myId; 
30 Subject "observee; 
31 1 ;  

Figure 5.22 Concrete classes: Echo observes a Timer object and reacts when 
the Timer's t i c k  method is called, 

A Timer object Thus, a Timer object simply calls its inherited n o t i f y A l l  whenever 
simply calls its t i c k  is executed. The ~ c h o  class is somewhat more com~licated.  ~ c h o  
inherited 
notifyAll objects are constructed by providing a Timer object. In other words, an 
whenever tick is observer is constructed by passing in the subject that it is observing. The 
executed. ~ c h o  observer is then added to the subiect's list of interested parties (line 20). 
objects are 
constructed by 

When the observer is no longer active, it is removed from the subject's list. 
providing a Timer This task is handled in the Echo destructor. As mentioned earlier, we then - 
object. provide the required implementation for the Observer  protocol, which in 

our case means that we implement upda te .  Our update simply prints a 
message. 
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1 / /  A test program. 
2 void testEchol2 ( Timer & t ) 

3 ( 
4 ~ c h o  el ( 1, &t ) ; 

5 Echo e2 ( 2, &t ) ; 

6 
7 cout << "Expecting 1 and 2 to respond." << endl; 
8 t.tick( ) ;  

9 cout << " 1  and 2 disappear." << endl; 
10 1 
11 
12 int main ( ) 

13 I 
14 Timer t ; 
15 
16 testEchol2 ( t ) ; / /  1 and 2 should respond 
17 
18 ~ c h o  e3 1 3 ,  &t ) ; 

19 ~ c h o  e4 ( 4, &t ) ; 

20 
21 Timer other; 
22 Echo e5( 5 ,  &other ) ;  / /  registered with other, not t 
23 
24 cout << "Only 3 and 4 are currently observable." <<  endl; 
25 cout << "Expecting 3 and 4 to respond." << endl; 
26 t.tick( ) ;  

27 
28 return 0; 
29 } 

Figure 5.23 Program to test the Timer and Echo classes 

A program that tests this process is shown in Figure 5.23. First we 
declare a Timer object t. Occasionally, we call t . tick ( ) , and when we 
do, any ~ c h o  object actively registered with t has its update method 
called. 

Thus, when testEchol2 is called, because el and e2 are both con- 
structed with t as their subject, when t's tick method is called, we get out- 
put for objects el and e2. When testEchol2 returns, el and e2 no longer 
exist and their destructors ensure that they are no longer registered as 
observers for t. Then e3, e4, and e5 are constructed as new observers. 
Note, however, that e5 is listening for other. tick ( ) . Thus when t's tick 
method is called at line 26, only e3 and e4 respond. 
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Summary 

In this chapter we described several common design patterns that we use 
throughout the text. Although we concentrated mostly on object-based 
design patterns, some of the patterns toward the end of the chapter empha- 
size the central role that inheritance plays in many patterns. Unfortunately, 
because of memory management issues, inheritance complicates our 
implementations, and as a result, we use it sparingly. However, these pat- 
terns can give you a feel for the power of inheritance and the techniques 
that it introduces. 

This chapter concludes the first part of the text, which provided an over- 
view of C++ and object-oriented programming. We now go on to look at 
algorithms and the building blocks of problem-solving programming. 

Objects of the Game 

adapter class Typically used when the interface of another class is not 
exactly what is needed and provides a wrapping effect while chang- 
ing the interface. (p. 162) 

auto-gtr A new class in the STL that helps automatically delete 
dynamically allocated objects. (p. 164) 

callback function A function that is registered to be called at a later 
time. (p. 181) 

Composite pattern Stores two or more objects in one entity. (p. 179) 
design pattern Describes a problem that occurs over and over in soft- 

ware engineering and then describes the solution in a sufficiently 
generic manner as to be applicable in a wide variety of contexts. 
(P- 155) 

dual-direction implicit conversion The circumstance in which 
implicit conversions between two types are defined in both direc- 
tions, which often leads to ambiguities and thus should be avoided. 
(P. 164) 

factory method Creates a new concrete instance but returns it by 
using a pointer (or reference) to the abstract class. (p. 176) 

function object An object passed to a generic function with the 
intention of having its single method used by the generic function. 
(P. 158) 

Functor A function object. (p. 158) 
incomplete class declaration Used to inform the compiler of the 

existence of a class and is necessary when two or more classes refer 
to each circularly. (p. 173) 
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Iterator An object used to control iteration of a collection. (p. 170) 
member templates Allow declaration of member function templates, 

using different template types. (p. 168) 
Observer pattern Involves a subject and a set of observers; the 

observers are informed whenever something interesting happens to 
the subject. (p. 179) 

Pair The composite pattern storing two objects as an entity. (p. 179) 
programming to an interface The technique of using classes by writ- 

ing in terms of the most abstract interface and attempting to hide 
even the name of the concrete class that is being operated on. 
(P. 174) 

smart pointer classes Classes that encapsulate the behavior of a 
pointer. (p. 163) 

Wrapper class Typically used to store a primitive type and add opera- 
tions that the primitive type either does not support or does not sup- 
port correctly. (p. 162) 

Common Errors 

1.  When writing operator ( ) , remember that you still must have a 
parameter list. 

2. When you send a function object as a parameter, you must send a 
constructed object, not simply the name of the class. 

3. Using dual-direction implicit type conversions is dangerous 
because they can lead to ambiguities. 

4. Using auto- ptr in a setting more complex than it was designed 
for leads to trouble because the pointee will be destroyed if owner- 
ship is transferred to an owner that exits scope earlier than you 
think it will. 

5. The Adapter pattern often implies private rather than public inherit- 
ance. If you are changing rather than simply augmenting the class 
interface, you do not want public inheritance. 

6. Many design patterns that have cooperating classes require incom- 
plete class declarations because the class declarations refer to each 
other circularly. 

7. In C++, inheritance-based design patterns tend to require that you 
deal with reclaiming dynamically allocated objects, often leading to 
memory leaks, stale pointers, and other assorted bugs. 

8. Using too few classes can be a sign of poor design. Often adding a 
class can clean up the design. 



Design Patterns 

On the Internet 

Rectang1e.c~~ Contains the Rectangle example shown in Fig- 
ures 5.2, and 5.4-5.6. 
Contains both the Cref and Pointer classes. 
Illustrates the problem with dual-direction 
implicit type conversions, shown in Figure 5.8. 
To see the problem, you must remove the 
explicit directive in the Pointer constructor 
in Wrapper.h. To see the fix, you must be using 
a compiler that understands explicit (some 
simply ignore it). 
Contains an implementation of ~ u t o  PO int er, 

shown in Figure 5.9, and a test program. 
Contains the storagecell adapter, shown in 
Figure 5.1 1 .  
Tests the Storagecell adapter, as shown in 
Figure 5.12. 
Contains the complete iterator class and a test 
program, as shown in Section 5.4.1. 
Contains the complete iterator class and a test 
program, as shown in Section 5.4.2. 
Contains the complete iterator class and a test 
program, as shown in Section 5.4.3. 
Contains the pair class shown in Figure 5.20. 

0bserver.cpp Contains the complete set of classes and a test 
program for the Observer pattern discussed in 
Section 5.6. 

-v- Exercises 

In Short 

5.1. What is a design pattern? 

5.2. Describe how function objects are implemented in C++. 

5.3. Explain the Adapter and Wrapper patterns. How do they differ? 

5.4. What are two common ways to implement adapters? What are the 
trade-offs between these implementation methods? 
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5.5. Describe in general the 
a. lterator pattern. 
b. Observer pattern. 

5.6. Give an example of the Observer pattern that is not discussed in the 
text. Use a real-life example rather than a programming example. 

In Theory 

5.7. A class is abstract if it has at least one abstract method. The sub j ec t 
class presented in Figure 5.21 is therefore not abstract. A little- 
known feature of C++ allows abstract methods to have an imple- 
mentation; this feature is primarily used on the destructor. Verify 
that this feature exists by making the subject destructor a pure vir- 
tual function while leaving its implementation in tact. 

In Practice 

5.8. Templates can be used to write generic function objects. 
a. Write a class template function object named less. In the class 

template, overload operator ( ) to call the operator< for its 
two Comparable parameters. 

b. Rewrite the f indMax function template in Figure 5.1 to call the 
f indMax functjon template shown in Figure 5.4. Your rewrite 
may contain only one line in the function body: a call to the 
two-parameter findMax that sends a compatible function object 
from part (a). 

c. Instead of writing a separate one-parameter f indMax, can you 
simply rewrite the two-parameter f indMax function template 
shown in Figure 5.4 to accept a default parameter that is a com- 
patible function object from part (a)? Verify your answer by 
compiling code. 

5.9. Write a generic countMatches function that takes two parameters. 
The first parameter is an array of int. The second parameter is a 
function object that returns a Boolean. 
a. The method countMatches returns the number of array 

items for which the function object returns true. Implement 
countMatches. 

b. Test countMat ches by writing a function object EqualsZero 
that overloads operator ( ) to accept one parameter and returns 



true if the parameter is zero. Use an EqualsZero function 
object to test countMatches. 

c. Rewrite countMatches (and ~quals~ero) by using templates. 

5.10. Although the function objects that we looked at store no data, that is 
not a requirement. 
a. Write a function object EqualsK that contains one data mem- 

ber, k. The Equal SK object is constructed with a single parame- 
ter (default is zero) used to initialize k. Its one parameter 
operator ( ) returns true if the parameter equals k. 

b. Use EqualsK to test countMatches in Exercise 5.9 (if you did 
part (c), make EqualsK a template). 

5.11. Add operator* and operator-> to the Pointer class template 
in Figure 5.7. 

5.12. Is it safe to apply insertionsort (Figure 3.4) to a vector of 
auto-ptr objects? 

5.13. The s toragec las s adapter is implemented by private inheritance. 
Redo the implementation shown in Figure 5.1 I ,  using composition. 
Test your program by calling a significant number of storageclass 
methods. Is there a significant difference in speed? 

5.14. Add both the previous and hasprevious methods to 
a. Iterator design # I  (Section 5.4.1). 
b. Iterator design #3 (Section 5.4.3). 

5.15. In Java, iterator design #I (Section 5.4.1) is an Enumeration. 
Assume that only design #2 has been written and that you want to 
write an iterator that follows the Enumeration interface. 
a. What pattern describes the problem that you are trying to solve? 
b. Write the class, using the name Enumeration, in terms of the 

iterator defined in design #2. Add a getEnumeration method 
to MyVector to do so. 

5.16. Redo iterator design #3 (Section 5.4.3), using nested classes. 

5.17. This exercise illustrates the idea of programming to an interface. 
Recall from Section 4.4.1 (and other chapters) that we often imple- 
ment operator<< by calling a class's print method. 
a. Write an abstract class Printable having one named method: 

print. 
b. Should Printable define any other member functions? Why 

or why not? (Hint: recall Section 4.2.7.) 
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c. Implement an overloaded operator<< that takes a Printable 
object as a second parameter. 

d. Suppose that Shape is a class. Describe the properties that 
Shape must have in order to have the overloaded method in part 
(b) called for all Shape objects. 

e. An alternative scheme is simply to make operator<< a func- 
tion template. Compare and contrast the two approaches. Is 
there any difference between them? 

Programming Projects 

5.18. Suppose that, in addition to a Cref class, we want a Ref class (that 
gives a simple reference). Keep in mind that Ref <Obj > and 
Cref<Obj > should be type-compatible in one direction. Recall that 
any function that is expecting a constant reference can receive either 
a constant reference or a reference, but not vice versa. This condi- 
tion suggests that there should be an inheritance relationship 
between Ref and Cre f. 
a. Which class is the base class and which is the derived class? 
b. One of the two classes will need to overload get with both an 

accessor and mutator version. Which one? 
c. Implement the Ref and Cref classes. 
d. Since Cref<Base> and Cref<Derived> are also type- 

compatible, if your compiler supports member templates, mod- 
ify your classes to work when the template types are related by 
inheritance. See the discussion at the end of Section 5.3.2. 

5.19. A reference-counted pointer class keeps track of how many pointers 
are pointing at the pointee. It does not delete the pointee until 
there are no more pointers to it. To implement the class you will 
need a second class, Ref Count. 
a. Write a class template called Ref Count that stores a pointer to 

the pointee and a count of how many pointers are looking at 
the pointee. It should provide a method to add to the count and 
to decrement the count. If the count goes to 0, it can delete 
the pointee and then set the pointer to NULL (just to be safe). 
Carefully provide a constructor and, if you feel it to be appropri- 
ate, an implementation of the Big Three. The semantics of these 
methods may depend on how you implement the rest of this 
design. 

b. Write a class template called Ref Pointer that stores a pointer 
to a RefCount object. If you construct it with a plain pointer, a 
new Ref Count object is created, with count 1. If you construct 
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it with a copy constructor, it shares the RefCount object but 
adds I to the count in the RefCount object. If destructed, it 
drops the count in the RefCount object. You will need to work 
out the details for what happens in operator=. In addition to 
get, Ref Pointer should provide overloaded operators, 
such as operator*, operator->, and perhaps a one-way 
type conversion. 

References 

The classic reference on design patterns is [2]. It describes 23 standard pat- 
terns, many of which are inheritance based. Reference [ 1 ] provides C++ 
implementations for several patterns and coins the term functor. 

1 .  J. 0. Coplien, Advanced C++ Programming Styles and Idioms, 
Addison-Wesley, Reading, Mass., 1992. 

2. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Elemeqts of 
Reusable Object-Oriented Software, Addison-Wesley, Reading, 
Mass.. 1995. 



Part 11 Algorithms and 
Building Blocks 





Chapter 6 

I Algorithm Analysis 

In Part I we examined how object-oriented programming can help in the 
design and implementation of large systems. We did not examine perfor- 
mance issues. Generally, we use a computer because we need to process a 
large amount of data. When we run a program on large amounts of input, we 
must be certain that the program terminates within a reasonable amount of 
time. The amount of running time is almost always independent of the pro- 
gramming language or even the methodology we use (such as procedural 
versus object-oriented). 

An algorithm is a clearly specified set of instructions a computer follows 
to solve a problem. Once an algorithm is given for a problem and determined 
to be correct, the next step is to determine the amount of resources, such as 
time and space, that the algorithm will require. This step is called algorithm 
analysis. An algorithm that requires several gigabytes of main memory is not 
useful for most current machines, even if it is completely correct. 

In this chapter, we show: 

how to estimate the time required for an algorithm, 
how to use techniques that drastically reduce the running time of an 
algorithm, 
how to use a mathematical framework that more rigorously describes 
the running time of an algorithm, and 
how to write a simple binary search routine. 

6.1 What Is Algorithm Analysis? 

The amount of time that any algorithm takes to run almost always depends More data means that 

on the amount of input that it must process. We expect, for instance, that the program takes 
more time. 

sorting 10,000 elements requires more time than sorting 10 elements. The 
running time of an algorithm is thus a function of the input size. The exact 
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Figure 6.1 Running times for small inputs. 

value of the function depends on many factors, such as the speed of the host 
machine, the quality of the compiler, and in some cases, the quality of the 
program. For a given program on a given computer, we can plot the running 
time function on a graph. Figure 6.1 illustrates such a plot for four programs. 
The curves represent four common functions encountered in algorithm anal- 
ysis: linear, O(N log N),  quadratic, and cubic. The input size N ranges from 1 
to 100 items, and the running times range from 0 to 10 milliseconds. A quick 
glance at Figure 6.1 and its companion, Figure 6.2, suggests that the linear, 
O(N log N), quadratic, and cubic curves represent running times in order of 
decreasing preference. 

An example is the problem of downloading a file from the Internet. Sup- 
pose that there is an initial 2-sec delay (to set up a connection), after which 
the download proceeds at 1.6 Klsec. Then if the file is N kilobytes, the time 
to download is described by the formula T ( N )  = N1 I .6 + 2. This is a linear 
function. Downloading an 80K file takes approximately 52 sec, whereas 

Of the common downloading a file twice as large (160K) takes about 102 sec, or roughly 
functions twice as long. This property, in which time essentially is directly propor- . .  ~ . -  . 

encountered in tional to the amount of input, is the signature of a linear algorithm, which is 
algorithm ana'ysisl the most efficient algorithm. In contrast, as these first two graphs show, some 
linear represents the 
most efficient of the nonlinear algorithms lead to large running times. For instance, the lin- 
algorithm. ear algorithm is much more efficient than the cubic algorithm. 
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Figure 6.2 Running times for moderate inputs. 

In this chapter we address several important questions: 

Is it always important to be on the most efficient curve? 
How much better is one curve than another? 
How do you decide which curve a particular algorithm lies on? 
How do you design algorithms that avoid being on less-efficient curves? 

A cubic function is a function whose dominant term is some constant 
times N3. For example, I ON3 + N2 + 40N + 80 is a cubic function. Similarly, 
a quadratic function has a dominant term that is some constant times N2, and 
a linear function has a dominant term that is some constant times N.  The 
expression O ( N  log N )  represents a function whose dominant term is N times 
the logarithm of N.  The logarithm is a slowly growing function; for instance, 
the logarithm of 1,000,000 (with the typical base 2) is only 20. The loga- 
rithm grows more slowly than a square or cube (or any) root. We discuss the 
logarithm in more depth in Section 6.5. 

Either of two functions may be smaller than the other at any given point, The growth rate of a 

so claiming, for instance, that F(N)  < G(N) does not make sense. Instead, we is 
important when N is 

measure the functions' rates of growth. This approach is justified for three sufficiently 
reasons. First, for cubic functions such as the one shown in Figure 6.2, when 
N is 1000 the value of the cubic function is almost entirely determined by 
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the cubic term. In the function I ON3 + N* + 40N + 80, for N = 1000, the 
value of the function is 10,001,040,080, of which 10,000,000,000 is due to 
the 1 ON3 term. If we were to use only the cubic term to estimate the entire 
function, an error of about 0.01 percent would result. For sufficiently large 
N, the value of a function is largely determined by its dominant term (the 
meaning of szlfJiciently large varies by function). 

The second reason for measuring the functions' growth rates is that the 
exact value of the leading constant of the dominant term is not meaningful for 
different machines (although the relative values of the leading constant for 
identically growing functions might be). For instance. the quality of the com- 
piler could have a large influence on the leading constant. The third reason is 
that small values of N generally are not important. For N = 20, Figure 6.1 
shows that all algorithms terminate within 5 ms. The difference between the 
best and worst algorithm is less than a blink of the eye. 

6ig-Oh notation is We use Big-Oh notation to capture the most dominant term in a function 
used capture the and to represent the growth rate. For instance, the running time of a qua- 
most dominant term 
in a function. dratic algorithm is specified as O(N2) (pronounced "order en-squared"). 

Big-Oh notation also allows us to establish a relative order among functions 
by comparing dominant terms. We discuss Big-Oh notation more formally in 
Section 6.4. 

For small values of N (e.g., those less than 40), Figure 6.1 shows that one 
curve may be initially better than another, which doesn't hold for larger values of 
N. For example, initially the quadratic curve is better than the O(N log N) curve, 
but as N gets sufficiently large, the quadratic algorithm loses its advantage. For 
small amounts of input, making comparisons between functions is difficult 
because leading constants become very significant. The function N + 2500 is 
larger than N 2  when N is less than 50.  Eventually, the linear function is 
always less than the quadratic function. Most important, for small input sizes 
the running times are generally inconsequential, so we need not worry about 
them. For instance, Figure 6. I shows that when N is less than 25, all four 
algorithms run in less than 10 ms. Consequently, when input sizes are very 
small, a good rule of thumb is to use the simplest algorithm. 

Figure 6.2 clearly demonstrates the differences between the various 
curves for large input sizes. A linear algorithm solves a problem of size 
10,000 in a small fraction of a second. The O(N log N) algorithm uses 
roughly 10 times as much time. Note that the actual time differences depend 
on the constants involved and thus might be more or less. Depending on 
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these constants, an O ( N  log N) algorithm might be faster than a linear algo- 
rithm for fairly large input sizes. For equally complex algorithms, however, 
linear algorithms tend to win out over O(N log N) algorithms. 

This relationship is not true, however, for the quadratic and cubic algo- 
rithms. Quadratic algorithms are almost always impractical when the input 
size is more than a few thousand, and cubic algorithms are impractical for 
input sizes as small as a few hundred. To see how this works, try to run the 
insertionsort algorithm given in Section 3.3 for 1.000,000 items. Be 
prepared to wait a long time because an insertion sort is a quadratic algo- 
rithm. The sorting algorithms discussed in Chapter 9 run in subquadratic 
time (i.e., better than O(N2) ) ,  thus making sorting large arrays practical. 

The most striking feature of these curves is that the quadratic and cubic 
algorithms are not competitive with the others for reasonably large inputs. 
We can code the quadratic algorithm in highly efficient machine language 
and do a poor job coding the linear algorithm, and the quadratic algorithm 
will still lose badly. Even the most clever programming tricks cannot make 
an inefficient algorithm fast. Thus, before we waste effort attempting to opti- 
mize code, we need to optimize the algorithm. Figure 6.3 shows the func- 
tions that commonly describe algorithm running times in order of increasing 
growth rate. 

Quadratic algorithms 
are impractical for 
input sizes exceeding 
a few thousand. 

Cubic algorithms are 
impractical for input 
sizes as small as a 
few hundred. 

Figure 6.3 Functions in order of increasing growth rate. 
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6.2 Examples of Algorithm Running Times 

In this section we examine three problems. We also sketch possible solutions 
and determine what kind of running times the algorithms will exhibit, with- 
out providing detailed programs. The goal in this section is to provide you 
with some intuition about algorithm analysis. In  Section 6.3 we provide 
more details on the process and in Section 6.4 formally approach an algo- 
rithm analysis problem. 

We look at the following problems in this section: 

MINIMUM ELEMENT IN AN ARRAY 
GIVEN AN ARRAY OF N ITEMS, FIND THE SMALLEST ITEM. 

CLOSEST POINTS IN THE PLANE 
GIVEN N POINTS IN A PLANE (THAT IS, AN X-Y COORDINATE SYSTEM), 

FIND THE P.41R OF POINTS THAT ARE CLOSEST TOGETHER. 

COLINEAR POINTS IN THE PLANE 
GIVEN N POINTS IN A PLANE (THAT IS, AN X-Y COORDINATE SYSTEM), 

DETERMINE IF ANY THREE FORM A STRAIGHT LINE. 

The minimum element problem is fundamental in computer science. It 
can be solved as follows. 

1. Maintain a variable min that stores the minimum element. 
2. Initialize m i n  to the first element. 
3. Make a sequential scan through the array and update min as appro- 

priate. 

The running time of this algorithm will be O ( N ) ,  or linear, because we 
repeat a fixed amount of work for each element in the array. A linear algo- 
rithm is as good as we can hope for. The reason is that we have to examine 
every element in the array, a process that requires linear time. 

The closest points problem is a fundamental problem in graphics that 
can be solved as follows. 

1 .  Calculate the distance between each pair of points. 
2. Retain the minimum distance. 
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This calculation is expensive, however, because there are N(N - 1 ) /2 pairs of 
points.' Thus there are roughly N' pairs of points. Examining all these pairs 
and finding the minimum distance among them takes quadratic time. A bet- 
ter algorithm runs in O(N log N) time and works by avoiding the computa- 
tion of all distances. There is also an algorithm that is expected to take O(N) 
time. These last two algorithms use subtle observations to provide faster 
results and are beyond the scope of this text. 

The colinear points problem is important for many graphics algorithms. 
The reason is that the existence of colinear points introduces a degenerate 
case that requires special handling. It can be directly solved by enumerating 
all groups of three points. This solution is even more computationally expen- 
sive than that for the closest points problem because the number of different 
groups of three points is N(N - 1 )(N - 2)/6 (using reasoning similar to that 
used for the closest points problem). This result tells us that the direct 
approach yields a cubic algorithm. A more clever strategy (also beyond the 
scope of this text) solves the problem in quadratic time (and further 
improvement is an area of continuously active research). 

In Section 6.3 we look at a problem that illustrates the differences 
among linear, quadratic, and cubic algorithms. We also show how the perfor- 
mance of these algorithms compares to a mathematical prediction. Finally, 
after discussing the basic ideas, we examine Big-Oh notation more formally. 

6.3 The Maximum Contiguous Subsequence 
Sum Problem 

In this section, we consider the following problem: 

MAXIMUM CONTIGUOUS SUBSEQUENCE SUM 
PROBLEM 

GIVEN (POSSIBLY NEGATIVE) INTEGERS A 1, A ?, . . . , A ., FIND ( A N D  1DE.AJTIFY 

THE SEQUENCE CORRESPONDING TO) THE MAXIMUM VALUE OF AI.  THE 
I = i 

MAXIMUM CONTIGUOUS SUBSEQUENCE SUM IS ZERO IF ALL THE INTEGERS ARE 

NEGATIVE. 

As an example, if the input is (-2, 1 1 , 4 ,  13, -5, 2), the answer is 20, which 
represents the contiguous subsequence encompassing items 2 through 4 (shown 
in boldface type). As a second example, for the input { 1, -3,4, -2, -1.61, the 
answer is 7 for the subsequence encompassing the last four items. 

I .  Each of N points can be paired with N - 1 points. for a total of N(N - 1) pairs. However. 
this pairing double counts pairs A. B and B, A, so we must divide by two. 



Programming details 
are considered after 
the algorithm design. 

Always consider 
emptiness. 

There are lots of 
drastically different 
algorithms (in terms 
of efficiency) that can 
be used to solve the 
maximum contiguous 
subsequence sum 
problem. 

A brute force 
algorithm is generally 
the least efficient but 
simplest method to 
code. 

In C++, arrays begin at 0, so a C++ program would represent the input 
as a sequence Ao, . . ., A, _ This is a programming detail and not part of the 
algorithm design. 

Before discussing the algorithms for this problem, we need to comment 
on the degenerate case, in which all input integers are negative. The problem 
statement gives a maximum contiguous subsequence sum of 0 for this case. 
You might wonder why we do this, rather than just returning the largest (i.e., 
the smallest in magnitude) negative integer in the input. The reason is that 
the empty subsequence, consisting of zero integers, is also a subsequence, 
and its sum is clearly 0. Because the empty subsequence is contiguous, there 
is always a contiguous subsequence whose sum is 0. This result is analogous 
to the empty set being a subset of any set. Be aware that emptiness is always 
a possibility and that in many instances it is not a special case at all. 

The maximum contiguous subsequence sum problem is interesting 
mainly because there are so many algorithms to solve it-and the perfor- 
mance of these algorithms varies drastically. In this section we discuss three 
such algorithms. The first is an obvious exhaustive search algorithm, but it is 
very inefficient. The second is an improvement on the first, which is accom- 
plished by a simple observation. The third is a very efficient, but not obvi- 
ous, algorithm. We prove that its running time is linear. 

In Chapter 8 we present a fourth algorithm, which has O(N log N )  run- 
ning time. That algorithm is not as efficient as the linear algorithm, but it is 
much more efficient than the other two. It also is typical of the kinds of 
algorithms that result in O(N log N) running times. The graphs shown in 
Figures 6.1 and 6.2 are representative of these four algorithms. 

6.3.1 The Obvious O(N3) Algorithm 

The simplest algorithm is a direct exhaustive search, or a brute force algo- 
rithm, as shown in Figure 6.4. Lines 10 and I I control a pair of loops that 
iterate over all possible subsequences. For each possible subsequence, the 
value of its sum is computed at lines 13-15. If that sum is the best sum 
encountered, we update the value of maxsum, which is eventually returned at 
line 25. Two i n t s - s e q s t a r t  and seqEnd (which are passed by refer- 
ence)-are also updated whenever a new best sequence is encountered. 

The direct exhaustive search algorithm has the merit of extreme simplic- 
ity; the less complex an algorithm is, the more likely it is to be programmed 
correctly. However, exhaustive search algorithms are usually not as efficient 
as possible. In the remainder of this section we show that the running time of 
the algorithm is cubic. We count the number of times (as a function of the 
input size) the expressions in Figure 6.4 are evaluated. We require only a 
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1 / /  Cubic maximum contiguous subsequence sum algorithm. 
2 / /  seqstart and seqEnd represent the actual best sequence. 
3 template <class Cornparable> 
4 Comparable maxSubsequenceSum( const vector<Comparable> & a, 
5 int & seqStart, int & seqEnd ) 

6 { 
7 int n = a. size ( ) ; 

8 Comparable maxSum = 0; 
9 

10 for( int i = 0; i < n; i++ ) 

11 for( int j = i; j < n; j++ ) 
12 I 
13 Comparable thissum = 0; 
14 for( int k =  i; k < =  j; k + + )  
15 thissum += a[ k  I ; 
16 
17 if( thissum > maxSum ) 

18 I 
19 maxSum = thissum; 
20 seqStart = i; 
21 seqEnd = j ; 
22 1 
23 1 
24 
25 return maxsum; 
26 } 

Figure 6.4 A cubic maximum contiguous subsequence sum algorithm. 

Big-Oh result, so once we have found a dominant term, we can ignore lower 
order terms and leading constants. 

The running time of the algorithm is entirely dominated by the inner- 
most for loop in lines 14 and 15. Four expressions there are repeatedly 
executed: 

1. the initialization k = i, 

2. the test k <= j , 

3. the increment thissum += a [ k 1, and 
4. the adjustment k++. 

The number of times that expression 3 is executed makes it the dominant A mathematical 

term among the four expressjons. Note that each initialization is accompa- analysis is used 
count the number of 

nied by at least one test. We are ignoring constants, so we may disregard the times that certain 
cost of the initializations; the initializations cannot be the single dominating statements are 

cost of the algorithm. Because the test given by expression 2 is unsuccessful executed. 



W - ~ l ~ o r i t h r n  Analysis 

exactly once per loop, the number of unsuccessful tests performed by 
expression 2 exactly equals the number of initializations. Consequently, it is 
not dominant. The number of successful tests at expression 2, the number of 
increments performed by expression 3. and the number of adjustments at 
expression 4 are identical. Thus the number of increments (i.e., the number 
of times that line 15 is executed) is a dominant measure of the work per- 
formed in the innermost loop. 

The number of times line 15 is executed exactly equals the number of 
ordered triplets ( i ,  j. k) that satisfy I I i I k I j I N.2 The reason is that the 
index i runs over the entire array, 1 runs from i to the end of the array, and k 
runs from i to j. A quick and dirty estimate is that the number of triplets is 
somewhat less than N x N x N, or N3, because i, j, and k can each assume one 
of N values. The additional restriction i I k I j reduces this number. A precise 
calculation is somewhat difficult to obtain and is performed in Theorem 6.1. 

The most important part of Theorem 6.1 is not the proof, but rather the 
result. There are two ways to evaluate the number of triplets. One is to 
evaluate the sum xy= , xr= I C: = I .  We could evaluate this sum inside out 
(see Exercise 6.9) .  Instead, we will use an alternative. 

Theorem 6.1 Tlzcl number of integer ordered triplets ( i ,  j ,  k )  thclt satisfy 

1 I i I k I  j I N  i s N ( N +  1 ) ( N + 2 ) / 6 .  

Proof Place tlze,follou~ing N + 2 bal1.r in a box: N balls nunzhered 1 through N. 

one unnumbered red hall, clnd one unnunzbered blue hall. Renzo~~e tlzree 

ball.r,fronz the box. v a  red ball is drawn, nunzber it as the lo~t,e.st ($the 

nutnhered ha1l.s drrzu~n. g a  blue hall is dmwn, nutnber it as tlzcl highest qf 

the numbered halls drrzwn. Note that i f  you drrzw both a red and a blue 

ball, then the eflect is to Iztlve tlzree halls identic.ally nunzbered. Order the 

three hulls. Each sucl? order corrclsponds to u triplet solutiot~ to tlze 

equation in Theorem 6.1. The nunzber c?fpo.s.sihle orders is the nunzber of 

distinct ways to  draw tlzree balls ct!itlzout I-eplac~enzent,fronz u collection 

of N + 2 balls. This probletn is sitnilar to thclt of .selecting three points 

,from a group qf N that we etlaluated irz Section 6.2, .so h,e inztnediately 

obtain the stated result. 

2. In C++, the indices run from 0 through N - I .  We have used the algorithmic equivalent 
1 through N to simplify the analysis. 
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The result of Theorem 6.1 is that the innermost for loop accounts for 
cubic running time. The remaining work in the algorithm is inconsequential 
because it is done, at most, once per iteration of the inner loop. Put another 
way, the cost of lines 17-22 is inconsequential because it is done only as 
often as the initialization of the inner for loop, rather than as often as the 
repeated body of the inner for loop. Consequently, the algorithm is O(N3). 

The previous combinatoric argument allows us to obtain precise calcula- 
tions on the number of iterations in the inner loop. But, for a Big-Oh calcula- 
tion, that really isn't necessary; we need to know only that the leading term 
is some constant times N3. Looking at the algorithm, we see a loop that is 
potentially of size N inside a loop that is potentially of size N inside another 
loop that is potentially of size N. This configuration tells us that the triple 
loop has the potential for N x N x N iterations. This potential is only about 
six times greater than our precise calculation of what actually occurs. Con- 
stants are ignored anyway, so we can adopt the general rule that, when we 
have nested loops, we should multiply the cost of the innermost statement by 
the size of each loop in the nest to obtain an upper bound. In most cases, the 
upper bound will not be a gross overestimate."hus a program with three 
nested loops, each running sequentially through large portions of an array, is 
likely to exhibit O ( N 9  behavior. Note that three consecutive (nonnested) 
loops exhibit linear behavior; it is nesting that leads to a combinatoric explo- 
sion. Consequently, to improve the algorithm, we need to remove a loop. 

We do not need 
precise calculations 
for a Big-Oh estimate. 
In many cases, we 
can use the simple 
rule of multiplying the 
size of all the nested 
loops. Note that 
consecutive loops do 
not multiply. 

6.3.2 An Improved O(N2) Algorithm 

When we remove a loop from an algorithm, we generally lower the run- When we remove a 

ning time. But how do we remove a loop? Obviously, we cannot always do loop from an 
algorithm, we 

so. However, the preceding algorithm has many unnecessary computa- generally lower the 
tions. The inefficiency that the improved algorithm corrects is the unduly running time. 

expensive computation in the inner for loop in Figure 6.4. The improved 
algorithm makes use of the fact that = iAk = Aj + C J  I A k .  In other 

k = i  
words, suppose that we have just calculated the sum for the subsequence 
i, ..., j - 1. Then computing the sum for the subsequence i, ..., j should not 
take much longer because we need only one more addition. However, the 
cubic algorithm throws away this information. If we use this observation, we 
obtain the improved algorithm shown in Figure 6.5. We have two rather than 
three nested loops, and the running time is O(N2) .  

3. Exercise 6.16 illustrates a case in which the multiplication of loop sizes yields an overesti- 
mate in the Big-Oh result. 



If we remove another 
loop, we have a linear 
algorithm. 

The algorithm is 
tricky. It uses a clever 
observation to step 
quickly over large 
numbers of 
subsequences that 
cannot be the best. 

1 / /  Quadratic maximum contiguous subsequence sum algorithm. 
2 / /  seqStart and seqEnd represent the actual best sequence. 
3 template <class Comparable> 
4 Comparable maxSubsequenceSum( const vector<Comparable> & a, 
5 int & seqstart, int & seqEnd ) 

6 ( 

7 int n = a.size( ) ;  

8 Comparable maxSum = 0; 
9 

10 for( int i = 0; i < n; i++ ) 

11 { 

12 Comparable thissum = 0; 
13 for( int j = i; j < n; j++ ) 

14 ( 

15 thissum += a [ j ] ; 

16 
17 if ( thissum > maxSum ) 

18 i 
19 maxSum = thissum; 
20 seqStart = i; 
21 seqEnd = j ; 
22 1 
23 1 
24 1 
25 
26 return maxsum; 

27 } 

Figure 6.5 A quadratic maximum contiguous subsequence sum algorithm 

6.3.3 A Linear Algorithm 

To move from a quadratic algorithm to a linear algorithm, we need to remove 
yet another loop. However, unlike the reduction illustrated in Figures 6.4 and 
6.5, where loop removal was simple, getting rid of another loop is not so easy. 
The problem is that the quadratic algorithm is still an exhaustive search; that 
is, we are trying all possible subsequences. The only difference between the 
quadratic and cubic algorithms is that the cost of testing each successive sub- 
sequence is a constant O(1) instead of linear O(N). Because a quadratic num- 
ber of subsequences are possible, the only way we can attain a subquadratic 
bound is to find a clever way to eliminate from consideration a large number 
of subsequences, without actually computing their sum and testing to see if 
that sum is a new maximum. This section shows how this is done. 

First, we eliminate a large number of possible subsequences from con- 
sideration. We let A i  , be the subsequence encompassing elements from i to j 
and let Si  be its sum. 
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i j j +  1 9 

Figure 6.6 The subsequences used in Theorem 6.2 

Let A,, be any sequence with S i , ,  < 0 .  If q > j, then A,. , is not the Theorem 6.2 
maximum contiguous subsequence. 

The sum of A's elements from i to q is the sum of A's elements from i to j Proof 
added to the sum of A's elements from j + 1 to q. Thus we have 
S .  1. 9 = S .  1 ,  J .+S,+ ,.,. BecauseSi.,<0, weknowthat S i . q < S l + I . q . T h ~ ~  
A,, , is not a maximum contiguous subsequence. 

An illustration of the sums generated by i, j, and q is shown on the first 
two lines in Figure 6.6. Theorem 6.2 demonstrates that we can avoid exam- 
ining several subsequences by including an additional test: If thissum is 
less than 0, we can break froin the inner loop in Figure 6.5. Intuitively, if a 
subsequence's sum is negative, it cannot be part of the maximum contiguous 
subsequence. The reason is that we can get a large contiguous subsequence 
by not including it. This observation by itself is not sufficient to reduce the 
running time below quadratic. A similar observation also holds: All contigu- 
ous subsequences that border the maximum contiguous subsequence must 
have negative (or 0) sums (otherwise, we would include them). This obser- 
vation also does not reduce the running time to below quadratic. However, a 
third observation, illustrated in Figure 6.7, does, and we formalize it with 
Theorem 6.3. 

* 

For any i, let A, be thejirst sequence, with S,, < 0. Then, for any Theorem 6.3 
i l p l  j and p l q ,  A , ,  either is not a maximum contiguous 
subsequence or is equal to an already seen maximum contiguous 
subsequence. 
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i j j t l  4 1  j 

Figure 6.7 The subsequences used in Theorem 6.3. The sequence from p to q 
has a sum that is, at most, that of the subsequence from i to q. On 
the left-hand side the sequence from i to q is itself not the maximum 
(by Theorem 6.2). On the right-hand side, the sequence from I to q 
has already been seen. 

Proof If p = i, then Theoren1 6.2 applies. Otherwise, as in Theoretn 6.2, we 

have S,, , = S,, ,_ , + S,,  ,. B e c a ~ ~ s e  j is the lowest index for which 

S,, , < 0,  it,follows that S,, , ,  , 2 0. Thus Sp ,  I Sf, q. I f  q > j (shown on 

the left-hand side in Figure 6.7), then Theoren1 6.2 implies that A,, , is 
not a maxinzum contiguous subsequence, so neither is A ,  ,. Otherwise, as 

shown on the right-hand side in Figure 6.7, the subsequence A,. , has a 

sun1 equal to, at niost, that of the already .seen subsequence A,. ,. I 
~f we detect a Theorem 6.3 tells us that, when a negative subsequence is detected, not 
negative only can we break the inner loop, but we can also advance i to j + 1. 
move iall  the way 
past j. Figure 6.8 shows that we can rewrite the algorithm to use only a single loop. 

Clearly, the running time of this algorithm is linear: At each step in the loop, 
~f an algorithm is we advance j ,  so the loop iterates at most N times. The correctness of this 
complex, a 
correctness proof is 

algorithm is much less obvious than for the previous algorithms, which is typ- 

required. ical. That is, algorithms that use the structure of a problem to beat an exhaus- 
tive search generally require some sort of correctness proof. We proved that 
the algorithm (although not the resulting C++ program) is correct by using a 
short mathematical argument. The purpose is not to make the discussion 
entirely mathematical, but rather to give a flavor of the techniques that might 
be required in advanced work. 

6.4 General Big-Oh Rules 

Now that we have presented the basic ideas of algorithm analysis, we can 
adopt a slightly more formal approach. In this section we outline the general 
rules for using Big-Oh notation. Although we use Big-Oh notation almost 
exclusively throughout this text, we also define three other types of algo- 
rithm notation that are related to Big-Oh and used occasionally later on in 
the text. 
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General Big-Oh Rules 

1 / /  Linear maximum contiguous subsequence sum algorithm. 
2 / /  seqStart and seqEnd represent the actual best sequence. 
3 template <class Comparable> 
4 Comparable maxSubsequenceSum( const vector<Comparable> & a, 
5 int & seqstart, int & seqEnd ) 

6 { 
7 int n = a. size ( ) ; 

8 Comparable thissum = 0; 
9 Comparable maxSum = 0; 

10 
11 for( int i = 0, j = 0; j < n; j++ ) 

12 { 

13 thissum += a [ j ] ; 

14 
15 if( thissum > maxSum ) 

16 { 

17 maxSum = thissum; 
18 seqstart = i; 
19 seqEnd = j ; 
20 1 
21 else if ( thissum < 0 ) 

22 I 
23 i = j + 1 ;  
24 thissum = 0; 
25 1 
26 1 
27 return maxsum; 
28 } 

Figure 6.8 A linear maximum contiguous subsequence sum algorithm. 

DEFINITION: (Big-Oh) T(N) is O(F(N))  if there are positive constants c 
and No such that T(N) I cF(N) when N 2 No. 

DEFINITION: (Big-Omega) T(N) is R(F(N)) if there are positive con- 
stants c and No such that T(A;) 2 cF(N) when N 2 No. 

DEFINITION: (Big-Theta) T(N) is O(F(N)) if and only if T(h? is O(F(N)) 
and T(N) is R(F(N)). 

DEFINITION: (Little-Oh) T(N) is o(F(N)) if and only if T(N) is O(F(N)) 
and T(N) is not O(F(N)). 

The first definition, Big-Oh notation, states that there is a point No such 
that for all values of N that are past this point, T(N) is bounded by some mul- 
tiple of F(N). This is the sufficiently large N mentioned earlier. Thus, if the 
running time T(N) of an algorithm is O(N2), then, ignoring constants, we are 
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Big-Oh is similar to 
less than or equal to, 
when growth rates 
are being considered. 

Big-Omega is similar 
to greater than or 
equal to when growth 
rates are being 
considered. 

Big-Theta is similar to 
equal to when growth 
rates are being 
considered. 

Little-Oh is similar to 
less than when 
growth rates are 
being considered. 

Throw out leading 
constants, lower 
order terms, and 
relational symbols 
when using Big-Oh. 

guaranteeing that at some point we can bound the running time by a qua- 
dratic function. Note that, if the true running time is linear, then the state- 
ment that the running time is O(N2) is technically correct because the 
inequality holds. However, O(N) would be the more precise claim. 

If we use the traditional relational operators to compare growth rates, 
then the first definition says that the growth rate of T(N) is less than or equal 
to that of F(N). 

The second definition, T(N) = Q(F(N)), called Big-Omega, says that the 
growth rate of T(N) is greater than or equal to that of F(N). For instance, we 
might say that any algorithm that works by examining every possible subse- 
quence in the maximum subsequence sum problem must take Q(N2)  time 
because a quadratic number of subsequences are possible. This is a lower 
bound argument that is used in more advanced analysis. Later in the text, we 
give one example of this argument and demonstrate that any general-purpose 
sorting algorithm requires Q(N log N) time. 

The third definition, T(N) = O(F(N)),  called Big-Theta, says that the 
growth rate of T(N) equals the growth rate of F ( N ) .  For instance, the maxi- 
mum subsequence algorithm shown in Figure 6.5 runs in O ( N 2 )  time. In 
other words, the running time is bounded by a quadratic function, and this 
bound cannot be improved because it is also lower bounded by another qua- 
dratic function. When we use Big-Theta notation, we are providing not only 
an upper bound on an algorithm but also assurances that the analysis that 
leads to the upper bound is as good (tight) as possible. In spite of the addi- 
tional precision offered by Big-Theta, however, Big-Oh is more commonly 
used, except by researchers in the algorithm analysis field. 

The final definition, T(N) = o(F(N)),  called Little-Oh, says that the 
growth rate of T(N) is strictly less than the growth rate of F(N). This function 
is different from Big-Oh because Big-Oh allows the possibility that the 
growth rates are the same. For instance, if the running time of an algorithm 
is o(N2), it is guaranteed to be growing at a slower rate than quadratic (i.e., it 
is a subquadratic algorithm). Thus a bound of o(N2) is a better bound than 
O(N2).  Figure 6.9 summarizes these four definitions. 

A couple of stylistic notes are in order. First, including constants or low- 
order terms inside a Big-Oh is bad style. Do not say T(N) = 0(2N2)  or T(N) = 
O(N2 + N). In both cases, the correct form is T(N) = O(N2). Second, in any anal- 
ysis that requires a Big-Oh answer, all sorts of shortcuts are possible. Lower 
order terms, leading constants, and relational symbols are all thrown away. 

Now that the mathematics have formalized, we can relate it to the analy- 
sis of algorithms. The most basic rule is that the running time of a loop is at 
most the running time of the statements inside the loop (including tests) 
times the number of iterations. As shown earlier, the initialization and testing 
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1 TU@=OtF(N)I 1 Growth of TIN) is 2 growth of F ( M .  I 

- 

Mathematical Expression 

T(N)  = O ( F ( N ) )  

1 T(N)  = @ ( F ( N ) )  / Growth of T(N)  is = growth of F(N). 1 

- - -  - 

Relative Rates of Growth 

Growth of T ( N )  is I growth of F(N).  

- - 

T Growth of T(N)  is c growth of F(N) ,  1 
Figure 6.9 Meanings of the various growth functions. 

of the loop condition is usually no more dominant than are the statements 
encompassing the body of the loop. 

The running time of statements inside a group of nested loops is the run- 
ning time of the statements (including tests in the innermost loop) multiplied 
by the sizes of all the loops. The running time of a sequence of consecutive 
loops is the running time of the dominant loop. The time difference between 
a nested loop in which both indices run from 1 to N and two consecutive 
loops that are not nested but run over the same indices is the same as the 
space difference between a two-dimensional array and two one-dimensional 
arrays. The first case is quadratic. The second case is linear because N + N is 
2N, which is still O(N).  Occasionally, this simple rule can overestimate the 
running time, but in most cases it does not. Even if it does, Big-Oh does not 
guarantee an exact asymptotic answer-just an upper bound. 

The analyses performed thus far involved use of a worst-case bound, A worst-case bound 

which is a guarantee over all inputs of some size. Another form of analysis is a guarantee Over all 
inputs of some size. 

the average-case bound, in which the running time is measured as an aver- 
age over all the possible inputs of size N. The average might differ from the In an average-case 
worst case if, for example, a conditional statement that depends on the par- bound, the running 

time is measured as ticular input causes an early exit from a loop. We discuss average-case an over all of 
bounds in more detail in Section 6.8. For now, simply note that, because one the ~ossible inouts of 
algorithm has a better worst-case bound than another algorithm, nothing is size N. 

implied about their relative average-case bounds. However, in many cases 
average-case and worst-case bounds are closely correlated. When they are 
not, the bounds are treated separately. 

The last Big-Oh item we examine is how the running time grows for 
each type of curve, as illustrated in Figures 6.1 and 6.2. We want a more 
quantitative answer to this question: If an algorithm takes T(N) time to solve 
a problem of size N, how long does it take to solve a larger problem? For 
instance, how long does it take to solve a problem when there is 10 times as 
much input? The answers are shown in Figure 6.10. However, we want to 
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Figure 6.10 Observed running times (in seconds) for various maximum 
contiguous subsequence sum algorithms. 

answer the question without running the program and hope that our analyti- 
cal answers agree with the observed behavior. 

We begin by examining the cubic algorithm. We assume that the running 
time is reasonably approximated by T(N) = cN3. Consequently, T(1ON) = 
c( 1 Om3. Mathematical manipulation yields 

If the size of the input 
increases by a factor 
of f, the running time 
of a cubic program 
increases by a factor 
of roughly f 3 .  

If the size of the input 
increases by a factor 
of f, the running time 
of a quadratic 
program increases by 
a factor of roughly f 2. 

Thus the running time of a cubic program increases by a factor of 1000 
(assuming that N is sufficiently large) when the amount of input is increased 
by a factor of 10. This relationship is roughly confirmed by the increase in 
running time from N = 100 to 1000 shown in Figure 6.10. Recall that we do 
not expect an exact answer-just a reasonable approximation. We would also 
expect that for N = 10,000, the running time would increase another 1000- 
fold. The result would be that a cubic algorithm requires roughly 35 minutes 
of computation time. In general, if the amount of input increases by a factor 
o f j  the cubic algorithm's running time increases by a factor of f3 .  

We can perform similar calculations for quadratic and linear algorithms. 
For the quadratic algorithm, we assume that T(N) = cN2. It follows that 
T(1ON) = c(lON)2. When we expand, we obtain 

So when the input size increases by a factor of 10, the running time of a qua- 
dratic program increases by a factor of approximately 100. This relationship 
is also confirmed in Figure 6.10. In general, an ffold increase in input size 
yields an f 2-fold increase in running time for a quadratic algorithm. 



The Logarithm 

Finally, for a linear algorithm, a similar calculation shows that a 10-fold 
increase in input size results in a 10-fold increase in running time. Again, 
this relationship has been confirmed experimentally. Note, however, that for 
a linear program the term suflciently large means a somewhat higher input 
size than for the other programs. The reason is that of the overhead of 
0.000003 sec is used in all cases. For a linear program, this term is still sig- 
nificant for moderate input sizes. 

The analysis used here does not work with logarithmic terms. When an 
O(N log N )  algorithm is presented with 10 times as much input, the running 
time increases by a factor slightly larger than 10. Specifically, we have 
T(lOl\r) = c(lON)log(lON). When we expand, we obtain 

T(1ON) = lOcN log (ION) = lOcN log N + lOcN log 10 = 10T(N) + c'N. 

Here c' = 10c log 10. As N gets very large, the ratio T(lON)IT(N) gets closer 
and closer to 10 because c'NlT(N) = (10 log 1O)Ilog N gets smaller and 
smaller with increasing N. Consequently, if the algorithm is competitive 
with a linear algorithm for very large N, it is likely to remain competitive for 
slightly larger N. 

Does all this mean that quadratic and cubic algorithms are useless? The 
answer is no. In some cases, the most efficient algorithms known are qua- 
dratic or cubic. In others, the most efficient algorithm is even worse (expo- 
nential). Furthermore, when the amount of input is small, any algorithm will 
do. Frequently the algorithms that are not asymptotically efficient are none- 
theless easy to program. For small inputs, that is the way to go. Finally, a 
good way to test a complex linear algorithm is to compare its output with an 
exhaustive search algorithm. In Section 6.8 we discuss some other limita- 
tions of the Big-Oh model. 

6.5 The Logarithm 

The list of typical growth rate functions includes several entries containing 
the logarithm. A logarithm is the exponent that indicates the power to 
which a number (the base) is raised to produce a given number. In this sec- 
tion we look in more detail at the mathematics behind the logarithm. In Sec- 
tion 6.6 we show its use in a simple algorithm. 

We begin with the formal definition and then follow with more intuitive 
viewpoints. 

DEFINITION: For any B, N > 0, log,N = K if BK = N 

If the size of the input 
increases by a factor 
of f, the running time 
of a linear program 
also increases by a 
factor of f. It is the 
preferred running 
time for an algorithm. 

The logarithm of N (to 
the base 2) is the 
value Xsuch that 2 
raised to the power of 
X equals N. By 
default, the base of 
the logarithm is 2. 
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In this definition, B is the base of the logarithm. In computer science, 
when the base is omitted, it defaults to 2, which is natural for several rea- 
sons, as we show later in the chapter. We prove one mathematical theorem, 
Theorem 6.4, to show that, as far as Big-Oh notation is concerned, the base 
is unimportant and also to show how relations that involve logarithms can be 
derived. 

Theorem 6.4 The base does not matter: For any constant B > 1, logBN = O(1og N). 

Proof Let logBN = K. Then BK = N. Let C = log B. Then 2C = B. Thus 

BK = ( 2 C ) K  = N. Hence, we have 2CK = N, which implies that 

log N = CK = C log,N. Therefore logsN = (logN)/(logB), thus 

completing the prooj 

In the rest of the text, we use base 2 logarithms exclusively. An impor- 
tant fact about the logarithm is that it grows slowly. Because 21° = 1024, 
log 1024 = 10. Additional calculations show that the logarithm of 1,000,000 
is roughly 20 and that the logarithm of 1,000,000,000 is only 30. Conse- 
quently, performance of an O(N log N) algorithm is much closer to a linear 
O(N)  algorithm than to a quadratic O(N2) algorithm for even moderately 
large amounts of input. Before we look at a realistic algorithm whose run- 
ning time includes the logarithm, let us look at a few examples of how the 
logarithm comes into play. 

BITS IN A BINARY NUMBER 
HOW MANY BITS ARE REQUIRED TO REPRESENT N CONSECUTIVE INTEGERS? 

The number of bits A 16-bit s h o r t  integer represents the 65,536 integers in the range -32,768 
required represent to 32,767. In general, B bits are sufficient to represent 2B different integers. 
numbers is 
logarithmic. Thus the number of bits B required to represent N consecutive integers satis- 

fies the equation 2B 2 N. Hence we obtain B 2 log N, so the minimum num- 
ber of bits is [log ~ 1 .  (Here [XI is the ceiling function and represents the 
smallest integer that is at least as large as X. The corresponding floor func- 
tion 1x1 represents the largest integer that is at least as small as X.) 

REPEATED DOUBLING 
STARTING FROM X = 1 ,  HOW MANY TIMES SHOULD X BE DOUBLED BEFORE IT 

IS AT LEAST AS LARGE AS N? 



The ~ o ~ a r i t h m - r n  

Suppose that we start with $1 and double it every year. How long would it 
take to save a million dollars? In this case, after 1 yr we would have $2; after 
2 yr, $4; after 3 yr, $8, and so on. In general, after K years we would have 2K 
dollars, so we want to find the smallest K satisfying 2K 2 N. This is the same 
equation as before, so K = [log ~ 1 .  After 20 yr, we would have more than a 
million dollars. The repeated doubling principle holds that, starting from 
1, we can repeatedly double only [log ~1 times until we reach N. 

REPEATED HALVING 
STARTING FROM X = N, IF N IS REPEATEDLY HALVED, HOW MANY 

ITERATIONS MUST BE APPLIED TO MAKE N SMALLER THAN O R  EQUAL TO 1 ? 

If the division rounds up to the nearest integer (or is real, not integer, divi- 
sion), we have the same problem as with repeated doubling, except that we 
are going in the opposite direction. Once again the answer is [log N1 itera- 
tions. If the division rounds down, the answer is Llog N ] .  We can show the 
difference by starting with X = 3. Two divisions are necessary, unless the 
division rounds down, in which case only one is needed. 

Many of the algorithms examined in this text contain logarithms, intro- 
duced because of the repeated halving principle, which holds that, starting 
at N, we can halve only logarithmically many times. In other words, an algo- 
rithm is O(1og N) if it takes constant (0( 1)) time to cut the problem size by a 
constant fraction (usually 112). This condition follows directly from the fact 
that there will be O(1og N) iterations of the loop. Any constant fraction will 
do because the fraction is reflected in the base of the logarithm, and Theo- 
rem 6.4 tells us that the base does not matter. 

All the remaining occurrences of logarithms are introduced (either 
directly or indirectly) by applying Theorem 6.5. This theorem concerns the 
Nth harmonic number, which is the sum of the reciprocals of the first N 
positive integers, and states that the Nth harmonic number, H,, satisfies HN 
= O(1og N). The proof uses calculus, but you do not need to understand the 
proof to use the theorem. 

The repeated 
doubling principle 
holds that, starting 
at 1, we can 
repeatedly double 
only logarithmically 
many times until we 
reach N. 

The repeated halving 
principle holds that, 
starting at N, we can 
halve only logarith- 
mically many times. 
This process is used 
to obtain logarithmic 
routines for 
searching. 

The Nth harmonic 
number is the sum of 
the reciprocals of the 
first N positive 
integers. The growth 
rate of the harmonic 
number is 
logarithmic. 

Let H N  = x'? 1 / i .  Then HN = @(log N )  A more precise estimate is 
I =  1 

Theorem 6.5 
In N + 0.577. 
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Proof The intuition qf the proof is that a discrete ~ l r i , ~  1.r i t ~ l l  approximated by 
the (continuous) integral. The proof uses n cor~st~.~rctioi~ to show that the 

- 11.1- 
sum H ,  can be bounded above and belo\\. 0.1. J - .  \tYrh uppropriate 

.Y 
limits. Details are left as Exercise 6.18. 

6.6 Static Searching Problem 

An important use of computers is to look up data. If the data are not allowed 
to change (e.g., it is stored on a CD-ROM), we say that the data are static. A 
static search accesses data that are never altered. The static searching prob- 
lem is naturally formulated as follows. 

STATIC SEARCHING PROBLEM 
GIVEN Ah' IA'TECER X AND AN ARRAY A, RETURN THE POSITION OF X IN A OR 

AN I,VDICATION THAT IT IS NOT PRESENT. IF  X OCCURS MORE THAN ONCE, 

RETURN ANY OCCLIRRENCE. THE ARRAY A IS NEVER 'ALTERED. 

An example of static searching is looking up a person in the telephone 
book. The efficiency of a static searching algorithm depends on whether the 
array being searched is sorted. In the case of the telephone book. searching 
by name is fast, but searching by phone number is hopeless (for humans). In 
this section, we examine some solutions to the static searching problem. 

6.6.1 Sequential Search 

A sequential search When the input array has not been sorted, we have little choice but to do a 
steps the linear sequential search that steps through the array sequentially until a 
data sequentially until 
a match is found. match is found. The complexity of the algorithm is analyzed in three ways. 

First, we provide the cost of an unsuccessful search. Then, we give the 
worst-case cost of a successful search. Finally, we find the average cost of a 
successful search. Analyzing successful and unsuccessful searches sepa- 
rately is typical. Unsuccessful searches usually are more time consuming 
than are successful searches (think about the last time you lost something in 
your house). For sequential searching, the analysis is straightforward. 

A sequential search is An unsuccessful search requires the examination of every item in the 
linear. array, so the time will be O(N).  In the worst case, a successful search, too, 

requires the examination of every item in the array because we might not find 
a match until the last item. Thus the worst-case running time for a successful 
search is also linear. On average, however, we search only half an array. That 
is, for every successful search in position i, there is a corresponding successful 
search in position N - I - i (assuming we start numbering from 0). However, 
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N l 2  is still O(N). As mentioned earlier in the chapter, all these Big-Oh terms 
should correctly be Big-Theta terms. However, the use of Big-Oh is more 
popular. 

6.6.2 Binary Search 

If the input array has been sorted, we have an alternative to the sequential If the input array is 

search. the binarv search. which is ~ e r f o r m e d  from the middle of the can use 
the binary search, array rather than the end. We keep track of l o w  and high, which delimit which is performed 

the portion of the array in which an item, if present, must reside. Initially, from the middle of the 
the range is from 0 to N - 1 .  If l o w  is larger than high, we know that the array ratherthan the 

item is not present, so we return NOT-FOUND. Otherwise, we let mid be the end. 

halfway point of the range (rounding down if the range has an even num- 
ber of elements) and compare the item we are searching for with the item 
in position mid. If we find a match, we are done and can return. If the item 
we are searching for is less than the item in position mid, then it must 
reside in the range l o w  to m i d - 1 .  If it is greater, then it must reside in the 
range mid+l to high. In Figure 6.1 1, lines 16 to 19 alter the possible range. 

1 / /  Performs the standard binary search 
2 / /  using two comparisons per level. 
3 / /  Returns the index where item is found, or NOT-FOUND 
4 template <class Comparable> 
5 int binarySearch( const vector<Comparable> & a, 
6 const Comparable & x ) 

7 i 
8 int low = 0; 
9 int high = a.size( i - 1; 

10 int mid; 
11 
12 while (  OW <= high ) 

13 I 
14 mid = ( low + high i / 2; 
15 
16 if( a[ mid ] < x ) 

17 low = mid + 1; 
18 else if( a[ mid I > x )  
19 high = mid - 1; 
20 else 
2 1 return mid; 
22 1 
23 
24 return NOT-FOUND; / /  NOT-FOUND = -1 
25 1 

Figure 6.1 1 Basic binary search, using three-way comparisons. 



The binary search is 
logarithmic because 
the search range is 
halved in each 
iteration. 

Optimizing the binary 
search can cut the 
number of 
comparisons roughly 
in half. 

essentially cutting it in half. By the repeated halving principle, we know that 
the number of iterations will be O(1og N ) .  

For an unsuccessful search, the number of iterations in the loop is bog N] 
+ 1. The reason is that we halve the range in each iteration (rounding down if 
the range has an odd number of elements); we add 1 because the final range 
encompasses zero elements. For a successful search, the worst case is hog N] 
iterations because in the worst case we get down to a range of only one ele- 
ment. The average case is only one iteration better because half the elements 
require the worst case for their search, a quarter of the elements save one 
iteration, and only one in 21 elements save i iterations from the worst case. 
The mathematics involves computing the weighted average by calculating 
the sum of a finite series. The end result, however, is that the running time 
for each search is O(1og N ) .  In Exercise 6.20 you are asked to complete the 
calculation. 

For reasonably large values of N, the binary search outperforms the 
sequential search. For instance, if N is 1000, then on average a successful 
sequential search requires 500 comparisons. The average binary search, 
using the previous formula, requires bog N] - I ,  or eight iterations for a suc- 
cessful search. Each iteration uses 1.5 comparisons on average (sometimes, 
1; other times, 2), so the total is 12 comparisons for a successful search. The 
binary search wins by even more in the worst case or when searches are 
unsuccessful. 

If we want to make the binary search even faster, we need to make the 
inner loop tighter. A possible strategy is to remove the (implicit) test for a 
successful search from that inner loop and shrink the range to one item in all 
cases. Then we can use a single test outside the loop to determine whether 
the item is in the array or cannot be found, as shown in Figure 6.12. If the 
item we are searching for in Figure 6.12 is no larger than the item in the mid 
position, it is in the range that includes the mid position. When we break the 
loop, the subrange is 1, and we can test to see whether we have a match. 

In the revised algorithm, the number of iterations is always b o g  ~1 
because we always shrink the range by half, possibly by rounding down. 
Thus the number of comparisons used is always Llog N1+ 1. 

Binary search is surprisingly tricky to code. Exercise 6.6 illustrates 
some common errors. 

Note that, for small N, such as values smaller than 6, the binary search 
might not be worth using. It uses roughly the same number of comparisons 
for a typical successful search, but it has the overhead of line 13 in each iter- 
ation. Indeed, the last few iterations of the binary search progress slowly. We 
can adopt a hybrid strategy in which the binary search loop terminates when 
the range is small and applies a sequential scan to finish. Similarly, people 
search a phone book nonsequentially. Once they have narrowed the range to 
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1 / /  binarysearch: Return position of x in sorted array a 
2 / i  or NOT-FOUND if item is not found. 
3 template <class Comparable> 
4 int binarySearch( const vector<Comparable> & a, 
5 const Comparable & x ) 

6 ( 

7 int low = 0; 
8 int high = a.size( - 1; 
9 int mid; 

10 
11 while( low < high ) 

12 I 
13 mid = ( low + high ) / 2; 
14 
15 if( a[ mid ] < x ) 

16 low = mid + 1; 
17 else 
18 high = mid; 
19 1 
20 return ( low == high & &  a[ low ] == x ) ? low : NOT-FOUND; 
21 1 

Figure 6.12 Binary search, using two-way comparisons, 

a column, they perform a sequential scan. The scan of a telephone book is 
not sequential, but it also is not a binary search. Instead it is more like the 
algorithm discussed in the next section. 

6.6.3 Interpolation Search 

The binary search is very fast at searching a sorted static array. In fact, it is 
so fast that we would rarely use anything else. A static searching method that 
is sometimes faster, however, is an interpolation search, which has better 
Big-Oh performance on average than binary search but has limited practical- 
ity and a bad worst case. For an interpolation search to be practical, two 
assumptions must be satisfied. 

1. Each access must be very expensive compared to a typical instruc- 
tion. For example, the array might be on a disk instead of in mem- 
ory, and each comparison requires a disk access. 

2. The data must not only be sorted, but it must also be fairly uni- 
formly distributed. For example, a phone book is fairly uniformly 
distributed. If the input items are { 1, 2, 4, 8, 16, .. . 1 ,  the distribu- 
tion is not uniform. 
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These assumptions are quite restrictive, so you might never use an inter- 
polation search. But it is interesting to see that there is more than one way to 
solve a problem and that no algorithm, not even the classic binary search, is 
the best in all situations. 

The interpolation search requires that we spend more time to make an 
accurate guess of where the item might be. The binary search always uses 
the midpoint. However, searching for Hank Aaron in the middle of the phone 
book would be silly; somewhere near the start clearly would be more appro- 
priate. Thus, instead of m i d ,  we use next  to indicate the next item that we 
will try to access. 

Here's an example of what might work well. Suppose that the range con- 
tains 1000 items, the low item in the range is 1000, the high item in the 
range is 1,000,000, and we are searching for an item of value 12,000. If the 
items are uniformly distributed, we expect to find a match somewhere near 
the twelfth item. The applicable formula is 

x - a[low] 
next = low + x (high-low- I )  . 

a[high] - a[low] 1 
The subtraction of 1 is a technical adjustment that performs well in practice. 
Clearly, this calculation is more costly then the binary search calculation. It 
involves an extra division (the division by 2 in the binary search is really just 
a bit shift, just as dividing by 10 is easy for humans), multiplication, and 
four subtractions. These calculations may need to be done with floating- 
point operations. One iteration may be slower than the complete binary 
search. However, if the cost of these calculations is insignificant when com- 
pared to the cost of accessing an item, speed is immaterial; we care only 
about the number of iterations. 

interpolation search In the worst case, where data are not uniformly distributed, the running 
has a better Big-0h time could be linear and every item might be examined. In Exercise 6.19 
bound on average 
than does binary you are asked to construct such a case. However, if we assume that the items 
search but has limited are reasonably distributed, as with a phone book, the average number of 
practicality and a bad comparisons is O(log log N). In other words, we apply the logarithm twice 
worst case. in succession. For N = 4,000,000,000, log N is about 32 and log log N is 

roughly 5. Of course, there are some hidden constants in Big-Oh notation, 
but the extra logarithm can lower the number of iterations considerably, so 
long as a bad case does not crop up. Proving the result rigorously, however, 
is quite complicated. 
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6.7 Checking an Algorithm Analysis 

Once we have performed an algorithm analysis, we want to determine 
whether it is correct and as good we can possibly make it. One way to do so 
is to code the program and see if the empirically observed running time 
matches the running time predicted by the analysis. 

When N increases by a factor of 10, the running time goes up by a factor 
of 10 for linear programs, 100 for quadratic programs, and 1000 for cubic 
programs. Programs that run in O(N log N) take slightly more than 10 times 
as long to run under the same circumstances. These increases can be hard to 
spot if the lower order terms have relatively large coefficients and N is not 
large enough. An example is the jump from N = 10 to N = 100 in the running 
time for the various implementations of the maximum contiguous subse- 
quence sum problem. Differentiating linear programs from O(N log N) pro- 
grams, based purely on empirical evidence, also can be very difficult. 

Another commonly used trick to verify that some program is O(F(N)) is 
to compute the values T(N)IF(N) for a range of N (usually spaced by factors 
of two), where T(N) is the empirically observed running time. If F(N) is a 
tight answer for the running time, the computed values converge to a posi- 
tive constant. If F(N) is an overestimate, the values converge to zero. If F(N) 
is an underestimate, and hence wrong, the values diverge. 

Suppose that we write a program to perform N random searches, using the 
binary search algorithm. Because each search is logarithmic, we expect the 
total running time of the program to be O(N log N). Figure 6.13 shows the 
actual observed running time for the routine for various input sizes on a real 
(but extremely slow) computer. The last column is most likely the converging 

Figure 6.13 Empirical running time for N binary searches in an N-item array. 
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Worst case is 
sometimes 
uncommon and can 
be safely ignored. At 
other times, it is very 
common and cannot 
be ignored. 

Average-case 
analysis is almost 
always much more 
difficult than worst- 
case analysis. 

column and thus confirms our analysis, whereas the increasing numbers for 
T/N suggest that O(N) is an underestimate and the quickly decreasing values 
for T/N2 suggest that O(M2 is an overestimate. 

Note in particular that we do not have definitive convergence. One prob- 
lem is that the clock that we used to time the program ticks only every 10 ms. 
Note also that there is no great difference between O(N) and O(N log N). Cer- 
tainly an O(N log N) algorithm is much closer to being linear than being qua- 
dratic. Finally, note that the machine in this example has enough memory to 
store 640,000 objects (in the case of this experiment, integers). If your 
machine does not have this much memory, you will not be able to reproduce 
these results. 

6.8 Limitations of Big-Oh Analysis 

Big-Oh analysis is a very effective tool, but it does have limitations. As 
already mentioned, its use is not appropriate for small amounts of input. For 
small amounts of input, use the simplest algorithm. Also, for a particular 
algorithm, the constant implied by the Big-Oh may be too large to be practi- 
cal. For example, if one algorithm's running time is governed by the formula 
2N log Nand another has a running time of IOOON, the first algorithm would 
most likely be better, even though its growth rate is larger. Large constants 
can come into play when an algorithm is excessively complex. They also 
come into play because our analysis disregards constants and thus cannot 
differentiate between things like memory access (which is cheap) and disk 
access (which typically is many thousand times more expensive). Our analy- 
sis assumes infinite memory, but in applications involving large data sets, 
lack of sufficient memory can be a severe problem. 

Sometimes, even when constants and lower order terms are considered, 
the analysis is shown empirically to be an overestimate. In this case, the anal- 
ysis needs to be tightened (usually by a clever observation). Or the average- 
case running time bound may be significantly less than the worst-case run- 
ning time bound, and so no improvement in the bound is possible. For many 
complicated algorithms the worst-case bound is achievable by some bad 
input, but in practice it is usually an overestimate. Two examples are the 
sorting algorithms Shellsort and quicksort (both described in Chapter 9). 

However, worst-case bounds are usually easier to obtain than their average- 
case counterparts. For example, a mathematical analysis of the average-case 
running time of Shellsort has not been obtained. Sometimes, merely defining 
what average means is difficult. We use a worst-case analysis because it is 
expedient and also because, in most instances, the worst-case analysis is 
very meaningful. In the course of performing the analysis, we frequently can 
tell whether it will apply to the average case. 



Summary 

Summary 

In this chapter we introduced algorithm analysis and showed that algorith- 
mic decisions generally influence the running time of a program much more 
than programming tricks do. We also showed the huge difference between 
the running times for quadratic and linear programs and illustrated that cubic 
algorithms are, for the most part, unsatisfactory. We examined an algorithm 
that could be viewed as the basis for our first data structure. The binary 
search efficiently supports static operations (i.e., searching but not updat- 
ing), thereby providing a logarithmic worst-case search. Later in the text we 
examine dynamic data structures that efficiently support updates (both inser- 
tion and deletion). 

In Chapter 7 we discuss some of the data structures and algorithms 
included in C++'s STL. We also look at some applications of data structures 
and discuss their efficiency. 

Objects of the Game 

average-case bound Measurement of running time as an average over 
all the possible inputs of size N. (p. 209) 

Big-Oh The notation used to capture the most dominant term in a 
function; it is similar to less than or equal to when growth rates are 
being considered. (p. 196) 

Big-Omega The notation similar to greater than or equal to when 
growth rates are being considered. (p. 208) 

Big-Theta The notation similar to equal to when growth rates are 
being considered. (p. 208) 

binary search The search method used if the input array has been 
sorted and is performed from the middle rather than the end. The 
binary search is logarithmic because the search range is halved in 
each iteration. (p. 215) 

harmonic number The Nth harmonic number is the sum of the recip- 
rocals of the first N positive integers. The growth rate of the har- 
monic numbers is logarithmic. (p. 21 3) 

interpolation search A static searching algorithm that has better Big- 
Oh performance on average than binary search but has limited prac- 
ticality and a bad worst case. (p. 218) 

linear-time algorithm An algorithm that causes the running time to 
grow as O(N).  If the size of the input increases by a factor ofJI then 
the running time also increases by a factor o f f .  It is the preferred 
running time for an algorithm. (p. 21 1) 
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Little-Oh The notation similar to less than when growth rates are 
being considered. (p. 208) 

logarithm The exponent that indicates the power to which a number is 
raised to produce a given number. For example, the logarithm of N 
(to the base 2) is the value X such that 2 raised to the power of X 
equals N. (p. 21 1 ) 

repeated doubling principle Holds that, starting at I ,  repeat doubling 
can occur only logarithmically many times until N is reached. 
(p. 2 13) 

repeated halving principle Holds that, starting at N, repeated halving 
can occur only logarithmically many times until I is reached. This 
process is used to obtain logarithmic routines for searching. (p. 2 13) 

sequential search A linear search method that steps through an array 
until a match is found. (p. 2 14) 

static search Accesses data that are never altered. (p. 2 14) 
subquadratic algorithm An algorithm whose running time is strictly 

slower than quadratic, which can be written as o(N2). (p. 208) 
worst-case bound A guarantee over all inputs of some size. (p. 209) 

Common Errors 

1. For nested loops, the total time is affected by the product of the 
loop sizes. For consecutive loops, it is not. 

2. Do not just blindly count the number of loops. A pair of nested 
loops that each run from 1 to N2 accounts for O(N4) time. 

3. Do not write expressions such as O(2N2) or O(N2 + N). Only the 
dominant term, with the leading constant removed, is needed. 

4. Use equalities with Big-Oh, Big-Omega, and so on.Writing that the 
running time is > O(N2) makes no sense because Big-Oh is an 
upper bound. Do not write that the running time is < O(N2); if the 
intention is to say that the running time is strictly less than qua- 
dratic, use Little-Oh notation. 

5. Use Big-Omega, not Big-Oh, to express a lower bound. 
6. Use the logarithm to describe the running time for a problem 

solved by halving its size in constant time. If more than constant 
time is required to halve the problem, the logarithm does not apply. 

7. The base of the logarithm is irrelevant for the purposes of Big-Oh. 
To include it is an error. 
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On the Internet 

The three maximum contiguous subsequence sum algorithms, as well as a 
fourth taken from Section 8.5, are available, along with a main that conducts 

6 
the timing tests. Also provided is a binary search-algorithm. 

MaxSum.cpp Contains four algorithms for the maximum subse- 
quence sum problem. 

BinarySearch.cpp Contains the binary search shown in Figure 6.12 
and a test program. Included in the test program is 
a test of the STL equivalent. 

Exercises 

In Short 

6.1. Balls are drawn from a box as specified in Theorem 6.1 in the com- 
binations given in (a)-(d). What are the corresponding values of i, j, 
and k? 
a. Red, 5 , 6  
b. Blue, 5, 6 
c. Blue, 3, Red 
d. 6,5,  Red 

6.2. Why isn't an implementation based solely on Theorem 6.2 sufficient 
to obtain a subquadratic running time for the maximum contiguous 
subsequence sum problem? 

6.3. Suppose that T,(N) = O(F(N)) and T2(N) = O(F(N)). Which of the 
following are true: 
a. T1(N) + T,(N) = O(F(N)) 
b. Tl(N) - T,(W = O(F(N)) 
c. T,(N)fT,(N)= 0(1) 
d. T,(N) = O(T,(N)) 

6.4. Group the following into equivalent Big-Oh functions: 

x2, X, x2 + X, x2 - X, and (x3 I (x - I ) ) .  

6.5. Programs A and B are analyzed and are found to have worst-case 
running times no greater than 15ON log N and N2, respectively. 
Answer the following questions, if possible. 
a. Which program has the better guarantee on the running time for 

large values of N (N > 10,000)? 
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b. Which program has the better guarantee on the running time for 
small values of N (N < 1 OO)? 

c. Which program will run faster on average for N = 1000? 
d. Can program B run faster than program A on all possible inputs? 

6.6. For the binary search routine shown in Figure 6.1 I ,  describe the 
consequences of each of the following replacement code fragments. 
a. Line 12: using the test low < high 
b. Line 14: assigning mid = low + high / 2 

c. Line 17: assigning low = mid 
d. Line 19: assigning high = mid 

In Theory 

6.7. For the typical algorithms that you use to perform calculations by 
hand, determine the running time to 
a. add two N-digit integers. 
b. multiply two N-digit integers. 
c. divide two N-digit integers. 

6.8. In terms of N, what is the running time of the following algorithm to 
compute X N :  

double power( double x, int n ) 

I 
double result = 1.0; 

for( int i = 0; i < n; i++ ) 

result *= x; 
return result; 

6.9. Directly evaluate the triple summation that precedes Theorem 6.1. 
Verify that the answers are identical. 

6.10. For the quadratic algorithm, determine precisely how many times 
the innermost statement is executed. 

6.11. An algorithm takes 0.5 ms for input size 100. How long will it take 
for input size 500 (assuming that low-order terms are negligible) if 
the running time is 
a. linear. 
b. O(Nlog N). 
c. quadratic. 
d. cubic. 



6.12. An algorithm takes 0.5 ms for input size 100. How large a problem 
can be solved in 1 min (assuming that low-order terms are negligi- 
ble) if the running time is 
a. linear. 
b. O(N log m. 
c. quadratic. 
d. cubic. 

6.13. Complete Figure 6.10 with estimates for the running times that 
were too long to simulate. Interpolate the running times for all four 
algorithms and estimate the time required to compute the maxi- 
mum contiguous subsequence sum of 10,000,000 numbers. What 
assumptions have you made? 

6.14. Order the following functions by growth rate: N, fi, N1.5, N2, 
N log N, N log log N, N log2N, N log (N2), 2/N, 2N, 2N12, 37, N3, and 
N210g N .  Indicate which functions grow at the same rate. 

6.15. For each of the following program fragments, 
a. give a Big-Oh analysis of the running time. 
b. implement the code and run for several values of N. 
c. compare your analysis with the actual running times. 

/ /  Fragment #1 
for( int i = 0; i < n; i++ ) 

sum+ t ; 

/ /  Fragment #2 
for( int i = 0; i < n; i += 2 ) 

sum++ ; 

/ /  Fragment # 3  
for( int i = 0; i < n; i++ ) 

for( int j = 0; j < n; j++ ) 

sum++ ; 

/ /  Fragment # 4  
for( int i = 0; i < n; i++ ) 

sum++; 
for( int j = 0; j < n; j++ ) 

sum++; 

/ /  Fragment #5 
for( int i = 0; i < n; i++ ) 

for( int j = 0; j < n * n; j++ ) 

sum+ + ; 
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/ /  Fragment # 6  
for( int i = 0; i < n; i++ ) 

for( int j = 0; j < i; j + + )  
sum+ + ; 

/ /  Fragment #7 
for( int i = 0; i < n; i++ ) 

for( int j = 0; j < n  * n; j++ ) 

for( int k = 0; k <  j; k + + )  
sum+ + ; 

6.16. Occasionally, multiplying the sizes of nested loops can give an over- 
estimate for the Big-Oh running time. This result happens when an 
innermost loop is infrequently executed. Repeat Exercise 6.15 for 
the following program fragment: 

for( int i = 1; i < n; i++ ) 

for( int j = 0; j < i * i; j++ ) 

if( j % i == 0 )  
for( int k = 0; k < j; k++ ) 

sum++ ; 

6.17. In a recent court case, a judge cited a city for contempt and ordered 
a fine of $2 for the first day. Each subsequent day, until the city fol- 
lowed the judge's order, the fine was squared (i.e., the fine pro- 
gressed as follows: $2, $4, $16, $256, $65,536, . . . ). 
a. What would be the fine on day N? 
b. How many days would it take for the fine to reach D dollars? (A 

Big-Oh answer will do.) 

6.18. Prove Theorem 6.5. (Hint: Show that xE2 < $. Then show a 
similar lower bound.) 

6.19. Construct an interpolation search that examines every element in the 
input array. 

6.20. Analyze the cost of an average successful search for the binary 
search algorithm in Figure 6.1 1. 

In Practice 

6.21. Give an efficient algorithm to determine if an integer i exists such 
that A, = i in an array of increasing integers. What is the running 
time of your algorithm? 
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6.22. A prime number has no factors besides 1 and itself. Do the following. 
a. Write a program to determine whether a positive integer N is 

prime. In terms of N, what is the worst-case running time of 
your program? 

b. Let B equal the number of bits in the binary representation of N. 
What is the value of B? 

c. In terms of B, what is the worst-case running time of your pro- 
gram? 

d. Compare the running times to determine whether a 20-bit num- 
ber and a 40-bit number are prime. 

6.23. An important problem in numerical analysis is to find a solution to 
the equation F(X) for some arbitrary F. If the function is continuous 
and has two points, low and high, such that F(1ow) and F(high) have 
opposite signs, then a root must exist between low and high and can 
be found by either a binary search or an interpolation search. Write a 
function that takes as parameters E low, and high and solves for a 
zero. What must you do to ensure termination? 

6.24. A majority element in an array A of size N is an element that appears 
more than N/2 times (thus there is at most one such element). For 
example, the array 

has a majority element (4), whereas the array 

does not. Give an algorithm that finds a majority element if one 
exists or reports that one does not exist. What is the running time of 
your algorithm? (Hint: There is an O(N) solution.) 

6.25. The input is an N x N matrix of numbers that is already in memory. 
Each individual row is increasing from left to right. Each individual 
column is increasing from top to bottom. Give an O(N) worst-case 
algorithm that decides if a number X is in the matrix. 

6.26. Design efficient algorithms that take an array of positive numbers a, 
and determine 
a, the maximumvalueof a [ j ] + a [ i ] , f o r  j 2 i. 
b. the maximum value of a [ j 1 -a [ i 1 , for j 2 i. 
c. the maximumvalue of a [  j 1 *a [ i ] ,  for j 2: i. 

d. themaximumvalueofa[j]/a[i],for j 2 i. 
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Programming Projects 

6.27. The Sieve of Eratosthenes is a method used to compute all primes 
less than N. Begin by making a table of integers 2 to N. Find the 
smallest integer, i, that is not crossed out. Then print i and cross out 
i, 2i, 3i, . . . When i > &, the algorithm terminates. The running 
time is O(N log log N). Write a program to implement the Sieve and 
verify the running time. How difficult is differentiating the running 
time from O(N) and O(N log N)? 

6.28. The equation As + B5 + C5 + D5 + E5 = F5 has exactly one inte- 
gral solution that satisfies 0 < A I B I C I D I E I F I 75. Write a 
proram to find the solution. (Hint: First, precompute all values of X5 
and store them in an array. Then, for each tuple ( A ,  B, C ,  D, E) ,  you 
only need to verify that some F exists in the array. (There are several 
ways to check for F: one of which is to use a binary search. Other 
methods might prove to be more efficient.) 

6.29. Implement the maximum contiguous subsequence sum algorithms 
to obtain data equivalent to the data shown in Figure 6.10. Compile 
the programs with the highest optimization settings. 
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Chapter 7 

The Standard Template Library 

Many algorithms require the use of a proper representation of data to 
achieve efficiency. This representation and the accompanying operations are 
known as a data structure. Each data structure allows arbitrary insertion but 
differs in how it allows access to members in the group. Some data struc- 
tures allow arbitrary access and deletions, whereas others impose restric- 
tions, such as allowing access only to the most recently or least recently 
inserted item in the group. 

The recently adopted C++ Standard requires all implementations to pro- 
vide a supporting library known as the Standard Template Libmn* (known 
simply as the STL). The STL provides a collection of data structures and 
provides some generic algorithms, such as sorting. As its name suggests, the 
STL makes heavy use of templates. 

Our primary goal here is to describe, in general terms, some examples 
and applications of data structures. Our secondary goal is to describe the 
basics of the STL, so that we can use it in Part 111. We do not discuss the the- 
ory behind an efficient STL implementation until Part IV, at which point we 
provide simplified implementations of some core STL components. But 
delaying the discussion of the STL's implementation until after we use it is 
not a problem. We do not need to know lzovv something is implemented so 
long as we know that it i s  implemented. 

In this chapter, we show: 

common data structures, their allowed operations, and their running 
times; 
some applications of these data structures; and 

the organization of the STL and its integration with the rest of the 
C++ programming language. 
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7.1 Introduction 
A data structure is a Data structures allow us to achieve an important object-oriented program- 
representati0n0f data ming goal: component reuse. The data structures described in this section 
and the operations 
allowed on that data. (and implemented later in Part IV) have recurring uses. When each data 

structure has been implemented once, it can be used over and over in various 
applications. 

A data structure is a representation of data and the operations allowed 
on that data. Many, but by no means all, of the common data structures store a 
collection of objects and then provide methods to add a new object to, remove 
an existing object from, or access a contained object in the collection. 

Data structures allow In this chapter we examine some of the fundamental data structures and 
us to achieve their applications. Using a high-level protocol, we describe typical operations 
component reuse. 

that are usually supported by the data structures and briefly describe their uses. 
- .- 

When possible, we give an estimate of the cost of implementing these opera- 
tions correctly. This estimate is often based on analogy with noncomputer 
applications of the data structure. Our high-level protocol usually supports 
only a core set of basic operations. Later, when describing the basics of how 
the data structures can be implemented (in general there are multiple compet- 
ing ideas), we can more easily focus on language-independent algorithmic 
details if we restrict the set of operations to a minimum core set. 

As an example, Figure 7.1 illustrates a generic protocol that many data 
structures tend to follow  ref, written in Section 5.3.2, wraps a constant 
O b j  ec t  reference, so that we can abstract a null reference.) We do not actu- 
ally use this protocol directly in any code. However, you could use this class 
as a starting point for an inheritance-based hierarchy of data structures. 

1 / /  Collection protocol. 
2 
3 template <class Object> 
4 class Collection 
5 I 
6 public: 
7 virtual -Collection( ) { } 

8 
9 virtual void insert( const Object & x ) = 0; 

10 virtual void remove( const Object & x i = 0; 
11 virtual Cref<Object> find( const Object & x ) const = 0; 
12 
13 virtual boo1 isEmpty( ) const = 0; 
14 virtual void makeEmpty( ) = 0; 

15 1 ;  

Figure 7.1 A generic protocol for many data structures. 
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Stacks and oueuesm 
Then, we give a description of the STL interface provided for these data The STL is the one 

structures. Bv no means does the STL necessarilv remesent the best wav of library for data 
i 1 structures and doing things. However, it represents the one library for data structures and algorithms 

algorithms guaranteed to be available on all compilers that implement the guaranteed to be 
Standard. Its use also illustrates some of the core issues that must be dealt available on all 

with once the theory is taken care of. compilers that 
implement the 

We defer consideration of efficient implementation of data structures to Standard. 
Part IV. At that point we provide some competing implementations for data 
structures that follow the simple protocols developed in this chapter. We 
also provide one implementation for the basic STL components described 
in this chapter. Thus we are separating the interface of STL (i.e., what the 
STL does), from its implementation (i.e.,  how the STL does it). This 
approach-the separation of the interface and implementation-is part of 
the object-oriented paradigm. The user of the data structure needs to see 
only the available operations, not the implementation. Recall this is the 
encapsulation and information hiding part of object-oriented programming. 

The rest of this chapter is organized as follows. First, we discuss two 
fundamental data structures, namely the stack and queue. Our discussion is 
STL-independent. Then we discuss the interface for containers and iterators 
in the STL. Next, we describe some STL algorithms. Finally, we examine 
some other data structures that are supported in the STL. 

7.2 Stacks and Queues 

In this section we describe two containers: the stack and the queue. Both 
have simple interfaces and very efficient implementations. Even so, as you 
will see, they are very useful data structures. 

7.2.1 Stacks 

A stack is a data structure in which all access is restricted to the most A stackrestricts 

recently inserted element. It behaves much like a stack of bills, stack of accesstothe most 
recently inserted 

plates, or stack of newspapers. The last item added to the stack is placed on item. 
the top and is easily accessible, whereas items that have been in the stack for 
a while are more difficult to access. Thus the stack is appropriate if we 
expect to access only the top item; all other items are inaccessible. 

In a stack the three natural operations of insert, remove, and find 
are renamed push, pop, and top. These basic operations are illustrated in 
Figure 7.2. 
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Figure 7.2 Stack model: Input to a stack is by push, output is by top, and 
deletion is by pop. 

1 / /  Stack protocol. 
2 
3 template <class Object> 
4 class Stack 
5 { 

6 public: 
7 virtual -Stack( ) { } / /  Destructor 
8 
9 virtual void push( const Object & x ) = 0; / /  Insert 

10 virtual void pop ( ) = 0 ; / / Remove 
11 virtual const Object & top( ) const = 0; / /  Find 
12 
13 virtual boo1 isEmpty( ) const = 0; 
14 virtual void makeEmpty( ) = 0; 

15 ) ;  

Figure 7.3 Protocol for the abstract stack class. 

The C++ class template shown in Figure 7.3 illustrates the typical proto- 
col, which is similar to the protocol in the STL. By pushing items and then 
popping them, we can use the stack to reverse the order of things. 

Stack operations take Each stack operation should take a constant amount of time, indepen- 
aConstant Of dent of the number of items in the stack. By analogy, finding today's news- 
time. 

paper in a stack of newspapers is fast, no matter how deep the stack is. 
However, arbitrary access in a stack is not efficiently supported, so we do 
not list it as an option in the protocol. 

What makes the stack useful are the many applications for which we 
need to access only the most recently inserted itetn. An itnportant use of 
stacks is in cornpiler design. 
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7.2.2 Stacks and Computer Languages 

Compilers check programs for syntax errors. Often, however, a lack of one 
symbol (e.g., a missing * / or 1) causes the compiler to spill out numerous 
lines of diagnostics without identifying the real error. Other compilers are 
simply quiet: some will tell you that -main is undefined, even though the 
real problem is a missing closing brace. 

A useful tool in this situation is a program that checks on whether every- 
thing is balanced, that is, every { corresponds to a } ,  every [ to a ] ,  and so 
on. The sequence [ ( ) I is legal, but [ ( 1 ) is not-so simply counting the 
numbers of each symbol is insufficient. (Assume for now that we are pro- 
cessing only a sequence of tokens and won't worry about problems such as 
the character constant { not needing a matching } .) 

A stack is useful for checking unbalanced symbols because we know A stack can be used 

that when a closing symbol such as ) is seen, it matches the most recently check 'Or 

unbalanced symbols. 
seen unclosed ( .  Therefore, by placing opening symbols on a stack, we can 

- - 

easily check that a closing symbol makes sense. Specifically, we have the 
following algorithm. 

1 .  Make an empty stack. 

2. Read symbols until the end of the file. 

a. If the token is an opening symbol, push it onto the stack. 
b. If it is a closing symbol and if the stack is empty, report an error. 
c. Otherwise, pop the stack. If the symbol popped is not the corre- 

sponding opening symbol, report an error. 
3. At the end of the file, if the stack is not empty, report an error. 

In Section 12.1 we will develop this algorithm to work for (almost) all 
C++ programs. Details include error reporting, processing of comments, 
strings, and character constants, as well as escape sequences. 

The algorithm used to check balanced symbols suggests a way to imple- The stack is used to 

ment function calls. The problem is that, when a call is made to a new func- implement 
calls in most 

tion, all the variables local to the calling function need to be saved by the procedural 
system; otherwise, the new function would overwrite the calling routine's languages. 

variables. Furthermore, the current location in the calling routine must be 
saved so that the new function knows where to go after it is done. The vari- 
ables have generally been assigned by the compiler to machine registers, and 
conflicts will certainly arise. The reason that this problem is similar to bal- 
ancing symbols is because a function call and a function return are essen- 
tially the same as an open parenthesis and a closed parenthesis, so the same 
ideas should apply. This indeed is the case: As discussed in Section 8.3, the 
stack is used to implement function calls in most procedural languages. 



- -- -- - 

The Standard Template Library 

The operator 
precedence parsing 
algorithm uses a 
stack to evaluate 
expressions. 

The queue restricts 
access to the least 
recently inserted 
item. 

A final important application of the stack is the evaluation of expres- 
sions in computer languages. In the expression 1 + 2 * 3 ,  at the point that the * 
is encountered, we have already read the operator + and the operands 1 and 
2. Does * operate on 2, or 1 t 2 ? Precedence rules tell us that * operates on 2, 
which is the most recently seen operand. After we see the 3 ,  we can evaluate 
2 * 3  as 6 and then apply the + operator. This process suggests that operands 
and intermediate results should be saved on a stack. It also suggests that the 
operators be saved on the stack (as the + is held until the higher precedence 
* is evaluated). An algorithm that uses a stack to evaluate expressions is 
operator precedence parsing. We describe it in detail in Section 12.2. 

7.2.3 Queues 

Another simple data structure is the queue, which restricts access to the least 
recently inserted item. In many cases being able to find and/or remove the 
most recently inserted item is important. But in an equal number of cases, it 
is not only unimportant, but it is actually the wrong thing to do. In a multi- 
processing system, for example, when jobs are submitted to a printer, we 
expect the least recent or most senior job to be printed first. This order is not 
only fair, but it also is required to guarantee that the first job does not wait 
forever. Thus you can expect to find printer queues on all large systems. 

The basic operations supported by queues are 

enqueue, or insertion at the back of the line; 
dequeue, or removal of the item from the front of the line; and 
ge tFront ,  or access of the item at the front of the line. 

Figure 7.4 illustrates these queue operations. Historically, dequeue and 
ge tFront  have been combined into one operation, but we keep them sepa- 
rate here. Because C++ allows function overloading, we could simulta- 
neously define two forms of dequeue: one that gives the front item and one 
that does not. 

enqueue dequeue - Queue + 
ge tF ron t  

Figure 7.4 Queue model: Input is by enqueue, output is by getFront ,  and 
deletion is by dequeue. 
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1 //Queue protocol. 
2 
3 template <class Object> 
4 class Queue 
5 I 
6 public: 
7 virtual -Queue( ) { } i /  Destructor 
8 
9 virtual void enqueue( const Object & x ) = 0: / /  Insert 

10 virtual void dequeue( ) = 0; / / Remove 
11 virtual const Object & getFront( ) const = 0; / /  Find 
12 
13 virtual boo1 isEmpty( 1 const = 0 ;  
14 virtual void makeEmpty( ) = 0; 

15 1 ;  

Figure 7.5 Protocol for the abstract queue class 

Figure 7.5 illustrates a possible protocol for queues. Because queue Queue operations 

operations and stack operations are restricted similarly, we expect that they take a 
amount of time. 

should also take a constant amount of time per query. That is indeed the 
case. All basic queue operations take O(1) time. We present several applica- 
tions of queues in the case studies. 

7.3 Containers and lterators 

In this section we describe the basics of the STL iterators and how they 
interact with containers. Recall from Section 5.4, that an iterator is an object 
that is used to traverse a collection of objects. In the STL such a collection is 
called a container: Recall also, that the iterator maintains a notion of a cur- 
rent position in the container and provides basic operations such as the abil- 
ity to advance to the next position and access the item in the current position. 

The STL iterators are very flexible, in that sometimes they allow 
changes to the underlying container, but at other times they do not. The iter- 
ator syntax is based heavily on making it appear that an iterator is a primitive 
(pointer) type rather than a class type. Thus, instead of having named mem- 
ber functions, as in the design in Section 5.4.2, the STL iterators make heavy 
use of operator overloading.' 

1. Operator overloading gives the STL iterators the same look and feel as a pointer variable 
used in pointer hopping, as discussed in Section D.3. 
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7.3.1 Containers 

A container 
represents a group of 
objects, known as its 
elements. 

The end marker is a 
position one past the 
last element in the 
container. 

An iterator is an 
object that allows 
access to and 
iteration through the 
elements in a 
container. 

A const-i terator 
must be used to 
traverse const 
containers. 

A container represents a group of objects, known as its elements. Some 
implementations. such as vectors and lists. are unordered; others, such as 
sets and maps, are ordered. Some implementations allow duplicates; others 
do not. All containers support the following operations. 

boo1 empty( ) const 

returns t r u e  if the container contains no elements and f a l s e  otherwise. 

iterator begin( ) const 

returns an i t e r a  t o r  that can be used to begin traversing all locations in the 
container. 

iterator end( ) const 

returns an i t e r a t o r  that represents the end marker, a position past the last 
element in the container. 

int size( ) const 

returns the number of elements in the container. 

The most interesting of these methods are those that return an i t e r a t o r .  
We describe the operations that can be performed by an i t e r a t o r  in Sec- 
tion 7.3.2. 

7.3.2 The iterator 

As described in Section 5.4, an iterator is an object that allows access to and 
iteration through all the elements in a container. We discussed the use of the 
I t e r a t o r  class in the context of read-only vectors in Section 5.4. 

In the STL, there are actually many types of i t e r a t o r s .  However, we can 
always count on the following operations being available for any iterator type. 

itr++ 

advances the iterator i t r  to the next location. Both the prefix and postfix 
forms are allowable, but the precise return type (whether i t  is a constant 
reference or a reference) can depend on the type of iterator. 

*itr 

returns a reference to the object stored at iterator i t r ' s  location. The 
reference returned may or may not be modifiable, depending on the type of 
iterator.' For instance, the const-iterator, which must be used to 

2. The reference may be only modifiable !i.e.. * i t r  may not appear on the right-hand side). 
These are output iterators. but we won't have occasion to make use of them. Instead. we 
restrict our discussion to forward iterators. bidirectional iterators. and random access iterators. 
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traverse const containers, has an operator* that returns a const 
reference, thus not allowing *itr to be on the left-hand side of an 
assignment. 

itrl==itr2 

returns true if iterators it rl and i tr2 refer to the same location and 
false otherwise. 

itrl!=itr2 

returns true if iterators itrl and itr2 refer to a different location and 
false otherwise. 

Each container defines several iterators. For instance, vec tor<int> defines 
vector<int>::iterator andvector<int>::const-iterator. 
( T h e r e  a re  a lso  reverse  i t e ra to r s  that  we d o  not d i s c u s s . )  The 
const-iterator must be used instead of an iterator if the container is 
nonmodifiable. 

As an example, the routine shown in Figure 7.6 prints the elements of 
any container, provided that the element has operator<< defined for it. If 
the container is an ordered set, its elements are output in sorted order.3 

Some iterators have more power than the forward iterator shown in Bidirectional 

Figure 7.6. Because we do not cover the full STL, we restrict our discussion iterators support 
operator--. to the iterators that occur in the text. The forward iterator allows forward 

traversal through a container, via operator++. If the iterator also supports 
operator - -, that is, i t  supports both forward and backward traversal 
through a container, it is said to be a bidirectional iterator. Generally speak- 
ing, in Part IV we write the code for the forward iterator and leave the bidi- 
rectional support as an exercise for you to do. 

1 / /  Print the contents of Container c. 
2 template <class Container> 
3 void printcollection( const Container & c ) 

4 i 
5 typename Container: :const-iterator itr; 
6 for( itr = c.begin( ) ;  itr ! =  c.end( ) ;  ++itr ) 

7 cout << *itr << endl; 
8 } 

Figure 7.6 Routine for printing the contents of any Container 

3. typename is used to signal that Container: : const-iterator is a type; thus line 
5 is a declaration. 
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A random access 
iterator efficiently 
supports arbitrary 
advancing and 
retreating in a 
collection. 

The material in 
Section 5.2 is an 
essential prerequisite 
to this section. 

Unary function 
objects accept one 
parameter. Binary 
function objects 
accept two 
parameters. 

Some iterators that support even more are called random access itera- 
tors. With a random access iterator, we can efficiently advance or retreat an 
arbitrary amount in a collection. In other words. the + and - operators are 
defined so that i tr + 1 0 0 advances 100 positions. Iterator subtraction is also 
allowed, so it rl -i tr2 measures a separation d i ~ t a n c e . ~  

The type of iterators available depend upon the container. Some contain- 
ers export random access interators, while others export bidirectional itera- 
tors. The iterators are the bridge between the containers and the algorithms. 
A container will provide the maximally capable iterator reasonable, and an 
algorithm will require a minimally capable iterator reasonable. 

7.4 STL Algorithms 

The STL provides numerous general purpose algorithms that operate on 
many of the containers. We examine only a few of these algorithms, with the 
intention of showing the general ideas that pervade the STL, while docu- 
menting the specific algorithms to be used in Part 111. 

The STL algorithms make heavy use of function objects. Consequently, 
the material in Section 5.2 is an essential prerequisite to this section. 

7.4.1 STL Function Objects 

The function objects needed for the STL follow the convention described in 
Section 5.2. Specifically, these function objects are instances of classes that 
have implemented the function call operator, operator ( ) . Some have func- 
tion call operators that accept only one parameter and are called unary func- 
tion objects. Others have function call operators that accept two parameters 
and are called binary function objects. In the file <functional>, the STL 
provides several function object templates. We describe those used in this text. 

Binary Comparison Objects 
For many algorithms, such as sorting, a default ordering is used. This order- 
ing is to call operator< if the underlying collection has such an operator 
defined in it. The function object template that encapsulates operator< is 
less. Because less has a short implementation, as shown in Figure 7.7, 
seeing the implementation helps to illustrate the behavior. 

-- 

4. Again, it is worth noting that pointers used in pointer hopping (Appendix D.3) satisfy the 
requirements of a random access iterator and that const pointers satisfy the properties of 
a random access const-iterator. 



1 / /  The less function template. 
2 
3 template <class Object> 
4 class less 
5 I 
6 public: 
7 boo1 operator0 ( const Object & lhs, const Object & rhs ) const 
8 { return lhs < rhs; 1 
9 I; 

Figure 7.7 Implementation of the less function template. 

Each comparison operator has a function object template. These opera- Each comparison 

tors are less, greater, equal-to, not-equal-to, greater-equal, Operator has a 
function object 

and less-equal. template. 

Unary Binder Adapters 
Consider the problem of finding in a collection of items the first item that 
satisfies some property. For instance, we might want to find the first item that 
is less than 50. If we write a generic algorithm to solve this problem, we pass 
to the algorithm information about the container plus a function object that 
would express the property that we would like to satisfy. In this context, the 
function object is called a predicate. A predicate is a function object that 
returns a Boolean. A predicate that takes a single parameter (a particular 
item in the collection) and returns a Boolean, indicating whether the item 
satisfies the property is a unary predicate. 

Although we could write the predicate ourselves (it is actually a simplified 
version of less ) , we want somehow to be able to reuse iess. To do so, we 
can use a unary binder adapter to generate a unary function from a binary 
function by malung constant one of the parameters to the binary function. 

The function bind2nd takes two parameters-function, which is a 
binary function and secondval-and returns a new function. The new 
function uses function, with secondVal as the second parameter in the 
binary function. If the function is a predicate, which is typical, the new pred- 
icate is a unary predicate. 

For instance, the result of bind2nd (less<int> ( ) ,5) is a new unary 
predicate. If this new object is f 1, any call f 1 (x) i s  interpreted as 
iess<int> ( ) (x, 5 ) . A similar function is bindlst, which can be used to 
return a new predicate,  with the first value bound. The result of 
bindlst ( less< int> ( ) , 5 ) is a new unary predicate. If this new object is £2, 
any call f 2 (x) is interpreted as less< int > ( ) ( 5 , x) . We show how to use 
these binders in Section 7.4.2. Their implementation is left as Exercise 7.20. 

A predicate is a 
function object that 
returns a Boolean. 

A unary binder 
adapter is used to 
generate a unary 
function from a binary 
function by making 
constant one of the 
parameters to the 
binary function. 
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The f ind-i f Algorithm 
find-if returns an Our discussion of unary binder adapters suggested an application in which 
iterator that we perform a search, basing matches on a predicate. This is precisely what 
represents the first 
object that satisfies a ind-i does. 
predicate. 

Iterator find-if( Iterator begin, Iterator end, 
Predicate gred ) 

returns an iterator representing the first object that satisfies pred. The search - 

range is from begin to end, not including end. If no match is found, end is 
returned. 

To illustrate how f ind-if is  used, let  us suppose that v is  a 
vector<int> and that we want to find the first occurrence of an item that is 
less than 50. We can easily define a function object class that expresses this 
condition: 

class LessThan50 

i 
pub1 ic : 

boo1 operator0 ( int x ) const 
{ return x < 50; } 

I ;  

We need to declare an iterator, itr, which is of type vector<int>: : 
iterator. At the end of the following code fragment, itr will either be 
v .  end ( ) or it will be located at an item that is less than 50: 

itr = find-if( v.begin( ) ,  v.end( ) ,  LessThan50( ) ) ;  

Alternatively we can use a unary binder adapter: 

itr = find-if ( v.begin( ) ,  v.end( ) ,  

bind2nd( less<int>( ) ,  50 ) ) ;  

Again, we provide an implementation of an STL component, shown in 
Figure 7.8, to illustrate what is going on. The f ind-i f algorithm is heavily 
templated and is written in terms of basic iterator operations. As a result, it 
works for any forward iterator. Note that it is not written in terms of any con- 
tainer: rather it is written in terms of the container's iterator. Many of the 
STL algorithms look just like this one. Again, we observe the principle of 
programming to an interface. 
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1 template <class ForwardIterator, class UnaryPredicate> 
2 ForwardIterator find-if( const ForwardIterator & begin, 
3 const ForwardIterator & end, 
4 UnaryPredicate isMatch ) 

5 { 

6 for( ForwardIterator itr = begin; itr ! =  end; ++itr ) 

7 if ( isMatch( *itr ) ) 

8 break; 
9 

10 return itr; 
11 } 

Figure 7.8 Implementation of f ind-if. 

7.4.2 Binary Search 

The find algorithm is a specialized version of f ind-i f that returns the 
location (in an iterator) of the first occurrence of some value x. It is easily 
implemented by calling f ind-i f with an appropriate predicate (see Exer- 
cise 7.1 1) .  

Clearly, f ind-i f and thus find must take linear time because they use 
sequential search. However, if the collection is sorted, we can use binary 
search. But, recall that binary search also requires a random access iterator: 
The underlying assumption is that the collection is arraylike and that an item 
in any position can be accessed in constant time. 

The STL implementation of the binary search is lower-bound. As 
usual, a pair of iterators that define the search space must be passed. We also 
pass the value being searched for. Optionally, we pass a comparison func- 
tion; the default is less<Object>. The lower-bound function template 
returns an iterator corresponding to the jirst position that contains a value at 
least as large as the object being searched for. The presence of the object in 
the search space can easily be tested for, by comparing the object being 
searched for with the object referenced by the iterator. If the object is larger 
than all others in the collection, the end marker is returned. 

The implementation is almost identical to the code shown in Figure 6.12 
and is shown in Figure 7.9. A default parameter cannot be used because it 
would be the only instance in which the third template parameter is used. That 
would make deducing the template expansion impossible for the compiler. 
Instead, we have to write two separate function templates and have one call the 
other (see line 6). In the primary routine, the main complication is at line 21. 
Iterators cannot be averaged by adding them and then dividing by 2. Instead, 
to compute a midpoint, we compute low and high's  separation distance and 
add half the separation distance to low. This line of code requires use of the 

The lower-bound 
function template 
uses binary search 
and returns an 
iterator correspond- 
ing to the first 
position that contains 
a value at least as 
large as the object 
being searched for. 
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1 template <class RandomIterator, class Comparable> 
2 RandomIterator lower-bound( const RandomIterator & begin 
3 const RandomIterator & end, 
4 const Comparable & x ) 

5 { 

6 return lower-bound( begin, end, x, less<Comparable>( ) ) ;  

7 1 
8 
9 template <class RandomIterator, class Object, class Compare> 

10 RandomIterator lower-bound( const RandomIterator & begin, 
11 const RandomIterator & end, 
12 const Object & x, 
13 Compare lessThan ) 

14 { 

15 RandomIterator low = begin; 
16 RandomIterator mid; 
17 RandomIterator high = end; 
18 
19 while( low < high ) 

20 { 

21 mid = low + ( high - low ) / 2; 
22 
23 if ( lessThan ( *mid, x ) ) 

24 low = mid + 1; 
25 else 
26 high = mid; 
27 1 
28 return low; 
29 i 

Figure 7.9 Implementation of lower-bound. 

random access iterator. If lower-bound is passed iterators that do not support 
iterator subtraction, a compiler error will result if we attempt to expand the 
template. We use the lower-bound function template in Section 1 1.1. 

7.4.3 Sorting 

The STL provides a sort algorithm. It is called by passing a pair of iterators 
and an optional predicate that implements the less-than test. The sort algo- 
rithm requires random access iterators. 

template <class RandomIterator> 
void sort( RandomIterator begin, RandomIterator end ) 

rearranges the elements in the specified range to be in sorted order, using the 
natural order. 
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template <class RandomIterator, class Comparator> 
void sort( RandomIterator begin, RandomIterator end, 

Comparator lessThan ) 

rearranges the elements in the specified range to be in sorted order, using 
lessThan. 

7.5 Implementation of vector with an lterator 

The vector class shown in Section 3.4.2 was not iterator-aware. The online 
version of vector is iterator-aware. That is, we omitted portions of the 
online implementation when we discussed the vector implementation. In 
this section we briefly sketch what was omitted. 

Like all of the iterators in the STL, the online code implements an STL iterators are not 

unsafe iterator. For instance, * i tr when i tr is already at the end marker is 
not explicitly detected by the STL as an error. Neither is ++itr, under the 
same circumstances. Of course, an error is likely to occur, terminating your 
program abnormally. However, the STL will not give you any help in track- 
ing down the problem. 

Our vector class, as described in Section 3.4.2, performed error checks 
on array indexing. We can also add error checks for the iterators. We do so 
for all the iterators discussed in Part IV. We leave making the vector itera- 
tors safe as an exercise in Part IV. 

A vector<~bject> defines vector<~bject>::iterator and 
vector<Obj ect> : : const-i terator. This task is most conveniently 
done with a typedef, as shown in Figure 7.10. Because pointer hopping 
pointers satisfy the properties of a random access iterator, we can use pointer 
types as the iterator! 

Consequently, lines 9 and 10 define i terator as an ob j ec t * and 
const-iterator as const Object *. We then need to provide imple- 
mentations of begin and end, which return iterators, as done at lines 12 to 
20. Note that we provide both accessor and mutator versions. The accessor 
returns a cons t-iterator, and the mutator returns an i terator. 

This code contains most of the logic used in designing a safe iterator 
class. To do so, we would first need to write two new class templates, 
~ector~terator and const~ector~terator, and change the typedefs 
at lines 9 and 10 to reference them. Next, we would have to change the bod- 
ies of begin and end to return constructed iterators (by calling appropriate 
constructors for the two new classes). We would construct the iterators by 
passing a position (0 for begin, size ( ) for end) and this (most likely, 
these constructors would be not be public, and we would use appropriate 
friend declarations). We would pass two parameters so that the iterator can 
store both a current position and a pointer to the vector that it is iterating 
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1 template <class Object> 
2 class vector 
3 I 
4 public: 
5 / /  Constructors, and other member functions 
6 / /  See Figure 3.14, lines 11 to 44 
7 
8 / /  Iterator stuff: not bounds checked 
9 typedef Object * iterator; 

10 typedef const Object * const-iterator; 
11 
12 iterator begin ( ) 

13 { return &objects[ 0 I ;  1 
14 const-iterator begin( ) const 
15 { return &objects [ 0 I ; 1 
16 
17 iterator end( ) 

18 { return &objects[ size( ) 1 ;  ) 

19 const-iterator end( ) const 
20 { return &objects [ size( ) I ; 1 
21 
22 private: 
23 int thesize; 
24 int thecapacity; 
25 Object * objects; 
26 I ;  

Figure 7.10 Adding unsafe iterators to the vector class. 

over. That way it can ensure that it is at a valid position. Also. when two iter- 
ators are subtracted, the first iterator can verify that the second iterator refers 
to the same vector. 

The two iterator classes must then provide overloaded operators, such as 
two versions of operator++, two versions of operator--, up to two ver- 
sions of operator*, operator==, operator! =. operator+, and various 
operator-, all of which can have extensive error checking. 

There is one additional major detail: Because an iterator can be used 
anywhere a const-iterator can be used (but not vice versa), it follows that 
there is an IS-A relationship. As a result. ConstvectorIterator is a base 
class and vec t or1 terator is a derived class. Needless to say, that intro- 
duces quite a few additional details. You will have to wait until Chapter 17 to 
see how it all gets resolved (in the context of another container). 
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7.6 Sequences and Linked Lists 
In Section 1.6.3 we presented a basic linked list. In a linked list we store The linked list is used 

items noncontiguously rather than in the usual contiguous array. The advan- large 
amounts of data tage of doing so is twofold. First, an insertion into the middle of the list does  movement^ It uses a 

not require moving all the items that follow the insertion point. Data move- small amount of 

ment is very expensive in practice, and the linked list allows insertion with 
only a constant amount of assignment statements. Second, if the array size is 
not known in advance. we must use the array-doubling technique. In the 
course of expanding the array from size S to 2S, we need 3S units of avail- 
able memory. After the expansion has been completed, we still need 2S units 
of memory, meaning that we have to waste lots of memory. If the data items 
are large, we would rather have only the overhead of a pointer per item. The 
basic linked list is shown in Figure 7.1 1.  

Note that, if we allow access only at first, we have a stack and that, if 
we allow insertions on1 y at last and access only at first, we have a 
queue. Typically we need more general operations, such as finding or  
removing any named item in the list. We also need to be able to insert a new 
item at any point. These requirements are far more than either a stack or a 
queue allows. 

To access items in the linked list, we need a pointer to the corresponding 
node. Clearly, however, granting this access is a violation of information 
hiding principles. We need to ensure that any access to the list through a 
pointer is safe, which is where the iterator comes in. 

space per item. 

Access to the list is 
achieved by an 
iterator class. The list 
class has operations 
that reflect the state 
of the list. All other 
operations are in the 
iterator class. 

7.6.1 The list Class 

The STL provides three sequence implementations, but only two are generally The list class 

used: an array-based version and a linked-list based version. The array-based implements a linked 
list. 

version may be appropriate if insertions are performed only at the high end of 
the array (using push-back), for the reasons discussed in Section 1.2.4. The 

Figure 7.11 A simple linked list. 
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The basic trade-off 
between vector and 
list is that random 
access iterators are 
available only for 
vector, whereas 
insertion and removal 
from the middle of a 
container is 
efficiently supported 
only for list. 

STL doubles the array if an insertion at the high-end would exceed an inter- 
nal capacity. Although this procedure gives good Big-Oh performance, for 
large objects that are expensive to construct, a list version would be prefera- 
ble in order to minimize calls to the constructors. The list class imple- 
ments a linked list. 

Insertions and deletions toward the middle of the sequence are ineffi- 
cient in vector. A vector allows direct access by the index, but a list 
does not. Thus the 1 is t class can always be safely used unless indexing is 
needed. The vector class may still be a better choice if insertions occur 
only at the end and the objects being inserted are not overly expensive to 
construct. Additional operations on sequences include the following. 

void push-back( const Object & element ) 

appends element at the end of this sequence. 

void push-front( const Object & element ) 

prepends element to the front of this sequence. It is not available for 
vector because it is too inefficient. However, a deque is available that is 
like a vector (in that it supports operat or [ 1 in constant time), but it 
supports double-ended access. 

Object & front( ) 

returns the first element in this sequence. An accessor version is also defined. 

Object & back( ) 

returns the last element in this sequence. An accessor version is also defined. 

void pop-front( ) 

removes the first element from this sequence. It is available only for 1 ist 
and deque. 

void pop-back( ) 

removes the last element from this sequence. 

iterator insert( iterator pos, const Object & obj ) 

inserts obj prior to the element in the position referred to by pos. This 
operation takes constant time for a list, but takes time proportional to the 
distance from pos to the end of the sequence for a vector. Returns the 
position of the newly inserted item. 

iterator erase( iterator pos ) 

removes the object at the position referred to by pos. Elements in the 
sequence are logically moved as required. This operation is done in constant 
time for a list, but it takes time proportional to the distance from pos to 
the end of the sequence for a vector. Returns the position of the element 
that followed pos prior to the call to erase. 
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1 #include <stack> 
2 #include <iostream> 
3 #include <vector> 
4 using namespace std; 
5 
6 / /  Do some inserts and removes. 
7 int main( ) 

8 { 
9 stack<int,vector<int> > s; 

10 
11 s.push( 1 ) ;  s.push( 2 ) ;  s.push( 3 ) ;  

12 
13 cout << "Contents are: " <<  endl; 
14 for( ; !s.empty( ) ;  s.pop( ) ) 

15 cout << s.top( ) << endl; 
16 
17 return 0; 
18 1 

Figure 7.12 Routine to demonstrate the STL s t a c k ;  the output is 3 2 1 

7.6.2 Stacks and Queues 

The STL provides s t a c k  and queue classes, but they simply use a sequence 
container ( l i s t ,  v e c t o r ,  or deque) to call the appropriate functions. Thus 
they are adapters (as described in Section 5.3.3). Both s t a c k  and queue are 
templates that require the specification of both the type of object in the con- 
tainer and the type of container. There is a default container, but using the 
default requires a compiler that understands default template parameters. As 
an example, Figure 7.12 shows how to use a stack of integers having a v e c t o r  
as the underlying container. The idea of the client having to specify the 
underlying implementation of a data structure seems to run counter to the 
principle of programming to an interface. However, that is necessary only 
because some compilers do not yet fully understand templates. 

The q u e u e  does not use standard names such as e n q u e u e  and 
dequeue. Instead it uses push, pop, and top .  Thus there is no compelling 
reason to use the queue; these names are more misleading than the names in 
the l i s t  class. Seemingly, then, only the s t a c k  is worth using. 

7.7 Sets 

The STL provides 
s t a c k  and queue 
classes, but they use 
a sequence container 
(list, vector, or 
deque) to call the 
appropriate 
functions. 

The queue does not 
use standard names 
such as enqueue 
and dequeue. 

In Section 6.6 we examined the static searching problem and demonstrated 
that, if the items are presented in sorted order, we can support the f i n d  
operation in logarithmic worst-case time. This approach involves static 
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searching because, once we have been presented with the items, we cannot 
add or remove items. Suppose, however, that we do want to add and remove 
items. The STL data structure that allows us to do so is the set. 

The set is an The set is an ordered container that allows no  duplicate^.^ We discuss 
Ordered the underlying implementation in Chapter 19. In addition to the usual 
that allows no 
duplicates. begin, end, size, and empty, the set provides the following operations. 

pairciterator,bool> insert( const Object & element ) 

adds element to the set if it is not already present. The boo1 component of 
the return value is true if the set did not already contain element; 
otherwise, it is false. The iterator component of the return value is the 
location of element in the set. 

iterator find( const Object & element ) const 

returns an iterator containing the location of element in the set or 
end ( ) if element is not in the set. 

int erase( const Object & element ) 

removes element from the set if it is present. Returns the number of 
elements removed (either 0 or 1). 

By default, ordering uses the 1 ess<Ob j ect> function object, which 
itself is implemented by calling operator< for the Object. An alternative 
ordering can be specified by instantiating the set template with a function 
object type.6 As an example, Figure 7.13 illustrates how a set that stores 
strings in decreasing order is constructed. The call to printcollection 
will output elements in decreasing sorted order. 

We are hoping that the worst-case cost of the find, insert, and 
erase operations is O(1og N) because that would match the bound 
obtained for the static binary search. Unfortunately, for the simplest imple- 
mentation of the set, that is not the case. The average case is logarithmic, 
but the worst case is O(N) and occurs frequently. However, by applying 
some algorithmic tricks, we can obtain a more complex structure that does 
indeed have O(1og N )  cost per operation. The STL set is guaranteed to 
have this performance, and in Chapter 19 we discuss how to obtain it using 
the binary search tree and its variants, and provide an implementation of 
the set, with a forward iterator. 

5. The multiset allows duplicates, but we do not discuss it here. 
6. Some compilers do not support default template parameters. For those compilers, the 

function object type must be explicitly provided. In this text we always explicitly provide 
a function object type. 



1 #include <iostream> 
2 #include <set> 
3 #include <functional> 
4 #include <string> 
5 using namespace std; 
6 
7 int main( ) 

8 i 
9 set<string, greater<string> > s; / /  Use reverse order 

10 
11 s.insert( "joe" ) ;  

12 s.insert( "bob" ) ;  

13 printcollection( s ) ;  / /  Figure 7.6 
14 
15 return 0; 
16 1 

Figure 7.13 Illustration of set, using reverse order. 

We mention in closing that the iterator returned by the set is not a ran- 
dom access iterator. However, it is possible to make the set iterator a slightly 
slow O(log N )  random access iterator, while preserving the running time of 
the other operations. In other words, by careful modification of the binary 
search tree, we can access the Kth smallest item in logarithmic time. 

7.8 Maps 

A mag is used to store a collection of ordered entries that consists of keys 
and their values and maps keys to values. Keys must be unique, but several 
keys can be mapped to the same values.' Thus values need not be unique. 

A map behaves like a set instantiated with a pair (see Section 5.51, 
whose comparison function refers only to the key.8 Thus it supports begin, 
end, size, and empty, but the underlying iterator is a (key, value) pair. 
Thus for an iterator itr, *itr is of type pair<KeyType,ValueType>. The 
map also supports insert, find, and erase. For insert, we must provide 
a pair<KeyType, ValueType> object. Although find requires only a 
key, the iterator it returns references a pair. Using only these operations is 
hardly worthwhile because the syntactic baggage can be excessive. 

Using a binary search 
tree, we can access 
the Kth smallest item. 
The cost is logarith- 
mic average-case 
time for a simple 
implementation and 
logarithmic worst- 
case time for a more 
careful 
implementation. 

A mag is used to 
store a collection of 
ordered entries that 
consists of keys and 
their values and maps 
keys to values. 

7. The mu1 timap allows duplicate keys, but we do not discuss it here. 
8. Like a set, an optional template parameter can be used to specify a comparison function 

that differs from less<KeyType>. 
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Fortunately the map class has an important extra operation: The array- 
indexing operation is overloaded as follows. 

ValueType & operator[] ( const KeyType & key ) 

Return the value to which key is mapped by map. If key is not mapped, it 
becomes mapped to a default ValueType generated by applying a zero- 
parameter constructor (or a default value of zero for the primitive types). 

Because the map can be directly implemented with a s e t ,  both have the 
same performance properties. 

An associative array This type of syntax is sometimes known as an associative array, which 
uses array indexing: uses array indexing: The index is the key, and the result of the index is the 
The index is the key, 
and the result of the value. In Figure 7.14, people maps a s t r i n g  to an i n t .  Hence " T i m "  is ini- 
index is the value. tially 3 and then 5, which is output by the first print statement. " ~ o b "  is not in 

the map prior to the print statement, but the call to opera tor  [ ] puts it in the 
map with a default value of 0. Thus 0 is (perhaps unintentionally) output by 
the second print statement. To know whether " ~ o b "  was in the map, we first 
would have needed to call f i n d  and then check to see whether the returned 
iterator was equal to end ( ) . Once we have called f i nd  and because we have 
an iterator i t r ,  to find the value we should use ( " i t r )  . secondqo avoid a 
second search. We demonstrate this technique in Chapter 15. 

1 #include <iostream> 
2 #include <map> 
3 #include <string> 
4 using namespace std; 
5 
6 int main( ) 

7 I 
8 map<string,int,less<string> > people; 
9 
10 people[ "Tim" 1 = 3; 
11 people[ "Tim" I = 5; 
12 cout << "Tim's value is " <<  people[ "Tim" ] < <  endl; 
13 cout << "Bob's value is " <<  people[ "Bob" ] << endl; 
14 
15 return 0; 
16 i 

Figure 7.14 Illustration of the map class. Tim's value is 5. Bob's value is 0. 

9. Although i tr->second appears to be equivalent to ( *itr ) . second, the equiva- 
lence holds only if the iterator class overloads operator->. The Standard requires that 
STL iterators do so. but many compilers do not yet conform to this aspect of the Standard. 
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7.9 Priority Queues 
Although jobs sent to a printer are generally placed on a queue, that might The priority queue 

not always be the best thing to do. For instance, one job might be particu- 
the minimum item larly important, so we might want to allow that job to be run as soon as the 

printer is available. Conversely, when the printer finishes a job and several 
1-page jobs and one 100-page job are waiting, it might be reasonable to print 
the long job last, even if it is not the last job submitted. (Unfortunately, most 
systems do not do this, which can be particularly annoying at times.) 

Similarly, in a multiuser environment the operating system scheduler must 
decide which of several processes to run. Generally? a process is allowed to run 
only for a fixed period of time. A poor algorithm for such a procedure involves 
use of a queue. Jobs are initially placed at the end of the queue. The scheduler 
repeatedly takes the first job on the queue, runs it until either it finishes or its 
time limit is up, and places it at the end of the queue if it does not finish. Gen- 
erally, this strategy is not appropriate because short jobs must wait and thus 
seem to take a long time to run. Clearly, users that are running an editor should 
not see a visible delay in the echoing of typed characters. Thus short jobs (i.e., 
those using fewer resources) should have precedence over jobs that have 
already consumed large amounts of resources. Furthermore, some resource- 
intensive jobs, such as jobs run by the system administrator, might be impor- 
tant and should also have precedence. 

If we give each job a number to measure its priority, the smaller number 
(pages printed, resources used) tends to indicate greater importance. Thus we 
want to be able to access the smallest item in a collection of items and remove 
it from the collection. To do so we use the f indMin and deleteMin opera- 
tions. The data structure that supports these operations is the priority queue 
and supports access of the minimum item only. Figure 7.15 illustrates the 
basic priority queue operations. 

insert deleteMin \ findMin 4 

\ Priority / 1 
Queue 

Figure 7.15 Priority queue model: Only the minimum element is accessible. 
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The binary heap 
implements the 
priority queue in 
logarithmic time per 
operation with little 
extra space. 

An important use of 
priority queues is 
event-driven 
simulation. 

1 / /  PriorityQueue protocol (not the STL version). 
2 
3 template <class Comparable> 
4 class PriorityQueue 
5 i 
6 public: 
7 virtual -PriorityQueue( ) { } / /  Destructor 
8 
9 virtual void insert( const Comparable & x ) = 0; / /  Insert 

10 virtual void deleteMin( ) = 0; / /  Remove 
11 virtual void deleteMin( Comparable & min ) = 0; / /  Remove 
12 virtual const Comparable & findMin( ) const = 0; / /  Find 
13 
14 virtual boo1 isEmpty( ) const = 0; 
15 virtual void makeEmpty( ) = 0; 
16 } ;  

Figure 7.16 Protocol for typical priority queues (but not the STL version). 

A typical priority queue protocol is shown in Figure 7.16. Note that 
deleteMin has two forms: One form removes the smallest item, and the 
second form removes the smallest item but passes that item back to the 
caller. 

The STL protocol is somewhat different, as we discuss shortly. 
Because the priority queue allows duplicates, it cannot be implemented 
by a set. It can be implemented by a multiset, but that turns out to be 
overkill because a multiset supports many more operations than required 
by a priority queue. The penalty for the overkill is typically somewhat 
slower performance. 

As the priority queue supports only the deleteMin and f indMin 
operations, we might expect performance that is a compromise between 
the constant-time queue and the logarithmic time set. Indeed, this is the case: 
The basic priority queue supports all operations in logarithmic worst-case 
time, uses only an array, supports insertion in constant average time, and is 
simple to implement and is known as the binary heap. This structure is one 
of the most elegant data structures known. In Chapter 21 we provide details 
on the implementation of priority queues. 

An important application of the priority queue is event-driven simula- 
tion. Consider, for example, a system such as a bank in which customers 
arrive and wait in line until one of K tellers is available. Customer arrival is 
governed by a probability distribution function, as is the service time (the 
amount of time it takes a teller to provide complete service to one customer). 
We are interested in statistics such as how long on average a customer has to 
wait or how long a line might be. 
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With certain probability distributions and values of K, we can compute 
these statistics exactly. However, as K gets larger, the analysis becomes 
considerably more difficult. so the use of a computer to simulate the oper- 
ation of the bank is appealing. In this way the bank's officers can deter- 
mine how many tellers are needed to ensure reasonably smooth service. An 
event-driven simulation consists of processing events. The two events here 
are ( 1 )  a customer arriving and (2) a customer departing, thus freeing up a 
teller. At any point we have a collection of events waiting to happen. To 
run the simulation, we need to determine the next event, this is the event 
whose time of occurrence is minimum. Hence we use a priority queue that 
extracts the event of minimum time to process the event list efficiently. We 
present a complete discussion and implementation of event-driven simula- 
tion in Section 14.2. 

We close by mentioning that the STL priority queue uses different con- The STL priority 

ventions than presented here. First, a priority queue must be specified by queue uses pushy 
top, and pop and 

several template parameters. leading to an often tortuous declaration because a,,esses the 
default template parameters do not always work correctly. Second, the prior- maximum, rather than 

ity queue does not use standard names such as insert, f indMin, and theminimum, item. 

deleteMin. Instead, it uses push, top, and pop and thus easily wins the 
award for worst method names in a widely used library. Finally, it accesses 
the maximum, rather than the minimum, item. The following is a summary 
of the operations. 

template <class Object, class Container, class Less> 
class priority-queue 

requires the specification of the type of object being stored, the type of 
container storing it (typically a vector of object), and the class that defines 
the function object for comparison. The function object is used to implement 
the internal meaning of less than. 

void push( const Object & element ) 

adds e 1 emen t to the container. 

const Object & top( ) const 

returns the largest item in the container. 

void pop ( ) 

removes the largest item from the container. 

On the surface, priori ty-queue is sufficiently complicated that an 
example is warranted, which we provide in Figure 7.17. We begin with the 
include directives. Priority queues are in the header file <queue>, and as we 
have to specify that a vector is used and also have to provide the compari- 
son function objects, we have a few extra header files. 
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1 #include <queue> 
2 #include <iostream> 
3 #include <string> 
4 #include <vector> 
5 #include <functional> 
6 using namespace std; 
7 
8 / /  Empty the priority queue and print its contents. 
9 template <class PriorityQueue> 

10 void dumpContents( const string & msg, PriorityQueue & pq ) 

11 i 
12 cout << msg < <  " : "  << endl; 
13 while( !pq.empty( ) ) 

14 { 

15 cout << pq.top( ) << endl; 
16 P~.POP( 1 ;  
17 1 
18 1 
19 
20 / /  Do some inserts and removes (done in dumpcontentsi. 
21 int main ( ) 

22 { 
23 priority-queue<int,vector<int>,greater<int > minPQ; 
24 priority-queue<int,vector<int>,less<ir-t> > maxPQ; 
25 
26 minPQ.push( 4 ) ;  minPQ.push( 3 1 ;  minPQ.push( 5 1 ;  
27 maxPQ.push( 4 ) ;  maxPQ.push( 3 ) ;  maxPQ.push( 5 1 ;  
28 
29 dumpContents( "minPQU, minPQ ) ;  / /  3 4 5 
30 dumpContents( "maxPQU, maxPQ ) ;  / /  5 4 3 
31 
32 return 0; 
33 1 

Figure 7.17 Routine that demonstrates the STL priority-queue; the 
comment shows expected order of output. 

The dumpcontents method accesses a priority queue and empties it, 
printing its contents. The first parameter, msg, is used to print the name of 
the priority queue or any other interesting message. Note that, again, we are 
programming to an interface: this template works regardless of how the 
priority-queue template has been expanded. 

The main method creates two priority queues, throws some items into 
each of them, and then dumps the contents. Recall that by default (or with a 
less function object), the priority queue produces the maximum item. So, if 
we reverse the order of comparison, we get minimums. The comments at 
lines 29 and 30 show the output that we expect to receive. 
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Summary 

In this chapter we examined the basic data structures used throughout this 
text. We provided generic protocols and explained what the running time 
should be for each data structure. We also described the interface provided 
by the STL. In later chapters we show how these data structures are used and 
eventually give an implementation of each data structure that meets the time 
bounds we have claimed here. Figure 7.1 8 summarizes the results obtained. 

Chapter 8 describes an important problem-solving tool known as recur- 
sion. Recursion allows many problems to be efficiently solved with short 
algorithms and is central to the efficient implementation of a sorting algo- 
rithm and several data structures. 

Objects of the Game 

associative array A map that uses array indexing: the index is the key, 
and the result of the index is the value. (p. 252) 

bidirectional iterator An iterator that allows both forward and back- 
ward traversal through a container. (p. 239) 

binary function objects Function objects that accept two parameters. 
(p. 240) 

binary heap Implements the priority queue in logarithmic time per 
operation with little extra space. (p. 253) 

Figure 7.18 Summary of some data structures. 

Data 
Structure 

Stack 

Queue 

Linked list 

Ordered set 

Priority queue 

Access 

Most recent only, pop,  O(1) 

Least recent only, dequeue, O(1) 

Any item 

Any item by name or rank, O(log N) 

f indMin, O(I) ,  
deleteMin, O(log N) 

Comments 

Very very fast 

Very very fast 

ow) 
Average case easy to do; 
worst case requires effort 

insert is O ( l )  on average 
O(1og N) worst case 
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binary search tree A data structure that supports insertion, removal, 
and searching. We can also use it to access the Kth smallest item. 
The cost is logarithmic average-case time for a simple implementa- 
tion and logarithmic worst-case time for a more careful implementa- 
tion. (p. 250) 

const-iterator The type of iterator that must be used to traverse 
cons t containers. (p. 238) 

container A representation of a group of objects, known as its ele- 
ments. (p. 238) 

data structure A representation of data and the operations allowed on 
that data, permitting component reuse. (p. 232) 

end marker A position past the last element in a container. (p. 238) 
forward iterator An iterator that allows forward traversal through a 

container. In the full STL, a forward iterator must satisfy require- 
ments of two other iterators, known as input and output iterators. 
(P. 239) 

iterator An object that allows access to and iteration through the ele- 
ments in a container. (p. 238) 

linked list A data structure used to avoid large amounts of data move- 
ment. It uses a small amount of extra space per item. (p. 247) 

list The STL class that implements a linked list. (p. 247) 

mag An STL class used to store a collection of ordered entries consist- 
ing of keys and their values and maps keys to values. (p. 251) 

operator precedence parsing An algorithm that uses a stack to evalu- 
ate expressions. (p. 236) 

predicate A function object that returns a Boolean. (p. 241) 
priority queue A data structure that supports access of the minimum 

item only. (p. 253) 
queue A data structure that restricts access to the least recently 

inserted item. (p. 236) 
random access iterator An iterator that efficiently supports arbitrary 

advancing and retreating in a collection. (p. 240) 
set An ordered STL container that allows no duplicates. (p. 250) 
stack A data structure that restricts access to the most recently 

inserted item. (p. 233) 
unary binder adapter An adapter that is used to generate a unary 

function from a binary function by making constant one of the 
parameters to the binary function. (p. 241) 

unary function objects Function objects that accept one parameter. 
(P. 240) 
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Common Errors 

1. Do not worry about low-level optimizations until after you have 
concentrated on basic design and algorithmic issues. 

2. The iterator returned by end ( ) is one-past the last element in the 
container. You cannot safely apply operator * to it. 

3. A constant collection cannot be accessed by an iterator; you must 
use a const-iterator. 

4. When you send a function object as a parameter, you must send a 
constructed object, not simply the name of the class. 

5. It is an error to access or delete from an empty stack, queue, or pri- 
ority queue. The class implementer must ensure that the error is 
detected. Unfortunately, the STL classes do not do so. 

6. When using a map, if you are not sure whether a key is in the map, 
you may need to use find and check whether the returned iterator 
matches the end marker. 

7. A priority queue is not a queue. It just sounds like it should be. 

On the lnternet 

In writing the code in this chapter, we made use of the STL. If your compiler 
does not support the STL, you can still use the subset implemented in Part IV 
and contained in the online code (we list those files as we have occasion to 
implement them in Part IV). You need to #include the same files, except 
with a . h extension. For instance, to use the map, #include "map. h". 
Except for the vector iterator, all iterators are bounds-checked, so you may 
prefer to use this version even if your compiler supports the STL. Further 
details on using these classes and avoiding naming conflicts with preexisting 
STL classes are provided in the README file in the online bundle. Some (but 
not all) of the code demos from this chapter are available online. 

functiona1.h Implements the 1 es s function predicate tem- 
plate and a few others. 

a1gorithm.h Contains an implementation of lower-bound. 
SimpleSetDemo.cpp Contains the code in Figures 7.6 and 7.13. 
TestPQ.cpp Contains the priority queue demonstrated in 

Figure 7.1 7. 
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Exercises 

In Short 

7.1. Show the results of the following sequence: add ( 4  ) , add ( 8 ) , 
add ( 1 ) , add ( 6 ) , remove ( ) , and remove ( ) when the add and 
remove operations correspond to the basic operations in a 
a. stack. 
b. queue. 
c. priority queue. 

In Theory 

7.2. Suppose that you want to support the following three operations 
exclusively: insert, f indMax, and deleteMax. How fast do you 
think these operations can be performed? 

7.3. Can all the following be supported in logarithmic time: insert, 
dele teMin, dele t eMax, f indMin, and f indMax? 

7.4. Which of the data structures in Figure 7.1 8 lead to sorting algo- 
rithms that could run in less than quadratic time? 

7.5. Show that the following operations can be supported in constant time 
simultaneously: push, pop, and f indMin. Note that deleteMin is 
not part of the repertoire. (Hint: Maintain two stacks-one to store 
items and the other to store minimums as they occur.) 

7.6. A double-ended queue supports insertions and deletions at both the 
front and end of the line. What is the running time per operation? 

In Practice 

7.7. Write a routine that uses the STL to print out the items in a collec- 
tion in reverse order. Do not use reverse iterators. 

7.8. A deletion in a linked list or a binary search tree leaves the following 
problem: If an element is deleted, what happens to the iterators that 
are referencing that element? Discuss some alternatives. (Hint: One 
alternative is to make use of the Observer pattern in Section 5.6.) 

7.9. Show how to implement a stack efficiently by using a list as a 
data member. 

7.10. Show how to implement a queue efficiently by using a list as a 
data member. 



Exercises 

7.11. In the implementation of find, what predicate should find use to 
call f ind-i f? 

Programming Projects 

7.12. A queue can be implemented by using an array. The queue elements 
are stored in consecutive array positions. with the front item always 
in position 0. Note that this is not the most efficient method. Do the 
following. 
a. Describe the algorithms for getFront, enqueue, and 

dequeue. 
b. What is the Big-Oh running time for each of getFront. 

enqueue, and dequeue, using these algorithms? 
c.  Write an implementation that uses these algorithms and the pro- 

tocol shown in Figure 7.5. 
d. Write an implementation that uses these algorithms and the STL 

queue protocol. 

The operations supported by the set can also be implemented by 
using an array. The array elements are stored in sorted order in con- 
secutive array positions. Thus find can be implemented by a binary 
search. Do the following. 
a.  Describe the algorithms for insert and remove. 
b. What is the running time for these algorithms? 
c. Write an implementation that uses these algorithms and the pro- 

tocol shown in Figure 7.1. 

A priority queue can be implemented by using a sorted array (as in 
Exercise 7.13). Do the following. 
a. Describe the algorithms for findMin, deleteMin, and 

insert. 
b. What is the Big-Oh running time for each of f indMin, 

dele t eMin. and insert, using these algorithms? 
c. Write an implementation that uses these algorithms and the STL 

priority queue interface, with a comparison function as a tem- 
plate parameter. 

7.15. A priority queue can be implemented by storing items in an 
unsorted array and inserting items in the next available location. Do 
the following. 
a. Describe the algorithms for findMin. deleteMin. and 

insert. 



b. Using these algorithms, what is the Big-Oh running time for 
each of f indMin, deleteMin, and insert? 

c. Write an implementation that uses these algorithms and the STL 
priority queue interface, with a comparison function as a tem- 
plate parameter. 

7.16. By adding an extra data member to the priority queue class shown 
in Exercise 7.15, you can implement both insert and findMin in 
constant time. The extra data member maintains the array position 
where the minimum is stored. However, deleteMin is still expen- 
sive. Do the following. 
a. Describe the algorithms for insert, findMin, and 

deleteMin. 
b. What is the Big-Oh running time for dele t e~in? 
c. Write an implementation that uses these algorithms and the STL 

priority queue interface, with a comparison function as a tem- 
plate parameter. 

7.17. By maintaining the invariant that the elements in the priority queue 
are sorted in nonincreasing order (i.e., the largest item is first, and the 
smallest is last), you can implement both f indMin and deleteMin 
in constant time. However, insert is expensive. Do the following. 
a. Describe the algorithms for insert, f indMin, and 

deleteMin. 
b. What is the Big-Oh running time for insert? 
c. Write an implementation that uses these algorithms and the STL 

priority queue interface, with a comparison function as a tem- 
plate parameter. 

7.18. A double-ended priority queue allows access to both the minimum 
and maximum elements. In other words, all the following are sup- 
ported: findMin, deleteMin, f indMax, and deleteMax. DO the 
following. 
a. Describe the algorithms for f indMin, deleteMin, f indMax, 

deleteMax, and insert. 
b. What is the Big-Oh running time for each of f indMin, 

de 1 e t eMin, f indMax, de 1 e t eMax, and insert. using these 
algorithms? 

c. Write an implementation that uses these algorithms. 



7.19. A median heap supports the operations insert, f indKth, and 
removeKth. The last two find and remove, respectively, the Kth 
smallest element. The simplest implementation maintains the data in 
sorted order. Do the following. 
a. Describe the algorithms that can be used to support median heap 

operations. 
b. What is the Big-Oh running time for each of the basic opera- 

tions using these algorithms? 
c. Write an implementation that uses these algorithms. 

7.20. Implement bind2nd as follows (for simplicity assume the function 
parameter is a predicate function). 
a. Define a class template Bind2ndClass that stores a predicate 

and bound object as data members. 
b. Add a two-parameter constructor that initializes the data 

members. 
c. Provide a one-parameter implementation of operator ( ) that 

calls the predicate with operator ( ) 'S parameter and the bound 
object. 

d. Implement bind2nd by returning an instantiated Bind2 ndClass 
object. 

7.21. Write a program that reads strings from input and outputs them 
sorted, by length, shortest string first. If a subset of strings have the 
same length, output them in alphabetical order. 

7.22. Implement the PriorityQueue protocol shown in Figure 7.16 by 
adapting the priority-queue STL class. You may use either com- 
position or private inheritance. If your compiler does not support the 
STL, use the priority-queue class provided in the online code 
(in queue. h and queue. cpp). 

7.23. The fill function template takes a pair of forward iterators (begin 
and end) and a value, and places value in all positions in range 
specified by the iterators (as usual, end is one past the last affected 
item). Implement f i 11. 

7.24. The min-element function template takes a pair of forward itera- 
tors (begin and end) and returns an iterator that refers to the mini- 
mum element in the range specified by the iterators (as usual, end is 
one past the last affected item). Optionally, you can use a function 
object to specify a less-than function. Implement (the two versions 
of) min-element. 
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7.25. The adjacent-£ ind function template takes a pair of iterators 
(begin and end) and a binary predicate (pred). It returns an iter- 
ator referring to the first element such that pred returns true 
when applied to the element and its predecessor. By default, pred 
is equal-to<object>. Implement (the two versions of) 
adj acent-£ ind. 

References 

References for the theory that underlies these data structures are provided in 
Part IV. The STL is described in [ I ]  and most recent C++ books (see the ref- 
erences in Chapter I ). 

1. D. R. Musser and A. Saini, C++ Programming with the Standard 
Template Library, Addison-Wesley, Reading, Mass., 1996. 



Chapter 8 

Recursion 

A function that is partially defined in terms of itself is called recursive. Like 
many languages, C++ supports recursive functions. Recursion, which is the 
use of recursive functions, is a powerful programming tool that in many 
cases can yield both short and efficient algorithms. In this chapter we 
explore how recursion works, thus providing some insight into its variations, 
limitations, and uses. We begin our discussion of recursion by examining the 
mathematical principle on which it is based: mathematical induction. Then 
we give examples of simple recursive functions and prove that they generate 
correct answers. 

In this chapter, we show: 

the four basic rules of recursion; 

numerical applications of recursion, leading to implementation of an 
encryption algorithm; 
a general technique called divide and conquer; 

a general technique, called dynamic programming, that is similar to 
recursion but uses tables instead of recursive function calls; and 
a general technique, called backtracking, that amounts to a careful 
exhaustive search 

8.1 What Is Recursion? 
A recursive function is a function that either directly or indirectly makes a A recursive function 

call to itself. This action may seem to be circular logic: How can a function F a function that 
directly or indirectly 

solve a problem by calling itself? The key is that the function F cails itself on makes a call to itself. 
a different, generally simpler, instance. The following are some examples. 

In C++ the source file is processed by replacing all # inc lude  direc- 
tives with the contents of the include file. However, include files may 



themselves have #include directives. This situation is easily han- 
dled with recursion: To process a file, we replace all #include direc- 
tives with the contents of the recursively processed include file. Any 
nested includes are automatically handled. Note that, if a file attempts 
to include itself, either directly or indirectly, an infinite loop results. 
Files on a computer are generally stored in directories. Users may 
create subdirectories that store more files and directories. Suppose 
that we want to examine every file in a directory D, including all files 
in all subdirectories (and subsubdirectories, and so on). We do so by 
recursively examining every file in each subdirectory and then exam- 
ining all files in the directory D (discussed in Chapter 18). 
Suppose that we have a large dictionary. Words in dictionaries are 
defined in terms of other words. When we look up the meaning of a 
word, we might not always understand the definition, so we might 
have to look up words in the definition. Likewise, we might not 
understand some of those, so we might have to continue this search 
for a while. As the dictionary is finite, eventually either we come to a 
point where we understand all the words in some definition (and thus 
understand that definition and can retrace our path through the other 
definitions), we find that the definitions are circular and that we are 
stuck, or some word we need to understand is not defined in the dic- 
tionary. Our recursive strategy to understand words is as follows: If 
we know the meaning of a word we are done; otherwise, we look the 
word up in the dictionary. If we understand all the words in the defini- 
tion, we are done. Otherwise, we figure out what the definition means 
by recursively looking up the words that we do not know. This proce- 
dure terminates if the dictionary is well defined, but it can loop indef- 
initely if a word is circularly defined. 
Computer languages are frequently defined recursively. For instance, 
an arithmetic expression is an object, a parenthesized expression, two 
expressions added to each other, and so on. 

Recursion is a powerful problem-solving tool. Many algorithms are 
most easily expressed in a recursive formulation. Furthermore, the most effi- 
cient solutions to many problems are based on this natural recursive formu- 
lation. But you must be careful not to create circular logic that would result 
in infinite loops. 

In this chapter we discuss the general conditions that must be satisfied 
by recursive algorithms and give several practical examples. It shows that 
sometimes algorithms that are naturally expressed recursively must be 
rewritten without recursion. 
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Background: Proofs by Mathematical Induction 

8.2 Background: Proofs by 
Mathematical Induction 

In this section we discuss proof by mathematical induction. (Throughout this Induction is an 

chapter we omit the word mathematical when describing this technique.) important proof 
technique used to Induction is commonly used to establish theorems that hold for positive establish theorems 

integers. We start by proving a simple theorem, Theorem 8.1. This particular that hold for positive 
theorem can be easily established by using other methods, but often a proof integers. 

by induction is the simplest mechanism. 

For any integer N 2 I , the sum of thejirst N integers, given by xyz,i = 1 + 2 +  . . .  + N ,  equals N ( N +  1) /2 .  

Obviously, the theorem is true for N = 1 because both the left-hand and 
right-hand sides evaluate to 1 .  Further checking shows that it is true for 
2 5 N I 10. However, the fact that the theorem holds for all N that are easy 
to check by hand does not imply that i t  holds for all N. Consider, for 
instance, numbers of the form 2 2 5  1. The first five numbers (corresponding 
to 0 I k I 4  are 3, 5 ,  17, 257, and 65,537. These numbers are all prime. 
Indeed, at one time mathematicians conjectured that all numbers of this form 
are prime. That is not the case. We can easily check by computer that 
22' + 1 = 641 x 6,700,417. In fact, no other prime of the form 22\ 1 is 
known. 

A proof by induction is carried out in two steps. First, as we have just 
done, we show that the theorem is true for the smallest cases. We then show 
that if the theorem is true for the first few cases, it can be extended to include 
the next case. For instance, we show that a theorem that is true for all 
1 I N I k must be true for 1 I N  I k + 1. Once we have shown how to 
extend the range of true cases, we have shown that it is true for all cases. The 
reason is that we can extend the range of true cases indefinitely. We use this 
technique to prove Theorem 8.1. 

Theorem 8.1 

A proof by induction 
shows that the 
theorem is true for 
some simple cases 
and then shows how 
to extend the range of 
true cases 
indefinitely. 

Clearly, the theorem is true for N = 1. Suppose that the theorem is true Pro0 f 
forall I I N  < k .  Then {of Theorem 8.1) 

I By assumption, the theorem is true fork, so we may replace the sum on 

the right-hand side of Equation 8.1 with k ( k  + 1 ) / 2 ,  obtaining 



Pro0 f 
(of Theorem 8.1 

continued) Algebraic manipulation of the right-hand side of Equation 8.2 now yields I 
This result confirms the theorem for the case k + 1. Thus by induction, the 
theorem is true for all integers N 2 1. I 

In a proof by Why does this constitute a proof? First, the theorem is true for N = 1, 
induction,the basisis which is called the basis. We can view it as being the basis for our belief that 
the easy case that " 

can be shown by the theorem is true in general. In a proof by induction the basis is the easy 
hand. case that can be shown by hand. Once we have established the basis, we use 

inductive hypothesis to assume that the theorem is true for some arbitrary k 
and that, under this assumption, if the theorem is true for k, then it is true for 
k + 1. In our case, we know that the theorem is true for the basis N = 1, so we 
know that it also is true for N = 2. Because it is true for N = 2, it must be true 
for N = 3. And as it is true for N = 3, it must be true for N = 4. Extending this 
logic, we know that the theorem is true for every positive integer beginning 
with N = 1. 

The inductive Let us apply proof by induction to a second problem, which is not quite 
h~pOthesisassumes as simple as the first. First, we examine the sequence of numbers 12, 
that the theorem is 
true for some 22-12,  3 2 - 2 2 +  12, 4 2 - 3 2 + 2 2 - 1 2 ,  5 2 - 4 2 + 3 2 - 2 2 +  12, and soon .  
arbitrary case and Each member represents the sum of the first N squares, with alternating signs. 
that, under this The sequence evaluates to 1, 3,6, 10, and 15. ~ h u s ,  in general, the sum seems 
assumption, it is true 
for the next case. 

to be equal to the sum of the first N integers, which, as we know from Theo- 
rem 8.1, would be N  (N + 1 )/2. Theorem 8.2 proves this result. 

Theorem 8.2 Thesum C j = N ( - l ) N - i j 2  = N 2 - ( N -  1 ) 2 + ( N - 2 ) 2 - . . .  I 
N(N + 1 ) / 2 .  

Proof The proof is by induction. 

Basis: Clearly, the theorem is true for N = 1. I 
Inductive hypothesis: First we assume the theorem is true fork: I 



Then we must show that it is true for k + 1; namely, that Proof 

We write 

I fwe rewrite the right-hand side of Equation 8.3, we obtain 

and a substitution yields 

(continued) 

I f  we apply the inductive hypothesis, then we can replace the summation 

on the right-hand side of Equation 8.4, obtaining 

Simple algebraic manipulation of the right-hand side of Equation 8.5 
then yields 

which establishes the theorem for N = k + 1. Thus, by induction, the 

theorem is true for all N 2 1. 

8.3 Basic Recursion 

Proofs bv induction show us that. if we know that a statement is true for a A recursive function 

smallest case and can show that one case implies the next case, then we defined in terms Of 

a smaller instance of know the statement is true for all cases. itself. There must be 
Sometimes mathematical functions are defined recursively. For instance, some base case that 

let S(N)  be the sum of the first N  integers. Then S ( 1 )  = 1, and we can write can be computed 

S ( N )  = S ( N  - 1) + N. Here we have defined the function S in terms of a without recursion. 

smaller instance of itself. The recursive definition of S(N)  is virtually identi- 
cal to the closed form S(N)  = N(N + 1) / 2, with the exception that the recur- 
sive definition is only defined for positive integers and is less directly 
computable. 



1 / /  Recursive routine to compute sum of first n integers. 
2 int S( int n ) 

3 { 
4 if( n == 1 ) 

5 return 1; 
6 else 
7 return s( n - 1 ) + n; 
8 1 

Figure 8.1 Recursive evaluation of the sum of the first N integers. 

Sometimes writing a formula recursively is easier than writing it in closed 
form. Figure 8.1 shows a straightforward implementation of the recursive 
function. If N = I ,  we have the basis, for which we know that S( 1)  = 1. We take 
care of this case at lines 4 and 5. Otherwise, we follow the recursive defini- 
tion S(N) = S(N - I )  + N precisely at line 7. It is hard to imagine that we 
could implement the recursive function any more simply than this, so the 
natural question is, Does it actually work? 

The answer, except as noted shortly, is that this routine works. Let us exam- 
ine how the call to s ( 4 ) is evaluated. When the call to s ( 4 ) is made, the test at 
line 4 fails. We then execute line 7, where we evaluate s ( 3  ) . Like any other 
function, this evaluation requires a call to s. In that call we get to line 4, where 
the test fails; thus we go to line 7. At this point we call s (2 ) . Again. we call s, 
and now n is 2. The test at line 4 still fails, so we call s (1 ) at line 7. Now we 
have n equal to 1 .  so s ( 1 ) returns 1. At this point s ( 2  ) can continue, adding 
the return value from s ( 1 ) to 2; thus s ( 2 ) returns 3. Now s ( 3  ) continues, 
adding the value of 3 returned by s ( 2  ) to n, which is 3; thus s ( 3 ) returns 6. 
This result enables completion of the call to s ( 4 ) , which finally returns 10. 

Note that, although s seems to be calling itself, in reality it is calling a 
clone of itself. That clone is simply another function with different parame- 
ters. At any instant only one clone is active; the rest are pending. It is the 
computer's job, not yours, to handle all the bookkeeping. If there were too 
much bookkeeping even for the computer, then it would be time to worry. 
We discuss these details later in the chapter. 

The base case is an A base case is an instance that can be solved without recursion. Anv 
instance that can be recursive call must progress toward the base case in order to terminate even- 
solved without 
recursion. Any tually. We thus have our first two (of four) fundamental rules of recursion. 
recursive call-must 
make progress 1 .  Base case: Always have at least one case that can be solved without 
toward a base case. using recursion. 

2. Make progress: Any recursive call must progress toward a base 



Basic Recursion 

Our recursive evaluation routine does have a few problems. One is the 
call s ( 0 ) , for which the function behaves poorly.' This behavior is natural 
because the recursive definition of S(N) does not allow for N < 1. We can fix 
this problem by extending the definition of S(N) to include N = 0. Because 
there are no numbers to add in this case, a natural value for S(0) would be 0. 
This value makes sense because the recursive definition can apply for S(I ), 
as S(0) + 1 is I. To implement this change, we just replace 1 with 0 on lines 
4 and 5. Negative N also causes errors, but this problem can be fixed in a 
similar manner (and is left for you to do as Exercise 8.2). 

A second problem is that the return value may be too large to fit in an 
int, but that is not an important issue here. A third problem, however, is that 
if the parameter n is large, but not so large that the answer does not fit in an 
int, the program can crash or hang. Our system, for instance, cannot handle 
N 2 74,754. 

The reason is that, as we have shown, the implementation of recursion 
requires some bookkeeping to keep track of the pending recursive calls, and 
for sufficiently long chains of recursion, the computer simply runs out of 
memory. We explain this condition in more detail later in the chapter. This 
routine also is somewhat more time consuming than an equivalent loop 
because the bookkeeping also uses some time. 

Needless to say, this particular example does not demonstrate the best 
use of recursion because the problem is so easy to solve without recursion. 
Most of the good uses of recursion do not exhaust the computer's memory 
and are only slightly more time consuming than nonrecursive implementa- 
tions. However, recursion almost always leads to more compact code. 

8.3.1 Printing Numbers in Any Base 

A good example of how recursion simplifies the coding of routines is num- 
ber printing. Suppose that we want to print out a nonnegative number N in 
decimal form but that we do not have a number output function available. 
However, we can print out one digit at a time. Consider, for instance, how 
we would print the number 1369. First we would need to print 1, then 3, 
then 6, and then 9. The problem is that obtaining the first digit is a bit 
sloppy: Given a number n, we need a loop to determine the first digit of n. In 
contrast is the last digit, which is immediately available as n%10 (which is n 
for n less than 10). 

Recursion provides a nifty solution. To print out 13 69, we print out 13 6, 
followed by the last digit, 9. As we have mentioned, printing out the last 

-- 

I .  A call to s ( - 1 ) is made. and the program eventually crashes because there are too many 
pending recursive calls. The recursive calls are not progressing toward a base case. 



digit using the % operator is easy. Printing out all but the number represented 
by eliminating the last digit also is easy, because i t  is the same problem as 
printing out n/ 10. Thus, it can be done by a recursive call. 

The code shown in Figure 8.2 implements this printing routine. If n is 
smaller than 10, line 5 is not executed and only the one digit n% 10 is printed; 
otherwise, all but the last digit are printed recursively and then the last digit 
is printed. 

Note how we have a base case (n is a one-digit integer), and because the 
recursive problem has one less digit, all recursive calls progress toward the 
base case. Thus we have satisfied the first two fundamental rules of recursion. 

This printing routine is already provided, so it may seem like a silly exer- 
cise. However, the i o s t r earn classes supply only octal, decimal, and hexa- 
decimal formats. To make our printing routine useful, we can extend it to print 
in any base between 2 and 16. This modification is shown in Figure 8.3. 

We introduced a string to make the printing of a through f easier. Each 
digit is now output by indexing to the DIGIT-TABLE string. The printInt 
routine is not robust. If base is larger than 16, the index to DIGIT-TABLE 
could be out of bounds. If base is 0, an arithmetic error results when division 
by 0 is attempted at line 8. 

