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Preface

Our object in writing this book is to present the main results of the mod-
ern theory of multivariate statistics to an audience of advanced students
who would appreciate a concise and mathematically rigorous treatment of
that material. It is intended for use as a textbook by students taking a
first graduate course in the subject, as well as for the general reference of
interested research workers who will find, in a readable form, developments
from recently published work on certain broad topics not otherwise easily
accessible, as, for instance, robust inference (using adjusted likelihood ratio
tests) and the use of the bootstrap in a multivariate setting. The references
contains over 150 entries post-1982. The main development of the text is
supplemented by over 135 problems, most of which are original with the
authors.

A minimum background expected of the reader would include at least
two courses in mathematical statistics, and certainly some exposure to the
calculus of several variables together with the descriptive geometry of linear
algebra. Our book is, nevertheless, in most respects entirely self-contained,
although a definite need for genuine fluency in general mathematics should
not be underestimated. The pace is brisk and demanding, requiring an in-
tense level of active participation in every discussion. The emphasis is on
rigorous proof and derivation. The interested reader would profit greatly, of
course, from previous exposure to a wide variety of statistically motivating
material as well, and a solid background in statistics at the undergraduate
level would obviously contribute enormously to a general sense of famil-
iarity and provide some extra degree of comfort in dealing with the kinds
of challenges and difficulties to be faced in the relatively advanced work
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of the sort with which our book deals. In this connection, a specific intro-
duction offering comprehensive overviews of the fundamental multivariate
structures and techniques would be well advised. The textbook A First
Course in Multivariate Statistics by Flury (1997), published by Springer-
Verlag, provides such background insight and general description without
getting much involved in the “nasty” details of analysis and construction.
This would constitute an excellent supplementary source. Our book is in
most ways thoroughly orthodox, but in several ways novel and unique.

In Chapter 1 we offer a brief account of the prerequisite linear algebra
as it will be applied in the subsequent development. Some of the treatment
is peculiar to the usages of multivariate statistics and to this extent may
seem unfamiliar.

Chapter 2 presents in review, the requisite concepts, structures, and
devices from probability theory that will be used in the sequel. The ap-
proach taken in the following chapters rests heavily on the assumption that
this basic material is well understood, particularly that which deals with
equality-in-distribution and the Cramér-Wold theorem, to be used with
unprecedented vigor in the derivation of the main distributional results in
Chapters 4 through 8. In this way, our approach to multivariate theory
is much more structural and directly algebraic than is perhaps traditional,
tied in this fashion much more immediately to the way in which the various
distributions arise either in nature or may be generated in simulation. We
hope that readers will find the approach refreshing, and perhaps even a bit
liberating, particularly those saturated in a lifetime of matrix derivatives
and jacobians.

As a textbook, the first eight chapters should provide a more than ade-
quate amount of material for coverage in one semester (13 weeks). These
eight chapters, proceeding from a thorough discussion of the normal dis-
tribution and multivariate sampling in general, deal in random matrices,
Wishart’s distribution, and Hotelling’s T 2, to culminate in the standard
theory of estimation and the testing of means and variances.

The remaining six chapters treat of more specialized topics than it might
perhaps be wise to attempt in a simple introduction, but would easily be
accessible to those already versed in the basics. With such an audience in
mind, we have included detailed chapters on multivariate regression, prin-
cipal components, and canonical correlations, each of which should be of
interest to anyone pursuing further study. The last three chapters, dealing,
in turn, with asymptotic expansion, robustness, and the bootstrap, discuss
concepts that are of current interest for active research and take the reader
(gently) into territory not altogether perfectly charted. This should serve
to draw one (gracefully) into the literature.

The authors would like to express their most heartfelt thanks to everyone
who has helped with feedback, criticism, comment, and discussion in the
preparation of this manuscript. The first author would like especially to
convey his deepest respect and gratitude to his teachers, Muni Srivastava
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of the University of Toronto and Takeaki Kariya of Hitotsubashi University,
who gave their unstinting support and encouragement during and after his
graduate studies. The second author is very grateful for many discussions
with Philip McDunnough of the University of Toronto. We are indebted
to Nariaki Sugiura for his kind help concerning the application of Sug-
iura’s Lemma and to Rudy Beran for insightful comments, which helped
to improve the presentation. Eric Marchand pointed out some errors in
the literature about the asymptotic moments in Section 8.4.1. We would
like to thank the graduate students at McGill University and Université
de Montréal, Gulhan Alpargu, Diego Clonda, Isabelle Marchand, Philippe
St-Jean, Gueye N’deye Rokhaya, Thomas Tolnai and Hassan Younes, who
helped improve the presentation by their careful reading and problem solv-
ing. Special thanks go to Pierre Duchesne who, as part of his Master
Memoir, wrote and tested the S-Plus function for the calculation of the
robust S estimate in Appendix C.

M. Bilodeau
D. Brenner
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1
Linear algebra

1.1 Introduction

Multivariate analysis deals with issues related to the observations of many,
usually correlated, variables on units of a selected random sample. These
units can be of any nature such as persons, cars, cities, etc. The observa-
tions are gathered as vectors; for each selected unit corresponds a vector
of observed variables. An understanding of vectors, matrices, and, more
generally, linear algebra is thus fundamental to the study of multivariate
analysis. Chapter 1 represents our selection of several important results
on linear algebra. They will facilitate a great many of the concepts in
multivariate analysis. A useful reference for linear algebra is Strang (1980).

1.2 Vectors and matrices

To express the dependence of the x ∈ R
n on its coordinates, we may write

any of

x = (xi, i = 1, . . . , n) = (xi) =




x1
...

xn


 .

In this manner, x is envisaged as a “column” vector. The transpose of x is
the “row” vector x′ ∈ Rn

x′ = (xi)
′ = (x1, . . . , xn) .
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An m × n matrix A ∈ R
m
n may also be denoted in various ways:

A = (aij , i = 1, . . . , m, j = 1, . . . , n) = (aij) =




a11 · · · a1n
...

. . .
...

am1 · · · amn


 .

The transpose of A is the n × m matrix A′ ∈ R
n
m:

A′ = (aij)
′ = (aji) =




a11 · · · am1
...

. . .
...

a1n · · · amn


 .

A square matrix S ∈ R
n
n satisfying S = S′ is termed symmetric. The

product of the m× n matrix A by the n× p matrix B is the m× p matrix
C = AB for which

cij =
n∑

k=1

aikbkj .

The trace of A ∈ R
n
n is tr A =

∑n
i=1 aii and one verifies that for A ∈ R

m
n

and B ∈ R
n
m, tr AB = tr BA.

In particular, row vectors and column vectors are themselves matrices,
so that for x, y ∈ R

n, we have the scalar result

x′y =
n∑

i=1

xiyi = y′x.

This provides the standard inner product, 〈x,y〉 = x′y, in R
n with the

associated “euclidian norm” (length or modulus)

|x| = 〈x,x〉1/2 =

(
n∑

i=1

x2
i

)1/2

.

The Cauchy-Schwarz inequality is now proved.

Proposition 1.1 |〈x,y〉| ≤ |x| |y|, ∀x,y ∈ R
n, with equality if and only

if (iff) x = λy for some λ ∈ R.

Proof. If x = λy, for some λ ∈ R, the equality clearly holds. If not,
0 < |x − λy|2 = |x|2 − 2λ〈x,y〉 + λ2|y|2, ∀λ ∈ R; thus, the discriminant of
the quadratic polynomial must satisfy 4〈x,y〉2 − 4|x|2|y|2 < 0. �

The cosine of the angle θ between the vectors x �= 0 and y �= 0 is just

cos(θ) =
〈x,y〉
|x| |y| .

Orthogonality is another associated concept. Two vectors x and y in R
n

will be said to be orthogonal iff 〈x,y〉 = 0. In contrast, the outer (or
tensor) product of x and y is an n × n matrix

xy′ = (xiyj)



1.3. Image space and kernel 3

and this product is not commutative.
The concept of orthonormal basis plays a major role in linear algebra. A

set {vi} of vectors in R
n is orthonormal if

v′
ivj = δij =

{
0, i �= j
1, i = j.

The symbol δij is referred to as the Kronecker delta. The Gram-Schmidt
orthogonalization method gives a construction of an orthonormal basis from
an arbitrary basis.

Proposition 1.2 Let {v1, . . . ,vn} be a basis of R
n. Define

u1 = v1/|v1|,
ui = wi/|wi|,

where wi = vi − ∑i−1
j=1(v

′
iuj)uj, i = 2, . . . , n. Then, {u1, . . . ,un} is an

orthonormal basis.

1.3 Image space and kernel

Now, a matrix may equally well be recognized as a function either of its
column vectors or its row vectors:

A = (a1, . . . ,an) =




g′
1
...

g′
m




for aj ∈ R
m, j = 1, . . . , n or gi ∈ R

n, i = 1, . . . , m. If we then write
B = (b1, . . . ,bp) with bj ∈ R

n, j = 1, . . . , p, we find that

AB = (Ab1, . . . ,Abp) = (g′
ibj) .

In particular, for x ∈ R
n, we have expressly that

Ax = (a1, . . . ,an)




x1
...

xn


 =

n∑
i=1

xiai (1.1)

or

Ax =




g′
1
...

g′
m


x =




g′
1x
...

g′
mx


 . (1.2)

The orthogonal complement of a subspace V ⊂ R
n is, by definition, the

subspace

V⊥ = {y ∈ R
n : y ⊥ x, ∀x ∈ V}.
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Expression (1.1) identifies the image space of A, Im A = {Ax : x ∈ R
n},

with the linear span of its column vectors and the expression (1.2) reveals
the kernel, ker A = {x ∈ R

n : Ax = 0}, to be the orthogonal complement
of the row space, equivalently ker A = (Im A′)⊥. The dimension of the
subspace Im A is called the rank of A and satisfies rank A = rank A′,
whereas the dimension of ker A is called the nullity of A. They are related
through the following simple relation:

Proposition 1.3 For any A ∈ R
m
n , n = nullity A + rank A.

Proof. Let {v1, . . . ,vν} be a basis of ker A and extend it to a basis

{v1, . . . ,vν ,vν+1, . . . ,vn}
of R

n. One can easily check {Avν+1, . . . ,Avn} is a basis of Im A. Thus,
n = nullity A + rank A. �

1.4 Nonsingular matrices and determinants

We recall some basic facts about nonsingular (one-to-one) linear transfor-
mations and determinants.

By writing A ∈ R
n
n in terms of its column vectors A = (a1, . . . ,an) with

aj ∈ R
n, j = 1, . . . , n, it is clear that

A is one-to-one ⇐⇒ a1, . . . ,an is a basis ⇐⇒ ker A = {0}
and also from the simple relation n = nullity A + rank A,

A is one-to-one ⇐⇒ A is one-to-one and onto.

These are all equivalent ways of saying A has an inverse or that A is non-
singular. Denote by σ(1), . . . , σ(n) a permutation of 1, . . . , n and by n(σ)
its parity. Let Sn be the group of all the n! permutations. The determinant
is, by definition, the unique function det : R

n
n → R, denoted |A| = det(A),

that is,

(i) multilinear: linear in each of a1, . . . ,an separately

(ii) alternating:
∣∣(aσ(1), . . . ,aσ(n)

)∣∣ = (−1)n(σ) |(a1, . . . ,an)|
(iii) normed: |I| = 1.

This produces the formula

|A| =
∑

σ∈Sn

(−1)n(σ)a1σ(1) · · · anσ(n)

by which one verifies

|AB| = |A| |B| and |A′| = |A| .
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Determinants are usually calculated with a Laplace development along any
given row or column. To this end, let A = (aij) ∈ R

n
n. Now, define the

minor |m(i, j)| of aij as the determinant of the (n−1)×(n−1) “submatrix”
obtained by deleting the ith row and the jth column of A and the cofactor
of aij as c(i, j) = (−1)i+j |m(i, j)|. Then, the Laplace development of |A|
along the ith row is |A| =

∑n
j=1 aij ·c(i, j) and a similar development along

the jth column is |A| =
∑n

i=1 aij · c(i, j). By defining adj(A) = (c(j, i)),
the transpose of the matrix of cofactors, to be the adjoint of A, it can be
shown A−1 = |A|−1 adj(A).

But then

Proposition 1.4 A is one-to-one ⇐⇒ |A| �= 0.

Proof. A is one-to-one means it has an inverse B, |A| |B| = 1 so
|A| �= 0. But, conversely, if |A| �= 0, suppose Ax =

∑n
j=1 xjaj = 0,

then substituting Ax for the ith column of A
∣∣∣∣∣∣


a1, . . . ,

n∑
j=1

xjaj , . . . ,an



∣∣∣∣∣∣
= xi |A| = 0, i = 1, . . . , n

so that x = 0, whereby A is one-to-one. �

In general, for aj ∈ R
n, j = 1, . . . , k, write A = (a1, . . . ,ak) and form

the “inner product” matrix A′A = (a′
iaj) ∈ R

k
k. We find

Proposition 1.5 For A ∈ R
n
k ,

1. ker A = ker A′A

2. rank A = rank A′A

3. a1, . . . ,ak are linearly independent in R
n ⇐⇒ |A′A| �= 0.

Proof. If x ∈ ker A, then Ax = 0 =⇒ A′Ax = 0, and, conversely, if
x ∈ ker A′A, then

A′Ax = 0 =⇒ x′A′Ax = 0 = |Ax|2 =⇒ Ax = 0.

The second part follows from the relation k = nullity A + rank A and the
third part is immediate as ker A = {0} iff ker A′A = {0}. �

1.5 Eigenvalues and eigenvectors

We now briefly state some concepts related to eigenvalues and eigenvectors.
Consider, first, the complex vector space C

n. The conjuguate of v = x+iy ∈
C, x, y ∈ R, is v = x− iy. The concepts defined earlier are anologous in this
case. The Hermitian transpose of a column vector v = (vi) ∈ C

n is the row
vector vH = (vi)′. The inner product on C

n can then be written 〈v1,v2〉 =
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vH
1 v2 for any v1, v2 ∈ C

n. The Hermitian transpose of A = (aij) ∈ C
m
n

is AH = (aji) ∈ C
n
m and satisfies for B ∈ C

n
p , (AB)H = BHAH . The

matrix A ∈ C
n
n is termed Hermitian iff A = AH . We now define what is

meant by an eigenvalue. A scalar λ ∈ C is an eigenvalue of A ∈ C
n
n if there

exists a vector v �= 0 in C
n such that Av = λv. Equivalently, λ ∈ C is an

eigenvalue of A iff |A − λI| = 0, which is a polynomial equation of degree
n. Hence, there are n complex eigenvalues, some of which may be real, with
possibly some repetitions (multiplicity). The vector v is then termed the
eigenvector of A corresponding to the eigenvalue λ. Note that if v is an
eigenvector, so is αv, ∀α �= 0 in C, and, in particular, v/|v| is a normalized
eigenvector.

Now, before defining what is meant by A is “diagonalizable” we define
a matrix U ∈ C

n
n to be unitary iff UHU = I = UUH . This means that

the columns (or rows) of U comprise an orthonormal basis of C
n. We note

immediately that if {u1, . . . ,un} is an orthonormal basis of eigenvectors
corresponding to eigenvalues {λ1, . . . , λn}, then A can be diagonalized by
the unitary matrix U = (u1, . . . ,un); i.e., we can write

UHAU = UH(Au1, . . . ,Aun) = UH(λ1u1, . . . , λnun) = diag(λ),

where λ = (λ1, . . . , λn)′. Another simple related property: If there exists a
unitary matrix U = (u1, . . . ,un) such that UHAU = diag(λ), then ui is
an eigenvector corresponding to λi. To verify this, note that

Aui = U diag(λ)UHui = U diag(λ)ei = Uλiei = λiui.

Two fundamental propositions concerning Hermitian matrices are the
following.

Proposition 1.6 If A ∈ C
n
n is Hermitian, then all its eigenvalues are real.

Proof.

vHAv = (vHAv)H = vHAHv = vHAv,

which means that vHAv is real for any v ∈ C
n. Now, if Av = λv for some

v �= 0 in C
n, then vHAv = λvHv = λ|v|2. But since vHAv and |v|2 are

real, so is λ. �

Proposition 1.7 If A ∈ C
n
n is Hermitian and v1 and v2 are eigenvectors

corresponding to eigenvalues λ1 and λ2, respectively, where λ1 �= λ2, then
v1 ⊥ v2.

Proof. Since A is Hermitian, A = AH and λi, i = 1, 2, are real. Then,

Av1 = λ1v1 =⇒ vH
1 AH = vH

1 A = λ1vH
1 =⇒ vH

1 Av2 = λ1vH
1 v2,

Av2 = λ2v2 =⇒ vH
1 Av2 = λ2vH

1 v2.

Subtracting the last two expressions, (λ1−λ2)vH
1 v2 = 0 and, thus, vH

1 v2 =
0. �
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Proposition 1.7 immediately shows that if all the eigenvalues of A, Her-
mitian, are distinct, then there exists an orthonormal basis of eigenvectors
whereby A is diagonalizable. Toward proving this is true even when the
eigenvalues may be of a multiple nature, we need the following proposition.
However, before stating it, define T = (tij) ∈ R

n
n to be a lower triangular

matrix iff tij = 0, i < j. Similarly, T ∈ R
n
n is termed upper triangular iff

tij = 0, i > j.

Proposition 1.8 Let A ∈ C
n
n be any matrix. There exists a unitary matrix

U ∈ C
n
n such that UHAU is upper triangular.