1 / /  Print n as a decimal number. 
2 void printDecimal( int n ) 

3 i 
4 if ( n >= 10 ) 

5 printDecimal( n / 10 ) ;  

6 cout.put( 0 '  + n % 10 ) ;  

7 I 

Figure 8.2 A recursive routine for printing N in decimal form. 

1 / /  Print n in any base. 
2 / /  Assumes 2 <= base <= 16. 
3 void printInt( int n, int base ) 

4 { 

5 static string DIGIT-TABLE = "0123456789abcdef"; 
6 
7 if ( n >= base ) 

8 printInt( n / base, base ) ;  

9 cout << DIGIT-TABLE[ n % base 1 ;  
10 

Figure 8.3 A recursive routine for printing N in any base. 
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The most interesting error occurs when base is I .  Then the recursive 
call at line 8 fails to make progress because the two parameters to the recur- 
sive call are identical to the original call. Thus the system makes recursive 
calls until it eventually runs out of bookkeeping space (and exits less than 
gracefully). 

We can make the routine more robust by adding an explicit test for 
base. The problem with this strategy is that the test would be executed dur- 
ing each of the recursive calls to printInt, not just during the first call. 
Once base is valid in the first call, to retest it is silly because it does not 
change in the course of the recursion and thus must still be valid. One way to 
avoid this inefficiency is to set up a driver routine. A driver routine tests the 
validity of base and then calls the recursive routine, as shown in Figure 8.4. 
The use of driver routines for recursive programs is a common technique. 

1 const string DIGIT-TABLE = "0123456789abcdefU; 
2 const int MAX-BASE = DIGIT-TABLE.length( ) ;  

3 
4 / /  Print n in base base, recursively. 
5 / /  Precondition: n >= 0, 2 <= base <= MAX - BASE. 
6 void printIntRec( int n, int base ) 

7 { 
8 if( n >= base ) 

9 printIntRec( n / base, base ) ;  

10 cout << DIGIT-TABLE[ n % base 1 ;  
11 } 
12 
13 / /  Driver routine. 
14 void printInt ( int n, int base ) 

15 { 

16 if( base <= 1 I I base > MAX-BASE ) 

17 cerr << "Cannot print in base " << base << endl; 
18 else 
19 I 
20 if( n i  0 ) 

21 { 

22 cout << " - " ;  

23 n = -n; 
24 } 

25 printIntRec( n, base ) ;  

26 1 
27 1 

Failure to progress 
means that the 
program does not 
work. 

A driver routine tests 
the validity of the first 
call and the calls the 
recursive routine. 

Figure 8.4 A robust number printing program. 



8.3.2 Why It Works 

Recursivealgorithms In Theorem 8.3 we show, somewhat rigorously, that the printDecima1 
can be proven correct 
with mathematical 
induction. proof is bast 

lorks. Our goal is to verify that the algorithm is correct, so the 
:d on the assumption that we have made no syntax errors. 

Theorem 8.3 The algorithm prin tDecimal shown in Figure 8.2 correctly prints n in 

base 10. 

Proof Let k he the number of digits in n. The proof is by induction on k. 

Basis: If k = 1, then no recursive call is made, and line 6 correctly 

outputs the one digit o f n .  

Inductive Hypothesis: Assume that printDecima1 works correctly for 

all k 2 1 digit integers. We show that this assumption implies correctness 

for any k + 1 digit integer n. Because k 2 1, the if statement at line 4 is 

satzsfied for a k + I digit integer n. By the inductive hypothesis, the 

recur~ive call at line 5 prints the$rst k digits of n. Then the call at line 6 

prints the final digit. Thus i fany k digit integer can be printed, then so can 

a k + 1 digit integer: By induction, we conclude that prlntDecima1 

works for all k, and thus all n. 

The proof of Theorem 8.3 illustrates an important principle. When 
designing a recursive algorithm, we can always assume that the recursive 
calls work (if they progress toward the base case) because, when a proof is 
performed, this assumption is used as the inductive hypothesis. 

At first glance such an assumption seems strange. However, recall that 
we always assume that function calls work, and thus the assumption that the 
recursive call works is really no different. Like any function, a recursive rou- 
tine needs to combine solutions from calls to other functions to obtain a 
solution. However, other functions may include easier instances of the origi- 
nal function. 

This observation leads us to the third fundamental rule of recursion. 

3. "You gotta believe ": Always assume that the recursive call works. 



Basic Recursion 

Rule 3 tells us that when we design a recursive function, we do not have 
to attempt to trace the possibly long path of recursive calls. As we showed 
earlier, this task can be daunting and tends to make the design and verifica- 
tion more difficult. A good use of recursion makes such a trace almost 
impossible to understand. Intuitively, we are letting the computer handle the 
bookkeeping that, were we to do ourselves, would result in much longer 
code. 

This principle is so important, that we state it again: Always assume that 
the recursive call works. 

8.3.3 How It Works 

Recall that the implementation of recursion requires additional bookkeeping 
on the part of the computer. Said another way, the implementation of any 
function requires bookkeeping and a recursive call is not particularly special 
I except that it can overload the computer's bookkeeping limitations by call- 
ing itself too many times). 

C++, like other languages such as Pascal, Ada, and Java, implements 
functions by using an internal stack of activation records. An activation 
record contains relevant information about the function, including, for 
instance, the values of the parameters and local variables. The actual con- 
tents of the activation record is system dependent. 

The stack of activation records is used because functions return in 
reverse order of their invocation. Recall that stacks are great for reversing 
the order of things. In the most popular scenario, the top of the stack stores 
the activation record for the currently active function. When function G is 
called, an activation record for G is pushed onto the stack, which makes G 
the currently active function. When a function returns, the stack is popped 
and the activation record that is the new top of the stack contains the restored 
\.slues. 

As an example, Figure 8.5 shows a stack of activation records that 
occurs in the course of evaluating s ( 4 ) . At this point, we have the calls to 
main, s ( 4 ) , and s ( 3 ) pending and we are actively processing s ( 2 ) . 

The space overhead is the memory used to store an activation record for 
each currently active function. Thus, in our earlier example where 
s ( 7 4 7  5 4  ) crashes, the system has room for roughly 74,754 activation 
records. (Note that ma in  generates an activation record itself.) The pushing 
and popping of the internal stack also represents the overhead of executing a 
function call, which is what is saved when an inline directive is honored. 

The third fundamental 
rule of recursion: 
Always assume that 
the recursive call 
works. Use this rule 
to design your 
algorithms. 

The bookkeeping in a 
procedural language 
is done by using a 
stack of activation 
records. Recursion is 
a natural by-product. 

Function calling and 
function return 
sequences are stack 
operations. 



Recursion can always 
be removed by using 
a stack.This is 
occasionally required 
to save space. 

Do not use recursion 
as a substitute for a 
simple loop. 

The ith Fibonacci 
number is the sum of 
the two previous 
Fibonacci numbers. 

Do not do redundant 
work recursively; the 
program will be 
incredibly inefficient. 

TOP: s (2) 

Figure 8.5 A stack of activation records. 

The close relation between recursion and stacks tells us that recursive pro- 
grams can always be implemented iteratively with an explicit stack. Presum- 
ably our stack will store items that are smaller than an activation record, so we 
can also reasonably expect to use less space. The result is slightly faster but 
longer code. Modern optimizing compilers have lessened the costs associated 
with recursion to such a degree that, for the purposes of speed, removing 
recursion from an application that uses it well is rarely worthwhile. 

8.3.4 Too Much Recursion Can Be Dangerous 

In this text we give many examples of the power of recursion. However, 
before we look at those examples, you should recognize that recursion is not 
always appropriate. For instance, the use of recursion in Figure 8.1 is poor 
because a loop would do just as well. A practical liability is that the over- 
head of the recursive call takes time and limits the value of n for which the 
program is correct. A good rule of thumb is that you should never use recur- 
sion as a substitute for a simple loop. 

A much more serious problem is illustrated by an attempt to calculate 
the Fibonacci numbers recursively. The Fibonacci numbers Fo,  F , ,  . . ., Fi  
are defined as follows: Fo = 0 and F 1  = 1; the ith Fibonacci number 
equals the sum of the ( i th  - 1) and (i th - 2 )  Fibonacci numbers; thus 
F ,  = F,- , + F ,  - 2. From this definition we can determine that the series of 
Fibonacci numbers continues: 1, 2 ,  3 ,  5 ,  8 ,  13,  21 ,  34 ,  55 ,  89 ,  . . .  . 

The Fibonacci numbers have an incredible number of properties, which 
seem always to crop up. In fact, one journal, The Fibonacci Quarterly, exists 
solely for the purpose of publishing theorems involving the Fibonacci num- 
bers. For instance, the sum of the squares of two consecutive Fibonacci 
numbers is another Fibonacci number. The sum of the first N Fibonacci 
numbers is one less than F N  + (see Exercise 8.9 for some other interesting 
identities). 

Because the Fibonacci numbers are recursively defined, writing a recur- 
sive routine to determine FN seems natural. This recursive routine, shown in 
Figure 8.6,  works but has a serious problem. On our relatively fast machine, 
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1 / /  Compute the Nth Fibonacci number. 
2 / /  Bad algorithm. 
3 long fib( int n ) 

4 I 
5 if( n <= 1 ) 

6 return n; 
7 else 
8 return fib( n - 1 ) + fib( n - 2 ) ;  

9 1 

Figure 8.6 A recursive routine for Fibonacci numbers: A bad idea. 

it takes nearly a minute to compute F40, an absurd amount of time consider- 
ing that the basic calculation requires only 39 additions. 

The underlying problem is that this recursive routine performs redun- 
dant calculations. To compute fib (n) , we recursively compute fib (n-1 ) . 
When the recursive call returns, we compute fib (n- 2 ) by using another 
recursive call.* But we have already computed fib ( n-2 ) in the process of 
computing fib (n- 1 ) , so the call to fib (n- 2 ) is a wasted, redundant cal- 
culation. In effect, we make two calls to fib (n-2 ) instead of only one. 

Normally, making two function calls instead of one would only double 
the running time of a program. However, here it is worse than that: Each call 
to f i b ( n - 1 ) a n d  each call to fib(n-2) makes a call to fib(n-3); thus 
there are actually three calls to fib (n-3 ) . In fact, it keeps getting worse: 
Eachcall to fib(n-2) or fib(n-3) resultsin acall to fib(n-4), so there 
are five calls to fib (n- 4 ) . Thus we get a compounding effect: Each recur- 
sive call does more and more redundant work. 

Let C(N)  be the number of calls to fib made during the evaluation of The recursive routine 

fib (n) . Clearly C(0) = C(1)  = 1 call. For N 2 2, we call fib (n) , plus all fib 

the calls needed to evaluate fib ( n- 1 ) and fib ( n- 2 ) recursively and inde- 
pendently. Thus C ( N )  = C(N - 1) + C ( N  - 2) + 1. By induction, we can 
easily verify that for N 2 3 the solution to this recurrence is C(N) = FN + + 
F,,, _ , - 1 .  Thus the number of recursive calls is larger than the Fibonacci 
number we are trying to compute, and it is exponential. For N = 40, F40 = 
102,334,155, and the total number of recursive calls is more than 
300,000,000. No wonder the program takes forever. The explosive growth of 
the number of recursive calls is illustrated in Figure 8.7. 

2. Technically, C++ does not guarantee the order of evaluation. so at line 8, fib (n-2) 
could be evaluated prior to fib ( n- 1 ) . However, this does not affect the total number of 
recursive calls. 



Figure 8.7 A trace of the recursive calculation of the Fibonacci numbers. 

The fourth 
fundamental rule of 
recursion: Never 
duplicate work by 
solving the same 
instance of a problem 
in separate recursive 
calls. 

A tree consists of a 
set of nodes and a set 
of directed edges that 
connect them. 

Parents and children 
are naturally defined. 
A directed edge 
connects the parent 
to the child. 

This example illustrates the fourth and final basic rule of recursion. 

4. Compound interest rule: Never duplicate work by solving the same 
instance of a problem in separate recursive calls. 

8.3.5 Preview of Trees 

The tree is a fundamental structure in computer science. Almost all operat- 
ing systems store files in trees or treelike structures. Trees are also used in 
compiler design. text processing, and searching algorithms. We discuss trees 
in detail in Chapters I8 and 19. We also make use of trees in Sections 12.2.4 
(expression trees) and 13.1 (Huffman codes). 

One definition of the tree is recursive: Either a tree is empty or it consists 
of a root and zero or more nonempty subtrees T I ,  T2 ,  . . .. T k  . each of whose 
roots are connected by an edge from the root, as illustrated in Figure 8.8. In 
certain instances (most notably, the binaq trees discussed in Chapter IS), we 
may allow some of the subtrees to be empty. 

Nonrecursively, then, a tree consists of a set of nodes and a set of 
directed edges that connect pairs of nodes. Throughout this text we consider 
only rooted trees. A rooted tree has the following properties. 

One node is distinguished as the root. 
Every node c, except the root, is connected by an edge from exactly 
one other node p. Node p is c's parent, and c is one of p's children. 
A unique path traverses from the root to each node. The number of 
edges that must be followed is the path length. 

Parents and children are naturally defined. A directed edge connects the par- 
ent to the child. 



Basic Fiecursion- 

Figure 8.8 A tree viewed recursively. 

m 

Figure 8.9 A tree. 

Figure 8.9 illustrates a tree. The root node is A: A's children are B, C, D, and A leaf has no 

E. Because A is the root, it has no parent; all other nodes have parents. For children. 

instance, B's parent is A.  A node that has no children is called leaf. The leaves in 
this tree are C, E G, H, I, and K. The length of the path from A to K is 3 (edges); 
the length of the path from A to A is 0 (edges). 

8.3.6 Additional Examples 

Perhaps the best way to understand recursion is to consider examples. In this 
section, we look at four more examples of recursion. The first two are easily 
implemented nonrecursively, but the last two show off some of the power of 
recursion. The last two examples draw recursive pictures; unfortunately, 
C++ does not have a standard way of doing graphics. Consequently. the code 
for those examples is in Java. The code is identical, syntactically, to C++ 
code, and thus the Java syntax should not get in the way of understanding 
the examples. 



1 / /  Evaluate n! 
2 long factorial( int n ) 

3 { 

4 if( n < =  1 ) / /  base case 
5 return 1; 
6 else 
7 return n * factorial( n - 1 ) ;  

8 } 

Figure 8.10 Recursive implementation of the factorial function. 

Factorials 
Recall that N! is the product of the first N integers. Thus we can express N! 
as N times ( N  - l ) !  . Combined with the base case l !  = 1, this information 
immediately provides all that we need for a recursive implementation. It is 
shown in Figure 8.10. 

Binary Search 
In Section 6.6.2 we described the binary search. Recall that in a binary 
search, we perform a search in a sorted array A by examining the middle ele- 
ment. If we have a match, we are done. Otherwise, if the item being searched 
for is smaller than the middle element, we search in the subarray that is to 
the left of the middle element. Otherwise, we search in the subarray that is to 
the right of the middle element. This procedure presumes that the subarray is 
not empty; if it is, the item is not found. 

This description translates directly into the recursive method shown in 
Figure 8.11. The code illustrates a thematic technique in which the public 
driver routine makes an initial call to a recursive routine and passes on the 
return value. Here, the driver sets the low and high points of the subarray, 
namely, 0 and a.size( )-I. 

In the recursive method, the base case at lines 15 and 16 handles an 
empty subarray. Otherwise, we follow the description given previously by 
making a recursive call on the appropriate subarray (line 21 or 23) if a match 
has not been detected. When a match is detected, the matching index is 
returned at line 25. 

Note that the running time, in terms of Big-Oh, is unchanged from the 
nonrecursive implementation because we are performing the same work. In 
practice, the running time would be expected to be slightly larger because of 
the hidden costs of recursion. 
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1 / /  Performs the standard binary search using two comparisons 
2 / /  per level. This is a driver that calls the recursive method. 
3 template <class Comparable> 
4 int binarySearch( const vector<Comparable> & a, 
5 const Comparable & x ) 

6 I 
7 return binarysearch ( a, x, 0, a. size ( ) - 1 ; 

8 1 
9 

10 / /  Recursive routine. 
11 template <class Comparable> 
12 int bindrysearch( const vector<Comparable> & a, 
13 const Comparable & x, int low, int high ) 

14 { 
15 if( low > high ) 

16 return NOT-FOUND; 
17 
18 int mid = ( low + high ) / 2; 
19 
20 if( a[ mid I < x )  
21 return bindrysearch( a, x, mid + 1, high ) ;  

22 else if ( x < a[ mid I ) 

23 return bindrysearch( a, x, low, mid - 1 ) ;  

24 else 
25 return mid; 
26 } 

Figure 8.1 1 A binary search routine, using recursion. 

Figure 8.12 A recursively drawn ruler. 

Drawing a Ruler 
Figure 8.12 shows the result of running a Java program that draws ruler 
markings. Here, we consider the problem of marking 1 inch. In the middle is 
the longest mark. In Figure 8.12, to the left of the middle is a miniaturized 
version of the ruler and to the right of the middle is a second miniaturized 
version. This result suggests a recursive algorithm that first draws the middle 
line and then draws the left and right halves. 



-- 

Recursion 

1 / /  Java code to draw Figure 8.12. 
2 void drawRuler( Graphics g, int left, int right, int level ) 

3 i 
4 if( level < 1 ) 

5 return; 
6 
7 int mid = ( left + right ) / 2; 
8 
9 g.drawLine( mid, 80, mid, 80 - level * 5 ) ; 

10 
11 drawRuler( g, left, mid - 1, level - 1 ) ;  

12 drawRuler ( g, mid + 1, right, level - 1 ) ; 

13 1 

Figure 8.13 A recursive method for drawing a ruler. 

You do not have to understand the details of drawing lines and shapes in 
Java to understand this program. You simply need to know that a Graphics 
object is something that gets drawn to. The drawRuler method in Figure 8.13 
is our recursive routine. It uses the drawLine method, which is part of the 
Graphics class. The method drawLine draws a line from one (x, y) coor- 
dinate to another (x, y) coordinate, where coordinates are offset from the top- 
left corner. 

Our routine draws markings at leve 1 different heights; each recursive 
call is one level deeper (in Figure 8.12 there are eight levels). It first disposes 
of the base case at lines 4 and 5. Then the midpoint mark is drawn at line 9. 
Finally, the two miniatures are drawn recursively at lines 1 1 and 12. In the 
online code, we include extra code to slow down the drawing. In that way, 
we can see the order in which the lines are drawn by the recursive algorithm. 

Fractal Star 

Shown in Figure 8.14(a) is a seemingly complex pattern, called a fractal 
star, which we can easily draw by using recursion. The entire canvas is ini- 
tially gray (not shown), the pattern is formed by drawing white squares onto 
the gray background. The last square drawn is over the center. Figure 8.14(b) 
shows the drawing immediately before the last square is added. Thus prior to 
the last square being drawn, four miniature versions have been drawn, one in 
each of the four quadrants. This pattern provides the information needed to 
derive the recursive algorithm. 

As with the previous example, the method drawFractal uses a Java 
library routine. In this case, f il lRec t draws a rectangle; its upper left-hand 
comer and dimensions must be specified. The code is shown in Figure 8.15. 
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Figure 8.14 (a) A fractal star outline drawn by the code shown in Figure 8.15. 
(b) The same star immediately before the last square is added. 

1 / /  Draw picture in Figure 8.14. 
2 void drawFractal( Graphics g, int xCenter, 
3 int yCenter, int boundingDim ) 

4 I 
5 int side = boundingDim / 2; 
6 
7 if( side < 1 ) 

8 return; 
9 

10 / /  Compute corners. 
11 int left = xcenter - side / 2; 
12 int top = yCenter - side / 2; 
13 int right = xCenter + side / 2; 
14 int bottom = yCenter + side / 2; 
15 
16 / /  Recursively draw four quadrants. 
17 drawFractal( g, left, top, boundingDim / 2 ) ;  

18 drawFractal( g, left, bottom, boundingDim / 2 1 ;  
19 drawFractal( g, right, top, boundingDim / 2 ) ;  

20 drawFractal( g, right, bottom, boundingDim / 2 ) ;  

21 
22 / /  Draw central square, overlapping quadrants. 
23 g.fillRect( left, top, right - left, bottom - top ) ;  

24 } 

Figure 8.15 Code for drawing fractal star outline shown in Figure 8.14. 



The parameters to drawFractal include the center of the fractal and the 
overall dimension. From this, we can compute, at line 5 ,  the size of the large 
central square. After handling the base case at lines 7 and 8, we compute the 
boundaries of the central rectangle. We can then draw the four miniature frac- 
tals at lines 17 to 20. Finally, we draw the central square at line 23. Note that 
this square must be drawn after the recursive call\. Otherwise, we obtain a dif- 
ferent picture (In Exercise 8.26 you are asked to describe the difference). 

8.4 Numerical Applications 

In this section we look at three problems drawn primarily from number the- 
ory. Number theory used to be considered an interesting but useless branch 
of mathematics. However, in the last 30 years, an important application for 
number theory has emerged: data security. We begin the discussion with a 
small amount of mathematical background and then show recursive algo- 
rithms to solve three problems. We can combine these routines in conjunc- 
tion with a fourth algorithm that is more complex (described in Chapter lo), 
to implement an algorithm that can be used to encode and decode messages. 
To date, nobody has been able to show that the encryption scheme described 
here is not secure. 

Here are the four problems we examine. 

1 .  Mod~ilar esponentiation: Compute XN(mod P ) ,  

2. Greatest cornlnon divisor: Compute gcd(A, B). 

3. M~iltiplicative inverse: Solve AX = I (mod P) for X. 

4. Pr imal i~  testing: Determine whether N is prime (deferred to Chap- 
ter 10). 

The integers we expect to deal with are all large, requiring at least 100 
digits each. Therefore we must have a way to represent the class HugeInt, 
along with a complete set of algorithms for the basic operations of addition, 
subtraction, multiplication, division, and so on. Implementing the HugeInt 
efficiently is no trivial matter, and in fact there is an extensive literature on 
the subject. Some libraries (for instance the one that comes with g++) pro- 
vide the Integer class for this purpose. 

The functions that we write are templated to work with some HugeInt 
class, for which we assume that the normal arithmetic operations are over- 
loaded. By instantiating with int, you can test the basic algorithms.Those 
described here work with large objects but still execute in a reasonable 
amount of time. 
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8.4.1 Modular Arithmetic 

The problems in this section, as well as the implementation of the hash 
table data structure (Chapter 20), require the use of the C++ % operator. The 
% operator, denoted as operator%, computes the remainder of two integral 
types.3 For example, 13 %lo evaluates to 3, as does 3 %lo, and 2 3 %lo. 
When we compute the remainder of a division by 10, the possible results 
range from 0 to 9. This range makes operator% useful for generating 
small integers. 

If two numbers A and B give the same remainder when divided by N, we 
say that they are congruent modulo N, written as A = B (mod N). In this case, 
it must be true that N divides A - B. Furthermore, the converse is true: If N 
divides A - B, then A = B (mod N). Because there are only N possible 
remainders-0, I ,  ..., N - 1- we say that the integers are divided into con- 
gruence classes modulo N. In other words, every integer can be placed in 
one of N classes, and those in the same class are congruent to each other, 
modulo N. We use three important theorems in our algorithms (we leave the 
proof of these facts as Exercise 8.10). 

1. I fA=B(modN) , thenforanyC,A+C=B+C(modN) .  
2. If A = B (mod N), then for any D, AD = BD(mod N). 

3. If A = B (mod N), then for any positive R AP = BP(mod N). 

These theorems allow certain calculations to be done with less effort. For 
instance, suppose that we want to know the last digit in 33335555. Because this 
number has more than 15,000 digits, it is expensive to compute the answer 
directly. However, what we want is to determine 33335555(mod 10). AS 3333 = 
3(mod lo), we need only to compute 35S55(mod 10). AS 34 = 81, we know 
that 34 = 1 (mod lo), and raising both sides to the power of 1388 tells us that 
35552 = l(mod 10). If we multiply both sides by 33 = 27, we obtain 35555 = 27 
= 7(mod lo), thereby completing the calculation. 

8.4.2 Modular Exponentiation 

In this section we show how to compute XN(mod P) efficiently. We can do so 
by initializing result to I and then repeatedly multiplying result by X ,  
applying the % operator after every multiplication. Using operator% in this 
way instead of just the last multiplication makes each multiplication easier 
because it keeps resul t smaller. 

3. C++ does not specify what happens when negative numbers are involved. We assume that 
they are not. 



1 / / Compute xAn ( mod p ) . 
2 / /  HugeInt: must have copy constructor, operator=, 
3 / /  conversion from int, * ,  i ,  % ,  ==, and ! = .  

4 / /  Assumes p is not zero and power( 0, 0, p ) is 1. 
5 template <class HugeInt> 
6 HugeInt power( const HugeInt & x, const HugeInt & n, 
7 const HugeInt & p ) 

8 { 
9 if( n = =  0 ) 

10 return 1; 
11 
12 HugeInt tmp = power( ( x * x ) % p, n / 2, p 1 ;  
13 
14 if( n %  2 ! =  0 )  
15 tmp = ( tmp * x ) % p; 
16 
17 return tmp; 
18 1 

Figure 8.16 Modular exponentiation routine. 

After N multiplications, r e s u l t  is the answer that we are looking for. 
However, doing N multiplications is impractical if N is  a 100-digit 
HugeInt. In fact, if N is 1,000,000,000, it is impractical on all but the fastest 
machines. 

A faster algorithm is based on the following observation. That is, if N is 
even. then 

and if N is odd, then 

(Recall that LXJ is the largest integer that is smaller than or equal to X.) 
As before, to perform modular exponentiation, we apply a % after every 
multiplication. 

The recursive algorithm shown in Figure 8.16 represents a direct implemen- 
tation of this strategy. Lines 9 and 10 handle the base case: X0 is I ,  by defini- 
tion.4 At line 12, we make a recursive call based on the identity stated in the 
preceding paragraph. If N is even, this call computes the desired answer; if N is 
odd, we need to multiply by an extra X (and use operator%). 

4. We define 00 = 1 for the purposes of this algorithm. We also assume that N is nonnegative 
and P is positive. 
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This algorithm is faster than the simple algorithm proposed earlier. If 
M(N) is the number of multiplications used by power ,  we have M ( N )  I 
~ 4 ~ 1 2 1  + 2. The reason is that if N is even, we perform one multiplication, 
plus those done recursively, and that if N is odd, we perform two multiplica- 
tions, plus those done recursively. Because M(0) = 0, we can show that M(N) 
< 2 log N. The logarithmic factor can be obtained without direct calculation 
by application of the halving principle (see Section 6.5). which tells us the 
number of recursive invocations of power.  Moreover, an average value of 
M(N) is (312)log N, as in each recursive step N is equally likely to be even or 
odd. If N is a 100-digit number, in the worst case only about 665 multiplica- 
tions (and typically only 500 on average) are needed. 

A C++ note: H u g e I n t s  are passed by constant reference to avoid the 
copy. However. we return by copy. We could attempt to avoid these exces- 
sive copies, but doing so is not worth the effort. The reason is that, for each 
return, we know we have done a multiplication and mod operation, and the 
costs of these operations greatly exceed the overhead of the copy. Thus opti- 
mizing by attempting to use reference return values or global variables is not 
likely to achieve any significant time improvements. 

8.4.3 Greatest Common Divisor and Multiplicative Inverses 

Given two nonnegative integers A and B, their greatest common divisor, 
gcd(A, B), is the largest integer D that divides both A and B. For instance, 
gcd(70, 25) is 5 .  In other words, the greatest common divisor (gcd) is the 
largest integer that divides two given integers. 

We can easily verify that gcd(A, B) = gcd(A - B, B). If D divides both A 
and B, it must also divide A - B; and if D divides both A - B and B, then it 
must also divide A. 

This observation leads to a simple algorithm in which we repeatedly sub- 
tract B from A, transforming the problem into a smaller one. Eventually A 
becomes less than B, and then we can switch roles for A and B and continue 
from there. At some point B will become 0. Then we know that gcd(A, 0) -A, 
and as each transformation preserves the gcd of the original A and B, we 
have our answer. This algorithm is called Euclid's algorithm and was first 
described more than 2,000 years ago. Although correct, it is unusable for 
HugeIntS because a huge number of subtractions are likely to be required. 

A computationally efficient modification is that the repeated subtrac- 
tions of B from A until A is smaller than B is equivalent to the conversion of 
A to precisely A mod B. Thus gcd(A, B) = gcd(B, A mod B). This recursive 
definition, along with the base case in which B = 0, is used directly to obtain 
the routine shown in Figure 8.17. To visualize how it works, note that in the 
previous example we used the following sequence of recursive calls to 

Exponentiation can 
be done in 
logarithmic number 
of multiplications. 

Do not over optimize. 
You are likely to break 
your program. 

The greatest common 
divisor (gcd) of two 
integers is the largest 
integer that divides 
both of them. 



1 / /  Returns the greatest common divisor of a and b. 
2 template <class HugeInt> 
3 HugeInt gcd( const HugeInt & a, const HugeInt & b 1 
4 I 
5 if( b == 0 ) 

6 return a; 
7 else 
8 return gcd( b, a % b ) ;  

9 1 

Figure 8.1 7 Computation of greatest common divisor. 

deduce that the gcd of 70 and 25 is 5: gcd(70,25) - gcd(25,20) - gcd(20,5) 
=+ gcd(5, 0) - 5. 

The number of recursive calls used is proportional to the logarithm of A, 
which is the same order of magnitude as the other routines that we have pre- 
sented in this section. The reason is that, in two recursive calls, the problem is 
reduced at least in half. The proof of this is left for you to do as Exercise 8.1 1. 

The greatest common The gcd algorithm is used implicitly to solve a similar mathematical 
divisor and problem. The solution I I X < hT to the equation AX = 1 (mod N) is called the 
multiplicative inverse 
can also be multiplicative inverse of A, mod N. Also assume that 1 5 A < AT. For exam- 
calculated in ple, the inverse of 3, mod 13 is 9; that is, 3 . 9 mod 13 yields 1. 
logarithmic time by 
using a variant of 
Euclid's algorithm. 

The ability to compute multiplicative inverses is important because equa- 
tions such as 3i - 7(mod 13) are easily solved if we know the multiplicative 
inverse. These equations arise in many applications, including the encryption 
algorithm discussed at the end of this section. In this example, if we multiply 
by the inverse of 3 (namely 9), we obtain i = 63(mod 13), so i = 1 l is a solu- 
tion. If 

AX = 1 (mod N),  then AX + NY = 1 (mod 12i) 

is true for any Y. For some K the left-hand side must be exactly I .  Thus the 
equation 

is solvable if and only if A has a multiplicative inverse. 
Given A and B, we show how to find X and Y satisfying 

We assume that 0 I I B I < I A  I and then extend the gcd algorithm to com- 
pute X and Y 
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First, we consider the base case, B = 0. In this case we have to solve AX = 1, 
which implies that both A and X are I .  In fact, if A is not 1, there is no multi- 
plicative inverse. Hence A has a multiplicative inverse modulo N only if 
gcd(A, N) = 1 .  

Otherwise, B is not zero. Recall that gcd(A, B) = gcd(B, A mod B). So we 
let A = BQ + R. Here Q is the quotient and R is the remainder, and thus the 
recursive call is gcd(B, R). Suppose that we can recursively solve 

BX, + R Y ,  = I .  

Since R = A - BQ, we have 

B X ,  +(A - B Q ) Y ,  = 1, 

which means that 

AY, + B(X, - Q Y , )  = I .  

Thus X = Y 1  and Y = x , - L A / B J Y ,  i sasolut iontoAX+BY = 1.We 
code this observation directly as f u l l ~ c d  in Figure 8.18. The method 
inverse just calls full~cd, passing X and Y by reference. The only detail left 
is that the value given for X may be negative. If it is, line 33 of inverse will 
make it positive. We leave a proof of that fact for you to do as Exercise 8.14. 
The proof can be done by induction. 

8.4.4 The RSA Cryptosystem 

For centuries, number theory was thought to be a completely impractical 
branch of mathematics. Recently, however, it has emerged as an important 
field because of its applicability to cryptography. 

The problem we consider has two parts. Suppose that Alice wants to 
send a message to Bob but that she is worried that the transmission may be 
compromised. For instance, if the transmission is over a phone line and the 
phone is tapped, somebody else may be reading the message. We assume 
that, even if there is eavesdropping on the phone line, there is no malicious- 
ness (i.e., damage to the signal)-Bob gets whatever Alice sends. 

A solution to this problem is to use encryption, an encoding scheme to 
transmit messages that cannot be read by other parties. Encryption consists 
of two parts. First, Alice encrypts the message and sends the result, which is 
no longer plainly readable. When Bob receives Alice's transmission, he 
decrypts it to obtain the original. The security of the algorithm is based on 

Number theory is 
used in cryptography 
because factoring 
appears to be a much 
harder process than 
multiplication. 

Encryption is used to 
transmit messages so 
that they cannot be 
read by other parties. 



1 / /  Given a and b, assume gcd( a, b ) = 1. 
2 / /  Find x and y such that a x + b  y = 1. 
3 / /  HugeInt: must have copy constructor, 
4 / /  zero-parameter constructor, operator=, 
5 / /  conversion from int, * ,  / ,  +, -, % ,  ==, and >.  
6 template <class HugeInt> 
7 void fullGcd( const HugeInt & a, const HugeInt & b, 
8 HugeInt & x, HugeInt & y 1 
9 I 

10 HugeInt xl, yl; 
11 
12 if( b = =  0 ) 

13 { 

14 x = 1; / /  If a ! =  1, there is no inverse 
15 y = 0; / /  We omit this check 
16 1 
17 else 
18 i 
19 fullGcd( b, a % b, xl, yl 1 ;  
20 x = yl; 
21 y = x l -  ( a / b )  * y l ;  
22 1 
23 1 
24 
25 / /  Solve a x == 1 ( mod n ) .  

26 / /  Assume that gcd( a, n ) = 1. 
27 template <class HugeInt> 
28 HugeInt inverse( const HugeInt & a, const HugeInt & n ) 

29 I 
30 HugeInt x, y; 
31 
32 fullGcd( a, n, x, y ) ;  

33 return x > 0 ? x : x + n; 
34 1 

Figure 8.18 A routine for determining multiplicative inverse. 

the fact that nobody else besides Bob should be able to perform the decryp- 
tion, including Alice (if she did not save the original message). 

The USA Thus Bob must provide Alice with a method of encryption that only he 
cryptosystem is a knows how to reverse. This problem is extremely challenging. Many pro- 
popular encryption 
method. posed algorithms can be compromised by subtle code-breaking techniques. 

One method, described here, is the RSA cryptosystem (named after the ini- 
tials of its authors), an elegant implementation of an encryption strategy. 

Here we give only a high-level overview of encryption, showing how the 
methods written in this section interact in a practical way. The references 
contain pointers to more detailed descriptions, as well as proofs of the key 
properties of the algorithm. 



First, however, note that a message consists of a sequence of characters 
and each that character is just a sequence of bits. Thus a message is a 
sequence of bits. If we break the message into blocks of R bits, we can inter- 
pret the message as a series of very large numbers. Thus the basic problem is 
reduced to encrypting a large number and then decrypting the result. 

Computation of the RSA Constants 
The RSA algorithm begins by having the receiver determine some constants. 
First, two large primes p and q are randomly chosen. Typically. these would be at 
least 100 or so digits each. For the purposes of this example, suppose that p = 
127 and q = 2 1 1. Note that Bob is the receiver and thus is performing these com- 
putations. Note, also, that primes are plentiful. Bob can thus keep trying random 
numbers until two of them pass the primality test (discussed in Chapter 10). 

Next, Bob computes N = p q  and N' = (p  - 1 ) (q - 1 ), which for this 
example gives N = 26,797 and N' = 26,460. Bob continues by choosing any 
e > I such that gcd(e, N'). In mathematical terms, he chooses any e that is 
relatively prime to N'. Bob can keep trying different values of e by using the 
routine shown in Figure 8.17 until he finds one that satisfies the property. 
Any prime e would work, so tinding e is at least as easy as finding a prime 
number. In this case, CI = 13,379 is one of many valid choices. Next, d, the 
multiplicative inverse of e, mod N' is computed by using the routine shown 
in Figure 8.18. In this example, d = 1 1,099. 

Once Bob has computed all these constants, he does the following. First, 
he destroys p, q, and N'. The security of the system is compromised if any 
one of these values is discovered. Bob then tells anybody who wants to send 
him an encrypted message the values of e and N, but he keeps d secret. 

Encryption and Decryption Algorithms 
To encrypt an integer M, the sender computes Me(mod N) and sends it. In 
our case, if M = 10,237, the value sent is 8,422. When an encrypted integer R 
is received, all Bob has to do is compute R"(mod N). For R = 8,422, he gets 
back the original M = 10,237 (which is not accidental). Both encryption and 
decryption can thus be carried out by using the modular exponentiation rou- 
tine given in Figure 8.16. 

The algorithm works because the choices of e, d, and N guarantee (via a 
number theory proof beyond the scope of this text) that Me" = M(mod N), so 
long as M and N share no common factors. As the only factors of N are two 
100-digit primes, it is virtually impossible for that to occur.5 Thus decryp- 
tion of the encrypted text gets the original back. 

5 .  You are more likely to win a typical state lottery 13 weeks in a row. However, if M and N have a 
common factor, the system is compromised because the gcd will be a factor of N. 



What makes the scheme seem secure is that knowledge of d is appar- 
ently required in order to decode. Now N and e uniquely determine d. For 
instance, if we factor N, we get p and q and can then reconstruct d. The 
caveat is that factoring is apparently very hard to do for large numbers. Thus 
the security of the RSA system is based on the belief that factoring large 
numbers is intrinsically very difficult. So far it has held up well. 

In public key This general scheme is known as public key cryptography, by which 
c ~ p t o g r a p h ~  each anybody who wants to receive messages publishes encryption information 
participant publishes 
the code others can for anybody else to use but keeps the decryption code secret. In the RSA 
use to send system, e and N would be computed once by each person and listed in a pub- 
encrypted messages liclv readable dace. 
but keeps the 
decrypting code 

The RSA algorithm is widely used to implement secure e-mail, as well 
secret. as secure Internet transactions. When you see a closed lock (@) at the bot- 

tom of a Netscape Navigator Web page, a secure transaction is being per- 
formed via cryptography. The method actually employed is more complex 
than described here. One problem is that the RSA algorithm is somewhat 
slow for sending large messages. 

In practice, RSA is A faster method is called DES. Unlike the RSA algorithm, DES is a - 
used encrypt the single-key algorithm, meaning that the same key serves both to encode and 
key used by a single- 
key encryption decode. It is like the typical lock on your house door. The problem with 
algorithm, such as single-key algorithms is that both parties need to share the single key. How 

does one party ensure that the other party has the single key? That problem 
can be solved by using the RSA algorithm. A typical solution is that, say, 
Alice will randomly generate a single key for DES encryption. She then 
encrypts her message by using DES, which is much faster than using RSA. 
She transmits the encrypted message to Bob. For Bob to decode the 
encrypted message, he needs to get the DES key that Alice used. A DES key 
is relatively short, so Alice can use RSA to encrypt the DES key and then 
send it in a second transmission to Bob. Bob next decrypts Alice's second 
transmission, thus obtaining the DES key, at which point he can decode the 
original message. These types of protocols, with enhancements, form the 
basis of most practical encryption implementations. 

8.5 Divide-and-Conquer Algorithms 
A divide-and-conquer An important problem-solving technique that makes use of recursion is 
algorithm is a divide-and-conquer. A divide-and-conquer algorithm is an efficient recur- 
recursive algorithm 
that is generally very sive algorithm that consist of two parts: 
efficient. 

divide, in which smaller problems are solved recursively (except, of 
course, base cases); and 



Divide-and-Conquer Algorithms 

conquel; in which the solution to the original problem is then formed In divideandconquer, 

from the solutions to the subproblems. the recursion is the 
divide, the overhead 
is the conquer. 

Traditionally, routines in which the algorithm contains at least two 
recursive calls are called divide-and-conquer algorithms, whereas routines 
whose text contains only one recursive call are not. Consequently, the recur- 
sive routines presented so far in this chapter are not divide-and-conquer 
algorithms. Also, the subproblems usually must be disjoint (i.e., essentially 
nonoverlapping), so as to avoid the excessive costs seen in the sample recur- 
sive computation of the Fibonacci numbers. 

In this section we give an example of the divide-and-conquer paradigm. 
First we show how to use recursion to solve the maximum subsequence sum 
problem. Then we provide an analysis to show that the running time is 
O(N log N). Although we have already used a linear algorithm for this prob- 
lem, the solution here is thematic of others in a wide range of applications, 
including the sorting algorithms, such as mergesort and quicksort, discussed 
in Chapter 9. Consequently, learning the technique is important. Finally, we 
show the general form for the running time of a broad class of divide-and- 
conquer algorithms. 

8.5.1 The Maximum Contiguous Subsequence Sum Problem 

In Section 6.3 we discussed the problem of finding, in a sequence of num- 
bers, a contiguous subsequence of maximum sum. For convenience, we 
restate the problem here. 

MAXIMUM CONTIGUOUS SUBSEQUENCE SUM PROBLEM 
GIVEN (POSSIBLY NEGATI~JE) INTEGERS A 1, A2, . . . , AN,  FIND (AND IDENTIFY 

THE SEQUENCE CORRESPONDING TO) THE MAXIMUM VALUE OF xJ Ak. k = r 
THE MAXIMUM CONTIGUOUS SUBSEQUENCE SUM IS ZERO IF ALL THE INTEGERS 

ARE NEGATIVE. 

We presented three algorithms of various complexity. One was a cubic The maximum 

algorithm based on an exhaustive search: We calculated the sum of each pos- 
subsequence sum 

sible subsequence and selected the maximum. We described a quadratic problem can be 
improvement that takes advantage of the fact that each new subsequence can solved with a divide- 
be computed in constant time from a previous subsequence. Because we and-conquer 

have O(N2) subsequences, this bound is the best that can be achieved with an algorithm. 

approach that directly examines all subsequences. We also gave a linear-time 
algorithm that works by examining only a few subsequences. However, its 
correctness is not obvious. 



First Half Second Half I 11 values 

Running sums 

Running sum from the center (*denotes maximum 
for each half). 

Figure 8.19 Dividing the maximum contiguous subsequence problem 
into halves. 

Let us consider a divide-and-conquer algorithm. Suppose that the sam- 
ple input is (4,  -3, 5 ,  -2, -1, 2, 6, -2). We divide this input into two halves, 
as shown in Figure 8.19. Then the maximum contiguous subsequence sum 
can occur in one of three ways. 

Case I :  It resides entirely in the first half. 
Case 2: It resides entirely in the second half. 
Case 3: It begins in the first half but ends in the second half. 

We show how to find the maximums for each of these three cases more effi- 
ciently than by using an exhaustive search. 

We begin by looking at case 3. We want to avoid the nested loop that 
results from considering all N /  2 starting points and N /  2 ending points inde- 
pendently. We can make so by replacing two nested loops by two consecu- 
tive loops. The consecutive loops, each of size N  12, combine to require only 
linear work. We can make this substitution because any contiguous subse- 
quence that begins in the first half and ends in the second half must include 
both the last element of the first half and the first element of the second half. 

Figure 8.19 shows that we can calculate, for each element in the first 
half, the contiguous subsequence sum that ends at the rightmost item. We do 
so with a right-to-left scan, starting from the border between the two halves. 
Similarly, we can calculate the contiguous subsequence sum for all 
sequences that begin with the first element in the second half. We can then 
combine these two subsequences to form the maximum contiguous subse- 
quence that spans the dividing border. In this example, the resulting 
sequence spans from the first element in the first half to the next-to-last ele- 
ment in the second half. The total sum is the sum of the two subsequences, 
o r 4 + 7 =  11. 



. . 

Divide-and-Conquer Algorithms 

This analysis shows that case 3 can be solved in linear time. But what 
about cases 1 and 2?  Because there are N / 2 elements in each half, an 
exhaustive search applied to each half still requires quadratic time per half; 
specifically, all we have done is eliminate roughly half of the work, and half of 
quadratic is still quadratic. In cases 1 and 2 we can apply the same strategy- 
that of dividing into more halves. We can keep dividing those quarters fur- 
ther and further until splitting is impossible. This approach is succinctly 
stated as follows: Solve cases 1 and 2 recursively As we demonstrate later, 
doing so lowers the running time below quadratic because the savings com- 
pound throughout the algorithm. The following is a summary of the main 
portion of the algorithm: 

I .  recursively compute the maximum contiguous subsequence sum 
that resides entirely in the first half; 

2. recursively compute the maximum contiguous subsequence sum 
that resides entirely in the second half; 

3. compute, via two consecutive loops, the maximum contiguous sub- 
sequence sum that begins in the first half but ends in the second 
half; and 

4. choose the largest of the three sums. 

A recursive algorithm requires specifying a base case. When the size of 
the problem reaches one element, we do not use recursion. The resulting 
C++ function is coded in Figure 8.20. 

The general form for the recursive call is to pass the input array along 
with the left and right borders, which delimit the portion of the array being 
operated on. A one-line driver routine sets this action up by passing the bor- 
ders 0 and N - 1 along with the array. 

Lines 10 and 1 1 handle the base case. If lef t==right, there is one 
element, and it is the maximum contiguous subsequence if the element is 
nonnegative (otherwise, the empty sequence with sum 0 is maximum). 
Lines 13 and 14 perform the two recursive calls. These calls are always on 
a smaller problem than the original; thus we progress toward the base case. 
Lines 16 to 21 and then 23 to 28 calculate the maximum sums that touch 
the center border. The sum of these two values is the maximum sum that 
spans both halves. The routine max3 (not shown) returns the largest of the 
three possibilities. 



1 / /  Recursive maximum contiguous subsequence sum algorithm. 
2 template <class Comparable> 
3 Comparable maxSubSum( const vector<Comparable> & a, 
4 int left, int right ) 

5 { 
6 Comparable maxLeftBorderSum = 0, maxRightBorderSum = 0; 
7 Comparable 1eftBorderSum = 0, rightBorderSum = 0; 
8 int center = ( left + right ) / 2; 
9 

10 if ( left == right ) / /  Base Case. 
11 return a[ left I > 0 ? a[ left I : 0; 
12 
13 Comparable maxLeftSum = maxSubSum( a, left, center ) ;  

14 Comparable maxRightSum = maxSubSum( a, center + 1, right ) ;  

15 
16 for( int i = center; i >= left; i-- ) 

17 ( 

18 1eftBorderSum += a[ i I ;  
19 if( 1eftBorderSum > rnaxLeftBorderSum ) 

20 maxLeftBorderSum = 1eftBorderSum; 
21 } 

22 
23 for( int j = center + 1; j <= right; j++ ) 

24 ( 

25 rightBorderSum += a[ j I ;  
26 if( rightBorderSum > maxRightBorderSum ) 

27 maxRightBorderSum = rightBorderSum; 
28 } 

29 
30 return max3( maxLeftSum, maxRightSum, 
31 maxLeftBorderSum + maxRightBorderSum ) ;  

32 } 

33 
34 / /  Public driver. 
35 template <class Comparable> 
36 Comparable maxSubsequenceSum( const vector<Comparable> & a ) 

37 I 
38 return a.size( ) > 0 ? maxSubSum( a, 0, a.size() - 1 ) : 0; 
39 1 

Figure 8.20 A divide-and-conquer algorithm for the maximum contiguous subsequence 
sum problem. 



8.5.2 Analysis of a Basic Divide-and-Conquer Recurrence 

The recursive maximum contiguous subsequence sum algorithm works by Intuitive analysis of 

performing linear work to compute a sum that spans the center border and the maximum 
contiguous 

then performing two recursive calls. These calls collectively compute a sum subsequence sum 
that spans the center border, do further recursive calls, and so on. The total divide-and-conquer 

work performed by the algorithm is then proportional to the scanning done algorithm:We spend 

over all the recursive calls. O(N) per level. 

Figure 8.21 graphically illustrates how the algorithm works for N = 8 
elements. Each rectangle represents a call to maxSubSum, and the length of 
the rectangle is proportional to the size of the subarray (and hence the cost of 
the scanning of the subarray) being operated 011 by the invocation. The initial 
call is shown on the first line: The size of the subarray is N, which represents 
the cost of the scanning for the third case. The initial call then makes two 
recursive calls, yielding two subarrays of size N l2 .  The cost of each scan in 
case 3 is half the original cost, but as there are two such recursive calls, the 
combined cost of these recursive calls is also N. Each of those two recursive 
instances themselves make two recursive calls, yielding four subproblems that 
are a quarter of the original size. Thus the total of all case 3 costs is also N. 

Eventually, we reach the base case. Each base case has size I ,  and there 
are N of them. Of course, there are no case 3 costs in this instance, but we 
charge 1 unit for performing the check that determines whether the sole ele- 
ment is positive or negative. The total cost then, as illustrated in Figure 8.21, 
is N per level of recursion. Each level halves the size of the basic problem, so 
the halving principle tells us that there are approximately log N levels. In 
fact, the number of levels is 1 + [log N] (which is 4 when N equals 8). Thus 
we expect that the total running time is O(N log N). 

Figure 8.21 Trace of recursive calls for recursive maximum contiguous 
subsequence sum algorithm for N = 8 elements. 



This analysis gives an intuitive explanation of why the running time is 
O(N log N). In general, however, expanding a recursive algorithm to exam- 
ine behavior is a bad idea; it violates the third rule of recursion. We next con- 
sider a more formal mathematical treatment. 

Note that the more Let T(N)  represent the time required to solve a maximum contiguous 
formal analysis subsequence sum problem of size N. If N = 1 .  the program takes some con- 
for all classes of 
algorithms that stant amount of time to execute lines 10 to I I ,  which we call I unit. Thus 
recursively solve two T ( l )  = 1. Otherwise, the program must perform two recursive calls and the 
halves and use linear linear work involved in computing the maximum sum for case 3. The con- 
additional work. stant overhead is absorbed by the O ( N )  term. How long do the two recursive 

calls take? Because they solve problems of size N /  2 ,  we know that they 
must each require T(N 1 2 )  units of time; consequently, the total recursive 
work is 2T(N / 2).  This analysis gives the equations 

Of course, for the second equation to make sense, N must be a power of 2. 
Otherwise, at some point N12 will not be even. A more precise equation is 

To simplify the calculations, we assume that N is a power of 2 and replace 
the O(N)  term with N. These assumptions are minor and do not affect the 
Big-Oh result. Consequently, we need to obtain a closed form solution for 
T(N) from 

T ( 1 )  = 1 and T ( N )  = 2 T ( N / 2 ) +  N .  (8.6) 

This equation is illustrated in Figure 8.21, so we know that the answer 
will be N log N + N. We can easily verify the result by examining a few val- 
ues: T ( I ) ,  T (2 )  = 4 ,  T(4)  = 12, T(8)  = 32, and T(16) = 80. We now prove this 
analysis mathematically in Theorem 8.4, using two different methods. 

Theorem 8.4 Assuming that N is a power of 2, the solution to the equation 
T(N) = 2T(N/2) + N, with initial condition T(1) = 1 ,  is T(N) = N log N + N. I 



For suficiently large N, we have T ( N / 2 )  = 2 T ( N / 4 )  + N / 2  because we Proof 
can use Equation 8.6 with N / 2  instead o f N .  Consequently, we have (Method I )  

Substituting this into Equation 8.6 vields 

l fwe  use Equation 8.6 for N / 4  and multiply by 4 ,  we obtain 

4 T ( N / 4 )  = 8 T ( N / 8 )  + N ,  

which we can substitute into the right-hand side of Equation 8.7 to obtain 

T ( N )  = 8 T ( N / 8 )  + 3 N .  

Continuing in this manner; we obtain 

Finally, using k = log N  (wlzich makes sense because then 2 k  = N) ,  we 
obtain 

T ( N )  = N T ( 1 )  + N log N = N  log N  + N .  

Although this proof method appears to work well, it can be difficult to 
apply in more complicated cases because it tends to give very long equa- 
tions. Following is a second method that appears to be easier because it gen- 
erates equations vertically that are more easily manipulated. 



Proof (Method 2) We divide Equation 8.6 by N, yielding a new basic equation: 

This equation is now valid for any N tJzat is a power of 2, so we may also 

write the following equations: 

A telescoping sum Now we add the collective in Equation 8.8. That is, we add all the terms on 
generates large 
numbers of canceling the left-hand side and set the result equal lo the sum of all the terms on the 

terms. right-hand side. The term T ( N I  2 )  / ( N l 2 )  appears on both sides and 

thus cancels. In fact, virtually all the terms appear on both sides and 

cancel. This is called a telescoping sum. Afier everything is added, the 

final result is 

because all the other terms cancel and there are log N equations. Thus all 

the Is ar the end of these equations sum to log N. Multiplying through by N 

gives the final answer, as before. 

Note that, if we had not divided through by N at the start of the solution, 
the sum would not have telescoped. Deciding on the division required to 
ensure a telescoping sum requires some experience and makes the method a 
little more difficult to apply than the first alternative. However, once you 
have found the correct divisor, the second alternative tends to produce scrap 
work that fits better on a standard sheet of paper, leading to fewer mathemat- 
ical errors. In contrast, the first method is more of a brute-force approach. 
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Divide-and-Conquer Algorithms 

Note that whenever we have a divide-and-conquer algorithm that solves 
two half-sized problems with linear additional work, we always have O(N 
log N) running time. 

8.5.3 A General Upper Bound for Divide-and-Conquer 
Running Times 

The analysis in Section 8.5.2 showed that, when a problem is divided into 
two equal halves that are solved recursively-with O(N) overhead, the result 
is an O(N log N) algorithm. What if we divide a problem into three half- 
sized problems with linear overhead, or seven half-sized problems with qua- 
dratic overhead? (See Exercise 8.17.) In this section we provide a general 
formula to compute the running time of a divide-and-conquer algorithm. The 
formula requires three parameters: 

A, which is the number of subproblems; 
B, which is the relative size of the subproblems (for instance B = 2 
represents half-sized subproblems); and 
k, which is representative of the fact that the overhead is O(Nk). 

The formula and its proof is presented as Theorem 8.5. The proof of the 
formula requires familiarity with geometric sums. However, knowledge of 
the proof is not needed for you to use the formula. 

The general formula 
given in this section 
allows the number of 
subproblems, the size 
of the subproblems, 
and the amount of 
additional work to 
assume general 
forms.The result can 
be used without 
understanding of the 
proof. 

The solution to the equation T(N) = AT(NIB) + O(Nk),  where A 2 1 Theorem 8.5 
and B > 1, is 

O( N'"~B*) for A > B ~ ;  
k o ( N ~ ~ o ~ N )  for A = B ; 

owk) for A < B ~ .  

Before proving Theorem 8.5, let us look at some applications. For the 
maximum contiguous subsequence sum problem, we have two problems, 
two halves, and linear overhead. The applicable values are A = 2, B = 2, and 
k = 1. Hence the second case in Theorem 8.5 applies, and we get O(N log N), 
which agrees with our previous calculations. If we recursively solve three 
half-sized problems with linear overhead, we have A = 3, B = 2, and k = 1 ,  
and the first case applies. The result is O(Nl0g2~) = O(N1.59). Here, the over- 
head does not contribute to the total cost of the algorithm. Any overhead 



smaller than O(N1.5"  would give the same running time for the recursive 
algorithm. An algorithm that solved three half-sized problems but required 
quadratic overhead would have O ( N 2 )  running time because the third case 
would apply. In effect, the overhead dominates once it exceeds the O ( N 1 , 5 9 )  
threshold. At the threshold the penalty is the logarithmic factor shown in the 
second case. We can now prove Theorem 8.5. 

Proof Following the ~ e c o n d  proof of Theorern 8.4. kt.e clssLlme that N is a power 

(of Theorem 8.5) of B and ler N = BM. Then N / B  = B M  1 ancl N" = (BM)k = (Bk)M. We 

assume that T( 1 )  = 1 and ignore the corzsiarzi factor in O(Nk) .  Then we 

have the basic equation 

If rve divide through by AM, we obtain the rzert, hasic equation 

Now we can br'rite this equation for all M ,  obtaining 

If hle add the collective denoted 17y Equation 8.9, once again virtually all 

the terms on the left-hand side cancel the leading terms on the right-hand 

side, yielding 



Dynamic Programming 

I Thus Proof 
(continued) 

(8.10) 

I f A  > Bk, then the sum is a geometric series with a ratio smaller than 1. 

Because the sum of an in$nite series would converge to a constant, this 

finite sum is also bounded by a constant. Thus we obtain 

IJ'A = Bk, then each term in the suin in Equation 8.10 is I .  As the sutn 

contains 1 + logBN terms and A = Bk irnplies AM = Nk, 

Finally, ( fA < B h ,  then the terrns in the geoinetric series are larger than I 
We can cornpute the sutn using cr standard formula, thereby obtaining 

T ( N )  = A 
M Bk 

= O [ A  (;j) ) = o((B'))*~) = o(N"). 
- - B" 
A 

proving the last case of Theorem 8.5. 

8.6 Dynamic Programming 
A problem that can be mathematically expressed recursively can also be Dynamic 

expressed as a recursive algorithm. In many cases, doing so yields a signifi- programming 
subproblems cant performance improvement over a more naive exhaustive search. Any nonre,u,sively by 

recursive mathematical formula could be directly translated to a recursive recording answers in 

algorithm, but often the compiler may not do justice to the recursive algo- atable. 

rithm and an inefficient program results. That is the case for the recursive 
computation of the Fibonacci numbers described in Section 8.3.4. To avoid 
this recursive explosion, we can use dynamic programming to rewrite the 
recursive algorithm as a nonrecursive algorithm that systematically records 
the answers to the subproblems in a table. We illustrate this technique with 
the following problem. 



Recursion 

Greedy algorithms 
make locally optimal 
decisions at each 
step.This is the 
simple, but not 
always the correct, 
thing to do. 

A simple recursive 
algorithm for change 
making is easily 
written but inefficient. 

CHANGE-MAKING PROBLEM 
FOR A C b R R E N C Y  WITH CCOINS C ,, C 2 ,  . . . , CRI (CENTS)  WHAT IS THE 

MINIMC'M NUMBER Of C O I W  NEEDED TO MAKE K CENTS O k  CHANGE? 

U.S. currency has coins in 1-, 5-, lo-, and 25-cent denominations (ignore 
the less-frequently occurring 50-cent piece). We can make 63 cents by using 
two 25-cent pieces, one 10-cent piece, and three I-cent pieces, for a total of 
six coins. Change-making in this currency is relatively simple: We repeatedly 
use the largest coin available to us. We can show that for U.S. currency this 
approach always minimizes the total number of coins used, which is an 
example of so-called greedy algorithms. In a greedy algorithm, during each 
phase, a decision is made that appears to be optimal, without regard for future 
consequences. This "take what you can get now" strategy is the source of the 
name for this class of algorithms. When a problem can be solved with a 
greedy algorithm, we are usually quite happy: Greedy algorithms often match 
our intuition and make for relatively painless coding. Unfortunately, greedy 
algorithms do not always work. If the U.S. currency included a 21-cent piece, 
the greedy algorithm would still give a solution that uses six coins, but the 
optimal solution uses three coins (all 2 I -cent pieces). 

The question then becomes one of how to solve the problem for an arbi- 
trary coin set. We assume that there is always a 1-cent coin so that the solu- 
tion always exists. A simple strategy to make K cents in change uses 
recursion as follows. 

I. If we can make change using exactly one coin, that is the minimum. 
2. Otherwise, for each possible value i we can compute the minimum 

number of coins needed to make i cents in change and K - i cents in 
change independently. We then choose the i that minimizes this 
sum. 

For example, let us see how we can make 63 cents in change. Clearly, 
one coin will not suffice. We can compute the number of coins required to 
make 1 cent of change and 62 cents of change independently (these are 1 
and 4, respectively). We obtain these results recursively, so they must be 
taken as optimal (jt happens that the 62 cents is given as two 21-cent pieces 
and two 10-cent pieces). Thus we have a method that uses five coins. If we 
split the problem into 2 cents and 61 cents, the recursive solutions yield 2 
and 4, respectively, for a total of six coins. We continue trying all the possi- 
bilities, some of which are shown in Figure 8.22. Eventually, we see a split 
into 2 1 cents and 42 cents, which is changeable in one and two coins, 
respectively, thus allowing change to be made in three coins. The last split 
we need to try is 3 1 cents and 32 cents. We can change 31 cents in two coins, 
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Dynamic Programming 

Figure 8.22 Some of the subproblems solved recursively in Figure 8.23. 

1 / /  Return minimum number of coins to make change. 
2 / /  Simple recursive algorithm that is very inefficient. 
3 int makechange( const vector<int> & coins, int change ) 

4 ( 
5 int minCoins = change; 
6 
7 / /  Look for exact match with any single coin. 
8 for( int i = 0; i < coins.size( ) ;  i++ ) 

9 if ( coins[ i ] == change ) 

10 return 1; 
11 
12 / /  No match; solve recursively. 
13 for( int j = 1; j < =  change / 2; j++ ) 

14 ( 

15 int thiscoins = makechange( coins, j ) 

16 + makechange( coins, change - j ) ;  

17 if( thiscoins < minCoins ) 

18 minCoins = thiscoins; 
19 1 
20 
21 return mincoins; 
22 1 

Figure 8.23 A simple but inefficient recursive procedure for solving the coin- 
changing problem. 

and we can change 32 cents in three coins for a total of five coins. But the 
minimum remains three coins. 

Again, we solve each of these subproblems recursively. which yields the 
natural algorithm shown in Figure 8.23. If we run the algorithm to make 
small change, it works perfectly. But like the Fibonacci calculations, this 



Figure 8.24 An alternative recursive algorithm for the coin-changing problem. 

algorithm requires too much redundant work, and it will not terminate in a 
reasonable amount of time for the 63-cent case. 

Our alternative An alternative algorithm involves reducing the problem recursively by 
recursive change- specifying one of the coins. For example, for 63 cents, we can give change in 
making algorithm is 
still inefficient. the following ways, as shown in Figure 8.24. 

One 1-cent piece plus 62 cents recursively distributed 
One 5-cent piece plus 58 cents recursively distributed 
One 10-cent piece plus 53 cents recursively distributed 
One 2 1 -cent piece plus 42 cents recursively distributed 
One 25-cent piece plus 38 cents recursively distributed 

Instead of solving 62 recursive problems, as in Figure 8.22, we get by with 
only 5 recursive calls, one for each different coin. Again, a naive recursive 
implementation is very inefficient because it recomputes answers. For example, 
in the first case we are left with a problem of making 62 cents in change. In this 
subproblem, one of the recursive calls made chooses a 10-cent piece and recur- 
sively solves for 52 cents. In the third case we are left with 53 cents. One of its 
recursive calls removes the I-cent piece and also recursively solves for 52 cents. 
This redundant work again leads to excessive running time. If we are careful, 
however, we can make the algorithm run reasonably fast. 

The trick is to save answers to the subproblems in an array. This dynamic 
programming technique forms the basis of many algorithms. A large answer 
depends only on smaller answers, so we can compute the optimal way to 
change 1 cent, then 2 cents, then 3 cents, and so on. This strategy is shown in 
the function in Figure 8.25. 



1 / /  Dynamic programming algorithm for change-making problem. 
2 / /  As a result, the coinsused array is filled with the minimum 
3 / /  number of coins needed for change from O->maxChange and 
4 / /  lastcoin contains one of the coins needed to make the change. 
5 void makechange( const vector<int> & coins, int maxchange, 
6 vector<int> & coinsused, vector<int> & lastcoin ) 

7 { 
8 int differentcoins = coins.size( ) ;  

9 coinsUsed.resize( maxchange + 1 ) ;  

10 lastCoin.resize( maxchange + 1 ) ;  

11 
12 coinsUsed[ 0 ] = 0; lastcoin[ 0 ] = 1; 
13 for( int cents = 1; cents <= maxchange; cents++ ) 

14 I 
15 int mincoins = cents, newcoin = 1; 
16 for( int j = 0; j < differentcoins; j++ ) 

17 { 

18 if ( coins [ j ] > cents ) / /  Can' t use coin j 
19 continue; 
20 if ( coinsUsed[ cents - coins[ j I I + 1 < minCoins 
2 1 { 

22 minCoins = coinsUsed[ cents - coins[ j I I + 1; 
23 newcoin = coins[ j I; 
24 1 
25 1 
26 
27 coinsUsed[ cents ] = mincoins; 
28 lastcoin[ cents ] = newcoin; 
29 1 
30 } 

Figure 8.25 A dynamic programming algorithm for solving the change-making 
problem by computing optimal change for all amounts from 0 to 
maxchange and maintaining information to construct the actual 
coin sequence. 

First, at line 12 we observe that 0 cents can be changed using zero coins. 
The lastcoin array is used to tell us which coin was last used to make the 
optimal change. Otherwise, we attempt to make cents cents worth of 
change, for cents ranging from 1 to the final maxchange. To make cents 
worth of change, we try each coin in succession as indicated by the for 
statement beginning at line 16. If the amount of the coin is larger than the 
amount of change we are trying to make, there is nothing to do. Otherwise, 
we test at line 20 to determine whether the number of coins used to solve the 
subproblem plus the one coin combine to be fewer than the minimum num- 
ber of coins used thus far; if so, we perform an update at lines 22 and 23. 
When the loop ends for the current number of cents, the minimums can be 
inserted in the arrays, which is done at lines 27 and 28. 



At the end of the algorithm, coinsused [ i ] represents the minimum num- 
ber of coins needed to make change for i cents ( i==maxChange is the particu- 
lar solution that we are looking for). By tracing back through lastcoin, we 
can figure out the coins needed to achieve the solution. The running time is 
that of two nested for loops and is thus O(NK),  where N is the number of 
different denominations of coins and K is the amount of change that we are 
trying to make. 

8.7 Backtracking 
A backtracking In this section we set out the last application of recursion. We show how to 
algorithm uses write a routine to have the computer select an optimal move in the game Tic- 
recursion to try all the 
possibilities. Tac-Toe. The interface for a TicTacToe class is shown in Figure 8.26. The 

class has a data object board that represents the current game p ~ s i t i o n . ~  A 
host of trivial member functions are specified, including routines to clear the 
board, to test whether a square is occupied, to place something on a square, 
and to test whether a win has been achieved. The implementation details are 
provided in the online code. 

The challenge is to decide, for any position, what the best move is. The 
routine used is chooseMove. The general strategy involves the use of a 
backtracking algorithm. A backtracking algorithm uses recursion to try all 
the possibilities. 

The minimax strategy The basis for making this decision is posi tionvalue, which is shown - 
is used forTic-Tac- in Figure 8.27. The method posit ionvalue returns HUMAN-WIN, DRAW, 
Toe. It is based on the 
assumption of COMPUTER-WIN, Or UNCLEAR, depending on what the board represents. 
optimal play by both The strategy used is the minimax strategy, which is based on the 
sides. assumption of optimal play by both players. The value of a position is a 

COMPUTER-WIN if optimal play implies that the computer can force a win. If 
the computer can force a draw but not a win, the value is DRAW; if the human 
player can force a win, the value is HUMAN-WIN. We want the computer to 
win, so we have HUMAN-WIN < DRAW < COMPUTER-WIN. 

For the computer, the value of the position is the maximum of all the 
values of the positions that can result from making a move. Suppose that one 
move leads to a winning position, two moves lead to a drawing position, and 
six moves lead to a losing position. Then the starting position is a winning 
position because the computer can force the win. Moreover, the move that 
leads to the winning position is the move to make. For the human player we 
use minimum instead of the maximum. 

6. Tic-tac-toe is played on a three-by-three board. Two players alternate placing their sym- 
bols on squares. The first to get three squares in a row, column, or a long diagonal wins. 



1 class TicTacToe 
2 { 

3 public: 
4 enum Side { HUMAN, COMPUTER, EMPTY ) ;  

5 enum PositionVal{ HUMAN-WIN, DRAW, UNCLEAR, COMPUTER-WIN } ;  

6 
7 / /  Constructor. 
8 TicTacToe( ) : board( 3, 3 ) ( clearBoard( ) ;  } 

9 
10 / /  Find optimal move. 
11 int chooseMove( Side s, int & bestRow, int & bestColumn ) ;  

12 / /  Play move, including checking legality 
13 boo1 playMove( Side s, int row, int column 1 ;  
14 
15 / /  Simple supporting routines. 
16 void clearBoard ( ) ; / /  Make the board empty 
17 void getMove ( ) ; / /  Get move from human; update board 
18 boo1 boardIsFull( ) const; / /  Return true if board is full 
19 boo1 isAWin( Side s ) const; / /  True if board shows a win 
20 const matrix<int> & getBoard( ) const / /  Return the board 
2 1 ( return board; ) 

22 
23 private: 
24 matrix<int> board; 
25 
26 / /  Play a move, possibly clearing a square. No checks. 
27 void place( int row, int column, int piece = EMPTY ) 

28 { board[ row ] [ column ] = piece; 
29 
30 / /  Test if a square is empty. 
31 boo1 squareIsEmpty( int row, int column ) const 
32 { return board[ row I[ column I == EMPTY; ) 

33 
34 / /  Compute static value of position (win, draw, etc.). 
35 int positionvalue( ) const; 
36 1 ;  

Figure 8.26 Interface for class TicTacToe. 

1 / /  Return the static value of the current position. 
2 int TicTacToe::positionValue( ) const 
3 I 
4 return isAWin( COMPUTER ) ? COMPUTER-WIN : 

5 isAWin( HUMAN ) ? HUMAN-WIN : 

6 boardIsFul1 ( ) ? DRAW : UNCLEAR; 

7 1 

Figure 8.27 Supporting routine for evaluating positions. 



This approach suggests a recursive algorithm to determine the value of a 
position. Keeping track of the best move is a matter of bookkeeping once the 
basic algorithm to find the value of the position has been written. If the posi- 
tion is a terminal position (i.e., we can see right away that tic-tac-toe has 
been achieved or the board is full without tic-tac-toe), the position's value is 
immediate. Otherwise, we recursively try all moves, computing the value of 
each resulting position, and choose the maximum value. The recursive call 
then requires that the human player evaluate the value of the position. For 
the human player the value is the minimum of all the possible next moves 
because the human player is trying to force the computer to lose. Thus the 
recursive function chooseMove, shown in Figure 8.28 takes a parameter s, 
which indicates whose turn it is to move. 

Lines 1 1  and 12 handle the base case of the recursion. If we have an 
immediate answer, we can return. Otherwise, we set some values at lines 14 
to 21, depending on which side is moving. The code in lines 28 to 38 is exe- 
cuted once for each available move. We try the move at line 28, recursively 
evaluate the move at line 29 (saving the value), and then undo the move at 
line 30. Lines 33 and 34 test to determine whether this move is the best seen 
so far. If so, we adjust value at line 36 and record the move at line 37. At 
line 41 we return the value of the position; the move is stored in the parame- 
ters bestRow and bestcolumn, which are passed by reference. 

Alpha-beta pruning is Although the routine shown in Figure 8.28 optimally solves tic-tac-toe, 
an improvement to it performs a lot of searching. Specifically, to choose the first move on an 
the minimax 
algorithm. empty board, it makes 549,946 recursive calls (this number is obtained by 

running the program). By  using some algorithmic tricks, we can compute 
the same information with fewer searches. One such technique is known as 
alpha-beta pruning, which is an improvement to the minimax algorithm. 
We describe this technique in detail in Chapter 1 1 .  Application of alpha-beta 
pruning reduces the number of recursive calls to only 18,297. 

Summary 

In this chapter we examined recursion and showed that it is a powerful 
problem-solving tool. Following are its fundamental rules, which you 
should never forget. 

1 .  Base cases: Always have at least one case that can be solved with- 
out using recursion. 

2. Make progress: Any recursive call must progress toward the base 
case. 

3. "You gotta believe ": Always assume that the recursive call works. 



Summary 

1 / /  Routine to compute optimal tic-tac-toe move. 
2 int TicTacToe::chooseMove( Side s, int & bestRow, 
3 int & bestcolumn ) 

4 { 

5 Side opp; / /  The other side 
6 int reply; / /  value of opponent's reply 
7 int dc; / / placeholder 
8 int simpleEva1; / /  Result of an immediate evaluation 
9 int value; 

10 
11 if( ( simpleEva1 = positionvalue( ) ) ! =  UNCLEAR ) 

12 return simpleEva1; 
13 
14 if ( s == COMPUTER ) 

15 i 
16 opp = HUMAN; value = HUMAN-WIN; 
17 1 
18 else 
19 i 
20 opp = COMPUTER; value = COMPUTER-WIN; 
21 } 

22 
23 / /  Search for a move. 
24 for( int row = 0; row < 3 ;  row++ ) 

25 for( int column = 0; column < 3 ;  column++ ) 

26 if( squareIsEmpty( row, column ) ) 

27 { 

28 place( row, column, s ) ;  / /  Try a move; then 
29 reply = chooseMove( opp, dc, dc );// Evaluate; 
30 place( row, column, EMPTY ) ;  / /  then undo 
31 
32 i/ If s gets a better position; update 
33 if( s == COMPUTER && reply > value / / 
34 s == HUMAN && reply < value ) 

35 ( 

36 value = reply; 
37 bestRow = row; bestColumn = column; 
38 } 

39 1 
40 
41 return value; 
42 1 

Figure 8.28 A recursive routine for finding an optimal tic-tac-toe move. 



Recursion 

4. Compound interest rule: Never duplicate work by solving the same 
instance of a problem in separate recursive calls. 

Recursion has many uses, some of which we discussed in this chapter. Three 
important algorithm design techniques that are based on recursion are 
divide-and-conquer, dynamic programming, and backtracking. 

In Chapter 9 we examine sorting. The fastest known sorting algorithm is 
recursive. 

Objects of the Game 

activation record The method by which the bookkeeping in a proce- 
dural language is done. A stack of activation records is used. 
(P. 275) 

alpha-beta pruning An improvement to the minimax algorithm. 
(P. 310) 

backtracking An algorithm that uses recursion to try all possibilities. 
(P. 308) 

base case An instance that can be solved without recursion. Any 
recursive call must progress toward a base case. (p. 270) 

basis In a proof by induction, the easy case that can be shown by hand. 
(P. 268) 

divide-and-conquer algorithm A type of recursive algorithm that is 
generally very efficient. The recursion is the divide part, and the 
combining of recursive solutions is the conquer part. (p. 292) 

driver routine A routine that tests the validity of the first case and 
then calls the recursive routine. (p. 273) 

dynamic programming A technique that avoids the recursive explo- 
sion by recording answers in a table. (p. 303) 

encryption An encoding scheme used in the transmitting of messages 
that cannot be read by other parties. (p. 289) 

Fibonacci numbers A sequence of numbers in which the ith number 
is the sum of the two previous numbers. (p. 276) 

greatest common divisor (gcd) The greatest common divisor of two 
integers is the largest integer that divides both of them. (p. 287) 

greedy algorithm An algorithm that makes locally optimal decisions 
at each step--a simple but not always correct thing to do. (p. 304) 

induction A proof technique used to establish theorems that hold for 
positive integers. (p. 267) 



Common Errors 

inductive hypothesis The hypothesis that a theorem is true for some 
arbitrary case and that, under this assumption, it is true for the next 
case. (p. 268) 

leaf In a tree, a node with no children. (p. 279) 
minimax strategy A strategy used for Tic-Tac-Toe and other strategic 

games, which is based on the assumption of optimal play by both 
players. (p. 308) 

multiplicative inverse The  solution 1 I X < N to the equation 
AX = I(mod N). (p. 288) 

public key cryptography A type of cryptography in which each par- 
ticipant publishes the code others can use to send the participant 
encrypted messages but keeps the decrypting code secret. (p. 292) 

recursive function A function that directly or indirectly makes a call 
to itself. (p. 269) 

RSA cryptosystem A popular encryption method. (p. 290) 
rules of recursion 1. Base case: Always have at least one case that 

can be solved without using recursion. (p .  270); 2. Make 
progress: Any recursive call must progress toward a base case. 
(p. 270); 3. "You gotta believe": Always assume that the recursive 
call works. (p. 274); 4. Compound interest rule: Never duplicate 
work by solving the same instance of a problem in separate recur- 
sive calls. (p. 278) 

telescoping sum A procedure that generates large numbers of cancel- 
ing terms. (p. 300) 

tree A widely used data structure that consists of a set of nodes and a 
set of edges that connect pairs of nodes. Throughout the text, we 
assume the tree is rooted. (p. 278) 

Common Errors 

1. The most common error in the use of recursion is forgetting a base 
case. 

2. Be sure that each recursive call progresses toward a base case. Oth- 
erwise, the recursion is incorrect. 

3. Overlapping recursive calls must be avoided because they tend to 
yield exponential algorithms. 

4. Using recursion in place of a simple loop is bad style. 
5. Recursive algorithms are analyzed by using a recursive formula. Do 

not assume that a recursive call takes linear time. 



6. Violating copyright laws is another bad error. RSA is patented, but 
some uses are allowed. See the References section for more infor- 
mation. 

, On the Internet 

Most of the chapter's code is provided, including a Tic-Tac-Toe program. An 
improved version of the Tic-Tac-Toe algorithm that uses fancier data struc- 
tures is discussed in Chapter 11. The following are the filenames. 

RecSum.cpp The routine shown in Figure 8.1 with a simple 
main. 

PrintInt.cpp The routine given in Figure 8.4 for printing a 
number in any base, plus a main. 

BinarySearchRec.cpp Virtually the same as BinarySearch.cpp (in 
Chapter 7) ,  but with the binarysearch 
shown in Figure 8.1 1. 

Ruler-java The routine shown in Figure 8.13, ready to 
run. It contains code that forces the drawing to 
be slow. 

FractalStar.java The routine given in Figure 8.15, ready to run. 
It contains code that allows the drawing to be 
slow. 
The math routines presented in Section 8.4, the 
primality testing routine, and a main that illus- 
trates the RSA computations. 
The four maximum contiguous subsequence 
sum routines. 
The routine shown in Figure 8.25, with a sim- 
ple main. 
The Tic-Tac-Toe algorithm, with a primitive 
main. 

. Exercises 
- 

In Short 

8.1. What are the four fundamental rules of recursion? 

8.2. Modify the program given in Figure 8.1 so that zero is returned for 
negative n. Make the minimum number of changes. 



Exercises 

Following are four alternatives for line 12 of the routine power (in 
Figure 8.16). Why is each alternative wrong? 

HugeInt tmp = power( x * x, n/2, p ) ;  

HugeInt tmp = power( power( x, 2, p ) ,  n/2, p ) ;  

HugeInt tmp = power( power( x, n/2, p ) ,  2, p ) ; 

HugeInt trnp = power( x, n/2, p ) * power( x, n/2, p ) 8 p; 

Show how the recursive calls are processed in the calculation 
263m0d 37. 

Compute gcd( 1995, 1492). 

Bob chooses p and q equal to 37 and 41, respectively. Determine 
acceptable values for the remaining parameters in the RSA 
algorithm. 

Show that the greedy change-making algorithm fails if 5-cent pieces 
are not part of United States currency. 

In Theory 

Prove by induction the formula 

Prove the following identities relating to the Fibonacci numbers. 
a. F I + F 2 + . . . + F N  = F,+,-1  

b. Fl + F, + ... + F2,- = F2, 

C. Fo + F2 + -.. + F,, = F,,, , - 1 

d. FN- ,FN+,  = ( - l ) N + F i  

e. F l F z + F 2 F 3 + . . .  + F 2 N - l F 2 N  = F;, 

f. F , F , + F , F , + . . . + F 2 N F 2 N + 1  = FiN+I  - 1  

g. F i + F i + ,  = F2,+, 

Show that if A = B(mod N), then for any C, D, and P, the following 
are true. 
a. A + C = B + C ( m o d N )  

b. AD r BD(mod N) 

c. A P  = BP(mod N )  

Prove that if A L B, then A mod B < A / 2. (Hint: Consider the cases 
B I A / 2 and B > A / 2 separately.) How does this result show that the 
running time of gcd is logarithmic? 



Prove by induction the formula for the number of calls to the recur- 
sive function f i b  in Section 8.3.4. 

Prove by induction that if A > B 2 0 and the invocation gcd ( a ,  b) 
performs k 2 1 recursive calls, then A 2 Fk + and B 2 Fk + 

Prove by induction that in the extended gcd algorithm, 1x1 < B and 
l Y  < A .  

Write an alternative gcd algorithm, based on the following observa- 
tions (arrange that A > B ). 
a. gcd(A, B) = 2 gcd(A / 2, B / 2) if A and B are both even. 
b. gcd(A, B) = gcd(A I 2, B)if A is even and B is odd. 
c. gcd(A, B) = gcd(A, B /  2) if A is odd and B is even. 
d. gcd(A, B) = gcd((A + B) 12, (A - B) / 2) if A and B are both odd. 

Solve the following equation. Assume that A 2 I ,  B > I ,  and P 2 0. 

Strassen's algorithm for matrix multiplication multiplies two N x N 
matrices by performing seven recursive calls to multiply two 
N / 2 x N /  2 matrices. The additional overhead is quadratic. What is 
the running time of Strassen's algorithm? 

In Practice 

The printInt method shown in Figure 8.4 may incorrectly handle 
the case where N = INT-MIN. Explain why and fix the method. 

Write a recursive method that returns the number of 1s in the binary 
representation of N. Use the fact that this number equals the number 
of 1 s in the representation of N l 2 ,  plus 1 ,  if N is odd. 

Implement the one comparison per level binary search recursively. 

The maximum contiguous subsequence sum algorithm given in Fig- 
ure 8.20 gives no indication of the actual sequence. Modify it so that it 
fills reference parameters seqstart and seqEnd, as in Section 6.3. 

For the change-making problem, give an algorithm that computes 
the number of different ways to give exactly K cents in change. 

The subset sum problem is as follows: Given N integers 
A,, A 2 ,  . . ., AN and an integer K, is there a group of integers that 
sums exactly to K? Give an O(NK) algorithm to solve this problem. 



-- 
Exercises 

8.24. Give an O(2N) algorithm for the subset sum problem described in 
Exercise 8.23. (Hint: Use recursion.) 

8.25. Write the routine with the declaration 

void permute( const string & str ) ;  

that prints all the permutations of the characters in the string str. If 
s t r  is "abc", then the strings output are abc, acb, bac, bca, cab, 
and cba. Use recursion. 

8.26. Explain what happens if in Figure 8.15 we draw the central square 
before making the recursive calls. 

Programming Projects 

8.27. The binomial coefficients C(N, k) can be defined recursively as 
C(N, 0) = 1, C(N, N )  = 1 and, for 0 < k < N, C(N,  k )  = C ( N -  1 ,  k )  + 
C(N - 1, k - 1 ) .  Write a function and give an analysis of the running 
time to compute the binomial coefficients 
a. recursively. 
b. by using dynamic programming. 

8.28. Implement the RSA cryptosystem with a library HugeInt class. If 
one is not available, write your own. 

8.29. Improve the TicTacToe class by making the supporting routines 
more efficient. 

8.30. Let A be a sequence of N distinct sorted numbers A ,, A2,  . . ., AN 
with A ,  = 0 .  Let B be a sequence of N ( N -  1)/2 numbers, 
defined by B,, = A ,  - A (i < j). Let D be the sequence obtained 
by sorting B. Both B and D may contain duplicates. Example: A = 0, 
I ,  5, 8. Then D = I, 3, 4, 5, 7, 8. Do the following. 
a. Write a program that constructs D from A .  This part is easy. 
b. Write a program that constructs some sequence A that corre- 

sponds to D. Note that A is not unique. Use a backtracking 
algorithm. 



Figure 8.29 Grid for Exercise 8.31 

8.31. Consider an N x N grid in which some squares are occupied. Two 
squares belong to the same group if they share a common edge. In 
Figure 8.29 there is one group of four occupied squares. three 
groups of two occupied squares, and two individual occupied 
squares. Assume that the grid is represented by a two-dimensional 
array. Write a program that 
a. computes the size of a group when a square in the group is 

given. 
b. computes the number of different groups. 
c. lists all groups. 

8.32. Write a program that expands a C++ source file's #include direc- 
tives (recursively). Do so by replacing lines of the form 

#include "filename" 

with the contents of filename. 
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Chapter 9 

Sorting Algorithms 

Sorting is a fundamental application for computers. Much of the output 
eventually produced by a computation is sorted in some way, and many 
computations are made efficient by invoking a sorting procedure internally. 
Thus sorting is perhaps the most intensively studied and important operation 
in computer science. 

In this chapter we discuss the problem of sorting an array of elements. 
We describe and analyze the various sorting algorithms. The sorts in this 
chapter can be done entirely in main memory, so the number of elements is 
relatively small (less than a few million). Sorts that cannot be performed in 
main memory and must be done on disk or tape are also quite important. We 
discuss this type of sorting, called external sorting, in Section 21.7. 

This discussion of sorting is a blend of theory and practice. We present 
several algorithms that perform differently and show how an analysis of an 
algorithm's performance properties can help us make implementation deci- 
sions that are not obvious. 

In this chapter, we show: 

that the insertion sort, previously shown in Figure 3.4, runs in qua- 
dratic time; 
how to code Shellsort, which is a simple and efficient algorithm that 
runs in subquadratic time; 
how to write the slightly more complicated O(N log N) mergesort and 
quicksort algorithms; 
that Q(N log N) comparisons are required for any general-purpose 
sorting algorithm; and 
how pointers can be used to sort large objects without incurring the 
excessive overhead associated with data movement. 
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9.1 Why Is Sorting Important? 

Recall from Section 6.6 that searching a sorted array is much easier than 
searching an unsorted array. This is especially true for people. That is, find- 
ing a person's name in a phone book is easy, for example, but finding a 
phone number without knowing the person's name is virtually impossible. 
As a result, any significant amount of computer output is generally arranged 
in some sorted order so that it can be interpreted. The following are some 
more examples. 

Words in a dictionary are sorted (and case distinctions are ignored). 
Files in a directory are often listed in sorted order. 
The index of a book is sorted (and case distinctions are ignored). 
The card catalog in a library is sorted by both author and title. 
A listing of course offerings at a university is sorted, first by depart- 
ment and then by course number. 
Many banks provide statements that list checks in increasing order by 
check number. 
In a newspaper, the calendar of events in a schedule is generally 
sorted by date. 
Musical compact disks in a record store are generally sorted by 
recording artist. 
In the programs printed for graduation ceremonies, departments are 
listed in sorted order and then students in those departments are listed in 
sorted order. 

An initial sort of the Not surprisingly, much of the work in computing involves sorting. How- 
data can significantly ever, sorting also has indirect uses. For instance, suppose that we want to 
enhance the 
performance of an decide whether an array has any duplicates. Figure 9.1 shows a simple func- 
algorithm. tion that requires quadratic worst-case time. Sorting provides an alternative 

algorithm. That is, if we sort a copy of the array, then any duplicates will be 
adjacent to each other and can be detected in a single linear-time scan of the 
array. The cost of this algorithm is dominated by the time to sort, so if we 
can sort in subquadratic time, we have an improved algorithm. The perfor- 
mance of many algorithms is significantly enhanced when we initially sort 
the data. 

The vast majority of significant programming projects use a sort some- 
where, and in many cases, the sorting cost determines the running time. 
Thus we want to be able to implement a fast and reliable sort. 
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1 / /  Return true if a has duplicates; false otherwise. 
2 template <class Comparable> 
3 boo1 duplicates( const vector<Comparable> & a ) 

4 i 
5 const int n = a.size( ) ;  

6 
7 for( int i = 0; i < n; i++ ) 

8 for( lnt J = i +  1; j < n; j++ ) 

9 if( a [  i ] = = a [  j ] ) 

10 return true; / !  Duplicate found 
11 
12 return false; / i  No duplicates found 
13 1 

Figure 9.1 A simple quadratic algorithm for detecting duplicates. 

/ operator<= ( a, b ) / return ! ( b < a ) ; 1 

Operator 

operator> ( a, b ) 

operator>= i a, b ) 

Definition 

return b < a; 

return ! ( a < b ) ; 

Figure 9.2 Deriving the relational and equality operators from opera tor<. 

operator!= ( a, b ) 

operator== ( a, b ) 

9.2 Preliminaries 

return a < b b < a; 

return ! (  a < b I b < a 1 ;  

The algorithms we describe in this chapter are all interchangeable. Each is 
passed an array containing the elements. 

We require the existence of operator<, which can be used to place a A comparison-based 

consistent ordering on the input.' As shown in Figure 9.2. once one of the 
makes ordering 

relational operators has been defined, all the relational and equality opera- decisions only on the 
tors can also be meaningfully defined. Besides the copy assignment opera- basis of 
tor, these are the only operations allowed on the input data. An algorithm comparisons. 

that makes ordering decisions only on the basis of comparisons is called a 
comparison-based sorting algorithm. In this chapter, N is the number of 
elements being sorted. 

1. As shown in Section 5.1,  changing the sorting interface by requiring a Comparator 
function object is straightforward. 
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9.3 Analysis of the Insertion Sort 
and Other Simple Sorts 

The insertion sort is We discussed the simplest sort, the insertion sort, in Section 3.3. The imple- 
quadratic in the mentation in Figure 9.3 reDeats Figure 3.4 for convenience. Because ofthe 

u u and average cases. It 
is fast if the input has nested loops, each of which can take N iterations, the insertion sort algo- 
already been sorted. rithm is O(N2). Furthermore, this bound is achievable because input in 

reverse order really does take quadratic time. A precise calculation shows 
that the tests at line 12 in Figure 9.3 can be executed at most P + I times for 
each value of P. Summing over all P gives a total time of 

However, if the input is presorted, the running time is O(N) because the 
test at the top of the inner f o r  loop always fails immediately. Indeed, if the 
input is almost sorted (we define almost sorted more rigorously shortly), the 
insertion sort will run quickly. Thus the running time depends not only on 
the amount of input, but also on the specific ordering of the input. Because 
of this wide variation, analyzing the average-case behavior of this algorithm 
is worthwhile. The average case turns out to be 8 ( N  2, for the insertion sort 
as well as a variety of other simple sorting algorithms. 

An inversion An inversion is a pair of elements that are out of order in an array. In 
measures other words, it is any ordered pair ( i ,  j )  having the property that i < j but 
unsortedness. A, > A j .  For example, the sequence (8, 5, 9, 2, 6, 3 )  has 10 inversions that 

correspond to the pairs (8, 5), (8, 2), (8,6), (8, 3), (5, 2), (5, 3), (9, 2), (9,6), 

1 / /  Insertionsort: sort items in array a. 
2 / /  Comparable: must have copy constructor, operator=, 
3 / /  and operator<. 
4 template <class Comparable> 
5 void insertionsort( vector<Comparable> & a ) 

6 I 
7 for( int p = 1; p < a.size( ) ;  p++ ) 

8 
9 Comparable tmp = a [ p ] ; 

10 int j ;  
I I 
12 for( j  = p ;  j > 0 && tmp<a[ j  - 1 I ;  j-- ) 

13 a[ j ]  = a [  j - 1 1 ;  
14 a[ j ]  = tmp; 
15 } 

16 } 

Figure 9.3 The insertion sort template. 
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(9, 3), and (6, 3). Note that the number of inversions equals the total number 
of times that line 13 in Figure 9.3 is executed. This condition is always true 
because the effect of the assignment statement is to swap the two items a [ j 1 
and a [ j - 1 I .  (We avoid the actual excessive swapping by using the tempo- 
rary variable, but nonetheless it is an abstract swap.) Swapping two elements 
that are out of place removes exactly one inversion, and a sorted array has no 
inversions. Thus, if there are I inversions at the start of the algorithm, we 
must have I implicit swaps. As O(N) other work is involved in the algorithm, 
the running time of the insertion sort is 0(1 + N), where 1 is the number of 
inversions in the original array. Thus the insertion sort runs in linear time if 
the number of inversions is O(N). 

We can compute precise bounds on the average running time of the 
insertion sort by computing the average number of inversions in an array. 
However, defining average is difficult. We can assume that there are no 
duplicate elements (if we allow duplicates, it is not even clear what the aver- 
age number of duplicates is). We can also assume that the input is some 
arrangement of the first N integers (as only relative ordering is important); 
these arrangements are called permutations. We can further assume that all 
these permutations are equally likely. Under these assumptions we can 
establish Theorem 9.1. 

The average number of inversions in an array of N distinct numbers is Theorem 9.1 
N(N - 1)/4. 

For any array A  of numbers, consider A  ,, which is the array in reverse 

ordel: For example, the reverse of array 1, 5, 4, 2, 6, 3 is 3, 6, 2, 4, 5, I .  
Consider any two numbers (x, y )  in the array, with y > x .  In e.xactly one 
of A  and A,, this ordered pair represents an inversion. The total number 
of these pairs in an array A  and its reverse A ,  is N(N - 1 ) /2 . Tlzus an 
average array has half this amount, or N(N - 1 )/4 inversions. 

Proof 

Theorem 9.1 implies that insertion sort is quadratic on average. It also 
can be used to provide a very strong lower bound about any algorithm that 
exchanges adjacent elements only. This lower bound is expressed as Theo- 
rem 9.2. 
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Theorem 9.2 Anj  algorithm that sorts by exchanging adjacent elements requires 
R(N2)  time on average. 

Proof The average number of inversions is initially N ( N  - I )/4. Each swap 
removes only one inversion, so R(N2)  svt,aps are required. I 

The lower-bound 
proof shows that 
quadratic 
performance is 
inherent in any 
algorithm that sorts 
by performing 
adjacent 
comparisons. 

This proof is an example of a lower-bound proof. It is valid not only for 
the insertion sort, which performs adjacent exchanges implicitly, but also for 
other simple algorithms such as the bubble sort and the selection sort, which 
we do not describe here. In fact, it is valid over an entire class of algorithms, 
including undiscovered ones, that perform only adjacent exchanges. 

Unfortunately, any computational confirmation of a proof applying to a 
class of algorithms would require running all algorithms in the class. That is 
impossible because there are infinitely many possible algorithms. Hence any 
attempt at confirmation would apply only to the algorithms that are run. This 
restriction makes the confirmation of the validity of lower-bound proofs 
more difficult than the usual single-algorithm upper bounds that we are 
accustomed to. A computation could only disprove a lower-bound conjec- 
ture; it could never prove it in general. 

Although this lower-bound proof is rather simple, proving lower bounds is 
in general much more complicated than proving upper bounds. Lower-bound 
arguments are much more abstract than their upper-bound counterparts. 

This lower bound shows us that, for a sorting algorithm to run in sub- 
quadratic or o ( N 2 )  time, it must make comparisons and, in particular. 
exchanges between elements that are far apart.  A sorting algorithm 
progresses by eliminating inversions. To run efficiently, it must eliminate 
more than just one inversion per exchange. 

Shellsort is a 
9.4 Shellsort 

subquadratic 
algorithm that works The first algorithm to improve on the insertion sort substantially was 
well in practice and is Shellsort, which was discovered in 1959 by Donald Shell. Though it is not 
simpleto code.The the fastest algorithm known. Shellsort is a subauadratic algorithm whose w * 
performance of 
Shellsort is highly 

code is only slightly longer than the insertion sort, making it the simplest of 

dependent on the the faster algorithms. 
increment sequence Shell's idea was to avoid the large amount of data movement, first by - 
and requires a comparing elements that were far apart and then by comparing elements that 
challenging (and not 
comDletelv resolved, were less far apart, and so on, gradually shrinking toward the basic insertion 
analysis. - sort. Shellsort uses a sequence h , ,  h?, . . . , h ,  called the increment sequence. 



Any increment sequence will do as long as h, = 1 ,  but some choices are 
better than others. After a phase, using some increment hk ,  we have 
a [ i ]  I a [ i  + hk]  for every i where i + hk is a valid index; all elements spaced 
hk apart are sorted. The array is then said to be hk-sorted. 

For example, Figure 9.4 shows an array after several phases of Shellsort. 
After a 5-sort. elements spaced five apart are guaranteed to be in correct 
sorted order. In the figure, elements spaced five apart are identically shaded 
and are sorted relative to each other. Similarly, after a 3-sort, elements 
spaced three apart are guaranteed to be in sorted order, relative to each other. 
An important property of Shellsort (which we state without proof) is that an 
hk-sorted array that is then hk -,-sorted remains hk-sorted. If this were not the 
case, the algorithm would likely be of little value because work done by 
early phases would be undone by later phases. 

In general, an hk-sort requires that, for each position i in h k , h k + l q  

. . ., N - I ,  we place the element in the correct spot among i, i - hk, i - 2hk, 
and so on. Although this order does not affect the implementation, careful 
examination shows that an hk-sort performs an insertion sort on hk indepen- 
dent subarrays (shown in different shades in Figure 9.4). Therefore, not sur- 
prisingly, in Figure 9.6, which we come to shortly, lines 7 to 15 represent a 
gap insertion sort. In a gap insertion sort, after the loop has been executed. 
elements separated by a distance of gap in the array are sorted. For instance, 
when gap is I ,  the loop is identical, statement by statement. to an insertion 
sort. Thus Shellsort is also known as diminishing gap sort. 

As we have shown. when gap is I the inner loop is guaranteed to sort 
the array a. If gap is never I ,  there is always some input for which the array 
cannot be sorted. Thus Shellsort sorts so long as gap eventually equals 1 .  
The only issue remaining, then, is to choose the increment sequence. 

Shell suggested starting gap at N / 2  and halving it until it reaches 1, after 
which the program can terminate. Using these increments, Shellsort represents 
a substantial improvement over the insertion sort, despite the fact that it nests 
three f o r  loops instead of two, which is usually inefficient. By altering the 
sequence of gaps, we can further improve the algorithm's performance. A 

A diminishing gap 
sort is another name 
for Shellsort. 

Shell's increment 
sequence is an 
improvement over the 
insertion sort 
(although better 
sequences are 
known). 

Figure 9.4 Shellsort after each pass if the increment sequence is { I ,  3, 5). 
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Figure 9.5 Running time (milliseconds) of the insertion sort and Shellsort for 
various increment sequences. 

N 

10,000 

20,000 

summary of Shellsort's performance with three different choices of incre- 
ment sequences is shown in Figure 9.5. 

9.4.1 Performance of Shellsort 

Insertion Sort 

575 

2,489 

The running time of Shellsort depends heavily on the choice of increment 
sequences, and in general the proofs can be rather involved. The average- 
case analysis of Shellsort is a long-standing open problem except for the 
most trivial increment sequences. 

In the worst case, When Shell's increments are used, the worst case is O(N2). This bound 
Shell's increments is achievable if N is an exact power of 2, all the large elements are in even- 
give quadratic 
behavior. indexed array positions, and all the small elements are in odd-indexed array 

positions. When the final pass is reached, all the large elements will still be 
in the even-indexed array positions, and all the small elements will still be in 
the odd-indexed array positions. A calculation of the number of remaining 
inversions shows that the final pass will require quadratic time. The fact that 
this is the worst that can happen follows from the fact that an hk-sort consists 
of hk insertion sorts of roughly Nthk elements. Thus the cost of each pass is 
O(hk(Nlhk)2), or O(N21hk). When we sum this cost over all the passes, we 
obtain O(N2Chk). The increments are roughly a geometric series, so the sum 
is bounded by a constant. The result is a quadratic worst-case running time. 
We can also prove via a complex argument that when N is an exact power of 
2 the average running time is O(N312). Thus, on average, Shell's increments 
give a significant improvement over insertion sort. 

Shellsort 

Dividing by 2.2 

9 

20 

Shell's Increments 

10 

23 

Odd gaps only 

11 

23 
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1 / /  Shellsort. 
2 template <class Comparable> 
3 void shellsort( vector<Comparable> & a ) 

4 I 
5 for( int gap = a.size( ) / 2; gap > 0; 
6 gap = gap == 2 ? 1 : static-cast<int>( gap / 2.2 ) ) 

7 for( int i = gap; i < a.size( ) ;  i++ ) 

8 I 
9 Comparable tmp = a[ i 1 ;  
10 int j = i; 
11 
12 for( ; j >=gap && tmp < a [  j - gap I ;  j -=gap ) 
13 a[ j I = a [  j -gap I ;  
14 a[ j ] = tmp; 
15 } 

16 } 

Figure 9.6 Shellsort implementation. 

A minor change to the increment sequence can prevent the quadratic 
worst case from occurring. If we divide gap by 2 and it becomes even, we 
can add 1 to make it odd. We can then prove that the worst case is not qua- 
dratic but only O(N3/2). Although the proof is complicated, the basis for it is 
that in this new increment sequence, consecutive increments share no com- 
mon factors (whereas in Shell's increment sequence they do). Any sequence 
that satisfies this property (and whose increments decrease roughly geomet- 
rically) will have a worst-case running time of at most O(N3/').2 The average 
performance of the algorithm with these new increments is unknown but 
seems to be O(N5/4), based on simulations. 

A third sequence, which performs well in practice but has no theoretical 
basis, is to divide by 2.2 instead of 2. This divisor appears to bring the average 
running time to below O(N514)-perhaps to O(N7/6)-but this case is com- 
pletely unresolved. For 100,000 to 1,000,000 items, it typically improves per- 
formance by about 25 to 35 percent over Shell's Increments, although nobody 
knows why. A Shellsort implementation with this increment sequence is coded 
in Figure 9.6. The complicated code at line 6 is necessary to avoid setting gap 
to 0. If that happens, the algorithm is broken because we never see a 1-sort. 
Line 6 ensures that, if gap is about to be set to 0, it is reset to 1 .3  

If consecutive 
increments are 
relatively prime, the 
performance of 
Shellsort is improved. 

Dividing by 2.2 
gives excellent 
performance in 
practice. 

3. TO appreciate the subtlety involved. note that subtracting 1 instead of adding 1 does not 
work. For instance, if N is 186, the resulting sequence is 93,45,21,9, 3, I, which all share 
the common factor 3. 

3. The newer syntax for compile-time casting is stat ic-cast. It is preferable to the older 
forms because seeing that a cast is being performed is easier. 
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Shellsort is a good 
choice for moderate 
amounts of input. 

Mergesort uses 
divide-and-conquer to 
obtain an O(N log N) 
running time. 

Merging of sorted 
arrays can be done in 
linear time. 

The entries in Figure 9.5 compare the performance of insertion sort and 
Shellsort, with various gap sequences. These results were obtained on a rea- 
sonably fast machine. We could easily conclude that Shellsort, even with the 
simplest gap sequence, provides a significant improvement over the inser- 
tion sort, at a cost of little additional code complexity. A simple change to 
the gap sequence can further improve performance. More improvement is 
possible (see in Exercise 9.24). Some of these improvements have theoreti- 
cal backing, but no known sequence markedly improves the program shown 
in Figure 9.6. 

The performance of Shellsort is quite acceptable in practice, even for N 
in the tens of thousands. The simplicity of the code makes it the algorithm of 
choice for sorting up to moderately large input. It is also a fine example of a 
very simple algorithm with an extremely complex analysis. 

9.5 Mergesort 

Recall from Section 8.5 that recursion can be used to develop subquadratic 
algorithms. Specifically, a divide-and-conquer algorithm in which two half- 
size problems are solved recursively with an O(N) overhead results in an 
O(N log N )  algorithm. Mergesort is such an algorithm. It offers a better 
bound, at least theoretically, than the bounds claimed for Shellsort. 

The mergesort algorithm involves three steps. 

1 .  If the number of items to sort is 0 or 1, return. 
2. Recursively sort the first and second halves separately. 
3. Merge the two sorted halves into a sorted group. 

To claim an O(N log N) algorithm, we need only to show that the merg- 
ing of two sorted groups can be performed in linear time. In this section we 
show how to merge two input arrays, A and B, placing the result in a third 
array, C. We then provide a simple implementation of mergesort. The merge 
routine is the cornerstone of most external sorting algorithms, as demon- 
strated in Section 21.7. 

9.5.1 Linear-Time Merging of Sorted Arrays 

The basic merge algorithm takes two input arrays, A and B, an output array, 
C, and three counters, Act< Bctl; and C c t ~  which are initially set to the begin- 
ning of their respective arrays. The smaller of A[Actr] and B[Bctr] is copied 
to the next entry in C, and the appropriate counters are advanced. When either 
input array is exhausted, the rest of the other array is copied to C. 



Mergesort 

An example of how the merge routine works is provided for the follow- 
ing input: 

Actr Bctr Cctr 

If array A contains 1, 13, 24, 26 and B contains 2, 15, 27, 38, the algorithm 
proceeds as follows. First, a comparison is made between 1 and 2, 1 is added 
to C, and 13 and 2 are compared: 

Actr Bctr Cctr 

Then 2 is added to C, and 13 and 15 are compared: 

Actr Bctr Cctr 

Next, 13 is added to C, and 24 and 15 are compared: 

Actr Bctr Cctr 

The process continues until 26 and 27 are compared: 

Actr Bctr Cctr 

Actr Bctr Cctr 
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Then 26 is added to C, and the A array is exhausted: 

Actr Bctr Cctr 

Finally, the remainder of the B array is copied to C: 

Actr Bctr Cctr 

The time needed to merge two sorted arrays is linear because each com- 
parison advances Cctr (thus limiting the number of comparisons). As a 
result, a divide-and-conquer algorithm that uses a linear merging procedure 
runs in O(N log N) worst-case time. This running time also represents the 
average-case and best-case times because the merging step is always linear. 

An example of the mergesort algorithm would be sorting the 8-element 
array 24, 13, 26, 1, 2, 27, 38, 15. After recursively sorting the first four and 
last four elements, we obtain 1, 13, 24, 26, 2, 15, 27, 38. Then we merge the 
two halves, obtaining the final array 1, 2, 13, 15, 24, 26, 27, 38. 

9.5.2 The Mergesort Algorithm 

Mergesort uses linear A straightforward implementation of mergesort is shown in Figure 9.7. The 
extra memory, which one-parameter, nonrecursive mergesort is a simple driver that declares a 
is a practical liability. temporary array and calls recursive mergesort with the boundaries of the 

array. The merge routine follows the description given in Section 9.5.1. It 
uses the first half of the array (indexed from left to center) as A, the sec- 
ond half (indexed from center+l to right) as B, and the temporary as C. 
Figure 9.8 implements the merge routine. The temporary is then copied 
back into the original array. 
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1 / /  Internal method that makes recursive calls. 
2 / /  a is an array of Comparable items. 
3 / /  tmpArray is an array to place the merged result. 
4 / /  left is the left-most index of the subarray. 
5 / /  right is the right-most index of the subarray. 
6 template <class Comparable> 
7 void mergesort( vector<Comparable> & a, 
8 vector<Comparable> & tmpArray, int left, int right ) 

9 ( 

10 if ( left < right ) 

11 { 

12 int center = ( left + right ) / 2; 
13 mergesort ( a, tmpArray, left, center ) ; 

14 mergesort( a, tmpArray, center + 1, right ) ;  

15 merge ( a, tmpArray, left, center + 1, right ) ; 

16 1 
17 1 
18 
19 / /  Mergesort algorithm (driver). 
20 template <class Comparable> 
21 void mergesort( vector<Comparable> & a ) 

22 I 
23 vector<Comparable> tmpArray( a.size( ) ) ;  

24 mergesort( a, tmpArray, 0, a.size( ) - 1 ) ;  

25 1 

Figure 9.7 Basic mergesort routines. 

Although mergesort's running time is O(N log N ) ,  it is hardly ever used Excessive copying 

for main memory sorts. The problem is that merging two sorted lists uses Can be with 
more work, but the 

linear extra memory. The additional work involved in copying to the tempo- linear extra memorv ... - ~~ - ~. 
rary array and back, throughout the algorithm, slows the sort considerably. cannot be removed 

This copying can be avoided by judiciously switching the roles of a and without excessive 
time penalties. 

tmpArray at alternate levels in the recursion. 
A variant of mergesort can also be implemented nonrecursively. For 

serious internal sorting applications, however, the algorithm of choice is 
quicksort. 
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1 / /  Internal method that merges two sorted halves of a subarray. 
2 / /  a is an array of Comparable items. 
3 / /  tmpArray is an array to place the merged result. 
4 / /  leftPos is the left-most index of the subarray. 
5 / /  rightPos is the index of the start of the second half. 
6 / /  rightEnd is the right-most index of the subarray. 
7 template <class Comparable> 
8 void merge( vector<Comparable> & a, 
9 vector<Comparable> & tmpArray, 

10 int leftPos, int rightpos, int rightEnd ) 

11 i 
12 int leftEnd = rightPos - 1; 
13 int tmp~os = leftpos; 
14 int numElements = rightEnd - leftPos + 1; 
15 
16 / /  Main loop 
17 while( leftPos <=  leftEnd & &  rightPos <= rightEnd ) 

18 if ( a [ leftPos I < =  a [ rightPos ] ) 

19 tmpArray[ tmpPos++ ] = a[ leftPos++ 1 ;  
20 else 
2 1 tmpArray[ tmpPost+ I = a[ rightPos++ I ;  
22 
23 while( leftpos <= leftEnd ) /I Copy rest of first half 
24 tmpArray [ tmpPos++ ] = a [ leftPos++ ] ; 
25 
26 while( rightpos <=  rightEnd ) / /  Copy rest of second half 
27 tmpArray tmpPos++ ] = a [ rightPost+ ] ; 
28 
29 / /  Copy tmpArray back 
30 for( int i = 0; i < numElements; i++, rightEnd-- ) 

3 1 a[ rightEnd I = tmpArray; rightEnd I ;  
32 1 

Figure 9.8 The merge routine. 

9.6 Quicksort 
Quicksort is a fast As its name implies, quicksort is a fast divide-and-conquer algorithm; in 
divide-and-cOnquer practice it is the fastest sorting algorithm known. Its average running time is 
algorithm, when 
properly O(N log m. Its speed is mainly due to a very tight and highly optimized 
implemented. In inner loop. It has quadratic worst-case performance, which can be made sta- 
practice it is the tistically unlikely to occur with a little effort. On the one hand, the quicksort 
fastest comparison- 
based sorting algorithm is relatively simple to understand and prove correct because it 
algorithm. relies on recursion. On the other hand, it is a tricky algorithm to implement 

because minute changes in the code can make significant differences in run- 
ning time. We first describe the algorithm in broad terms. We then provide 
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an analysis that shows its best-, worst-, and average-case running times. We 
use this analysis to make decisions about how to implement certain details in 
C++, such as the handling of duplicate items. 

9.6.1 The Quicksort Algorithm 

The basic algorithm Quicksort(S) consists of the following four steps. The basic quicksort 
algorithm is 
recursive. Details 

I. If the number of elements in S is 0 or 1 ,  then return. include choosing the 
2. Pick anv element v in S.  It is called the ~ i v o t .  pivot, deciding how to 

partition, and dealing 3. Partition S - {v}  (the remaining elements in S) into two disjoint with duplicates. 
groups:L= {.YE S - { v ) J . u I v }  a n d R =  { X E  S-{v}lxLv}.  Wrong decisions give 

4 Return the result of Quicksort(L) followed by v followed by ~ ~ ~ s r ~ ~ ~ a r ~ ~ b : 8 y o f  
Quicksort(R). common inputs. 

Several points stand out when we look at these steps. First, the base case The pivotdivides 

of the recursion includes the possibility that S might be an empty set. This array elements 
two groups: those 

provision is needed because the recursive calls could generate empty sub- smaIIer than the pivot 
sets. Second, the algorithm allows any element to be used as the pivot. The and those larger than 

pivot divides array elements into two groups: elements that are smaller than the Pivot. 

the pivot and elements that are larger than the pivot. The analysis performed 
here shows that some choices for the pivot are better than others. Thus, when 
we provide an actual implementation, we do not use just any pivot. Instead 
we try to make an educated choice. 

In the partition step, every element in S, except for the pivot, is placed in In the partition step 

either L (which stands for the left-hand part of the array) or R (which stands every element except 
the pivot is placed in 

for the right-hand part of the array). The intent is that elements that are of two groups. 
smaller than the pivot go to L and that elements larger than the pivot go to R. 
The description in the algorithm, however, ambiguously describes what to 
do with elements equal to the pivot. It allows each instance of a duplicate to 
go into either subset, specifying only that it must go to one or the other. Part 
of a good C++ implementation is handling this case as efficiently as possi- 
ble. Again. the analysis allows us to make an informed decision. 

Figure 9.9 shows the action of quicksort on a set of numbers. The pivot 
is chosen (by chance) to be 65. The remaining elements in the set are parti- 
tioned into two smaller subsets. Each group is then sorted recursively. Recall 
that, by the third rule of recursion. we can assume that this step works. The 
sorted arrangement of the entire group is then trivially obtained. In a C++ 
implementation, the items would be stored in a part of an array delimited by 
l o w  and high. After the partitioning step, the pivot would wind up in some 
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Figure 9.9 The steps of quicksort. 

array cell p. The recursive calls would then be on the parts from low to p-1 
and then p + l  to h igh.  

Because recursion allows us to take the giant leap of faith, the correct- 
ness of the algorithm is guaranteed as follows. 

The group of small elements is sorted, by virtue of the recursion. 
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The largest element in the group of small elements is not larger 
than the pivot, by virtue of the partition. 
The pivot is not larger than the smallest element in the group of 
large elements, by virtue of the partition. 
The group of large elements is sorted, by virtue of the recursion. 

Although the correctness of the algorithm is easily established, why it is 
faster than mergesort is not clear. Like mergesort, it recursively solves two 
subproblems and requires linear additional work (in the form of the parti- 
tioning step). Unlike mergesort, however, quicksort subproblems are not 
guaranteed to be of equal size, which is bad for performance. However, 
quicksort is faster than mergesort because the partitioning step can be per- 
formed significantly faster than the merging step can. In particular, the parti- 
tioning step can be performed without using an extra array, and the code to 
implement it is very compact and efficient. This advantage makes up for the 
lack of equally sized subproblems. 

9.6.2 Analysis of Quicksort 

The algorithm description leaves several questions unanswered: How do we 
choose the pivot? How do we perform the partition? What do we do if we 
see an element that is equal to the pivot? All these questions can dramati- 
cally affect the running time of the algorithm. We perform an analysis to 
help us decide how to implement the unspecified steps in quicksort. 

Best Case 
The best case for quicksort is that the pivot partitions the set into two 
equally sized subsets and that this partioning happens at each stage of the 
recursion. We then have two half-sized recursive calls plus linear over- 
head, which matches the performance of mergesort. The running time for 
this case is O(N log N). (We have not actually proved that this is the best 
case. Although such a proof is possible, we omit the details here.) 

Worst Case 
Since equally sized subsets are good for quicksort, you might expect that 
unequally sized subsets are bad. That indeed is the case. Let us suppose that, in 
each step of the recursion, the pivot happens to be the smallest element. Then 
the set of small elements L will be empty, and the set of large elements R will 
have all the elements except the pivot. We then have to recursively call quick- 
sort on subset R. Suppose also that T(N) is the running time to quicksort N ele- 
ments and we assume that the time to sort 0 or I element is just 1 time unit. 

Quicksort is fast 
because the 
partitioning step can 
be performed quickly 
and in place. 

The best case occurs 
when the partition 
always splits into 
equal subsets. The 
running time is 
O(N log N). 

The worst case 
occurs when the 
partition repeatedly 
generates an empty 
subset. The running 
time is O(N2). 
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Suppose further that we charge N units to partition a set that contains N ele- 
ments. Then for N > 1, we obtain a running time that satisfies 

In other words, Equation 9.1 states that the time required to quicksort N 
items equals the time to sort recursively the N - 1 items in the subset of 
larger elements plus the N units of cost to perform the partition. This 
assumes that in each step of the iteration we are unfortunate enough to pick 
the smallest element as the pivot. To simplify the analysis, we normalize by 
throwing out constant factors and solve this recurrence by telescoping Equa- 
tion 9. l repeatedly: 

When we add everything in Equation 9.2, we obtain massive cancellations, 
yielding 

This analysis verifies the intuition that an uneven split is bad. We spend 
N units of time to partition and then have to make a recursive call for N - I 
elements. Then we spend N - 1 units to partition that group, only to have to 
make a recursive call for N - 2 elements. In that call we spend N - 2 units 
performing the partition, and so on. The total cost of performing all the par- 
titions throughout the recursive calls exactly matches what is obtained in 
Equation 9.3. This result tells us that, when implementing the selection of 
the pivot and the partitioning step, we do not want to do anything that might 
encourage the size of the subsets to be unbalanced. 

Average Case 
The average case is The first two analyses tell us that the best and worst cases are widely different. 
qNlOg N).AlthOugh Naturally, we want to know what happens in the average case. We would 
this seems intuitive, a 
formal proof is expect that, as each subproblem is half the original on average, the O(N log N) 
required. would now become an average-case bound. Such an expectation, although 

correct for the particular quicksort application we examine here, does not 
constitute a formal proof. Averages cannot be thrown around lightly. For 
example, suppose that we have a pivot algorithm guaranteed to select only 
the smallest or largest element, each with probability 112. Then the average 
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size of the small group of elements is roughly N / 2 ,  as is the average size of 
the large group of elements (because each is equally likely to have 0 or 
N - 1 elements). But the running time of quicksort with that pivot selection 
is always quadratic because we always get a poor split of elements. Thus we 
must carefully assign the label average. We can argue that the group of small 
elements is as likely to contain 0, 1, 2, . . . , or N - 1 elements, which is also 
true for the group of large elements. Under this assumption we can establish 
that the average-case running time is indeed O(N log N). 

Because the cost to quicksort N items equals N units for the partition- The average cost of a 

ing step plus the cost of the two recursive calls, we need to determine the recursive call is 
obtained by average cost of each of the recursive calls. If T(N) represents the average averaging the costs 

cost to quicksort N elements, the average cost of each recursive call equals of all possible 
the average-over all possible subproblem sizes-of the average cost of a subproblem sizes. 

recursive call on the subproblem: 

Equation 9.4 states that we are looking at the costs for each possible subset 
size and averaging them. As we have two recursive calls plus linear time to 
perform the partition, we obtain 

To solve Equation 9.5, we begin by multiplying both sides by N, obtaining The average running 
time is given by T(N ). 

NT(N) = 2(T(O) + T(1) + T(2)  + -.. + T(N - 1)) + N2. (9.6) we solve Equation 9.5 
by removing all but 

We then write Equation 9.6 for the case N - 1, with the idea being that we the most recent 

can greatly simplify the equation by subtraction. Doing so yields recursive value of T: 

Now, if we subtract Equation 9.7 from Equation 9.6, we obtain 

We rearrange terms and drop the insignificant -1 on the right-hand side, 
obtaining 

NT(N) = ( N  + l ) T ( N  - 1) + 2N. (9.8) Once we have T ( N )  in 
terms of T(N -1) only, 

We now have a formula for T(N) in terms of T(N - 1) only. Again the idea is we attempt to 

to telescope, but Equation 9.8 is in the wrong form. If we divide Equation telescope. 

9.8 by N(N + I), we get 
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Now we can telescope: 

If we add all the equations in Equation 9.9, we have 

= O(l0g N ) .  

We use the fact that The last line in Equation 9.10 follows from Theorem 6.5. When we multiply 
the Nth harmonic both sides by N + 1 , we obtain the final result: 
number is O(logN). 

T ( N )  = O(N log N ) .  (9.11) 

9.6.3 Picking the Pivot 

Now that we have established that quicksort will run in O(N log N )  time on 
average, our primary concern is to ensure that the worst case does not occur. 
By performing a complex analysis, we can compute the standard deviation 
of quicksort's running time. The result is that, if a single random permuta- 
tion is presented, the running time used to sort it will almost certainly be 
close to the average. Thus we must see to it that degenerate inputs do not 
result in bad running times. Degenerate inputs include data that have already 
been sorted and data that contain only N  completely identical elements. 
Sometimes it is the easy cases that give algorithms trouble. 



A Wrong Way 
The popular, uninformed choice is to use the first element (i.e., the element 
in position low) as the pivot. This selection is acceptable if the input is ran- 
dom, but if the input has been presorted or is in reverse order, the pivot pro- 
vides a poor partition because it is an extreme element. Moreover, this 
behavior will continue recursively. As we demonstrated earlier in the chap- 
ter, we would end up with quadratic running time to do absolutely nothing. 
Needless to say, that would be embarrassing. Never use the first element as 
the pivot. 

Another popular alternative is to choose the larger of the first two dis- 
tinct keys4 as the pivot, but this selection has the same bad effects as choos- 
ing the first key. Stay away from any strategy that looks only at some key 
near the front or end of the input group. 

A Safe Choice 
A perfectly reasonable choice for the pivot is the middle element (i.e., the 
element in array cell (low+high) /2) .  When the input has already been 
sorted, this selection gives the perfect pivot in each recursive call. Of course, 
we could construct an input sequence that forces quadratic behavior for this 
strategy (see Exercise 9.8). However, the chances of randomly running into a 
case that took even twice as long as the average case is extremely small. 

Median-of-Three Partitioning 
Choosing the middle element as the pivot avoids the degenerate cases that 
arise from nonrandom inputs. Note that this is a passive choice, however. 
That is, we do not attempt to choose a good pivot. Instead, we merely try to 
avoid picking a bad pivot. Median-of-three partitioning is an attempt to pick 
a better than average pivot. In median-of-three partitioning, the median of 
the first, middle, and last elements is used as the pivot. 

The median of a group of N numbers is the r N / 2 1  th smallest number. 
The best choice for the pivot clearly is the median because it guarantees an 
even split of the elements. Unfortunately, the median is hard to calculate, 
which would slow quicksort considerably. So, we want to get a good estimate 
of the median without spending too much time doing so. We can obtain such 
an estimate by sampling-the classic method used in opinion polls. That is, 
we pick a subset of these numbers and find their median. The larger the sam- 
ple, the more accurate is the estimate. However the larger sample takes longer 
to evaluate. A sample size of 3 gives a small improvement in the average run- 
ning time of quicksort and also simplifies the resulting partitioning code by 

Picking the pivot is 
crucial to good 
performance. Never 
choose the first 
element as pivot. 

The middle element is 
a reasonable but 
passive choice. 

In median-of-three 
partitioning, the 
median of the first, 
middle, and last 
elements is used as 
the pivot. This 
approach simplifies 
the partitioning stage 
of quicksort. 

4. In a complex object, the key is usually the part of the object on which the comparison is 
based. 



Step 1 : Swap the 
pivot with the element 
at the end. 

Step 2: Run i from 
left to right and j 
from right to left. 
When i encounters a 
large element, i 
stops. When j 
encounters a small 
element, j stops. If i 
and j have not 
crossed, swap their 
items and continue. 
Otherwise, stop this 
loop. 

eliminating some special cases. Large sample sizes do  not significantly 
improve performance and thus are not worth using. 

The three elements used in the sample are the first. middle, and last ele- 
ments. For instance. with input 8. 1.  4. 9. 6. 3, 5 .  2. 7, 0. the leftmost element 
is 8. the rightmost element is 0. and the center element is 6: thus the pi\,ot 
would be 6 .  Note that for already sorted items, we keep the middle element 
as the pivot. and in this case. the pivot is the median. 

9.6.4 A Partitioning Strategy 

There are several comn~only used partitioning strategies. The one that we 
describe in this section gives good results. The simplest partitioning strategy 
consists of three steps. In Section 9.6.6 we show the improvements that 
occur when median-of-three pivot selection is used. 

The first step in the partitioning algorithm is to get the pivot element out 
of the way by swapping it with the last element. The result for our sample 
input is shown in Figure 9.10. The pivot element is shown in the darkest 
shade at the end of the array. 

For now we assume that all the elements are distinct and leave for later 
what to do in the presence of duplicates. As a limiting case. our algorithm 
must work properly when (111 the elernents are identical. 

In step 2. we use our partitioning strategy to move all the small elernents 
to the left in the array and all the large elements to the right. S1?7nll and large 
are relative to the pivot. In Figures 9.10-9.15. white cells are those that we 
know are correctly placed. The lightly shaded cells are not necessarily cor- 
rectly placed. 

We search from left to right. looking for a large element. using a counter 
1. initialized at position i o w .  We also search from right to left. looking for a 
small element. using a counter j. initialized to start at h igh-1.  Figure 9.11 
shows that the search for a large element stops at 8 and the search for a small 
element stops at 2. These cells ha\~e been lightly shaded. Note that. by skip- 
ping past 7. we know that 7 is not small and thus is correctly placed. Thus it 
is a white cell. Kow. we have a large element. 8. on the left-hand side of the 
array and a small element. 2. on the right-hand side of the array. We must 
swap these two elements to place them correctly, as shown in Figure 9.12. 

As the algorithm continues. i stops at large element 9 and j stops at 
small element 5 .  Once again. elements that i and j skip during the scan are 
guaranteed to be correctly placed. Figure 9.13 shows the result: The ends of 
the array (not counting the pivot) are filled with correctly placed elements. 



Figure 9.10 Partition~ng algorithm: Pivot element 6 is placed at the end. 

Figure 9.11 Partitioning algorithm: i stops at large element 8; j stops at small 
element 2. 

Figure 9.12 Partitioning algorithm: The out-of-order elements 8 and 2 are 
swapped. 

Figure 9.13 Partitioning algorithm: i stops at large element 9; j stops at small 
element 5. 

Figure 9.14 Partitioning algorithm: The out-of-order elements 9 and 5 are 
swapped. 

Next, swap the elements that i and j are indexing, as shown in Figure 9.14. 
The scan continues, with i stopping at large element 9 and j stopping at small 
element 3. However, at this point i and j have crossed positions in the array. 
Consequently, a swap would be useless. Hence Figure 9.15 shows that the 
item being accessed by j is already correctly placed and should not move. 

Figure 9.15 shows that all but two items are correctly placed. Wouldn't it step 3: Swap the 

be nice if we could just swap them and be done? Well, we can. All we need in position 
w~th  the pivot. 

to do is swap the element in position i and the element in the last cell (the 
pivot), as shown in Figure 9.16. The element that i is indexing clearly is 
large, so moving it to the last position is fine. 

Note that the partitioning algorithm requires no extra memory and that 
each element is compared exactly once with the pivot. When the code is 
written, this approach translates to a very tight inner loop. 
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Figure 9.15 Partitioning algorithm: i stops at large element 9; j stops at 
small element 3. 

Figure 9.16 Partitioning algorithm: Swap pivot and element in position i. 

9.6.5 Keys Equal to the Pivot 

One important detail that we must consider is how to handle keys that are 
equal to the pivot. Should i stop when it encounters a key equal to the pivot, 
and should j stop when it encounters a key equal to the pivot? Counters i 
and j should do the same thing; otherwise, the partitioning step is biased. 
For instance, if i stops and j does not, all keys that are equal to the pivot 
wind up on the right-hand side. 

Let us consider the case in which all elements in the array are identical. 
If both i and j stop, many swaps will occur between identical elements. 
Although these actions seem useless, the positive effect is that i and j cross 
in the middle, so when the pivot is replaced the partition creates two nearly 
equal subsets. Thus the best-case analysis applies, and the running time is 
O(N log N). 

If neither i nor j stops, then i winds up at the last position (assuming of 
course that it does stop at the boundary), and no swaps are performed. This 
result seems great until we realize that the pivot is then placed as the last ele- 
ment because that is the last cell that i touches. The result is widely uneven 
subsets and a running time that matches the worst-case bound of O(N2). The 
effect is the same as using the first element as a pivot for presorted input: It 
takes quadratic time to do nothing. 

Counters i and j We conclude that doing the unnecessary swaps and creating even subsets is 
must when they better than risking widely uneven subsets. Therefore we have both i and j stop 
encounter an item 
equal to the pivot to if they encounter an element equal to the pivot. This action turns out to be the 
guarantee good only one of the four possibilities that does not take quadratic time for this input. 
performance. At first glance, worrying about an array of identical elements may seem 

silly. After all, why would anyone want to sort 5000 identical elements? 
However, recall that quicksort is recursive. Suppose that there are 100,000 
elements, of which 5000 are identical. Eventually quicksort could make the 
recursive call on only the 5000 identical elements. Then, ensuring that 5000 
identical elements can be sorted efficiently really is important. 



9.6.6 Median-of-Three Partitioning 

When we do median-of-three partitioning, we can do a simple optimization 
that saves a few comparisons and also greatly simplifies the code. Figure 9.17 
shows the original array. 

Recall that median-of-three partitioning requires that we find the median Computing the - - 
of the first. middle. and last elements. The easiest wav to do so is to sort 

involves sorting three them in the array. The result is shown in Figure 9.18. Note the resulting elements. Hence we 
shading: The element that winds up in the first position is guaranteed to be can give the 
smaller than (or equal to) the pivot, and the element in the last position is Partitioning step a 

head start and also guaranteed to be larger than (or equal to) the pivot. This outcome tells us never about 
four things. running off the end of 

the array. 

We should not swap the pivot with the element in the last position. 
Instead, we should swap it with the element in the next-to-last posi- 
tion, as shown in Figure 9.19. 
Wecanstart i at low+l and j at high-2. 
We are guaranteed that. whenever i searches for a large element, it 
will stop because in the worst case it will encounter the pivot (and we 
stop on equality). 
We are guaranteed that, whenever j searches for a small element, it will 
stop because in the worst case it will encounter the first element (and we 
stop on equality). 

All of these optimizations are incorporated into the final C++ code. 

Figure 9.1 7 Original array. 

Figure 9.18 Result of sorting three elements (first, middle, and last). 

Figure 9.19 Result of swapping the pivot with next-to-last element. 
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9.6.7 Small Arrays 

Sort 10 or fewer items Our final optimization concerns small arrays. Is using a high-powered rou- 
by insertion sort. tine such as quicksort worthwhile when there are only 10 elements to sort? 
Place this test in the 
recursive quicksort The answer is of course not. A simple routine, such as the insertion sort, 
routine. probably is faster for small arrays. The recursive nature of quicksort tells us 

that we would generate many calls that have only small subsets. Thus testing 
the size of the subset is worthwhile. If it is smaller than some cutoff, we 
apply insertion sort; otherwise, we use quicksort. 

A good cutoff is 10 elements, although any cutoff between 5 and 20 is 
likely to produce similar results. The actual best cutoff is machine depen- 
dent. Using a cutoff saves us from degenerate cases. For example, finding 
the median of three elements does not make much sense when there are not 
three elements. 

In the past, many thought that an even better alternative was to leave the 
array slightly unsorted by doing absolutely nothing when the subset size was 
below the cutoff. Because the insertion sort is so efficient for nearly sorted 
arrays, we could show mathematically that running a final insertion sort to 
clean up the array was faster than running all the smaller insertion sorts. The 
savings were roughly the overhead of the insertion sort function calls. 

Now, function calls are not as expensive as they used to be. Furthermore 
a second scan of the array for the insertion sort is expensive. Because of a 
technique calleci caching, we are better off doing the insertion sort on the 
small arrays. Localized memory accesses are faster than nonlocalized 
accesses. On many machines, touching memory twice in one scan is faster 
than touching memory once in each of two separate scans. 

The idea of combining a second sorting algorithm when recursive calls 
to quicksort seem inappropriate can also be used to guarantee an O(N log 
worst-case for quicksort. In Exercise 9.19 you are asked to explore combin- 
ing quicksort and mergesort to get quicksort's average-case performance 
almost all the time with mergesort's worst-case guarantee. In practice, 
instead of mergesort we use another algorithm, namely heapsort, which we 
discuss in Section 21.6. 

9.6.8 C++ Quicksort Routine 

we use a driver to set The actual implementation of quicksort is shown in Figure 9.20. The one- 
things up. parameter quicksort, declared at lines 42 to 46, is merely a driver that 

calls the recursive quicksort. Thus we discuss only the implementation of 
the recursive quicksort. 

At line 6 we test for small subarrays and call the insertion sort (not 
shown) when the problem instance is below some specified value given by 
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1 / /  Internal quicksort method that makes recursive calls. 
2 / /  Uses median-of-three partitioning and a cutoff. 
3 template <class Comparable> 
4 void quicksort( vector<Comparable> & a, int low, int high ) 

5 I 
6 if( low + CUTOFF > high ) 

7 insertionsort ( a, low, high ) ; 

8 else 
9 { 

10 / /  Sort low, middle, high 
11 int middle = ( low + high ) / 2; 
12 if( a[ middle I < a[ low I ) 

13 swap( a[ low 1 ,  a[ middle I  ) ;  

14 if( a[ high I < a [  low I 
15 swap ( a [ low ] , a [ high I ) ; 

16 if ( a[ high I < a [ middle I ) 

17 swap ( a [ middle ] , a [ high I ) ; 

18 
19 / /  Place pivot at position high - 1 
20 Comparable pivot = a[ middle I ;  
21 swap( a[ middle 1 ,  a[ high - 1 I ) ;  

22 
23 / /  Begin partitioning 
24 int i, j ; 
25 for( i = low, j = high - 1; ; ) 

26 I 
27 while( a[ ++i ] < pivot ) { 1 
28 while ( pivot < a[ --j I ) I 1 
29 if( i < j ) 

30 swap( a[ i I ,  a[ j I ) ;  

31 else 
32 break ; 
33 1 
34 swap( a[ i 1 ,  a[ high - 1 ] ) ;  / /  Restore pivot 
35 
36 quicksort( a, low, i - 1 ) ;  / /  Sort small elements 
37 quicksort( a, i + 1, high ) ;  / /  Sort large elements 
38 1 
39 1 
40 
41 / /  Quicksort algorithm (driver). 
42 template <class Comparable> 
43 void quicksort( vector<Comparable> & a ) 

44 { 
45 quicksort ( a, 0, a. size ( ) - 1 ) ; 

46 1 

Figure 9.20 Quicksort with median-of-three partitioning and cutoff for small arrays. 
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The inner loop of 
quicksort is very tight 
and efficient. 

Quicksort is a classic 
example of using an 
analysis to guide 
program 
implementation. 

the constant CUTOFF. Otherwise, we proceed with the recursive procedure. 
Lines 11 to 17 sort the low, middle, and high elements in place. In keeping 
with our previous discussion, we use the middle element as the pivot and 
swap it with the element in the next-to-last position at lines 20 and 21. We 
then do the partitioning phase. We initialize the counters i and j to 1 past 
their true initial values because the prefix increment and decrement opera- 
tors will immediately adjust them before the array accesses at lines 27 and 
28. When the first w h i l e  loop at line 27 exits, i will be indexing an element 
that is greater than or possibly equal to the pivot. Likewise, when the second 
loop ends, j will be indexing an element that is less than or possibly equal to 
the pivot. If i and j have not crossed, these elements are swapped and we 
continue scanning. Otherwise, the scan is terminated and the pivot is 
restored at line 34. The sort is finished when the two recursive calls are made 
at lines 36 and 37. 

The fundamental operations occur at lines 27 through 30. The scans con- 
sist of simple operations: increments, array accesses, and simple compari- 
sons, accounting for the "quick" in quicksort. To ensure that the inner loops 
are tight and efficient, we want to be sure that the swap at line 30 comprises 
the three assignments that we expect and does not incur the overhead of a 
function call. Thus we declare that the s w a p  routine is an inline function, or 
in some cases, we write the three assignments explicitly (e.g., if the compiler 
exercises its right to ignore the inline request). 

Although the code looks straightforward now, that is only because of the 
analysis we performed prior to coding. Additionally, some traps are still 
lurking (see Exercise 9.15). Quicksort is a classic example of using an anal- 
ysis to guide a program implementation. 

9.7 Quickselect 
Selection is finding A problem closely related to sorting is selection, or finding the kth smallest 
the kth smallest element in an array of N items. An important special case is finding the 
element of an array. 

median, or the N12th smallest element. Obviously, we can sort the items, but 
as selection requests less information than sorting, we hope that selection 
would be a faster process. That turns out to be true. By making a small change 
to quicksort, we can solve the selection problem in linear time on average, giv- 
ing us the algorithm quickselect. The steps for Quickselect(S, k) are as follows. 

1 .  If the number of elements in S is 1, presumably k is also 1, so we 
can return the single element in S. 

2. Pick any element v in S. It is the pivot. 
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3. Partition S - ( v )  into L and R, exactly as was done for quicksort. 
4. If k is less than or equal to the number of elements in L, the item we 

are searching for must be in L. Call Quickselect( L, k ) recursively. 
Otherwise, if k is exactly equal to 1 more than the number of items 
in L, the pivot is the kth smallest element, and we can return it as 
the answer. Otherwise, the kth smallest element lies in R, and it is 
the ( k  - ILI - 1)th smallest element in R. Again, we can make a 
recursive call and return the result. 

Quickselect makes only one recursive call, compared to quicksort's 
two. The worst case of quickselect is identical to that of quicksort and is 
quadratic. It occurs when one of the recursive calls is on an empty set. In 
such cases quickselect does not save much. We can show that the average 
time is linear, however, by using an analysist similar to that used for quick- 
sort (see Exercise 9.9). 

The implementation of quickselect, shown in Figure 9.21, is simpler 
than our abstract description implies. Except for the extra parameter, k, and 
the recursive calls, the algorithm is identical to quicksort. When it termi- 
nates, the kth smallest element is in its correct position in the array. As the 
array begins at index 0, the fourth smallest element is in position 3. Note that 
the original ordering is destroyed. If this situation is undesirable, we can 
have the driver routine pass a copy of the array instead. 

Using median-of-three partitioning makes the chance of the worst case 
occurring almost negligible. By carefully choosing the pivot, we can 
ensure that the worst case never occurs and that the running time is linear 
even in the worst-case scenario. The resulting algorithm is entirely of theo- 
retical interest, however, because the constant that the Big-Oh notation 
hides is much larger than the constant obtained in the normal median-of- 
three implementation. 

9.8 A Lower Bound for Sorting 

Although we have O(N log N) algorithms for sorting, it is not clear that this 
is as good as we can do. In this section we prove that any algorithm for sort- 
ing that uses only comparisons requires Q(N log N) comparisons (and hence 
time) in the worst case. In other words, any algorithm that sorts by using 
element comparisons must use at least roughly N log N comparisons for 
some input sequence. We can use a similar technique to show that this condi- 
tion holds on average. 

Quickselect is used to 
perform a selection. It 
is similar to quicksort 
but makes only one 
recursive call. The 
average running time 
is linear. 

The linear worst-case 
algorithm is a classic 
result even though it 
is impractical. 

Any comparison- 
based sorting 
algorithm must use 
roughly N log N 
comparisons on 
average and in the 
worst case. 



1 / /  Internal selection method that makes recursive calls. 
2 / /  Uses median-of-three partitioning an6 a cutoff of 10. 
3 / /  Places the kth smallest item in ark-11. 
4 / /  a is an array of Comparable items. 
5 / /  low is the left-most index of the subarray. 
6 / /  high is the right-most index of the subarray. 
7 / /  k is the desired rank (1 is minimum) in the entire array. 
8 template <class Comparable> 
9 void quickselect( vector<Comparable> & a, 

10 int low, int high, int k ) 

11 i 
12 if( low + CUTOFF > high ) 

13 insertionsort( a, low, high ) ;  

14 else 
15 { 

16 / /  Sort low, middle, high 
17 int middle = ( low + high ) / 2; 
18 if( a[ middle I < a[ low I ) 

19 swap ( a [ low ] , a [ middie I ) ; 

20 if( a[ high ] < a[ low I ) 

21 swap ( a [ low ] , a [ high I ) ; 

22 if ( a [ high 1 < a [ middle 1 1 
23 swap ( a [ middle ] , a [ high I ) ; 

24 
25 / /  Place pivot at position high - 1 
26 Comparable pivot = a[ middle I ;  
27 swap ( a [ middle I , a[ high - 1 I ) ; 

28 
29 / /  Begin partitioning 
30 int i, j; 
31 for( i = low, j = high - 1; ; ) 

32 I 
33 while( a[ ++i ] < pivot i { 1 
34 while( pivot < a[ --j I ) i I 
35 if( i < j ) 

36 swap( a[ i I ,  a[ j I 1 ;  
37 else 
38 break ; 
39 1 
40 swap( a[ i 1 ,  a[ high - 1 ] ) ;  / /  Restore pivot 
41 
42 / /  Recurse; only this part changes 
43 if( k <= i ) 

44 quickselect( a, low, i - 1, k ) ; 

45 else if( k > i + 1 ) 

46 quickselect( a, i + 1, high, k ) ;  

47 } 

48 1 

Figure 9.21 Quickselect with median-of-three partitioning and cutoff for small arrays. 



A L&er Bound for Sort~ng 

Must every sorting algorithm work by using comparisons? The answer The proofs are 

is no. However, algorithms that do not involve the use of general compari- abstract; we the 
worst-case lower sons are likely to work only for restricted types, such as integers. Although bound. 

we may often need to sort only integers (see Exercise 9.16), we cannot make 
such sweeping assumptions about the input of a general-purpose sorting 
algorithm. We may assume only the given-namely, that, because the items 
need to be sorted, any two items can be compared. 

Next, we prove one of the most fundamental theorems in computer sci- 
ence, as Theorem 9.3. Recall first that the product of the first N positive inte- 
gers is N!. The proof is an existence proof, which is somewhat abstract. It 
shows that some bad input must always exist. 

Any algorithin that sorts hx using element co~nparisons only tnust use at Theorem 9.3 
least [log ( N ! ) ]  comparisons for some input sequence. 

We may regc~rd the possible inputs as any of the perinutatiorzs of 1, 2, . . . , N 

because only the relati\>e order of the input items nzatters, not their actual 

values. Thus the number of possible inputs is the number of diflereizt 

arrangelnents of N items, ~ !h i ch  is exactly N!. Let P,  hr the number of 

pernzutations that are consistent ~v i t l~  the results ajier the ulgorithm hns 

processed i comparisons. Let F be the number of co~nparisons processed 

when the sort terminates. We k~zobt, the following: ( a )  Po = N !  because all 

permutations are possible before the$rst conzparison; ( b )  P F  = 1 because, 

f more than one perrnulation were possible, the ulgorithn~ could not 

tertninarr rvitlz confidence that it prod~iced the correct ourput; ( c )  there 

e-~ists a perinu tation SLICI? that P,  2 Pi _ , / 2  because, ajier a comparison, 

each permutation goes into one of t ~ ~ o  groups: the still-possible group and 

the no-longer-possible gro~lp. The lnrger of these two groups must hcrve at 

least half the permutations. F~irthermore, there is at least one pennutation 

for which rve can apply this logic throughout the coinparison sequence. The 

action ?fa sorting algorithm is thus to go from the state P o ,  in which all N! 

permutations are possible, to the,final state P ,  , in which only one 

permutation is possible, rr'ith the restl-iction that there exists an input s~ich 

that in each comparison only half of the permutations can be eliminated. By 

the haltling principle, we know that at least [log ( N ! ) ]  cornpariso~zs are 

required for that input. 

How large is [log (N!)1'? I t  is approximately N log N - 1.44N. 
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W s o r t i n g  Algorithms 

Large objects are 
expensive to move. 
Indirect sorting 
constructs an array of 
pointers and moves 
the pointers during 
most of the algorithm. 
At the end of the 
algorithm, the array of 
large objects is then 
rearranged to match 
the pointers. 

9.9 Indirect Sorting 

Although we can use templates to write sorting routines that are easily 
reused for different objects, we have thus far ignored an important consider- 
ation. Recall that large objects are very expensive to copy. Thus when writ- 
ing templated routines we always pass an unknown Comparable object by 
reference (or constant reference). Sorting presents a different problem: Sort- 
ing large structures is algorithmically identical to sorting integers, but the 
data movement is extremely expensive. Changes may need to be made to 
avoid the overhead of unnecessary copies. 

If we can reduce the number of copies (i.e., assignments of Comparable 
objects in the quicksort), we can significantly improve the running time for 
large objects. 

9.9.1 Using Pointers to Reduce Comparable Copies to 2N 

In principle, the solution to our problem is simple. We use a technique called 
indirect sorting to create an array of pointers to Comparable and rearrange 
the pointers; once we know where the elements should go, we place them 
there without the overhead of the intermediate copies. Rearranging the items 
elegantly requires an algorithm known as in-situ permutation. Doing it in 
C++ requires a lot of syntax, all of which we have mentioned earlier but 
used infrequently. 

The first step of the algorithm creates an array of pointers. Let a be the 
array to sort and p be the array of pointers. Initially p [ i I points at the object 
stored in a [ i ] . Next, we sort p [ i ] , using the value of the object being 
pointed at to determine ordering. The objects in array a do not move, but the 
pointers in array p are rearranged. Figure 9.22 shows how the array of point- 
ers looks after the sorting stage. 

Figure 9.22 Using an array of pointers to sort. 
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We must still rearrange the array a .  The simplest way is to declare a sec- The simplest 

ond array of Comparable, which we call copy. We can write the correct rearrangement 
strategy uses an extra sorted order into copy and then write from copy back into a. The cost of of large objects. 

doing so is an extra array and a total of 2N Comparable copies. 

9.9.2 Avoiding the Extra Array 

The algorithm in Section 9.9.1 has a potentially important problem. By using 
copy, we doubled the space requirement. We can assume that N  is large (oth- 
erwise, we would use insertion sort) and that the size of a Comparable object 
is large (otherwise, we would not bother using a pointer implementation). 
Thus we can reasonably expect that we are operating near the memory limits 
of our machine. Although we can expect to use an extra v e c t o r  of pointers, 
we cannot necessarily expect an extra v e c t o r  of Comparable objects to be 
available. Thus we need to rearrange the array a in place, without resorting 
to an extra array. 

A second consequence of our decision to use copy is that a total of 2N A more complex 

C o m ~ a r a b l e  c o ~ i e s  are used. Although this situation is an im~rovement performs the 
u rearrangement in 

over the original algorithm, we can improve the algorithm even more. In par- and typically 
ticular, in the following improvement, we never use more than 3 N l 2  moveseachobject 

Comparable copies, and on almost all inputs we use only a few more than only once. 

N. Not only do we save space, but also we save time. Before stepping 
through the code, let us get a general idea of what needs to be done. Surpris- 
ingly, we have already done it before. 

To get an idea of what we have to do, let us start with i = 2. With p [ 2 I 
pointing at a [ 4 1 , we know that we need to move a [ 4 1 to a [ 2 I .  First, we 
must save a [ 2  1, or we will not be able to place it correctly later. Thus we 
havetmp=a[2] andthena[2]=a[4].Whena[4] hasbeenmovedtoa[21, 
we can move something into a [ 4 I ,  which is essentially vacant. By examining 
p [ 4 1 , we see that the correct statement is a [ 4 ] =a [ 3 ] . Now we need to move 
something into a [ 3 1 . With p [ 3  ] pointing at a [ 2 I , we know that we want to 
move a [ 2 1 there. But a [ 2 1 has been overwritten at the start of this rearrange- 
ment; as its original value is in tmp, we finish with a [ 3  ] =tmp. This process 
shows that, by starting with i equal to 2  and following the p array, we form a 
cyclic sequence 2,4, 3, 2, which corresponds to 

trnp = a [ 2 ] ;  
a[ 2 I = a [  4 1 ;  
a [  4 I = a [  3 1 ;  
a [  3 I = trnp; 

We have rearranged three elements while using only four Comparable 
copies and one extra Comparable of storage. Actually, we have described 
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1 / /  Sort objects - -  even large ones - -  
2 / /  with only N + In N Comparable moves on average. 
3 template <class Comparable> 
4 void largeobjectsort( vector<Comparable> & a ) 

5 I 
6 vector<Pointer<Comparable> > p( a.size( ) ) ;  

7 int i, j , nextj ; 
8 
9 for( i = 0; i < a.size( ) ;  i++ ) 

10 p[ i I = &a[ i I ;  
11 
12 quicksort( p ) ;  

13 
14 / /  Shuffle items in place 
15 for( i = 0; i < a.size( ) ;  i++ ) 

16 if( p[ i ] !=&a[ i ] ) 

17 ( 

18 Comparable tmp = a[ i I ;  
19 for( j = i; p[ j ] !=&a[ i 1 ;  j = nextj ) 

20 I 
21 nextj = p[ j ] - &a[ 0 1; 
22 a[ j I =*P[ j I; 
23 P[ j I =&a[ j I; 
24 1 
25 a [  j I = tmp; 

Figure 9.23 An algorithm for sorting large objects. 

this method before. Recall that the innermost loop of the insertion sort saves 
the current element a [ i ] in a tmp object. We then assign a [ j 1 =a [ j -1 I , to 
move lots of elements 1 unit to the right. Finally, we assign a [ j ] =tmp to 
place the original element. We are doing exactly the same thing here, except 
that instead of sliding the elements over by 1 unit, we are using p to guide 
the rearrangement. 

This algorithm is implemented in the largeob j ec t Sort function tem- 
plate shown in Figure 9.23. We use the Pointer wrapper class shown in 
Figure 5.7. First, we initialize the array of pointers, p, at lines 9 and 10, and 
then we sort them at line 12. The rest of the algorithm requires rearranging 
the objects in a, according to the order in p. 

At line 15 we search sequentially for a position i that contains the 
wrong element. When we find such an i (the test at line 16 succeeds), we do 
the sequence of assignments that we just described. We also update the p 
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array when we assign to a [ j ] . We can obtain the index that p [ j ] represents 
by using pointer subtraction (Section D.3.2). If pl and p2 point at two ele- 
ments in the same array, then pl-p2 is their separation distance, as an int. 
Thus p [ j I -&a [ 0 I is the index of the object that p [ j I points at. This tricky 
piece of C++ is used at line 21. Note also that *p [ j ] , at line 22, is the same 
as a [next j I .  

In general, we have a collection of cycles that are to be rearranged. In Fig- The analysis requires 

ure 9.22 there are two cycles: One involves two elements, and the other number 
of cycles in the involves three. Rearranging a cycle of length L uses L + 1 Comparable COP- permutations, 

ies, as we have shown. Cycles of length I represent elements that have been 
correctly placed and thus use no copies. This approach improves the previous 
algorithm because now a sorted array does not incur any Comparable copies. 

For an array of N elements, we let C, be the number of cycles of length 
L. The total number of Comparable copies, M, is given by 

The best thing that can happen is that we have no Comparable copies 
because there are N cycles of length 1 (i.e,, every element is correctly 
placed). The worst thing that can happen is that we have N / 2 cycles of 
length 2, in which case Equation 9.12 tells us that M = 3N/ 2 Comparable 
copies are performed. That can happen if the input is 2, 1, 4, 3, 6 ,  5 ,  and so 
on. What is the expected value of M? We need only compute the expected 
value of C, for each L (see Exercise 9.12, in which you are asked to argue 
that this value is I lL). Doing so gives the value of M: 

The result obtained by using a known estimate for the term H N  (see 
Theorem 6 . 5 )  is that the average number of Comparable copies is 
given by N + In N - 1.423. A random arrangement of the input yields only a 
very small number of cycles. 

Summary 

For most general internal sorting applications, an insertion sort, Shellsort, or 
quicksort is the method of choice. The decision regarding which to use 
depends on the size of the input. 
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Insertion sort is appropriate for very small amounts of input. Shellsort is 
a good choice for sorting moderate amounts of input. With a proper incre- 
ment sequence, it gives excellent performance and uses only a few lines of 
code. Quicksort gives the best performance but is trickier to code. Asymp- 
totically, it has almost certain O(N log N) performance with a careful imple- 
mentation, and we showed that this outcome is essentially as good as we can 
expect. In Section 2 1.6 we discuss another popular internal sort, heapsort. 

When sorting large objects, we must minimize data movement. We 
showed how to use pointers to do so with almost no extra moves. When sort- 
ing input that does not fit entirely in main memory, we need to use different 
techniques. The general technique, discussed in Section 21.7, makes use of 
the merge algorithm discussed in Section 9.5. 

To test and compare the merits of the various sorting algorithms, we 
need to be able to generate random inputs. Randomness is an important topic 
in general, and we discuss it in Chapter 10. 

Objects of the Game 

comparison-based sorting algorithm An algorithm that makes 
ordering decisions only on the basis of comparisons. (p. 323) 

diminishing gap sort Another name for Shellsort. (p. 327) 
indirect sorting An algorithm that constructs an array of pointers and 

moves the pointers during most of the algorithm to match the sorted 
order. At the end of the algorithm, the array of large objects is then 
rearranged to match the pointers. (p. 352) 

inversion A pair of elements that are out of order in an array. Used to 
measure unsortedness. (p. 324) 

lower-bound proof for sorting Confirms that any comparison-based 
sorting algorithm must use at least roughly N log N comparisons on 
average and in the worst case. (p. 349) 

median-of-three partitioning The median of the first, middle, and 
last elements is used as the pivot. This approach simplifies the parti- 
tioning stage of quicksort. (p. 341) 

mergesort A divide-and-conquer algorithm that obtains an O(N log N) 
sort. (p. 330) 

partition The step of quicksort that places every element except the 
pivot in one of two groups, one consisting of elements that are 
smaller than or equal to the pivot and one consisting of elements that 
are larger than or equal to the pivot. (p. 335) 



- . - -- - . . . - .- -- 

On the Internet 

pivot For quicksort, an element that divides an array into two groups; 
one that is smaller than the pivot and one that is larger than the pivot. 
(P. 335) 

quickselect An algorithm used to perform a selection that is similar to 
quicksort but makes only one recursive call. The average running 
time is linear. (p. 349) 

quicksort A fast divide-and-conquer algorithm when properly imple- 
mented: in practice it is the fastest comparison-based sorting algo- 
rithm known. (p. 334) 

selection The process of finding the kth smallest element of an array. 
(P. 348) 

Shellsort A subquadratic algorithm that works well in practice and is 
simple to code. The performance of Shellsort is highly dependent on 
the increment sequence and requires a challenging (and not com- 
pletely resolved) analysis. (p. 326) 

Common Errors 

1. The sorts coded in this chapter begin at array position 0, not posi- 
tion 1. 

2. Using the wrong increment sequence for Shellsort is a common 
error. Be sure that the increment sequence terminates with 1 and 
avoid sequences that are known to give poor performance. 

3. Quicksort has many traps. The most common errors deal with 
sorted inputs, duplicate elements, and degenerate partitions. 

4. For small inputs an insertion sort is appropriate, but using it for 
large inputs is wrong. 

On the Internet 

All the sorting algorithms and an implementation of quickselect are in a sin- 
gle file. 

Duplicate.cpp Contains the routine in Figure 9.1 and a test program. 
S0rt.h Contains all the sorting algorithms and the selection 

algorithm. 
TestSort.cpp Contains a program that tests all the sorting methods. 
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Q Exercises 

In Short 

9.1. Sort the sequence 8, 1,4, I ,  5,9, 2, 6, 5 by using 
a. insertion sort. 
b. Shellsort for the increments { 1, 3, 5 1. 
c. mergesort. 
d. quicksort. with the middle element as pivot and no cutoff (show 

all steps). 
e. quicksort, with median-of-three pivot selection and a cutoff of 3. 

9.2. A sorting algorithm is stable if elements with equal keys are left in 
the same order as they occur in the input. Which of the sorting algo- 
rithms in this chapter are stable and which are not? Why? 

9.3. Explain why the elaborate quicksort in the text is better than ran- 
domly permuting the input and choosing the middle element as 
pivot. 

In Theory 

9.4. When all keys are equal, what is the running time of 
a. insertion sort. 
b. Shellsort. 
c. mergesort. 
d. quicksort. 

9.5. When the input has been sorted, what is the running time of 
a. insertion sort. 
b. Shellsort. 
c. mergesort. 
d. quicksort. 

9.6. When the input has been sorted in reverse order, what is the running 
time of 
a, insertion sort. 
b. Shellsort. 
c. mergesort. 
d. quicksort. 

9.7. Suppose that we exchange elements a [ i ] and a [ i + k] , which were 
originally out of order. Prove that at least 1 and at most 2k - 1 inver- 
sions are removed. 



9.8. Construct a worst-case input for quicksort with 
a. the middle element as pivot. 
b. median-of-three pivot partitioning. 

9.9. Show that the quickselect has linear average performance. Do so by 
solving Equation 9.5 with the constant 2 replaced by 1. 

9.10. Using Stirling's formula, N!  2 (N/e)"&N, derive an estimate 
for log (N!). 

9.11. Prove that any comparison-based algorithm used to sort four ele- 
ments requires at least five comparisons for some input. Then show 
that an algorithm that sorts four elements using at most five compar- 
isons does indeed exist. 

9.12. Let p be any position in the array containing N elements. For the 
rearrangement procedure shown in Section 9.9.2. in parts (a)-(c) 
a. show that the probability that p is in a cycle of length 1 is I /N. 
b. show that the probability that p is in a cycle of length 2 is also 

1 / N. 
c. show that the probability that p is in a cycle of any length 

I I L I N  is 1/N.  
d. Based on part (c), deduce that the expected number of cycles of 

length L is I /L . (Hint:  Each element contributes 1 / N  to the 
number of cycles of length L, but a simple addition overcounts 
cycles.) 

9.13. When implementing quicksort, if the array contains lots of duplicates. 
you may find it best to perform a three-way partition (into elements 
less than, equal to, and greater than the pivot) and make smaller recur- 
sive calls. Assume that you can use three-way comparisons. 
a. Give an algorithm that performs a three-way in-place partition 

of an N element subarray using only N- I three-way compari- 
sons. If there are d items equal to the pivot, you may use d addi- 
tional Comparable swaps, above and beyond the two-way 
partitioning algorithm. (Hint:  As i and j move toward each 
other, maintain the five groups of elements shown.) 

EQUAL SMALL UNKNOWN LARGE EQUAL 
1 j 

b. Prove that, using the algorithm in part (a), sorting an N-element 
array that contains only d different values takes O(d N) time. 



9.14. Suppose that both arrays A and B are sorted and contain N elements. 
Give an O(log N) algorithm to find the median of A u B . 

In Practice 

9.15. A student alters the quicksort routine in Figure 9.20 by making 
the following changes to lines 25 to 28. Is the result equivalent to the 
original routine? 

for( i = low + 1, j = high - 2; ; ) 

{ 
while( a[ i ] < pivot ) 

I++; 

while( pivot < a[ j 1 1 
I --; 

9.16. If you know more information about the items being sorted, you can 
sort them in linear time. Show that a collection of N 16-bit integers 
can be sorted in O(N) time. (Hint: Maintain an array indexed from 0 
to 65,535.) 