Proof. The proof is by induction on n. The result is obvious for n = 1.
Next, assume the proposition holds for n and prove it is true for n + 1.
Let λ1 be an eigenvalue of A and u1, |u1| = 1, be an eigenvector. Let
U1 = (u1,Γ) for some Γ such that U1 is unitary (such a Γ exists from the
Gram-Schmidt method). Then,

UH
1 AU1 = UH

1 (λ1u1,AΓ) =
(

λ1 uH
1 AΓ

0 B

)
,

where B = ΓHAΓ ∈ C
n
n. From the induction hypothesis, there exists V

unitary such that VHBV = T is triangular. Define

U2 =
(

1 0′

0 V

)

and it is clear that U2 is also unitary. Finally,

(U1U2)HA(U1U2) = UH
2

(
λ1 uH

1 AΓ
0 B

)
U2

=
(

1 0′

0 VH

)(
λ1 uH

1 AΓ
0 B

)(
1 0′

0 V

)

=
(

λ1 uH
1 AΓV

0 T

)
,

which is of the desired form. The proof is complete because U ≡ U1U2 is
unitary. �

As a corollary we obtain that Hermitian matrices are always diagonalizable.

Corollary 1.1 Let A ∈ C
n
n be Hermitian. There exists a unitary matrix

U such that UHAU = diag(λ).

Proof. Proposition 1.8 showed there exists U, unitary, such that UHAU
is triangular. However, if A is Hermitian, so is UHAU. The only matrices
that are both Hermitian and triangular are the diagonal matrices. �

In the sequel, we will always use Corollary 1.1 for S ∈ R
n
n symmetric.

However, first note that when S is symmetric all its eigenvalues are real,
whereby the eigenvectors can also be chosen to be real, they are the solu-
tions of (S− λI)x = 0. When U ∈ R

n
n is unitary, it is called an orthogonal
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matrix instead. A matrix H ∈ R
n
n is said to be orthogonal iff the columns

(or rows) of H form an orthonormal basis of R
n, i.e., H′H = I = HH′.

The group of orthogonal matrices in R
n
n will be denoted by

On = {H ∈ R
n
n : HH′ = I}.

We have proven the “spectral decomposition:”

Proposition 1.9 If S ∈ R
n
n is symmetric, then there exists H ∈ On such

that H′SH = diag(λ).

The columns of H form an orthonormal basis of eigenvectors and λ is the
vector of corresponding eigenvalues.

Now, a symmetric matrix S ∈ R
n
n is said to be positive semidefinite,

denoted S ≥ 0 or S ∈ PSn, iff v′Sv ≥ 0, ∀v ∈ R
n, and it is positive

definite, denoted S > 0 or S ∈ Pn, iff v′Sv > 0,∀v �= 0. Finally, the
positive semidefinite and positive definite matrices can be characterized in
terms of eigenvalues.

Proposition 1.10 Let S ∈ R
n
n symmetric with eigenvalues λ1, . . . , λn.

1. S ≥ 0 iff λi ≥ 0, i = 1, . . . , n.

2. S > 0 iff λi > 0, i = 1, . . . , n.

Note that if S is positive semidefinite, then from Proposition 1.9, we can
write

S = HDH′ = (HD1/2)(HD1/2)′ = (HD1/2H′)2,

where D = diag(λi) and D1/2 = diag(λ1/2
i ), so that for A = HD1/2,

S = AA′, or for B = HD1/2H′, S = B2. The positive semidefinite matrix
B is often denoted S1/2 and is the square root of S. If S is positive definite,
we can also define S−1/2 = HD−1/2H′, which satisfies

(
S−1/2

)2
= S−1.

Finally, inequalities between matrices must be understood in terms of pos-
itive definiteness; i.e., for matrices A and B, A ≥ B (respectively A > B)
means A − B ≥ 0 (respectively A − B > 0).

A related decomposition which will prove useful for canonical correlations
is the singular value decomposition (SVD).

Proposition 1.11 Let A ∈ R
m
n of rank A = r. There exists G ∈ Om,

H ∈ On such that

A = G
(

Dρ 0
0 0

)
H′

where Dρ = diag(ρ1, . . . , ρr), ρi > 0, i = 1, . . . , r.

Proof. Since A′A ≥ 0, there exists H = (h1, . . . ,hn) ∈ On such that

A′A = H diag(λ1, . . . , λr,0) H′,
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where λi > 0, i = 1, . . . , r. For j > r, |Ahj |2 = h′
jA

′Ahj = 0 which means
Ahj = 0. For j ≤ r, define ρj =

√
λj and gj = Ahj/ρj . Then, g′

igj =
h′

iA
′Ahj/ρiρj = δij ; i.e., g1, . . . ,gr are orthonormal. By completing to an

orthonormal basis of R
m, we can find

G = (g1, . . . ,gr,gr+1, . . . ,gm) ∈ Om.

Now,

g′
iAhj =

{
0, j > r
ρjδij , j ≤ r,

or in matrix notation,

G′AH =
(

Dρ 0
0 0

)
.

�

In the SVD ρ2
j , j = 1, . . . , r, are the nonzero eigenvalues of A′A and the

columns of H are the eigenvectors.

1.6 Orthogonal projections

Now recall some basic facts about orthogonal projections. By definition,
an orthogonal projection, P, is simply a linear transformation for which
x − Px ⊥ Py, ∀x,y ∈ R

n, but then, equivalently,

(x − Px)′(Py) = 0,∀x,y ∈ R
n ⇐⇒ x′Py = x′P′Py,∀x,y ∈ R

n

⇐⇒ P′P = P

⇐⇒ P = P′ = P2.

A matrix P such that P = P′ = P2 is also called an idempotent matrix.
Not surprisingly, an orthogonal projection is completely determined by its
image.

Proposition 1.12 If P1 and P2 are two orthogonal projections, then

Im P1 = Im P2 ⇐⇒ P1 = P2.

Proof. It holds since

x − P1x ⊥ P2y,∀x,y ∈ R
n =⇒ P2 = P′

1P2,

and, similarly, P1 = P′
2P1, whence P1 = P′

1 = P2. �

If X = (x1, . . . ,xk) is any basis for Im P, we have explicitly

P = X(X′X)−1X′. (1.3)

To see this, simply write Px = Xb, and orthogonality, X′(x − Xb) = 0,
determines the (unique) coefficients b = (X′X)−1X′x. In particular, for
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any orthonormal basis H, P = HH′, where H′H = Ik. Thus, incidentally,
tr P = k and the dimension of the image space is expressed in the trace.

However, by this representation we see that for any two orthogonal
projections, P1 = HH′ and P2 = GG′,

P1P2 = 0 ⇐⇒ H′G = 0 ⇐⇒ G′H = 0 ⇐⇒ P2P1 = 0.

Definition 1.1 P1 and P2 are said to be mutually orthogonal projections
iff P1 and P2 are orthogonal projections such that P1P2 = 0. We write
P1 ⊥ P2 when this is the case.

Although orthogonal projection and orthogonal transformation are far
from synonymous, there is, nevertheless, finally a very close connection
between the two concepts. If we partition any orthogonal transformation
H = (H1, . . . ,Hk), then the brute algebraic fact

HH′ = I = H1H′
1 + · · · + HkH′

k

represents a precisely corresponding partition of the identity into mutually
orthogonal projections.

As a last comment on othogonal projection, if P is the orthogonal projec-
tion on the subspace V ⊂ R

n, then Q = I−P, which satisfies Q = Q′ = Q2

is also an othogonal projection. In fact, since PQ = 0, then Im Q and Im P
are orthogonal subspaces and, thus, Q is the orthogonal projection on V⊥.

1.7 Matrix decompositions

Denote the groups of triangular matrices with positive diagonal elements
as

L+
n = {T ∈ R

n
n : T is lower triangular, tii > 0, i = 1, . . . , n},

U+
n = {T ∈ R

n
n : T is upper triangular, tii > 0, i = 1, . . . , n}.

An important implication of Proposition 1.2 for matrices is the following
matrix decomposition.

Proposition 1.13 If A ∈ R
n
n is nonsingular, then A = TH for some

H ∈ On and T ∈ L+
n . Moreover, this decomposition is unique.

Proof. The existence follows from the Gram-Schmidt method applied to
the basis formed by the rows of A. The rows of H form the orthonormal
basis obtained at the end of that procedure and the elements of T = (tij)
are the coefficients needed to go from one basis to the other. By the Gram-
Schmidt construction itself, it is clear that T ∈ L+

n . For unicity, suppose
TH = T1H1, where T1 ∈ L+

n and H1 ∈ On. Then, T−1
1 T = H1H′ is a

matrix in L+
n ∩On. But, In is the only such matrix (why?). Hence, T = T1

and H = H1. �
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A slight generalization of Proposition 1.13 when A ∈ R
p
n is of rank A = p

is proposed in Problem 1.8.7. Another similar triangular decomposition,
known in statistics as the Bartlett decomposition, for positive definite
matrices can now be easily obtained.

Proposition 1.14 If S ∈ Pn, then S = TT′ for a unique T ∈ L+
n .

Proof. Since S > 0, then S = HDH′, where H ∈ On and D = diag(λi)
with λi > 0. Let D1/2 = diag(λ1/2

i ) and A = HD1/2. Then, we can write
S = AA′, where A is nonsingular. From Proposition 1.13, there exists T ∈
L+

n and G ∈ On such that A = TG. But, then, S = TGG′T′ = TT′. For
unicity, suppose TT′ = T1T′

1, where T1 ∈ L+
n . Then, T−1

1 TT′T′−1
1 = I,

which implies that T−1
1 T ∈ L+

n ∩ On = {I}. Hence, T = T1. �

Other notions of linear algebra such as Kronecker product and “vec”
operator will be recalled when needed in the sequel.

1.8 Problems

1. Consider the partitioned matrix S = (sij) =
(

S11 S12
S21 S22

)
.

(i) If S11 is nonsingular, prove that

|S| = |S11| · |S22 − S21S−1
11 S12|.

(ii) For S > 0, prove Hadamard’s inequality, |S| ≤ ∏
i sii.

(iii) Let S and S11 be nonsingular. Prove that

S−1 =
(

S−1
11 + S−1

11 S12S−1
22.1S21S−1

11 −S−1
11 S12S−1

22.1
−S−1

22.1S21S−1
11 S−1

22.1

)
,

where S22.1 = S22 − S21S−1
11 S12.

(iv) Let S and S22 be nonsingular. Prove that

S−1 =
(

S−1
11.2 −S−1

11.2S12S−1
22

−S−1
22 S21S−1

11.2 S−1
22 + S−1

22 S21S−1
11.2S12S−1

22

)
,

where S11.2 = S11 − S12S−1
22 S21.

Hint: Define

A =
(

I 0
−S21S−1

11 I

)
and B =

(
I −S−1

11 S12
0 I

)

and consider the product ASB.

2. Establish with the partitioning

x = (x′
1,x

′
2)

′,

S =
(

S11 S12
S21 S22

)
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that

x′S−1x = (x1 − S12S−1
22 x2)′S−1

11.2(x1 − S12S−1
22 x2) + x′

2S
−1
22 x2.

3. For any A ∈ R
p
q , B ∈ R

q
p, prove the following:

(i) |Ip + AB| = |Iq + BA|.
Hint: (

Ip + AB A
0 Iq

)
=

(
Ip A
−B Iq

)(
Ip 0
B Iq

)
,

(
Ip A
0 Iq + BA

)
=

(
Ip 0
B Iq

)(
Ip A
−B Iq

)
.

(ii) The nonzero eigenvalues of AB and BA are the same.

4. Prove Proposition 1.2.

5. Prove Proposition 1.10.

6. Show that if P defines an orthogonal projection, then the eigenvalues
of P are either 0 or 1.

7. Demonstrate the slight generalizations of Proposition 1.13:

(i) If A ∈ R
n
p is of rank A = p, then A = HT for some T ∈ U+

p and
H satisfying H′H = Ip. Further, T and H are unique.
Hint: For unicity, note that if A = HT = H1T1 with T1 ∈ U+

p

and H′
1H1 = Ip, then Im A = Im H = Im H1 and H1H′

1 is the
orthogonal projection on Im H1.

(ii) If A ∈ R
n
p is of rank A = n, then A = TH, where T ∈ L+

n and
HH′ = In. Further, T and H are unique.

8. Assuming A and A + uv′ are nonsingular, prove

(A + uv′)−1 = A−1 − A−1uv′A−1

(1 + v′A−1u)
.

9. Vector differentiation.
Let f(x) be a real valued function of x ∈ R

n. Define

∂f(x)/∂x = (∂f(x)/∂xi) .

Verify

(i) ∂a′x/∂x = a,
(ii) ∂x′Ax/∂x = 2Ax, if A is symmetric.

10. Matrix differentiation [Srivastava and Khatri (1979), p. 37].
Let g(S) be a real-valued function of the symmetric matrix S ∈ R

n
n.

Define ∂f(S)/∂S =
( 1

2 (1 + δij)∂f(S)/∂sij

)
. Verify

(i) ∂tr(S−1A)/∂S = −S−1AS−1, if A is symmetric,
(ii) ∂ ln |S|/∂S = S−1.
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Hint for (ii): S−1 = |S|−1adj(S).

11. Rayleigh’s quotient.
Assume S ≥ 0 in R

n
n with eigenvalues λ1 ≥ · · · ≥ λn and

corresponding eigenvectors x1, . . . ,xn. Prove:
(i)

λn ≤ x′Sx
x′x

≤ λ1, ∀x �= 0.

(ii) For any fixed j = 2, . . . , n,

x′Sx
x′x

≤ λj , ∀x �= 0

such that 〈x,x1〉 = · · · = 〈x,xj−1〉 = 0.

12. Demonstrate that if A is symmetric and B > 0, then

sup
|h|=1

h′Ah
h′Bh

= λ1(AB−1),

where λ1(AB−1) denotes the largest eigenvalue of AB−1.

13. Let Am > 0 in R
n
n (m = 1, 2, . . .) be a sequence. For any A ∈ R

n
n,

define ||A||2 =
∑

i,j a2
ij and let λ1,m ≥ · · · ≥ λn,m be the ordered

eigenvalues of Am. Prove that if λ1,m → 1 and λn,m → 1, then
limm→∞ ||Am − I|| = 0.

14. In R
p, prove that if |x1| = |x2|, then there exists H ∈ Op such that

Hx1 = x2.
Hint: When x1 �= 0, consider H ∈ Op with first row x′

1/|x1|.
15. Show that for any V ∈ R

n
n and any m = 1, 2, . . .,

(i) if (I − tV) is nonsingular then [Srivastava and Khatri (1979), p.
33]

(I − tV)−1 =
m∑

i=0

tiVi + tm+1Vm+1(I − tV)−1.

(ii) If V > 0 with eigenvalues λ1 ≥ · · · ≥ λp and |t| < 1/λ1, then

(I − tV)−1 =
∞∑

i=0

tiVi.



2
Random vectors

2.1 Introduction

A random vector is simply a vector whose components are random vari-
ables. The variables are the characteristics of interest that will be observed
on each of the selected units in the sample. Questions related to prob-
abilities of a variable to take on some values or probabilities of two or
more variables to take on simultaneously values in a set are common in
multivariate analysis. Chapter 2 gives a collection of important probability
concepts on random vectors such as distribution functions, expected values,
characteristic functions, discrete and absolutely continuous distributions,
independence, etc.

2.2 Distribution functions

First, some basic notations concerning “rectangles” useful to describe the
distribution function of a random vector are given. Let R̄ = R ∪ {±∞} =
[−∞,∞]. It is convenient to define a partial order on R̄

n by

x ≤ y iff xi ≤ yi,∀i = 1, . . . , n,

and

x < y iff xi < yi,∀i = 1, . . . , n.



2.2. Distribution functions 15

This allows us to express “n-dimensional” rectangles in R
n succinctly:

I = (a,b] = {x ∈ R
n : a < x ≤ b} for any a, b ∈ R̄

n.

The interior and closure of I are respectively

I◦ = (a,b) = {x ∈ R
n : a < x < b}

and

Ī = [a,b] = {x ∈ R
n : a ≤ x ≤ b}

and the boundary of I is the “(n − 1)-dimensional” relative complement

∂I = Ī − I◦.

Finally let the 2n “corners” of I (a subset of R̄
n) be denoted by the cartesian

product

a × b = ×n
i=1{ai, bi}.

Definition 2.1 For x distributed on R
n, the distribution function (d.f.)

of x is the function F : R̄
n → [0, 1], where F (t) = P (x ≤ t), ∀t ∈ R̄

n.
This is denoted x ∼ F or x ∼ Fx.

A d.f. is automatically right-continuous; thus, if it is known on any dense
subset D ⊂ R

n, it is determined everywhere. This is because for any t ∈ R̄
n,

a sequence dn may be chosen in D descending to t: dn ↓ t.
From the d.f. may be computed the probability of any rectangle

P (a < x ≤ b) =
∑

t∈a×b

(−1)Na(t)F (t), ∀a < b,

where Na(t) =
∑n

i=1 δ(ai, ti) counts the number of ti’s that are ai’s.
The borel subsets of R

n comprise the smallest σ-algebra containing the
rectangles

Bn = σ ((a,b] : a,b ∈ R
n) .

The class Gn of all countable disjoint unions of rectangles contains all the
open subsets of R

n, and if we let G =
∑∞

i=1(ai,bi] denote a generic element
in this class, it follows that

P (x ∈ G) =
∞∑

i=1

P (ai < x ≤ bi).

By the Caratheodory extension theorem (C.E.T.), the probability of a
general borel set A ∈ Bn is then uniquely determined by the formula

Px(A) ≡ P (x ∈ A) = inf
A⊂G

P (x ∈ G).
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2.3 Equals-in-distribution

Definition 2.2 x and y are equidistributed (identically distributed),
denoted x d= y, iff Px(A) = Py(A), ∀A ∈ Bn.

On the basis of the previous section, it should be clear that for any dense
D ⊂ R

n:

Proposition 2.1 (C.E.T) x d= y ⇐⇒ Fx(t) = Fy(t), ∀t ∈ D.

Although at first glance, d= looks like nothing more than a convenient
shorthand symbol, there is an immediate consequence of the definition,
deceptively simple to state and prove, that has powerful application in the
sequel.

Let g : R
n → Ω where Ω is a completely arbitrary space.

Proposition 2.2 (Invariance) x d= y =⇒ g(x) d= g(y).

Proof.

P (g(x) ∈ B) = P
(
x ∈ g−1(B)

)
= P

(
y ∈ g−1(B)

)
= P (g(y) ∈ B) .

�

Example 2.1

x d= y =⇒ xi
d= yi, i = 1, . . . , n

=⇒ xixj
d= yiyj , i, j = 1, . . . , n

=⇒
n∏

i=1

xri
i

d=
n∏

i=1

yri
i , for any ri, i = 1, . . . , n

=⇒ etc.

2.4 Discrete distributions

Definition 2.3 The probability function (p.f.) of x is the function

p : R̄
n → [0, 1] where p(t) = P (x = t), ∀t ∈ R̄

n.

The p.f. may be evaluated directly from the d.f.:

p(t) = lim
sm↑t

P (sm < x ≤ t),

where sm ↑ t means s1 < s2 < · · · and sm → t as m → ∞. The subset
D = p−1(0)c where the p.f. is nonzero may contain at most a countable
number of points. D is known as the discrete part of x, and x is said to be
discrete if it is “concentrated” on D:

Definition 2.4 x is discrete iff P (x ∈ D) = 1.
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One may verify that

x is discrete ⇐⇒ P (x ∈ A) =
∑

t∈A∩D

p(t), ∀A ∈ Bn.

Thus, the distribution of x is entirely determined by its p.f. if and only if
it is discrete, and in this case, we may simply write x ∼ p or x ∼ px.

2.5 Expected values

For any event A, we may consider the indicator function

IA(x) =
{

1, x ∈ A
0, x �∈ A.

It is clear that IA(x) is itself a discrete random variable, referred to as a
Bernoulli trial, for which

P (IA(x) = 1) = Px(A) and P (IA(x) = 0) = 1 − Px(A).

This is denoted IA(x) ∼ Bernoulli (Px(A)) and we define E IA(x) = Px(A).
For any k mutually disjoint and exhaustive events A1, . . . , Ak and k real

numbers a1, . . . , ak, we may form the simple function

s(x) = a1IA1(x) + · · · + akIAk
(x).

Obviously, s(x) is also discrete with

P (s(x) = ai) = Px(Ai), i = 1, . . . , k.

By requiring that E be linear, we (are forced to) define

E s(x) = a1Px(A1) + · · · + akPx(Ak).

The most general function for which we need ever compute an expected
value may be directly expressed as a limit of a sequence of simple functions.
Such a function g(x) is said to be measurable and we may explicitly write

g(x) = lim
N→∞

sN (x),

where convergence holds pointwise, i.e., for every fixed x. If g(x) is non-
negative, it can be proven that we may always choose the sequence of simple
functions to be themselves non-negative and nondecreasing as a sequence
whereupon we define

E g(x) = lim
N→∞

E sN (x) = sup
N

E sN (x).

Then, in general, we write g(x) as the difference of its positive and negative
parts

g(x) = g+(x) − g−(x),
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defined by

g+(x) =
{

g(x), g(x) ≥ 0
0, g(x) < 0,

g−(x) =
{−g(x), g(x) ≤ 0

0, g(x) < 0,

and finish by defining

E g(x) =
{

E g+(x) − E g−(x), if E g+(x) < ∞ or E g−(x) < ∞
“undefined,” otherwise.

We may sometimes use the Leibniz notation

E g(x) =
∫

g(t)dPx(t) =
∫

g(t)dF (t).

One should verify the fundamental inequality |E g(x)| ≤ E |g(x)|.
Let ↑ denote convergence of a monotonically nondecreasing sequence.

Something is said to happen for almost all x if it fails to happen on a set
A such that Px(A) = 0. The two main theorems concerning “continuity”
of E are the following:

Proposition 2.3 (Monotone convergence theorem (M.C.T.)) Sup-
pose 0 ≤ g1(x) ≤ g2(x) ≤ · · ·. If gN (x) ↑ g(x), for almost all x, then
E gN (x) ↑ E g(x).

Proposition 2.4 (Dominated convergence theorem (D.C.T.)) If
gN (x) → g(x), for almost all x, and |gN (x)| ≤ h(x) with E h(x) < ∞,
then E |gN (x) − g(x)| → 0 and, thus, also E gN (x) → E g(x).

It should be clear by the process whereby expectation is defined (in stages)
that we have

Proposition 2.5 x d= y ⇐⇒ E g(x) = E g(y), ∀g measurable.

2.6 Mean and variance

Consider the “linear functional” t′x =
∑n

i=1 tixi for each (fixed) t ∈ R
n,

and the “euclidean norm” (length) |x| =
(∑n

i=1 x2
i

)1/2. By any of three
equivalent ways, for p > 0 one may say that the pth moment of x is finite:

E |t′x|p < ∞, ∀t ∈ R
n ⇐⇒ E |xi|p < ∞, i = 1, . . . , n

⇐⇒ E |x|p < ∞.

To show this, one must realize that |xi| ≤ |x| ≤ ∑n
i=1 |xi| and Lp = {x ∈

R
n : E |x|p < ∞} is a linear space (v. Problem 2.14.3).
From the simple inequality ar ≤ 1 + ap, ∀a ≥ 0 and 0 < r ≤ p, if we let

a = |x| and take expectations, we get E |x|r ≤ 1 + E |x|p. Hence, if for
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p > 0, the pth moment of x is finite, then also the rth moment is finite, for
any 0 < r ≤ p.

A product-moment of order p for x = (x1, . . . , xn)′ is defined by

E

n∏
i=1

xpi

i , pi ≥ 0, i = 1, . . . , n,

n∑
i=1

pi = p.

A useful inequality to determine that a product-moment is finite is Hölder’s
inequality:

Proposition 2.6 (Hölder’s inequality) For any univariate random va-
riables x and y,

E |xy| ≤ (E |x|r)1/r · (E |y|s)1/s
, r > 1,

1
r

+
1
s

= 1.

From this inequality, if the pth moment of x ∈ R
n is finite, then all product-

moments of order p are also finite. This can be verified for n = 2, as Hölder’s
inequality gives

E |xp1
1 xp2

2 | ≤ (E |x1|p)p1/p · (E |x2|p)p2/p
, pi ≥ 0, i = 1, 2, p1 + p2 = p.

The conclusion for general n follows by induction.
If the first moment of x is finite we define the mean of x by

µ = E x def= (E xi) = (µi).

If the second moment of x is finite, we define the variance of x by

Σ = var x def= (cov(xi, xj)) = (σij) .

In general, we define the expected value of any multiply indexed array
of univariate random variables, ξ = (xijk···), componentwise by E ξ =
(E xijk···). Vectors and matrices are thus only special cases and it is obvious
that

Σ = E (x − µ)(x − µ)′ = E xx′ − µµ′.

It is also obvious that for any A ∈ R
m
n ,

E Ax = Aµ and var Ax = AΣA′.

In particular, E t′x = t′µ and var t′x = t′Σt ≥ 0, ∀t ∈ R
n. Now, the

reader should verify that more generally

cov(s′x, t′x) = s′Σt

and that considered as a function of s and t, the left-hand side defines a
(pseudo) inner product. Thus, Σ is automatically positive semidefinite, Σ ≥
0. But by this, we may immediately write Σ = HDH′ with H orthogonal
and D = diag(λ), where the columns of H comprise an orthonormal basis
of “eigenvectors” and the components of λ ≥ 0 list the corresponding
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“eigenvalues.” Accordingly, we may always “normalize” any x with Σ > 0
by letting

z = D−1/2H′(x − µ),

which represents a three-stage transformation of x in which we first relocate
by µ, then rotate by H′, and, finally, rescale by λ

−1/2
i independently along

each axis. We find, of course, that

E z = 0 and var z = I.

The linear transformation z = Σ−1/2(x − µ) also satisfies E z = 0 and
var z = I.

When the vector x ∈ R
n is partitioned as x = (y′, z′)′, where y ∈ R

r,
z ∈ R

s, and n = r + s, it is useful to define the covariance between two
vectors. The covariance matrix between y and z is, by definition,

cov(y, z) = (cov(yi, zj)) ∈ R
r
s.

Then, we may write

var(x) =
(

var(y) cov(y, z)
cov(z,y) var(z)

)
.

Sometimes, expected value of y is easier to calculate by conditioning on
another random vector z. In this regard, the conditional mean theorem and
conditional variance theorem are stated. A general proof of the conditional
mean theorem can be found in Billingsley (1995, Section 34).

Proposition 2.7 (Conditional mean formula) E[E(y|z)] = E y.

An immediate consequence is the conditional variance formula.

Proposition 2.8 (Conditional variance formula)

var y = E[var(y|z)] + var[E(y|z)].

Example 2.2 Define a group variable I such that

P (I = 1) = 1 − ε,

P (I = 2) = ε.

Conditionally on I, assume

x|I = 1 ∼ N(µ1, σ
2
1),

x|I = 2 ∼ N(µ2, σ
2
2).

Then

fx(x) = (1 − ε)(2π)−1/2 1
σ1

exp
(
− 1

2σ2
1
(x − µ1)2

)

+ε(2π)−1/2 1
σ2

exp
(
− 1

2σ2
2
(x − µ2)2

)
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is a mixture or ε-contaminated normal density. It follows from the
construction of x that

E x = E[E(x|I)] = (1 − ε)µ1 + εµ2 ≡ µ,

var x = E[var(x|I)] + var[E(x|I)]
= (1 − ε)σ2

1 + εσ2
2 + (1 − ε)(µ1 − µ)2 + ε(µ2 − µ)2.

2.7 Characteristic functions

We require only the most basic facts about characteristic functions.

Definition 2.5 The characteristic function of x is the function c : R
n →

C defined by

c(t) = cx(t) = E eit′x.

Note:

1. c(0) = 1, |c(t)| ≤ 1 and c(−t) = c(t).

2. c(t) is uniformly continuous:

|c(t) − c(s)| =
∣∣∣E

(
ei(t−s)′x − 1

)
eis′x

∣∣∣
≤ E

∣∣∣ei(t−s)′x − 1
∣∣∣ .

Since
∣∣∣ei(t−s)′x − 1

∣∣∣ ≤ 2, continuity follows by the D.C.T. Uniformity

holds since
∣∣∣ei(t−s)′x − 1

∣∣∣ depends only on t − s.

The main result is perhaps the “inversion formula” proven in Appendix A:

Px(a,b] = lim
N→∞

1
(2π)n

∫

(a,b]

∫

Rn

e−it′xc(t)e−t′t/2N2
dtdx,

∀a,b such that Px (∂(a,b]) = 0. Thus, the C.E.T. may be applied
immediately to produce the technically equivalent:

Proposition 2.9 (Uniqueness) x d= y ⇐⇒ cx(t) = cy(t), ∀t ∈ R
n.

Now if we consider the linear functionals of x: t′x with t ∈ R
n, it is clear

that ct′x(s) = cx(st), ∀s ∈ R, t ∈ R
n, so that the characteristic function

of x determines all those of t′x, t ∈ R
n and vice versa.

Let Sn−1 = {s ∈ R
n : |s| = 1} be the “unit sphere” in R

n, and we have

Proposition 2.10 (Cramér-Wold) x d= y ⇐⇒ t′x d= t′y, ∀t ∈ Sn−1.
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Proof. Since ct′x(s) = cx(st), ∀s ∈ R, t ∈ R
n, it is clear that

x d= y ⇐⇒ t′x d= t′y, ∀t ∈ R
n.

Since t′x = |t|
(

t
|t|

)′
x, ∀t �= 0, it is also clear that

t′x d= t′y, ∀t ∈ R
n ⇐⇒ t′x d= t′y, ∀t ∈ Sn−1.

�

By this result, it is clear that one may reduce a good many issues concerning
random vectors to the univariate level.

In the specific matter of computation, the reader should know that in
the special case of a univariate random variable X:

If E e±δX < ∞ for any δ > 0, the Laplace transform of X is de-
termined in the strip |Re(z)| ≤ δ as the (absolutely convergent)
power series

LX(z) =
∞∑

n=0

E Xnzn/n!,

and since such a power series is completely determined by
its coefficients, we find that one may legitimately obtain the
characteristic function

cX(t) = LX(it), ∀t ∈ R,

by merely observing the coefficients in an expansion of the
moment-generating function since they are necessarily the same
as those of the Laplace transform:

mX(t) = LX(t), ∀|t| ≤ δ.

Example 2.3 Suppose fz(s) = (2π)−1/2e−s2/2. One easily computes the
moment-generating function (m.g.f.), finding

mz(t) = et2/2,

which has the obvious expansion for every t, whereupon

cz(t) = e−t2/2. (2.1)

2.8 Absolutely continuous distributions

Lebesgue measure, λ, is the extension to all borel sets of our natural sense
of volume measure in R

n. Thus, we define

λ(a,b] =
n∏

i=1

(bi − ai), ∀a < b in R
n,
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λ(G) =
∞∑

i=1

λ(ai,bi], ∀G =
∞∑

i=1

(ai,bi] in Gn,

and

λ(A) = inf
A⊂G

λ(G), ∀A in Bn.

As before, the C.E.T. guarantees that λ is a measure on Bn. We will often
denote Lebesgue measure explicitly as volume: λ(A) = vol(A). Incidentally,
something is said to happen “almost everywhere” (a.e.) if the set where it
fails to happen has zero volume.

Now, the general conception of a random vector continuously distributed
in space is that the probabilities of events will depend continuously on the
volume of the events. Thus,

Definition 2.6 x is absolutely continuous, denoted x � λ, iff

∀ε > 0, ∃δ > 0 such that vol(A) < δ =⇒ P (x ∈ A) < ε.

But, in that case,

Proposition 2.11 x � λ ⇐⇒ vol(A) = 0 =⇒ P (x ∈ A) = 0.

Proof. Assume x � λ. If vol(A) = 0 but P (x ∈ A) �= 0 we may take
ε = P (x ∈ A)/2 to find the contradiction that P (x ∈ A) < ε. Conversely,
suppose vol(A) = 0 =⇒ P (x ∈ A) = 0 but that x �� λ. Then, ∃ε0 > 0
such that ∀n, ∃An with vol(An) < 1/2n but P (x ∈ An) ≥ ε0. Letting
A = limAn = ∩∞

n=1 ∪k≥n Ak, since ∪k≥nAk is a monotone sequence we find
the contradiction that vol(A) = 0 but P (x ∈ A) ≥ ε0. �

Thus, a distribution which depends continuously on volume satisfies the
relatively simple criterion

x � λ ⇐⇒ vol(A) = 0 =⇒ P (x ∈ A) = 0.

However, it is on this particular criterion, by the theorem of Radon-
Nikodym, that absolute continuity is characterized finally in terms of
densities:

Proposition 2.12 (Radon-Nikodym) x is absolutely continuous ⇐⇒
there is a (a.e.-unique) probability density function (p.d.f.) f : R

n → [0,∞)
such that

P (x ∈ A) =
∫

A

f(t)dt, ∀A ∈ Bn.

But since the p.d.f. then determines such a distribution completely, we may
simply write x ∼ f or x ∼ fx.

It is, of course, by the extension process that defines expectation (in
stages) that automatically

E g(x) =
∫

g(t)f(t)dt, ∀g measurable,
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such that E g(x) is defined.
Now in particular, the distribution function may itself be expressed as

F (t) = P (x ≤ t) =
∫ t

−∞
f(s)ds, ∀t ∈ R

n.

In practice, we will often be able to invoke the fundamental theorems
of calculus to obtain an explicit representation of the p.d.f. by simply
differentiating the d.f.:

1. By the first fundamental theorem of calculus,

f(t) = ∂nF (t)/∂t1 · · · ∂tn

at every t where f(t) is continuous.

2. Also, by the second fundamental theorem, if

f(t) = ∂nF (t)/∂t1 · · · ∂tn

exists and is continuous (a.e.) on some rectangle I, then

P (x ∈ A) =
∫

A

f(t)dt, ∀A ⊂ I.

Finally, in relation to the inversion formula, when the characteristic func-
tion c(t) is absolutely integrable, i.e.,

∫
Rn |c(t)|dt < ∞, the corresponding

distribution function is absolutely continuous with p.d.f. (v. Appendix A):

f(s) =
1

(2π)n

∫

Rn

e−it′sc(t)dt. (2.2)

2.9 Uniform distributions

The most fundamental absolutely continuous distribution would, of course,
be conveyed by volume measure itself. Consider any event C for which
0 < vol(C) < ∞.

Definition 2.7 x is uniformly distributed on C, denoted x ∼ unif(C), iff

P (x ∈ A) = vol(AC)/vol(C), ∀A ∈ Bn.

If vol(∂C) = 0, as is often the case, we may just as well include as exclude
it, so if x ∼ unif(C), y ∼ unif(C◦) and z ∼ unif(C̄), then x,y, and z are
equidistributed:

x d= y d= z.

Now, for x ∼ unif(C) we may immediately reexpress each probability as
an integral:

P (x ∈ A) =
∫

A

k · IC(t)dt, ∀A ∈ Bn,
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where

IC(t) =
{

1, t ∈ C
0, t �∈ C,

is the indicator function for C and k = vol(C)−1. We thus have an explicit
determination of “the” density for x:

f(t) = k IC(t), ∀t ∈ R
n.

Example 2.4 For x ∼ unif([0,1]) on R
n, the p.d.f. may be expressed as

a simple product

f(t) = I[0,1](t) =
n∏

i=1

I[0,1](ti), ∀t ∈ R
n,

from which

F (t) =
n∏

i=1

(
tiI[0,1](ti) + I(1,∞)(ti)

)
, ∀t ∈ R

n.

2.10 Joints and marginals

Consider xi ∼ Fi on R
ni , i = 1, . . . , k, with

x =




x1
...

xk


 ∼ F on R

n where n =
k∑

i=1

ni.

x is called the joint of x1, . . . ,xk which are, in turn, called marginals of x.