9.17. The quicksort in the text uses two recursive calls. Remove one of the 
calls as follows. 
a. Rewrite the code so that the second recursive call is uncondi- 

tionally the last line in quicksort. Do so by reversing the if/ 
else, and returning after the call to insert ionsort. 

b. Remove the tail recursion by writing a while loop and altering 
low. 

9.18. Continuing from Exercise 9.17, after part (a), 
a. perform a test so that the smaller subarray is processed by the 

first recursive call and the larger subarray is processed by the 
second recursive call. 

b. remove the tail recursion by writing a while loop and altering 
low or high, as necessary. 

c. prove that the number of recursive calls is logarithmic in the 
worst-case. 

9.19. Suppose that the recursive quicksort receives an int parameter, 
depth, from the driver that is initially approximately 2 log N. 
a. Modify the recursive quicksort to call mergesort on its current 

subarray if the level of recursion has reached depth. (Hint: dec- 
rement depth as you make recursive calls; when it is 0, switch 
to mergesort. 



b. Prove that the worst-case running time of this algorithm is 
O(N log N). 

c. Conduct experiments to determine how often mergesort gets 
called. 

d. Implement this technique in conjunction with tail recursion 
removal in Exercise 9.17. 

e. Explain why the technique in Exercise 9.18 would no longer be 
needed. 

9.20. An array contains N numbers, and you want to determine whether 
two of the numbers sum to a given number K. For instance, if the 
input is 8 ,4 ,  1 , 6  and K is 10, the answer is yes (4 and 6). A number 
may be used twice. Do the following. 
a. Give an O(N2) algorithm to solve this problem. 
b. Give an O(N log N) algorithm to solve this problem. (Hint: Sort 

the items first. After doing so, you can solve the problem in lin- 
ear time.) 

c. Code both solutions and compare the running times of your 
algorithms. 

9.21. Repeat Exercise 9.20 for four numbers. Try to design an O(N210g N) 
algorithm. (Hint: Compute all possible sums of two elements, sort 
these possible sums, and then proceed as in Exercise 9.20.) 

9.22. Repeat Exercise 9.20 for three numbers. Try to design an O(N2) 
algorj thm. 

9.23. In Exercise 6.28 you were asked to find the single integral solution 
~ o A % B ~ + C ~ + D ~ + E ~ = F ~ W ~ ~ ~ O < A I B I C I D I E I F I N ,  
where N is 75. Use the ideas explored in Exercise 9.21 to obtain a solu- 
tion relatively quickly by sorting all possible values of A5 + B5 + C5 
and F5 - (D5 + E5), and then seeing if a number in the first group is 
equal to a number in the second group. In terms of N, how much 
space and time does the algorithm require? 

Programming Projects 

9.24. Compare the performance of Shellsort with various increment 
sequences, as follows. Obtain an average time for some input size N 
by generating several random sequences of N items. Use the same 
input for all increment sequences. In a separate test obtain the aver- 
age number of comparable comparisons and Comparable copies. 
Set the number of repeated trials to be large but doable within I hour 
of CPU time. The increment sequences are 



-- - - - - -- 

Sorting Algorithms 

a. Shell's original sequence (repeatedly divide by 2). 
b. Shell's origiilal sequence, adding 1 if the result is nonzero but 

even. 
c. Gonnet's sequence shown in the text, with repeated division by 

2.2. 
d. Hibbard's increments: 1 ,  3 ,7 ,  . . . , 2k - 1 .  
e. Knuth's increments: 1,4 ,  13, . . . , ( 3 k  - 1 ) / 2 .  
f. Sedgewick's increments: 1, 5, 19, 41, 109, . . . , with each term 

having the form of either 9 . 4k  - 9 . 2k + 1 or 4k - 3 . 2k + 1. 

9.25. Code both Shellsort and quicksort and compare their running times. 
Use the best implementations in the text and run them on 
a. integers. 
b. real numbers of type double.  

c. strings. 

9.26. Many implementations of quicksort use primitive arrays and pointer 
hopping (see Appendix D) as an alternative to the normal array- 
indexing mechanism. In Section D.3.4 we argue that pointer hop- 
ping is not always a good idea. Implement quicksort by using both 
techniques on primitive arrays (you will need to pass the number of 
items to sort to the driver routine) and determine which is faster on 
average for sorting 100,000 integers. 

9.27. Write a template indirect sort, using the techniques in Section 9.9.2. 
In the template, use a function object to pass the underlying sorting 
algorithm to your indirect sort function. 

9.28. Write a function that removes all duplicates in an array A of N items. 
Return the number of items that remain in A. Your function must run 
in O(N log N)  average time (use quicksort as a preprocessing step). 

9.29. Exercise 9.2 addressed stable sorting. Write a function template that 
performs a stable quicksort. To do so, create an array of records; 
each record is to contain a data item and its initial position in the 
array (you can use a p a i r  object; see Section 5.5). Then sort the 
array; if two records have identical data items, use the initial posi- 
tion to break the tie. After the array of records has been sorted, rear- 
range the original array. 

9.30. Redo Exercise 9.29 by using pointers to avoid excessive data 
movement. 
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9.31. Write a simple sorting utility, s o r t .  The s o r t  command takes a file 
name as a parameter, and the file contains one item per line. By 
default the lines are considered strings and are sorted by normal lex- 
icographic order (in a case-sensitive manner). Add two options: The 
-c option means that the sort should be case insensitive; the -n 
option means that the lines are to be considered integers for the pur- 
pose of the son. 

References 

The classic reference for sorting algorithms is [5]. Another reference is [3]. 
The Shellsort algorithm first appeared in [8]. An empirical study of its run- 
ning time was done in [9]. Quicksort was discovered by Hoare [4]; that 
paper also includes the quickselect algorithm and details many important 
implementation issues. A thorough study of the quicksort algorithm, includ- 
ing analysis for the median-of-three variant, appears in [7]. A detailed C 
implementation that includes additional improvements is presented in [I]. 
Exercise 9.19 is based on [6]. The R(N log N) lower bound for comparison- 
based sorting is taken from [2]. The presentation of Shellsort and indirect 
sorting is adapted from [ 101. 

1. J. L. Bentley and M. D. McElroy, "Engineering a Sort Function," 
Software-Practice and Experience 23 (1993), 1249-1 265. 

2. L. R. Ford and S. M. Johnson, "A Tournament Problem," American 
Mathematics Monthly 66 ( 19591, 387-389. 

3. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and 
Data Structures, 2d ed., Addison-Wesley, Reading, Mass., 1991. 

4. C. A. R. Hoare, "Quicksort," Computer Journal 5 (1962), 10-15. 
5. D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting 

and Searching, 2d. ed., Addison-Wesley, Reading, Mass., 1998. 
6. D. R. Musser, "Introspective Sorting and Selection Algorithms," 

Software-Practice and Experience 27 (1997), 983-993. 
7. R. Sedgewick, Quicksort, Garland, New York, 1978. (Originally 

presented as the author's Ph.D. dissertation, Stanford University, 
1975.) 

8. D. L. Shell, "A High-Speed Sorting Procedure," Communications 
of the ACM 2 7 (1959), 30-32. 

9. M. A. Weiss, "Empirical Results on the Running Time of Shellsort," 
Computer Journal 34 (199 l) ,  88-9 1. 

10. M. A. Weiss, EfJicient C Programming: A Practical Approach, 
Prentice-Hall, Englewood Cliffs, N.J., 1995. 





Chapter 10 

Randomization 

Many situations in computing require the use of random numbers. For 
example, modern cryptography, simulation systems, and, surprisingly, even 
searching and sorting algorithms rely on random number generators. Yet 
good random number generators are difficult to implement. In this chapter 
we discuss the generation and use of random numbers. 

In this chapter, we show: 

how random numbers are generated, 
how random permutations are generated, and 
how random numbers allow the design of efficient algorithms, using a 
general technique known as the randomized algorithm. 

10.1 Why Do We Need Random Numbers? 

Random numbers are used in many applications. In this section we discuss a 
few of the most common ones. 

One important application of random numbers is in program testing. Random numbers 

Suppose, for example, that we want to test whether a sorting algorithm writ- have many important 
uses, including ten in Chapter 9 actually works. Of course, we could provide some small 
cryptography, 

amount of input, but if we want to test the algorithms for the large data sets simulation, and 

they were designed for, we need lots of input. Providing sorted data as input Programtesting. 

tests one case, but more convincing tests would be preferable. For instance, 
we would want to test the program by perhaps running 5000 sorts for inputs 
of size 1000. To do so requires writing a routine to generate the test data, 
which in turn requires the use of random numbers. 

Once we have the random number inputs, how do we know whether the A permutation of I ,  2, 

sorting algorithm works? One test is to determine whether the sort arranged -.., a Sequence Of 

N integers that 
the array in nondecreasing order. Clearly, we can run this test in a linear-time includes each of ,, 2. 
sequential scan. But how do we know that the items present after the sort are ..., N exactly once. 



the same as those prior to the sort? One method is to fix the items in an 
arrangement of 1. 2, .... N. In other words, we start with a random pernzuta- 
tion of the first N integers. A permutation of 1 ,  2, .... N is a sequence of N 
integers that includes each of 1 ,  2, ..., N exactly once. Then, no matter what 
permutation we start with, the result of the sort will be the sequence 1. 2, ..., 
N, which is also easily tested. 

In addition to helping us generate test data to verify program correct- 
ness, random numbers are useful in comparing the performance of various 
algorithms. The reason is that, once again, they can be used to provide a 
large number of inputs. 

Another use of random numbers is in simulations. If we want to know 
the average time required for a service system (e.g., teller service in a bank) 
to process a sequence of requests, we can model the system on a computer. 
In this computer simulation we generate the request sequence with random 
numbers. 

Still another use of random numbers is in the general technique called 
the randonzi:ed algoritlznz, wherein a random number is used to determine 
the next step performed in the algorithm. The most common type of random- 
ized algorithm involves selecting from among several possible alternatives 
that are more or less indistinguishable. For instance, in a commercial com- 
puter chess program, the computer generally chooses its first move ran- 
domly rather than playing deterministically (i.e., rather than always playing 
the same move). In this chapter we look at several problems that can be 
solved more efficiently by using a randomized algorithm. 

10.2 Random Number Generators 
Pseudorandom How are random numbers generated? True randomness is impossible to 
wmbers have many achieve on a computer. because any numbers obtained depend on the algo- 
properties of random 
numbers. Good rithm used to generate them and thus cannot possibly be random. Generally, 
random-number it is sufficient to produce pseudorandom numbers, or numbers that appear 
generators are hard to be random because they satisfy many of the properties of random num- 
to find. bers. Producing them is much easier said than done. 

Suppose that we need to simulate a coin flip. One way to do  so is to 
examine the system clock. Presumably, the system clock maintains the num- 
ber of seconds as part of the current time. If this number is even, we can 
return 0 (for heads): if it is odd, we can return 1 (for tails). The problem is 
that this strategy does not work well if we need a sequence of random num- 
bers. One second is a long time, and the clock might not change at all while 
the program is running, generating all 0s or all Is, which is hardly a random 
sequence. Even if the time were recorded in units of microseconds (or 
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smaller) and the program were running by itself, the sequence of numbers 
generated would be far from random because the time between calls to the 
generator would be essentially identical on every program invocation. 

What we really need is a sequence of pseudorandom numbers, that is, a In a uniform 

sequence with the same properties as a random sequence. Suppose that we distribution~all 
numbers in the want random numbers between 0 and 999, uniformly distributed. In a uni- specified range are 

form distribution, all numbers in the specified range are equally likely to equally likely to 

occur. Other distributions are also widely used. The class interface shown in occur. 

Figure 10.1 supports several distributions. Most distributions can be derived 

1 / /  Random class interface: random number generation. 
2 / /  
3 / /  CONSTRUCTION: with (a) no initializer or (b) an integer 
4 / /  that specifies the initial state of the generator. 
5 / /  ******k***********pUBLIC OPERATIONS********************** 

6 / /  Return a random number according to some distribution 
7 / /  int randomInt ( ) - ->  Uniform, 1 to 2*31-1 
8 / / double randomRea1 ( ) - - >  Uniform 0.. 1 
9 / /  int randomInt( int low, int high ) - - >  Uniform low..high 

10 / /  int poisson( double expectedval ) - - >  Poisson 
11 / /  double negExp( double expectedval ) - - >  Neg exponential 
12 
13 class Random 
14 { 

15 public: 
16 Random( int initVal = 1 ) : state( initVal ) { ) 

17 
18 / /  Uniform distributions 
19 int randomInt ( ) ; / /  1 to 2"31-1 (Coded below) 
20 double randomRea1 ( ) ; / /  >0.0 to <1.0 (Online code) 
2 1 int randomInt ( int low, int high ) ; / /  (Online code) 
22 
23 / /  Nonuniform distributions 
24 int poisson( double expectedval ) ;  / /  (Section 10.3) 
25 double negExp( double expectedval ) ;  / /  (Section 10.3) 
26 
27 private: 
28 int state; 
29 
30 static const int A; 
31 static const int M; 
32 static const int Q; 
33 static const int R; 
34 } ;  

Figure 10.1 Interface for the R a n d o m  class that generates random numbers. 
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from the uniform distribution so that is the one we consider first. The follow- 
ing properties hold if the sequence 0, .... 999 is a true uniform distribution. 

The first number is equally likely to be 0, 1 ,  2, ..., 099. 
The ith number is equally likely to be 0, I, 2, ..., 999. 
The expected average of all the generated numbers is 499.5. 

Typically a random These properties are not particularly restrictive. For instance, we could 
sequence,ratherthan generate the fir\t number by examining a system clock that was accurate to 
one random number, 
is required. 1 ms and then using the number of milliseconds. We could generate subse- 

quent numbers by adding 1 to the preceding number, and so on. Clearly, 
after 1000 numbers are generated, all the previous properties hold. However, 
stronger properties do not. 

Two stronger properties that would hold for uniformly distributed ran- 
dom numbers are the following. 

The sum of two consecutive random numbers is equally likely to be 
even or odd. 
If 1000 numbers are randomly generated. some will be duplicated. 
(Roughly 368 numbers will never appear.) 

Our numbers do not satisfy these properties. Consecutive numbers always 
sum to an odd number, and our sequence is duplicate-free. We say then that 
our simple pseudorandom number generator has failed two statistical tests. 
All pseudorandom number generators fail some statistical tests, but the good 
generators fail fewer tests than the bad ones. (See Exercise 10.14 for a com- 
mon statistical test.) 

The linear In this section we describe the simplest uniform generator that passes a 
congruential reasonable number of statistical tests. By no means is it the best generator. 
generator is a good 
algorithm for However, it is suitable for use in applications wherein a good approximation to 
generating uniform a random sequence is acceptable. The method used is the linear congruential 
distributions. generator, which was first described in 195 1 .  The linear congruential gener- 

ator is a good algorithm for generating uniform distributions. It is a random- 
number generator in which numbers X ,  , X, - , . . . are generated that satisfy 

Equation 10.1 states that we can get the ( i  + I )th number by multiplying the 
ith number by some constant A and computing the remainder when the result 
is divided b) iW. In Ct-+ we would have 
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We specify the constants A and M shortly. Note that all generated numbers 
will be smaller than M. Some value X,, must be given to start the sequence. 
This initial value of the random number generator is the seed. If X,, = 0 ,  
the sequence is not random because it generates all zeros. But if A and M are 
carefully chosen, any other seed satisfying 1 I X,, < M is equally valid. If M 
is prime, Xi is never 0. For example, if M = 11, A = 7 and the seed 
X ,  = 1,  the numbers generated are 

Generating a number a second time results in a repeating sequence. In our 
case the sequence repeats after M - 1 = 10 numbers. The length of a 
sequence until a number is repeated is called the period of the sequence. 
The period obtained with this choice of A is clearly as good as possible 
because all nonzero numbers smaller than M are generated. (We must have a 
repeated number generated on the 1 lth iteration.) 

If M is prime, several choices of A give a full period of M - 1, and this 
type of random number generator is called a full-period linear congruen- 
tial generator. Some choices of A do not give a full period. For instance, if 
A = 5 and X,, = 1, the sequence has a short period of 5: 

If we choose M to be a 3 1 -bit prime, the period should be significantly 
large for most applications. The 3 I-bit prime M = z3'  - 1 = 2,147,483,647 
is a common choice. For this prime, A = 48,271 is one of the many values 
that gives a full-period linear congruential generator. Its use has been well 
studied and is recommended by experts in the field. As we show later in the 
chapter, tinkering with random number generators usually means breaking, 
so you are well advised to stick with this formula until told otherwise. 

Implementing this routine seems simple enough. If state represents 
the last value computed by the randomInt routine, the new value of state 
should be given by 

state = ( A * state ) % M; / I '  Incorrect 

Unfortunately, on most machines this computation is done on 32-bit inte- 
gers, and the multiplication is certain to overflow. Although C++ allows 
overflow-and we could argue that the result is part of the randomness- 
overflow is unacceptable because we would no longer have the guarantee of 
a full period. However, a slight reordering allows the computation to proceed 
without overflow. Specifically, if Q and R are the quotient and remainder of 
M/A, then we can rewrite Equation 10.1 as 

The seed is the initial 
value of the random 
number generator. 

The length of a 
sequence until a 
number is repeated is 
called its period. A 
random number 
generator with period 
P generates the same 
sequence of numbers 
after P iterations. 

A full-period linear 
congruential 
generator has period 
M- 1. 

Because of overflow, 
we must rearrange 
calculations. 
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Xi + , = A(Xi(mod Q)) - RLX,IQ] + M6(X,), (10.4) 

and the following conditions hold (see Exercise 10.5). 

The first term can always be evaluated without overflow. 

The second term can be evaluated without overflow if R < Q. 
6(Xi) evaluates to 0 if the result of the subtraction of the first two terms is 
positive; it evaluates to 1 if the result of the subtraction is negative. 

Stick with these For the values of M and A, we have Q = 44,488 and R = 3399. Consequently, 
numbers until you are R < Q and a direct application now gives an implementation of the Random 
told otherwise. class for generating random numbers. The resulting code is shown in Figure 

10.2. The class works so long as int is capable of holding M. The routine 
randomInt returns the value of the state. 

Two additional member functions are provided in the interface given in 
Figure 10.1. One generates a random real number in the open interval from 0 
to 1, and the other generates a random integer in a specified closed interval 
(see the online code). 

Finally, the Random class provides a generator for nonuniform random 
numbers when they are required. In Section 10.3 we provide the implemen- 
tation for the member functions poisson and negExp. 

You might be tempted to assume that all machines have a random num- 
ber generator at least as good as the one shown in Figure 10.2. Sadly, that is 
not the case. Many libraries have generators based on the function 

1 / /  Implementation of some of the Random class. 
2 const int Random::A = 48271; 
3 const int Random::M = 2147483647; 
4 const int Random::Q = M / A; 
5 const int Random::R = M % A; 
6 
7 / /  randInt returns the next random number and updates state. 
8 int Random::randomInt( ) 
9 { 

10 int tmpState = A * ( state % Q ) - R * ( state / Q ) ;  

11 if ( tmpState >= 0 ) 

12 state = tmpState; 
13 else 
14 state = tmpstate + M; 
15 
16 return state; 
17 1 

Figure 10.2 Random number generator that works if INT-MAX is at least 23' - 1. 
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X i + ,  = (AXi + C) mod 2B, 

where B is chosen to match the number of bits in the machine's integer, and 
C is odd. These libraries, like the randomInt routine in Figure 10.2, also 
return the newly computed state directly, instead of (for example) a value 
between 0 and I .  Unfortunately, these generators always produce values of 
Xi  that alternate between even and odd--obviously an undesirable property. 
Indeed, the lower k bits cycle with a period of 2k (at best). Many other ran- 
dom number generators have much smaller cycles than the one we provided. 
These generators are not suitable for any application requiring long 
sequences of random numbers. 

Finally, it may seem that we can get a better random number generator 
by adding a constant to the equation. For instance, we might conclude that 

- (48,271Xi + 1 ) mod (231 - 1) X i + ]  - 

would somehow be more random. However, when we use this equation, we 
see that 

(48,271 . 179,424,105 + 1 )  mod (231 - 1) = 179,424,105. 

Hence, if the seed is 179,424,105, the generator gets stuck in a cycle of 
period 1, illustrating how fragile these generators are. 

10.3 Nonuniform Random Numbers 
Not all applications require uniformly distributed random numbers. For The Poisson 
example, grades in a large course are generally not uniformly distributed. distribution models 

the number of Instead, they satisfy the classic bell curve distribution, more formally known occurren,es of, rare 
as the normal or Gaussian distribution. A uniform random number generator event and is used in 
can be used to generate random numbers that satisfy other distributions. simulations. 

An important nonuniform distribution that occurs in simulations is the 
Poisson distribution, which models the number of occurrences of a rare 
event. Occurrences that happen under the following circumstances satisfy 
the Poisson distribution. 

1. The probability of one occurrence in a small region is proportional 
to the size of the region. 

2. The probability of two occurrences in a small region is proportional 
to the square of the size of the region and is usually small enough to 
be ignored. 



3. The event of getting k  occurrences in one region and the event of 
getting j occurrences in another region disjoint from the first region 
are independent. (Technically this statement means that you can get 
the probability of both events simultaneously occursing by multi- 
plying the probability of individual events.) 

4. The mean number of occurrences in a region of some size is known. 

If the mean number of occurrences is the constant a ,  the probability of 
exactly k occurrences is a k e - ~ / k !  . 

The Poisson distribution generally applies to events that have a low 
probability of a single occurrence. For example, consider the event of pur- 
chasing a winning lottery ticket in Florida, where the odds of winning the 
jackpot are 14,000,000 to 1.  Presumably the picked numbers are more or 
less random and independent. If a person buys 100 tickets, the odds of win- 
ning become 140,000 to 1 (the odds improve by a factor of loo), so condi- 
tion I holds. The odds of the person holding two winning tickets are 
negligible, so condition 2 holds. If someone else buys 10 tickets, that per- 
son's odds of winning are 1,400,000 to 1, and these odds are independent of 
the first person's, so condition 3 holds. Suppose that 28,000,000 tickets are 
sold. The mean number of winning tickets in this situation is 2 (the number 
we need for condition 4). The actual number of winning tickets is a random 
variable with an expected value of 2, and it satisfies the Poisson distribution. 
Thus the probability that exactly k winning tickets have been sold is 
2 k e - 2 / k ! ,  which gives the distribution shown in Figure 10.3. If the expected 
number of winners is the constant a, the probability of k winning tickets is 
a k e - " / k ! .  

To generate a random unsigned integer according to a Poisson distribu- 
tion that has an expected value of a ,  we can adopt the following strategy 
(whose mathematical justification is beyond the scope of this book): Repeat- 
edly generate uniformly distributed random numbers in the interval (0, 1) 
until their product is smaller than (or equal to) e-". The code shown in Fig- 
ure 10.4 does just that, using a mathematically equivalent technique that is 
less sensitive to overflow. The code adds the logarithm of the uniform ran- 
dom numbers until their sum is smaller than (or equal to) -a .  

Figure 10.3 Distribution of lottery winners if the expected number of winners is 2. 

Winning Tickets 

Frequency 

0 

0.135 

1 

0.271 

2 

0.271 

3 

0.180 

4 

0.090 

5 

0.036 



1 #include <math.h> 
2 
3 / /  Return random number according to Poisson distribution 
4 int Random::poisson( double expectedvalue ) 

5 { 
6 double limit = -expectedValue; 
7 double sum = log( randomReal( ) ) ;  

8 int count; 
9 

10 for( count = 0; sum > limit; count++ ) 

11 sum += log( randomReal( ) ) ;  

12 return count; 
13 1 

Figure 10.4 Generation of a random number according to the Poisson distribution 

1 / /  Return random number according to neg-exp distribution 
2 double Random::negExp( double expectedvalue ) 

3 I 
4 return - expectedvalue * log( randomReal( ) ) ;  

5 1 

Figure 10.5 Generation of a random number according to the negative exponential 
distribution. 

Another important nonuniform distribution is the negative exponential The negative 

distribution, shown in Figure 10.5, which has the same mean and variance 
distribution has the 

and is used to model the time between occurrences of random events. We a,d 
use it in the simulation application shown in Section 14.2. variance. It is used to 

Many other distributions are commonly used. Our main purpose here is model the time 
between occurrences to show that most can be generated from the uniform distribution. Consult of random events. 

any book on probability and statistics to find out more about these functions. 

10.4 Generating a Random Permutation 

Consider the problem of simulating a card game. The deck consists of 
52 distinct cards, and in the course of a deal, we must generate cards from 
the deck, without duplicates. In effect, we need to shuffle the cards and then 
iterate through the deck. We want the shuffle to be fair. That is, each of the 
52! possible orderings of the deck should be equally likely as a result of the 
shuffle. 



1 / /  Generate a random permutatior. of l..r.. 
2 void permuze( vectoriint> & a ) 

3 { 
4 Random r( (int) time( 0 ) ) ;  : State set by time 
5 const int n = a. size ( ) ; 

6 
7 for( int i = 0; i < n; i++ ) 

8 a[ i ] = i + 1; 
9 

10 for( int j = 1; j < n; jt+ ) 

11 swap( a[ j 1 ,  a[ r.randomInt( 0, j i I ) ;  

12 1 

Figure 10.6 A permutation routine. 

A random This type of problem involves the use of a random permutation. In 
permutation can be general. the problem is to generate a random permutation of 1 ,  2, ..., N, with 
generated in linear 
time, using one all permutations being equally likely. The randomness of the random permu- 
random number per tation is, of course, limited by the randomness of the pseudorandom number 
item. generator. Thus all permutations being equally likely is contingent on all the 

random numbers being uniformly distributed and independent. We demon- 
strate that random permutations can be generated in linear time, using one 
random number per item. 

A routine, permute. to generate a random permutation is shown in 
Figure 10.6. In the permute routine the first loop initializes the permutation 
with 1, 2, ..., N. The second loop performs a random shuffling. In each itera- 
tion of the loop. we swap a [ j 1 with some array element in positions 0 to j (it 
is possible to perform no swap). 

The correctness of Clearly, permute generates shuffled permutations. But are all permuta- 
permute i s  tions equally likely? The answer is both yes and no. The answer. based on 

the algorithm. is yes. There are N! possible permutations, and the number of 
different possible outcomes of the h'- 1 calls to randomInt at line 11 is 
also N! The reason is that the first call produces 0 or 1 .  so it has two out- 
comes. The second call produces 0. 1, or 2, so i t  has three outcomes. The last 
call has N outcomes. The total number of outcomes is the product of all 
these possibilities because each random number is independent of the previ- 
ous random numbers. All we have to show is that each sequence of random 
numbers corresponds to only one permutation. We can do so by working 
backward (see Exercise 10.6). 

However. the answer is actually no-all permutations are not equally 
likely. There are only 2" - 2 initial states for the random number generator, 
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so there can be only ?31 - 2 different permutations. This condition could be 
a problem in some situations. For instance, a program that generates 
1,000,000 permutations (perhaps by splitting the work among many com- 
puters) to measure the performance of a sorting algorithm almost certainly 
generates some permutations twice-unfortunately. Better random number 
generators are needed to help the practice meet the theory. 

Note that rewriting the call to swap with the call to r . randomInt 
( 0, n- 1 ) does not work, even for three elements. There are 3! = 6 possible 
permutations, and the number of different sequences that could be computed 
by the three calls to randomInt is 33  = 27. Because 6 does not divide 27 
exactly, some permutations must be more likely than others. 

10.5 Randomized Algorithms 

Suppose that you are a professor who is giving weekly programming assign- 
ments. You want to ensure that the students are doing their own programs or, 
at the very least, that they understand the code that they are submitting. One 
solution is to give a quiz on the day each program is due. However, these 
quizzes take time from class and doing so might be practical for only roughly 
half the programs. Your problem is to decide when to give the quizzes. 

Of course, if you announce the quizzes in advance, that could be inter- 
preted as an implicit license to cheat for the 50 percent of the programs that 
will not get a quiz. You could adopt the unannounced strategy of giving quiz- 
zes on alternate programs. but students would quickly figure out that strat- 
egy. Another possibility is to give quizzes on what seem like the important 
programs, but that would likely lead to similar quiz patterns from semester 
to semester. Student grapevines being what they are, this strategy would 
probably be worthless after one semester. 

One method that seems to eliminate these problems is to flip a coin. You 
make a quiz for every program (making quizzes is not nearly as time con- 
suming as grading them), and at the start of class, you flip a coin to decide 
whether the quiz is to be given. This way neither you nor your students can 
know before class whether a quiz will be given. Also, the patterns do not 
repeat from semester to semester. The students can expect a quiz to occur 
with 50 percent probability, regardless of previous quiz patterns. The disad- 
vantage of this strategy is that you could end up giving no quizzes during an 
entire semester. Assuming a large number of programming assignments, 
however, this is not likely to happen unless the coin is suspect. Each semes- 
ter the expected number of quizzes is half the number of programs, and with 
high probability, the number of quizzes will not deviate much from this. 



A randomized 
algorithm uses 
random numbers 
rather than 
deterministic 
decisions to control 
branching. 

The running time of a 
randomized algorithm 
depends on the 
random numbers that 
occur, as well as the 
particular input. 

Randomized 
quickselect is 
statistically 
guaranteed to work 
in linear time. 

This example illustrates the randomized algorithm, which uses random 
numbers, rather than deterministic decisions, to control branching. The run- 
ning time of the algorithm depends not only on the particular input, but also 
on the random numbers that occur. 

The worst-case running time of a randomized algorithm is almost 
always the same as the worst-case running time of the nonrandomized algo- 
rithm. The important difference is that a good randomized algorithm has no 
bad inputs-only bad random numbers (relative to the particular input). This 
difference may seem only philosophical, but actually it is quite important, as 
we show in the following example. 

Let us say that your boss asks you to write a program to determine the 
median of a group of 1,000,000 numbers. You are to submit the program and 
then run it on an input that the boss will choose. If the correct answer is 
given within a few seconds of computing time (which would be expected for 
a linear algorithm), your boss will be very happy, and you will get a bonus. 
But if your program does not work or takes too much time, your boss will 
fire you for incompetence. Your boss already thinks that you are overpaid 
and is hoping to be able to take the second option. What should you do? 

The quickselect algorithm described in Section 9.7 might seem like the 
way to go. Although the algorithm (see Figure 9.21) is very fast on average, 
recall that it has quadratic worst-case time if the pivot is continually poor. By 
using median-of-three partitioning, we have guaranteed that this worst case 
will not occur for common inputs, such as those that have been sorted or that 
contain a lot of duplicates. However, there is still a quadratic worst case, and 
as Exercise 9.8 showed, the boss will read your program, realize how you 
are choosing the pivot and be able to construct the worst case. Consequently, 
you will be fired. 

By using random numbers, you can statistically guarantee the safety of 
your job. You begin the quickselect algorithm by randomly shuffling the 
input by using lines 10 and 1 1 in Figure 10.6.' As a result, your boss essen- 
tially loses control of specifying the input sequence. When you run the 
quickselect algorithm, it will now be working on random input, so you 
expect it to take linear time. Can it still take quadratic time? The answer is 
yes. For any original input, the shuffling may get you to the worst case for 
quickselect, and thus the result would be a quadratic-time sort. If you are 
unfortunate enough to have this happen, you lose your job. However, this 
event is statistically impossible. For a million items, the chance of using 
even twice as much time as the average would indicate is so small that you 

1.  You need to be sure that the random number generator is sufficiently random and that its 
output cannot be predicted by the boss. 
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can essentially ignore it. The computer is much more likely to break. Your 
job is secure. 

Instead of using a shuffling technique, you can achieve the same result 
by choosing the pivot randomly instead of deterministically. Take a random 
item in the array and swap it with the item in position low.  Take another ran- 
dom item and swap it with the item in position high. Take a third random 
item and swap it with the item in the middle position. Then continue as 
usual. As before, degenerate partitions are always possible, but they now 
happen as a result of bad random numbers, not bad inputs. 

Let us look at the differences between randomized and nonrandomized 
algorithms. So far we have concentrated on nonrandomized algorithms. 
When calculating their average running times, we assume that all inputs are 
equally likely. This assumption does not hold, however, because nearly 
sorted input, for instance, occurs much more often than is statistically 
expected. This situation can cause problems for some algorithms, such as 
quicksort. But when we use a randomized algorithm, the particular input is 
no longer important. The random numbers are important, and we get an 
expected running time, in which we average over all possible random num- 
bers for any particular input. Using quickselect with random pivots (or a 
shuffle preprocessing step) gives an O(N) expected time algorithm. That is, 
for any input, including already sorted input, the running time is expected to 
be O(N), based on the statistics of random numbers. On the one hand an 
expected time bound is somewhat stronger than an average-case time bound 
because the assumptions used to generate it are weaker (random numbers 
versus random input) but it is weaker than the corresponding worst-case 
time bound. On the other hand, in many instances solutions that have good 
worst-case bounds frequently have extra overhead built in to assure that the 
worst case does not occur. The O(N) worst-case algorithm for selection, for 
example, is a marvelous theoretical result but is not practical. 

Randomized algorithms come in two basic forms. The first, as already 
shown, always gives a correct answer but it could take a long time, depend- 
ing on the luck of the random numbers. The second type is what we examine 
in the remainder of this chapter. Some randomized algorithms work in a 
fixed amount of time but randomly make mistakes (presumably with low 
probability) called false positives or false negatives. This technique is com- 
monly accepted in medicine. False positives and false negatives for most 
tests are actually fairly common, and some tests have surprisingly high error 
rates. Furthermore, for some tests the errors depend on the individual, not 
random numbers, so repeating the test is certain to produce another false 
result. In randomized algorithms we can rerun the test on the same input 
using different random numbers. If we run a randomized algorithm 10 times 
and get 10 positives-and if a single false positive is an unlikely occurrence 

Some randomized 
algorithms work in a 
fixed amount of time 
but randomly make 
mistakes(presumab1y 
with low probability). 
These mistakes are 
false positives or 
false negatives. 



(say, 1 chance in 100)-the probability of 10 consecutive false positives ( 1  
chance in 1001° or one hundred billion billion) is essentially zero. 

1 0.6 Randomized Primality Testing 

Recall that in Section 8.4 we described some numerical algorithms and 
showed how they could be used to implement the RSA encryption scheme. 
An important step in the RSA algorithm is to produce two prime numbers p 
and q.  We can find a prime number by repeatedly trying successive odd 
numbers until we find one that is prime. Thus the issue boils down to deter- 
mining whether a given number is prime. 

Trial division is the The simplest algorithm for primality testing is trial division. In this 
simplest algorithm algorithm, an odd number greater than 3 is prime if it is not divisible by any 
primality testing. It is 
fast for small (32-bit) other odd number smaller than or equal to f i. A direct implementation of 
numbers but cannot this strategy is shown in Figure 10.7. 
be used for larger Trial division is reasonably fast for small (32-bit) numbers, but it is 
numbers. unusable for larger numbers because it could require the testing of roughly 

f i / 2  divisors, thus using ~ ( f i )  t imc2 What we need is a test whose 
running time is of the same order of magnitude as the power routine in Sec- 
tion 8.4.2. A well-known theorem, called Fermat's Little Theorem, looks 
promising. We state and provide a proof of it in Theorem 10.2 for complete- 
ness, but the proof is not needed for an understanding of the primality- 
testing algorithm. 

Theorem 10.1 Fermat's Little Theorem: If P is prime and 0 < A < P , then 

AP- 1 -- 1 (mod P). 

Proof Consider any 1 I k < P. Clearly, Ak -- O(mod P) is impossible because P 
is prime and is greater than A and k. Now consider any 1 I i < j < P. 
A i - AJ(mod P)  would imply A (  J - i )  = O(mod P), which is impossible 

by the previous argument because 1 I j - i < P. Thus the sequence 

A, 2A, . . ., ( P  - 1 )A, when considered (mod P), is a permutation of 

1 ,  2, . . ., P - 1. The product of both sequences (mod P) must he equivalent 

(and non-zero), yielding the equivalence A P  1(P - I ) !  -- (P  - l)!  (mod P) 
from which the theorem follows. 

2. Though f i  may seem small. if N is a 100-digit number, then ,,,h is still a 50-digit num- 
ber: tests that take 0(,,,h) time are thus out of the question for the HugeInt type. 
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1 / /  Return true if odd integer n is prime. 
2 template <class HugeInt> 
3 boo1 isprime( const HugeInt & n ) 

4 { 

5 for( HugeInt i = 3; i * i <= n; i += 2 ) 

6 if( n %  i == 0 ) 

7 return false; / /  Not prime 
8 
9 return true ; / / Prime 

10 1 

Figure 10.7 Primality testing by trial division. 

If the converse of Fermat's Little Theorem were true, then we would Fermat's Little 

have a primality-testing algorithm that would be computationally equivalent Theoremis necessary 
but not sufficient to to modular exponentiation (i.e., O(1og N)). Unfortunately, the converse is not establish 

true. For example, 2'30 - l(mod 341), but 341 is composite ( I1 x 31 ). 
To do the primality test, we need an additional theorem, Theorem 10.2. 

If P is prime and X2 = 1 (mod P), then X = 2 1 (mod P). Theorem 10.2 

Because X2 - 1 = O(mod P) implies (X - 1)(X + 1) = O(mod P) and P is Proof 
prime, then X - 1 or X + 1 = O(mod P). 

A combination of Theorems 10.1 and 10.2 is useful. Let A be any integer 
between 2 and N - 2. If we compute A N -  '(mod N) and the result is not 1, we 
know that N cannot be prime; otherwise, we would contradict Fermat's Lit- 
tle Theorem. As a result, A  is a value that proves that N is not prime. We say 
then that A is a witness to N's compositeness. Every composite number N 
has some witnesses A, but for some numbers, called the Carmichael num- 
bers, these witnesses are hard to find. We need to be sure that we have a high 
probability of finding a witness no matter what the choice of N is. To 
improve our chances, we use Theorem 10.2. 

In the course of computing Ai, we compute ( A L ' / * ~ ) ~ .  So  we let 
X = A L ~ / ~ J  and Y = X2. Note that X and Yare computed automatically as 
part of the power routine. If Y is 1 and if X is not f 1 (mod N), then by Theo- 
rem 10.2, N cannot be prime. We can return 0 for the value of A i  when that 
condition is detected, and N will appear to have failed the test of primality 
implied by Fermat's Little Theorem. 



If the algorithm 
declares a number 
not to be prime, it is 
not prime with 100 
percent certainty. 
Each random attempt 
has at most a 25 
percent false positive 
rate. 

Some composites will 
pass the test and be 
declared prime. A 
composite is very 
unlikely to pass 
20 consecutive 
independent random 
tests. 

The routine witness, shown in Figure 10.8. computes A1(mod P), aug- 
mented to return 0 if a violation of Theorem 10.2 is detected. If witness does 
not return 1,  then A is a witness to the fact that N cannot be prime. Lines 14 
through 16 make a recursive call and produce X. We then compute X ' ,  as is 
normal for the power computation. We check whether Theorem 10.2 is vio- 
lated, returning 0 if it is. Otherwise, we complete the power computation. 

The only remaining issue is correctness. If our algorithm declares that N 
is composite, then N must be composite. If N is composite, are all 
2 I A I N - 2 witnesses? The answer, unfortunately, is no. That is, some 
choices of A will trick our algorithm into declaring that N is prime. In fact, if 
we choose A randomly, we have at most a 114 chance of failing to detect a 
composite number and thus making an error. Note that this outcome is true 
for any N. If it were obtained only by averaging over all N, we would not 
have a good enough routine. Analogous to medical tests, our algorithm gen- 
erates false positives at most 25 percent of the time for any N. 

These odds do not seem very good because a 25 percent error rate gener- 
ally is considered very high. However, if we independently use 20 values of 
A, the chances that none of them will witness a composite number is 1/420, 
which is about one in a million million. Those odds are much more reason- 
able and can be made even better by using more trials. The routine 
isprime, which is also shown in Figure 10.8, uses five tr iak3 

Summary 

In this chapter we described how random numbers are generated and used. 
The linear congruential generator is a good choice for simple applications, 
so long as care is taken in choosing the parameters A and M. Using a uni- 
form random number generator, we can derive random numbers for other 
distributions, such as the Poisson and negative exponential distributions. 

Random numbers have many uses, including the empirical study of 
algorithms, the simulation of real-life systems, and the design of algorithms 
that probabilistically avoid the worst case. We use random numbers in other 
parts of this text, notably in Section 14.2 and Exercise 21.20. 

This concludes Part 11 of the book. In Part 111 we look at some simple 
applications, beginning with a discussion of games in Chapter I 1 that illus- 
trates three important problem-solving techniques. 

3. These bounds are typically pessimistic. and the analysis involves number theory that is 
much too involved for this text. 



1 / /  Probabilistic primality testing routine. 
2 / /  If witness does not return 1, n is definitely composite. 
3 / /  Do this by computing aAi ( mod n ) and looking for 
4 / /  non-trivial square roots of 1 along the way. 
5 / /  HugeInt: must have copy constructor, operator=, 
6 / /  conversion from int, * ,  / ,  - ,  4, ==, and ! = .  
7 template <class HugeInt> 
8 HugeInt witness( const HugeInt & a, const HugeInt & i, 
9 const HugeInt & n ) 

10 { 
11 if( i == 0 ) 

12 return 1; 
13 
14 HugeInt x  = witness( a, i / 2, n ) ;  

15 if( x == 0 ) / /  if n is recursively composite, stop 
16 return 0; 
17 
18 / /  n is not prime if we find a nontrivial square root of 1 
19 HugeInt y = ( x * x ) 4 n; 
20 if( y == 1 & & x  ! =  1 & & x  ! =  n - 1 ) 

2 1 return 0; 
22 
23 if( i % 2 == 1 ) 

24 y = ( a * y ) % n ;  
25 
26 return y; 
27 1 
28 
29 / /  Make NUM-TRIALS calls to witness to check if n is prime. 
30 template <class HugeInt> 
31 boo1 isprime( const HugeInt & n ) 

32 I 
33 const int NUM-TRIALS = 5; 
34 
35 for( int counter = 0; counter i NUM-TRIALS; counter++ ) 

36 if ( witness( randomHugeInt( 2, n - 2 ) ,  n - 1, n ) ! =  1 ) 

37 return false; 
38 
39 re turn true ; 
40 1 

Figure 10.8 A randomized test for primality. 
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Objects of the Game . 
false positives /false negatives Mistakes randomly made (presumably 

with low probability) by some randomized algorithms that work in a 
fixed amount of time. (p. 377) 

Fermat's Little Theorem States that if P is prime and 0 < A < P, then 
A P  I = I (mod P) .  I t  is necessary but not sufficient to establish pri- 
mality. (p. 379) 

full-period linear congruential generator A random number genera- 
tor that has period M - l .  (p. 369) 

linear congruential generator A good algorithm for generating uni- 
form distributions. (p. 368) 

negative exponential distribution A form of distribution used to 
model the time between occurrences of random events. Its mean 
equals its variance. (p. 373) 

period The length of the sequence until a number is repeated. A ran- 
dom number generator with period P generates the same random 
sequence of random numbers after P iterations. (p. 369) 

permutation A permutation of 1 ,  2, . . ., N is a sequence of N integers 
that includes each of I ,  2, . . ., N exactly once. (p. 365) 

Poisson distribution A distribution that models the number of occur- 
rences of a rare event. (p. 37 1 ) 

pseudorandom numbers Numbers that have many properties of ran- 
dom numbers. Good generators of pseudorandom numbers are hard 
to find. (p. 366) 

random permutation A random arrangement of N items. Can be gen- 
erated in linear time using one random number per item. (p. 374) 

randomized algorithm An algorithm that uses random numbers 
rather than deterministic decisions to control branching. (p. 376) 

seed The initial value of a random number generator. (p. 369) 
trial division The simplest algorithm for primality testing. It is fast for 

small (32-bit) numbers but cannot be used for larger numbers. 
(p. 378) 

uniform distribution A distribution in which all numbers in the spec- 
ified range are equally likely to occur. (p. 367) 

witness to compositeness A value of A that proves that a number is 
not prime, using Fermat's Little Theorem. (p. 379) 



Exercises 

Common Errors 

1. Using an initial seed of zero gives bad random numbers. 
2. Inexperienced users occasionally reinitialize the seed prior to gen- 

erating a random permutation. This action guarantees that the same 
permutation will be repeatedly produced, which is probably not 
intended. 

3. Many random number generators are notoriously bad; for serious 
applications in which long sequences of random numbers are 
required, the linear congruential generator is also unsatisfactory. 

4. The low-order bits of linear congruential generators are known to 
be somewhat nonrandom, so avoid using them. For example, 
randomInt ( ) %2 is often a bad way to flip a coin. 

5. When random numbers are being generated in some interval, a 
common error is to be slightly off at the boundaries and either allow 
some number outside the interval to be generated or not allow the 
smallest number to be generated with fair probability. 

6. Many random permutation generators do not generate all permuta- 
tions with equal likelihood. As discussed in the text, our algorithm 
is limited by the random number generator. 

7. Tinkering with a random number generator is likely to weaken its 
statistical properties. 

On the Internet 

Most of the code in this chapter is available. 

Rand0m.h Contains the class interface for Random, as shown in 
Figure 10.1 . 

Random.cpp Contains the Random class implementation. 
Permute.cpp Contains the permute routine shown in Figure 10.6. 
Math.cpp Contains the primality-testing routine shown in Fig- 

ure 10.8 and the math routines presented in Section 8.4. 

Exercises 

In Short 

10.1. For the random-number generator described in the text, determine 
the first 10 values of state, assuming that it is initialized with a 
value of 1 .  
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10.2. Show the result of running the primality-testing algorithm for N = 561 
with values of A ranging from 2 to 5. 

10.3. If 42,000,000 Florida lottery tickets are sold, what is the expected 
number of winners? What are the odds that there will be no win- 
ners? One winner? 

10.4. Why can't zero be used as a seed for the linear congruential 
generator? 

In Theory 

10.5. Prove that Equation 10.4 is equivalent to Equation 10.1 and that the 
resulting program in Figure 10.2 is correct. 

10.6. Complete the proof that each permutation obtained in Figure 10.6 is 
equally likely. 

10.7. Suppose that you have a biased coin that comes up heads with proba- 
bility p and tails with probability 1 - p. Show how to design an algo- 
rithm that uses the coin to generate a 0 or 1 with equal probability. 

In Practice 

10.8. Write a program that calls randomInt (that returns an i n t  in the 
specified interval) 100,000 times to generate numbers between 1 and 
1000. Does it meet the stronger statistical tests given in Section 10.2? 

10.9. Run the Poisson generator shown in Figure 10.4 1,000,000 times, 
using an expected value of 2. Does the distribution agree with Fig- 
ure 10.3? 

10.10. Consider a two-candidate election in which the winner received a 
fraction p of the vote. If the votes are counted sequentially, what is 
the probability that the winner was ahead (or tied) at every stage of 
the election? This problem is the so-called ballot problem. Write a 
program that verifies the answer, p. (Hint: Simulate an election of 
10,000 voters. Generate random arrays of 10,000p ones and 
10,000(1 - p) zeros. Then verify in a sequential scan that the differ- 
ence between 1 s and 0s is never negative. 
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Programming Projects 

10.11. An alternative permutation algorithm is to fill the array a from 
a [ 0 1 to a [n- 11 , as follows. To fill a [ i I .  generate random num- 
bers until you get one that has not been used previously. Use an 
array of Booleans to perform that test. Give an analysis of the 
expected running time (this is tricky) and then write a program that 
compares this running time with both your analysis and the routine 
shown in Figure 10.6. 

10.12. Suppose that you want to generate a random permutation of N dis- 
tinct items drawn from the range 1 ,  2, ..., M. (The case M = N, of 
course, has already been discussed). Floyd's algorithm does the fol- 
lowing. First, it recursively generates a permutation of N - 1 distinct 
items drawn from the range M - 1. It then generates a random inte- 
ger in the range I to M. If the random integer is not already in the 
permutation we add it; otherwise, we add M. 
a. Prove that this algorithm does not add duplicates. 
b. Prove that each permutation is equally likely. 
c. Give a recursive implementation of the algorithm. 
d. Give an iterative implementation of the algorithm. 

10.13. A random walk in two dimensions is the following game played on 
the x-J coordinate system. Starting at the origin, (0, 0). each itera- 
tion consists of a random step either 1 unit left, up, right, or down. 
The walk terminates when the walker returns to the origin. The 
probability of this happening is 1 in two dimensions but less than I 
in three dimensions.) Write a program that performs 100 indepen- 
dent random walks and computes the average number of steps taken 
in each direction. 

10.14. A simple and effective statistical test is the chi-square test. Suppose 
that you generate N positive numbers that can assume one of M val- 
ues (for example, we could generate numbers between 1 and M, 
inclusive). The number of occurrences of each number is a random 
variable with mean p = N / M .  For the test to work, you should 
have y > 10. Let f ,  be the number of times i is generated. Then 
compute the chi-square value V = C ( f i  - ~ ) ~ / u .  The result 
should be close to M .  If the result is consistently more than 2& 
away from M (i.e., more than once in 10 tries), then the generator 
has failed the test. Implement the chi-square test and run it on your 
implementation of the randomInt member function (with low = 1 
and h igh  = 100). 
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Chapter I I 

Fun and Games 

In this chapter we introduce three important algorithmic techniques and 
show how to use them by implementing programs to solve two recreational 
problems. The first problem is the word search pu,-zle and involves finding 
words in a two-dimensional grid of characters. The second is optimal play in 
the game of Tic-Tac-Toe. 

In this chapter, we show: 

how to use the binary search algorithm to incorporate information 
from unsuccessful searches and to solve large instances of a word 
search problem in under 1 sec, 
how to use the alpha-beta pruning algorithm to speed up the recur- 
sive algorithm presented in Section 8.7, and 
how to use maps to increase the speed of the tic-tac-toe algorithm. 

11 .I Word Search Puzzles 
The input to the word search puzzle problem is a two-dimensional array of The word search 

characters and a list of words, and the object is to find the words in the grid. pUzz'e requires 
searching for words 

These words may be horizontal, vertical, or diagonal in any direction (for a in a two-dimensional 
total of eight directions). As an example, the grid shown in Figure I 1 .1 con- grid of letters. Words 
tains the words t h i s ,  two, f a t ,  and t h a t .  The word t h i s  begins at row 0, may be oriented in 

one of eight column 0-the point (0, 0)-and extends to (0, 3); two goes from (0, 0) to directions. 
(2, 0); f a t  goes from (3, 0) to (1, 2); and t h a t  goes from (3, 3) to (0, 0). 
(Additional, mostly shorter, words are not listed here.) 
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Fun and Games 

The brute-force 
algorithm searches 
each word in the word 
list. 

Figure 11.1 A sample word search grid. 

11.1.1 Theory 

We can use any of several naive algorithms to solve the word search puzzle 
problem. The most direct is the following brute-force approach: 

for each word W in the word list 
for each row R 

for each column C 
for each direction D 

check if W exists at row R, column C 
in direction D 

An alternative Because there are eight directions, this algorithm requires eight word/row/ 
searches column (8 WRC) checks. Typical puzzles published in magazines feature 40 

from each point in the 
arid in each direction or so words and a 16 x 16 grid, which involves roughly 80,000 checks. That 
for each word length number is certainly easy to compute on any modern machine. Suppose, how- 
and looks for the ever, that we consider the variation in which only the puzzle board is given 
word in the word list. and the word list is essentially an English dictionary. In this case, the num- 

ber of words might be 40,000 instead of 40, resulting in 80,000,000 checks. 
Doubling the grid would require 320,000,000 checks, which is no longer a 
trivial calculation. We want an algorithm that can solve a puzzle of this size 
in a fraction of a second (not counting disk L/O time) so we must consider an 
alternative algorithm: 

for each row R 
for each column C 

for each direction D 
for each word length L 

check if L chars starting at row R column C 
in direction D form a word 

The lookups can be This algorithm rearranges the loop to avoid searching for every word in the 
done by a binary word list. If we assume that words are limited to 20 characters, the number 
search. 

of checks used by the algorithm is 160 RC. For a 32 x 32 puzzle, this number 
is roughly 160,000 checks. The problem, of course, is that we must now 
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decide whether a word is in the word list. If we use a linear search, we lose. 
If we use a good data structure, we can expect an efficient search. If the word 
list is sorted, which is to be expected for an online dictionary, we can use a 
binary search (shown in Figure 6.12) and perform each check in roughly 
log W string comparisons. For 40,000 words. doing so involves perhaps 
16 comparisons per check, for a total of less than 3,000,000 string compari- 
sons. This number of comparisons can certainly be done in a few seconds 
and is a factor of 100 better than the previous algorithm. 

We can further improve the algorithm based on the following observa- If a character 

tion. Suppose that we are searching in some direction and see the character Sequence is not a 
prefix of any word in 

sequence qx. An English dictionary will not contain any words beginning the dictionary, we can 
with qx.  SO is it worth continuing the innermost loop (over all word terminatesearching 

lengths)? The answer obviously is no: If we detect a character sequence that in that direction. 

is not a prefix of any word in the dictionary, we can immediately look in 
another direction. This algorithm is given by the following pseudocode: 

for each row R 
for each column C 

for each direction D 
for each word lengch L 

cneck if L chars star~ing a r  row R column 
C in direction D form a word 

i f  they do not form a prefix, 
break; / /  the innermost loop 

The only remaining algorithmic detail is the implementation of the Prefix testing can 

prefix test: Assuming that the current character sequence is not in the word be done by 
binary search. 

list, how can we decide whether it is a prefix of some word in the word list? 
The answer turns out to be simple. Recall from Section 7.4.2 that the 
lower-bound STL function returns the position of the smallest element 
that is at least as large as the target. The caller can easily check on whether a 
match is found. If a match is not found, verifying that the character sequence 
is a prefix of some word in the list also is easy, because, if it is, it must be a 
prefix of the word in the returned position (in Exercise 1 I .3 you are asked to 
prove this outcome). 

1 1.1.2 C++ Implementation 

Our C++ implementation follows the algorithm description almost verbatim. Our implementation 

We design a Puzzle class to store the grid and word list. as well as the cor- the algorithm 
description. 

responding input streams. The class interface is shown in Figure 1 1.2. The 
public part of the class consists of a constructor and a single member func- 
tion, solvepuzzl e. The private part includes the data members and sup- 
porting routines. 
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1 / /  Puzzle class interface: solve word search puzzle. 
2 / /  
3 / /  CONSTRUCTION: with no initializer. 
4 / /  ******************pUBLIC OPERATIGNS********************** 

5 / /  int Solvepuzzle( i - ->  Print all words found in the 
6 / /  puzzle; return number of matches 
7 
8 #include <£stream> 
9 #include <string> 

10 #include <vector> 
11 #include <algorithm> 
12 #include "matrix.hN 
13 using namespace std; 
14 
15 class Puzzle 
16 ( 

17 public: 
18 Puzzle( ) ; 

19 int solvePuzzle( ) const; 
20 
21 private: 
22 matrix<char> theBoard; 
23 vector<string> thewords; 
24 ifstream puzzlestream; 
25 ifstream wordstream; 
26 
27 void openFile( const string & message, ifstream & in~ile ) ;  

28 void readpuzzle( ) ;  

29 void readwords( ) ;  

30 int solveDirection( int baseRow, int baseCol, 
31 int rowDelta, int colDelta ) const; 
32 1 ;  

Figure 11.2 The Puz z 1 e class interface. 

The constructor Figure 1 1.3 gives the code for the constructor. It merely opens and reads 
Opens and reads the the two files corresponding to the grid and the word list. The supporting rou- 
data files. We skimp 
on error checks for tine openFile, shown in Figure I I .4, repeatedly prompts for a file until an 
brevity. open is successful. The readwords routine, shown in Figure I 1.5, reads the 

word list. The code includes an error check to ensure that the word list has 
been sorted. Similarly, readpuzzle, shown in Figure 11.6, reads the grid 
and is also concerned with error handling. We need to be sure that we can 
handle missing puzzles, and we want to warn the user if the grid is not rect- 
angular. Note that we use the matrix push-back method to add a new 
row. However, push-back needs a vector (not a string), which we get 
by calling tovec. 



Word Search Puzzles 

1 / /  Constructor for Puzzle class. 
2 / /  prompts for and reads puzzle and dictionary files. 
3 Puzzle::Puzzle( ) : theBoard( 0, 0 1 
4 { 

5 openFile( "Enter puzzle file", puzzlestream 1 ;  
6 openFile( "Enter dictionary name", wordstream 1 ;  
7 readpuzzle ( ) ; 

8 readwords ( ) ; 

9 

Figure 11.3 The Puzzle class constructor. 

1 / /  Print a prompt and open a file. 
2 / /  Retry until open is successful. 
3 void Puzzle::openFile( const string & mesg, ifstream & inFile 1 
4 { 

5 string name; 
6 
7 do 
8 i 
9 inFile.clear( ) ;  

10 cout << mesg << " :  " ;  

11 cin >> name; 
12 inFile.open( name.c-str( ) 1 ;  
13 j while ( ! inFile 1 ; 
14 1 

Figure 11.4 The openFi 1 e routine for opening either the grid or word list file. 

1 / /  Routine to read the dictionary. 
2 / /  Error message is printed if dictionary is not sorted. 
3 void Puzzle: : readwords ( 1 
4 i 
5 string thisword; 
6 int numEntries = 0; 
7 
8 for( ; wordstream >> thisword; numEntries++ ) 

9 i 
10 theWords.push-back thisword ) ;  

11 
12 if( numEntries ! =  0 && thewords[ numEntries ] < 

13 thewords[ numEntries - 1 I 1 
14 i 
15 cerr << "Dictionary is not sorted . . .  skipping << endl; 
16 continue; 
17 
18 1 
19 1 

Figure 11.5 The readwords routine for reading the word list. 



1 / /  Return a vector<char> containing characters in str. 
2 vector<char> toVec( const string & str ) 

3 { 

4 vector<char> v( str.length( ) ) ;  

5 
6 for( int i = 0; i < str.length( ) ;  it+ ) 

7 V[ i ] = str[ i 1 ;  
8 return v; 
9 1 

10 
11 / /  Routine to read the grid. 
12 / /  Checks to ensure that the grid is rectangular. 
13 void Puzzle: :readpuzzle( ) 
14 { 

15 string oneline; 
16 
17 if( getline( puzzlestream, oneLine ).eof( ) ) 

18 return ; 
19 
20 int columns = oneLine.length( ) ;  

21 theBoard.push-back( toVec( oneLine ) ) ;  

22 
23 while( ! ( getline( puzzlestream, oneLine ) ) .eof( ) ) 

24 { 

25 if ( oneline. length ( ) ! = columns ) 

26 cerr << "Puzzle is not rectangular" << endl; 
27 else 
28 theBoard.push-back( toVec( oneLine ) ) ;  

29 1 
30 1 

Figure 11.6 The readpuz z le routine for reading the grid. 

We use two loops to The solvepuzzle routine shown in Figure 11.7 nests the row, column, 
iterate Over the eight and direction loops and then calls the private routine solveDirection for 
directions. each possibility. The return value is the number of matches found. We give a 

direction by indicating a column direction and then a row direction. For 
instance, south is indicated by cd=O and rd=l and northeast by cd=l and 
rd=-1; cd can range from -1 to 1 and rd from -1 to 1, except that both 
cannot be 0 simultaneously. All that remains to be done is to provide 
solveDirection, which is coded in Figure 11.8. The solveDirection 
routine constructs a string by starting at the base row and column and 
extending in the appropriate direction. 

We also assume that one-letter matches are not allowed (because any one- 
letter match would be reported eight times). At lines 23 through 26, we iterate 



The Game of Tic-Tac-Toe 

1 / /  Routine to solve the word search puzzle. 
2 / /  Performs checks in all eight directions. 
3 int Puzzle::solvePuzzle( ) const 
4 I 
5 int matches = 0; 
6 
7 for( int r = 0; r < theBoard.numrows( ) ;  r++ ) 

8 for( int c = 0; c < theBoard.numcols( ) ;  c++ ) 

9 for( int rd = -1; rd < =  1; rd++ ) 

10 for( int cd = -1; cd <= 1; cd++ ) 

11 if( rd ! =  0 ) I  cd ! =  0 ) 

12 matches += solveDirection( r, c, rd, cd ) ;  

13 
14 return matches; 
15 } 

Figure 11.7 The solvepuz z le routine for searching in all directions from all 
starting points. 

and extend the string while ensuring that we do not go past the grid's bound- 
ary. At line 28 we tack on the next character, using operator+=, and perform 
a binary search at line 31. If we do not have a prefix, we can stop looking 
and return. Otherwise, we know that we have to continue after checking at 
line 36 for a possible exact match. Line 44 returns the number of matches 
found when the call to solvenirec t ion can find no more words. A simple 
main program is shown in Figure 1 1.9. 

11.2 The Game of Tic-Tac-Toe 
Recall from Section 8.7 a simple algorithm, known as the minimax strat- The minimaxstrategy 

egy, allows the computer to select an optimal move in a game of Tic-Tac- examines lots Of 

positions. We can get 
Toe. This recursive strategy involves the following decisions. by with less without 

losing any 

1 .  A terminal position can immediately be evaluated, so if the posi- information. 

tion is terminal return its value. 
2. Otherwise, if it is the computer's turn to move, return the maximum 

value of all positions reachable by making one move. The reachable 
values are calculated recursively. 

3. Otherwise, it is the human player's turn to move. Return the mini- 
mum value of all positions reachable by making one move. The 
reachable values are calculated recursively. 
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1 / /  Return true if prefix is a prefix of word. 
2 boo1 isprefix( const string & prefix, const string & word ) 

3 { 

4 if( word.length( ) < prefix.length( ) ) 

5 return false; 
6 
7 for( int i = 0 ;  i < prefix.length( ) ;  i++ ) 

8 if( prefix[ i I !=word[ i I ) 

9 return false; 
10 
11 return true; 
12 I 
13 
14 / /  Search the grid from a starting point and direction. 
15 int Puzzle::solveDirection( int baseRow, int baseCol, 
16 int rowDelta, int colDelta ) const 
17 i 
18 string word; 
19 int numatches = 0; 
20 
21 word = theBoard[ baseRow I[ baseCol I ;  
22 
23 for( int i = baseRow + rowDelta, j = baseCol + colDelta; 
24 i >= 0 && j >=  0 && i < theBoard.numrows( ) 

25 && j < theBoard.numcols( ) ;  

26 i += rowDelta, j += colDelta ) 

27 { 

28 word + =  theBoard[ i I [ j I ; 
29 
30 vector~string~::const~iterator itr; 
31 itr = lower-bound( theWords.begin( ) ,  theWords.end( ) ,  word ) ;  

32 
33 if( itr == theWords.end( ) I / !isprefix( word, *itr ) ) 

34 break; 
35 
36 if ( *itr == word ) 

37 ( 

38 numatches++; 
39 cout << "Found " << word << " at " << 
40 baseRow << " " << baseCol << " to " << 
41 i << " " << j << endl; 
42 1 
43 ) 

44 return numMatches; 
45 1 

Figure 11.8 Implementation of a single search. 
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1 / /  Simple main routine for word search puzzle problem. 
2 int main( ) 

3 { 
4 Puzzle p; 
5 cout << "Found " << p.solvePuzzle( ) << " matches" << endl; 
6 return 0 ;  

7 1 

Figure 11.9 A simple main routine for the word search puzzle problem. 

11.2.1 Alpha-Beta Pruning 

Although the minimax strategy gives an optimal tic-tac-toe move, it per- A refutation is a 

forms a lot of searching. Specifically, to choose the first move, it makes Countermove that 
proves that a roughly a half-million recursive calls. One reason for this large number of proposed move is not 

calls is that the algorithm does more searching than necessary. Suppose that an improvement over 
the computer is considering five moves: C,, C,, C3, C4, and C,. Suppose also 
that the recursive evaluation of C, reveals that C,  forces a draw. Now C2 is 
evaluated. At this stage, we have a position from which it would be the 
human player's turn to move. Suppose that in response to C,, the human 
player can consider H2a, H2b, H2c, and HZd. Further, suppose that an evalua- 
tion of H2, shows a forced draw. Automatically, C2 is at best a draw and pos- 
sibly even a loss for the computer (because the human player is assumed to 
play optimally). Because we need to improve on C,,  we do not have to eval- 
uate any of H,,, H,,, and Hz,. We say that H2n is a refutation, meaning that it 
proves that C, is not a better move than what has already been seen. Thus we 
return that C, is a draw and keep C ,  as the best move seen so far, as shown in 
Figure 1 1.10. In general, then, a refutation is a countermove that proves that a 
proposed move is not an improvement over moves previously considered. 

We do not need to evaluate each node completely; for some nodes, a refu- 

moves previously 
considered. If we find 
a refutation, we do 
not have to examine 
any more moves and 
the recursive call can 
return. 

Alpha-beta pruning Is 

tation suffices and some loops can terminate early. Specifically, when the to reduce the 
number of positions human player evaluates a position, such as C2, a refutation, if found, is just as evaluated in a 

good as the absolute best move. The same logic applies to the computer. At minimax search. 
anv ~ o i n t  in the search. a l ~ h a  is the value that the human  laver has to refute. Alpha is thevaluethat , x , 1 .' 

the human player has and beta is the value that the computer has to refute. When a search is done 
to refute, and beta is 

on the human player's side, any move less than alpha is equivalent to alpha; the value that the 
when a search is done on the computer side, any move greater than beta is computer has to 

equivalent to beta. This strategy of reducing the number of positions evalu- 
ated in a minimax search is commonly called alpha-beta pruning. 

As Figure 1 I .  1 1 shows, alpha-beta pruning requires only a few changes 
to chooseMove. Both alpha and beta are passed as additional parameters. 
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Figure 11.10 Alpha-beta pruning: After H,, is evaluated, C,, which is the minimum 
of the Hz's, is at best a draw. Consequently, it cannot be an 
improvement over C,. We therefore do not need to evaluate H,,, Hz,, 
and Hz, and can proceed directly to C,. 

Initially, chooseMove is started with alpha and beta representing 
HUMAN-WIN and COMPUTER-WIN, respectively. Lines 17 and 21 reflect a 
change in the initialization of value. The move evaluation is only slightly 
more complex than originally shown in Figure 8.26. The recursive call at 
line 29 includes the parameters alpha and beta, which are adjusted at line 
36 or 38 if needed. The only other change is at line 4 1,  which provides for an 
immediate return when a refutation is found. 

~lpha-beta pruning To take full advantage of alpha-beta pruning, game programs usually try 
best when it to apply heuristics to place the best moves early in the search. This approach 

finds refutations 
early. results in even more pruning than we would expect from a random search of 

positions. In practice. alpha-beta pruning limits the searching to 0(,h) 
nodes, where N is the number of nodes that would be examined without 
alpha-beta pruning, resulting in a huge savings. The tic-tac-toe example is 
not ideal because there are so many identical values. Even so. the initial 
search is reduced to roughly 18,000 positions. 

11.2.2 Transposition Tables 

A transposition table Another commonly employed practice is to use a table to keep track of all 
stores previously positions that have been evaluated. For instance, in the course of searching for 
evaluated positions. the first move, the program will examine the positions shown in Figure 11.12. 

If the values of the positions are saved, the second occurrence of a position 
need not be recomputed; it essentially becomes a terminal position. The data 
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1 / /  Routine to compute optimal tic-tac-toe move. 
2 int TicTacToe::chooseMove~ Side s, int & bestRow, 
3 int & bestcolumn, 
4 int alpha, int beta ) 

5 i 
6 Side opp; / /  The other side 
7 int reply; / /  Value of opponent's reply 
8 int dc; / /  Placeholder 
9 int simpleEva1; / /  Result of an immediate evaluation 

10 int value; 
11 
12 if( ( simpleEva1 = positionvalue( ) ) ! =  UNCLEAR ) 

13 return simpleEva1; 
14 
15 if( s == COMPUTER ) 

16 ( 

17 opp = HUMAN; value = alpha; 
18 1 
19 else 
20 ( 

2 1 opp = COMPUTER; value = beta; 
22 1 
23 
24 for( int row = 0; row < 3; row++ ) 

25 for( int column = 0 ;  column < 3; column++ 1 
26 if! squareIsEmpty! row, column ) ) 

27 ( 

28 place! row, column, s ) ;  

29 reply = chooseMove( opp, dc, dc, alpha, beta 1 ;  
30 place( row, column, EMPTY ) ;  

31 
32 if( s == COMPUTER && reply > value / I 
33 s == HUMAN && reply < value ) 

34 i 
35 if( s == COMPUTER ) 

36 alpha = value = reply; 
37 else 
38 beta = value = reply; 
39 
40 bestRow = row; bestcolumn = column; 
4 1 if! alpha >= beta ) 

42 return value; / /  Refutation 
43 1 
44 1 
45 
46 return value; 
47 1 

Figure 11.1 1 The chooseMove routine for computing an optimal tic-tac-toe move, using 
alpha-beta pruning. 
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Figure 11 -12 Two searches that arrive at identical positions. 

A map is used to 
implement the 
transposition table. 
Often the underlying 
implementation is a 
hash table. 

We do not store 
positions that are at 
the bottom of the 
recursion in the 
transposition table. 

structure that records and stores previously evaluated positions is called a 
transposition table; it  is implemented as a map of positions to va1ues.l 

We do not need an ordered map, but as the STI, m a p  is ordered-and is 
the only one available to us-we use it. More commonly, an unordered 
map, with a data structure called a hash table as the underlying implemen- 
tation, is used to implement the transposition table. We discuss hash tables 
in Chapter 20. 

To implement the transposition table we first define a P o s i t i o n  class, as 
shown in Figure 11.1 3, which we use to store each position. Values in the 
board will be HUMAN, C O M P U T E R ,  or EMPTY (defined shortly in the 
T i c T a c T o e  class, as shown in Figure 1 1.15). The m a p  requires that we define 
a default constructor, copy semantics, and o p e r a t o r <  that can be used by the 
m a p  to provide some total order. Note that o p e r a t o r <  is not directly used by 
our code. However, if o p e r a t o r <  is not meaningful (i.e., it does not provide a 
total order), the map searches can loop indefinitely. We also provide a con- 
structor that can be initialized with a matrix representing the board. 

Except for o p e r a t o r < ,  is shown in Figure 11.14, these routines are 
trivial (copy semantics are automatic!). The constructors and copy operators 
are not particularly efficient because they require copying a matrix. For 
larger game problems that is a serious consideration. A related issue con- 
cerns whether including all positions in the transposition table is worth- 

I .  We discussed this generic technique. which avoids repeated recursive calls by storing val- 
ues in a table, in a different context in Section 8.6. This technique is also known as 
mernoi:iag. The tern1 tmrtsposition tcihle is slightly misleading because fancier iniplemen- 
tations of this technique recognize and avoid searching not only exactly identical posi- 
tions, but also symmetrically identical postions. 
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1 #include "matrix.hN 
2 
3 / /  A minimal Position class for use with transposition table 
4 struct Position 
5 { 

6 matrix<int> board; 
7 Position( ) : board( 3, 3 ) i 1 
8 Position( const matrix<int> & theBoard ) 

9 : board( theBoard ) { } 

10 boo1 operator< ( const Position & rhs ) const; 
11 } ;  

Figure 11.1 3 The Pos i t ion class interface. 

1 / /  Comparison operator, guarantees a total order. 
2 bool Position::operator<( const Position & rhs ) const 
3 ( 

4 for( int i = 0; i < 3; it+ ) 

5 for( int j = 0; j < 3; j++ ) 

6 if( board[ i ] [ j ] ! =  rhs.board[ i I [ j 1 ) 

7 return board [ i ] [ j ] < rhs .board [ i I [ j I ; 
8 return false; 
9 1 

Figure 11.14 The Posit ion class operator< used for the transposition table 
in the tic-tac-toe algorithm. 

while. The overhead of maintaining the table suggests that positions near the 
bottom of the recursion ought not be saved because 

there are so many, and 
the point of alpha-beta pruning and transposition tables is to reduce 
search times by avoiding recursive calls early in the game; saving a 
recursive call very deep in the search does not greatly reduce the number 
of positions examined because that recursive call would examine only a 
few positions anyway. 

We show how this technique applies to the game of Tic-Tac-Toe when we The chooseMove 

implement the transposition table. The changes needed in the TicTacToe method has 
additional 

class interface are shown in Figure 1 1.15. The additions are the new data mem- parameters, all of 
ber at line 6 and the new declaration for chooseMove at lines 16 through 18. which have defaults. 

We now pass alpha and beta (as in alpha-beta pruning) and also the 
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typedef map<~osition,int,less<Position~ > MapType; 

class TicTacToe 

private : 
MapType transpositions; 

public: 
enum Side { HUMAN, COMPUTER, EMPTY ) ;  

enum PositionVal { HUMAN-WIN, DRAW, UNCLEAR, COMPUTER-WIN ) ;  

TicTacToe( ) : board( 3, 3 ) 

{ clearBoard( ) ;  ) :'/ Constructor 

/ /  Find optimal move 
int chooseMovei Side d, int & bestRow, int & bestcolumn, 

int alpha = HUMAN-WIN, 
int beta = COMPUTER-WIN, int depth = 0 ) ;  

Figure 11.15 Changes to the TicTacToe class to incorporate transposition table and 
alpha-beta pruning. 

depth of the recursion, which is zero by default. Presumably, the initial call 
to chooseMove involves only the first three parameters, and the last three 
parameters are assigned their default values. 

Figures 11.16 and 11.17 show the new chooseMove. At line 12, we 
declare a POS it ion object, thisPosi tion. When the time comes it will 
be placed in the transposition table. This technique is not the most efficient 
because it involves making a copy of the board, but it is simple. Moreover, a 
profiler shows that it is not excessively time consuming. The constant object 
TABLE-DEPTH tells us how deep in the search to allow positions to be 
placed in the transposition table. By experimenting we found that depth 5 
was optimal. Allowing positions at depth 6 to be saved hurt because the 
extra cost of maintaining the larger transposition table was not offset by the 
fewer examined positions. 

The code has a few Lines 18 to 25 are new. If we are in the first call to chooseMove, we ini- 
little tricks but tialize the transposition table. Otherwise, if we are at an appropriate depth, 
nothing major. 

we determine whether the current position has been evaluated; if it has, we 
return its value. The code has two tricks. First, we can transpose only at 
depth 3 or higher, as Figure 11.12 suggests. The only other difference is 
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1 / /  Routine to compute optimal tic-tac-toe move. 
2 typedef MapType::const-iterator MapItr; 
3 const int TABLE-DEPTH = 5; / /  Max depth placed in map 
4 
5 int TicTacToe::chooseMove( Side s, int & bestRow, int & bestcolumn, 
6 int alpha, int beta, int depth ) 

7 ( 
8 Side opp; / /  The other side 
9 int reply; / /  Value of opponent's reply 
10 int dc; / /  Placeholder 
11 int simpleEva1; / /  Result of an immediate evaluation 
12 Position thisposition = board; 
13 int value; 
14 
15 if( ( simpleEva1 = positionvalue( ) ) ! =  UNCLEAR ) 

16 return simpleEva1; 
17 
18 if( depth == 0 ) 

19 transpositions = MapType( ) ;  / /  makeEmpty 
20 else if( depth >= 3 && depth <= TABLE-DEPTH ) 

21 { 

22 MapItr itr = transpositions.find( thisposition ) ;  

23 if( itr ! =  transpositions.end( ) ) 

24 return (*itr).second; 
25 1 
26 
27 if ( s == COMPUTER ) 

28 I 
29 opp = H W ;  value = alpha; 
30 1 
31 else 
32 { 

33 opp = COMPUTER; value = beta; 
34 1 

Figure 11 .I 6 The tic-tac-toe algorithm with alpha-beta pruning and transposition 
table (part 1) 

from lines 54 onward. We consolidate the two return statements originally in 
the code into one by using a goto. (If you are one of those who cannot stand 
any use of a goto, it is easy enough to unconsolidate.) Immediately before 
the return, we store the value of the position in the transposition table. 

The use of the transposition table in this tic-tac-toe algorithm removes 
about half the positions from consideration, with only a slight cost for the 
transposition table operations. The program's speed is almost doubled. 
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35 for( int row = 0; row < 3; row++ ) 

36 for( int column = 0; column < 3 ;  column++ ) 

37 if( squareIsEmpty( row, column ) ) 

38 I 
39 place ( row, column, s ) ; 

40 reply = chooseMove( opp, dc, dc, 
41 alpha, beta, depth + 1 ) ;  

42 place ( row, column, EMPTY ) ; 

43 
44 if( s == COMPUTER && reply > value I I 
45 s == HUMAN && reply < value ) 

46 { 

47 if ( s == COMPUTER ) 

48 alpha = value = reply; 
49 else 
50 beta = value = reply; 
51 
52 bestRow = row; bestColumn = column; 
53 if( alpha >= beta ) 

54 goto Done; / /  Refutation 
55 1 
56 1 
57 Done : 
58 if( depth <= TABLE-DEPTH ) 

59 transpositions[ thisposition I = value; 
60 return value; 
61 1 

Figure 11.17 The tic-tac-toe algorithm with alpha-beta pruning and transposition table 
(part 2). 

11.2.3 Computer Chess 

Terminal positions In a complex game such as Chess or Go, it is infeasible to search all the way 
besearched in to the terminal nodes: Some estimates claim that there are r o u ~ h l v  10'00 " 2 

computer chess. In 
the best programs, legal chess positions, and all the tricks in the world will not bring it down to 
considerable a manageable level. In this case, we have to stop the search after a certain 
knowledge is built depth of recursion is reached. The nodes at which the recursion is stopped 

A A 

into the evaluation 
function. 

become terminal nodes. These terminal nodes are evaluated with a function 
that estimates the value of the position. For instance, in a chess program, the 
evaluation function measures such variables as the relative amount and 
strength of pieces and other positional factors. 

The best computer Computers are especially adept at playing moves involving deep combi- 
chess programs play nations that result in exchanges of material. The reason is that the strength of 
at grandmaster level. 

pieces is easily evaluated. However, extending the search depth merely one 
level requires an increase in processing speed by a factor of about 6 (because 
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the number of positions increases by about a factor of 36). Each extra level 
of search greatly enhances the ability of the program, up to a certain limit 
(which appears to have been reached by the best programs). On the other 
hand, computers generally are not as good at playing quiet positional games 
in which more subtle evaluations and knowledge of the game is required. 
However, this shortcoming is apparent only when the computer is playing 
very strong opposition. The mass-marketed computer chess programs are 
better than all but a small fraction of today's players. 

In 1997, the computer program Deep Blue, using an enormous amount 
of computational power (evaluating as many as 200 million moves per sec- 
ond) was able to defeat the reigning world chess champion in a six-game 
match. Its evaluation function, although top secret, is known to contain a 
large number of factors, was aided by several chess grandmasters, and was 
the result of years of experimentation. Writing the top computer chess pro- 
gram is certainly not a trivial task. 

Summary 

In this chapter we introduced an application of binary search and some algo- 
rithmic techniques that are commonly used in solving word search puzzles 
and in game-playing programs such as Chess, Checkers, and Othello. The 
top programs for these games are all world class. The game of Go, however, 
appears too complex for computer searching. 

Objects of the Game 

alpha-beta pruning A technique used to reduce the number of posi- 
tions that are evaluated in a minimax search. Alpha is the value that 
the human player has to refute, and beta is the value that the com- 
puter has to refute. (p. 397) 

minimax strategy A recursive strategy that allows the computer to 
select an optimal move in a game of Tic-Tac-Toe. (p. 395) 

refutation A countermove that proves that a proposed move is not an 
improvement over moves previously considered. If we find a refuta- 
tion, we do not have to examine any more moves and the recursive 
call can return. (p. 397) 

terminal position A position in a game that can be evaluated immedi- 
ately. (p. 395) 

transposition table A map that stores previously evaluated positions. 
(p. 398) 
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word search puzzle A program that requires searching for words in a 
two-dimensional grid of letters. Words may be oriented in one of 
eight directions. (p. 389) 

@ Common Errors 

1. When using a transposition table, you should limit the number of 
stored positions to avoid running out of memory. 

2. Verifying your assumptions is important. For instance, in the word 
search puzzle, be sure that the dictionary is sorted. A common error 

1 
is to forget to check your assumptions. 

On the Internet 

Both the word search and the game Tic-Tac-Toe are completely coded, 
although the interface for the latter leaves a little to be desired. 

WordSrch.cpp Contains the word search puzzle algorithm. 
TicTac.cpp Contains the TicTacToe class, with a main function. 

9 Exercises 

In Short 

11.1. What error checks are missing from Figure 1 1.6? 

11.2. For the situation in Figure 1 1.18, 
a. which of the responses to move C, is a refutation? 
b. what is the value of the position? 

Figure 11.18 Alpha-beta pruning example for Exercise 11.2. 



In Theory 

11.3. Verify that, if x is a prefix of some word in the sorted array a, then x 
is a prefix of the word that lower-bound returns. 

11.4. Explain how the running time of the word search algorithm changes 
when 
a. the number of words doubles. 
b. the number of rows and columns double (simultaneously). 

In Practice 

11.5. For the word search problem, replace the binary search with a sequen- 
tial search. How does that change affect performance? 

11.6. Compare the performance of the word search algorithm with and 
without the prefix search. 

11.7. Write a more user-friendly interface for the tic-tac-toe program. 

11.8. Even if the computer has a move that gives an immediate win, it 
may not make it if it detects another move that is also guaranteed to 
win. Some early chess programs had the problem that they would 
get into a repetition of position when a forced win was detected, 
allowing the opponent to claim a draw. In the tic-tac-toe program 
this outcome is not a problem because the program eventually will 
win. Modify the tic-tac-toe algorithm so that when a winning posi- 
tion is found. the move that leads to the shortest win is always taken. 
YOU can do SO by adding %DEPTH to COMPUTER-WIN, SO that a 
quicker win gives the highest value. 

11.9. Compare the performance of the tic-tac-toe program with and with- 
out alpha-beta pruning. 

11.10. Implement the tic-tac-toe algorithm and measure the performance 
when various depths are allowed to be stored in the transposition 
table. Also measure the performance when no transposition table is 
used. How are the results affected by alpha-beta pruning? 

Programming Projects 

11.11. Write a program to play 5 x 5 tic-tac-toe, where 4 in a row wins. 
Can you search to terminal nodes? 



Fun and Games 

11.12. The game of Boggle consists of a grid of letters and a word list. The 
object is to find words in the grid subject to the constraint that two 
adjacent letters must be adjacent in the grid (i.e., north, south, east, 
or west) of each other and each item in the grid can be used at most 
once per word. Write a program to play Boggle. 

11.13. Write a program to play MAXIT. The board is represented as an 
N x N grid of numbers randomly placed at the start of the game. One 
position is designated as the initial current position. Two players 
alternate turns. At each turn, a player must select a grid element in 
the current row or column. The value of the selected position is 
added to the player's score, and that position becomes the current 
position and cannot be selected again. Players alternate until all grid 
elements in the current row and column have been selected, at which 
point the game ends and the player with the highest score wins. 

11.14. Othello played on a 6 x 6 board is a forced win for black. Prove this 
assertion by writing a program. What is the final score if play on 
both sides is optimal? 

References 

If you are interested in computer games, a good starting point for informa- 
tion is the article cited in [ l l .  In this special issue of the journal, devoted 
exclusively to the subject, you will also find plenty of information and refer- 
ences to other works covering Chess, Checkers, and other computer games. 

1. K. Lee and S. Mahajan, "The Development of a World Class 
Othello Program," ArtiJicial Intelligence 43 (1990), 21-36. 



Chapter 12 

Stacks and Compilers 

Stacks are used extensively in compilers. In this chapter we present two sim- 
ple components of a compiler: a balanced symbol checker and a simple cal- 
culator. We do so to show simple algorithms that use stacks and to show how 
the STL classes described in Chapter 7 are used. 

In this chapter, we show: 

how to use a stack to check for balanced symbols, 
how to use a state machine to parse symbols in a balanced symbol 
program, and 
how to use operator precedence parsing to evaluate infix expressions 
in a simple calculator program. 

12.1 Balanced-Symbol Checker 

As discussed in Section 7.2, compilers check your programs for syntax 
errors. Frequently, however, a lack of one symbol (such as a missing * / 
comment-ender or 1)  causes the compiler to produce numerous lines of 
diagnostics without identifying the real error. A useful tool to help debug 
compiler error messages is a program that checks whether symbols are bal- 
anced. In other words, every { must correspond to a 1, every [ to a l ,  and so 
on. However, simply counting the numbers of each symbol is insufficient. 
For example, the sequence [ ( ) 1 is legal, but the sequence [ ( I ) is wrong. 

12.1.1 Basic Algorithm 

A stack is useful here because we know that when a closing symbol such as A stack can be used 

is seen, it matches the most recently seen unclosed ( .  Therefore, by placing detect mismatched 
symbols. an opening symbol on a stack, we can easily determine whether a closing 

symbol makes sense. Specifically, we have the following algorithm. 
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Symbols: ( [ I > ) [ 

Symbols in 
comments, string 
constants, and 
character constants 
need not be balanced. 

Line numbers are 
needed for 
meaningful error 
messages. 

( [ I > * ) * [ eof* 
Errors (indicated by *): 

(when expecting) 

(with no matching opening symbol 

[ unmatched at end of input 

Figure 12.1 Stack operations in a balanced-symbol algorithm 

1. Make an empty stack. 
2. Read symbols until the end of the file. 

a. If the symbol is an opening symbol, push it onto the stack. 
b. If it is a closing symbol do the following. 

i. If the stack is empty, report an error. 
ii. Otherwise, pop the stack. If the symbol popped is not the 

corresponding opening symbol, report an error. 
3. At the end of the file, if the stack is not empty, report an error. 

In this algorithm, illustrated in Figure 12.1, the fourth, fifth, and sixth sym- 
bols all generate errors. The > is an error because the symbol popped from 
the top of stack is a ( ,  so a mismatch is detected. The ) is an error because 
the stack is empty, so there is no corresponding ( .  The [ is an error detected 
when the end of input is encountered and the stack is not empty. 

To make this technique work for C++ programs, we need to consider all 
the contexts in which parentheses, braces, and brackets need not match. For 
example, we should not consider a parenthesis as a symbol if it occurs inside 
a comment, string constant, or character constant. We thus need routines to 
skip comments, string constants, and character constants. A character con- 
stant in C++ can be difficult to recognize because of the many escape 
sequences possible, so we need to simplify things. We want to design a pro- 
gram that works for the bulk of inputs likely to occur. 

For the program to be useful, we must not only report mismatches but 
also attempt to identify where the mismatches occur. Consequently, we keep 
track of the line numbers where the symbols are seen. When an error is 
encountered, obtaining an accurate message is always difficult. If there is an 
extra 1 ,  does that mean that the > is extraneous? Or was a I missing earlier? 
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We keep the error handling as simple as possible, but once one error has 
been reported, the program may get confused and start flagging many errors. 
Thus only the first error can be considered meaningful. Even so, the program 
developed here is very useful. 

12.1.2 Implementation 

The program has two basic components. One part, called tokenization, is Tokenization is the 
- - 

the process of scanning an input stream for opening and closing symbols process Of generating 
the sequence of (the tokens) and generating the sequence of tokens that need to be recog- symbols~tokens, that 

nized. The second part is running the balanced symbol algorithm, based on need to be 
the tokens. The two basic components are represented as separate classes. recognized. 

Figure 12.2 shows the Tokenizer class interface, and Figure 12.3 
shows the Balance class interface. The Tokenizer class provides a con- 
structor that requires an istream and then provides a set of accessors that 
can be used to get 

the next token (either an openinglclosing symbol for the code in this 
chapter or an identifier for the code in Chapter 13), 
the current line number, and 
the number of errors (mismatched quotes and comments). 

The Tokenizer class maintains most of this information in private data 
members. The Balance class also provides a similar constructor, but its 
only publicly visible routine is checkBalance, shown at line 24. Every- 
thing else is a supporting routine or a class data member. 

We begin by describing the Tokenizer class. inputstream is a refer- 
ence to an istream object and is initialized at construction. Because of the 
ios hierarchy (see Section 4. I), it may be initialized with an ifstream 
object. The current character being scanned is stored in ch, and the current 
line number is stored in currentline. Finally, an integer that counts the 
number of errors is declared at line 37. The constructor, shown at lines 22 
and 23, initializes the error count to 0 and the current line number to 1 and 
sets the is tream reference. 

We can now implement the class methods, which as we mentioned, are ~exica~analysis is 

concerned with keeping track of the current line and attempting to differenti- wed to ignore 
comments and ate symbols that represent opening and closing tokens from those that are re,,gnize symbols. 

inside comments, character constants, and string constants. This general pro- 
cess of recognizing tokens in a stream of symbols is called lexical analysis. 
Figure 12.4 shows a pair of routines, nextchar and putBackChar. The 
nextchar method reads the next character from inputstream, assigns it 
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1 #include <fstream> 
2 #include <vector> 
3 #include <stack> 
4 #include <stdlib.h> 
5 using namespace std; 
6 
7 / /  Tokenizer class. 
8 / /  CONSTRUCTION: with an istream that is ready to be read. 
9 / /  
10 / /  ******************PUBLIC OPERATIONS*********************** 

11 / /  char getNextOpenClose( i - ->  Return next open/close symbol 
12 / /  int getLineNumber( ) - ->  Return current line number 
13 / /  int getErrorCount ( ) - >  Return number of parsing errors 
14 / /  string getNextID( ) - ->  Return next C++ identifier 

15 / /  (see Section 13.2) 
16 / /  *******I*****~****ERRORS**I*~***************************** 

17 / /  Mismatched ' ,  " ,  and EOF reached in a comment are noted. 
18 
19 class Tokenizer 
20 { 

21 public: 
22 Tokenizer( istream & input ) 

23 : currentline( 1 ) ,  errors( 0 ) ,  inputstream( input ) I j 

24 
25 / /  The public routines. 
26 char getNextOpenClose( ) ;  

27 string getNextID( ) ;  

28 int getLineNumber( ) const; 
29 int getErrorCount( ) const; 
30 
31 private: 
32 enum CommentType { SLASH-SLASH, SLASH-STAR 1 ;  
33 
34 istream & inputstream; i /  Reference to the input stream 
35 char ch; / /  Current character 
36 int currentline; / /  Current line 
37 int errors; / /  Number of errors detected 
38 
39 / /  A host of internal routines. 
40 boo1 nextchar ( ) ; 

41 void putBackChar ( ) ; 

42 void skipcomment( ComrnentType start ) ;  

43 void skipQuote( char quoteType ) ;  

44 string getRemainingString( ) ;  

45 1 ;  

Figure 12.2 The Tokenizer class interface, used to retrieve tokens from an input 
stream. 
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1 #include "Tokenizer.hn 
2 #include <iostream> 
3 using namespace std; 
4 
5 / /  Symbol is the class that will be placed on the Stack. 
6 struct Symbol 
7 i 
8 char token; 
9 int theline; 

10 1 ;  
11 
12 / /  Balance class interface: check for balanced symbols. 
13 / /  
14 / /  CONSTRUCTION: with an istream object. 
15 / /  ******************PUBLIC OPERATIONS******************** 

16 / /  int CheckBalance( ) - - >  Print mismatches 
17 / /  return number of errors 
18 
19 class Balance 
20 { 
21 public: 
22 Balance( istream & input ) : tok( input ) ,  errors( 0 ) { I 
23 
24 int checkBalance ( ) ; 

25 
26 private: 
27 Tokenizer tok; / /  Token source 
28 int errors; / /  Mismatched openiclose symbol errors 
29 
30 void checkMatch( const Symbol & opSym, const Symbol & c l S p  1 ;  
31 I ;  

Figure 12.3 Class interface for a balanced-symbol program. 

to ch, and updates currentLine if a newline is encountered. It returns 
false only if the end of the file has been reached. The complementary pro- 
cedure putBackChar puts the current character, ch, back onto the input 
stream, and decrements currentLine if the character is a newline. Clearly, 
putBackChar should be called at most once between calls to nextchar; as 
it is a private routine, we do not worry about abuse on the part of the class 
user. Putting characters back onto the input stream is a commonly used tech- 
nique in parsing. In many instances we have read one too many characters, 
and undoing the read is useful. In our case this occurs after processing a / .  
We must determine whether the next character begins the comment start 
token; if it does not, we cannot simply disregard it because it could be an 
opening or closing symbol or a quote. Thus we pretend that it is never read. 
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1 / /  nextchar sets ch based on the next character in 
2 / /  inputstream and adjusts currentLine if necessary. 
3 / /  It returns the result of get. 
4 / /  putBackChar puts the character back onto inputstream. 
5 / /  Both routines adjust currentLine if necessary. 
6 boo1 Tokenizer::nextChar( ) 
7 i 
8 if ( !inputStream.get( ch ) ) 

9 return false; 
10 if( ch == '\n' ) 
11 currentline++; 
12 return true; 

13 1 
14 
15 void Tokenizer::putBackChar( ) 
16 i 
17 inputStream.putback( ch ) ;  

18 if ( ch == \n' ) 
19 currentline--; 

20 1 

Figure 12.4 The nextchar routine for reading the next character, updating 
currentLine if necessary, and returning true if not at the end 
of file; and the putBackChar routine for putting back ch and 
updating currentLine if necessary. 

Next is the routine skipcomment, shown in Figure 12.5. Its purpose is 
to skip over the characters in the comment and position the input stream so 
that the next read is the first character after the comment ends. This tech- 
nique is complicated by the fact that comments can either begin with / / ,  in 
which case the line ends the comment, or / *, in which case * / ends the 
comment.] In the / / case, we continually get the next character until either 
the end of file is reached (in which case the first half of the && operator fails) 
or we get a newline. At that point we return. Note that the line number is 
updated automatically by nextchar. Otherwise, we have the / * case, 

The state machine is 
a common technique which is processed starting at line 15. 
used to parse The skipcomment routine uses a simplified state machine. The state 
symbols; at any pointy machine is a common technique used to parse symbols; at any point, it is in 
it is in some state, 
and each input some state, and each input character takes it to a new state. Eventually, i t  
character takes it to a reaches a state at which a symbol has been recognized. 
new state. Eventually, In skipcomment, at any point, it has matched 0, 1 ,  or 2 characters of 
the state machine 
reaches a state in 

the * / terminator, corresponding to states 0, 1, and 2. If it matches two char- 

which a svmbol has acters, it can return. Thus, inside the loop, it can be in only state 0 or 1 
been recognized. because, if it is in state 1 and sees a /, it returns immediately. Thus the state 

I .  We do not consider deviant cases involving \ . 
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1 / /  Precondition: We are about to process a comment; 
2 / /  have already seen comment start token. 
3 / /  Postcondition: Stream will be set immediately after 
4 /I' comment ending token. 
5 void Tokenizer::skipComment( CommentType start i 
6 { 
7 if( start == SLASH-SLASH ) 

8 i 
9 while( nextchar ( ) && ( ch ! =  '\nl ) ) 

10 
11 return; 
12 1 
13 
14 / /  ~ o o k  for * /  
15 boo1 state = false; / /  Seen first char in comment ender. 
16 
17 while( nexrChar( ) ) 

18 I 
19 if( state && ch == ' / I  ) 

20 return; 
2 1 state = ( c h = =  ' * '  ) ;  

22 1 
23 errors++; 
24 cout << "Unterminated comment at line " 
25 << getLineNumber( ) < <  endl; 
26 1 

Figure 12.5 The skipcomment routine for moving past an already 
started comment. 

can be represented by a Boolean variable that is true if the state machine is 
in state 1 .  If it does not return, it either goes back to state 1 if it encounters a 
* or goes back to state 0 if it does not. This procedure is stated succinctly at 
line 21. 

If we never find the comment-ending token, eventually nextchar 
returns false and the while loop terminates, resulting in an error message. 
The skipQuote method, shown in Figure 12.6, is similar. Here, the param- 
eter is the opening quote character, which is either " or . In either case, we 
need to see that character as the closing quote. However, we must be pre- 
pared to handle the \ character; otherwise, our program will report errors 
\vhen it is run on its own source. Thus we repeatedly digest characters. If the 
current character is a closing quote, we are done. If it is a newline, we have 
an unterminated character or string constant. And if it is a backslash, we 
digest an extra character without examining it. 

Once we've written the skipping routine, writing getNextOpenClose 
is easier. If the current character is a / ,  we read a second character to see 
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1 / /  Precondition: We are about to process a quote; 
2 / /  have already seen beginning quote. 
3 / /  Postcondition: Stream will be set immediately after 
4 / /  matching quote. 
5 void Tokenizer::skipQuote( char quoteType ) 

6 { 

7 while ( nextchar ( ) ) 

8 { 

9 if ( ch == quoteType ) 

10 return; 
11 if( ch == '\n' ) 
12 { 

13 cout i< "Missing closed quote at line " << 

14 ( getLineNumber ( ) - 1 ) << endl; 
15 errors++ ; 
16 return; 
17 1 
18 / /  If a backslash, skip next character. 
19 else if ( ch == ' \ \ I  ) 

20 nextchar( ) ; 

21 1 
22 1 

Figure 12.6 The skipQuote routine for moving past an already started 
character or string constant. 

whether we have a comment. If so, we call skipcomment; if not, we undo 
the second read. If we have a quote, we call skipQuote. If we have an 
opening or closing symbol, we can return. Otherwise, we keep reading until 
we eventually run out of input or find an opening or closing symbol. The 
entire routine is shown in Figure 12.7. 

The ge tLineNumber and get ErrorCoun t methods are one-liners that 
return the values of the corresponding data members and are not shown. We 
discuss the getNextID routine in Section 13.2.2 when it is needed. 

In the Balance class, the balanced symbol algorithm requires that we 
place opening symbols on a stack. In order to print diagnostics, we store a 
line number with each symbol, as shown previously in the symbol s truc t 
at lines 6 to 10 in Figure 12.3. 

The checkBalance routine is implemented as shown in Figure 12.8. It 
follows the algorithm description almost verbatim. A stack that stores pend- 
ing opening symbols is declared at line 7. Opening symbols are pushed onto 
the stack with the current line number. When a closing symbol is encoun- 
tered and the stack is empty, the closing symbol is extraneous; otherwise, we 
remove the top item from the stack and verify that the opening symbol that 
was on the stack matches the closing symbol just read. To do so we use the 
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1 / /  Return the next opening or closing symbol or '\O' (if EOF) . 
2 / /  Skip past comments and character and string constants. 
3 char Tokenizer::getNextOpenClose( ) 

4 I 
5 while( nextchar( ) ) 

6 i 
7 if( ch == ' / '  ) 

8 { 

9 if ( nextchar( ) ) 

10 { 

11 if ( ch == I * '  ) 

12 skipcomment( SLASH-STAR ) ;  

13 else if( ch == ' / '  ) 

14 skipcomment( SLASH-SLASH 1 ;  
15 else if( ch ! =  '\n' ) 
16 putBackChar ( ) ; 

17 1 
18 1 
19 else if( ch == I \ "  / ( ch == ' " '  ) 

20 skipQuote( ch ) ;  

21 else if( ch == I ( '  I /  ch == ' [ I  I j  ch == ' { I  1 1  
22 c h = =  I ) '  1 1  c h = =  ' I '  1 1  ch == I ) '  ) 

23 return ch; 
24 1 
25 return '\O1; / /  End of file 
26 ) 

Figure 12.7 The getNextOpenClose routine for skipping comments and 
quotes and returning the next opening or closing character. 

checkMatch routine, which is shown in Figure 12.9. Once the end of input 
is encountered, any symbols on the stack are unmatched; they are repeatedly 
output in the while loop that begins at line 40. The total number of errors 
detected is then returned. 

Note that the current implementation allows multiple calls to ThecheckBalance 

checkBalance. However, if the input stream is not reset externally, all that does all the 
algorithmic work. 

happens is that the end of the file is immediately detected and we return 
immediately. We can add functionality to the Tokenizer class, allowing it 
to change the stream source, and then add functionality to the Balance 
class to change the input stream (passing on the change to the Tokenizer 
class). We leave this task for you to do as Exercise 12.9. 

Figure 12.10 shows that we expect a Balance object to be created 
and then checkBalance to be invoked. In our example, if there are no 
command-line arguments, the associated istream is cin; otherwise, we 
repeatedly use istreams associated with the files given in the command- 
line argument list. 



1 / /  Print error message for unbalanced symbols. 
2 / /  Return number of errors detected. 
3 int Balance::checkBalance( ) 
4 { 
5 char ch; 
6 Symbol lastsymbol, match; 
7 stack<Symbol, vector<Symbol> > pendingTokens; 
8 
9 while( ( ch = tok.getNextOpenClose( ) ) ! =  ' \ 0 '  ) 

10 { 

11 1astSymbol.token = ch; 
12 1astSymbol.theLine = tok.getLineNumber( ) ;  

13 
14 switch( ch ) 

15 { 

16 case ' ( I :  case ' [ I :  case ' { I :  

17 pendingTokens.push( lastsymbol ) ;  

18 break; 
19 
20 case ' ) ' : case ' ] ' : case ' 1 ' : 
21 if( pendingTokens.empty( ) ) 

22 I 
23 tout << "Extraneous u << ch << " at line " 
24 << tok.getLineNurnber( ) << endl; 
25 errors++; 
26 1 
27 else 
28 I 
29 match = pendingTokens.top( ) ; 

30 pendingTokens.pop( ) ;  

31 checkMatch( match, lastsymbol ) ;  

32 1 
33 break; 
34 
35 default: / /  Can't happen 
36 break ; 
37 1 
38 1 
39 
40 while( !pendingTokens.empty( ) ) 

41 I 
42 match = pendingTokens.top( ) ;  

43 pendingTokens.pop( ) ;  

44 cout << "Unmatched " << match.token << " at line " 
45 << match.theLine << endl; 
46 errors++ ; 
47 1 
48 
49 return errors + tok.getErrorCount( ) ;  

50 1 

Figure 12.8 The checkBalance algorithm. 
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1 / /  Print an error message if clSym does not match opSym. 
2 / /  Update errors. 
3 void Balance::checkMatch( const Symbol & opSym, 
4 const Symbol & clSym ) 

5 { 
6 if( opSym.token == ' ( '  && clSym.token ! =  ' ) '  I / 
7 opSym.token == ' [ '  && clSym.token ! =  ' I  ' ( I 
8 opSym.token == ' { '  && clSym.token ! =  ' 1 '  ) 

9 { 

10 cout << "Found " << clSym.token 
11 << " on line " << tok.getLineNumber( ) 

12 << " ;  does not match " << opSym.token 
13 << ' at line " << opsym. theline << endl; 
14 errors++ ; 
15 1 
16 } 

Figure 12.9 The checkMatch routine for checking that the closing symbol 
matches the opening symbol. 

1 / /  main routine for balanced symbol checker. 
2 int main( int argc, char **argv ) 

3 I 
4 if( argc == 1 ) 

5 I 
6 Balance p ( cin ) ; 

7 if( p.checkBalance( ) == 0 ) 

8 cout << "NO errors" << endl; 
9 return 0 ;  

10 1 
11 
12 while( --argc ) 

13 { 

14 ifstream ifp( *++argv ) ;  

15 if( !ifp ) 

16 ( 

17 cerr << "Cannot open " << *argv << endl; 
18 continue; 
19 1 
20 cout << *argv << " : "  << endl; 
21 Balance p ( ifp ) ; 

22 if ( p. checkBalance ( ) == 0 ) 

23 cout << "No errors" << endl; 
24 1 
25 
26 return 0; 
27 1 

Figure 12.10 The main routine with command-line arguments. 
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12.2 A Simple Calculator 

Some of the techniques used to implement compilers can be used on a 
smaller scale in the implementation of a typical pocket calculator. Typically, 
calculators evaluate infix expressions, such as 1+2, which consist of a 
binary operator with arguments to its left and right. This format, although 
often fairly easy to evaluate, can be more complex. Consider the expression 

In an infix expression 
a binary operator has 
arguments to its left 
and right. 

When there are 
several operators, 
precedence and 
associativity 
determine how the 
operators are 
processed. 

Mathematically, this expression evaluates to 7 because the multiplica- 
tion operator has higher precedence than addition. Some calculators give the 
answer 9 ,  illustrating that a simple left-to-right evaluation is not sufficient; 
we cannot begin by evaluating 1+2. Now consider the expressions 

in which A is the exponentiation operator. Which subtraction and which 
exponentiation get evaluated first? On the one hand, subtractions are pro- 
cessed left-to-right, giving the result 3 .  On the other hand, exponentiation is 
generally processed right-to-left, thereby reflecting the mathematical 23' 
rather than (23)3. Thus subtraction associates left-to-right, whereas expo- 
nentiation associates from right-to-left. All of these possibilities suggest that 
evaluating an expression such as 

would be quite challenging. 
If the calculations are performed in integer math (i.e., rounding down on 

division), the answer is -8. To show this result, we insert parentheses to clar- 
ify ordering of the calculations: 

Although the parentheses make the order of evaluations unambiguous, 
they do not necessarily make the mechanism for evaluation any clearer. A 
different expression form, called a postfix expression, which can be evalu- 
ated by a postfix machine without using any precedence rules, provides a 
direct mechanism for evaluation. In the next several sections we explain 
how it works. First, we examine the postfix expression form and show how 
expressions can be evaluated in a simple left-to-right scan. Next, we show 
algorithmically how the previous expressions, which are presented as infix 
expressions, can be converted to postfix. Finally, we give a C++ program 
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that evaluates infix expressions containing additive, multiplicative, and expo- 
nentiation operators-as well as overriding parentheses. We use an algorithm 
called operator precedence parsing to convert an infix expression LO a 
postfix expression in order to evaluate the infix expression. 

12.2.1 Postfix Machines 

A postfix expression is a series of operators and operands. A postfix Apostfixexpression 

machine is used to evaluate a postfix expression as follows. When an oper- Can be evaluated as 
follows. Operands are 

and is seen, it is pushed onto a stack. When an operator is seen, the appropri- pushed onto a single 
ate number of operands are popped from the stack, the operator is evaluated, stack. An operator 

and the result is pushed back onto the stack. For binarv onerators. which are PoPsitsoPerands 
d l  

and then pushes the the most common, two operand\ are popped. When the complete postfix 
result. At the end of 

expression is evaluated, the result should be a single item on the stack that the evaluation, the 
represents the answer. The postfix form represents a natural way to evaluate stack should contain 

expressions because precedence rules are not required. only one element, 
which represents the 

A simple example is the postfix expression result. 

The evaluation proceeds as follows: 1. then a. and then 3 are each pushed 
onto the stack. To process *, we pop the top two items on the stack: 3 and 
then 2 .  Note that the first item popped becomes the r h s  parameter to the 
binary operator and that the second item popped is the lhs parameter; thus 
parameters are popped in reverse order. For multiplication, the order does 
not matter, but for subtraction and division, it does. The result of the multi- 
plication is 6 ,  and that is pushed back onto the stack. At this point, the top of 
the stack is 6 ;  below it is 1. To process the +, the 6 and 1 are popped, and 
their sum. 7. is pushed. At this point, the expression has been read and the 
stack has only one itern. Thus the final answer is 7 .  

Every valid infix expression can be converted to postfix form. For exam- 
ple, the earlier long infix expression can be written in postfix notation as 

Figure 12.11 shows the steps used by the postfix machine to evaluate this Evaluation of a 

expression. Each step involves a single push. Consequently, as there are postfix 
takes linear time. 

9 operands and 8 operators, there are 17 steps and 17 pushes. Clearly, the 
time required to evaluate a postfix expression is linear. 

The remaining task is to write an algorithm to convert from infix nota- 
tion to postfix notation. Once we have it, we also have an algorithm that 
evaluates an infix expression. 
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Postjix Expression: 1 2 - 4 5 A 3 * 6 * 7 2 2 A A / - 

Figure 12.1 1 Steps in the evaluation of a postfix expression. 

12.2.2 Infix to Postfix Conversion 

The operator The basic principle involved in the operator precedence parsing algorithm, 
precedence parsing which converts an infix expression to a postfix expression, is the following. 
algorithm converts an 
infix expression to a When an operand is seen, we can immediately output it. However, when we 
postfix expression, see an operator, we can never output it because we must wait to see the sec- 
so we can evaluate ond operand, so we must save it. In an expression such as 
the infix expression. 

which in postfix form is 

An operator stack is a postfix expression in some cases has operators in the reverse order than 
used to store they appear in an infix expression. Of course, this order can occur only if the 
operators that have 
been seen but not yet precedence of the involved operators is increasing as we go from left to 
output. right. Even so, this condition suggests that a stack is appropriate for storing 
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operators. Following this logic, then, when we read an operator it must 
somehow be placed on a stack. Consequently, at some point the operator 
must get off the stack. The rest of the algorithm involves deciding when 
operators go on and come off the stack. 

In another simple infix expression 

when we reach the - operator, 2 and 5 have been output and A is on the 
stack. Because - has lower precedence than ^ ,  the A needs to be applied to 2 
and 5. Thus we must pop the A and any other operands of higher precedence 
than - from the stack. After doing so, we push the -. The resulting postfix 
expression is 

In general, when we are processing an operator from input, we output those 
operators from the stack that the precedence (and associativity) rules tell us 
need to be processed. 

A second example is the infix expression 

When we reach the A operator, 3 and 2 have been output and * is on the 
stack. As A has higher precedence than *, nothing is popped and A goes on 
the stack. The 5 is output immediately. Then we encounter a - operator. Pre- 
cedence rules tell us that A is popped, followed by the *. At this point, noth- 
ing is left to pop, we are done popping, and - goes onto the stack. We then 
output 1. When we reach the end of the infix expression, we can pop the 
remaining operators from the stack. The resulting postfix expression is 

Before the summarizing algorithm, we need to answer a few questions. 
First, if the current symbol is a + and the top of the stack is a +, should the + 
on the stack be popped or should jt stay? The answer is determined by decid- 
ing whether the input + implies that the stack + has been completed. Because 
+ associates from left to right, the answer is yes. However, if we are talking 
about the A operator, which associates from right to left, the answer is no. 
Therefore, when examining two operators of equal precedence, we look at 
the associativity to decide, as shown in Figure 12.12. 

When an operator is 
seen on the input, 
operators of higher 
priority (or left 
associative operators 
of equal priority) are 
removed from the 
stack, signaling that 
they should be 
applied.The input 
operator is then 
placed on the stack. 



Figure 12.12 Examples of using associativity to break ties in precedence. 

A left parenthesis is What about parentheses? A left parenthesis can be considered a high- 

Infix Expression 

2 + 3 + 4  

2 " 3 " 4  

treated as a high- precedence operator when it is an input symbol but a low-precedence opera- 
precedence operator 
when it is an input tor when it is on the stack. Consequently, the input left parenthesis is simply 
symbol but as a low- placed on the stack. When a right parenthesis appears on the input, we pop 
Precedence operator the operator stack until we come to a left parenthesis. The operators are writ- 
when it is on the 
stack. A left 

ten, but the parentheses are not. 
parenthesis is The following is a summary of the various cases in the operator prece- 

Postfix Expression 

2 3 + 4 +  

2 3 4 ' " '  

removed only by a dence parsing algorithm. With the exception of parentheses, everything 
right parenthesis. popped from the stack is output. 

Associativity 

Left-associative: Input + is 
lower than stack +. 

Right-associative: Input A is 
higher than stack *. 

Operands: Immediately output. 
Close parenthesis: Pop stack symbols until an open parenthesis 
appears. 
Operator: Pop all stack symbols until a symbol of lower precedence 
or a right-associative symbol of equal precedence appears. Then push 
the operator. 
End of input: Pop all remaining stack symbols. 

As an example, Figure 12.1 3 shows how the algorithm processes 

Below each stack is the symbol read. To the right of each stack, in boldface, 
is any output. 

12.2.3 Implementation 

The Evaluator We now have the theoretical background required to implement a simple cal- 
class will parse and culator. Our calculator supports addition, subtraction, multiplication, divi- 
evaluate infix 
expressions. sion, and exponentiation. We write a class template Evaluator that can be 

instantiated with the type in which the math is to be performed (presumably, 
int or double or perhaps a HugeInt class). We make a simplifying 
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Figure 12.13 Infix to postfix conversion. 

assumption: Negative numbers are not allowed. Distinguishing between the 
binary minus operator and the unary minus requires extra work in the scan- 
ning routine and also complicates matters because it introduces a nonbinary 
operator. Incorporating unary operators is not difficult, but the extra code 
does not illustrate any unique concepts and thus we leave it for you to do as 
an exercise. 

Figure 12.14 shows the Evaluator class interface, which is used to pro- We need two stacks: - 
cess a single string of input. The basic evaluation algorithm requires two an stack and 

a stack for the postfix 
5tacks. The first stack is used to evaluate the infix expression and generate the machine, 
postfix expression. It is the stack of operators declared at line 33. An enumer- 
ated type, TokenType, is declared at line 20; note that the symbols are listed 
in order of precedence. Rather than explicitly outputting the postfix expres- 
sion, we send each postfix symbol to the postfix machine as it is generated. 
Thus we also need a stack that stores operands. Consequently, the postfix 
machine stack, declared at line 34, is instantiated with NumericType. Note 
that, if we did not have templates, we would be in  trouble because the two 
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1 / /  Evaluator class interface: evaluate infix expression. 
2 I /  NumericType: Must have standard set of arithmetic operators 
3 / /  
4 / /  CONSTRUCTION: with a string. 
5 / /  
6 / /  ******************PUBLIC OPERATIONS*********************** 

7 / /  NumericType getvalue( ) - - >  Return value of infix expression 
8 / /  ******************ERRORS********************************** 

9 / /  Some error checking is performed. 
10 
11 #include <stdlib.h> 
12 #include <math.h> 
13 #include < f stream> 
14 #include <iostream> 
15 #include <sstream> 
16 #include <vector> 
17 #include <string> 
18 using namespace std; 
19 
20 enum TokenType { EOL, VALUE, OPAREN, CPAREN, EXP, 
21 MULT, DIV, PLUS, MINUS } ; 

22 
23 template <class NumericType> 
24 class Evaluator 
25 { 
26 public: 
27 Evaluator( const string & s ) : str( s ) 

28 { opStack.push-back( EOL ) ;  } 

29 
30 NumericType getvalue( ) ;  / /  Do the evaluation 
31 
32 private: 
33 vector<TokenType> opStack; / /  Operator stack for conversion 
34 vector<NumericType> postFixStack; / /  Postfix machine stack 
35 
36 istringstream str; / /  The character stream 
37 
38 / /  Internal routines 
39 NumericType getTop ( ) ; / /  Get top of postfix stack 
40 void binaryOp( TokenType topop ) ;  / /  Process an operator 
41 void processToken( const Token<NumericType> & lastToken ) ;  

42 } ;  

Figure 12.14 The Evaluator class interface. 
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1 template <class NumericType> 
2 class Token 
3 I 
4 public: 
5 Token( TokenType tt = EOL, const NumericType & nt = 0 ) 

6 : theType ( tt ) , thevalue ( nt ) { 1 
7 
8 TokenType getType( ) const 
9 { return theType; } 

10 const NumericType & getvalue( ) const 
11 { return thevalue; ) 

12 
13 private: 
14 TokenType theType; 
15 NumericType thevalue; 
16 1 ;  
17 
18 template <class NumericType> 
19 class Tokenizer 
20 { 
21 public: 
22 Tokenizer ( istream & is ) : in( is ) { 1 
23 Token<NumericType> getToken( ) ;  

24 
25 private: 
26 istream & in; 
27 1 ;  

Figure 12.15 The Token class and Tokenizer class interface. 

stacks hold items of different types.* The remaining data member is an 
istringstream object used to step through the input line." 

As was the case with the balanced symbol checker, we can write a 
Tokenizer class that can be used to give us the token sequence. Although 
we could reuse code, there is in fact little commonality, so we write a 
Tokenizer class for this application only. Here, however, the tokens are a 
little more complex because, if we read an operand, the type of token is 
VALUE, but we must also know what the value is that has been read. Thus we 
define both a Tokeni zer class and a Token class, shown in Figure 12.15. A 
Token Stores both a TokenType, and if the token is a VALUE, its numeric 
value. Accessors can be used to obtain information about a token. (The 

2. We use vector instead of the stack adapter. since it provides basic stack operations via 
push-back, pop-back, and back. 

3 .  The is tringstream function is not yet available on all compilers. The online code has 
a deprecated replacement for older compilers. See the online README file for detalls. 
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1 / /  Find the next token, skipping blanks, and return it. 
2 / /  Print error message if input is unrecognized. 
3 template <class NumericType> 
4 Token<NumericType> Tokenizer<NumericType>::getToken( ) 
5 I 
6 char ch; 
7 NumericType thevalue; 
8 
9 / /  Skip blanks 

10 while( in.get( ch ) && ch == ' ' ) 

11 
12 
13 if( in.good( ) && ch ! =  '\nl && ch ! =  '\0' ) 
14 I 
15 switch( ch ) 

16 I 
17 case ' A ' . . return EXP; 
18 case ' / ' : return DIV; 
19 case I * ' :  return MULT; 
20 case I ( ' :  return OPAREN; 
2 1 case I ) ' :  return CPAREN; 
22 case ' + ' :  return PLUS; 
23 case ' - ' : return MINUS; 
24 
25 default : 
26 in.putback( ch ) ;  

27 if ( ! ( in >> thevalue ) ) 

28 I 
29 cerr <<  "Parse error" << endl; 
30 return EOL; 
3 1 } 

32 return Token<NumericType>( VALUE, thevalue ) ;  

33 1 
34 } 

35 
36 return EOL; 
37 } 

Figure 12.16 The getToken routine for returning the next token in the 
input stream. 

getvalue function could be made more robust by signaling an error if 
theType is not VALUE.) The Tokenizer class has one member function. 

Figure 12.16 shows the getToken routine. First we skip past any 
blanks, and when the loop at line 10 ends, we have gone past any blanks. If 
we have not reached the end of line, we check to see whether we match any 
of the one-character operators. If so, we return the appropriate token (a 
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1 / /  Public routine that performs the evaluation. 
2 / /  ~xamines the postfix machine to see if a single result 
3 / /  is left and if so, returns it; otherwise prints error. 
4 template <class NumericType> 
5 NumericType Evaluator<NumericType>::getValue( ) 

6 { 
7 Tokenizer<NumericType> tok( str ) ;  

8 Token<NumericType> lastToken; 
9 

10 do 
11 { 

12 lastToken = tok.getToken( ) ;  

13 processToken( 1astToken ) ;  

14 } while( lastToken.getType( ) ! =  EOL ) ;  

15 
16 if ( postFixStack. empty ( ) ) 

17 I 
18 cerr < <  "Missing operand!" << endl; 
19 return 0; 
20 1 
21 
22 NumericType theResult = postFixStack.back( 1 ;  
23 postFixStack.pop-back( ) ;  

24 if( !postFixStack.empty( ) ) 

25 cerr <<  "Warning: missing operators!" << endl; 
26 
27 return theResult; 
28 1 

Figure 12.17 The getvalue routine for reading and processing tokens and then 
returning the item at the top of the stack. 

Token object is constructed by using an implicit type conversion by virtue 
of a one-parameter constructor). Otherwise, we reach the default case in 
the switch statement. We expect that what remains is an operand, so we 
unread ch, use operator>> to get the value, and then return a Token 
object by expKcitly constructing a Token object based on the value read. . - 

Note that for the putback to work we must use get. That is why we do not 
C++ note: get must 

simply use operator>> (in place of lines 10-13) to skip implicitly past the be used so that 
blanks. gutback works. 

We can now discuss the member functions of the Evaluator class. The 
only publicly visible member function is getvalue. Shown in Figure 12.17, 
getvalue repeatedly reads a token and processes it until the end of line is 
detected. At that point the item at the top of the stack is the answer. 
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A precedence table is 
used to decide what 
is removed from the 
operator stack. Left- 
associative operators 
have the operator 
stack precedence set 
at 1 higher than the 
input symbol . - 
precedence. Right- 
associative operators 
go the other way. 

1 / /  top and pop the postfix machine stack; return the result. 
2 / /  If the stack is empty, print an error message. 
3 template <class NumericType> 
4 NumericType Evaluator<NumericType>: :getTop( ) 

5 I 
6 if ( postFixStack. empty ( ) 1 
7 { 

8 cerr << "Missing operand" << endl; 
9 return 0; 

10 1 
11 
12 NumericType tmp = postFixStack.back( ) ;  

13 postFixStack.pop-back( ) ;  a 

14 return tmp; 
15 1 

Figure 12.18 The getTop routine for getting the top item in the postfix stack and 
removing it. 

Figures 1 2.18 and 12.19 show the routines used to implement the postfix 
machine. The getTop routine returns and removes the top item in the post- 
fix stack. The binaryop routine applies topop (which is expected to be the 
top item in the operator stack) to the top two items on the postfix stack and 
replaces them with the result. It also pops the operator stack (at line 33). sig- 
nifying that processing for topop is complete. The pow routine is presumed 
to exist for NumericType objects; we can either use the math library routine 
or adapt the one previously shown in Figure 8.14. 

Figure 12.20 declares a precedence table, which stores the operator pre- 
cedences and is used to decide what is removed from the operator stack. The 
operators are listed in the same order as the enumeration type TokenType. 
Because enumeration types are assigned consecutive indices beginning with 
zero, they can be used to index an array. (The array initialization syntax used 
here was described in Section 1.2.6.) 

We want to assign a number to each level of precedence. The higher the 
number, the higher is the precedence. We could assign the additive operators 
precedence 1, multiplicative operators precedence 3, exponentiation prece- 
dence 5, and parentheses precedence 99. However, we also need to take into 
account associativity. To do so, we assign each operator a number that repre- 
sents its precedence when it is an input symbol and a second number that 
represents its precedence when it is on the operator stack. A left-associative 
operator has the operator stack precedence set at 1 higher than the input 
symbol precedence, and a right-associative operator goes the other way. 
Thus the precedence of the + operator on the stack is 2. 
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1 i /  Process an operator by taking two items off the postfix 
2 / /  stack, applying the operator, and pushing the result. 
3 / /  Print error if missing closing parenthesis or division by 0. 
4 template <class NumericType> 
5 void Evaluator<NumericType>::binaryOp( TokenType topop ) 

6 i  
7 if ( topop == OPAREN ) 

8 i 
9 cerr << "Unbalanced parentheses" << endl; 
10 opStack .pop-back ( ) ; 

1 1  return; 
12 3 
13 NumericType rhs = getTop( ) ;  

14 NumericType lhs = getTop( ) ;  

15 
16 if ( topop == EXP ) 

17 postFixStack.push-back( pow( lhs, rhs ) ) ;  

18 else if ( topop == PLUS ) 

19 postFixStack.push-back( lhs + rhs ) ;  

20 else if ( topop == MINUS ) 

21 postFixStack.push-back( lhs - rhs ) ;  

22 else if ( topop == MULT ) 

23 postFixStack.push-back( lhs * rhs ) ;  

24 else if( topop == DIV ) 

25 if( rhs ! =  0 ) 

26 postFixStack.push-back( lhs / rhs ) ;  

27 else 
28 ( 

29 cerr << "Division by zero" << endl; 
30 postFixStack.push-back( lhs ) ;  

31 1 
32 
33 opStack.pop-back( ) ;  

34 3 

Figure 12.19 The BinaryOp routine for applying topop to the postfix stack. 

A consequence of this rule is that any two operators that have different 
precedences are still correctly ordered. However, if a + is on the operator 
stack and is also the input symbol, the operator on the top of the stack will 
appear to have higher precedence and thus will be popped. This is what we 
want for left-associative operators. 

Similarly, if a A is on the operator stack and is also the input symbol, the 
operator on the top of the stack will appear to have lower precedence and 
thus it will not be popped. That is what we want for right-associative opera- 
tors. The token VALUE never gets placed on the stack, so its precedence is 
meaningless. The end-of-line token is given lowest precedence because it is 
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1 / /  PREC-TABLE matches order of TokenType enumeration. 
2 struct Precedence 
3 { 
4 int inputsymbol; 
5 int topofstack; 
6 1 PREC-TABLE [ ] = 

7 { 

8 { 0, -1 1 ,  { 0, 0 1 ,  / /  EOL, VALUE 
9 { 100, 0 1 ,  { 0, 99 1 ,  / /  OPAREN, CPAREN 

10 { 6, 5 1 ,  / /  EXP 
11 { 3 ,  4 1 ,  { 3 ,  4 1 ,  / / MULT, DIV 
12 : 1, 2 1 ,  { 1, 2 1 / /  PLUS, MINUS 
13 1 ;  

Figure 12.20 Table of precedences used to evaluate an infix expression. 

placed on the stack for use as a sentinel (which is done in the constructor). If 
we treat it as a right-associative operator, it is covered under the operator 
case. 

The remaining method is processToken, which is shown in Figure 12.21. 
When we see an operand, we push it onto the postfix stack. When we see a 
closing parenthesis, we repeatedly pop and process the top operator on the 
operator stack until the opening parenthesis appears (lines 18-20). The 
opening parenthesis is then popped at line 22. (The test at line 21 is used to 
avoid popping the sentinel in the event of a missing opening parenthesis.) 
Otherwise, we have the general operator case, which is succinctly described 
by the code in lines 28-32. 

A simple main routine is given in Figure 12.22. It repeatedly reads a line 
of input, instantiates an Evaluator object, and computes its value. As writ- 
ten, the program performs i n t  math. We can change line 8 to use double 
math or perhaps a large-integer class. 

12.2.4 Expression Trees 

In an expression tree, Figure 12.23 shows an example of an expression tree, the leaves of which 
the leaves are operands (e.g., constants or variable names) and the other nodes contain 
operands and the 
other nodes contain operators. This particular tree happens to be binary because all the opera- 
operators. tions are binary. Although it is the simplest case, nodes can have more than 

two children. A node also may have only one child, as is the case with the 
unary minus operator. 

We evaluate an expression tree T by applying the operator at the root to the 
values obtained by recursively evaluating the left and right subtrees. In this 
example, the left subtree evaluates to (acb) and the right subtree evaluates to 
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1 / /  After token is read, use operator precedence parsing 
2 / /  algorithm to process it; missing opening parentheses 
3 / /  are detected here. 
4 template <class NurnericType> 
5 void Evaluator<NumericType>:: 
6 processTokeni const Token<NurnericType> & lastToken ) 

7 I 
8 TokenType topop; 
9 TokenType lastType = lastToken.getType( ) ;  

10 
11 switch( lastType ) 

12 ( 

13 case VALUE : 
14 postFixStack.push-back( lastToken.getValue( ) ) ;  

15 return; 
16 
17 case CPAREN: 
18 while( ( topop = opStack.back( ) i ! =  OPAREN && 

19 topop ! = EOL ) 

20 binaryopi topop 1 ;  
2 1 if( topop == OPAREN 1 
22 opStack.pop-back( ) ;  l i  Get rid cf opening parens 
23 else 
24 cerr << "Missing open parenthesis" <i endl; 
25 break; 
26 
27 default: :/ General operator case 
28 while( PREC-TABLE[ lastType I .inputsymbol <= 

29 PREC-TABLE[ topop = opStack.back( ) 1.topOfStack ) 

30 binaryOp( topop ) ;  

3 1 if ( lastToken ! = EOL ) 

32 opStack.push-back( lastType ) ;  

33 break; 
34 
35 1 

Figure 12.21 The processToken routine for processing lastToken, using 
the operator precedence parsing algorithm. 

(a-b) . The entire tree therefore represents ( (a+b) * (a-b) ) . We can pro- 
duce an (overly parenthesized) infix expression by recursively producing a 
parenthesized left expression, printing out the operator at the root, and recur- 
sively producing a parenthesized right expression. This general strategy 
(left, node, right) is called an inorder traversal. This type of traversal is easy 
to remember because of the type of expression it produces. 
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1 / /  A simple main to exercise Evaluator class. 
2 int main( ) 

3 I 
4 string str; 
5 
6 while( getline( cin, str ) ) 

7 { 

8 Evaluator<int> e ( str ; 

9 cout << e.getValue( ) <c endl; 
10 1 
11 
12 return 0; 
13 I 

Figure 12.22 A simple main for evaluating expressions repeatedly. 

Figure 12.23 Expression tree for (a+b) * (a-b)  

Recursive printing of A second strategy is to print the left subtree recursively, then the right -. 

the tree subtree, and then the operator (without parentheses). Doing so, we obtain the 
can be used to obtain 
an infix, postfix, or postfix expression, so this strategy is called a postorder traversal of the tree. 
prefix expression. A third strategy for evaluating a tree results in a prefix expression. We dis- 

cuss all these strategies in Chapter 18. The expression tree (and its generali- 
zations) are useful data structures in compiler design because they allow us 
to see an entire expression. This capability makes code generation easier and 
in some cases greatly enhances optimization efforts. 

Expression trees can Of interest is the construction of an expression tree given an infix 
becOnstructedfroma expression. As we have already shown, we can always convert an infix 
postfix expression 
similar to postfix expression to a postfix expression, so we merely need to show how to con- 
evaluation. struct an expression tree from a postfix expression. Not surprisingly, this - .  

procedure is simple. We maintain a stack of (pointers to) trees. When we see 
an operand, we create a single-node tree and push a pointer to it onto our 
stack. When we see an operator, we pop and merge the top two trees on the 
stack. In the new tree, the node is the operator, the right child is the first tree 
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popped from the stack, and the left child is the second tree popped. We then 
push a pointer to the result back onto the stack. This algorithm is essentially 
the same as that used in a postfix evaluation, with tree creation replacing the 
binary operator computation. 

Summary 

In this chapter we examined two uses of stacks in programming language 
and compiler design. We demonstrated that, even though the stack is a sim- 
ple structure, it is very powerful. Stacks can be used to decide whether a 
sequence of symbols is well balanced. The resulting algorithm requires lin- 
ear time and, equally important, consists of a single sequential scan of the 
input. Operator precedence parsing is a technique that can be used to parse 
infix expressions. It, too, requires linear time and a single sequential scan. 
Two stacks are used in the operator precedence parsing algorithm. Although 
the stacks store different types of objects, the generic mechanism (tem- 
plates) allows the use of a single stack implementation for both types of 
objects. 

Objects of the Game 

expression tree A tree in which the leaves contain operands and the 
other nodes contain operators. (p. 432) 

infix expression An expression in which a binary operator has argu- 
ments to its left and right. When there are several operators, prece- 
dence and associativity determine how the operators are processed. 
(P. 420) 

lexical analysis The process of recognizing tokens in a stream of sym- 
bols. (p. 41 1) 

operator precedence parsing An algorithm that converts an infix 
expression to a postfix expression in order to evaluate the infix 
expression. (p. 422) 

postfix expression An expression that can be evaluated by a postfix 
machine without using any precedence rules. (p. 421) 

postfix machine Machine used to evaluate a postfix expression. The 
algorithm it uses is as follows: Operands are pushed onto a stack and 
an operator pops its operands and then pushes the result. At the end 
of the evaluation, the stack should contain exactly one element, 
which represents the result. (p. 421) 
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precedence table A table used to decide what is removed from the 
operator stack. Left-associative operators have the operator stack 
precedence set at 1 higher than the input symbol precedence. Right- 
associative operators go the other way. (p. 430) 

state machine A common technique used to parse symbols; at any 
point, the machine is in some state, and each input character takes it 
to a new state. Eventually, the state machine reaches a state at which 
a symbol has been recognized. (p. 414) 

tokenization The process of generating the sequence of symbols 
(tokens) from an input stream. (p. 41 1 ) 

Common Errors 

1. In production code, input errors must be handled as carefully as 
possible. Being lax in this regard leads to programming errors. 

2. For the balanced symbol routine, handling quotes incorrectly is a 
common error. 

3. For the infix to postfix algorithm, the precedence table must reflect 
the correct precedence and associativity. 

On the Internet 
- 

Both application programs are available. You should probably download the 
balancing program; it may help you debug other C++ programs. 

Balance.cpp Contains the balanced symbol program. 
Tokeni2er.h Contains the Tokeni zer class interface for checking 

C++ programs (Figure 12.2). 
Tokenizer.cpp Contains the Tokenizer class implementation for 

checking C++ programs. 
1nfix.cpp Contains the expression evaluator, instantiated for 

int. 

@ Exercises 

12.1. Show the result of running the balanced symbol program on 
a. 1. 
b. ( I .  
c. [ [ [. 



12.2. Show the postfix expression for 
a . 1 + 2 - 3 " 4 .  
b . l A 2 - 3  " 4 .  
c . 1 + 2 * 3 - 4 ^ 5 + 6 .  
d . ( 1 + 2 ) * 3 - ( 4 ^ ( 5 - 6 )  ) .  

12.3. For the infix expression a + b A c * d * e A f - g - h / 
( i + j ) , do the following. 
a. Show how the operator precedence parsing algorithm generates 

the corresponding postfix expression. 
b. Show how a postfix machine evaluates the resulting postfix 

expression. 
c. Draw the resulting expression tree. 

In Theory 

12.4. For the balanced symbol program, explain how to print out an error 
message that is likely to reflect the probable cause. 

12.5. In general terms, explain how unary operators are incorporated into 
expression evaluators. Assume that the unary operators precede their 
operands and have high precedence. Include a description of how 
they are recognized by the state machine. 

In Practice 

12.6. Use of the A operator for exponentiation is likely to confuse C++ pro- 
grammers (because it is the bitwise exclusive-or operator). Rewrite 
the Evaluator class with * * as the exponentiation operator. 

12.7. The infix evaluator accepts illegal expressions in which the opera- 
tors are misplaced. 
a. What will 1 2 3 + * be evaluated as? 
b. How can we detect these illegalities? 
c. Modify the Evaluator class to do so. 

Programming Projects 

12.8. Modify the expression evaluator to handle negative input numbers. 
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12.9. For the balanced symbol checker, modify the Tokenizer class by 
adding a public method that can change the input stream. Then add a 
public method to Balance that allows Balance to change the 
source of the input stream. (Hint: Have the Tokenizer class store a 
pointer to an i s  tream instead of a reference to an is  tream.) 

12.10. Implement a complete C++ expression evaluator. Handle all C++ 
operators that can accept constants and make arithmetic sense (e.g., 
do not implement [ 1 ). 

12.1 1. Implement a C++ expression evaluator that includes variables. 
Assume that there are at most 26 variables-namely, A through z- 
and that a variable can be assigned to by an = operator of low prece- 
dence. 

12.12. Write a program that reads an infix expression and generates a post- 
fix expression. 

12.13. Write a program that reads a postfix expression and generates an 
infix expression. 
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Chapter 13 

Utilities 

In this chapter we discuss two utility applications of data structures: data 
compression and cross-referencing. Data compression is an important tech- 
nique in computer science. It can be used to reduce the size of files stored on 
disk (in effect increasing the capacity of the disk) and also to increase the 
effective rate of transmission by modems (by transmitting less data). Virtually 
all newer modems perform some type of compression. Cross-referencing is a 
scanning and sorting technique that is done, for example, to make an index 
for a book. 

In this chapter, we show: 

an implementation of a file-compression algorithm called Huffman's 
algorithm; and 
an implementation of a cross-referencing program that lists, in sorted 
order, all identifiers in a program and gives the line numbers on which 
they occur. 

1 3.1 File Compression 
The ASCII character set consists of roughly 100 printable characters. To dis- A standard encoding 

tinguish these characters, [log I001 = 7 bits are required. Seven bits allow Of characters uses 
[log cl bits. 

the representation of 128 characters, so the ASCII character set adds some 
other "unprintable" characters. An eighth bit is added to allow parity checks. 
The important point, however, is that if the size of the character set is C, then 
r log C 1 bits are needed in a standard fixed-length encoding. 

Suppose that you have a file that contains only the characters a, e, i, s, 
and t, blank spaces ( sp) ,  and newlines (nl). Suppose further that the file has 
10 a's, 15 e's, 12 i's, 3 s's, 4 t's, 13 blanks, and 1 newline. As Figure 13.1 
shows, representing this file requires 174 bits because there are 58 characters 
and each character requires 3 bits. 



Reducing the number 
of bits required for 
data representation is 
called compression, 
which actually 
consists of two 
phases: the encoding 
phase (compressing) 
and the decoding 
phase 
(uncompressing). 

In a variable-length 
code, the most- 
frequent characters 
have the shortest 
representation. 

In a binary trie, a left 
branch represents 0 
and a right branch 
represents 1. The 
path to a node 
indicates its 
representation. 

In real life, files can be quite large. Many very large files are the output 
of some program, and there is usually a big disparity between the most fre- 
quently and least frequently used characters. For instance, many large data 
files have an inordinately large number of digits, blanks, and newlines but 
few q's and x's. 

In many situations reducing the size of a file is desirable. For instance, 
disk space is precious on virtually every machine, so decreasing the amount 
of space required for files increases the effective capacity of the disk. When 
data are being transmitted across phone lines by a modem, the effective rate 
of transmission is increased if the amount of data transmitted can be 
reduced. Reducing the number of bits required for data representation is 
called compression, which actually consists of two phases: the encoding 
phase (compression) and the decoding phase (uncompression). A simple 
strategy discussed in this chapter achieves 25 percent savings on some large 
files and as much as 50 or 60 percent savings on some large data files. Exten- 
sions provide somewhat better compression. 

The general strategy is to allow the code length to vary from character to 
character and to ensure that frequently occurring characters have short 
codes. If all characters occur with the same or very similar frequency, you 
cannot expect any savings. 

13.1 .1 Prefix Codes 

The binary code presented in Figure 13.1 can be represented by the binary 
tree shown in Figure 13.2. In this data structure, called a binary trie (pro- 
nounced "try"), characters are stored only in leaf nodes; the representation 
of each character is found by starting at the root and recording the path, 

Character Code Frequency Total Bits 

a 000 10 30 

e 00 1 15 45 

i 01 0 12 36 

S 01 1 3 9 

t 100 4 12 

SP 101 13 39 

nl 110 1 3 

Total 174 

Figure 13.1 A standard coding scheme. 
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Figure 13.2 Representation of the original code by a tree. 

Figure 13.3 A slightly better tree. 

using a 0 to indicate the left branch and a 1 to indicate the right branch. For 
instance, s is reached by going left, then right, and finally right. This is 
encoded as 0 1 1 .  If character c is at depth di  and occurs f ;  times, the cost of 
the code is C dif;. 

We can obtain a better code than the one given in Figure 13.2 by recog- 
nizing that nl is an only child. By placing it one level higher (replacing its 
parent), we obtain the new tree shown in Figure 13.3. This new tree has a 
cost of 173 but is still far from optimal. 

Note that the tree in Figure 13.3 is a full tree, in which all nodes either In a fu/ltree,all nodes 

are leaves or have two children. An optimal code always has this property; either are leaves Or 

have two children. 
otherwise, as already shown, nodes with only one child could move up a 
level. If the characters are placed only at the leaves, any sequence of bits can 
always be decoded unambiguously. 

For instance, suppose that the encoded string is 0 1001 1 1 1000 10 1 1000 
10001 11. Figure 13.3 shows that 0 and 01 are not character codes but that 
010 represents i, so the first character is i. Then 01 1 follows, which is an s. 
Then 11 follows, which is a newline (nl). The remainder of the code is a, sp, 
t ,  i, e, and nl. 

The character codes can be different lengths, so long as no character In a prefix code, no - - 
code is a prefix of another character code, an encoding called a prefix code. character is a 

prefix of another 
Conversely, if a character is contained in a nonleaf node, guaranteeing character code.This 
unambiguous decoding is no longer possible. is guaranteed if the 

Thus our basic problem is to find the full binary tree of minimum cost Characters are only in 
leaves. A prefix code (as defined previously) in which all characters are contained in the leaves. 
can be decoded 

The tree shown in Figure 13.4 is optimal for our sample alphabet. As shown unambiguously. 
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Figure 13.4 An optimal prefix code tree. 

Character Code Frequency Total Bits 

a 00 1 10 30 

1 Total 146 

Figure 13.5 Optimal prefix code. 

in Figure 13.5, this code requires only 146 bits. There are many optimal 
codes, which can be obtained by swapping children in the encoding tree. 

13.1.2 Huffman's Algorithm 

Huffman's algorithm HOW is the coding tree constructed? The coding system algorithm was given 
an by Huffman in 1952. Commonly called Huffman's algorithm, it constructs 

prefix code. It works 
by repeatedly an optimal prefix code by repeatedly merging trees until the final tree is 
merging the two obtained. 
mlnimum weight Throughout this section, the number of characters is C. In Huffman's algo- 
trees. rithm we maintain a forest of trees. The weight of a tree is the sum of the fre- 

quencies of its leaves. C - 1 times, two trees, T ,  and T 2 ,  of smallest weight 
are selected, breaking ties arbitrarily, and a new tree is formed with subtrees T ,  
and T Z .  At the beginning of the algorithm, there are C single-node trees (one 
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for each character). At the end of the algorithm, there is one tree, giving an 
optimal Huffman tree. In Exercise 13.4 you are asked to prove Huffman's 
algorithm gives an optimal tree. 

An example helps make operation of the algorithm clear. Figure 13.6 Ties are broken 

shows the initial forest; the weight of each tree is shown in small type at the 
root. The two trees of lowest weight are merged, creating the forest shown in 
Figure 13.7. The new root is T I .  We made s the left child arbitrarily; any tie- 
breaking procedure can be used. The total weight of the new tree is just the 
sum of the weights of the old trees and can thus be easily computed. 

Now there are six trees, and we again select the two trees of smallest 
weight, T1 and t. They are merged into a new tree with root T2  and weight 8, 
as shown in Figure 13.8. The third step merges T 2  and a, creating T3, with 
weight 10 + 8 = 18. Figure 13.9 shows the result of this operation. 

Figure 13.6 Initial stage of Huffman's algorithm. 

Figure 13.7 Huffman's algorithm after the first merge. 

Figure 13.8 Huffman's algorithm after the second merge. 

Figure 13.9 Huffman's algorithm after the third merge. 
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After completion of the third merge, the two trees of lowest weight are 
the single-node trees representing i and sp. Figure 13.10 shows how these 
trees are merged into the new tree with root T4. The fifth step is to merge the 
trees with roots e and T 3  because these trees have the two smallest weights, 
giving the result shown in Figure 13.1 1. 

Finally, an optimal tree, shown previously in Figure 13.4, is obtained by 
merging the two remaining trees. Figure 13.12 shows the optimal tree, with 
root T6. 

Figure 13.10 Huffman's algorithm after the fourth merge. 

Figure 13.1 1 Huffman's algorithm after the fifth merge. 

Figure 13.12 Huffman's algorithm after the final merge. 
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13.1.3 Implementation 

We now provide an implementation of the Huffman coding algorithm, with- 
out attempting to perform any significant optimizations; we simply want a 
working program that illustrates the basic algorithmic issues. After discuss- 
ing the implementation we comment on possible enhancements. Although 
significant error checking needs to be added to the program, we have not 
done so because we did not want to obscure the basic ideas. 

Figure 13.13 illustrates some of the header files to be used. For simplic- 
ity we use maps and maintain a priority queue of (pointers to) tree nodes 
(recall that we are to select two trees of lowest weight). Thus we need 
<queue> and <functional> -and, as it turns out, Wrapper. h (because 
we need to wrap the pointer variables to make the comparison function 
meaningful). We also use <algorithm> because, in one of our routines, we 
use the reverse method. 

In addition to the library classes, our program consists of several addi- 
tional classes. Because we need to perform bit-at-a-time 110, we write wrap- 
per classes representing bit-input and bit-output streams. We write other 
classes to maintain character counts and create and return information about 
a Huffman coding tree. Finally, we write a class that contains the (static) 
compression and uncompression functions. To summarize, the classes that 
we write are: 

ibs tream Wraps an istream and provides bit-at-a-time input. 
obs tream Wraps an ostream and provides bit-at-a-time output. 
Charcounter Maintains character counts. 
Huff manTree Manipulates Huffman coding trees. 
Compressor Contains compression and uncompression methods. 

Figure 13.13 The include directives used in the compression program. 
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Bit-Input and Bit-Output Stream Classes 
The class interfaces for ibstream and obstream are similar and are shown 
in Figures 13.14 and 13.15, respectively. Both work by wrapping a stream. A 
reference to the stream is stored as a private data member. Every eighth 
readBit of the ibstream (orwrite~it of the obstream) causes a char 
to be read (or written) on the underlying stream. The char is stored in a 
buffer, appropriately named buffer, and buff erpos provides an indica- 
tion of how much of the buffer is unused. 

Implementation of ibstream is provided in Figure 13.16. The getBit 
and setBit methods are used to access an individual bit in an 8-bit charac- 
ter;' they work by using bit operations. (Appendix A.2.3 describes the bit 
operators in more detail.) In readBit, we check at line 26 to find out 
whether the bits in the buffer have already been used. If so, we get 8 more 
bits at line 28, and reset the position indicator at line 31. Then we can call 
getBit at line 33. 

/ /  ibstream class interface: Bit-input stream wrapper class. 
/ / 
/ /  CONSTRUCTION: with an open istream. 
/ / 
/ /  ******************PUBLIC OPERATIONS*********************** 

/ /  int readBit ( ) - - >  Read one bit as a 0 or 1 
/ /  istream & getInputStream( ) - - >  Return underlying stream 
/ /  ********x*********ERRORs******r*************************** 

/ /  Error checking can be done on result of getInputStream( 1 .  

class ibstream 

ibstream( istream & is ) ;  

int readBit ( ) ; 

istream & getInputStream( ) const; 

private: 
istream & in; / /  The underlying input stream 
char buffer; / /  Buffer to store eight bits at a time 
int bufferpos; / /  Position in buffer for next read 

1 ;  

Figure 13.14 The ibs tream class interface. 

I .  The Standard Library provtdes a bi tse t class. but not all compilers support it yet. 
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1 / /  obstream class interface: Bit-output stream wrapper class. 
2 / /  
3 / /  CONSTRUCTION: with an open ostream. 
4 / /  
5 / /  ******************PUBLIC OPERATIONS*********************** 

6 / /  void writeBit( val ) - ->  Write one bit ( 0  or 1) 
7 / /  void writeBits( val ) - - >  Write a vector of bits 
8 / /  void flush ( ) - - >  Flush buffered bits 
9 / /  ostream & getoutputstream( ) --> Return underlying stream 

10 / /  ******************ERRORS********************************** 

11 / /  Error checking can be done on result of getoutputstream( ) 

12 
13 class obstream 
14 { 
15 public: 
16 obstream( ostream & os ) ;  

17 -0bstream ( ) ; 

18 
19 void writeBit( int val ) ;  

20 void writeBits( const vector<int> & val ) ;  

21 void flush ( ) ; 

22 ostream & getoutputstream( ) const; 
23 
24 private: 
25 ostream & out; / /  The underlying output stream 
26 char buffer; / /  Buffer to store eight bits at a time 
27 int bufferPos; / /  Position in buffer for next write 
28 1; 

Figure 13.1 5 The obs t ream class interface. 

The obstream class, implemented in Figure 13.17, is similar to 
ibstream. One difference is that we provide a flush method because there 
may be bits left in the buffer at the end of a sequence of writeBit calls. 
The flush method is called when a call to writeBit fills the buffer and 
also is called by the destructor. 

Neither class performs error checking, but we can get the underly- 
ing stream by use of an accessor function (get~nputstream or  
getoutputstream), and then test the state of the streams. Thus full error 
checking is available. 

The Character Counting Class 
Figure 13.18 provides the Charcounter class, which is used to obtain the 
character counts in an input stream (typically a file). Alternatively, the char- 
acter counts can be set manually and then obtained later. 



1 static const int BITS-PER-CHAR = 8; 
2 static const int DIFF-CHARS = 256; 
3 
4 / /  Return bit at position pos in a packed set of bits (pack). 
5 int getBit( char pack, int pos ) 

6 ( 
7 return ( pack & ( 1 << pos ) ) ? 1 : 0; 
8 1 
9 

10 / /  Set bit at position pos in a packed set of bits (pack). 
11 void setBit( char & pack, int pos, int val ) 

12 I 
13 if ( val == 1 ) 

14 pack / =  ( val << pos ) ;  

15 1 
16 
17 / /  Construct the bit-input stream. 
18 ibstream::ibstream( istream & is ) 

19 : bufferPos( BITS-PER-CHAR ) ,  in( is ) 

20 ( 

21 ) 

22 
23 / /  Read one bit. 
24 int ibstream: : readBit ( ) 

25 { 
26 if( bufferpos == BITS-PER-CHAR ) 

27 I / /  No bits left in the buffer, so 
28 in.get( buffer ) ;  / /  Get a new set of bits for buffer 
29 if( in.eof( ) ) 

30 return EOF; 
31 bufferpos = 0; / /  Reset bufferpos 
32 } 

33 return getBit( buffer, bufferPos++ ) ;  

34 1 
35 
36 / /  Return underlying input stream. 
37 istream & ibstream::getInputStream( ) const 
38 I 
39 return in; 
40 1 

Figure 13.16 Implementation of the ibstream class. 

Our implementation uses a map (mapping characters to their counts), but 
a more efficient implementation could be obtained by simply using an array 
of 256 ints. Changing this implementation would not affect the rest of the 
program. In Exercise 13.1 1 you are asked to investigate whether making this 
change would affect performance. 
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1 / /  Construct the bit-output stream. 
2 obstream::obstream( ostream & os ) 

3 : bufferPos( 0 ) ,  buffer( 0 ) ,  out( os ) 

4 i 
5 1 
6 
7 / /  Destructor (writes any bits left in the buffer). 
8 obstream::-obstream( ) 
9 i 

10 flush ( ) ; 

11 1 
12 
13 / /  If the buffer is non-empty, write one more char. 
14 void obstream::flush( ) 

15 i 
16 if( bufferpos == 0 ) / /  If buffer is empty 
17 return; / /  Nothing to do 
18 out.put( buffer ) ;  / /  Write the buffer 
19 bufferpos = 0; / /  Reset the position 
20 buffer = 0; / /  Clear the buffer 
21 1 
22 
23 / /  Write one bit. 
24 void obstrearn::writeBit( int val ) 

25 i 
26 setBit( buffer, bufferPos++, val ) ;  

27 if( bufferpos == BITS-PER-CHAR ) 

28 flush( ) ; 

29 1 
30 
31 / /  Write a vector of bits. 
32 void obstrearn::writeBits( const vector<int> & val ) 

33 I 
34 for( int i = 0 ;  i < val.size( ) ;  i++ ) 

35 writeBit ( val[ i I ) ; 

36 } 
37 
38 / /  Return underlying output stream. 
39 ostream & obstream::getOutputStream( ) const 
40 I 
41 return out; 
42 } 

Figure 13.17 Implementation of the obstream class. 



1 / /  CharCounter class interface: a character counting class. 
2 / /  
3 / /  CONSTRUCTION: with no parameters or an open istream. 
4 / /  
5 / /  ******************PUBLIC OPERATIONS*********************** 

6 / /  int getcount ( ch j - - >  Return # occurrences of ch 
7 / /  void setcount( ch, count ) - - >  Set # occurrences of ch 
8 / /  ******************ERR~R~********************************** 

9 / /  No error checks. 
10 
11 class CharCounter 
12 { 
13 public: 
14 Charcounter ( ) ; 

15 Charcounter( istream & input ) ;  

16 
17 int getcount( char ch ) const; 
18 void setcount( char ch, int count ) ;  

19 
20 private: 
21 map<char,int,less<char> > thecounts; 
22 ) ;  

23 
24 / /  Constructor: All counts are zero. 
25 CharCounter::CharCounter( j : in( cin 1 
26 ( 

27 I 
28 
29 / /  Constructor: Get counts by reading from input stream. 
30 CharCounter: :Charcounter( istream & input ) 

31 { 

32 char ch; 
33 while ( !input .get ( ch ) . eof ( ) 1 
34 thecounts [ ch I ++; 
35 1 
36 
37 / /  Return the character count for ch. 
38 int CharCounter::getCount( char ch ) const 
39 { 

40 map<char,int,less<char> >::const-iterator itr; 
41 itr = theCounts.find( ch 1 ;  
42 return itr ! =  theCounts.end( ) ? (*itr).second : 0; 
43 } 

44 
45 / /  Set the character count for ch. 
46 void CharCounter::setCount( char ch, int count ) 

47 ( 
48 theCounts[ ch I = count; 
49 } 

Figure 13.18 The CharCounter class. 
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The Huffman Tree Class 
The tree is maintained as a collection of nodes. Each node has links to its left 
child, right child, and parent (in Chapter 18 we discuss the implementaton of 
trees in detail). The node declaration is shown in Figure 13.19. 

The ~ u f  fmanTree class interface is provided in Figure 13.20. We can 
create a Huf fmanTree object by providing a CharCounter object, in 
which case the tree is built immediately. Alternatively, it can be created with- 
out a CharCounter object. In that case, the character counts are read by a 
subsequent call to readEncodingTable, and at that point the tree is built. 

The  Huf fmanTree class  provides the writeEncodingTable 
member function to write the tree out to file (in a form suitable for a 
call to read~ncoding~able). It also provides public methods to con- 
vert from a character to a code, and vice v e r m 2  Codes are represented 
by a vector<int>, in which each vector element is either a 0 or 1. 

Internally, root is a pointer to the root node of the tree, and thecount s 
is a CharCounter object that can be used to initialize the tree nodes. We 
also maintain a map, theNodes, which maps each character to (a pointer to) 
the tree node that contains it. As was the case with CharCounter, the map 
could be replaced with an array. 

Figure 13.21 shows the constructors and the routine (public member 
function and private helper) to return the code for a given character. The con- 
structors start with empty trees, and the one-parameter constructor initializes 

1 / /  Basic node in a Huffman coding tree. 
2 struct HuffNode 
3 { 
4 int value; 
5 int weight; 
6 HuffNode *left; 
7 HuffNode *right; 
8 HuffNode *parent; 
9 

10 HuffNodei int v, int w, HuffNode *It, 
11 HuffNode *rt, HuffNode *pt ) 

12 : value( v 1 ,  weighti w ) ,  left( It ) ,  

13 right ( rt ) , parent ( pt ) { 1 
14 1; 

Figure 13.19 Node declaration for the Huffman coding tree. 

2. Technical alert: An int is used instead of char to allow all characters and the EOF 
symbol. 



1 / /  Huffman tree class interface: manipulate Huffman coding tree. 
2 / /  
3 / /  CONSTRUCTION: with no parameters or a CharCounter object. 
4 / /  
5 / /  ******************PUBLIC OPERATIONS*********************** 

6 / /  vector getcode( ch ) - -z  Return code given character 
7 / /  int getchar ( code ) - - >  Return character given code 
8 / /  void writeEncodingTable( out ) - ->  Write coding table to out 
9 / /  void readEncodingTable( in ) - - >  Read encoding table from in 

10 / /  *****X**********X*ERRORS********************************** 

11 / /  Error check for illegal code. 
12 
13 class HuffmanTree 
14 ( 

15 public: 
16 HuffmanTree( ) ; 

17 HuffmanTree( const Charcounter & cc ) ;  

18 
19 enum ( ERROR = -3, INCOMPLETE-CODE = -2, END = -1 1 ;  
20 
21 / /  Here, vector<int> is usable by ibstream and obstreams. 
22 vector<int> getcode( int ch ) const; 
23 int getchar( const vector<int> & code ) const; 
24 
25 / /  Write the encoding table using character counts. 
26 void writeEncodingTable( ostream & out ) ;  

27 void readEncodingTable( istream & in ) ;  

28 
29 private: 
30 Charcounter thecounts; 
31 map<int,HuffNode *,less<int> > theNodes; 
32 Huf £Node *root; 
33 
34 void createTree( ) ;  

35 1;  

Figure 13.20 The Huf fmanTree class interface. 

the CharCounter object, and immediately calls the private routine 
createTree. The CharCounter object is initialized to be empty in the 
zero-parameter constructor. 

For getcode, by consulting the map, we obtain a pointer to the tree 
node that stores the character whose code we are looking for. If the character 
is not in the map we signal an error by returning a zero-length vector. Other- 
wise we use a straightforward loop up the tree, following parent pointers, 
until we reach the root (which has no parent). Each step appends a 0 or 1 to 
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1 / /  Construct the tree given a CharCounter objecr. 
2 / /  Tree will be usable. 
3 HuffmanTree::3uffmanTree( const CharCounter & cc ) 

4 : thecountsi cc ) 

5 I 
6 root = NULL; 
7 createTree ( ) ; 

8 1 
9 

10 / /  Construct the tree in an unusable state. 
11 / /  A call to readEncodingTable is expected to follow. 
12 HuffmanTree: :HuffmanTree( ) 

13 I 
14 root = NULL; 

15 1 
16 
17 / /  Return the code corresponding to character ch. 
18 / /  (The parameter is an int to accommodate EOF). 
19 / /  If code is not found, return a vector of size 0. 
20 vector<int> HuffmanTree::getCode( int ch ) const 
21 I 
22 map<int,HuffNode *,lesscint> >::const-iterator itr; 
23 itr = theNodes.find( ch ) ;  

24 if( itr == theNodes.end( ) ) 

25 return vector<int>( ) ;  

26 HuffNode *current = (*itr) .second; 
27 
28 vector<int> v; 
29 HuffNode *par = current->parent; 
30 
31 while( par ! =  NULL ) 

32 I 
33 if( par->left == current ) 

34 v.push-back( 0 ) ;  / /  current is a left child 
35 else 
36 v.push-back( 1 i ;  / /  current is a right child 
37 current = current->parent; 
38 par = current->parent; 
39 1 
40 
4 1 reverse( v.begin( ) ,  v.end( ) ) ;  

42 return v; 
43 1 

Figure 13.21 Some of the Huffman tree methods. including constructors and the 
routine for returning a code for a given character. 
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u t i l i t i e s  

1 / /  Get the character corresponding to code. 
2 int HuffmanTree::getChar( const vector<int> & code ) const 
3 I 
4 HuffNode *p = root; 
5 
6 for( int i = 0; p ! =  NULL && i < code.size( ) ;  i++ ) 

7 if( code[ i ] == 0 j 

8 p = p->left; 
9 else 

10 p = p->right; 
11 if( p == NULL j 

12 return ERROR; 
13 return p->value; 
14 1 

Figure 13.22 A routine for decoding (generating a character, given the code) 

the end of the vector maintaining the code. These actions give the code in 
reverse order, so we use the reverse generic algorithm (provided as part of 
<algorithm>) to fix things. 