Since it is clear that

P (x ≤ t) = P (x1 ≤ t1, . . . ,xk ≤ tk), ∀t =




t1
...
tk


 ,

we will, by a slight abuse of our notation, write

F (t) = F (t1, . . . , tk), ∀t =




t1
...
tk




to reflect this “partitioning.” In this way, the distribution function is said
to express the joint distribution of x1, . . . ,xk, and the marginals may be
recovered on the simple substitution of ∞ in all but the ith place:

Fi(s) = F (∞, . . . , s, . . . ,∞), ∀s ∈ R
ni .
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In the special case where x is absolutely continuous with p.d.f. f(t) =
f(t1, . . . , tk), it follows that each xi is also absolutely continuous with p.d.f.
fi(s) that is obtained by “integrating out” the other variables:

fi(s) =
∫ ∞

−∞
· · ·

∫ ∞
−∞

f(t1, . . . , s, . . . , tk)
∏

1≤j≤k
j �=i

dtj , ∀s ∈ R
ni .

This is by direct application of Fubini’s theorem whereby we may
interchange the order of integration in a product integral to verify that

P (xi ∈ A) =
∫

A

fi(s)ds, ∀A ∈ Bni

and, of course, in particular,

Fi(s) =
∫ s

−∞
fi(u)du, ∀s ∈ R

ni .

Koehler and Symanowski (1995) presented a method for constructing
multivariate distributions with any specific set of univariate marginals. It
provides a rich class of distributions for modeling multivariate data as well
as a basis for easily simulating correlated observations. The inclusion of
different association parameters for differents subsets of variables allows
for many different patterns of associations. Their work follows those of
Genest and MacKay (1986) and Marshall and Olkin (1988), among others.
A tool called linkage [Li et al. (1996)] can be used for the construction
of multivariate distributions with given multivariate marginals; Cuadras
(1992) found related results.

Example 2.5 The bivariate parametric family of d.f.’s on [0, 1]2 of Cook
and Johnson (1981) is defined by

F (t1, t2; α) =
[

1
tα1

+
1
tα2

− 1
]−1/α

, α > 0. (2.3)

The case α = 0 can be defined by continuity. It has marginals

F1(t1) = F (t1, 1; α) = t1,

F2(t2) = F (1, t2; α) = t2,

which are identically distributed as unif([0, 1]). Multivariate distributions
on [0,1] with uniform marginals are often referred to as copulas. The slight
modification

F (t1, t2; α) =
[

1
F1(t1)α

+
1

F2(t2)α
− 1

]−1/α

, α > 0,

is a bivariate distribution with arbitrary marginals F1 and F2. The bivariate
parametric family of d.f.’s on [0, 1]2 of Frank (1979) [v. also Genest (1987)]

F (t1, t2; α) = logα

[
1 +

(αt1 − 1)(αt2 − 1)
(α − 1)

]
, α > 0, (2.4)
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Figure 2.1. Bivariate Frank density with standard normal marginals and a
correlation of 0.7.

(the case α = 1 can be defined by continuity), where logα(·) denotes loga-
rithm in base α, is also a copula. Such distributions have found applications
in modeling survival data [Oakes (1982), Carrière (1994)]. Figure 2.1 is a
graph of a bivariate Frank density with standard normal marginals. The
association parameter α = 0.00296 using Nelsen (1986) corresponds to a
correlation of 0.7.

2.11 Independence

Definition 2.8 x1, . . . ,xk are mutually statistically independent iff

P (x1 ∈ A1, . . . ,xk ∈ Ak) =
k∏

i=1

P (xi ∈ Ai), ∀Ai ∈ Bni , i = 1, . . . , k.

Denote pairwise independence (k = 2) simply x1 |= x2. By the extension
process that defines expectation, we ultimately find:
Proposition 2.13

x1, . . . ,xk are independent ⇐⇒ E

k∏
i=1

gi(xi) =
k∏

i=1

E gi(xi),

∀g1, . . . , gk such that E |gi(xi)| < ∞.
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and also (chiefly by the C.E.T.)

Proposition 2.14

x1, . . . ,xk are independent ⇐⇒ F (t) =
k∏

i=1

Fi(ti), ∀t ∈ R
n.

In the special case where each xi is absolutely continuous with p.d.f. fi(ti),
we may conclude that x is as well, and we have:
Proposition 2.15

x1, . . . ,xk are independent ⇐⇒ f(t) =
k∏

i=1

fi(ti), ∀t ∈ R
n.

Finally, independence may also be characterized:
Proposition 2.16

x1, . . . ,xk are independent ⇐⇒ cx(t) =
k∏

i=1

cxi
(ti), ∀t ∈ R

n.

Example 2.6 For x ∼ unif([0,1]) on R
n, it is clear that x1, . . . , xn are

independently and identically distributed (i.i.d.) as unif([0, 1]).

Example 2.7 Let x = (x1, x2)′ have Frank’s d.f. (2.4). Proposition 2.14
yields, after elementary calculus, x1 |= x2 iff α = 1.

2.12 Change of variables

We recall some basic calculus [Spivak (1965), p. 16]. Let A ⊂ R
n be open.

Definition 2.9 The derivative of φ : A → R
m, at x ∈ A, is the unique

linear transformation φ′(x) ∈ R
m
n such that

φ(x + h) − φ(x) = φ′(x)h + o(h)

or, equivalently,

lim
h→0

∣∣φ(x + h) − φ(x) − φ′(x)h
∣∣

|h| = 0.

When φ′(x) exists, all partial derivatives ∂φi(x)/∂xj exist. This determines
the derivative componentwise as

φ′(x) = (∂φi(x)/∂xj) .

A condition for φ′(x) to exist is that all partial derivatives ∂φi(x)/∂xj

exist in an open neighborhood of x and are continuous at x. There are, of
course, various notations for derivatives, all acceptable:

φ′(x) = Dφ(x) = ∂φ(x)/∂x.
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The derivative satisfies the “chain rule”

(φ ◦ ψ)′(x) = φ′(ψ(x)) ψ′(x).

In the very special case m = n, the jacobian of φ : R
n → R

n is, by
definition, the absolute value of the determinant of φ′(x) and is denoted by
|φ′(x)|+. Another common notation for the jacobian of the transformation
y = φ(x) is

J(y → x) = |φ′(x)|+.

From the chain rule, it is made clear that if z = φ(y) and y = ψ(x), then

J(z → x) = J(z → y) · J(y → x),
J(y → x) = [J(x → y)]−1.

At any rate, we have an important and general result, easy to state, but
the proof of which is by no means trivial [Spivak (1965), p. 67].

Proposition 2.17 Let φ : A → R
n be one-to-one and continuously

differentiable on A. If f : φ(A) → R is integrable, then
∫

φ(A)
f(x)dx =

∫

A

f (φ(y)) |φ′(y)|+dy.

It is this result that is applied directly to obtain the standard “change of
variables” formula for absolutely continuous random vectors.

Proposition 2.18 If x ∼ f on R
n and C = {x : f(x) > 0} is open, for

any φ : C → R
n one-to-one and bi-differentiable with inverse ψ : φ(C) →

C, let y = φ(x). Then, y ∼ g with

g(y) = f (ψ(y)) |ψ′(y)|+.

Proof.

P (y ∈ B) = P (φ(x) ∈ B) = P (x ∈ ψ(B))

=
∫

ψ(B)
f(x)dx =

∫

B

f (ψ(y)) |ψ′(y)|+dy.

�

By an abuse of notation, y (and x) have two different meanings in Propo-
sition 2.18: y is a random vector in y ∼ g, whereas it is any given point of
R

n in the density g(y).
Now, if the function φ in question is simply a linear transformation,

φ(x) = Ax, it is already its own derivative everywhere on R
n, φ′(x) = A,

and the formula for change of variables greatly simplifies.
Suppose that A : R

n → R
n is a nonsingular transformation. The group

of all such nonsingular transformations is known as the general linear group
and denoted by

Gn = {A ∈ R
n
n : A is nonsingular} = {A ∈ R

n
n : |A| �= 0}.
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Two examples are as follows:

Example 2.8 If x ∼ f and y = Ax, we find y ∼ g, where

g(y) = f(A−1y) |A|−1
+ .

Example 2.9 x ∼ unif(C), C ⊂ R
n =⇒ Ax + b ∼ unif(AC + b) where

AC + b = {Ax + b : x ∈ C}.

2.13 Jacobians

The derivation of jacobians is the difficult part in making transformations.
It can be a daunting task. This section is directed to the derivation of more
complicated jacobians. It can be skipped on a first reading and consulted
when needed in the sequel. Although jacobians are useful for densities, our
approach is to derive distributions without appealing, whenever possible,
to densities. Derivations of densities appear mainly in the form of problems.

Proposition 2.19 The jacobian of the transformation V = AWA′, W ∈
R

n
n symmetric and A ∈ R

n
n constant, is J(V → W) = |A|n+1

+ .

Proof. The transformation is linear and, thus, the jacobian is necessarily
a polynomial in the elements of A, p(A) say. If W = BUB′, then from the
chain rule, we have

J(V → U) = J(V → W) · J(W → U),

i.e., p(AB) = p(A)p(B). The only polynomials in the elements of a matrix
satisfying this multiplicative rule are the integer powers of the determinant
[MacDuffy (1943, p. 50)]. Hence, p(A) = |A|k, for some integer k. We can
find k by choosing A = aI. Since V = a2W and there are 1

2n(n+1) distinct
elements, then J(V → W) = an(n+1) = |aI|n+1. We found k = n + 1. �

James (1954) also used MacDuffy’s characterization of the determinant
for skew-symmetric matrices. At this point, we make some comments con-
cerning the differential of a function of several variables. Our development
here closely resembles that of Srivastava and Khatri (1979, p. 26). For
a real-valued function y = f(x), x ∈ R

n, the differential is defined as
dy = df =

∑n
i=1 ∂f(x)/∂xi · dxi. For a vector-valued function y = f(x), x

and y in R
n, the differential is defined componentwise, i.e.,

dy = df =




df1
...

dfn


 =




∑n
i=1 ∂f1(x)/∂xi · dxi

...∑n
i=1 ∂fn(x)/∂xi · dxi


 = ∂f(x)/∂x · dx,

where ∂f(x)/∂x = (∂fi(x)/∂xj) ∈ R
n
n is the usual derivative of f(x). Hence,

dy is a linear function of dx with jacobian

J(dy → dx) = |∂f(x)/∂x|+ = J(y → x).
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Note that x and y could be replaced by any “vectorized” array or matrix.
For example, for F(X) = (fij(X)) ∈ R

m
n , we can define the differen-

tial componentwise, i.e., dF = (dfij). The reader can then check (v.
Problem 2.14.15)

F = GH =⇒ dF = G · dH + dG · H.

As an example, consider the inverse transformation.

Proposition 2.20 The jacobian of the transformation V = W−1, W ∈
R

n
n nonsingular and symmetric, is J(V → W) = |W|−(n+1)

+ .

Proof. Since VW = I, then V · dW + dV · W = 0, which implies dV =
−W−1 · dW ·W−1. Hence, from Proposition 2.19, J(V → W) = J(dV →
dW) = |W|−(n+1)

+ . �

The jacobian of “conditional transformations” [Srivastava and Khatri
(1979), p. 29], used to prove Propositions 2.22 and 2.23, may provide
simplifications in some cases.

Proposition 2.21 Let xi and yi in R
pi , i = 1, . . . , r, be related through

the system of “conditional transformations”

y1 = f1(x1),
y2 = f2(y1,x2),

...
yr = fr(y1, . . . ,yr−1,xr),

where each fi is differentiable. Then,

J(y1, . . . ,yr → x1, . . . ,xr) =
r∏

i=1

J(yi → xi).

Proof. The jacobian has the triangular form

J =

∣∣∣∣∣∣∣∣

∂y1/∂x1 0 · · · 0
∗ ∂y2/∂x2 · · · 0
...

...
. . .

...
∗ ∗ · · · ∂yr/∂xr

∣∣∣∣∣∣∣∣
+

,

and, thus, we get J =
∏r

i=1 |∂yi/∂xi|+ immediately. �

As an example of jacobian via conditional transformations, consider the
Bartlett decomposition of W > 0 in R

n
n as W = TT′ for a unique

T ∈ L+
n (v. Proposition 1.14). Due to symmetry, W has effectively

n(n + 1)/2 elements and, thus, the decomposition gives a transformation
f : R

n(n+1)/2 → R
n(n+1)/2 defined by f(W) = T.
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Proposition 2.22 The jacobian of the transformation f(W) = T is

J(W → T) = 2n
n∏

i=1

tn−i+1
ii .

Proof. Partition W and T in conformity so that
(

w11 w′
21

w21 W22

)
=

(
t11 0′

t21 T22

)(
t11 t′

21
0 T22

)
.

Observe the system of conditional transformations

w11 = t211,

w21 = w
1/2
11 t21,

W22 = w21w′
21/w11 + T22T′

22

from which

J(W → T) = (2t11)(w
1/2
11 )n−1J(W22 → T22) = 2tn11J(W22 → T22).

The conclusion follows by induction. �

As another example, consider the transformation to polar coordinates on
R

n, x �→ (r, θ1, . . . , θn−1) given by

x1 = r sin(θ1) sin(θ2) · · · sin(θn−2) sin(θn−1),
x2 = r sin(θ1) sin(θ2) · · · sin(θn−2) cos(θn−1),
x3 = r sin(θ1) sin(θ2) · · · cos(θn−1),

...
xn−1 = r sin(θ1) cos(θ2),

xn = r cos(θ1),

where r > 0 is the “radius” and 0 < θi ≤ π, i = 1, . . . , n−2, 0 < θn−1 ≤ 2π
are the “angles”. The jacobian J(x → r, θ) is facilitated with the system
of conditional transformations

y1 = x2
1 + · · · + x2

n−2 + x2
n−1 + x2

n = r2,
y2 = x2

1 + · · · + x2
n−2 + x2

n−1 = y1 sin2(θ1),
y3 = x2

1 + · · · + x2
n−2 = y2 sin2(θ2),

...
yn−1 = x2

1 + x2
2 = yn−2 sin2(θn−2),

yn = x2
1 = yn−1 sin2(θn−1).

Proposition 2.23 The jacobian of the transformation to polar coordinates
in R

n is

J(x → r, θ) = rn−1 sinn−2(θ1) sinn−3(θ2) · · · sin(θn−2).
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Proof. We give the main idea and the reader is asked in Problem 2.14.11
to complete the details. We have J(y → r, θ) = J(y → x) · J(x → r, θ).
The jacobian J(y → x) is trivial and J(y → r, θ) is evaluated using
Proposition 2.21 on conditional transformations. �

Let Sn−1 = {s ∈ R
n : |s| = 1} be the “unit sphere” in R

n. The
superscript n − 1 refers to the dimension of this surface. At times, we
would like to bypass the angles and consider directly the transformation

f : R
n\{0} → (0,∞) × Sn−1,

x �→ (r,u)

defined by r = |x| and u = x/|x| ∈ Sn−1. Since [Courant (1936), p. 302]
∫

|x|≤R

g(|x|)dx =
∫ R

0

∫

Sn−1
g(r)rn−1drdu,

where du is the “area element” of Sn−1, then rn−1 is the jacobian.

Proposition 2.24 The jacobian of the transformation x �→ (r,u) is

J(x → r,u) = rn−1.

The jacobians of other transformations on k-surfaces (manifolds) in R
n are

useful for sampling distributions of eigenvalues, for example, but their full
understanding requires a knowledge of differential forms and integration on
manifolds [Spivak (1965), James (1954)]. This will not be pursued here.

2.14 Problems

1. Show that |E g(x)| ≤ E |g(x)| for any g : R
n → R such that

E |g(x)| < ∞.

2. Prove the Cr inequality: For x and y distributed on R
k,

E |x + y|r ≤ Cr [E |x|r + E |y|r] , r > 0,

where

Cr =
{

1, 0 < r ≤ 1
2r−1, r ≥ 1.

Hint: Show the simple inequality (a+ b)r ≤ Cr(ar + br), r > 0, a ≥ 0,
b ≥ 0.

3. For each p > 0 let Lp denote the collection of all random vectors on
R

k for which the pth moment exists: E |x|p < ∞. Prove the following
basic facts:

(i) Lp is a vector space.
(ii) For any 0 < r ≤ p, Lp ⊆ Lr.
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(iii) E |x|p < ∞ ⇐⇒ E |xi|p < ∞, i = 1, . . . , k ⇐⇒ E |t′x|p <
∞, ∀t ∈ R

k.
(iv) E |a′x|p = 0, for some a ∈ R

k=⇒ P (x ∈ a⊥) = 1.
(v) For any x ∈ L1, |E x| ≤ E |x|. Indicate also the precise

circumstances under which equality occurs.

4. Prove that if the pth moment (p > 0) of x ∈ R
n is finite, then all

product-moments of x of order p are finite.

5. For x distributed on R
n, consider the p.d.f. fx(x) = c|x|2 · I[0,1](x).

(i) Determine c.
(ii) Determine E x and var x.
(iii) Determine E

∏n
i=1 xi

i.

Hint: E g(x) = cE |u|2g(u), where u ∼ unif([0,1]).

6. Let A ∈ R
m
n , B ∈ R

p
q , and C ∈ R

m
q be constant and X ∈ R

n
p , x ∈ R

n,
and y, z ∈ R

q be random. Check the following:

(i) E(AXB + C) = A(E X)B + C
(ii) cov(Ax,By) = A cov(x,y)B′

(iii) cov(x,y + z) = cov(x,y) + cov(x, z).

7. Prove the conditional variance formula.

8. Pairwise versus mutual independence [Bhat (1981)].
Let x and y be i.i.d. random variables taking the values +1 and −1
with probability 1/2 each. Define z = xy.

i) Establish x, y, z are pairwise independent, but not mutually
independent.

ii) Does x |= z and y |= z imply x
y |= z?

9. Let x = (x1, x2)′ have the d.f. of Cook and Johnson (1981) as in
expression (2.3). Demontrate x1 |= x2 iff α = 0.

10. Given a bivariate copula d.f. C(t1, t2), two measures of association
are Spearman’s ρ and Kendall’s τ ,

ρ = 12
∫

[0,1]2
t1t2dC(t1, t2) − 3,

τ = 4
∫

[0,1]2
C(t1, t2)dC(t1, t2) − 1,

|ρ| ≤ 1 and |τ | ≤ 1. Now, let |α| < 1/3 in the bivariate Morgenstern
copula

C(t1, t2) = t1t2[1 + 3α(1 − t1)(1 − t2)].

Verify this copula is parameterized by Spearman’s measure, or

α = 12
∫

[0,1]2
t1t2dC(t1, t2) − 3.
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11. Complete the proof of Proposition 2.23.

12. Demonstrate the jacobian of the transformation T1 = AT2 for T2 ∈
L+

n and A = (aij) constant also in L+
n is J(T1 → T2) =

∏n
i=1 ai

ii.

13. Demonstrate the jacobian of the transformation U1 = AU2 for U2 ∈
U+

n and A = (aij) constant also in U+
n is

J(U1 → U2) =
n∏

i=1

an−i+1
ii .

14. Demonstrate the jacobian of the transformation V = AWA′, where
W ∈ R

n
n is skew-symmetric, i.e., W = −W′, is J(V → W) =

|A|n−1
+ .

15. Suppose F(X) = (fij(X)) ∈ R
m
n and define the differential

componentwise, i.e., dF = (dfij). Demonstrate that

F = GH =⇒ dF = G · dH + dG · H.

16. Let

V =
(

V11 V12
V21 V22

)
> 0

and define the transformation

f : (V11,V12,V22) �→ (V11.2,V12,V22),

where V11.2 = V11 − V12V−1
22 V21.

(i) Prove f defines a one-to-one mapping.
(ii) Obtain J(V11,V12,V22 → V11.2,V12,V22) = 1.



3
Gamma, Dirichlet, and F distributions

3.1 Introduction

This chapter introduces some basic probability distributions useful in statis-
tics. The gamma distribution, in particular, is the building block of many
other distributions such as chi-square, F , and Dirichlet. The Dirichlet
distribution, as defined in Section 3.3, has the important physical interpre-
tation of proportion of time waited in a Poisson process. However, it has
other applications such as the distribution of spacing variables (v. Prob-
lem 3.5.3) and the distribution theory (v. Section 4.5) related to spherical
distributions, which play an important role in robustness.

3.2 Gamma distributions

Definition 3.1 Standard gamma: z ∼ gamma(p) or z ∼ G(p) on p > 0
“degrees of freedom” iff

fz(z) =
{

Γ(p)−1 zp−1e−z, z > 0
0, z ≤ 0.

The integrating constant, as it depends on p > 0, is known as the gamma
function and is, in fact, defined by

Γ(p) =
∫ ∞

0
tp−1e−tdt, p > 0.
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One may verify some basic properties:

Γ(p + 1) = pΓ(p), Γ(2) = Γ(1) = 1, Γ( 1
2 ) =

√
π

and, in particular, Γ(n) = (n − 1)!. Obviously,

E zr = Γ(p + r)/Γ(p), ∀r > −p,

so that E z = var z = p. A more general gamma distribution is obtained
by simply rescaling the standard gamma.

Definition 3.2 Scaled gamma: x ∼ gamma(p, θ) or x ∼ G(p, θ) on p > 0
“degrees of freedom” and “scale” θ > 0 iff

x = θz, z ∼ G(p).

Obviously,

fx(x) =
{

Γ(p)−1 θ−p xp−1e−x/θ, x > 0
0, x ≤ 0,

and, thus, the characteristic function is cx(t) = (1 − iθt)−p with the
“convolution” of gamma distributions as a corollary.

Corollary 3.1 If xi, i = 1, . . . , n, are independent G(pi, θ), then
n∑

i=1

xi ∼ G

(
n∑

i=1

pi, θ

)
.

In the special case where p = 1 we have the exponential distributions.

Definition 3.3

Standard exponential : z ∼ exp(1) iff z ∼ G(1).
Scaled exponential : x ∼ exp(θ) iff x = θz, z ∼ exp(1).

The chi-square distribution is another special case.

Definition 3.4 Chi-square: y ∼ χ2
m or y

d= χ2
m iff

y = 2z, z ∼ G( 1
2m).

Equivalently, y ∼ χ2
m iff y ∼ G( 1

2m, 2), and the chi-square is a special
case of the scaled gamma above. Thus, the gamma distribution occurs in
common statistical practice as the chi-square (2×gamma≡chi-square). The
characteristic function of y ∼ χ2

m is immediate: cy(t) = (1− i2t)−m/2. One
should, however, also recall how it describes “waiting time” in a Poisson
process.

Recall that the Poisson process Nt arises first on purely physical consid-
erations as a description of the number of “successes” in what is effectively
an infinite number of independent bernoulli trials over the fixed time pe-
riod t where the average number is known to be proportional to t. On these
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assumptions,

Xn ∼ binomial(n, pn) and E Xn → λt,

whereby

Xn
d→ Nt, where Nt ∼ Poisson(λt).

One then has the (conjugate) waiting time process Tn to describe the
amount of time to wait until at least n “successes.” Since

Tn > t ⇐⇒ Nt < n,

we find

P (Tn > t) = P (Nt < n) =
n−1∑
i=0

e−λt(λt)i/i!

and differentiating produces the p.d.f.

fn(t) = λe−λt(λt)n−1/(n − 1)!, t > 0,

whereby we discover

Tn ∼ G(n, λ−1) or, equivalently, zn = λTn ∼ G(n).

The exponential itself is just as well predicated on a different intuition in
that one may show that it is the unique distribution that has “no memory”
in the explicit sense that

x ∼ exp(θ) ⇐⇒ P (x > s + t|x > t) = P (x > s) > 0, ∀s, t > 0.

3.3 Dirichlet distributions

If the gamma is intuitively a waiting time, the Dirichlet, otherwise known
as the multivariate beta, is simply the proportion of time waited.

Definition 3.5 Dirichlet: x ∼ Dn(p; pn+1) or x ∼ betan(p; pn+1), p =
(p1, . . . , pn)′, pi > 0, i = 1, . . . , n + 1 iff

x d=
1
T

z

with zi
indep∼ G(pi), i = 1, . . . , n + 1, z = (z1, . . . , zn)′, and T =

∑n+1
i=1 zi.

The notation
indep∼ means “independently distributed as.”

Proposition 3.1 The joint p.d.f. of x and T can be described as

fT (t) =
1

Γ(
∑n+1

i=1 pi)
t
∑n+1

i=1 pi−1e−t, t > 0

(
i.e., T ∼ G

(
n+1∑
i=1

pi

))
,
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fx(x) =
Γ(

∑n+1
i=1 pi)∏n+1

i=1 Γ(pi)

n∏
i=1

xpi−1
i

(
1 −

n∑
i=1

xi

)pn+1−1

, x ∈ Tn,

where Tn = {x ∈ R
n : xi > 0,

∑n
i=1 xi < 1}. Moreover, x |= T .

Proof. Using independence, the joint p.d.f. of the zi’s is

fz,zn+1(z, zn+1) =
1∏n+1

i=1 Γ(pi)
·

n+1∏
i=1

zpi−1
i · exp

(
−

n+1∑
i=1

zi

)
, zi > 0, ∀i.

We simply transform from (z1, . . . , zn+1) to (x1, . . . , xn, t), where

zi = txi, i = 1, . . . , n

and

zn+1 = t

(
1 −

n∑
i=1

xi

)
.

The jacobian is given by
∣∣∣∣
∂z1, . . . , zn+1

∂x1, . . . , xn, t

∣∣∣∣
+

=
∣∣∣∣
∂tx1, . . . , txn, t(1 −∑n

i=1 xi)
∂x1, . . . , xn, t

∣∣∣∣
+

=

∣∣∣∣∣∣∣∣

t 0 x1
. . .

...
0 t xn

−t · · · −t 1 −∑n
i=1 xi

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

t 0 x1
. . .

...
0 t xn

0 · · · 0 1

∣∣∣∣∣∣∣∣
= tn.

Thus, the joint p.d.f. of (x, T ) is

1∏n+1
i=1 Γ(pi)

n∏
i=1

xpi−1
i (1 −

n∑
i=1

xi)pn+1−1t
∑n+1

i=1 pi−1e−t, x ∈ Tn, t > 0,

and the conclusions are reached. �

Note that the Dirichlet where all the parameters are 1 is simply the uni-
form distribution on the triangular region Tn, Dn(1; 1) ≡ unif(Tn). Also,
the Dirichlet distribution generalizes the beta distribution, D1(p1; p2)

d=
beta(p1; p2), with p.d.f.

fx(x) = B(p1, p2)−1xp1−1(1 − x)p2−1, 0 < x < 1,

where B(p1, p2) = Γ(p1)Γ(p2)/Γ(p1 + p2), is the beta function.
The converse of Proposition 3.1 is almost obvious (by inverse change of

variables); it need only be stated.
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Proposition 3.2 If zi = Txi, i = 1, . . . , n and zn+1 = T (1 − ∑n
i=1 xi)

with T ∼ G(
∑n+1

i=1 pi), x ∼ Dn(p; pn+1), and x |= T , then

zi
indep∼ G(pi), i = 1, . . . , n + 1.

Four useful corollaries are also stated and the reader is asked to prove
them. For x ∼ Dn(p; pn+1), let p =

∑n+1
i=1 pi denote the “grand total,”

noting that, by definition,

x d=
1
T

z

with zi
indep∼ G(pi), i = 1, . . . , n + 1, z = (z1, . . . , zn)′, and T =

∑n+1
i=1 zi.

We find the following:

Corollary 3.2 (Marginal Dirichlet) If x1 = (xi1 , . . . , xik
)′ denotes any

subset of the coordinates, then x1 ∼ Dk(p1; q) with p1 = (pi1 , . . . , pik
)′ and

p = q +
∑k

j=1 pij
.

Corollary 3.3 If x = (x′
1, . . . ,x

′
m)′ is “partitioned” in any manner what-

ever so that we may write xi ∼ Dki
(pi; qi), i = 1, . . . , m, define y by

letting yi = x′
i1, i.e., the total of the components of xi, with corresponding

ri = p′
i1. We find y ∼ Dm(r; pn+1) with r = (r1, . . . , rm)′.

Corollary 3.4 If S = x′1 =
∑n

i=1 xi and again x1 = (xi1 , . . . , xik
)′,

k < n, is any subset, let w1
d= 1

S x1. We find w1 ∼ Dk(p1; r) with
p1 = (pi1 , . . . , pik

)′ as before but this time, p − pn+1 = r +
∑k

j=1 pij
.

Corollary 3.5 (Conditional Dirichlet) If

x = (x′
1,x

′
2)

′ ∼ Dn ((p′
1,p

′
2)

′; pn+1) ,

where x1,p1 ∈ R
r and x2,p2 ∈ R

s, n = r + s, then
x1

1 − x′
21

| x2 ∼ Dr(p1; pn+1).

We easily compute the moments of a Dirichlet distribution. By the con-
verse representation in Proposition 3.2, if T ∼ G(p), x ∼ Dn(p; pn+1), and
x |= T , we have

Tx d= z with zi
indep∼ G(pi), i = 1, . . . , n.

This gives

T r
n∏

i=1

xri
i

d=
n∏

i=1

zri
i with r =

n∑
i=1

ri,

so that

E T r E

n∏
i=1

xri
i =

n∏
i=1

E zri
i for ri > −pi, i = 1, . . . , n.
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Figure 3.1. Bivariate Dirichlet density for values of the parameters p1 = p2 = 1
and p3 = 2.

We find

E

n∏
i=1

xri
i =

∏n
i=1 E zri

i

E T r
.

In particular,

E xi = pi/p, ∀i,

E x2
i = (pi + 1)pi/(p + 1)p, ∀i,

and E xixj = pipj/(p + 1)p, ∀i �= j,

and letting θ = 1
pp gives

E x = θ and var x =
1

p + 1
(
diag(θ) − θθ′) .

Figure 3.1 exhibits a bivariate Dirichlet density. Various characterizations
of Dirichlet distributions can be found in the literature [Rao and Sinha
(1988), Gupta and Richards (1990)].
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3.4 F distributions

The ratio of two independent gammas is described by the F distribution,
intuitively a relative waiting time.

Definition 3.6 F distribution: F ∼ F (s1, s2) iff F
d= y1/s1

y2/s2
, yi

indep∼ χ2
si

,
i = 1, 2.

One may easily obtain the moments of an F distribution and, in partic-
ular, its mean and variance. Sometimes, the distributions are more easily
expressed in terms of the canonical Fc distribution:

Definition 3.7 Canonical Fc distribution: F ∼ Fc(s1, s2) iff F
d= y1/y2,

yi
indep∼ χ2

si
, i = 1, 2.

One should also verify the simple relation

F ∼ Fc(s1, s2) ⇐⇒ (1 + F )−1 ∼ beta( 1
2s2; 1

2s1).

The noncentral chi-square and F distributions useful to describe the non-
null distribution of some tests are defined in Section 4.3.

3.5 Problems

1. If y ∼ χ2
m, then E yh = 2hΓ

( 1
2m + h

)
/Γ

( 1
2m

)
, h > − 1

2m.

2. Prove Corollary 3.1.

3. Assume x ∼ unif([0,1]) in R
n.

(i) Define y by y1 = x(1) = min ({x1, . . . , xn}) and

yi = x(i) = min
({x1, . . . , xn} − {x(1), . . . , x(i−1)}

)
,

i = 2, . . . , n. Determine the distribution of y.
(ii) Define z by z1 = y1 and zi = yi − yi−1, i = 2, . . . , n, and

determine the distribution of z.
(iii) Determine E x, var x, E y, and var y as well as E z and var z.

4. Prove Corollaries 3.2, 3.3, 3.4, and 3.5.

5. Show the simple equivalence

F ∼ Fc(s1, s2) ⇐⇒ (1 + F )−1 ∼ beta( 1
2s2; 1

2s1).

6. Obtain the density of F ∼ Fc(s1, s2):

f(F ) =
Γ
( 1

2 (s1 + s2)
)

Γ
( 1

2s1
)

Γ
( 1

2s2
) F s1/2−1

(1 + F )(s1+s2)/2 , F > 0.



4
Invariance

4.1 Introduction

Invariance is a distributional property of a random vector acted upon by a
group of transformations. The simplest group of transformations {+1,−1}
leads to symmetric distributions by defining a random variable to be sym-
metric iff x

d= −x. Groups of transformations acting on random vectors
commonly encountered are the permutations and orthogonal transforma-
tions. The permutation invariance gives the “exchangeable” random vectors
and the invariance by orthogonal transformations defines the spherical dis-
tributions. Of great importance is the orthogonal group, since it specifies
the physical basis for normality in the Maxwell-Hershell theorem. Spher-
ical distributions will play a central role later in Chapter 13 to build the
elliptical models useful in the study of robustness.

4.2 Reflection symmetry

Definition 4.1 x is (reflection) symmetric iff x
d= −x.

One immediately notes that if x
d= −x and E |x| < ∞, then E x = 0

(why?). The distribution of a symmetric random variable x is completely
determined by the distribution of its modulus |x|, as the next proposition
shows.
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Proposition 4.1 x
d= −x ⇐⇒ x

d= s|x| with s |= |x|, s ∼ unif{±1}.
Proof. (=⇒) : Let F be the d.f. of x. Then,

P (s|x| ≤ t) = 1
2 {P (|x| ≤ t) + P (|x| ≥ −t)}

= 1
2 ·

{
P (−t ≤ x ≤ t) + 1, t ≥ 0
P (|x| ≥ −t), t < 0

= 1
2 ·

{
(2F (t) − 1) + 1, t ≥ 0
2F (t), t < 0

= F (t).

(⇐=) : Since s ∼ unif{±1} is symmetric, then

s
d= −s, s |= |x| =⇒ (s, |x|) d= (−s, |x|)

=⇒ x
d= s|x| d= −s|x| d= −x.

�

If p(0) = P (x = 0) = 0, we may specifically let s = x/|x| be the sign
of x and show that when x is symmetric, the sign of x is +1 or −1 with
probability 1

2 and is distributed independently of the modulus |x|.
Proposition 4.2 If x

d= −x and p(0) = 0 then x/|x| |= |x| and x/|x| ∼
unif{±1}.
Proof. Uniform:

x/|x| d= −x/|x| =⇒ P (x/|x| = 1) = P (x/|x| = −1) =
1
2
.

Independence:

P (|x| ≤ t, x/|x| = 1) = P (|x| ≤ t, x > 0)
= P (0 < x ≤ t) = 1

2P (|x| ≤ t).

�

Obviously, by these propositions, one may generate symmetric distributions
at will.

Example 4.1 Let x
d= −x and |x| ∼ exp(1) to obtain the “double

exponential” (Laplace distribution) with p.d.f. f(x) = 1
2 exp(−|x|).

4.3 Univariate normal and related distributions

Definition 4.2 Standard normal: z ∼ N(0, 1) iff fz(z) = (2π)−1/2e− 1
2 z2

.

The univariate normal is so intimately connected to the gamma(1/2) that
these two may safely be thought of as synonymous. We easily verify:
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Proposition 4.3 z ∼ N(0, 1) ⇐⇒ z
d= −z and 1

2z2 ∼ G( 1
2 ).

From the convolution of gamma variables in Corollary 3.1, we obtain
immediately

Proposition 4.4 y ∼ χ2
m ⇐⇒ y

d=
∑m

i=1 z2
i , with z1, . . . , zm i.i.d. N(0, 1).

By the representation in Proposition 4.3, we quickly produce the (integral)
moments:

n odd: E zn =0 (i.e. zn d= −zn)
n even: E zn =E z2k

=2k E wk, w ∼ G( 1
2 )

=2kΓ(k + 1
2 )/Γ( 1

2 )
=(n − 1)(n − 3) · · · 3 · 1.