The getchar method shown in Figure 13.22 is simpler: We start at the 
root, and branch left or right, as directed by the code. Reaching NULL prema- 
turely generates an error. Otherwise, we return the value stored in the node 
(which for nonleaf nodes turns out to be the symbol INCOMPLETE). 

In Figure 13.23 we have routines to read and write the encoding table. 
The format that we use is simple and is not necessarily the most space- 
efficient. For each character that has a code, we write it out (using one byte) 
and then write out its character count with formatted 110. So the character 
count could take as little as 1 byte (if it occurs 9 times or less), or more than 
four bytes (if it occurs 10,000 or more times). After the character count, we 
write a newline. We signal the end of the table by writing out an extra entry 
containing a null terminator character \ 0 with a count of zero. The count 
of zero is special. 

The readEncodingTable method initializes all the character counts to 
zero and then reads the table, and updates the counts as they are read. It calls 
createTree, shown in Figure 13.24, to build the Huffman tree. 

In that routine, we maintain a priority queue of pointers to tree nodes. To 
do so we must provide a comparison function for tree nodes. There are two 
important details. First, the Standard Library priority-queue function 
accesses the maximum item rather than the minimum. So we reverse the 
meaning of operator<, as shown on lines 3 to 6. Second, we cannot have a 
priority queue of pointers because the comparison function for pointers is 
meaningless (it compares memory locations). Thus we use the Pointer 



1 / /  Write an encoding table to an output stream. 
2 /: Format is character, count (formatted), newline. 
3 / /  A zero count terminates the encoding table. 
4 void HuffmanTree::writeEncodingTable( ostream & out ) 

5 { 

6 for( int i = 0; i < DIFF-CHARS; it+ ) 

7 if ( theCounts.getCount( i ) > 0 ) 

8 out << static-cast<char>( i 1 
9 << theCounts.getCount( i ) <<  ' \ n ;  

10 out << '\0' <<  0 < <  "\n'; / /  The end-of-table senkinel 

11 I 
12 
13 /I Read the encoding table from an input stream in format 
14 /: given above and then construct the Huffman tree. 
15 / /  Stream will then be positioned to read compressed data. 
16 void HuffmanTree::readEncodingTable( istrearn & in ) 

17 { 

18 for( int i = 0; i < DIFF-CHARS: i++ ) 

19 theCounts.setCount( i, 0 1 ; 
20 
2 1 char ch, nl; 
22 int num; 
23 
24 f o r ( ;  ; ) 

25 i 
26 in.get ( ch ) ; / /  read the character 
27 ln >> num; / /  read the count 
28 in.get( nl ) ;  / /  digest the newline 
29 if( nurn == 0 ) 

30 break ; / /  sentinel reached 
3 1 theCounts.setCount( ch, num ) ;  

32 I 
33 createTree ( ; / /  build the tree 

34 I 

Figure 13.23 Routines for reading and writing encoding tables. 

wrapper class that we wrote in Section 5.3.1. Its use results in the tortured 
declaration of the priority queue that spans lines 11-13.' 

We then search for characters that have appeared at least once. When 
the test at line 16 succeeds, we have such a character. We create a new tree 
node at lines I8 and 19. add it to the map at line 20, and then add it to the 
priority queue at line 21 (note that we must wrap the pointer variable in a 

3. The Pointer wrapper class, as written in Figure 5.7, requires operator<: thus we 
cannot use operator> and instantiate the priority-queue with a greater function 
template. 



1 / /  Comparison function for HuffNode. 
2 / /  Meaning is reversed so priority-queue will retrive the min. 
3 boo1 operator< ( const HuffNode & lhs, const HuffNode & rhs ) 

4 { 

5 return 1hs.weight > rhs.weight; 
6 1 
7 
8 / /  Construct the Huffman coding tree. 
9 void HuffmanTree::createTree( ) 

10 i 
11 priority-queue<Pointer<HuffNode>, 
12 vector<Pointer<HuffNode> >,  

13 less<Pointer<HuffNode> > > pq; 
14 
15 for( int i = 0; i < DIFF-CHARS; i++ ) 

16 if ( theCounts.getCount( i ) > 0 ) 

17 ( 

18 HuffNode *newNode = new HuffNode( i, 
19 theCounts.getCount( i ) ,  NULL, NULL, NULL ) ;  

20 theNodes [ i ] = newNode; 
21 pq.push( Pointer<HuffNode>( newNode ) 1 ;  
22 1 
23 
24 theNodes [ END ] = new Huf £Node ( END, 1, NULL, NULL, NULL ) ; 

25 pq.push( Pointer<HuffNode>i theNodes[ END I ) ) ;  

26 
27 while( pq.size( ) > 1 ) 

28 I 
29 HuffNode *nl = pq.top( ) ;  pq.pop( ) ;  

30 HuffNode *n2 = pq.top( ) ;  pq.pop( ) ;  

31 HuffNode *result = new HuffNode( INCOMPLETE-CODE, 
32 nl->weight + n2->weight, nl, n2, NULL ) ;  

33 nl->parent = n2->parent = result; 
34 pq.pushi Pointer<HuffNode>( result ) ) ; 

35 1 
36 root = pq. top ( ) ; 

37 1 

Figure 13.24 A routine for constructing the Huffman coding tree. 

Pointer<Huf £Node> object in order to add it to the priority queue). At 
lines 24 and 25 we add the end-of-file symbol. The loop that extends from 
lines 27 to 35 is a line-for-line translation of the tree construction algorithm. 
While we have two or more trees, we extract two trees from the priority 
queue, merge the result, and put it back in the priority queue. At the end of 
the loop, only one tree is left in the priority queue, and we can extract it and 
set root. 



File Compression 

The tree produced by createTree is dependent on how the priority 
queue breaks ties. Lnfortunately. this means that if the program is compiled 
on two different machines, with two different STL priority-queue 
implementations, it is possible to compress a file on the first machine, and 
then be unable to obtain the original when attempting to uncompress on the 
second machine. Avoiding this problem requires some additional work. 

Compressor Class 
All that is left to do is to write a compression and uncompression routine and 
then a main that calls them. These functions could all be global. but instead, 
we make the compression and uncompression routines static member func- 
tions in a Compressor class. The main advantage of doing so is that we 
avoid polluting the global namespace. We repeat our earlier disclaimer about 
skimping on error checking so that we can illustrate the basic algorithmic 
ideas. 

The Compressor class declaration is shown in Figure 13.25 along with 
the compress function. We need to read and write files that have non-ASCII 
characters, so we open the files in binary mode. 

The compress routine opens the file for reading at line 2 1 .  It then con- 
stmcts a Charcounter object at line 23 and a Huf fmanTree object at line 24. 
At line 26 we open the output file. and at line 27 we write out the encoding table. 

At this point we are ready to do the main encoding. We reset the input 
stream to the beginning of the file (line 29).4 Then we create a bit-output 
stream object at line 30. The rest of the algorithm repeatedly reads a charac- 
ter (line 33) and writes its code (line 34). There is a tricky piece of code at 
line 34: The int passed to getcode may be confused with EOF if we sim- 
ply use ch because the high bit can be interpreted as a sign bit. Thus we use 
a bit mask to treat the value as an unsigned quantity. When we exit the loop, 
we have reached the end of file, so we write out the end-of-file code at line 
36. The obs tream destructor flushes any remaining bits to the output file, 
so an explicit call to flush is not needed. 

The uncompress routine is next, in Figure I 3.26. Lines 10-19 form the 
name of the uncompressed file, and checks (somewhat lamely. as it uses only 
the name) whether the original is actually a compressed file. We then open 
the compressed file for reading and the target for writing at lines 21 and 22. 
We construct a ~ u f  fmanTree object by reading the encoding table (lines 24 
and 25) from the compressed file. We then create a bit-input stream at line 27 
and loop. 

The bits object, declared at line 28. represents the (Huffman) code that 
we are currently examining. Each time we read a bit at line 33, we add the 

4. Note that we must clear the EOF error state before going back to the beginning 



u t i l i t i e s  

1 class Compressor 
2 I 
3 public: 
4 static void compress( const string & inFile ) ;  

5 static void uncompress( const string & compressedFile 1 ;  
6 
7 private: 
8 static const int READ-MODE; 
9 static const int WRITE-MODE; 

10 1; 
11 
12 const int Compressor::READ-MODE = ios::in I ios::binary; 
13 const int Compressor::WRITE-MODE = ios::out I ios::binary; 
14 
15 / /  Compress inFile; writes result to a file whose name is 
16 / /  formed by appending ".hufN. 
17 / /  Very little error checking is performed. 
18 void Compressor::compress( const string & inFile ) 

19 
20 string compressedFile = inFile + ".hufU; 
21 ifstream in( inFi1e.c-str( ) ,  READ-MODE ) ;  

22 
23 Charcounter countObj( in ) ;  

24 HuffmanTree codeTree( countObj ) ;  

25 
26 ofstream out( compressedFi1e.c-str( ) ,  WRITE-MODE ) ;  

27 codeTree.writeEncodingTable( out ) ;  

28 
29 in.clear( ) ;  in.seekg( 0, ios::beg ) ;  / /  Rewind the stream 
30 obstream bout ( out ) ;  

31 
32 char ch; 
33 while( in.get ( ch ) ) 

34 bout.writeBits( codeTree.getCode( ch & Oxff ) ) ;  

35 
36 bout.writeBits( codeTree.getCode( EOF ) ) ;  

37 } 

Figure 13.25 The Compressor class, used to place compression and decompression 
routines outside global scope, and the compression routine. 

bit to the end of the Huffman code (at line 34). We then look up the Huffman 
code at line 35. If it is incomplete, we continue the loop (lines 36 and 37). If 
there is an illegal Huffman code, we stop after printing an error message 
(lines 38 to 42). If we reach the end-of-file code, we break the loop (lines 43 
and 44); otherwise, we have a match, so we output the character that 
matches the Huffman code (line 47) and then clear the current Huffman code 
prior to resuming (line 48). 



1 / /  Uncompress a file. Write the result to a file whose name 
2 / /  is formed by adding ".ucU (in reality we would simply 
3 / /  form the new name by stripping off ".hufN) . 
4 / /  Very little error checking is performed. 
5 void Compressor::uncompress( const string & compressedFile ) 

6 { 
7 int i; 
8 string inFile, extension; 
9 

10 for( i = 0; i < compressedFile.length( ) - 4; i++ ) 

11 inFile += compressedFile[ i 1 ;  
12 for( ; i < compressedFile.length( ) ;  i++ 
13 extension += compressedFile[ i I ;  
14 if ( extension ! = " .hutM ) 
15 { 

16 cerr << "Not a compressed file" <<  endl; 
17 return; 
18 1 
19 inFile += ".ucU; / /  for debugging, to not clobber original 
20 
2 1 ifstream in( compressedFi1e.c-str( ) ,  READ-MODE 1 ;  
22 ofstrean out( inFi1e.c-str( ) ,  WRITEXMODE ) ;  

23 
24 HuffmanTree codeTree; 
25 codeTree.readEncodingTable( in ) ;  

26 
27 ibstream bin ( in ) ; 

28 vector<int> bits; 
29 int bit; 
30 int decode; 
31 for( ; ; ) 

32 I 
33 bit = bin.readBit( ) ;  

34 bits.push-back( bit ) ;  

35 decode = codeTree.getChar( bits ) ;  

36 if( decode == HuffmanTree: :INCOMPLETE-CODE ) 

37 continue; 
38 else if( decode == HuffmanTree::ERROR ) 
39 { 

40 cerr << "Error decoding!" <i endl; 
41 break; 
42 } 

43 else if( decode == HuffmanTree::END ) 
44 break; 
45 else 
46 { 

47 out.put( static-cast<char>( decode ) 1 ;  
48 bits. resize ( 0 ) ; 

49 1 
50 1 
51 1 

Figure 13.26 A routine for performing uncompression. 



1 / /  Simple main that performs compression and uncompression. 
2 int main ( int argc, char *argv [ 1 ) 

3 I 
4 if ( argc < 3 ) 

5 { 

6 cerr << "Usage: " << argv[o] << " -[CIA] files" << endl; 
7 return 1; 
8 1 
9 

10 string option = argv[ 1 I ;  
11 for( int i = 2; i < argc; i++ i 
12 i 
13 string nextFile = argv[ i 1 ;  
14 if( option == "-c" 1 
15 Compressor::compress( nextFile ) ;  

16 else if( option == "-u" 1 
17 Compressor::uncompress( nextFile ) ;  

18 else 
19 i 
20 cerr << "Illegal option; usage: " << argv[OI 
21 << ' -[cu] files" <<  endl; 
22 return 1; 
23 1 
24 1 
25 
26 return 0; 
27 1 

Figure 13.27 A simple main for file compression and uncompression. 

The main Routine 
Finally, main is shown in Figure 13.27. If invoked with the -c argument, it 
compresses; with the -u argument it uncompresses. 

Improving the Program 
The program. as written. serves its main purpose of illustrating the basics of 
the Huffman coding algorithm. It achieves some compression, even on mod- 
erately sized files. For instance, it obtains roughly 36 percent compression 
when run on its own source file, hzip . cpp. However, the program could be 
improved in several ways. 

1 .  The error checking is extremely limited. A production program 
must verify that files open correctly and must check all reads and all 
writes. It must rigorously ensure that the file being decompressed is 
actually a compressed file. (One way to have it do so is to write 
extra information in the encoding table.) The internal routines 
should have more checks. 



A Cross-Reference Generator A 

2. Little effort has been made to minimize the size of the encoding 
table. For large files this lack is of little consequence, but for 
smaller files a large encoding table can be unacceptable because the 
encoding table takes up space itself. 

3. A robust program checks the size of the resulting compressed file 
and aborts if the size is larger than the original. 

4. In many places we made little attempt to optimize for speed. Dur- 
ing compression, input files are read twice, which can be slow on 
some systems. Further, memoization could be used to avoid 
repeated searching of the tree for codes, and maps could be 
replaced with a more efficient data structure when the key is simply 
a char. Often vectors are copied and returned, perhaps resulting in 
a performance hit. 

Further improvements to the program are left as an exercise for you 
to do. 

13.2 A Cross-Reference Generator 
In this section, we design a program called a cross-reference generator A cross-reference 

that scans a C++ source file, sorts the identifiers, and outputs all the identi- generator lists 
identifiers and their 

fiers, along with the line numbers on which they occur. One compiler line numbers. It is a 
application is to list, for each function, the names of all other functions common application 

that it directly calls. because it'is similar 

However, this is a general problem that occurs in many other contexts. to creating an index. 

For instance, it can be used to generalize the creation of an index for a book. 
Another use, spell checking, is described in Exercise 13.18. As a spelling 
checker detects misspelled words in a document, those words are gathered, 
along with the lines on which they occur. This process avoids repeatedly 
printing out the same misspelled word and indicates where the errors are. 

13.2.1 Basic Ideas 

Our main algorithmic idea is to use a map to store each identifier and the line We use a map to store 

numbers on which it occurs. In the map, the identifier is the key, and the list identifiers and their 
line numbers. We 

of line numbers is the value. After the source file has been read and the map store the line 
built, we can iterate over the collection, outputting identifiers and their cor- numbers for each 

responding line numbers. identifier in a list. 



1 / /  Xref class interface: generate cross-reference. 
2 / /  
3 ;/ CONSTRUCTION: with an open istream. 
4 i /  
5 / /  ****************xXpuBLIC OpERATIONS******X**************x* 

6 / /  void generateCrossReference( ) - - >  Name says it all . . .  
7 / /  **********f*****x*ERRORS**********f*X**X**f*****X*******x* 

8 / /  Error checking on comments and quotes is performed. 
9 

10 #include <ctype.h> 
11 #include ifstream> 
12 #include <list> 
13 #include <string> 
14 #include <map> 
15 #include <functional> 
16 using namespace std; 
17 
18 class Xref 
19 i 
20 public: 
2 1 Xref ( istream & input ) : tok( input ) { ) 

22 
23 void generateCrossReference( ) ;  

24 
25 private: 
26 Tokenizer tok; / /  Token source 
27 ) ;  

Figure 13.28 The Xref class interface. 

13.2.2 C++ Implementation 

The xref class interface is shown in  Figure 13.28. It is similar to (but sim- 
pler than) the Balance class shown in Figure 12.3, which was part of a bal- 
anced symbol program. Like that class, it makes use of the Tokenizer class 
defined in Figure 12.2. 

We can now discuss the implementation of the two remaining routines in 
the ~okenizer class: g e t ~ e x t ~ ~  and get~emaining~tring. These new 
parsing routines deal with recognizing an identifier. 

The parsing routines A C++ identifier consists of alphanumeric characters and underscores. 
are with the restriction that the first character may not be a digit. Consequently, 
though as usual they 
require some effort. the routine shown in Figure 13.29 tests whether a character is part of an 

identifier. In the getRemainingString routine shown in Figure 13.30 we 
assume that the first character of an identifier has already been read and is 
stored in the Tokenizer class data member ch. It repeatedly reads charac- 



A ~ r o s y ~ e f e r e n c e  Generator 

1 / /  Return indicates if ch can be part of a C++ identifier 
2 boo1 isIdChar( char ch ) 

3 { 

4 return ch == ' - '  / 1 isalnum( ch ) ;  

5 } 

Figure 13.29 A routine for testing whether a character could be part of an 
identifier. 

1 l i  Return an identifier read from input stream. 
2 l i  First character is already read into ch. 
3 string Tokenizer::getRemainingString( ) 
4 { 

5 string result; 
6 
7 f o r (  result = ch; nextchar( ) ;  result += ch ) 

8 if ( !isIdChar( ch ) ) 

9 { 

10 putBackChar( ) ; 

11 break; 
12 I 
13 
14 return result; 
15 1 

Figure 13.30 A routine for returning a string from input. 

ters until one that is not part of an identifier appears. At that point we put the 
character back (at line 10) and then return a string. 

The getNextID routine shown in Figure 13.3 1 is similar to the routine 
shown in Figure 12.7. The difference is that here at line 22, if the first char- 
acter of an identifier is encountered, we call getRemainingString to 
return the token. The fact that getNextID and getNextOpenClose are so 
similar suggests that it would have been worthwhile to write a private mem- 
ber function that performs their common tasks. 

With all the supporting routines written, let us consider the only member 
function, generateCrossRef erence, shown in Figure 13.32. Line 7 
declares the map. We read the input and build the map at lines 11 and 12. At 
each iteration, we have the current identifier. Let us see how the expres- 
sion at line 12 works. There are two cases: 

I .  T h e  current ident if ier  i s  in t he  map .  In t h i s  case ,  
xrefMap [current] gives a reference to the list of line num- 
bers, and the new line number is added to the end of the list. 



1 / /  Return next identifier, skipping comments 
2 / /  string constants, and character constants. 
3 / /  Return " "  if end of stream is reached. 
4 string Tokenizer::getNextID( ) 

5 { 

6 while( nextchar( ) 1 
7 i 
8 if( ch == ' / '  ) 

9 { 

10 if ( nextchar ( ) 

11 ( 

12 if( ch == ' * '  ) 

13 skipcomment( SLASH-STAR ) ;  

14 else if( ch == ' / I  ) 

15 skipcomment( SLASH-SLASH ) ;  

16 else 
17 putBackChar ( ) ; 

18 1 
19 1 
20 else if( ch ==  ' \ ' I  / ( ch == ' " I  ) 

2 1 skipQuote ( ch ) ; 

22 else if ( !isdigit( ch ) & &  isIdChar( ch ) ) 

23 return getRemainingString( ) ;  

24 i 
25 return " " ;  / /  End of file 
26 1 

Figure 13.31 A routine for returning the next identifier. 

2. The  c u r r e n t  identifier i s  not in the map.  In this  case ,  
x r  e  f  Map [ c u r r e n t  ] adds c u r r e n t  to the map with a default 
value. The default value is a l is t ,  constructed with its zero-param- 
eter constructor. The x r e  f  Map [ c u r r e n t  I returns a reference to 
the newly constructed l i s t .  Thus the call to push-back adds the 
new line number to the list, and as a result, the l i s t  contains the 
single line number, as desired. 

The output is Once we have built the map, we merely iterate through it by using an 
Obtained by using a appropriate iterator. The iterator, which visits the map in sorted order, is 
map traversal and an 
iterator class. A list declared at line 16, and line 17 is the standard iteration technique. Each time 
iterator is used to get a map entry appears, we need to print out information for the identifier cur- 
the line numbers. rently being examined by the map iterator. 

Recall that a map iterator looks at p a i r s ;  in a p a i r ,  the key is the data 
member named f i r s t ,  and the value is the data member named second. 

Thus the list of line numbers is given by ( " i t r )  . second,  as shown at 
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1 / /  Output the cross reference. 
2 void Xref::generateCrossRe£erence( ) 
3 ( 

4 typedef map<string,list<int>, lessistringz > MapType; 
5 typedef MapType::const-iterator MapIteratorType; 
6 
7 MapType xrefMap; 
8 string current; 
9 

10 / /  Insert identifiers into the map. 
11 while( ( current = tok.getNextID( ) ) ! =  " "  ) 

12 xrefMap[ current ].push-back( tok.getLineNumber( ) ) ;  

13 
14 / /  Iterate through map and output 
15 / /  identifiers and their line number. 
16 MapIteratorType itr; 
17 for( itr = xrefMap.begin( ) ;  itr ! =  xrefMap.end( ) ;  ++itr 
18 I 
19 const listiint> & theLines = l*itr) .second; 
20 listiint>::const-iterator lineItr = theLines.begin( 1 ;  
21 
22 / /  Print identifier and first line where it occurs. 
23 cout ii (*itr).first << " :  " ii *lineItr; 
24 
25 / /  Print all other lines on which it occurs. 
26 for( ++lineItr; lineItr ! =  theLines.end( ) ;  ++lineItr 
27 cout <c " ,  " i< *lineItr; 
28 cout << endl; 
29 1 
30 } 

Figure 13.32 The main cross-reference algorithm 

line 19, and the identifier being scanned is given by ( *itr) . first, as 
shown at line 23. To access individual lines, we need a list iterator, 
lineItr, shown at 20. 

We print the word and the first line number at line 23 (we are guaranteed 
that the list is not empty). Then, so long as we have not reached the end marker 
of the list, we repeatedly output line numbers in the loop that extends from line 
26 to 27. We print out a newline at line 28. We do not provide a main program 
here because it is essentially the same as that shown in Figure 12.10. 



Summary 

In this chapter we presented implementations of two important utilities: 
text compression and cross-referencing. Text compression is an important 
technique that allows us to increase both effective disk capacity and effec- 
tive modem speed. It is an area of active research. The simple method 
described here-namely, Huffman's algorithm-typically achieves com- 
pression of 25 percent on text files. Other algorithms and extensions of 
Huffman's algorithm perform better. Cross-referencing is a general 
approach that has many applications. 

Objects of the Game ...* 
binary trie A data structure in which a left branch represents 0 and a 

right branch represents 1. The path to a node indicates its represen- 
tation. (p. 440) 

compression The act of reducing the number of bits required for data 
representation, which actually has two phases: the encoding phase 
(compression) and the decoding phase (uncompression). (p. 440) 

cross-reference generator A program that lists identifiers and their 
line numbers. It is a common application because it is similar to cre- 
ating an index. (p. 461) 

full tree A tree whose nodes either are leaves or have two children. 
(P. 441) 

Huffman's algorithm An algorithm that constructs an optimal prefix 
code by repeatedly merging the two minimum weight trees. (p. 442) 

prefix code Code in which no character code is a prefix of another 
character code. This condition is guaranteed in a trie if the charac- 
ters are only in leaves. A prefix code can be decoded unambigu- 
ously. (p. 441) 

'@ Common Errors 

1. When working with character I/O, you often need to use an i n t  to 
store the characters because of the additional EOF symbol. There 
are several other tricky coding issues. For instance, when reading 
an input stream a second time, you must clear the EOF error. 



On the Internet 

2. Using too much memory to store the compression table is a com- 
mon mistake. Doing so limits the amount of compression that can 
be achieved. 

On the lnternet 

The compression program and cross-reference generator is available. 

hzip.cpp Contains the source for the Huffman coding compression 
and uncompression program. 

Xref.cpp Contains the source for the cross-reference generator. 

Exercises 

In Short 

13.1. Show the Huffman tree that results from the following distribution 
of punctuation characters and digits: colon (loo), space (605), new- 
line ( 1 OO), comma (705), 0 (43 I), 1 (242), 2 ( 176), 3 (59), 4 (1 85), 
5 (250), 6 (174), 7 (199), 8 (205), and 9 (217). 

13.2. Most systems come with a compression program. Compress several 
types of files to determine the typical compression rate on your sys- 
tem. How large do the files have to be to make compression worth- 
while? Compare their performance with the Huffman coding 
program (hzip) provided in the online source code. 

13.3. What happens if a file compressed with Huffman's algorithm is used 
to transmit data over a phone line and a single bit is accidentally 
lost? What can be done in this situation? 

In Theory 

13.4. Prove the correctness of Huffman's algorithm by expanding the fol- 
lowing steps. 
a. Show that no node has only one child. 
b. Show that the two least frequent characters must be the two 

deepest nodes in the tree. 
c. Show that the characters in any two nodes at the same depth can 

be swapped without affecting optimality. 
d. Use induction: As trees are merged, consider the new character 

set to be the characters in the tree roots. 



13.5. Under what circumstances could a Huffman tree of ASCII charac- 
ters generate a 2-bit code for some character? Under what circum- 
stances could it generate a 20-bit code? 

13.6. Show that, if the symbols have already been sorted by frequency, 
Huffman's algorithm can be implemented in linear time. 

13.7. Huffman's algorithm occasionally generates compressed files that 
are larger than the original. Prove that all compression algorithms 
must have this property (i.e., no matter what compression algorithm 
you design, some input files must always exist for which the algo- 
rithm generates compressed files that are larger than the originals). 

In Practice 

13.8. In the cross-reference generator, store the line numbers in a vector  
instead of a 1 i s  t and compare performance. 

13.9. If a word occurs twice on a line, the cross-reference generator will 
list it twice. Modify the algorithm so that duplicates are only listed 
once. 

13.10. Modify the algorithm so that, if a word appears on consecutive lines, 
a range is indicated. For example, 

if: 2 ,  4, 6 - 9 ,  11 

Programming Projects 

13.11. Modify the C h a r c o u n t e r  class to use an array of i n t s  instead 
of a map, and explain whether this modification is likely to affect 
the program's running time. Incorporate the change and measure 
the running time on a large data file for both compression and 
uncompression. 

13.12. Storing the character counts in the encoding table gives the uncom- 
pression algorithm the ability to perform extra consistency checks. 
Add code that verifies that the result of the uncompression has the 
same character counts as the encoding table claimed. 

13.13. Describe and implement a method of storing the encoding table that 
uses less space than the trivial method of storing character counts. 



13.14. Add the robust error checks for the compression program suggested 
at the end of Section 13.1.3. 

13.15. Analyze empirically the performance of the compression program 
and determine whether its speed can be significantly improved. If 
so, make the required changes. 

13.16. Split the Tokenizer class into three classes: an abstract base class 
that handles the common functionality and two separate derived 
classes (one that handles the tokenization for the balanced symbol 
program, and another that handles the tokenization for the cross- 
reference generator). 

Generate an index for a book. The input file consists of a set of index 
entries. Each line consists of the string IX:, followed by an index 
entry name enclosed in braces and then by a page number enclosed 
in braces. Each ! in an index entry name represents a sublevel. A 
I ( represents the start of a range and a I ) represents the end of the 
range. Occasionally, this range will be the same page. In that case, 
output only a single page number. Otherwise, do not collapse or 
expand ranges on your own. As an example, Figure 13.33 shows 
sample input and Figure 13.34 shows the corresponding output. 

IX: 
IX: 
IX: 
IX: 
IX: 
IX : 
IX: 
IX: 
IX: 
IX: 

{series 1 ( 1  {2 ) 
{series!geometricl ( }  {4) 
{Euler's constant} {4) 
{~eries!geometricl)} { 4 3  
{~eries!arithmetic((} 14) 
{~eries!arithmeticl)} {5) 
{~eries!harmonicl ( 1  153 
{Euler'sconstant) {5) 
{~eries!harmonic( ) } {5} 
{Series 1 ) 1 {5} 

Figure 13.33 Sample input for Exercise 13.1 7. 

Euler's constant: 4, 5 
Series: 2-5 

arithmetic: 4-5 
geometric: 4 
harmonic: 5 

Figure 13.34 Sample output for Exercise 13.1 7. 



13.18. Use a map to implement a spelling checker. Assume that the dictio- 
nary comes from two sources: one file containing an existing large 
dictionary and a second file containing a personal dictionary. Output 
all misspelled words and the line numbers on which they occur (note 
that keeping track of the misspelled words and their line numbers is 
identical to generating a cross-reference). Also, for each misspelled 
word, list any words in the dictionary that are obtainable by apply- 
ing any of the following rules. 
a. Add one character. 
b. Remove one character. 
c. Exchange adjacent characters. 
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Chapter 14 

Simulation 

An important use of computers is for simulation, in which the computer is 
used to emulate the operation of a real system and gather statistics. For 
example, we might want to simulate the operation of a bank with k tellers to 
determine the minimum value of k that gives reasonable service time. Using 
a computer for this task has many advantages. First. the information would 
be gathered without involving real customers. Second, a simulation by com- 
puter can be faster than the actual implementation because of the speed of 
the computer. Third. the simulation could be easily replicated. In many 
cases, the proper choice of data structures can help us improve the efficiency 
of the simulation. 

In this chapter, we show: 

how to simulate a game modeled on the Joseph~ls problern, and 

how to simulate the operation of a computer modem bank. 

14.1 The Josephus Problem 

The Josephus problem is the following game: N people, numbered 1 to N, 
are sitting in a circle; starting at person I ,  a hot potato is passed; after M 
passes, the person holding the hot potato is eliminated, the circle closes 
ranks. and the game continues with the person who was sitting after the 
eliminated person picking up the hot potato; the last remaining person wins. 
A common assumption is that M is a constant, although a random number 
generator can be used to change M after each elimination. 

The Josephus problem arose in the first century 4 . ~ .  in a cave on a 
mountain in Israel where Jewish zealots were being besieged by Roman sol- 
diers. The historian Josephus was among them. To Josephus's consternation. 
the zealots voted to enter into a suicide pact rather than surrender to the 
Romans. He suggested the game that now bears his name. The hot potato 

An important use of 
computers is 
simulation, in which 
the computer is used 
to emulate the 
operation of a real 
system and gather 
statistics. 

In the Josephus 
problem, a hot potato 
is repeatedly passed; 
when passing 
terminates, the player 
holding the potato is 
eliminated; the game 
continues, and the 
last remaining player 
wins. 
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Figure 14.1 The Josephus problem: At each step, the darkest circle represents 
the initial holder and the lightly shaded circle represents the player 
who receives the hot potato (and is eliminated). Passes are made 
clockwise. 

was the sentence of death to the person next to the one who got the potato. 
Josephus rigged the game to get the last lot and convinced the remaining 
intended victim that the two of them should surrender. That is how we know 
about this game; in effect, Josephus cheated.' 

If M = 0, the players are eliminated in order, and the last player always 
wins. For other values of M, things are not so obvious. Figure 14.1 shows 
that if N = 5 and M = I, the players are eliminated in the order 2, 4, I ,  5. In 
this case, player 3 wins. The steps are as follows. 

1. At the start, the potato is at player 1. After one pass it is at player 2. 
2. Player 2 is eliminated. Player 3 picks up the potato, and after one 

pass, it is at player 4. 
3. Player 4 is eliminated. Player 5 picks up the potato and passes it to 

player I. 
4. Player I is eliminated. Player 3 picks up the potato and passes it to 

player 5. 
5. Player 5 is eliminated, so player 3 wins. 

First, we write a program that simulates, pass for pass, a game for any 
values of N and M. The running time of the simulation is O(MN), which is 
acceptable if the number of passes is small. Each step takes O(M) time 
because it performs M passes. We then show how to implement each step in 
O(log N) time, regardless of the number of passes performed. The running 
time of the simulation becomes O(N log N). 

1.  Thanks to David Teague for relaying this story. The version that we solve differs from the 
historical description. In Exercise 14.12 you are asked to solve the historical version. 
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The Josephus Problem 

14.1 .I The Simple Solution 

The passing stage in the Josephus problem suggests that we represent the We can represent the 

players in a linked list. We create a linked list in which the elements 1, 2, players by a linked 
list and use the . . . , N are inserted in order. We then set an iterator to the front element. Each iterator to 

pass of the potato corresponds to a + +  operation on the iterator. At the last the passing. 

player (currently remaining) in the list we implement the pass by resetting 
the iterator to the first element. This action mimics the circle. When we have 
finished passing, we remove the element on which the iterator has landed. 

An implementation is shown in Figure 14.2 The linked list and iterator 
are declared at lines 8 and 9, respectively. We construct the initial list by 
using the loop at lines 14 and 15. 

In Figure 14.2, the code at lines 20 to 33 plays one step of the algorithm 
by passing the potato (lines 20 to 25) and then eliminating a player (lines 
30-33). This procedure is repeated until the test at line 18 tells us that only 
one player remains. At that point we return the player's number at line 36. 

The running time of this routine is O ( M N )  because that is exactly the 
number of passes that occur during the algorithm. For small M, this running 
time is acceptable, although we should mention that the case M = 0 does not 
yield a running time of O(0) ;  obviously the running time is O(N). We do not 
merely multiply by zero when trying to interpret a Big-Oh expression. 

14.1.2 A More Efficient Algorithm 

A more efficient algorithm can be obtained if we use a data structure that sup- 
ports accessing the kth smallest item (in logarithmic time). Doing so allows us 
to implement each round of passing in a single operation. Figure 14.1 shows 
why. Suppose that we have N players remaining and are currently at player P 
from the front. Initially N is the total number of players and P is 1. After M 
passes, a calculation tells us that we are at player ( ( P  + M )  mod N) from the 
front, except if that would give us player 0 ,  in which case, we go to player N. 
The calculation is fairly tricky, but the concept is not. 

Applying this calculation to Figure 14.1, we observe that M is 1, N is 
initially 5, and P is initially 1. So the new value of P is 2. After the deletion, 
N drops to 4, but we are still at position 2, as part (b) of the figure suggests. 
The next value of P is 3,  also shown in part (b), so the third element in the 
list is deleted and N falls to 3. The next value of P is 4 mod 3,  or 1, so we are 
back at the first player in the remaining list, as shown in part (c). This player 
is removed and N becomes 2. At this point, we add M to P, obtaining 2. 
Because 2 mod 2 is 0 ,  we set P to player N, and thus the last player in the list 
is the one that is removed. This action agrees with part (d). After the 
removal, N is 1 and we are done. 

If we implement each 
round of passing in a 
single logarithmic 
operation, the 
simulation will be 
faster. 

The calculation is 
tricky because of the 
circle. 



1 #include <list> 
2 using namespace std; 
3 
4 / /  Return the winner in the Josephus problem. 
5 / /  STL list implementation. 
6 int josephus( int people, int passes ) 

7 I 
8 list<int> thelist; 
9 list<int>::iterator itr; 

10 list<int>::iterator next; 
11 int i; 
12 
13 / /  Construct the list. 
14 for( i = 1; i <= people; i++ ) 

15 theList.push-back( i ) ;  

16 
17 / /  Play the game. 
18 for( itr = theList.begin( ) ;  people-- ! =  1; itr = next ) 

19 i 
20 for( i = 0; i < passes; i++ ) 

21 { 

22 ++itr; / / Advance 
23 if( itr == theList.end( ) ) / /  If past last player 
24 itr = theList.begin( ) ;  / /  then go to first 
25 1 
26 
27 next = itr; / /  Maintain next node, for 
28 ++next ; / /  player who is after removed player 
29 
30 thelist .erase ( itr ) ; / /  Remove player 
31 
32 if( next == theList.end( ) ) / /  Set next 
33 next = theList.begin( ) ;  

34 1 
35 
36 return *itr; / /  Return player's number 
37 } 

Figure 14.2 Linked list implementation of the Josephus problem. 

findKth can be All we need then is a data structure that efficiently supports the f indKth 
supported by a operation. The f indKth operation returns the kth (smallest) item, for any 
search tree. parameter k.2 Unfortunately, no STL data structures support the f indKth 

2. The parameter k for f indKth ranges from I to N, inclusive, where N is the number of 
items in the data structure. 
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operation. However, we can use one of the generic data structures that we 
implement in Part IV. Recall from the discussion in Section 7.7 that the data 
structures we implement in Chapter 19 follow a basic protocol that uses 
insert, remove, and find. We can then add f indKth to the implementation. 

There are several similar alternatives. All of them use the fact that, as dis- 
cussed in Section 7.7, set could have supported the ranking operation in loga- 
rithmic time on average or logarithmic time in the worst case if we had used a 
sophisticated binary search tree. Consequently, we can expect an O(N log N) 
algorithm if we exercise care. 

The simplest method is to insert the items sequentially into a worst-case 
efficient binary search tree such as a red-black tree, an AA-tree, or a splay 
tree (we discuss these trees in later chapters). We can then call f indKth and 
remove, as appropriate. It turns out that a splay tree is an excellent choice 
for this application because the f indKth and insert operations are unusu- 
ally efficient and remove is not terribly difficult to code. We use an alterna- 
tive here, however, because the implementations of these data structures that 
we provide in the later chapters leave implementing f indKth for you to do 
as an exercise. 

We use the BinarySearchTreeWi thRank class that supports the A balanced search 

f indKth operation and is completely implemented in Section 19.2. It is tree will work, but it is 
not needed if we are 

based on the simple binary search tree and thus does not have logarithmic careful and construct 
worst-case performance but merely average-case performance. Conse- a simple binary 
auentlv. we cannot merelv insert the items seauentiallv: that would cause the search tree that is not 

2 ,  , 
search tree to exhibit its worst-case performance. unbalanced at the 

start. A class method 
There are several options. One is to insert a random permutation of 1, ..., can be used to 

N into the search tree. The other is to build a perfectly balanced binary search construct a perfectly 

tree with a class method. Because a class method would have access to the palanced tree in linear 
time. 

inner workings of the search tree, it could be done in linear time. This routine 
is left for you to do as Exercise 19.21 when search trees are discussed. 

The method we use is to write a recursive routine that inserts items in a We construct the 

balanced order. By inserting the middle item at the root and recursively Same tree by 
recursive insertions 

building the two subtrees in the same manner, we obtain a balanced tree. The but use O(Nlog N) 
cost of our routine is an acceptable O(N log N). Although not as efficient as time. 

the linear-time class routine, it does not adversely affect the asymptotic run- 
ning time of the overall algorithm. The remove operations are then guaran- 
teed to be logarithmic. This routine is called buildTree; it and the 
j osephus method are then coded as shown in Figure 14.3. 

14.2 Event-Driven Simulation 

Let us return to the bank simulation problem described in the introduction. 
Here, we have a system in which customers arrive and wait in line until one 



1 #include "BinarySearchTree.hN 
2 
3 / /  Recursively construct a perfectly balanced binary search 
4 / /  tree by repeated insertions in O( N log N ) time. 
5 void buildTree( BinarySearch~reeWithRank<int> & t, 
6 int low, int high ) 

7 ( 
8 int center = ( low + high ) ! 2; 
9 

10 if ( low <= high ) 

11 I 
12 t.insert ( center ) ; 

13 buildTree( t, low, center - 1 ) ;  

14 buildTree ( t, center + 1, high ) ; 

15 1 
16 1 
17 
18 / /  Return the winner in the Josephus problem. 
19 / /  Search tree implementation. 
20 int josephus( int people, int passes ) 

21 ( 

22 BinarySearchTree~ithRankiint> t; 
23 
24 buildTree( t, 1, people ) ;  

25 
26 int rank = 1; 
27 while ( people > 1 ) 

28 { 

29 if( ( rank = ( rank + passes ) % people ) == 0 ) 

30 rank = people; 
31 
32 t.remove( t.findKth( rank ) .get( ) 1 ;  
33 people- - ; 
34 1 
35 
36 return t.findKth( 1 ).get( ) ;  

37 1 

Figure 14.3 An O(N log N)  solution of the Josephus problem. 

of k tellers is available. Customer arrival is governed by a probability distri- 
bution function, as is the service time (the amount of time to be served once 
a teller becomes available). We are interested in statistics such as how long 
on average a customer has to wait and what percentage of the time tellers are 
actually servicing requests. (If there are too many tellers, some will not do 
anything for long periods.) 
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With certain probability distributions and values of k, we can compute 
these answers exactly. However, as k gets larger the analysis becomes con- 
siderably more difficult and the use of a computer to simulate the operation 
of the bank is extremely helpful. In this way, bank officers can determine 
how many tellers are needed to ensure reasonably smooth service. Most sim- 
ulations require a thorough knowledge of probability, statistics, and queue- 
ing theory. 

14.2.1 Basic Ideas 

A discrete event simulation consists of processing events. Here, the two 
events are ( 1  ) a customer arriving and (2) a customer departing, thus freeing 
up a teller. 

We can use a probability function to generate an input stream consisting 
of ordered pairs of arrival and service time for each customer, sorted by 
arrival time.' We do not need to use the exact time of day. Rather, we can use 
a quantum unit, referred to as a tick. 

In a discrete time-driven simulation we might start a simulation clock 
at zero ticks and advance the clock one tick at a time, checking to see 
whether an event occurs. If so, we process the event(s) and compile statis- 
tics. When no customers are left in the input stream and all the tellers are 
free, the simulation is over. 

The problem with this simulation strategy is that its running time does 
not depend on the number of customers or events (there are two events per 
customer in this case). Rather, it depends on the number of ticks, which is 
not really part of the input. To show why this condition is important, let us 
change the clock units to microticks and multiply all the times in the input 
by 1,000,000. The simulation would then take 1,000,000 times longer. 

The key to avoiding this problem is to advance the clock to the next 
event time at each stage, called an event-driven simulation, which is con- 
ceptually easy to do. At any point, the next event that can occur is either the 
arrival of the next customer in the input stream or the departure of one of the 
customers from a teller's station. All the times at which the events will hap- 
pen are available, so we just need to find the event that happens soonest and 
process that event (setting the current time to the time that the event occurs). 

If the event is a departure, processing includes gathering statistics for the 
departing customer and checking the line (queue) to determine whether 
another customer is waiting. If so, we add that customer, process whatever 

The tick is the 
quantum unit of time 
in a simulation. 

A discrete time-driven 
simulation processes 
each unit of time 
consecutively. It is 
inappropriate if the 
interval between 
successive events is 
large. 

An event-driven 
simulation advances 
the current time to the 
next event. 

3. The probability function generates interarrival times (times between arrivals), thus guaran- 
teeing that arrivals are generated chronologically. 



statistics are required, compute the time when the customer will leave, and 
add that departure to the set of events waiting to happen. 

If the event is an arrival, we check for an available teller. If there is none, 
we place the arrival in the line (queue). Otherwise, we give the customer a 
teller, compute the customer's departure time, and add the departure to the 
set of events waiting to happen. 

The event set (i.e., The waiting line for customers can be implemented as a queue. Because 
events waiting to we need to find the next soonest event, the set of events should be organized 
happen) is organized 
as a priority queue. in a priority queue. The next event is thus an arrival or departure (whichever 

is sooner); both are easily available. An event-driven simulation is appropri- 
ate if the number of ticks between events is expected to be large. 

14.2.2 Example: A Modem Bank Simulation 

The main algorithmic item in a simulation is the organization of the events 
in a priority queue. To focus on this requirement, we write a simple simula- 
tion. The system we simulate is a nzodeni bank at a university computing 
center. 

A modem bank consists of a large collection of modems. For example, 
Florida International University (FIU) has 288 modems a\iailable for stu- 
dents. A modem is accessed by dialing one telephone number. If any 
of the 288 modems are available, the user is connected to one of them. If all 
the modems are in use, the phone will give a busy signal. Our simulation 
models the service provided by the modem bank. The variables are 

the number of modems in the bank, 

the probability distribution that governs dial-in attempts, 

the probability distribution that governs connect time, and 

the length of time the simulation is to be run. 

The modem bank The modem bank simulation is a simplified version of the bank teller 
the waiting simulation because there is no waiting line. Each dial-in is an arrival, and the 

line from the 
simulation.Thus total time spent once a connection has been established is the service time. 
there is only one data By removing the waiting line, we remove the need to maintain a queue. Thus 
structure. we have only one data structure, the priority queue. In Exercise 14.18 you 

are asked to incorporate a queue; as many as L calls will be queued if all the 
modems are busy. 

We list each event as To simplify matters, we do not compute statistics. Instead, we list each 
it gathering event as it is processed. We also assume that attempts to connect occur at con- 
statistics is a simple 
extension. stant intervals; in an accurate simulation? we would model this interarrival 

time by a random process. Figure 14.4 shows the output of a simulation. 
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1 User 0 dials in at time 0 and connects for 1 minutes 
2 User 0 hangs up at time 1 
3 user 1 dials in at time 1 and connects for 5 minutes 
4 user 2 dials in at time 2 and connects for 4 minutes 
5 User 3 dials in at time 3 and connects for 11 minutes 
6 user 4 dials in at time 4 but gets busy signal 
7 user 5 dials in at time 5 but gets busy signal 
8 user 6 dials in at time 6 but gets busy signal 
9 User 1 hangs up at time 6 
10 User 2 hangs up at time 6 
11 User 7 dlals in at time 7 and connects for 8 minutes 
12 User 8 dials in at time 8 and connects for 6 minutes 
13 User 9 dials in at time 9 but gets busy signal 
14 User 10 dials in at time 10 but gets busy signal 
15 User 11 dials in at time 11 but gets busy signal 
16 User 12 dials in at time 12 but gets busy signal 
17 User 13 dials in at time 13 but gets busy signal 
18 User 3 hangs up at time 14 
19 User 14 dials in at time 14 and connects for 6 minutes 
20 User 8 hangs up at time 14 
21 User 15 dials in at time 15 and connects for 3 minutes 
22 User 7 hangs up at time 15 
23 User 16 dials in at time 16 and connects for 5 minutes 
24 user 17 dials in at time 17 but gets busy signal 
25 User 15 hangs up at time 18 
26 User 18 dials in at time 18 and connects for 7 minutes 

Figure 14.4 Sample output for the modem bank simulation involving three 
modems: A dial-in is attempted every minute; the average connect 
time is 5 minutes; and the simulation is run for 18 minutes. 

The simulation class requires another class to represent events. The 
Event class is shown in Figure 14.5. The data members consist of the cus- 
tomer number, the time that the event will occur. and an indication of what 
type of event (DIAL-IN or HANG-UP) it is. If this simulation were more 
complex, with several types of events, we would make Event an abstract 
base class and derive subclasses from it. We do not do that here because that 
would complicate things and obscure the basic workings of the simulation 
algorithm. The Event class contains a constructor and a comparison func- 
tion used by the priority queue. The Event class grants friendship status to 
the modem simulation class so that  vent's internal members can be 
accessed by ModemSim methods. 

The modem simulation class, ModemSim, is shown in Figure 14.6. It 
consists of a lot of data members, a constructor, and two member functions. 
The data members include a random number object r shown at line 25. At 

The Event class 
represents events. In 
a complex simulation, 
it would derive all 
possible types of 
events as subclasses. 
Using inheritance for 
the Event class 
would complicate the 
code. 



1 #include <limits.h> 
2 #include <time.h> 
3 #include <stdlib.h> 
4 #include "Random.hU 
5 #include <iostream> 
6 #include <vector> 
7 #include <queue> 
8 #include <functional> 
9 using namespace std; 

10 
11 class Event 
12 { 

13 enum { DIAL-IN = 1, HANG-UP = 2 1 ;  
14 public: 
15 Event( int name = 0, int tm = 0, int type = DIAL-IN 1 
16 : time( tm ) ,  who( name ) ,  what( type ) i 1 
17 
18 boo1 operator> ( const Event & rhs ) const 
19 { return time > rhs.time; 1 
20 
2 1 friend class ModemSim; 
22 
23 private: 
24 int who; / /  the number of the user 
25 int time ; / I  when the event will occur 
26 int what; / /  DIAL-IN or HANG-UP 
27 } ;  

Figure 14.5 The Event class used for modem simulation. 

line 26 the eventset is  maintained as a priority queue of Event 
objects (PQ is a typedef, given at line 10, that hides a complicated 
priori ty-queue template instantiation). The remaining data members are 
f reeModems, which is initially the number of modems in the simulation but 
changes as users connect and hang up, and avgCallLen and freqofcalls, 
which are parameters of the simulation. Recall that a dial-in attempt will be 
made every f reqofcalls ticks. The constructor, declared at line 15, and 
implemented in Figure 14.7 initializes these members and places the first 
arrival in the eventset priority queue. 

The nextcall The simulation class consists of only two member functions. First, 
function adds a dial- nextcall, shown in Figure 14.8 adds a dial-in request to the event set. It 
in request to the 
event set. maintains two static variables: the number of the next user who will attempt 

to dial in and when that event will occur. Again, we have made the simplify- 
ing assumption that calls are made at regular intervals. In practice, we would 
use a random number generator to model the arrival stream. 
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1 / /  ModemSim class interface: run a simulation. 
2 / /  
3 / /  CONSTRUCTION: with three parameters: the number of 
4 / /  modems, the average connect time, and the 
5 / /  inter-arrival time. 
6 / /  
7 / /  ******************PUBLIC O P E m T I O N S * * * * * * * * * * * * * * * * * * * * *  

8 / /  void runSim( ) - ->  Run a simulation 
9 

10 typedef priority~queue<Event,vector<Event~,greaterEvent > PQ; 
11 
12 class ModemSim 
13 { 

14 public: 
15 ModemSim( int modems, double avgLen, int callIntrv1 ) ;  

16 
17 / /  Add a call to eventset at the current time, 
18 / /  and schedule one for delta in the future. 
19 void nextcall( int delta ) ;  

20 
2 1 / /  Run the simulation. 
22 void runSim( int stoppingTime = INT-MAX ) ;  

23 
24 private: 
25 Random r; / /  A random source 
26 PQ eventset; / /  Pending events 
27 
28 / /  Basic parameters of the simulation. 
29 int freeModems; / /  Number of modems unused 
30 const double avgCallLen; / /  Length of a call 
31 const int freq0fCalls; / /  Interval between calls 
32 } ;  

Figure 14.6 The ModemSim class interface. 

1 / /  Constructor for ModemSim. 
2 ModemSim::ModemSim( int modems, double avglen, int callIntrvl ) 

3 : freeModems( modems ) ,  avgCallLen( avgLen ) ,  

4 freqOfCalls( callIntrvl ) ,  r( (int) time( 0 ) ) 

5 { 

6 nextcall( freqofcalls ) ;  / /  Schedule first call 
7 } 

Figure 14.7 The ModemSim constructor. 



Simulation 

The runSim function 
runs the simulation. 

A hang-up increases 
f reeModems. A dial- 
in checks on whether 
a modem is available 
and if so decreases 
f reeModems. 

1 / /  Place a new DIAL-IN event into the event queue. 
2 / /  Then advance the time when next DIAL-IN event will occur. 
3 / /  In practice, we would use a random number to set the time. 
4 void ModemSim::nextCall( int delta 1 
5 { 

6 static int nextCallTime = 0; 
7 static int userNum = 0; 
8 
9 eventSet.push( Event( userNum++, nextCallTime ) ) ; 

10 nextCallTime += delta; 
11 } 

Figure 14.8 The nextcall function places a new DIAL-IN event in the event 
queue and advances the time when the next DIAL-IN event will occur. 

The other member function is runsim, which is called to run the entire 
simulation. The runsim function does most of the work and is shown in 
Figure 14.9. It is called with a single parameter that indicates when the sim- 
ulation should end. As long as the event set is not empty, we process events. 
Note that it should never be empty because at the time we arrive at line 10 
there is exactly one dial-in request in the priority queue and one hang-up 
request for every currently connected modem. Whenever we remove an 
event at line 10 and it is confirmed to be a dial-in, we generate a replacement 
dial-in event at line 37. A hang-up event is also generated at line 32 if the 
dial-in succeeds. Thus the only way to finish the routine is if nextcall is 
set up not to generate an event eventually or (more likely) by executing the 
break statement at line 12. 

Let us summarize how the various events are processed. If the event is a 
hang-up, we increment f reeModems at line 16 and print a message at line 17. 
If the event is a dial-in, we generate a partial line of output that records the 
attempt, and then, if any modems are available, we connect the user. To do so, 
we decrement f reeModems at line 26, generate a connection time (using a 
Poisson distribution rather than a uniform distribution) at line 27, print the rest 
of the output at line 28, and add a hang-up to the event set (lines 30-32). Oth- 
erwise, no modems are available, and we give the busy signal message. Either 
way, an additional dial-in event is generated. Figure 14.10 shows the state of 
the priority queue after each deleteMin for the early stages of the sample 
output shown in Figure 14.4. The time at which each event occurs is shown in 
boldface, and the number of free modems (if any) are shown to the right of the 
priority queue. (Note that the call length is not actually stored in an Event 
object; we include it, when appropriate to make the figure more self-contained. 
A '?' for the call length signifies a dial-in event that eventually will result in a 
busy signal; however, that outcome is not known at the time the event is added 
to the priority queue.) The sequence of priority queue steps is as follows. 



Event-Driven Simulation 

1 / /  Run the simulation until stopping time occurs. 
2 / /  Print output as in Figure 14.4. 
3 void ModemSim::runSim( int stoppingTime ) 

4 I 
5 static Event e; 
6 int howlong; 
7 
8 while( !eventSet.empty( ) ) 

9 { 

10 e = eventSet.top( ) ;  eventSet.pop( ) ;  

11 if( e.time > stoppingTime ) 

12 break; 
13 
14 if( e.what == Event::HANG-UP ) l i  HANG-UP 
15 { 

16 freeModems++; 
17 cout << "User ' I  << e.who <<  " hangs up at time " 
18 << e.time << endl; 
19 } 

20 else / /  DIAL-IN 
21 { 

22 cout << "User " << e.who << " dials in at time " 

23 << e. time << I' " ; 
24 if( freeModems > 0 ) 

25 ! 
26 freeModems--; 
27 howLong = r.poisson( avgCallLen ) ;  

28 cout << "and connects for " 
29 << howLong << " minutes" < <  endl; 
30 e.tirne += howlong; 
3 1 e.what = Event::HANG-UP; 
32 eventset .push( e ) ; 

33 1 
34 else 
35 cout << "but gets busy signal" << endl; 
36 
37 nextcall( freqOfCalls 1 ;  
38 1 
39 1 
40 1 

Figure 14.9 The basic simulation routine. 

1. The first DIAL-IN request is inserted. 
2. After DIAL-IN is removed, the request is connected, thereby result- 

ing in a HANG-UP and a replacement DIAL-IN request. 
3. A HANG-UP request is processed. 
4. A DIAL-IN request is processed resulting in a connect. Thus both a 

HANG-UP event and a DIAL-IN event are added (three times). 



User 0, Len 1 User 1, Len 5 

User 1, Len 5 User 2. Len 4 

User I. Len 5 User 2, Len 4 User 3. Len 1  L  1 

User I ,  Len 5 User 2, Len 4 User 3, Len 11 User 4, Len ? 

User 1, Len 5 User 2. Len 4 1 4 u s e r  3,  en I I 

( 1 6 vl m) 
User 1, Len 5 User 2, Len 4 1 4 u s e r  3,  en I I User 6, Len ? 

User I ,  Len 5 User 2, Len 4 User 3. Len 1 1  User 7, Len 8 

User 2, Len 4 

User 3, Len 1 1  User 7, Len 8 

Figure 14.10 The priority queue for modem bank simulation after each step. 
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Event-Driven Simulation 

5. A DIAL-IN request fails; a replacement DIAL-IN is generated 
(three times). 

6. A HANG-UP request is processed (twice). 

7. A DIAL-IN request succeeds, and HANG-UP and DIAL-IN are 
added. 

Again, if Event were an abstract base class, we would expect a proce- 
dure doEvent to be defined through the Event hierarchy; then we would 
not need long chains of if /else statements. However to access the priority 
queue, which is in the simulation class, we would need Event to store a 
pointer to the simulation ModemSim class as a data member. We would insert 
it at construction time. 

A minimal main routine is shown for completeness in Figure 14.1 1 .  Thesimulation usesa - 
However, using a Poisson distribution to model connect time is not appropri- poor model. Negative 

exponential 
ate. A better choice would be to use a negative exponential distribution (but distributions would 
the reasons for doing so are beyond the scope of this text). Additionally, more accurately 

assuming a fixed time between dial-in attempts is also inaccurate. Again, a model the time 
between dial-in negative exponential distribution would be a better model. If we change the 
attempts and total 

simulation to use these distributions, the clock would be represented as a connect time. 
double. In Exercise 14.14 you are asked to implement these changes. 

1 / /  Simple main to test ModemSim class. 
2 int main( ) 

3 { 

4 int numModems; 
5 int totalTime; 
6 double avgConnectTime; 
7 int dialInFrequency; 
8 
9 cout << "Enter: number of modems, length of simulation, " 

10 << " average connect time, how often calls occur: " ;  

11 
12 cin >> numModems >> totalTime >> 

13 avgConnectTime >> dialInFrequency; 
14 
15 ModemSim s( numModems, avgConnectTime, dialInFrequency ) ;  

16 s.runSim( totalTime ) ;  

17 
18 return 0; 
19 1 

Figure 14.11 A simple main to test the simulation. 



Summary 

Simulation is an important area of computer science and involves many 
more complexities than we could discuss here. A simulation is only as good 
as the model of randomness, so a solid background in probability, statistics, 
and queueing theory is required in order for the modeler to know what types 
of probability distributions are reasonable to assume. Simulation is an 
important application area for object-oriented techniques. 

Objects of the Game 

discrete time-driven simulation A simulation in which each unit of 
time is processed consecutively. It is inappropriate if the interval 
between successive events is large. (p. 477) 

event-driven simulation A simulation in which the current time is 
advanced to the next event. (p. 477) 

Josephus problem A game in which a hot potato is repeatedly passed; 
when passing terminates, the player holding the potato is elimi- 
nated; the game then continues, and the last remaining player wins. 
(P. 47 1) 

simulation An important use of computers, in which the computer is 
used to emulate the operation of a real system and gather statistics. 
(P. 47 1) 

tick The quantum unit of time in a simulation. (p. 477) 

@ Common Errors 

1. The most common error in simulation is using a poor model. A sim- 

/ 
ulation is only as good as the accuracy of its random input. 

On the Internet 
- 

Both examples in this chapter are available online. 

Josephus.cpp Contains both implementations of j osephus and a 
main to test them. 

Modems.cpp Contains the code for the modem bank simulation. 

Q Exercises 
- 

In Short 

14.1. If M = 0, who wins the Josephus game? 



Show the operation of the Josephus algorithm in Figure 14.3 for the 
case of seven people with three passes. Include the computation of 
r ank  and a picture that contains the remaining elements after each 
iteration. 

Are there any values of M for which player 1 wins a 30-person Jose- 
phus game? 

Show the state of the priority queue after each of the first 10 lines of 
the simulation depicted in Figure 14.4. 

In Theory 

Let N = 2"or any integer k .  Prove that if M is 1, then player 1 
always wins the Josephus game. 

Let J(N) be the winner of an N-player Josephus game with M = 1. 
Show that 
a. if N is even. then J(h? = 2J(Nl2)  - I. 
b. if N is odd and J ( r ~ 1 2 1 )  # 1. then J(N) = 2J(rNl 21) - 3. 
c. if N is odd and J ( rN 121) = I ,  then J (N)  = N. 

Use the results in Exercise 14.6 to write an algorithm that returns the 
winner of an N-player Josephus game with M = I .  What is the run- 
ning time of your algorithm'? 

Give a general formula for the winner of an N-player Josephus game 
with M = 2. 

Using the algorithm for N = 20, determine the order of insertion into 
the~inar~search~ree~ith~ank. 

In Practice 

Suppose that the Josephus algorithm shown in Figure 14.2 is imple- 
mented with a v e c t o r  instead of a 1 i s  t. 
a. If the change worked, what would be the running time? 
b. The change has a subtle error. What is the problem and how can 

it  be fixed? 

In the Josephus algorithm shown in Figure 14.2, why can't we 
replace lines 27 and 28 with the single assignment n e x t  = i tr+ l? 

Write a program that solves the historical version of the Josephus 
problem. Give both the linked list and search tree algorithms. 

Implement the Josephus algorithm with a queue. Each pass of the 
potato is a dequeue. followed by an enqueue. 



14.14. Rework the simulation so that the clock is represented as a double. 
the time between dial-in attempts is modeled with a negative expo- 
nential distribution, and the connect time is modeled with a negative 
exponential distribution. 

14.15. Rework the modem bank simulation so that Event is an abstract 
base class and DialInEvent and HangUpEvent are derived 
classes. The Event class should store a pointer to a ModemSim 
object as an additional data member, which is initialized on con- 
struction. It should also provide an abstract method named doEvent 
that is implemented in the derived classes and that can be called 
from runsim to process the event. 

Programming Projects 

14.16. Implement the Josephus algorithm with splay trees (see Chapter 22) 
and sequential insertion. (The splay tree class is available online, but 
it will need a findKth method.) Compare the performance with 
that in the text and with an algorithm that uses a linear-time, bal- 
anced tree-building algorithm. 

14.17. Rewrite the Josephus algorithm shown in Figure 14.3 to use a 
median heap (see Exercise 7.19). Use a simple implementation of 
the median heap; the elements are maintained in sorted order. Com- 
pare the running time of this algorithm with the time obtained by 
using the binary search tree. 

14.18. Suppose that FIU has installed a system that queues phone calls 
when all modems are busy. Rewrite the simulation routine to allow 
for queues of various sizes. Make an allowance for an infinite queue. 

14.19. Rewrite the modem bank simulation to gather statistics rather than 
output each event. Then compare the speed of the simulation, 
assuming several hundred modems and a very long simulation, with 
some other possible priority queues (some of which are available 
online)-namely, the following. 
a. An asymptotically inefficient priority queue representation 

described in Exercise 7.14. 
b. An asymptotically inefficient priority queue representation 

described in Exercise 7.15. 
c. Splay trees (see Chapter 22). 
d. Skew heaps (see Chapter 23). 
e. Pairing heaps (see Chapter 23). 



Chapter 15 

I Graphs and Paths 

In this chapter we examine the graph and show how to solve a particular 
kind of problem-namely, calculation of shortest paths. The computation of 
shortest paths is a fundamental application in computer science because 
many interesting situations can be modeled by a graph. Finding the fastest 
routes for a mass transportation system, and routing electronic mail through 
a network of computers are but a few examples. We examine variations of 
the shortest path problems that depend on an interpretation of shortest and 
the graph's propertjes. Shortest-path problems are interesting because, 
although the algorithms are fairly simple, they are slow for large graphs 
unless careful attention is paid to the choice of data structures. 

In this chapter, we show: 

formal definitjons of a graph and its components. 
the data structures used to represent a graph, and 
algorithms for solving several variations of the shortest-path problem, 
with complete C++ implementations. 

Definitions 
A graph consists of a set of vertices and a set of edges that connect the verti- A graph consists of a 

ces. That is, G = (v E), where V is the set of v e k c e s  and E is the set of Set Of vertices and a 
set of edges that 

edges. Each edge is a pair (v, w), where v, w E \! Vertices are sometimes connect the vertices, 
called nodes, and edges are sometimes called arcs. If the edge pair is ~f theedge pair is 
ordered, the graph is called a directed graph. Directed graphs aresome- ordered7the graph is 

times called digraphs. In a digraph, vertex w is adjacent to vertex v if and a directed graph. 

only if (v, w )  E E. Sometimes an edge has a third component, called the edge Vertex wis adjacent 
cost (or weight) that measures the cost of traversing the edge. In this chap- to vertex vif  there is 

ter, all graphs are directed. an edge from v to w. 



Graphs and Paths 

A path is a sequence 
of vertices connected 
by edges. 

The unweighted path 
length measures the 
number of edges on a 
path. 

The weighted path 
length is the sum of 
the edge costs on a 
path. 

A cycle in a directed 
graph is a path that 
begins and ends at 
the same vertex and 
contains at least one 
edge. 

Figure 15.1 A directed graph 

The graph shown in Figure 15.1 has seven vertices, 

v = { v o ,  v , ,  v , ,  v,,  v,, v,, V6 I-, 

and 12 edges, 

The following vertices are adjacent to V3: VZ. V4, V,, and V6. Note that V, and 
V, are not adjacent to V3. For this graph, / VI = 7 and IEl = 12; here, IS1 
represents the size of set S .  

A path in a graph is a sequence of vertices connected by edges. In other 
words, w,, w2, . . ., wh, the sequence of vertices is such that ( w , ,  w i  + E E 
for I 5 i < N. The path length is the number of edges on the path-namely, 
N - I-also called the unweighted path length. The weighted path length 
is the sum of the costs of the edges on the path. For example, Vo, V,, V5 is a 
path from vertex Vo to V 5 .  The path length is two edges-the shortest path 
between Vo and V,, and the weighted path length is 9. However, if cost is 
important, the weighted shortest path between these vertices has cost 6 and 
is Vo, V,, V,, V, . A path may exist from a vertex to itself. If this path con- 
tains no edges, the path length is 0, which is a convenient way to define an 
otherwise special case. A simple path is a path in which all vertices are dis- 
tinct, except that the first and last vertices can be the same. 

A cycle in a directed graph is a path that begins and ends at the same 
vertex and contains at least one edge. That is, it has a length of at least 1 such 
that w ,  = w,,,; this cycle is simple if the path is simple. A directed acyclic 
graph (DAG) is a type of directed graph having no cycles. 



An example of a real-life situation that can be modeled by a graph is the A directedacyclic 

airport system. Each airport is a vertex. If there is a nonstop flight between graph has no cycles. 
Such graphs are an two airports, two vertices are connected by an edge. The edge could have a important class of 

weight, representing time, distance, or the cost of the flight. In an undirected graphs. 

graph, an edge ( v ,  w) would imply an edge (w, v). However, the costs of the 
edges might be different because flying in different directions might take 
longer (depending on prevailing winds) or cost more (depending on local 
taxes). Thus we use a directed graph with both edges listed, possibly with 
different weights. Naturally, we want to determine quickly the best flight 
between any two airports; best could mean the path with the fewest edges or 
one, or all, of the weight measures (distance, cost, and so on). 

A second example of a real-life situation that can be modeled by a graph 
is the routing of electronic mail through computer networks. Vertices repre- 
sent computers, the edges represent links between pairs of computers, and the 
edge costs represent communication costs (phone bill per megabyte), delay 
costs (seconds per megabyte), or combinations of these and other factors. 

For most graphs, there is likely at most one edge from any vertex v A graph is dense if 

to any other vertex w (allowing one edge in each direction between v and the Of edges 
is large (generally w). Consequently, 1E 6 ( ~ 1 ' .  When most edges are present, we have quadratic,.Typical 

1El = O(/V/  ' ) .  Such a graph is considered to be a dense graph-that is, it graphs are not dense. 
has a large number of edges, generally quadratic. Instead, they are 

In most applications, however, a sparse graph is the norm. For instance, sparse. 

in the airport model, we do not expect direct flights between every pair of 
airports. Instead, a few airports are very well connected and most others 
have relatively few flights. In a complex mass transportation system involv- 
ing buses and trains, for any one station we have only a few other stations 
that are directly reachable and thus represented by an edge. Moreover, in a 
computer network most computers are attached to a few other local comput- 
ers. So, in most cases, the graph is relatively sparse, where IEl = @(I V ) or 
perhaps slightly more (there is no standard definition of sparse). The algo- 
rithms that we develop, then, must be efficient for sparse graphs. 

1 5.1 .1 Representation 

The first thing to consider is how to represent a graph internally. Assume that An adjacency matrix 

the vertices are sequentially numbered starting from 0, as the graph shown in represents a graph 
and uses quadratic 

Figure 15.1 suggests. One simple way to represent a graph is to use a two- space. 
dimensional array called an adjacency matrix. For each edge (v, w), we set 
a [v] [ w ]  equal to the edge cost; nonexistent edges can be initialized with a 
logical INFINITY. The initialization of the graph seems to require that the 
entire adjacency matrix be initialized to INFINITY. Then, as an edge is 
encountered, an appropriate entry is set. In this scenario, the initialization 



Graphs and Paths 

Figure 15.2 Adjacency list representation of the graph shown in Figure 15.1 ; the 
nodes in list i represent vertices adjacent to i and the cost of the 
connecting edge. 

takes O(IVI2) time. Although the quadratic initialization cost can be 
avoided (see Exercise 15.6), the space cost is still 0(1VI2), which is fine for 
dense graphs but completely unacceptable for sparse graphs. 

An adjacency list For sparse graphs, a better solution is an adjacency list, which represents 
represents a graph, a graph by using linear space. For each vertex, we keep a list of all adjacent 
using linear space. 

vertices. An adjacency list representation of the graph in Figure 15.1 using a 
linked list is shown in Figure 15.2. Because each edge appears in a list node, 
the number of list nodes equals the number of edges. Consequently, O(IE1) 
space is used to store the list nodes. We have IVI lists, so O(IVJ) additional 
space is also required. If we assume that every vertex is in some edge, the 
number of edges is at least rlV1/21. Hence we may disregard any O(IV1) 
terms when an O(IE1) term is present. Consequently, we say that the space 
requirement is O(IEI), or linear in the size of the graph. 

Adjacency lists can The adjacency list can be constructed in linear time from a list of edges. 
be constructed in We begin by making all the lists empty. When we encounter an edge 
linear time from a list 
of edges. (v, W, c,,, ,), we add an entry consisting of w and the cost c ,  , to v's adja- 

cency list. The insertion can be anywhere; inserting it at the front can be done 
in constant time. Each edge can be inserted in constant time, so the entire adja- 
cency list structure can be constructed in linear time. Note that when inserting 
an edge, we do not check whether it is already present. That cannot be done in 
constant time (using a simple linked list), and doing the check would destroy 
the linear-time bound for construction. In most cases, ignoring this check is 



unimportant. If there are two or more edges of different cost connecting a pair 
of vertices, any shortest-path algorithm will choose the lower cost edge 
without resorting to any special processing. Note also that v e c t o r s  can be 
used instead of linked lists, with the constant-time push-back operation 
replacing insertions at the front. 

In most real-life applications the vertices have names, which are A map can be used to 

unknown at compile time, instead of numbers. Consequently, we must pro- map vertex names to 
internal numbers. vide a way to transform names to numbers. The easiest way to do so is to 

provide a map by which we map a vertex name to an internal number rang- 
ing from 0 to IV - 1 (the number of vertices is determined as the program 
runs). The internal numbers are assigned as the graph is read. The first 
number assigned is 0. As each edge is input, we check whether each of the 
two vertices has been assigned a number, by looking in the map. If it has 
been assigned an internal number, we use it. Otherwise, we assign to the 
vertex the next available number and insert the vertex name and number in 
the map. With this transformation, all the graph algorithms use only the 
internal numbers. Eventually, we have to output the real vertex names, not 
the internal numbers, so for each internal number we must also record the 
corresponding vertex name. One way to do so is to keep a string for each 
vertex. We use this technique to implement a Graph class. The class and 
the shortest path algorithms require several data structures-namely, list, a 
queue? a map, and a priority queue. The # i n c l u d e  directives for system 
headers are shown in Figure 15.3. The queue (implemented with a linked 
list) and priority queue are used in various shortest-path calculations. The 
adjacency list is represented with v e c t o r s .  A map is also used to represent 
the graph. 

When we write an actual C++ implementation, we do not need internal 
vertex numbers. Instead, each vertex is stored in a V e r t e x  object, and 
instead of using a number, we can use the address of the v e r t e x  object as 
its (uniquely identifying) number. As a result, the code makes frequent use 

Figure 15.3 The # i n c l u d e  directives for the Graph class. 



of vertex* variables. However, when describing the algorithms, assuming 
that vertices are numbered is often convenient, and we occasionally do so. 

Before we show the Graph class interface, let us examine Figures 15.4 
and 15.5, which show how our graph is to be represented. Figure 15.4 shows 
the representation in which we use internal numbers. Figure 15.5 replaces 
the internal numbers with vertex* variables, as we do in our code. 
Although this simplifies the code. it greatly complicates the picture. Because 
the two figures represent identical inputs, Figure 15.4 can be used to follow 
the complications in Figure 15.5. 

As indicated in the part labeled I n p ~ ~ t .  we can expect the user to provide a 
list of edges, one per line. At the start of the algorithm, we do not know the 
names of any of the vertices. how many vertices there are, or how many edges 
there are. We use two basic data structures to represent the graph. As we men- 
tioned in the preceding paragraph, for each vertex we maintain a vertex 
object that stores some information. We describe the details of vertex (in 
particular, how different vertex objects interact with each other) last. 

As mentioned earlier. the first major data structure is a map that allows 
us to find, for any vertex name, a pointer to the vertex object that repre- 
sents it. This map is shown in Figure 15.5 as vertexMap (Figure 15.4 maps 
the name to an i n t  in the component labeled Dictionan). 

dist Drev name adi 

2 

C A 19 
3 

Input 4 

Visual repvesentarioi? of graph Dictiorza p 

Figure 15.4 An abstract scenario of the data structures used in a shortest-path 
calculation, with an input graph taken from a file. The shortest 
weighted path from A to C is A to B to E to D to C (cost is 76). 
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Legend: Dark-bordered boxes are vertex objects. The unshaded portion 
in each box contains the name and adjacency list and does not change 
when shortest-path computation is performed. Each adjacency list entry 
contains an Edge that stores a pointer to another vertex object and the 
edge cost. Shaded portion is d i  s t and prev, Jilled in after shortest path 
computation runs. 

Dark pointers emanate from ver t emap Light pointers are adjacency 
list entries. Dashed-pointers are the prev data member that results from a 
shortest path computation. 

Figure 15.5 Data structures used in a shortest-path calculation, with an input 
graph taken from a file; the shortest weighted path from A to C is: 
A to B to E to D to C (cost is 76). 
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x p h s  and Paths 

The shortest-path 
algorithms are single 
source algorithms 
that compute the 
shortest paths from 
some starting point to 
all vertices. 

The prev member 
can be used to extract 
the actual path. 

The second major data structure is the vertex object that stores infor- 
mation about all the vertices. Of particular interest is how it interacts with 
other vertex objects. Figures 15.4 and 15.5 show that a vertex object 
maintains four pieces of information for each vertex. 

name: The name corresponding to this vertex is established when the 
vertex is placed in map and never changes. None of the shortest-path 
algorithms examine this member. It is used only to print a final path. 
adj: This list of adjacent vertices is established when the graph is 
read. None of the shortest-path algorithms change the list. In the 
abstract, Figure 15.4 shows that it is a list of Edge objects that each 
contain an internal vertex number and edge cost. In reality, Figure 15.5 
shows that each Edge object contains a vertex* and edge cost and 
that the list is actually stored by using a vector. 
dist: The length of the shortest path (either weighted or unweighted, 
depending on the algorithm) from the starting vertex to this vertex is 
computed by the shortest-path algorithm. 
prev: The previous vertex on the shortest path to this vertex, which 
in the abstract (Figure 15.4) is an i n t  but in reality (the code and 
Figure 15.5) is a vertex*. 

To be more specific. in Figures 15.4 and 15.5 the unshaded items are not 
altered by any of the shortest-path calculations. They represent the input 
graph and do not change unless the graph itself changes (perhaps by addition 
or deletion of edges at some later point). The shaded items are computed by 
the shortest-path algorithms. Prior to the calculation we can assume that they 
are uninitialized. 1 

The shortest-path algorithms are all single-source algorithms, which 
begin at some starting point and compute the shortest paths from it to all ver- 
tices. In this example the starting point is A, and by consulting the map we 
can find its vertex object. Note that the shortest-path algorithm declares 
that the shortest path to A is 0. 

The prev data member allows us to print out the shortest path, not just 
its length. For instance. by consulting the vertex object for c, we see that 
the shortest path from the starting vertex to c has a total cost of 76. Obvi- 
ously, the last vertex on this path is c. The vertex before c on this path is D, 

before D is E, before E is B, and before B is A-the starting vertex. Thus, by 
tracing back through the prev data member, we can construct the shortest 

1 .  The computed information (shaded) could be separated into a separate class, with Vertex 
maintaining a pointer to it, making the code more reusable but more complex. 



path. Although this trace gives the path in reverse order, unreversing it is a 
simple matter. In the remainder of this section we describe how the 
unshaded parts of all the vertex objects are constructed and give the func- 
tion that prints out a shortest path, assuming that the dist and prev data 
members have been computed. We discuss individually the algorithms used 
to fill in the shortest path. 

Figure 15.6 shows the Edge class that represents the basic item placed The item in an 

in the adjacency list. The Edge consists of a pointer to a Vertex and the adjacency list is a 
pointer to the 

edge cost. Note that we use an incomplete class declaration because the object of the 
Vertex and Edge classes refer to each other. The Vertex class is shown adjacent vertex and 

in Figure 15.7. An additional member named scratch is provided and has the edge cost. 

different uses in the various algorithms. Everything else follows from our 

1 struct Vertex; 
2 
3 / /  Basic item stored in adjacency list. 
4 struct Edge 
5 
6 / /  First vertex in edge is implicit 
7 Vertex *dest; / /  Second vertex in edge 
8 double cost; / /  Edge cost 
9 

10 Edge( Vertex *d = 0, double c = 0.0 ) 

11 : dest( d ) ,  cost( c ) { ) 

12 1; 

Figure 15.6 The basic item stored in an adjacency list. 

1 / /  Basic info for each vertex. 
2 struct Vertex 
3 { 
4 string name ; / /  Vertex name 
5 vector<Edge> adj; / /  Adjacent vertices (and costs) 
6 double dist; / /  Cost 
7 Vertex *prev; / /  Previous vertex on shortest path 
8 int scratch; / /  Extra variable used in algorithm 
9 

10 Vertex( const string & nm ) : name( nm ) 

11 I reset( ) ; 1 
12 
13 void reset ( ) 

14 { dist = INFINITY; prev = NULL: scratch = 0; 1 
15 I ;  

Figure 15.7 The Vertex class stores information for each vertex. 



Graphs and Paths 

Edges are added by 
insertions in the 
appropriate 
adjacency list. 

The clearAll  
routine clears out the 
data members so that 
the shortest path 
algorithms can begin. 

The printpath 
routine prints the 
shortest path after 
the algorithm has run. 

The Graph class is 
easy to use. 

preceding description. The reset function is used to initialize the (shaded) 
data members that are computed by the shortest-path algorithms; it is called 
when a shortest-path computation is restarted. 

We are now ready to examine the Graph class interface, which is shown 
in Figure 15.8. vertexMap stores the map. The rest of the class provides 
member functions that perform initialization, add vertices and edges, print 
the shortest path, and perform various shortest-path calculations. We discuss 
each routine when we examine its implementation. 

First, we consider the constructor. The default creates an empty map; 
that works, so we accept it. Figure 15.9 shows the destructor that destroys all 
the dynamically allocated vertex objects. It does so at lines 4 to 6. We 
know from Section 2.2.4 that, if a destructor is written, the defaults for the 
copy constructor and operator= generally will not work, which is the case 
here. The default copy would have two maps sharing pointers to vertex 
objects, with both Graph objects claiming responsibility for their destruc- 
tion. To avoid such problems, we simply disable copying. 

We can now look at the main methods. The getvertex method is 
shown in Figure 15.10. We consult the map to get the vertex entry. If the 
Vertex does not exist, we create a new vertex and update the map. The 
addEdge function, shown in Figure 15.1 1 is short. We get the corresponding 
Vertex entries and then update an adjacency list. 

The members that are eventually computed by the shortest-path algorithm 
are initialized by the routine clearAll, shown in Figure 15.12. The next rou- 
tine prints a shortest path after the computation has been performed. As we 
mentioned earlier, we can use the prev member to trace back the path, but 
doing so gives the path in reverse order. This order is not a problem if we use 
recursion: The vertices on the path to dest are the same as those on the path 
to des t's previous vertex (on the path), followed by dest. This strategy trans- 
lates directly into the short recursive routine shown in Figure 15.1 3, assuming 
of course that a path actually exists. The printpath routine, shown in Fig- 
ure 15.14, performs this check first and then prints a message if the path 
does not exist. Otherwise, it calls the recursive routine and outputs the cost 
of the path. 

We provide a simple test program that reads a graph from an input file, 
prompts for a start vertex and a destination vertex and then runs one of the 
shortest-path algorithms. Figure 15.15 illustrates that to construct the Graph 
object, we repeatedly read one line of input, assign the line to an 
istringstream object, parse that line, and call addEdge. Using an 
istringstream allows us to verify that every line has at least the three 
pieces corresponding to an edge. We could do more work, adding code to 
ensure that there are exactly three pieces of data per line, but we prefer to 
avoid the additional complexity involved in doing so. 



1 / /  Graph class interface: evaluate shortest paths. 
2 / /  
3 / /  CONSTRUCTION: with no parameters. 
4 / /  
5 / /  * * * * * * * * * * * * * * * * * * p U B L I C  OPERATIONS********************** 

6 / /  void addEdge( string v, string w, double cvw ) 

7 / /  --> Add additional edge 
8 / /  void printpath( string w ) - - >  Print path after alg is run 
9 / /  void unweighted( string s ) - ->  Single-source unweighted 

10 / /  void dijkstra( string s ) - - >  Single-source weighted 
11 / /  void negative( string s ) - - >  Single-source negative 
12 / /  void acyclic( string s ) - - >  Single-source acyclic 
13 / /  X*****X***********ERRoRS********************************* 

14 / /  Some error checking is performed to make sure graph is ok, 
15 / /  and to make sure graph satisfies properties needed by each 
16 / /  algorithm. GraphException is thrown if error is detected. 
17 
18 class Graph 
19 { 

20 public: 
21 Graph( ) I 1 
22 -Graph ( ) ; 

23 
24 void addEdge( const string & sourceName, 
25 const string & destName, double cost ) ;  

26 void printpath( const string & destName ) const; 
27 void unweightedi const string & startName ) ;  

28 void dijkstra( const string & startName ) ;  

29 void negative( const string & startName ) ;  

30 void acyclic( const string & startName ) ;  

31 
32 private: 
33 Vertex * getVertex( const string & vertexName ) ;  

34 void printpath( const Vertex & dest ) const; 
35 void clearAll( ) ;  

36 
37 typedef map<string,Vertex *,lesscstring> > vrnap; 
38 
39 / /  Copy semantics are disabled; these make no sense. 
40 Graph( const Graph & rhs ) ( } 

41 const Graph & operator= ( const Graph & rhs ) 

42 { return *this; ) 

43 
44 m a p  vertexMap ; 
45 1; 

Figure 15.8 The Graph class interface. 



Graphs and Paths 

1 / /  Destructor: clean up the Vertex objects. 
2 Graph : : -Graph ( ) 

3 t  
4 for( vmap::iterator itr = vertexMap.begin( ) ;  

5 itr ! =  vertexMap.end( ) ;  ++itr ) 

6 delete (*itr).second; 
7 1 

Figure 15.9 The Graph class destructor 

1 / /  If vertexName is not present, add it to vertexMap. 
2 / /  In either case, return (a pointer to) the Vertex. 
3 Vertex * Graph::getVertex( const string & vertexName ) 

4 { 
5 vmap::iterator itr = vertexMap.find( vertexName ) ;  

6 
7 if( itr == vertexMap.end( ) ) 

8 I 
9 Vertex *newv = new Vertex( vertexName ) ;  

10 vertexMap[ vertexName ] = n e w ;  
11 return n e w ;  
12 1 
13 return ("itr) .second; 
14 ) 

Figure 15.10 The getvertex routine returns a pointer to the Vertex object 
that represents vertexName, creating the object if it needs to do 
SO. 

1 / /  Add a new edge to the graph. 
2 void Graph::addEdge( const string & sourceName, 
3 const string & destName, double cost ) 

4 I 
5 Vertex * v = getVertex( sourceName ) ;  

6 Vertex * w = getVertex( destName ) ;  

7 v->adj.push-back( Edge( w, cost ) ) ;  

8 1 

Figure 15.1 1 Add an edge to the graph 



1 / /  Initialize the vertex output info prior to running 
2 / /  any shortest path algorithm. 
3 void Graph : : clearAll( ) 

4 i 
5 for( vmap::iterator itr = vertexMap.begini 1 ;  
6 itr ! =  vertexMap.end( ) ;  ++itr ) 

7 (*itr).second->reset( ) ;  

8 } 

Figure 15.12 Private routine for initializing the output members for use by the 
shortest-path algorithms. 

1 / /  Recursive routine to print shortest path to dest 
2 / /  after running shortest path algorithm. The path 
3 / /  is known to exist. 
4 void Graph::printPath( const Vertex & dest ) const 
5 i 
6 if( dest.prev ! =  NULL ) 

7 i 
8 printpath( *dest.prev ) ;  

9 cout < <  " to "; 

10 1 
11 cout << dest.name; 
12 

Figure 15.13 A recursive routine for printing the shortest path. 

1 / /  Driver routine to handle unreachables and print total cost. 
2 / /  It calls recursive routine to print shortest path to 
3 / /  destNode after a shortest path algorithm has run. 
4 void Graph::printPath( const string & destName ) const 

5 i 
6 vrnap::const-iterator itr = vertexMap.find( destName ) ;  

7 if( itr = =  vertexMap.end( ) ) 

8 throw GraphException( "Destination vertex not found" ) ;  

9 
10 const Vertex & w = *(*itr) .second; 
11 if( w.dist == INFINITY ) 

12 cout << destName <c " is unreachable"; 
13 else 
14 { 

15 cout << "(Cost is: " << w.dist << " )  " ;  

16 printpath ( w ) ; 

17 } 

18 cout << endl; 
19 1 

Figure 15.14 A routine for printing the shortest path by consulting the graph table 
(see Figure 15.5). 



m v n d  Paths 

1 / /  A simple main that reads the file given by argv[l] 
2 / /  and then calls processRequest to compute shortest paths. 
3 / /  Skimpy error checking in order to concentrate on the basics. 
4 int main( int argc, char *argv[ I 
5 { 
6 if( argc ! =  2 ) 

7 { 

8 cerr <<  "Usage: " << argv( 0 ] << " graphfile' << endl; 
9 return 1; 
10 1 
11 
12 ifstream inFile( argv[ 1 ] ) ;  

13 if( !inFile ) 

14 ( 

15 cerr << "Cannot open " << argv[ 1 ] <<  endl; 
16 return 1; 
17 1 
18 
19 cout <<  "Reading file . . .  " <<  endl; 
20 string oneline; 
2 1 
22 : /  Read the edges; add them to g 

23 Graph g; 
24 while( !getline( infile, oneLine ) .eof( ) ) 

25 { 

26 string source, dest; 
27 double cost; 
28 istringstream st( oneLine 1 ;  
29 
30 st >> source; st >> dest; st >>  cost; 
3 1 if( st.fail( ) ) 

32 cerr < <  "Bad line: " < <  oneLine < <  endl; 
33 else 
34 g.addEdgei source, dest, cost 1 ;  
35 I 
36 cout <<  "File read" << end1 << endl; 
37 
38 while( processRequest ( cin, g ) ) 

39 
40 
41 return 0; 

42 I 

Figure 15.1 5 A simple main. 
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Unweighted Shortest-Path Problem 

1 / /  Process a request; return false if end of file 
2 boo1 processRequest( istream & in, Graph & g ) 

3 i 
4 string startName, destName; 
5 
6 cout << "Enter start node: " ;  

7 if ( ! ( in >> startName ) ) 

8 return false; 
9 cout << "Enter destination node: " ;  

10 if ( ! ( in >> destName ) ) 

11 re~urn false; 
12 
13 try 
14 i 
15 g.negative( startName ) ; 

16 g.printPath( destName ) ;  

17 } 

18 catch( const GraphException h e ) 

19 I 
20 cerr << e. tostring( ) << endl; 
21 } 

22 return true; 
23 1 

Figure 15.16 For testing purposes, processRequest calls one of the shortest- 
path algorithms. 

Once the graph has been read. we repeatedly call processReques t, 
shown in Figure 15.16. This version (which is simplified slightly from the 
online code) prompts for a starting and ending vertex and then calls one of 
the shortest-path algorithms. This algorithm throws a GraphException if. 
for instance, it is asked for a path between vertices that are not in the graph. 
Thus processRequest catches any GraphException that might be gen- 
erated and prints an appropriate error message. 

15.2 Unweighted Shortest-Path Problem 
Recall that the unweighted path length measures the number of edges. In this The '"weighredpath 

length measures the 
section we consider the problem of finding the shortest unweighted path of edges on a 
length between specified vertices. path. 



UNWEIGHTED SINGLE-SOURCE, SHORTEST-PATH 
PROBLEM 

FIXD THE SHORTEST PATH (,WEASL'RED BY NLMBER OF EDGES) FROM A 

DESIG.!!ATED VERTEX S TO EVERY VERTEX. 

The unweighted shortest-path problem is a special case of the weighted 
shortest-path problem (in which all weights are 1). Hence it should have a 
more efficient solution than the weighted shortest-path problem. That turns 
out to be true, although the algorithms for all the path problems are similar. 

15.2.1 Theory 

AII variations of the TO solve the unweighted shortest-path problem, we use the graph previously 
shortest-path shown in Figure 15.1, with V 2  as the starting vertex S.  For now, we are con- 
problem have similar 
solutions. cerned with finding the length of all shortest paths. Later. we maintain the 

corresponding paths. 
- - 

W; can see immediately that the shortest path from S to V 2  is a path of 
length 0. This information yields the graph shown in Figure 15.17. Now we 
can start looking for all vertices that are distance 1 from S.  We can find them 
by looking at the vertices adjacent to S.  If we do so, we see that V o  and V 5  
are one edge away from S, as shown in Figure 15.18. 

Figure 15.17 The graph, after the starting vertex has been marked as reachable in 
zero edges. 

Figure 15.18 The graph, after all the vertices whose path length from the starting 
vertex is 1 have been found. 
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Unweighted Shortest-Path Problem 

Next, we find each vertex whose shortest path from S is exactly 2. We do 
so by finding all the vertices adjacent to V o  or V ,  (the vertices at distance 1) 
whose shortest paths are not already known. This search tells us that the 
shortest path to V1 and V 3  is 2. Figure 15.19 shows our progress so far. 

Finally, by examining the vertices adjacent to the recently evaluated V ,  
and V 3 ,  we find that V ,  and V ,  have a shortest path of 3 edges. All vertices 
have now been calculated. Figure 15.20 shows the final result of the algorithm. 

This strategy for searching a graph is called breadth-first search, which 
operates by processing vertices in layers: Those closest to the start are evalu- 
ated first, and those most distant are evaluated last. 

Figure 15.21 illustrates a fundamental principle: If a path to vertex v has 
cost D,, and w is adjacent to v, then there exists a path to w of cost D,. = D,. + 1. 
All the shortest-path algorithms work by starting with D,. = oo and reducing 
its value when an appropriate v is scanned. To do this task efficiently, we 
must scan vertices v systematically. When a given v is scanned, we update 
the vertices w adjacent to v by scanning through v's adjacency list. 

From the preceding discussion, we conclude that an algorithm for 
solving the unweighted shortest-path problem is as follows. Let D, be the 
length of the shortest path from S to i. We know that Ds = 0 and initially 
that Di = oo for all i # S. We maintain a roving eyeball that hops from vertex 

Breadth-first search 
processes vertices in 
layers: Those closest 
to the start are 
evaluated first. 

The roving eyeball 
moves from vertex to 
vertex and updates 
distances for 
adjacent vertices. 

Figure 15.19 The graph, after all the vertices whose shortest path from the 
starting vertex is 2 have been found. 

Figure 15.20 The final shortest paths. 



Figure 15.21 If w is adjacent to vand there is a path to v, there also is a 
path to w. 

to vertex and is initially at S. If v is the vertex that the eyeball is currently on, 
then, for all w that are adjacent to v, we set D, = D, + 1 if D, = co. This 
reflects the fact that we can get to w by following a path to v and extending 
the path by the edge (v, w)-again, illustrated in Figure 15.2 1.  So we update 
vertices w as they are seen from the vantage point of the eyeball. Because the 
eyeball processes each vertex in order of its distance from the starting vertex 
and the edge adds exactly 1 to the length of the path to w, we are guaranteed 
that the first time D, is lowered from w, it is lowered to the value of the 
length of the shortest path to w. These actions also tell us that the next-to-last 
vertex on the path to w is v, so one extra line of code allows us to store the 
actual path. 

After we have processed all of v's adjacent vertices, we move the eyeball 
to another vertex u (that has not been visited by the eyeball) such that 
D, = D,. If that is not possible, we move to a u that satisfies D, = D, + 1. If 
that is not possible, we are done. Figure 15.22 shows how the eyeball visits 
vertices and updates distances. The lightly shaded node at each stage repre- 
sents the position of the eyeball. In this picture and those that follow, the 
stages are shown top to bottom, left-to-right. 

A I ~  vertices adjacent The remaining detail is the data structure, and there are two basic 
to v are found by actions to take. First, we repeatedly have to find the vertex at which to place 
scanning v's 
adjacency list. the eyeball. Second, we need to check all w's adjacent to v (the current ver- 

tex) throughout the algorithm. The second action is easily implemented by 
iterating through v's adjacency list. Indeed, as each edge is processed only 
once, the total cost of all the iterations is O(1EI). The first action is more 
challenging: We cannot simply scan through the graph table (see Figure 15.4) 
looking for an appropriate vertex because each scan could take O(I V( ) time 
and we need to perform it I VI times. Thus the total cost would be O(I VI2), 
which is unacceptable for sparse graphs. Fortunately, this technique is not 
needed. 
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Unweighted Shortest-Path Problem 

Figure 15.22 Searching the graph in the unweighted shortest-path computation. 
The darkest-shaded vertices have already been completely 
processed, the lightest-shaded vertices have not yet been used as v, 
and the medium-shaded vertex is the current vertex, v. The stages 
proceed left to right, top to bottom, as numbered. 



m P G h s a n d  Paths 

When a vertex has its When a vertex w has its D, lowered from co, it becomes a candidate for 
distance lowered an eyeball visitation at some point in the future. That is, after the eyeball vis- 
(which can happen 
only once), it is its vertices in the current distance group D,., it visits the next distance group 
placed on the queue D,, + 1 .  which is the group containing w. Thus MI just needs to wait in line for 
so that the eyeball its turn. Also, as it clearly does not need to go before any other vertices that - 
can visit it in the 
future. The starting 

have already had their distances lowered, kv needs to be placed at the end of 

vertex is placed on a queue of vertices waiting for an eyeball visitation. 
the queue when its To select a vertex v for the eyeball, we merely choose the front vertex 
distance is initialized from the queue. We start with an empty queue and then we enqueue the start- 
to zero. 

ing vertex S.  A vertex is enqueued and dequeued at most once per shortest- 
path calculation and queue operations are constant time, so the cost of 
choosing the vertex to select is only O(I V I )  for the entire algorithm. Thus 
the cost of the breadth-first search is dominated by the scans of the adja- 
cency list and is O(IEl ) ,  or linear, in the size of the graph. 

1 / /  Single-source unweighted shortest-path algorithm. 
2 void Graph::unweighted( const string & startName ) 

3 I 
4 
5 vmap::iterator itr = vertexMap.find( startName ) ; 

6 if( itr == vertexMap.end( ) ) 

7 throw GraphException( startName + " is not a vertex" ) ;  

8 
9 clearAll ( 1 ;  

10 Vertex *start = (*itr) .second; 
11 list<Vertex * >  q; 
12 q.push-back( start ) ;  start->dist = 0; 
13 
14 while( !q.empty( ) 

15 i 
16 Vertex *v = q.front( ) ;  

17 q . pop-f ront ( ) ; 

18 
19 for( int i = 0; i < v->adj.size( 1 ;  i++ ) 

20 ( 

21 Edge e = v->adj [ i I ; 
22 Vertex *w = e.dest; 
23 if( w->dist == INFINITY ) 

24 I 
25 w->dist = v->dist + 1; 
26 w->prev = v; 
27 q.push-back( w ) ;  

28 1 
29 1 
30 1 
31 i 

Figure 15.23 The unweighted shortest-path algorithm, using breadth-first search. 



Positive-Weighted, Shortest-Path Problem 

15.2.2 C++ Implementation 

The unweighted shortest-path algorithm is implemented by the method Implementation is 

unweighted, as shown in Figure 15.23. The code is a line-for-line transla- much simpler than it 
sounds. It follows the 

tion of the algorithm described previously. The initialization at lines 9-1 2 algorithm description 
makes all the distances infinity, sets Ds to 0, and then enqueues the start ver- verbatim. 

tex. The queue is declared at line I I as a 1 is t iver t ex * >.While the queue 
is not empty, there are vertices to visit. Thus at line 16 we move to the vertex 
v that is at the front of the queue. Line 19 iterates over the adjacency list and 
produces all the w's that are adjacent to v. The test D, = oo is performed at 
line 23. If it returns true, the update D ,  = D,, + 1 is performed at line 25 
along with the update of w's prev data member and enqueueing of w at lines 
26 and 27, respectively. 

15.3 Positive-Weighted, Shortest-Path Problem 
Recall that the weighted path length of a path is the sum of the edge costs on The weightedpath 

the path. In this section we consider the problem of finding the weighted length is the sum Of 

the edge costs on a 
shortest path, in a graph whose edges have nonnegative cost. We want to find path. 
the shortest weighted path from some starting vertex to all vertices. As we 
show shortly, the assumption that edge costs are nonnegative is important 
because it allows a relatively efficient algorithm. The method used to solve 
the positive-weighted, shortest-path problem is known as Dijkstra's algo- 
rithm. In the next section we examine a slower algorithm that works even if 
there are negative edge costs. 

POSITIVE-WEIGHTED, SINGLE-SOURCE, SHORTEST- 
PATH PROBLEM 

FIND THE SHORTEST PATH (MEASURED BY TOTAL COST) FROM A DESIGNATED 

VERTEX S TO EVERY VERTEX. ALL EDGE COSTS ARE NONNEGATIVE. 

15.3.1 Theory: Dijkstra's Algorithm 

The positive-weighted, shortest-path problem is solved in much the same Dijkstra'salgorithm is 

way as the unweighted problem. However, because of the edge costs, a few used the 
positive-weighted 

things change. The following issues must be examined: shortest-path 
problem. 

1 .  How do we adjust D,.? 
2. How do we find the vertex v for the eyeball to visit? 
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Graphs and path; 
- 

We use Dv + c,, as 
the new distance and 
to decide whether the 
distance should be 
updated. 

A queue is no longer 
appropriate for 
storing vertices 
awaiting an eyeball 
visit. 

The distance for 
unvisited vertices 
represents a path 
with only visited 
vertices as 
intermediate nodes. 

We begin by examining how to alter D, . In solving the unweighted 
shortest-path problem, if D, = oo, we set D, = D, + 1 because we lower the 
value of D, if vertex v offers a shorter path to w. The dynamics of the algo- 
rithm ensure that we need alter D, only once. We add I to D, because the 
length of the path to w is 1 more than the length of the path to v. If we apply 
this logic to the weighted case. we should set D, = D, + c, , if this new 
value of D,  is better than the original value. However, we are no longer 
guaranteed that D, is altered only once. Consequently, D, should be altered 
if its current value is larger than D, + c ,  , (rather than merely testing against 
oo). Put simply, the algorithm decides whether v should be used on the path 
to w. The original cost D, is the cost without using v; the cost Dv + c ,  , is the 
cheapest path using v (so far). 

Figure 15.24 shows a typical situation. Earlier in the algorithm, w had its 
distance lowered to 8 when the eyeball visited vertex u. However, when the 
eyeball visits vertex v, vertex w needs to have its distance lowered to 6 
because we have a new shortest path. This result never occurs in the 
unweighted algorithm because all edges add I to the path length, so 
D,  5 DL, implies D, + 1 I DL + I and thus D ,  I D,  + I. Here, even though 
D, 5 D,, we can still improve the path to w by considering v. 

Figure 15.24 illustrates another important point. When w has its distance 
lowered, it does so only because it is adjacent to some vertex that has been vis- 
ited by the eyeball. For instance, after the eyeball visits v and processing has 
been completed. the value of D,, is 6 and the last vertex on the path is a vertex 
that has been visited by the eyeball. Similarly, the vertex prior to v must also 
have been visited by the eyeball. and so on. Thus at any point the value of D, 
represents a path from S to w using only vertices that have been visited by the 
eyeball as intermediate nodes. This crucial fact gives us Theorem 15.1. 

Figure 15.24 The eyeball is at v and w is adjacent, so D,should be lowered to 6. 
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Positive-Weighted, Shortest-Path Problem 

If we move the eyeball to the unseen vertex with minimum D,, the Theorem 15.1 
algorithm correctly produces the shortest paths if there are no negative 
edge costs. 

Call each eyeball visit a "stage." We prove by induction that, after 
any stage, the values of Dl for vertices visited by the eyeball form the 
shortest path and that the values of Dl for the other vertices form the 
shortest path using only vertices visited by the eyeball as intermediates. 
Because the first vertex visited is the starting vertex, this statement is 
correct through the first stage. Assume that it is correct for the first k 
stages. Let v be the vertex chosen by the eyeball in stage k + 1. Suppose, 
for the purpose of showing a contradiction, that there is a path from S to 
v of length less than D,.. 
This path must go through an intermediate vertex that has not yet been 
visited by the eyeball. Call the first intermediate vertex on the path not 
visited by the eyeball u. This situation is shown in Figure 15.25. The path 
to u uses only vertices visited by the eyeball as intermediates, so by 
induction D, represents the optimal distance to u. Moreover; D, < D, 
because u is on the supposed shorter path to v. This inequaliry is a 
contradiction because then we would have moved the eyeball to u instead 
of v. The proof is completed by showing that all the D, values remain 
correct for nonvisited nodes, which is clear by the update rule. 

Proof 

Figure 15.25 If D, is minimal among all unseen vertices and if all edge costs are 
nonnegative, DL, represents the shortest path. 
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graphs and paths 

Figure 15.26 Stages of Dijkstra's algorithm.The conventions are the same as those 
in Figure 15.22. 

Figure 15.26 shows the stages of Dijkstra's algorithm. The remaining 
issue is the selection of an appropriate data structure. For dense graphs, we 
can scan down the graph table looking for the appropriate vertex. As with the 
unweighted shortest-path algorithm, this scan will take O(I V1 2, time, which 
is optimal for a dense graph. For a sparse graph, we want to do better. 



Positive-Weighted, Shortest-Path Problem 

Certainly, a queue does not work. The fact that we need to find the ver- 
tex v with minimum D,. suggests that a priority queue is the method of 
choice. There are two ways to use the priority queue. One is to store each 
vertex in the priority queue and use the distance (obtained by consulting the 
graph table) as the ordering function. When we alter any D,., we must update 
the priority queue by reestablishing the ordering property. This action 
amounts to a decreaseKey operation. To take it we need to be able to find 
the location of w in the priority queue. Many implementations of the priority 
queue, including the STL priority queue, do not support decreaseKey. One 
that does is the pairing heap; we discuss use of the pairing heap for this 
application in Chapter 23. 

Rather than use a fancy priority queue, we use a method that works with 
the STL priority queue. Our method involves inserting an object consisting 
of w and D, in the priority queue whenever we lower D,. To select a new 
vertex v for visitation, we repeatedly remove the minimum item (based on 
distance) from the priority queue until an unvisited vertex emerges. Because 
the size of the priority queue could be as large as I El and there are at most 
(El priori ty queue insert ions and dele t ions ,  the running t ime is  
O(IEl1oglEl). Because IEl I /VI2 implies loglEl 5 2log/VI, we have the 
same O(IElloglVI) algorithm that we would have if we used the first 
method (in which the priority queue size is at most IV/). 

15.3.2 C++ Implementation 

The object placed on the priority queue is shown in Figure 15.27. It consists of 
w and D ,  and a comparison function defined on the basis of D,.. Figure 15.28 
shows the routine di j ks tra that calculates the shortest paths. 

Line 4 declares the priority queue pq. We declare vrec at line 5 to store 
the result of each deleteMin. AS with the unweighted shortest-path algo- 
rithm, we begin by setting all distances to infinity, setting Ds = 0, and plac- 
ing the starting vertex in our data structure. 

Each iteration of the outermost for loop that begins at line 16 puts the 
eyeball at a vertex v and processes it by examining adjacent vertices w. v is 
chosen by repeatedly removing entries from the priority queue (at line 22) 
until we encounter a vertex that has not been processed. We use the 
scratch variable to record it. Initially, scratch is 0. Thus, if the vertex is 
unprocessed, the while test fails at line 23. Then, when the vertex is pro- 
cessed, scratch is set to 1 (at line 26). The priority queue might be empty, 
if, for instance, some of the vertices are unreachable. In that case, we can 
return immediately. The loop at lines 28-43 is much like the loop in the 
unweighted algorithm. The difference is that at line 32, we must extract cvw 
from the adjacency list entry, ensure that the edge is nonnegative (otherwise, 

The priority queue is 
an appropriate data 
structure.The easiest 
method is to add a 
new entry, consisting 
of a vertex and a 
distance, to the 
priority queue every 
time a vertex has its 
distance lowered. We 
can find the new 
vertex to move to by 
repeatedly removing 
the minimum 
distance vertex from 
the priority queue 
until an unvisited 
vertex emerges. 

Again, the 
implementation 
follows the 
description fairly 
closely. 



Graphs and Paths 

1 / /  Structure stored in priority queue for Dijkstra's algorithm. 
2 struct Path 
3 I 
4 Vertex *dest; / /  w 
5 double cost; / /  d(w) 
6 
7 Path( Vertex *d = 0, double c = 0.0 ) 
8 : dest( d ) ,  cost( c ) { } 

9 
10 boo1 operator> ( const Path & rhs ) const 
11 { return cost > rhs.cost; } 
12 boo1 operator< ( const Path & rhs ) const 
13 { return cost < rhs.cost; } 

14 1; 

Figure 15.27 Basic item stored in the priority queue. 

our algorithm could produce incorrect answers), add c v w  instead of 1 at 
lines 37 and 39, and i n s e r t  rather than enqueue at line 41 .' 

15.4 Negative-Weighted, Shortest-Path Problem 
Negativeedgescause Dijkstra's algorithm requires that edge costs be nonnegative. This require- 
Dijkstra's ment is reasonable for most graph applications, but sometimes it is too 
not to work. An 
alternative algorithm restrictive. In this section we briefly discuss the most general case: the 
is needed. negative-weighted, shortest-path algorithm. 

NEGATIVE-WEIGHTED, SINGLE-SOURCE, SHORTEST- 
PATH PROBLEM 

FIND THE SHORTEST PATH (MEASURED BY TOTAL COST) FROM A DESlGNATED 

VERTEX S TO EVERY VERTEX. EDGE COSTS MAY BE NEGATIVE. 

1 5.4.1 Theory 

The proof of Dijkstra's algorithm required the condition that edge costs, and 
thus paths, be nonnegative. Indeed, if the graph has negative edge costs, Dijk- 
stra's algorithm does not work. The problem is that, once a vertex v has been 
processed, there may be, from some other unprocessed vertex u, a negative 

2. Note that the method name is push, which is the advantage of using the same names for 
the various methods in the STL data structures. The disadvantage, however, is that reading 
the code may be harder because the declaration that gives the type of the container is far 
removed from the point of its use. 



Negative-Weighted, Shortest-Path Problem 

1 / /  Single-source weighted shortest-path algorithm. 
2 void Graph::dijkstra( const string & startName ) 

3 i 
4 priority-queue<Path, vector<Path>, greater<Path> > pq; 
5 Path vrec; / /  Stores the result of a deleteMin 
6 
7 vmap::iterator itr = vertexMap.find( startName ) ; 

8 if( itr == vertexMap.end( ) ) 

9 throw GraphException( startName + " is not a vertex" 1 ;  
10 
11 clearAll( ) ;  

12 vertex *start = (*itr) .second; 
13 pq.push( Path( start, 0 ) ) ;  start->dist = 0; 
14 
15 int nodesseen = 0; 
16 for( ; nodesseen < vertexMap.size( ) ;  nodesSeen++ ) 

17 I 
18 do / /  Find an unvisited vertex 
19 ( 

20 if( pq.empty( ) ) 

21 return; 
22 vrec = pq.top( ) ;  pq.pop( 1 ;  
23 } while( vrec.dest->scratch ! =  0 ) ;  

24 
25 Vertex *v = vrec.dest; 
26 v->scratch = 1; 
27 
28 for( int i = 0; i < v->adj.size( ) ;  i++ ) 

29 I 
30 Edge e = v->adj [ i I ;  
31 Vertex *w = e.dest; 
32 double cvw = e.cost; 
33 
34 if( c v w <  0 ) 

35 throw GraphException( "Negative edge seen" ) ;  

36 
37 if( w->dist > v->dist + cvw ) 

38 I 
39 w->dist = v->dist + cvw; 
40 w->prev = v; 
41 pq.push( Path( w, w->dist ) 1 ;  
42 } 

43 1 
44 1 

Figure 15.28 A positive-weighted, shortest-path algorithm: Dijkstra's algorithm. 



Figure 15.29 A graph with a negative cost cycle. 

path back to v. In such a case, taking a path from S to u to v is better than 
going from S to v without using ~ i .  If the latter were to happen, we would be 
in trouble. Not only would the path to v be wrong, but we also would have to 
revisit v because the distances of vertices reachable from v may be affected. 
(In Exercise 15.10 you are asked to construct an explicit example; three ver- 
tices suffice.) 

A negative-cost cycle We have an additional problem to worry about. Consider the graph shown 
makes ally in Figure 15.29. The path from V, to V, has a cost of 2. However, a shorter 
paths undefined 
because we can stay path exists by following the loop V,, V,, V,,  V,, V,, which has a cost of -3. This 
in the cycle arbitrarily path is still not the shortest because we could stay in the loop arbitrarily long. 
long and obtain an Thus the shortest path between these two points is undefined. 
arbitrarily small 
weighted path length. This problem is not restricted to nodes in the cycle. The shortest path from 

V, to V, is also undefined because there is a way to get into and out of the loop. 
This loop is called a negative-cost cycle, which when present in a graph 
makes most, if not all, the shortest paths undefined. Negative-cost edges by 
themselves are not necessarily bad; it is the cycles that are. Our algorithm 
either finds the shortest paths or reports the existence of a negative-cost cycle. 

Whenever a vertex A combination of the weighted and unweighted algorithms will solve 
has its distance the problem, but at the cost of a potentially drastic increase in running time. 
lowered, it must be 
placed on a queue. As suggested previously, when D ,  is altered, we must revisit it at some point 
This may happen in the future. Consequently, we use the queue as in the unweighted algo- 
repeatedly for each rithm, but we use D,. + c,., as the distance measure (as in Dijkstra's algo- 
vertex. rithm). The algorithm that is used to solve the negative-weighted, shortest- 

path problem is known as the Bellman-Ford algorithm. 
The running time can When the eyeball visits vertex v for the ith time, the value of D,, is the 
belarge~especially if length of the shortest weighted path consisting of i or fewer edges. We 
there is a negative- 
cost cycle. leave the proof for you to do as Exercise 15.12. Consequently, if there are 

no negative-cost cycles, a vertex can dequeue at most ( V (  times and the 
algorithm takes at most O(IE1 J V ( )  time. Further, if a vertex dequeues more 
than IV/ times, we have detected a negative-cost cycle. 



Path Problems in Acyclic Graphs 

15.4.2 C++ Implementation 

Implementation of the negative-weighted, shortest-path algorithm is given in 
Figure 15.30. We make one small change to the algorithm description- 
namely, we do not enqueue a vertex if it is already on the queue. This change 
involves use of the scratch data member. When a vertex is enqueued, we 
increment scratch (at line 30). When it is dequeued, we increment it again 
(at line 16). Thus scratch is odd if the vertex is on the queue, and 
scratch/2 tells us how many times it has left the queue (which explains 
the test at line 16). When some w has its distance changed, but it is already 
on the queue (because scratch is odd), we do not enqueue it. However, we 
add 2 to it to indicate that it logically could have gone on (and off) the queue 
(which may speed the algorithm somewhat in the event of a negative cycle) 
at lines 30 and 33. The rest of the algorithm uses code that has already been 
introduced in both the unweighted shortest-path algorithm (Figure 15.23) 
and Dijkstra's algorithm (Figure 15.28). 

The tricky part of the 
implementation is the 
manipulation of the 
scratch variable. 
We attempt to avoid 
having any vertex 
appear on the queue 
twice at any instant. 

15.5 Path Problems in Acyclic Graphs 

Recall that a directed acyclic graph has no cycles. This important class of 
graphs simplifies the solution to the shortest-path problem. For instance, we 
do not have to worry about negative-cost cycles because there are no cycles. 
Thus we consider the following problem. 

WEIGHTED SINGLE-SOURCE, SHORTEST-PATH 
PROBLEM FOR ACYCLIC GRAPHS 

FIND THE SHORTEST PATH (MEASURED BY TOTAL COST) FROM A DESIGNATED 

VERTEX S TO EVERY VERTEX IN AN ACYCLIC GRAPH. EDGE COSTS ARE 

UNRESTRICTED. 

1 5.5.1 Topological Sorting 

Before considering the shortest-path problem, let us examine a related prob- A topo~ogica~ sort - 

lem: a topological sort. A topological sort orders vertices in a directed acy- Orders vertices in a 
d~rected acyclic graph 

clic graph such that if there is a path from u to v, then v appears after u in the that if there is a 
ordering. For instance, a graph is typically used to represent the prerequisite path from u to V, then 

requirement for courses at universities. An edge (v, w) indicates that course v "appears afieruin 
the ordering. A graph must be completed before course w may be attempted. A topological order that has a cycle 

of the courses is any sequence that does not violate the prerequisite require- havea 
merits. topological order. 
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Graphs and Paths 

1 / /  Single-source negative-weighted shortest-path algorithm. 
2 void Graph::negative( const string & startName ) 

3 { 

4 vmap::iterator itr = vertexMap.find( startName 1 ;  
5 if( itr == vertexMap.end( ) j 

6 throw Graph~xception( startName + " is not a vertex" ) ;  

7 
8 clearAll( j ; 

9 Vertex *start = (*itr).second; 
10 list<Vertex * >  q; 
11 q.push-back( start ) ;  start->dist = 0; start->scratch++; 
12 
13 while( !q.empty( ) ) 

14 { 

15 Vertex *v = q. front ( ) ; q.pop-front ( ) ; 

16 if( v->scratch++ > 2 * vertexMap.size( j ) 

17 throw GraphExceptionj "Negative cycle detected" ) ;  

18 
19 for( int i = 0; i < v->adj.size( ) ;  i++ ) 

20 i 
2 1 Edge e = v->adj[ i I ;  
22 Vertex *w = e.dest; 
23 double cvw = e.cost; 
24 
25 if( w->dist > v->dist + cvw ) 

26 I 
27 w->dist = v-zdist + cvw; 
28 w->prev = v; 
29 / /  Enqueue only if not already on the queue 
30 if( w->scratch++ % 2 == 0 ) 

31 q .push-back ( w ) ; 

32 else 
33 w->scratch++; / /  In effect, adds 2 
34 } 

35 1 
36 } 

37 } 

Figure 15.30 A negative-weighted, shortest-path algorithm: Negative edges are allowed. 

Clearly, a topological sort is not possible if a graph has a cycle because, 
for two vertices v and w on the cycle, there is a path from v to w and w to v. 
Thus any ordering of v and w would contradict one of the two paths. A graph 
may have several topological orders, and in most cases, any legal ordering 
will do. 



Path problems in Acyclic Graphs 

Figure 15.31 A topological sort. The conventions are the same as those in 
Figure 15.22. 

In a simple algorithm for performing a topological sort we first find any The indegreeof a 

vertex v that has no incoming edges. Then we print the vertex and logically vertex is the number 
of incoming edges. A remove it, along with its edges, from the graph. Finally, we apply the same topological sort can 

strategy to the rest of the graph. More formally, we say that the indegree of be performed in linear 

a vertex v is the number of incoming edges (u, v) .  time by repeatedly 
and logically We compute the indegrees of all vertices in the graph. In practice, logi- removing vertices 

ca11y remove means that we lower the count of incoming edges for each ver- that have no 
tex adjacent to v. Figure 15.31 shows the algorithm applied to an acyclic incoming edges. 



The algorithm 
produces the correct 
answer and detects 
cycles if the graph is 
not acyclic. 

The running time is 
linear if a queue is 
used. 

In an acyclic graph, 
the eyeball merely 
visits vertices in 
topological order. 

graph. The indegree is computed for each vertex. Vertex V, has indegree 0, 
so it is first in the topological order. If there were several vertices of indegree 
0, we could choose any one of them. When V2 and its edges are removed 
from the graph, the indegrees of V,,, V,, and V5 are all decremented by 1 .  
Now V, has indegree 0, so it is next in the topological order, and V, and V, 
have their indegrees lowered. The algorithm continues, and the remaining 
vertices are examined in the order V1, V3, V4. V6, and Vs. To reiterate, we do 
not physically delete edges from the graph; removing edges just makes it 
easier to see how the indegree count is lowered. 

Two important issues to consider are correctness and eficiencj. Clearly, 
any ordering produced by the algorithm is a topological order. The question 
is whether every acyclic graph has a topological order, and if so, whether our 
algorithm is guaranteed to find one. The answer is yes to both questions. 

If at any point there are unseen vertices but none of them have an inde- 
gree of 0, we are guaranteed that a cycle exists. To illustrate we can pick any 
vertex A,,. Because A. has an incoming edge, let A, be the vertex connected 
to it. And as A ,  has an incoming edge, let A ,  be the vertex connected to it. 
We repeat this process N times, where N is the number of unprocessed verti- 
ces left in the graph. Among Ao, A ,, . . ., A,, there must be two identical ver- 
tices (because there are N vertices but N + 1 A,'s). Tracing backward 
between those identical A, and A, exhibits a cycle. 

We can implement the algorithm in linear time by placing all unpro- 
cessed indegree 0 vertices on a queue. Initially, all vertices of indegree 0 are 
placed on the queue. To find the next vertex in the topological order, we 
merely get and remove the front item from the queue. When a vertex has its 
indegree lowered to 0, it is placed on the queue. If the queue empties before 
all the vertices have been topologically sorted, the graph has a cycle. The 
running time is clearly linear, by the same reasoning used in the unweighted 
shortest-path algorithm. 

15.5.2 Theory of the Acyclic Shortest-Path Algorithm 

An important application of topological sorting is its use in solving the 
shortest-path problem for acyclic graphs. The idea is to have the eyeball visit 
vertices in topological order. 

This idea works because, when the eyeball visits vertex v, we are guar- 
anteed that D,, can no longer be lowered; by the topological ordering rule, it 
has no incoming edges emanating from unvisited nodes. Figure 15.32 shows 
the stages of the shortest-path algorithm, using topological ordering to guide 
the vertex visitations. Note that the sequence of vertices visited is not the 



Figure 15.32 The stages of acyclic graph algorithm. The conventions are the same 
as those in Figure 15.22. 

same as in Dijkstra's algorithm. Also note that vertices visited by the eyeball 
prior to its reaching the starting vertex are unreachable from the starting ver- 
tex and have no influence on the distances of any vertex. 

We do not need a priority queue. Instead, we need only to incorporate The result is a linear 

the topological sort into the shortest-path computation. Thus we find that the time algorithm even 
with negative edge 

algorithm runs in linear time and works even with negative edge weights. weights. 
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The implementation 
combines a 
topological sort 
calculation and a 
shortest-path 
calculation. The 
indegree information 
is stored in the 
scratch data 
member. 

Vertices that appear 
before S in the 
topological order are 
unreachable. 

Critical-path analysis 
is used to schedule 
tasks associated with 
a project. 

An activity-node 
graph represents 
activities as vertices 
and precedence 
relationships as 
edges. 

15.5.3 C++ Implementation 

The implementation of the shortest-path algorithm for acyclic graphs is 
shown in Figure 15.33. We use a queue to perform the topological sort and 
maintain the indegree information in the scratch data member. Lines 13- 
18 compute the indegrees, and at lines 20-25 we place any indegree 0 verti- 
ces on the queue. 

We then repeatedly remove a vertex from the queue at line 30. Note that, 
if the queue is empty, the f o r  loop is terminated by the test at line 28. If the 
loop terminates because of a cycle, this fact is reported at line 50. Otherwise, 
the loop at line 31 steps through the adjacency list and a value of w is 
obtained at line 34. Immediately we lower w's indegree at line 36 and, if it 
has fallen to 0, we place it on the queue at line 37. 

Recall that if the current vertex v appears prior to S in topological order, 
v must be unreachable from S. Consequently, it still has D,, = co and thus 
cannot hope to provide a path to any adjacent vertex w. We perform a test at 
line 38, and if a path cannot be provided, we do not attempt any distance cal- 
culations. Otherwise, at lines 41 to 46, we use the same calculations as in 
Dijkstra's algorithm to update D,. if necessary. 

15.5.4 An Application: Critical-Path Analysis 

An important use of acyclic graphs is critical-path analysis, a form of anal- 
ysis used to schedule tasks associated with a project. The graph shown in 
Figure 15.34 provides an example. Each vertex represents an activity that 
must be completed, along with the time needed to complete it. The graph is 
thus called an activity-node graph, in which vertices represent activities 
and edges represent precedence relationships. An edge (I), MI) indicates that 
activity v must be completed before activity w may begin, which implies that 
the graph must be acyclic. We assume that any activities that do not depend 
(either directly or indirectly) on each other can be performed in parallel by 
different servers. 

This type of graph could be (and frequently is) used to model construc- 
tion projects. Two important questions must be answered. First, what is the 
earliest completion time for the project? The answer, as the graph shows, is 
I0 time units-required along path A, C, E H. Second, which activities can 
be delayed, and by how long, without affecting the minimum completion 
time? For instance, delaying any of A, C, F: or H would push the completion 
time past 10 time units. However, activity B is less critical and can be 
delayed up to 2 time units without affecting the final completion time. 



1 void Graph::acyclic( const string & startName ) 

2 I 
3 vmap::iterator itr = vertexMap.find( startName ) ; 

4 if( itr == vertexMap.end( ) ) 

5 throw GraphException( startName + " is not a vertex" ) ;  

6 
7 clearAll ( ) ; 

8 Vertex *start = (*itr) .second; 
9 start->dist = 0; 

10 list<Vertex *z q; 
11 
12 / /  Compute the indegrees. 
13 for( itr = vertexMap.begin( ) ;  itr ! =  vertexMap.end( ) ;  ++itr ) 

14 ( 

15 Vertex *v = (*itr) .second; 
16 for ( int i = 0 ; i < v->adj .size ( ) ; i++ ) 

17 v->adj[ i ].dest->scratch++; 
18 } 

19 / /  Enqueue vertices of indegree zero. 
20 for( itr = vertexMap.begin( ) ;  itr ! =  vertexMap.end( ) ;  ++itr ) 

2 1 { 

22 Vertex *V = (*itr) .second; 
23 if ( v->scratch == 0 ) 

24 q.push-back( v ) ;  

25 } 

26 
27 int iterations; 
28 for( iterations = 0; !q.empty( ) ;  iterations++ ) 

29 { 

30 Vertex *v = q.front( ) ;  q.pop-front( ) ;  

31 for( int i = 0; i < v->adj.size( ) ;  i++ ) 

32 i 
33 Edge e = v->adj [ i I ; 
34 Vertex *w = e.dest; 
35 
36 if( --w->scratch == 0 ) 

37 q.push-back( w ) ;  

38 if( v->dist == INFINITY ) 

39 continue; 
40 
41 double cvw = e.cost; 
42 if( w->dist > v->dist + cvw ) 

43 I 
44 w->dist = v->dist + cvw; 
45 w->prev = v; 
46 
47 } 

48 1 
49 if( iterations ! =  vertexMap.size( ) ) 

50 throw GraphException( "Graph has a cycle!" ) ;  

51 1 

Figure 15.33 A shortest-path algorithm for acyclic graphs. 
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m-phs and Paths 

The event-node graph 
consists of event 
vertices that 
correspond to the 
completion of an 
activity and all its 
dependent 
activities. 

Edges show which 
activity must be 
completed to advance 
from one vertex to the 
next. The earliest 
completion time is the 
longest path. 

To perform these calculations, we convert the activity-node graph to an 
event-node graph, in which each event corresponds to the completion of an 
activity and all its dependent activities. Events reachable from a node v in 
the event-node graph may not commence until after the event v is completed. 
This graph can be constructed automatically or by hand (from the activity- 
node graph). Dummy edges and vertices may need to be inserted to avoid 
introducing false dependencies (or false lack of dependencies). The event- 
node graph corresponding to the activity-node graph in Figure 15.34 is 
shown in Figure 15.35. 

To find the earliest completion time of the project, we merely need to find 
the length of the longest path from the first event to the last event. For general 
graphs, the longest-path problem generally does not make sense because of the 
possibility of a positive-cost cycle, which is equivalent to a negative-cost 
cycle in shortest-path problems. If any positive-cost cycles are present. we 
could ask for the longest simple path. However. no satisfactory solution is 
known for this problem. Fortunately. the event-node graph is acyclic: thus we 
need not w o q  about cycles. We can easily adapt the shortest-path algorithm 
to compute the earliest completion time for all nodes in the graph. If EC, is the 
earliest completion time for node i, the applicable rules are 

EC, = 0 and EC,, = Max,, ,,, , ,(EC, + c, ,,). 

Start Finish 

Figure 15.34 An activity-node graph. 

Figure 15.35 An event-node graph. 
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Figure 15.36 shows the earliest completion time for each event in our The latest time an 

example event-node graph. We can also compute the latest time, LCi, that event can finish 
w~thout delaying the 

each event can finish without affecting final completion time. The formulas is also easily 
to do this are computable. 

LC, = ECN and LC, = Min,,: ,,,.,(LC,, - c ,  ,,). 

These values can be computed in linear time by maintaining for each vertex 
a list of all adjacent and preceding vertices. The earliest completion times 
are computed for vertices by their topological order, and the latest comple- 
tion times are computed by reverse topological order. The latest completion 
times are shown in Figure 15.37. 

The slack time for each edge in the event-node graph is the amount of Slack time is the - - 

time that the completion of the corresponding activity can be delayed with- amount Of time that 
an activity can be 

out delaying the overall completion, or delayed without 

Slack,,: .., = LC,,. - EC,. - c,: 

Figure 15.38 shows the slack (as the third entry) for each activity in the 
event-node graph. For each node, the top number is the earliest completion 
time and the bottom number is the latest completion time. 

Figure 15.36 Earliest completion times. 

delaying overall 
completion. 

Figure 15.37 Latest completion times. 
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Figure 15.38 Earliest completion time, latest completion time, and slack (additional 
edge item). 

zero-slack activities Some activities have zero slack. These are critical activities that must be 
are critical and finished on schedule. A path consisting entirely of zero-slack edges is a crit- 
cannot be delayed. A 
path of zero-slack ical path. 
edges is a critical 
path. Summary 

In this chapter we showed how graphs can be used to model many real-life 
problems and in particular how to calculate the shortest path under a wide vari- 
ety of circumstances. Many of the graphs that occur are typically very sparse. 
so choosing appropriate data structures to implement them is important. 

For unweighted graphs. the shortest path can be computed in linear time. 
using breadth-first search. For positive-weighted graphs, slightly more time 
is needed. using Dijkstra's algorithm and an efficient priority queue. For 
negative-weighted graphs, the problem becomes more difficult. Finally. for 
acyclic graphs. the running time reverts to linear time with the aid of a topo- 
logical sort. 

Figure 15.39 summarizes those characteristics for these algorithms. 

1 Weighted no negative edges 1 O ( E  log V ) Dijkstra's algorithm 1 

Type of Graph Problem 

Unweighted 

1 Weighted, negative edges O ( E  1' ) 1 Belman-Ford algorithm 1 
I Weighted, acyclic 1 O ( I E )  I Uses topological sort 1 

Running Time 

Figure 15.39 Worst-case running times of various graph algorithms. 

Comments 

Breadth-first search 



Objects of the Game 

Objects of the Game 

activity-node graph A graph of vertices as activities and edges as pre- 
cedence relationships. (p. 522) 

adjacency lists An array of lists used to represent a graph, using linear 
space. (p. 492) 

adjacency matrix A matrix representation of a graph that uses qua- 
dratic space. (p. 49 1 ) 

adjacent vertices Vertex w is adjacent to vertex v if there is an edge 
from v to w. (p. 489) 

Bellman-Ford algorithm An algorithm that is used to solve the nega- 
tive-weighted, shortest-path problem. (p. 5 16) 

breadth-first search A search procedure that processes vertices in 
layers: Those closest to the start are evaluated first, and those most 
distant are evaluated last. (p. 505) 

critical-path analysis A form of analysis used to schedule tasks asso- 
ciated with a project. (p. 522) 

cycle In a directed graph, a path that begins and ends at the same ver- 
tex and contains at least one edge. (p. 490) 

dense and sparse graphs A dense graph has a large number of edges 
(generally quadratic). Typical graphs are not dense but are sparse. 
(P. 491) 

Dijkstra's algorithm An algorithm that is used to solve the positive- 
weighted, shortest-path problem. (p. 509) 

directed acyclic graph (DAG) A type of directed graph having no 
cycles. (p. 490) 

directed graph A graph in which edges are ordered pairs of vertices. 
(P. 489) 

edge cost (weight) The third component of an edge that measures the 
cost of traversing the edge. (p. 489) 

event-node graph A graph that consists of event vertices that corre- 
spond to the completion of an activity and all its dependent activi- 
ties. Edges show what activity must be completed to advance from 
one vertex to the next. The earliest completion time is the longest 
path. (p. 522) 

graph A set of vertices and a set of edges that connect the vertices. 
(P. 489) 

indegree The number of incoming edges of a vertex. (p. 5 19) 



negative-cost cycle A cycle whose cost is less than zero and makes 
most, if not all, paths undefined because we can loop around the 
cycle arbitrarily many times and obtain an arbitrarily small weighted 
path length. (p. 5 16) 

path A sequence of vertices connected by edges. (p. 490) 
path length The number of edges on a path. (p. 490) 
positive-cost cycle In a longest-path problem, the equivalent of a neg- 

ative-cost cycle in a shortest-path problem. (p. 524) 
simple path A path in which all vertices are distinct, except that the 

first and last vertices can be the same. (p. 490) 
single-source algorithms Algorithms that compute the shortest paths 

from some starting point to all vertices in a graph. (p. 496) 
slack time The amount of time that an activity can be delayed without 

delaying overall completion. (p. 525) 
topological sort A process that orders vertices in a directed acyclic 

graph such that if there is a path from u to v, then v appears after u in 
the ordering. A graph that has a cycle cannot have a topological 
order. (p. 5 17) 

unweighted path length The number of edges on a path. (p. 503) 
weighted path length The sum of the edge costs on a path. (p. 509) 

@ Common Errors 

1. A common error is failing to ensure that the input graph satisfies the 
requisite conditions for the algorithm being used (i.e., acyclic or 
positive weighted). 

2. For Path, the comparison function compares the c o s t  data mem- 
ber only. If the dest data member is used to drive the comparison 
function, the algorithm may appear to work for small graphs, but 
for larger graphs, it is incorrect and gives slightly suboptimal 
answers. It never produces a path that does not exist, however. Thus 
this error is difficult to track down. 

3. The shortest-path algorithm for negative-weighted graphs must 
have a test for negative cycles; otherwise, it runs forever. 



On the Internet 

~ 1 1  the algorithms in this chapter are online in one file. The vertex class 6 
has an additional data member that is used in the alternative implementation 
of Dijkstra's algorithm shown in Section 23.2.3. 

Paths.cpp Contains everything in one file with the simple main shown 
in Figure 1 5.1 5. 

Exercises 

In Short 

15.1. Find the shortest unweighted path from V3 to all others in the graph 
shown in Figure 1 5.1. 

15.2. Find the shortest weighted path from V2 to all others in the graph 
shown in Figure 15.1. 

15.3. Which algorithms in this chapter can be used to solve Exercise 15.2? 

15.4. In Figure 15.5, reverse the direction of edges (D, C)  and (E, D). 
Show the changes that result in the figure and the result of running 
the topological sorting algorithm. 

15.5. Suppose that edges (C, B) with a cost of 1 I and (B, F )  with a cost of 
10 are added to the end of the input in Figure 15.5. Show the 
changes that result in the figure and recompute the shortest path 
emanating from vertex A. 

In Theory 

15.6. Show how to avoid quadratic initialization inherent in adjacency 
matrices while maintaining constant-time access of any edge. 

15.7. Explain how to modify the unweighted shortest-path algorithm so 
that, if there is more than one minimum path (in terms of number of 
edges), the tie is broken in favor of the smallest total weight. 

15.8. Explain how to modify Dijkstra's algorithm to produce a count of 
the number of different minimum paths from v to w. 

15.9. Explain how to modify Dijkstra's algorithm so that, if there is more 
than one minimum path from v to w, a path with the fewest edges is 
chosen. 



Graphs and Paths 

Give an example of when Dijkstra's algorithm gives the wrong 
answer in the presence of a negative edge but no negative-cost cycle. 

Consider the following algorithm to solve the negative-weighted, 
shortest-path problem: Add a constant c to each edge cost, thus 
removing negative edges; calculate the shortest path on the new 
graph; and then use that result on the original. What is wrong with 
this algorithm? 

Prove the correctness of the negative-weighted, shortest-path algo- 
rithm. To do so, show that when the eyeball visits vertex v for the ith 
time, the value of D,, is the length of the shortest weighted path con- 
sisting of i or fewer edges. 

Give a linear-time algorithm to find the longest weighted path in an 
acyclic graph. Does your algorithm extend to graphs that have 
cycles? 

Show that if edge weights are 0 or 1 ,  exclusively, Dijkstra's algo- 
rithm can be implemented in linear time by using a deque (Sec- 
tion 16.5). 

For any path in a graph, the bottleneck cost is given by the weight of 
the shortest edge on the path. For example, in Figure 15.4, the bot- 
tleneck cost of the path E, D, B is 23 and the bottleneck cost of the 
path E, D, C, A, B is 10. The maximum bottleneck problem is to find 
the path between two specified vertices with the maximum bottle- 
neck cost. Thus the maximum bottleneck path between E and B is 
the path E, D, B. Give an efficient algorithm to solve the maximum 
bottleneck problem. 

Let G be a (directed) graph and u and v be any two distinct vertices 
in G. Prove or disprove each of the following. 
a. If G is acyclic, at least one of (u, v) or (v, u) can be added to the 

graph without creating a cycle. 
b. If adding one of either (u, v) or (v, u) to G without creating a 

cycle is impossible, then G already has a cycle. 

In Practice 

In this chapter we claim that, for the implementation of graph algo- 
rithms that run on large input, data structures are crucial to ensure 
reasonable performance. For each of the following instances in 
which a poor data structure or algorithm is used, provide a Big-Oh 
analysis of the result and compare the actual performance with the 



algorithms and data structures presented in the text. Implement only 
one change at a time. You should run your tests on a reasonably 
large and somewhat sparse random graph. Then do the following. 
a. When an edge is read, determine whether it is already in the 

graph. 
b. Implement the "dictionary" by using a sequential scan of the 

vertex table. 
c. Implement the queue by using the algorithm in Exercise 7.12 

(which should affect the unweighted shortest-path algorithm). 
d. In the unweighted shortest-path algorithm, implement the 

search for the minimum-cost vertex as a sequential scan of the 
vertex table. 

e. Implement the priority queue by using the algorithm in Exer- 
cise 7.14 (which should affect the weighted shortest-path algo- 
rithm). 

f. Implement the priority queue by using the algorithm in Exercise 
7.15 (which should affect the weighted shortest-path algorithm). 

g. In the weighted shortest-path algorithm, implement the search 
for the minimum-cost vertex as a sequential scan of the vertex 
table. 

h. In the acyclic shortest-path algorithm, implement the search for 
a vertex with indegree 0 as a sequential scan of the vertex table. 

i. Implement any of the graph algorithms by using an adjacency 
matrix instead of adjacency lists. 

Programming Projects 

15.18. A directed graph is strongly connected if there is a path from every 
vertex to every other vertex. Do the following. 
a. Pick any vertex S. Show that, if the graph is strongly connected, 

a shortest-path algorithm will declare that all nodes are reach- 
able from S.  

b. Show that, if the graph is strongly connected and then the direc- 
tions of all edges are reversed and a shortest-path algorithm is 
run from S, all nodes will be reachable from S. 

c. Show that the tests in parts (a) and (b) are sufficient to decide 
whether a graph is strongly connected (i.e., a graph that passes 
both tests must be strongly connected). 

d. Write a program that checks whether a graph is strongly con- 
nected. What is the running time of your algorithm? 



Explain how each of the following problems can be solved by applying a 
shortest-path algorithm. Then design a mechanism for representing an input 
and write a program that solves the problem. 

15.19. The input is a list of league game scores (and there are no ties). If all 
teams have at least one win and a loss, we can generally "prove," by 
a silly transitivity argument, that any team is better than any other. 
For instance, in the six-team league where everyone plays three 
games, suppose that we have the following results: A beat B and C; 
B beat C and F; C beat D; D beat E; E beat A; and F beat D and E. 
Then we can prove that A is better than F because A beat B who in 
turn beat F. Similarly, we can prove that F is better than A because F 
beat E and E beat A. Given a list of game scores and two teams X 
and I: either find a proof (if one exists) that X is better than Y or indi- 
cate that no proof of this form can be found. 

15.20. A word can be changed to another word by a one-character substitu- 
tion. Assume that a dictionary of five-letter words exists. Give an 
algorithm to determine whether a word A can be transformed to a 
word B by a series of one-character substitutions, and if so, outputs 
the corresponding sequence of words. For example, bleed converts 
to blood by the sequence bleed, blend, blond, blood. 

15.21. The input is a collection of currencies and their exchange rates. Is 
there a sequence of exchanges that makes money instantly? For 
instance, if the currencies are X, I: and Z and the exchange rate is 1 
X equals 2 Ys, 1 Y equals 2 Zs, and 1 X equals 3 Zs, then 300 Zs will 
buy 100 Xs, which in turn will buy 200 Ys, which in turn will buy 
400 Zs. We have thus made a profit of 33 percent. 

15.22. A student needs to take a certain number of courses to graduate, and 
these courses have prerequisites that must be followed. Assume that 
all courses are offered every semester and that the student can take 
an unlimited number of courses. Given a list of courses and their 
prerequisites, compute a schedule that requires the minimum num- 
ber of semesters. 

15.23. The object of the Kevin Bacon Game is to link a movie actor to 
Kevin Bacon via shared movie roles. The minimum number of links 
is an actor's Bacon number. For instance, Tom Hanks has a Bacon 
number of 1. He was in Apollo 13 with Kevin Bacon. Sally Field has 
a Bacon number of 2 because she was in Forest Gump with Tom 
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Hanks, who was in Apollo 13 with Kevin Bacon. Almost all well- 
known actors have a Bacon number of 1 or 2. Assume that you have 
a comprehensive list of actors, with roles, and do the following. 
a. Explain how to find an actor's Bacon number. 
b. Explain how to find the actor with the highest Bacon number. 
c. Explain how to find the minimum number of links between two 

arbitrary actors. 
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Chapter 16 

1 Stacks and Queues 

In this chapter we discuss implementation of the stack and queue data struc- 
tures. Recall from Chapter 7 that the basic operations are expected to take 
constant time. For both the stack and queue, there are two basic ways to 
arrange for constant-time operations. The first is to store the items contigu- 
ously in an array, and the second is to store items noncontiguously in a 
linked list. We present implementations for both data structures, using both 
methods, in this chapter. The code follows the protocols given previously in 
Figures 7.3 and 7.5. 

In this chapter, we show: 

an array-based implementation of the stack and queue, 

a linked list-based implementation of the stack and queue, 
a brief comparison of the two methods, 
an illustration of STL stack implementation, and 
inheritance used to derive a new data structure, called the double- 
ended queue. 

16.1 Dynamic Array Implementations 

In this section we use a simple array to implement the stack and queue. The 
resulting algorithms are extremely efficient and also are simple to code. 
Recall that we have been using vector to implement arrays. Applying 
push-back, pop-back, and back, we have already used a vector to sup- 
port stack operations. However, because we are interested in a general dis- 
cussion of the algorithms, we pretend that these operations do not exist in 
the vector class for our vector implementation. 



Stacks and Queues 

16.1.1 Stacks 

A stack can be 
implemented with an 
array and an integer 
that indicates the 
index of the top 
element. 

Most of the stack 
routines are 
applications of 
previously discussed 
ideas. 

Recall that array 
doubling does not 
affect performance in 
the long run. 

As Figure 16.1 shows. a stack can be implemented with an array and an inte- 
ger. The integer tos (top of stack) provides the array index of the top element 
of the stack. Thus when tos is -1, the stack is empty. To push, we increment 
tos and place the new element in the array position tos. Accessing the top 
element is thus trivial, and we can perform the pop by decrementing tos. In 
Figure 16.1, we begin with an empty stack. Then we show the stack after three 
operations: push (a), push(b), and pop. 

Figure 16.2 shows the interface for the array-based Stack class. It spec- 
ifies two data members: theArray, which is expanded as needed, stores the 
items in the stack; and t opof s tac k gives the index of the current top of the 
stack. For an empty stack. this index is -1. The constructor is shown in Fig- 
ure 16.3. Because the data members are first-class objects, the Big-Three is 
automatically defined correctly. Thus we do not need to provide a destructor, 
copy constructor, or copy assignment operator. 

The public methods are listed in lines 21-27 of the interface. Most of 
these routines have simple implementations. The i sEmpt y and makeEmpty 
routines are one-liners, as shown in Figure 16.4. The push method is 
shown in Figure 16.5. If it were not for the array doubling, the push rou- 
tine would be only the single line of code shown at line 7. Recall that the 
use of the prefix + + operator means that topof s tack is incremented and 
that its new value is used to index theArray. The remaining routines are 
equally short, as shown in Figures 16.6 and 16.7. The postfix - -  operator 
used in Figure 16.7 indicates that, although topof Stack is decremented, 
its prior value is used to index theArray. 

If there is no array doubling, every operation takes constant time. A 
push that involves array doubling will take O(N)  time. If this were a fre- 
quent occurrence? we would need to worry. However, it is infrequent 
because an array doubling that involves N elements must be preceded by at 
least N / 2  pushes that do not involve an array doubling. Consequently, we 

tos (0) 

(a) tos(-]) (b) (c) (d) 

Figure 16.1 How the stack routines work: (a) empty stack: (b) push (a) ; 
(c) push (b) ; and (d) pop. 
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Dynam~c Array lmplementat~ons 

1 / /  Stack class -- array implementation. 
2 / /  
3 / /  CONSTRUCTION: with no parameters. 
4 / /  
5 / /  ******************puBLIC OPERATIONS********************* 

6 / / void push( x ) - - > Insert x 
7 / /  void pop ( ) - - >  Remove most recently inserted item 
8 / /  Object top( - - >  Return most recently inserted item 
9 / /  Object topAndPop( ) - - >  Return and remove most recent item 

10 / /  boo1 isEmpty( ) - - >  Return true if empty; else false 
11 / /  void makeEmpty ( ) - - >  Remove all items 
12 / /  * h x h * * * * * * * * * * * * * * E R R O R S * * * * * * * * * W * * * * * * * * * * * * * X * *  

13 / /  UnderflowException thrown as needed. 
14 
15 template <class Object> 
16 class Stack 
17 { 

18 public: 
19 Stack( ) ; 

20 
21 boo1 isEmpty ( ) const; 
22 const Object & top( ) const; 
23 
24 void makeEmpty( ) ;  

25 void pop ( ) ; 

26 void push ( const Object & x ) ; 

27 Object topAndPop ( ) ; 

28 
29 private: 
30 vector<Object> theArray; 
31 int topofstack; 

32 I ;  

Figure 16.2 Interface for the array-based Stack class. 

1 / /  Construct the stack. 
2 template <class Object> 
3 Stack<Object>::Stack( ) : theArray( 1 ) 

4 i 
5 topOfStack = -1; 

6 1 

Figure 16.3 The zero-parameter constructor for the array-based Stack  class. 



Stacks and Queues 

1 / /  Test if the stack is logically empty. 
2 / /  Return true if empty, false, otherwise. 
3 template <class Object> 
4 boo1 Stack<Object>::isEmpty( ) const 
5 { 
6 return topofstack == -1; 
7 1 
8 
9 / /  Make the stack logically empty. 

10 template <class Object> 
11 void Stack<Object>::makeEmpty( ) 
12 { 
13 topofstack = -1; 
14 1 

Figure 16.4 The i s E m p t y  and makeEmpty routines for the array-based 
S t a c k  class. 

1 / /  Insert x into the stack. 
2 template <class Object> 
3 void Stack<Object>: :push( const Object & x ) 

4 ( 
5 if( topofstack == theArray.size( ) - 1 
6 theArray.resize( theArray.size( ) * 2 + 1 ) ;  

7 theArray[ ++topofstack I = x; 
8 i 

Figure 16.5 The push method for the array-based Stack  class. 

can charge the O(N) cost of the doubling over these N / 2  easy pushes,  
thereby effectively raising the cost of each push by only a small constant. 
This technique is known as amortization. 

A real-life example of amortization is payment of income taxes. Rather 
than pay your entire bill on April 15, the government requires that you pay 
most of your taxes through withholding. The total tax bill is always the 
same; it is when the tax is paid that varies. The same is true for the time 
spent in the push  operations. We can charge for the array doubling at the 
time it occurs, or we can bill each push  operation equally. An amortized 
bound requires that we bill each operation in a sequence for its fair share of 
the total cost. In our example, the cost of array doubling therefore is not 
excessive. 
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Dynamic Array Implementations 

1 / /  Return the most recently inserted item in the stack. 
2 / /  Does not alter the stack. 
3 / /  Throws UnderflowException if stack is already empty. 
4 template <class Object> 
5 const Object & Stack<Object>: :top( ) const 
6 ( 

7 if ( isEmpty( j ) 

8 throw UnderflowException( ) ;  

9 return theArray[ topofstack 1 ;  
10 1 
11 
12 / /  Remove the most recently inserted item from the stack. 
13 / /  Throw UnderflowException if stack is already empty. 
14 template <class Object> 
15 void Stack<Object>::pop( ) 
16 ( 

17 if ( isEmpty( ) ) 

18 throw UnderflowException( j ;  

19 topofstack--; 
20 1 

Figure 16.6 The t o p  and pop methods for the array-based Stack class. 

1 / /  Return and remove most recently inserted item from the stack. 
2 / /  Throws UnderflowException if stack is already empty. 
3 template <class Object> 
4 Object Stack<Object>: : topAndPop ( ) 

5 ( 

6 if ( isEmpty ( ) j 

7 throw UnderflowException( ) ;  

8 return theArray[ topofstack-- I ;  
9 1 

Figure 16.7 The topAndPop method for the array-based Stack class 

16.1.2 Queues 

The easiest way to implement the queue is to store the items in an array with Storing the queue 

the front item in the front position (i.e., array index 0). If back represents beginning at 
the start of any array 

the position of the last item in the queue, then to enqueue we merely incre- makes dequeueing 
ment back and place the item there. The problem is that the dequeue oper- expensive. 

ation is very expensive. The reason is that, by requiring that the items be 
placed at the start of the array, we force the dequeue to shift all the items 
one position after we remove the front item. 



S t a c k s  and Queues 

back 

s i z e  = 0 f r o n t  

back 

s i z e  = I f r o n t  

back 

back 

enqueue(b)  

s i z e  = 1 f r o n t  

s i z e  = 2 f r o n t  

a 

dequeue ( ) 

back 

b 

b 

dequeue ( ) 

s i z e  = 0 f r o n t  

Figure 16.8 Basic array implementation of the queue. 

A dequeue is Figure 16.8 shows that we can overcome this problem when performing 
implemented by a dequeue by incrementing f r o n t  rather than shifting all the elements. 
incrementing the 
front position. When the queue has one element, both f r o n t  and back represent the array 

index of that element. Thus, for an empty queue, back must be initialized to 
f r o n t - 1 .  

This implementation ensures that both enqueue and dequeue can be 
performed in constant time. The fundamental problem with this approach is 
shown in the first line of Figure 16.9. After three more enqueue operations, 
we cannot add any more items, even though the queue is not really full. 
Array doubling does not solve the problem because, even if the size of the 
array is 1000, after 1000 enqueue operations there is no room in the queue, 
regardless of its actual size. Even if 1000 dequeue operations have been 
performed, thus abstractly making the queue empty, we cannot add to it. 



back 

A f t e r  3 enqueues  

s i z e  = 3 f r o n t  

back 

enqueue  ( f ) 

s i z e  = 4 f r o n t  

back 

d e q u e u e (  ) 

s i z e  = 3 f r o n t  

back 

dequeue  ( ) 

s i z e  = 2 f r o n t  

back 

dequeue  ( ) 

s i z e  = 1 f r o n t  

Figure 16.9 Array implementation of the queue with wraparound. 

As Figure 16.9 shows, however, there is plenty of extra space: All the 
positions before f r o n t  are unused and can thus be recycled. Hence we use 
wraparound; that is, when either back or f r o n t  reaches the end of the 
array, we reset it to the beginning. This operation implementing a queue is 
called a circular array implementation. We need to double the array only 
when the number of elements in the queue equals the number of array posi- 
tions. To enqueue  ( f ) , we therefore reset back to the start of the array and 
place f there. After three dequeue  operations, f r o n t  is also reset to the 
start of the array. 

The interface for the generic Queue class is shown in Figure 16.10. The 
Queue  class has four data members: a dynamically expanding array, the 
number of items currently in the queue, the array index of the front item and 
the array index of the back item. 

Wraparound returns 
front or back to 
the beginning of the 
array when either 
reaches the end. 
Using wraparound to 
implement the queue 
is called a 
circular array 
implementation. 
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1 / /  Queue class - -  array implementation. 
2 / /  
3 / /  CONSTRUCTION: with no parameters. 
4 / /  
5 / /  *****X************p"BLIC OPERATIONS*************i********* 

6 / /  void enqueue ( x 1 - - >  Insert x 
7 / /  void dequeue ( ) - - >  Return and remove least recent item 
8 / /  Object getFront( ) - - >  Return least recently inserted item 
9 / /  boo1 isEmpty( ) - - >  Return true if empty; else false 

10 / /  void makeEmpty( ) - - >  Remove ail items 
11 / /  ***************f**ERRORS***************************** 

12 / /  UnderflowException thrown as needed. 
13 template <class Object> 
14 class Queue 
15 ( 
16 public: 
17 Queue ( ; 

18 
19 boo1 isEmpty( ) const; 
20 const Object & getFrorit ( i const; 
21 
22 void makeEmpty ( ) ; 

23 Object dequeue ( ) ; 

24 void enqueue( const Object & x ) ;  

25 
26 private: 
27 vector<Object> theArray; 
28 int currentsize; 
29 int front ; 
30 int back ; 
3 1 
32 void increment( int & x ) const; 
33 void doubleQueue( ) ;  

34 1 ;  

Figure 16.10 Interface for the array-based Queue class. 

~f the queue is full, we We declare two methods i n  the private section. These methods are 
must used internally by the Queue methods but are not made available to the 
doubling carefully. user of the class. One of these methods is the increment routine, which 

adds 1 to its parameter and returns the new value. Because this method 
implements wraparound, if the result would equal the array size it is 
wrapped around to zero. This routine is shown in Figure 16.1 1 .  The other 
routine is doubleQueue, which is called if an enqueue requires a dou- 
bling of the array. It is slightly more complex than a simple call to the 
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1 / /  Internal method to increment x with wraparound. 
2 template <class Object> 
3 void Queue<Object>::increment( int & x ) const 
4 { 

5 if( ++x == theArray.size( ) ) 

6 x = 0; 
7 i 

Figure 16.11 The wraparound routine. 

1 / /  Construct the queue. 
2 template <class Object> 
3 Queue<Object>::Queue( ) : theArray( 1 1 
4 { 

5 makeEmpty ( ) ; 

6 I 

Figure 16.12 The constructor for the array-based Queue class. 

1 / /  Test if the queue is logically empty. 
2 / /  Return true if empty, false, otherwise. 
3 template <class Object> 
4 boo1 Queue<Object>: : isEmpty ( ) const 
5 { 
6 return currentsize == 0; 
7 1 

Figure 16.13 The isEmpty routine for the array-based Queue class 

v e c t o r ' s  r e s i z e  method because the queue items are not necessarily 
stored in an array starting at location 0. Thus items must be copied care- 
fully. We discuss doubleQueue along with enqueue. 

Many of the public methods resemble their stack counterparts, including 
the constructor shown in Figure 16.12 and isErnpty, shown in Figure 16.13. 
This constructor is not particularly special, except that we must be sure that 
we have the correct initial values for both f r o n t  and back. This is done by 
calling makeErnp t y. 

The enqueue routine is shown in Figure 16.14. The basic strategy is When we double the 

simple enough, as illustrated by lines 7-9 in the enqueue routine. The queuearraygwe 
cannot simply copy 

doubleQueue routine, shown in Figure 16.15. begins by resizing the array. the entire array 
However, if f r o n t  is not 0, we must move items because the implied wrap- directly. 

around of the original is no longer wrapped around once the array has become 
larger. The simplest solution is to take the wrapped-around portion (those 
items in positions 0 to back) and move them to the new part of the array. 
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1 / /  Insert x into the queue. 
2 template <class Object> 
3 void Queue<Object>::enqueue( const Object & x ) 

4 ( 

7 increment ( back ) ; 

8 theArray[ back ] = x; 

Figure 16.14 The enqueue routine for the array-based Queue class. 

1 / /  Internal method to double capacity. 
2 template <class Object> 
3 void Queue~Object~::doubleQueue( ) 

4 ( 
5 theArray.resize( theArray.size( ) * 2 + 1 1 ;  
6 if( front ! =  0 ) 

7 { 

8 for( int i = 0; i < front; i++ ) 

9 theArray[ i + currentsize ] = theArray[ i I ;  
10 back += currentsize; 
11 1 
12 1 

Figure 16.15 Dynamic expansion for the array-based Queue class. 

Thus doubleQueue steps through the old array and copies each item to 
the new part of the array at lines 8-9. Then we reset back  at line 10. The 
dequeue and g e t F r o n t  routines are shown in Figure 16.16; both are short. 
Finally, the makeEmpty routine is shown in Figure 16.1 7. The queue rou- 
tines clearly are constant-time operations, so the cost of array doubling can 
be amortized over the sequence of enqueue operations, as for the stack. 

The circular array implementation of the queue can easily be done incor- 
rectly when attempts to shorten the code are made. For instance, if you 
attempt to avoid using the s i z e  member by using f r o n t  and back to infer 
the size, the array must be resized when the number of items in the queue is 
I less than the array's size. 
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1 / /  Return and remove least recently inserted item from the queue. 
2 / /  Throws UnderflowException if queue is already empty. 
3 template <class Object> 
4 Object Queue<Object>::dequeue( ) 
5 { 

6 if( isEmpty( ) ) 

7 throw UnderflowException( ) ; 

8 currentsize--; 
9 

10 Object frontItem = theArray[ front I ;  
11 increment ( front ) ; 

12 return frontItem; 
13 I 
14 
15 / /  Return the least recently inserted item in the queue 
16 / /  or throw UnderflowException if empty. 
17 template <class Object> 
18 const Object & Queue<Object>::getFront( i const 
19 [ 

20 if ( isEmpty ( ) ) 

21 throw UnderflowException( ) ; 

22 return theArray[ front I ; 
23 1 

Figure 16.16 The dequeue and getFront routines for the array-based Queue 
class. 

1 / /  Make the queue logically empty 
2 template <class Object> 
3 void Queue<Object>::makeEmpty( 
4 ( 

5 currentsize = 0; 
6 front = 0; 
7 back = theArray. size ( ) - 1; 

8 I 

Figure 16.17 The makeEmpty routine for the array-based Queue class. 



The advantage of a 
linked list 
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management could 
be time consuming. 

In implementing the 
Stack class, the top 
of the stack is 
represented by the 
first item in a linked 
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16.2 Linked List Implementations 
An alternative to the contiguous array implementation is a linked list. Recall 
from Section I .6 that in a linked list, we store each item in a separate object 
that also contains a pointer to the next object in the list. 

The advantage of the linked list is that the excess memory is only one 
pointer per item. In contrast, a contiguous array implementation uses excess 
space equal to the number of vacant array items (plus some additional memory 
during the doubling phase). The linked list advantage can be significant if the 
vacant array items store uninitialized instances of objects that consume signif- 
icant space. If first-class strings and vectors are used, the advantage isn't all 
that huge because uninitialized first-class strings and vectors use little space. 
Even so, we discuss the linked list implementations for three reasons. 

1. An understanding of implementations that might be useful in other 
languages is important. 

2. Implementations that use linked lists can be shorter for the queue 
than the comparable array versions. 

3. These implementations illustrate the principles behind the more 
general linked list operations given in Chapter 17. 

For the implementation to be competitive with contiguous array imple- 
mentations, we must be able to perform the basic linked list operations in 
constant time. Doing so is easy because the changes in the linked list are 
restricted to the elements at the two ends (front and back) of the list. 

16.2.1 Stacks 

The S tack  class can be implemented as a linked list in which the top of the 
stack is represented by the first item in the list, as shown in Figure 16.18. To 
implement a push, we create a new node in the list and attach it as the new 
first element. This node can be allocated by a call to new.  To implement a 
pop, we merely advance the top of the stack to the second item in the list (if 
there is one). We should call delete on the old first node to avoid memory 
leaks. An empty stack is represented by an empty linked list. Clearly, each 
operation is performed in constant time because, by restricting operations to 
the first node, we have made all calculations independent of the size of the 
list. All that remains is the C++ implementation. 
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Figure 16.18 Linked list implementation of the Stack class. 