In particular, E z = 0 and var z = 1.
The more general normal is obtained by simply relocating and rescaling:

Definition 4.3 General normal: x ∼ N(µ, σ2) iff x
d= σz+µ, z ∼ N(0, 1).

Clearly, the integral moments of x are simple polynomials in µ and σ2

E xn =
n∑

i=0

(
n

i

)
σiE(zi)µn−i,

and one may write these out explicitly. In particular,

E x = µ, var x = σ2, and E x2 = µ2 + σ2.

Also, immediate from (2.1) is the characteristic function

cx(t) = eitµcz(σt) = eitµ− 1
2σ2t2 . (4.1)

We digress somewhat from invariance considerations to introduce two
important noncentral distributions. Motivated by the chi-square represen-
tation in Proposition 4.4, we now define the noncentral chi-square and F
distributions and show some characterizations.

Definition 4.4 Noncentral chi-square: y ∼ χ2
m(δ) iff y

d=
∑m

i=1 x2
i , with

xi
indep∼ N(µi, 1), i = 1, . . . , m, and δ =

∑m
i=1 µ2

i /2.

Definition 4.5 Noncentral F: F ∼ F (s1, s2; δ) iff F
d= y1/s1

y2/s2
with y1 ∼

χ2
s1

(δ), y2 ∼ χ2
s2

, and y1 |= y2.

Definition 4.6 Noncentral canonical Fc: F ∼ Fc(s1, s2; δ) iff F
d= y1/y2,

y1 ∼ χ2
s1

(δ), y2 ∼ χ2
s2

, and y1 |= y2.

Proposition 4.5 y ∼ χ2
m(δ) =⇒ cy(t) = (1− 2it)−m/2 exp[δ2it/(1− 2it)].
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Proof. By definition, if z1, . . . , zm−1, x are independent with zi ∼ N(0, 1),
i = 1, . . . , m − 1, and x ∼ N(µ, 1), then y =

∑m−1
i=1 z2

i + x2 ∼ χ2
m(δ),

where δ = µ2/2. Using independence and the characteristic function of∑m−1
i=1 z2

i ∼ χ2
m−1, cy(t) = (1−2it)−(m−1)/2 ·cx2(t). By direct computation,

cx2(t) =
∫ ∞

−∞
eitx2

(2π)−1/2e− 1
2 (x−µ)2dx

= exp
[

µ2it

(1 − 2it)

]

·
∫ ∞

−∞
(2π)−1/2 exp

{
− (1 − 2it)

2

[
x − µ

(1 − 2it)

]2
}

dx

= (1 − 2it)−1/2 exp[δ2it/(1 − 2it)].

Thus, cy(t) = (1 − 2it)−m/2 exp[δ2it/(1 − 2it)]. �

Proposition 4.6 If y ∼ χ2
m(δ), then

P (y ≤ t) =
∞∑

k=0

e−δ δk

k!
P

(
χ2

m+2k ≤ t
)
;

i.e., y is a Poisson mixture of central chi-square distributions.

Proof. A Taylor series gives

exp
[

δ2it

(1 − 2it)

]
= e−δ exp

[
δ

(1 − 2it)

]
= e−δ

∞∑
k=0

δk

k!
(1 − 2it)−k.

Hence,

cy(t) =
∞∑

k=0

e−δ δk

k!
(1 − 2it)− 1

2 (m+2k).

This means that if we define K, u0, u1, . . . mutually independent where
ui ∼ χ2

m+2i and K ∼ Poisson(δ), then y
d=

∑∞
k=0 uk · I(K = k). Finally,

since y | K
d= uK , it comes

P (y ≤ t) = E P (y ≤ t | K) =
∞∑

k=0

e−δ δk

k!
P

(
χ2

m+2k ≤ t
)
.

�

A similar expansion for noncentral Fc and, of course, F distributions exist.

Proposition 4.7 If F ∼ Fc(s1, s2; δ), then

P (F ≤ t) =
∞∑

k=0

e−δ δk

k!
P (Fc(s1 + 2k, s2) ≤ t) ;

i.e., F is a Poisson mixture of central Fc distributions.
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Proof. As in the proof of Proposition 4.6, if we define K, y2, u0, u1, . . .
mutually independent where K ∼ Poisson(δ), ui ∼ χ2

s1+2i and y2 ∼ χ2
s2

,
then

F
d=

∞∑
k=0

(uk/y2)I(K = k).

Now, since F | K
d= Fc(s1 + 2K, s2),

P (F ≤ t) = E P (F ≤ t | K) =
∞∑

k=0

e−δ δk

k!
P (Fc(s1 + 2k, s2) ≤ t) ,

which concludes the proof. �

4.4 Permutation invariance

We represent any permutation σ of 1, . . . , n by the linear transformation
obtained by the corresponding permutation of the columns of the identity

Jσ =
(
eσ(1), . . . , eσ(n)

)
.

In the transpose,

J′
σx = (xσ(1), . . . , xσ(n))′

permutes the elements of x. We denote the group of all such permutations:

Sn = {Jσ : σ = permutation of 1, . . . , n} .

Definition 4.7 x is permutationally invariant (exchangeable) iff x d= Jx,
∀J ∈ Sn.

It is obviously a very special case when the xi’s are i.i.d. x as the
characteristic function shows

cx(t) =
n∏

i=1

cx(ti) = cx(J′t) = cJx(t), ∀J ∈ Sn.

Any subvector of an exchangeable random vector will also be exchangeable
and all subvectors of the same dimension will be identically distributed. In
particular,

xi
d= x1, ∀i and xixj

d= x1x2, ∀i �= j.

If x is permutationally invariant, this forces the mean and variance to have
a certain structure. Let E x1 = µ, var x1 = σ2, and cov(x1, x2) = ρσ2 to
find

E x = µ1 and var x = σ2 {(1 − ρ)I + ρ11′} .
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The inequality ρ ≥ −1/(n − 1) must hold, as the eigenvalues of var x are
positive. Furthermore, in statistical applications, the physical assumption
that x is exchangeable is usually made independent of the sample size n;
but this (additional) assumption forces ρ ≥ 0. We verify also this fact by
normalizing to zi = (xi − µ)/σ, expressing ρ in terms of var z̄ and then
passing to the limit in n (v. Problem 4.6.9).

Permutationally invariant vectors are used, in particular, to model fa-
milial data where x = (x1, . . . , xn)′ represents a variable observed on n
siblings of a family. The parameter ρ in that context is often referred to as
the intraclass correlation coefficient. Results of a minimum variance unbi-
ased estimation in an exchangeable model are available under the normality
assumption [Yamato (1990)].

4.5 Orthogonal invariance

Recall that an orthogonal transformation, H, is simply one which preserves
length:

|Hx| = |x|, ∀x ∈ R
n.

However, it is clearly equivalent that H preserves the inner product:

|H(x + y)|2 = |x + y|2, ∀x,y ∈ R
n ⇐⇒ (Hx)′(Hy) = x′y, ∀x,y ∈ R

n,

and from this, it is equivalent that H be nonsingular with the inverse equal
to its own transpose:

x′H′Hy = x′y, ∀x,y ∈ R
n ⇐⇒ H′H = I = HH′;

this last expression is identical with the fact that the columns (or rows) of
H determine an orthonormal basis of R

n.
We denote the group of all orthogonal transformations by

On = {H ∈ R
n
n : H′H = I}.

The subgroup of all orthogonal transformations with positive “orientation”
is known as the rotation group: O+

n = {H ∈ On : |H| = 1}.
Definition 4.8 x is orthogonally invariant (spherical) iff x d= Hx, ∀H ∈
On.

It is clear that this includes reflection symmetry as a special case when
n = 1, but the considerations become altogether more interesting when
n ≥ 2, and in what follows, we will assume this.

Since Sn ⊂ On (subgroup), it is clear that x is permutationally invariant,
but, in addition, we will also have reflection symmetry in the coordinates.
Thus, in particular,

xi
d= −xi, ∀i and xixj

d= −xixj , ∀i �= j,
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and this forces µ = ρ = 0 by which we must always have

E x = 0 and var x = σ2I.

The following result reveals that the distribution of any orthogonally in-
variant x is completely determined by its first coordinate; it is important
in the sequel.

Proposition 4.8 x is orthogonally invariant ⇐⇒ t′x d= x1, ∀t ∈ Sn−1.

Proof. (=⇒): Let t′ be the first row of H ∈ On and project onto the first
coordinate.
(⇐=): Let H ∈ On. Since both H′t and t are unit vectors if t is, we have
immediately

x1
d= t′x d= t′Hx, ∀H ∈ On, ∀t ∈ Sn−1.

The Cramér-Wold theorem (v. Proposition 2.10) gives the conclusion. �

The characterization in Proposition 4.8 was used by Fang et al. (1993) to get
a Wilcoxon-type goodness-of-fit test for orthogonal invariance. Koltchinskii
and Li (1998) provide other clues to this testing problem.

Corollary 4.1 x is orthogonally invariant ⇐⇒ x d= Hx, ∀H ∈ O+
n .

Proof. For any t ∈ Sn−1, one can always find H ∈ O+
n , whose first row is

t′. Since x d= Hx, project on the first coordinate to obtain x1
d= t′x. �

With Corollary 4.1 the terms “orthogonal invariance” and “rotational in-
variance” can be used interchangingly and we will use the latter in the
sequel.

Now, perhaps, the very most obviously rotationally invariant distribution
is a spherical uniform. Accordingly, we consider x ∼ unif(Bn) with Bn =
{s ∈ R

n : |s| < 1} the “unit ball” in R
n. The reader can show that if

we define y by yi = x2
i , i = 1, . . . , n, then y ∼ Dn( 1

21; 1) and R = |x| ∼
beta(n; 1) (v. Problem 4.6.8). We simply “project” this distribution onto
its (n − 1)-dimensional boundary to obtain:

Definition 4.9 u ∼ unif(Sn−1) iff u d= x/|x| with x ∼ unif(Bn).

It is clear that u is rotationally invariant, inheriting this property di-
rectly from x. What, however, may be a bit surprising is that u is the only
rotationally invariant distribution on Sn−1:

Proposition 4.9 z is rotationally invariant on Sn−1 iff z ∼ unif(Sn−1).

Proof. Assume z is rotationally invariant on Sn−1. Take u |= z, where
u ∼ unif(Sn−1). Then,

z′u | z d= u1 | z d= u1
d= z′u,
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but this is completely symmetric in z and u, so

u′z | u d= z1 | u d= z1
d= u′z

and we conclude

t′u d= u1
d= z1

d= t′z, ∀t ∈ Sn−1.

Using the Cramér-Wold Proposition 2.10, u d= z. �

As a bonus, we also get the distribution of the cosine of the angle between
two vectors independently and uniformly distributed on Sn−1.

Corollary 4.2 u, z
indep∼ unif(Sn−1) =⇒ (u′z)2 ∼ beta

( 1
2 ; 1

2 (n − 1)
)
.

Proof. This is just a by-product of the proof of Proposition 4.9, in
which we found z′u d= u1, where u1

d= x1/|x| with x ∼ unif(Bn). But,
then, (z′u)2 d= x2

1/|x|2, where (x2
1, . . . , x

2
n) ∼ Dn( 1

21; 1) by which, from
Corollary 3.4, x2

1/|x|2 ∼ D1
( 1

2 ; 1
2 (n − 1)

)
. �

The culmination of all this is a fundamental representation in “polar”
coordinates of the general rotationally invariant distribution with respect
to the uniform distribution on the sphere. In this sense, the unif(Sn−1) will
be referred to as the “unit spherical” distribution. This representation was
used recently by Gupta and Song (1997) and Szablowski (1998) to define
and characterize lp-norm spherical distributions.

Proposition 4.10 x is rotationally invariant ⇐⇒ x d= Ru with R
d= |x|,

u ∼ unif(Sn−1), R |= u.

Proof. (⇐=): Since Hu d= u, ∀H ∈ On, and u |= R,

=⇒ (R,Hu) d= (R,u), ∀H ∈ On

=⇒ HRu d= Ru, ∀H ∈ On

=⇒ Hx d= HRu d= Ru d= x, ∀H ∈ On.

(=⇒): Let R
d= |x|, u ∼ unif(Sn−1), R |= u, and take any v ∼ unif(Sn−1),

v |= x. Then,

(1) (R,u) d= (|x|,v) =⇒ Ru d= |x|v =⇒ Ru1
d= |x|v1,

(2) x′v | x d= |x|v1 | x =⇒ v′x d= |x|v1,

(3) v′x | v d= x1 | v =⇒ x1
d= v′x,

and as easy as (1), (2), (3), x1
d= Ru1. However, since x and Ru are both

rotationally invariant, then for any t ∈ Sn−1,

t′x d= x1
d= Ru1

d= t′Ru
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and from the Cramér-Wold Proposition 2.10, x d= Ru. �

Thus, any rotationally invariant x is completely determined by its “mod-
ulus” R. Moreover, if there is no probability at the origin, px(0) = 0, we
have that the “direction” u of x, u = x/|x|, is unif(Sn−1) and distributed
independently of the modulus R = |x|.
Corollary 4.3 x is rotationally invariant ⇐⇒ |x| |= x/|x| and x/|x| ∼
unif(Sn−1).

Proof. (⇐=): By expressing x = |x| · x/|x|, Proposition 4.10 gives the
result.
(=⇒): Simply note that x d= Ru, where R

d= |x|, u ∼ unif(Sn−1), and
R |= u. Thus, (|x|,x/|x|) d= (R,u). �

Another proof due to Kariya and Eaton (1977) does not assume a density
and relies on the unicity of a rotationally invariant distribution on Sn−1.
We finish this section by obtaining a fundamental result that precisely
specifies the physical basis for normality with rotational invariance at the
very heart (n ≥ 2).

Proposition 4.11 (Maxwell-Hershell) x1, . . . , xn i.i.d. N(0, σ2) ⇐⇒
x is rotationally invariant and x1, . . . , xn are independent.

Proof. (=⇒): Independence is given and since

fx(x) = (2πσ2)−n/2 exp
(
− 1

2
1
σ2 |x|2

)

depends only on |x|, rotational invariance is obvious.
(⇐=): Let c(t) be the characteristic function of x1. Since x1 is symmetric,
c(t) = c(−t) = c(t), and, thus, c(t) ∈ R and, of course, −1 ≤ c(t) ≤ 1. Both
hypotheses may be expressed with respect to the characteristic function

n∏
i=1

c(ti) = cx(t) = cHx(t), ∀H ∈ On, t ∈ R
n.

But, of course,

cHx(t) = cx(H′t), ∀H ∈ On, t ∈ R
n,

and we may specifically choose H = ( t/|t|, Γ ) ∈ On for some Γ so that
H′t = |t|e1 whence, altogether,

∏n
i=1 c(ti) = c(|t|), ∀t ∈ R

n. Then, letting
t = (s, t, 0, . . . , 0) and defining h(x) = c(

√
x), ∀x ≥ 0, we find Hamel’s

equation

h(s2 + t2) = h(s2) h(t2), ∀s, t.

But then,

h(x) = h(2 · x/2) = [h(x/2)]2 ≥ 0, ∀x ≥ 0,

h(1) = h(p · 1/p) = [h(1/p)]p, p = 1, 2, . . . ,
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and

h(p/q) = h(p · 1/q) = [h(1/q)]p = [h(1)]p/q, p, q = 1, 2, . . . .

Since the rational numbers are dense and h is continuous, then h(x) =
[h(1)]x = exp(−kx), ∀x ≥ 0, where k ≡ − lnh(1) ≥ 0. Finally, c(t) =
h(t2) = exp(−kt2), ∀t. The case h(1) = 0 was excluded, as it would imply
that c(0) = 0, a contradiction, and h(1) = 1 corresponds to x1 = 0 w.p.1
(with probability 1), a degenerate normal with σ2 = 0. �

Thus, we have now a fair understanding of the basic physics of normal-
ity. In the next chapter, we give a more mathematical treatment of the
multivariate normal “family” in general; based on the theorem of Cramér
and Wold, multivariate normality will be (by definition) directly equated
to univariate normality of the linear functionals.

4.6 Problems

1. If y ∼ χ2
m(δ), show that

E y = m + 2δ,

var y = 2m + 8δ.

2. If F ∼ F (s1, s2; δ), show that

E F =
s2(s1 + 2δ)
s1(s2 − 2)

, s2 > 2,

var F = 2
s2
2

s2
1

[
(s1 + 2δ)2 + (s1 + 4δ)(s2 − 2)

(s2 − 2)2(s2 − 4)

]
, s2 > 4.

3. Obtain the density of F ∼ Fc(s1, s2; δ) using Problem 3.5.6:

f(F ) =
∞∑

k=0

e−δ δk

k!
Γ
( 1

2 (s1 + s2 + 2k)
)

Γ
( 1

2 (s1 + 2k)
)

Γ
( 1

2s2
) F (s1+2k)/2−1

(1 + F )(s1+s2+2k)/2 ,

F > 0.

4. Assume x = (x′
1,x

′
2)

′ has a spherical distribution. Show that x1 also
has a spherical distribution.

5. Let x ∈ R
n have a spherical distribution with a finite rth moment.

Demonstrate that all product-moments of x, E(xs1
1 · · ·xsn

n ), of order
s =

∑n
i=1 si ≤ r are null provided one of the si is odd.

6. Let x = (x1, . . . , xn)′ have a spherical distribution. Prove the
following:

(i) cx(t) = cx1(|t|) is a function of |t|.
(ii) If x is absolutely continuous, x ∼ f , then f(x) = f(|x|e1)

depends on x only through |x|.
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7. Assume x ∈ R
n is rotationally invariant. Prove the mixture

characterization

cx(t) =
∫ ∞

0
cu1(|t|r)dF (r),

where u = (u1, . . . , un)′ ∼ unif(Sn−1) and F is the distribution
function of |x| on [0,∞). This means any rotationally invariant dis-
tribution is a mixture of uniform distributions on spheres of varying
radius r ≥ 0 [Schoenberg (1938)].