Figure 16.19 provides the class interface. Lines 34 to 42 give the type dec- 
laration for the nodes in the list. A Lis tNode consists of two data members: 
element stores the item and next stores a pointer to the next ListNode in 
the linked list. We provide a constructor for Lis tNode that can be used to 
execute both 

ListNode * p t r l  = new ListNode( x ) ;  

and 

ListNode *ptr2 = new List~ode( x, p t r2  ) ;  

Note that the new type ListNode is nested in the Stack class. Thus it is 
not a type in the normal global scope, which is a good thing because it 
enforces information hiding: The ListNode declaration is certainly an 
internal detail of the Stack class. Moreover, by virtue of the private declara- 
tion, it is invisible to the Stack class users. Not all compilers implement 
nested class declarations in conjunction with templates, so you may need to 
rework the code by removing the ListNode declaration from the Stack 
class. This alternative is clearly less desirable because it weakens the hiding 
of information. The Stack itself is represented by a single data member, 
topof Stack, which is a pointer to the first ListNode in the linked list. 

We use the constructor at line 19 to create an empty stack by setting 
topof Stack to NULL. The destructor declared at line 21 calls the member 
function makeEmpty to deallocate all the dynamically allocated nodes in the 
stack. makeEmpty works by popping the stack until it is empty. 

The copy assignment operator is shown in Figure 16.20. At line 6 we 
check for aliasing and return immediately if it is detected. Otherwise, we can 
safely make the current object empty. The stack is now empty, so if the stack 
on the right-hand side is empty, we can return immediately. This option is 
checked at line 9. Otherwise, we have at least one item to copy. We have ptr 
point at a newly allocated node that is a copy of the first item in the rhs  list 

The L i s t N o d e  
declaration is nested 
in the private section 
of the S t a c k  class, 
so it is not visible by 
users of the S t a c k  
class. 

A deep copy of 
operator= requires 
that we step through 
the second stack and 
allocate new nodes to 
be placed in the first 
stack. 

at line 13. This item will be at the top of the new stack (line 14). 



1 / I  Stack class -- linked list implementation. 
2 / /  
3 / /  CONSTRUCTION: with no parameters. 
4 / /  
5 / /  ****x************xpuBLIC OpERATJONS********************* 

6 / /  void push( x ) - - >  Insert x 
7 / / void pop( ) - ->  Remove most recently inserted item 
8 / /  Object top( ) - - >  Return most recently inserted item 
9 / /  Object topAndPop( ) - - >  Return and remove most recent item 
10 / /  boo1 isEmpty( ) - - >  Return true if empty; else false 
11 / /  void makeEmpty ( ) - - >  Remove all items 
12 / /  *X****X***********ERRORS*********************x********** 

13 / /  UnderflowException thrown as needed. 
14 
15 template <class Object> 
16 class Stack 
17 I 
18 public: 
19 Stack( ) : topofstack( NULL ) { ) 

20 Stack( const Stack & rhs ) ;  

21 -Stack( ) { makeEmpty( ) ;  1 
22 
23 boo1 isEmpty( ) const; 
24 const Object & top( ) const; 
25 
26 void makeEmpty( 1 ;  
27 void pop ( ) ; 

28 void push( const Object & x ) ; 

29 Object topAndPop ( ) ; 

30 
31 const Stack & operator=( const Stack & rhs ) ;  

32 
33 private: 
34 struc t ListNode 
35 { 

36 Object element; 
37 ListNode *next; 
38 
39 ListNode( const Object & theElement, 
40 ListNode * n = NULL ) 

41 : element( theElement ) ,  next( n ) I } 

42 1 ;  
43 
44 ListNode *topofstack; 
45 1; 

Figure 16.19 Interface for linked list-based Stack class. 
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1 / /  Deep copy. 
2 template <class Object> 
3 const Stack<Gbject> & 

4 Stack<@bject>::operator=( const Stack<Object> & rhs ) 

5 I 
6 if l this ! =  &rhs ) 

7 I 
8 makeEmpty( ) ; 

9 if ( rhs.isEmpty( ) ) 

10 return "this; 
11 
12 ListNode *rptr = rhs.top0fStack; 
13 ListNode *ptr = new ListNode( rptr->element 1 ;  
14 topofstack = ptr; 
15 
16 for( rptr = rptr->next; rptr ! =  NULL; rptr = rptr->next ) 

17 ptr = ptr->next = new ListNode( rptr->element ) ;  

18 1 
19 return *this; 
20 1 
2 1 
22 / /  Copy constructor. 
23 template <class Object> 
24 Stack<Object>::Stack( const Stack<Gbject> & rhs ) 

25 i 
26 topofstack = NULL; 
27 *this = rhs; 
28 1 

Figure 16.20 Copy assignment operator and copy constructor for the linked 
list-based Stack class. 

We have r p t r  point at the second item in the r h s  list in the f o r  loop Note that the next 

initialization at line 16. We then loop: r p t r  points at a cell containing the pointer Of the last 
node is NULL by 

next item in the r h s  list, and p t r  points at the last cell in the newly created of the 
stack list. At line 16 we direct the loop to continue until the r h s  list is ListNode 

exhausted. While it is not, we create a new node by using an item in the r h s  constructor. 

list and then attach that new node at the end of the new list. The attachment 
is performed by the assignment to p t r - > n e x t  at line 17. We must now 
update p t r  (also done at line 17) so that p t r  points to the last node in the 
new list. We then advance to the next node in the r h s  list in the adjustment 
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1 / /  Insert x into the stack. 
2 template <class Object> 
3 void Stack<Object>::push( const Object & x ) 

4 i 
5 topofstack = new ListNode( x, topofstack 1 ;  
6 1 
7 
8 / /  Remove the most recently inserted item from the stack 
9 / /  Throws UnderflowException if the stack is empty. 

10 template <class Object> 
11 void Stack<Object>: :pop ( ) 

12 i 
13 if ( isEmpty( ) ) 

14 throw UnderflowExceptioni ) ;  

15 ListNode *oldTop = topofstack; 
16 topofstack = topofstack->next; 
17 delete oldTop; 
18 1 

Figure 16.21 The push and pop routines for the linked list-based Stack  class 

part of the f o r  loop. When we are done with the loop, everything has been 
copied over, and we can return. Note that the nex t  pointer for the last node 
in the list is automatically NULL by virtue of the constructor. 

Figure 16.20 also contains an implementation of the copy constructor. 
We used the standard idiom of constructing the object in a neutral state and 
then applied o p e r a t o r = .  

The stack routines Two more routines are shown in Figure 16.21. The push operation is 
are one- essentially one line of code, in which we allocate a new Li s tNode whose 
liners. data member contains the item x to be pushed. The n e x t  pointer for this 

new node is the original t opof s t a c k .  This node then becomes the new 
topof  Stack.  We do all this at line 5. 

The pop operation also is conceptually simple. After the obligatory test 
for emptiness, we save a pointer to the node at the top of the stack. We then 
reset topof s t a c k  to the second node in the list and call d e l e t e  to remove 
the popped node. 

Finally, t o p  and makeEmpty are straightforward routines and are 
implemented as shown in Figure 16.22. The topAndPop routine simply 
calls top  and then pop and is not shown. makeEmpty pops the stack until it 
is empty. 
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1 / /  Return the most recently inserted item in the stack 
2 / /  or throw an UnderflowException if empty. 
3 template <class Object> 
4 const Object & Stack<Object>::top( ) const 
5 I 
6 if ( isEmpty ( ) ) 

7 throw UnderflowException( ) ;  

8 return topOfStack->element; 
9 } 

10 
11 / /  Make the stack logically empty. 
12 template <class Object> 
13 void Stack<Object>::makeEmpty( ) 
14 { 

15 while( !isEmpty( ) ) 

16 POP ( ; 

17 I 

Figure 16.22 The t o p  and makeEmpty routines for the linked list-based S t a c k  
class. 

Figure 16.23 Linked list implementation of the Queue  class, 

16.2.2 Queues 

The queue can be implemented by a linked list, provided we keep pointers to A linked list in which 

both the f r o n t  and back  of the list. Figure 16.23 shows the general idea. We a pointer 
to the first and last 

The Queue class is similar to the S t a c k  class. It is so similar, in fact, that item can be used to 
we could derive the Queue class from the S t a c k  class by using private inher- implement the queue 
itance. However, we give an independent implementation to make the ideas in constant time Per 

clearer and leave the possibility of using inheritance as Exercise 16.1 1. We operation. 

present an easier to follow example of inheritance in Section 16.5, where we 
show how to use the Queue  class to derive an extended set of operations. 

The Queue class interface is given in Figure 16.24. The only new thing 
here is that we maintain two pointers instead of one. Figure 16.25 shows the 
constructors for the Queue class, and Figure 16.26 shows the o p e r a t o r = .  



1 / /  Queue class -- linked list implementation. 
2 / /  
3 1 1  CONSTRUCTION: with no parameters. 
4 / /  
5 / /  * * * k * * X * * * * * X X X * * * P U B L I C  OPERATIONS********************* 

6 / /  void enqueue( x ) - ->  Insert x 
7 / /  void dequeue( ) - - >  Return and remove least recent item 
8 / /  Object getFront( ) - - >  Return least recently inserted item 
9 / /  bool isEmpty( ) - - >  Return true if empty; else false 

10 / /  void makeEmptyi ) - - >  Remove all items 
11 / /  **X******x***X****ERRORS*****************X************** 

12 / /  UnderflowException thrown as needed. 
13 
14 template <class Object> 
15 class Queue 
16 i 
17 public: 
18 Queue ( ; 

19 Queue( const Queue & rhs ) ;  

20 -Queue ( I ; 
2 1 const Queue & operator= ( const Queue & rhs ) ;  

22 
23 boo1 isEmpty ( ) const; 
24 const Object & getFront ( ) const; 
25 
26 void makeEmpty( 1 ;  
27 Object dequeue ( 1  ; 
28 void enqueue( const Object & x ) ;  

29 
30 private: 
3 1 struct ListNode 
32 { 

33 Object element; 
34 ListNode *next; 
35 
36 ListNode( const Object & theElement, 
37 ListNode * n = NULL 1  
38 : element( theElement ) ,  next( n ) { 1 
39 I ; 
40 
41 ListNode "front; 
42 ListNode *back; 
43 } ;  

Figure 16.24 Interface for the linked list-based Queue class 
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1 / /  Construct the queue. 
2 template <class Object> 
3 Queue<Ob j ec t> : : Queue ( ) 

4 i 
5 front = back = NULL; 

6 } 

7 
8 / /  Copy constructor. 
9 template <class Object> 

10 Queue<Object>: :Queue( const Queue<Object> & rhs ) 

11 i 
12 front = back = NULL; 
13 *this = rhs; 
14 r 

Figure 16.25 Constructors for the linked list-based Queue class. 

1 / /  Deep copy. 
2 template <class Object> 
3 const Queue<Object> & 

4 Queue<Object>: :operator=( const Queue<Object> & rhs ) 

5 { 

6 if( this ! =  &rhs i 
7 I 
8 makeEmpty ( ) ; 

9 ListNode *rptr; 
10 for( rptr = rhs.front; rptr ! =  NULL; rptr = rptr->next ) 

11 enqueue( rptr->element 1 ;  
12 1 
13 return *this; 

14 } 

Figure 16.26 Copy assignment operator for the linked list-based Queue class. 

This operator is simpler than the stack o p e r a t o r =  because we can step 
through r h s .  enqueueing items as we see then]. 

Figure 16.27 implements both enqueue and dequeue.  The dequeue Enqueueing the first 

routine is logically identical to a stack pop (actually popAndTop) . The element is a special 
case because there is 

enqueue routine has two cases. If the queue is empty, we create a one- no,,xt pointer to 
element queue by calling new and having both f r o n t  and back point at the whicha new nodecan 

single node. Otherwise. we create a new node with data value x, attach it at be attached. 

the end of the list, and then reset the end of the list to this new node, as illus- 
trated in Figure 16.28. Note that enqueueing the first element is a special 
case because there is no n e x t  pointer to which a new node can be attached. 
We do all this at line 8 in Figure 16.27. 



1 / /  Insert x into the queue. 
2 template <class Object> 
3 void Queue<Object>::enqueue( const Object & x ) 

4 ( 

5 if ( isEmpty ( j j 

6 back = front = new ListNode( x j ;  

7 else 
8 back = back->next = new ListNode( x ) ;  

9 I 
10 
11 / /  Return and remove the least recently inserted item from 
12 / /  the queue. Throws UnderflowException if empty. 
13 template <class Object> 
14 Object Queue<Object>::dequeue( ) 
15 ( 

16 Object frontItem = getFront( ) ;  

17 
18 ListNode *old = front; 
19 front = front->next; 
20 delete old; 
21 return frontItem; 
22 1 

Figure 16.27 The enqueue and dequeue routines for the linked list-based 
Queue class. 

(a) Before 

back . 

(b) After 

Figure 16.28 The enqueue operation for the linked list-based implementation. 



Comparison of the Two Methods 

1 / /  Return the least recently inserted item in the queue 
2 / /  or throw UnderflowException if empty. 
3 template <class Object> 
4 const Object & Queue<Object>::getFront( ) const 
5 ( 
6 if ( isEmpty ( ) ) 

7 throw UnderflowException( ) ;  

8 return front->element; 
9 1 

10 
11 / /  Make the queue logically empty. 
12 template <class Object> 
13 void Queue<Object>::makeEmpty( ) 
14 ( 

15 while( !isEmpty( ) ) 

16 dequeue ( ) ; 

17 1 

Figure 16.29 Supporting routines for the linked list-based Queue class. 

The remaining member functions for the Queue class are identical to the 
corresponding stack routines. They are shown in Figure 16.29. 

16.3 Comparison of the Two Methods 
Both the array and linked list versions run in constant time per operation. The array versus 

Thus they are so fast that they are unlikely to be the bottleneck of any algo- linked list 
implementations 

rithm and, in that regard, which version is used rarely matters. represent a classic 
The array versions of these data structures are likely to be faster than time-space trade-off. 

their linked list counterparts, especially if an accurate estimation of capac- 
ity is available. If an additional constructor is provided to specify the ini- 
tial capacity (see Exercise 16.3) and the estimate is correct, no doubling is 
performed. Also, the sequential access provided by an array is typically 
faster than the potential nonsequential access offered by dynamic memory 
allocation. 

The array implementation does have two drawbacks, however. First, for 
queues, the array implementation is arguably more complex than the linked 
list implementation, owing to the combined code for wraparound and array 
doubling. Our implementation of array doubling was not as efficient as pos- 
sible (see Exercise 16. lo), thus a faster implementation of the queue would 
require a few additional lines of code. Even the array implementation of the 
stack uses a few more lines of code than its linked list counterpart. 
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The second drawback is that, when doubling, we temporarily require 
three times as much space as the number of data items suggests. The reason is 
that, when the array is doubled, we need to have memory to store both the old 
and the new (double-sized) array. Further, at the queue's peak size. the array 
is between 50 percent and 100 percent full; on average it is 75 percent full, so 
for every three items in the array, one spot is empty. The wasted space is thus 
33 percent on average and 100 percent when the table is only half full. As dis- 
cussed earlier, the wasted space could be significant when compared to the 
linked list-based version that uses only an extra pointer per item. 

In short, the array implementation is often preferable for small objects. 
The linked list implementation is preferable for large objects if space is 
scarce or if O b j  e c  t copies are so expensive that the cost of array doubling 
becomes significant. However, as stack and queue operations are performed 
in constant time, which implementation is used probably does not matter 
either. 

16.4 The STL Stack and Queue Adapters 

The STL provides s t a c k  and queue classes. These classes are adapters of 
the basic containers. That is, they use private inheritance to create a new 
class with a slightly different interface than the standard l i s t  container. 
These adapters are templates that require specification of both the type of 
object being stored in the container and the type of the container. (More 
details were presented in Section 7.6.2.) 

In this section. we provide a simplified version, showing how the s t a c k  

class template can be written from a l i s t  class template. The code is short 
and is shown in Figure 16.30. 

16.5 Double-Ended Queues 

A double-ended We close this chapter with a discussion of the use of inheritance to derive a 
queue (deque)allOws new data structure. A double-ended queue (deque) is like a queue, except 
access at both ends. 
Much of its that access is allowed at both ends. Exercise 15.14 describes an application 
functionality can be of the deque. Rather than the terms enqueue and dequeue. the terms used 
derived from the are addFron t, addRear, removeFront, and removeRear. Figure 16.3 1 
Queue class. shows the derived class Deque. We must derive it from the array-based ver- 

sion of Queue because deletion from the back of the list is not efficiently 
supported. 

First, we automatically get sensible semantics for default construction 
and the Big Three. So we don't have to do anything there. 
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Summary 

1 template <class Object> 
2 class stack : private list<Object> / I  Private inheritance 
3 i 
4 public: 
5 int size( ) const 
6 { return list<Object>::size( j ;  } 

7 boo1 empty( ) const 
8 I return list<Object>::empty( ) ; 1 
9 

10 Object & top( 1 
11 { return list<Object>::back( j  ; 1 
12 const Object & top( j  const 
13 { return list<Object>::back( ) ;  ) 

14 void push( const Object & x i 
15 { push-back ( x ) ; ) 

16 void pop( ) 

17 I POP-back ( j  ; 1 
18 } ;  

Figure 16.30 A simplified STL-style s t a c k  class, based on the STL 1 i s  t class. 

The enqueue  and d e q u e u e  routines become disabled for the Deque Implementation of the 

class by virtue of private inheritance. Methods such as isErnpty. makeEmpiy, is 
simple with private 

and g e t F r o n t  are written by partial overriding. The a d d B a c k  and inheritance. 
removeFront  methods call the existing enqueue  and dequeue  routines. 
The only routines that need to be written are addFron t .  removeBack. and 
ge tBack.  We leave this for you to do as Exercise 16.6. 

The STL provides a d e q u e  class. but this class does not use private 
inheritance to extend the queue  class. Instead. it is written as a class equiva- 
lent to v e c t o r  (or l i s t ) .  Recall that the STL s t a c k  and queue  adapters 
are templates that require specification of both the type of object being 
stored in the container and the type of the container. The STL deque  can be 
used as the container type to instantiate s t a c k  and queue .  

Summary 

In this chapter we described implementation of the S t a c k  and Queue 

classes. Both the S t a c k  and Queue classes can be implemented by using a 
contiguous array or a linked list. In each case. all operations use constant 
time: thus all operations are fast. 
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1 / /  Double ended queue (Deque) class. 
2 / /  
3 / /  CONSTRUCTION: with no parameters. 
4 / /  
5 / /  ******************PUBLIC OPERATIONS****************** 

6 / /  void addFront( Object x j--> Insert x at front 
7 / /  void addBack( Object x ) - - >  Insert x at back 
8 / /  void removeFront( ) - - >  Remove front item 
9 / /  void removeBack ( ) - - >  Remove back item 

10 / /  Object getFront( ) - - >  Return front item 
11 / /  Object getBack( ) - - >  Return back item 
12 / /  boo1 isEmpty( ) - >  Return true if empty 
13 / /  void makeEmpty ( ) - - >  Remove all items 
14 / /  ****X*******X*****ERRoRs******************************** 

15 / /  UnderflowException thrown as needed. 
16 
17 template <class Object> 
18 class Deque : private Queue<Object> 
19 i 
20 public: 
2 1 void addFront( const Object & x ) ;  

22 
23 void addBack( const Object & x i 
24 ( enqueue( x ) ;  } 

25 
26 void removeFront( ) 

27 ( dequeue( ; } 

28 
29 void removeBack( 1 ;  
30 
31 const Object & getBack ( ) const; 
32 
33 const Object & getFront( ) const 
34 ( return Queue<Object>::getFront( ) ;  } 

35 
36 boo1 isEmpty( ) const 
37 [ return Queue<Object>::isEmpty( j; } 

38 void makeEmpty ( ) 

39 [ Queue<Object> : :makeEmpty ( ) ; } 

40 } ;  

Figure 16.31 Double-ended queue class Deque derived from the array-based 
Queue class. 



On the Internet 

Objects of the Game 

circular array implementation The use of wraparound to implement 
a queue. (p. 543) 

double-ended queue (deque) A queue that allows access at both 
ends. Much of its functionality can be derived from the queue class. 
(P. 558) 

wraparound Occurs when front or back returns to the beginning of 
the array when it reaches the end. (p. 543) 

Common Errors 

1. Using an implementation that does not provide constant time access 
is a bad error. There is no justification for this inefficiency. 

2. In the linked list implementation of the Stack class we must save a 
pointer to the front node prior to adjusting the top of the stack; 
otherwise, the delete does not work. A common error is to 
delete the top node directly and then adjust the top of the stack. 
This generally appears to work because the deleted node's contents 
are not immediately overwritten (so the next member still points at 
the new top of stack), but it is unsafe programming. 

3. For all these routines, memory leaks are common programming 
errors. 

4. Shallow copies can result in errors. 
5. Not all compilers support nested class templates. You may need to 

rewrite the linked list-based Stack and Queue classes without 
nested classes to avoid this limitation. 

On the lnternet 

The files listed are available. 

StackAr.h Contains the interface for an array-based stack. 

StackAr.cpp Contains the implementation of an array-based 
stack. 

TestStackAr.cpp Contains a test program for an array-based stack. 
StackLi.h Contains the interface for a linked list-based stack. 
StackLi.cpp Contains the implementation of a linked list-based 

stack. 
TestStackLi.cpp Contains a test program for a linked list-based 

stack. 



QueueAr.h Contains the interface for an array-based queue. 
QueueAr.cpp Contains the implementation of an array-based 

queue. 
TestQueueAr.cpp Contains a test program for an array-based queue. 
QueueLi.h Contains the interface for a linked list-based queue. 
QueueLi.cpp Contains the implementation of a linked list-based 

queue. 
TestQueueLi.cpp Contains a test program for a linked list-based 

queue. 
stack.h Contains the implementation of an STL-like stack. 

9 Exercises 

In Short 

16.1. In each of the four implementations, what happens if the alias test in 
operator= is omitted? 

16.2. Draw the stack and queue data structures (for both the array and 
linked list implementations) for each step in the following sequence: 
add(l), add(2), remove, add(3), add(4), remove, remove, add(5). 
Assume an initial size of 3 for the array implementation. 

In Practice 

16.3. Add constructors to the array-based Stack and Queue classes that 
allow the user to specify an initial capacity. 

16.4. Compare the running times for the array and linked list versions of 
the Stack class. Use int objects. 

16.5. Write a main that declares and uses a stack of int and a stack of 
double simultaneously. 

16.6. Complete the implementation of the Deque class. 

16.7. Implement operator= for the array-based queue to copy the ele- 
ments in rhs to the same array positions. Do not do more copies 
than are necessary. 

16.8. Implement the array-based Stack class with a primitive array. What 
are the advantages and disadvantages of this approach? 

16.9. Implement the array-based Queue class with a primitive array. What 
are the advantages and disadvantages of this approach? 



16.10. For the queue implementation presented in Section 16.1.2, show 
how to rearrange the queue elements in the doublequeue operation 
so that at most half the elements move. 

Programming Projects 

16.11. Implement the linked list-based Queue class by private inheritance 
from the linked list-based Stack class. Make appropriate choices 
of members to be made protected. 

16.12. An output-restricted double-ended queue supports insertions from 
both ends but accesses and deletions only from the front. 
a. Use inheritance to derive this new class from the Queue class. 
b. Use inheritance to derive this new class from the Deque class. 

16.13. Suppose that you want to add the findMin (but not delete~in) 
operation to the Stack repertoire. 
a. Use inheritance to derive the new class and implement f indMin 

as a sequential scan of the stack items. 
b. Do not use inheritance but instead implement the new class as 

two stacks, as described in Exercise 7.5. 

16.14. Suppose that you want to add the findMin (but not delete~in) 
operation to the Deque repertoire. 
a. Use inheritance to derive the new class and implement f indMin 

as a sequential scan of the Deque items. As in Exercise 16.1 1 ,  
make appropriate choices of members to be made protected. 

b. Do not use inheritance but instead implement the new class as 
four stacks. If a deletion empties a stack, you will need to reor- 
ganize the remaining items evenly. 





Chapter 17 

I Linked Lists 

In Chapter 16 we demonstrated that linked lists can be used to store items 
noncontiguously. The linked lists used in that chapter were simplified, with 
all the accesses performed at one of the list's two ends. 

In this chapter. we show: 

how to allow access to any item by using a general linked list, 

the general algorithms for the linked list operations, 

how the iterator class provides a safe mechanism for traversing and 
accessing linked lists, 
list variations, such as doubly linked lists and circularly linked lists, 

how to use inheritance to derive a sorted linked list class, and 

how to implement the STL 1 i s  t class. 

17.1 Basic Ideas 

In this chapter we implement the linked list and allow general access (arbi- 
trary insertion, deletion, and find operations) through the list. The basic 
linked list consists of a collection of connected, dynamically allocated 
nodes. In a singly linked list, each node consists of the data element and a 
pointer to the next node in the list. The last node in the list has a NULL next  
pointer. In this section we assume that the node is given by the following 
type declaration: 

struct Node 
i 

Object element; 
Node *next; 

1 ;  



Figure 17.1 Basic linked list. 

Figure 17.2 lnsertion in a linked list: Create new node (tmp), copy in x, set 
tmp's next pointer, and set c u r r e n t ' s  next pointer. 

I 

When we write code later in the chapter, Node has a different name and is a 
template. 

The first node in the linked list is accessible by a pointer, as shown in 
Figure 17.1. We can print or search in the linked list by starting at the first 
item and following the chain of n e x t  pointers. The two basic operations that 
must be performed are insertion and deletion of an arbitrary item x. 

Insertion consists of For insertion we must define where the insertion is to take place. If we 

I 

splicing a have a pointer to some node in the list, the easiest place to insert is immedi- 
the list and can be 
accomplished with ately after that item.l As an example, Figure 17.2 shows how we insert x 

one statement. after item a in a linked list. We must perform the following steps: 

tmp = new Node; / /  Get a new node from the system 
tmp->element = x; / /  Place x in the element member 
tmp->next = current->next; / /  x's next node is b 
current->next = tmp; / /  a's next node is x 

a 

As a result of these statements, the old list ... a, b, ... now appears as ... a, 
x, b, ... . We can simplify the code if the Node has a constructor that initial- 
izes the data members directly. In that case, we obtain 

I 

1. This is not what the STL does. In the STL, insert comes before a specified point in the 
list. 

- - - -  I - ... 

c u r r e n t  I 

X 
I 

tmp I 
I 

I 
I I 

I +  ... 
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Basic Ideas 

... ... 

c u r r e n t  

Figure 17.3 Deletion from a linked list. 

tmp = new Node( x, current->next ) ;  / /  Get new node 
current->next = tmp; / /  a's next node is x 

We now see that tmp is no longer necessary. Thus we have the one-liner 

current->next = new Node( x, current->next ) ;  

The remove command can be executed in one pointer move. Figure 17.3 Removal can be - 
shows that to remove item x from the linked list, we set c u r r e n t  to be the by 

bypassing the node. 
node prior to x and then have c u r r e n t ' s  n e x t  pointer bypass x. This oper- we pointer to 
ation is expressed by the statement the node prior to the 

one we want to 
remove. 

The list ... a, x, b, ... now appears as ... a, b, ... . 
A problem with this implementation is that it leaks memory: The node To avoid leaking, we 

storing x is still allocated but is now unreferenced. By saving a pointer to it Save a pointer the 
node before 

first and then calling d e l e t e  after the bypass, we can reclaim the memory: bypassing it; then we 
C&I delete. 

Node *deletemode = current->next; / /  Save pointer 
current->next = current->next->next; / /  Bypass the node 
delete deletemode; / /  Free the memory 

The preceding discussion summarizes the basics of inserting and removing Linked list operations 

items at arbitrary places in a linked list. The fundamental property of a Onlya 
number of data 

linked list is that changes to it can be made by using only a constant number move,ents~ 
of data movements, which is a great improvement over an array implementa- 
tion. Maintaining contiguousness in an array means that whenever an item is 
added or deleted, all items that follow it in the list must move. 

17.1 . I  Header Nodes 

There is one problem with the basic description: It assumes that whenever an 
item x is removed, some previous item is always present to allow a bypass. 
Consequently, removal of the first item in the linked list becomes a special 



hedder 

Figure 17.4 Using a header node for the linked list. 

case. Similarly, the insert routine does not allow us to insert an item to be the 
new first element in the list. The reason is that insertions must follow some 
existing item. So, although the basic algorithm works fine, some annoying 
special cases must be dealt with. 

Special cases are always problematic in algorithm design and fre- 
quently lead to bugs in the code. Consequently, writing code that avoids 
special cases is generally preferable. One way to do that is to introduce a 
header node. 

A header node holds A header node is an extra node in a linked list that holds no data but 
data but serves serves to satisfy the requirement that every node containing an item have a 

satisfy the 
requirement that previous node in the list. The header node for the list a,  b, c is shown in Fig- 
every node have a ure 17.4. Note that a is no longer a special case. It can be deleted just like 
previous node. A anv other node bv having current point at the node before it. We can also 
header node allows 
us to avoid special 

add a new first element to the list by setting current equal to the header 
casessuchas node and calling the insertion routine. By using the header node. we greatly 
insertion of a new simplify the code-with a negligible space penalty. In more complex appli- 
first element and cations. header nodes not only simplify the code but also improve speed 
removal of the first 
element. because, after all, fewer tests mean less time. 

The use of a header node is somewhat controversial. Some argue that 
avoiding special cases is not sufficient justification for adding fictitious cells; 
they view the use of header nodes as little more than old-style hacking. Even 
so, we use them here precisely because they allow us to demonstrate the 
basic pointer manipulations without obscuring the code with special cases. 
Whether a header should be used is a matter of personal preference. Further- 
more, in a class implementation, its use would be completely transparent to 
the user. However, we must be careful: The printing routine must skip over 
the header node, as must all searching routines. Moving to the front now 
means setting the current position to header->next, and so on. Further- 
more, as Figure 17.5 shows, with a dummy header node, a list is empty if 
header->next is NULL. 



header 
\ 

Figure 17.5 Empty list when a header node is used 

17.1.2 lterator Classes 

The typical primitive strategy identifies a linked list by a pointer to the BY storing a current 

header node. Each individual item in the list can then be accessed by provid- pointer in a list classy 
we ensure that ing a pointer to the node that stores it. The problem with that strategy is that access is controlled. 

checking for errors is difficult. For example, a user could pass a pointer to 
something that is a node in a different list. One way to guarantee that this 
cannot happen is to store a current position as part of a list class. To do so, 
we add a second data member, current. Then, as all access to the list goes 
through the class member functions, we can be certain that current always 
represents a pointer to a node in the list, a pointer to the header node, or 
NULL. 

This scheme has a problem: With only one position, the case of two iter- An iterator class 

ators needing to access the list independently is left unsupported. One way a current 
position and typically to avoid this problem is to define a separate iterator class, which maintains is a friend of a list lor 

a notion of its current position. A list class would then not maintain any other container) ' 

notion of a current position and would only have member functions that treat class. 

the list as a unit, such as isEmpty, makeEmpty, and operator=, or that 
accept an iterator as a parameter, such as insert. Routines that depend only 
on an iterator itself, such as the advance routine that advances the iterator 
to the next position, would reside in the iterator class. Access to the list is 
granted by making the iterator class a friend of the list class. We can view 
each instance of an iterator class as one in which only legal list operations, 
such as advancing in the list, are allowed. 

In Section 17.2 we define a list class LList and an iterator class 
LLis t I tr. To show how this works, let us look at a nonmember function 
that returns the size of a linked list, as shown in Figure 17.6. We declare itr 
as an iterator that can access the linked list thelist. 

We initialize itr to the first element in theList (skipping over the 
header, of course) by copying the iterator given by the~ist . first ( ) . 

The test itr . isval id ( ) attempts to mimic the test p ! =NULL that 
would be conducted if p were a normal pointer. Finally, the expression 
i t r . advance ( ) mimics the conventional idiom p=p- >next. 



1 / /  In this routine, LList and LListItr are the 
2 / /  list and iterator class written in Section 17.2. 
3 template <class Object> 
4 int listsize( const LList<Object> & theList ) 

5 I 
6 LListItr<Object> itr; 
7 
8 int size = 0; 
9 for( itr = theList.first(); itr.isValid(); itr.advance0 ) 

10 size++; 
11 return size; 
12 1 

Figure 17.6 A nonmember function that returns the size of a list. 

Thus, so long as the iterator class defines a few simple operations, we 
can iterate over the list naturally. In Section 17.2 we provide its implementa- 
tion in C++. The routines are surprisingly simple, although the templated 
syntax can be tedious in places. 

There is a natural parallel between the methods defined in the LLi s t 
and LLis t I t r classes and those in the STL 1 is t class. For instance, the 
LLis t~ tr advance method is roughly equivalent to operator++ in the 
STL list class's iterators. The list class in Section 17.2 is simpler than the 
STL list class; as such it illustrates many basic points and is worth exam- 
ining. In Section 17.5 we implement most of the STL list class. 

17.2 C++ Implementation 

As suggested in the preceding description, a list is implemented as three sep- 
arate classes: one class is the list itself (~~ist), another represents the node 
(LL~S t~ode), and the third represents the position (~~ist~tr). 

Figure 17.7 contains the code for the node class, LListNode, which 
consists of two data members: the stored element and the link to the next 
node. The only methods are the constructors. Note that the data members 
of LLis tNode are private. However, LLi s t and LLis t I tr need access to 
these data members. To allow that, LListNode declares that the LList 
and LListItr classes are friends. Recall from Section 2.3.4 that a friend 
of a class is granted access to the class's private section. Here we make 
entire classes friends of other classes. This access is one-way: LList and 
LLis t I tr can see internal LLis tNode details but not vice versa. Note that 
template instantiations are required. 



C++ Implementation 

1 template <class Object> 
2 class LList; / /  Incomplete declaration. 
3 
4 template <class Object> 
5 class LListItr; / /  Incomplete declaration. 
6 
7 template <class Object> 
8 class LListNode 
9 { 

10 LListNode( const Object & theElement = Object( ) ,  

11 LListNode * n = NULL ) 

12 : elementi theElement ) ,  next( n ) { 1 
13 
14 Object element; 
15 LListNode *next; 
16 
17 friend class L'List<Object>; 
18 friend class L'ListItr<Object>; 
19 1 ;  

Figure 17.7 Type declaration of the linked list node LListNode 

The friend declaration requires additional syntax baggage. The LLis t An incomplete class 

and LListItr class templates have not been declared yet, so the compiler is is used 
inform the compiler of 

likely to be confused by the template expansions LLi s t <ob j ec t > and the existence of 
LLi s t I tr<Ob j ec t >. To circumvent this problem, we provide an incom- another class. 

plete class declaration prior to the LListNode definition, telling the com- 
piler that the class templates exist and that details will be provided later. That 
is enough for the compiler to understand what the friend declarations mean. 

Next, Figure 17.8 presents the class that implements the concept of 
position-namely, LListI tr. The class stores a pointer to a LListNode? 
representing the current position of the iterator. The i sval id function 
returns true if the position is not past the end of the list, retrieve returns 
the element stored in the current position, and advance advances the cur- 
rent position to the next position. The constructor for LListItr requires a 
pointer to a node that is to be the current node. Note that this constructor is 
private and thus cannot be used by client methods. Instead, the general idea 
is that the LList class returns preconstructed LListI tr objects, as appro- 
priate; LLis t is a friend of the class, so the privacy of the LLis t I t r con- 
structor is not applicable to LList. 

The existence of one constructor removes the default zero-parameter 
constructor. This makes it impossible to have a vector of iterators, and intro- 
duces a complication for classes that would store an iterator as a data mem- 
ber. Thus we also provide a zero-parameter constructor for LListI tr? but 



Linked Lists 

1 / /  LListItr class; maintains "current position". 
2 / I  
3 / /  CONSTRUCTION: With no parameters. The LList class may 
4 / /  construct a LListItr with a pointer to a LListNode. 
5 / /  
6 / /  ******************PUBLIC OPERATIONS********************* 

7 / /  boo1 isValid( j - - >  True if not NULL 
8 / / void advance ( j - - >  Advance (if not already NULL) 
9 / /  Object retrieve( ) - - >  Return item in current position 

10 / /  * * * * * * * * * * * * * * * * * * E R R O R S * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

11 / /  Throws BadIterator for illegal retrieve. 
12 
13 template <class Object> 
14 class LListItr 
15 { 
16 public: 
17 LListItr( ) : current( NULL ) { 1 
18 
19 boo1 isValid( j const 
20 { return current ! =  NULL; ) 

2 1 
22 void advance ( j 

23 { if( isValid( j j current = current->next; 1 
24 
25 const Object & retrieve( ) const 
26 { if( !isValid( j j throw BadIterator( ) ;  

27 return current->element; } 
28 
29 private: 
30 LListNode<Object> *current; / /  Current position 
3 1 
32 LListItr( LListNode<Object> *theNode ) 

33 : current ( theNode ) { 1 
34 
35 friend class LList<Object>; / /  Grant access to constructor 
36 1; 

Figure 17.8 The LLis t I tr class. 

its use is generally a matter of convenience. Because all the methods of the 
LListI tr class are basically trivial, we take the unusual step of implement- 
ing them inline. 

The LList class interface is shown in Figure 17.9. The single data mem- 
ber is a pointer to the header node allocated by the constructor. isEmpty is an 
easily implemented short one-liner. The methods z e r o t h  and f i rs t return 
iterators corresponding to the header and first element, respectively, as shown 
in Figure 17.10. Other routines either search the list for some item or change 
the list via insertion or deletion, and are shown later. 



C++ Implementation 

1 / /  LList class. 
2 / /  
3 / /  CONSTRUCTION: with no initializer. 
4 / /  Access is via LListItr class. 
5 / /  
6 / /  ******************PUBLIC o~ERATIoNs******************X** 

7 / /  boo1 isEmpty( ) - - >  Return true if empty; else false 
8 / /  void makeEmpty( ) - - >  Remove all items 
9 / /  LListItr zeroth( ) --> Return position to prior to first 

10 / /  LListItr first( ) --> Return first position 
11 / /  void insert( x, p ) --> Insert x after position p 
12 / /  void remove( x ) --> Remove x 
13 / /  LListItr find( x ) --> Return position that views x 
14 / /  LListItr findprevious( x ) 

15 / /  - ->  Return position prior to x 
16 / /  ******************ERR~R~*****~**************************** 

17 / /  No special errors. 
18 
19 template <class Object> 
20 class LList 
21 I 
22 public: 
23 LList( ) ;  

24 LList( const LList & rhs ) ;  

25 -LList( ) ;  

26 
27 boo1 isEmpty( const; 
28 void makeEmpty( ) ;  

29 LListItr<Object> zeroth( ) const; 
30 LListItr<Object> first ( ) const; 
31 void insert( const Object & x, const ~~istItr<Object> & p ) ;  

32 LListItr<Object> find( const Object & x ) const; 
33 LListItr<Object> findprevious( const Object & x ) const; 
34 void remove( const Object & x ) ;  

35 
36 const LList & operator=( const LList & rhs ) ;  

37 
38 private: 
39 LListNode<Object> *header; 
40 1; 

Figure 17.9 The LList class interface. 

Figure 17.1 I illustrates how the LLis t and LListI tr classes interact. 
The printList method outputs the contents of a list. This function uses 
only public methods and a typical iteration sequence of obtaining a starting 
point (via first), testing that it has not gone past the ending point (via 
isvalid), and advancing in each iteration (via advance). 



1 / /  Construct the list. 
2 template <class Object> 
3 LList<Object>: :LList ( ) 

4 { 
5 header = new LListNode<Object>; 
6 1 
7 
8 / /  Test if the list is logically empty. 
9 / /  Return true if empty, false, otherwise. 

10 template <class Object> 
11 boo1 LList<Object>: :isEmpty( ) const 
12 { 
13 return header->next == NULL; 
14 1 
15 
16 / /  Return an iterator representing the header node. 
17 template <class Object> 
18 LListItr<Object> LList<Object>::zeroth( ) const 
19 I 
20 return LListItr<Object>( header ) ;  

21 1 
22 
23 / /  Return an iterator representing the first node in the list. 
24 / /  This operation is valid for empty lists. 
25 template <class Object> 
26 LListItr<Object> LList<Object>::first( ) const 
27 { 

28 return LListItr<Object>( header->next ) ;  

29 1 

Figure 17.10 Some LList class one-liners. 

Let us revisit the issue of whether all three classes are necessary. For 
instance, couldn't we just have the LList class maintain a notion of a current 
position? Although this option is feasible and works for many applications, 
using a separate iterator class expresses the abstraction that the position and 
list actually are separate objects. Moreover, it allows for a list to be accessed 
in several places simultaneously. For instance to remove a sublist from a list, 
we can easily add a remove operation to the list class that uses two iterators 
to specify the starting and ending points of the sublist to be removed. Without 
the iterator class this action would be more difficult to express. 

Short-circuiting is We can now implement the remaining LList methods. First is find, - 
used in the find shown in Figure 17.12, which returns the position in the list of some ele- 
routine at line 8 and in 
the similar part of the ment. Line 8 takes advantage of the fact that the and (&&I operation is short- 
remove routine. circuited: If the first half of the and is false, the result is automatically false 

and the second half is not evaluated. 



C++ Implementation 

1 / /  Simple print function. 
2 template <class Object> 
3 void printlist( const LList<Object> & theList ) 

4 ( 

5 if( theList.isEmptyi ) ) 

6 cout << "Empty list" << endl; 
7 else 
8 I 
9 LListItr<Object> itr = theList.first( ) ;  

10 for( ; itr.isValid( ) ;  itreadvance( ) ) 

11 cout <<  itr.retrieve( ) << " " ;  

12 1 
13 cout <<  endl; 
14 I 

Figure 17.1 1 The function for printing the contents of a LList 

1 / /  Return iterator corresponding to the first node matching x. 
2 / /  Iterator is not valid if item is not found. 
3 template <class Object> 
4 LListItr<Object> LList<Object>::find( const Object & x ) const 
5 I 
6 LListNode<Object> *p = header->next; 
7 
8 while( p ! =  NULL && p->element ! =  x ) 

9 p = p->next; 
10 
11 return LListItr<Object>( p ) ;  

12 } 

Figure 17.12 The find routine for the LLis t class. 

Our next routine removes some element x from the list. We need to decide This code is not 

what to do if x occurs more than once or not at all. Our routine removes the fOOIPrOOf:There may 
be two iterators, and 

first occurrence of x and does nothing if x is not in the list. To make that hap- be 
pen, we find p, which is the cell prior to the one containing x, via a call to dangling if the other 
f indprevious. The code for implementing the remove routine is shown in ~emovesa node. 

Figure 17.13. This code is not foolproof: There may be two iterators, and one 
can be left dangling if the other removes a node. The f indprevious routine 
is similar to the find routine and is shown in Figure 17.14. 

The last routine we write here is an insertion routine. We pass an ele- The insert routine 

ment to be inserted and a position p. This particular insertion routine inserts takes constant time. 

an element after position p, as shown in Figure 17.15. Note that the insert 
routine makes no use of the list it is in; it depends only on p. The STL list 



1 / /  Remove the first occurrence of an item X .  

2 template <class Object> 
3 void LList<Object>::remove( const Object & x 

4 { 

5 LListNode<Object> *p = findprevious( x ) .current; 
6 
7 if( p->next ! =  NULL ) 

8 I 
9 LListNode<Object> *oldNode = p->next; 

10 p->next = p->next->next; / /  Bypass 
11 delete oldNode; 
12 } 

13 1 

Figure 17.13 The remove routine for the LList class. 

1 / /  Return iterator prior to the first node containing item x. 
2 template <class Object> 
3 LListItr<Object> 
4 LList<Object>: : f indprevious ( const Object & x ) const 
5 i 
6 LListNode<Object> *p = header; 
7 
8 while( p-znext ! =  NULL && p->next->element ! =  x ) 

9 p = p->next; 
10 
11 return LListItr<Object>( p ) ;  

12 } 

Figure 17.14 The f indprevious routine-similar to the find routine-for use 
with remove. 

1 / /  Insert item x after p. 
2 template <class Object> 
3 void LList<Object>:: 
4 insert( const Object & x, const LListItr<Object> & p ) 

5 I 
6 if ( p.current ! =  NULL ) 

7 p.current->next = new LListNodecObject>( x, 
8 p.current->next ) ; 

9 I 

Figure 17.15 The insertion routine for the LList class. 



class also makes no use of the list it is in. However, in the list class that we 
write in Section 17.5 we add tests to ensure that the iterator corresponds to 
the list. We do so by logically adding a reference to the list as an extra data 
member for the list iterator. 

With the exception of the find and f indprevious routines (and 
remove, which calls f indprevious), all the operations that we have coded 
so far take O(1) time. The find and f indprevious routines take O(N) 
time in the worst case because the entire list might need to be traversed if the 
element either is not found or is last in the list. On average the running time 
is O(N) because on average half the list must be traversed. 

Because the insertion routines consistently allocate LListNode objects, 
via calls to new, these objects must be reclaimed when they are no longer 
referenced; otherwise, we have a memory leak. We reclaim them by calling 
delete. We must do so in several places: in the remove method (which 
removes 1 node), the makeEmpty method (which removes N nodes), and the 
destructor (which removes N + 1 nodes, including the header node). 

Figure 17.13 illustrates the general mechanism. We save a pointer to the 
node that is about to be unreferenced. After the pointer manipulations bypass 
the node, we can then call delete. The order is important: Once a node has 
been subjected to a delete, its contents are unstable, which means that the 
node may be used to satisfy a future new request. In the code shown in Fig- 
ure 17.13, moving the delete statement up one line will probably not have 
any adverse affects, depending on how the compiler chooses to do things- 
nonetheless, it is incorrect. In fact, this action leads to the worst kind of bug: 
one that might only occasionally give incorrect behavior. 

The makeEmpty routine, which must remove N nodes, and the destruc- 
tor, which must remove N + 1 nodes seem to be more complicated. However, 
as memory reclamation is often tricky (and tends to lead to a large percent- 
age of errors), you should avoid using delete as much as possible. For 
makeEmpty, we can do so by repeatedly calling remove on the first element 
(until the list is empty). Thus remove automatically handles memory recla- 
mation. For the destructor, we can call makeEmpty and then call delete for 
the header node. Both routines are shown in Figure 17.16. 

In Section 2.2.4, we stated that, if the default destructor is unacceptable, 
the copy assignment operator (operator=) and copy constructor are likely 
to be unacceptable. For operator=, we can give a simple implementation 
in terms of public list methods, as shown in Figure 17.17. This code contains 
the usual aliasing test and return of *this. Prior to copying, we make the 
current list empty to avoid leaking memory previously allocated for the list. 
With an empty list, we create the first node and then go down the rhs list, 
appending new LListNodes to the end of the target list. 

The find and 
f i n d p r e v i o u s  
routines take O(N) 
time. 

After the pointer 
manipulations bypass 
the node, we can then 
call delete.The 
order is important 
becauseonceanode 
has been subjected to 
a d e l e t e ,  its 
contents are 
unstable, meaning 
that the node may be 
used to satisfy a 
future new request. 

The copy assignment 
operator for a linked 
list can be 
implemented by 
using two iterators. 



-- 

~ z e d  Lists 

1 / /  Make the list logically empty. 
2 template <class Object> 
3 void LList<Object>: :makeEmpty( ) 

4 I 
5 while( !isEmptyi ) ) 

6 remove ( first ( ) .retrieve ( ) ) ; 

7 1 
8 
9 / /  Destructor. 

10 template <class Object> 
11 LList<Object>::-LList( ) 
12 ( 
13 makeErnpty ( ) ; 

14 delete header; 
15 1 

Figure 17.16 The makeEmpty method and the LLis t destructor. 

1 / /  Copy constructor. 
2 template <class Object> 
3 LList<Object>::LList( const LList<Object> & rhs ) 

4 i 
5 header = new LListNodeiObject>; 
6 *this = rhs; 
7 1 
8 
9 / /  Deep copy of linked lists. 

10 template <class Object> 
11 const LList<Object> & 

12 LList<Object>::operator=( const ~~ist<Object> & rhs i 
13 { 

14 if ( this ! =  &rhs ) 

15 ( 

16 makeEmpty ( ) ; 

17 
18 LListItr<Object> ritr = rhs.first( 1 ;  
19 LListItr<Object> itr = zeroth( ) ; 

20 for( ; ritr.isValid( ) ;  ritr.advance( ) ,  itr.advance( ) 
21 insert( ritr.retrieve( ) ,  itr 1 ;  
22 1 
23 return *this; 
24 1 

Figure 17.17 Two LLis t copy routines: operator= and copy constructor. 



Doubly Linked Lists and Circularly Linked Lists 

For the copy constructor, we can create an empty list by calling new to 
allocate a header node and then using o p e r a t o r =  to copy rhs, as shown 
in Figure 17.17. A commonly used technique is to make the copy constructor 
private, with the intention of having the compiler generate an error message 
when a LList is passed by using call by value (instead of a constant reference). 

We certainly could have added more operations, but this basic set is The retreat 
quite powerful. Some operations, such as r e t r e a t ,  are not efficiently sup- method is not 

efficiently supported. ported by this version of the linked list; variations on the linked list that A doubly linked list is 
allow constant-time implementation of that and other operators are dis- used if that is a 
cussed later in this chapter. liability. 

17.3 Doubly Linked Lists 
and Circularly Linked Lists 

As we mentioned in Section 17.2, the singly linked list does not efficiently A doubly linked list - - 
support some important operations. For instance, although it is easy to go to allows bidirectional 

traversal by storing 
the front of the list, it is time consuming to go to the end. Although we can two pointers per 
easily advance via advance,  implementing re t rea t  cannot be done effi- node. 
ciently with only a n e x t  pointer. In some applications that might be crucial. 
For instance, when designing a text editor, we can maintain the internal 
image of the file as a linked list of lines. We want to be able to move up just 
as easily as down in the list, to insert both before and after a line rather than 
just after, and to be able to get to the last line quickly. A moment's thought 
suggests that to implement this procedure efficiently we should have each 
node maintain two pointers: one to the next node in the list and one to the 
previous node. Then, to make everything symmetric, we should have not 
only a header but also a tail. A linked list that allows bidirectional traversal 
by storing two pointers per node is called a doubly linked list. Figure 17.18 
shows the doubly linked list representing a and b. Each node now has two 
pointers ( n e x t  and p r e v ) ,  and searching and moving can easily be per- 
formed in both directions. Obviously, there are some important changes 
from the singly linked list. 

head t a i l  

Figure 17.18 A doubly linked list. 



m - L i n k e d  Lists 

head tail 

Figure 17.19 An empty doubly linked list. 

Symmetry demands 
that we use both a 
head and a t a i l  
and that we support 
roughly twice as 
many operations. 

When we advance 
past the end of the 
list, we now hit the 
t a i l  node instead of 
NULL. 

Insertion and removal 
involve twice as many 
pointer changes as 
for a singly linked list. 

First, an empty list now consists of a head and tail, connected as 
shown in Figure 17.19. Note that head->prev and tail->next are not 
needed in the algorithms and are not even initialized. The test for emptiness 
is now 

head->next == tail 

tail->prev == head 

We no longer use NULL to decide whether an advance has taken us past 
the end of the list. Instead, we have gone past the end if current is either 
head or tail (recall that we can go in either direction). The retreat oper- 
ation can be implemented by 

current = current->prev; 

Before describing some of the additional operations that are available, 
let us consider how the insertion and removal operations change. Naturally, 
we can now do both insertBefore and insertAf ter. Twice as many 
pointer moves are involved for insertAf ter with doubly linked lists as 
with singly linked lists. If we write each statement explicitly, we obtain 

newNode = new Node( x ) ;  

newNode->prev = current; / /  Set x's prev pointer 
newNode->next = current->next; / /  Set x ' s  next pointer 
newNode->prev->next = newNode; / /  Set a's next pointer 
newNode->next->prev = newNode; / /  Set b's prev pointer 
current = newNode: 

As we showed earlier, the first two pointer moves can be collapsed into the 
Node construction that is done by new. The changes (in order I ,  2, 3, 4) are 
illustrated in Figure 17.20. 
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Doubly Linked Lists a n d u  l z r ~ l n  k z r m  

Figure 17.20 Insertion in a doubly linked list by getting new node and then 
changing pointers in the order indicated. 

Figure 17.20 can also be used as a guide in the removal algorithm. 
Unlike the singly linked list, we can remove the current node because the 
previous node is available to us automatically. Thus to remove x we have to 
change a 's  next pointer and b's prev pointer. The basic moves are 

oldNode = current; 
oldNode->prev->next = oldNode->next;// Set a's next pointer 
oldNode->next->prev = oldNode->prev;// Set b's prev pointer 
delete oldNode; 
current = head; l i  So current is not stale 

To do a complete doubly linked list implementation, we need to decide 
which operations to support. We can reasonably expect twice as many opera- 
tions as in the singly linked list. Each individual procedure is similar to the 
linked list routines; only the dynamic operations involve additional pointer 
moves. Moreover, for many of the routines, the code is dominated by error 
checks. Although some of the checks will change (e.g., we do not test against 
NULL), they certainly do not become any more complex. In Section 17.5, we 
use a doubly linked list to implement the STL list class, along with its asso- 
ciated iterators. There are lots of routines, but most are short. 

A popular convention is to create a circularly linked list, in which the 
last cell's next pointer points back to f i r s t ,  which can be done with or 
without a header. Typically, i t  is done without a header because the header's 
main purpose is to ensure that every node has a previous node, which is 
already true for a nonempty circularly linked list. Without a header, we have 
only the empty list as a special case. We maintain a pointer to the first node, 
but that is not the same as a header node. We can use circularly linked lists 
and doubly linked lists simultaneously, as shown in Figure 17.2 1. The circu- 
lar list is useful when we want searching to allow wraparound, as is the case 
for some text editors. In Exercise 17.20 you are asked to implement a circu- 
larly and doubly linked list. 

The remove 
operation can 
proceed from the 
current node because 
we can obtain the 
previous node 
instantly. 

In a circularly linked 
list, the last cell's 
n e x t  pointer points 
to f i r s t . T h i s  action 
is useful when 
wraparound matters. 



Linked Lists 

\ first 
Figure 17.21 A circularly and doubly linked list. 

17.4 Sorted Linked Lists 
We can maintain Sometimes we want to keep the items in a linked list in sorted order, which 
items in Order we can do with a sorted linked list. The fundamental difference between a 
by deriving a 
SortedLList class sorted linked list and an unsorted linked list is the insertion routine. Indeed, 
from LList. we can obtain a sorted list class by simply altering the insertion routine from 

our already written list class. Because the insert routine is part of the 
LList class, we should be able to base a new derived class, SortedLList, 
on LList. We can, and it is shown in Figure 17.22. 

The new class has two versions of insert. One version takes a position 
and then ignores it; the insertion point is determined solely by the sorted 
order. The other version of insert requires more code. 

The one-parameter insert uses two LListI tr objects to traverse 
down the corresponding list until the correct insertion point is found. At that 
point we can apply the base class insert routine. 

The insert method For this approach to work correctly in all instances, the base class insert 
be declared method should be declared virtual, so that if we access a SortedLLis t 

virtual in the base 
class. object through a LList pointer, we get the correct insert. Without the 

virtual declaration, we do not. The online code makes insert virtual. 

17.5 Implementing the STL list Class 

In this section we implement the STL list class discussed in Section 7.6. 
Although we present lots of code, we described most of the techniques ear- 
lier in this chapter. 

Our code already takes up many pages, so to save some space we do not 
show all the include directives and we occasionally skimp on the commenting. 

As we indicated previously, we need a class to store the basic list node, a 
class for the iterator, and a class for the list itself. The STL provides two types 
of iterators: the const-iterator and iterator, so we will have two itera- 
tor classes and a grand total of four classes. As we will see, const-iterator 
and iterator are typedefs representing the two iterator class templates. 



Implementing the STL list Class 

1 / /  SortedLList class. 
2 / /  
3 / /  CONSTRUCTION: with no initializer. 
4 / /  Access is via LListItr class. 
5 / /  
6 / /  ******************pUBLIC OPERATIONS********************* 

7 / /  void insert( x ) - ->  Insert x in sorted order 
8 / /  void insert( x, p ) - ->  Insert x in sorted order; ignore p 
9 / /  All other LList operations 

10 / /  ******************ERRORS******************************** 

11 / /  No special errors. 
12 
13 template <class Object> 
14 class SortedLList : public LList<Object> 
15 (: 

16 public: 
17 void insert( const Object & x ) ;  

18 void insert( const Object & x, const LListItr<Object> & p ) 

19 ( insert ( x ) ; ) 

20 1 ;  
21 
22 / /  Insert item x into the list. 
23 template <class Object> 
24 void SortedLList<Object>::insert( const Object & x ) 

25 { 

26 LListItr<Object> prev = zeroth( ) ;  

27 LListItr<Object> curr = first( ) ;  

28 while( curr.isValid( ) && curr.retrieve( ) < x ) 

29 I 
30 prev . advance ( ) ; 

31 curr.advance( ) ;  

32 1 
33 LList<Object>::insert( x, prev ) ;  

34 } 

Figure 17.22 The SortedLList class, in which insertions are restricted to 
sorted order. 

We used the same technique in the vector implementation shown in Fig- 
ure 7.10. Because the iterators are bidirectional, we need a doubly linked list. 
Finally, our implementation is safer than the STL's in that the use of bad itera- 
tors (e.g., advancing past the endmarker) causes an exception to be thrown. 

The four classes are list, ListItr, ConstListItr, and Lis tNode. 
We begin by discussing Lis tNode, then look at list, and finally look at 
the two iterator classes. 



1 / /  Incomplete class declarations for 
2 / /  the const-iterator, iterator, and list, 
3 / /  because all these classes refer to each other. 
4 template <class Object> 
5 class ConstListItr; 
6 
7 template <class Object> 
8 class ListItr; 
9 

10 template <class Object> 
11 class list; 
12 
13 / /  The basic doubly linked list node. 
14 / /  Everything is private, and is accessible 
15 / /  only by the iterators and list classes. 
16 template <class Object> 
17 class ListNode 
18 ( 

19 Object data; 
20 ListNode *prev; 
21 ListNode *next; 
22 
23 ListNode( const Object & d = Object( ) ,  

24 ListNode * p = NULL, ListNode * n = NULL ) 

25 : data( d ) ,  prev( p ) ,  next( n ) ( } 

26 
27 friend class ConstListItr<Object>; 
28 friend class ListItr<Object>; 
29 friend class list<Object>; 
30 } ;  

Figure 17.23 The ListNode class and declarations for other classes. 

Figure 17.23 shows the L i s t N o d e  class, which is similar to the 
LListNode class (see Figure 17.7). The main difference is that, because we 
use a doubly linked list, we have both p r e v  and n e x t  pointers. As we 
showed before, we make all the members private and then make the three 
remaining classes friends. Thus we also illustrate the technique of using an 
incomplete class declaration. 

Next we consider the l i s t  class interface shown in Figure 17.24. As 
mentioned earlier, lines 5 and 6 are t y p e d e f s  for the i t e r a t o r  and 
const - i  t e r a t o r .  At line 42, we use another typedef-simply for conve- 
nience. When writing member functions, we can now use node instead of 
using ListNode<Obj e c t > .  We do so immediately in the declarations of 
head and t a i l  at lines 45 and 46. Note also that the list class keeps track of 



1 template <class Object> 
2 class list 
3 { 

4 public: 
5 typedef ListItr<Object> iterator; 
6 typedef ConstListItr<Object> const-iterator; 
7 
8 list( ) ;  

9 -list( ) ; 

10 
11 list( const list & rhs ) ;  

12 const list & operator= ( const list & rhs ) ;  

13 
14 iterator begin( ) ;  

15 const-iterator begin( ) const; 
16 
17 iterator end( ) ; 

18 const-iterator end( ) const; 
19 
20 int size( ) const; 
2 1 boo1 empty( ) const; 
22 
23 Object & front( ) ;  

24 const Object & front( ) const; 
25 
26 Object & back( ) ;  

27 const Object & back( ) const; 
28 
29 void push-front( const Object & x ) ;  

30 void push-back( const Object & x 1 ;  
3 1 void pop-front ( ) ; 

32 void pop-back ( ) ; 

33 
34 iterator insert( iterator itr, const Object & x ) ;  

35 iterator erase( iterator itr ) ;  

36 iterator erase( iterator start, iterator end ) ;  

37 
38 friend class ConstListItr<Object>; 
39 friend class ListItr<Object>; 
40 
41 private: 
42 typedef ListNode<Object> node; 
43 
44 int thesize; 
45 node *head; 
46 node *tail; 
47 
48 void init( ) ;  

49 void makeEmpty( ) ;  

50 1; 

Figure 17.24 The 1 ist class interface. 



its size in a data member declared at line 44. We use this approach so that the 
size method can be performed in constant time. 

Almost all the member functions use signatures that we've shown 
before. So, for instance, there are two versions of begin and end, as in the 
vector class shown in Figure 7.10. 

Some unusual lines of code occur at lines 34-39. The three member 
functions (insert and both erase methods) pass an iterator using call by 
value instead of by the normal (for nonprimitive objects) constant reference. 
This procedure is safe because the iterator is a small object. Also unusual is 
that the friend declarations do not use const-iterator and iterator 
directly. One of our compilers didn't like it, so we played it safe. This rejec- 
tion illustrates the typical C++ problem of combining too many features at 
the same time: Often we run into compiler bugs by doing so. 

The implementation of list begins in Figure 17.25, where we have 
a constructor and the Big Three. The makeEmpt y and ini t methods are pri- 
vate helpers. ini t contains the basic functionality of the zero-parameter con- 
structor. However, i t  is a separate function so that the copy constructor 
can be implemented by logically using a zero-parameter constructor and 
operator=. All in all, little is new here; we combined a lot of the LList 
code with the concepts presented in Section 17.3. 

Figure 17.26 contains the begin, end, size, and empty methods. The 
begin method looks much like the zeroth method of the LList class (see 
Figure 17.1 O), except that the iterators are constructed by passing not only a 
pointer to a node, but also a reference to the list that contains the node. This 
procedure allows additional error checking for the insert and erase 
methods. However, zeroth returns the header, but we want the first node. 
Hence we advance the iterator with operator++, and use its new value as 
the return value. The end, size, and empty methods are one-liners. 

Figure 17.27 contains the double-ended queue operations. All are one- 
liners that combine calls to begin, end, operator*, operator--. 
insert, and erase. Recall that the insert method inserts prior to a posi- 
tion, so pusn-back inserts prior to the endmarker, as required. In 
pop-back, note that erase ( --end ( ) ) creates a temporary iterator corre- 
sponding to the endmarker, retreats the temporary iterator, and uses that iter- 
ator to erase. Similar behavior occurs in back. 

The insert and erase methods are shown in Figure 17.28. The 
assertIsValid routine, called at line 6, throws an exception if itr is not 
at an insertable location, which could occur if it was never initialized. At line 
7 we test whether itr belongs to this list, and at line 8 we throw an excep- 
tion if it does not. The rest of the code is the usual splicing already discussed 
for a doubly linked list. At line 14, an iterator representing the newly 
inserted item is returned. 



1 template <class Object> 
2 list<Object>: :list ( ) 

3 { 

4 init( i ;  
5 } 
6 
7 template <class Object> 
8 void list<Object>::initi ) 
9 ( 

10 thesize = 0; 
11 head = new node; 
12 tail = new node; 
13 head->next = tail; 
14 tail->prev = head; 
15 } 

16 
17 template <class Object> 
18 list<Object>: :-list ( ) 

19 i 
20 makeEmpty( ) ; 

2 1 delete head; 
22 delete tail; 
23 1 
24 
25 template <class Object> 
26 void list<Object>: :makeEmpty ( ) 

27 { 

28 while( !empty( ) ) 

29 pop_£ ront ( ; 

30 } 
3 1 
32 template <class Object> 
33 list<Object>::list( const list<Object> & rhs ) 

34 { 

35 init( i ;  
36 *this = rhs; 
37 1 
38 
39 template <class Object> 
40 const list<Object> & 

41 list<Object>::operator= ( const list & rhs ) 

42 I 
43 if ( this == &rhs 1 
44 return *this; 
45 
46 makeEmpty( 1 ; 
47 const-iterator itr = rhs.begin( 1 ;  
48 while ( itr ! =  rhs.end( i ) 

49 push-back( *itr++ ) ;  

50 return *this; 
51 I 

Figure 17.25 Constructor and Big Three for the STL 1 is t class. 



-- 
Linked Lists 

1 / /  Return iterator representing beginning of list. 
2 / /  Mutator version is first, then accessor version. 
3 template <class Object> 
4 list<Object>: :iterator list<Object>::begin( ) 
5 1: 
6 iterator itr ( *this, head ) ; 

7 return ++itr; 
8 1 
9 

10 template <class Object> 
11 l i s t < O b j e c t > : : c o n s t _ i t e r a t o r  list<Object>::begin( ) const 
12 { 

13 const-iterator itr( "his, head ) ;  

14 return ++itr; 

15 1 
16 
17 / /  Return iterator representing endmarker of list. 
18 / /  Mutator version is first, then accessor version. 
19 template <class Object> 
20 list<Object>: :iterator list<Object>::end( ) 
21 ( 

22 return iterator( *this, tail ) ;  

23 1 
24 
25 template <class Object> 
26 l i s t < O b j e c t > : : c o n s t _ i t e r a t o r  list<Object>::end( const 
27 ( 

28 return const-iterator( *this, tail ) ;  

29 1 
30 
31 / /  Return number of elements currently in the list. 
32 template <class Object> 
33 int list<Object>: :size( ) const 

34 1: 
35 return thesize; 
36 1 
37 
38 / /  Return true if the list is empty, false otherwise. 
39 template <class Object> 
40 boo1 list<Object>: :empty ( ) const 

41 1: 
42 return size( ) == 0 ;  

43 } 

Figure 17.26 The begin, end, s i z e ,  and empty methods for the STL l i s t  
class. 



Implementing the STL list Class 

1 / /  front, back, push-front, push-back, pop-front, and POP-back 
2 / /  are the basic double-ended queue operations. 
3 template <class Object> 
4 Object & list<Object>: :front ( ) 

5 [ 

6 return *begin ( ) ; 

7 } 

8 
9 template <class Object> 

10 const Object & list<Object>::front( ) const 
11 { 
12 return *begin ( ) ; 

13 1 
14 
15 template <class Object> 
16 Object & list<Object>: :back( ) 
17 { 

18 return *--end ( ) ; 

19 1 
20 
21 template <class Object> 
22 const Object & list<Object>::back( ) const 
23 { 

24 return *--end( ) ;  

25 1 
26 
27 template <class Object> 
28 void list<Object>::push-front( const Object & x ) 

29 I 
30 insert ( begin ( ) , x ) ; 

31 1 
32 
33 template <class Object> 
34 void list<Object>: :push-back ( const Object & x ) 

35 I 
36 insert ( end( ) , x ) ; 

37 1 
38 
39 template <class Object> 
40 void list<Object>::pop-front( ) 
41 { 

42 erase ( begin ( ) ) ; 

43 3 
44 
45 template <class Object> 
46 void list<Object>::pop-back( ) 
47 { 

48 erase( --end( ) ) ;  

49 } 

Figure 17.27 Double-ended queue STL list class operations. 



1 / /  Insert x before itr. 
2 template <class Object> 
3 list<Object>::iterator 
4 list<Object>::insert( iterator itr, const Object & x ) 

5 { 

6 itr.assertIsValid( 1 ;  
7 if( itr.head ! =  head ) / /  itr is not in this list 
8 throw Iterator~ismatchException( ) ;  

9 
10 node *p = itr.current; 
11 p->prev->next = new node( x, p->prev, p ) ;  

12 p->prev = p->prev->next; 
13 thesize++; 
14 return iterator( *this, p->prev ) ;  

15 1 
16 
17 / /  Erase item at itr. 
18 template <class Object> 
19 list<Object>::iterator list<object>::erase( iterator itr ) 

20 { 

21 itr.assertIsValid( ) ;  

22 if( itr == end( ) ) / /  can't erase endmarker 
23 throw ~terator~ut~f~ounds~xception( ) ;  

24 if( itr.head ! =  head ) / /  itr is not in this list 
25 throw IteratorMismatchException( ) ; 

26 
27 node *p = itr.current; 
28 iterator retval( *this, p->next ) ;  

29 p->prev->next = p->next; 
30 p->next->prev = p->prev; 
31 delete p; 
32 thesize--; 
33 return retval; 
34 1 
35 
36 / /  Erase items in the range [from,to) . 
37 template <class Object> 
38 list<Object>::iterator 
39 list<Object>::erase( iterator from, iterator to ) 

40 { 
41 for( iterator itr = from; itr ! =  to; ) 

42 itr = erase( itr ) ;  

43 return to; 
44 i 

Figure 17.28 Methods for insertion and removal from the STL 1 is t class. 



The first version of erase contains an additional error check. After- The value of i t r  is 

ward, we perform the standard deletion in a doubly linked list; we return an 
after the call to 

iterator representing the item after the deleted element. Like insert, erase erase, which is why 
must update theSi ze. The second version of erase simply uses an iterator erase returns an 
to call the first version of erase. Note that we cannot simply use itr++ in iterator. 

the for loop at line 41 and ignore the return value of erase at line 42. The 
value of itr is stale immediately after the call to erase, which is why 
erase returns an iterator. 

Figure 17.29 shows the class interfaces for ConstListItr and 
~ i s t  ~ t r .  The iterators store the current position and a pointer to the header. 
Of most interest is the use of inheritance. We want to be able to send an 
iterator to any method that accepts a const-iterator, but not vice 
versa. SO an iterator IS-A const-iterator. As a result, the private 
assert methods need to be written only once for the two classes. At line 6, the 
base class destructor is declared virtual, as is normal for base classes. 
operator* is also declared virtual. 

However, operator++ and operator-- are not virtual, mostly because 
their return types change. The versions that do not return references cannot 
be virtual, whereas those that return references can be virtual because they 
have compatible return types (the return type changes from a reference to a 
base class to a reference to a derived class; see Section 4.4.4). However, our 
compilers did not agree with the newer rules. 

The iterator classes each declare opera tor++ and operator - - to mir- 
ror advance and retreat (see Section 2.3.3 for a discussion of operator 
overloading). The public comparison operators and the private helper 
retrieve are declared in const-iterator and are inherited unchanged. 

The iterator constructors are shown in Figure 17.30 and are straight- 
forward. As we mentioned earlier, the zero-parameter constructor is pub- 
lic, whereas the two-parameter constructor that sets the current position 
and the header position, is private. Various assertion methods are shown in 
Figure 17.3 1. All test the validity of an iterator and throw an exception if the 
iterator is determined to be invalid. Otherwise, these methods return safely. 

In Figure 17.32, we present three versions of operator*, which is used 
to get the Ob j ec t stored at the current position. Recall that we have an 
accessor method that returns a constant reference and a mutator method that 
returns a reference (through which the Obj ec t can be changed). The muta- 
tor method cannot be made available for const-iterator, so we have 
only three methods. Except for the return type, they are identical and simply 
call the retrieve method. 

Various implementations of operator++ are shown in Figure 17.33. 
The postfix version (itr++) is implemented in terms of the prefix version 
(++itr), the derived class versions are identical to the base class versions 



1 template <class Object> 
2 class ConstListItr 
3 ( 

4 public: 
5 ConstListItr( 1 ;  
6 virtual -ConstListItr ( ) ( } 

7 
8 virtual const Object & operator* ( ) const; 
9 ConstListItr & operator++ ( ) ;  

10 ConstListItr operator++ ( int ) ;  

1 1  ConstListItr & operator-- i ) ;  

12 ConstListItr operator-- ( int ) ;  

13 
14 boo1 operator== ( const ConstListItr & rhs ) const; 
15 boo1 operator!= ( const ConstListItr & rhs ) const; 
16 
17 protected: 
18 typedef ListNode<Object> node; 
19 node *head; 
20 node *current; 
21 
22 friend class llst<Object>; 
23 void assertIsInitialized( ) const; 
24 void assertIsValid( ) const; 
25 void assertCanAdvance( ) const; 
26 void assertCanRetreat( ) const; 
27 Object & retrieve( ) const; 
28 
29 ConstListItr( const list<Object> & source, node *p 1 ;  
30 1 ;  
31 
32 template <class Object> 
33 class ListItr : public ConstListItr<Object> 

34 i 
35 public: 
36 ListItr( ) ; 

37 
38 Object & operator* ( ) ;  

39 const Object & operator* i ) const; 
40 ListItr & operator++ ( ) ;  

41 ListItr operator++ ( int ) ;  

42 ListItr & operator-- ( 1 ;  
43 ListItr operator-- ( int 1 :  
44 
45 protected: 
46 typedef ListNode<Object> node; 
47 friend class list<Object>; 
48 
49 ~ i s t ~ t r (  const list<Object> & source, node *p 1 ;  
50 1 ;  

Figure 17.29 Interface for two STL 1 is t class iterators. 



Implementing the STL list Class 

1 / /  Public constructor for const-iterator. 
2 template <class Object> 
3 ConstListItr<Object>: :ConstListItr( ) 

4 : head( NULL ) ,  current( NULL ) 

5 I 
6 1 
7 
8 / /  Protected constructor for const-iterator. 
9 / /  Expects the list that owns the iterator arid a 

10 / /  pointer that represents the current position. 
11 template <class Object> 
12 ConstListItr<Object>:: 
13 ConstListItr( const list<Object> & source, node * p  ) 

14 : head ( source. head ) , current ( p 
15 I 
16 1 
17 
18 / /  Public constructor for iterator. 
19 / /  Calls the base-class constructor. 
20 / /  Must be provided because the private constructor 
21 / /  is written; otherwise zero-parameter constructor 
22 / /  would be disabled. 
23 template <class Object> 
24 ListItr<Object>: :ListItr( ) 
25 i 
26 1 
27 
28 / /  Protected constructor for iterator. 
29 / /  Expects the list that owns the iterator and a 
30 / /  pointer that represents the current position. 
31 template <class Object> 
32 ListItr<Object>:: 
33 ListItr( const list<Object> & source, node *p ) 

34 : ConstListItr<Object>( source, p ) 

35 I 
36 1 

Figure 17.30 Constructors for the STL 1 is t class iterators. 

(except for class name),  and operator-- uses the same logic as 
operator++. Consequently, we omit two versions of operator--. 
Finally, Figure 17.34 shows an implementation of the equality operators. 

All in all, there is a large amount of code. but it simply embellishes the 
basics presented in the original implementation of the LList class in Sec- 
tion 17.2. 



1 / /  Throws an exception if this iterator is obviously 
2 / /  uninitialized. Otherwise, returns safely. 
3 template <class Object> 
4 void ConstListItr<Object>::assertIsInitialized ) const 
5 i 
6 if( head = =  NULL 1 current == NULL ) 

7 throw IteratorUninitializedException( ) ;  

8 1 
9 

10 1 1  Throws an exception if the current position is 
11 / /  not somewhere in the range from begin to end, inclusive. 
12 / /  Otherwise, returns safely. 
13 template <class Object> 
14 void ConstListItr<Object>::assertIsValid( ) cons: 

15 i 
16 assertIsInitialized( ) ;  

17 if ( current == head ) 

18 throw IteratorOutOfBoundsException( ) ;  

19 1 
20 
21 / /  Throws an exception if operator++ cannot be safely applied 
22 / /  to the current position. Otherwise, returns safely. 
23 template <class Object> 
24 void ConstListItr<Object>::assertCanAdvance( ) const 
25 { 

26 assertIsInitialized( ) ;  

27 if( current->next == NULL ) 

28 throw IteratorOutOfBoundsException( ) ; 

29 1 
30 
31 / /  Throws an exception if operator-- cannot be safely applied 
32 / /  to the current position. Otherwise, returns safely. 
33 template <class Object> 
34 void ConstListItr<Object>::assertCanRetreat( ) const 

35 { 
36 assertIsValid( ) ;  

37 if( current->prev == head ) 

38 throw IteratorOutOf~oundsException( ) ; 
39 } 

Figure 17.31 Various assertions that throw exceptions if the assertion fails. 



- - -- - - - - 

lrnplernent~ng the STL llst Class 

1 / /  Return the object stored at the current position. 
2 / /  For const-iterator, this is an accessor with a 
3 / /  const reference return type. 
4 template <class Object> 
5 const Object & ConstListItr<Object>::operator* ( ) const 
6 I 
7 return retrieve( ) ; 

8 1 
9 

10 / /  Return the object stored at the current position. 
11 / /  For iterator, there is an accessor with a 
12 / /  const reference return type and a mutator with 
13 / /  a reference return type. The accessor is shown first. 
14 template <class Object> 
15 const Object & ListItr<Object>: :operator* ( ) const 
16 i 
17 return ConstListItr<Object>: :operatork( ) ;  

18 1 
19 
20 template <class Object> 
21 Object & ListItr<Object>::operator* ( ) 

22 ( 
23 return retrieve( ) ;  

24 } 

25 
26 / /  Protected helper in const-iterator that returns the object 
27 / /  stored at the current position. Can be called by all 
28 / /  three versions of operator* without any type conversions. 
29 template <class Object> 
30 Object h ConstListItr<Object>::retrieve( ) const 
31 i 
32 assertIsValid( ) ;  

33 if( current->next == NULL ) 

34 throw IteratorOutOfBoundsException( ) ;  

35 
36 return current->data; 
37 1 

Figure 17.32 Various ope ra to r*  implementations. 



1 template <class Object> / /  prefix 
2 ConstListItr<Object> & ConstListItr<Object>::operator+t ( i 
3 i 
4 assertCanAdvance( ) ;  

5 current = current->next; 
6 return *this; 
7 } 

8 
9 template <class Object> / /  postfix 

10 ConstListItr<Object> ConstListItr<Object>::operator++ ( int ) 

11 I 
12 ConstListItr<Object> old = *this; 
13 + + (  *this ) ;  

14 return old; 

15 1 
16 
17 template <class Object> / /  prefix 
18 ListItr<Object> & ListItr<Object>::operator++ ( ) 

19 r 
20 assertCanAdvance( ) ;  

21 current = current->next; 
22 return *this; 
23 1 
24 
25 template <class Object> I /  postfix 
26 LlstItr<Object> ListItr<Ob]ect>: :operator++ ( int ) 

27 i 
28 ListItr<Object> old = *this; 
29 t+( *this i ;  
30 return old; 
31 1 
32 
33 template <class Object> / /  prefix 
34 ConstListItr<Object> & ConstListItr<Object>::operator-- ( ) 

35 { 

36 assertCanRetreat( ) ;  

37 current = current->prev; 
38 return *this; 
39 } 

40 
41 template <class Object> / /  postfix 
42 ConstListItr<Object> ConstListItr<Object>::operator-- ( int ) 

43 I 
44 ConstListItr<Object> old = "this; 
45 - - (  *this ) ;  

46 return old; 
47 i 

Figure 17.33 Four versions of o p e r a t o r + +  (two for each iterator) and two versions 
of o p e r a t o r - -  (for C o n s t L i s t  Itr); two additional versions of 
o p e r a t o r - -  are similar and not shown. 



Objects of the Game 

1 template <class Object> 
2 bool ConstListItr<Object>:: 
3 operator== ( const ConstListItr & rhs ) const 
4 I 
5 return current == rhs.current; 
6 } 

7 
8 template <class Object> 
9 bool ConstListItr<Object>:: 

10 operator!= ( const ConstListItr & rhs ) const 
11 I 
12 return ! ( *this == rhs ) ;  

13 1 

Figure 17.34 Equality operators for list iterators, which are inherited unchanged by 
L i s t I t r .  

Summary 

In this chapter we described why and how linked lists are implemented, 
illustrating the interactions among the list, iterator, and node classes. We 
examined variations of the linked list including doubly linked lists. The dou- 
bly linked list allows bidirectional traversal of the list. We also showed how 
a sorted linked list class can easily be derived from the basic linked list class. 
Finally, we provided an implementation of most of the STL list class. 

Objects of the Game 

circularly linked list A linked list in which the last cell's next 
pointer points to first. This action is useful when wraparound 
matters. (p. 581) 

doubly linked list A linked list that allows bidirectional traversal by 
storing two pointers per node. (p. 579) 

header node An extra node in a linked list that holds no data but 
serves to satisfy the requirement that every node have a previous 
node. A header node allow us to avoid special cases such as the 
insertion of a new first element and the removal of the first element. 
(P. 567) 

incomplete class declaration Code used to inform the compiler of the 
existence of a class. Incomplete class declarations are necessary 
when two or more classes refer to each circularly. (p. 57 1) 



iterator class A class that maintains a current position in a container, 
such as a list. An iterator class is usually a friend of a list class. 
(P. 569) 

sorted linked list A list in which items are in sorted order. A sorted 
linked list class can be derived from a list class. (p. 582) 

@ Common Errors 

1. The most common linked list error is splicing in nodes incorrectly 
when performing an insertion. This procedure is especially tricky 
with doubly linked lists. 

2. When a header node is used, the list header must be deleted in the 
destructor. 

3. Member functions should not be allowed to dereference a NULL 
pointer. We perform error checks to catch this mistake and throw 
exceptions as warranted. 

4. When several iterators access a list simultaneously, problems can 
result. For instance, what if one iterator deletes the node that the 
other iterator is about to access? Solving these types of problems 
requires additional work, such as the use of an observer pattern 
(Section 5.6). 

5. Forgetting the incomplete class declaration can lead to compilation 
errors. 

6. A common error is calling delete at the wrong time during 
execution of remove or makeEmpty. 

On the Internet 

The singly linked list class, including the sorted linked list is available, as is 
our STL list implementation. 

LinkedList.h Contains the interface for ~ ~ i s t  and associ- 
ated friends. 

LinkedList.cpp Contains the implementation for LList and 
associated friends. 

S0rtLinkedList.h Contains the interface for SortedLLis t. 
SortLinkedList.cpp Contains the implementation for 

SortedLList. 

TestSortList.cpp Contains a program that tests the LList and 
Sort edLLi s t implementations. 



Exercises 

In Short 

Contains the interface of the STL list and 
associated friends. 
Contains the implementation of the STL 1 is  t 
and associated friends. 
Contains a program that tests the STL list 
implementation. 

17.1. Draw an empty linked list with header implementation. 

17.2. Draw an empty doubly linked list that uses both a header and a tail. 

In Theory 

17.3. Write an algorithm for printing a singly linked list in reverse, using 
only constant extra space. This instruction implies that you cannot 
use recursion but you may assume that your algorithm is a list mem- 
ber function. Can such an algorithm be written if the routine is a 
constant member function? 

17.4. A linked list contains a cycle if, starting from some node p, follow- 
ing a sufficient number of next links brings us back to node p. 
Node p does not have to be the first node in the list. Assume that you 
have a linked list that contains N nodes. However, the value of N is 
unknown. 
a. Design an O(N) algorithm to determine whether the list contains 

a cycle. You may use O(N) extra space. 
b. Repeat part (a), but use only O(1) extra space. (Hint: Use two 

iterators that are initially at the start of the list, but advance at 
different speeds.) 

17.5. When a remove function is applied to a LList, it invalidates any 
LListI t r  that is referencing the removed node. Recall that such an 
iterator is called stale. Describe an efficient algorithm that guaran- 
tees that any operation on a stale iterator acts as though the iterator's 
current is NULL. Note that there may be many stale iterators. You 
must explain which classes need to be rewritten in order to imple- 
ment your algorithm. 

17.6. One way to implement a queue is to use a circularly linked list. 
Assume that the list does not contain a header and that you can 



Linked Lists 

maintain one iterator for the list. For which of the following repre- 
sentations can all basic queue operations be performed in constant 
worst-case time? Justify your answers. 
a. Maintain an iterator that corresponds to the first item in the list. 
b. Maintain an iterator that corresponds to the last item in the list. 

17.7. Suppose that you have a pointer to a node in a singly linked list that 
is guaranteed not to be the last node in the list. You do not have 
pointers to any other nodes (except by following links). Describe an 
O(1) algorithm that logically removes the value stored in such a 
node from the linked list, maintaining the integrity of the linked list. 
(Hint: Involve the next node.) 

17.8. Suppose that a singly linked list is implemented with both a header 
and a tail node. Using the ideas discussed in Exercise 17.7, describe 
constant-time algorithms to 
a. insert item x before position p. 

b. remove the item stored at position p. 

In Practice 

17.9. Modify the find routine in the LList class to return the last occur- 
rence of item x. 

17.10. Modify remove in the LList class to remove all occurrences of x. 

17.11. An alternative to isvalid (that tests whether the current position is 
within the list) is to write a type conversion operator: 

operator bool( ) const; 

Discuss the benefits and liabilities of this approach and provide an 
implementation. 

17.12. At times you may want to update an entry that is already in the 
linked list. One way to do so in the LList class is to have 
retrieve return a nonconstant reference. 
a. Discuss the advantages and disadvantages of this approach. 
b. Implement a constant reference return retrieve and a noncon- 

stant reference return retrieve simultaneously, by making 
one a constant member function and the other a nonconstant 
member. 

17.13. Suppose that you want to splice part of one linked list into another (a 
so-called cut and paste operation). Assume that three LLi s t I tr 



Exercises I 

parameters represent the starting point of the cut, the ending point of 
the cut, and the point at which the paste is to be attached. Assume 
that all iterators are valid and that the number of items cut is not 
zero. 
a. Write a function to cut and paste that is not a friend of the 

LLi s t classes. What is the running time of the algorithm? 
b. Write a function in the LList class to do the cut and paste. 

What is the running time of the algorithm? 

17.14. The SortedLList insert method uses only public iterator meth- 
ods. Can it access private members of the iterator? 

17.15. Implement an efficient Stack class by using a LList as a data 
member. You need to use a LListItr, but it can be either a data 
member or a local variable for any routine that needs it. 

17.16. Implement an efficient Queue class by using (as in Exercise 17.15) 
a singly linked list and appropriate iterators. How many of these 
iterators must be data members in order to achieve an efficient 
implementation? 

17.17. Implement retreat for singly linked lists. Note that it will take lin- 
ear time. 

17.18. Implement the LLis t class without the header node. 

17.19. Looking ahead in an STL iterator object requires an application 
of operator++, which in turn advances in the list. In some cases 
looking at the next item in the list, without advancing to it, may be 
preferable. Write the member function with the declaration 

const-iterator operator+( int k ) const; 

to facilitate this in a general case. The binary operator+ returns an 
iterator that corresponds to k positions ahead of current. Do any 
exceptions need to be thrown? 

Programming Projects 

17.20. Implement a circularly and doubly linked list. 

17.21. If the order that items in a list are stored is not important, you can 
frequently speed searching with the heuristic known as move to 
front: Whenever an item is accessed, move it to the front of the list. 
This action usually results in an improvement because frequently 
accessed items tend to migrate toward the front of the list, whereas 



less frequently accessed items tend to migrate toward the end of the 
list. Consequently, the most frequently accessed items tend to 
require the least searching. Implement the move-to-front heuristic 
for linked lists. 

17.22. Modify the vector class presented in Figure 7.10 with bounds- 
checked iterators. In other words, cons t-i tera tor and it erator 
should be typedef s representing classes instead of pointers. 

17.23. Add reverse iterators to the STL list class implementation. Define 
reverse-iterator and const-reverse-iterator. Add the 
methods rbegin and rend to return appropriate reverse iterators 
representing the position prior to the endmarker and the position that 
is the header node. Reverse iterators internally reverse the meaning 
of the ++ and -- operators. You should be able to print a list L in 
reverse by using the code 

list<Object>::reverse-iterator itr = L.rbegin( ) ;  

while( itr ! =  L.rend( ) ) 

cout << *itr++ << endl: 

17.24. Write routines makeunion and intersect that return the union 
and intersection of two sorted linked lists. 

17.25. Write a line-based text editor. The command syntax is similar to the 
Unix line editor ed. The internal copy of the file is maintained as a 
linked list of lines. To be able to go up and down in the file, you have 
to maintain a doubly linked list. Most commands are represented by 
a one-character string. Some are two characters and require an argu- 
ment (or two). Support the commands lines shown in Figure 1 7.35. 



Command 

d r  nurn nurn 

f name 

g nurn 

h 

L 

m nurn 

m r  nurn nurn nurn 

n 

P 

p r  nurn nurn 

q !  

r name 

s t e x t  t e x t  

t nurn 

t r  nurn nurn nun 

W 

x ! 

$ 

- 

- - 

/ t e x t  

? t e x t  

# 

Function 

Go to the top. 

Add text after current line until . on its own line appears 

Delete current line. 

Delete several lines. 

Change name of the current file (for next write). 

Go to a numbered line. 

Get help. 

Like append, but add lines before current line. 

Move current line after some other line. 

Move several lines as a unit after some other line. 

Toggle whether line numbers are displayed. 

Print current line. 

Print several lines 

Abort without write. 

Read and paste another file into the current file. 

Substitute text with other text. 

Copy current line to after some other line. 

Copy several lines to after some other line. 

Write file to disk. 

Exit with write. 

Go to the last line. 

Go up one line. 

Go down one line. 

Print current line number. 

Search forward for a pattern. 

Search backward for a pattern. 

Print number of lines and characters in file 

Figure 17.35 Commands for editor in Exercise 17.25. 





Chapter 18 

Trees 

The tree is a fundamental structure in computer science. Almost all operat- 
ing systems store files in trees or treelike structures. Trees are also used in 
compiler design, text processing, and searching algorithms. We discuss the 
latter application in Chapter 19. 

In this chapter, we show: 

a definition of a general tree and discuss how it is used in a file 
system, 
an examination of the binary tree, 
implementation of tree operations. using recursion, and 
nonrecursive traversal of a tree. 

1 8.1 General Trees 

Trees can be defined in two ways: nonrecursively and recursively. The nonre- 
cursive definition is the more direct technique, so we begin with it. The recur- 
sive formulation allows us to write simple algorithms to manipulate trees. 

18.1.1 Definitions 

Nonrecursively, a tree consists of a set of nodes and a set of directed edges A treecan be defined 

that connect pairs of nodes. Throughout this text we consider only rooted nOnrecursive'y as a 
set of nodes and a set 

trees. A rooted tree has the following properties. of directed edges that 

One node is distinguished as the root. connect them. 

Every node c, except the root, is connected by an edge from exactly Parents and children 

one other node p. Node p is c's parent, and c is one of p's children. are defined. 
A directed edge 

A unique path traverses from the root to each node. The number of connects the parent 

edges that must be followed is the path length. to the child. 



A leaf has no 
children. 

The depth of a node is 
the length of the path 
from the root to the 
node. The height of a 
node is the length of 
the path from the 
node to the deepest 
leaf. 

The size of a node is 

Node 

4 

B 

C 

D 

E 

F 

G 

H 

I 

J 

K 

Figure 18.1 A tree, with height and depth information. 

Height 

3 

1 

0 

Depth 

0 

I 

Parents and children are naturally defined. A directed edge connects the par- 
ent to the child. 

Figure 18.1 illustrates a tree. The root node is A; A's children are B, C, 
D, and E. Because A is the root, it has no parent; all other nodes have par- 
ents. For instance, B's parent is A. A node that has no children is called a 
leaf. The leaves in this tree are C, F; G, H, I, and K. The length of the path 
from A to K is 3 (edges); the length of the path from A to A is 0 (edges). 

A tree with N nodes must have N - I edges because every node except 
the parent has an incoming edge. The depth of a node in a tree is the length 
of the path from the root to the node. Thus the depth of the root is always 0, 
and the depth of any node is 1 more than the depth of its parent. The height 
of a node in a tree is the length of the path from the node to the deepest leaf. 
Thus the height of E is 2. The height of any node is 1 more than the height of 
its maximum-height child. Thus the height of a tree is the height of the root. 

Nodes with the same parent are called siblings; thus B, C, D, and E are 
the number of all siblings. If there is a path from node u to node v, then u is an ancestor of 
descendants the 
node has (including v and v is a descendant of u. If u # v, then u is a proper ancestor of v and v 
the node itself). is a proper descendant of u. The size of a node is the number of descen- 

dants the node has (including the node itself). Thus the size of B is 3, and the 
size of C is 1. The size of a tree is the size of the root. Thus the size of the 
tree shown in Figure 18.1 is the size of its root A, or I I .  

An alternative definition of the tree is recursive: Either a tree is empty or 
it consists of a root and zero or more nonempty subtrees T,, T2, . . . , Tk, each 
of whose roots are connected by an edge from the root, as illustrated in Fig- 
ure 18.2. In certain instances (most notably, the binary trees discussed later 
in the chapter), we may allow some of the subtrees to be empty. 



Figure 18.2 A tree viewed recursively. 

Figure 18.3 First childlnext sibling representation of the tree shown in 
Figure 18.1. 

18.1.2 Implementation 

One way to implement a tree would be to have in each node a pointer to each General trees can be 

child of the node in addition to its data. However, as the number of children implemented by 
using the first child/ 

per node can vary greatly and is not known in advance, making the children next sibling method, 
direct links in the data structure might not be feasible-there would be too which requires two 
much wasted space. The solution-called the first chi ldlnext  s ibl ing Pointers Per item. 

method-is simple: Keep the children of each node in a linked list of tree 
nodes, with each node keeping two pointers, one to its leftmost child (if it is 
not a leaf) and one to its right sibling (if it is not the rightmost sibling). This 
type of implementation is illustrated in Figure 18.3. Arrows that point down- 
ward are f irstchild pointers, and arrows that point left to right are 
nextsibling pointers. We did not draw NULL pointers because there are too 
many of them. In this tree, node B has both a pointer to a sibling (C) and a 
pointer to a leftmost child (0; some nodes have only one of these pointers and 
some have neither. Given this representation, implementing a tree class is 
straightforward. 



T r e e s  

mark * 

chl ch2 chl ch2 chl ch2 syl ~ Y I  

Figure 18.4 A Unix directory. 

1 8.1.3 An Application: File Systems 

File systems use Trees have many applications. One of their popular uses is the directory struc- 
weelike structures- ture in many operating systems, including Unix, VAXIVMS, and Windows1 

DOS. Figure 18.4 shows a typical directory in the Unix file system. The root 
of this directory is mark. (The asterisk next to the name indicates that mark 
is itself a directory.) Note that mark has three children: books, courses, 
and . login, two of which are themselves directories. Thus mark contains 
two directories and one regular file. The filename mark/books/dsaa/chl 
is obtained by following the leftmost child three times. Each / after the first 
name indicates an edge; the result is a pathname. If the path begins at the 
root of the entire file system, rather than at an arbitrary directory inside the 
file system, it is a full pathname: otherwise, it is a relative pathname (to the 
current directory). 

This hierarchical file system is popular because it allows users to orga- 
nize their data logically. Furthermore, two files in different directories can 
share the same name because they have different paths from the root and 
thus have different full pathnames. A directory in the Unix file system is just 
a file with a list of all its children,' so the directories can be traversed with an 
iteration scheme: that is, we can sequentially iterate over each child. Indeed, 
on some systems, if the normal command to print a file is applied to a direc- 
tory. the filenames in the directory appear in the output (along with other 
non-ASCII information). 

1. Each directory in the Unix file system also has one entry ( .  ) that points to itself and 
another entry ( .  . ) that points to the parent of the directory, which introduces a cycle. 
Thus, technically. the Unix file system is not a tree but is treelike. The same is true for 
WindowsIDOS. 



1 void FileSystem::listAll( int depth = 0 ) const 
2 { 
3 printName( depth ) ;  / /  Print the name of the object 
4 if( isDirectory( ) ) 

5 for each file c in this directory (for each child) 
6 c. listAll( depth + 1 ) ; 

Figure 18.5 A routine for listing a directory and its subdirectories in a hierarchical file 
system. 

mark 
books 

dsaa 
chl 
ch2 

chl 
ch2 

chl 
c h2 

courses 
cop3223 

. login 

Figure 18.6 The directory listing for the tree shown in Figure 18.4. 

Suppose that we want to list the names of all the files in a directory Thedirectory 

(including its subdirectories) and in our output format files of depth d have Structure is most 
easily traversed by 

their names indented by d tab characters. A short algorithm to do this task is recursion. 
ziven in Figure 18.5. Output for the directory presented in Figure 18.4 is 
shown in Figure 18.6. 

We assume the existence of the class Filesystem and two member 
functions, printName and isDirectory. The function printName out- 
puts the current FileSys tem object indented by depth tab stops; the func- 
tion isDirectory tests whether the current Filesystem object is a 
directory, returning true if it is. Then we can write the recursive routine 
1 is t ~ l  1. We need to pass it the parameter depth, indicating the current 
level in the directory relative to the root. The 1 is t ~ l  1 routine is started 
with depth 0 to signify no indenting for the root. This depth is an internal 
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T r e e s  

In a preorder tree 
traversal, work at a 
node is performed 
before its children are 
processed. The 
traversal takes 
constant time per 
node. 

In a postorder tree 
traversal, work at a 
node is performed 
after its children are 
evaluated. The 
traversal takes 
constant time per 
node. 

bookkeeping variable and is hardly a parameter about which a calling rou- 
tine should be expected to know. Thus the default value of 0 is provided for 
depth. 

The logic of the algorithm is simple to follow. The current object is 
printed out, with appropriate indentation. If the entry is a directory, we pro- 
cess all the children recursively, one by one. These children are one level 
deeper in the tree and thus must be indented an extra tab stop. We make the 
recursive call with depth+l. It is hard to imagine a shorter piece of code 
that performs what appears to be a very difficult task. 

In this algorithmic technique, known as a preorder tree traversal, work 
at a node is performed before (pre) its children are processed. In addition to 
being a compact algorithm, the preorder traversal is efficient because it takes 
constant time per node. We discuss why later in this chapter. 

Another common method of traversing a tree is the postorder tree tra- 
versal, in which the work at a node is performed after (post) its children are 
evaluated. It also takes constant time per node. As an example, Figure 18.7 
represents the same directory structure as that shown in Figure 18.4. The 
numbers in parentheses represent the number of disk blocks taken up by 
each file. The directories themselves are files, so they also use disk blocks 
(to store the names and information about their children). 

Suppose that we want to compute the total number of blocks used by all 
files in our example tree. The most natural way to do so is to find the total 
number of blocks contained in all the children (which may be directories that 
must be evaluated recursively): books (41), courses (81, and . login (2). 
The total number of blocks is then the total in all the children plus the blocks 
used at the root ( 1 ) ,  or 52. The size routine shown in Figure 18.8 imple- 
ments this strategy. If the current Filesystem object is not a directory, 
size merely returns the number of blocks it uses. Otherwise, the number of 

books* courses*,,, . loginl2, 

A A 
dsaa*,,, ecp*(,, ~pps*,,, cop3223*,,) cop3530*,,, 

A I 
chl@~ ch2(7)ch1(4)ch2(6,ch1(3)ch2(8, ~yl(2) ~ ~ ~ ( 3 1  

Figure 18.7 The Unix directory with file sizes. 



- - -- -- 

Binary ~ r G ~ m  

1 int FileSystem::size( ) const 

2 I 
3 int totalsize = sizeOfThisFile( i ;  
4 
5 if ( isDirectory ( ) i 
6 for each file c in this directory (for each child) 
7 totalsize t =  c.sizei ) ;  

8 
9 return totalsize; 

10 1 

Figure 18.8 A routine for calculating the total size of all files in a directory. 
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Figure 18.9 A trace of the size function 

blocks in the current directory is added to the number of blocks (recursively) 
found in all the children. To illustrate the difference between postorder tra- 
versal and preorder traversal, in Figure 18.9 we show how the size of each 
directory (or file) is produced by the algorithm. We get a classic postorder sig- 
nature because the total size of an entry is not computable until the informa- 
tion for its children has been computed. As indicated previously, the running 
time is linear. We have much more to say about tree traversals in Section 18.4. 

18.2 Binary Trees 
A binary tree is a tree in which no node can have more than two children. A binary tree has no 

Because there are only two children, we can name them left and right. with than 
two children. 



An expression tree is 
one example of the 
use of binary trees. 
Such trees are central 
data structures in 
compiler design. 

An important use of 
binary trees is in 
other data structures, 
notably the binary 
search tree and the 

Figure 18.10 Uses of binary trees: (a) an expression tree and (b) a Huffman 
coding tree. 

Recursively, a binary tree is either empty or consists of a root, a left tree, and 
a right tree. The left and right trees may themselves be empty; thus a node 
with one child could have either a left or right child. We use the recursive 
definition several times in the design of binary tree algorithms. Binary trees 
have many important uses, two of which are illustrated in Figure 18.10. 

One use of the binary tree is in the expression tree, which is a central 
data structure in compiler design. The leaves of an expression tree are oper- 
ands, such as constants or variable names; the other nodes contain operators. 
This particular tree is binary because all the operations are binary. Although 
this case is the simplest, nodes can have more than two children (and in the 
case of unary operators, only one child). We can evaluate an expression tree 
T by applying the operator at the root to the values obtained by recursively 
evaluating the left and right subtrees. Doing so yields the expression 
(a+ ( (b-c ) *d)  ) . (See Section 12.2 for a discussion of the construction of 
expression trees and their evaluation.) 

A second use of the binary tree is the H~lffman coding tree, which is 
used to implement a simple but relatively effective data compression algo- 
rithm. Each symbol in the alphabet is stored at a leaf. Its code is obtained by 
following the path to it from the root. A left link corresponds to a 0 and a 
right link to a 1 .  Thus b is coded as 100. (See Section 13.1 for a discussion 
of the construction of the optimal tree, that is, the best code.) 

Other uses of the binary tree are in binary search trees (discussed in 
Chapter 19), which allow logarithmic time insertions and accessing of items, 
and priority queues, which support the access and deletion of the minimum 
in a collection of items. Several efficient implementations of priority queues 

priority queue. use trees (discussed in Chapters 21-23). 



1 / /  BinaryNode class; stores a node in a tree. 

2 / /  
3 / /  CONSTRUCTION: with (a) no parameters, or (b) an Object, 
4 / /  or (c) an Object, left pointer, and right pointer. 
5 / /  
6 / /  ****************~**~uBLIc OPERATIONS********************** 

7 / /  int size( ) - - >  Return size of subtree at node 
8 / /  int height ( ) - - >  Return height of subtree at node 
9 / /  void printPostorder( ) - - >  Print a postorder tree traversal 

10 / /  void printInOrder( ) - - >  Print an inorder tree traversal 
11 / /  void printPreOrder( ) - - >  Print a preorder tree traversal 
12 / /  BinaryNode * duplicate( ) - - >  Return a duplicate tree 
13 / /  **X****************ERRORSS*******x************************ 

14 / /  None. 
15 
16 template <class Object> 
17 class BinaryNode 
18 i 
19 public: 
20 BinaryNodei const Object & theElement = Object( ) ,  

21 BinaryNode *It = NULL, BinaryNode *rt = NULL ) ;  

22 
23 static int size( BinaryNode *t ) ;  / ! See Figure 18.20 
24 static int height( BinaryNode *t ) ;  / /  See Figure 18.22 
25 
26 void printPostorder( ) const; / /  See Figure 18.23 
27 void printInOrderi ) const; / /  See Figure 18.23 
28 void printPreOrder( ) const; / /  See Figure 18.23 
29 
30 BinaryNode *duplicate( ) const; / /  See Figure 18.17 
31 
32 public: / /  To keep things simple 
33 Object element; 
34 BinaryNode *left; 
35 BinaryNode "right; 

36 } ;  

Figure 18.11 The BinaryNode class interface. 

Figure 18.1 1 gives the skeleton for the BinaryNode class. Lines 33- 
35 indicate that each node consists of a data item plus two pointers. The 
constructor, shown at line 20, initializes all the data members of the 
BinaryNode class. For convenience, everything in BinaryNode is public, 
which simplifies the coding and allows us to concentrate on algorithmic 
details. 



Many of the 
BinaryNode 
routines are 
recursive. The 
BinaryTree 
methods use the 
BinaryNode 
routines on the root. 

The BinaryNode 
class is implemented 
separately from the 
BinaryTree class. 
The only data 
member in the 
BinaryTree class 
is a pointer to the root 
node. 

The duplicate method, declared at line 30, is used to replicate a copy 
of the tree rooted at the current node. The routines size and height, 
declared at lines 23 and 24, compute the named properties for the node 
pointed at by parameter t. We implement these routines in Section 18.3. 
(Recall that static member functions do not require a controlling object.) We 
also provide, at lines 26-28, routines that print out the contents of a tree 
rooted at the current node, using various recursive traversal strategies. We 
discuss tree traversals in Section 18.4. Why do we pass a parameter for size 
and height and make them static but use the current object for the tra- 
versals and duplicate? There is no particular reason; it is a matter of style, 
and we show both styles here. The implementations show that the difference 
between them occurs when the required test for an empty tree (given by a 
NULL pointer) is performed.2 

In this section we describe implementation of the BinaryTree class. 
The BinaryNode class is implemented separately, instead of as a nested 
class, to simplify some of the recursive routines used. The BinaryTree 
class interface is shown in Figure 18.12. For the most part, the routines are 
short because they call BinaryNode methods. Line 46 declares the only 
data member-a pointer to the root node. The internal private method 
makeEmpty is used to make the tree empty while reclaiming the dynami- 
cally allocated nodes. It is called from a public makeEmpty, which in turn is 
called by the destructor. 

Two basic constructors are provided. The one at line 18 creates an empty 
tree, and the one at line 19 creates a one-node tree. Routines to traverse the 
tree are declared at lines 28-33. They apply a BinaryNode method to the 
root, after verifying that the tree is not empty. An alternative traversal strat- 
egy that can be implemented is level-order traversal. We discuss these tra- 
versal routines in Section 18.4 (at which point line 48 is used). Routines to 
make an empty tree and test for emptiness are given, with their inline imple- 
mentations, at lines 34 and 36, respectively, as are routines to compute the 
tree's size and height. Note that, as size and height are static methods in 
BinaryNode, we can call them by simply using the BinaryNode scope; we 
do not need a controlling BinaryNode object. (The typedef uses Node as 
a shorthand for BinaryNodeCObj ec t>.) 

- -  -- - 

2. Some compilers do not handle static member functions in class templates. You may need 
to slightly modify this code if your compiler is old. To do so, remove static from lines 
23 and 24 in Figure 18.11 and make the methods constant member functions. Then change 
Node : : to r oo t ->  at lines 39 and 41 in Figure 18.12. Prior to the calls at lines 39 and 
41, you will need to handle the special case of an empty tree. 



~inaryTree class; stores a binary tree. 

CONSTRUCTION: with (a) no parameters or (b) an object to 
be placed in the root of a one-element tree. 

x * * x * * x * x * * x * * * * * x * p U B L I C  OPERATIONS*******"****** 

Varlous tree traversals, size, height, isEmpty, makeEmpty. 
Also, the following tricky method: 
vold merge( Object root, BinaryTree tl, BinaryTree t2 1 

- ->  Construct a new tree 
* * * * * * n * * * X * X X x * * * * E R R O R S * * * S * x * * * * * % * x * * * * * X * ~ * * * * X * * x * * x  

12 /! Error message printed for illegal merges. 
13 
14 template <class Object> 
15 class BinaryTree 
16 i 
17 public: 
18 BinaryTree ( ) : root ( NULL ) { } 

19 BinaryTree( const Object & rootItem ) 

20 : rooti new Node( rootItem j j { l 
2 1 
22 BinaryTree( const BinaryTree & rhs ) 

23 : root( NULL ) { "this = rhs; I 
24 -BinaryTree ( ) 

25 { makeEmpty( j ; 1 
26 const BinaryTree & operator= ( const BinaryTree & rhs ) ;  

27 
28 void printPreOrder( ) const 
29 { if ( root ! = NULL ) root->printPreOrder ( 1 ; } 

30 void printInOrder( ) const 
3 1 ( if( root ! =  NULL j root->printInOrder( ) ;  1 
32 void prlntPostOrder( j const 
33 { if( root ! =  NULL j root->prlntPostOrder( ) ;  1 
34 void makeEmpty ( ) 

35 { makeEmpty( root j ; ! 
36 boo1 isEmpty ( j const 
37 { return root == NULL; I 
38 int size( ) const 
39 { return Node::size( root ) :  I 
40 int height( ) const 
41 { return Node::height( root ) ;  I 
42 void merge( const Object & rootItem, BinaryTree & tl, 
43 BinaryTree & t2 ) ;  

44 private: 
45 typedef BlnaryNode<Object> Node; 
46 Node "root; 
47 
48 friend class TreeIterator<Object>; :! Used in Section 18.4 
49 void makeEmpty ( Node * & t ) ; 

50 1 ;  

Figure 18.12 The BinaryTree class interface. 



template <class Object> 
const BinaryTree<Object> & 

BinaryTree<Object>::operator=( const BinaryTree<Object> & rhs ) 

i 
if ( this ! = &rhs ) 

I 
makeEmpty( ) ; 

if( rhs.root ! =  NULL ) 

root = rhs.root->duplicate( ) ;  

1 

return "this; 
} 

Figure 18.13 The copy assignment operator for the BinaryTree class. 

Before we can apply The copy assignment operator is declared at line 26 and is implemented 
the BinaryN0de in Figure 18.13. After testing for aliasing at line 5, we call makeEmpty at 
member to the node 
pointed at by the line 7 to reclaim the memory. At line 9 we call the duplicate member 
root, we must verify function to get a copy of the rhs's tree. Then we assign the result as the root 
that the root is not- of the tree. Note the test at line 8.  Before we can apply the BinaryNode 
NULL. method to the node pointed at by the rhs .root, we must verify that 

rhs . root is not NULL. As usual, operator= returns a constant reference 
to the current object, at line 12. The copy constructor, shown in the class 
interface at line 22, simply initializes the root to NULL and then calls 
opera tor=. 

The merge routine is The last method in the class is the merge routine, which uses two 
a one-liner in trees-tl and t2-and an element to create a new tree. with the element at 
principle. However, 
we must also handle the root and the two existing trees as left and right subtrees. In principle, it is 
aliasing, avoid a one-liner: 
memory leaks, ensure 
that a node is not in root = new BinaryNode<Object> ( rootItem, tl .root, t2. root ) ; 
two trees, and check 
for errors. If things were always this simple, programmers would be unemployed. Fortu- 

nately for our careers, there are a host of complications. Figure 18.14 shows 
the result of the simple one-line merge. Two problems become apparent. 

The nodes that root used to point at are now unreferenced, and thus 
we have a memory leak. 
Nodes in t l and t 2's trees are now in two trees (their original trees and 
the merged result). This sharing is a problem because, when the destruc- 
tor for t l is called, it dele t es nodes in the merged tree too, possibly 
resulting in erroneous behavior; furthermore, when the merged tree's 



Figure 18.14 Result of a naive merge operation: Subtrees are shared. 

destructor is called, it will attempt to delete nodes that are already 
deleted, almost certainly resulting in a disaster. 

The solution to these problems is simple in principle. We can avoid the 
memory leak by calling makeEmpty on the original tree. All we need to do 
is save a pointer to the root before calling new. We can ensure that nodes do 
not appear in two trees by setting tl .root and t2 . root to NULL after the 
merge. 

Complications ensue when we consider some possible calls that contain 
aliasing: 

tl.merge( x, tl, t2 1 ;  
t2.merge( x, tl, t2 ) ;  

tl.merge ( x, t3, t3 ) ; 

Memory leaks are 
avoided by calling 
makeEmgty on the 
original tree. We set 
the original trees' 
root to NULL SO that 
each node is in one 
tree. 

If the two input trees 
are aliases, we should 
disallow the 
operation unless the 
trees are empty. 

The first two cases are similar. so we consider onlv the first one. A diagram If an input tree is - 
of the situation is shown in Figure 18.15. If we call makeEmpty for the orig- aliaSed the Output 

tree, we must avoid 
inal tree, we destroy part of the merged tree. Thus, when we detect an alias- having the resultant 
ing condition, we do not call makeEmpty. A second problem is harder to root point to NULL. 

spot unless we draw the diagram carefully. Because tl is an alias for the 
current object, tl . root and root are aliases. Thus, after the call to new, if 
we execute tl . root=NULL, we change root to the NULL pointer, too. Con- 
sequently, we need to be very careful with the aliases for these cases. 

The third case must be disallowed because it would place all the nodes 
that are in tree t3 in two places in tl. However, if t3 represents an empty 
tree, the third case should be allowed. All in all, we got a lot more than we 
bargained for. The resulting code is shown in Figure 18.16. What used to be 
a one-line routine has gotten quite large. 



root 
tl. root- 

old 
old tl . root'\ 

r o o  A t2. root 

Figure 18.15 Aliasing problems in the merge operation; tl is also the current 
object 

1 / /  Merge routine for BinaryTree class. 
2 / /  Forms a new tree from rootItem, tl and t2. 
3 / /  Does not allow tl and t2 to be the same. 
4 / /  Correctly handles other aliasing conditions. 
5 template <class Object> 
6 void BinaryTree<Object>::merge( const Object & rootItem, 
7 BinaryTree<Object> & tl, BinaryTree<Object> & t2 ) 

8 I 
9 if( tl.root == t2.root && tl.root ! =  NULL ) 

10 I 
11 cerr <c "Cannot merge a tree with itself" << endl; 
12 re turn; 
13 1 
14 
15 Node *oldRoot = root; / /  Save old root 
16 
17 / /  Allocate new node 
18 root = new Node( rootItem, tl.root, t2.root ) ;  

19 
20 / /  Deallocate nodes in the original tree 
21 if( this ! =  &tl && this ! =  &t2 ) 

22 makeEmpty( oldRoot ) ;  

23 
24 / /  Ensure that every node is in one tree 
25 if( this ! =  &tl 
26 tl.root = NULL; 
27 if ( this ! =  &t2 ) 

28 t2. root = NULL; 
29 } 

Figure 18.16 The merge routine for the BinaryTree class. 



Recursion and Trees * ' 

18.3 Recursion and Trees 
Because trees can be defined recursively, many tree routines, not surpris- 
ingly, are most easily implemented by using recursion. Recursive implemen- 
tations for  almost all  the remaining BinaryNode and BinaryTree 
methods are provided here. The resulting routines are amazingly compact. 

We begin with the duplicate method of the BinaryNode class.  
Because it is a BinaryNode method, we are assured that the tree we are 
duplicating is not empty. The recursive algorithm is then simple. First, we 
create a new node with the same data field as the current root. Then we 
attach a left tree by calling duplicate recursively and attach a right tree by 
calling duplicate recursively. In both cases, we make the recursive call 
after verifying that there is a tree to copy. This description is coded verbatim 
in Figure 18.17. 

Next we  code  makeEmpty. There  is a slight difference between 
makeEmpty and duplicate because makeEmpty is a member of the 
BinaryTree class and receives a pointer to the root of the tree. However, 
this pointer might be NULL. Consequently, we must test for NULL first. 
Doing so, however, makes testing against NULL prior to making the recur- 
sive call unnecessary (although, arguably, it would be more efficient to do 
so, as shown in Exercise 18.10). To delete all the nodes in a tree, we 
delete (recursively) all the nodes in the left subtree, then the nodes in 
the right subtree (again, recursively), and finally the root, as shown in Fig- 
ure 18.18. Note that the delete of t must be done last but that the order of 
the two recursive calls is not important. Note also that t is passed by refer- 
ence, so after the call returns, the actual parameter now points at NULL. 

Recursive routines 
are used for size, 
makeEmpty, and 
duplicate. 

Because duplicate 
is a BinaryNode 
method, we make 
recursive calls only 
after verifying that the 
subtrees are not 
NULL. 

As makeEmgty is not 
a BinaryNode 
member, the 
parameter t might be 
NULL. We thus test 
for it at the start of the 
routine and do not 
test prior to a 
recursive call. 

1 / /  Return a pointer to a node that is the root of a 
2 / /  duplicate of the tree rooted at the current node. 
3 template <class Object> 
4 BinaryNode<Object> * BinaryNode<Object>::duplicate( ) const 
5 I 
6 BinaryNode<Object> *root = 
7 new BinaryNode<Object>( element ) ;  

8 
9 if( left ! =  NULL ) / /  If there's a left subtree 

10 root->left = left->duplicate( ) ;  / /  Duplicate; attach 
11 if ( right ! =  NULL ) / /  If there's a right subtree 
12 root->right = right->duplicate( ) ;  / /  Duplicate; attach 
13 return root; / /  Return resulting tree 
14 i 

Figure 18.17 A routine for returning a copy of the tree rooted at the current node. 



1 / /  Make tree rooted at t empty, freeing nodes, 
2 / /  and setting t to NULL. 
3 template <class Object> 
4 void BinaryTree<Object>::makeEmpty( BinaryNode<Object> * & t ) 

5 I 
6 if ( t ! =  NULL ) 

7 I 
8 makeEmpty ( t->lef t ) ; 

9 makeEmpty( t->right ) ;  

10 delete t; 
11 t = NULL; 
12 1 
13 1 

Figure 18.18 A routine to delete all nodes in a tree rooted at t. 

The size routine is 
easily implemented 
recursively after a 
drawing is made. 

The height routine 
is also easily 
implemented 
recursively. The 
height of an empty 

Figure 18.19 Recursive view used to calculate the size of a tree: ST = S, + S, + 1. 

The next method we write is the size routine in the BinaryNode class. It 
returns the size of the tree rooted at a node pointed at by t, which is passed as a 
parameter. If we draw the tree recursively, as shown in Figure 18.19, we see that 
the size of a tree is the size of the left subtree plus the size of the right subtree 
plus 1 (because the root counts as a node). A recursive routine requires a base 
case that can be solved without recursion. The smallest tree that size might 
have to handle is the empty tree (if t is NULL), and the size of an empty tree is 
clearly 0. We should verify that the recursion produces the correct answer for a 
tree of size 1. Doing so is easy, and the recursive routine is implemented as 
shown in Figure 18.20. 

The final recursive routine presented in this section calculates the height 
of a node. Implementing this routine is difficult to do nonrecursively but is 
trivial recursively, once we have made a drawing. Figure 18.21 shows a tree 
viewed recursively. Suppose that the left subtree has height H,  and the right 

tree is -1. subtree has height HR. Any node that is d levels deep with respect to the root 
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1 / /  Return size of tree rooted at t. 
2 template <class Object> 
3 int BinaryNode<Object>::size( BinaryNode<Object> * t ) 

4 { 

5 if( t == NULL ) 

6 return 0; 
7 else 
8 return 1 + size( t->left ) + size( t->right 1 ;  
9 } 

Figure 18.20 A routine for computing the size of a node. 

Figure 18.21 Recursive view of the node height calculation: 
H,= Max (H,+ 1, HR + 1). 

1 / /  Return height of tree rooted at t. 
2 template <class Object> 
3 int BinaryNode<Object>::height( BinaryNode<Object> * t ) 

4 I 
5 if( t == NULL ) 

6 return -1 ; 
7 else 
8 return 1 + max( height( t->left ),height( t->right ) ) ;  

9 } 

Figure 18.22 A routine for computing the height of a node. 

of the left subtree is d + 1 levels deep with respect to the root of the entire 
tree. The same holds for the right subtree. Thus the path length of the deep- 
est node in the original tree is I more than its path length with respect to the 
root of its subtree. If we compute this value for both subtrees, the maximum 
of these two values plus 1 is the answer we want. The code for doing so is 
shown in Figure 1 8.22. 



In an inorder 
traversal, the current 
node is processed 
between recursive 
calls. 

Simple traversal 
using any of these 
strategies takes linear 
time. 

We can traverse 
nonrecursively by 
maintaining the stack 
ourselves. 

18.4 Tree Traversal: lterator Classes 

In this chapter we have shown how recursion can be used to implement the 
binary tree methods. When recursion is applied, we compute information 
about not only a node but also about all its descendants. We say then that we 
are traversing the tree. Two popular traversals that we have already men- 
tioned are the preorder and postorder traversals. 

In a preorder traversal, the node is processed and then its children are 
processed recursively. The duplicate routine is an example of a preorder 
traversal because the root is created first. Then a left subtree is copied recur- 
sively, followed by copying the right subtree. 

In a postorder traversal, the node is processed after both children are 
processed recursively. Three examples are the methods size, height, and 
makeEmpty. In every case, information about a node (e.g., its size or height) 
can be obtained only after the corresponding information is known for its 
children. In makeEmpty, a node is deleted only after its children are recur- 
sively deleted. 

A third common recursive traversal is the inorder traversal, in which 
the left child is recursively processed, the current node is processed, and the 
right child is recursively processed. This mechanism is used to generate an 
algebraic expression corresponding to an expression tree. For example, in 
Figure 1 8.10 the inorder traversal yields ( a+ ( (b- c ) * d) ) . 

Figure 18.23 illustrates routines that print the nodes in a binary tree 
using each of the three recursive tree traversal algorithms. Figure 18.24 
shows the order in which nodes are visited for each of the three strategies. 
The running time of each algorithm is linear. In every case, each node is out- 
put only once. Consequently, the total cost of an output statement over any 
traversal is O(N). As a result, each if statement is also executed at most 
once per node, for a total cost of O(N). The total number of method calls 
made (which involves the constant work of the internal run-time stack 
pushes and pops) is likewise once per node, or O(N). Thus the total running 
time is O(N). 

Must we use recursion to implement the traversals? The answer is clearly 
no because, as discussed in Section 8.3, recursion is implemented by using a 
stack. Thus we could keep our own stack."e might expect that a somewhat 
faster program could result because we can place only the essentials on the 
stack rather than have the compiler place an entire activation record on the 
stack. The difference in speed between a recursive and nonrecursive algorithm 

3. We can also add parent pointers to each tree node to avoid both recursion and stacks. In 
this chapter we demonstrate the relation between recursion and stacks, so we do not use 
parent pointers. 



-- 

Tree Traversal: lterator Classes 

1 / /  Print tree rooted at current node using preorder traversal. 
2 template <class Object> 
3 void BinaryNode<Object>::printPreOrder( ) const 
4 { 

5 cout << element << endl; / / Node 
6 if( left ! =  NULL ) 

7 left->printPreOrder( ) ; / /  Left 
8 if( right ! =  NULL ) 

9 right->printPreOrder( ) ;  / / Right 
10 1 
11 
12 / /  Print tree rooted at current node using postorder traversal 
13 template <class Object> 
14 void BinaryNode<Object>::printPostOrder( ) const 
15 { 
16 if ( left ! =  NULL ) / /  Left 
17 left->printPostorder( ) ;  

18 if( right ! =  NULL ) / / Right 
19 right->printPostorder( ) ;  

20 cout << element << endl; / / Node 
21 1 
22 
23 / /  Print tree rooted at current node using inorder traversal. 
24 template <class Object> 
25 void BinaryNode<Object>::printInOrder( ) const 
26 i 
27 if( left ! =  NULL ) / /  Left 
28 left->printInOrder( ) ;  

29 cout << element << endl; / /  Node 
30 if ( right ! =  NULL ) 

/ / Right 

Figure 18.23 Routines for printing nodes in preorder, postorder, and inorder. 

(a) (b) (c) 

Figure 18.24 (a) Preorder, (b) postorder, and (c) inorder visitation routes. 



is very dependent on the platform, and on modern computers may well be 
negligible. Thus in many cases, the speed improvement does not justify the 
effort involved i n  removing recursion. Even so, knowing how to do so is 
worthwhile, in case your is one that would benefit from recursion 
removal and also because seeing how a program is implemented nonrecur- 
sively can sometimes make the recursion clearer. 

An iterator class We write three iterator classes. each in the spirit of the linked list. Each 
allows step-by-step allows us to go to the first node, advance to the next node. test whether we 
traversal. 

have gone past the last node, and access the current node. The order in which 
nodes are accessed is determined by the type of traversal. We also imple- 
ment a level-order traversal, which is inherently nonrecursive and in fact 
uses a queue instead of a stack and is similar to the preorder traversal. 

The abstract tree Figure 18.25 provides an abstract class for tree iteration. Each iterator - 
iterator class has stores a pointer to the tree root and an indication of the current node.J These 
methods similar to 
those of the linked- are declared at lines 28 and 29, respectively, and initialized in the construc- 
list iterator. Each type tor. They are protected to allow the derived classes to access them. Note 
of traversal is also that the root of theTree is accessible only because TreeIterator is 
represented by a 
derived class. 

a friend of BinaryTree (see Figure 18.12, line 48). Four methods are 
declared at lines 22-25. The isval id and retrieve methods are invariant 
over the hierarchy, so an implementation is provided and they are not 
declared virtual. The abstract methods first and advance must be pro- 
vided by each type of iterator. As usual, the destructor is virtual, even though 
we use shallow pointer semantics, and thus it appears that there is nothing to 
do. In the derived classes, additional data members are added, and they do 
need nontrivial destructors. This iterator is similar to the linked list iterator 
(L~is t I tr, in Section 17.2), except that here the first method is part of 
the tree iterator, whereas in the linked list the first method was part of the 
list class itself. 

18.4.1 Postorder Traversal 

Postordertraversal The postorder traversal is implemented by using a stack to store the current 
rnaintainsastackthat state: The top of the stack will represent the node that we are visiting at some 
stores nodes that 
have been visited but instant in the postorder traversal. However, we may be at one of three places in 
whose recursive calls the algorithm: 
are not yet complete. 

1. about to make a recursive call to the left subtree, 
2. about to make a recursive call to the right subtree, or 
3. about to process the current node. 

4. In these implementations. once the iterators have been constructed, structurally modifying 
the tree during an iteration is unsafe because pointers may become stale. 



-- 

Tree Traversal: lterator Classes 

1 / /  TreeIterator class interface; maintains "current position". 
2 / /  
3 / /  CONSTRUCTION: with a tree to which the iterator is bound. 
4 / /  
5 / /  ******************puBLIC OPERATIONS********************** 

6 / /  First two are not virtual, last two are pure virtual 
7 / /  boo1 isValid( ) - ->  True if at valid position in tree 
8 / /  Object retrieve( ) - ->  Return item in current position 
9 / /  void firsti ) - ->  Set current position to first 

10 / / void advance ( ) - ->  Advance 
11 / /  **XX**************ERRORS****fi************************** 

12 / /  BadIterator is thrown for illegal access or advance. 
13 
14 template <class Object> 
15 class TreeIterator 
16 i 
17 public: 
18 TreeIterator( const BinaryTreeiObject> & theTree ) 

19 : root( theTree.root ) ,  current( NULL ) { 1 
20 virtual -TreeIterator( ) { 1 
21 
22 virtual void first ( ) = 0; 
23 boo1 isValid( ) const { return current ! =  NULL; } 

24 const Object & retrieve( ) const; 
25 virtual void advance( ) = 0; 
26 
27 protected: 
28 const BinaryNode<Object> *root; 
29 const BinaryNode<Object> *current; 
30 1 ;  
31 
32 / /  Return the item stored in the current position. 
33 / /  Throw BadIterator exception if current position is invalid. 
34 template <class Object> 
35 const Object & TreeIterator<Object>: :retrieve( ) const 
36 ( 

37 if( !isValid( ) ) 

38 throw BadIterator( "Illegal retrieve" ) ;  

39 return current->element; 
40 } 

Figure 18.25 The tree iterator abstract base class. 



-- - . -- -- .- mp Trees 

Each node is placed 
on the stack three 
times. The third time 
off, the node is 
declared visited. The 
other times, we 
simulate a recursive 
call. 

When the stack is 
empty, every node 
has been visited. 

Consequently, each node is placed on the stack three times during the 
course of the traversal. If a node is popped from the stack a third time, we 
can mark it as the current node to be visited. 

Otherwise, the node is being popped for either the first time or the second 
time. In this case, it is not yet ready to be visited, so we push it back onto the 
stack and simulate a recursive call. If the node was popped for a first time, we 
need to push the left child (if it exists) onto the stack. Otherwise, the node 
was popped for a second time, and we push the right child (if it exists) onto 
the stack. In any event, we then pop the stack, applying the same test. Note 
that, when we pop the stack, we are simulating the recursive call to the appro- 
priate child. If the child does not exist and thus was never pushed onto the 
stack, when we pop the stack we pop the original node again. 

Eventually, either the process pops a node for the third time or the stack 
empties. In the latter case, we have iterated over the entire tree. We initialize 
the algorithm by pushing a pointer to the root onto the stack. An example of 
how the stack is manipulated is shown in Figure 18.26. 

A quick summary: The stack contains nodes that we have traversed but 
not yet completed. When a node is pushed onto the stack, the counter is 1 : 2, 
or 3 as follows: 

1: If we are about to process the node's left subtree, 

2: if we are about to process the node's right subtree, or 

3: if we are about to process the node itself. 

Figure 18.26 Stack states during postorder traversal. 



- . - .- 

Tree Traversal: Iterator Classes 

Let us trace through the postorder traversal. We initialize the traversal by 
pushing root a onto the stack. The first pop visits a. This is a's first pop, so it 
is placed back on the stack, and we push its left child. b, onto the stack. Next 
b is popped. It is b's first pop, so it is placed back on the stack. Normally, b's 
left child would then be pushed, but b has no left child, so nothing is pushed. 
Thus the next pop reveals b for the second time, b is placed back on the 
stack, and its right child, d, is pushed onto the stack. The next pop produces 
d for the first time, and d is pushed back onto the stack. No other push is per- 
formed because d has no left child. Thus d is popped for the second time and 
is pushed back, but as it has no right child, nothing else is pushed. Therefore 
the next pop yields d for the third time, and d is marked as a visited node. 
The next node popped is b, and as this pop is b's third, it is marked visited. 

Then a is popped for the second time, and it is pushed back onto the 
stack along with its right child, c. Next, c is popped for the first time, so it is 
pushed back, along with its left child, e. Now e is popped, pushed, popped, 
pushed, and finally popped for the third time (typical for leaf nodes). Thus e 
is marked as a visited node. Next, c is popped for the second time and is 
pushed back onto the stack. However, it has no right child, so it is immedi- 
ately popped for the third time and marked as visited. Finally, a is popped 
for the third time and marked as visited. At this point, the stack is empty and 
the postorder traversal terminates. 

The POS torder class is implemented directly from the algorithm 
described previously and is shown in Figure 18.27. The StNode class repre- 
sents the objects placed on the stack. It contains a pointer to a node and an 
integer that stores the number of times the item has been popped from the 
stack. An StNode object is always initialized to reflect the fact that it has not 
yet been popped from the stack. (We use a Stack class from Chapter 16.) 

The Postorder class is derived from TreeIterator and adds an 
internal stack to the inherited data members. The Postorder class is initial- 
ized by initializing the TreeIterator data members and then pushing the 
root onto the stack. This process is illustrated in the constructor at lines 34 to 
39. Then first is implemented by clearing the stack, pushing the root, and 
calling advance. 

Figure 18.28 implements advance. It follows the outline almost verba- 
tim. Line 7 tests for an empty stack. If the stack is empty, we have completed 
the iteration and can set current to NULL and return. (If current is 
already NULL, we have advanced past the end, and an exception is thrown.) 
Otherwise, we repeatedly perform stack pushes and pops until an item 
emerges from the stack for a third time. When this happens, the test at line 
19 is successful and we can return. Otherwise, at line 25 we push the node 
back onto the stack (note that the timesPopped component has already 
been incremented at line 19). We then implement the recursive call. If the 

An StNode stores a 
pointer to a node and 
a count that tells how 
many times it has 
already been popped. 

The advance routine 
is complicated. Its 
code follows the 
earlier description 
almost verbatim. 



1 / /  PostOrder class interface; maintains "current position". 
2 / /  
3 / /  CONSTRUCTION: with a tree to which the iterator is bound. 
4 / /  
5 / /  ******************PUBLIC OPERATIONS********************** 

6 / /  boo1 isValid( ) - - >  True if at valid position in tree 
7 / /  Object retrieve( ) - - >  Return item in current position 
8 / /  void first ( ) - - >  Set current position to first 
9 / / void advance ( ) - - >  Advance 
10 / /  **********i*******ERRORS********************************* 

11 / /  BadIterator is thrown for illegal access or advance. 
12 
13 template <class Object> 
14 struct StNode 
15 { 
16 const BinaryNode<Object> *node; 
17 int timespopped; 
18 StNode( const BinaryNode<Object> *n = 0 ) 

19 : node ( n ) , timesPopped( 0 ) { 1 
20 1 ;  
21 
22 template <class Object> 
23 class PostOrder : public TreeIterator<Object> 
24 { 
25 public: 
26 Postorder( const BinaryTree<Object> & theTree ) ;  

27 -Postorder ( ) { 1 
28 void first( ) ;  

29 void advance ( ) ; 

30 protected: 
3 1 Stack< StNode<Object> > s; 
32 } ;  

33 
34 template <class Object> 
35 PostOrder<Object>::PostOrder( const BinaryTree<Object> & 

36 theTree ) : TreeIterator<Object>( theTree ) 

37 { 
38 s .push ( StNode<Object> ( root ) ) ; 

39 1 
40 
41 template <class Object> 
42 void PostOrder<Object>::first( ) 
43 { 
44 s.makeEmpty( ) ; 

45 if( root ! =  NULL ) 

46 { 

47 s.push( StNode<Object>i root ) ) ;  

48 advance ( ) ; 

49 1 
50 1 

Figure 18.27 The PostOrder class (complete class except for advance). 



Tree Traversal: lterator Classes 

1 / /  Advance to the next position. 
2 / /  Throw BadIterator exception if the iteration has been 
3 / /  exhausted prior to the call. 
4 template <class Object> 
5 void PostOrder<Object>: :advance( ) 

6 { 

7 if ( s. isEmpty ( ) ) 

8 I 
9 if( current == NULL ) 

10 throw BadIterator( "Advance past end" ) ;  

11 current = NULL; 
12 return; 
13 1 
14 StNode <Object> cnode; 
15 for( ; ; ) 

16 { 

17 cnode = s.topAndPop( ) ;  

18 
19 if( ++cnode.timesPopped == 3 ) 

20 I 
21 current = cnode.node; 
22 re turn ; 
23 1 
24 
25 s.push( cnode ) ;  

26 if( cnode.timesPopped == 1 ) 

27 { 

28 if( cnode.node->left ! =  NULL ) 

29 s.push( StNode<Object>( cnode.node->left ) ) ;  

30 1 
3 1 else / /  cnode.timesPopped == 2 
32 I 
33 if( cnode.node->right ! =  NULL ) 

34 s.push( StNode<Object>( cnode.node->right ) ) ;  

35 1 
36 1 
37 } 

Figure 18.28 The advance routine for the Postorder iterator class. 

node was popped for the first time and it has a left child, its left child is 
pushed onto the stack. Likewise, if the node was popped for a second time 
and it has a right child, its right child is pushed onto the stack. Note that, in 
either case, the construction of the StNode object implies that the pushed 
node goes on the stack with zero pops. 

Eventually, the for loop terminates because some node will be popped 
for the third time. Over the entire iteration sequence, there can be at most 3 N  
stack pushes and pops, which is another way of establishing the linearity of a 
postorder traversal. 



lnorder traversal is 
similar to postorder, 
except that a node is 
declared visited when 
it is popped for the 
second time. 

Preorder is the same 
as postorder, except 
that a node is 
declared visited the 
first time it is popped. 
The right and then left 
children are pushed 
prior to the return. 

Popping only once 
allows some 
simplification. 

In a level-order 
traversal, nodes are 
visited top to bottom, 
left to right. Level- 
order traversal is 
implemented via a 
queue. The traversal 
is a breadth-first 
search. 

18.4.2 Inorder Traversal 

The inorder traversal is the same as the postorder traversal, except that a 
node is declared visited after it is popped a second time. Prior to returning, 
the iterator pushes the right child (if it exists) onto the stack so that the next 
call to advance can continue by traversing the right child. Because this 
action is so similar to a postorder traversal, we derive the Inorder class 
from the Postorder class (even though an IS-A relationship does not 
exist). The only change is the minor alteration to advance. The new class is 
shown in Figure 18.29. 

18.4.3 Preorder Traversal 

The preorder traversal is the same as the inorder traversal, except that a node 
is declared visited after it has been popped the first time. Prior to returning, 
the iterator pushes the right child onto the stack and then pushes the left 
child. Note the order: We want the left child to be processed before the right 
child, so we must push the right child first and the left child second. 

We could derive the Preorder class from the Inorder or PostOrder 
class, but doing so would be wasteful because the stack no longer needs to 
maintain a count of the number of times an object has been popped. Conse- 
quently, the PreOrder class is derived directly from TreeIterator. The 
resulting class interface with the constructor and f i r s t  method is shown in 
Figure 18.30. 

At l ine 23,  we added a stack of pointers to tree nodes to the 
TreeIterator data fields. The constructor and first methods are similar 
to those already presented. As illustrated by Figure 18.3 1, advance is sim- 
pler: We no longer need a for loop. As soon as a node is popped at line 15, 
it becomes the current node. We then push the right child and the left child, 
if they exist. 

18.4.4 Level-Order Traversals 

We close by implementing a level-order traversal, which processes nodes 
starting at the root and going from top to bottom, left to right. The name is 
derived from the fact that we output level 0 nodes (the root), level 1 nodes 
(root's children), level 2 nodes (grandchildren of the root), and so on. A level- 
order traversal is implemented by using a queue instead of a stack. The queue 
stores nodes that are yet to be visited. When a node is visited, its children are 
placed at the end of the queue where they are visited after the nodes that are 
already in the queue have been visited. This procedure guarantees that nodes 
are visited in level order. The Levelorder class shown in Figures 18.32 and 



1 / /  InOrder class interface; maintains "current position". 
2 / /  
3 / /  CONSTRUCTION: with a tree to which the iterator is bound. 
4 / /  
5 / /  ******************PUBLIC OPERATIONS********************** 

6 / /  Same as TreeIterator 
7 / /  ******************ERRORS*********************************  

8 / /  BadIterator is thrown for illegal access or advance. 
9 

10 template <class Object> 
11 class InOrder : public PostOrder<Object> 
12 ( 
13 / /  Accept Postorder construction and default destruction. 
14 public: 
15 Inorder( const BinaryTree<Object> & theTree ) 

16 : PostOrder<Object> ( theTree ) { } 

17 void advance ( ) ; 

18 I ;  
19 
20 / /  Advance to the next position. Throw BadIterator exception 
21 / /  if the iteration has been exhausted prior to the call. 
22 template <class Object> 
23 void InOrder<Object>::advance( ) 
24 { 
25 if ( s. isEmpty ( ) ) 

26 { 
27 if( current == NULL ) 

28 throw BadIterator( "Advance past end" ) ;  

29 current = NULL; 
30 return; 
31 1 
32 StNode<Object> cnode; 
33 for( ; ; ) 

34 { 

35 cnode = s.topAndPop( ) ;  

36 
37 if( ++cnode.timesPopped == 2 ) 

38 { 

39 current = cnode.node; 
40 if( cnode.node->right ! =  NULL ) 

41 s.push( StNode<Object>( cnode.node->right ) ) ;  

42 return; 
43 I 
44 / /  First time through 
45 s .push ( cnode ) ; 

46 if( cnode.node->left ! =  NULL ) 

47 s.push( StNode<Object>( cnode.node->left ) ) ;  

48 1 
49 } 

Figure 18.29 The complete InOrder iterator class. 



T r e e s -  - --- - 

1 / /  PreOrder class interface; maintains "current position". 
2 / /  
3 / /  CONSTRUCTION: with a tree to which the iterator is bound. 
4 / /  
5 /; ***********x******puBLIC OpEmTIONS*f***f*******f******** 

6 / /  boo1 isvalid( 1 - ->  True if at valid position in tree 
7 / /  Object retrieve( ) - ->  Return item in current position 
8 / /  void first( ) - - >  Set current position to first 
9 / /  void advance( 1 - ->  Advance 

10 / /  * * * * * * * * X * X x * * * X k * E R R O R S * * * * * * * * * * * * * * * * * * * * * * f * * * * * * * * * * * *  

11 / /  BadIterator is thrown for illegal access or advance. 
12 
13 template <class Object> 
14 class PreOrder: public ~reeIterator<Objectz 
15 { 
16 public: 
17 PreOrder( const BinaryTree<Object> & theTree ) ;  

18 -PreOrder( ) i 1 
19 void first ( ) ; 

20 void advance( ) ;  

21 
22 protected: 
23 Stack< const BinaryNode<Object> * > s; 
24 1 ;  
25 
26 template <class Object> 
27 PreOrder<Object>::PreOrder( const BinaryTree<Object> & theTree) 
28 : TreeIterator<Object>( theTree ) 

29 { 

30 s.push( root ) ;  

31 1 
32 
33 template <class Object> 
34 void PreOrder<Object>: :first( ) 

35 i 
36 s . makeEmp ty ( 1 ; 
37 if ( root ! =  NULL ) 

38 I 
39 s. push ( root ) ; 

40 advance( ) ; 

41 } 

42 1 

Figure 18.30 The P r e O r d e r  class interface and all members except advance. 



1 / /  Advance to the next position. 
2 / /  Throw BadIterator exception if the iteration has been 
3 / /  exhausted prior to the call. 
4 template <class Object> 
5 void PreOrder<Object>::advance( ) 
6 ( 

7 if ( s. isEmpty ( ) ) 

8 I 
9 if ( current == NULL ) 

10 throw BadIterator( "Advance past end" ) ;  

11 current = NULL; 
12 return; 
13 1 
14 
15 current = s.topAndPop( ) ;  

16 if( current->right ! =  NULL ) 

17 s.push( current->right ) ;  

18 if( current->left ! =  NULL ) 

19 s.push( current->left ) ;  

20 } 

Figure 18.31 The PreOrder iterator class advance routine. 

18.33 looks very much like the PreOrder class. The only differences are 
that we use a queue instead of a stack and that we enqueue the left child and 
then the right child, rather than vice versa. Note that the queue can get very 
large. In the worst case, all the nodes on the last level (possibly N/2)  could 
be in the queue simultaneously. 

The level-order traversal implements a more general technique known as 
breadth-jirst search. We illustrated an example of this in a more general set- 
ting in Section 15.2. 

Summary 

In this chapter we discussed the tree and in particular, the binary tree. We 
demonstrated the use of trees to implement file systems on many computers 
and also some other applications, such as expression trees and coding, that 
we more fully explored in Part 111. Algorithms that work on trees make 
heavy use of recursion. We examined three recursive traversal algorithms- 
preorder, postorder, and inorder-and showed how they can be implemented 
nonrecursively. We also examined the level-order traversal, which forms the 
basis for an important searching technique known as breadth-first search. In 
Chapter 19 we examine another fundamental type of tree-the binary search 
tree. 



1 / /  LevelOrder class interface; maintains "current position". 
2 / /  
3 / /  CONSTRUCTION: with a tree to which the iterator is bound. 
4 / /  
5 / /  ******************puBLIC OPERATIONS******************* 

6 / /  boo1 isValid( 1 - - >  True if at valid position in tree 
7 / /  Object retrieve( ) - - >  Return item in current position 
8 / /  void first( ) - - >  Set current position to first 
9 / /  void advance( ) - - >  Advance 

10 ;/ * * * * t * * * * * * * * * * * X * E R R O R S * * * " * X * * " X " " X * * f * * * * * * * * * * * * * * * * *  

11 / /  BadIterator is thrown for illegal access or advance. 
12 
13 template <class Object> 
14 class LevelOrder : public TreeIterator<Object> 

15 { 
16 public: 
17 Levelorder( const BinaryTree<Object> & theTree 1 ;  
18 -Levelorder ( ) { 1 
19 
20 void first ( ) ; 

21 void advance ( ) ; 

22 
23 private: 
24 Queue< const BinaryNode<Object> * > q; 

25 1 ;  
26 
27 template <class Object> 
28 LevelOrder<Object>::LevelOrder( const BinaryTree<Object> & 

29 theTree ) : TreeIterator<Object>( theTree ) 

30 I 
31 q.enqueue( root ) ;  

32 1 

Figure 18.32 The LevelOrder iterator class interface and constructor. 



- - A- 

Summary -= 
1 / /  Set the current position to the first. 
2 template <class Object> 
3 void LevelOrder<Obj ect> : : first i ) 

4 i 
5 q.makeEmpty( ) ;  

6 if ( root ! =  NULL ) 

7 I 
8 q. enqueue ( root ) ; 

9 advance( ) ; 

10 1 
11 } 

12 
13 / j  Advance to the next position. 
14 / /  Throw BadIterator exception if the iteration has been 
15 / j  exhausted prior to the call. 
16 template <class Object> 
17 void LevelOrder<Object>::advancei ) 
18 i 
19 if ( q. lsEmpty( ) ) 

20 { 

21 if ( current == NULL ) 

22 throw BadIteratori "Advance past end" ) ;  

23 current = NULL; 
24 return; 
25 1 
26 current = q.getFront( 1 ;  
27 q. dequeue ( ) ; 

28 
29 if( current->left ! =  NULL ) 

30 q.enqueue( current->left 1 ;  
31 if( current->right ! =  NULL ) 

32 q.enqueue( current->right ) ; 

33 1 

Figure 18.33 The first and advance routines for the Levelorder iterator 
class. 



a . Objects of the Game 

ancestor and descendant If there is a path from node u to node v, then 
u is an ancestor of v and v is a descendant of u. (p. 606) 

binary tree A tree in which no node can have more than two children. 
A convenient definition is recursive. (p. 61 1) 

depth of a node The length of the path from the root to a node in a 
tree. (p. 606) 

first childlnext sibling method A general tree implementation in 
which each node keeps two pointers per item: one to the leftmost 
child (if it is not a leaf) and one to its right sibling (if it is not the 
rightmost sibling). (p. 607) 

height of a node The length of the path from a node to the deepest leaf 
in a tree. (p. 606) 

inorder traversal The current node is processed between recursive 
calls. (p. 622) 

leaf A tree node that has no children. (p. 606) 
level-order traversal Nodes are visited top to bottom, left to right. 

Level-order traversal is implemented by using a queue. The traversal 
is breadth first. (p. 630) 

parent and child Parents and children are naturally defined. A 
directed edge connects the parent to the child. (p. 605) 

postorder tree traversal Work at a node is performed after its chil- 
dren are evaluated. The traversal takes constant time per node. 
(P. 6 10) 

preorder tree traversal Work at a node is performed before its chil- 
dren are processed. The traversal takes constant time per node. 
(P. 6 10) 

proper ancestor and proper descendant On a path from node u to 
node v, if u # v, then u is a proper ancestor of v and v is a proper 
descendant of u. (p. 606) 

siblings Nodes with the same parents. (p. 606) 
size of a node The number of descendants a node has (including the 

node itself). (p. 606) 
tree Defined nonrecursively, a set of nodes and the directed edges that 

connect them. Defined recursively, a tree is either empty or consists 
of a root and zero or more subtrees. (p. 605) 



Common Errors 

I .  Allowing a node to be in two trees simultaneously is generally a 
bad idea because changes to a subtree may inadvertently cause 
changes in multiple subtrees. 

2. Failing to check for empty trees is a common error. If this failure is 
part of a recursive algorithm, the program will likely crash. 

3. A common error when working with trees is thinking iteratively 
instead of recursively. Design algorithms recursively first. Then 
convert them to iterative algorithms, if appropriate. 

i 
On the Internet 

- 
Many of the examples discussed in this chapter are explored in Chapter 19, 
where we discuss binary search trees. Consequently, the only code available 
is for the iterator classes. 

BinaryTree.h Contains the interfaces for BinaryNode and 
BinaryTree. 

BinaryTree.cpp Contains the implementation of BinaryNode 
and BinaryTree. 

1terate.h Contains the interfaces for the entire 
TreeIterator hierarchy. 

1terate.cpp Contains the implementation of the 
TreeIterator hierarchy. 

TestBinaryTree.cpp Contains tests for the BinaryTree methods 
and TreeIterator hierarchy. 

Exercises 

In Short 

18.1. For the tree shown in Figure 18.34, determine 
a. which node is the root. 
b. which nodes are leaves. 
c. the tree's depth. 
d ,  the result of preorder, postorder. inorder, and level-order 

traversals. 

18.2. For each node in the tree shown in Figure 18.34, 
a, name the parent node. 
b. list the children. 
c. list the siblings. 



Figure 18.34 Tree for Exercises 18.1 and 18.2. 

d. compute the height. 
e. compute the depth. 
f. compute the size. 

18.3. What is output of the function presented in Figure 18.35 for the tree 
shown in Figure 18.26? 

18.4. Show the stack operations when an inorder and preorder traversal is 
applied to the tree shown in Figure 18.26. 

In Theory 

18.5. Show that the maximum number of nodes in a binary tree of height 
H i ~ 2 ~ + 1 - 1 .  

1 void mysteryPrint( BinaryNode<char> * t ) 

2 { 

3 if( t ! =  NULL ) 

4 I 
5 cout << t->element << endl; 
6 mysteryPrint( t->left ) ;  

7 cout << t->element << endl; 
8 mysteryPrint( t->right ) ;  

9 cout << t->element << endl; 
10 } 

11 1 

Figure 18.35 Mystery program for Exercise 18.3. 



18.6. A full node is a node with two children. Prove that in a binary tree 
the number of full nodes plus 1 equals the number of leaves. 

18.7. How many NULL children are there in a binary tree of N nodes? How 
many are in an M-ary tree of N nodes? 

18.8. Suppose that a binary tree has leaves l , ,  4, . . . , lM at depths 
d , ,  d2 ,  . . ., d M ,  respectively. Prove that zM 2-d1 6 1 and deter- 

I =  1 
mine when equality is true (known as Kraft's inequality). 

In Practice 

18.9. Write efficient functions (and give their Big-Oh running times) that 
take a pointer to a binary tree root T and compute 
a ,  the number of leaves in T 
b. the number of nodes in T that contain one non-NULL child. 
c. the number of nodes in T that contain two non-NULL children. 

18.10. Implement some of the recursive routines with tests that ensure that 
a recursive call is not made on a NULL subtree. Compare the running 
time with identical routines that defer the test until the first line of 
the recursive function. 

18.11. Rewrite the iterator class to throw an exception when f i r s t  is 
applied to an empty tree. Why might this be a bad idea? 

Programming Projects 

18.12. A binary tree can be generated automatically for desktop publishing 
by a program. You can write this program by assigning an x-y coor- 
dinate to each tree node, drawing a circle around each coordinate, 
and connecting each nonroot node to its parent. Assume that you 
have a binary tree stored in memory and that each node has two 
extra data members for storing the coordinates. Assume that (0, 0)  
is the top-left corner. Do the following. 
a. The x-coordinate can be computed by assigning the inorder tra- 

versal number. Write a routine to do so for each node in the tree. 
b. The y-coordinate can be computed by using the negative of the 

depth of the node. Write a routine to do so for each node in the 
tree. 

c. In terms of some imaginary unit, what will be the dimensions of 
the picture? Also determine how can you adjust the units so that 
the tree is always roughly two-thirds as high as it is wide. 



d. Prove that when this system is used, no lines cross and that for 
any node X, all elements in X's left subtree appear to the left of 
X ,  and all elements in X's right subtree appear to the right of X. 

e. Determine whether both coordinates can be computed in one 
recursive function. 

f. Write a general-purpose tree-drawing program to convert a tree 
into the following graph-assembler instructions (circles are 
numbered in the order in which they are drawn): 

circle i x, y ) ; ! i Draw circle with center ix ,  y) 
drawline( i, j ) ;  I /  Connect circle i to circle j 

g. Write a program that reads graph-assembler instructions and 
outputs the tree to your favorite device. 

18.13. If you are running on a Unix system, implement the du command. 



Chapter 19 

Binary Search Trees 

For large amounts of input, the linear access time of linked lists is prohibi- 
tive. In this chapter we look at an alternative to the linked list: the binary 
search tree, a simple data structure that can be viewed as extending the 
binary search algorithm to allow insertions and deletions. The running time 
for most operations is O(log N) on average. Unfortunately, the worst-case 
time is O(N) per operation. 

In this chapter, we show: 

the basic binary search tree, 
a method for adding order statistics (i.e., the f indKth operation), 
three different ways to eliminate the O(N) worst case (namely, the 
AVL tree, red-black tree, and AA-tree), 
implementation of the STL set  and map, and 

use of the B-tree to search a large database quickly. 

19.1 Basic Ideas 

In the general case, we search for an item (or element) by using its key. For 
instance, a student transcript could be searched on the basis of a student ID 
number. In this case, the ID number is referred to as the item's key. 

The binary search tree satisfies the search order property; that is, for For any node in the 

every node X in the tree, the values of all the keys inthe left subtree are binarysearch all 
smaller keyed nodes 

smaller than the key in X and the values of all the keys in the right subtree are in the subtree 
are larger than the key in X. The tree shown in Figure 19.l(a) is a binary and all larger keyed 

search tree, but the tree shown in Figure 19. I (b) is not because key 8 does nodes are in the right 
subtree. Duplicates not belong in the left subtree of key 7. The binary search tree property 
are notallowed. 

implies that all the items in the tree can be ordered consistently (indeed, an 
inorder traversal yields the items in sorted order). This property also does 
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Binary Search Trees 

A find operation is 
performed by 
repeatedly branching 
either left or right, 
depending on 
the result of a 
comparison. 

The f indMin 

Figure 19.1 Two binary trees: (a) a search tree; (b) not a search tree. 

not allow duplicate items. We could easily allow duplicate keys, storing dif- 
ferent items having identical keys in a secondary structure is generally bet- 
ter. If these items are exact duplicates, having one item and keeping a count 
of the number of duplicates is best. 

BINARY SEARCH TREE ORDER PROPERTY 
In1 A BINARY SEARCH TREE, FOR EVERY NODE X ,  ALL KEYS IN X 'S  LEFT 

S LiBTREE HAIrE SMALLER \/ALLIES THAN THE KEY IN X ,  AND ALL KEYS IN X 'S  
RIGHT SUBTREE HAVE LARGER VALUES THAN THE KEY IN X .  

1 9.1 .1 The Operations 

For the most part, the operations on a binary search tree are simple to 
visualize. We can perform a find operation by starting at the root and 
then repeatedly branching either left or right, depending on the result of a 
comparison. For instance, to find 5 in the binary search tree shown in Fig- 
ure 19. I (a), we start at 7 and go left. This takes us to 2, so we go right, 
which takes us to 5 .  To look for 6, we follow the same path. At 5,  we 
would go right and encounter a NULL pointer and thus not find 6, as 
shown in Figure 19.2(a). Figure 19.2(b) shows that 6 can be inserted at the 
point at which the unsuccessful search terminated. 

The binary search tree efficiently supports the f indMin and f indMax 
operation is operations. To perform a f indMin, we start at the root and repeatedly 
performed by 
following left nodes branch left as long as there is a left child. The stopping point is the smallest 
as long as there is a element. The f indMax operation is similar, except that branching is to the 
left child. The right. Note that the cost of all the operations is proportional to the number of 
f indMax operation 
is similar. nodes on the search path. The cost tends to be logarithmic, but it can be lin- 

ear in the worst case. We establish this result later in the chapter. 
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Figure 19.2 Binary search trees (a) before and (b) after the insertion of 6. 

Figure 19.3 Deletion of node 5 with one child: (a) before and (b) after. 

The hardest operation is remove. Once we have found the node to be 
removed, we need to consider several possibilities. The problem is that the 
removal of a node may disconnect parts of the tree. If that happens, we must 
carefully reattach the tree and maintain the binary search tree property. We 
also want to avoid making the tree unnecessarily deep because the depth of 
the tree affects the running time of the tree algorithms. 

When we are designing a complex algorithm, solving the simplest case 
first is often easiest, leaving the most complicated case until last. Thus, in 
examining the various cases, we start with the easiest. If the node is a leaf, 
its removal does not disconnect the tree, so we can delete it immediatley. If 
the node has only one child, we can remove the node after adjusting its 
parent's child link to bypass the node. This is illustrated in Figure 19.3, with 
the removal of node 5. Note that removeMin and removeMax are not com- 
plex because the affected nodes are either leaves or have only one child. 
Note also that the root is a special case because i t  does not have a parent. 
However, when the remove method is implemented, the special case is han- 
dled automatically. 

The remove 
operation is difficult 
because nonleaf 
nodes hold the tree 
together and we do 
not want to 
disconnect the tree. 

If a node has one 
child, it can be 
removed by having its 
parent bypass it. The 
root is a special case 
because it does not 
have a parent. 



-- -- - 

Binary Search Trees 

Figure 19.4 Deletion of node 2 with two children: (a) before and (b) after. 

A node with two The complicated case deals with a node having two children. The gen- 
children is replaced eral strategy is to replace the item in this node with the smallest item in the 
by using the smallest 
item in the right right subtree (which is easily found, as mentioned earlier) and then remove 
subtree.Then another that node (which is now logically empty). The second remove is easy to do 
node is removed. because, as just indicated, the minimum node in a tree does not have a left 

child. Figure 19.4 shows an initial tree and the result of removing node 2. 
We replace the node with the smallest node (3) in its right subtree and then 
remove 3 from the right subtree. Note that in all cases removing a node does 
not make the tree deeper. 1 Many alternatives do make the tree deeper; thus 
these alternatives are poor options. 

19.1.2 C++ Implementation 

In principle, the binary search tree is easy to implement. To keep the C++ 
features from clogging up the code, we introduce a few simplifications. 
First, Figure 19.5 shows the BinaryNode class. We could try to inherit the 
class from Section 18.2, but things start to get messy because of privacy con- 
siderations. Reuse is nice, but at some point practicality must take over. In 
the new BinaryNode class, we make everything private but then use a 
friend declaration to grant visibility to all the classes involved in the binary 
search tree implementation. Because we want to be able to use the same dec- 
larations for a more advanced binary search tree (discussed in Section 19.2), 
we include an additional class member at line 7 that is not used in the imple- 
mentation in this section. The BinaryNode class contains the usual list of 

1 .  The deletion can. however. increase the average node depth if a shallow node is removed. 