8. Let x ∼ unif(Bn), where Bn = {s : s′s ≤ 1} is the “unit ball” in R
n.

(i) Define y by yi = x2
i , i = 1, . . . , n, and determine the distribution

of y, the marginal distribution of each yi, i = 1, . . . , n, and,
finally, the distribution of R2 = |x|2 = x′x.

(ii) Obtain vol(Bn) using (i) and indicate the special cases n =
1, 2, 3.

(iii) Determine E x and var x as well as E R2 and var R2.

Hint: Realize that y is “concentrated” on

Tn = {y : yi ≥ 0,
n∑

i=1

yi ≤ 1}.

9. Assume x ∈ R
n is permutationally invariant ∀n and E |x|2 < ∞.

Let S = g(x), where g : R
n → R is any (permutation) symmetric

function, i.e., g(Jt) = g(t), ∀J ∈ Sn, ∀t ∈ R
n.

(i) Prove ρ ≥ 0.

(ii) E (f(x) | S)
w.p.1

= E (f(Jx) | S) , ∀J ∈ Sn.

(iii) cov(x1, x2 | x̄)
w.p.1
≤ 0.

10. Assume x ∈ R
n has a “rotationally invariant” distribution such that

P (x = 0) = 0, i.e., Hx d= x, ∀H ∈ On. Let R = |x| and z = x/R.

(i) Prove that z has the same distribution as if x had been unif(Bn).
(ii) Prove that R |= z.
(iii) Determine E z and var z.
(iv) Determine E x and var x in terms of E R2.

Partition x = (x′
1,x

′
2)

′, x1 ∈ R
k and x2 ∈ R

n−k and let Ri = |xi|,
i = 1, 2.

(v) Determine the distribution of R2
1/R2 and R2

1/R2
2.

11. Assume u ∼ unif(Sn−1) and u = (u′
1,u

′
2)

′, u1 ∈ R
k.

(i) Prove that the density of u1 is

f(u1) =
Γ( 1

2n)
πk/2Γ[ 12 (n − k)]

(1 − u′
1u1)(n−k)/2−1, 0 < u′

1u1 < 1.
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Hint: Show (u2
1, . . . , u

2
k) ∼ Dk( 1

21; 1
2 (n − k)) and consider the

one-to-many transformation u2
i �→ ±ui.

(ii) Prove |u1|2 ∼ beta( 1
2k; 1

2 (n − k)).

12. Assume u = (u1, u2, u3)′ ∼ unif(S2). Show that u1 ∼ unif(−1, 1).
Does this hold in other dimensions?

13. Let x = (x1, . . . , xn)′ have a spherical density fx(x) = g(|x|2) for
some function g : [0,∞) → [0,∞). Let x = ru, where r ≥ 0 denotes
“radius” and u ∈ Sn−1 represents “direction.” Prove the following
using J(x → r,u) = rn−1:

(i) r |= u.
(ii) r2 has density

fr2(s) = 1
2ωnsn/2−1g(s), s > 0,

where ωn is the “area” of the unit sphere Sn−1.
(iii) With the special case x1, . . . , xn i.i.d. N(0, 1), find the “area”

ωn.
(iv) What is the density of u?

14. Let x ∈ R
n have a spherical density fx(x) = g(|x|2) and

x �→ r, θ1, . . . , θn−1

be the transformation to polar coordinates as in Proposition 2.23.
Prove θn−1 ∼ unif(0, 2π). What can be said about the other angles?

15. Prove the following concerning spherical distributions:

(i) If g(|x|2) is a density on R
n for some g : [0,∞) → [0,∞), then∫ ∞

0 rn−1g(r2)dr = Γ
( 1

2n
)
/(2πn/2).

(ii) If the kth moment of x is finite, i.e., E |x|k < ∞, then
∫ ∞

0
rn+k−1g(r2)dr < ∞.

(iii) If the second moment of x is finite, then var x = αI, where
α = E x2

1. From Problem 4.6.6, cx(t) = φ(t′t) for some function
φ. Prove α = −2φ′(0).



5
Multivariate normal

5.1 Introduction

This chapter is entirely devoted to the multivariate normal distribution. In
Section 5.2, the basic properties are demonstrated. Then, Sections 5.3 and
5.4 make the distinction between the nonsingular and the singular cases. In
the nonsingular case, the density is derived while we explain the geometry
of the singular case. Section 5.5 contains the conditional distribution in all
its generality. Finally, the last section reaps the first benefits by consider-
ing some applications in univariate sampling, regression, and elementary
correlation.

5.2 Definition and elementary properties

Let Σ = (σij) ∈ R
n
n be symmetric, positive semidefinite, and µ ∈ R

n.

Definition 5.1 Multivariate normal:

x ∼ Nn(µ,Σ) iff t′x ∼ N(t′µ, t′Σt), ∀t ∈ R
n.

Note that x has product-moments of any order by the fact that this is true
of t′x, ∀t ∈ R

n.

Proposition 5.1 x ∼ Nn(µ,Σ) =⇒ E x = µ and var x = Σ.
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Proof. Setting t = ei = (0, . . . , 1, . . . , 0)′, we find the individual
component xi = e′

ix:

xi ∼ N(µi, σii), where µi = E xi, σii = var xi.

Similarly, setting t to be a vector with 1’s in the ith and jth components,
i �= j, and 0’s elsewhere, we find

xi + xj ∼ N(µi + µj , σii + σjj + 2σij), i �= j.

However, since on the other hand for i �= j, var (xi +xj) = var xi +var xj +
2cov(xi, xj), then cov(xi, xj) = σij . �

Proposition 5.2 Let A : R
n → R

m, linear, and x ∼ Nn(µ,Σ). Then,
Ax ∼ Nm(Aµ,AΣA′).

Proof. Let y = Ax and merely note that

s′y = (A′s)′x ∼ N (s′Aµ, s′AΣA′s) , ∀s ∈ R
m.

�

By specializing A to be the projection onto any particular subset of co-
ordinates, we deduce immediately that all the marginal distributions are
normal.

As a simple corollary on rotational invariance, we have

z ∼ Nn(0, σ2I) =⇒ Hz d= z, ∀H ∈ On.

The characteristic function for x ∼ Nn(µ,Σ) derives from the univariate
level (4.1):

cx(t) = ct′x(1) = exp
(− 1

2t
′Σt + it′µ

)
.

Example 5.1 Although all marginals of x have a univariate normal distri-
bution, the vector x itself may not have a multivariate normal distribution.
Consider a random vector x whose distribution is a mixture of two
multivariate normal distributions,

cx(t) = αcx1(t) + (1 − α)cx2(t), 0 < α < 1,

where

x1 ∼ Nn (0, (1 − ρ1)I + ρ111′) ,

x2 ∼ Nn (0, (1 − ρ2)I + ρ211′) .

Then, cxi
(ti) = αcz(ti) + (1 − α)cz(ti) = cz(ti), where z ∼ N(0, 1),

which shows xi
d= z, i = 1, . . . , n, but x does not have a multivariate

normal distribution. Other counterexamples can be given using copulas [v.
Example 2.5].
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As a special case, we have the characteristic function for z ∼ Nn(0, σ2I):

cz(t) = exp
(− 1

2σ2t′t
)

=
n∏

i=1

exp(− 1
2 t2i σ

2) =
n∏

i=1

czi
(ti)

by which

z ∼ Nn(0, σ2I) ⇐⇒ z1, . . . , zn i.i.d. N(0, σ2).

An implication is that if z = (z′
1, z

′
2)

′ ∼ Nn(0, I), then z1 |= z2, and the
density for z becomes

fz(z) = (2π)−n/2 exp
(− 1

2z
′z
)

=
n∏

i=1

(2π)−1/2 exp
(− 1

2z2
i

)
.

It is also clear from the characteristic function that the family of
multivariate normal is closed under translation:

x ∼ Nn(µ,Σ) =⇒ x + b ∼ Nn(µ + b,Σ), ∀b ∈ R
n.

Now, suppose that x ∼ Nn(µ,Σ) and write Σ = HDH′ with H orthogonal
and D = diag(λ). We find, of course, that y = H′(x−µ) ∼ Nn(0,D), and
if we then let A = HD1/2, we deduce the representation:

Proposition 5.3 x ∼ Nn(µ,Σ) ⇐⇒ x d= Az + µ for any A such that
AA′ = Σ, z ∼ Nn(0, I).

Finally, partition x = (x′
1,x

′
2)

′, where x1 ∈ R
n1 and x2 ∈ R

n2 , n = n1+n2,
with corresponding

µ =
(

µ1
µ2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

Concerning independence, we have the following necessary and sufficient
condition.

Proposition 5.4 Let x = (x′
1,x

′
2)

′ ∼ Nn(µ,Σ). Then,

x1 |= x2 ⇐⇒ Σ12 = 0.

Proof. (=⇒):

x1 |= x2 =⇒ E g1(x1)g2(x2) = E g1(x1)E g2(x2), ∀g1, g2

=⇒ Σ12 = 0.

(⇐=): Assume Σ12 = 0. Write Σii = AiiA′
ii, i = 1, 2. Then, Σ = AA′,

where

A =
(

A11 0
0 A22

)
.

Using the representation(
x1
x2

)
d= Az + µ =

(
A11z1 + µ1
A22z2 + µ2

)
,
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where z ∼ Nn(0, I), it is clear that since z1 |= z2, then x1 |= x2. �

Another simple proof based on characteristic functions is proposed in
Problem 5.7.3.

5.3 Nonsingular normal

When x ∼ Nn(µ,Σ) and |Σ| = |AA′| = |A|2 = |D| =
∏n

i=1 λi > 0, define
z = A−1(x−µ) whereby we have an explicit density for x by simple change
of variables:

fx(x) = fz
(
A−1(x − µ)

) · J(z → x)

= (2π)−n/2|Σ|−1/2 exp
[− 1

2 (x − µ)′Σ−1(x − µ)
]

and, of course, from Proposition 4.4, then also

(x − µ)′Σ−1(x − µ) = z′z ∼ χ2
n.

The quantity [(x − µ)′Σ−1(x − µ)]1/2 is often called the Mahalanobis
distance of x to µ.

Example 5.2 The bivariate density function is just a special case. For

µ =
(

µ1
µ2

)
, Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
,

we find

Σ−1 =
1

(1 − ρ2)

(
σ−2

1 −ρ/σ1σ2
−ρ/σ1σ2 σ−2

2

)
.

Thus, the bivariate density takes the form

fx(x1, x2) =
1
2π

1
σ1σ2(1 − ρ2)1/2 exp

{
− 1

2(1 − ρ2)

[(
x1 − µ1

σ1

)2

−2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+

(
x2 − µ2

σ2

)2
]}

.

A plot of this density is given in Figure 5.1.

The contours, which consists of the set of points of equal probability density,
of a multivariate normal are the points x of equal Mahalanobis distance to
µ,

(x − µ)′Σ−1(x − µ) = c2,

for any constant c > 0. Letting y = H′x, ν = H′µ, where H diagonalizes
Σ, H′ΣH = D, then the contours are the ellipsoids

p∑
i=1

(yi − νi)2/di = c2
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Figure 5.1. Bivariate normal density for values of the parameters µ1 = µ2 = 0,
σ1 = σ2 = 1, and ρ = 0.7.

centered at ν with principal axes of half length cd
1/2
i supported by the

eigenvectors in H = (h1, . . . ,hp).

Example 5.3 The contours of the bivariate normal density are in para-
metric form, and in the y coordinates,

(
y1
y2

)
=

(
ν1
ν2

)
+ c

(
d
1/2
1 sin θ

d
1/2
2 cos θ

)
, 0 ≤ θ ≤ 2π.

Thus, the contours in the original x coordinates are just
(

x1
x2

)
=

(
µ1
µ2

)
+ c

(
h11d

1/2
1 sin θ + h12d

1/2
2 cos θ

h21d
1/2
1 sin θ + h22d

1/2
2 cos θ

)
, 0 ≤ θ ≤ 2π.

A contour plot is given in Figure 5.2.

Example 5.4 Using the transformation to polar coordinates on p. 32, the
contours of the trivariate normal density are in parametric form, and in
the y coordinates,




y1
y2
y3


 =




ν1
ν2
ν3


 + c




d
1/2
1 sin θ1 sin θ2

d
1/2
2 sin θ1 cos θ2

d
1/2
3 cos θ1


 , 0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ 2π.
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-3 -2 -1 1 2 3
x1
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-1

1
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x2

Figure 5.2. Contours of the bivariate normal density for values of the parameters
µ1 = µ2 = 0, σ1 = σ2 = 1, and ρ = 0.7. Values of c = 1, 2, 3 were taken.

Thus, the contours in the original x coordinates are just



x1
x2
x3


 =




µ1
µ2
µ3


 + c




h11 h12 h13
h21 h22 h23
h31 h32 h33







d
1/2
1 sin θ1 sin θ2

d
1/2
2 sin θ1 cos θ2

d
1/2
3 cos θ1


 ,

0 ≤ θ1 ≤ π, 0 ≤ θ2 ≤ 2π. The contour plot corresponding to c = 1 is given
in Figure 5.3 when µ = 0 and

Σ =




13 −4 2
−4 13 −2

2 −2 10


 .

The corresponding eigenvalues of d1 = 18, d2 = d3 = 9 give the typical
ellipsoidal contours.

Still assuming |Σ| > 0, we apply the Gram-Schmidt process to the basis
formed by the row vectors of A = HD1/2, obtaining (uniquely) A = TG
(v. Proposition 1.13) with T ∈ L+

n , G ∈ On, where

L+
n = {T ∈ Gn : T is lower triangular, tii > 0, i = 1, . . . , n}.

Then, Σ = AA′ = TT′ for a unique T ∈ L+
n (v. Proposition 1.14). We

have the “triangular” representation:

Proposition 5.5 (Triangular representation)

x ∼ Nn(µ,Σ) ⇐⇒ x d= Tz + µ

with T ∈ L+
n such that Σ = TT′ and z ∼ Nn(0, I).
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Figure 5.3. A contour of a trivariate normal density.
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5.4 Singular normal

Now, for x ∼ N(µ, σ2), we know that σ2 = 0 ⇐⇒ x = µ w.p.1. This
holds, since if σ2 = 0, P (x = µ) = limn→∞ P (|x − µ| < 1/n), but
P (|x − µ| ≥ 1/n) ≤ σ2n2 = 0, ∀n. Thus, the normal family includes the
“trivial” (constant) random variables as special cases. By Cramér-Wold
Proposition 2.10, this also holds for random vectors x ∈ R

n with E x = µ
and var x = Σ: Σ = 0 ⇐⇒ x = µ w.p.1. However, if x ∼ Nn(µ,Σ) with
|Σ| = 0, we may write

Σ = HDH′ = (H1,H2)
(

D1 0
0 0

)(
H′

1
H′

2

)
= H1D1H′

1,

where D1 = diag(λ1, . . . , λr) comprises the nonzero eigenvalues, H1 =
(h1, . . . ,hr) gives a basis for the column space of Σ, Im Σ, and H2 =
(hr+1, . . . ,hn) gives a basis for the kernel, ker Σ. One should note that

Im H2 = (Im H1)⊥ = ker Σ,

Im H1 = (Im H2)⊥ = Im Σ.

Then it is clear that H′
2ΣH2 = 0 and, thus, we find that H′

2(x − µ) = 0
w.p.1 or, equivalently, x − µ ∈ (Im H2)⊥ w.p.1., whereas H′

1(x − µ) ∼
Nr(0,D1) has a nonsingular normal distribution. Of course, this is yet
equivalent to saying that x ∈ µ + Im Σ w.p.1 and one can then almost
visualize x in this r-dimensional affine subspace of R

n, r < n. A curious
fact in this case is that vol(µ+Im Σ) = 0 but Px(µ+Im Σ) = 1, therefore
x cannot be absolutely continuous (v. Proposition 2.11).

It is worth recalling at this point that any constant random vector is
automatically statistically independent of any other random vector, and so
we might notice, in particular, the rather odd looking fact that

H′
2(x − µ) |= x.

5.5 Conditional normal

By a suitable permutation, one may rearrange an arbitrary multivariate
normal x so that any subset x1 of its coordinates are brought to the fore,
and the overall distribution is expressed by
(

x1
x2

)
∼ Nn

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
, x1 ∈ R

n1 , x2 ∈ R
n2 , n = n1 +n2.

We derive the conditional distribution of x1 given x2.
First suppose Σ22 is nonsingular and note that for any B,

(
I −B
0 I

)(
Σ11 Σ12
Σ21 Σ22

)(
I 0

−B′ I

)
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=
(

Σ11 − Σ12B′ − BΣ21 + BΣ22B′ Σ12 − BΣ22
Σ21 − Σ22B′ Σ22

)
,

so by deliberately setting B = Σ12Σ−1
22 , we find

(
x1 − Bx2

x2

)
∼ Nn

((
µ1 − Bµ2

µ2

)
,

(
Σ11.2 0

0 Σ22

))
,

where

Σ11.2 = Σ11 − Σ12Σ−1
22 Σ21.

However, independence means x1 −Bx2 | x2
d= x1 −Bx2, so that we have

x1 − Bx2 | x2 ∼ Nn1(µ1 − Bµ2,Σ11.2).

Since we may legitimately treat x2 as though constant (the full justification
of this depending on the fact that we have a “regular” conditional distri-
bution to which the Fubini theorem applies [Ash (1972)]) we may conclude
that

x1 | x2 ∼ Nn1(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11.2).

In the singular case, if |Σ22| = 0, we may always write

Σ22 = (H1,H2)
(

D 0
0 0

)(
H′

1
H′

2

)
= H1DH′

1,

where D ∈ R
k
k is nonsingular, and we may then take what is called a

“pseudo-inverse” for Σ22:

Σ−
22 = (H1,H2)

(
D−1 0
0 0

)(
H′

1
H′

2

)
= H1D−1H′

1.