1 template <class Comparable> 
2 class BinaryNode 
3 ( 

4 Comparable element; 
5 BinaryNode "left; 
6 BinaryNode "right; 
7 int size; 
8 
9 BinaryNode( const Comparable & theElement, ~inary~ode *It, 

10 BinaryNode *rt, int sz = 1 ) 

11 : element( theElement ) ,  left( It ) ,  

12 right( rt ) ,  size( sz ) { } 

13 
14 friend class ~inarySearchTree<Comparable>; 
15 } ;  

Figure 19.5 The BinaryNode class for the binary search tree. 

data members (the item and two pointers), the additional size data member 
used later, a constructor, and a friend declaration. 

The BinarySearchTree class interface is shown in Figure 19.6. The 
only data member is the pointer to the root of the tree, root. If the tree is 
empty, root is NULL. 

Next in the interface are the copy constructor and copy assignment 
operator. operator= is easily implemented, as we showed previously in 
Figure 1 8.13 (and as shown in the online code). The destructor at line 24 
calls makeEmpty (which has the same implementation as the routine in Fig- 
ure 18.18). 

The rest of the public BinarySearchTree class interface is a straightfor- 
ward listing of the member functions with implementations that call the hidden 
functions. The constructor, declared at line 19, merely sets root to NULL. The 
publicly visible members are listed at lines 26-34. Some of the public member 
functions return a Cref object. 

Recall that the Cref class template (see Section 5.3.2) wraps a constant 
reference variable. However, its advantage is that it can also store a null ref- 
erence. Recall further that we can use isNull to test whether a null refer- 
ence is being stored and that we can get the constant reference variable that 
is being wrapped by calling get. 

Next, we have several functions that operate on a node passed as a 
parameter, a general technique that we used in Chapter 18. The idea is that 
the publicly visible class routines call these hidden routines and pass root 
as a parameter. These hidden routines do all the work. Two details are impor- 
tant: First, at line 38, we use protected rather than private because we 

The root pointer 
points at the root of 
the tree, which is 
NULL if the tree is 
empty. 

The public class 
functions call hidden 
private routines. 

A Cref object is 
returned so that we 
can distinguish 
between successful 
and unsuccessful 
searches. 



1 / /  BinarySearchTree class 
2 / /  
3 / /  CONSTRUCTION: with no parameters or another BinarySearchTree. 
4 / /  
5 / /  ****k***f*********p"BLIC OpERATIONS**X****************** 

6 / /  void insert ( x 1 - - >  Insert x 
7 / /  void remove( x ) - - >  Remove x 
8 / /  void removeMin ( ) - - >  Remove smallest item 
9 / /  Comparable find( x i - - >  Return item that matches x 

10 / /  Comparable findMin( ) - ->  Return smallest item 
11 / /  Comparable findMax( ) - -> Return largest item 
12 / /  boo1 isEmpty( ) - ->  Return true if empty; else false 
13 / / void makeEmpty ( ) - - >  Remove all items 
14 
15 template <class Comparable> 
16 class BinarySearchTree 
17 I 
18 public: 
19 BinarySearchTree ( ) ; 

20 BinarySearchTree( const BinarySearchTree & rhs ) ;  

2 1 const BinarySearchTree & operator=( 
22 const BinarySearchTree & rhs ) ;  

23 
24 virtual -BinarySearchTree( ) ;  

25 
26 Cref<Comparable> findMin( ) const; 
27 Cref<Comparable> findMax( ) const; 
28 Cref<Comparable> find( const Comparable & x ) const; 
29 boo1 isEmpty ( ) const; 
30 
31 void makeEmpty ( ) ; 

32 void insert( const Comparable & x ) ;  

33 void remove( const Comparable & x ) ;  

34 void removeMin ( ) ; 

35 
36 typedef BinaryNode<Comparable> Node; 
37 
38 protected: 
39 Node *root; 
40 
41 Cref<Comparable> elementAt( Node *t ) const; 
42 virtual void insert( const Comparable & x, Node * & t ) const; 
43 virtual void remove( const Comparable & x, Node * & t ) const; 
44 virtual void removeMin( Node * & t ) const; 
45 Node * findMin( Node *t ) const; 
46 Node * findMax( Node *t ) const; 
47 Node * find( const Comparable & x, Node *t ) const; 
48 void makeEmpty( Node * & t ) const; 
49 Node * clone( Node *t ) const; 
50 } ;  

Figure 19.6 The BinarySearchTree class interface. 



1 / /  Find item x in the tree. 
2 / /  Return the matching item wrapped in a Cref object. 
3 template <class Comparable> 
4 Cref<Comparable> BinarySearchTreecComparable>:: 
5 find( const Comparable & x ) const 
6 I 
7 return elementAt( find( x, root ) ) ;  

8 } 
9 

10 / /  Internal method to wrap the element field in node t 
11 / /  inside a Cref object. 
12 template <class Comparable> 
13 CrefcComparable> BinarySearchTreecComparable>:: 
14 elementAt( Node *t ) const 
15 I 
16 return t == NULL ? CrefcComparable>( ) : 

17 Cref<Comparable>( t->element ) ;  

18 } 

Figure 19.7 The find public member function that calls a hidden routine and 
the elementAt member function. 

derive another class from BinarySearchTree in Section 19.2. Second, 
some of the routines must be declared virtual because they are overridden 
with new definitions in a derived class. 

The insert function adds x to the current tree by calling the hidden 
insert with root as an additional parameter. This action fails if x is 
already in the tree; in that case, a ~ u p l  icateI t emExcept ion would be 
thrown. The f indMin, f indMax, and find operations return the minimum, 
maximum, or named item (respectively) from the tree. If the item is not 
found because the tree is empty or the named item is not present, then apply- 
ing isNull to the returned Cref object will produce true. Figure 19.7 
shows this technique of a public member function calling a private function, 
as applied to the find method. 

The removeMin operation removes the minimum item from the tree; i t  
throws an exception if the tree is empty. The remove operation removes a 
named item x from the tree; it throws an exception if warranted. The 
makeEmpty and isEmpty methods are the usual fare. 

As is typical of most data structures, the find operation is easier than 
insert, and insert is easier than remove. Figure 19.8 illustrates the 
find routine. So long as a NULL pointer has not been reached, we either 
have a match or need to branch left or right. The code implements this 
algorithm quite succinctly. Note the order of the tests. The test against 
NULL must be performed first; otherwise, the access t - >el ement would 
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Because of call by 
value, the actual 
argument (root) is 
not changed. 

For insert, we must 
pass the tree t by 
reference to effect a 
change. 

/ /  Internal method to find an item in a subtree. 
/ /  x is item to search for. 
/ /  t is the node that roots the tree. 
/ /  Return node containing the matched item. 
template <class Comparable> 
BinaryNode<Comparable> * BinarySearchTree<Comparable>:: 
find( const Comparable & x, Node *t ) const 
i 

while( t ! =  NULL ) 

if ( x < t->element ) 

t = t->left; 
else if( t->element < x ) 

t = t->right; 
else 

return t ; /: Match 

return NULL; / /  Not found 
1 

Figure 19.8 The find operation for binary search trees 

be illegal. The remaining tests are arranged with the least likely case last. A 
recursive implementaion is possible, but we use a loop instead; we use recur- 
sion in the insert and remove functions. In Exercise 19.17 you are asked 
to write the searching algorithms recursively. 

At first glance statements such as t =t ->left may seem to change the 
root of the tree. That is not the case, however, because t is passed by value. 
This has nothing to do with the const in the function declaration. It is the 
call by value mechanism that matters here. In the initial call, t is simply a 
copy of root. Although t changes, root does not. The calls to f indMin 
and findMax are even simpler because branching is unconditionally in one 
direction. These routines are shown in Figure 19.9. Note how the case of an 
empty tree is handled. 

The insert routine is shown in Figure 19.10. Here we use recursion to 
simplify the code. A nonrecursive implementation is also possible; we apply 
this technique when we discuss red-black trees later in this chapter. The 
basic algorithm is simple. If the tree is empty, we can create a one-node tree. 
The test is performed at line 10, and the new node is allocated at line I I .  In 
this case t is passed by reference (at line 8). Thus, if the actual argument is 
root, then at line I I ,  when t is changed to point at the newly allocated 
node, the change applies to root, and root will also point at the newly allo- 
cated node. 

If the tree is not already empty, we have three possibilities. First, if the 
item to be inserted is smaller than the item in node t, we call insert 



1 / /  Internal method to find the smallest item in a subtree t. 
2 / /  Return node containing the smallest item. 
3 template <class Comparable> 
4 BinaryNode<Comparable> * BinarySearchTree<Comparable>:: 
5 findMin( Node *t ) const 
6 { 
7 if( t ! =  NULL ) 

8 while( t->left ! =  NULL ) 

9 t = t->left; 
10 
11 return t ; 
12 1 
13 
14 / /  Internal method to find the largest item in a subtree t. 
15 / /  Return node containing the largest item. 
16 template <class Comparable> 
17 BinaryNode<Comparable> * BinarySearchTree<Comparable>:: 
18 findMax( Node *t ) const 
19 I 
20 if( t !=NULL ) 
21 while( t->right ! =  NULL ) 

22 t = t->right; 
23 
24 return t ; 
25 1 

Figure 19.9 The f indMin and f indMax methods for binary search trees. 

recursively on the left subtree. Second, if the item is larger than the item in 
node t, we call insert recursively on the right subtree (these two cases are 
coded at lines 12 to 15). Third, if the item to insert matches the item in t, we 
throw an exception. 

An important question to answer is, If the recursive insertion at line 13 Because t is passed 

changes the root i f  the left subtree, how can we be sure that the subtree by reference,the 
subtree is 

will not be disconnected? The answer is that, as the tree is passed by refer- a,tomatically 
ence, any changes to the root of the left subtree will be reflected in the connected. 
object t->lef t, thus guaranteeing that the tree stays connected. The only 
time that this happens is when t - >lef t is NULL and we add a node in the 
left subtree. But even if the changes were more general, we would still be 
safe. The key here is that t->left at line 13 and t->right at line 15 are 
passed by reference. If we wrote the routine nonrecursively, we would have 
to maintain a pointer to the parent node as we descend the tree. 

The remaining routines concern deletion. As described earlier, the 
removeMin operation is simple because the minimum node has no left 
child. Thus the removed node merely needs to be bypassed, which appears 



1 / /  Internal method to insert into a subtree. 
2 / /  x is the item to insert. 
3 / /  t is the node that roots the tree. 
4 / /  Set the new root. 
5 / /  Throw DuplicateItemException if x is already in t. 
6 template <class Comparable> 
7 void BinarySearchTree<Cornparable>:: 
8 insert( const Comparable & x, Node * & t ) const 

9 i 
10 if ( t == NULL ) 

11 t = new Node ( x, NULL, NULL ) ; 

12 else if( x < t->element ) 

13 insert ( x, t->left ) ; 

14 else if( t->element < x ) 

15 insert( x, t->right ) ;  

16 else 
17 throw DuplicateItemException( ) ; 

18 1 

Figure 19.10 The recursive insert for the BinarySearchTree class. 

to require us to keep track of the parent of the current node as we descend 
the tree. But. again, we can avoid the explicit use of a parent pointer by using 
recursion. The code is shown in Figure 1 9.1 I . 

Passing t by If the tree t is empty, removeMin fails. Otherwise. if t has a left child, 
reference we recursively remove the minimum item in the left subtree via the recursive 
in the remove 
routines. In effect we call at line 12. If we reach line 15, we know that we are currently at the min- 
maintain the parent in imum node, and thus t is the root of a subtree that has no left child. If we set 
the recursion stack. t to t - >right and then delete the node that t used to point at, t is now 

the root of a subtree that is missing its former minimum element. That is 
what we do at lines 15-17. But doesn't that disconnect the tree? The answer 
again is no. If t was root, then, as t is passed by reference, root is 
changed to point at the new tree. If t was not root, it is p->lef t ,  where p 
is t ' s  parent at the time of the recursive call. The change to t, being by ref- 
erence, also changes p- >lef t. Thus the parent's left pointer points at t, 
and the tree is connected. All in all. it is a nifty maneuver-we have main- 
tained the parent in the recursion stack rather than explicitly kept track of it 
in an iterative loop. 

Having used this trick for the simple case, we can then adapt it for the 
general remove routine shown in Figure 19.12. If the tree is empty, the 
remove is unsuccessful and we can throw an exception at line 10. If we do 
not have a match, we can recursively call remove for either the left or right 
subtree, as appropriate. Otherwise, we reach line 15, indicating that we have 
found the node that needs to be removed. 



1 / /  Internal method to remove minimum item from a subtree. 
2 / /  t is the node that roots the tree. 
3 / /  Set the new root. 
4 / /  Throws UnderflowException if L is empLy. 
5 template <class Comparable> 
6 void BinarySearchTree<Comparable>: : 
7 removeMin( Node * & t ) const 
8 i 
9 if( r == NULL ) 

10 throw UnderflowExceptioni ) ;  

11 else if( t->lefr ! =  NULL ) 

12 removeMin( t->left ) ; 

13 else 
14 { 

15 Node *tmp = t; 
16 L = t->right; 
17 delete tmp; 
18 1 
19 1 

Figure 19.11 The removeMin method for the BinarySearchTree class. 

1 / /  Internal method to remove from a subtree. 
2 / /  x is the item to remove, t is the node that roots the tree. 
3 / /  Set the new root. 
4 / /  Throw ItemNotFoundException is x is not in t. 
5 templaLe <class Comparable> 
6 void BinarySearchTree<Comparable>:: 
7 remove( const Comparable & x, Node * & t ) consr 
8 I 
9 if( t == NULL ) 

10 throw I temNotFol~ndException ( ) ; 

11 if ( x < L->element ) 

12 remove( x, t->left i ; 

13 else if( t->element < x ) 

14 remove ( x, t->right ) ; 

15 else if( t->left ! =  NULL && t->right ! =  NULL ) / /  2 children 
16 { 

17 t->element = findMin( t->right )->element; 
18 removeMin( t->right ) ;  / /  Remove minimum 
19 1 
20 else / /  One or zero children 
2 1 { 

22 BinaryNode<Comparable> *oldNode = L; 

23 t = ( t->left ! =  NULL ) ? t->left : t->right; / /  Reroot 
24 delete oldNode; / /  delete old root 
25 1 
26 1 

Figure 19.12 The remove member routine for the BinarySearchTree class. 



The remove routine Recall (as illustrated in Figure 19.4) that, if there are two children, we 
involvestrickycoding replace the node with the minimum element in the right subtree and then 
but is not too bad if 
recursion is used.The remove the right subtree's minimum (coded at lines 17-18). Otherwise, we 
case for one child, have either one or zero children. We save a pointer to the current node at line 
root with one child, 22 so that we can delete it at line 24. If there is a left child. we set t eaual 
and zero children are to its left child, as we would do in removeMax. Otherwise, we know ;hat all handled together 
at lines 22-24. there is no left child and that we can set t equal to its right child. This proce- 

dure is succinctly coded in line 23, which also covers the leaf case. 
Two points need to be made about this implementation. First, during the 

basic i n s e r t ,  f i n d ,  or remove operation, we perform two comparisons 
per node accessed to distinguish among the cases <, =, and >. Actually, how- 
ever, we can get by with only one comparison per node. The strategy is sim- 
ilar to what we did in the binary search algorithm in Section 6.6. We discuss 
the technique for binary search trees in Section 19.6.2 when we illustrate the 
deletion algorithm for AA-trees. 

Second, we do not have to use recursion to perform the insertion. In 
fact, a recursive implementation is probably slower than a nonrecursive 
implementation. We discuss an iterative implementation of i n s e r t  in 
Section 19.5.3 in the context of red-black trees. 

19.2 Order Statistics 

The binary search tree allows us to find either the minimum or maximum 
item in time that is equivalent to an arbitrarily named f i n d .  Sometimes, we 
also have to be able to access the Kth smallest element, for an arbitrary K 
provided as a parameter. We can do so if we keep track of the size of each 
node in the tree. 

We can implement Recall from Section 18.1 that the size of a node is the number of its 
findKth by descendants (including itself). Suppose that we want to find the Kth smallest 
maintaining the size 
of each node as we element and that K is at least 1 and at most the number of nodes in the tree. 
update the tree. Figure 19.13 shows three possible cases, depending on the relation of K and 

the size of the left subtree, denoted SL. If K equals S, + 1, the root is the Kth 
smallest element and we can stop. If K is smaller than SL + 1 (i.e., smaller 
than or equal to SL), the Kth smallest element must be in the left subtree and 
we can find it recursively. (The recursion can be avoided; we use it to sim- 
plify the algorithm description.) Otherwise, the Kth smallest element is the 
(K - S, - 1)th smallest element in the right subtree and can be found 
recursively. 

The main effort is maintaining the node sizes during tree changes. 
These changes occur in the i n s e r t ,  remove, and removeMin operations. 
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Figure 19.13 Using the size data member to implement f indKth. 

In principle, this maintenance is simple enough. During an insert, each 
node on the path to the insertion point gains one node in its subtree. Thus the 
size of each node increases by 1, and the inserted node has size 1. In 
removeMin, each node on the path to the minimum loses one node in its 
subtree; thus the size of each node decreases by 1. During a remove, all 
nodes on the path to the node that is physically removed also lose one node 
in their subtrees. Consequently, we can maintain the sizes at the cost of only 
a slight amount of overhead. 

19.2.1 C++ Implementation 

Logically, the only changes required are the adding of f indKth and the We derive a new class 

maintenance of the size data members in insert, remove, and that supportsthe 
order statistic. 

removeMin. We derive a new class from BinarySearchTree, the inter- 
face for which is shown in Figure 19.14. We need to make the new class a 
friend of BinaryNode. 

Let us first examine the new public member functions. Because con- 
structors and a destructor are not explicitly provided, the defaults are 
used. For the constructor, the inherited data member is initialized by the 
BinarySearchTree constructor. For the destructor, the base class 
destructor is eventually called to clean up the memory. 

The publicly visible member functions f ind~th , insert, remove, and We must redefine both 

removeMin, declared at lines 15, 17, 19, and 21, respectively, logically call a the hidden and public 
update functions. corresponding hidden member function. We might expect that a routine such 

as insert at line 17 does not need to be redefined, as its body is simply a 
call to the BinarySearchTree insert. However, because we are rewrit- 
ing the hidden recursive versions of insert, remove, and removeMin, 
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1 / /  BinarySearchTreeWithRank class. 
2 / /  
3 / /  CONSTRUCTION: with no parameters or 
4 / /  another BinarySearchTreeWithRank. 
5 
6 / /  ******************~~BLIc o ~ E R F ; T I o N s * * * * * * * * * * * * * * * * * * * * *  

7 / /  Comparable findKth( k )--> Return kth smallest item 
8 / /  All other operations are in effect inherited. 
9 

10 template <class Comparable> 
11 class BinarySearchTreeWithRank : 

12 public ~inarySearchTree<Comparable> 
13 { 

14 public: 
15 Cref<Comparable> findKth( int k ) const 
16 { return elementAt( findKth( k, root ) ;  } 

17 void insert( const Comparable & x ) 

18 ( BinarySearchTree<Comparable>::insert( x ) ;  1 
19 void remove( const Comparable & x i 
20 { BinarySearchTree<Comparable>::remove( x 1 ;  I 
21 void removeMin( ) 

22 { BinarySearchTree<Comparable>::removeMin( 1 ;  1 
23 
24 typedef BinaryNode<Comparable> Node; 
25 
26 private: 
27 void insert( const Comparable & x, Node * & t ) const; 
28 void remove( const Comparable & x, Node * & t ) const; 
29 void removeMin( Node * & t ) const; 
30 Node *findKth( int k, Node *t ) const; 
31 
32 int treesize( Node *t ) const 
33 ( return t == NULL ? 0 : t->size; 1 
34 1 ;  

Figure 19.14 The BinarySearchTree class interface. 

these versions hide the public members with the same name (see Section 
4.4.3). Thus for this technical reason, we rewrite the public member func- 
tions and have them simply call the corresponding base class member func- 
tions. This is C++ ugliness because, if the private member functions in the 
BinarySearchTree base class simply would have had different names 
than their public counterparts, we would have been able to completely 
remove lines 1 7-22 in Figure 19.14 and only had to override the private 
member functions. (In Exercise 19.19 you are asked to rewrite both classes 
to verify that this assertion is true.) 
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1 / /  Internal method to find kth item in a subtree. 
2 / /  k is the desired rank. 
3 / /  t is the node that roots the tree. 
4 template <class Comparabie> 
5 BinaryNode<Comparable> * BinarySearchTreeWithRank<Comparable>:: 
6 findKth( int k, Node * t ) const 
7 { 
8 if( t ==NULL ) 

9 return NULL; 
10 
11 int leftsize = treesize( t->left ) ;  

12 
13 if( k <= leftsize ) 

14 return findKtn( k, t->left ) ;  

15 else if( k == leftsize + 1 ) 

16 return t; 
17 else 
18 return findKtn( k - leftsize - 1, t->right ) ;  

19 

Figure 19.15 The f i ndKth  operation for a search tree with order statistics. 

The f i n d K t h  operation shown in Figure 19.15 is written recursively, The findKth 

although clearly it need not be. It follows the algorithmic description line for Operation is easily 
implemented once 

line. The test against NULL at line 8 is necessary because k could be invalid. the size members are 
At line I 1 we compute the size of the left subtree. If the left subtree exists, known. 
accessing its s i z e  member gives the required answer. If the left subtree 
does not exist, its size can be taken to be 0 (see the definition of t r e e s i z e  
at lines 32 and 33 in the class interface). Note that this test is performed after 
we are sure that t is not NULL. 

The i n s e r t  operation is shown in Figure 19.16. The potentially tricky 
part is that, if the insertion call succeeds, we want to increment t ' s  s i z e  
member. If the recursive call fails, t ' s  s i z e  member is unchanged and an 
exception should be thrown. In an unsuccessful insertion can some sizes 
change? The answer is no; s i z e  is updated only if the recursive call suc- 
ceeds without an exception. Note that when a new node is allocated by a call 
to new, the s i z e  member is set to 0 by the BinaryNode constructor, and 
then incremented at line I 8. 

Figure 19.17 shows that the same trick can be used for removeMin. If 
the recursive call succeeds, the s i z e  member is decremented; if the recur- 
sive call fails, s i z e  is unchanged. The remove operation is similar and is 
shown in Figure 19.18. 

The insert and 
remove operations 
are potentially tricky 
because we do not 
update the size 
information if the 
operation is 
unsuccessful. 
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1 / /  Internal method to insert into a subtree. 
2 / /  x is the item to insert. 
3 / /  t is the node that roots the tree. 
4 / /  Set the new root. 
5 / /  Throw DuplicateItemException if x is already in t 
6 template <class Comparable> 
7 void BinarySearchTreeWithRank<Comparable>:: 
8 insert( const Comparable & x, Node * & t ) const 

9 { 

10 if( t ==NULL ) 
11 t = new Node ( x, NULL, NULL, 0 ) ; 

12 else if( x < t->element ) 

13 insert( x, t->left ) ;  

14 else if( t->element < x ) 

15 insert i x, t->right ) ; 

16 else 
17 throw DuplicateItemException( 1 ; 
18 t->size++; 
19 1 

Figure 19.16 The insert operation for a search tree with order statistics. 

1 / !  Internal method to remove minimum item from a subtree. 
2 / /  t is the node that roots the tree. 
3 / /  Set the new root. 
4 / /  Throw UnderflowException if t is empty. 
5 template <class Comparable> 
6 void BinarySearchTreeWithRank<Comparable>: : 
7 removeMin ( Node * & t ) const 

8 { 

9 if( t ==  NULL ) 

10 throw UnderflowException( ) ; 

11 else if( t->left ! =  NULL ) 

12 removeMin( t->left ) ;  

13 else 
14 i 
15 Node *tmp = t; 
16 t = t->right; 
17 delete tmp; 
18 return; 
19 1 
20 t->size--; 

21 1 

Figure 19.17 The removeMin operation for a search tree with order statistics. 
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1 ' /  Internal method to remove from a subtree. 
2 ' ;  x is the item to remove. 
3 / /  t is the node that roots the tree. 
4 / /  Set the new root. 
5 : I  Throw ItemNotFoundException is x is not in t. 
6 template <class Comparable> 
7 void BinarySearchTreel'lithRank<Comparable>:: 
8 remove( const Comparable & x, Node * & t ) const 
9 { 

10 if( t == NULL i 
11 throw ItemNotFoundException( ) ;  

12 if( x < t->element ) 

13 remove( x, t->left ) ;  

14 else if( t->element < x ) 

15 remove( x, t->right ) ; 

16 else if( t->left ! =  NULL && t->right ! =  NULL ) : I  2 children 
17 {. 

18 t->element = findMlni t->right )->element; 
19 rernoveP"1ln ( t->right ) ; 1: Remove miniml~m 
20 1 
2 1 else 
22 ', 
23 BinaryNode<Comparabie> *oldNode = t; 
24 t = i t->left ! =  NULL ) ? t->left : t->right; 1 ;  Reroot 
25 delete oldNode; ' /  delete old root 
26 return; 
27 1 
28 t->size--; 
29 1 

Figure 19.18 The remove operation for a search tree with order statistics. 

19.3 Analysis of Binary Search Tree Operations 
The cost of each binary search tree operation (insert. find, and remove) The cost of an 

is proportional to the number of nodes accessed during the operation. We Operation is 
proportional to the 

can thus charge the access of any node in the tree a cost of 1 plus its depth depth of the last 
(recall that the depth measures the number of edges on a path rather than the accessed node.The 

number of nodes), which gives the cost of a successful search. cost is logarithmic for 
a well-balanced tree, Figure 19.19 shows two trees. Exercise 19.19(a) shows a balanced tree but it could be as bad 

of 15 nodes. The cost to access any node is at most 4 units, and some nodes as linear for a 
require fewer accesses. This situation is analogous to the one that occurs in degenerate tree. 

the binary search algorithm. If the tree is perfectly balanced, the access cost 
is logarithmic. 

Unfortunately, we have no guarantee that the tree is perfectly balanced. 
The tree shown in Figure 19.19(b) is the classic example of an unbalanced 
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Figure 19.19 (a) The balanced tree has a depth of i log N];  (b) the unbalanced tree 
has a depth of N - 1.  

tree. Here, all N nodes are on the path to the deepest node, so the worst-case 
search time is O(N). Because the search tree has degenerated to a linked list, 
the average time required to search in this particular instance is half the cost 
of the worst case and is also O(N). So we have two extremes: In the best 
case, we have logarithmic access cost, and in the worst case we have linear 
access cost. What, then, is the average? Do most binary search trees tend 
toward the balanced or unbalanced case, or is there some middle ground, 
such as fi? The answer is identical to that for quicksort: The average is 
38 percent worse than the best case. 

On average the depth We prove in this section that the average depth over all nodes in a 
is 38 percent binary search tree is logarithmic, under the assumption that each tree is 
than the best case. 
This result is identical created as a result of random insertion sequences (with no remove opera- 
tothat obtained using tions). To see what that means, consider the result of inserting three items 
quicksort. in an empty binary search tree. Only their relative ordering is important, so 

we can assume without loss of generality that the three items are 1 ,  2, and 
3. Then there are six possible insertion orders: ( I ,  2, 3), (1,  3, 21, (2, 1 ,  3), 
(2, 3, l ) ,  (3, 1 ,  2), and (3, 2, 1). We assume in our proof that each insertion 
order is equally likely. The binary search trees that can result from these 
insertions are shown in Figure 19.20. Note that the tree with root 2, shown in 
Figure 19.20(c), is formed from either the insertion sequence (2, 3, 1) or the 
sequence (2, 1, 3). Thus some trees are more likely to result than others, and 
as we show, balanced trees are more likely to occur than unbalanced trees 
(although this result is not evident from the three-element case). 

We begin with the following definition. 

DEFINITION: The internal path length of a binary tree is the sum of the 
depths of its nodes. 
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Figure 19.20 Binary search trees that can result from inserting a permutation 1, 2, 
and 3; the balanced tree shown in part (c) is twice as likely to result 
as any of the others. 

When we divide the internal path length of a tree by the number of nodes in The internalpath 

the tree, we obtain the average node depth. Adding 1 to this average gives length is used to 
measure the cost of a 

the average cost of a successful search in the tree. Thus we want to compute successful search. 
the average internal path length for a binary search tree, where the average is 
taken over all (equally input permutations. We can easily do so by 
viewing the tree recursively and by using techniques from the analysis of 
quicksort given in Section 9.6. The average internal path length is estab- 
lished in Theorem 19.1. 

The internal path length of a binal? search tree is approximately I .38 N log N Theorem 19.1 
on average, under the assumption that all permutations are equally likely. 

L,et D(M be the average inlernal path length for trees of N nodes, so D( 1 ) = Proof 
0. An N-node tree T consists of an i-node left subtree and an (N - i - 1)- 

node right subtree, plus a root at depth 0 for 0 5 i < N. By assumption. 

each value of i is equa l l~  l ikel~.  For a given i, D(i)  is the average internal 

path length of the left subtree with respect to its root. In 7: all these nodes 

are one level deeper: Tlzus the average contribution of the nodes in the left 

subtree to the internal path length of T is ( 1 /N)C:=-; D(i) ,  plus 1 for 

each node in the left subtree. The same holds for the r i g h ~  subtree. We 

thus obrain the recurrence f o r m ~ ~ l a  D(N)  = ( 2 / ~ ) ( x y = - , :  D ( i ) )  + N - I ,  
which is identical to the quicksort recurrence solved in Section 9.6. The 

result is an average internal path leizgth of O(N log N). 
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The external path The insertion algorithm implies that the cost of an insert equals the cost 
length is used to of an unsuccessful search, which is measured by using the external path 
measure the cost of 
an unsuccessful length. In an insertion or unsuccessful search, we eventually reach the test 
search.  NULL. Recall that in a tree of N nodes there are N + 1 NULL pointers. The 

external path length measures the total number of nodes that are accessed, 
including the NULL node for each of these N + I NULL pointers. The NULL 
node is sometimes called an external tree node, which explains the term 
external path length. As we show later in the chapter, replacing the NULL 
node with a sentinel may be convenient. 

DEFINITION: The external path length of a binary search tree is the 
sum of the depths of the N + I NULL pointers. The terminating NULL 
node is considered a node for these purposes. 

One plus the result of dividing the average external path length by N + 1 
yields the average cost of an unsuccessful search or insertion. As with the 
binary search algorithm, the average cost of an unsuccessful search is only 
slightly more than the cost of a successful search, which follows from Theo- 
rem 19.2. 

Theorem 19.2 For any tree 7: let IPL(T) be the internal path length of T and let EPL(T) 
be its external path length. Then, if T has N nodes, EPL(T) = IPL(T) + 2N. 

Proof This theorem is proved by induction and is left as Exercise 19.9. I 
Random remove 
operations do not 
preserve the 
randomness of a tree. 
The effects are not 
completely 
understood 
theoretically, but they 
apparently are 
negligible in practice. 

It is tempting to say immediately that these results imply that the average 
running time of all operations is O(1og N). This implication is true in practice, 
but it has not been established analytically because the assumption used to 
prove the previous results do not take into account the deletion algorithm. In 
fact, close examination suggests that we might be in trouble with our deletion 
algorithm because the remove operation always replaces a two-child deleted 
node with a node from the right subtree. This result would seem to have the 
effect of eventually unbalancing the tree and tending to make it left-heavy. It 
has been shown that if we build a random binary search tree and then perform 
roughly N2 pairs of random insertlremove combinations, the binary search 
trees will have an expected depth of ~ ( f i ) .  However, a reasonable number 
of random insert and remove operations (in which the order of insert 
and remove is also random) does not unbalance the tree in any observable 
way. In fact, for small search trees, the remove algorithm seems to balance 
the tree. Consequently, we can reasonably assume that for random input all 



operations behave in logarithmic average time, although this result has not 
been proved mathematically. In Exercise 19.28 we describe some alternative 
deletion strategies. 

The most important problem is not the potential imbalance caused by 
the remove algorithm. Rather, it is that, if the input sequence is sorted, the 
worst-case tree occurs. When that happens, we are in deep trouble: We have 
linear time per operation (for a series of N operations) rather than logarith- 
mic cost per operation. This case is analogous to passing items to quicksort 
but having an insertion sort executed instead. The resulting running time is 
completely unacceptable. Moreover, it is not just sorted input that is prob- 
lematic, but also any input that contains long sequences of nonrandomness. 
One solution to this problem is to insist on an extra 5tructural condition 
called halarzce: No node is allowed to get too deep. 

Any of several algorithms can be used to implement a balanced binary 
search tree, which has an added structure property that guarantees logarith- 
mic depth in the worst case. Most of these algorithms are much more com- 
plicated than those for the standard binary search trees, and all take longer 
on average for insertion and deletion. They do, however, provide protection 
against the embarrassingly simple cases that lead to poor performance for 
(unbalanced) binary search trees. Also, because they are balanced, they tend 
to give faster access time than those for the standard tres. Typically, their 
internal path lengths are very close to the optimal N log N rather than 1.38N 
log N, so searching time is roughly 25 percent faster. 

19.4 AVL Trees 
The first balanced binary search tree was the AVL tree (named after its dis- 
coverers, Adelson-Velskii and Landis), which illustrates the ideas that are 
thematic for a wide class of balanced binary search trees. It is a binary 
search tree that has an additional balance condition. Any balance condition 
must be easy to maintain and ensures that the depth of the tree is O(1og N). 
The simplest idea is to require that the left and right subtrees have the same 
height. Recursion dictates that this idea apply to all nodes in the tree because 
each node is itself a root of some subtree. This balance condition ensures 
that the depth of the tree is logarithmic. However, it is too restrictive because 
inserting new items while maintaining balance is too difficult. Thus the defi- 
nition of an AVL tree uses a notion of balance that is somewhat weaker but 
still strong enough to guarantee logarithmic depth. 

A balanced binary 
search tree has an 
added structure 
property to guarantee 
logarithmic depth in 
the worst case. 
Updates are slower, 
but accesses are 
faster. 

The AVL tree was the 
first balanced binary 
search tree. It has 
historical significance 
and also illustrates 
most of the ideas that 
are used in other 
schemes. 

DEFINITION: An AVL tree is a binary search tree with the additional 
balance property that, for any node in the tree, the height of the left and 
right subtrees can differ by at most 1. As usual, the height of an empty 
subtree is -1. 
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Every node in an AVL 
tree has subtrees 
whose heights differ 
by at most 1. An 
empty subtree has 
height -1. 

The AVL tree has 
height at most 
roughly 44 percent 
greater than the 
minimum. 

Figure 19.21 Two binary search trees: (a) an AVL tree; (b) not an AVL tree 
(unbalanced nodes are darkened). 

Figure 19.22 Minimum tree of height H. 

19.4.1 Properties 

Figure 19.21 shows two binary search trees. The tree shown in Figure 19.21(a) 
satisfies the AVL balance condition and is thus an AVL tree. The tree shown 
in Figure 19.21 (b), which results from inserting 1, using the usual algorithm, 
is not an AVL tree because the darkened nodes have left subtrees whose 
heights are 2 larger than their right subtrees. If 13 were inserted, using the 
usual binary search tree insertion algorithm, node 16 would also be in viola- 
tion. The reason is that the left subtree would have height 1, while the right 
subtree would have height -1. 

The AVL balance condition implies that the tree has only logarithmic 
depth. To prove this assertion we need to show that a tree of height H must 
have at least CH nodes for some constant C > 1. In other words, the mini- 
mum number of nodes in a tree is exponential in its height. Then the maxi- 
mum depth of an N-item tree is given by Iog,N. Theorem 19.3 shows that 
every AVL tree of height H has many nodes. 



An AVL tree of height H has at least FH + - I nodes, where Fi is the ith Theorem 19.3 
Fibonacci number (see Section 8.3.4). 

Let SH be the size of the smallest AVL tree of height H. Clearly, So = 1 and Proof 
S,  = 2. Figure 19.22 shows that the smallest AVL tree of height H must 

have subtrees of height H - 1 and H - 2. The reason is that at least one 

subtree has height H - 1 and the balance condition implies that subtree 

heights can differ by at most 1. These subtrees must themselves have the 

fewest number of nodes for their heights, so SH = SH - , + SH - ? + 1. The 

proof can be completed by using an induction argument. 

From Exercise 8.8, F, = $I,/&, where (I = ( 1  + &)/2  = 1.618. Con- 
sequently, an AVL tree of height H has at least (roughly) @H +'/& nodes. 
Hence its depth is at most logarithmic. The height of an AVL tree satisfies 

so the worst-case height is at most roughly 44 percent more than the mini- 
mum possible for binary trees. 

The depth of an average node in a randomly constructed AVL tree tends 
to be very close to log N. The exact answer has not yet been established 
analytically. We do not even known whether the form is log N + C or 
( 1  + E) log N + C, for some E that would be approximately 0.01. Simula- 
tions have been unable to demonstrate convincingly that one form is more 
plausible than the other. 

A consequence of these arguments is that all searching operations in an 
AVL tree have logarithmic worst-case bounds. The difficulty is that opera- 
tions that change the tree, such as insert and remove, are not quite as sim- 
ple as before. The reason is that an insertion (or deletion) can destroy the 

The depth of a typical 
node in an AVL tree is 
very close to the 
optimal log N. 

An update in an AVL 
tree could destroy the 
balance. It must then 
be rebalanced before 
the operation can be 

balance of several nodes in the tree, as shown in Figure 19.21. The balance considered complete. 

must then be restored before the operation can be considered complete. The 
insertion algorithm is described here, and the deletion algorithm is left for 
Exercise 19.1 1. 

A key observation is that after an insertion, only nodes that are on the Only nodes on the 

path from the insertion point to the root might have their balances altered path the to 
the insertion point 

because only those nodes have their subtrees altered. This result applies to can have their 
almost all the balanced search tree algorithms. As we follow the path up to balances altered. 

the root and update the balancing information, we may find a node whose 
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If we fix the balance at 
the deepest 
unbalanced node, we 
rebalance the entire 
tree.There are four 
cases that we might 
have to fix; two are 
mirror images of the 
other two. 

Balance is restored 
by tree rotations. A 
single rotation 
switches the roles of 
the parent and child 
while maintaining the 
search order. 

A single rotation 
handles the outside 
cases (1 and 4). We 
rotate between a node 
and its child.The 
result is a binary 
search tree that 
satisfies the AVL 
property. 

new balance violates the AVL condition. In this section we show how to 
rebalance the tree at the first (i.e., the deepest) such node and prove that this 
rebalancing guarantees that the entire tree satisties the AVL property. 

The node to be rebalanced is X. Because any node has at nlost two chil- 
dren and a height imbalance requires that the heights of X's two subtrees dif- 
fer by 2. a violation nlight occur in 

I .  an insertion in the left subtree of the left child of X, 
2. an insertion in the right subtree of  the left child of X, 

3. an insertion in the left subtree of the right child of X, or 

4. an insertion in the right subtree of the right child of X. 

Cases I and 4 are mirror-image symmetries with respect to X, as are cases 2 
and 3. Consequently, there theoretically are two basic cases. From a pro- 
gramming perspective, of course. there are still four cases and numerous 
special cases. 

The first case, in which the insertion occurs on the outside (i.e.. left-left 
or right-right). is fixed by a single rotation of the tree. A single rotation 
switches the roles of the parent and child while maintaining search order. 
The second case, in which the insertion occurs on the inside (i.e.. left-right 
or right-left), is handled by the slightly more complex double rotation. 
These fundamental operations on the tree are used several times in balanced 
tree algorithms. In the remainder of this section we describe these rotations 
and prove that they suffice to maintain the balance condition. 

19.4.2 Single Rotation 

Figure 19.23 shows the single rotation that fixes case I .  In Figure 19.23(a). 
node k ,  violates the AVL balance property because its left subtree is two lev- 
els deeper than its right subtree (the dashed lines mark the levels in this sec- 
tion). The situation depicted is the only possible case 1 scenario that allows 
k ,  to satisfy the AVL property before the insertion but violate it afterward. 
Subtree A has grown to an extra level. causing it to be two levels deeper than 
C. Subtree R cannot be at the same level as the new A because then k ,  would 
have been out of balance before the insertion. Subtree B cannot be at the 
same level as C because then k ,  would have been the tirst node on the path 
that was in violation of the AVL balancing condition (and we are claiming 
that k,  is). 

rdeally. to rebalance the tree, we want to move A up one level and C 
down one level. Note that these actions are more than the AVL property 
require. To do  so we rearrange nodes into an equivalent search tree. as 



(a) Before rotation (b) After rotation 

Figure 19.23 Single rotation to fix case 1. 

1 / /  Rotate binary tree node with left child. 
2 template <class Comparable> 
3 void BST<Comparable>::rotateWithLeftChild( Node * & k2 ) const 
4 ( 
5 Node *kl = k2->left; 
6 k2->left = kl->right; 
7 kl->right = k2; 
8 k2 = kl; 

9 1 

Figure 19.24 Pseudocode for a single rotation (case 1). 

shown in Figure 19.23(b). Here is an abstract scenario: Visualize the tree as 
being flexible, grab the child node k,, close your eyes, and shake the tree, let- 
ting gravity take hold. The result is that k, will be the new root. The binary 
search tree property tells us that in the original tree, k2 > kl, so k2 becomes 
the right child of k, in the new tree. Subtrees A and C remain as the left child 
of k, and the right child of k2, respectively. Subtree B, which holds items 
between k l  and k2 in the original tree, can be placed as k2's left child in the 
new tree and satisfy all the ordering requirements. 

This work requires only the few child pointer changes shown as one rotation suffices 

pseudocode in Figure 19.24 and results in another binary tree that is an AVL fix and in 
an AVL tree. tree. This outcome occurs because A moves up one level, B stays at the same 

level, and C moves down one level. Thus kl and k2 not only satisfy the AVL 
requirements, but they also have subtrees that are the same height. Further- 
more, the new height of the entire subtree is exactly the same as the height of 
the original subtree before the insertion that caused A to grow. Thus no further 
updating of the heights on the path to the root is needed, and consequently, no 
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(a) Before rotation (b) After rotation 

Figure 19.25 Single rotation fixes an AVL tree after insertion of 1. 

(a) Before rotation (b) After rotation 

Figure 19.26 Symmetric single rotation to fix case 4. 

further rotations are needed. We use this single rotation often in other bal- 
anced tree algorithms in this chapter. 

Figure 19.25(a) shows that after the insertion of 1 into an AVL tree, node 8 
becomes unbalanced. This is clearly a case 1 problem because 1 is in 8's 
left-left subtree. Thus we do a single rotation between 8 and 4, thereby obtain- 
ing the tree shown in Figure 19.25(b). As mentioned earlier in this section, 
case 4 represents a symmetric case. The required rotation is shown in Fig- 
ure 19.26, and the pseudocode that implements it is shown in Figure 19.27. 
This routine, along with other rotations in this section, is replicated in vari- 
ous balanced search trees later in this text. These rotation routines appear in 
the online code for several balanced search tree implementations. 



1 / /  Rotate binary tree node with right child. 
2 template <class Comparable> 
3 void BST<Comparable>::rotateWithRightChild( Node * & kl ) const 
4 { 
5 Node *k2 = kl->right; 
6 kl->right = k2->left; 
7 k2->left = kl; 
8 kl = k2; 
9 } 

Figure 19.27 Pseudocode for a single rotation (case 4). 

(a) Before rotation (b) After rotation 

Figure 19.28 Single rotation does not fix case 2. 

19.4.3 Double Rotation 

The single rotation has a problem: As Figure 19.28 shows, it does not work The single rotation 

for case-2 (or, by symmetry, for case 3). The problem is that subtree Q is too does not fix the inside 
cases (2 and 3).These 

deep, and a single rotation does not make it any less deep. The double rota- ,as,s require a 
tion that solves the problem is shown in Figure 19.29. double rotation, 

The fact that subtree Q in Figure 19.28 has had an item inserted into it involvingthreenodes 

guarantees that it is not empty. We may assume that it has a root and two and four subtrees. 

(possibly empty) subtrees, so we may view the tree as four subtrees con- 
nected by three nodes. We therefore rename the four trees A, B, C, and D. As 
Figure 19.29 suggests, either subtree B or subtree C is two levels deeper than 
subtree D, but we cannot be sure which one. Actually it does not matter; 
here, both B and C are drawn at 1.5 levels below D. 

To rebalance, we cannot leave k3 as the root. In Figure 19.28 we showed 
that a rotation between kj  and k, does not work, so the only alternative is to 
place k2 as the new root. Doing so forces k l  to be k2's left child and k3 to be 
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. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
(a) Before rotation 

. . . . . . . . . . . . . . . . . . . . . .  
(b) After rotation 

Figure 19.29 Left-right double rotation to fix case 2. 

(a) Before rotation (b) After rotation 

Figure 19.30 Double rotation fixes AVL tree after the insertion of 5. 

k2's right child. It also determines the resulting locations of the four subtrees, 
and the resulting tree satisfies the AVL property. Also, as was the case with 
the single rotation, it restores the height to the height before the insertion, 
thus guaranteeing that all rebalancing and height updating are complete. 

As an example, Figure 19.30(a) shows the result of inserting 5 into an 
AVL tree. A height imbalance is caused at node 8, resulting in a case 2 prob- 
lem. We perform a double rotation at that node, thereby producing the tree 
shown in Figure 19.30(b). 



- - - - - - - - - ~ - - - ~ - - - ~ - - - ~ - - ~ ~ - - - ~ - ~ ~ - - - - - ~ - - - - - - - - - - - - - - .  

(a) Before rotation (b) After rotation 

Figure 19.31 Left-right double rotation to fix case 3. 

1 / /  Double rotate binary tree node: first left child 
2 / /  with its right child; then node k3 with new left child 
3 / /  For AVL trees, this is a double rotation for case 2. 
4 template <class Comparable> 
5 void BST<Comparable>:: 
6 doubleRotateWithLeftChild( Node * & k3 ) const 
7 I 
8 rotateWithRightChild( k3->left ) ; 
9 rotateWithLeftChild( k3 ) ;  

10 1 

Figure 19.32 Pseudocode for a double rotation (case 2). 

Figure 19.3 1 shows that the symmetric case 3 can also be fixed by a dou- A double rotation is 

ble rotation. Finally, note that, although a double rotation appears complex, 
stngle rotations. 

it turns out to be equivalent to 

a rotation between X's child and grandchild, and 
a rotation between X and its new child. 

The pseudocode to implement the case 2 double rotation is compact and 
is shown in Figure 19.32. The mirror-image pseudocode for case 3 is shown 
in Figure 19.33. 



Binary Search Trees 

1 / /  Double rotate binary tree node: first right child 
2 / /  with its left child; then node kl with new right child. 
3 / /  For AVL trees, this is a double rotation for case 3. 
4 template <class Comparable> 
5 void BST<Comparable>:: 
6 doubleRotateWithRightChild( Node * & kl ) const 

7 ( 
8 rotateWithLeftChild( kl->right ) ;  

9 rotateWithRightChild( kl ) ; 

10 1 

Figure 19.33 Pseudocode for a double rotation (case 3). 

19.4.4 Summary of AVL Insertion 

A casual AVL 
implementation Is not 
excessively complex, 
but it is not efficient. 
Better balanced 
search trees have 
since been 
discovered, so 
implementing an 
AVL tree is not 
worthwhile. 

A red-black tree is a 
good alternative to 
the AVL tree. The 
coding details tend to 
give a faster 
implementation 
because a single top- 
down pass can be 
used during the 
insertion and deletion 
routines. 

Here is a brief summary how an AVL insertion is implemented. A recursive 
algorithm turns out to be the simplest method of implementing an AVL 
insertion. To insert a new node with key X in an AVL tree T we recursively 
insert it in the appropriate subtree of T (denoted TLR). If the height of TLR 
does not change, we are done. Otherwise, if a height imbalance appears in T, 
we do the appropriate single or double rotation (rooted at T), depending on X 
and the keys in T and T,, and then we are done (because the old height is 
the same as the postrotation height). This recursive description is best 
described as a casual implementation. For instance, at each node we com- 
pare the subtree's heights. In general, storing the result of the comparison in 
the node is more efficient than maintaining the height information. This 
approach avoids the repetitive calculation of balance factors. Furthermore, 
recursion incurs substantially more overhead than does an iterative version. 
The reason is that, in effect, we go down the tree and completely back up 
instead of stopping as soon as a rotation has been performed. Consequently, 
in practice, other balanced search tree schemes are used. 

1 9.5 Red-Black Trees 

A historically popular alternative to the AVL tree is the red-black tree, in 
which a single top-down pass can be used during the insertion and deletion 
routines. This approach contrasts with an AVL tree, in which a pass down 
the tree is used to establish the insertion point and a second pass up the tree 
is used to update heights and possibly rebalance. As a result, a careful nonre- 
cursive implementation of the red-black tree is simpler and faster than an 
AVL tree implementation. As on AVL trees, operations on red-black trees 
take logarithmic worst-case time. 



Red-Black Trees 

A red-black tree is a binary search tree having the following ordering 
properties: 

1. Every node is colored either red or black. 
2. The root is black. 
3. If a node is red, its children must be black. 
4. Every path from a node to a NULL pointer must contain the same 

number of black nodes. 

In this discussion of red-black trees, shaded nodes represent red nodes. 
Figure 19.34 shows a red-black tree. Every path from the root to a NULL 

node contains three black nodes. 
We can show by induction that, if every path from the root to a NULL 

node contains B black nodes, the tree must contain at least 2B - 1 black 
nodes. Furthermore, as the root is black and there cannot be two consecutive 
red nodes on a path, the height of a red-black tree is at most 2 log (N + 1). 
Consequently, searching is guaranteed to be a logarithmic operation. 

The difficulty, as usual, is that operations can change the tree and possi- 
bly destroy the coloring properties. This possibility makes insertion difficult 
and removal especially so. First, we implement the insertion, and then we 
examine the deletion algorithm. 

Consecutive red 
nodes are disallowed, 
and all paths have the 
same number of black 
nodes. 

Shaded nodes are red 
throughout this 
discussion. 

The depth of a red- 
black tree is 
guaranteed to be 
logarithmic. Typically, 
the depth is the same 
as for an AVL tree. 

Figure 19.34 A red-black tree: The insertion sequence is 10, 85, 15, 70, 20, 60, 
30, 50, 65, 80, 90,40,5, and 55 (shaded nodes are red). 
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New items must be 
colored red. If the 
parent is already red, 
we must recolor andl 
or rotate to remove 
consecutive red 
nodes. 

If the parent's sibling 
is black, a single or 
double rotation fixes 
things, as in an AVL 
tree. 

19.5.1 Bottom-Up Insertion 

Recall that a new item is always inserted as a leaf in the tree. If we color a 
new item black, we violate property 4 because we create a longer path of 
black nodes. Thus a new item must be colored red. If the parent is black, we 
are done; thus the insertion of 25 into the tree shown in Figure 19.34 is triv- 
ial. If the parent is already red, we violate property 3 by having consecutive 
red nodes. In this case, we have to adjust the tree to ensure that property 3 is 
enforced and do so without introducing a violation of property 4. The basic 
operations used are color changes and tree rotations. 

We have to consider several cases (each with mirror-image symmetry) if 
the parent is red. First, suppose that the sibling of the parent is black (we 
adopt the convention that NULL nodes are black), which would apply for the 
insertions of 3 or 8 but not for the insertion of 99. Let X be the newly added 
leaf, P be its parent, S be the sibling of the parent (if it exists), and G be the 
grandparent. Only X and P are red in this case; G is black because otherwise 
there would be two consecutive red nodes prior to the insertion-a violation 
of property 3. Adopting the AVL tree terminology, we say that relative to G, X 
can be either an outside or inside node.2 If X is an outside grandchild, a single 
rotation of its parent and grandparent along with some color changes will 
restore property 3. If X is an inside grandchild, a double rotation along with 
some color changes are needed. The single rotation is shown in Figure 19.35, 
and the double rotation is shown in Figure 19.36. Even though Xis a leaf, we 
have drawn a more general case that allows X to be in the middle of the tree. 
We use this more general rotation later in the algorithm. 

A B 
(a) Before rotation 

D E 
(b) After rotation 

Figure 19.35 If S is black, a single rotation between parent and grandparent, with 
appropriate color changes, restores property 3 if Xis an outside 
grandchild. 

2. See Section 19.4.1, page 664. 
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B C 
(a) Before rotation 

D E 

(b) After rotation 

Figure 19.36 If S is black, a double rotation involving X, the parent, and the 
grandparent, with appropriate color changes, restores property 3 if X 
is an inside grandchild. 

/ \ 
A B 

(a) Before rotation 

A 4 D E 

(b) After rotation 

Figure 19.37 If S is red, a single rotation between parent and grandparent, with 
appropriate color changes, restores property 3 between X and P 

Before continuing, consider why these rotations are correct. We need to be 
sure that there are never two consecutive red nodes. As shown in Figure 19.36, 
for instance, the only possible instances of consecutive red nodes would be 
between P and one of its children or between G and C. But the roots of A, B, 
and C must be black; otherwise, there would have been additional property 3 
violations in the original tree. In the original tree, there is one black node on 
the path from the subtree root to A, B, and C and two black nodes on the 
paths to D and E. We can verify that this pattern holds after rotation and 
recoloring. 

So far so good. But what happens if S is red, as when we attempt to 
insert 79 in the tree shown in Figure 19.34? Then neither the single nor the 
double rotation works because both result in consecutive red nodes. In fact, 
in this case three nodes must be on the path to D and E and only one can be 
black. Hence both S and the subtree's new root must be colored red. For 
instance, the single rotation case that occurs when Xis an outside grandchild 
is shown in Figure 19.37. Although this rotation seems to work, there is a 

If the parent's sibling 
is red, then after we 
fix things, we induce 
consecutive red 
nodes at a higher 
level. We need to 
iterate up the tree to 
fix things. 
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problem: What happens if the parent of the subtree root (j.e., X's original 
great grandparent) is also red? We could percolate this procedure up toward 
the root until we no longer have two consecutive red nodes or we reach the 
root (which would be recolored black). But then we would be back to mak- 
ing a pass up the tree, as in the AVL tree. 

19.5.2 Top-Down Red-Black Trees 

To avoid iterating 
back up the tree, we 
ensure as we 
descend the tree that 
the sibling's parent is 
not red. We can do so 
with color flips andlor 
rotations. 

To avoid the possibility of having to rotate up the tree, we apply a top-down 
procedure as we are searching for the insertion point. Specifically, we guar- 
antee that, when we arrive at a leaf and insert a node, S is not red. Then we 
can just add a red leaf and if necessary use one rotation (either single or dou- 
ble). The procedure is conceptually easy. 

On the way down, when we see a node X that has two red children, we 
make X red and its two children black. Figure 19.38 shows this color flip. 
The number of black nodes on paths below X remains unchanged. However, 
if X's parent is red, we would introduce two consecutive red nodes. But in 
this case, we can apply either the single rotation in Figure 19.35 or the dou- 
ble rotation in Figure 19.36. But what if X's parent's sibling is also red? This 
situation cannot happen. If on the way down the tree, we see a node Y that 
has two red children, we know that Y's grandchildren must be black. And as 
Y's children are also made black via the color flip-even after the rotation 
that may occur-we would not see another red node for two levels. Thus 
when we see X, if X's parent is red, X's parent's sibling cannot also be red. 

For example, suppose that we want to insert 45 in the tree shown in Fig- 
ure 19.34. On the way down the tree we see node 50, which has two red chil- 
dren. Thus we perform a color flip, making 50 red and 40 and 55 black. The 
result is shown in Figure 19.39. However, now 50 and 60 are both red. We 
perform a single rotation (because 50 is an outside node) between 60 and 70, 
thus making 60 the black root of 30's right subtree and making 70 red, as 
shown in Figure 19.40. We then continue, performing an identical action if 
we see other nodes on the path that contain two red children. It happens that 
there are none. 

Figure 19.38 Color flip: Only if X's parent is red do we continue with a rotation. 
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Figure 19.39 A color flip at 50 induces a violation; because the violation is outside, 
a single rotation fixes it. 

Figure 19.40 Result of single rotation that fixes the violation at node 50. 

When we get to the leaf, we insert 45 as a red node, and as the parent is 
black, we are done. The resulting tree is shown in Figure 19.41. Had the par- 
ent been red, we would have needed to perform one rotation. 

As Figure 19.41 shows, the red-black tree that results is frequently well 
balanced. Experiments suggest that the number of nodes traversed during an 
average red-black tree search is almost identical to the average for AVL 
trees, even though the red-black tree's balancing properties are slightly 
weaker. The advantage of a red-black tree is the relatively low overhead 
required to perform insertion and the fact that, in practice, rotations occur 
relatively infrequently. 



Binary Search Trees 

Figure 19.41 Insertion of 45 as a red node. 

19.5.3 C++ Implementation 

We remove special An actual implementation is complicated, not only by many possible rota- 
cases by using a tions, but also by the possibility that some subtrees (such as the right subtree 
sentinel for the NULL 
pointer and a of the node containing 10 in Figure 19.41) might be empty and by the spe- 
pseudoroot. Doing SO cial case of dealing with the root (which among other things, has no parent). 
requires minor To remove special cases, we use two sentinels. 
modifications of 
almost every routine. 

We use nu1 lNode in place of a NULL pointer; nullNode will always 
be colored black. 
We use header as a pseudoroot; it has a key value of -m and a right 
pointer to the real root. 

On the way down, we Therefore even basic routines such as isEmpty need to be altered. 
maintain pointers to Consequently, inheriting from BinarySearchTree does not make sense, 
the current, parent, 
grandparent, and and we write the class from scrat-h. The RedBlackNode class is shown in 
great-grandparent Figure 19.42 and is straightforward. The RedBlackTree class interface is 
nodes. shown in Figure 19.43. Lines 32 and 33 declare the sentinels that we dis- 

cussed previously. Four pointers-current, parent, grand, and great- 
are used in the i n se r t  routine. Their placement in the interface (at lines 36- 
39) indicates that they are essentially global variables. The reason is that, as 
we show shortly, having them shared by insert and the handleReorient 
routine is convenient. The remove operator is unimplemented. 

The remaining routines are similar to their BinarySearchTree coun- 
terparts, except that they have different implementations because of the sen- 
tinel nodes. The constructor must be provided with the value of -.., and the 
destructor must delete the nullNode sentinel and header. A constructor 
and destructor are shown in Figure 19.44. The constructor allocates the two 
sentinels and sets all their left and right pointers to nu1 lNode. 
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1 template <class Comparable> 
2 class RedBlackTree; 
3 
4 template <class Comparable> 
5 class RedBlackNode 
6 ( 

7 Comparable element; 
8 RedBlackNode *left; 
9 RedBlackNode *right; 

10 int color; 
11 
12 RedBlackNode( const Comparable & theElement = Comparable( 1 ,  
13 RedBlackNode *It = NULL, 
14 RedBlackNode *rt = NULL, 
15 int c = RedBlackTree<Comparable>::BLACK ) 

16 : element( theElement ) ,  left( it 1 ,  right( rt 1 ,  
17 color( c ) { 1 
18 
19 friend class RedBlackTree<Comparable>; 
20 } ;  

Figure 19.42 The RedBlackNode class. 

Figure 19.45 shows the simplest change that results from the use of the Tests against NULL 

sentinels. The test against NULL needs to be replaced with a test against are replaced by tests 
against nullNode. 

nullNode. Instead, we use the fact that for nu1 lNode, t ->lef t equals t. 
This test is simpler for other internal routines in which t might belong to a 
different tree (e.g., the clone method) because each tree has a unique 
nu1 lNode. 

For the find routine shown in Figure 19.46 we use a common trick. When performing a - 
Before we begin the search, we place x in the nullNode sentinel. Thus we find Operation, we 

copy x into the 
are guaranteed to match x eventually, even if x is not found. If the match nullNode sentinel 
occurs at nullNode, we can tell that the item was not found. We use this to avoid extra tests. 

trick in the insert procedure. Of course, if copying is expensive, use of the 
trick may not be wise. However, the cost of a single copy rarely has much 
impact on performance. 

The insert method follows directly from our description and is shown The code is relatively 

in Figure 19.47. The while loop encompassing lines 9 to I9  descends the the 
number of cases 

tree and fixes nodes that have two red children by calling handleReorient, involved and the 
as shown in Figure 19.48. To do so, i t  keeps track of not only the current factthat the 

node but also the parent, grandparent, and great-grandparent. Note that after implementation is 
nonrecursive. For a rotation the values stored in the grandparent and great-grandparent are no 
these reasons the 

longer correct. However, they will be restored by the time they are next red-black tree 
needed. When the loop ends, either x is found (as indicated by current performs well. 

! =nullNode) or x is not found (as indicated by current==nullNode). If 



1 / /  Red-black tree class. 
2 / /  
3 / /  CONSTRUCTION: with negative infinity object. 
4 / /  
5 / /  ******************PUBLIC OPERATIONS********************* 

6 / /  void insert( x ) - - >  Insert x 
7 / /  void remove( x ) - - >  Remove x (unimplemented) 
8 / /  Comparable find( x ) - - >  Return item that matches x 
9 / /  boo1 isEmpty( ) - - >  Return true if empty; else false 

10 / / void makeEmpty ( ) - ->  Remove all items 
11 
12 template <class Comparable> 
13 class RedBlackTree 
14 { 

15 public: 
16 RedBlackTree( const Comparable & negInf ) ;  

17 RedBlackTree( const RedBlackTree & rhs ) ;  

18 -RedBlackTree( 1 ;  
19 
20 Cref<Comparable> find( const Comparable & x ) const; 
21 boo1 isEmpty ( ) const; 
22 void makeEmpty ( ) ; 

23 void insert( const Comparable & x ) ;  

24 void remove( const Comparable & x ) ;  

25 
26 enum { RED, BLACK 1; 
27 const RedBlackTree & operator=( const RedBlackTree & rhs ) ;  

28 
29 typedef RedBlackNode<Comparable> Node; 
30 
31 private: 
32 Node *header; / /  The tree header 
33 Node *nullNode; 
34 
35 / /  Used in insert routine and its helpers 
36 Node "current; 
37 Node *parent; 
38 Node *grand; 
39 Node *great; 
40 
41 / /  Usual recursive stuff 
42 void reclaimMemory( Node *t ) const; 
43 RedBlackNode<Comparable> * clone( Node * t ) const; 
44 
45 / /  Red-black tree manipulations 
46 void handleReorient( const Comparable & item ) ;  

47 RedBlackNode<Comparable> * rotate( const Comparable & item, 
48 Node *parent ) const; 
49 void rotateWithLeftChild( Node * & k2 ) const; 
50 void rotateWithRightChild( Node * & kl ) const; 
51 I; 

Figure 19.43 The RedBlackTree class interface. 
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1 / /  Construct the tree. 
2 / /  negInf is a value less than or equal to all others 
3 template <class Comparable> 
4 RedBlackTree<Comparable>: : 
5 RedBlackTree( const Comparable & negInf ) 

6 I 
7 nullNode = new Node; 
8 nullNode->left = nullNode->right = nullNode; 
9 header = new Node( negInf 1 ;  

10 header->left = header->right = nullNode; 

11 I 
12 
13 / /  Destroy the tree. 
14 template <class Comparable> 
15 RedBlackTree<Comparable>::-RedBlackTree( ) 

16 I 
17 makeEmpty ( ) ; 

18 delete nullNode; 
19 delete header; 

20 1 

Figure 19.44 The RedBlackTree constructor and destructor. 

1 / /  Internal method to reclaim internal nodes in subtree t. 
2 template <class Comparable> 
3 void RedBlackTree<Comparable>::reclaimMemory( Node *t ) const 

4 I 
5 if ( t ! =  t->left ) 

6 { 

7 reclaimMemory( t->left ) ;  

8 reclaimMemory( t->right ) ;  

9 delete t; 
10 } 

11 } 

Figure 19.45 The rec laimMemory method for the RedBlackTree class. 

x is found, we throw an exception at line 23. Otherwise, x is not already in 
the tree, and it needs to be made a child of parent. We allocate a new node 
(as the new current node), attach it to the parent, and call handleReori- 
ent at lines 24-3 1 .  
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1 / /  Find item x in the tree. 
2 / /  Return the matching item wrapped in a Cref object. 
3 template <class Comparabie> 
4 Cref<Comparable> RedBlackTree<Comparable>: : 
5 find( const Comparable & x i const 
6 { 
7 nullNode->element = x; 
8 Node *curr = header->right; 
9 

10 for( ; ; 

11 i 
12 i f  ( x < curr->element ) 

13 curr = curr->left; 
14 else if ( curr->element < x ) 

15 curr = curr->right; 
16 else if( curr ! =  nullNode ) 

17 return Cref<Comparable>( curr->element ) ; 

18 else 
19 return Cref<Comparable>( ) ;  

20 1 
21 

Figure 19.46 The RedBlackTree find routine. Note the use of header and 
nullNode. 

The rotate function The code used to perform a single rotation is shown in the rotate func- - 
has four possibilities. tion in Figure 19.49. Because the resultant tree must be attached to a parent, 
The ? : operator 
colla,,ses the code rotate takes the parent node as a parameter. Rather than keep track of the 
but is logically type of rotation (left or right) as we descend the tree, we pass x as a parame- 
equivalent to an if/ ter. We expect very few rotations during the insertion, so doing it this way is 
else test. not only simple but is actually faster. 

The handleReorient routine calls rotate as necessary to perform 
either single or double rotation. As a double rotation is just two single rota- 
tions, we can test whether we have an inside case, and if so, do an extra rota- 
tion between the current node and its parent (by passing the grandparent to 
rotate). In either case we rotate between the parent and grandparent (by 
passing the great-grandparent to rotate). This action is succinctly coded in 
lines 16- 18 of Figure 19.48. 

19.5.4 Top-Down Deletion 

Deletion in red-black trees can also be performed top-down. Needless to say, 
an actual implementation is fairly complicated because the remove algo- 
rithm for unbalanced search trees is nontrivial in the first place. The normal 
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1 / /  Insert item x into the tree. 
2 / /  Throws DuplicateItemException if x is already present. 
3 template <class Comparable> 
4 void RedBlackTree<Comparable>: :insert( const Comparable & x ) 

5 I 
6 current = parent = grand = header; 
7 nullNode->element = x; 
8 
9 while( current->element ! =  x ) 

10 I 
11 great = grand; grand = parent; parent = current; 
12 current = x < current->element ? 

13 current->left : current->right; 
14 
15 / /  Check if two red children; fix if so 
16 if( current->left->color == RED && 

17 current->right->color == RED ) 

18 handleReorient ( x ) ; 

19 1 
20 
21 / /  Insertion fails if already present 
22 if( current ! =  nullNode ) 

23 throw ~uplicate~temException( ) ;  

24 current = new Node( x, nullNode, nullNode ) ;  

25 
26 / /  Attach to parent 
27 if( x < parent->element ) 

28 parent->left = current; 
29 else 
30 parent->right = current; 
31 handleReorient( x ) ;  

32 1 

Figure 19.47 The i n se r t  routine for the RedBlackTree class. 

binary search tree deletion algorithm removes nodes that are leaves or have 
one child. Recall that nodes with two children are never removed; their con- 
tents are simply replaced. 

If the node to be deleted is red, there is no problem. However, if the node Deletion is fairly 

to be deleted is black, its removal will violate property 4. The solution to the complex.The basic 
idea is to ensure that problem is to ensure that any node we are about to delete is red. the deleted node is 

Throughout this discussion, we let X be the current node, T be its sib- red. 
ling, and P be their parent. We begin by coloring the sentinel root red. As we 
traverse down the tree, we attempt to ensure that X is red. When we arrive at 
a new node, we are certain that P is red (inductively, by the invariant that we 
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1 / /  Internal routine that is called during an insertion 
2 / /  if a node has two red children. Performs flip and rotations. 
3 / /  item is the item being inserted. 
4 template <class Comparable> 
5 void RedBlackTree<Comparable>:: 
6 handleReorient( const Comparable & item ) 

7 { 

8 / i  Do the color flip 
9 current->color = RED; 

10 current->left->color = BLACK; 
11 current->right->color = BLACK; 
12 
13 if( parent->color == RED ) / /  Have to rotate 
14 { 

15 grand->color = RED; 
16 if( item i grand->element ! =  item < parent->element ) 

17 parent = rotate( item, grand ) ;  / /  Start dbl rotate 
18 current = rotate( item, great ) ;  

19 current->color = BLACK; 
20 1 
2 1 header->right->color = BLACK; / /  Make root black 
22 1 

Figure 19.48 The handleReorient routine, which is called if a node has two red 
children or when a new node is inserted. 

are trying to maintain) and that X and Tare black (because we cannot have 
two consecutive red nodes). There are two main cases, along with the usual 
symmetric variants (which are omitted). 

First, suppose that X has two black children. There are three subcases, 
which depend on T's children. 

I .  T has two black children: Flip colors (Figure 19.50). 
2. T has an outer red child: Perform a single rotation (Figure 19.5 I ). 
3. T has an inner red child: Perform a double rotation (Figure 19.52). 

Examination of the rotations shows that if T has two red children, either 
a single rotation or double rotation will work (so it makes sense to do the 
single rotation). Note that, if X is a leaf, its two children are black, so we can 
always apply one of these three mechanisms to make X red. 

Second, suppose that one of X's children is red. Because the rotations in 
the first main case always color X red, if X has a red child, consecutive red 
nodes would be introduced. Thus we need an alternative solution. In this 
case. we fall through to the next level, obtaining a new X ,  7: and P. If we are 
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1 / /  Internal routine that performs a single or double rotation. 
2 / /  Because the result is attached to the parent, there are 
3 / /  four cases. Called by handleReorient. 
4 / /  item is the item in handleReorient. 
5 / /  parent is the parent of the root of the rotated subtree. 
6 / /  Return the root of the rotated subtree. 
7 template <class Comparable> 
8 RedBlackNode<Comparable> * RedBlackTree<Comparable>:: 
9 rotate( const Comparable & item, Node *theparent ) const 

10 { 

11 if( item < theparent->element ) 
12 i 
13 item < theparent->left->element ? 

14 rotateWithLeftChild( theparent->left ) : / /  LL 
15 rotateWithRightChild( theparent->left ) ; / /  LR 
16 return theparent->left; 
17 1 
18 else 
19 i 
20 item < theparent->right->element ? 

21 rotateWithLeftChild( theparent->right ) : / /  RL 
22 rotateWithRightChild( theparent->right ) ;  / /  RR 
23 return theparent->right; 
24 1 
25 } 

Figure 19.49 A routine for performing an appropriate rotation. 

Figure 19.50 X has two black children, and both of its sibling's children are black; 
do a color flip. 

lucky, we will fall onto a red node (we have at least a 50 percent chance that 
this will happen), thereby making the new current node red. Otherwise, we 
have the situation shown in Figure 19.53. That is, the current X is black, the 
current T is red, and the current P is black. We can then rotate T and P, 
thereby making X's new parent red; X and its new grandparent are black. 
Now X is not yet red, but we are back to the starting point (although one 
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Figure 19.51 X has two black children, and the outer child of its sibling is red; do a 
single rotation. 

Figure 19.52 X has two black children, and the inner child of its sibling is red; do a 
double rotation. 

Figure 19.53 Xis black, and at least one child is red; if we fall through to the next 
level and land on a red child, fine; if not, we rotate a sibling and 
parent. 

level deeper). This outcome is good enough because it shows that we can 
iteratively descend the tree. Thus, so long as we eventually either reach a 
node that has two black children or land on a red node, we are okay. This 
result is guaranteed for the deletion algorithm because the two eventual 
states are 

X is a leaf, which is always handled by the main case since X has two 
black children; and 
X has only one child, for which the main case applies if the child is 
black, and if it is red, we can delete X, if necessary, and make the child 
black. 



Lazy deletion, in which items are marked as deleted but not actually 
deleted, is sometimes used. However, lazy deletion wastes space and com- 
plicates other routines (see Exercise 19.26). 

Because of many possible rotations, the red-black tree is fairly tricky to 
code. In particular, the remove operation is quite challenging. In this section 
we describe a simple but competitive balanced search tree known as an AA- 
tree. The AA-tree is the method of choice when a balanced tree is needed, a 
casual implementation is acceptable, and deletions are needed. The AA-tree 
adds one extra condition to the red-black tree: Left children may not be red. 

This simple restriction greatly simplifies the red-black tree algorithms 
for two reasons: First, it eliminates about half of the restructuring cases; sec- 
ond, it simplifies the remove algorithm by removing an annoying case. That 
is, if an internal node has only one child, the child must be a red right child 
because red left children are now illegal, whereas a single black child would 
violate property 4 for red-black trees. Thus we can always replace an inter- 
nal node with the smallest node in its right subtree. That smallest node is 
either a leaf or has a red child and can be easily bypassed and removed. 

To simplify the implementation further, we represent balance informa- 
tion in a more direct way. Instead of storing a color with each node, we store 
the node's level. The level of a node represents the number of left links on 
the path to the nu1 lNode sentinel and is 

level 1, if the node is a leaf; 
the level of its parent, if the node is red; and 
one less than the level of its parent, if the node is black. 

The result is an AA-tree. If we translate the structure requirement from 
colors to levels, we know that the left child must be one level lower than its 
parent and that the right child may be zero or one level lower than its parent 
(but not more). A horizontal link is a connection between a node and a child 
of equal levels. The coloring properties imply that 

1 .  horizontal links are right links (because only right children may be 
red), 

2. there may not be two consecutive horizontal links (because there 
cannot be consecutive red nodes), 

3, nodes at level 2 or higher must have two children, and 
4, if a node does not have a right horizontal link, its two children are at 

the same level. 

Lazy deletion is the 
marking of items as 
deleted. 

The AA-tree is the 
method of choice 
when a balanced tree 
is needed, a casual 
implementation is 
acceptable, and 
deletions are needed. 

The level of a node in 
an AA-tree represents 
the number of left 
links on the path to 
the nullNode 
sentinel. 

A horizontal link in an 
AA-tree is a 
connection between a 
node and a child of 
equal levels. A 
horizontal link should 
go only to the right, 
and there should not 
be two consecutive 
horizontal links. 
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Figure 19.54 AA-tree resulting from the insertion of 10, 85, 15, 70, 20, 60, 30, 50, 
65, 80, 90, 40, 5, 55, and 35. 

Figure 19.54 shows a sample AA-tree. The root of this tree is the node 
with key 30. Searching is done with the usual algorithm. And as usual, 
insert and remove are more difficult because the natural binary search 
tree algorithms may induce a violation of the horizontal link properties. Not 
surprisingly, tree rotations can fix all the problems encountered. 

19.6.1 Insertion 

Insertion is done by Insertion of a new item is always done at the bottom level. As usual, that 
using the usual may create problems. In the tree shown in Figure 19.54, insertion of 2 would 
recursive algorithm 
and two method calls. create a horizontal left link, whereas insertion of 45 would generate consec- 

utive right links. Consequently, after a node has been added at the bottom 
level, we may need to perform some rotations to restore the horizontal link 
properties. 

Left horizontal links In both cases, a single rotation fixes the problem. We remove left hori- 
are removed by a zontal links by rotating between the node and its left child, a procedure 
skew (rotation 
between a node and called skew. We fix consecutive right horizontal links by rotating between 
its left child). the first and second (of the three) nodes joined by the two links, a procedure 
consecutive right called swlit. 
horizontal links are 
fixed by a split 

The skew procedure is illustrated in Figure 19.55, and the split proce- 
(rotation between a dure is illustrated in Figure 19.56. Although a skew removes a left horizontal 
node and its right link, it might create consecutive right horizontal links because X's right child - - - 
child). A skew 
precedes a spl i t. 

might also be horizontal. Thus we would process a skew first and then a 
split. After a split, the middle node increases in level. That may cause 
problems for the original parent of X by creating either a left horizontal link 
or consecutive right horizontal links: Both problems can be fixed by applying 
the skew/spli t strategy on the path up toward the root. It can be done auto- 
matically if we use recursion, and a recursive implementation of insert is 
only two method calls longer than the corresponding unbalanced search tree 
routine. 



Figure 19.55 The skew procedure is a simple rotation between Xand i? 

Figure 19.56 The s p l  i t  procedure is a simple rotation between X and R; note 
that R's level increases. 

Figure 19.57 After insertion of 45 in the sample tree; consecutive horizontal links 
are introduced, starting at 35. 

To show the algorithm in action, we insert 45 in the AA-tree shown in Fig- This is a rare algo- 

ure 19.54. In Figure 19.57 when 45 is added at the bottom level. consecutive 'ifhm in that it is 
u 

harder to simulate on horizontal links form. Then skewlspli  t pairs are applied as necessary from the 
paper than implement 

bottom up toward the root. Thus, at node 35 a s p l i t  is needed because of the computer. 
consecutive horizontal right links. The result of the s p l i t  is shown in Fig- 
ure 19.58. When the recursion backs up to node 50, we encounter a horizontal 
left link. Thus we perform a skew at 50 to remove the horizontal left link (the 
result is shown in Figure 19.59) and then a s p l i t  at 40 to remove the consecu- 
tive horizontal right links. The result after the s p l i t  is shown in Figure 19.60. 
The result of the s p l i t  is that 50 is on level 3 and is a left horizontal child of 
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Figure 19.58 After split at 35; a left horizontal link at 50 is introduced. 

Figure 19.59 After skew at 50; consecutive horizontal nodes are introduced 
starting at 40. 

Figure 19.60 After split at 40; 50 is now on the same level as 70, inducing an 
illegal left horizontal link. 

70. Therefore we need to perform another skewlspl i t pair. The skew at 70 
removes the left horizontal link at the top level but creates consecutive right hor- 
izontal nodes, as shown in Figure 19.61. When the final split is applied, the 
consecutive horizon:al nodes are removed and 50 becomes the new root of the 
tree. The result is shown in Figure 19.62. 

19.6.2 Deletion 

Deletion is made For general binary search trees: the remove algorithm is broken into three 
easier because the cases: The item to be removed is a leaf, has one child, or has two children. 
one-child case can 
occur only at level 1 For AA-trees, we treat the one-child case the same way as the two-child case 
and we are willing to because the one-child case can occur only at level 1. Moreover, the two- 
use recursion. child case is also easy because the node used as the replacement value is 



Figure 19.61 After skew at 70; consecutive horizontal links are introduced, 
starting at 30. 

Figure 19.62 After split at 30; the insertion is complete 

Figure 19.63 When 1 is deleted, all nodes become level 1, thereby introducing 
horizontal left links. 

guaranteed to be at level I and at worst has only a right horizontal link. Thus 
everything boils down to being able to remove a level-] node. Clearly. this 
action might affect the balance (consider, for instance, the removal of 20 in 
Figure 19.62). 

We let T be the current node and use recursion. If the deletion has altered 
one of T's children to two less than T's level, T's level needs to be lowered 
also (only the child entered by the recursive call could actually be affected, 
but for simplicity we do not keep track of it). Furthermore, if T has a hori- 
zontal right link, its right child's level must also be lowered. At this point, we 
could have six nodes on the same level: 7: T's horizontal right child R, R's 
two children, and those children's horizontal right children. Figure 19.63 
shows the simplest possible scenario. 
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After a recursive After node 1 has been removed, node 2 and thus node 5 become level-1 
removal~threeskews nodes. First. we must fix the left horizontal link that is now introduced 
and two s p l i t s  
guarantee between nodes 5 and 3. Doing so essentially requires two rotations: one 
rebalancing. between nodes 5 and 3 and then one between nodes 5 and 4. In this case, the 

current node T is not involved. However, if a deletion came from the right 
side, T's left node could suddenly become horizontal; that would require a 
similar double rotation (starting at T). To avoid testing all these cases, we 
merely call skew three times. Once we have done that, two calls to s p l i t  

suffice to rearrange the horizontal edges. 

19.6.3 C++ Implementation 

The interface and The node class for the AA-tree is shown in Figure 19.64, followed by the 
are relatively class interface for the AA-tree in Figure 19.65. Much of it duplicates previous 

simple (compared to 
those of the red- tree interfaces. Again, we use a nullNode sentinel; however, we do not need 
black tree). a pseudoroot. The constructor, which is not shown, allocates nu1 lNode, as 

for red-black trees, and has r o o t  point at it. The nu1 lNode is at level 0. 
The routines use private helpers. 

The i n s e r t  method is shown in Figure 19.66. As mentioned earlier this 
section, it is nearly identical to the recursive binary search tree i n s e r t .  The 
only difference is that it adds a call to skew followed by a call to s p l i t .  In 

1 template <class Comparable> 
2 class AATree; 
3 
4 template <class Comparable> 
5 class M o d e  

6 { 

7 Comparable element; 
8 N o d e  +left; 
9 AANode *right; 

10 int level ; 
11 
12 M o d e (  ) : left( NULL ) ,  right( NULL 1 ,  level( 1 ! { } 

13 AANode ( cons t Comparable & e, PSLNode *It, m o d e  *rt, 
14 int lv = 1 ) 

15 : element ( e 1 ,  left ( It ) ,  right ( rt i ,  level ( lv ) { 1 
16 
17 friend class AATree<Comparable>; 
18 1 ;  

Figure 19.64 The node declaration for AA-trees. 



AATree class. 

CONSTRUCTION: with no parameter or another AA-tree 

******************PUBLIC OPERATIONS********************* 

void insert ( x ) - - >  Insert x 
void remove ( x ) - - >  Remove x 
Comparable find( x ) - -> Return item that matches x 
boo1 isEmpty( ) --> Return true if empty; else false 
void makeEmpty( ) - - >  Remove all items 
* * * * * * * * * * * * * * * * * * E R R O R S * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

12 / /  Throws exceptions as warranted. 
13 
14 template <class Comparable> 
15 class AATree 
16 ( 

17 public: 
18 AATree( ) ; 

19 AATree( const AATree & rhs ) ;  

20 -AATree( ) ; 

21 
22 CrefiComparable> find( const Comparable & x ) const; 
23 boo1 isEmpty( ) const; 
24 
25 void makeEmpty ( ) ; 

26 void insert( const Comparable & x ) ;  

27 void remove( const Comparable & x ) ;  

28 
29 const AATree & operator=( const AATree & rhs 1 ;  
30 
31 typedef AANode<Comparable> Node; 
32 
33 private: 
34 Node *root; 
35 Node *nullNode; 
36 CrefcComparable> elementAt( Node *t ) const; 
37 
38 / /  Recursive routines 
39 void insert( const Comparable & x, Node * & t ) ;  

40 void remove( const Comparable & x, Node * & t ) ;  

41 void makeEmpty( Node * & t 1 ;  
42 
43 / /  Rotations 
44 void skew( Node * & t ) const; 
45 void split( Node * & t ) const; 
46 void rotateWithLeftChild( Node * & t ) const; 
47 void rotateWithRightChild( Node * & t ) const; 
48 
49 AANodeiComparable> * clone( Node * t ) const; 
50 1 ;  

Figure 19.65 The class interface for AA-trees. 
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1 / /  Internal method to insert into a subtree. 
2 / /  x is the item to insert. 
3 / /  t is the node that roots the tree. 
4 / /  Set the new root. 
5 / /  Throw DuplicateItemException if x is already in t. 
6 template <class Comparable> 
7 void AATree<Comparable>:: 
8 insert( const Comparable & x, Node * & t ) 

9 I 
10 if( t ==  nullNode ) 

11 t = new Node( x, nullNode, nullNode ) ;  

12 else if( x < t->element ) 

13 insert ( x, t->lef t ) ; 

14 else if( t->element < x ) 

15 insert ( x, t->right ) ; 

16 else 
17 throw DuplicateItemException( ) ;  

18 skew( t ) ;  

19 split( t 1 ;  
20 1 

Figure 19.66 The insert routine for the AATree class. 

Figure 19.67 skew and split are easily implemented, using the already 
existing tree rotations. Finally, remove is shown in Figure 19.68. 

The deleteaode To help us out, we keep two variables, deletedNode and lastNode, 
variable points at the that have lifetime scope by virtue of their st at i c declaration. When we 
node containing x (if 
x is found) or traverse a right child, we adjust deletedNode. Because we call remove 
nullNode if x is not recursively until we reach the bottom (we do not test for equality on the way 
found. The down), we are guaranteed that, if the item to be removed is in the tree, 
lastNode variable 
points at the deletedNode will point at the node that contains it. Note that this tech- 
replacementnode.\rlle nique can be used in the find procedure to replace the three-way compari- 
use two-way sons done at each node with two-way comparisons at each node plus one 
comparisons instead extra equality test at the bottom. lastNode points at the level-] node at 
of three-way 
comparisons. which this search terminates. Because we do not stop until we reach the bot- 

tom, if the item is in the tree, lastNode will point at the level-1 node that 
contains the replacement value and must be removed from the tree. 

After a given recursive call terminates, we are either at level 1 or we are 
not. If we are at level 1 ,  we can copy the node's value into the internal node 
that is to be replaced; we can then call delete. Otherwise, we are at a 
higher level, and we need to determine whether the balance condition has 
been violated. If so, we restore the balance and then make three calls to 
skew and two calls to split. As discussed previously, these actions guaran- 
tee that the AA-tree properties will be restored. 
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1 / /  Skew primitive for AA-trees. 
2 / /  t is the node that roots the tree. 
3 template <class Comparable> 
4 void AATree<Comparable>::skew( Node * & t ) const 
5 i 
6 if( t->left->level == t->level ) 

7 rotateiqithleftChild( t ) ; 

8 1 
9 

10 / /  Split primitive for M-trees. 
11 / /  t is the node that roots the tree. 
12 template <class Comparable> 
13 void AATree<Comparable>::spliti Node * & t ) const 
14 { 

15 if( t->right->right->level == t->level i 
16 { 

17 rotate$:ithRightChild( t ) ; 

18 t->level++; 
19 1 
20 1 

Figure 19.67 The skew and split procedures for the AATree class. 

19.7 Implementing the STL set and m a g  Classes 

In this section we provide a reasonably efficient implementation of the STL 
set and nap classes, with additional error checking that is not provided in 
the STL. The code is a blend of the STL list implementation presented in 
Section 17.5 and the AA-tree implementation in Section 19.6. The AA-tree 
details are, for the most part, not reproduced here because the core private 
routines such as the tree rotations, recursive insertion and removal, and 
makeEmpty and clone are essentially unchanged. Those routines are con- 
tained in the online code. Additionally, owing to space constraints, this code 
is poorly commented and relies on the accompanying text for explanation of 
any tricky details. The online code has the appropriate comments. 

The basic implementation resembles that of the list class with its 
node, set, and iterator classes. However. there are three main differences 
between the classes. 

1 .  The set class has two template parameters. The second template 
parameter is a comparison function that assigns a meaning to 
1essThan. 



1 / /  Internal method to remove from a subtree. 
2 / /  x is the item to remove. 
3 / I  t is the node that roots the tree. 
4 / /  Set the new root. 
5 j /  Throw ItemNotFoundException is x is not in I. 
6 template <class Comparable> 
7 void AATreeiComparable>:: 
8 remove ( const Comparable & x, Node * & t i 
9 i 
10 static Node "lastNode, *deletedNode = nullNode; 
11 
12 if( t ! =  nullNode ) 

13 i 
14 / /  Step 1: Search down the tree and 
15 / / set lastNode and deletemode 
16 lastNode = t ;  
17 if( x i +>element ) 

18 remove ( x, I->left ) ; 

19 else 
20 { 

21 deletedNode = I; 
22 remove ( x, t->right ) ; 

23 } 

24 ! /  Step 2 :  If at the bottom of the tree and 
25 , ! 

/ / x is present, we remove it 
26 if ( t = =  lastNode 
27 I 
28 if( deletedNode == nullNode ) 1 
29 x ! =  deletemode->element ) 

30 throw ItemNotFoundException( 1 ;  
3 1 deletemode->element = t->element; 
32 deletedNode = nullNode; 
33 t = t->right; 
34 delete lastNode; 
35 i 
36 / /  Step 3 :  Otherwise, not at the bottom; rebalance 
37 else 
38 if( t->left->level < t->level - 1 ) 1 
39 t->right->level < t->level - 1 ) 

40 i 
41 if( t->right->level > -t->level ) 
42 t->right->level = t->level; 
43 skew ( t ) ; 

44 skew( t->right 1 ;  
45 skew( I->right->right ) ;  

46 split( t ) ;  

47 split( t->right ) ;  

48 I 
49 1 
50 1 

Figure 19.68 The remove method for AA-trees. 
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2. Generally speaking, the set class has more methods than does the 
list class. 

3. The set iteration routines are more complex than those of the 
1 is t class. 

For simplicity, our implementation provides only forward iteration. We 
must decide how to perform the traversal. Several alternatives are available: 

1 .  use parent pointers; 
2. have the iterator maintain a stack that represents the nodes on the 

path to the current position; and 
3, have each node maintain a pointer to its inorder successor, a tech- 

nique known as a threaded tree. 

To make the code look as much as possible like the AA-tree code in 
Section 19.6, we use the option of having the iterator maintain a stack. 
However, this approach has the significant disadvantage of potentially 
making iterator objects expensive to copy. We leave using parent pointers 
for you to do as Exercise 19.3 I. 

Figure 19.69 shows the basic node class, along with the typical set of 
incomplete class declarations. The set class interface is shown next, in Fig- 
ure 19.70. At line 35 is the data member that stores the comparison function 
object. The routines in lines 41-50 are essentially identical to their AA-tree 
counterparts. For instance, the only difference between the insert method at 
line 42 and the one in the AATree class is that the AAtree version throws an 
exception if a duplicate is inserted. whereas this insert returns false. The 
public methods simply follow the specifications described in Section 7.7. 

Figure 19.71 contains the interface for the const set I tr class. Much 
of it is similar to that in the list class. Line 21 declares path, which is a 
stack that keeps track of the path to the current node. Various assertions are 
declared at lines 24-27. We also provide some hidden methods that can be 
used to traverse the tree (goLeft, for example, moves left, and updates 
path) at lines 31-36. There is no nonconstant iterator class. The reason is 
that if we allow *itr to change a value in the set, it is possible to destroy 
the order in the set. Thus iterator and const-iterator represent the 
same type in our implementation. 

The constructors and Big Three for the set class are shown in Fig- 
ure 19.72. The private helpers, init and makeEmpty, are also shown (but 
the recursive makeEmpty is not). Figure 19.73 shows begin, end, size, 
and empty. The begin algorithm is to simply go left repeatedly. For end, 
recall that the end iterator represents a position that is one past the last item 
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(the endmarker). We use the one-parameter (private) iterator constructor to 
create an iterator representing this position. The s i z e  and empty methods 
are trivial functions. 

The f i n d  routine is shown in Figure 19.74. The endmarker is returned if 
needed at lines 6 and 18. Otherwise, the routine is similar to the correspond- 
ing code written in Figure 19.8. Public versions of i n s e r t  and erase are 
shown next in Figure 19.75. Recall that i n s e r t  returns a p a i r .  For the 
most part, these are short routines. The private routines that they call are not 
shown but are similar to the AA-tree routines described in Section 19.6. 

The lower-bound and upper-bound routines are shown in Figure 19.76. 
Like the version described in Section 7.4.2, lower-bound returns an itera- 
tor representing the earliest position that is larger than or equal to x. 
upper-bound returns an iterator representing the earliest position that is 
larger than x. The difference between the two occurs if x is in the set. In that 
case, lower-bound's iterator refers to x, and upper-bound's iterator 
refers to the position after x. Clearly there is commonality, which is encap- 
sulated in the private bound routine. 

1 #include "1ist.h" 
2 #include "pair.hU 
3 
4 template <class Object, class Compare> 
5 class ConstSetItr; 
6 
7 template <class Object, class Compare> 
8 class set; 
9 

10 template <class Object, class Compare> 
11 class TreeNode 
12 I 
13 Object data; 
14 int level; 
15 TreeNode *left; 
16 TreeNode *right; 
17 
18 TreeNode( const Object & d = Object( ) ,  TreeNode * It = 
19 NULL, TreeNode * rt = NULL, int lv = 1 ) 

20 : data( d ) ,  left( It ) , right( rt ) ,  level( lv ) { 1 
2 1 
22 friend class ConstSetItr<Object,Compare>; 
23 friend class set<Object, Compare>; 

24 1 ;  

Figure 19.69 The basic node class, along with the typical set of incomplete class 
declarations for the set.  



1 template <class Object, class Compare> 
2 class set 
3 { 

4 public: 
5 typedef ConstSetItr<Object,Compare> iterator; 
6 typedef ConstSetItr<Object,Compare> const-iterator; 
7 typedef pair<iterator,bool> returnpair; 
8 
9 set( ) ;  

10 -set( ) ;  

11 set ( const set & rhs ) ; 

12 const set & operator= ( const set & rhs 1 ;  
13 
14 iterator begin( ) ;  

15 const-iterator begin( ) const; 
16 i terator end ( ) ; 

17 const-iterator end( ) const; 
18 int size( ) const; 
19 boo1 empty ( ) const; 
20 
21 iterator lower-bound( const Object & x ) const; 
22 iterator upper-bound( const Object & x ) const; 
23 iterator find( const Object & x ) const; 
24 returnpair insert( const Object & x 1 ;  
25 int erase( const iterator & itr ) ;  

26 int erase( const Object & x ) ;  

27 
28 friend class ConstSetItr<Object,Compare>; 
29 typedef TreeNode<Object,Compare> node; 
30 
31 private: 
32 int thesize; 
33 node *root; 
34 node *nullNode; 
35 Compare lessThan; 
36 
37 void init( ) ;  

38 void makeEmpty ( ) ; 

39 iterator bound( const Object & x, boo1 lower ) const; 
40 
41 / /  Recursive routines 
42 boo1 insert( const Object & x, node * & t ) ;  

43 void remove( const Object & x, node * & t 1 ;  
44 void makeEmpty( node * & t ) ;  

45 / /  Rotations 
46 void skew( node * & t ) const; 
47 void split( node * & t ) const; 
48 void rotateWithLeftChild( node * & t ) const; 
49 void rotateWithRightChild( node * & t ) const; 
50 node * clone( node * t ) const; 
51 1 ;  

Figure 19.70 The s e t  class interface. 
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1 template iclass Object, class Compare> 
2 class ConstSetItr 
3 I 
4 public: 
5 ConstSetItr ( ) ; 

6 const Object & operator* ( ) const; 
7 
8 ConstSetItr & operator++ ( ) ;  

9 ConstSetItr operator++ ( int ) ;  

10 
11 boo1 operator== ( const ConstSetItr & rhs ) const; 
12 boo1 operator!= ( const ConstSetItr & rhs ) const; 
13 
14 protected: 
15 typedef TreeNode<Object,Compare> node; 
16 ConstSetItri const set<Object,Compare> & source 1 ;  
17 
18 node *root; 
19 node *current; 
20 
2 1 list<node *> path; 
22 friend class set<Object,Compare>; 
23 
24 void assert~sInitialized( ) const; 
25 void assertIsValid( ) const; 
26 void assertCanAdvance( ) const; 
27 void assertCanRetreat( ) const; 
28 
29 Object & retrieve( ) const; 
30 
31 void goleft( ) ;  

32 void goRight ( ) ; 

33 void goRoot ( ) ; 

34 
35 boo1 hasleft( ) const; 
36 boo1 hasRight( ) const; 
37 
38 void advance( ) ; 

39 1 ;  

Figure 19.71 The set: : const-iterator class interface. 



1 template <class Object, class Compare> 
2 set<Object,Compare>::set( ) 
3 ( 

4 init( ) ;  

5 1 
6 
7 template <class Object, class Compare> 
8 void set<Object,Compare>::init( ) 
9 i 

10 thesize = 0; 
11 nullNode = new node; 
12 nullNode->left = nullNode->right = nullNode; 
13 nullNode->level = 0; 
14 root = nullNode; 
15 1 
16 
17 template <class Object, class Compare> 
18 set<Object,Compare>::-set( ) 
19 { 

20 makeEmpty ( ) ; 

21 delete nullNode; 
22 1 
23 
24 template <class Object, class Compare> 
25 void set<Object,Compare>::makeEmpty( ) 
26 { 

27 makeEmpty ( root i ; 
28 thesize = 0; 
29 I 
30 
31 template <class Object, class Compare> 
32 set<Object,Compare>::set( const set<Object,Compare> & rhs ) 

33 i 
34 init( ) ;  

35 *this = rhs; 
36 1 
37 
38 template <class Object, class Compare> 
39 const set<Object,Compare> & set<Object,Compare>:: 
40 operator= ( const set<Object,Compare> & rhs ) 

41 i 
42 if( this ==  &rhs ) 

43 return *this; 
44 
45 makeEmpty( ) ; 

46 root = clone ( rhs. root ) ; 

47 thesize = rhs.theSize; 
48 
49 return *this; 
50 1 

Figure 19.72 Constructors, destructor, and copies for the s e t  class. 



1 template <class Object, class Compare> 
2 set<Object,Compare>::iterator set<Object,Compare>::begin( ) 
3 I 
4 if ( empty( ) ) 

5 return end ( ) ; 

6 
7 iterator itr ( *this ) ; 

8 itr.goRoot( ) ; 

9 while( itr.hasLeft( ) ) 

10 itr.goLeft( ) ;  

11 return itr; 
12 } 

13 
14 template <class Object, class Compare> 
15 set~Object,Compare~::const~iterator 
16 setcObject,Compare>::begin( ) const 
17 i 
18 if ( empty( ) ) 

19 return end( ) ; 

20 
21 const-iterator itr( *this 1 ;  
22 itr. goRoot ( ) ; 

23 while( itr.hasLeft( ) ) 

24 itr.goLeft( ) ;  

25 return itr; 
26 1 
27 
28 template <class Object, class Compare> 
29 set<Object,Compare>::iterator set<Object,Compare>::end( 
30 I 
31 return iterator( *this ) ;  

32 1 
33 
34 template <class Object, class Compare> 
35 set~0bject,Compare~::const~iterator 
36 set<Object,Compare>::end( ) const 
37 { 
38 return const-iterator( *this ) ;  

39 I 
40 
41 template <class Object, class Compare> 
42 int set<Object,Compare>::size( ) const 

43 I 
44 return thesize; 

45 I 
46 
47 template <class Object, class Compare> 
48 boo1 set<Object,Compare>::empty( ) const 
49 ( 
50 return size( ) == 0 ;  

51 ) 

Figure 19.73 The begin, end, s i z e ,  and empty methods for the s e t  class. 



1 template <class Object, class Compare> 
2 set<Object,Compare>::iterator 
3 set<Object,Compare>::find( const Object & x ) const 
4 { 

5 if ( empty( ) ) 

6 return end ( i ; 
7 
8 iterator itr( *this ) ;  

9 itr.goRoot( 1 ;  
10 while( itr.current ! =  nullNode ) 

11 if( lessThan( x, *itr ) ) 

12 itr . goLef t ( ) ; 

13 else if ( lessThan( *itr, x 1 ) 

14 itr . goRight ( ) ; 

15 else 
16 return itr; 
17 
18 return end ( ) ; 

19 1 

Figure 19.74 The find method for the set class. 

1 template <class Object, class Compare> 
2 set<Object,Compare>::returnPair 
3 set<Object, Compare> : : insert ( const Object & x ) 

4 I 
5 boo1 result = insert( x, root 1 ;  
6 if ( result ) 

7 thesize++; 
8 return returnpair( find( x ) ,  result 1 ;  
9 1 

10 
11 template <class Object, class Compare> 
12 int set<Object,Compare>::erase( const iterator & itr ) 

13 I 
14 return erase( *itr ) ;  

15 I 
16 
17 template <class Object, class Compare> 
18 int set<Object,Compare>::erase( const Object & x ) 

19 { 

20 if( find( x ) == end( ) ) 

21 return 0; 
22 
23 remove( x, root ) ;  

24 thesize--; 
25 return 1; 
26 1 

Figure 19.75 The public insert and erase routines for the set class. 



Binary Search Trees 

1 template <class Object, class Compare> 
2 set<Object,Compare>::iterator set<Object,Compare>:: 
3 bound( const Object & x, boo1 lower ) const 
4 i 
5 if ( empty( ) 1 
6 return iterator( *this ) ;  

7 
8 iterator itr( "this ) ; 

9 itr . goRoot ( ) ; 

10 node *lastLeft = NULL; 
11 
12 while( itr.current ! =  nullNode ) 

13 if ( lessThan( x, *itr ) ) 

14 { 

15 lastLeft = itr.current; 
16 itr . goLef t ( ) ; 

17 1 
18 else if( lower && !lessThan( *itr, x ) ) 

19 return itr; 
20 else 
2 1 itr . goRight ( ) ; 

22 
23 if ( lastLeft == NULL ) 

24 return iterator ( *this ) ; 

25 
26 while( itr.path.back( ) ! =  lastLeft 
27 itr.path.pop-back( ) ; 

28 
29 itr.path.pop-back( ) ;  

30 itr.current = lastleft; 
3 1 return itr; 
32 } 

33 
34 template <class Object, class Compare> 
35 set<Object,Compare>::iterator 
36 set~0bject,Compare>::lower~bound( const Object & x ) const 
37 I 
38 return bound( x, true ) ;  

39 1 
40 
41 template <class Object, class Compare> 
42 set<Object,Compare>::iterator 
43 set<Object,Compare>::upper-bound( const Object & x ) const 
44 I 
45 return bound( x, false 1 ;  
46 } 

Figure 19.76 The lower-bound and upper-bound routines and the private 
helper for the s e t  class. 
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lmplement~ng the STL s e t  and map ~lasses-= 

In bound, we traverse the tree. If we are performing a logical 
lower-bound and find a match. we can return an iterator immediately. Oth- 
erwise, lastLeft represents the last node at which we made a left turn. 
That is the node that we want. If we never made a left turn, we need to return 
the endmarker. 

Various short routines are shown in Figure 19.77, and basic forward iter- 
ation is shown in Figure 19.78. The core routine is the private method 
advance. If the current node has a right child, we go right once and then left 
as far as possible. Otherwise, we need to go back up the path toward the 
root, until we find the node from which we turned left. That node is the next 
node in the iteration. If no such node exists, we set the iterator's state to be 
the endmarker. 

Many of the one-line support routines are shown in Figure 19.79, along 
with the equality operators for the cons t-iterat or. 

We finish by providing an implementation of the map class. A map is 
simply a set in which we store keylvalue pairs. We can use either composi- 
tion or private inheritance to implement the map class. We chose composi- 
tion. Using private inheritance is left for you in Exercise 19.35. 

A function object that can be used to instantiate the underlying set is 
shown in Figure 19.80. The map class interface is shown in Figure 19.8 1. 
The data member at line 45 stores the underlying set. Note how each 
method simply makes a call to this underlying set's method. The only new 
method is the mutator operator [ 1 .  The accessor version is not available 
for the map. 

For the mutator, we use the code presented in Figure 19.82. The code 
constructs a pair and calls find on the underlying set. The result of find 
is an iterator; applying operator* (at line I I )  gives a pair, and the value 
is obtained by accessing second. If the find returns the endmarker. we 
insert the key with a default value (the pair created at line 5) ,  and 
return a reference to the newly inserted default value. The technical com- 
plication is that since * i tr yields a constant pair, ( *it r ) . second is a 
constant ValueType, and we cannot return a reference to it. Instead, we 
must first cast away the constness.  The  preferred method is t o  use 
const-cast, but this does not work on older compilers. Our alternative 
does: it obtains a pointer to a constant ValueType, typecasts to a pointer to 
non-constant ValueType, and then dereferences the pointer to obtain a non- 
constant ValueType. 



1 template <class Object, class Compare> 
2 ConstSetItr~Object,Cornpare~::ConstSetItr( ) 

3 : root! NULL ) ,  current( NULL ) 

4 { 1  
5 
6 template <class Object, class Compare> 
7 void ConstSetItr~Object,Compare~::assertIsInitialized( ) const 
8 I 
9 if i root == NULL 1 

10 throw IteratorUninitializedException( ) ; 

I 1  1 
12 
13 template cclass Object, class Compare> 
14 void ConstSetItr<Object,Compare>::assertIsValid( ) const 
15 ( 

16 assertIsInitialized( ) ;  

17 1 
18 
19 template cclass Object, class Compare> 
20 void ConstSetItr~Object,Compare~::assertCanAdvance( ) const 
21 i 
22 assertIsInitialized( ) ; 

23 if( current ==  NULL ) 

24 throw IteratorOutOfBoundsException( ) ;  

25 } 
26 
27 template <class Object, class Compare> 
28 Object & ConstSetItr<Object,Compare>::retrieve( ) const 
29 I 
30 assert IsValid ( ) ; 

31 if ( current ==  NULL ) 

32 throw IteratorOutOfBoundsException( ) ; 

33 return current->data; 
34 1 
35 
36 template <class Object, class Compare> 
37 const Object & ConstSetItr<Object,Compare>::operator* ( ) const 
38 i 
39 return retrieve ( ) ; 

40 1 

Figure 19.77 Various private routines and opera tor*  for the s e t  class. 
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lrnpY&enting the STL set and map ~lasses- 

1 template <class Object, class Compare> 
2 void ConstSet~tr<Object,Compare>::advance( ) 

3 i 
4 if( hasRight( ) ) 

5 i 
6 goRight ( ) ; 

7 while( hasLeft ( ) ) 

8 goleft( 1 ;  
9 return ; 
10 1 
11 
12 node *parent; 
13 for( ; !path.empty( ) ;  current = parent ) 

14 i 
15 parent = path.back( ) ;  path.pop-back( ) ;  

16 if( parent->left == current ) 

17 I 
18 current = parent; 
19 return; 
20 1 
21 1 
22 
23 current = NULL; 
24 1 
25 
26 template <class Object, class Compare> 
27 ConstSetItr<Object, Compare> h 

28 ConstSetItr<Object,Compare>::operator++ ( ) 

29 i 
30 assertCanAdvance( ) ;  

31 advance i ) ; 

32 return *this; 

33 1 
34 
35 template <class Object, class Compare> 
36 ConstSetItr<Object,Compare> 
37 ConstSetItr<Object,Compare>::operator++ ( int ) 

38 i 
39 ConstSetItr<Object,Compare> old = *this; 
40 + + (  *this ) ;  

41 return old; 

42 1 

Figure 19.78 Advancing for the s e t  class. 



1 template <class Object, class Compare> 
2 bool ConstSetItr<Object,Compare>:: 
3 operator== ( const ConstSetItr & rhs ) const 

4 i 
5 return root == rhs.root && current == rhs.current; 
6 1 
7 
8 template <class Object, class Compare> 
9 bool ConstSetItr<Object,Compare>:: 
10 operator!= i const ConstSetItr & rhs ) const 

11 t 
12 return ! ( *this == rhs ) ;  

13 1 
14 
15 template <class Object, class Compare> 
16 ConstSetItr<Object,Compare>:: 
17 ConstSetItri const set<Object,Compare> & source 
18 : root( source.root ) ,  current( NULL ) { 1 
19 
20 template <class Object, class Compare> 
21 void ConstSetItr<Object,Compare>::goLeft( ) 

22 ( 
23 path.push-back( current ) ;  

24 current = current->left; 
25 1 
26 
27 template <class Object, class Compare> 
28 void ConstSetItrcObject,Compare>::goRight( ) 
29 ( 

30 path.push-back( current 1 ;  
3 1 current = current->right; 
32 1 
33 
34 template <class Object, class Compare> 
35 void ConstSetItr~Object,Compare~::goRoot( ) 

36 i 
37 current = root: 
38 while ( !path.empty i ) ) 

39 path.pop-back( ) ; 

40 1 
41 
42 template <class Object, class Compare> 
43 bool ConstSetItr<Object,Compare>::hasLeft( ) const 

44 i 
45 return current->left ! =  current->left->left; 
46 1 
47 
48 template <class Object, class Compare> 
49 bool ConstSetItr<Object,Compare>::hasRight( ) const 

50 i 
51 return current->right ! =  current->right->right; 

52 1 

Figure 19.79 Various one-line routines for the s e t  class. 



1 template <class kvpair, class Compare> 
2 class lessKV 
3 I 
4 public: 
5 boo1 operatori ) ( const kvpair & lhs, 
6 const kvpair & rhs ) const 
7 { return less ( lhs. first, rhs. first ) ; } 

8 Compare less; 
9 } ;  

Figure 19.80 A function object for the m a p  class that uses the key to compare. 

So  far, we have assumed that we can store an entire data structure in the 
main memory of a computer. Suppose, however, that we have more data than 
can fit in main memory, and, as a result, we must have the data structure 
reside on disk. When that happens, the rules of the game change, because the 
Big-Oh model is no longer meaningful. 

The problem is that a Big-Oh analysis assumes that all operations are When data are too 

equal. However. that is not true. especially when disk I10 is involved. On the large fit in 
the number of disk 

one hand, a 500-MIPS machine supposedly executes 500 million instruc- accesses becomes 
tions per second. That is fairly fast, mainly because the speed depends important. A disk 

largely on electrical properties. On the other hand, a disk is mechanical. Its access is 
unbelievably speed depends largely on the time required to spin the disk and move a disk expensive 

head. Many disks spin at 7200 RPM. Thus in 1 minute, it makes 7200 revo- to a typical computer 
lutions; hence one revolution occurs in 11120 of a second, or 8.3 ms. On instruction. 

average we might expect that we have to spin a disk halfway to find what we 
are Looking for, but this is compensated by the time to move the disk head, so 
we get an access time of 8.3 ms. (This estimate is very charitable; 9 to 1 I 
ms. access times are more common.) Consequently, we can do approxi- 
mately 120 disk accesses per second. This number of accesses sounds good, 
until we compare it with the processor speed: We have 500 million instruc- 
tions versus 120 disk accesses. Put another way, one disk access is worth 
about 4,000,000 instructions. Of course, everything here is a rough calcula- 
tion, but the relative speeds are rather clear: Disk accesses are incredibly 
expensive. Furthermore, processor speeds are increasing at a much faster 
rate than disk speeds (it is disk sizes that are increasing quite quickly). Thus, 
we are willing to do lots of calculations just to save a disk access. In almost 
all cases, the number of disk accesses dominates the running time. By halv- 
ing the number of disk accesses, we can halve the running time. 
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m l e a r c h  Trees 

1 template <class KeyType, class ValueType, class Compare> 
2 class map 
3 ( 
4 public: 
5 typedef pair<KeyType,ValueType> kvpair ; 
6 typedef set<kvpair,lessKV<kvpair,Compare> > setType; 
7 typedef setType: :iterator iterator; 
8 typedef setType: :const-iterator const-iterator; 
9 
10 iterator begin( ) 

11 { return theSet.begin( ) ;  1 
12 const-iterator begin( ) const 
13 { return theSet.begin( ) ;  I 
14 iterator end ( ) 

15 { return theSet.end( ) ;  I 
16 const-iterator end( ) const 
17 { return theSet.end( ) ;  1 
18 int size( ) const 
19 { return theSet.size( ) ;  I 
20 boo1 empty ( ) const 
21 { return theSet.empty( ) ;  1 
22 
23 ValueType & operator[] ( const KeyType & key 1 ;  
24 
25 iterator lower-bound( const KeyType & key ) 

26 { return theSet.lower-bound( kvpair( key 1 ;  1 
27 const-iterator lower-bound( const KeyType & key ) const 
28 { ret~rn theSet.lower-bound( kvpairi key i ) ;  1 
29 iterator upper-bound( const KeyType & key ) 

30 { return theSet.upper-bound( kvpairi key ) 1 ;  I 
31 const-iterator upper-bound( const KeyType & key ) const 
32 { return theSet.upper-bound( kvpair( key ) 1 ;  I 
33 iterator find( const KeyType & key ) 

34 { return theSet.find( kvpair( key ) ) ;  1 
35 const-iterator find( const KeyType & key ) const 
36 { return theSet.find( kvpair( key ) 1 ;  1 
37 pair<iterator,bool> insert( const kvpair & x ) 

38 { return theSet.insert( x ) ;  1 
39 int erase( const iterator & itr ) 

40 { return theSet.erase( itr ) ;  I 
41 int erase( const KeyType & key ) 

42 { return theset. erase ( kvpair ( key ) ) ; I 
43 
44 private: 
45 setType theset; 
46 1 ;  

Figure 19.81 The map class interface. 



1 template <class KeyType, class ValueType, class Compare> 
2 ValueType & map<KeyType,ValueType,Compare>:: 
3 operator[] i const KeyType & key ) 

4 { 

5 kvpair xi key ) ;  

6 
7 iterator itr = theSet.find( x ) ;  

8 if( itr == theSet.end( ) ) 

9 itr = theSet.insert( x ).first; 
10 
11 return * (ValueType * )  & ( *  itr) .second; 
12 } 

Figure 19.82 Implementation of the map class operator [ I 

Here is how the typical search tree performs on disk. Suppose that we 
want to access the driving records for citizens in the State of Florida. We 
assume that we have 10.000,000 items, that each key is 32 bytes (represent- 
ing a name), and that a record is 256 bytes. We assume that this data set does 
not fit in main memory and that we are 1 of 20 users on a system (so we have 
1/20 of the resources). Thus in I sec. we can execute 25 million instructions 
or perform six disk accesses. 

The unbalanced binary search tree is a disaster. In the worst case, it has 
linear depth and thus could require 10,000,000 disk accesses. On average 
a successful search would require 1.38 log N disk accesses, and as log 
10,000,000 =: 24, an average search would require 32 disk accesses, or 5 sec. 
In a typical randomly constructed tree, we would expect that a few nodes are 
three times deeper; they would require about 100 disk accesses, or 16 sec. A 
red-black tree is somewhat better: the worst case of 1.44 log N is unlikely to 
occur, and the typical case is very close to log N. Thus a red-black tree 
would use about 25 disk accesses on average, requiring 4 sec. 

We want to reduce disk accesses to a very small constant number, such 
as three or four. We are willing to write complicated code to do so because 
machine instructions are essentially free, so long as we are not ridiculously 
unreasonable. A binary search tree does not work because the typical red- 
black tree is close to optimal height, and we cannot go below log N with a 
binary search tree. The solution is intuitively simple: If we have more 
branching, we have less height. Thus, whereas a perfect binary tree of 
3 1 nodes has five levels, a 5-ary tree of 3 1 nodes has only three levels, as 
shown in Figure 19.83. An M-arg search tree allows M-way branching, and 
as branching increases, the depth decreases. Whereas a complete binary tree 
has height that is roughly log, N, a complete M-ary tree has height that is 
roughly log, N. 

Even logarithmic 
performance is 
unacceptable. We 
need to perform 
searches in three or 
four accesses. 
Updates can take 
slightly longer. 

An M-ary search tree 
allows M-way 
branching. As 
branching increases, 
the depth decreases. 



-- 

Binary Search Trees 

The 6-tree is the most 
popular data 
structure for disk- 
bound searching. 

The B-tree has a host 
of structure 
properties. 

Nodes must be half 
full to guarantee that 
the tree does not 
degenerate into a 
simple binary tree. 

Figure 19.83 A 5-ary tree of 31 nodes has only three levels. 

We can create an M-ary search tree in much the same way we created a 
binary search tree. In a binary search tree, we need one key to decide 
which of two branches to take. In an M-ary search tree, we need M  - 1 
keys to decide which branch to take. To make this scheme efficient in the 
worst case, we need to ensure that the M-ary search tree is balanced in 
some way. Otherwise, like a binary search tree, it could degenerate into a 
linked list. Actually, we want an even more restrictive balancing condition. 
That is, we do not want an M-ary search tree to degenerate to even a binary 
search tree because then we would be stuck with log N accesses. 

One way to implement this is to use a B-tree, which is the most popular 
data structure for disk-bound searching. Here, we describe the basic B-tree;3 
many variations and improvements exist, and an implementation is some- 
what complex because quite a few cases must be addressed. However, in 
principle this technique guarantees only a few disk accesses. 

A B-tree of order M is an M-ary tree with the following proper tie^.^ 

I .  The data items are stored at leaves. 

2. The nonleaf nodes store as many as M - 1 keys to guide the search- 
ing; key i represents the smallest key in subtree i + I .  

3. The root is either a leaf or has between 2  and M children. 

4. All nonleaf nodes (except the root) have between r ~ 1 2 1  and M 
children. 

5 .  All leaves are at the same depth and have between r ~ 1 2 1  and L data 
items, for some L (the determination of L is described shortly). 

An example of a B-tree of order 5 is shown in Figure 19.84. Note that all 
nonleaf nodes have between three and five children (and thus between two 
and four keys); the root could possibly have only two children. Here, L = 5 ,  
which means that L and M are the same in this example, but this condition is 

3. What we describe is popularly known as a B+ tree. 
4. Properties 3 and 5 must be relaxed for the first L insertions. (L is a parameter used in prop- 

erty 5.)  



Figure 19.84 A B-tree of order 5 .  

not necessary. Because L is 5, each leaf has between three and five data 
items. Requiring nodes to be half full guarantees that the B-tree does not 
degenerate into a simple binary tree. Various definitions of B-trees change 
this structure, mostly in minor ways, but the definition presented here is one 
of the most commonly used. 

Each node represents a disk block, so we choose M and L on the basis of We choose the 

the size of the items being stored. Suppose that one block holds 8192 bytes. Mand 
that allow a node to fit 

In our Florida example, each key uses 32 bytes, so in a B-tree of order M, we in one disk block. 
would have M - 1 keys, for a total of 32M - 32 bytes plus M branches. 
Because each branch is essentially a number of another disk block, we can 
assume that a branch is 4 bytes. Thus the branches use 4M bytes, and the 
total memory requirement for a nonleaf node is 36M - 32. The largest value 
of M for which 36M - 32 is no more than 8 192 is 228, so we would choose 
M = 228. As each data record is 256 bytes, we would be able to fit 32 records 
in a block. Thus we would choose L = 32. Each leaf has between 16 and 
32 data records, and each internal node (except the root) branches in at least 
114 ways. For the 10,000,000 records, there are at most 625,500 leaves. 
Consequently, in the worst case, leaves would be on level 4. In more con- 
crete terms, the worst-case number of accesses is given by approximately 
log , ,  N, give or take 1. 

The remaining issue is how to add and remove items from the B-tree. In 
the ideas sketched note that many themes presented earlier recur. 

We begin by examining insertion. Suppose that we want to insert 57 into if the leaf contains 

the B-tree shown previously in Figure 19.84. A search down the tree reveals 'Oom for a new 
we insert it and are that it is not already in the tree. We can add it to the leaf as a fifth child, but done. 

we may have to reorganize all the data in the leaf to do so. However, the cost 
is negligible compared to that of the disk access, which in this case also 
includes a disk write. 
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Binary Search Trees 

Figure 19.85 The B-tree after insertion of 57 in the tree shown in Figure 19.84. 

Figure 19.86 Insertion of 55 in the B-tree shown in Figure 19.85 causes a split into 
two leaves. 

~f the leaf is full, we That procedure was relatively painless because the leaf was not already 
can insert a new item full. Suppose that we now want to insert 55. Figure 19.85 shows a problem: 
by splitting the leaf 
and forming two half- The leaf where 55 should go is already full. The solution is simple: We now 
empty nodes. have L + 1 items, so we split them into two leaves, both guaranteed to have 

the minimum number of data records needed. Hence we form two leaves with 
three items each. Two disk accesses are required to write these leaves and a 
third disk access is required to update the parent. Note that in the parent, both 
keys and branches change, but they do so in a controlled way that can easily 
be calculated. The resulting B-tree is shown in Figure 19.86. Although split- 
ting nodes is time consuming because it requires at least two additional disk 
writes, it is a relatively rare occurrence. If L is 32, for example, when a node 
is split two leaves with 16 and 17 items, respectively, are created. For the 
leaf with 17 items, we can perform 15 more insertions without another split. 
Put another way, for every split, there are roughly L / 2  nonsplits. 



Figure 19.87 Insertion of 40 in the B-tree shown in Figure 19.86 causes a split into 
two leaves and then a split of the parent node. 

The node splitting in the preceding example worked because the parent 
did not have its full complement of children. But what would happen if it 
did? Suppose that we insert 40 into the B-tree shown in Figure 19.86. We 
must split the leaf containing the keys 35 through 39 and now 40 into two 
leaves. But doing so would give the parent six children, and it is allowed 
only five. The solution is to split the parent, the result of which is shown in 
Figure 19.87. When the parent is split, we must update the values of the keys 
and also the parent's parent, incurring an additional two disk writes (so this 
insertion costs five disk writes). Again, however, the keys change in a very 
controlled manner, although the code is certainly not simple because of the 
number of cases involved. 

When a nonleaf node is split, as here, its parent gains a child. What if the 
parent already has reached its limit of children? Then we continue splitting 
nodes up the tree until we find a parent that does not need to be split or we 
reach the root. Note that we introduced this idea in bottom-up red-black 
trees and AA-trees. If we split the root, we have two roots, but obviously, 
this outcome is unacceptable. However, we can create a new root that has the 
split roots as its two children, which is why the root is granted the special 
two-child minimum exemption. It is also the only way that a B-tree gains 
height. Needless to say, splitting all the way up to the root is an exception- 
ally rare event because a tree with four levels indicates that the root has been 
split two times throughout the entire sequence of insertions (assuming that 
no deletions have occurred). In fact, splitting of any nonleaf node is also 
quite rare. 

There are other ways to handle the overflowing of children. One tech- 
nique is to put a child up for adoption should a neighbor have room. To 
insert 29 in the B-tree shown in Figure 19.87, for example, we could make 
room by moving 32 to the next leaf. This technique requires a modification 
of the parent because the keys are affected. However, it tends to keep nodes 
fuller and saves space in the long run. 

Node splitting creates 
an extra child for the 
leaf's parent. If the 
parent already has a 
full number of 
children, we split the 
parent. 

We may have to 
continue splittlng all 
the way up the tree 
(though this 
possibility is 
unlikely). In the worst 
case, we split the 
root, creating a new 
root with two 
children. 
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Figure 19.88 The B-tree after deletion of 99 from the tree shown in Figure 19.87 

Deletion works in We can perform deletion by finding the item that needs to be removed 
reverse: If a leaf loses 
a child, it may need to 
combine with another 
leaf. Combining of 
nodes may continue 
all the way up the 
tree, though this 
possibility is unlikely. 
In the worst case, the 
root loses one of its 
two children.Then we 
delete the root and 
use the other child as 
the new root. 

and removing it. The problem is that, if the leaf it was in had the minimum 
number of data items, it is now below the minimum. We can rectify the situ- 
ation by adopting a neighboring item, if the neighbor is not itself at its mini- 
mum.  If it is,  we  can combine with the neighbor to form a full leaf.  
Unfortunately, in this case the parent has lost a child. If that causes the par- 
ent to fall below its minimum, we follow the same strategy. This process 
could percolate up all the way up to the root. The root cannot have just one 
child (and even if it were allowed. it would be silly). If a root is left with one 
child as a result of the adoption process, we remove the root, making its 
child the new root of the tree-the only way for a B-tree to lose height. Sup- 
pose that we want to remove 99 from the B-tree shown in Figure 19.87. The 
leaf has only two items and its neighbor is already at its minimum of three, 
so we combine the items into a new leaf of five items. As a result, the parent 
has only two children. However, it can adopt from a neighbor because the 
neighbor has four children. As a result of the adoption, both end up with 
three children, as shown in Figure 19.88. 

Summary 

Binary search trees support almost all of the useful operations in algorithm 
design, and the logarithmic average cost is very small. Nonrecursive imple- 
mentations of search trees are somewhat faster than recursive versions, but 
the latter are sleeker, more elegant, and easier to understand and debug. The 
problem with search trees is that their performance depends heavily on the 
input's being random. If it is not, running time increases significantly, even 
to the point where search trees become expensive linked lists. 

Ways of dealing with this problem all involve restructuring the tree to 
ensure some sort of balance at each node. Restructuring is achieved through 
tree rotations that preserve the binary search tree property. The cost of a 
search is typically less than for an unbalanced binary search tree because the 
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average node tends to be closer to the root. lnsertion and deletion costs, 
however, are usually higher. The balanced variations differ in the amount of 
coding effort involved in implementing operations that change the tree. 

The classic scheme is the AVL tree in which, for every node, the heights 
of its left and right subtrees can differ by at most 1. The practical problem 
with AVL trees is that they involve large numbers of different cases, making 
the overhead of each insertion and deletion relatively high. We examined 
two alternatives in the chapter. The first was the top-down red-black tree. Its 
primary advantage is that rebalancing can be implemented in a single pass 
down the tree, rather than the traditional pass down and back up. This tech- 
nique leads to simpler code and faster performance than the AVL tree allows. 
The second is the AA-tree, which is similar to the bottom-up red-black tree. 
Its primary advantage is a relatively simple recursive implementation of both 
insertion and deletion. Both structures use sentinel nodes to eliminate 
annoying special cases. 

You should use an unbalanced binary search tree only if you are sure 
that the data are reasonably random or that the amount of data is relatively 
small. Use the red-black tree if you are concerned about speed (and are not 
too concerned about deletion). Use the AA-tree if you want an easy imple- 
mentation that has more than acceptable performance. Use the B-tree when 
the amount of data is too large to store in main memory. 

In Chapter 22 we examine another alternative: the splay tree. It is an 
interesting alternative to the balanced search tree, is simple to code, and is 
competitive in practice. In Chapter 20 we examine the hash table, a com- 
pletely different method used to implement searching operations. 

Objects of the Game 

AA-tree A balanced search tree that is the tree of choice when an 
O(1og N) worst case is needed, a casual implementation is accept- 
able, and deletions are needed. (p. 685) 

AVL tree A binary search tree with the additional balance property 
that, for any node in the tree, the height of the left and right subtrees 
can differ by at most 1. As the first balanced search tree, it has his- 
torical significance. It also illustrates most of the ideas that are used 
in other search tree schemes. (p. 661) 

balanced binary search tree A tree that has an added structure prop- 
erty to guarantee logarithmic depth in the worst case. Updates are 
slower than with the binary search tree, but accesses are faster. 
(P. 66 1 1 
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binary search tree A data structure that supports insertion, searching, 
and deletion in O(1og N) average time. For any node in the binary 
search tree, all smaller keyed nodes are in the left subtree and all 
larger keyed nodes are in the right subtree. Duplicates are not 
allowed. (p. 641) 

B-tree The most popular data structure for disk-bound searching. 
There are many variations of the same idea. (p. 7 10) 

double rotation Equivalent to two single rotations. (p. 667) 
external path length The sum of the cost of accessing all external tree 

nodes in a binary tree, which measures the cost of an unsuccessful 
search. (p. 660) 

external tree node The NULL node. (p. 660) 
horizontal link In an AA-tree, a connection between a node and a 

child of equal levels. A horizontal link should go only to the right, 
and there should not be two consecutive horizontal links. (p. 685) 

internal path length The sum of the depths of the nodes in a binary 
tree, which measures the cost of a successful search. (p. 659) 

lazy deletion A method that marks items as deleted but does not actu- 
ally delete them. (p. 685) 

level of a node In an AA-tree, the number of left links on the path to 
the nullNode sentinel. (p. 685) 

M-ary tree A tree that allows M-way branching, and as branching 
increases, the depth decreases. (p. 709) 

red-black tree A balanced search tree that is a good alternative to the 
AVL tree because a single top-down pass can be used during the 
insertion and deletion routines. Nodes are colored red and black in a 
restricted way that guarantees logarithmic depth. The coding details 
tend to give a faster implementation. (p. 670) 

single rotation Switches the roles of the parent and child while main- 
taining search order. Balance is restored by tree rotations. (p. 664) 

skew Removal of left horizontal links by performing a rotation 
between a node and its left child. (p. 686) 

s p l i t  Fixing consecutive right horizontal links by performing a rota- 
tion between a node and its right child. (p. 686) 
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Common Errors 

1. Using an unbalanced search tree when the input sequence is not 
random will give poor performance. 

2. The remove operation is very tricky to code correctly, especially 
for a balanced search tree. 

3. Lazy deletion is a good alternative to the standard remove, but you 
must then change other routines, such as findMin. 

4. Code for balanced search trees is almost always error-prone. 
5. Passing a pointer to a tree by value is wrong for insert and 

remove. The pointer must be passed by reference. 
6. Using sentinels and then writing code that forgets about the senti- 

nels can lead to infinite loops. A common case is testing against 
NULL when a nullNode sentinel is used. 

On the Internet 

All of the code in this chapter is available online. 

Contains the class interface for both the 
~ i n a r ~ ~ e a r c h ~ r e e ~ i t h ~ a n k a n d  
BinarySearchTree classes. 
Contains the implementation of both the 
~inary~earch~ree~ith~ankand 
BinarySearchTree classes. 
Contains a test program for both the 
~ i n a r ~ ~ e a r c h ~ r e e ~ i t h ~ a n k a n d  
BinarySearchTree classes. 
Contains the interface for the 
RedBlackTree class. 
Contains the implementation of the 
RedBlackTree class. 
Contains a test program for the 
RedBlackTree class. 
Contains the interface for the AATree 
class. 
Contains the implementation of the AATree 
class 
Contains a test program for the AATree 
class. 
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Contains the interface for the s e t  class. 
Contains the implementation of the s e t  
class. 
Contains a test program for the s e t  
class. 
Contains the interface for the map class. 
Contains the implementation of the map 
class. 
Contains a test program for the map 
class. 

9 Exercises 

In Short 

19.1. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, and 7 in an initially 
empty binary search tree. Then show the result of deleting the root. 

19.2. Draw all binary search trees that can result from inserting permuta- 
tions of 1 ,2 ,3 ,  and 4. How many trees are there? What are the prob- 
abilities of each tree's occurring if all permutations are equally 
likely? 

19.3. What happens if, in Figure 19.9, the first parameter is Node * & t 

(that is, t is passed by reference)? Be specific. 

19.4. What happens if, in Figure 19.10, the second parameter is merely 
Node * t (i.e., t is not passed by reference)? Be specific. 

19.5. Draw all AVL trees that can result from inserting permutations of 1, 
2, and 3. How many trees are there? What are the probabilities of 
each tree's occurring if all permutations are equally likely? 

19.6. Repeat Exercise 19.5 for four elements. 

19.7. Show the result of inserting 2, 1, 4, 5, 9, 3, 6, and 7 into an initially 
empty AVL tree. Then show the result for a top-down red-black 
tree. 

19.8. Repeat Exercises 19.5 and 19.6 for a red-black tree. 

In Theory 

19.9. Prove Theorem 19.2. 



19.10. Show the result of inserting items 1 through 15 in order in an ini- 
tially empty AVL tree. Generalize this result (with proof) to show 
what happens when items 1 through 2k - I are inserted into an ini- 
tially empty AVL tree. 

19.11. Give an algorithm to perform remove in an AVL tree. 

19.12. Prove that the height of a red-black tree is at most approximately 
2 log Nand give an insertion sequence that achieves this bound. 

19.13. Show that every AVL tree can be colored as a red-black tree. Do all 
red-black trees satisfy the AVL tree property? 

19.14. Prove that the algorithm for deletion in an AA-tree is correct. 

19.15. Suppose that the level data member in an AA-tree is represented 
by an 8-bit char. What is the smallest AA-tree that would overflow 
the leve 1 data member at the root? 

19.16. A B'%-tree of order M is a B-tree in which each interior node has 
between 2 M / 3  and M children. Leaves are similarly filled. Describe 
a method that can be used to perform insertion in a B*-tree. 

In Practice 

19.17. Implement find. f indMin, and f inaMax recursively. 

19.18. Implement f indKth nonrecursively, using the same technique used 
for a nonrecursive find. 

19.19. Verify that if the private functions insert, remove, and removeMin, 
of BinarySearchTree are renamed, then in Figure 19.14, lines 17-22 
can be removed from the BinarySearchTreeWithRank class 
interface and only the private functions need to be overridden. 

19.20. An alternative representation that allows the f indKth operation is 
to store in each node the value of 1 plus the size of the left subtree. 
Why might this approach be advantageous? Rewrite the search tree 
class to use this representation. 

19.21. Write a binary search tree method that takes two keys, low and 
high, and prints all elements X that are in the range specified by 
low and high. Your program should run in O(K + log N )  average 
time, where K is the number of keys printed. Thus if K is small, you 



should be examining only a small part of the tree. Use a hidden 
recursive method and do not use an inorder iterator. Bound the run- 
ning time of your algorithm. 

19.22. Write a binary search tree method that takes two integers, low and 
high, and constructs an optimally balanced BinarySearchTree- 
WithRank that contains all the integers between low and high, 
inclusive. All leaves should be at the same level (if the tree size is 1 
less than a power of 2) or on two consecutive levels. Your routine 
should take linear time. Test your routine by using it to solve the 
Josephus problem presented in Section 14.1. 

19.23. The routines for performing double rotations are inefficient because 
they perform unnecessary changes to children pointers. Rewrite 
them to avoid calls to the single rotation routine. 

19.24. Give a nonrecursive top-down implementation of an AA-tree. Com- 
pare the implementation with the text's for simplicity and efficiency. 

19.25. Write the skew and split procedures recursively so that only one 
call of each is needed for remove. 

Programming Projects 

19.26. Redo the BinarySearchTree class to implement lazy deletion. 
Note that doing so affects all the routines. Especially challenging are 
findMin and findMax, which must now be done recursively. 

19.27. Implement the binary search tree to use only one comparison per 
level for find, insert, and remove. 

19.28. Write a program to evaluate empirically the following strategies for 
removing nodes with two children. Recall that a strategy involves 
replacing the value in a deleted node with some other value. Which 
strategy gives the best balance? Which takes the least CPU time to 
process an entire sequence of operations? 
a. Replace with the value in the largest node, X, in TL and recur- 

sively remove X. 
b. Alternatively replace with the value in the largest node in TL or 

the value in the smallest node in TR and recursively remove the 
appropriate node. 

c. Replace with the value in the largest node in TL or the value in 
the smallest node in TR (recursively remove the appropriate 
node). making the choice randomly. 
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19.29. Write the remove method for red-black trees. 

19.30. Implement the search tree operations with order statistics for the 
balanced search tree of your choice. 

19.31. Reimplement the set class by using parent pointers 

19.32. Modify the set and map classes so that their iterators are bidirec- 
tional. 

19.33. Add reverse iterators to the set and map classes. (Reverse iterators 
are described in Exercise 17.3.) 

19.34. A multiset is a set in which duplicates are allowed. All opera- 
tions are the same except for insert (duplicates are allowed), find 
(if x is present, an iterator representing any occurrence of x may be 
returned), and erase (which may return a value larger than 1) .  
Implement a mu1 ti set. 

19.35. lmplement the map class by using private inheritance. 

19.36. Implement a B-tree that works in main memory. 

19.37. lmplement a B-tree that works for disk files. 
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Chapter 20 

Hash Tables 

In Chapter 19 we discussed the binary search tree, which allows various 
operations on a set of elements. In this chapter we discuss the hash table, 
which supports only a subset of the operations allowed by binary search 
trees. The implementation of hash tables is frequently called hashing, which 
performs insertions, deletions, and finds in constant average time. 

Unlike with the binary search tree, the average-case running time of 
hash table operations is based on statistical properties rather than the expec- 
tation of random-looking input. This improvement is obtained at the expense 
of a loss of ordering information among the elements: Operations such as 
findMin and findMax and the printing of an entire table in sorted order in 
linear time are not supported. Consequently, the hash table and binary search 
tree have somewhat different uses and performance properties. 

In this chapter, we show: 

several methods of implementing the hash table, 

analytical comparisons of these methods, 
some applications of hashing, and 
comparisons of hash tables and binary search trees. 

20.1 Basic Ideas 
The hash table supports the retrieval or deletion of any named item. We The hash table is 

want to be able to support the basic operations in constant time, as for the to implement a 
set in constant time stack and queue. Because the accesses are much less restricted, this support 
per 

seems like an impossible goal. That is, surely when the size of the set 
increases, searches in the set should take longer. However, that is not neces- 
sarily the case. 



Suppose that all the items we are dealing with are small nonnegative 
integers, ranging from 0 to 65,535. We can use a simple array to implement 
each operation as follows. First, we initialize an array a that is indexed from 
0 to 65,535 with all 0s. To perform insert (i ) , we execute a [ i I ++. Note 
that a [ i I represents the number of times that i has been inserted. To per- 
form find ( i ) ,  we verify that a [ i ] is not 0. To perform remove ( i ) , we 
make sure that a [ i 1 is positive and then execute a [ i 1 --. The time for each 
operation is clearly constant; even the overhead of the array initialization is a 
constant amount of work (65,536 assignments). 

There are two problems with this solution. First, suppose that we have 
32-bit integers instead of 16-bit integers. Then the array a must hold 4 bil- 
lion items, which is impractical. Second, if the items are not integers but 
instead are strings (or something even more generic), they cannot be used to 
index an array. 

The second problem is not really a problem at all. Just as a number 12 3 4 
is a collection of digits 1, 2. 3, and 4, the string "junk" is a collection of 
characters j , u I ,  I n I ,  and ' k . Note that the number 12 3 4 is just 
1 . 1 O3 + 2 . 10' + 3 . 10' + 4 . lo0. Recall from Figure 13.1 that a charac- 
ter can typically be represented in 7 bits as a number between 0 and 127. 
Because a character is basically a small integer, we can interpret a string as 
an integer. One possible representation is j . 128% + u 128' + ' n1 . 
128' + k . 128O. This approach allows the simple array implementation 
discussed previously. 

The problem with this strategy is that the integer representation 
described generates huge integers: The representation for junk" yields 
224,229,227, and longer strings generate much larger representations. This 
result brings us back to the first problem: How do we avoid using an 
absurdly large array? 

A hash function We do so by using a function that maps large numbers (or strings inter- 
the item preted as numbers) into smaller, more manageable numbers. A function that 

an integer suitable to 
index an array where maps an item into a small index is known as a hash function. If x is an arbi- 
the item is stored. lf trary (nonnegative) integer, then x%tableSize generates a number between 
the hash function 0 and tablesize- 1 suitable for indexing into an array of size tablesize. 
were one to one, we 
could access the item If s is a string, we can convert s to a large integer x by using the method 
by its array index. suggested previously and then apply the mod operator (%) to get a suitable 

index. Thus, if tablesize is 10,000, " junk" would be indexed to 9,227. In 
Section 20.2 we discuss implementation of the hash function for strings in 
detail. 



Hash Function 

The use of the hash function introduces a complication: Two or more Because the hash 

different items can hash out to the same position, causing a collision. This is not One to 
one, several items situation can never be avoided because there are many more items than posi- collide at the same 

tions. However, many methods are available for quickly resolving a colli- index and cause a 

sion. We investigate three of the simplest: linear probing, quadratic probing, collision. 

and separate chaining. Each method is simple to implement, but each yields 
a different performance, depending on how full the array is. 

20.2 Hash Function 

Computing the hash function for strings has a subtle complication: The con- 
version of the string s to x generates an integer that is almost certainly 
larger than the machine can store conveniently-because 12g4 = 228. This 
integer size is only a factor of 8 from the largest integer on a 32-bit machine. 
Consequently, we cannot expect to compute the hash function by directly 
computing powers of 128. Instead, we use the following observation. A gen- 
eral polynomial 

can be evaluated as 

Note that in Equation 20.2, we avoid computation of X directly, which is BY using a trick, we 

good for three reasons. First, it avoids a large intermediate result, which, as Can the hash 
function efficiently 

we have shown, overflows. Second, the calculation in the equation involves and overflow. 
only three multiplications and three additions; an N-degree polynomial is 
computed in N multiplications and additions. These operations compare 
favorably with the computation in Equation 20.1. Third, the calculation pro- 
ceeds left to right (A3 corresponds to ' j ' , A* to ' u ' , and so on, and X is 128). 

However, an overflow problem persists: The result of the calculation is 
still the same and is likely to be too large. But, we need only the result taken 
mod tablesize. By applying the % operator after each multiplication (or 
addition), we can ensure that the intermediate results remain small.' The 
resulting hash function is shown in Figure 20.1. An annoying feature of this 
hash function is that the mod computation is expensive. Because overflow is 
allowed (and its results are consistent on a given platform), we can make the 
hash function somewhat faster by performing a single mod operation imme- 
diately prior to the return. Unfortunately, the repeated multiplication by 128 

1. Section 8.4 contains the properties of the mod operation. 



The hash function 
must be simple to 
compute but also 
distribute the keys 
equitably. If there are 
too many collisions, 
the performance of 
the hash table will 
suffer dramatically. 

1 / /  Acceptable hash function. 
2 unsigned int hash( const string & key, int tablesize ) 

3 { 

4 unsigned int hashVal = 0; 
5 
6 for( int i = 0; i < key.length( ) ;  i++ ) 

7 hashVal = ( hashVal * 128 + key[ i I ) % tablesize; 
8 
9 return hashVal; 

10 1 

Figure 20.1 A first attempt at a hash function implementation. 

1 / /  A hash routine for string objects. 
2 / /  key is the string to hash. 
3 / /  tablesize is the size of the hash table. 
4 unsigned int hash( const string & key, int tablesize ) 

5 { 

6 unsigned int hashVal = 0; 
7 
8 for( int i = 0; i < key.length( ) ;  i++ ) 

9 hashVal = 37 * hashVal + key[ i 1 ;  
10 
11 return hashVal % tablesize; 
12 1 

Figure 20.2 A faster hash function that takes advantage of overflow. 

would tend to shift the early characters to the left-out of the answer. To 
alleviate this situation, we multiply by 37 instead of 128, which slows the 
shifting of early characters. 

The result is shown in Figure 20.2. It is not necessarily the best function 
possible. Also, in some applications (e.g., if long strings are involved), we 
may want to tinker with it. Generally speaking, however, the function is 
quite good. Note that the result obtained by allowing overflow and doing a 
final mod is not the same as performing the mod after every step. Thus we 
have slightly altered the hash function-which is not a problem. 

Although speed is an important consideration in designing a hash func- 
tion, we also want to be sure that it distributes the keys equitably. Conse- 
quently, we must not take our optimizations too far. An example is the hash 
function shown in Figure 20.3. It simply adds the characters in the keys and 
returns the result mod tablesize. What could be simpler? The answer is 
that little could be simpler. The function is easy to implement and computes 
a hash value very quickly. However, if tablesize is large, the function 
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1 / /  A poor hash function when tablesize is large. 
2 unsigned int hash( const string & key, int tablesize ) 

3 { 

4 unsigned int hashVal = 0; 
5 
6 for( int i = 0; i < key.length( ) ;  i++ ) 

7 hashVal += key.charAt( i ) ;  

8 
9 return hashVal % tablesize; 

10 } 

Figure 20.3 A bad hash function if tableSi ze is large. 

does not distribute the keys well. For instance, suppose that tablesize is 
10,000. Also suppose that all keys are 8 or fewer characters long. Because an 
ASCII char  is an integer between 0 and 127, the hash function can assume 
values only between 0 and 101 6 (127 x 8). This restriction certainly does not 
permit an equitable distribution. Any speed gained by the quickness of the 
hash function calculation is more than offset by the effort taken to resolve a 
larger than expected number of collisions. However, a reasonable alternative 
is described in Exercise 20.15. 

Finally, note that 0 is a possible result of the hash function, so hash The table runsfrom 0 

tables are indexed starting at 0. to tablesize-1. 

20.3 Linear Probing 

Now that we have a hash function, we need to decide what to do when a col- in linearprobing, 

lision occurs. Specifically, if X hashes out to a position that is already occu- are 
resolved by pied, where do we place it? The simplest possible strategy is linear probing, sequentially scanning 

or searching sequentially in the array until we find an empty cell. The search an array (with 

wraps around from the last position to the first, if necessary. Figure 20.4 wraparound) until an 

shows the result of inserting the keys 89, 18, 49, 58, and 9 in a hash table empty cell is found. 

when linear probing is used. We assume a hash function that returns the key X 
mod the size of the table. Figure 20.4 includes the result of the hash function. 

The first collision occurs when 49 is inserted; the 49 is put in the next 
available spot-namely, spot 0, which is open. Then 58 collides with 18, 89, 
and 49 before an empty spot is found three slots away in position 1. The col- 
lision for element 9 i s  resolved similarly. So long as the table is large 
enough, a free cell can always be found. However, the time needed to find a 
free cell can get to be quite long. For example, if there is only one free cell 
left in the table, we may have to search the entire table to find it. On average 
we would expect to have to search half the table to find it, which is far from 



After insert 89 After insert 18 After insert 49 After insert 58 After insert 9 

Figure 20.4 Linear probing hash table after each insertion. 

the constant time per access that we are hoping for. But, if the table is kept 
relatively empty, insertions should not be so costly. We discuss this approach 
shortly. 

The find algorithm The f i n d  algorithm merely follows the same path as the i n s e r t  algo- 
follows the same rithm. If it reaches an empty slot, the item we are searching for is not found; 
probe sequence as the 
insert algorithm. otherwise, it finds the match eventually. For example. to find 58, we start at 

slot 8 (as indicated by the hash function). We see an item, but it is the wrong 
one, so we try slot 9. Again, we have an item, but it is the wrong one, so we 
try slot 0 and then slot 1 until we find a match. A f ind  for 19 would involve 
trying slots 9, 0, 1, and 2 before finding the empty cell in slot 3. Thus 19 is 
not found. 

We must use lazy Standard deletion cannot be performed because, as with a binary search 
deletion. tree, an item in the hash table not only represents itself, but it also connects 

other items by serving as a placeholder during collision resolution. Thus, if 
we removed 89 from the hash table, virtually all the remaining f i nd  opera- 
tions would fail. Consequently, we implement lazy deletion, or marking 
items as deleted rather than physically removing them from the table. This 
information is recorded in an extra data member. Each item is either active 
or deleted. 



20.3.1 Naive Analysis of Linear Probing 

To estimate the performance of linear probing, we make two assumptions: 

1 .  the hash table is large, and 

2. each probe in the hash table is independent of the previous probe. 

Assumption 1 is reasonable; otherwise, we would not be bothering with a 
hash table. Assumption 2 says that, if the fraction of the table that is full is A, 
each time we examine a cell the probability that it is occupied is also 2, 
independent of any previous probes. Independence is an important statistical 
property that greatly simplifies the analysis of random events. Unfortunately, 
as discussed in Section 20.3.2, the assumption of independence is not only 
unjustified, but it also is erroneous. Thus the naive analysis that we perform 
is incorrect. Even so, it is helpful because it tells us what we can hope to 
achieve if we are more careful about how collisions are resolved. As men- 
tioned earlier in the chapter, the performance of the hash table depends on 
how full the table is. Its fullness is given by the load factor. 

DEFINITION: The load factor, A, of a probing hash table is the fraction 
of the table that is full. The load factor ranges from 0 (empty) to 1 (com- 
pletely full). 

We can now give a simple but incorrect analysis of linear probing in 
Theorem 20. I. 

The simplistic 
analysis of linear 
probing is based on 
the assumption that 
successive probes 
are independent. This 
assumption is not 
true and thus the 
analysis 
underestimates the 
costs of searching 
and insertion. 

The load factor of a 
probing hash table is 
the fraction of the 
table that is full. It 
ranges from 0 (empty) 
to 1 (full). 

/findependence of probes is assumed, the average number of cells Theorem 20.1 
examined in an insertion using linear probing is 1 / ( 1  - A). 

For a table wit/? cr load factor of A, the probability of any cell's being 

empty is 1 - A. Consequently, the expected number of independent trials 

required to,find an empty cell is 1/ (  1 - A). 

Proof 

In the proof of Theorem 20.1 we use the fact that, if the probability of 
some event's occurring is p, then on average Ilp trials are required until the 
event occurs, provided that the trials are independent. For example, the 
expected number of coin flips until a heads occurs is two, and the expected 
number of rolls of a single six-sided die until a 4 occurs is six, assuming 
independence. 
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Figure 20.5 Illustration of primary clustering in linear probing (b) versus no 
clustering (a) and the less significant secondary clustering in quadratic 
probing (c). Long lines represent occupied cells, and the load factor 
is 0.7. 

20.3.2 What Really Happens: Primary Clustering 

The effect of primary Unfortunately, independence does not hold, as shown in Figure 20.5. Part (a) 
clustering is the shows the result o<filling a hash table to 70 percent capacity, if all succes- 
formation of large 
clusters of occu~ied sive probes are independent. Part (b) shows the result of linear probing. Note 
cells, making the group of clusters: the phenomenon known as primary clustering. 
insertions into the In primary clustering, large blocks of occupied cells are formed. Any 
cluster expensive 
(and then the 

key that hashes into this cluster requires excessive attempts to resolve the col- 
insertion makes the lision, and then it adds to the size of the cluster. Not only d~ items that collide 
cluster even larger). because of identical hash functions cause degenerate performance, but also an 

item that collides with an alternative location for another item causes poor per- 
formance. The mathematical analysis required to take this phenomenon into 
account is complex but has been solved, yielding Theorem 20.2. 

Theorem 20.2 The average number of cells examined in an insertion using linear 
probing is roughly ( 1 + 1 /( 1 - i1)2)/2. 

Proof The proof is beyond the scope of this text. See reference [6]. 
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For a half-full table, we obtain 2.5 as the average number of cells exam- Primary clustering is 

ined during an insertion. This outcome is almost the same as what the naive a problem at high 
load factors. For half- analysis indicated. The main difference occurs as A gets close to 1. For empty tables, the 

instance, if the table is 90 percent full, A = 0.9. The naive analysis suggests effect is not 
that 10 cells would have to be examined-a lot but not completely out of the disastrous. 

question. However, by Theorem 20.2, the real answer is that some 50 cells 
need to be examined. That is excessive (especially as this number is only an 
average and thus some insertions must be worse). 

20.3.3 Analysis of the find Operation 

The cost of an insertion can be used to bound the cost of a f i n d .  There are An unsuccessful 

two types of f i n d  operations: unsuccessful and successful. An unsuccessful find the same 
as an insertion. f i n d  is easy to analyze. The sequence of slots examined for an unsuccessful 

search of X is the same as the sequence examined to i n s e r t  X. Thus we 
have an immediate answer for the cost of an unsuccessful f i n d .  

For successful f inds ,  things are slightly more complicated. Figure 20.4 The cost of a 

shows a table with A = 0.5. Thus the average cost of an insertion is 2.5. The SUCCeSSfU1 find is 
an average of the 

average cost to f i n d  the newly inserted item would then be 2.5, no matter insertion costs over 
how many insertions follow. The average cost to find the first item inserted in all smaller load 
the table is always 1.0 probe. Thus, in a table with A = 0.5, some searches are factors. 

easy and some are hard. In particular, the cost of a successful search of X is 
equal to the cost of inserting X at the time X was inserted. To find the average 
time to perform a successful search in a table with load factor d, we must 
compute the average insertion cost by averaging over all the load factors lead- 
ing to A. With this groundwork, we can compute the average search times for 
linear probing, as asserted and proved in Theorem 20.3. 

The average number of cells examined in an unsuccessful search Theorem 20.3 

using linear probing is roughly ( 1 + 1 /( 1 - A)* ) /2 .  The average 

number of cells examined in a successful search is approximately 
( 1 + 1 / (  I - A ) ) / 2 .  

The cost of an unsuccessful search is the same as the cost of an insertion. Proof 
For a successful search, we compute the average insertion cost over the 

sequence of insertions. Because the table is large, we can compute this 

average by evaluating S ( A ) =  IJ; = I ( x ) d x  . In other words, the 
ii. 

average cost of a successful search for a table with a load factor of A 



Proof equals the cosr of an insertion in a table of load factor x, averaged from 

(continued) load factors 0 through A. From Theorem 20.2, we can derive the 

following equation: 

We can apply the same technique to obtain the cost of a successful find 
under the assumption of independence (by using I(x) = 1 /( 1 - x) in The- 
orem 20.3). If there is no clustering, the average cost of a successful find 
for linear probing is -In(l - il)/d. If the load factor is 0.5, the average 
number of probes for a successful search using linear probing is 1.5, 
whereas the nonclustering analysis suggests 1.4 probes. Note that this aver- 
age does not depend on any ordering of the input keys; it depends only on 
the fairness of the hash function. Note also that, even when we have good 
hash functions, both longer and shorter probe sequences are bound to con- 
tribute to the average. For instance, there are certain to be some sequences of 
length 4, 5, and 6, even in a hash table that is half empty. Determining the 
expected longest probe sequence is a challenging calculation. Primary clus- 
tering not only makes the average probe sequence longer, but it also makes a 
long probe sequence more likely. The main problem with primary clustering 
therefore is that performance degrades severely for insertion at high load 
factors. Also, some of the longer probe sequences typically encountered 
(those at the high end of the average) are made more likely to occur. 

To reduce the number of probes, we need a collision resolution scheme 
that avoids primary clustering. Note, however, that, if the table is half empty, 
removing the effects of primary clustering would save only half a probe on 
average for an insertion or unsuccessful search and one-tenth a probe on 
average for a successful search. Even though we might expect to reduce the 
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probability of getting a somewhat lengthier probe sequence, linear probing 
is not  a terrible strategy. Because it is so easy to implement, any method we 
use to remove primary clustering must be of comparable complexity. Other- 
wise, we expend too much time in saving only a fraction of a probe. One 
such method is quadratic probing. 

20.4 Quadratic Probing 
Quadratic probing is a collision resolution method that eliminates the pri- Quadratic probing - 
mary clustering problem of linear probing by examining certain cells away examines cells ' 9  4 9  99 

and so on, away from from the original probe point. Its name is derived from the use of the formula the original probe 
F ( i )  = i 2  to resolve collisions. Specifically, if the hash function evaluates to point. 
H and a search in cell H is inconclusive, we try cells H + 1 *, H + 22. H + 3*, 
. . . , H + i2 (employing wraparound) in sequence. This strategy differs from 
the linear probing strategy of searching H + I ,  H + 2, H + 3, . . ., H + i. 

Figure 20.6 shows the table that results when quadratic probing is used Remember that 

instead of linear probing for the insertion sequence shown in Figure 20.4. subsequent probe 
points are a quadratic 

When 49 collides with 89. the first alternative attempted is one cell away. This number of positions 
cell is empty, so 49 is placed there. Next, 58 collides at position 8. The cell at from the original 

position 9 (which is one away) is tried, but another collision occurs. A vacant probe point. 

After insel? 89 After insert 18 After insert 49 After insert 58 After insert 9 

Figure 20.6 A quadratic probing hash table after each insertion (note that the 
table size was poorly chosen because it is not a prime number). 



Hash Tables 

If the table size is 
prime and the load 
factor is no larger 
than 0.5, all probes 
will be to different 
locations and an item 
can always be 
inserted. 

cell is found at the next cell tried, which is 22 = 4 positions away from the 
original hash position. Thus 58 is placed in cell 2. The same thing happens for 
9. Note that the alternative locations for items that hash to position 8 and the 
alternative locations for the items that hash to position 9 are not the same. The 
long probe sequence to insert 58 did not affect the subsequent insertion of 9, 
which contrasts with what happened with linear probing. 

We need to consider a few details before we write code. 

In linear probing, each probe tries a different cell. Does quadratic 
probing guarantee that, when a cell is tried, we have not already tried 
it during the course of the current access? Does quadratic probing 
guarantee that when we are inserting X and the table is not full, X will 
be inserted? 
Linear probing is easily implemented. Quadratic probing appears to 
require multiplication and mod operations. Does this apparent added 
complexity make quadratic probing impractical? 
What happens (in both linear probing and quadratic probing) if the load 
factor gets too high? Can we dynamically expand the table, as is typi- 
cally done with other array-based data structures? 

Fortunately, the news is relatively good on all cases. If the table size is prime 
and the load factor never exceeds 0.5, we can always place a new item X and 
no cell is probed twice during an access. However, for these guarantees to 
hold, we need to ensure that the table size is a prime number. We prove this 
case in Theorem 20.4. For completeness, Figure 20.7 shows a routine that 
generates prime numbers, using the algorithm shown in Figure 10.8 (a more 
complex algorithm is not warranted). 

Theorem 20.4 lf quadratic probing is used and the table size is prime, then a new 
element can always be inserted ifthe fable is at least h a l f e m p ~ .  

Furthermore, in the course of the insertion, no cell is probed twice. 

Proof Let M be the size of the table. Assume that M is an odd prime greafer 

than 3. We show that the first r M / 2  1 alternative locations (including 

the original) are distinct. Two of these locations are H + i2(mod M )  
and H + j2(mod M ) ,  where 0 5 i, j I 1 ~ / 2 1 .  Suppose, for the sake of 

contradiction, that these two locations are the same but that i # j .  Then 
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H + i2 = H + j2(mod M ) ;  

i2 = j2(mod M ) ;  

i2 - j2 = O(mod M) ;  

( i  - j ) ( i  + j) = O(mod M ) ,  

Because M is prime, it follows that either i - j or i + j is divisible by M. 
As i and j are distinct and their sum is smaller than M, neither of these 
possibilities can occul: Thus we obtain a contradiction. It follows that the 
jirst r M / 2  1 alternatives (including the original location) are all distinct 
and guarantee that an insertion must succeed if the table is at least half 

emp@. 

If the table is even 1 more than half full ,  the insertion could fail  
(although failure is extremely unlikely). If we keep the table size prime and 
the load factor below 0.5, we have a guarantee of success for the insertion. If 
the table size is not prime, the number of alternative locations can be 
severely reduced. For example, if the table size was 16, the only alternative 
locations would be at distances 1, 4, or 9 from the original probe point. 
Again, size is not really an issue: Although we would not have a guarantee 
of L M / 2 1  alternatives, we would usually have more than we need. How- 
ever, it is best to play it safe and use the theory to guide us in selecting 
parameters. Furthermore, it has been shown empirically that prime numbers 
tend to be best for hash tables because they tend to remove some of the non- 
randomness that is occasionally introduced by the hash function. 

1 / /  Internal method to return a prime number at least as 
2 / /  large as n. See Figure 10.8 for usable isprime. 
3 int nextprime( int n ) 

4 { 
5 if( n % 2 == 0 ) 

6 n++; 
7 
8 for ( ; ! isprime ( n ) ; n += 2 ) 

9 
10 
11 return n; 
12 } 

Proof 
(continued) 

Figure 20.7 A routine used in quadratic probing to find a prime greater than or 
equal to N. 



Quadratic probing 
can be implemented 
without 
multiplications and 
mod operations. 
Because it does not 
suffer from primary 
clustering, it 
outperforms linear 
probing in practice. 

The second important consideration is efficiency. Recall that, for a load 
factor of 0.5, removing primary clustering saves only 0.5 probe for an aver- 
age insertion and 0. I probe for an average successful search. We do get some 
additional benefits: Encountering a long probe sequence is significantly less 
likely. However, if performing a probe using quadratic probing takes twice 
as long, doing so is hardly worth the effort. Linear probing is implemented 
with a simple addition (by l ) ,  a test to determine whether wraparound is 
needed, and a very rare subtraction (if we need to do the wraparound). The 
formula for quadratic probing suggests that we need to do an addition by 1 
(to go from i - 1 to i ) ,  a multiplication (to compute i 2 ) ,  another addition, 
and then a mod operation. Certainly this calculation appears to be much too 
expensive to be practical. However, we can use the following trick, as 
explained in Theorem 20.5. 

Theorem 20.5 Quadratic probing can he implemented  ith hour e-xpensive 
multiplicatioizs and dh~isions. 

Proof Let H i  _ , be the most recently computed probe ( H o  is the original hash 

position) and H, be the probe we are t ~ i n g  to compufe. Then we have 

H,  = H, + i2(mod M ) ;  

H i ,  = H, + ( i -  l)'(mod M )  

Ifwe subtracl tlzese two equations, we obtain 

Hi = H i - ,  + 2 i -  l(mod M ) .  

Equation 20.4 tells us that we compute the new value H ,  from the 

previous value H, _ , without squaring 1. Although kve still Izave a 

multiplication, tlze multiplication is bj 2, which is a trivially 

i~nplemented bit shifr on most computers. Wlzat about the mod 

operation? Tlzat, too, is not really needed because the expression 2i - 1 

must be smaller than M. Therefore, ifwe add it ro H, _ ,, tlze result will be 
either still smaller than M (in which case we do not need the mod) or 

just a little larger than M (in which case, we can compute the mod 

equivalent b)' subtracting Mi .  

Theorem 20.5 shows that we can compute the next position to probe by 
using an addition (to increment i) ,  a bit shift (to evaluate 2i), a subtraction by 1 
(to evaluate 2i - l ) ,  another addition (to increment the old position by 2i - I ). 
a test to determine whether wraparound is needed, and a very rare subtrac- 
tion to implement the mod operation. The difference is thus a bit shift, a 



subtraction by 1, and an addition per probe. The cost of this operation is 
likely to be less than the cost of doing an extra probe if complex keys (such 
as strings) are involved. 

The final detail to consider is dynamic expansion. I f  the load factor Expand the table as 

exceeds 0.5, we want to double the size of the hash table. This approach the load 
factor reaches 0.5, 

raises a few issues. First, how hard will it be to find another prime number? which is called 
The answer is that prime numbers are easy to find. We expect to have to test rehashing. Always 

only O(log N )  numbers until we find a number that is prime. Consequently, doubletoa Prime 
number. Prime the routine shown in Figure 20.7 is very fast. The primality test takes at most numbers are easy to 

O(N1/') time, so the search for a prime number takes at most O(N'l2 log N) find. 
time."his cost is much less than the O(N) cost of transferring the contents 
of the old table to the new. 

Once we have allocated a larger array, do we just copy everything over? When expanding a 

The answer is most definitely no. The new array implies a new hash func- in 
the new table by 

tion, so we cannot use the old array positions. Thus we have to examine each using the new hash 
element in the old table, compute its new hash value. and insert it in the new function. 

hash table. This process is called rehashing. Rehashing is easily imple- 
mented in C++. 

20.4.1 C++ Implementation 

We are now ready to give a complete C++ implementation of a quadratic The user must 

probing hash table. We use a class template and assume that the user has pro- provide an 
appropriate hash 

vided an appropriate hash function of the form function and 
inequality operator 

unsigned int hash( const Object & x ) ;  for the instantiated 
Object. 

for each instantiated type. Note that there is no tablesize parameter; the 
quadratic probing algorithms perform a final mod operation internally after 
using the user-supplied hash function. A version for string is provided in 
the class, with its declaration at line 48. (A default is also supplied later in - - 
the form of a function template, but it is unlikely to make sense for compli- 
cated objects.) Finally, we assume that operator ! = is defined for object. 
The class interface is shown in Figure 20.8. For the algorithms to work cor- 
rectly, operator ! = and hash must be consistent. That is, if two objects are 
equal, their hash values must be equal. 

The hash table consists of an array of structures. Each structure stores an 
item and a data member that tells us that the entry is empty, active, or 
deleted. We use the enumerated type EntryType, declared at line 27, for 

2. This routine is also required if we add a constructor that allows the user to specify an 
approximate initial size for the hash table. The hash table implementation must ensure that 
a prime number is used. 



1 / /  Quadraticprobing Hash table class. 
2 / /  
3 / /  Object must have operator!= and global function 
4 / /  unsigned int hash( const Object & key ) ;  

5 / /  CONSTRUCTION: with no parameters or another hash table. 
6 / /  
7 / /  ******************PUBLIC OPERATIONS********************* 

8 / /  void insert ( x ) - - >  Insert x 
9 / /  void remove( x ) - - >  Remove x 

10 I /  Object find( x ) - - >  Return item that matches x 
11 / /  void makeEmpty ( ) - ->  Remove all items 
12 / /  *X*h********kx****ERRoRS*************x****************** 

13 / /  Throws exceptions as warranted. 
14 
15 template <class Object> 
16 class HashTable 
17 { 

18 public: 
19 HashTable ( ) ; 

20 
21 void makeEmpty ( i ; 
22 
23 Cref<Object> find( const Object & x ) const; 
24 void insert( const Object & x 1 ;  
25 void remove( const Object & x ) ; 

26 
27 enum EntryType ( ACTIVE, EMPTY, DELETED 1 ;  
28 
29 private: 
30 struct HashEntry 
3 1 I 
32 Object element; 
33 EntryType info; 
34 
35 HashEntry ( const Object & e = Object ( ) , 
36 EntryType i = EMPTY i 
37 : element( e ) ,  info( i ) { } 

38 1 ;  
39 
40 vector<HashEntry> array; 
41 int occupied; 
42 
43 boo1 isActive( int currentpos ) const; 
44 int findPos ( const Object & x ) const; 
45 void rehash( ) ; 

46 1 ;  
47 
48 unsigned int hash( const string & key ) ;  

Figure 20.8 The class interface for a quadratic probing hash table 
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that purpose. It is placed in the public section because at least one compiler 
complains at line 36 if it is private. The array is declared at line 40. We need 
to keep track of the number of items in the hash table (including elements 
marked as deleted); this value is stored in occupied, which is declared at 
line 41. 

The rest of the class interface contains declarations for the hash table The general layout is 

routines. Because the data members are all first-class objects, the Big Three similar to that for the 
binary search tree 

defaults are acceptable. The only interesting public method is find, which routines. 
returns the element found in the search for x wrapped in a Cref object. 

Recall that the Cref class template (defined in Section 5.3.2) wraps a 
constant reference variable. However, its advantage is that it can also store a 
null reference. As discussed in Section 5.3.2, we can use isNull to test 
whether a null reference is being stored, and we can get the constant refer- 
ence variable that is being wrapped by calling get. 

Three private methods are declared; we describe them when they are 
used in the class implementation. We can now discuss the implementation of 
the HashTable class. 

The hash table constructor and makeEmpty are shown in Figure Most routines are just 

20.9; nothing special is going on here. The searching routine is shown in a few lines Of code 
because they call 

Figure 20.10. It uses the private member function isAc t ive, shown in Fig- indPos to perform 
ure 20.1 1 .  It also calls f indPos, shown later, to implement quadratic prob- quadratic 

ing. The f indPos method is the only place in the entire code that depends 
on quadratic probing. Then find is easy to implement: An element is found 
if the result of f indpos is an active cell (if f indPos stops on an active cell, 

1 / /  Construct the hash table. 
2 template <class Object> 
3 HashTable<Object>::HashTable( ) 
4 : array( nextprime( 101 ) ) 

5 ( 

6 makeEmpty( ) ; 

7 1 
8 
9 / /  Make the hash table logically empty. 

10 template <class Object> 
11 void HashTable<Object>::makeEmpty( ) 
12 ( 

13 occupied = 0; 
14 for( int i = 0; i < array.size( ) ;  i++ ) 

15 array[ i ].info = EMPTY; 
16 1 

Figure 20.9 Hash table initialization and the makeEmpty method. 



1 i i  Find item x in the hash table. 
2 i l  Return the matching item, wrapped in a Cref object. 
3 template <class Object> 
4 Cref<Object> HashTable<Object>: :find( const Object & x ) const 
5 ( 

6 int currentpos = findPos( x ) ;  

7 
8 if( isActive( currentpos ) ) 

9 return Cref<Object>( array[ currentpos ].element ) ;  

10 else 
11 return Cref<Object> ( ) ; 

12 1 

Figure 20.10 The find routine for a quadratic probing hash table. 

1 / /  Return true if currentpos exists and is active. 
2 template <class Object> 
3 boo1 HashTable<Object>::isActive( int currentpos ) const 
4 I 
5 return array[ currentpos ].info == ACTIVE; 
6 } 

Figure 20.11 The isAc t ive method for a quadratic probing hash table 

1 i l  Remove item x from the hash table. 
2 I /  Throw ItemNotFoundException if x is not present. 
3 template <class Object> 
4 void HashTable<Object>::remove( const Object & x ) 

5 I 
6 int currentpos = findPos( x 1 ;  
7 if( isActive( currentpos ) ) 

8 array[ currentpos ].info = DELETED; 
9 else 

10 throw ItemNotFoundException( ) ;  

11 

Figure 20.12 The remove routine for a quadratic probing hash table 

there must be a match). Similarly, the remove routine shown in Figure 
20.12 is short. We check whether f indPos takes us to an active cell; if so, 
the cell is marked deleted. Otherwise, an exception is thrown. 

The insert routine The insert routine is shown in Figure 20.13. At line 7 we call f indPos. 
performs rehashing if If x is found, we throw an exception at line 9; otherwise, f indPos gives the 
the table is (half) full. 

place to insert x. The insertion is performed at line 10. We adjust occupied 



1 / /  Insert item x into the hash table. If the item is 
2 / /  already present, then throw DuplicateItemException. 
3 template <class Object> 
4 void HashTable<Object>::insert( const Object & x ) 

5 { 
6 / /  Insert x as active 
7 int currentpos = findPos( x ) ;  

8 if( isActive( currentpos ) ) 

9 throw DuplicateItemException( ) ; 

10 array[ currentpos ] = HashEntry( x, ACTIVE ) ;  

11 
12 if( ++occupied > array.size( ) / 2 ) 

13 rehash( ) ; 

14 1 

Figure 20.13 The insert routine for a quadratic probing hash table. 

1 / /  Expand the hash table. 
2 template <class Object> 
3 void HashTable<Object>::rehash( ) 
4 { 

5 vector<HashEntry> oldlirray = array; 
6 
7 / /  Create new double-sized, empty table 
8 array.resize( nextprime( 2 * oldArray.size( ) ) ) ;  

9 for( int j = 0; j < array.size( 1 ;  j++ ) 

10 array[ j ].info = EMPTY; 
11 
12 / /  Copy table over 
13 makeEmpty( ) ; 

14 for( int i = 0; i < oldArray.size( ) ;  i++ ) 

15 if ( oldlirray [ i ] .info == ACTIVE ) 

16 insert ( oldlirray [ i I .element ) ; 
17 } 

Figure 20.14 The rehash method for a quadratic probing hash table. 

at line 12 and return unless a rehash is in order; otherwise, we call the pri- 
vate method rehash. 

The code that implements rehashing is shown in Figure 20.14. Line 5 
makes a copy of the original table. We create a new, double-sized, empty hash 
table at line 13. Then we scan through the original array and insert any 
active elements in the new table. The insert routine uses the new hash func- 
tion (as it is based on the size of array, which is now larger) and automati- 
cally resolves all collisions. We can be sure that the recursive call to insert 



/ /  Method that performs quadratic probing resolution. 
/ /  Return the position where the search for x terminates. 
template <class Object> 
int HashTable<Object>::findPos( const Object & x ) const 
t 

int i = 0; 
int currentpos = hash( x ) % array.size( ) ;  

while( array[ currentpos ].info ! =  EMPTY & &  

array [ currentpos ] .element ! = x ) 

currentpos += 2 * ++i - 1; / /  Compute ith probe 
if( currentpos >= array.size( ) ) 

currentpos - =  array.size( ) ;  

} 

return currentpos; 

Figure 20.15 The routine that finally deals with quadratic probing. 

(at line 16) does not force another rehash. Alternatively, we could replace line 
16 with two lines of code surrounded by braces (see Exercise 20.14). 

Quadratic probing is So far, nothing that we have done depends on quadratic probing. Fig- 
implemented in ure 20.15 implements f indPos, which finally deals with the quadratic 
f indPos. It uses the 
previously described probing algorithm. We keep searching the table until we find an empty cell 
trick to avoid or a match. Lines 12-14 directly implement the methodology described in 
multiplications and Theorem 20.5. 
mods. Finally, Figure 20.16 gives a generic hash function. By performing the 

type conversion at line 7, it works by treating the byte pattern of key as a 
primitive string (but one that might not have a null terminator) and then 
using the same hash function as for strings. This hash function works for 
primitive types, but it is unlikely to be suitable for complicated objects 
because it might not satisfy the requirement that two objects that are 
declared equal always have equal hash values. This hash function is more 
discriminating because the only guarantee is that two objects with equal bit 
patterns will have equal hash values. 
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Quadratic Probing 

1 / /  Generic hash function - -  used if no other matches. 
2 template <class Object> 
3 unsigned int hash( const Object & key ) 

4 { 
5 unsigned int hashVal = 0; 
6 
7 const char *keyp = reinterpret-cast<const char * > (  &key 
8 for( size-t i = 0; i < sizeof( Object ) ;  i++ ) 

9 hashVal = 37 * hashVal + keyp[ i I ;  
10 
11 return hashVal; 
12 1 

Figure 20.16 A generic hash function 

20.4.2 Analysis of Quadratic Probing 

Quadratic probing has not yet been mathematically analyzed, although we 
know that it eliminates primary clustering. In quadratic probing, elements 
that hash to the same position probe the same alternative cells, which is 
known as secondary clustering. Again, the independence of successive 
probes cannot be assumed. Secondary clustering is a slight theoretical blem- 
ish. Simulation results suggest that it generally causes less than an extra one- 
half probe per search and that this increase is true only for high load factors. 
Figure 20.5 illustrates the difference between linear probing and quadratic 
probing and shows that quadratic probing does not suffer from as much clus- 
tering as does linear probing. 

Techniques that eliminate secondary clustering are available. The most 
popular is double hashing, in which a second hash function is used to drive 
the collision resolution. Specifically, we probe at a distance Hash,(X), 
2Hash2(X), and so on. The second hash function must be carefully chosen 
(e.g., it should never evaluate to O), and all cells must be capable of being 
probed. A function such as Hash,(X) = R - (X mod R) ,  with R a prime 
smaller than M, generally works well. Double hashing is theoretically inter- 
esting because it can be shown to use essentially the same number of probes 
as the purely random analysis of linear probing would imply. However, it is 
somewhat more complicated than quadratic probing to implement and 
requires careful attention to some details. 

There seems to be no good reason not to use a quadratic probing strat- 
egy, unless the overhead of maintaining a half-empty table is burdensome. 
That would be the case in other programming languages if the items being 
stored were very large. 

In secondary 
clustering, elements 
that hash to the same 
position probe the 
same alternative 
cells. Secondary 
clustering is a minor 
theoretical blemish. 

Double hashing is a 
hashing technique 
that does not suffer 
from secondary 
clustering. A second 
hash function is used 
to drive the collision 
resolution. 
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Separate chaining 
hashing is a space- 
efficient alternative to 
quadratic probing in 
which an array of 
linked lists is 
maintained. It is less 
sensitive to high load 
factors. 

For separate chaining 
hashing, a reasonable 
load factor is 1 .O. A 
lower load factor 
does not significantly 
improve performance; 
a moderately higher 
load factor is 
acceptable and can 
save space. 

Use a hash table 
instead of a binary 
search tree if you do 
not need order 
statistics and are 
worried about 
nonrandom inputs. 

20.5 Separate Chaining Hashing 
A popular and space-efficient alternative to quadratic probing is separate 
chaining hashing in which an array of linked lists is maintained. For an 
array of linked lists, Lo, L,,  ..., L,_ ,, the hash function tells us in which list 
to insert an item X and then, during a f i nd ,  which list contains X. The idea 
is that, although searching a linked list is a linear operation, if the lists are 
sufficiently short, the search time will be very fast. In particular, suppose 
that the load factor, N/M,  is A ,  which is not bounded by 1 .O. Thus the aver- 
age list has length A, making the expected number of probes for an insertion 
or unsuccessful search A and the expected number of probes for a successful 
search 1 + A / 2 .  The reason is that a successful search must occur in a non- 
empty list, and in such a list we expect to have to traverse halfway down the 
list. The relative cost of a successful search versus an unsuccessful search is 
unusual in that, if A < 2, the successful search is more expensive than the 
unsuccessful search. This condition makes sense, however, because many 
unsuccessful searches encounter an empty linked list. 

A typical load factor is 1 .O; a lower load factor does not significantly 
enhance performance, but it costs extra space. The appeal of separate chain- 
ing hashing is that performance is not affected by a moderately increasing 
load factor; thus rehashing can be avoided. For languages that do not allow 
dynamic array expansion, this consideration is significant. Furthermore, the 
expected number of probes for a search is less than in quadratic probing, 
particularly for unsuccessful searches. 

We can implement separate chaining hashing by using our existing 
linked list classes. However, because the header node adds space overhead 
and is not really needed, if space were at a premium we could elect not to 
reuse components and instead implement a simple stacklike list. The coding 
effort turns out to be remarkably light. Also, the space overhead is essen- 
tially one pointer per node, plus an additional pointer per list; for example, 
when the load factor is 1 .O, it is two pointers per item. This feature could be 
important if the size of an item is large. In that case, we have the same trade- 
offs as with the array and linked list implementations of stacks. 

20.6 Hash Tables Versus Binary Search Trees 
We can also use binary search trees to implement i n s e r t  and f i n d  opera- 
tions. Although the resulting average time bounds are O(1og N), binary 
search trees also support routines that require order and thus are more pow- 
erful. Using a hash table? we cannot efficiently find the minimum element or 
extend the table to allow computation of an order statistic. We cannot search 
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efficiently for a string unless the exact string is known. A binary search tree 
could quickly find all items in a certain range, but this capability is not sup- 
ported by a hash table. Furthermore, the O(1og N) bound is not necessarily 
that much more than 0(1),  especially since no multiplications or divisions 
are required by search trees. 

The worst case for hashing generally results from an implementation 
error, whereas sorted input can make binary search trees perform poorly. 
Balanced search trees are quite expensive to implement. Hence, if no order- 
ing information is required and there is any suspicion that the input might be 
sorted, hashing is the data structure of choice. 

20.7 Hashing Applications 
Hashing applications are abundant. Compilers use hash tables to keep track Hashing applications 

of declared variables in source code. The data structure is called a symbol are abundant. 

table. Hash tables are the ideal application for this problem because only 
insert and find operations are performed. Identifiers are typically short, 
so the hash function can be computed quickly. In this application, most 
searches are successful. 

Another common use of hash tables is in game programs. As the pro- 
gram searches through different lines of play, it keeps track of positions that 
it has encountered by computing a hash function based on the position (and 
storing its move for that position). If the same position recurs, usually by a 
simple transposition of moves, the program can avoid expensive recomputa- 
tion. This general feature of all game-playing programs is called the rrans- 
position table. We discussed this feature in Section 11.2, where we 
implemented the tic-tac-toe algorithm. 

A third use of hashing is in online spelling checkers. If misspelling 
detection (as opposed to correction) is important, an entire dictionary can be 
prehashed and words can be checked in constant time. Hash tables are well 
suited for this purpose because the words do not have to be alphabetized. 
Printing out misspellings in the order they occurred in the document is 
acceptable. 

Summary 

Hash tables can be used to implement the insert and find operations in 
constant average time. Paying attention to details such as load factor is espe- 
cially important in the use of hash tables; otherwise, the constant time 
bounds are not meaningful. Choosing the hash function carefully is also 
important when the key is not a short string or integer. You should pick an 
easily computable function that distributes well. 



For separate chaining hashing, the load factor is typically close to 1, 
although performance does not significantly degrade unless the load factor 
becomes very large. For quadratic probing, the table size should be prime 
and the load factor should not exceed 0.5. Rehashing should be used for qua- 
dratic probing to allow the table to grow and maintain the correct load factor. 
This approach is important if space is tight and it is not possible just to 
declare a huge hash table. 

This completes the discussion of basic searching algorithms. In Chapter 21 
we examine the binary heap, which implements the priority queue and thus 
supports efficient access of the minimum item in a collection of items. 

fj3y, . . :.: Objects of the Game 

collision The result when two or more items in a hash table hash out to 
the same position. This problem is unavoidable because there are 
more items than positions. (p. 727) 

double hashing A hashing technique that does not suffer from sec- 
ondary clustering. A second hash function is used to drive the colli- 
sion resolution. (p. 745) 

hashing The implementation of hash tables to perform insertions, 
deletions, and finds. (p. 725) 

hash function A function that converts the item into an integer suit- 
able to index an array where the item is stored. If the hash function 
were one to one, we could access the item by its array index. Since 
the hash function is not one to one, several items will collide at the 
same index. (p. 726) 

hash table A table used to implement a dictionary in constant time per 
operation. (p. 725) 

linear probing A way to avoid collisions by sequentially scanning an 
array until an empty cell is found. (p. 729) 

load factor The number of elements in a hash table divided by the size 
of the hash table array, or the fraction of the table that is full. In a 
probing hash table, the load factor ranges from 0 (empty) to 1 (full). 
In separate chaining hashing, it can be greater than I. (p. 731) 

lazy deletion The technique of marking elements as deleted instead of 
physically removing them from a hash tabale. It is required in prob- 
ing hash tables. (p. 730) 

primary clustering Large clusters of occupied cells form during lin- 
ear probing, making insertions in the cluster expensive (and then the 
insertion makes the cluster even larger) and affecting performance. 
(P. 732) 
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quadratic probing A collision resolution method that examines cells 
1 ,4 ,9 ,  and so on, away from the original probe point. (p. 735) 

secondary clustering Clustering that occurs when elements that hash 
to the same position probe the same alternative cells. It is a minor 
theoretical blemish. (p. 745) 

separate chaining A space-efficient alternative to quadratic probing in 
which an array of linked lists is maintained. It is less sensitive to 
high load factors and exhibits some of the trade-offs considered in 
the array versus linked list stack implementations. (p. 746) 

Common Errors 

1. The hash function returns an unsigned int. Because intermediate 
calculations allow overflow, the local variable should also be 
unsigned to avoid risking an out-of-bounds return value. 

2. The performance of a probing table degrades severely as the load 
factor approaches 1 .O. Do not let this happen. Rehash when the load 
factor reaches 0.5. 

3. The performance of all hashing methods depends on using a good 
hash function. A common error is providing a poor function. 

On the Internet 

The quadratic probing hash table is available for your perusal. 

QuadraticPr0bing.h Contains the HashTable class interface. 
QuadraticProbing.cpp Contains the implementation of the - - 

HashTable class. 
TestQuadraticProbing.cpp Contains a test program for the 

HashTable class. 

Exercises 

In Short 

20.1. What are the array indices for a hash table of size 1 l ?  

20.2. What is the appropriate probing table size if the number of items in 
the hash table is lo? 

20.3. Explain how deletion is performed in both probing and separate 
chaining hash tables. 



m-h Tables 

20.4. What is the expected number of probes for both successful and 
unsuccessful searches in a linear probing table with load factor 
0.25? 

20.5. Given the input (4371, 1323, 6173, 4199, 4344, 9679, 19891, a 
fixed table size of 10, and a hash function H(X) = X mod 10, show 
the resulting 
a. linear probing hash table. 
b. quadratic probing hash table. 
c. separate chaining hash table. 

20.6. Show the result of rehashing the probing tables in Exercise 20.5. 
Rehash to a prime table size. 

20.7. The isEmpty routine has not been written. Can you implement it by 
returning the expression occupied= = O ?  Explain. 

In Theory 

20.8. An alternative collision resolution strategy is to define a sequence, 
F ( i )  = R,, where Ro = 0 and R , ,  R2, . . ., R M  - , is a random per- 
mutation of the first M - 1 integers (recall that the table size is M).  
a. Prove that under this strategy, if the table is not full, the collision 

can always be resolved. 
b. Would this strategy be expected to eliminate primary clustering? 
c .  Would this strategy be expected to eliminate secondary 

clustering? 
d. If the load factor of the table is A, what is the expected time to 

perform an insertion? 
e. Generating a random permutation using the algorithm in Sec- 

tion 10.4 involves a large number of (expensive) calls to a ran- 
dom number generator. Give an efficient algorithm to generate a 
random-looking permutation that avoids calling a random num- 
ber generator. 

20.9. If rehashing is implemented as soon as the load factor reaches 0.5, 
when the last element is inserted the load factor is at least 0.25 and 
at most 0.5. What is the expected load factor? In other words, is it 
true or false that the load factor is 0.375 on average? 
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20.10. When the rehashing step is implemented, you must use O(N) probes 
to reinsert the N elements. Give an estimate for the number of 
probes (i.e., Nor  2N or something else). (Hint: Compute the average 
cost of inserting in the new table. These insertions vary from load 
factor 0 to load factor 0.25.) 

20.11. Under certain assumptions, the expected cost of an insertion in a hash 
table with secondary clustering is given by ll(1 - A) - A - ln(1 - A). 
Unfortunately, this formula is not accurate for quadratic probing. 
However. assuming that it is, 
a. what is the expected cost of an unsuccessful search? 
b. what is the expected cost of a successful search? 

A quadratic probing hash table is used to store 10,000 string 
objects (using the string class implemented in Section 2.6). 
Assume that the load factor is 0.4 and that the average string length 
is 8. Determine 
a, the hash table size. 
b. the amount of memory used to store the 10,000 s~ring objects. 
c,  the amount of memory used to store the remaining (uninitial- 

ized) string objects. 
d, the amount of additional memory used by the hash table. 
e. the total memory used by the hash table. 
f. the space overhead. 

In Practice 

20.13. Implement linear probing. 

20.14. For the probing hash table. implement the rehashing code without 
making a recursive call to insert. 

20.15. Experiment with the following alternative for line 9 in Figure 20.2: 

20.16. Experiment with a hash function that examines every other character 
in a string. Is this a better choice than the one in the text? Explain. 

20.17. Modify the HashTable class so that the isEmpty operation can be 
supported in constant time. 

20.18. Modify the deletion algorithm so that. if the load factor goes below 
118, a rehash is performed to yield a table half as large. 
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20.19. Implement an STL-style m a p  class using a hash table. The class is 
instantiated with the types of the objects being stored, a not-equals 
function object, and a hash function object. 

20.20. Find yourself a large online dictionary. Choose a table size that is 
twice as large as the dictionary. Apply the hash function described in 
the text to each word, and store a count of the number of times each 
position is hashed to. You will get a distribution: Some percentage of 
the positions will not be hashed to, some will be hashed to once, 
some twice, and so on. Compare this distribution with what would 
occur for theoretical random numbers (discussed in Section 10.3). 

20.21. Perform simulations to compare the observed performance of hash- 
ing with the theoretical results. Declare a probing hash table, insert 
10,000 randomly generated integers into the table, and count the 
average number of probes used. This number is the average cost of a 
successful search. Repeat the test several times for a good average. 
Run it for both linear probing and quadratic probing, and do it for 
final load factors 0.1,0.2, ..., 0.9. Always declare the table so that no 
rehashing is needed. Thus the test for load factor 0.4 would declare a 
table of size approximately 25,000 (adjusted to be prime). 

20.22. Compare the time required to perform successful searches and inser- 
tions in a separate chaining table with load factor 1 and a quadratic 
probing table with load factor 0.5. Run it for simple integers, strings, 
and complex records in which the search key is a string. 

20.23. A BASIC program consists of a series of statements, each of which is 
numbered in ascending order. Control is passed by use of a goto or 
gosub and a statement number. Write a program that reads a legal basic 
program and renumbers the statements so that the first starts at number 
F and each statement has a number D higher than the previous state- 
ment. The statement numbers in the input might be as large as a 32-bit 
integer, and you may assume that the renumbered statement numbers 
fit in a 32-bit integer. Your program must run in linear time. 

References 

Despite the apparent simplicity of hashing, much of the analysis is quite 
difficult and many questions remain unresolved. Also there are many inter- 
esting ideas that generally attempt to make it unlikely that worst-case possi- 
bilities of hashing arise. 
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Chapter 21 

A Priority Queue: The Binary Heap 

The priority queue is a fundamental data structure that allows access only to 
the minimum item. In this chapter we discuss one implementation of the pri- 
ority queue data structure, the elegant binaq heap. The binary heap supports 
the insertion of new items and the deletion of the minimum item in logarith- 
mic worst-case time. It uses only an array and is easy to implement. 

In this chapter, we show: 

the basic properties of the binary heap, 
how the insert and deleteMin operations can be performed in 
logarithmic time, 
a linear-time heap construction algorithm, 

a C++ implementation, using both the generic and STL protocols in 
Section 7.9, 
an easily implemented sorting algorithm. heapsort, that runs in 
O(N log N )  time but uses no extra memory, and 
the use of heaps to implement external sorting. 

21 .I  Basic Ideas 
As discussed in Section 7.9, the priority queue supports the access and dele- A linked list or array 

tion of the minimum item with f indMin and deleteMin, respectively. We requires that 
operation use linear 

could use a simple linked list, performing insertions at the front in constant time. 
time, but then finding and/or deleting the minimum would require a linear 
scan of the list. Alternatively, we could insist that the list always be kept 
sorted. This condition makes the access and deletion of the minimum cheap, 
but then insertions would be linear. 
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A Priority Queue: The Binary Heap 

An unbalanced binary Another way of implementing priority queues is to use a binary search 
search tree tree, which gives an O(1og N) average running time for both operations. 
have a good worst 
case. A balanced However, a binary search tree is a poor choice because the input is typically 
search tree requires not sufficiently random. We could use a balanced search tree. but the struc- 
lots of work. tures shown in Chapter 19 are cumbersome to implement and lead to slug- 

gish performance in practice. (In Chapter 22. however, we cover a data 
structure, the splaj, tree, that has been shown empirically to be a good alter- 
native in some situations.) 

The priority queue On the one hand. because the priority queue supports only some of the 
has properties that search tree operations, it should not be more expensive to implement than a 
are a compromise 
between a queue and search tree. On the other hand. the priority queue is more powerful than a 
a binary search tree. Simple queue because we can use a priority queue to implement a queue as 

follows. First. we insert each item with an indication of its insertion time. 
Then. a deleteMin on the basis of minimum insertion time implements a 
dequeue. Consequently, we can expect to obtain an implementation with 
properties that are a compromise between a queue and a search tree. This 
compromise is realized by the binary heap. which 

can be implemented by using a simple array (like the queue). 
supports insert and deleteMin in O(log N) worst-case time (a 
compromise between the binary search tree and the queue). and 
supports insert in constant average time and findMin in constant 
worst-case time (like the queue). 

The binary heap is the The binary heap is the classic method used to implement priority 
classic used queues and-like the balanced search tree structures in Chapter 19-has two 
to implement priority 
queues. properties: a structure property and an ordering property. And as with bal- 

anced search trees, an operation on a binary heap can destroy one of the 
properties. so a binary heap operation must not terminate until both proper- 
ties are in order. This outcome is simple to achieve. (In this chapter. we use 
the word heap to refer to the binary heap.) 

21 . I  . I  Structure Property 

The heap is a The only structure that gives dynamic logarithmic time bounds is the tree. so 
complete binary tree* it seems natural to organize the heap's data as a tree. Because we want the 
allowing 
representation by a logarithmic bound to be a worst-case guarantee. the tree should be balanced. 
simple array and A complete binary tree is a tree that is completely filled, bith the pos- 
guaranteeing sible exception of the bottom level. which is filled from left to right and has 
logarithmic depth. no missing nodes. An example of a complete binary tree of 10 items is 
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Basic 

Figure 21.1 A complete binary tree and its array representation. 

shown in Figure 2 1.1. Had the node J been a right child of E, the tree would 
not be complete because a node would be missing. 

The complete tree has a number of useful properties. First, the height 
(longest path length) of a complete binary tree of N nodes is at most Llog NJ.  
The reason is that a complete tree of height H has between 2H and 2H + - 1 
nodes. This characteristic implies that we can expect logarithmic worst- 
case behavior if we restrict changes in the structure to one path from the 
root to a leaf. 

Second and equally important, in a complete binary tree, l e f t  and The parent is in 

r i g h t  pointers are not needed. As shown in Figure 21.1, we can represent a position Li12Jl the left 
child is in position 2i, 

complete binary tree by storing its level-order traversal in an array. We place and the right is 
the root in position 1 (position 0 is often left vacant, for a reason discussed in position 2 i+  I .  
shortly). We also need to maintain an integer that tells us the number of 
nodes currently in the tree. Then for any element in array position i, its left 
child can be found in position 2i. If this position extends past the number of 
nodes in the tree, we know that the left child does not exist. Similarly, the 
right child is located immediately after the left child; thus it resides in posi- 
tion 2i + 1. We again test against the actual tree size to be sure that the child 
exists. Finally, the parent is in position Li/2]. 

Note that every node except the root has a parent. If the root were to 
have a parent, the calculation would place it in position 0. Thus we reserve 
position 0 for a dummy item that can serve as the root's parent. Doing so 
can simplify one of the operations. If instead we choose to place the root in 
position 0, the locations of the children and parent of the node in position i 
change slightly (in Exercise 2 1.15 you are asked to determine the new 
locations). 
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Using an array to 
store a tree is 
called implicit 
representation. 

The heap-order 
property states that, 
in a heap, the item in 
the parent is never 
larger than the item in 
a node. 

The root's parent can 
be stored in position 
0 and given a value of 
negative infinity. 

Using an array to store a tree is called implicit representation. As a 
result of this representation, not only are child pointers not required. but also 
the operations required to traverse the tree are extremely simple and likely to 
be very fast on most computers. The heap entity consists of an array of 
objects and an integer representing the current heap size. 

In this chapter, heaps are drawn as trees to make the algorithms easier to 
visualize. In the implementation of these trees we use an array. We do not 
use the implicit representation for all search trees. Some of the problems 
with doing so are covered in Exercise 21.8. 

21.1.2 Heap-Order Property 

The property that allows operations to be performed quickly is the heap- 
order property. We want to be able to find the minimum quickly, so it 
makes sense that the smallest element should be at the root. If we consider 
that any subtree should also (recursively) be a heap, any node should be 
smaller than all of its descendants. Applying this logic, we arrive at the heap- 
order property. 

HEAP-ORDER PROPERTY 
IN A HEAP, FOR EVERY NODE X WITH PARENT P, THE KEY IN P IS SM.4LLER 

THAN O R  EQUAL TO THE KEY IN X. 

The heap-order property is illustrated in Figure 21.2. In Figure 2 1.3(a), 
the tree is a heap, but in Figure 2 1.3(b), the tree is not (the dashed line shows 
the violation of heap order). Note that the root does not have a parent. In the 
implicit representation, we could place the value -w in position 0 to remove 
this special case when we implement the heap.' By the heap-order property, 
we see that the minimum element can always be found at the root. Thus 

Figure 21.2 Heap-order property. 

1. However, we do not do so because specifying negative infinity makes the template code a 
little more complicated. The technique of using a sentinel was popular in older program- 
ming languages that did not have templates (or their equivalent). Instead. as we will see 
later, we use a different trick. 
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Basic Ideas 

Figure 21.3 Two complete trees: (a) a heap; (b) not a heap. 

f indMin is a constant time operation. A max heap supports access of the 
maximum instead of the minimum. Minor changes can be used to imple- 
ment max heaps. 

21.1.3 Allowed Operations 

Now that we have settled on the representation, we can start writing code. 
We already know that our heap supports the basic insert, f indMin, and 
deleteMin operations and the usual i sEmpty and makeEmpty routines. 
Figure 2 1.4 shows the class interface. 

We begin by examining the public member functions. A pair of con- We provide a 

structors are declared at lines 19 and 20. The second constructor accepts a that 
accepts a vector 

vector that contains a set of items that should initially be in the priority an initial 
queue. Why not just insert the items one at a time? set of items and calls 

The reason is that in numerous applications we can add many items before buildaeag. 

the next deleteMin occurs. In those cases, we do not need to have heap order 
in effect until the deleteMin occurs. The buildHeap operation, declared at 
line 34, reinstates the heap order-no matter how messed up the heap is-and 
it works in linear time. Thus, if we need to place N items in the heap before the 
first deleteMin, placing them in the array sloppily and then doing one 
buildHeap is more efficient than doing N insert operations. 

The insert function is declared at line 25. It adds a new item x into 
the heap, performing the necessary operations to maintain the heap-order 
property. 

The remaining operations are as expected. The f indMin routine is 
declared at line 23 and returns the minimum item in the heap. We provide 
two forms of deleteMin: The one at line 27 passes the minimum item 
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m r ~ r i o r i t ~  Queue: The Binary Heap 

1 / /  BinaryHeap class. 
2 
3 / /  CONSTRUCTION: with no parameters or vector containing items. 
4 / /  
5 / /  ******************PUBLIC OpERATIONS*********X********Xk* 

6 / /  void insert( x ) - - >  Insert x 
7 / /  void deleteMin( ) - - >  Remove smallest item 
8 / /  void deleteMin( min ) - - >  Remove and send back smallest item 
9 / /  Comparable findMinl ) - - >  Return smallest item 

10 / /  boo1 isEmpty ( i - - >  Return true if empty; else false 
11 / /  void makeEmpty( ) - - >  Remove all items 
12 / /  ******************ERRORS*****f**************************** 

13 / /  Throws UnderflowException as warranted. 
14 
15 template <class Comparable> 
16 class BinaryHeap 
17 { 

18 public: 
19 BinaryHeap ( ) ; 

20 BinaryHeap( const vector<Comparable> & v ) ;  

21 
22 boo1 isEmpty( ) const; 
23 const Comparable & findMin( ) const; 
24 
25 void insert( const Comparable & x ) ;  

26 void deleteMin( ) ;  

27 void deleteMin( Comparable & minItem ) ;  

28 void rnakeEmpty( ) ;  

29 
30 private: 
31 int thesize; / /  Number of elements in heap 
32 vector<Comparable> array; / /  The heap array 
33 
34 void buildHeap( ) ;  

35 void percolateDown( int hole ) ;  

36 1 ;  

Figure 21.4 The BinaryHeap class interface. 

back by reference, and the other form does not. The usual isEmpty and 
makeEmpty routines are declared at lines 22 and 28. 

The two constructors are shown in Figure 21.5. Both initialize the array 
and its size; the one-parameter constructor additionally copies in the array 
passed as a parameter and then calls buildHeap. Figure 21.6 shows 
f indMin. The isEmpty and makeEmpty routines are trivial one-liners and 
thus are not shown. 
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1 / /  Construct the binary heap. 
2 template <class Comparable> 
3 BinaryHeap<Comparable>::BinaryHeap( ) 
4 : array ( 11 ) , thesize( 0 ) 

5 { 

6 I 
7 
8 / /  Construct the binary heap. 
9 / /  v is a vector containing the initial items. 

10 template <class Comparable> 
11 BinaryHeap<Comparable>:: 
12 BinaryHeap( const vector<Comparable> & v ) 

13 : array ( v. size ( ) + 1 ) , thesize ( v. size ( ) + 1 ) 

14 ( 

15 for ( int i = 0; i < v. size ( ) ; i++ ) 

16 array[ i + 1 ] = v [  i 1 ;  
17 buildHeap( ) ; 

18 I 

Figure 21.5 Constructors for the BinaryHeap class. 

1 / /  Find the smallest item in the priority queue. 
2 / /  Return the smallest item, or throw an exception if empty. 
3 template <class Cornparable> 
4 const Comparable & BinaryHeap<Comparable>::findMn( ) const 
5 { 

6 if ( isEmpty ( ) ) 

7 throw UnderflowException( ) ;  

8 return array [ 1 I ; 
9 I 

Figure 21.6 The f indMin routine. 

21.2 Implementation of the Basic Operations 

The heap-order property looks promising so far because easy access to the 
minimum is provided. We must now show that we can efficiently support 
insert and dele t eMin in logarithmic time. Performing the two required 
operations is easy (both conceptually and practically): The work merely 
involves ensuring that the heap-order property is maintained. 



A Priority Queue: The Binary Heap 

21 -2.1 The insert Operation 

Insertion is 
implemented by 
creating a hole at the 
next available 
location and then 
percolating it up until 
the new item can be 
placed in it without 
introducing a heap- 
order violation with 
the hole's parent. 

To insert an element X in the heap, we must first add a node to the tree. The 
only option is to create a hole in the next available location; otherwise, the 
tree is not complete and we would violate the structure property. If X can be 
placed in the hole without violating heap order, we do so and are done. Oth- 
erwise, we slide the element that is in the hole's parent node into the node. 
bubbling the hole up toward the root. We continue this process until X can be 
placed in the hole. Figure 2 1.7 shows that to insert 14, we create a hole in the 
next available heap location. Inserting 14 into the hole would violate the 
heap-order property, so 3 1 is slid down into the hole. This strategy is contin- 
ued in Figure 2 1.8 until the correct location for 14 is found. 

This general strategy is called percolate up, in which insertion is imple- 
mented by creating a hole at the next available location and bubbling it up 
the heap until the correct location is found. Figure 21.9 shows the i n s e r t  
method, which implements the percolate up strategy by using a very tight 
loop. At line 6, we place x as the -m sentinel in position 0. The statement at 
line 11  increments the current size and sets the hole to the newly added 
node. We iterate the loop at line 12 so long as the item in the parent node is 
larger than x. Line 13 moves the item in the parent down into the hole. and 

Figure 21.7 Attempt to insert 14, creating the hole and bubbling the hole up. 

Figure 21.8 The remaining two steps required to insert 14 in the original heap 
shown in Figure 21.7. 



Implementation of the Basic Operations 

1 / /  Insert Item x into the priority queue, with heap order. 
2 / I  Duplicates are allowed. 
3 template <class Comparable> 
4 void BinaryHeap<Comparable>::insert( const Comparable & x ) 

5 I 
6 array[ 0 ] = x; / /  initialize sentinel 
7 if( thesize + 1 == array.size( ) 1 
8 array.resize( array.size( ) * 2 + 1 ) ; 

9 
10 / /  Percolate up 
11 int hole = ++thesize; 
12 for( ; x < array[ hole i 2 I ; hole / =  2 ) 

13 array[ hole ] = array[ hole / 2 I ;  
14 array[ hole ] = x; 
15 } 

Figure 21.9 The insert member function. 

then the third expression in the for loop moves the hole up to the parent. 
When the loop terminates, line 14 places x in the hole. 

The time required to do the insertion could be as much as O(log N) if the Insertion takes 

element to be inserted is the new minimum. The reason is that it will be per- constant time On 

average but colated up all the way to the root. On average the percolation terminates logarithmic time in 
early: It has been shown that 2.6 comparisons are required on average to per- the worst case. 
form the insert, so the average insert moves an element up 1.6 levels. 

21.2.2 The deleteMin Operation 

The deleteMin operation is handled in a similar manner to the insert Deletion of the 

operation. As shown already, finding the minimum is easy; the hard part is 
placing the former 

removing it. When the ininimum is removed, a hole is created at the root. item in a hole that 
The heap now becomes one size smaller, and the structure property tells us is created at the root. 

that the last node must be eliminated. Figure 21.10 shows the situation: The Theholeis Percolated 
down the tree through ininimum item is 13, the root has a hole, and the former last item needs to be minimum children 

placed in the heap somewhere. until the item can be 
If the last item could be placed in the hole, we would be done. That is placed without 

impossible, however, unless the size of the heap is two or three, because ele- viO1ating the heap- 
order property. 

ments at the bottom are expected to be larger than elements on the second 
level. We must play the same game as for insertion: We put some item in the The deleteMin 

hole and then move the hole. The only difference i\ that for the deleteMln Operation is 
logarithmic in both 

we move down the tree. To do so, we find the \mailer child of the hole, and if theworst and average 
that child I S  smaller than the item that we are trylng to place, we move the cases. 

child into the hole, pushing the hole down one level and repeating these 
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Figure 21.10 Creation of the hole at the root. 

Figure 21.1 1 The next two steps in the dele teMin operation. 

Figure 21.12 The Last two steps in the deleteMin operation. 

actions until the item can be correctly placed-a process called percolate 
down. In Figure 21.11, we place the smaller child ( 14) in the hole, sliding 
the hole down one level. We repeat this action, placing 19 in the hole and 
creating a new hole one level deeper. We then place 26 in the hole and cre- 
ate a new hole on the bottom level. Finally, we are able to place 31 in the 
hole, as shown in Figure 21.12. Because the tree has logarithmic depth, 
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/ /  Remove the smallest item from the priority queue 
/ /  Throw UnderflowException if empty. 
template <class Comparable> 
void BinaryHeap<Comparable>::deleteMin( ) 
r 

if ( isEmpty ( ) ) 

throw UnderflowException( ) ;  

array [ 1 I = array [ thesize-- I ; 
percolateDown( 1 ) ;  

1 

/ /  Remove the smallest item from the priority queue 
/ /  and place it in minItem. Throw UnderflowException if empty. 
template <class Comparable> 
void BinaryHeap<Comparable>::deleteMin( Comparable & minItem ) 

t 
minItem = findMin( ) ;  

array! 1 I = array[ thesize-- ] ; 

percolateDown( 1 ) ;  

Figure 21.13 The deleteMin methods. 

deleteMin is a logarithmic operation in the worst case. Not surprisingly, 
percolation rarely terminates more than one or two levels early, so deleteMin 
is logarithmic on average, too. 

Figure 21.13 shows the deleteMin methods. The test for emptiness in 
the one-parameter deleteMin is automatically done by the call to f indMin 
at line 17. The real work is done in percolateDown, shown in Figure 21.14. 
The code shown there is similar in spirit to the percolation up code in the 
insert routine. However, because there are two children rather than one par- 
ent, the code is a bit more complicated. The percolateDown method takes a 
single parameter that indicates where the hole is to be placed. The item in the 
hole is then moved out, and the percolation begins. For deleteMin, hole 
will be position 1 .  The for loop at line 9 terminates when there is no left 
child. The third expression moves the hole to the child. The smaller child is 
found at lines 12-1 3. We have to be careful because the last node in an even- 
sized heap is an only child; we cannot always assume that there are two chil- 
dren, which is why we have the first test at line 12. 
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1 / /  Internal method to percolate down in the heap. 
2 / /  hole is the index at which the percolate begins. 
3 template <class Comparable> 
4 void BinaryHeap~Comparable>::percolateDown( int hole ) 

5 i 
6 int child; 
7 Comparable tmp = array[ hole 1 ;  
8 
9 for( ; hole * 2 <= thesize; hole = child ) 

10 { 

11 child = hole * 2; 
12 if ( child ! =  thesize && array [child+ll < array [child] ) 

13 child++; 
14 if( array[ child ] < tmp ) 

15 array [ hole ] = array [ child I ; 
16 else 
17 break; 
18 1 
19 array[ hole I = tmp; 
20 1 

Figure 21.14 The percolateDown method used for deleteMin and buildHeap. 

21.3 The buildHeap Operation: Linear-Time 
Heap Construction 

ThebuildHeap The buildHeap operation takes a complete tree that does not have heap 
operation can be order and reinstates i t .  We want it to be a linear-time operation, since N 
done in linear time by 
applying a percolate insertions could be done in O(N log N) time. We expect that O(N) is attain- 
down routine to able because N successive insertions take a total of O(N) time on average, 
nodes in reverse level based on the result stated at the end of Section 21.2.1. The N successive 
order. insertions do more work than we require because they maintain heap order 

after every insertion and we need heap order only at one instant. 
The easiest abstract solution is obtained by viewing the heap as a recur- 

sively defined structure, as shown in Figure 21.15: We recursively call 
buildHeap on the left and right subheaps. At that point, we are guaranteed 
that heap order has been established everywhere except at the root. We 
can establish heap order everywhere by calling percolateDown for the 
root. The recursive routine works by guaranteeing that when we apply 
percolateDown ( i ) , all descendants of i have been processed recur- 
sively by their own calls to percolateDown. The recursion, however, is 
not necessary, for the following reason. If we call percolateDown on 
nodes in reverse level order, then at the point percolateDown ( i ) is pro- 
cessed, all descendants of node i will have been processed by a prior call to 
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Figure 21.1 5 Recursive view of the heap. 

1 / /  Establish heap-order property from an arbitrary 
2 / /  arrangement of items. Runs in linear time. 
3 template <class Comparable> 
4 void BinaryHeap<Comparable>::buildHeap( ) 

5 { 

6 for( int i = thesize 1 2; i > 0; i-- i 
7 percolateDown( i 1 ;  
8 } 

Figure 21.16 Implementation of the linear-time buildHeap method. 

Figure 21.17 (a) Initial heap; (b) after percola teDown ( 7 ) 

percolateDown. This process leads to an incredibly simple algorithm for 
buildHeap, which is shown in Figure 21.16. Note that percolateDown 
need not be performed on a leaf. Thus we start at the highest numbered non- 
leaf node. 

The tree in Figure 21.17(a) is the unordered tree. The seven remaining 
trees in Figures 2 1.1 7(b) through 2 1.20 show the result of each of the seven 
percolateDown operations. Each dashed line corresponds to two compari- 
sons: one to find the smaller child and one to compare the smaller child with 
the node. Notice that the ten dashed lines in the algorithm correspond to 
20 comparisons. (There could have been an eleventh line.) 
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(a) (b) 

Figure 21.18 (a) After percolateDown ( 6 ) ; (b) after percolateDown ( 5 ) . 

(a) (b) 

Figure 21.19 (a) After percolateDown ( 4 )  ; (b) after percolateDown ( 3 ) . 

Figure 21.20 (a) After percolateDown ( 2  ) ; (b) after percolateDown ( 1) 
and buildHeap terminates. 
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The buildHeap Operation: Linear-T 

To bound the running time of buildHeap, we must bound the number The linear time bound 

of dashed lines. We can h o  so by computing the sum of the heights of all Can be by 
computing the sum of 

the nodes in the heap, which is the maximum number of dashed lines. We the heights of all the 
expect a small number because half the nodes are leaves and have height 0 nodes in the heap. 

and a quarter of the nodes have height 1. Thus only a quarter of the nodes 
(those not already counted in the first two cases) can contribute more than 
I unit of height. In particular, only one node contributes the maximum 
height of hog  N] .  

To obtain a linear time bound for bui  ldHeap, we need to establish that We prove the bound 

the sum of the heights of the nodes of a complete binary tree is O(N). We do perfect trees by 
using a marking 

so in Theorem 2 1.1, proving the bound for perfect trees by using a marking ar,ument~ 
argument. 

For the perject binaq tree of height H containing N = 2" + - 1 nodes, Theorem 21.1 
the sum of the heights of the nodes is N - H - 1. 

We use a tree marking argument. ( A  more direct brute force calculation Proof 
could also be done, as in Exercise 2 1.10.) For any node in the tree that 

has some height h, we darken h tree edges as follows. We go down the 

tree by traversing the left edge and then only right edges. Each edge 

traversed is darkened. An example is a peilfect tree of height 4. Nodes that 

have height I have their leji edge darkened, as shown in Figure 21.21. 
Next, nodes of height 2 have a left edge and then a right edge darkened 

on the path from the node to the bottom, as shown in Figure 21.22. In 

Figure 21.23, three edges are darkened for each node of height 3: the first 

left edge leading out of the node and then the two right edges on the path 

to the bottom. Finally, in Figure 2 1.24 four edges are darkened: the leji 

edge leading out of the root and the three right edges on the path to the 

bottom. Note that no edge is ever darkened twice and that every edge 

except those on the right path is darkened. As there are (N - I )  tree edges 

( eveq  node has an edge coming into it except the root) and H edges on 

the right path, the number of darkened edges is N - I - H. This proves the 

theorem. 
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Figure 21.21 Marking the left edges for height 1 nodes. 

Figure 21.22 Marking the first left edge and the subsequent right edge for 
height 2 nodes. 

Figure 21.23 Marking the first left edge and the subsequent two right edges for 
height 3 nodes. 
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Figure 21.24 Marking the first left edge and the subsequent two right edges for the 
height 4 node. 

A complete binary tree is not a perfect binary tree, but the result we have 
obtained is an upper bound on the sum of the heights of the nodes in a com- 
plete binary tree. A complete binary tree has between 2H and 2H + - 1 
nodes, so this theorem implies that the sum is O(N). A more careful argu- 
ment establishes that the sum of the heights is N - v(N) ,  where Y(N) is the 
number of Is in the binary representation of N. A proof of this is left for you 
to do as Exercise 2 1 .12. 

21.4 STL priori ty-queue Implementation 

The binary heap can be used to implement the STL priori ty-queue class. 
Recall that priority-queue is a class template that requires template 
parameters representing the type of objects being stored, the type of the con- 
tainer that stores them, and a comparison function that implements the less- 
than function. Recall also that the STL priority queue is a max-heap and 
keeps the maximum, rather than the minimum, item at the root. 

Figure 21.25 shows the priority-queue class interface. The compari- 
son function is stored in the lessThan object, which is initialized in the 
constructor. theItems stores the array (if theItems is not indexible, the 
template does not expand): the size is maintained automatically as an invari- 
ant of the1 terns. 

Figure 21.26 shows the constructors and accessors for priori ty-queue. 
We leave array position 0 empty, as in Section 21.2. Hence an empty priority 
queue consists of a vector of length 1 ,  and the maximum item (as this is a 
max heap) is stored in position 1. 



WA Priority Queue: The Binary Heap 

1 template <class Object, class Container, class Compare> 
2 class priority-queue 
3 I 
4 public: 
5 priorit'r._queue( ) ;  

6 
7 int size( ) const; 
8 boo1 empty( ) const; 
9 

10 const Object & top( ) const; 
11 void push ( const Object & x ) ; 

12 void pop[ ) ;  

13 
14 private: 
15 Container theItems; 
16 Compare lessThan; 
17 1; 

Figure 21.25 The priori ty-queue class interface. 

1 template <class Object, class Container, class Compare> 
2 priority~queue~Object,Container,Compare>::priority~que~e~ ) 

3 : theItems ( 1 ) , lessThan ( Compare ( ) ) 

4 { 

5 } 

6 
7 template <class Object, class Container, class Compare> 
8 int priority~queue<0bject,Container,Compare~::size ) const 
9 { 

10 return theItems.size( ) - 1; 

11 } 
12 
13 template <class Object, class Container, class Compare> 
14 bool priority-queueiObject,Container,Compare>::empty( 1 const 
15 i 
16 return size( ) == 0; 
17 j 

18 
19 template <class Object, class Container, class Compare> 
20 const Object & priority-queue<Object,Container,Compare>:: 
21 top( ) const 
22 { 

23 if ( empty( i ) 

24 throw UnderflowException( ) ;  

25 return theItems[ 1 I ;  
26 1 

Figure 21.26 Constant-time methods in priority-queue. 
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Advanced Operat~ons: decreaseKey and ~-IF= 

The mutators (logically, insert and delete~ax) are shown in Fig- 
ure 21.27. The code is basically the same as that in Section 21.2, except that 
the lessThan function object is used instead of operator<, and the Iogic 
is reversed in order to implement a max heap. In push. we use push-back 
on the underlying container, automatically expanding as needed and main- 
taining the container size at I more than the size of the priority queue 
(because position 0 stores the sentinel). In pop, we use back to get the last 
item and then use pop-back to reinstate our invariant. At line 38 we test to 
be sure the priority queue is not empty prior to putting tmp back in 
the1 t ems at line 39. Otherwise. hole is I ,  but the1 tems . size ( ) is also 
1. so we would be out of bounds. 

21.5 Advanced Operations: decreaseKey 
and merge 

In Chapter 23 we examine priority queues that support two additional opera- 
tions. The decreaseKey operation lowers the value of an item in the priority 
queue. The item's position is presumed known. In a binary heap this opera- 
tion is easily implemented by percolating up until heap order is reestablished. 
However, we must be careful because by assumption each item's position is 
being stored separately, and all items involved in the percolation have their 
positions altered. The decreaseKey operation is useful in implementing 
graph algorithms (e.g., Dijkstra's algorithm presented in Section 15.3). 

The merge routine combines two priority queues. Because the heap is 
array-based, the best we can hope to achieve with a merge is to copy the 
items from the smaller heap to the larger heap and do some rearranging. 
Doing so takes at least linear time per operation. If we use general trees with 
nodes connected by pointers, we can reduce the bound to logarithmic cost 
per operation. Merging has uses in advanced algorithm design. 

21.6 Internal Sorting: Heapsort 

The priority queue can be used to sort N items by A priority queue can 
be used to sort in 
O(N log N) time. An 

1. inserting every item into a binary heap and algorithm based on 
2. extracting every item by calling deleteMin N times, thus sorting this idea is heapsort. 

the result. 
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1 template <class Object, class Container, class Compare> 
2 void priority-queue<Object,Container,Compare>:: 
3 push( const Object & x 1 
4 ( 

5 theItems.push-back( x i ; 
6 theItems[ 0 ] = x; / I  initialize sentinel 
7 
8 / /  Percolate up 
9 int hole = size( ) ;  

10 f o r (  ; lessThan( theItems[ hole / 2 I ,  x ) ;  hole / = 2 ) 

11 theItems[ hole I = theItems[ hole i 2 I ;  
12 theItems[ hole ] = x; 
13 I 
14 
15 template <class Object, class Container, class Compare> 
16 void priority-queue<Object,Container,Cornpare>::pop 1 
17 i 
18 it( empty( 1 ) 

19 throw UnderflowException( 1 ; 
20 
21 int hole = 1; 
22 int child; 
23 
24 Object trnp = theItems.back( ) ;  theItems.pop-back( ) ;  

25 int thesize = size ( 1 ; 
26 
27 for( ; hole * 2 <= thesize; hole = child ) 

28 i 
29 child = hole * 2; 
30 if( child ! =  thesize & &  

3 1 lessThan( theItems[child], theItems[child+ll 1 i 
32 child++; 
33 if ( lessThan( tmp, theItems [ child ] ) 1 
34 theItems[ hole I = theItems[ child I ;  
35 else 
36 break; 
37 1 
38 if ( !empty( i 1 
39 theItems[ hole I = tmp; 
40 } 

Figure 21.27 The priority-queue class mutators push and pop, which are the equivalent of 
insert and deleteMax. 



Internal Sorting: Heapsort 

Using the observation in Section 21.5, we can more efficiently implement 
this procedure by 

I .  t o s s ing  each item into a binary heap. 
2. applying bui ldHeap,  and 
3. calling d e l e t e M i n  N times. with the items exiting the heap in 

sorted order. 

Step 1 takes linear time total, and step 2 takes linear time. In step 3, each call 
to d e l e t e M i n  takes logarithmic time. so N calls take O(N log N) time. Con- 
sequently, we have an O(hT log N) worst-case sorting algorithm. called 
heapsort, which is as good as can be achieved by a comparison-based 
algorithm (see Section 9.8). One problem with the algorithm as it stands 
now is that sorting an array requires the use of the binary heap data struc- 
ture. which itself carries the overhead of an array. Emulating the heap data 
structure on the array that is input-rather than going through the heap 
class apparatus-would be preferable. We assume for the rest of this dis- 
cussion that this is done. 

Even though we do not use the heap class directly, we still seem to need 
a second array. The reason is that we have to record the order in which items 
exit the heap equivalent in a second array and then copy that ordering back 
into the original array. The memory requirement is doubled. which could be 
crucial in some applications. Note that the extra time spent copying the sec- 
ond array back to the first is only O(N). so. unlike mergesort. the extra array 
does not affect the running time significantly. The problem is space. 

A clever way to avoid using a second array makes use of the fact that, BY using empty parts 

after each d e l e t e M i n .  the heap shrinks by 1 .  Thus the cell that was last in Of the array, we can 
perform the sort in 

the heap can be used to store the element just deleted. As an example, sup- 
pose that we have a heap with six elements. The first d e l e t e M i n  produces 
A, .  Now the heap has only five elements, so we can place A ,  in position 6. 
The next d e l e t e M i n  produces A,. As the heap now has only four elements, 
we can place A? in position 5. 

When we use this strategy, after the last d e l e t e M i n  the array will If we usea max heap, 

contain the elements in decreasing sorted order. If we want the array to be We items in 
~ncreasing order. 

in the more typical irzcreasitzg sorted order, we can change the ordering 
property so that the parent has a larger key than the child does. Thus we 
have a max heap. For example. let us say that we want to sort the input 
sequence 59, 36. 58, 21. 41. 97. 3 1, 16. 26, and 53. After tossing the items 
into the max heap and applying b u i l d H e a p .  we obtain the arrangement 
shown in Figure 21.28. (Note that there is no sentinel; we presume the data 
starts in position 0, as is typical for the other sorts described in Chapter 9.) 
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Figure 21.28 Max heap after the bui ldHeap phase. 

Figure 21.29 Heap after the first deleteMax operation. 

Figure 21.29 shows the heap that results after the first deleteMax. The 
last element in the heap is 2 1; 97 has been placed in a part of the heap array 
that is technically no longer part of the heap. 

Figure 21.30 shows that after a second deleteMax, 16 becomes the last 
element. Now only eight items remain in the heap. The maximum element 
removed, 59, is placed in the dead spot of the array. After seven more 
deleteMax operations, the heap represents only one element, but the ele- 
ments left in the array will be sorted in increasing order. 

Minor changes are Implementation of the heapsort operation is simple because it basically 
required heaps0rt follows the heap operation. There are three minor differences between the 
because the root is 
stored in position 0. two operations. First, because we are using a max heap, we need to reverse 

the logic of the comparisons from > to <. Second, we can no longer assume 
that there is a sentinel position 0. The reason is that all our other sorting 
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Figure 21.30 Heap after the second deleteMax operation. 

1 / /  Standard heapsort. 
2 void heapsort( vector<Comparable> & a ) 

3 I 
4 for( int i = a.size( ) / 2; i >= 0; i-- ) / /  Build heap 
5 percDown( a, i, a. length ( ) ) ; 

6 for( int j = a.size( ) - 1; j > 0; j-- 
7 t 
8 swap( a[ 0 1 ,  a[ j 1 ) ;  / /  deleteMax 
9 percDown( a, 0, j ) ;  

10 1 
11 I 

Figure 21.31 The h e a p s o r t  routine. 

algorithms store data at position 0, and we must assume that h e a p s o r t  is 
no different. Although the sentinel is not needed anyway (there are no perco- 
late up operations), its absence affects calculations of the child and parent. 
That is, for a node in position i, the parent is in position ( i  - 1 ) / 2 ,  the left 
child is in position 2i + 1, and the right child is next to the left child. Third, 
percDown needs to be informed of the current heap size (which is lowered 
by 1 in each iteration of d e l e t e ~ a x ) .  The implementation of percDown is 
left for you to do as Exercise 21.23. Assuming that we have written 
percDown, we can easily express h e a p s o r t  as shown in Figure 21.31. 

Although heapsort is not as fast as quicksort, it can still be useful. As dis- 
cussed in Section 9.6 (and detailed in Exercise 9.19), in quicksort we can keep 
track of each recursive call's depth, and switch to an O(N log N) worst-case 
sort for any recursive call that is too deep (roughly 2 log N nested calls). Exer- 
cise 9.19 suggested mergesort, but actually heapsort is the better candidate. 
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21.7 External Sorting 

Externalsorting is So far, all the sorting algorithms examined require that the input f i t  in main 
used when the memory. However. the input for some applications is much too large to fit in 
amount of data is too 
large to fit in main main memory. In this section we discuss external sorting, which is used to 
memory. handle such very large inputs. Some of the external sorting algorithms 

involve the use of heaps. 

21.7.1 Why We Need New Algorithms 

Most of the internal sorting algorithms take advantage of the fact that mem- 
ory is directly accessible. Shellsort compares elements a [ i 1 and a [ i -gap] 

in one time unit. Heapsort compares a [ i I and a [child=iX2 I in one time 
unit.  Quicksort.  with median-of-three pivoting, requires comparing 
a [ f i r s t  1 ,  a [center], and a [last] in a constant number of time units. 
If the input is on a tape, all these operations lose their efficiency because ele- 
ments on a tape can be accessed only sequentially. Even if the data are on a 
disk, efficiency still suffers because of the delay required to spin the disk and 
move the disk head. 

To demonstrate how slow external accesses really are, we could create a 
random file that is large but not too big to fit in main memory. When we read 
in the file and sort i t  by using an efficient algorithm, the time needed to read 
the input is likely to be significant compared to the time required to sort the 
input, even though sorting is  an O(N log N )  operation (or worse for 
Shellsort) and reading the input is only O(N). 

21.7.2 Model for External Sorting 

w e  assume that sorts The wide variety of mass storage devices makes external sorting much more 
are performed on device-dependent than internal sorting does. The algorithms considered here 
tape. Only sequential 
access of the input is work on tapes, which are probably the most restrictive storage medium. 
allowed. Access to an element on tape is gained by winding the tape to the correct 

location, so tapes can be efficiently accessed only in sequential order (in 
either direction). 

Let us assume that we have at least three tape drives for performing the 
sort. We need two drives to do an efficient sort; the third drive simplifies 
matters. If only one tape drive is present, we are in trouble: Any algorithm 
will require R(V)  tape accesses. 
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21.7.3 The Simple Algorithm 

The basic external sorting algorithm involves the use of the merge routine The basic external 

from mergesort. Suppose that we have four tapes A 1, A2, B I ,  and B2, which 
are two input and two output tapes. Depending on the point in the algorithm, 
the A tapes are used for input and the B tapes for output, or vice versa. Sup- 
pose further that the data are initially on A1 and that the internal memory 
can hold (and sort) M records at a time. The natural first step is to read M 
records at a time from the input tape, sort the records internally. and then 
write the sorted records alternately to B1 and B2. Each group of sorted 
records is called a run. When done, we rewind all the tapes. If we have the 
same input as in our example for Shellsort, the initial configuration is as 
shown in Figure 2 1.32. If M = 3, after the runs have been constructed, the 
tapes contain the data, as shown in Figure 21.33. 

Now B 1 and B2 contain a group of runs. We take the first runs from each 
tape, merge them, and write the result-which is a run twice as long-to A l .  
Then we take the next runs from each tape, merge them, and write the result 
to A2. We continue this process, alternating output to A l  and A2 until either 
B 1 or B2 is empty. At this point, either both are empty or one (possibly 
short) run is left. In the latter case, we copy this run to the appropriate tape. 
We rewind all four tapes and repeat the same steps, this time using the A 
tapes as input and the B tapes as output. This process gives runs of length 
4M. We continue this process until we get one run of length N, at which 

sort uses repeated 
two-way merging. 
Each group of sorted 
records is a run. As a 
result of a pass, the 
length of the runs 
doubles and 
eventually only a 
single run remains. 

Figure 21.32 Initial tape configuration. 

B1 

B2 

Figure 21.33 Distribution of length 3 runs to two tapes. 

11 81 94 

12 35 96 

17 28 99 

41 58 75 

15 
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point the run represents the sorted arrangement of the input. Figures 21.34- 
21.36 show how this process works for our sample input. 

We need r l o g ( ~ 1 ~ ) 1  The algorithm will require ~ ~ o ~ ( N I M ) ~  passes, plus the initial run- 
passes Over the input constructing pass. For instance, if we have 10,000,000 records of 6400 bytes 
before we have one 
giant run. each and 200 MB of internal memory, the first pass creates 320 runs. We 

would then need nine more passes to complete the sort. This formula also 
correctly tells us that our example in Figure 21.33 requires rlog(13/3)1, or 
three more passes. 

Figure 21.34 Tapes after the first round of merging (run length = 6) 

Figure 21.35 Tapes after the second round of merging (run length = 12). 

Figure 21.36 Tapes after the third round of merging. 
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21.7.4 Multiway Merge 

If we have extra tapes, we can reduce the number of passes required to sort K-way merging 

our input with a multiway (or K-way) merge. We do so by extending the reduces the number 
of passes. The 

basic (two-way) merge to a K-way merge and use 2K tapes. obvious 
Merging two runs is done by winding each input tape to the beginning of implementation uses 

each run. Then the smaller element is found and placed on an output tape, 2KtaPes. 

and the appropriate input tape is advanced. If there are K input tapes. this 
strategy works in the same way: the only difference is that finding the small- 
est of the K elements is slightly more complicated. We can do so by using a 
priority queue. To obtain the next element to write on the output tape, we 
perform a deleteMin operation. The appropriate input tape is advanced, 
and if the run on that input tape has not yet been completed, we insert the 
new element in the priority queue. Figure 21.37 shows how the input from 
the previous example is distributed onto three tapes. Figures 21.38 and 21.39 
show the two passes of three-way merging that complete the sort. 

Figure 21.37 Initial distribution of length 3 runs to three tapes. 

Figure 21.38 After one round of three-way merging (run length = 9). 
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The polyphase merge 
implements a K-way 
merge with K + 1 
tapes. 

The distribution of 
runs affects 
performance. The 
best distribution is 
related to the 
Fibonacci numbers. 

Figure 21 -39 After two rounds of three-way merging. 

After the initial run-construction phase, the number of passes required 
using K-way merging is r logK(~/M)1 because the length of the runs gets K 
times larger in each pass. For our example, the formula is verified because r log 13 / 3  1 = 2. If we have 10 tapes, K = 5. For the large example in Sec- 
tion 2 1.7.3, 320 runs would require log5 320 = 4 passes. 

21.7.5 Polyphase Merge 

The K-way merging strategy requires the use of 2K tapes, which could be 
prohibitive for some applications. We can get by with only K + 1 tapes, 
called a polyphase merge. An example is performing two-way merging 
with only three tapes. 

Suppose that we have three tapes-TI, T2, and T3-and an input file on 
T 1 that can produce 34 runs. One option is to put 17 runs each on T2 and T3. 
We could then merge this result onto TI ,  thereby obtaining one tape with 17 
runs. The problem is that, as all the runs are on one tape, we must now put 
some of these runs on T2 to perform another merge. The logical way to do 
that is to copy the first eight runs from T1 to T2 and then perform the merge. 
This approach adds an extra half pass for every pass that we make. The ques- 
tion is, can we do better? 

An alternative method is to split the original 34 runs unevenly. If we put 
2 1 runs on T2 and 13 runs on T3, we could merge 13 runs on T1 before T3 
was empty. We could then rewind T1 and T3 and merge T1, with 13 runs, 
and T2, with 8 runs, on T3. Next, we could merge 8 runs until T2 was empty, 
leaving 5 runs on T1 and 8 runs on T3. We could then merge T1 and T3, and 
so on. Figure 2 1.40 shows the number of runs on each tape after each pass. 

The original distribution of runs makes a great deal of difference. For 
instance, if 22 runs are placed on T2, with 12 on T3, after the first merge we 
obtain 12 runs on TI  and 10 runs on T2. After another merge, there are 10 runs 



Figure 21.40 The number of runs for a polyphase merge. 

T I  
T2 
T3 

on TI and 2 runs on T3. At this point, the going gets slow because we can 
merge only two sets of runs before T3 is exhausted. Then TI has 8 runs and 
T2 has 2 runs. Again we can merge only two sets of runs, obtaining T1 with 
6 runs and T3 with 2 runs. After three more passes, T2 has 2 runs and the 
other tapes are empty. We must copy 1 run to another tape. Then we can fin- 
ish the merge. 

Our first distribution turns out to be optimal. If the number of runs is a 
Fibonacci number, FN, the best way to distribute them is to split them into 
two Fibonacci numbers. F N -  and F N -  2 .  Otherwise, the tape must be padded 
with dummy runs in order to increase the number of runs to a Fibonacci 
number. We leave the details of how to place the initial set of runs on the 
tapes for you to handle as Exercise 2 1.22. We can extend this technique to a 
K-way merge, in which we need Kth-order Fibonacci numbers for the distri- 
bution. The Kth-order Fibonacci number is defined as the sum of the K pre- 
vious Kth-order Fibonacci numbers: 

21 -7.6 Replacement Selection 

Run 
Const. 

0 
2 1 
13 

The last topic we consider in this chapter is construction of the runs. The 
strategy used so far is the simplest: We read as many elements as possible 
and sort them, writing the result to a tape. This seems like the best approach 
possible, until we realize that as soon as the first element is written to the 
output tape, the memory it used becomes available for another element. If 
the next element on the input tape is larger than the element just output, it 
can be included in the run. 

After 

T3 + 
T2 

13 
8 
0 

T I  + 
T2 

5 
0 
8 

T I  + 
T3 

0 
5 
3 

T2 + 
T3 

3 
2 
0 

T I  + 
T2 

1 
0 
2 

T I  + 
T3 

0 
1 
1 

T2 + 
T3 

1 
0 
0 
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If we are clever, we 
can make the length 
of the runs that we 
initially construct 
larger than the 
amount of available 
main memory.This 
technique is called 
replacement 
selection. 

Figure 21.41 Example of run construction. 

Using this observation, we can write an algorithm for producing runs, 
commonly called replacement selection. Initially, M elements are read into 
memory and placed in a priority queue efficiently with a single buildHeap. 
We perform a deleteMin, writing the smallest element to the output tape. 
We read the next element from the input tape. If it is larger than the element 
just written, we can add it to the priority queue with an insert; otherwise, 
it cannot go into the current run. Because the priority queue is smaller by 
one element, this element is stored in the dead space of the priority queue 
until the run has been completed and is then used for the next run. Storing an 
element in the dead space is exactly what is done in heapsort. We continue 
doing this process until the size of the priority queue is 0, at which point the 
run is over. We start a new run by rebuilding a new priority queue with a 
buildHeap operation, in the process using all of the elements in the dead 
space. 

Figure 21.41 shows the run construction for the small example we have 
been using, with M = 3. Elements that are reserved for the next run are 
shaded. Elements 1 1,94, and 81 are placed with buildHeap. Element 1 I is 
output, and then 96 is placed in the heap by an insertion because it is larger 
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than 1 1. Element 8 1 is output next, and then 12 is read. As 12 is smaller than 
the 82 just output, it cannot be included in the current run. Thus it is placed 
in the heap dead space. The heap now logically contains only 94 and 96. 
After they are output, we have only dead space elements, so we construct a 
heap and begin run 2. 

In this example, replacement selection produces only 3 runs, compared 
to the 5 runs obtained by sorting. As a result, a three-way merge finishes in 
one pass instead of two. If the input is randomly distributed, replacement 
selection produces runs of average length 2M. For our large example, we 
would expect 160 runs instead of 320 runs, so a five-way merge would still 
require four passes. In this case, we have not saved a pass, although we 
might if we get lucky and have 125 runs or fewer. Because external sorts 
take so long, every pass saved can make a significant difference in the run- 
ning time. 

As we have shown, replacement selection may do no better than the 
standard algorithm. However, the input is frequently nearly sorted to start 
with, in which case replacement selection produces only a few abnormally 
long runs. This kind of input is common for external sorts and makes 
replacement selection extremely valuable. 

Summary 

In this chapter we showed an elegant implementation of the priority queue. 
The binary heap uses only an array, yet it supports the basic operations in 
logarithmic worst-case time. The heap leads to a popular sorting algo- 
rithm, heapsort. In Exercises 2 1 -26 and 2 1.27 you are asked to compare the 
performance of heapsort with that of quicksort. Generally speaking, heap- 
sort is slower than quicksort but it is certainly easier to implement. Finally, 
we showed that priority queues are important data structures for external 
sorting. 

This completes implementation of the fundamental and classic data 
structures. In Part V we examine more sophisticated data structures, begin- 
ning with the splay tree, a binary search tree that has some remarkable 
properties. 

Objects of the Game 

binary heap The classic method used to implement priority queues. 
The binary heap has two properties: structure and ordering. (p. 756) 

buildHeap operation The process of reinstating heap order in a 
complete tree, which can be done in linear time by applying a perco- 
late down routine to nodes in reverse level order. (p. 766) 



complete binary tree A tree that is completely filled and has no miss- 
ing nodes. The heap is a complete binary tree, which allows represen- 
tation by a simple array and guarantees logarithmic depth. (p. 756) 

external sorting A form of sorting used when the amount of data is 
too large to fit in main memory. (p. 778) 

heap-order property States that in a (min) heap, the item in the par- 
ent is never larger than the item in a node. (p. 758) 

heapsort An algorithm based on the idea that a priority queue can be 
used to sort in O(N log N )  time. (p. 773) 

implicit representation Using an array to store a tree. (p. 758) 
max heap Supports access of the maximum instead of the minimum. 

( P  759) 
rnultiway merge K-way merging that reduces the number of passes. 

The obvious implementation uses 2K tapes. (p. 781) 
percolate down Deletion of the minimum involves placing the former 

last item in a hole that is created at the root. The hole is pushed 
down the tree through minimum children until the item can be 
placed without violating the heap-order property. (p. 763) 

percolate up Implements insertion by creating a hole at the next avail- 
able location and then bubbling it up until the new item can be 
placed in it without introducing a heap-order violation with the 
hole's parent. (p. 762) 

polyphase merge Implements a K-way merge with K + 1 tapes. 
(P. 782) 

replacement selection The length of the runs initially constructed can 
be larger than the amount of available main memory. If we can store 
M objects in main memory, then we can expect runs of length 2M. 
(p. 784) 

run A sorted group in the external sort. At the end of the sort, a single 
run remains. (p. 779) 

@ Common Errors 

1. The trickiest part of the binary heap is the percolate down case in 
which only one child is present. This case occurs rarely, so spotting 
an incorrect implementation is difficult. 

2. For heapsort, the data begins in position 0, so the children of node i 
are in positions 2i + 1 and 2i + 2. 

3. The STL priority queue is a max heap, not a min heap. 



Exercises 

On the Internet 

The code to implement the BinaryHeap is available in two files. 

BinaryHeap.h Contains the interface for the BinaryHeap 
class. 

BinaryHeap.cpp Contains the implementation of the BinaryHeap 
class. 

TestBinaryHeap.cpp Contains a test program for the BinaryHeap 
class. 

queue.h Contains the interface for the 
p r i o r i  ty-queue class. 

queue.cpp Contains the implementation of the 
p r i o r  i ty-queue class. 

TestQueue.cpp Contains a test program for the 
p r io r i ty -queue  class. 

Exercises * 

In Short 

21.1. Describe the structure and ordering properties of the binary heap. 

21.2. In a binary heap, for an item in position i where are the parent, left 
child, and right child located? 

21.3, Show the result of inserting 10, 12, 1 ,  14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 
13, and 2, one at a time, in an initially empty heap. Then show the 
result of using the linear-time buildHeap algorithm instead. 

21.4. Where could the 1 1 th dashed line in Figures 2 1.17-21.20 have 
been? 

21.5. A max heap supports i n s e r t ,  deleteMax, and findMax (but not 
de le teMin  or f i n m i n ) .  Describe in detail how max heaps can be 
implemented. 

21.6. Show the result of the heapsort algorithm after the initial construction 
and then two dele t eMax operations on the input in Exercise 2 1.3. 

21.7. Is heapsort a stable sort (i.e., if there are duplicates, do the duplicate 
items retain their initial ordering among themselves)? 
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In Theory 

21.8. A complete binary tree of N elements uses array positions I through 
N. Determine how large the array must be for 
a. a binary tree that has two extra levels (i.e., is slightly unbalanced). 
b. a binary tree that has a deepest node at depth 2 log N. 
c. a binary tree that has a deepest node at depth 4.1 log N. 
d. the worst-case binary tree. 

21.9. Show the following regarding the maximum item in the heap. 
a. It must be at one of the leaves. 
b. There are exactly N / 2  1 leaves. 
c. Every leaf must be examined to find it. 

21.10. Prove Theorem 21.1 by using a direct summation. Do the following. 
a. Show that there are 2' nodes of height H - i. 
b. Write the equation for the sum of the heights using part (a). 
c. Evaluate the sum in part (b). 

21.11. Verify that the sum of the heights of all the nodes in a perfect 
binary tree satisfies N - t>(IV), where v(N) is the number of 1 c in N's 
binary representation. 

21.12. Prove the bound in Exercise 21.1 1 by using an induction argument. 

21.13. For heapsort, O(N log IV) comparisons are used in the worst case. 
Derive the leading term (i.e., decide whether it is N log N,  2N log N ,  
3N log N, and so on). 

21.14. Show that there are inputs that force every percDown in heapsort to 
go all the way to a leaf. (Hint: Work backward.) 

21.15. Suppose that the binary heap is stored with the root at position r: 
Give formulas for the locations of the children and parent of the 
node in position i. 

21.16. Suppose that binary heaps are represented by explicit links. Give a 
simple algorithm to find the tree node that is at implicit position i. 

21.17. Suppose that binary heaps are represented by explicit links. Con- 
sider the problem of merging binary heap l h s  with rhs. Assume 
that both heaps are full complete binary trees, containing 2'- 1 and 
2' - I nodes, respectively. 
a. Give an O(1og N) algorithm to merge the two heaps if I = r. 



b. Give an O(1ogN) algorithm to merge the two heaps if 
11-rl = 1. 

c. Give an O( log2 N) algorithm to merge the two heaps regardless 
of 1 and r. 

21.18. A d-heap is an implicit data structure that is like a binary heap, except 
that nodes have d children. A d-heap is thus shallower than a binary 
heap, but finding the minimum child requires examining d children 
instead of two children. Determine the running time (in terms of d and 
N) of the insert and deleteMin operations for a d-heap. 

21.19. A min-max heap is a data structure that supports both deleteMin 
and deleteMax at logarithmic cost. The structure is identical to the 
binary heap. The min-max heap-order property is that for any node 
X at even depth, the key stored at X is the smallest in its subtree, 
whereas for any node X at odd depth, the key stored at X is the larg- 
est in its subtree. The root is at even depth. Do the following. 
a. Draw a possible min-max heap for the items l , 2 ,  3, 4, 5 ,6 ,  7, 8, 

9, and 10. Note that there are many possible heaps. 
b. Determine how to find the minimum and maximum elements. 
c. Give an algorithm to insert a new node into the min-max heap. 
d. Give an algorithm to perform dele t eMin and dele t eMax. 
e. Give an algorithm to perform buildHeap in linear time. 

21.20. The 2 - 0  heap is a data structure that allows each item to have two 
individual keys. The deleteMin operation can be performed with 
respect to either of these keys. The 2-D heap-order property is that 
for any node X at even depth, the item stored at X has the smallest 
key #1  in its subtree, and for any node X at odd depth, the item 
stored at X has the smallest key #2 in its subtree. Do the following. 
a. Draw a possible 2-D heap for the items (1, lo), (2, 9), (3 ,  8), 

(4,7), and (5,6). 
b. Explain how to find the item with minimum key #I .  
c. Explain how to find the item with minimum key #2. 
d. Give an algorithm to insert a new item in the 2-D heap. 
e. Give an algorithm to perform deleteMin with respect to either 

key. 
f. Give an algorithm to perform buildHeap in linear time. 



- 

A Priority Queue: The Binary Heap 

A trenp is a binary search tree in which each node stores an item, 
two children, and a randomly assigned priority generated when the 
node is constructed. The nodes in the tree obey the usual binary 
search tree order, but they must also maintain heap order with 
respect to the priorities. The treap is a good alternative to the bal- 
anced search tree because balance is based on the random priorities, 
rather than on the items. Thus the average case results for binary 
search trees apply. Do the following. 
a. Prove that a collection of distinct items, each of which has a dis- 

tinct priority, can be represented by only one treap. 
b. Show how to perform insertion in a treap by using a bottom-up 

algorithm. 
c. Show how to perform insertion in a treap by using a top-down 

algorithm. 
d. Show how to perform deletion from a treap. 

21.22. Explain how to place the initial set of runs on two tapes when the 
number of runs is not a Fibonacci number. 

In Practice 

21.23. Write the percDown routine with the declaration 

void percDown( vector<Comparable> & a, int index, int size ) ;  

Recall that the max heap starts at position 0, not position I .  

Programming Projects 

21.24. Write a program to compare the running time of using the 
~ i n a r y ~ e a p ' s  one-parameter constructor to initialize the heap with 
N items versus starting with an empty BinaryHeap and performing 
N separate i n s e r t s .  Run your program for sorted, reverse sorted, 
and random inputs. 

21.25. Suppose that you have a number of boxes, each of which can hold 
total weight I .O and items i,, i2, i,, ..., i ,  which weigh w , ,  w,, ut3, ..., 
wN, respectively. The object is to pack all the items, using as few 
boxes as possible, without placing more weight in any box than its 
capacity. For instance, if the items have weights 0.4, 0.4, 0.6 and 
0.6, you can solve the problem with two boxes. This problem is dif- 
ficult, and no efficient alogrithm is known. Several strategies give 
good, but not optimal, packings. Write programs to implement effi- 
ciently the following approximation strategies. 



a. Scan the items in the order given; place each new item in the 
most-filled box that can accept it without overflowing. Use a 
priority queue to determine the box that an item goes in. 

b. Sort the items, placing the heaviest item first; then use the strat- 
egy in part (a). 

21.26. Implement both heapsort and quicksort and compare their perfor- 
mances on both sorted inputs and random inputs. Use different types 
of data for the tests. 

Suppose that you have a hole at node X. The normal percDown rou- 
tine is to compare X's children and then move the child up to X if it 
is larger (in the case of a max heap) than the element to be placed, 
thereby pushing the hole down. Stop when placing the new element 
in the hole is safe. Consider the following alternative strategy for 
percDown. Move elements up and the hole down as far as possible 
without testing whether the new cell can be inserted. These actions 
would place the new cell in a leaf and probably violate heap order. 
To fix the heap order, percolate the new cell up in the normal man- 
ner. The expectation is that the percolation up will be only one or 
two levels on average. Write a routine to include this idea. Compare 
the running time with that of a standard implementation of heapsort. 

21.28. Redo Exercise 9.19, using heapsort instead of mergesort. 

21.29. Implement an external sort. 
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Chapter 22 

Splay Trees 

In this chapter we describe a remarkable data structure called the splay tree, 
which supports all the binary search tree operations but does not guarantee 
O(log N) worst-case performance. Instead, its bounds are amortized, mean- 
ing that, although individual operations can be expensive, any sequence of 
operations is guaranteed to behave as though each operation in the sequence 
exhibited logarithmic behavior. Because this guarantee is weaker than that 
provided by balanced search trees, only the data and two pointers per node 
are required for each item and the operations are somewhat simpler to code. 
The splay tree has some other interesting properties, which we reveal in this 
chapter. 

In this chapter, we show: 

the concepts of amortization and self-adjustment, 

the basic bottom-up splay tree algorithm and a proof that it has loga- 
rithmic amortized cost per operation, 
implementation of splay trees with a top-down algorithm, using a 
complete splay tree implementation (including a deletion algorithm), 
and 
comparisons of splay trees with other data structures. 

22.1 Self-Adjustment and Amortized Analysis 

Although balanced search trees provide logarithmic worst-case running time 
per operation, they have several limitations. 

They require storing an extra piece of balancing information per 
node. 



The real problem is 
that the extra data 
members add 
complications. 

The 90-10 rule states 
that 90 percent of the 
accesses are to 10 
percent of the data 
items. However, 
balanced search trees 
do not take advantage 
of this rule. 

They are complicated to implement. As a result, insertions and dele- 
tions are expensive and potentially error-prone. 
They do not provide a win when easy inputs occur. 

Let us examine the consequences of each of these deficiencies. First, 
balanced search trees require an extra data member. Although in theory this 
member can be as small as a single bit (as in a red-black tree), in practice the 
extra data member uses an entire integer for storage in order to satisfy hard- 
ware restrictions. Because computer memories are becoming huge, we must 
ask whether worrying about memory is a large issue. The answer in most 
cases is probably not, except that maintaining the extra data members 
requires more complex code and tends to lead to longer running times and 
more errors. Indeed, identifying whether the balancing information for a 
search tree is correct is difficult because errors lead only to an unbalanced 
tree. If one case is slightly wrong, spotting the errors might be difficult. 
Thus, as a practical matter, algorithms that allow us to remove some compli- 
cations without sacrificing performance deserve serious consideration. 

Second, the worst-case, average-case, and best-case performances of a 
balanced search are essentially identical. An example is a find operation for 
some item X. We could reasonably expect that, not only the cost of the find 
will be logarithmic, but also that if we perform an immediate second find 
for X, the second access will be cheaper than the first. However, in a red- 
black tree, this condition is not true. We would also expect that, if we per- 
form an access of X, Y and Z in that order, a second set of accesses for the 
same sequence would be easy. This assumption is important because of the 
90-10 rule. As suggested by empirical studies, the 90-10 rule states that in 
practice 90 percent of the accesses are to 10 percent of the data items. Thus 
we want easy wins for the 90 percent case, but balanced search trees do not 
take advantage of this rule. 

The 90-10 rule has been used for many years in disk 110 systems. A 
cache stores in main memory the contents of some of the disk blocks. The 
hope is that when a disk access is requested, the block can be found in the 
main memory cache and thus save the cost of an expensive disk access. Of 
course, only relatively few disk blocks can be stored in memory. Even so, 
storing the most recently accessed disk blocks in the cache enables large 
improvements in performance because many of the same disk blocks are 
accessed repeatedly. Browsers make use of the same idea: A cache stores 
locally the previously visited Web pages. 



Self-Adjustment and Amortized Analysis 

22.1.1 Amortized Time Bounds 

We are asking for a lot: We want to avoid balancing information and, at the 
same time, we want to take advantage of the 90-10 rule. Naturally, we 
should expect to have to give up some feature of the balanced search tree. 

We choose to sacrifice the logarithmic worst-case performance. We are Amortized analysis 

hoping that we do not have to maintain balance information, so this sacrifice bounds the cost Of a 
sequence of seems inevitable. However, we cannot accept the typical performance of an and 

unbalanced binary search tree. But there is a reasonable compromise: O(N) distributes this cost 
time for a single access may be acceptable so long as it does not happen too evenly to each 

operation in the often In particular. if any M operations (starting with the first operation) 
sequence. 

take a total of O(M log N )  worst-case time, the fact that some operations are 
expensive might be inconsequential. When we can show that a worst-case 
bound for a sequence of operations is better than the corresponding bound 
obtained by considering each operation separately and can be spread evenly 
to each operation in the sequence, we have perfonned an amortized analysis 
and the running time is said to be amortized. In the preceding example, we 
have logarithmic amortized cost. That is, some single operations may take 
more than logarithmic time, but we are guaranteed compensation by some 
cheaper operations that occur earlier in the sequence. 

However, amortized bounds are not always acceptable. Specifically, if a 
single bad operation is too time consuming, we really do need worst-case 
bounds rather than amortized bounds. Even so, in many cases a data struc- 
ture is used as part of an algorithm and only the total amount of time used by 
the data structure in the course of running an algorithm is important. 

We have already presented one example of an anlortized bound. When 
we implement array doubling in a stack or queue, the cost of a single opera- 
tion can be either constant, if no doubling is needed, or O(N), if doubling is 
needed. However, for any sequence of M stack or queue operations, the total 
cost is guaranteed to be O(M), yielding constant amortized cost per opera- 
tion. The fact that the array doubling step is expensive is inconsequential 
because its cost can be distributed to many earlier inexpensive operations. 

22.1.2 A Simple Self-Adjusting Strategy (That Does Not Work) 

In a binary search tree, we cannot expect to store the frequently accessed items 
in a simple table. The reason is that the caching technique benefits from the 
great discrepancy between main memory and disk access times. Recall that 
the cost of an access in a binary search tree is proportional to the depth of the 
accessed node. Thus we can attempt to restructure the tree by moving fre- 
quently accessed items toward the root. Although this process costs extra time 
during the first f i n d  operation, it could be worthwhile in the long run. 



The rotate-to-root 
strategy rearranges a 
binary search tree 
after each access so 
as to move frequently 
accessed items 
closer to the root. 

The rotate-to-root 
strategy is good if the 
90-1 0 rule applies. It 
can be a bad strategy 
when the rule does 
not apply. 

Figure 22.1 Rotate-to-root strategy applied when node 3 is accessed. 

The easiest way to move a frequently accessed item toward the root is to 
rotate it continually with its parent, moving the item closer to the root, a pro- 
cess called the rotate-to-root strategy. Then, if the item is accessed a sec- 
ond time, the second access is cheap, and so on. Even if a few other 
operations intervene before the item is reaccessed, that item will remain 
close to the root and thus will be quickly found. An application of the rotate- 
to-root strategy to node 3 is shown in Figure 22.1 1 

As a result of the rotation, future accesses of node 3 are cheap (for a 
while). Unfortunately, in the process of moving node 3 up two levels, nodes 
4 and 5 each move down a level. Thus, if access patterns do not follow the 
90-10 rule, a long sequence of bad accesses can occur. As a result, the 
rotate-to-root rule does not exhibit logarithmic amortized behavior, which is 
likely unacceptable. A bad case is illustrated in Theorem 22.1. 

Theorem 22.1 There are arbitrarily long sequences for which M rotate-to-root accesses 
use O(MN) time. 

Proof Consider the tree formed by the insertion of keys 1,2,3, . . . , N in an initially 
empty tree. The result is a tree consisting of only left children. This outcome 
is not bad, as the time to construct the tree is only O(N) total. As illustrated 
in Figure 22.2, each newly added item is made a child of the root. Then, only 

one rotation is needed to place the new item at the root. The bad part, as 
shown in Figure 22.3, is that accessing the node with key 1 takes N units of 
time. After the rotations have been completed, access of the node 

1. An insertion counts as an access. Thus an item would always be inserted as a leaf and then 
immediately rotated to the root. An unsuccessful search counts as an access on the leaf at 
which the search terminates. 



Figure 22.2 Insertion of 4 using the rotate-to-root strategy. 

+pf? + -F -b -F 

1 2 1 

Figure 22.3 Sequential access of items takes quadratic time. 

with key 2 takes N units of time and access of key 3 takes N - 1 units of Proof 
time. The total for accessing the N keys in order is N + xy=, i = O(N2) .  (continued) 
After they have been accessed, the tree reverts to its original state and we 

can repeat the sequence. Thus we have an amortized bound of only O(N). 

22.2 The Basic Bottom-Up Splay Tree 

Achieving logarithmic amortized cost seems impossible because, when we In a basic bottom-up - - 
move an item to the root via rotations, other items are pushed deeper. Seem- tree, items are 

rotated to the root by 
ingly, that would always result in some very deep nodes if no balancing using a slightly more 
information is maintained. Amazingly, we can apply a simple fix to the complicated method - - 

rotate-to-root strategy that allows the logarithmic amortized bound to be than that used for a 
simple rotate-to-root obtained. Implementation of this slightly more complicated rotate-to-root 
strategy. 

method called splaying leads to the basic bottom-up splay tree. 



Figure 22.4 The zig case (normal single rotation). 

Figure 22.5 The zig-zag case (same as a double rotation); the symmetric case 
has been omitted. 

The splaying strategy is similar to the simple rotate-to-root strategy, 
but it has one subtle difference. We still rotate from the bottom up along 
the access path (later in the chapter we describe a top-down strategy). If X 
is a nonroot node on the access path on which we are rotating and the par- 
ent of X is the root of the tree, wk merely rotate X and the root, as shown in 
Figure 22.4. This rotation is the last along the access path, and it places X at 
the root. Note that this action is exactly the same as that in the rotate-to-root 
algorithm and is referred to as the zig case. 

The zig and zig-zag Otherwise, X has both a parent P and a grandparent G, and we must con- 
cases are sider two cases and symmetries. The first case is the so called zig-zag case, 
rotate-to-root. which corresponds to the inside case for AVL trees. Here X is a right child 

and P is a left child (or vice versa). We perform a double rotation exactly 
like an AVL double rotation, as shown in Figure 22.5. Note that, as a double 
rotation is the same as two bottom-up single rotations, this case is no differ- 
ent than the rotate-to-root strategy. In Figure 22.1, the splay at node 3 is a 
single zig-zag rotation. 

The zig-zig case is The final case, the zig-zig case, is unique to the splay tree and is the outside 
unique tothe splay case for AVL trees. Here, X and P are either both left children or both right chil- 
tree. dren. In this case, we transform the left-hand tree of Figure 22.6 to the right- 

hand tree. Note that this method differs from the rotate-to-root strategy. The zig- 
zig splay rotates between P and G and then X and E whereas the rotate-to-root 
strategy rotates between X and P and then between X and G. 



The Basic Bottom-Up Splay Tree : I 

Figure 22.6 Zig-zig case (unique to the splay tree); the symmetric case has been 
omitted. 

Figure 22.7 Result of splaying at node 1 (three zig-zigs and a zig). 

The difference seems quite minor, and the fact that it matters is somewhat 
surprising. To see this difference consider the sequence that gave the poor 
results in Theorem 22.1. Again, we insert keys 1, 2, 3, . . . , N in an initially 
empty tree in linear total time and obtain an unbalanced left-child-only tree. 
However, the result of a splay is somewhat better, as shown in Figure 22.7. 
After the splay at node 1, which takes N node accesses, a splay at node 2 
takes only roughly N / 2  accesses, rather than N - 1 accesses. Splaying not 
only moves the accessed node to the root, but it also roughly halves the 
depth of most nodes on the access path (some shallow nodes are pushed 
down at most two levels). A subsequent splay at node 2 brings nodes to 
within N/4 of the root. Splaying is repeated until the depth becomes 
roughly log N. In fact, a complicated analysis shows that what used to be a 

Splaying has the 
effect of roughly halv- 
ing the depth of most 
nodes on the access 
path and increasing 
by at most two levels 
the depth of a few 
other nodes. 



bad case for the rotate-to-root algorithm is a good case for splaying: Sequen- 
tial access of the N items in the splay tree takes a total of only O(Nj time. 
Thus we win on easy input. In Section 22.4 we show, by subtle accounting, 
that there are no bad access sequences. 

22.3 Basic Splay Tree Operations 
After an item has As mentioned earlier, a splay operation is performed after each access. 
been inserted as a When an insertion is performed, we perform a splay. As a result, the newly 
leaf, it is splayed to 
the root. inserted item becomes the root of the tree. Otherwise, we could spend qua- 

dratic time constructing an N item tree. 
AII searching For the find, we splay at the last node accessed during the search. If the 
operations search is successful, the node found is splayed and becomes the new root. If 
incorporate a splay. 

the search is unsuccessful, the last node accessed prior to reaching the NULL 

pointer is splayed and becomes the new root. This behavior is necessary 
because, otherwise, we could repeatedly perform a find for 0 in the initial 
tree in Figure 22.7 and use linear time per operation. Likewise, operations 
such as f indMin and f indMax perform a splay after the access. 

The interesting operations are the deletions. Recall that the deleteMin 
and deleteMax are important priority queue operations. With splay trees, 
these operations become simple. We can implement deleteMin as follows. 
First, we perform a findMin. This brings the minimum item to the root, and 
by the binary search tree property, there is no left child. We can use the right 
child as the new root. Similarly, deleteMax can be implemented by calling 
f indMax and setting the root to the post-splay root's left child. 

Deletion operations Even the remove operation is simple. To perform deletion, we access the 
are much simpler node to be deleted, which puts the node at the root. If it is deleted, we get two 
than usual.They also 
contain a splaying subtrees, L and R (left and right). If we find the largest element in L, using a 
step (sometimes two). f indMax operation, its largest element is rotated to L's root and L's root has 

no right child. We finish the remove operation by making R the right child of 
L's root. An example of the remove operation is shown in Figure 22.8. 

The cost of the remove operation is two splays. All other operations 
cost one splay. Thus we need to analyze the cost of a series of splay steps. 
The next section shows that the amortized cost of a splay is at most 3 log N + 1 
single rotations. Among other things, this means we do not have to worry 
that the remove algorithm described previously is biased. The splay tree's 
amortized bound guarantees that any sequence of M splays will use at most 
3 M log N + M tree rotations. Consequently, any sequence of M operations 
starting from an empty tree will take a total of at most O(M log N )  time. 



Analysis of Bottom-Up Splaying : I 

Figure 22.8 The remove operation applied to node 6: First, 6 is splayed to the 
root, leaving two subtrees; a f indMax is performed on the left 
subtree, raising 5 to the root of the left subtree; then the right subtree 
can be attached (not shown). 

22.4 Analysis of Bottom-Up Splaying 

The analysis of the splay tree algorithm is complicated because each splay can 
vary from a few rotations to O(N) rotations. Each splay can drastically change 
the structure of the tree. In this section we prove that the amortized cost of a 
splay is at most 3 log N + I single rotations. The splay tree's amortized bound 
guarantees that any sequence of M splays use at most 3 M log N + M tree rota- 
tions, and consequently any sequence of M operations starting from an 
empty tree take a total of at most O(M log N )  time. 

To prove this bound, we introduce an accounting function called the 
potential function. Not maintained by the algorithm, the potential function 
is merely an accounting device used to establish the required time bound. Its 
choice is not obvious and is the result of a large amount of trial and error. 

For any node i in the splay tree, let S( i )  be the number of descendants of 
i (including i itself). The potential function is the sum, over all nodes i in the 
tree 7; of the logarithm of S(i).  Specifically, 

@ ( T )  = log S ( i ) .  
is T 

To simplify the notation, we let R(i) = log S(i), which gives 

The analysis of the 
splay tree is 
complicated and is 
part of a much larger 
theory of amortized 
analysis. 

The potential function 
is an accounting 
device used to 
establish the required 
time bound. 
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S p l a y  Trees 

The rank of a node is The term R(i) represents the rank of node i, or the logarithm of its size. 
the logarithm its Note that the rank of the root is log N .  Recall that neither ranks nor sizes are 
size. Ranks and sizes 
are not maintained maintained by splay tree algorithms (unless, of course, order statistics are 
but are merely needed). When a zig rotation is performed, only the ranks of the two nodes 
accounting tools for involved in the rotation change. When a zig-zig or a zig-zag rotation is per- 
the proof.Only nodes formed. only the ranks of the three nodes involved in the rotation change. 
on the splay path 
have their ranks And finally, a single splay consists of some number of zig-zig or zig-zag 
changed. rotations followed by perhaps one zig rotation. Each zig-zig or zig-zag rota- 

tion can be counted as two single rotations. 
For Theorem 22.2 we let be the potential function of the tree immedi- 

ately after the ith splay and Qo be the potential prior to the zeroth splay. 

Theorem 22.2 l f thr  ith splay operation uses r ,  relations, @, - @, . , + r,  5 3 log N + 1 . I 
In all the proofs in Before proving Theorem 22.2, let us determine what it means. The cost - 
this section we use of M splaysLcan be taken as EM I., rotations. If the M splays are consecu- 
the concept of 
telescoping sums. tive (i.e.. no insertions or deletiids intervene), the potential of the tree after 

the ith splay is the same as prior to the (i + 1)th splay. Thus we can use The- 
orem 22.2 M times to obtain the following sequence of equations: 

These equations telescope, so if we add them, we obtain 

@ M - @ o + ~ ~ =  , r i l  ( 3  log N +  1)M. 

which bounds the total number of rotations as 

Now consider what happens when insertions are intermingled with find 
operations. The potential of an empty tree is 0, so when a node is inserted in 
the tree as a leaf, prior to the splay the potential of the tree increases by at 
most log N (which we prove shortly). Suppose that r, rotations are used for 
an insertion and that the potential prior to the insertion is @ ,  ,. After the 



Analysis of Bo t tomup  Splaying 

insertion, the potential is at most @, _ , + log N. After the splay that moves 
the inserted node to the root, the new potential will satisfy 

Suppose further that there are F finds and I insertions and that Qi represents 
the potential after the i th operation. Then, because each find is governed by 
Theorem 22.2 and each insertion is governed by Equation 22.3, the telescop- 
ing logic indicates that 

ZM, l i<  (3log N + 1)F + (4 log N + I ) I -  (atw -a,,). 

Moreover, before the first operation the potential is 0, and since it can never 
be negative, aM - QO 2 0 .  Consequently, we obtain 

xy= , ri 5 ( 3  log N + I ) F  + ( 4  log N + I ) I ,  

showing that the cost of any sequence of finds and insertions is at most loga- 
rithmic per operation. A deletion is equivalent to two splays, so it too is log- 
arithmic. Thus we must prove the two dangling claims-namely, Theorem 
22.2 and the fact that an insertion of a node adds at most log N to the poten- 
tial. We prove both theorems by using telescoping arguments. We take care 
of the insertion claim first. as Theorem 22.3. 

insertion of the Nth node in a tree as a leaf adds at most log N to the Theorem 22.3 
potential of the tree. 

The only nodes whose ranks are affected are those on the path from the Proof 
inserted leaf to the root. Let S , ,  S2,  . . ., S,  be their sizes prior to the 

insertion and note that S, = N - 1 and S ,  < S2 < ... < Sk.  Let 

S; ,  S;  , . . ., Si  be the sizes after the insertion. Clearly, Sj I S, + , for 
i < k ,  since Sj = S i  + 1 .  Consequently, R: I R ,  + ,. The change in 

potential is thus 

zf= , ( R :  - R i )  l R; - R, + x'? ! = I  ( R i +  , - Ri )  I log N - R ,  I log N. 



To prove Theorem 22.2, we break each splay step into its constituent 
zig, zig-zag, and zig-zig parts and establish a bound for the cost of each type 
of rotation. By telescoping these bounds, we obtain a bound for the splay. 
Before continuing, we need a technical theorem, Theorem 22.4. 

Theorem 22.4 If a + b I c and a and b are both positive integers, then 
l o g a + l o g b I 2  loge-2 .  

Proof By the arithmetic-geometric mean inequalit;v, &b I (a  + b ) / 2 .  Thus 
&b I c / 2 .  Squaring both sides gives ab  5 c 2 / 4 .  Then taking 
logarithms of both sides proves the theorem. 

We are now ready to prove Theorem 22.2. 

22.4.1 Proof of the Splaying Bound 

First, if the node to splay is already at the root, there are no rotations and no 
potential change. Thus the theorem is trivially true, and we may assume at 
least one rotation. We let X be the node involved in the splay. We need to 
show that, if r rotations are performed (a zig-zig or zig-zag counts as two 
rotations), r plus the change in potential is at most 3 log N + 1.  Next, we let A 
be the change in potential caused by any of the splay steps zig, zig-zag, or 
zig-zig. Finally, we let R,(X) and S,(X) be the rank and size of any node X 
immediately before a splay step and R&X) and SAX) be the rank and size of 
any node X immediately after a splay step. Following are the bounds that are 
to be proven. 

For a zig step that promotes node X, A I 3(Rf(X)  - R,(X)); for the other 
two steps, A 1 3(Rf(X)  - R,(X)) - 2. When we add these bounds over all the 
steps that comprise a splay, the sum telescopes to the desired bound. We 
prove each bound separately in Theorems 22.5-22.7. Then we can complete 
the proof of Theorem 22.2 by applying a telescoping sum. 

Theorem 22.5 For a zig step, A I 3(RI{X) - Ri(X)). 

Proof As mentioned earlier in this section, the only nodes whose ranks change 
in a zig step are X and I? Consequently, the potential change is R,(X) - 
R,(X) + RkP)  - R,(P). From Figure 22.4, S&P) < S,(P); tlzus itfollows 
that R&P) - R,(P) < 0. Consequently, rhe potential change satisfies 
A I R&X) - R,(X). As S+(X) > S , (X) ,  it follows rlzar Rf{X) - R,(X) > 0: 
hence A I 3(RI(X) - R ~ x ) ) .  



Analysis of Bottom-Up Splaying 

The zig-zag and zig-zig steps are more complicated because the ranks of 
three nodes are affected. First, we prove the zig-zag case. 

For a zig-zag step, A I 3(Rf(X) - Ri(X)) - 2. Theorem 22.6 

As before, we have three changes, so the potential change is given by Proof 

From Figure 22.5, S f  ( X )  = S,(G), so their ranks must be equal. Thus we 

obtain 

Also, S i (P)  2 Si(X).  Consequently, R,(P) 2 Ri(X) .  Making this 

substitution and rearranging terms gives 

From Figure 22.5, S f  ( P )  + S f  ( G )  I S f  ( X ) .  Applying Theorem 22.4, we 
obtain log S f  ( P )  + log S f ( G )  I 2 log S f ( X )  - 2, which by the dejinition 

of rank, becomes 

Substituting Equation 22.7 into Equation 22.6 yields 

As for the zig rotation, R ( X )  - R,(X)  > 0, so we can add it to the right 
side of Equation 22.8, factor; and obtain the desired 



Finally, we prove the bound for the zig-zig case. 

Theorem 22.7 For a zig-zig step, A I 3 ( R f ( X )  - R, (X) )  - 2. 

Proof As before, we have three changes, so the potential change is given b!: 

From Figure 22.6, S r ( X )  = S , (G) ;  their ranks must be equal, so we 
obtain 

We also can obtain R,(P)  > R,(X)  and R f ( P )  < R,,(X). Making this 
substitution and rearranging gives 

From Figure 22.6, S , (X )  + S f  ( G )  I S f ( X ) ,  so applying Theorem 22.4 
yields 

Rearranging Equation 22.10, we obtain 

When we substitute Equation 22.1 I into Equation 22.9, we get 

Now that we have established bounds for each splaying step, we can 
finally complete the proof of Theorem 22.2. 

Pro0 f Let Ro(X) be the rank of Xprior to the splay. Let R,(X) be X's rank after 

of Theorem 22.2 the ith splaying step. Prior to the last splaying step, all splaying steps 
must be zigzags or zig-zigs. Suppose that there are k such steps. Then the 
total number of rotations performed at that point is 2k. The total potential 

k 
change is Ci = ( 3  ( R , ( X )  - Ri - , ( X ) )  - 2. This sum telescopes to 
3 ( R k ( X )  - R,(X))  - 2k.  At this point, the total number of rotationsplus 
the total potential change is bounded by 3R, (X)  because the 2k term 
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cancels and the initial rank of X is not negative. V t h e  last rotation is a Proof 
zig-zig or a zigzag, then a continuation of the telescoping sum gives a of Theorem 22.2 
total of 3R(root). Note that here, on the one hand, the -2 in the potential (continued) 
increase cancels the cost of two rotations. On the other hand, this 

cancellation does not happen in the zig, so we would get a total of 

3R(root) + 1 .  The rank of the root is log N, so then-in the worst case-the 

total number of rotations plus the change in potential during a splay is at 

most 3 log N + 1. 

Although it is complex, the proof of the splay tree bound illustrates sev- 
eral interesting points. First, the zig-zig case is apparently the most expen- 
sive: It contributes a leading constant of 3, whereas the zig-zag contributes 2. 
The proof would fall apart if we tried to adapt it to the rotate-to-root algo- 
rithm because, in the zig case, the number of rotations plus the potential 
change is R f ( X )  - R j ( X )  + 1. The 1 at the end does not telescope out, so we 
would not be able to show a logarithmic bound. This is fortunate because we 
already know that a logarithmic bound would be incorrect. 

The technique of amortized analysis is very interesting, and some gen- 
eral principles have been developed to formalize the framework. Check the 
references for more details. 

22.5 Top-Down Splay Trees 

A direct implementation of the bottom-up splay strategy requires a pass As for red-black 

down the tree to perform an access and then a second pass back up the tree. trees~top-downsplay 
trees are more These passes can be made by maintaining parent pointers, by storing the efficient i n  practice 

access path on a stack, or by using a clever trick to store the path (using the than their bottom-up 
available pointers in the accessed nodes). Unfortunately, allthese methods counterparts. 

require expending a substantial amount of overhead and handling many spe- 
cial cases. Recall from Section 19.5 that implementing search tree algo- 
rithms with a single top-down pass is a better approach and we can use 
dummy nodes to avoid special cases. In this section we describe a top-down 
splay tree that maintains the logarithmic amortized bound, is faster in prac- 
tice, and uses only constant extra space. It is the method recommended by 
the inventors of the splay tree. 

The basic idea behind the top-down splay tree is that, as we descend the 
tree searching for some node X ,  we must take the nodes that are on the 
access path and move them and their subtrees out of the way. We must also 
perform some tree rotations to guarantee the amortized time bound. 



We maintain three At any point in the middle of the splay. a current node X is the root of its 
treesduring thetop- subtree; i t  is represented in the diagrams as the middle tree. Tree L stores 
down pass. nodes that are less than X; similarly, tree R stores nodes that are larger than 

X. Initially, Xis the root of 7; and L and R are empty. Descending the tree two 
levels at a time, we encounter a pair of nodes. Depending on whether these 
nodes are smaller or larger than X,  we place them in L or R. along with sub- 
trees that are not on the access path to X. Thus the current node on the search 
path is alwa!.s the root of the middle tree. When we finally reach X, we can 
then attach L and R to the bottom of the middle tree. As a result, X has been 
moved to the root. The remaining tasks then are to place nodes in L and R 
and to perform the reattachment at the end, as illustrated in the trees shown 
in Figure 22.9. As is customary, three symmetric cases are omitted. 

In all the diagrams. X is the current node, Y is its child, and Z is a grand- 
child (should an applicable node exist. The precise meaning of the term 
applicable is made clear during the discussion of the zig case.) 

If the rotation should be a zig, the tree rooted at Y becomes the new root 
of the middle tree. Node X and subtree B are attached as a left child of the 
smallest item in R; X's left child is logically made NULL.? AS a result, X is 
the new smallest element in R, making future attachments easy. 

Note that Y does not have to be a leaf for the zig case to apply. If the item 
sought is found in X a zig case will apply even if Y has children. A zig case 
also applies if the item sought is smaller than Y and Y has no left child, even 
if Y has a right child. and also for the symmetric case. 

A similar dissection applies to the zig-zig case. The crucial point is that a 
rotation between X and Y is performed. The zig-zag case brings the bottom 
node Z to the top of the middle tree and attaches subtrees X and Y to R and L, 
respectively. Note that Y is attached to, and then becomes. the largest item in L. 

The zig-zag step can be simplified somewhat because no rotations are 
performed. Instead of making Z the root of the middle tree, we make Y the 
root, as shown in Figure 22.10. This action simplifies the coding because the 
action for the zig-zag case becomes identical to the zig case and would seem 
advantageous, as testing for a host of cases is time-consuming. The disad- 
vantage is that a descent of only one level results in more iterations in the 
splaying procedure. 

Eventually, the three Once we have performed the final splaying step. L, R, and the middle 
trees are tree are arranged to form a single tree, as shown in Figure 22.11. Note 
reassembled into 
one. that the result is different from that obtained with bottom-up splaying. 

The crucial fact is that the O(log N) amortized bound is preserved (see Exer- 
cise 22.3). 

3. In the code written here. the smallest node in R does not have a NULL left pointer because 
it is not needed. 



Figure 22.9 Top-down splay rotations: (a) zig, (b) zig-zig, and (c) zig-zag. 

Figure 22.10 Simplified top-down zig-zag. 
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Figure 22.1 1 Final arrangement for top-down splaying. 

An example of the simplified top-down splaying algorithm is shown in 
Figure 22.12. When we attempt to access 19, the first step is a zig-zag. In 
accordance with a symmetric version of Figure 22.10. we bring the subtree 
rooted at 25 to the root of the middle tree and attach 12 and its left subtree to L. 

Next, we have a zig-zig: 15 is elevated to the root of the middle tree, and 
a rotation between 20 and 25 is performed, with the resulting subtree being 
attached to R. The search for 19 then results in a terminal zig. The middle's 
new root is 18, and 15 and its left subtree are attached as a right child of L's 
largest node. The reassembly, in accordance with Figure 22.1 1, terminates 
the splay step. 

22.6 Implementation of Top-Down Splay Trees 

The splay tree class interface is shown in Figure 22.13. We have the 
usual methods, except that find is a mutator rather than an accessor. The 
BinaryNode class is our standard node class that contains data and two 
pointers and declares that SplayTree is a friend, but it is not shown. To 
eliminate annoying special cases, we maintain a nullNode sentinel. We 
allocate and initialize the sentinel in the constructor, as shown in Fig- 
ure 22.14. Implementing the copy assignment operator and destructor turns 
out to be tricky, so we discuss this problem last. 

Figure 22.15 shows the member function for insertion of an item x. A 
new node (new~ode) is allocated, and if the tree is empty, a one-node tree is 
created. Otherwise, we splay around x. If the data in the tree's new root 
equal x, we have a duplicate. In this case, we do not want to insert x; we 
throw an exception instead. Before throwing the exception at line 36, we 
would normally call delete to avoid a memory leak. However, rather than 
calling delete for the newly allocated node, we use a static local vari- 
able so that the next call to insert can avoid calling new. 
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Implementation of Top-Down Splay Trees ; 

Simplified zig-zag Empty 
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Figure 22.12 Steps in a top-down splay (accessing 19 in the top tree). 



1 / /  SplayTree class. 
2 / /  
3 / /  CONSTRUCTION: with no parameters or another SplayTree. 
4 / /  
5 / /  ******************PUBLIC OpERATIONSX****k*************** 

6 / /  void insert ( x ) - - >  Insert x 
7 / /  void remove( x ) - - >  Remove x 
8 / /  Comparable find( x ) - - >  Return item that matches x 
9 / /  boo1 isEmpty( ) - - >  Return true if empty; else false 

10 / /  void makeEmpty ( ) - - >  Remove all items 
11 / /  X * * * * * * k X * X * * * * * * k E R R O R S * * k * * * * X * , f * * * * * * * * * * * * * * * * * * * * * * * * * * *  

12 / I  Throws exceptions as warranted. 
13 
14 template <class Comparable> 
15 class SplayTree 
16 { 

17 public: 
18 SplayTree ( ) ; 

19 SplayTree( const SplayTree & rhs ) ;  

20 -SplayTree ( ) ; 

21 
22 boo1 isEmpty ( ) const; 
23 void makeEmpty ( ) ; 

24 
25 Cref<Comparable> find( const Comparable & x ) ;  

26 void insert( const Comparable & x ) ;  

27 void remove( const Comparable & x ) ;  

28 const SplayTree & operator=( const SplayTree & rhs ) ;  

29 
30 private: 
31 BinaryNode<Comparable> *root; 
32 BinaryNode<Comparable> *nullNode; 
33 
34 typedef BinaryNode<Comparable> Node; 
35 Cref<Comparable> elernentAt( Node *t ) const; 
36 Node * clone( Node *t ) const; 
37 
38 / /  Tree manipulations 
39 void rotateWithLeftChild( Node * & k2 ) const; 
40 void rotateWithRightChild( Node * & kl ) const; 
41 void splay( const Comparable & x, Node * & t ) const; 

42 1 ;  

Figure 22.13 The top-down SplayTree class interface. 



1 template <class Comparable> 
2 SplayTree<Comparable>: :SplayTree( ) 
3 { 

4 nullNode = new BinaryNode<Comparable>; 
5 nullNode->left = nullNode->right = nullNode; 
6 root = nullNode; 
7 } 

Figure 22.14 The SplayTree class constructor. 

1 / /  Insert x into the tree. 
2 / /  Throws DuplicateItemException if x is already there. 
3 template <class Comparable> 
4 void SplayTree<Comparable>::insert( const Comparable & x ) 

5 ( 

6 static BinaryNode<Comparable> *newNode = NULL; 
7 
8 if ( newNode == NULL ) 

9 newNode = new BinaryNode<Comparable>; 
10 
11 newNode->element = x; 
12 if( root == nullNode ) 

13 i 
14 newNode->left = newNode->right = nullNode; 
15 root = newNode; 
16 1 
17 else 
18 { 

19 splay ( x, root ) ; 

20 if( x < root->element ) 

2 1 ( 

22 newNode->left = root->left; 
23 newNode->right = root; 
24 root->left = nullNode; 
25 root = newNode; 
26 1 
27 else 
28 if( root->element < x ) 

29 I 
30 newNode->right = root->right; 
31 newNode->left = root; 
32 root->right = nullNode; 
33 root = newNode; 
34 } 

35 else 
36 throw DuplicateI ternExcept ion(  ) ; 

37 1 
38 newNode = NULL; i /  So next insert will call new 
39 1 

Figure 22.15 The top-down SplayTree class insertion routine. 
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1 / /  Remove x from the tree. 
2 / /  Throws ItemNotFoundException if x is not in the tree. 
3 template <class Comparable> 
4 void SplayTree<Comparable>::remove( const Comparable & x ) 

5 { 
6 BinaryNode<Comparable> *newTree; 
7 
8 / /  If x is found, it will be at the root 
9 splay ( x, root ) ; 

10 if( root->element ! =  x ) 

11 throw ItemNotFoundException( ) ; 

12 
13 if( root->left == nullNode ) 

14 newTree = root->right; 
15 else 
16 i 
17 / /  Find the maximum in the left subtree 
18 / /  Splay it to the root; and then attach right child 
19 newTree = root->left; 
20 splay( x, newTree i ; 
2 1 newTree->right = root->right; 
22 1 
23 delete root; 
24 root = newTree; 
25 1 

Figure 22.16 The top-down SplayTree class deletion routine. 

If the new root contains a value larger than x, the new root and its right 
subtree become a right subtree of newNode, and the root's left subtree 
becomes a left subtree of newNode. Similar logic applies if the new root 
contains a value smaller than x. In either case, newNode is assigned to root 
to indicate that it is the new root. Then we make newNode NULL at line 38 so 
that the next call to insert will call new. 

Figure 22.16 shows the deletion routine for splay trees. A deletion pro- 
cedure rarely is shorter than the corresponding insertion procedure. Next, is 
the top-down splaying routine. 

Our implementation, shown in Figure 22.17. uses a header with left and 
right pointers to contain eventually the roots of the left and right trees. These 
trees are initially empty, a header is used to correspond to the min or max 
node of the right or left tree, respectively, in this initial state. In this way we 
can avoid checking for empty trees. The first time the left tree becomes non- 
empty, the header's right pointer is initialized and does not change in the 
future. Thus it contains the root of the left tree at the end of the top-down 
search. Similarly, the header's left pointer eventually contains the root of the 
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1 / /  Internal method to perform a top-down splay. 
2 / /  The last accessed node becomes the new root. 
3 / /  x is the target item to splay around. 
4 / /  t is the root of the subtree to splay. 
5 template <class Comparable> 
6 void SplayTree<Comparable>: :splay( const Comparable & x, 
7 BinaryNodeiComparable> * & t ) const 
8 I 
9 BinaryNode<Comparable> *leftTreeMax, *rightTreeMin; 

10 static BinaryNode<Comparable> header; 
11 
12 header.left = header.right = nullNode; 
13 1eftTreeMax = rightTreeMin = &header; 
14 nullNode->element = x; / /  Guarantee a match 
15 
16 for( ; ; ) 

17 if( x < t->element ) 

18 I 
19 if ( x < t->left->element ) 

20 rotateWithLeftChild( t ) ;  

21 if( t->left == nullNode ) 

22 break; 
23 / /  Link Right 
24 rightTreeMin->left = t; 
25 rightTreeMin = t; 
26 t = t->left; 
27 1 
28 else if( t->element < x ) 

29 i 
30 if( t->right->element < x 
3 1 rotateWithRightChild( t ) ; 

32 if( t->right == nullNode ) 

33 break; 
34 / /  Link Left 
35 1eftTreeMax->right = t; 
36 1eftTreeMax = t; 
37 t = t->right; 
38 1 
39 else 
40 break; 
41 
42 1eftTreeMax->right = t->left; 
43 rightTreeMin->left = t->right; 
44 t->left = header.right; 
45 t->right = header.left; 
46 1 

Figure 22.17 A top-down splay algorithm 
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1 / /  Make the tree logically empty. 
2 template <class Comparable> 
3 void SplayTree<Comparable>::makeEmpty( ) 
4 { 
5 f indMax ( ) ; / /  Splay max item to root 
6 while( ! isEmpty( ) ) 

7 remove( root->element i ;  

8 } 

Figure 22.18 The makeEmpty routine, which runs in linear time without extra 
space. 

right tree. The header variable is declared as static because we want to 
allocate it only once over the entire sequence of splays. 

Before the reassembly at the end of the splay, header. left and 
header. right point at R and L, respectively (this is not a typo-follow the 
links). Note that we are using the simplified top-down splay. 

The destructor is implemented by calling the public makeEmpty rou- 
tine. We would expect that, as in Chapter 19, makeEmpty would then call a 
private recursive routine and perform a postorder deletion of all tree nodes. 
However, that does not always work. The problem is that splay trees can be 
very unbalanced. even while giving good performance, and the recursion 
could run out of stack space. Figure 22.18 gives a simple alternative that is 
still O(N)  (though that is far from obvious). It is based on a theorem-which 
is very difficult to prove-that, if the items of a splay tree are accessed in 
sequential order, the total cost in linear. Similar considerations are required 
for operator= and any other function that would normally have a recursive 
implementation. However, only makeEmpty (which is called by the destruc- 
tor) cannot be considered an optional method, and must be implemented. 

22.7 Comparison of the Splay Tree 
with Other Search Trees 

The implementation just presented suggests that splay trees are not as com- 
plicated as red-black trees and almost as simple as AA-trees. Are they worth 
using? The answer has yet to be resolved completely, but if the access pat- 
terns are nonrandom. splay trees seem to perform well in practice. Some 
properties relating to their performances also can be proved analytically. 
Nonrandom accesses include those that follow the 90-10 rule, as well as 
several special cases such as sequential access, double-ended access, and 
apparently access patterns that are typical of priority queues during some 
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types of event simulations. In the exercises you are asked to examine this 
question in more detail. 

Splay trees are not perfect. One problem with them is that the f i n d  
operation is expensive because of the splay. Hence when access sequences 
are random and uniform, splay trees do not perform as well as other bal- 
anced trees. 

Summary 

In this chapter we described the splay tree, which is a recent alternative to 
the balanced search tree. Splay trees have several remarkable properties that 
can be proved, including their logarithmic cost per operation. Other proper- 
ties are suggested in the exercises. Some studies have suggested that splay 
trees can be used for a wide range of applications because of their apparent 
ability to adapt to easy access sequences. 

In Chapter 23 we describe two priority queues that, like the splay tree, 
have poor worst-case performance but good amortized performance. One of 
these, the pairing heap. seems to be an excellent choice for some applications. 

Objects of the Game 

90-10 rule States 90 percent of the accesses are to 10 percent of the 
data items. However, balanced search trees do not take advantage of 
this rule. (p. 796) 

amortized analysis Bounds the cost of a sequence of operations and 
distributes the cost evenly to each operation in the sequence. (p. 797) 

bottom-up splay tree A tree in which items are rotated to the root by 
using a slightly more complicated method than that used for a sim- 
ple rotate-to-root strategy. (p. 799) 

potential function An accounting device used to establish an amor- 
tized time bound. (p. 803) 

rank In the splay tree analysis, the logarithm of a node's size. (p. 804) 
rotate-to-root strategy Rearranges a binary search tree after each 

access so as to move frequently accessed items closer to the root. 
(p. 798) 

splaying A rotate-to-root strategy that allows the logarithmic amor- 
tized bound to be obtained. (p. 800) 

top-down splay tree A type of splay tree that is more efficient in 
practice than its bottom-up counterpart, as was the case for red- 
black trees. (p. 809) 



zig and zig-zag Cases that are identical to the rotate-to-root cases. Zig 
is used when Xis  a child of the root, and zig-zag is used when Xis  
an inside node. (p. 800) 

zig-zig A case unique to the splay tree, which is used when X is an 
outside node. (p. 800) 

@ Common Errors 

1. A splay must be performed after every access, even an unsuccessful 
one, or the performance bounds are not valid. 

2. The code is still tricky. 
3. The find operation adjusts the data structure and is thus not an 

accessor. As a result the splay tree might not be compatible with 
some other search trees without code modifications. 

4. Recursive private methods cannot be used safely in the SplayTree 
class because the tree depth may be large, even while performance 

/' is otherwise acceptable. 

On the Internet 

The SplayTree class is available online. The code includes versions of 
f indMin and f indMax that are efficient in an amortized sense, but not com- 
pletely optimized. It also contains an operator= that calls a recursive 
clone method. As we stated at the end of Section 22.6, using recursion is 
not acceptable. Fixing this is left for you to do as Exercise 22.10. 

Sp1ayTree.h Contains the interface for the SplayTree class. 
SplayTree.cpp Contains the implementation for the SplayTree 

class. 
TestSplaylkee.cpp Contains a test program for the SplayTree 

class. 

9 Exercises 

In Short 

22.1. Show the result of inserting 3, I, 4 ,5 ,2 ,9 ,6 ,  and 8 into a 
a. bottom-up splay tree. 
b. top-down splay tree. 

22.2. Show the result of deleting 3 from the splay tree shown in Exercise 22.1 
for both the bottom-up and top-down versions. 



In Theory 

22.3. Prove that the amortized cost of a top-down splay is O(1og N). 

22.4. Prove that if all nodes in a splay tree are accessed in sequential 
order, the resulting tree consists of a chain of left children. 

22.5. Suppose that, in an attempt to save time, we splay on every second 
tree operation. Does the amortized cost remain logarithmic? 

22.6. Nodes I through N = 1024 form a splay tree of left children. 
a. What is the internal path length of the tree (exactly)? 
b. Calculate the internal path length after each of find ( 1) , 

find (2 ) , and find ( 3  ) when a bottom-up splay is performed. 

By changing the potential function, you can prove different bounds 
for splaying. Let the weight function W(i)  be some function assigned 
to each node in the tree and S(i) be the sum of the weights of all 
nodes in the subtree rooted at i, including i itself. The special case 
W(i) = I for all nodes corresponds to the function used in the proof 
of the splaying bound. Let N be the number of nodes in the tree and 
M be the number of accesses. Prove the following two theorems. 
a. The total access time is O(M + (M + N )  log N). 
b. If q, is the total number of times that item i is accessed and qi > 0 

N 
for all i, then the total access time is O(M + xi  = , q, log(Mlq,)). 

In Practice 

22.8. Use the splay tree to implement a priority queue class. 

22.9. Modify the splay tree to support order statistics. 

22.10. Implement the SplayTree operator= and copy constructor cor- 
rectly. If necessary, you may change the rhs parameter to be a non- 
constant reference (such a change is allowed by the standard). 

Programming Projects 

22.11. Compare empirically the simplified top-down splay implemented 
in Section 22.6 with the original top-down splay discussed in Sec- 
tion 22.5. 



22.12. Unlike balanced search trees, splay trees incur overhead during a 
find operation that can be undesirable if the access sequence is suf- 
ficiently random. Experiment with a strategy that splays on a find 
operation only after a certain depth d is traversed in the top-down 
search. The splay does not move the accessed item all the way to the 
root, but rather to the point at depth d where the splaying is started. 

22.13. Compare empirically a top-down splay tree priority queue imple- 
mentation with a binary heap by using 
a. random insert and delet eMin operations. 
b. insert and deleteMin operations corresponding to an event- 

driven simulation. 
C. insert and deleteMin operations corresponding to Dijkstra's 

algorithm. 
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Chapter 23 

Merging Priority Queues 

In this chapter we examine priority queues that support an additional opera- 
tion: The merge operation, which is important in advanced algorithm 
design, combines two priority queues into one (and logically destroys the 
originals). We represent the priority queues as general trees, which simpli- 
fies somewhat the decreaseKey operation and is important in some appli- 
cations. 

In this chapter, we show: 

how the skew heap-a mergeable priority queue implemented with 
binary trees-works. 
how the pairing heap-a mergeable priority queue based on the 
M-ary tree-works. The pairing heap appears to be a practical alter- 
native to the binary heap even if the merge operation is not needed. 

23.1 The Skew Heap 
The skew heap is a heap-ordered binary tree without a balancing condition. The skew heap is a 

Without this structural constraint on the tree-unlike with the heap or the heap-ordered binary 
tree without a 

balanced binary search trees-there is no guarantee that the depth of the tree balancing condition 
is logarithmic. However, it supports all operations in logarithmic amortized and supports all 

time. The skew heap is thus somewhat similar to the splay tree. operations in 
logarithmic amortized 
time. 

23.1 . I  Merging Is Fundamental 

If a heap-ordered, structurally unconstrained binary tree is used to represent 
a priority queue, merging becomes the fundamental operation. This is 
because we can perform other operations as follows: 

h. insert ( x ) : Create a one-node tree containing x and merge that 
tree into the priority queue. 
h . f indMin ( ) : Return the item at the root. 
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The decreaseKey 
operation is 
implemented by 
detaching a subtree 
from its parent and 
then using m e r g e .  

Two trees are easily 
merged recursively. 

The result is that right 
paths are merged. We 
must be careful not to 
create unduly long 
right paths. 

h . deleteMin ( ) : Delete the root and merge its left and right sub- 
trees. 
h. decreaseKey ( p ,  newVal ) : Assuming that p is a pointer to a 
node in the priority queue, we can lower p's key value appropriately 
and then detach p from its parent. Doing so yields two priority queues 
that can be merged. Note that p (meaning the position) does not change 
as a result of this operation (in contrast to the equivalent operation in a 
binary heap). 

We need only show how to implement merging; the other operations 
become trivial. The decreaseKey operation is important in some advanced 
applications. We presented one illustration in Section 15.3-Dijkstra's algo- 
rithm for shortest paths in a graph. We did not use the decreaseKey opera- 
tion in our implementation because of the complications of maintaining the 
position of each item in the binary heap. In a merging heap, the position can 
be maintained as a pointer to the tree node, and unlike in the binary heap, the 
position never changes. 

In this section we discuss one implementation of a mergeable priority 
queue that uses a binary tree: the skew heap. First, we show that, if we are 
not concerned with efficiency. merging two heap-ordered trees is easy. Next, 
we cover a simple modification (the skew heap) that avoids the obvious inef- 
ficiencies in the original algorithm. Finally, we give a proof that the merge 
operation for skew heaps is logarithmic in an amortized sense and comment 
on the practical significance of this result. 

23.1.2 Simplistic Merging of Heap-Ordered Trees 

Let us assume that we have two heap-ordered trees, H I  and H,, that need to 
be merged. Clearly, if either of the two trees is empty, the other tree is the 
result of the merge. Otherwise, to merge the two trees, we compare their 
roots. We recursively merge the tree with the larger root into the right sub- 
tree of the tree with the smaller root.' 

Figure 23.1 shows the effect of this recursive strategy: The right paths of 
the two priority queues are merged to form the new priority queue. Each 
node on the right path retains its original left subtree, and only the nodes on 
the right path are touched. The outcome shown in Figure 23.1 is unattainable 
by using only insertions and merges because, as just mentioned, left children 
cannot be added by a merge. The practical effect is that what seems to be a 
heap-ordered binary tree is in fact an ordered arrangement consisting only of 
a single right path. Thus all operations take linear time. Fortunately, a simple 
modification ensures that the right path is not always long. 

I .  Clearly. either 5ubtree could be used. We arbitrarily use the right suhtree 
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Figure 23.1 Simplistic merging of heap-ordered trees: Right paths are merged. 

Figure 23.2 Merging of skew heap; right paths are merged, and the result is 
made a left path. 

23.1.3 The Skew Heap: A Simple Modification 

The merge shown in Figure 23.1 creates a temporary merged tree. We can 
make a simple modification in the operation as follows. Prior to the comple- 
tion of a merge, we swap the left and right children for every node in the 
resulting right path of the temporary tree. Again, only those nodes on the 
original right paths are on the right path in the temporary tree. As a result of 
the swap, shown in Figure 23.2, these nodes then form the left path of the 
resulting tree. When a merge is performed in this way, the heap-ordered tree 
is also called a skew heap. 

A recursive viewpoint is as follows. If we let L be the tree with the 
smaller root and R be the other tree, the following is true. 

I .  If one tree is empty, the other can be used as the merged result. 
2. Otherwise, let Temp be the right subtree of L. 
3. Make L's left subtree its new right subtree. 
4. Make the result of the recursive merge of Temp and R the new left 

subtree of L. 

To avoid the problem 
of unduly long right 
paths, we make the 
resulting right path 
after a merge a left 
path. Such a merge 
results in a skew 
heap. 
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A long right path is 
still possible. 
However, it rarely 
occurs and must be 
preceded by many 
merges involving 
short right paths. 

The actual cost of a 
merge is the number 
of nodes on the right 
paths of the two trees 
that are merged. 

The potential function 
is the number of 
heavy nodes. Only 
nodes on the merged 
path have their heavy 
or light status 
changed.The number 
of light nodes on a 
right path is 
logarithmic. 

We expect the result of the child swapping to be that the length of the 
right path will not be unduly large all the time. For instance, if we merge a 
pair of long right-path trees, the nodes involved in the path do not reappear 
on a right path for quite some time in the future. Obtaining trees that have 
the property that every node appears on a right path is still possible, but that 
can be done only as a result of a large number of relatively inexpensive 
merges. In Section 23.1.4, we prove this assertion rigorously by establishing 
that the amortized cost of a merge operation is only logarithmic. 

23.1.4 Analysis of the Skew Heap 

Suppose that we have two heaps, H, and H, and that there are r l  and r2 
nodes on their respective right paths. Then the time required to perform the 
merge is proportional to r ,  + r,. When we charge 1 unit for each node on the 
right paths, the cost of the merge is proportional to the number of charges. 
Because the trees have no structure, all the nodes in both trees may lie on the 
right path. This condition would give a O(N) worst-case bound for merging 
the trees (in Exercise 23.4 you are asked to construct such a tree). As we 
demonstrate shortly, the amortized time needed to merge two skew heaps is 
O(l0g N). 

As with the splay tree, we introduce a potential function that cancels the 
varying costs of skew heap operations. We want the potential function to 
increase by a total of O(1og N) - ( r ,  + r,) so that the total of the merge cost 
and potential change is only O(1og N). If the potential is minimal prior to the 
first operation, applying the telescoping sum guarantees that the total spent 
for any M operations is O(M log N), as with the splay tree. 

What we need is some potential function that captures the effect of skew 
heap operations. Finding such a function is quite challenging. Once we have 
found one, however, the proof is relatively short. 

DEFINITION: A node is a heavy node if the size of its right subtree is 
larger than the size of its left subtree. Otherwise, it is a light node; a node is 
light if its subtrees are of equal size. 

In Figure 23.3, prior to the merge, nodes 3 and 4 are heavy. After the 
merge, only node 3 is heavy. Three facts are easily shown. First, as a result 
of a merge, only nodes on the right path can have their heavy or light status 
changed because no other nodes have their subtrees altered. Second, a leaf is 
light. Third. the number of light nodes on the right path of an N node tree is 
at most h o g  N ]  + 1. The reason is that the right child of a light node is less 
than half the size of the light node itself, and the halving principle applies. 
The additional + I  is a result of the leaf's being light. With these preliminar- 
ies, we can now state and prove Theorems 23.1 and 23.2. 



The Skew ~ e a ~ ~ m  

Figure 23.3 Change in the heavy or light status of nodes after a merge. 

Let HI and H ,  be two skew heaps with Nl and N2 nodes, respectively, and Theorem 23.1 
let N be their combined size (that is, N1 + N2). Suppose that the right path 

of H I  has 1, light nodes and h,  heavs nodes, for a total of I ,  + h, ,  whereas 
the right path of H ,  has 1, light nodes and h2 heavy nodes, for a total of 

I ,  - + h2 If the potential is dejined as the total number of heavy nodes in the 
collection of skew heaps, then the merge costs at most 2 log N + (h ,  + h2), 

but the change in potential is at most 2 log N - ( h ,  + h2). 

The cost of the merge is merely the total number of nodes on the 
right paths, I ,  + 1, + h,  + h2. The number of light nodes is logarithmic, so 

1,1LlogN,]+ 1 and I , 1 ~ l o g N , ~ + 1 . T h u s l , + 1 ~ 5 l o g N ~ + l o g N ~ +  
2 5 2 log N, where the last inequali~ follows from Theorem 22.4. The 
merge cost is thus at most 2 log N + (h l  + h2). The bound on the potential 

change follows from the fact that only the nodes involved in the merge can 

have their heavy/light status changed and from the fact that any heavy 

node on the path must become light because its children are swapped. 

Even if all the light nodes became heavy, the potential change would still 

be limited to 1 ,  + l2 - (1.1, + h2). Based on the same argument as before, 

that is at most 2 log N - (h ,  + h2). 

Proof 

The amortized cost of the skew heap is at most 4 log N for the merge, Theorem 23.2 
insert ,  and dele teMin operations. 

Let Qi be the potential in the collection of skew heaps immediately Proof 
following the ith operation. Note that a, = 0 and Q, 2 0. An insertion 

creates a single node tree whose root is by dejinition light and thus does 
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Proof 
(continued) 

Finding a useful 
potential function is 
the most difficult part 
of the analysis. 

A nonrecursive 
algorithm should be 
used because of the 
possibility that we 
could run out of stack 
space. 

The pairing heap is a 
heap-ordered Mary 
tree with no structural 
constraints. Its 
analysis is 
incomplete, but it 
appears to perform 
well in practice. 

The pairing heap is 
stored by using a left 
childlright sibling 
representation. A 
third pointer is used 
for decreaseKey. 

not alter the potential prior to the resulting merge. A deleteMin 

operation discards the root prior to the merge, so it cannot raise the 

potential (it may, in fact, lower it). We need to consider only the merging 

costs. Let ci be the cost of the merge that occurs as a result of the ith 

operation. Then c ,  + - a, , < 4 log N. Telescoping over any M 
operations yields xIM_ , C ;  S 4 M  log N because a, - a, is not negative. 

The skew heap is a remarkable example of a simple algorithm with an 
analysis that is not obvious. The analysis, however, is easy to perform once 
we have identified the appropriate potential function. Unfortunately, there is 
still no general theory that allows us to decide on a potential function. Typi- 
cally, many different functions have to be tried before a usable one is found. 

One comment is in order: Although the initial description of the algo- 
rithm uses recursion and recursion provides the simplest code, it cannot be 
used in practice. The reason is that the linear worst-case time for an opera- 
tion could cause an overflow of the procedure stack when the recursion is 
implemented. Consequently, a nonrecursive algorithm must be used. Rather 
than explore those possibilities, we discuss an alternative data structure that 
is slightly more complicated: the pairing heap. This data structure has not 
been completely analyzed, but it seems to perform well in practice. 

23.2 The Pairing Heap 

The pairing heap is a structurally unconstrained heap-ordered M-ary tree 
for which all operations except deletion take constant worst-case time. 
Although deleteMin could take linear worst-case time, any sequence of 
pairing heap operations has logarithmic amortized performance. It has been 
conjectured-but not proved-that even better performance is guaranteed. 
However, the best possible scenario-namely, that all operations except for 
deleteMin have constant amortized cost, while deleteMin has logarith- 
mic amortized cost-has recently been shown to be untrue. 

Figure 23.4 shows an abstract pairing heap. The actual implementa- 
tion uses a left childlright sibling representation (see Chapter 18). The 
decreaseKey method, as we discuss shortly, requires that each node con- 
tain an additional pointer. A node that is a leftmost child contains a pointer 
to its parent; otherwise, the node is a right sibling and contains a pointer to 
its left sibling. This representation is shown in Figure 23.5, where the dark- 
ened line indicates that two pointers (one in each direction) connect pairs of 
nodes. 
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Figure 23.4 Abstract representation of a sample pairing heap. 

Figure 23.5 Actual representation of the pairing heap shown in Figure 23.4; the 
dark line represents a pair of pointers that connect nodes in both 
directions. 

23.2.1 Pairing Heap Operations 

In principle, the basic pairing heap operations are simple, which is why the 
pairing heap performs well in practice. To merge two pairing heaps, we 
make the heap with the larger root the new first child of the heap with the 
smaller  root .  Insert ion is  a special ca se  of merging.  To perform a 
decreaseKey operation, we lower the value of the requested node. Because 
we are not maintaining parent pointers for all nodes. we do not know if this 
action violates the heap order. Thus we detach the adjusted node from its 
parent and complete decreaseKey by merging the two pairing heaps that 
result. Figure 23.5 shows that detaching a node from its parent means 
removing it from what is essentially a linked list of children. So far we are in 
great shape: Every operation described takes constant time. However, we are 
not so lucky with the deleteMin operation. 

To perform a deleteMin, we must remove the root of the tree, creating 
a collection of heaps. If there are c children of the root, combining these 
heaps into one heap requires c - 1 merges. Hence, if there are lots of chil- 
dren of the root, the deleteMin operation costs lots of time. If the insertion 

Merging is simple: 
Attach the larger root 
tree as a left child of 
the smaller root tree. 
Insertion and 
decreasing are also 
simple. 

The deleteMin 
operation is 
expensive because 
the new root could be 
any of the c children 

sequence is 1, 2, . . . , N, then 1 is at the root and all the other items are in of the old root-we 
need c - 1 merges. 
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The order in which 
pairing heap subtrees 
are merged is 
important. The 
simplest algorithm is 
two-pass merging. 

Several alternatives 
have been proposed. 
Most are 
indistinguishable, but 
using a single left-to- 
right pass is a bad 
idea. 

The grev data 
member points to 
either a left sibling or 
a parent. 

The insert routine 
returns a pointer to 
the new node for use 
by decreaseKey. 

nodes that are children of the root. Consequently, deleteMin is O(N) time. 
The best that we can hope to do is to arrange the merges so that we do not 
have repeatedly expensive deleteMin operations. 

The order in which pairing heap subtrees are merged is important. The 
simplest and most practical of the many variants of doing so that have been 
proposed is two-pass merging, in which a first scan merges pairs of children 
from left to right* and then a second scan, right to left, is performed to com- 
plete the merging. After the first scan, we have half as many trees to merge. 
In the second scan, at each step, we merge the rightmost tree that remains 
from the first scan with the current merged result. For example, if we have 
children c,  through C8, the first scan performs the merges c ,  and c2, c3 and c,, 
c5 and C6, and c, and c8. The result is d,, d2, d3, and d,. We perform the sec- 
ond pass by merging d, and d,; d, is then merged with that result, and d ,  is 
then merged with the result of that merge, completing the deleteMin oper- 
ation. Figure 23.6 shows the result of using deleteMin on the pairing heap 
shown in Figure 23.5. 

Other merging strategies are possible. For instance, we can place each 
subtree (corresponding to a child) on a queue, repeatedly dequeue two trees, 
and then enqueue the result of merging them. After c - 1 merges, only one tree 
remains on the queue, which is the result of the deleteMin. However, using a 
stack instead of a queue is a disaster because the root of the resulting tree may 
possibly have c - 1 children. If that occurs in a sequence, the deleteMin 
operation will have linear, rather than logarithmic, amortized cost per opera- 
tion. In Exercise 23.12 you are asked to construct such a sequence. 

23.2.2 Implementation of the Pairing Heap 

The PairingHeap class interface is shown in Figure 23.7. The nested 
typedef Position, declared at line 28, is declared as equivalent to a pointer 
to a Pai rNode<Comparable>. The standard priority queue operations are 
provided, with three main differences. 

First, insert returns a Position. Second, we add the decreaseKey 
method, which requires a P o s i t i o n  as a parameter. Third, the Big Three 
cannot safely be implemented with the normal recursive algorithm because 
the depth of the recursion may be too large. The online code has an unsafe 
implementation, and in Exercise 23.12 you are asked to improve it. 

The basic node of a pairing heap, PairNode, is shown in Figure 23.8 
and consists of an item and three pointers. Two of these pointers are the left 

2. Care must be exercised if there are an odd number of children. When that happens, we 
merge the last child with the result of the rightmost merge to complete the first scan. 
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Figure 23.6 Recombination of siblings after a deleteMin. In each merge, the 
larger root tree is made the left child of the smaller root tree: (a) the 
resulting trees; (b) after the first pass; (c) after the first merge of the 
second pass; (d) after the second merge of the second pass. 
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m p ~ e r g i n g  Priority Queues 

1 template <class Comparable> 
2 class PairNode; 
3 
4 / /  Pairing heap class. 
5 / /  
6 / /  CONSTRUCTION: with no parameters. 
7 / /  
8 / /  ******************PUBLIC OPERATIONS********************* 

9 / /  Position insert( x ) - ->  Insert x 
10 / /  void deleteMin( min ) - -> Remove smallest item 
11 / /  Comparable findMin( ) - - >  Return smallest item 
12 / /  boo1 isEmpty( ) - - >  Return true if empty; else false 
13 / /  void makeEmpty ( ) - - >  Remove all items 
14 / /  void decreaseKey( Position p, newVal 
15 / /  - - >  Decrease value in position p 
16 / /  * * * * * * * * * * * * * * * * * * E R R O R S * * * * * * * * * * * * * * * * * * * * * * * * % * * * * * * *  

17 / /  Throws exceptions as warranted. 
18 
19 template <class Comparable> 
20 class PairingHeap 
21 I 
22 public: 
23 PairingHeap( ) ; 

24 PairingHeap( const PairingHeap & rhs ) ;  

25 -PairingHeap i ) ; 

26 
27 typedef PairNode<Comparable> Node; 
28 typedef Node * Position; 
29 
30 boo1 isEmpty( ) const; 
31 const Comparable & findMin( ) const; 
32 
33 Position insert( const Comparable & x i ;  
34 void deleteMin( 1 ;  
35 void deleteMin( Comparable & minItem ) ;  

36 void makeEmpty ( ) ; 

37 void decreaseKey( Position p, const Comparable & newVal ) ;  

38 
39 const PairingHeap & operator=( const PairingHeap & rhs ) ;  

40 
41 private: 
42 PairNode<Comparable> *root; 
43 
44 void reclaimMemory( Node *t ) const; 
45 void compareAndLink( Node * & first, Node *second ) const; 
46 PairNode<Comparable> *combineSiblings( 
47 Node *firstsibling ) const; 
48 PairNode<Comparable> *clone( Node *t ) const; 
49 1; 

Figure 23.7 The PairingHeap class interface. 
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The Pa~nng Heap 

1 template <class Comparable> 
2 class PalrMode 
3 ! 
4 Comparable element; 
5 PairNode *leftchild; 
6 Pa-rNode *nextSijling; 
7 PairNode *prev; 
8 
9 PairNode( const Comparable & theElement ) 

10 : elementi theElement ) ,  leftchild( NULL ) ,  

11 nexrSiSling ( NULL ) , prev ( NULL ) { ) 

12 friend class PairingHeap<Compara3le>; 
13 j ;  

Figure 23.8 The PairNode class. 

/ i  Find the smallest item in the priority queue. 
/ /  Return the smallest item, or throw UnderflowExceprion if empty 
template <class Comparable> 
const Comparable & PairingHeap<Cornparable>::finIn( ) const 
( 

if ( isEmpty ( ) 1 
throw UnderflowExceptioni ) ;  

return root->element; 
I 

Figure 23.9 The f indMin member for the PairingHeap class. 

child and the next sibling. The third pointer is prev, which points to the par- 
ent if the node is a first child or to a left sibling otherwise. 

The f indr4in routine is coded in Figure 23.9. The minimum is at the 
root, so this routine is easily implemented. The insert routine, shown in 
Figure 23.10. creates a one-node tree and merges it with the root to obtain a 
new tree. As mentioned earlier in the section, insert returns a pointer to 
the newly allocated node. Note that we must handle the special case of an 
insertion in an empty tree. 

Figure 23.11 implements the two deleteMin routines. If the pairing ThedeleteMin 

heap is empty. we have an error. Otherwise, at line 9 we save a pointer to the Operation is 
implemented as root (so that it can be deleted at line 16). After saving the value in the root. a to 

we make a call to combinesiblings at line 14 to merge the root's subtrees cornbinesiblings. 
and set the result to the new root. If there are no subtrees, we merely set 
root to NULL at line 12. 

The decreaseKey method is implemented in Figure 23.12. If the new 
value is larger than the original. we might destroy the heap order. We have 
no way of knowing that without examining all the children. Because many 
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1 / /  Insert item x into the priority queue. 
2 I /  Return a pointer to the node containing the new item 
3 template <class Comparable> 
4 PairingHeap<Comparable>::Position 
5 ~airingHeapcComparable>::insert( const Comparable & x ) 

6 ( 
7 Node *newNode = new Node( x ) ;  

8 
9 if ( root == NULL ) 

10 root = newNode; 
11 else 
12 compareAndLink( root, newNode ) ; 

13 return newNode; 
14 

Figure 23.10 The insert routine for the PairingHeap class. 

1 / /  Remove the smallest item from the priority queue. 
2 / i  Throws UnderflowException if empty. 
3 template <class Comparable> 
4 void PairingHeap<Comparable>::deleteMin( ) 

5 { 
6 if ( isEmpty( ) ) 

7 throw UnderflowException( ) ; 

8 
9 Node *oldRoot = root; 

10 
11 if( root->leftchild == NULL ) 

12 root = NULL; 
13 else 
14 root = combineSiblings( root->leftchild ) ;  

15 
16 delete oldRoot; 
17 1 
18 
19 / /  Remove the smallest item from the priority queue. 
20 / /  Pass back the smallest item, or throw UnderflowException if empty. 
21 template <class Comparable> 
22 void PairingHeap<Comparable>::deleteMin( Comparable & minItem ) 

23 t 
24 minItem = findMin( 1 ;  
25 deleteMin( ) ; 

26 1 

Figure 23.11 The deleteMin members for the PairingHeap class 
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1 / /  Change the value of the item stored in the pairing heap. 
2 / /  p is a position returned by insert. 
3 / /  newVal is the new value, which must be smaller 
4 / /  than the currently stored value. 
5 / /  Throws BadArgumentException if newVal is not small enough 
6 template <class Comparable> 
7 void PairingHeap<Comparable>: : 
8 decreaseKey( Position p, const Comparable & newVal ) 

9 I 
10 if( p->element < newVal 1 
11 throw ~adArgument~xception( ) ; 

12 
p->element = newVal; 
if ( p ! =  root ) 

I 
if( p->nextsibling ! =  NULL ) 

p->nextsibling->prev = p->prev; 
if( p->prev->leftchild == p ) 

p->prev->leftchild = p->nextsibling; 
else 

p->prev->nextSibling = p->nextsibling; 

p->nextsibling = NULL; 
compareAndLink( root, p ) ;  

1 

Figure 23.12 The decreaseKey method for the PairingHeap class. 

children may exist, doing so would be inefficient. Thus we assume that it is 
always an error to attempt to increase the key by using the decreaseKey. 
(In Exercise 23.9 you are asked to describe an algorithm for increase~ey.) 
After performing this test, we lower the value in the node. If the node is the 
root, we are done. Otherwise. we splice the node out of the list of children 
that it is in, using the code in lines 16 to 23. After doing that, we merely 
merge the resulting tree with the root. 

The two remaining routines are compareAndLink, which combines two 
trees, and combinesiblings, which combines all the siblings, when given 
the first sibling. Figure 23.13 shows how two subheaps are combined. The 
procedure is generalized to allow the second subheap to have siblings (which 
is needed for the second pass in the two-pass merge). As mentioned earlier in 
the chapter, the subheap with the larger root is made a leftmost child of the 
other subheap, the code for which is shown in Figure 23.14. Note that in sev- 
eral instances a pointer is tested against NULL before it accesses its prev data 
member. This action suggests that having a nullNode sentinel-as was cus- 
tomary in the advanced search tree implementations-might be useful. This 
possibility is left for you to explore as Exercise 23.14. 
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Figure 23.13 The compareAndLink method merges two trees. 

Finally, Figure 23.15 implements combinesib1 ings. We use the 
vector treeArray to store the subtrees. We begin by separating the sub- 
trees and storing them in treeArray, using the loop at lines 15 to 20. 
Assuming that we have more than one sibling to merge, we make a left-to- 
right pass at lines 26 and 27. The special case of an odd number of trees is 
handled at lines 3 1-33. We finish the merging with a right-to-left pass at 
lines 37 and 38. Once we have finished, the result appears in array position 0 
and can be returned. 

As a practical matter, dynamically allocating and deallocating the vector 
can be unduly expensive and is probably not always needed. We may be bet- 
ter off using a static vector object that can be resized as needed and build 
the entries without using push-back. 

23.2.3 Application: Dijkstra's Shortest Weighted 
Path Algorithm 

ThedecreaseKey As an example of how the decreaseKey operation is used, we rewrite 
operation is an Dijkstra's algorithm (see Section 15.3). Recall that at any point we are main- 
improvement for 
Dijkstra,s algorithm in taining a priority queue of Path objects, ordered by the d i  s t data member. 
instances for which For each vertex in the graph, we needed only one Path object in the priority 
there are calls queue at any instant, but for convenience we had many. In this section, we 
to it. rework the code so that if a vertex u's distance is lowered, its position in the 

priority queue is found, and a decreaseKey operation is performed for its 
corresponding Path object. 
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1 / /  Internal method that is the basic operation to 
2 / /  maintain order. 
3 / /  Links first and second together to satisfy heap order 
4 / /  first is root of tree 1, which may not be NULL. 
5 / /  first->nextsibling MUST be NULL on entry. 
6 / /  second is root of tree 2, which may be NULL. 
7 / /  first becomes the result of the tree merge. 
8 template <class Comparable> 
9 void PairingHeap<Comparable>: : 

10 compareAndLink( Node * & first, Node *second const 
11 i 
12 if ( second == NULL ) 

13 return; 
14 
15 if( second->element < first->element ) 

16 ( 

17 / /  Attach first as leftmost child of second 
18 second->prev = first->prev; 
19 first->prev = second; 
20 first->nextsibling = second->leftchild; 
21 if( first->nextsibling ! =  NULL ) 

22 first->nextsibling->prev = first; 
23 second->leftchild = first; 
24 first = second; 
25 } 

26 else 
27 I 
28 / /  Attach second as leftmost child of first 
29 second->prev = first; 
30 first->nextsibling = second->nextsibling; 
3 1 if( first->nextsibling ! =  NULL ) 

32 first->nextsibling->prev = first; 
33 second->nextsibling = first->leftchild; 
34 if( second->nextsibling ! =  NULL ) 

35 second->nextsibling->prev = second; 
36 first->leftchild = second; 
37 1 
38 I 

Figure 23.14 The compareAndLink routine. 

The new code is shown in Figure 23.16, and all the changes are rela- 
tively minor. First, at line 4 we declare that pq is a pairing heap rather than a 
binary heap. Note that the vertex object has an additional data member 
pos that represents its position in the priority queue (and is NULL if the 
Vertex is not in the priority queue). Initially, all the positions are NULL 

(which is done in clear~ll). Whenever a vertex is inserted in the pairing 



1 / /  Internal method that implements two-pass merging. 
2 / /  firstsibling is the root of the conglomerate and 
3 / /  is assumed not NULL. 
4 template <class Comparable> 
5 PairNode<Comparable> * 
6 PairingHeap<Comparable>:: 
7 combinesiblings! Node *firstsibling ) const 
8 i 
9 if( firstsibling->nextsibling == NULL ) 

10 return firstsibling; 
11 
12 vector<Node * >  treeArray; 
13 
14 / /  Store the subtrees in an array 
15 while( firstsibling ! =  NULL ) 

16 i 
17 treeArray.push-back( firstsibling ) ;  

18 firstsibling->prev->nextsibling = NULL; / /  break links 
19 firstsibling = firstsibling->nextsibling; 
20 1 
21 
22 int numsiblings = treeArray.size( ) ;  

23 
/ /  Combine subtrees two at a time, going left to right 

int i = 0; 
for( ; i + 1 < numsiblings; i += 2 ) 

compareAndLink( treeArray[ i 1 ,  treeArray[ i + 1 I ) ;  

/ /  j has the result of last compareAndLink. 
/ /  If an odd number of trees, get the last one. 

int j = i - 2; 
if( j == numsiblings - 3 ) 

compareandlink( treeArray[ j 1 ,  treeArray[ j + 2 J ) ;  

/ /  Now go right to left, merging last tree with 
/ /  next to last. The result becomes the new last. 

for( ; j >= 2 ;  j - =  2 ) 

compareAndLink ( treeArray [ j - 2 ]  , treeArray [ j J ) ; 

return treeArray[ 0 1 ;  

Figure 23.15 The heart of the pairing heap algorithm: implementing a two-pass merge to 
combine all the siblings, given the first sibling. 
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1 / i  Single-source weighted shortest-path algorithm. 
2 void Graph::dijkstra( const string & startName ) 

3 i 
4 PairingHeap<Path> pq; 
5 Path vrec; / /  Stores the result of a deleteMin 
6 
7 vmap::iterator itr = vertexMap.find( startName ) ; 

8 if ( itr == vertexMap.end( ) ) 

9 throw GraphException( startName + " not in graph" ) ;  

10 
11 clearAll( ) ;  

12 Vertex *start = (*itr) .second; 
13 start->dist = 0; 
14 start->pos = pq.insert( Path( start, 0 1 1 ;  
15 
16 while( !pq.isEmpty( ) ) 

17 i 
18 pq.deleteMin ( vrec ) ; 

19 Vertex *v = vrec.dest; 
20 
21 for( int i = 0; i < v->adj .size( ) ;  i++ ) 

22 i 
23 Edge e = v->adj [ i I ;  
24 Vertex *w = e.dest; 
25 double cvw = e.cost; 
26 
27 if( c v w <  0 )  
28 throw GraphException( "~egative edges" 1 ;  
29 
30 if( w->dist > v->dist + cvw ) 

3 1 i 
32 w->dist = v->dist + c w ;  
33 w->path = v; 
34 Path newVal ( w, w->dist ) ; 

35 
36 if( w->pas == NULL ) 

37 w->pas = pq.insert( newVal ) ;  

38 e 1 se 
39 pq.decreaseKey( w->pas, newVal ) ;  

40 1 
41 } 

42 1 
43 1 

Figure 23.16 Dijkstra's algorithm, using the pairing heap and the 
decreaseKey operation. 
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heap, we adjust its pos data member-at lines 14 and 37. The algorithm 
itself is simplified. Now, we merely call deleteMin SO long as the pairing 
heap is not empty, rather than repeatedly calling deleteMin until an 
unseen vertex emerges. Consequently, we no longer need the scratch 
data member. Compare lines 16-1 9 to the corresponding code presented in 
Figure 15.28. All that remains to be done are the updates after line 30 that 
indicate a change is in order. If the vertex has never been placed in the prior- 
ity queue, we insert it for the first time, updating its pos data member. Oth- 
erwise, we n~erely call decreaseKey at line 39. 

Whether the binary heap implementation of Dijkstra's algorithm is 
faster than the pairing heap implementation depends on several factors. One 
study (see the Reference section), suggests that the pairing heap is slightly 
better than the binary heap when both are carefully implemented. The results 
d e p e n d  heavi ly  on  the  cod ing  de t a i l s  and  the  f r equency  of  the 
decreaseKey operations. More study is needed to decide when the pairing 
heap is suitable in practice. 

Summary 

In this chapter we described two data structures that support merging and 
that are efficient in the amortized sense: the skew heap and the pairing heap. 
Both are easy to implement because they lack a rigid structure property. The 
pairing heap seems to have practical utility, but its complete analysis 
remains an intriguing open problem. 

In Chapter 24, which is the last chapter, we describe a data structure 
that is used to maintain disjoint sets and that also has a remarkable amor- 
tized analysis. 

Objects of the Game 

pairing heap A structurally unconstrained heap-ordered M-ary tree 
for which all operations except deletion take constant worst-case 
time. Its analysis is not complete, but it appears to perform well in 
practice. (p. 828) 

skew heap A heap-ordered binary tree without a balancing condition 
that supports all operations in logarithmic amortized time. (p. 823) 

two-pass merging The order in which the pairing heap subtrees are 
merged is important. The simplest algorithm is two-pass merging, in 
which subtrees are merged in pairs in a left-to-right scan and then a 
right-to-left scan is performed to finish the merging. (p. 832) 



Common Errors 

1. A recursive implementation of the skew heap cannot be used in 
practice because the depth of the recursion could be linear. 

2. Be careful not to lose track of the prev pointers in the skew heap. 
3. Tests to ensure that references are not NULL must be made through- 

out the pairing heap code. 
4. When a merge is performed, a node should not reside in two pairing 

heaps. 

On the Internet A w 
The pairing heap class is available, with a test program. It does not carefully 
implement the Big Three. Figure 23.16 is partif the Graph class shown in 
Chapter 15 (Paths.cpp). 

PairingHeap.h Contains the PairingHeap class interface. 
PairingHeap.cpp Contains the implementation for the 

Pair ingHeap class. 
TestPairingHeap.cpp Contains a test program for the PairingHeap 

class. 

Exercises 

In Short 

23.1. Show the result of a skew heap built from the insertion sequence 
a. 1 ,2 ,3 ,4 ,5 ,6 ,7 .  
b. 4 ,3 ,5 ,2 ,6 ,7 ,1 .  

23.2. Show the result of a pairing heap built from the insertion sequence 
a. 1 ,2 ,3 ,4 ,5 ,6 ,7 .  
b. 4 ,3 ,5 ,2 ,6 ,7 ,1 .  

23.3. For each heap in Exercises 23.1 and 23.2, show the result of two 
dele teMin operations. 

In Theory 

23.4. Show that the logarithmic amortized bound for skew heap opera- 
tions is not a worst-case bound by giving a sequence of operations 
that lead to a merge that requires linear time. 
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23.5. Show that both the decreaseKey and inc reaseKey operations 
can be supported by skew heaps in logarithmic amortized time. 

23.6. Describe a linear-time bui ldHeap algorithm for the skew heap. 

23.7. Show that storing the length of the right path for each node in the 
tree enables you to impose a balancing condition that yields loga- 
rithmic worst-case time per operation. Such a structure is called a 
lefrist heap. 

23.8. Show that using a stack to implement the combinesib1 ings oper- 
ation for pairing heaps is bad. Do so by constructing a sequence that 
has linear amortized cost per operation. 

23.9. Describe how to implement increaseKey for pairing heaps. 

23.10. Give a simple algorithm to remove all the nodes from a skew heap. 
Keep in mind that the depth may be O(N). 

In Practice 

23.11. Add the public merge member function to the PairingHeap class. 
Be sure that a node appears in only one tree. 

Programming Problems 

23.12. Implement the Big Three for the pairing heap. 

23.13. Implement a nonrecursive version of the skew heap algorithm. 

23.14. Implement the pairing heap algorithm with a nullNode sentinel. 

23.15. Implement the queue algorithm for combinesiblings and com- 
pare its performance with the two-pass algorithm code shown in 
Figure 23.15. 

23.16. If the decreaseKey operation is not supported, parent pointers are 
not necessary. Implement the pairing heap algorithm without parent 
pointers and compare its performance with the binary heap and/or 
skew heap and/or splay tree algorithm. 
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Chapter 24 

The Disjoint Set Class 

In this chapter we describe an efficient data structure for solving the 
equivalence problem: the disjoint set class. This data structure is simple to 
implement, with each routine requiring only a few lines of code. Its imple- 
mentation is also extremely fast, requiring constant average time per opera- 
tion. This data structure is also very interesting from a theoretical point of 
view because its analysis is extremely difficult; the functional form of the 
worst case is unlike any discussed so far in this text. 

In this chapter, we show: 

three simple applications of the disjoint set class, 
a way to implement the disjoint set class with minimal coding effort, 
a method for increasing the speed of the disjoint set class, using two 
simple observations. and 
an analysis of the running time of a fast implementation of the dis- 
joint set class. 

24.1 Equivalence Relations 
A relation R is defined on a set S if for every pair of elements (a ,  b) ,  A relation is defined . . 

a, b E S,  a R b is either true or false. If a R b is true, we say that a is related On a set if every pair 
of elements either is 

to b. related or is not. An 
An equivalence relation is a relation R that satisfies three properties. equivalence relation 

is reflexive, 

1 .  Reflexive: a R a is true for all a E S .  symmetric, and 
transitive. 

2. Symmetric: a R b if and only if b R a. 
3.  Transitive: a R b and b R c implies that a R c. 



The Disjoint Set Class 

Electrical connectivity, where all connections are by metal wires, is an 
equivalence relation. The relation is clearly reflexive, as any component is 
connected to itself. If a is electrically connected to b, then b must be electri- 
cally connected to a, so the relation is symmetric. Finally, if a is connected 
to b and b is connected to c, then a is connected to c. 

Likewise, connectivity through a bidirectional network forms equiva- 
lence classes of connected components. However, if the connections in the 
network are directed (i.e., a connection from v to w does not imply one from 
w to v ) ,  we do not have an equivalence relation because the symmetric prop- 
erty does not hold. An example is a relation in which town a is related to 
town b if traveling from a to b by road is possible. This relationship is an 
equivalence relation if the roads are two-way. 

24.2 Dynamic Equivalence and Two Applications 

For any equivalence relation, denoted -, the natural problem is to decide for 
any a and b whether a - b. If the relation is stored as a two-dimensional 
array of Boolean variables, equivalence can be tested in constant time. The 
problem is that the relation is usually implicitly, rather than explicitly, 
defined. 

For example, an equivalence relation is defined over the five-element set 
{a,,  a2, a,, a,, a 5 } .  This set yields 25 pairs of elements, each of which 
either is or is not related. However, the information that a ,  - a*, a3 - a,, a ,  - 
a5, and a, - a2 are all related implies that all pairs are related. We want to be 
able to infer this condition quickly. 

The equivalence class The equivalence class of an element x E S is the subset of S that con- 
Of an element in set tains all the elements related to x. Note that the equivalence classes form a 
S is the subset of S 
that contains all the partition of S: Every member of S appears in exactly one equivalence class. 
elements related to x. TO decide whether a - b, we need only check whether a and b are in the 
The equivalence same equivalence class. This information provides the strategy to solve the 
classes form disjoint 
sets. equivalence problem. 

The input is initially a collection of N sets, each with one element. In 
this initial representation all relations (except reflexive relations) are false. 
Each set has a different element, so Si n S j  = 0 and such sets (in which 
any two sets contain no common elements) are called disjoint sets. 

The two basic disjoint The two basic disjoint set class operations are find, which returns the 
set dass Operations name of the set (i.e., the equivalence class) containing a given element, and 
are union and find. 

the union, which adds relations. If we want to add the pair (a, b) to the list 
of relations, we first determine whether a and b are already related. We do so 
by performing find operations on both a and b and finding out whether they 
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are in the same equivalence class; if they are not, we apply union. '  This 
operation merges the two equivalence classes containing a and b into a new 
equivalence class. In terms of sets the result is a new set Sk = Si u S j ,  
which we create by simultaneously destroying the originals and preserving the 
disjointedness of all the sets. The data structure to do this is often called the 
disjoint set uniodfind data structure. The unionfind algorithm is executed 
by processing unionlfind requests within the disjoint set data structure. 

The algorithm is d,vrzarnic because, during the course of algorithm exe- In an online 

cution, the sets can change via the u n i o n  operation. The algorithm must algorithmqan answer 
must be provided for 

also operate as an online algorithm so that, when a f i n d  is performed, an ,uervbefore the . . 
answer must be given before the next query can be viewed. Another possibil- next query can be 
ity is an offline algorithm in which the entire sequence of u n i o n  and viewed. 

f i n d  requests are made visible. The answer it provides for each f i n d  must 
still be consistent with all the unions performed before the f i n d .  However, 
the algorithm can give all its answers after it has dealt with all the questions. 
This distinction is similar to the difference between taking a written exam 
(which is generally offline because you only have to give the answers before 
time expires) and taking an oral exam (which is online because you must 
answer the current question before proceeding to the next question). 

Note that we do not perform any operations to compare the relative val- The set elements are 

ues of elements but merely require knowledge of their location. For this rea- 
sequentially, starting 

son. we can assume that all elements have been numbered sequentially, tram ,,. . . - . . . . 
starting from 0, and that the numbering can be determined easily by some 
hashing scheme. 

Before describing how to implement the u n i o n  and f i n d  operations, 
we provide three applications of the data structure. 

24.2.1 Application: Generating Mazes 

An example of the use of the uniontfind data structure is to generate mazes, 
such as the one shown in Figure 24.1. The starting point is the top-left comer, 
and the ending point is the bottom-right corner. We can view the maze as a 
50 x 88 rectangle of cells in which the top-left cell is connected to the bottom- 
right cell, and cells are separated from their neighboring cells via walls. 

A simple algorithm to generate the maze is to start with walls every- 
where (except for the entrance and exit). We then continually choose a wall 
randomly, and knock it down if the cells that the wall separates are not 
already connected to each other. If we repeat this process until the starting 
and ending cells are connected, we have a maze. Continuing to knock down 

I. Unfortunately. union is a (little-used) keyword in C++. We use union throughout this 
section. but when we write code. we use unionsets as the function name. 
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Figure 24.2 Initial state: All walls are up, and all cells are in their own sets. 

walls until every cell is reachable from every other cell is actually better 
because doing so generates more false leads in the maze. 

We illustrate the algorithm with a 5 x 5 maze, and Figure 24.2 shows the 
initial configuration. We use the unionlfind data structure to represent sets of 
cells that are connected to each other. Initially, walls are everywhere, and 
each cell is in its own equivalence class. 

Figure 24.3 shows a later stage of the algorithm, after a few walls have 
been knocked down. Suppose, at this stage. that we randomly target the wall 
that connects cells 8 and 13. Because 8 and 13 are already connected (they are 
in the same set), we would not remove the wall because to do so would simply 
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Figure 24.3 At some point in the algorithm, several walls have been knocked 
down and sets have been merged. At this point, if we randomly 
select the wall between 8 and 13, this wall is not knocked down 
because 8 and 13 are already connected. 

Figure 24.4 We randomly select the wall between squares 18 and 13 in 
Figure 24.3; this wall has been knocked down because 18 and 
13 were not already connected, and their sets have been merged 

trivialize the maze. Suppose that we randomly target cells 18 and 13 next. 
By performing two f i n d  operations. we determine that these cells are in 
different sets: thus I8  and 13 are not already connected. Therefore we 
knock down the wall that separates them, as shown in Figure 24.4. As a 
result of this operation, the sets containing cells 18 and 13 are combined 
by a u n i o n  operation. The reason is that all the cells previously connected 
to 18 are now connected to all the cells previously connected to 13. At the 
end of the algorithm, as depicted in Figure 24.5. all the cells are con- 
nected, and we are done. 
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Figure 24.5 Eventually, 24 walls have been knocked down, and all the 
elements are in the same set. 

The running time of the algorithm is dominated by the unionlfind 
costs. The size of the unionlfind universe is the number of cells. The num- 
ber of f i n d  operations is proportional to the number of cells because the 
number of removed walls is 1 less than the number of cells. If we look 
carefully, however, we can see that there are only about twice as many 
walls as cells in the first place. Thus, if N is the number of cells and as 
there are two f i n d s  per randomly targeted wall, we get an estimate of 
between (roughly) 2N and 4N f i n d  operations throughout the algorithm. 
Therefore the algorithm's running time depends on the cost of O ( N )  u n i o n  
and O(N)  f i n d  operations. 

24.2.2 Application: Minimum Spanning Trees 

The minimum A spanning tree of an undirected graph is a tree formed by graph edges that 
spanning tree is a 
connected subgraph 
of G that spans all 
vertices at minimum 

connect all the vertices of the graph. Unlike the graphs in Chapter 15, an 
edge (u, v) in a graph G is identical to an edge (v, u). The cost of a spanning 
tree is the sum of the costs of the edges in the tree. The minimum spanning 

total cost. tree is a connected subgraph of G tha t  spans all vertices at minimurn cost. A 
minimum spanning tree exists only if the subgraph of G is connected. As we 
show shortly, testing a graph's connectivity can be done as part of the mini- 
mum spanning tree computation. 

In Figure 24.6(b), the graph is a minimum spanning tree of the graph in 
Figure 24.6(a) (it happens to be unique, which is unusual if the graph has 
many edges of equal cost). Note that the number of edges in the minimum 
spanning tree is 1 V1 - 1. The minimum spanning tree is a tree because it is 
acyclic, it is spanning because it covers every vertex, and it is minimum for 
the obvious reason. Suppose that we need to connect several towns with 
roads, minimizing the total construction cost, with the provision that we can 
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Figure 24.6 (a) A graph G and (b) its minimum spanning tree. 

transfer to another road only at a town (in other words, no extra junctions are 
allowed). Then we need to solve a minimum spanning tree problem, where 
each vertex is a town, and each edge is the cost of building a road between 
the two cities it connects. 

A related problem is the minimum Sreiner tree problem, which is like 
the minimum spanning tree problem, except that junctions can be created 
as part of the solution. The minimum Steiner tree problem is much more 
difficult to solve. However, it can be shown that if the cost of a connection 
is proportional to the Euclidean distance, the minimum spanning tree is at 
most 15 percent more expensive than the minimum Steiner tree. Thus a min- 
imum spanning tree, which is easy to compute, provides a good approxima- 
tion for the minimum Steiner tree, which is hard to compute. 

A simple algorithm, commonly called Kruskal's algorithm, is used to Kruskal'salgorithmis 

select edges continually in order of smallest weight and to add an edge to select edges 
in order of increasing 

the tree if it does not cause a cycle. Formally, Kruskal's algorithm main- cost and adds an 
tains a forest-a collection of trees. Initially, there are (VI single-node edge to the tree if it 

trees. Adding an edge merges two trees into one. When the algorithm ter- doesnotcreatea 

minates, there is only one tree, which is the minimum spanning tree.2 By cycle. 

counting the number of accepted edges, we can determine when the algo- 
rithm should terminate. 

Figure 24.7 shows the action of Kruskal's algorithm on the graph shown 
in Figure 24.6. The first five edges are all accepted because they do not create 
cycles. The next two edges, (v,, v3) (of cost 3) and then (v,,, v2) (of cost 4), are 
rejected because each would create a cycle in the tree. The next edge consid- 
ered is accepted, and because it is the sixth edge in a seven-vertex graph, we 
can terminate the algorithm. 

2. If the graph is not connected, the algorithm will terminate with more than one tree. Each 
tree then represents a minimum spanning tree for each connected component of the graph. 
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Figure 24.7 Kruskal's algorithm after each edge has been considered. The 
stages proceed left-to-right, top-to-bottom, as numbered. 

Theedgescan be Ordering the edges for testing is simple enough to do. We can sort them 
sorted, Or a priority at a cost of E log 1 E and then step through the ordered array of edges. 
queue can be used. Alternatively, we can construct a priority queue of El edges and repeatedly 

obtain edges by calling deleteMin. Although the worst-case bound is 
unchanged, using a priority queue is sometimes better because Kruskal's 
algorithm tends to test only a small fraction of the edges on random graphs. 
Of course, in the worst case, all the edges may have to be tried. For instance, 
if there were an extra vertex vg and edge (v,. vg) of cost 100, all the edges 
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would have to be examined. In this case, a quicksort at the start would be 
faster. In effect, the choice between a priority queue and an initial sort is a 
gamble on how many edges are likely t i  hav; to-be examined. 

More interesting is the issue of how we decide whether an edge (u, v) The test for cycles is 

should be accepted or rejected. Clearly, adding the edge (u, v) causes a cycle by using a 
unionlfind data 

if (and only if) u and v are already connected in the current spanning forest, structure. 
which is a collection of trees. Thus we merely maintain each connected 
component in the spanning forest as a disjoint set. Initially, each vertex is in 
its own disjoint set. If u and v are in the same disjoint set, as determined by 
two f i n d  operations, the edge is rejected because u and v are already con- 
nected. Otherwise, the edge is accepted and a union operation is performed - 
on the two disjoint sets containing u and v, in effect, combining the con- 
nected components. This result is what we want because once edge (u, v )  has 
been added to the spanning forest, if uf was connected to u and .r was con- 
nected to v, x and w must be connected and thus belong in the same set. 

24.2.3 Application: The Nearest Common Ancestor Problem 

Another illustration of the unionlfind data structure is the offline nearest 
common ancestor (NCA) problem. 

OFFLINE NEAREST COMMON ANCESTOR PROBLEM 
GIVEN A TREE AND A LIST OF PAIRS OF NODES IN THE TREE, FIND THE NEAREST 

COMMON ANCESTOR FOR EACH PAIR OF NODES. 

As an example, Figure 24.8 shows a tree with a pair list containing five 
requests. For the pair of nodes u and z node C is the nearest ancestor of both. 
(A and B are also ancestors, but they are not the closest.) The problem is 
offline because we can see the entire request sequence prior to providing the 
first answer. Solution of this problem is important in graph theory applications 
and computational biology (where the tree represents evolution) applications. 

The algorithm works by performing a postorder tree traversal. When we 
are about to return from processing a node, we examine the pair list to deter- 
mine whether any ancestor calculations are to be performed. If u is the cur- 
rent node, (u, v) is in the pair list and we have already finished the recursive 
call to v, we have enough information to determine NCA(u, v). 

Figure 24.9 helps in understanding how this algorithm works. Here, we 
are about to finish the recursive call to D. All shaded nodes have been visited 
by a recursive call, and except for the nodes on the path to D, all the recur- 
sive calls have already finished. We mark a node after its recursive call has 
been completed. If 1, is marked, then NCA(D, v) is some node on the path to 
D. The anchor of a visited (but not necessarily marked) node v is the node 

Solutions of the NCA 
is important in graph 
algorithm and 
computational 
biology applications. 

A postorder traversal 
can be used to solve 
the problem. 

The anchor of a 
visited (but not 
necessarily marked) 
node v is the node on 
the current access 
path that is closest 
to v. 
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Figure 24.8 The nearest common ancestor for each request in the pair sequence 
( X  y), (u, z), (w, x), (2, w), and (w, y), is A, C, A, B, and y, respectively. 

Figure 24.9 The sets immediately prior to the return from the recursive call to D; 
D is marked as visited and NCA(D, v) is v's anchor to the current 
path. 

on the current access path that is closest to v. In Figure 24.9, p's anchor is A, 
q's anchor is B, and r is unanchored because it has yet to be visited; we can 
argue that r's anchor is r at the point that r is first visited. Each node on the 
current access path is an anchor (of at least itself). Furthermore, the visited 
nodes form equivalence classes: Two nodes are related if they have the same 
anchor, and we can regard each unvisited node as being in its own class. 
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Now, suppose once again that (D, v )  is in the pair list. Then we have three 
cases. 

1. v is unmarked, so we have no information to compute NCA(D, v). 
However, when v is marked, we are able to determine NCA(v, D). 

2. v is marked but not in D's subtree, so NCA(D, v )  is v's anchor. 
3. v is in D's subtree, so NCA(D, v) = D. Note that this is not a special 

case because v's anchor is D. 

All that remains to be done is to ensure that, at any instant, we can deter- The unionnind 

mine the anchor of any visited node. We can easily do so with the unionlfind algorithm is used to 
maintain the sets of 

algorithm. After a recursive call returns, we call union. For instance, after nodes with common 
the recursive call to D in Figure 24.9 returns, all nodes in D have their anchors. 
anchor changed from D to C. The new situation is shown in Figure 24.10. 
Thus we need to merge the two equivalence classes into one. At any point, 
we can obtain the anchor for a vertex v by a call to a disjoint set find. 
Because find returns a set number, we use an array anchor to store the 
anchor node corresponding to a particular set. 

A pseudocode implementation of the NCA algorithm is shown in Fig- The pseudocode is 

ure 24.1 1. As mentioned earlier in the chapter, the find operation generally 
is based on the assumption that elements of the set are 0, 1, . . . , N - 1,  so 
we store a preorder number in each tree node in a preprocessing step that 

Figure 24.10 After the recursive call from D returns, we merge the set anchored by 
D into the set anchored by C and then compute all NCA(C, v) for 
nodes v marked prior to completing C's recursive call. 



1 ;/ Nearest Common Ancestors algorithm. 
2 / /  
3 / / Preconditions (and global objects) : 
4 / /  1. unionifind structure is initialized 
5 / /  2. All nodes are initially unmarked 
6 / /  3 .  Preorder numbers are already assigned in num member 
7 / /  4. Each node can store its marked status 
8 / /  5. List of pairs is globally available 
9 

10 DisjSets s ( treesize ) ; / /  union/find 
11 vector<Node *>  anchor( treesize ) ;  / /  Anchor node for each set 
12 
13 / /  main makes the call NCA( root ) 

14 / /  after required initializations 
15 
16 NCA( Node *u 
17 I 
18 anchor[ s.find( u->num ) I = u; 
19 
20 / /  Do postorder calls 
2 1 for( each child v of u ) 

22 i 
23 NCA( v ) ;  

24 s.unionSets( s.find( u->num ) ,  s.find( v->num 1 ;  
25 anchor[ s.find( u->num ) ] = U; 
26 1 
27 
28 / /  DO NCA calculation for pairs involving u 
29 u->marked = true; 
30 for ( each v such that NCA( u, v ) is required ) 

3 1 if ( v->marked ) 

32 tout << "NCA(" << u << " ,  " <<  v <<  " 1  is " <<  

33 anchor[ s.find( v->num ) ] < <  endl; 
34 I 

Figure 24.1 1 Pseudocode for the nearest common ancestors problem. 

computes the size of the tree. An object-oriented approach might attempt to 
incorporate a mapping into the f i nd ,  but we do not do so. We also assume 
that we have an array of lists in which to store the NCA requests; that is, list 
i stores the requests for tree node i. With those details taken care of, the code 
is remarkably short. 

When a node u is first visited, it becomes the anchor of itself, as in line 
18 of Figure 24.1 1 .  It then recursively processes its children v by making the 
call at line 23. After each recursive call returns, the subtree is combined into 
LI'S current equivalence class and we ensure that the anchor is updated at 
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lines 24 and 25. When all the children have been processed recursively, we 
can mark u as processed at line 29 and finish by checking all NCA requests 
involving u at lines 30 to 33.3 

The Quick-Find Algorithm 

In this section and Section 24.4 we lay the groundwork for the efficient 
implementation of the unionlfind data structure. There are two basic strate- 
gies for solving the unionlfind problem. The first approach, the quick-find 
algorithm, ensures that the f i n d  instruction can be executed in constant 
worst-case time. The other approach, the quick-union algorithm, ensures 
that the un ion  operation can be executed in constant worst-case time. It has 
been shown that both cannot be done simultaneously in constant worst-case 
(or even amortized) time. 

For the f i n d  operation to be fast, in an array we could maintain the 
name of the equivalence class for each element. Then f i n d  is a simple con- 
stant time lookup. Suppose that we want to perform union(a, b). Suppose, 
too, that a is in equivalence class i and that b is in equivalence class j. Then 
we can scan down the array, changing all i's to j's. Unfortunately, this scan 
takes linear time. Thus a sequence of N - 1 u n i o n  operations (the maximum 
because then everything is in one set) would take quadratic time. In the typi- 
cal case in which the number of f i n d s  is subquadratic, this time is clearly 
unacceptable. 

One possibility is to keep all the elements that are in the same equiva- 
lence class in a linked list. This approach saves time when we are updating 
because we do not have to search the entire array. By itself that does not 
reduce the asymptotic running time, as performing O(N2) equivalence class 
updates over the course of the algorithm is still possible. 

If we also keep track of the size of the equivalence classes-and when The argument that an 

performing a u n i o n  change the name of the smaller class to the larger-the equivalence dasscan 
change at most log N 

total time spent for N unions is O(N log N). The reason is that each element times Der item is also 
can have its equivalence class changed at most log N times because, every used i;l the quick- 
time its class is changed, its new equivalence class is at least twice as large union algorithm. 

as its old class (so the doubling principle applies). Quick-find is a simple 
alaorithm. but auick- e ~ 

This strategy provides that any sequence of at most M f i n d  and N - 1 union is better. 

u n i o n  operations take at most O(M + N log N) time. If M is linear (or slightly 
nonlinear), this solution is still expensive. It also is a bit messy because we must 
maintain linked lists. In Section 24.4 we examine a solution to the unionlfind 

3. Strictly speaking, u should be marked at the last statement, but marking it earlier handles 
the annoying request NCA(u, u). 
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problem that makes union easy but find hard-the quick-union algorithm. 
Even so, the running time for any sequence of at most M find and N - 1 union 
operations is only negligibly more than O(M + N )  time, and moreover, only a 
single array of integers is used. 

24.4 The Quick-Union Algorithm 

Recall that the unionlfind problem does not require a find operation to 
return any specific name, just that finds on two elements return the same 
answer if and only if they are in the same set. One possibility might be to use 
a tree to represent a set, as each element in a tree has the same root and the 
root can be used to name the set. 

A tree is represented Each set is represented by a tree (recall that a collection of trees is called 
by an array of a forest). The name of a set is ~ i v e n  bv the node at the root. Our trees are not 
integers representing " C 

parent nodes.The set necessarily binary trees, but their representation is easy because the only 
name of any node in a information we need is the parent. Thus we need only an array of integers: 
tree is the root of a 
tree. 

The union operation 
is constant time. 

The cost of a find 
depends on the depth 
of the accessed node 
and could be linear. 

Each entry p [ i I in the array represents the parent of element i, and we can 
use -1  as a parent to indicate a root. Figure 24.12 shows a forest and the 
array that represents it. 

To perform a union of two sets, we merge the two trees by making the 
root of one tree a child of the root of the other. This operation clearly takes 
constant time. Figures 24.13-24.15 represent the forest after each of 
union(4, 5) .  union(6, 7), and union(4,6), where we have adopted the con- 
vention that the new root after union@, y) is x. 

A find operation on element x is performed by returning the root of the 
tree containing x.  The time for performing this operation is proportional to 
the number of nodes on the path from x to the root. The union strategy out- 
lined previously enables us to create a tree whose every node is on the path 

Figure 24.12 A forest and its eight elements, initially in different sets. 
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Figure 24.13 The forest after the union of trees with roots 4 and 5.  

Figure 24.14 The forest after the union of trees with roots 6 and 7. 

Figure 24.15 The forest after the union of trees with roots 4 and 6. 

to x, resulting in a worst-case running time of O(N) per f i nd .  Typically (as 
shown in the preceding applications), the running time is computed for a 
sequence of M intermixed instructions. In the worst case, M consecutive 
operations could take O(MN) time. 
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Quadratic running time for a sequence of operations is generally unac- 
ceptable. Fortunately, there are several ways to easily ensure that this run- 
ning time does not occur. 

24.4.1 Smart Union Algorithms 

We performed the previous unions rather arbitrarily by making the second 
tree a subtree of the first. A simple improvement is always to make the 
smaller tree a subtree of the larger, breaking ties by any method, an approach 
called union-by-size. The preceding three union operations were all ties, so 
we can consider that they-were peLformed by size. If the next operation is 
union(3, 4), the forest shown in Figure 24.16 forms. Had the size heuristic 
not been used, a deeper forest would have been formed (three nodes rather 
than one would have been one level deeper). 

union-by-size If the u n i o n  operation is done by size, the depth of any node is never 
guarantees more than log N. A node is initially at depth 0, and when its depth increases 
logarithmic finds. 

as a result of a union,  it is placed in a tree that is at least twice as large as 
before. Thus its depth can be increased at most log N times. (We used this 
argument in the quick-find algorithm in Section 24.3.) This outcome implies 
that the running time for a f i n d  operation is O(log N) and that a sequence of 
M operations takes at most O(M log N) time. The tree shown in Figure 24.17 
illustrates the worst tree possible after 15 un ion  operations and is obtained 
if all the u n i o n s  are between trees of equal size. (The worst-case tree is 
called a binomial tree. Binomial trees have other applications in advanced 
data structures.) 

Instead of -1 being To implement this strategy, we need to keep track of the size of each 
for the tree. Since we are just using an array, we can have the array entry of the root 

negative of the size is 
stored. contain the negative of the size of the tree, as shown in Figure 24.16. Thus 

the initial representation of the tree with all -1s is reasonable. When a 

""R 
7 

Figure 24.16 The forest formed by union-by-size, with the sizes encoded as 
negative numbers. 



Figure 24.1 7 Worst-case tree for N = 16. 

Figure 24.18 A forest formed by union-by-height, with the height encoded as a 
negative number. 

union operation is performed, we check the sizes; the new size is the sum of 
the old. Thus union-by-size is not at all difficult to implement and requires 
no extra space. It is also fast on average because, when random union oper- 
ations are performed, generally very small (usually one-element) sets are 
merged with large sets throughout the algorithm. Mathematical analysis of 
this process is quite complex; the references at the end of the chapter provide 
some pointers to the literature. 

An alternative implementation that also guarantees logarithmic depth is Union-by-height 

union-by-height in which we keep track of the height of the trees instead of guarantees 
logarithmic find 

the size and perform union operations by making a shallower tree a subtree operations. 
of the deeper tree. This algorithm is easy to write and use because the height 
of a tree increases only when two equally deep trees are joined (and then the 
height goes up by I ) .  Thus union-by-height is a trivial modification of 
union-by-size. As heights start at 0, we store the negative of the number of 
nodes rather than the height on the deepest path, as shown in Figure 24.18. 
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24.4.2 Path Compression 

The unionlfind algorithm, as described so far, is quite acceptable for most 
cases. It is very simple and linear on average for a sequence of M instructions. 
However. the worst case is still unappealing. The reason is that a sequence of 
union operations occurring in some particular application (such as the NCA 
problem) is not obviously random (in fact, for certain trees, it is far from ran- 
dom). Hence we have to seek a better bound for the worst case of a sequence 
of M operations. Seemingly, no more improvements to the union algorithm 
are possible because the worst case is achievable when identical trees are 
merged. The only way to speed up the algorithm, without reworking the data 
structure entirely, then is to do something clever with the f i n d  operation. 

Path compression That something clever is path compression. Clearly, after we perform a 
makes every f i n d  on x, changing x's parent to the root would make sense. In that way, a 
accessed node a 

of the root until second f i n d  on x or any item in x's subtree becomes easier. There is no need 
another union to stop there, however. We might as well change the parents for all the nodes 
occurs. on the access path. In path compression even  node on the path from x to the 

root has its parent changed to the root. Figure 24.19 shows the effect of path 
compression after f i n d (  14) on the generic worst tree shown in Figure 24.17. 
With an extra two parent changes, nodes 12 and 13 are now one position 
closer to the root and nodes 14 and 15 are now two positions closer. The fast 
future accesses on the nodes pay (we hope) for the extra work to do the path 
compression. Note that subsequent unions push the nodes deeper. 

Path compression When u n i o n s  are done arbitrarily, path compression is a good idea 
guarantees because of the abundance of deep nodes; they are brought near the root by 
logarithmic amortized 
cost for the find path compression. It has been proved that when path compression is done in 
operation. this case, a sequence of M operations requires at most O(M log N) time, so 

path compression by itself guarantees logarithmic amortized cost for the 
f i n d  operation. 

Figure 24.19 Path compression resulting from a f ind(l4) on the tree shown in 
Figure 24.17. 
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Path compression is perfectly compatible with union-by-size. Thus both Path compression 

routines can be implemented at the same time. However, path compression and a Smart 
root guarantee 

is not entirely compatible with union-by-height because path compression essentially constant 
can change the heights of the trees. We do not know how to recompute them amortized cost per 

efficiently, so we do not attempt to do so. Then the heights stored for each operation 0% a long - 
sequence can be tree become estimated heights, called ranks, which is not a problem. The 
executed in almost 

resulting algorithm, union-by-rank, is thus obtained from union-by-height linear time). 
when compression is performed. As we show in Section 24.6, the combina- 
tion of a smart union rule and path compression gives an almost linear guar- 
antee on the running time for a sequence of M operations. 

24.5 C++ Implementation 
The class interface for a disjoint sets class is given in Figure 24.20, and the Disjoint sets are 

implementation is shown in Figure 24.2 1. We have omitted the trivial imple- relatively simple 
implement. 

mentations of assertIsRoot and assertIsItem; these methods throw 
exceptions if the conditions they are asserting are false. The entire algorithm 
is amazingly short. 

In our routine unionset is performed on the roots of the trees. Some- 
times the operation is implemented by passing any two elements and having 
unionset perform the find operation to determine the roots. 

1 / /  Disjoint set class. 
2 / /  Use union by rank and path compression. 
3 / /  Elements in the set are numbered starting at 0. 
4 class DisjSets 
5 { 
6 public: 
7 DisjSets( int numElements ) ;  

8 
9 int find( int x ) const; 

10 int find( int x ) ; 

11 void unionsets( int rootl, int root2 ) ;  

12 
13 private: 
14 vector<int> s; 
15 void assertIsRoot( int root ) const; 
16 void assertIsItem( int item ) const; 

17 } ;  

Figure 24.20 The disjoint sets class interface. 
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1 / /  Construct the disjoint sets object. 
2 / /  numElements is the lnitial number of disjoint sets. 
3 DisjSets::DisjSets( int numElements ) : s( numElements ) 

4 i 
5 for( int i = 0; i < s.size( ) ;  i++ ) 

6 s[ i ] = -1; 

7 1 
8 
9 / /  Union two disjoint sets. 
10 / /  rootl is the root of set 1. root2 is the root of set 2. 
1 1  void DisjSets: :unionsets( int rootl, int root2 ) 

12 i 
13 assertIsRoot( root1 ) ;  

14 assertIsRoot( root2 ) ;  

15 if( s[ root2 ] < s[ root1 I  ) /; root2 is deeper 
16 S[ root1 ] = root2; / /  Make root2 new root 
17 else 
18 i 
19 if( S[ root1 ] == S[ root2 I ) 

20 S[ root1 I - - ;  / /  Update height if same 
2 1 S[ root2 ] = rootl; / /  Make root1 new root 
22 1 
23 1 
24 
25 / /  Perform a find without path compression. 
26 int DisjSets: :find( int x ) const 
27 i 
28 assertIsItem( x 1 ;  
29 if( S[ x ] < 0 ) 

30 retun x; 
31 else 
32 return find( s [ x ] ) ; 

33 1 
34 
35 / /  Perform a find with path compression. 
36 int DisjSets::find( int x ) 

37 i 
38 assertisItem( x i ;  
39 if( S [  x I < 0 ) 

40 return x; 
41 else 
42 returns[ x ] = find( s[ x I ) ;  

43 1 

Figure 24.21 Implementation of a disjoint sets class. 
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The interesting procedure is find. The accessor cannot perform path 
compression, but the mutator can. For the mutator version, after the find 
has been performed recursively, a r r ay  [ x] is set to the root and then is 
returned. Because this procedure is recursive, all nodes on the path have 
their entries set to the root. 

24.6 Worst Case for Union-by-Rank 
and Path Compression 

When both heuristics are used, the algorithm is almost linear in the worst 
case. Specifically, the time required to process a sequence of at most N - 1 
union operations and M find operations in the worst case is O(Ma(M. N)) 
(provided that M L N), where a(M, N) is a functional inverse of Acker- 
mann's function, which grows very quickly and is defined as  follow^:^ 

From the preceding, we define 

a ( M ,  N) = min{i L 1 [(A(;, LM/N_]) > log N ) ) .  

You might want to compute some values, but for all practical purposes, Ackermann'sfunction 

a(M, N) 5 4 ,  which is all that really matters here. For instance, for any j > I ,  grows quickly, 
and its inverse is 

we have essentially at most 4. 

where the number of 2s in the exponent is j. The function F(N) = A(2, N) is 
commonly called a single-variable Ackermann's function. The single-variable 
inverse of Ackermann's function, sometimes written as log*N, is the num- 
ber of times the logarithm of N needs to be applied until N I I .  Thus 
log"65536 = 4, because log log log log 65536 = I, and 1og*265536 = 5. However, 
keep in mind that 265536 has more than 20,000 digits. The function a(M, N) 

4. Ackermann's function is frequently defined with A( I ,  j )  = f + I for j 2 1. The form we use 
in this text grows faster: thus the inverse grows more slowly. 
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grows even slower than log*N. For instance, A(3, 1 )  = A(2, 2) = 222 = 16. Thus 
for N < 2 ' 6 ,  a(M, N) I 3. Further, because A(4, 1 ) = A(3, 2) = A (2, A(3, 1)) = 
A(2, 16), which is 2 raised to a power of 16 stacked 2s, in practice, a(M, N) 
14. However, a(M, N) is not a constant when M is slightly more than N, so 
the running time is not linear.s 

In the remainder of this section, we prove a slightly weaker result. We 
show that any sequence of M = R(N) union and find operations takes a 
total of O(M log*N) time. The same bound holds if we replace union-by- 
rank with union-by-size. This analysis is probably the most complex in this 
text and is one of the first truly complex analyses ever performed for an 
algorithm that is essentially trivial to implement. By extending this tech- 
nique, we can show the stronger bound claimed previously. 

24.6.1 Analysis of the UnionIFind Algorithm 

In this section, we establish a fairly tight bound on the running time of a 
sequence of M = R(N) union and find operations. The union and find 
operations may occur in any order, but union is done by rank and find is 
done with path compression. 

We begin with some theorems concerning the number of nodes of rank r. 
Intuitively, because of the union-by-rank rule, there are many more nodes of 
small rank than of large rank. In particular, there can be at most one node of 
rank log N. What we want to do is to produce as precise a bound as possible 
on the number of nodes of any particular rank r. Because ranks change only 
when union operations are performed (and then only when the two trees 
have the same rank), we can prove this bound by ignoring path compression. 
We do so in Theorem 24.1. 

Theorem 24.1 In the absence of path compression, when a sequence of uni on 

instructions is being executed, a node qf rank r must have 2' descendants 
(including itself}. 

Proof The proof is by induction. The basis r = 0 is clearly true. Let T be the tree 
of rank r with the,fewest number of descendants andx  be T's root. 
Suppose that the last union with which x was invohved was between T ,  

and T2. Suppose that TI 's root was x. If T ,  had rank I; then T I  would be a 

5. Note. however, that if M = N log", then a(M, N) is at most 2. Thus, so long as M is 
slightly more than linear. the running time is linear in M. 
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I tree of rank r with fewer descendants than 7: This condition contradicts Proof 
the assumption that T is the tree ~ : i t l ~  the smallest number of descendants. (continued) 
Hence the rank of T ,  is at most r - I .  The rank of T2 is at most the rank of 

T I  because of union-by-rank. As T has rank rand the rank could only 

increase because of Tz, it follow~s that the rank of T2 is r - 1 .  Then the 

rank of T I  is also r - I .  By the induction hypothesis, each tree has at least 

2' - 1 descendants, giving a total of 2' and establishing the theorem. 

Theorem 24.1 says that if no path compression is performed, any node of 
rank r must have at least 2 r  descendants. Path compression can change this 
condition, of course, because it can remove descendants from a node. How- 
ever, when union operations are performed-even with path compression- 
we are using ranks, or estimated heights. These ranks behave as if there is no 
path compression. Thus when the number of nodes of rank r are being 
bounded, path compression can be ignored, as in Theorem 24.2. 

The number of nodes of rank r is at ~nos t  N / 2 ' .  Theorem 24.2 

Without path compression, each node of rank r is the root of a subtree of Proof 
at least 2' nodes. No other node in the subtree can have rank K Thus all 

subtrees of nodes of rank rare disjoint. Therefore there are at most N /2 '  
disjoint subtrees and hence N /2 '  nodes of rank K 

Theorem 24.3 seems somewhat obvious, but it is crucial to the analysis. 

At any point in the unionfznd algorithm, the ranks of the nodes on a path Theorem 24.3 
from a leaf to a root increase monotonically. 

The theorem is obvious if there is no pat11 compression. If after path 

compression, some node v is a descendant of vv, then clearly v must have 

been a descendant of w when only union operations were considered. 

Hence the rank of v is strictly less than the rank of w. 

Proof 
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There are not too 
many nodes of large 
rank, and the ranks 
increase on any path 
up toward a root. 

Pennies are used like 
a potential function. 
The total number of 
pennies is the total 
time. 

We have both U.S. 
and Canadian 
pennies. Canadian 
pennies account for 
the first few times a 
node is compressed; 
U.S. pennies account 
for later 
compressions or 
noncompressions. 

Ranks are partitioned 
into groups. The 
actual groups are 
determined at the end 
of the proof. Group 0 
has only rank 0. 

The following is a summary of the preliminary results. Theorem 24.2 
describes the number of nodes that can be assigned rank r. Because ranks are 
assigned only by un ion  operations, which do not rely on path compression, 
Theorem 24.2 is valid at any stage of the unionlfind algorithm-even in the 
midst of path compression. Theorem 24.2 is tight in the sense that there can 
be N / 2 r  nodes for any rank r. It also is slightly loose because the bound 
cannot hold for all ranks r simultaneously. While Theorem 24.2 describes 
the number of nodes in a rank r; Theorem 24.3 indicates the distribution of 
nodes in a rank K As expected, the rank of nodes strictly increases along the 
path from a leaf to the root. 

We are now ready to prove the main theorem, and our basic plan is as 
follows. A f i n d  operation on any node v costs time proportional to the num- 
ber of nodes on the path from v to the root. We charge I unit of cost for every 
node on the path from to the root during each f i n d .  To help count the 
charges, we deposit an imaginary penny in each node on the path. This is 
strictly an accounting gimmick that is not part of the program. It is some- 
what equivalent to the use of a potential function in the amortized analysis 
for splay trees and skew heaps. When the algorithm has finished, we collect 
all the coins that have been deposited to determine the total time. 

As a further accounting gimmick, we deposit both U.S. and Canadian 
pennies. We show that, during execution of the algorithm, we can deposit 
only a certain number of U.S. pennies during each f i n d  operation (regard- 
less of how many nodes there are). We will also show that we can deposit 
only a certain number of Canadian pennies to each node (regardless of how 
many f i n d s  there are). Adding these two totals gives a bound on the total 
number of pennies that can be deposited. 

We now sketch our accounting scheme in more detail. We begin by 
dividind the nodes by their ranks. We then divide the ranks into rank groups. 
On each f i n d ,  we deposit some U.S. pennies in a general kitty and some 
Canadian pennies in specific nodes. To compute the total number of Cana- 
dian pennies deposited, we compute the deposits per node. By summing all 
the deposits for each node in rank r, we get the total deposits per rank r. Then 
we sum all the deposits for each rank r in group g  and thereby obtain the 
total deposits for each rank group g. Finally, we sum all the deposits for each 
rank group g to obtain the total number of Canadian pennies deposited in the 
forest. Adding that total to the number of U.S. pennies in the kitty gives us 
the answer. 

As mentioned previously, we partition the ranks into groups. Rank r  
goes into group G ( r ) ,  and G is to be determined later (to balance the U.S. 
and Canadian deposits). The largest rank in any rank group g  is F ( g ) ,  where 
F  = G-' is the inverse of G. The number of ranks in any rank group, g > 0, is 
thus F ( g )  - F(g - 1 ) .  Clearly, G(N) is a very loose upper bound on the largest 
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Group Rank 

0 0 

2 3 4  

5 through 9 

10 through 16 

( i -  1)2 through i 2  

Figure 24.22 Possible partitioning of ranks into groups. 

rank group. Suppose that we partitioned the ranks as shown in Figure 24.22. 
1n this case, G ( r )  = [ Jl. The largest rank in group g is F(g) = g' Also, 
observe that group g > 0 contains ranks F(g - I ) + 1 through F ( g ) .  This for- 
mula does not apply for rank group 0, so  for convenience we ensure that 
rank group 0 contains only elements of rank 0. Note that the groups com- 
prise consecutive ranks. 

As mentioned earlier in the chapter, each union instruction takes con- 
stant time, so long as each root keeps track of its rank. Thus union opera- 
tions are essentially free, as far as this proof goes. 

Each find operation takes time proportional to the number of nodes on When a node is 

the path from the node representing the accessed item i to the root. We thus  compressed^ its new 
parent will have a 

deposit one penny for each vertex on the path. If that is all we do, however, higher rank than its 
we cannot expect much of a bound because we are not taking advantage of old parent. 

path compression. Thus we must use some fact about path compression in 
our analysis. The key observation is that, as a result of path compression, a 
node obtains a new parent and the new parent is guaranteed to have a higher 
rank than the old parent. 

To incorporate this fact into the proof, we use the following fancy Rulesfor U.S.and 

accounting: For each node v on the path from the accessed node i to the root, Canadian 

we deposit one penny in one of two accounts. 

1 .  If v is the root or if the parent of v is the root or if the parent of v is 
in a different rank group from v, then charge I unit under this rule 
and deposit a U.S. penny in the kitty. 

2. Otherwise, deposit a Canadian penny in the node. 



- - -- -- -- - - 

The D~sjolnt Set Class 

Theorem 24.4 states that the accounting is accurate. 

Theorem 24.4 For any f i n d  opemtiotz, the total ncinlber of pennies deposited, either in 

the k i th  or it7 a tiode, is exactly eqcial to the nutnber qf nodes accessed I 
during the f i n d .  

U.S. charges are 
limited by the number 
of different groups. 
Canadian charges are 
limited by the size of 
the groups. We 
eventually need to 
balance these costs. 

Thus we need only sum all the U.S. pennies deposited under rule 1 and 
all the Canadian pennies deposited under rule 2. Before we go on with the 
proof, let us sketch the ideas. Canadian pennies are deposited in a node 
when it is compressed and its parent is in the same rank group as the node. 
Because the node gets a parent of higher rank after each path compression 
and because the size of a rank group is finite, eventually the node obtains a 
parent that is not in its rank group. Consequently, on the one hand. only a 
limited number of Canadian pennies can be placed in any node. This number 
is roughly the size of the node's rank group. On the other hand, the U.S. 
charges are also limited, essentially by the number of rank groups. Thus we 
want to choose both small rank groups (to limit the Canadian charges) and 
few rank groups (to limit the U.S. charges). We are now ready to fill in the 
details with a rapid-fire series of theorems, Theorems 24.5-24.10. 

Proof 

Theorem 24.5 Over the entire czlgorithm, the total deposits o f  U.S. pennies urzder rule I 

crrnozint to M(G(N) + 2). 

For an!, f i n d  opercztion, at nlost nvo U.S. pennies are deposited becacise 

o f  the root and its child. BJ. Tlzeorenz 24.3, rhe vertices going lip the path 

are n~orzotonically increasirzg in rcrnk, crrzd thus the rank grocip never 

decreases as \t3e go lip tlze path. Because there are at tnost G(N) rank 

groups (besides group O) ,  on!\. G(N) other \.errices can qualzfi as (1 rule 1 
deposit for an?. particcllar f i n d .  Thus, during any f i n d ,  at nlost G(N) + 2 
U.S. pennies can he placed in the kitty. Tlzcis at most M(G(N) + 2 )  U.S. 

pennies can he deposited under rcile I for a sequence o fM f i n d s .  

Theorem 24.6 For an!. single node in rank group g, the total nzirnher of Canadian 

pennies deposited is at most F(g). 
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I fa  Canadian penny is deposited in a vertex v under rule 2, v will be Proof 
moved by path compression and get a new parent of rank higher than its 

oldparent. As the largest rank in its group is F(g), we are guaranteed that 
after F(g) coins are deposited, v's parent will no longer be in v's rank 

group. 

The bound in Theorem 24.6 can be improved by using only the size of 
the rank group rather than its largest member. However, this modification 
does not improve the bound obtained for the unionlfind algorithm. 

The number of nodes, N(g), in rank group g > 0 is at most N/2F(8 - I ) .  Theorem 24.7 

By Theorem 24.2, there are at most N/2r nodes of rank r: Summing over Proof 
the ranks in group g, we obtain 

The maximum number of Canadian pennies deposited in all vertices in Theorem 24.8 
rank group g is at most NF(g)12F(~ - ' 1. 

The result follows from a simple multiplication of the quantities obtained 
in Theorems 24.6 and 24.7. 
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Theorem 24.9 The total deposit under rule 2 is at most NZ;~ :  F(g)l2F(S - l )  Canadian I 
pennies. 

Pro0 f Because rank group 0 contains only elements of rank 0. it cannot 
contribute to rule 2 charges (it cannot have a parent in the same rank 
group). The bound is obtained by summing the other rank groups. 

NOW we can specify Thus we have the deposits under rules 1 and 2. The total is 
the rank groups to 
minimize the bound. G ( N )  
Our choice is not F ( g )  
auite minimal. but it is 

M(G(N) + 2) + N C - ? F ( g -  1 ) '  
(24.1) 

close. 

We still have not specified G(N) or its inverse F(N). Obviously, we are free 
to choose virtually anything we want, but choosing G(N) to minimize the 
bound in Equation 24.1 makes sense. However, if G(N) is too small, F(N) 
will be large, thus hurting the bound. An apparently good choice is F ( i )  to 
be the function recursively defined by F(0) and F(i) = 2F(i - '1, which gives 
G(N) = I +  Llog*~]. Figure 24.23 shows how this choice partitions the ranks. 
Note that group 0 contains only rank 0, which we required in the proof of 
Theorem 24.9. Note also that F is very similar to the single-variable Acker- 
mann function, differing only in the definition of the base case. With this 
choice of F and G, we can complete the analysis in Theorem 24.10. 

Theorem 24.10 The running time of the union/'nd algorithm with M = Q(N) f i n d  

operations is O(M log*N). 

Proof Insert the dejnitions of F and G in Equation 24.1. The total number of 

U.S. pennies is O(MG(N)) = O(M log*N). Because F ( g )  = - I ) ,  the 
total number of Canadian pennies is NG(N) = O(N log*N), and because 
M = R(N), the bound follows. 

Note that we have more U.S. pennies than Canadian pennies. The func- 
tion a(M, N) balances things out, which is why it gives a better bound. 
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Group Rank 

0 0 

1 1 

2 2 

3 3,4 

4 5 through 6 

5 17 through 65,536 

6 65,537 through 265,536 

7 Truly huge ranks 

Figure 24.23 Actual partitioning of ranks into groups used in the proof. 

Summary 

In this chapter we discussed a simple data structure for maintaining disjoint 
sets. When the union operation is performed, it does not matter, as far as 
correctness is concerned, which set retains its name. A valuable lesson that 
should be learned here is that considering the alternatives when a particular 
step is not totally specified can be very important. The union step is flexi- 
ble. By taking advantage of this flexibility, we can get a much more efficient 
algorithm. 

Path compression is one of the earliest forms of self-adjustment, which 
we have used elsewhere (splay trees and skew heaps). Its use here is 
extremely interesting from a theoretical point of view because it was one of 
the first examples of a simple algorithm with a not-so-simple worst-case 
analysis. 

Objects of the Game 

Ackermann's function A function that grows very quickly. Its inverse 
is essentially at most 4. (p. 865) 

disjoint set class operations The two basic operations needed for dis- 
joint set manipulation: They are union and find. (p. 846) 

disjoint sets Sets having the property that each element appears in 
only one set. (p. 846) 

equivalence class The equivalence class of an element x in set S is the 
subset of S that contains all the elements related to x. (p. 846) 



T h e  Disjoint Set Class 

equivalence relation A relation that is reflexive, symmetric, and 
transitive. (p. 845) 

forest A collection of trees. (p. 853) 

Kruskal's algorithm An algorithm used to select edges in increasing 
cost and that adds an edge to the tree if it does not create a cycle. 
(p. 851) 

minimum spanning tree A connected subgraph of G that spans all 
vertices at minimum total cost. It is a fundamental graph theory 
problem. (p. 850) 

nearest common ancestor problem Given a tree and a list of pairs of 
nodes in the tree, find the nearest common ancestor for each pair of 
nodes. Solution of this problem is important in graph algorithm and 
computational biology applications. (p. 853) 

offline algorithm An algorithm in which the entire sequence of que- 
ries are made visible before the first answer is required. (p. 847) 

online algorithm An algorithm in which an answer must be provided 
for each query before the next query can be viewed. (p. 847) 

path compression Makes every accessed node a child of the root until 
another union occurs. (p. 862) 

quick-find algorithm The unionlfind implementation in which find 
is a constant time operation. (p. 855) 

quick-union algorithm The unionlfind implementation in which 
union is a constant time operation. (p. 857) 

ranks In the disjoint set algorithm, the estimated heights of nodes. 
( p  863) 

relation Defined on a set if every pair of elements either is related or is 
not. (p. 845) 

spanning tree A tree formed by graph edges that connect all the verti- 
ces of an undirected graph. (p. 850) 

union-by-height Makes a shallower tree a child of the root of a deeper 
tree during a union operation. (p. 861 ) 

union-by-rank U n i o n - b y - h e i g h t  w h e n  pa th  c o m p r e s s i o n  i s  
performed. (p. 863) 

union-by-size Makes a smaller tree a child of the root of a larger tree 
during a union operation. (p. 860) 

unionlfind algorithm An algorithm that is executed by processing 
union and find operations within a unionlfind data structure. 
(p. 847) 

uniodfind data structure A method used to manipulate disjoint sets. 
(P. 846) 



Common Errors 

1. In using union we often assume that its parameters are tree roots. 
Havoc can result in code if we call such a union with non-roots as 
parameters. 

2. Although not often used, union is a keyword in C++. 
1 

On the Internet 
- 

The disjoint sets class is available online. The following are the filenames. 

DisjSets.h Contains the disjoint sets class interface. 
DisjSets.cpp Contains the disjoint sets class implementation. 
TestDisjf3ets.h Contains a program to test the disjoint sets class 

Exercises 

In Short 

24.1. Show the result of the following sequence of instructions: union ( I  ? 2), 
iinion(3, 4), union(3, 5):  union(1: 7): union(3, 6). union(8, 9). 
union( 1 ,  8), union(3, I O)? urzion(3? 1 1 ), iinion(3, 12), union(3. 13), 
union( 14, 15), union( 16, O), uniorz(l4, 16). union( I, 3), and union( I .  
14) when the union operations are performed 
a. arbitrarily. 
b, by height. 
c. by size. 

24.2. For each of the trees in Exercise 24.1: perform a find operation 
with path compression on the deepest node. 

24.3. Find the minimum spanning tree for the graph shown in Fig- 
ure 24.24. 

Figure 24.24 A graph G for Exercise 24.3 
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24.4. Show the operation of the NCA algorithm for the data given in Fig- 
ure 24.8. 

In Theory 

24.5. Prove that for the mazes generated by the algorithm in Section 
24.2.1 the path from the starting to ending points is unique. 

24.6. Design an algorithm that generates a maze that contains no path 
from start to finish but has the property that the removal of a pre- 
specified wall creates a unique path. 

24.7. Prove that Kruskal's algorithm is correct. In your proof do you 
assume that the edge costs are nonnegative? 

24.8. Show that, if a union operation is performed by height, the depth of 
any tree is logarithmic. 

24.9. Show that, if all the un ion  operations precede the f i n d  operations, 
then the disjoint set algorithm with path compression is linear, even 
if the unions are done arbitrarily. Note that the algorithm does not 
change; only the performance changes. 

24.10. Suppose that you want to add an extra operation, remove (x), 
which removes x from its current set and places it in its own. Show 
how to modify the union/find algorithm so that the running time of a 
sequence of M union,  f i n d ,  and remove operations is still 
O(Ma(M, N)). 

24.11. Prove that, if un ion  operations are done by size and path compres- 
sion is performed, the worst-case running time is still O(M log*N). 

24.12. Suppose that you implement partial path compression on f i n d  ( i ) 
by changing the parent of every other node on the path from i to the 
root to its grandparent (where doing so makes sense). This process 
is called path halving. Prove that, if path halving is performed on the 
f i n d s  and either un ion  heuristic is used, the worst-case running 
time is still O(M log*N). 

In Practice 

24.13. Implement the f i n d  operation nonrecursively. Is there a noticeable 
difference in running time? 



24.14. Suppose that you want to add an extra operation, deunion,  which 
undoes the last un ion  operation not already undone. One way to do 
so is to use union-by-rank-but a compressionless find-and use a 
stack to store the old state prior to a union.  A deunion can be 
implemented by popping the stack to retrieve an old state. 
a. Why can't we use path compression? 
b. Implement the union/find/deunion algorithm. 

Programming Problems 

24.15. Write a program to determine the effects of path compression and 
the various union strategies. Your program should process a long 
sequence of equivalence operations, using all the strategies dis- 
cussed (including path halving, introduced in Exercise 24.12). 

24.16. Implement Kruskal's algorithm. 

24.17. An alternative minimum spanning tree algorithm is due to Prim 
[ 121. It works by growing a single tree in successive stages. Start by 
picking any node as the root. At the start of a stage, some nodes are 
part of the tree and the rest are not. In each stage, add the minimum- 
cost edge that connects a tree node with a nontree node. An imple- 
mentation of Prim's algorithm is essentially identical to Dijkstra's 
shortest-path algorithm given in Section 15.3, with an update rule: 

(instead of d,=min(d,,, dl .  + c,,, ..)). Also, as the graph is undi- 
rected, each edge appears in two adjacency lists. Implement Prim's 
algorithm and compare its performance to that of Kruskal's algorithm. 

24.18. Write a program to solve the offline NCA problem for binary trees. 
Test its efficiency by constructing a random binary search tree of 
10,000 elements and performing 10,000 ancestor queries. 
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Appendices 





1 Miscellaneous C++ Details 

In this appendix we briefly describe some features of C++ that are used in 
the text. We also detail some common C++ programming mistakes. 

A.1 None of the Compilers Implement 
the Standard 

Currently, all the compilers that we used have various bugs and fail to com- 
pile code that should be legal according to the Standard. We have attempted 
to program to the minimum common denominator and avoid features that do 
not work everywhere if a reasonable alternative is available. In some places 
that is impossible because the alternatives also expose compiler bugs (usu- 
ally on different compilers). And in other cases, a recent compiler release 
may have a bug that generates compiler errors for (legal) code that previ- 
ously compiled. 

Listing specific compiler bugs is pointless, because many should be 
fixed in the next version (famous last words, indeed!), and others are bound 
to emerge. Instead, code in the text is written with the assumption of work- 
ing compilers; the tinkering required for some compilers is described in the 
online README file and has been incorporated into the online code. The tink- 
ering is usually minor, but you can waste hours (or even days) trying to do it 
on your own. Please examine the README file to find out about some of the 
known compiler bugs. This file is likely to remain current as newer versions 
of the compilers are released. The majority of problems stem from one of 
three sources: the Standard 110 Library, the introduction of namespaces 
(Section AS) ,  and templates (e.g., static members in class templates and 
function templates). 
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A.2 Unusual C++ Operators 

In this section we describe four categories of C++ operators that occasion- 
ally cause confusion: the auto-increment /auto-decrement operators, the 
type conversion operator, the bitwise operators, and the ternary conditional 
operator. 

A.2.1 Autoincrement and Autodecrement Operators 

Autoincrement and 
autodecrement add 
and subtract 1, 
respectively. The 
operators are ++ and 
--.There are two 
forms, prefix and 
postfix. 

The C++ language provides operators to add and subtract 1 from an object. 
The ++ operator may appear either before or after the object upon which it is 
acting. In both cases the autoincrement operator ++ adds 1 to the value of 
the object. In C++, however, an operator applied to an object yields an 
expression that has a value. Although the object is guaranteed to be incre- 
mented before execution of the next statement, the following question arises: 
What is the value of the autoincrement expression if it is used in a larger 
expression? 

In this case placement of the ++ is crucial. The semantics of ++x is that 
the value of the expression is the new value of x, whereas for x++ the value 
of the expression is the original value of x. For example, in 

i n t  x = 4, y = 7 ;  
z = x++ + ++y ;  

after the assignment statement, the value of x is 5, the value of y is 8, and the 
value of z is the sum of the original value of x (4) and the new value of y (S), 
or 12. 

The postfix form of autoincrement (x++) associates from left to right 
and has highest precedence; it is in a general group of postfix operators that 
includes the function call operator and a postfix autodecrement operator. The 
prefix form associates from right to left and is in the same group as the gen- 
eral class of unary operators that includes a prefix autodecrement and the 
unary plus and minus operators. These operators are immediately below 
postfix in strength of precedence. 

Expressions such as x+x++ produce undefined results in C++ (because 
the compiler is free to adjust x at any point). Thus if the value of an object is 
altered in an expression, you must exercise some caution. With reasonable 
restraint, alteration is not a problem. 
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A.2.2 Type Conversions 

The type conversion operator is used to generate a temporary object of a The type conversion 

new type. Consider, for instance, operator is used to 
generate a temporary 
object of a new type. 

double quotient; 
int x = 6; 
int y = 10; 
quotient = x / y; / /  Probably wrong! 

In the division, since x and y are both integers, the result is integer divi- 
sion, and we obtain 0. Integer 0 is then implicitly converted to a double 
so it can be assigned to quotient. But we intended for quotient to be 
assigned 0.6. The solution is to generate a temporary object for either x or y 

so that the division is performed under the rules for double. On older com- 
pilers, that would be done in any of the following ways: 

quotient = double( x ) / double( y ) ;  / /  Best 
quotient = double( x ) / y; / /  OK 
quotient = ( double ) x / y; / /  C style -- avoid 

Note that neither x nor y is changed. An unnamed temporary object is cre- 
ated, and its value is used for the division. The last form is the C style and is 
best avoided, although it works because the type conversion operator has 
precedence just below the unary operators. 

One problem with the type conversions just shown is that they are hard 
to find in the code. The new standard adds several additional forms of type- 
conversion operators. The simplest form is the static-cast, which is used 
to perform a compile-time cast. For instance, 

quotient = static-castidouble>( x ) / y; / /  New form 

The newer form is much easier to search for; unfortunately, it takes more 
space to type. Other conversions are const-cast, dynamic-cast, and 
reinterpret-cast. The const-cast is used to cast away constness 
without creating a temporary. The dynamic-cas t is used to perform a cast 
down an inheritance hierarchy at run time (with an error reported if the cast 
fails). The reinterpret-cast is used to cast between completely unre- 
lated types. 



C++ provides bitwise 
operators for the bit- 
by-bit manipulation of 
integers.This process 
allows the packing of 
several Boolean 
objects into an 
integral type. 

A.2.3 Bitwise Operators 

The C++ language provides bitwise operators for the bit-by-bit manipula- 
tion of integers. This process allows the packing of several Boolean objects 
into an integral type. The operators are - (unary complement), < <  and >> 

(left and right shift), & (bitwise AND), A (bitwise exclusive OR), I (bitwise 
OR), and assignment operators corresponding to all these operators except 
unary complement. Figure A. 1 illustrates the result of applying these opera- 
tors.' Note that the << and >> tokens used for input and output are the same 
as the bit shift operators. When the left side is a stream object, these opera- 
tors have different meanings. 

The precedence and associativity of the bitwise operators are somewhat 
arbitrary. When working with them, you should use parentheses. 

Figure A.2 shows how the bitwise operators are used to pack informa- 
tion into a 16-bit integer. Such information is maintained by a typical univer- 
sity for a wide variety of reasons, including state and federal mandates. 
Many of the items require simple yeslno answers and are thus logically rep- 
resentable by a single bit. As Figure A.2 shows. 10 bits are used to represent 
10 categories. A faculty member can have one of four possible ranks (assis- 
tant, associate, and full professor, as well as nontenure earning), and thus 
two bits are required. The remaining 4 bits are used to represent one of 16 
possible colleges in the university. 

Lines 26 and 27 show how t im is represented. Tim is a tenured associate 
professor in the College of Arts and Science. He holds a Ph.D., is a U.S. cit- 
izen, and works on the university's main campus. He is not a member of a 
minority group, disabled. or a veteran. He is on a 12-month contract. Thus 
t i m ' s  bit pattern is given by 

/ /  Assume ints are 16 bits 
unsigned int a = 3737; / /  0000111010011001 
unsigned int b = a << 1; / /  00011101001100i0 
unsigned int c = a >> 2; / /  0000001110100110 
unsigned int d = 1 << 15; / /  1000000000000000 
unsigned int e = a ( b; / /  0001111110111011 
unsigned int f = a & b; / /  0000110000010000 
unsigned int g = a A b; / /  0001001110101011 
unsigned int h = -g; / /  111G110001010100 

Figure A.l  Examples of bitwise operators. 

1 .  Unsigned objects are best for bitwise operators because the results of the bit shifts can be 
machine dependent for signed objects. 
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1 / /  Faculty Profile Fields 
2 enum 
3 i 
4 SEX = 0x0001, / /  On if female 
5 MINORITY = 0x0002, / /  On if in a minority group 
6 VETERAN = 0x0004, / /  On if veteran 
7 DISABLED = 0x0008, / /  On if disabled 
8 US-CITIZEN = 0x0010, / /  On if citizen 
9 DOCTORATE = 0x0020, / /  On if holds a doctorate 

10 TENURED = 0x0040, / /  On if tenured 
11 TWELVE-MON = 0x0080, / /  On if on 12 month contract 
12 VISITOR = 0x0100, / /  On if not permanent faculty 
13 CAMPUS = 0x0200, / /  On if work is at main campus 
14 
15 W K  = 0x0~00, / /  Two bits to represent rank 
16 ASSISTANT = 0x0400, / /  Assistant Professor 
17 ASSOCIATE = 0x0800, / /  Associate Professor 
18 FULL = 0x0~00, / /  Full Professor 
19 
20 COLLEGE = Oxf000, / /  Represents 16 colleges 
21 . . .  
22 ART-SCIENCE = 0x3000, / /  Arts and Science = College # 3  

23 . . . 
24 I ;  
25 / /  Later in a function initialize appropriate fields 
26 tim = ART-SCIENCE I  ASSOCIATE ( CAMPUS I  TENURED 1 
27 TWELVE-MON I DOCTORATE I US-CITIZEN; 
28 
29 / /  Promote tim TO ~ u l l  Professor 
30 tim &= -RANK; / /  Turn all rank rields off 
31 tim I =  FULL; / /  Turn rank fields on 

Figure A.2 Packing bits for faculty profiles. 

or Ox3af O .  This bit pattern is formed by applying the OR operator on the 
appropriate fields. 

Lines 30 and 3 1 show the logic used when Tim is deservedly promoted 
to the rank of full professor. The MK category has the two rank bits set to 1 
and all the other bits set to 0; or 

The complement, -RANK, is thus 
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Applying a bitwise AND of this pattern and t im's current setting turns off 
t im's rank bits, giving 

The result of the bitwise OR operator at line 3 1 thus makes tim a full pro- 
fessor without altering any other bits, yielding 

We learn that Tim is tenured because t im&TENURED is a nonzero result. 
We can also find out that Tim is in College #3 by shifting to the right 12 bits 
and then looking at the resulting low 4 bits. Note that parentheses are 
required. The expression is (tim>>l2 ) &Ox£. 

A.2.4 The Conditional Operator 

The conditional The conditional operator ?: is shorthand for simple if -else statements. 
operator ?: is used ~ h ,  general form is 
as a shorthand for 
simple if -else 
statements. testExpr ? yesExpr : noExpr 

We evaluate testExpr first; then we evaluate either yesExpr or noExpr, 
giving the result of the entire expression. We evaluate yesExpr if 
testExpr is true; otherwise, noExpr is evaluated. The precedence of the 
conditional operator is just above the assignment operators. This precedence 
allows us to avoid using parentheses when assigning the result of the condi- 
tional operator to an object. For example, the minimum of x and y is 
assigned to minval as follows: 

A.3 Command-Line Arguments 

Command-line arguments are available by declaring main with the signature 

int main( int argc, char *argv[ I 1 

Here argc is the number of command-line arguments (including the com- 
mand name), and argv is an array of primitive strings (char * objects) that 
store the command-line arguments. As an example, the program shown in 
Figure A.3 implements the echo command. 
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2 using namespace std; 
3 
4 int main( int argc, char *argv[ ] ) 

5 { 
6 for( int i = 1; i < argc; i++ ) 

7 cout << argv[ i ] << " " ; 
8 cout << endl; 
9 
10 return 0; 

11 I 

Figure A.3 The echo command. 

A.4 lnput and Output 

Input and output (110) in C++ is achieved through the use of streams. The 
header file iostream is included for all basic 110. Although the C library 
routines (e.g. print£ and scanf) also work, their use is strongly discour- 
aged. The iostream library is very sophisticated and has many options. We 
examine only the most basic ones used. 

A.4.1 Basic Stream Operations 

Four streams are predefined for terminal 110: cin, cout, cerr, and clog; 
cin is the standard input, cout is the standard output, cerr is the standard 
error, and clog is also the standard error. The difference between clog and 
cerr is that writes to clog are unbuffered. 

As we have shown, the stream extraction operator >z is used for format- 
ted input, and the stream insertion operator << is used for formatted output, 
as in 

int x; 
int y; 

cin >> x >> y; / /  Read x and then y 
cout << x << " " << y << " " 

<<  ( x + y ) << endl; / /  Output some stuff 

Formally, the bit shift operators are overloaded to accept a stream and an 
object, and a function is present for each type of object; operator overloading 
guarantees that the correct function is matched. When a new class is built, the 
class designer can overload the bit shift operator so that objects of the new 
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class can be output as though they were predefined types. Furthermore. 
because input streams and output streams are of different types, statements 
such as 

cin << x; / /  Attempt to output into cin 

fail at compile time. 
Input and output have their respective problems. For input, how do we 

detect errors? For output, how can we finely control the format? 

Errors in the Input 
In the preceding example, what happens if the user does not provide two 
integers but instead provides a sequence of letters? In that case we have an 
input error and two things happen. First, the result of the expression will be 
false, so we can run a test to determine if we do not get the input that we 
expect, as in 

if ( cin >> x >> y ) 

t 
/ /  Read was ok 

\ 

else 
/ / Error 

Additionally, member functions can be applied to an input stream. For 
example, the expression 

cin. eof ( ) 

returns t r u e  if the end-of-file caused a read to fail. Be sure to remember that 
eof is true only after the fact. Thus the following code fragment is incorrect 
because it goes around the w h i l e  loop once too often: 

int x; 
while( !cin.eof( 1 1 
I 

cin >> x; 
cout << "Read " << x << endl; 

1 

The expression 

returns t r u e  if a format error has occurred. The expression 



returns t r u e  if all is well. Once an error has occurred, it should be cleared 
after recovery by a call to 

However. if the same read is attempted, it will fail again because the same 
characters remain in the input stream unread. Typically a string or extra 
line will need to be read, and ignored, so that newly typed characters can 
be processed. 

Manipulators 
We have used e n d 1  in output, as in 

cerr << 'Format error" << endl; 

A manipulator, end l ' s  function is to place a newline on the stream and then 
flush the stream buffer, forcing a write. Other manjpulators, dec, hex ,  and 
o c t ,  are used to change the output of integers to decimal, hexadecimal, and 
octal. Thus 

cout << 37 << oct << 37 << hex << 37; 
cout << 37; / /  still hexadecimal 

outputs 37, 45, 25, and 25. We can include the base (i.e., a leading 0 or Ox) 
in the output by using 

cout << setiosflags( ios::showbase 1 ;  

The manipulator s e t w (  i n t  t m p F i e l d W i d t h  ) is used to set the 
field width for the next argument (only) placed on the output stream. If the 
actual width of an object is smaller than the field width allowed, it is right- 
justified (in that width) by default and filled with padding. We can control 
what is used as padding characters (the default  is blank spaces) .  For 
instance, when writing amounts on checks, blank spaces are avoided to dis- 
courage fraud. Thus we might have 

cout.setf( ios::fixed, ios::floatfield ) ;  

cout.fill( ' * '  ) ;  , ' /  Pad with * 
cout.precision( 2 j ;  i i  Two decimal places 
cout << setw( 8 ) << 12.49 <<  endl; 

which prints * * * 12 .4 9. 
Instead of using f i 11 and p r e c i s  i o n  we can use their manipulators: 

cout.setf( ios: :fixed, ios: :floatfield 1 ;  
cout << setw( 8 j << setprecision( 2 ) << setfill ( I * '  1 

<< 12.49 < <  endl; 
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There are two important rules to keep in mind. 

1. When using manipulators that do not take arguments (e.g., endl), 
do not add parentheses. 

2. When using standard manipulators that do take arguments, include 
the standard header file <iomanip>. 

A host of options are available. Check a current C++ reference manual 
for more details. 

One-Character-at-a-Time Input and Output 
The put member function can be used to output a single character. For 
instance, 

outputs a newline character. Similarly, the get member function can be used 
to read a single character (including a white-space character, if that is next in 
the input stream). It returns a logical false if the end-of-file causes a failure; 
otherwise, it returns a reference to the new input stream. Here is an example: 

char ch; 
if( cin.get( ch ) ) 

cout << "Read " << ch << endl; 
else 

cout << "End of file encountered" << endl; 

Note that there are several versions of get. The putback member function is 
used to undo a get. The peek member function is used to examine the next 
character in the input stream without digesting it. Note that using cin>>ch in 
the preceding code gives different behavior because operator>> skips white 
space. Note also that in 

int x; 
cin >> x; 

an immediate call to cin. get (ch) returns the character (possibly white 
space) that follows x. 

Finally, the get 1 ine routine can be used to read a line of input. The 
declaration is 

istream & 

getline( istream & in, string & str, char delim = '\n' ) ; 
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The getline routine reads characters from an input stream and forms a 
string str. Reading stops when either delim is encountered or the eof is 
reached. The delim character i \  not included in the string but is removed 
from the input stream. 

The usual disclaimer applies: There are many more functions and 
options than discussed here. 

A.4.2 Sequential Files 

One basic rule of C++ is that everything that works for terminal 110 also 
works for tiles. To deal with a tile. we associate either an ifstream (for 
input tile) or ofstream (for output tile) object with it.2 We then use the 
same syntax as  for terminal 110. The header tile fstream should be 
included. An example that illustrates the basic ideas is shown in Figure A.4. 

Functions that deal with tiles but do not open them should have refer- 
ences  to  os tream and is tream objects  as  parameters .  An actual  
o fstream argument will match an ostream si formal parameter. Also, 
direct access tiles are supported, but we do not go into their details here. 

A.4.3 String Streams 

For many applications the >> operator is not sufficient. For instance, sup- 
pose that we are expecting to read two integers. x and y, repeatedly from an 
istream f. Initially. the following logic appears to work: 

i 
/ /  process two integers 

1 

Unfortunately, this approach does not catch errors. For instance, files that 
contain only one integer per line are read without incident (because white 
space includes the newline character). If we want to insist that every line has 
at least two integers, we need to read a line at a time and then extract the 
integers from the line. We do so by using the istringstream; we must 
include the header tile sstream. An example of typical use is the program 
fragment in Figure A.5. 

On line 3 we read a single line of input from the tile. A string stream is 
created at line 5 .  At lines 7 and 8 we read from the string stream. Note that 
the string stream has memory of previous reads. Supposedly we should be 

2. To associate the stream to a file, we must provide a primitive string as a filename. Hence 
we usually include call\ to c-str in the stream constructor. 
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1 #include <£stream> 
2 #include <iostream> 
3 using namespace std; 
4 
5 / /  Copy from inFile to outFile 
6 void copy( const string & inFile, const string & outFile ) 

7 I 
8 / /  Cheap check for aliasing. 
9 if( inFile == outFile ) 

10 { 

11 cerr << "Input and output files are identical\n"; 
12 return; 
13 } 

14 
15 / /  Open lnput stream. 
16 ifstream instream( inFi1e.c-str( ) ) ;  

17 i f (  !instream ) 

18 { 

19 cerr << "Can't open " << inFile << endl; 
20 return; 
2 1 I 
22 
23 / i  Open output stream. 
24 ofstream outstream( outFi1e.c-str( ) ) ;  

25 lf ( !outstream ) 

26 i 
27 cerr << "Can't open " < <  outFile < <  endl; 
28 return; 
29 I 
30 i /  Do the copy. 
3 1 char ch; 
32 while( inStream.get ( ch ) ) 

33 if( !outStream.put( ch ) ) 

34 { 

35 cerr << "Output error!" << endl; 
36 return; 
37 I 
38 1 

Figure A.4 A copy routine for files. 

able to chain the extraction operators into one statement. However, this tech- 
nique does not work on a few compilers, so instead we use separate extrac- 
tions. After we have done the extractions, we test the stream state. 

We do not need to reset the stream state because each iteration of the 
w h i l e  loop generates a new string stream. To avoid the possibility of extra- 
neous inputs, however, we might want to verify that nothing else is left in the 
string stream. The operations that can be performed on string streams are 



1 string oneline; 
2 
3 while( !getline( f, oneLine ) .eof ( ) ) 

4 I 
5 istringstream lineStr( oneLine ) ;  / /  string stream 
6 
7 lineStr >> x; / /  Read first integer 
8 lineStr >> y; / /  Read second integer 
9 

10 if ( ! lineStr. fail ( ) ) 

11 i 
12 / /  Read two integers!! 
13 1 
14 else 
15 i 
16 / /  Error: but no need to issue reset 
17 1 
18 1 

Figure A.5 A program fragment that illustrates string streams. 

identical to those that can be performed on general streams. We use 
ostringstream objects to  compose character arrays; but using an 
ostringstream is a bit more complicated, so it is used less often. 

A.5 Namespaces 

The newly adopted C++ standard has added namespaces. In the original 
C++, once a class had been written and used in a library, its name could no 
longer be safely used for another class because of the possibility of a naming 
conflict. The use of namespaces solves this problem. 

By default, functions and classes are declared in the global namespace, 
but a class or a set of functions can be declared in another namespace. In that 
case, a class or function in a different namespace can coexist without a nam- 
ing conflict. To declare a namespace, we simply write 

namespace NamespaceName 

i 

where NamespaceName is the name of the namespace. Inside the braces are 
the kinds of declarations and definitions that typically go in the global 
namespace .  Inside NamespaceName we can  access  o ther  parts  of 



NamespaceName without any special syntax. Outside NamespaceName, a 
C las sName class inside NamespaceName is accessed by NameSpac e- 
Name : : ClassName. Namespaces are open-ended, so additional classes can 
be part of the same namespace if we repeat the namespace declaration. 

The entire standard library is declared in the namespace std. As a 
result, cout is properly referred to as std: : cout. Using the full name all 
the time can be annoying and can lead to very long lines of code. As a result, 
the using directive has also been added to the Standard. 

There are two forms of the using directive. In the first, we can write 

using std::cout; 

and have cout automatically recognized as shorthand for std: : cout. In 
the second. we can write 

using namespace std; 

and have all symbols in the std namespace automatically known by their 
shorthands. 

The second alternative-exposing the entire namespace-has a disad- 
vantage: It is more likely to lead to ambiguities with classes that are visible 
from other namespaces (e.g., the global namespace). In that case, a compiler 
error results. Although the first alternative could lead to ambiguities, that is 
less likely (ambiguities are always avoidable by avoiding using directives 
entirely). 

Currently, compilers do not correctly handle all aspects of namespaces. 
Good design would be to place all the text's code in a separate namespace. 
However, when we tried this approach, only one compiler handled the 
resulting code in an acceptable fashion. Thus all the text's code is in the glo- 
bal namespace (which occasionally conflicts with the STL library). The 
online code has preprocessor commands that make our classes appear to 
have a different name than the STL class (e.g., vector becomes vector). 
See the online README file for details. 

Additionally, we expose the entire std namespace in our code. 
Although this technique is less preferable than exposing it class by class (or 
symbol by symbol), we do so because at the present time, a wider set of 
compilers can (more or less) handle this technique better than any other. 
Again, this approach introduces some problems for some compilers, and you 
should consult the online README file for details. 
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A.6 New C++ Features 

The newly adopted C++ standard has several new features. Some of them 
deprecate (i.e., make obsolete) old C++ code.3 The following is a brief sum- 
mary of the most important new features used in this text. 

1. Old C++ programs were allowed to omit a return type from the 
function definition (and declaration). in which case the return type 
defaulted to int. This action is no longer legal. One consequence 
of this change is that main must have an explicit return type of int. 

2. As we have shown, the standard 110 header file is now iostream, 
rather than ios tream. h. Additionally, most of the standard library 
is now placed in a namespace named s td. Consequently, symbols 
such as cout are no longer visible, unless they are specifically 
scoped as std: : cout or unless a using directive is provided (as 
has been done throughout the text). 

3. The string stream classes previously were istrstream and 
os trs tream, were found in s trs tream . h, and were constructed 
with primitive strings. The new form, detailed in Section A.4.3, is 
not available on older compilers. 

4. The bool type and constants true and false are new. 
5. The STL, including vector. is new and is not available on older 

compilers. 
6. The string type is new. 
7. The explicit keyword (see Section 2.2.2) is new. 
8. typename is new. 

Common C++ Errors 

1 .  In C++, an int can be used instead of a bool in conditionals. In that 
case, 0 is false, nonzero is true, and thus -1 is true. (See error #2.) 

2. The most common C++ error is using = instead of ==. Some pro- 
grammers like to write conditional expressions with constants on 
the left-hand side (if possible), to get some compiler protection. In 
other words, instead of if ( x = = 4 ) ,  it is not unusual to see 
i f ( 4 = =x ) so that an inadvertent = generates a compiler error. (See 
error #I .) 

3. The online code contains options that allow it to compile on older systems. (Please read 
the online README file for more details.) 



Miscellaneous C++ Details 

Adding unnecessary semicolons gives logical errors because the 
semicolon by itself is the null statement. Hence an unintended 
semicolon immediately following a for, while, or if statement is 
likely to go undetected and break your program. 
Off-by-one errors are especially common in C++. 
Local variables are not initialized by default. Do not attempt to use 
the value of an uninitialized variable. Be aware that 0 seems to be a 
common uninitialized value and occasionally gives the appearance 
of a working program. 
At compile time, C++ detects some instances in which a function 
that is supposed to return a value fails to do so. But ultimately it is 
your responsibility to remember. 
Arithmetic overflow is undetected in C++. 
Mixing types can produce unexpected results, especially when 
unsigned quantities are involved. Do not overuse unsigned 
variables. 
A leading o makes an integer constant octal when encountered as a 
token in source code, so, for example, 0 3 7 is decimal 3 1. 

Like all languages, floating point numbers are subject to round- 
ing errors. Use double instead of float to make the effect less 
pronounced. 
Multiple side effects in a single statement produce undefined results 
in some cases. There is a precise rule for this case, but in general keep 
the code simple, and you should not have any problems with it. 
Division and mod operations can produce machine-dependent 
results when negative numbers are involved. Avoid this. 

Precedence rules involving some operators (notably the bitwise 
operators) are counterintuitive. Many errors result from the wrong 
precedence. For instance, ? : has lower precedence than <<. 

Use && and 1 1 for logical operations and & and I for bitwise opera- 
tions. Do not mix them up. 
The routines in ctype. h return 0 or nonzero. rather than true or 
false, or even 0 or I. 

The else clause matches the closest dangling i f .  A common error 
is to forget the braces needed to match the else to a distant dan- 
gling i f. 

When using a switch statement, a common error is to forget the 
break statement between logical cases. If it is forgotten, control 
passes through to the next case; generally this result is incorrect. 



18. An object may be declared several times but must be defined only 
once. Otherwise, you get an error. 

19. Escape sequences begin with the backslash character \, not the for- 
ward slash / .  

20. The eof member function returns true only if a read has already 
failed because the end-of-file was reached. It cannot be used to test 
whether a read is about to fail. 

21. If a stream read has failed, then you must call the clear member 
function to reset the stream's error state before attempting to read 
from the stream again. You will also need to read some characters to 
bypass the bad input. 

22. Mismatched braces may give misleading answers. Use the 
balanced-symbol checker (see Section 12.1) to check whether that 
is the cause of a compiler error message. 
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I Operators 

Figure B. 1 shows the precedence and associativity of the common C++ 
operators. It also indicates which operators are overloadable. The prece- 
dence of t h row is just above the comma operator. 

1 Category 1 Examples 1 Associativity I Overloadable 1 

Postfix 

Scope resolution 

Left to right Yes, except . 

: : (unary scope) 
: : (class scope) 

Yes, except 
sizeof 

Left to right 

Prefix and unary 

No 

Figure B.l C++ operators listed from highest to lowest precedence. 

sizeof * & ! - + - 

++ -- new delete 

Assignment 

Comma 

Right to left 

= * =  / =  % =  +=  - =  Right to left 

Left io right 

Yes 

Yes 
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Some Library Routines 

In this appendix we list some of the library routines used in this text. Note 
that all these header files are inherited from C. The Standard specifies that 
alternate header files can be used. The alternates begin with an addition let- 
ter c, with the . h suffix removed. 

C.1 Routines Declared in Kctype. h> 
and <cctype> 

These routines test a character for various properties. 

int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 

isalnum( int ch ) ;  / / 
isalpha ( int ch ) ; / / 
iscntrl( int ch ) ; / / 
isdigit ( int ch ) ; / / 
isgraph( int ch ) ; / / 
islower( int ch ) ;  / / 
isprint( int ch ) ;  / / 
ispunct( int ch ) ; / / 
isspace( int ch ) ;  / / 
isupper ( int ch ) ; / / 
isxdigit( int ch ) ;  / /  

Nonzero 
Nonzero 
Nonzero 
Nonzero 
Nonzero 
Nonzero 
Nonzero 
Nonzero 
Nonzero 
Nonzero 
Nonzero 

alphanumeric 
alphabetic 
control character 
0 - 9 
graphic 
lower case 
printable 
punctuation 
white space 
upper case 
0-9 or a-f or A-F 

int tolower ( int ch ) ; / I  Return lower case equivalent 
int toupper( int ch ) ;  / /  Return upper case equivalent 



C.2 Constants Declared in <limits .h> 
and <climits> 

CHAR-BIT / /  Bits per bytes 

SCHAR-MIN / /  Smallest value, signed char 
SCHAR-MAX / /  Largest value, signed char 
UCHAR-MAX / /  Smallest value, unsigned char 
CHAR-MIN / /  Smallest value, char 
CHAR-MAX / /  Largest value, char 

SHRT-MIN / /  Smallest value, short 
SHRT-MAX / /  Largest value, short 
USHRT-MAX / /  Largest value, unsigned short 

INT-MIN / /  Smallest value, int 
INT-MAX / /  Largest value, int 
UINT-MkX / /  Largest value, unsigned int 

LONG-MIN / /  Smallest value, long 
LONG-MAX / /  Largest value, long 
ULONG-MAX / /  Largest value, unsigned long 



Routines Declared in <math. h> and <=a- 

C.3 Routines Declared in <mth.h> and <c=th> 

The <math. h> group provides routines for mathematical operations. On 
some Unix systems you must specify - lm as a last option to the compiler in 
order to load these routines. All angles are in radians. 

/! Trigonometric functions - -  all angles in radians 
double sin( double theta j ;  

double cos( double theta j ;  

double tan( double theta ) ;  

double asin( double x ) ;  / /  Result is between + / -  PI/2 
double acos( double x 1 ;  / /  Result is between O and PI 
double atan( double x 1 ;  / /  Result is between + / -  PI/2 

/ /  Hyperbolic functions 
double sinh( double theta ) ;  

double cosh i double theta ) ; 

double tanh( double theta ) ;  

/ /  Logarithms and exponents 
double exp ( double x ) ; i / e to the x 
double log( double x ) ;  / /  log base e 
double loglo( double x 1 ;  ! /  log base 10 
double pow( double x, double y 1 ;  / /  x to the y 
double sqrt( double x ) ;  / /  Square root 

/ /  Miscellaneous 
double ceil( double x j ;  / /  Ceiling function 
double floor( double x ) ;  / /  Floor function 
double fabs( double x ) ;  / /  Absolute value 



Some Library Routines 

C.4 Routines Declared in cstdlib. h> 
and <cstdlib> 

The <stdlib. h> group contains many routines, most of which are remnants 
of C and are best avoided. They include malloc, free, and some generic rou- 
tines that use old style void * parameters instead of templates. Here we list 
only those that relate to either program termination or the environment. 

/ /  Program termination 
void abort ( void ) ; / /  Terminate program with SIGABRT 
int atexit( void ( *func ) ( void ) ) ;  / /  See below 
void exit( int status ) ;  / /  Exit program, flush buffers 

/ /  Spawn a command 
int system( const char *command ) ;  

/ /  Get environment variable 
char *getenv( const char *name ) ;  

The abort routine causes the program to terminate by sending signal 
SIGABRT. This action is not considered "normal termination." 

The exit function terminates a program normally and is called implic- 
itly when main returns. As a result, functions registered with atexit are 
called in reverse order of their registration. Output streams are then closed 
and flushed, and the program terminates with status passed back to the 
calling environment. 

The result of system is to pass command to the operating system's com- 
mand processor and run it. How that is done is highly system dependent. 

The getenv routine is used to search for environment variables; again 
this routine is highly system dependent. For example, Unix users can try the 
statement 

cout << "Terminal type is " << getenv( "TERM" ) << endl; 
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Primitive Arrays in C++ 

Throughout the text. we used the standard vector and string class to 
implement arrays and strings. These classes. which were recently added to 
the Standard Librarq. are implemented by using primitive arrays. We dis- 
cussed the primitive arrays only briefly in the text because we believe that 
using them is generally a bad idea. However, there are cases when primitive 
arrays must be used. For instance. when you are using legacy code (i.e.. old. 
already written code). you are likely to have to get your hands dirty and use 
primitive arrays. Also, using primitive arrays judiciously can make 1 our pro- 
gram faster. 

In this appendix we discuss primitive arrays in some detail .  Our 
approach in the text made no use of this material; highlights of it were pre- 
sented in the text only as needed. However. some students feel more com- 
fortable starting with primitive arrays and working up to the STL vector 
and string; they are the target audience for this appendix. 

We begin by describing the primitive arrays and the relationship of 
arrays and pointers in C++. We then co\.er primitive strings. Finally, we dis- 
cuss the technique of pointer hopping, which revisits an old-style of C opti- 
mization. Although this technique is not as valuable as it used to be. it forms 
the basis of the STL interface and is of historical (and occasionally practical) 
interest. 

D.1 Primitive Arrays 
Just as a variable must be declared before it is used in an expression and ini- The array indexing 

tialized before its value is used. so must an array. An array is declared by Operator [ I  provides 
access to any object 

giving it a name. in accordance with the usual identifier rules. and by telling in the array, 
the compiler what type the elements are. If we are defining an array. a size 
must also be provided. The size can be omitted if an initialization is present: 
the compiler then counts the number of initializers and takes that as the arraq 



Primitive Arrays in C++ 

Arrays are indexed 
starting at zero. 

The name of an array 
represents a pointer 
to the beginning of 
allocated memory for 
that array. 

Array items are 
stored in contiguous, 
increasing memory 
locations. 

size. Each object in the collection of objects that an array denotes can be 
accessed by use of the array indexing operator [ I .  We say that the [ I 
operator indexes the array, meaning that it specifies which of the objects is 
to be accessed. 

In C++, arrays are always indexed starting at 0. Thus the declaration 

i n t  a [  3 1 ;  i l  Three i n t  objects: a [Ol ,  a [ l l ,  a n d a [ 2 ]  

has the compiler allocate space to store three integers-namely, a [ 0 I ,  
a [ 1 1 , and a [ 2 I . As we show later in this appendix, no index range checking 
is performed in C++,  so an access out of the array index bounds is not 
caught by the compiler. No explicit run-time error is generated, but unde- 
fined and occasionally mysterious behavior occurs. Furthermore, if the array 
is passed as an actual argument to a function, the function has no idea how 
large the array is unless an additional parameter is passed. Finally, arrays 
cannot be copied by the = operator. In this section we stick with the core lan- 
guage features of arrays and pointers and discuss why these restrictions 
come into play. 

D.l . I  The C++ Implementation: An Array Name Is a Pointer 

When a new array is allocated, the compiler multiplies the size in bytes of 
the type in the declaration by the array size (the integer constant between the 
[ I ) to decide how much memory to set aside. That is essentially the only use 
for the size component. In fact, after the array is allocated, with minor 
exceptions, the size is irrelevant because the name of the array represents a 
pointer to the beginning of allocated memory for that array, as illustrated in 
Figure D. 1. 

Suppose that we have the declarations 

int a [  3 1 ;  
i n t  i; 

The compiler allocates memory as follows. First, three integers are set aside 
for the array object and are referenced by a [ 0 I ,  a [ 11, and a [ 2 I .  The 
objects in the array are guaranteed to be stored in one contiguous block of 
memory. Thus if a [ 0 1 is stored at memory location 1000 and integers 
require 4 bytes, a [ 1 ] is guaranteed to be located at memory location 1004 
and a [ 2 ] at memory location 1008. Finally, the compiler allocates storage 
for object i. One possibility is shown in Figure D. l ,  where i is allocated the 
next available memory slot. 

For any i, we can deduce that a [ i ] would be stored at memory loca- 
tion 1000 + 4 i .  The value stored in a is &a [ 0 ] ; this equivalence is always 



local constants 

Figure D.l Memory model for arrays (assumes 4-byte int); the declaration is 
i n t  a[31; i n t  i;. 

guaranteed and tells us that a is actually a pointer. Note that when an array 9 

is allocated, the value of a is a constant; a pointer object is not created for it. 
Now, to access the item a [ i 1 ,  the compiler needs only to fetch the value of 
a and add 4 i  to it. 

Now that we have shown how arrays are manipulated in C++, you can 
see why some of the limitations discussed earlier occur. You can also see 
how arrays are passed as function parameters. 

First, we have the problem of verifying that the index is in range. Per- C++ has no built-in 

forming the bounds check would require that we store the array size in an index range checking 
for arrays. 

additional parameter. Certainly this approach is feasible, but it does incur 
both time and space overhead costs. In a common application of arrays 
(short strings), the overhead could be significant. As mentioned earlier. if 
the user wants to perform the range check, a class that performs bounds 
checks can be written and used as though it were a predefined array (this is 
the v e c t o r  template). Thus we need not debate the wisdom of the language 
designer's decision not to mandate the range checks. However, the lack of 
range checking can cause serious problems. Consider the following code 
fragment that uses the previous declarations of a and i: 

I .  Because this case treats a as a constant rather than an object. &a is given a special mean- 
ing (constants do not normally have addresses) and in this case only. the value of &a is a. 



Arrays cannot be 
copied or compared 
by using = and ==, 
respectively. 

The address of an 
array is passed by 
value. Consequently, 
the contents of an 
array are passed by 
reference. 

The programmer has made the common error of referencing a [ 3 I ,  forget- 
ting that an array of size 3 represents indices 0 through 2 only. When i is 3, 
the compiler dutifully executes the statement a [ 3  ] = 0 without checking 
whether the index is valid. Suppose that memory is allocated as shown in 
Figure D.1. The effect is that memory location 101 2 is overwritten with 0, 
thus demolishing i. The result-namely, resetting i to 0--creates an infinite 
loop. However, if the compiler decided (as some do) to leave memory loca- 
tion 1012 empty and place i elsewhere, the program appears to work. Thus 
off-by-one errors in array indexing can lead to bugs that are very difficult to 
spot. In our example the loop is infinite, but i was never directly changed. 

The second limitation of the basic array (which can also be fixed by a 
user-defined class) is array copying. Suppose that a and b are arrays of the 
same type. In many languages, if the arrays are also the same size, the state- 
ment a=b would perform an element-by-element copy of array b into array 
a. In C++ this statement is illegal because a and b represent constant point- 
ers to the start of their respective arrays, specifically to &a [ 0 ] and &b [ 0 ] . 
Then a=b is an attempt to change where a points, rather than copying the 
contents of array b into array a. What makes the statement illegal, rather 
than legal but wrong, is that a cannot be reassigned to point somewhere else 
because it is essentially a constant object. The only way to copy two arrays 
is to do so element by element; there is no shorthand. A similar argument 
shows that the expression a==b does not evaluate to true if and only if each 
element of a matches the corresponding element of b. Instead, this expres- 
sion is legal. It evaluates to true if and only if a and b represent the same 
memory location (i.e., they refer to the same array). 

Finally, an array can be used as a parameter to a function, and the rules 
follow logically from our understanding that an array name is little more 
than a pointer. Suppose that we have a function functioncall that accepts 
one array of int as its parameter. The caller and callee views are 

functioncall( actualArray ) ;  / /  Function call 
functioncall( int formalArray[ ] ) / /  Function declaration 

Note that in the function declaration the brackets serve only as a type dec- 
laration, in the same way that int does. In the function call only the name 
of the array is passed; there are no brackets. In accordance with the call- 
by-value conventions of C++, the value of actualArray is copied into 
formalArray. Because actualArray represents the memory location 
where the entire array actualArray is stored, f ormalArray [i I accesses 
ac tualArray [ i I . In other words, the variables represented by the indexed 
array are modifiable. Thus an array, when considered as  an aggregate, is 
passed by reference. Moreover, any size component in the f ormalArray 



declaration is ignored. and the size of the actual array is unknown. If the size 
is needed. it must be passed as an additional parameter. 

Note that passing the aggregate by reference means that functloncall Use a const to 

can change elements in the array. We can use the cons t directive to attempt changes to 
the aggregate.The 

to disallow such changes (but this technique is not foolproof): size of the formal 
array is unknown. 

functionCalli const int formalArray[ ] ) ; 

D.1.2 Multidimensional Arrays 

Sometimes an array access needs to be based on more than one index. A A multidimensional 

common example of this is a matrix. A multidimensional array is an array is an array that 
is accessed by more that is accessed by more than one index. It is allocated by specifying the size than one index. 

of its indices. and each element is accessed by placing each index in its own 
pair of brackets. For example, the declaration 

lnt X [  2 I [  3 1 ;  x has t ~ o  rows and three columris 

defines the two-dimensional array x. with the first index ranging from 0 to I 
and the second index ranging from 0 to 2 (for a total of six objects). The 
compiler sets aside six memory locations for these objects. 

D.1.3 The char * Type, const Pointers, 
and Constant Strings 

An important use of pointers and arrays is the C++ implementation of 
strings. The C++ base language provides some minimal support for strings. 
based entirely on the conventions of the C language and the C library. The 
result is too minimal to be useful in a modern language, so as they do with 
arrays. C++ programmers tend to rely on the string library class rather 
than the predefined language features. Nonetheless. you may want to know 
how strings are implemented in the basic C library because they form the 
basis for the string class. 

In both C++ and C. a string is an array of characters. As a result. when it 
is passed to a function. the string has type char * or const char * .  At 
first glance we might assume that the string "Nina" is an array of four char- 
acters: ' N ' . ' i ' . ' n ' . and ' a ' . The problem with this assumption is that if 
we pass this array to any routine, that routine would not know how many 
characters are in the array because. as we have shown. a function that 
receives an array receives only a pointer and thus has no idea how large the 
actual array is. One solution to this problem is to use a slightly larger array 
with an endmarker. 
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m m i t i v e  Arrays In C++ 

The null terminator is 
the special character 
that ends a string. It is 
represented by \ 0 I .  

You must allocate an 
extra spot for the null 
terminator. 

The strcgy routine 
does not verify that 
the target is large 
enough to store the 
COPY. 

For instance, we can declare an array of five elements, placing a blank in 
the last spot to signal that only the first four positions represent significant 
characters. If all routines are written to reflect this convention, we have a 
solution to our problem that requires little alteration of the language. 
Because we might actually want to use a blank in the string (e.g., to store a 
street address), we need to pick an endmarker that is not likely to appear 
elsewhere in the string. In C++ this special character is the null terminator, 
' \ 0 I .  The escape sequence indicates that the null terminator is always rep- 
resented internally as zero, which leads to some shorthand when the control- 
ling expression is written in an i f  statement or a loop. (A common error is 
to forget the \ ,  leaving 0 , which is the character representation for the 
digit 0). Therefore, an array of six characters N , i , n , a ' , and ' \ 0 
represents the string "Nina", no matter what is in the sixth character. 

So  far, what has C++ provided us in the way of string support? The 
answer is: absolutely nothing! Furthermore, it does not directly provide 
some things in the language. Suppose that we declare two strings, strl and 
str2, as in 

char strl[ 10 I ;  / /  Max length is nine 
char str2[ 10 I ;  / /  Max length is nine 

Then the following statements cannot be correct: 

strl = str2; / / Wrong ! 
cond = ( strl == str2 ) ;  / / Wrong ! 

This failure follows directly from the facts that strl and str2 are arrays and 
that array assignment and comparison are not supported directly by the lan- 
guage. Almost all the support, in fact, is provided by the C++ library, which 
specifies routines that work for null-terminated strings. The prototypes for 
these routines are given in the <string. h> include file. This file is replicated 
in <cstring>. Some routines of interest are shown in Figure D.2. 

The strlen (str) routine gives the length of the string represented by 
str (not including the null terminator); the length of "Nina" is 4. In this 
and all routines, if a NULL pointer is passed, you can expect a program crash. 
Note that this approach is different from passing a pointer to a memory cell 

1 size-t strlen( const char *str ) ;  

2 char * strcpy( char *lhs, const char *rhs ) ;  

3 char * strcat( char *lhs, const char *rhs ) ; 

4 int strcmp( const char *lhs, const char *rhs 1 ;  

Figure D.2 Some of the string routines in <string. h>. 



that contains the \ 0 character, which represents the empty string of length 
- ~ 

0. The strcpy ( lhs, rhs) routine performs the assignment of strings; char- 
acters in the array given by rhs are copied into the array given by l h s  until 
the null terminator is copied. If the string represented by lhs is not large 
enough to store the copy, another memory gets overwritten. 

The abbreviations lhs  and rhs stand for left-hand side and right-hand The abbreviations - 
side, respectively. The order of parameters is easy to remember if you keep lhs and rhs stand 

for left-hand side and in mind that right-hand side, 
respectively. 

strcpy( lhs, rhs ) 

is meant to mimic the statement 

lhs = rhs: 

The return type char * allows strcpy calls to be chained in the same 
way as assignments: strcpy (a, strcpy (b, c) ) is much like a=b=c. The 
s trcat ( lhs , rhs) routine appends a copy of the string represented by rhs 
to the end of lhs. As with strcpy, it is the programmer's responsibility to 
ensure that lhs is pointing at sufficient memory to store the result. The 
strcmp routine compares two strings and returns a negative number, zero, 
or a positive number, depending on whether the first string is lexicographi- 
cally less than, equal to, or greater than the second. 

As described so far, C++ provides library routines for strings but no lan- A string constant 

guage support. In fact, the only language support is provided by a string con- is a Sequence Of 

characters enclosed 
stant. A string constant provides a shorthand mechanism for specifying a in double quotes.The 
sequence of characters. It automatically includes the null terminator as an null terminator is 

invisible last character. Any character (specified with an escape sequence, if automatically 

necessary) may appear in the string constant, so " ~ i n a "  represents a five- included. 

character array. Additionally, a string constant can be used as an initializer 
for a character array. Thus 

char namel[ ] = "Nina"; / /  namel is an array of five chars 
char name2 [ 9 ] = "Nina"; / /  name2 is an array of nine chars 
char name3[ 4 ] = "Nina"; / I '  name3 is an array of four chars 

In the first case the size of the array allocated for namel is determined 
implicitly. In the second case we have overallocated (which is necessary if 
we intend later to copy a longer string into name2). The third case is wrong 
because we have not allocated enough memory for the null terminator. Ini- 
tialization by a string constant is a special exemption; we cannot say 

char name4[ 8 I = namel; / /  ILLEGAL! 
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m v e  Arrays in C++ 

A string constant can A string constant can be used any place that both a string and a constant 
be used in any place object can. For instance, it may be used as the second parameter to s trcpy 
that both a string and 
a constant object can. but not as the first parameter. The reason is that the declaration for strcpy 

does not disallow the possibility that the first parameter might be altered 
(indeed, we know that it is). Because a string constant can be stored in read- 
only memory, allowing it to be used as a target of s trcpy could result in a 
hardware error. Note that we can always send a nonconstant string to a 
parameter that expects a constant string. Thus we have 

strcpy( name2, "Mark" ) ;  / /  LEGAL 
strcpy ( "Marku, name2 ) ; / /  ILLEGAL! 
strcpy( name2, name1 ) ; / / LEGAL 

The declarations for the string routines indicate that the parameters are 
pointers because the name of an array is a pointer. The second parameter to 
strcpy is a constant string, meaning that any string can be passed with a 
guarantee that it is to be unchanged. The first parameter is merely a string 
and might be changed. Consequently, a constant string, including string con- 
stants, cannot be passed. 

Beginners tend to take the equivalence of arrays and pointers one step too 
far. Recall that the fundamental difference between an array and a pointer is 
that an array definition allocates enough memory to store the array, whereas a 
pointer points to memory that is allocated elsewhere. Because strings are 
arrays of characters, this distinction applies to strings. A common error is 
declaring a pointer when an array is needed. Consider the declarations 

char name[ 1 = "Nina"; 
char *name1 = "Nina"; 
char *name2; 

The first declaration allocates five bytes for name, initializing it to a copy of 
the string constant "Nina" (including the null terminator). The second dec- 
laration states merely that namel points at the zeroth character of the string 
constant " ~ i n a "  . In fact, the declaration is wrong because we are mixing 
pointer types: The right side is a cons t char *, but the left side is merely a 
char * .  Some compilers will complain. The reason is that a subsequent 

namel[ 3 ] = 'e'; 

is an attempt to alter the string constant. A string constant is supposed to 
be constant, so this action should not be allowed. The easiest way for the 
compiler to disallow this action is to follow the convention that, if a is a 
constant array, then a [ i 1 is a constant also and cannot be assigned to. If 
the statement 
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char *name1 = "Nina"; 

were allowed, name1 [ 3  ] would be allowed. By enforcing cons tness at 
each assignment, the problem becomes manageable? You can legally use 

const char *name1 = "Nina"; 

but that is hardly the same as declaring an array to store a copy of the actual 
string; furthermore, name 1 [ 3 1 = e I is easily determined by the compiler to 
be illegal in this case. A common example where a const char * declara- 
tion would be used is 

const char "message = "Welcome to FIU!"; 

Another common consequence of declaring a pointer instead of an array 
object is the following statement (in which we assume that name2 is 
declared as previously): 

strcpy ( name2, name ) ; 

Here the programmer expects to copy name into name2 but is fooled 
because the declaration for strcpy indicates that two pointers are to be 
passed. The call fails because name2 is just a pointer rather than a pointer to 
sufficient memory to hold a copy of name. If name2 is a NULL pointer, 
points at a string constant stored in read-only memory, or points at an illegal 
random location, strcpy is certain to attempt to dereference it, generating 
an error. If name2 points at a modifiable array (e.g., name2=name is exe- 
cuted), there is no problem. 

Although all these procedures sound very restrictive and tricky, C++ 
provides a s t r i n g  type and makes it look just like any predefined type, such 
as an int. Consequently, we do not have to worry about the limitations 
implied in the C++ base language because they are hidden inside string. 

D.2 Dynamic Allocation of Arrays: new [ 1 
and delete [ 1 

Suppose that we want to read a sequence of numbers and store them in an Dynamic array - - 
array for processing. The fundamental property of an array requires us to allows us 

to allocate arbitrarily 
declare a size so that the compiler can allocate the correct amount of mem- sized arrays and 
ory. We must make this declaration prior to the first access of the array. If we make them larger if 

needed. 

2. We can type cast away the cons tness. but at this point the programmer is forfeiting the 
protection that C++ offers. 



have no idea how many items to expect, making a reasonable choice for the 
array size is difficult. In this section we show how to allocate arrays dynami- 
cally and expand them if our initial estimate is too small. This technique, 
dynamic array allocation, allows us to allocate arbitrarily sized arrays and 
make them larger or smaller as the program runs. 

The allocation method for arrays that we have used so far is 

int dl[ SIZE ] ; i l  SIZE is a compile-time constant 

We also know that we can use 

int *a2; 

The n e w  operator like an array, except that no memory is allocated by the compiler for the 
dynamically allocates array. The n e w  operator allows us to obtain memory from the system as the 
memory. program runs. We can use the expression 

new int [ SIZE ] 

to allocate enough memory to store S I Z E  i n t  objects. The expression eval- 
uates to the address where the start of that memory resides. It may be 
assigned only to an i n t  * object, as in 

int *a2 = new int [ SIZE 1 ;  

As a result, a2 is virtually indistinguishable from al. The n e w  operator is 
type-safe, meaning that 

int *a2 = new char[ SIZE 1 ;  

would be detected at compile time as a type mismatch error. 
So what is the difference, if any, between the two forms of array mem- 

ory allocation? A technical difference is that the memory for a1 is taken 
from a different source than the memory for a2. However, this difference is 
transparent to the user. A second difference is that a1 cannot appear on the 
left-hand side of an assignment operator because the array name is a con- 
stant, whereas a2 can. This difference is also relatively minor, and if we 
declared 

int * const a2 = new int [ SIZE 1 ;  

this difference would disappear. More important, S IZE does not have to be a 
compile-time constant when we use n e w .  
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1 void f ( int i ) 

2 ( 
3 int al[ 10 1 ;  
4 int *a2 = new int [ 10 ] ; 

5 
6 . . . 
7 S T (  a1 1 ;  
8 g (  a2 1 ;  
9 

10 / /  On return, all memory associated with a1 is freed 
11 / /  On return, only the pointer a2 is freed; 
12 / /  10 ints have leaked 
13 / /  delete [ ] a2; / /  This would fix the leak 
14 ) 

Figure D.3 Two ways to allocate arrays; one leaks memory. 

Figure D.4 Memory reclamation in Figure D.3. 

A problem does occur when a1 is a local variable. When the function in Memory allocated by 

which it is declared returns (i.e., when a1 exits scope), the memory associ- 
ated with the array is reclaimed automatically by the system; a1 exits scope 
when the block in which it is declared is exited. For example, in Figure D.3 
a1 is a local variable in a function f .  When f returns, the entire contents of 
the a1 object, including the memory associated with the array, is freed. In 
contrast, when a2 exits scope only the memory associated with the pointer is 
freed; the memory allocated by new is now unreferenced, and we have a 
memory leak. The memory is claimed as used, but unreferenced. and is not 
used to satisfy future n e w  requests. The situation is shown graphically in 
Figure D.4. 

To recycle the memory, we must use the delete operator. The syntax 
is 

new is not 
automatically 
recycled. Failure to 
recycle causes a 
memory leak. 

The delete operator 
recycles dynamically 
allocated memory 
that is no longer 
needed. delete [ ] a2; 



The [ I is absolutely necessary here to ensure that all the objects in the 
allocated array are recycled. Without the [ ] only a2 [ 0 1 might be recycled, 
which is hardly what we intend. With new and delete we have to manage 
the memory ourselves rather than allow the compiler to do it for us. Why 
would we be interested in doing so? The answer is that, by managing mem- 
ory ourselves, we can build expanding arrays. Suppose, for example, that in 
Figure D.3 we decide, after the declarations but before the calls to g at lines 
7 and 8, that we really wanted 12 ints instead of 10. In the case of a1 we 
are stuck, and the call at line 7 cannot work. However, with a2 we have an 
alternative, as illustrated by the following maneuver: 

int "original = a2; / /  1. Save pointer to the original 
a2 = new int [ 12 ] ; / /  2. Have a2 point at more memory 
for( int i = 0; i < 10; i++ ) / /  3. Copy the old data over 

a2 [ i ] = original[ i 1 ;  
delete [ ] original; / /  4. Recycle the original array 

Always expand the Figure D.5 shows the changes that result. A moment's thought should con- 
array a size that k vince you that this operation is expensive because we copy all the elements 
some multiplicative 
constant times as from original to a2. If, for instance, this array expansion is in response to 
large. Doubling is a reading input, expanding an array every time we read a few elements would 
good choice. be inefficient. Thus when array expansion is implemented, we always make 

it some multiplicative constant times as large. For instance, we might expand 
it to make it twice as large. In this way, when we expand the array from N 
items to 2N items, the cost of the N copies can be apportioned over the next 
N items that can be inserted in the array without an expansion. 

To make things more concrete, Figure D.6 shows a program that reads 
an unlimited number of integers from the standard input and stores the result 
in a dynamically expanding array. The function declaration for get ~ n t s  
tells us that it returns the address where the array will reside, and it sets the 
reference parameter i temsRead to indicate how many items were actually 
read. The & in the function declaration before i temsRead specifies that it is 
a reference to the actual parameter rather than a copy of it. Thus all changes 
in the formal parameter are reflected in the actual argument. 

At the start of getInts, itemsRead js set to 0, as is the initial 
arraysize. We repeatedly read new items at line 15. If the array is full, as 
indicated by a successful test at line 17, the array is expanded. Lines 19-23 
perform the array doubling. At line 19 we save a pointer to the currently 
allocated block of memory. We have to remember that the first time through 
the loop the pointer will be NULL. At line 20 we allocate a new block of 
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original 
(b) 

original 
(c 

original (4 

Figure D.5 Array expansion: (a) At the starting point, a2 points at 10 integers; 
(b) after step 1, original points at the 10 integers; (c) after steps 
2 and 3, a2 points at 12 integers, the first 10 of which are copied 
from original; and (d) after step 4, the 10 integers are freed. 

memory, roughly twice the size ofthe old. We add 1 so that the initial dou- 
bling converts a zero-sized array to an array of size I .  At line 24 we set the 
new array size. At line 26, the actual input item is assigned to the array, and 
the number of items read is incremented. When the input fails (for whatever 
reason), we merely return the pointer to the dynamically allocated memory. 
Note that 

we do not delete the array, and that 
the memory returned is somewhat larger than is actually needed, which 
can be easily fixed. 

The main routine calls get Ints, assigning the return value to a pointer. 



1 #include <iostream> 
2 #include <stdlib.h> 
3 using namespace std; 
4 
5 / /  Read an unlimited number of ints with no attempts at error 
6 / /  recovery; return a pointer to the data, and set itemsRead. 
7 int * getInts( int & itemsRead ) 

8 i 
9 int arraysize = 0; 

10 int inputVal; 
11 int *array = NULL; / /  Initialize to NULL pointer 
12 
13 itemsRead = 0; 
14 cout <i "Enter any number of integers: " ;  

15 while( cin >> inputVal ) 

16 ( 

17 if( itemsRead == arraysize ) 

18 { / /  Array doubling code 
19 int *original = array; 
20 array = new int[ arraysize * 2 + 1 I ;  
21 for( int i = 0; i < arraysize; i++ ) 

22 array [ i ] = original[ i ] ; 

23 delete [ ] original; / /  Safe if original is NULL 
24 arraysize = arraysize * 2 + 1; 
25 1 
26 array[ itemsRead++ ] = inputVal; 
27 1 
28 return array; 
29 1 
30 
31 int main( ) 

32 { 

33 int "array; 
34 int numItems; 
35 
36 array = getInts( numItems ) ;  

37 for( int i = 0; i < numItems; i++ ) 

38 cout << array [ i ] << endl; 
39 
40 return 0; 

41 } 

Figure D.6 Code for reading an unlimited number of ints and writing them out. 
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D.3 Pointer Arithmetic, Pointer Hopping, 
and Primitive lteration 

Many programmers spend lots of time attempting to hand-optimize their 
code. One common myth is that pointers can be used to access arrays more 
quickly than can the usual indexing method. That occasionally is true and 
sometimes leads to better or simpler code. However, in this section we show 
that this assertion is not universally true (and in fact is frequently false). This 
difference of opinion is interesting for two reasons. First, it illustrates that 
with modern compilers the speedups obtained by low-level optimizations 
often do not justify the effort put into them. Instead, we should concentrate 
on larger algorithmic optimization issues. Second, although the tricks that 
will be used reflect an old way of programming, that way is the basis for 
many constructs in the STL. So when we wonder why things in the STL are 
how they are, this section provides some of the answers. 

We begin by looking at how arithmetic applies to pointers. We have two 
issues to consider. First, in an expression such as *x+10 or *x++, is the 
operator (+ or ++) being applied to x or *x? The answer to this question is 
determined by normal precedence rules. In the first case 10 is added to *x, 
and in the second case the increment is applied to x (after the value of *x is 
used). The second issue, then, is to decide what incrementing or applying 
various operations to a pointer means. After considering this issue, we 
present an application that shows how pointer math is typically used and dis- 
cuss whether using it is a good idea. 

D.3.1 Implications of the Precedence of *, &, and [ 1 

The dereferencing operator * and the address-of operator & are grouped in a postfix operators 

class of prefix operators. These operators include the unary minus (-), the have higher 
precedence than 

not operator ( ! ), the bitwise complement operator (-), and the prefix incre- prefix operators. 
ment and decrement operators (++ and - -), as well as n e w ,  de le te ,  and 
sizeof. The prefix unary operators have higher precedence than almost all 
other operators; the exceptions are the scope operators and the postfix oper- 
ators, such as the postfix increment and decrement operators (++ and --), 
the function call operator ( ) , and the array access operator [ 1 .  Conse- 
quently, the only arithmetic operators that have higher precedence than a 
dereferencing operator are the postfix increment and decrement operators. In 
the following expressions, the operator is applied to the dereferenced value: 

*x + 5 / /  Adds 5 to *x 
*X == 0 / /  True if *X is 0 
*x / *Y / /  Divide *x by * y  



Because of Note that, because of precedence rules, *x++ is interpreted as * ( x + + ) ,  
precedence rules, not ( *x) ++. The of the array indexing operat& tells us that if x 
*x++ applies the ++ 
operator to x and is a pointer. the following operators are applied to the indexed value of x: 

then dereferences the 
original x. 5 + X [  0 I / /  Add x[Ol and 5 

0 == X[ 0 ] / /  True i f  x[O] i s  0 
++x[ 0 I / /  Increment x[O]. Same as ++*x (why?) 
x++[  0 1 / /  Same as *x++ (why?) 
x == &x[ 0 ] / /  Always true 

In the last example we reiterated that x always stores the memory location of 
x [ 0 I .  The precedence rules are convenient here because we do not need to 
use parentheses, as in & (x [ 0 ] ) .3  

D.3.2 What Pointer Arithmetic Means 

Suppose that x and y are pointer variables. Now that we have decided on 
precedence rules, we need to know their interpretation for arithmetic per- 
formed on pointers. For instance, what does multiply x by 2 mean? The 
answer in most cases is that arithmetic on pointers is totally meaningless and 
is therefore illegal. Most other languages allow only comparison. assign- 
ment, and dereferencing of pointers; C++ is somewhat more lenient. 

Looking at the various operators, we see that none of the multiplicative 
operators make sense. Therefore a pointer may not be involved in a multipli- 
cation. The dereferenced value can, of course, be multiplied, so what we are 
restricting is computations involving addresses. 

TWO pointers are Equality and logical operators all make sense for pointers, so they are 
equal if they both allowed and have obvious meanings. Two pointers are equal if they both 
point to NULL or they 
both point to the point to NULL or they both point to the same address. Assignment by = is 
same address. allowed, as we have shown, but *=, /=, and %= are disallowed. Therefore the 

questionable operators are the additive operators (including +=, -=, ++, and 
--) and the relational operators (<, <=, >=, and >). To make sense, all these 
operators need to be viewed in the context of an array. 

Figure D.7 shows an array a ,  a pointer ptr, and the assignment p t r = a .  

The diagram reinforces the idea that the value stored in a is just the memory 
location where the zeroth element of the array is stored and that elements of 
an array are guaranteed to be stored in consecutive and increasing memory 
locations. If a is an array of characters, a [ 1 1  is stored in memory location 

3. Appendix B provides a table of C++ operators and their precedences. 



Figure D.7 Pointer arithmetic: x=&a [ 3 I ; y=x+4 ; 

at1 because characters use 1 byte. Thus the expression ++ptr would 
increase p tr by I ,  equalling the memory location of a [ 1 ] . 

Therefore adding an integer to a pointer variable can make sense in an 
array of characters. If a was an array of 4-byte integers, adding I to ptr would 
make only partial sense under our current interpretation. The reason is that ptr 
would not actually be pointing at an integer but somewhere in the middle and 
would be misaligned, generally leading to a hardware fault. Because that inter- 
pretation would give erroneous results, in C++ we use the following interpreta- 
tion: ++ptr adds the size of the pointed at object to the address stored in ptr. 

This interpretation carries over to other pointer operations. The expres- 
sion x=&a [ 3 1 makes x point at a [ 3 ] . Parentheses are not needed, as men- 
tioned earlier. The expression y=x+4 makes y point at a [ 7  ] .  We could thus 
use a pointer to traverse an array instead of using the usual index iteration 
method. We discuss this technique in Sections D.3.3 and D.3.4. 

Although adding or subtracting an integer type from a pointer type makes 
sense, adding two pointers does not make sense. However, subtracting two 
pointers does make sense: y-x evaluates to 4 in the preceding example 
above (because subtraction is the inverse of addition). Thus pointers can be 
subtracted but not added. 

For two pointers x and y, x<y is true if the object that x is pointed at is at 
a lower address than the object that y is pointing at. If we assume that nei- 
ther is pointing at NULL. this expression is almost always meaningless unless 
both are pointing at elements in the same array. In that case xcy is true if x is 
pointing at a lower indexed element than y because, as we have indicated, 
the elements of an array are guaranteed to be stored in increasing and contig- 
uous parts of memory. Comparing the values of pointers that point into the 
same array is the only legitimate use of the relational operator on pointers; 
all other uses should be avoided. 

If p is a pointer and x 
is an integer type, 
g+x evaluates to an 
address g objects 
past x. This address 
is also the memory 
location of g [XI  . 

Do not use relational 
operators on pointers 
unless both pointers 
are pointing to parts 
of the same array. 
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To summarize, we have the following pointer operations: 

Pointers may be assigned, compared for equality (and inequality), 
and dereferenced in C++, as well as almost all other languages. The 
operators are =, ==, ! =, and *. 
We can apply the prefix or postfix increment operators to a pointer, 
add an integer, and subtract either an integer or pointer. The operators 
are ++, --, +, -, +=, and -=. 

We can apply relational operators to pointers, but the result makes 
sense only if the pointers point to parts of the same array or at least 
one pointer points to NULL. The operators are <, < =, >, and >=. 

We can test against NULL by applying the ! operator (because the 
NULL pointer has value 0). 
We can subscript and delete pointers via [ 1 and delete. 
We can apply trivial operators, such as & and sizeof, to find out 
information about the pointer (not the object it is pointing at). 
We can apply some other operators, such as ->. 

D.3.3 A Pointer-Hopping Example 

Figure D.8 illustrates how pointers can be used to traverse arrays. We have 
written two versions of strlen. Recall that a primitive string is simply an 
array of characters, with a null terminator signaling the end of the string (see 
Section D.1.3). The library routine strlen gives the length of a primitive 
string. 

In the first version, strlenl, we use the normal indexing mechanism 
to step through the array of characters. When the for loop ends, the value 
of i is the index of the null terminator. But because the array starts at 0, 
this value equals the length of the string and can thus be used as the return 
value at line 9. 

Pointers can be used The pointer-hopping version is s trlen2. At line 15, we declare a sec- 
. -  - 

to traverse arrays. ond pointer sp that is initialized to point at the start of the string. The cons t 
This is called pointer 
hopping. is necessary here because we have sp point where str, itself a const, 

points. We continually advance sp, breaking the loop only after it is pointing 
at the null terminator, which is written concisely at line 17. The value of 
*sp++ is the character that sp points at, and immediately after the test is 
completed, sp is advanced to point at the next character in the string. 

When the while loop terminates, sp is pointing at the position after the 
null terminator (because the ++ is applied even if the test indicates that a null 
terminator has been encountered). The length of the string is thus given by 
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1 / /  strlen implemented with usual indexing mechanism. 
2 int strlenl( const char str[ ] ) 

3 { 

4 int i; 
5 
6 for( i = 0; str[ i ] ! =  ' \ O 1 ;  i++ ) 

7 
8 
9 return i; 

10 1 
11 
12 / /  strlen implemented with pointer hopping. 
13 int strlen2( const char *str ) 

14 ( 
15 const char *sp = str; 
16 
17 while( *sp++ ! =  '\0' ) 
18 
19 
20 return sp - str - 1; 
21 1 

Figure D.8 The s t r l e n  routine coded two ways: (1) using indexing; and 
(2) using pointer hopping. 

the formula at line 20 as 1 less than the difference between the final and ini- 
tial positions of sp.4 

A cmcial observation with respect to the discussion of the STL in Chap- 
ter 7 is that, in s t r l e n l ,  i is used to iterate over the collection of charac- 
ters, and, in s t r l  en2,  sp  is used to iterate over the collection of characters. 

D.3.4 Is Pointer Hopping Worthwhile? 

Why might a pointer implementation be faster than an array implementa- 
tion? Let us consider a string of length 3. In array implementation we access 
thearray via s [ o ] ,  s [ 1 ] ,  s [ 2 ] ,  and s [ 3 ] . T h e n  s [ i ]  isaccessedby add- 
ing I to the previous value, i-1, and adding s and i to get the required 
memory location. In pointer implementation, s [ i ] is accessed by adding 1 

4. It is tempting to initialize sp to str - 1 and use a prefix ++ operator in an attempt to sim- 
plify the return statement. This behavior is undefined in C++ because a pointer must point 
at NULL, an object, or (if an array) part of the array or perhaps one cell following the end 
of the array. It may not point to the cell prior to the start of the array. The resulting code 
runs correctly on almost all platforms but is nonetheless in technical violation of C++ 
rules. 
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Pointer hopping used 
to be an important 
technique. Optimizing 
compilers have 
made it generally 
unnecessary. Stick to 
algorithmic issues for 
speed improvements 
and leave code 
generation to the 
compiler. 

A profiler gives 
information about 
where a program is 
spending most of its 
running time. 

to sp,  and we do not keep a counter i. Thus we save an addition for each 
character, costing only an extra two subtractions during the return statement. 

The next question is whether the trickier code is worth the time savings. 
The answer is that in most programs a few subroutines dominate the total 
running time. Historically, the use of trickier code for speed has been justi- 
fied only for those routines that actually account for a significant portion of 
the program's running time or in routines used in enough different programs 
to make the optimization worthwhile. Thus in the old days C programs that 
used pointer hopping judiciously had a large speed advantage over programs 
written in other high-level languages. However. good modern compilers can, 
in many cases, perform this optimization. Thus the use of pointers to 
traverse arrays helps some compilers, is neutral for others, or may even gen- 
erate slower code than the typical index addressing mechanism. 

The moral of the story is that, in many cases, the best approach is to 
leave minute coding details to the compiler and concentrate on the larger 
algorithmic issues and on writing the clearest code possible. Many systems 
have a profiler tool that allows you to decide where a program is spending 
most of its running time. This information will help you decide where to 
apply algorithmic improvements, so learning how to use the optimizer and 
profiler on your system is important.5 

5. But be warned of optimizer horror stories: some overly aggressive optimizers have bugs in 
them and actually break working code. 
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Common C++ Errors 

I .  Inthedeclaration i n t  *a = new int[lOO], the sizeof opera- 
tor gives a misleading result. The size of a equals s izeo f ( int * ) , 
and is typically four bytes. 

2. To define an array, the array size must be a compile-time constant 
expression. Some compilers relax this rule, but this relaxation is not 
portable. 

3. Two-dimensional arrays are indexed as a [ i I [ j I , not a [ i , j I . 
4. When an array is deleted, you must use delete [ I ,  not merely 

de 1 e t e. Use the following general rules: Anything allocated by 
new requires delete, anything allocated by new[ 1 requires 
delete [ I , and anything else does not require delete. 

5. Continuing the previous rule, the sequence int a [ 10 1 ; 
delete [ 1 a ; is almost certain to cause problems because a was 
not allocated by new [ I. 

On the Internet 

PointerHopping.cpp Shows the two strlen functions from Figure 
D.8. 

6 
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e lementAt member function, 647 
empty, 588,700 
encapsulation, 42, 86 
encoding, 455 
encryption, 289, 3 12 
end, 588,700 
end marker, 238, 258 
enqueue, 545-546,556 
enqueueing, 555 
enum trick for integer class constants, 7 1-72 
equivalence class, 846, 873 
equivalence relations, 845-846, 874 
erase, 591, 701 
Evaluator class, 424-426.429 
Event class, 479480  
event-driven simulation, 254,475485. 486 

basic ideas, 477-478 
example: modem bank simulation, 478485  
See also simulation 

event-node graph, 524, 527 
exception, 72-73, 86 
except ion, 120, 122, 126-1 28 
exogenous data, 29-30.33 
expl ic i t constructor. 46-47 
exponentiation, 285-287 
expression trees, 432435,435.6  12 
external path length, 660, 7 16 
external sorting, 778-785, 786 

algorithms, 778-780 
model for, 778 
multiway (or K-way) merge, 781-782 
polyphase merge, 782-783 
replacement selection, 783-785 
See also binary heap 

external tree node, 660 
eyeball, 505-506,509-5 1 1,516,520 

factorials, 280 
factory method, 176, 184 
false negatives, 377, 382 
false positives, 377, 382 
Fermat's Little Theorem, 378. 382 
fib, 277 
Fibonacci numbers, 276-278, 3 12 
file compression, 439-46 1 

bit-input and bit-output stream class, 446447  
character counting class, 447-450 
Compressor class, 457458  
Huffman's algorithm, 442-444 
Huf fmanTree class, 451-456 
implementation, 445461  
improving, 4 6 0 4 6  1 
ma in routine, 4 5 8 4 6 0  
prefix codes, 440442 
See also utilities 

file systems, 608-61 1 
find algorithm, 730 
f ind-i f algorithm, 242-243 
find operation, 575, 577,642, 648, 742, 858, 862 

analysis of, 733-734 
find public member function, 647 
f indKth, 652-653,655 
f indMax operation, 157-1 61, 642, 649 
f indMin, 642,649, 761, 833 
f indPos, 741,744 
f indprevious routine, 577 
first childlnext sibling method, 607, 636 
first routine. 635 
first-class objects, 4-6, 33 
for loop, 7, 100 
forest, 853, 858-861, 874 
forward iterator, 239, 258 
fractal star, 282-284 
f reeModems, 482 
friends, 67-70. 86, 570 

and inheritance, 146- 147 
full tree, 44 1 ,  466 
full-period linear congruential generator, 369, 382 
function objects (functor), 156- 161, 184, 240-243 
function template. See templates 
functor. See function objects 



games, 389408 
computer chess, 404405  
tic-tac-toe, 395404  
word search puzzles, 389-395 

garbage collection, 2 1-22 
Gaussian distribution, 371 
gcd. See greatest common divisor 
generators, 368-370 
getFront routine, 547 
getIterator, 171-172, 178-179 
getNextOpenClose routine, 4 17 
getToken routine, 428 
getTop routine, 430 
getvalue routine, 429 
global constants, 13 
Graph class, 493, 498499  
graphs and paths, 489-533 

Bellman-Ford algorithm, 5 16 
C++ implementation, 508, 5 13-5 14, 522 
definitions, 4 8 9 4 9  1 
Dijkstra's algorithm, 508-5 15 
negative-weighted, single-source, shortest-path 

problem, 5 14-5 17 
path problems in acyclic graphs, 5 17-526 
positive-weighted, shortest-path problem, 

508-5 14 
representation, 49 1-503 
theorem, 5 1 1 
theory of the acyclic shortest-path algorithm, 

520-52 1 
unweighted shortest-path problem, 503-508 
weighted single-source, shortest-path problem 

for acyclic graphs, 5 17-520 
greatest common divisor (gcd), 287-288, 3 12 
greedy algorithm, 304, 3 12 
growth functions, 209 

hand1 eReorient routine, 682 
harmonic number, 2 13, 22 1 
HAS-A relationship, 120, 149 
hash function. See hash tables 
hash tables, 725-754 

applications, 747 

basic ideas, 725-727 
hash function, 727-729, 748 
quadratic probing, 735-745 
separate chaining hashing, 746, 749 
theorems, 734, 737-738 
versus binary search trees, 746-747 

hashing, 725, 748 
head, 580 
header, 680 
header nodes, 567-568, 597 
heap-order property, 758, 758-759, 786 
heapsort, 773-777,786 
heapsort routine, 777 
heavy node, 826 
height of a node, 606, 62 1, 636 
height routine, 620 
hiding, 144-1 45 
hierarchical file systems, 608-609 
high precedence operator, 424 
horizontal link, 685, 7 16 
Huffman coding tree, 6 12 
Huffman's algorithm, 442444, 466 
Huff manTree class, 45 1-456 

See ulso file compression 

See also input and output 
ibs tream class interface, 446 
idioms, 68-72 

avoiding friends, 70 
enum trick for integer class constants, 7 1-72 
static class members, 7 1 

i £/else test, 680 
implementation, 48, 86 
implicit representation, 758, 786 
implicit type conversion, 63, 86 
incomplete class declaration, 173, 184, 57 1, 597 
indegree, 5 19, 527 
index range checking, 6 
indexes, 14, A-28 
indexing operators, 79 
indigenous data, 29-30, 33 
indirect sorting. See sorting algorithms 
induction, 267-269, 3 12 



inductive hypothesis, 268, 3 13 
infix expressions, 420,422425,432,435 
information hiding, 42, 86 
inheritance, 42, 1 19-154 

basics of. 123- 136 
definition of. 1 19-1 23 
example: expanding the Shape class, 136-142 
iterators and factories. 174- 179 
multiple, 147- 149 
private. 123, 146 
public, 123 
tricky C++ details, 142- 147 

initializer list, 62-63, 86 
InOrder iterator class, 63 1 
inorder tree traversals, 433, 622-623. 630. 636 
input errors, A- I 0- I 1 
input and output (110). A-9-1 5 

one-character-at-a-time, A- 12- 15 
input and output stream operators, 86 
insert, 575-576,582,648,650,655-656.681, 

692, 701,742,762-763,830, 834 
insertion, 670-673, 7 12 

and hash tables, 730, 733-737 
insertion in a linked list, 566, 580-58 1, 590 
insertion sort, 100-102, 1 15, 324 
instantiation, 98, 102, 1 15 
int, 10, 12, 15-17 
IntCell class. See class syntax 
interface, 48, 86 
internal path length. 658-659, 716 
internal sorting, 773-777 

See also binary heap 
interpolation search, 2 17-2 18, 22 1 
intializer lists, 46 
inversion, 324, 356 
IS-A relationship, 1 19, 1 2 1 ,  122. 150 
isActive, 742 
isEmpty, 540,545,761 
iterator classes, 247, 569-570, 598 

and tree traversals, 622-633 
iterators, 170-179, 185, 238-240, 258, 575 

design, 17 1-1 74 
inheritance-based iterators and factories, 

174- 1 79 
interface for two STL 1 is t class, 592-593 

Josephus problem. 47 1476 ,486  
an efficient algorithm. 473-475 
simple solution, 473 
See also simulation 

K-way merge. See multiway merge 
Kruskal's algorithm, 85 1-852. 874 

latest completion time, 525-526 
lastNode variable, 692 
lazy deletion, 685, 7 16, 730, 748 
leaf, 279, 3 13,606,636, 71 1-7 14 
leaking, 567, 6 17 
length. 14 
less function template. 241 
level of a node, 685,7 16 
level-order traversals, 630, 633-635, 636 
Levelorder class, 635 
lexical analysis, 41 1 .  435 
lhs (left-hand side), 29, 33, A-33 
library routines, 6, A-23-25 
light node, 826 
linear algorithm, 194, 196, 204-206 
linear congruential generator, 368, 382 
linear function, 194 
linear maximum contiguous subsequence sum 

algorithm, 207 
linear probing, 729-734, 748 

analysis of the find operation, 733-734 
load factor: 73 1-732 
naive analysis of. 73 1 
primary clustering, 732-733 
theorems, 73 1-732. 734 
See also hash tables 

linear-time algorithm, 2 1 1, 22 1 
linear-time heap construction, 766-77 1 
linked list versus array implementations, 557-558 
linked lists, 30-32, 33, 247-248, 258, 553-557, 

565-603 
basic ideas. 565-570 
C++ implementation. 570-579 
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circularly linked lists, 581. 597 
doubly linked lists, 579-58 1, 597 
header nodes, 567-569 
implementing the STL 1 is t class, 582-597 
iterator classes, 569-570 
sorted, 582, 598 
See also noncontiguous lists 

linked lists implementations, 548-557 
queues, 553-557 
stacks, 548-552 

1 is t class, 247-248, 258,559 
1 is t class interface, 585 
list versus vector, 248 
ListItr, 597 
Lis tNode, 549,55 1-552,584 
Little-Oh, 209, 222 
LList class, 573-576, 582 
LList copy routines, 578 
LLis tI tr class, 572 
LLis tNode, 57 1,577 
load factor, 73 1-732, 733, 748 
logarithms, 2 1 1-2 14, 222 
lower-bound function template, 243-244 
lower-bound proof, 326 
lower-bound for sorting, 349-35 1 ,  356 

M-ary search tree, 709-7 10, 7 16, 828 
M-way branching, 709 
main, 172, 177,458,460,485 

simple, 502 
makeEmpty, 540,547, 553,577,617,619,741, 

761, 818 
manipulators, A- 1 1 - 12 
map class, 707, 708-709 
maps, 25 1-252,258,493 
marking argument, 769-771 
mathematical analysis, 201 
matrix, 14,33 
matrix class template. See templates 
max heap, 759,775-776,786 
maximum contiguous subsequence sum problem, 

199-206,293-296 
maze generation, 847-850 
median-of-three partitioning, 341-342, 345, 356 
member, 26,33 

member function types, 136 
member functions (methods), 43, 86 
member templates, 168, 185 
memory 

contiguous, 8 
dynamic management (allocation), 20-23 

memory leaks, 2 1-22, 33, 61 7 
memory reclamation, A-37 
MemoryCell, 170-171 
MemoryCel 1 template, 103-1 07 
merge, 61 6-61 8,773 
mergesort, 330-334, 356 
merging priority queues, 823-843 

pairing heaps, 828-840 
skew heaps, 823-828 
theorem, 827-828 

methods. See member functions 
min, 198 
minimax strategy, 308-309, 3 13, 395, 405 
minimum element in an array, 198 
minimum spanning trees, 850-853, 874 
minimum Steiner tree problem, 85 1 
modem bank simulation example, 478-485 
ModemS im class, 48 1 
ModemS im constructor, 48 1 
modular arithmetic, 285 
modular exponentiation, 285-287 
multidimensional arrays. 14, 33, A-31 
multiple inheritance, 147- 149, 150 
multiple template parameters, 1 13 

See also templates 
multiplicative inverse, 288-290, 3 13 
multiway (or K-way) merge, 78 1-782, 786 
mutator, 47, 86 
Myvector, 172, 174-1 76 

namespaces, A- I 5- I 6 
nearest common ancestor (NCA) problem, 

853-857,874 
negative exponential distribution, 373, 382 
negative-cost cycle, 5 16, 528 
negative-weighted, single-source, shortest-path 

problem. See graphs and paths 
nested classes in templates, 1 14- 1 15 
new operator, 2 I ,  33, A-35-37 



nextcall function. 482 
nextchar routine, 414 
node printing, 623 
node splitting. 7 12-7 13 
nodes, 565-569.826 
noncontiguous lists. 30-32 

See also linked lists, 30-32 
nonmember function, 570 
nonvirtual function, 136. 150 
normal distribution, 37 1 
not operator ( ! ). A-41 
NULL, 19.34.55 1.580.6 16-6 17,6 19.676-677. 

A-42 
null terminator. 74. 86, A-32 
nu1 lNode, 677.680.692 
number theory. 284 

object, 41, 87 
Object. 739 
object-oriented programming. 41-43, 87 

and class. 4 1. 43-45 
definition of object, 41-42 
encapsulation, 42 
information hiding. 42 
inheritance mechanism. 42-43 
methods. 43 
object as atomic unit. 42 
polymorphism, 43 
template mechanism, 42 
See also class: class syntax: idioms 

objects and classes, 41-96 
additional C++ class features. 57-68 
basic class syntax, 43-57 
calls and defaults. 8 1-84 
common idioms, 68-72 
composition, 84 
definition of object-oriented programming. 

41-43 
exceptions. 72-73 
string class. 73-8 1 

Observer abstract class, 180 
observer pattern. 179-1 83, 185 
obstream class, 447.449 
off-by-one errors, 7 

offline algorithm. 847. 874 
offline nearest common ancestor problem. 853 
online algorithm. 847. 874 
openF i le routine. 393 
opera tor * implementations. 595 
operator++. 596 
operator<, 156-158 
operator ( ) .  160-161 
operator=, 52. 131.549.578 
operator=, See also copy assignment operator 
operator= templates. 98, 107 
operator [I .  112.709 
operator overloading. 57. 64-67, 87 
operator precedence parsing. 236. 258,421-422, 

435 
operator stack, 422-423 
operator- -, 596 
optimization. 287 
order statistics. 652-657 
overflow, 369,728 
overloading. 129. 159 

pair. 179, 185 
pair class. 1 79- 180 
pairing heaps. 828-840 

application: Dijkstra's shortest weighted path 
algorithm. 836-840 

implementation of. 830-836 
operations. 828-830 
See also merging priority queues 

Pair ingHeap class, 832-833-835 
parameter-passing mechanisms, 1 1 - 1 3. 24. 27 

call by constant reference. 1 2-1 3 
call by reference. 12- 13 
call by values. 12- 1 3 
example of. 28 

parents, 605-606. 636 
parsing. 462 
partial overriding. 128. 150 
partitioning. 335. 341-343. 356 
path compression, 862-863, 865-873. 874 
path length. 490. 528. 605 
paths. See graphs and paths 
percolateDown, 765-768 



percolate down. 764-766. 786 
percolate up. 762. 786 
period. 369, 382 
permutations, 365-366, 373-375. 382 
permute. 374 
pivot, 335, 357 

keys equal to, 344 
picking. 340-342 

pointer arithmetic, A-42-44 
Pointer class. 163 
pointer syntax. 15-20 
pointer trouble, 18 
pointer versus reference types, 24-26 
pointer-hopping. A-46 
pointers, 3-4. 8, 34 
NULL. 19.34 
for sorting, 162- 164 
to structures, 28 
See also arrays, pointers. and strings 

Poisson distribution, 37 1-373, 382 
See also randomization 

polymorphism, 43, 122. 146-1 47. 150 
polyphase merge, 782-783, 786 
pop, 538,552,774 
pop-back, 537 
positive-cost cycle. 524, 528 
positive-weighted, shortest-path problem. See 

graphs and paths 
postfix expressions, 420-424.420-425.435 
postfix machines, 42 1,430,435 
postfix operators, A-4 1 
Pos tOrder class, 627-629 
postorder traversal, 853 
postorder tree traversals, 434,6 10,623-629. 636 
potential function, 803, 819, 826 
precedence rules. 19.2 1 
precedence tables. 430,432,436 
predicate, 24 1. 258 
prefix codes, 440-442.466 
prefix increment (++), A-4 1 
prefix operators. A-4 1 
prefix testing, 39 1 
PreOrder class. 632-633 
preorder tree traversal. 6 10. 622-623, 630, 636 
preprocessor commands. 49 

prev data member. 496. 830 
primality testing, 378-380 
primary clustering. 732-733. 738, 748 
primitive arrays. 5 

of constants. 13 
primitive string, 5, 73, 87 
primitive types. 5 1 
print Path routine. 498 
priority queues. 253-256.258.484. 755-792 

See also binary heap: merging priority queues 
priori ty-queue class. 77 1-773 
private inheritance, 123. 146, 150 
private member. 44-45. 87 
private routines. 704 
processReques t. 503 
processToken routine. 433 
program testing, 365 
programming to an interface, 174, 185 
proper ancestors, 606. 636 
proper descendants, 606. 636 
protected class member. 124. 150 
pseudocode, 665.667.669-670. 855-856 
pseudorandom numbers. 366. 382 
public class. 645 
public inheritance, 123, 150 
public key cryptography. 292. 3 13 
public member, 44, 87 
public routines. 701 
pure virtual function, 135- 136. 150 
push. 538.540.552,774 
push-back. 1 I 
Puzzle class. 39 1-395 

quadratic maximum contiguous subsequence sum 
algorithm. 204 

quadratic probing, 735-745. 749 
analysis of. 745 
C++ implementation. 739-745 
theorems. 737-738 
See also hash tables 

quadratric algorithm, 196-1 97 
Queue class. 544-547.553-557.560 
queues. 236-237, 249,258.541-547.553-557 

double-ended. 558-559 



priority, 253-256, 258,484, 5 13, 52 1 
See also stacks and queues; merging priority 

queues 
quick-find algorithm, 857-858, 874 
quick-union algorithm, 858-863, 874 
quickselect, 348-349, 357, 376 
quicksort, 334-348, 357 

algorithm, 335-337 
analysis of. 337-340 
C++ quicksort routine, 346-348 
keys equal to the pivot, 344 
median-of-three partitioning, 345 
partitioning strategy, 342-343 
picking the pivot, 340-342 
small arrays, 346 

random access iterator, 240,258 
random permutation, 373-375. 382 
randomization, 365-386 

and algorithms, 375-378, 382 
generating a random permutation, 373-375 
generators. 366-37 1 
the need for, 365-366 
nonuniform random numbers, 371-373 
primality testing, 378-381 
theorem, 378-379 

randomized algorithms, 375-378 
randomized primality testing, 378-380 
rank of a node, 804, 8 19 
ranks, 863, 874 
Rational class. 58-67 
readpuz z le routine, 394 
readwords routine, 393 
reclairnemory, 679 
Rectangle class, 157 
recursion, 265-3 19, 609 

background: proofs by mathematical induction, 
267-269 

backtracking, 308-3 10 
basic, 269-284 
binary search, 280-28 1 
computation of the RSA constants, 29 1 
definition of, 265-266 
divide-and-conquer algorithms, 292-303 

drawing a ruler, 28 1-282 
dynamic programming, 303-308 
encryption, 289-290 
encryption and decryption algorithms, 29 1-292 
examples, 279-284 
factorials, 280 
and Fibonacci numbers. 276-278 
fractal star, 282-284 
greatest common divisor (gcd), 287-288 
how it works, 275-276 
modular arithmetic, 285 
modular exponentiation, 285-287 
multiplicative inverse, 288-290 
numerical applications, 284-292 
printing numbers in any base, 271-273 
RSA cryptosystem, 289-292 
rules of, 265,270, 275, 278, 3 10, 3 12, 3 13 
theorems, 267-269, 274,298-303 
too much recursion, 276-278 
and trees, 278-279, 61 9-62 1 
why it works, 274-275 

recursive function, 265, 269, 3 13 
recursive routine, 501 
red-black trees, 670-685, 7 16 

bottom-up insertion, 672-674 
C++ implementation, 676-680 
top-down, 674-675 
top-down deletion, 680-685 
See also binary search trees 

RedBlackNode class, 677 
RedBlackTree class, 678-681 
reference parameter, 24 
reference type. 24, 34 
reference variables, 24-26 
reference versus pointer types, 24-26 
refutation, 397,405 
rehash, 743 
relation, 845, 874 
remove, 643,652,655,742 
removeMin, 65 1,656-657 
repeated doubling principle, 2 12-2 13, 222 
repeated halving principle, 2 13, 222 
replacement selection, 783-785, 786 
reserved word t ypename, I 13-1 14 
retreat, 579 



rhs (right-hand side), 29, 33, A-33 
root. 616-617,645 
rotate, 680 
rotate-to-root strategy, 798-799, 819 
rotation, 664-670, 672-675, 683-684 
roving eyeball, 505-506 
RSA cryptosystem, 289-292 

computation of. 29 1 
encryption and decryption algorithms, 29 1-292 

rules 
Big-Oh, 206-2 1 1 
inconsistent, 1 14 
visibility, 124- 125 

run, 779, 786 
run-time errors. 23 
running times for algorithms, 198-199 
running times of graph algorithms, 526 
runsim function, 482 

scope operator : : , 50, 87 
scratch variable, 517 
search trees versus splay trees, 8 18-8 19 
searches, 2 14-2 1 9 

See also static searching problem 
second-class objects, 4-6 
secondary clustering, 745,749 
seed, 369, 382 
selection, 348-349, 357 
self-adjustment, 795-799 
separate chaining hashing. See hash tables 
sequences. 248 
sequential files, A- 13 
sequential search, 2 14-2 15, 222 
set class, 693-706 

advancing, 705 
one-line routines, 706 
set: : const-iterator, 698 

sets, 249-25 1 ,  258 
shallow copy, 29-30, 34 
Shape class, 134-142 
Shellsort, 326-330, 357 
siblings, 606, 636, 673 
signature, 5 1 ,  87 
simple path, 490, 528 

simple tree traversals, 622 
simulation, 365,47 1 4 8 8  

basic routine. 483 
event-driven, 475485  
the Josephus problem, 47 1 4 7 5  

single rotation, 664, 7 16 
single search, 396 
single-source algorithms. 496. 528 
singly linked list, 565 
size, 11,588, 700 
size data member, 653 
size function, 7, 6 1 1 
size of a node, 606, 636 
s i z e routine, 620 
skew, 687-694, 7 16 
skew heaps, 823-828,840 

analysis of, 826-828 
and merging, 823-824 
a simple modification, 825-826 
simplistic merging of heap-ordered trees, 824 
See also merging priority queues 

skipcomment routine, 4 15 
s kipQuo t e routine, 4 16 
slack time, 525.528 
slicing. 147, 150 
smart pointer class, 163, 185 
smart union algorithms, 860-86 1 
solvePuzz le routine, 395 
sorted linked lists. See linked lists 
Sort edLLi s t class, 582-583 
sorting. 244-245,773-785 
sorting algorithms, 32 1-363 

analysis of the insertion sort and other simple 
sorts, 324-326 

importance of. 322 
indirect, 352-355 
a lower bound for sorting. 349-35 1 
mergesort, 330-334 
preliminaries, 323 
quickselect, 348-349 
quicksort. 334-348 
Shellsort, 326-330 
theorems. 325-326,35 1 

sorting funtion template. See templates 
spanning tree, 850, 874 



sparse graph, 49 1,527 
splay trees, 795-822 

analysis of bottom-up splaying, 803-809 
basic bottom-up, 799-802, 8 19 
basic operations, 802-803 
comparison of with other search trees, 8 18-8 19 
implementation of top-down, 8 12-8 I 8 
self-adjustment and amortized analysis. 

795-799 
theorems, 798-799,804-809 
top-down, 809-8 12,8 19 

splaying, 799, 8 19 
See also splay trees 

SplayTree class, 814-816 
split, 687-694,716 
stack class, 539-541,548-552,559 
stacks, 233-236,249,258,538-541,548-552,622 

and computer language, 235-236 
stacks and compilers, 409-438 

balanced-symbol checker, 409-4 19 
a simple calculator, 420-435 

stacks and queues, 537-563 
array versus linked list, 557-558 
double-ended queue (deque), 558-559 
dynamic array implementations, 537-547 
linked list implementations, 548-557 
STL stack and queue adapters, 558 

stale pointers, 22, 34 
Standard Template Library (STL), 5,6, 14, 

23 1-264 
binary search, 243-244 
containers, 237-238 
data structures, 231-233 
function objects, 240-243 
iterators, 238-240 
maps, 25 1-252 
priority queues, 253-256 
queues, 236-237,249 
sequences and linked lists, 247-249 
sets, 249-25 1 
sorting, 244-245 
stack and queue adapters, 558 
stacks, 233-236, 249 
vector with an iterator, 245-246 

state machine, 414,436 

static binding of parameters, 142-1 43 
static bindingloverload, 129, 150 
static class member, 7 1, 87 
static members in class templates, 1 15 
static search, 222 
static searching problem, 2 14-2 18 

binary search, 2 15-2 17 
interpolation search, 2 17-2 18 
sequential search, 2 14-2 15 

step-by-step traversals, 624 
STL 1 is t class. See linked lists 
STL pr iori ty-queue implementation. See 

binary heap 
STL. See Standard Template Library 
S tNode, 627 
Storagecell, 170 
streams hierarchy, 120-1 2 1 
string, 5-6, 13,21,34,463 

automatic, 2 1 
illustration of, 15 
Standard Library, 14- 15 

string class, 81 
string constant, A-33-34 
string streams, A- 13-1 5 
structures, 26-28, 34 

pointers to, 28 
Sub j ect class, 180-3 8 1 
subquadratic algorithm, 208, 222 
subsequences, 199-206,207,2 10 
superclass, 122 
swap template, 98-99 
symbol table. 747 
symmetry, 580, 666 

tablesize, 729 
tail, 580 
telescoping sum, 300, 3 13 
template-matching algorithms, 1 14 
templates, 97-1 18, 1 15 

bugs associated with, 1 14-1 15 
class, 103-1 10 
definition of, 97-98 
fancy, 1 1 2-1 14 
function, 98-99 



member, 168 
sorting function, 100-1 03 
swap, 98-99 
templates of templates: a matrix clas,~, 

111-1 12 
terminal position, 395,404, 405 
theorems 

algorithm analysis, 202, 205-206, 2 12-2 14 
binary heap, 769 
binary search trees, 659-660, 663 
disjoint set class, 866-867, 870-871- 
graphs and paths, 5 1 1 
hash tables, 731-732.734. 737-738 
merging priority queues, 827-81-8 
randomization, 378-379 
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