We then have, of course, H′
2(x2 − µ2)

w.p.1
= 0 and also

(
x1

H′
1x2

)
∼ Nn1+k

((
µ1

H′
1µ2

)
,

(
Σ11 Σ12H1

H′
1Σ21 D

))

to which the results in the nonsingular case apply, immediately showing
(

x1 − Bx2
H′

1x2

)
∼ Nn1+k

((
µ1 − Bµ2

H′
1µ2

)
,

(
Σ11.2 0

0 D

))
,

where B = Σ12Σ−
22 and Σ11.2 = Σ11 − Σ12Σ−

22Σ21. But from this,
x1 − Bx2 |= H′

1x2, and thus, overall, x1 − Bx2 |= x2. We arrive at the
completely general conclusion:

Proposition 5.6 x1 | x2 ∼ Nn1 (µ1.2,Σ11.2), where

µ1.2 = µ1 + Σ12Σ−
22(x2 − µ2),

Σ11.2 = Σ11 − Σ12Σ−
22Σ21.
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5.6 Elementary applications

5.6.1 Sampling the univariate normal
Observe that

x1, . . . , xn i.i.d. N(µ, σ2) ⇐⇒ x ∼ Nn(µ1, σ2I).

Letting H = (1/
√

n, Γ ) ∈ On for some Γ and

w = H′x ∼ Nn(
√

nµe1, σ
2I),

obviously w1, . . . , wn are independent, and, of course,

w1 =
√

nx̄

and

w2
2 + · · · + w2

n = |w|2 − w2
1 = |x|2 − nx̄2 = |x − x̄1|2 = (n − 1)s2

x,

where s2
x =

∑n
i=1(xi − x̄)2/(n − 1) is the sample variance. Thus, we have

the basic statistical result

x̄ ∼ N(µ, σ2/n), (n − 1)s2
x

d= σ2χ2
n−1, and x̄ |= s2

x

with its trivial algebraic corollary
√

n(x̄ − µ)/sx
d=
√

(n − 1)z/χn−1, z ∼ N(0, 1), and z |= χ2
n−1.

We make the following definition (W.S. Gosset, “Student,” 1908):

Definition 5.2 t-Distribution: t
d= tp iff t

d=
√

pz/χp, where z ∼ N(0, 1)
and z |= χ2

p.

Thus, by definition,
√

n(x̄−µ)/sx
d= tn−1 is a pivotal quantity for µ. Clearly,

t
d= tp ⇐⇒ t

d= −t and t2 ∼ F (1, p). This provides a quick way of obtaining
the integral moments of tp. The Student’s t-distribution sometimes plays
a role in the dependent case. The intraclass correlation model is one such
example.

Example 5.5 Assume x ∼ Nn

(
µ1, σ2[(1 − ρ)I + ρ11′]

)
, where −1/(n −

1) ≤ ρ ≤ 1. Let x̄ =
∑n

i=1 xi/n, s2
x =

∑n
i=1(xi − x̄)2/(n − 1), and t =√

n(x̄ − µ)/sx. We determine a constant c such that ct ∼ tn−1. With the
orthogonal transformation above, we still have

w = H′x,

w1 =
√

nx̄,

w2
2 + · · · + w2

n = (n − 1)s2
x.

Since H′1 = (
√

n,0′)′, the distribution of w is

w ∼ Nn

((√
nµ
0

)
, σ2 [(1 − ρ)I + ρ diag(n, 0, . . . , 0)]

)
.
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Hence, w1 |= (w2, . . . , wn)′, which implies x̄ |= s2
x. The distribution of x̄

and s2
x are given by

√
nx̄ ∼ N(

√
nµ, σ2[(1 − ρ) + ρn]),

(n − 1)s2
x ∼ σ2(1 − ρ)χ2

n−1.

Finally, we can conclude that ct ∼ tn−1 by defining

c =
[

1 − ρ

(1 − ρ) + ρn

]1/2

.

In fact, the Student’s t-distribution has nothing to do with normal distri-
butions. It is more related to the concept of spherical symmetry, as in the
next example [Efron (1969)].

Example 5.6 Assume x ∈ R
n has a “rotationally invariant” distribution

and P (x = 0) = 0. We establish that
√

nx̄/sx ∼ tn−1, where, as usual,
x̄ =

∑n
i=1 xi/n and s2

x =
∑n

i=1(xi − x̄)2/(n − 1). Using Proposition 4.10,

the representation x d= Ru, where u ∼ unif(Sn−1) and R |= u, is valid.
Hence, (x̄, sx) d= (Rū,Rsu) and the distribution of

√
n

x̄

sx

d=
√

n
Rū

Rsu
=

√
n

ū

su

does not depend on R. Thus,
√

nx̄/sx ∼ tn−1 since this is the case when
x ∼ Nn(0, I).

5.6.2 Linear estimation
Consider now the problem of linear estimation in the so-called multiple
regression model. Let V ⊂ R

n be any k-dimensional vector subspace and

y = µ + e, E e = 0, var e = σ2I, and µ ∈ V.

Let θ = Tµ, where T ∈ R
m
n , and consider the estimate θ̂ = Tµ̂, where µ̂ =

Py is the orthogonal projection of y on V (v. Section 1.6). We prove that
among all possible unbiased linear estimates of θ, the regression estimate
θ̂ has the minimum variance. In this sense, θ̂ is the “best” linear unbiased
estimate (blue).

Proposition 5.7 (Gauss-Markov) θ̂ = blue(θ).

Proof. θ̃ = By is unbiased for θ ⇐⇒ BP = TP. But then,

var θ̂ = σ2TPT′ = σ2BPB′ ≤ σ2BB′ = var θ̃

with equality iff

BQB′ = 0 ⇐⇒ BQ = 0 ⇐⇒ B = BP ⇐⇒ θ̃ = θ̂,

where Q = I − P. �
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For example, µ̂ = Py = blue(µ) with var µ̂ = σ2P.
Now, expressing µ = Xβ with respect to any basis X = (x1, . . . ,xk) for

V and recalling the representation (1.3) for P, the coefficients are uniquely
determined as β = B0µ, where B0 = (X′X)−1X′. But then, β̂ = B0µ̂ =
B0y = blue(β), where var β̂ = σ2(X′X)−1. Obviously, β̂i = blue(βi),
i = 1, . . . , k.

Another optimality property of the “Gauss-Markov” estimate was
recently discovered [Berk and Hwang (1989), Eaton (1988), Ali and Pon-
napalli (1990]: The probability of the Gauss-Markov estimate of θ falling
inside any fixed ellipsoid centered at θ is greater than or equal to the
probability that any linear unbiased estimate of θ falls inside the same el-
lipsoid. It is interesting to remark that the Gauss-Markov estimate µ̂ = Py
is also the least-squares estimate. This follows from a general property of
orthogonal projections:

Proposition 5.8

min
µ∈V

|y − µ|2 = |y − µ̂|2,

where µ̂ = Py is the orthogonal projection of y on V.

Proof. For all µ ∈ V,

|y − µ|2 = |(y − µ̂) + (µ̂ − µ)|2
= |y − µ̂|2 + |µ̂ − µ|2 + 2(y − µ̂)′(µ̂ − µ)
= |y − µ̂|2 + |µ̂ − µ|2

since y − µ̂ ∈ V⊥ and µ̂ − µ ∈ V. Hence,

|y − µ|2 ≥ |y − µ̂|2, ∀µ ∈ V,

with equality if µ = µ̂. �

Finally, since Q = I − P gives the orthogonal projection on V⊥, we find

y − µ̂ = Qy = Qe =⇒ |y − µ̂|2 = e′Qe,

so that

E |y − µ̂|2 = E e′Qe = E tr Qee′ = tr QE ee′ = (n − k)σ2.

Thus, we determine the unbiased estimate ŝ2 of σ2 by

(n − k)ŝ2 = |y − µ̂|2.
It is also clear that cov(µ̂,y − µ̂) = cov(Py,Qy) = σ2PQ = 0. Before
stating the joint distribution under normality of our estimates µ̂ and ŝ2,
we prove the following lemma on quadratic forms.

Lemma 5.1 Let z ∼ Nn(µ, I) and Q ∈ R
n
n be an orthogonal projection of

rank Q = m. Then, z′Qz ∼ χ2
m(δ), where δ = µ′Qµ/2.
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Proof. Let H = (h1, . . . ,hm) be an orthonormal basis for Im Q and write
Q = HH′, where H′H = Im. Then, z′Qz = (H′z)′(H′z) = |e|2, where
e = H′z ∼ Nm(H′µ, I). Hence, |e|2 ∼ χ2

m(δ) with δ = |H′µ|2/2. �

If, in addition, we assume normality,

y = Xβ + e, e ∼ Nn(0, σ2I),

then since

β̂ = B0y = B0µ̂, (n − k)ŝ2 = |y − µ̂|2 = e′Qe, and µ̂ |= y − µ̂,

we have the general result

β̂ ∼ Nk

(
β, σ2(X′X)−1) , (n − k)ŝ2 ∼ σ2χ2

n−k, and β̂ |= s

with corollary

|X(β − β̂)|2
kŝ2 ∼ F (k, n − k).

We close this section with a slight generalization of Lemma 5.1.

Corollary 5.1 Assume x ∼ Nn(µ,Σ), Σ > 0, and A is symmetric such
that AΣA = A and rank ΣA = m. Then, x′Ax ∼ χ2

m(δ), where δ =
µ′Aµ/2.

Proof. Letting z = Σ−1/2x and B = Σ1/2AΣ1/2, then x′Ax = z′Bz,
where z ∼ Nn(Σ−1/2µ, I), and the conclusion follows from Lemma 5.1
since B is an orthogonal projection of rank m. �

5.6.3 Simple correlation
Let (xi, yi) i.i.d. (x, y), i = 1, . . . , n, be any “bivariate” sample. The
correlation coefficient

ρ = cor(x, y)

=
cov(x, y)√

var(x)
√

var(y)

is usually estimated by the sample correlation coefficient

r =
∑n

i=1(xi − x̄)(yi − ȳ)

[
∑n

i=1(xi − x̄)2]1/2 [
∑n

i=1(yi − ȳ)2]1/2

=
(x − x̄1)′(y − ȳ1)
|x − x̄1| |y − ȳ1| .

Note that r is just the cosine of the angle between the residual vectors
x − x̄1 and y − ȳ1. The main (nonparametric) reason for using r as an

estimate of ρ is its (strong) consistency: r
w.p.1→ ρ as n → ∞.
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If, in addition, we assume normality, a “pivotal statistic” may be derived.
First, notice that since r is invariant with respect to relocation and rescaling
in both x and y, we may suppose at the outset that

(
x
y

)
∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
.

Now, suppose that ρ = 0 so that x |= y. Then,

r =
(x − x̄1)′(y − ȳ1)
|x − x̄1| |y − ȳ1| =

(Qx)′(Qy)
|Qx||Qy| ,

where Q = In −n−111′ is an orthogonal projection of rank Q = n− 1. We
can write (v. Section 1.6) Q = HH′ with H′H = In−1. Then,

r =
(H′x)′(H′y)
|H′x||H′y| =

z′w
|z||w| ,

where z = H′x and w = H′y are independent Nn−1(0, I). Finally, letting
u = z/|z| and v = w/|w|, we have u |= v, and from Corollary 4.3, u d=
v ∼ unif(Sn−2). Therefore, using Proposition 4.8,

r = u′v d= u1 =
z1

|z| .

Thus,

r√
1 − r2

d=
z1(

z2
2 + · · · + z2

n−1

)1/2 ,

where the zi’s are i.i.d. N(0, 1) and
√

n − 2
r√

1 − r2

d= tn−2.

We have proved:

Proposition 5.9 If (xi, yi)′, i = 1, . . . , n, are i.i.d. as a bivariate normal
with ρ = 0, then

√
n − 2

r√
1 − r2

d= tn−2.

However, if ρ �= 0 and
(

x
y

)
∼ N2

((
0
0

)
,

(
σ2 ρστ
ρστ τ2

))
,

then we may apply this result to the linear transformation
(

x/σ − ρy/τ
y/τ

)
∼ N2

((
0
0

)
,

(
1 − ρ2 0

0 1

))
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using

r̃ =
∑n

i=1 ((xi − x̄)/σ − ρ(yi − ȳ)/τ) (yi − ȳ)[∑n
i=1 ((xi − x̄)/σ − ρ(yi − ȳ)/τ)2

]1/2
[
∑n

i=1(yi − ȳ)2]1/2
.

We find
r̃√

1 − r̃2

d=
z1

(z2
2 + · · · + z2

n−1)1/2 ,

where the zi’s are i.i.d. N(0, 1) and, by direct computation,

r̃√
1 − r̃2

=
r − ρc√
1 − r2

, where c =
sy/τ

sx/σ
.

Thus, we obtain the result

√
n − 2

(r − ρc)√
1 − r2

d= tn−2.

This is actually a pivotal for β = ρσ/τ . Later, the reader will be able to
prove that

√
n(r − ρ) d→ (1 − ρ2)z, z ∼ N(0, 1)

(v. Problem 6.4.8), which can be used to obtain an approximate confidence
interval for ρ. The exact distribution of r is treated in Section 8.4 in the
more general context of multiple correlation coefficient.

5.7 Problems

1. Plot the contours of the N2(µ,Σ) distribution when

µ =
(

1
2

)
,

Σ =
(

2 1
1 4

)
.

2. Let x ∼ Nn(µ1, σ2I), y ∼ Nn(ν1, τ2I), and x |= y and consider

r =
∑n

i=1(xi − x̄)(yi − ȳ)

[
∑n

i=1(xi − x̄)2]1/2 [
∑n

i=1(yi − ȳ)2]1/2 .

(i) Determine the distribution of r.
(ii) Determine E r and var r.

3. Prove Proposition 5.4 with characteristic functions.

4. Obtain the integral moments of the tp distribution.
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5. Let x be such that E x = µ and var x = Σ. Show that

min
c

E |x − c|2 = tr Σ

and that the minimum is attained at c = µ.

6. Assume (
x1
x2

)
∼ Nn

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

Demonstrate that

min
C,d

E |x1 − (Cx2 + d)|2 = tr Σ11.2

is attained at C = Σ12Σ−
22 and d = µ1 − Σ12Σ−

22µ2.

7. Assume that z ∼ Nn(0, I) and let z̄ =
∑n

i=1 zi/n, (n − 1)s2 =∑n
i=1(zi − z̄)2.

(i) Prove z̄, s, (z1 − z̄)/s are mutually independent.
(ii) Determine the distribution of (z1 − z̄)/s.

Hint: Let H = (1/
√

n, (e1 − n−11)/
√

(n − 1)/n,Γ) ∈ On, for some
matrix Γ, w = H′z, and note that (w2, . . . , wn)′ is rotationally
invariant.

8. Assume y = Xβ +e, e ∼ Nn(0, σ2I), where, as usual, the columns of
X ∈ R

n
k are linearly independent and let C ∈ R

r
k be of rank r. Show

that

(Cβ̂ − d)′[C(X′X)−1C′]−1(Cβ̂ − d)
rŝ2 ∼ F (r, n − k; δ),

where

δ =
(Cβ − d)′[C(X′X)−1C′]−1(Cβ − d)

2σ2 .

9. Let x ∼ Nn(µ1, σ2I).

(i) Assume y is fixed, y �∈ span{1}. Find the distribution of

r =
(x − x̄1)′(y − ȳ1)
|x − x̄1| |y − ȳ1| .

(ii) This time assume y has any distribution satisfying

P (y �∈ span{1}) = 1

and x |= y, and determine the distribution of r.

10. Angular gaussian distribution. The angular gaussian distribu-
tion is obtained by the projection of x ∼ Nn(0,Λ) onto the unit
sphere Sn−1; i.e., the angular gaussian density is that of u = x/|x|.
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(i) Prove that the angular gaussian density is

f(u) =
Γ( 1

2n)
2πn/2 |Λ|−1/2(u′Λ−1u)−n/2, u ∈ Sn−1.

(ii) What is the special case Λ = I?
(iii) Prove that the angular gaussian distribution can also be

obtained by projecting (onto Sn−1) x with density

fx(x) = |Λ|−1/2g(x′Λ−1x).

The word gaussian is misleading here; symmetry is the key.

11. Rotationally symmetric distributions on spheres [Saw (1978)].
This class of distributions will be those for which the density is con-
stant on those points u ∈ Sn−1 satisfying u′θ = δ, ∀δ ∈ [−1, 1] and
some fixed θ ∈ Sn−1.

(i) For some fixed λ ≥ 0, consider the function g(λ, ·) : [−1, 1] →
[0,∞). Prove

∫

Sn−1
ω−1

n g(λ,u′θ)du =
∫ 1

−1
g(λ, t)

(1 − t2)(n−3)/2

B( 1
2 , 1

2 (n − 1))
dt,

where B(·, ·) denotes the beta function and ωn = 2πn/2/Γ( 1
2n)

is the “area” of Sn−1.
Hint: ∫

Sn−1
ω−1

n g(λ,u′θ)du = E g(λ,u′θ) = E g(λ, u1),

where u = (u1, . . . , un)′ ∼ unif(Sn−1) and use Problem 4.6.11.
(ii) Deduce that f(u) = ω−1

n g(λ,u′θ) is a density on Sn−1 if
∫ 1

−1
g(λ, t)

(1 − t2)(n−3)/2

B( 1
2 , 1

2 (n − 1))
dt = 1.

Denote this distribution u ∼ Gn(λ, θ).
(iii) What are the “contours” of a Gn(λ, θ) distribution?
(iv) If g(λ, t) is an increasing function of t, prove Gn(λ, θ) is

unimodal. What is the mode?
(v) Prove: u ∼ Gn(λ, θ) =⇒ Hu ∼ Gn(λ,Hθ), ∀H ∈ On.
(vi) Obtain the first two moments of u ∼ Gn(λ, θ),

E u = ρ1θ,

E uu′ = {(1 − ρ2)I + (nρ2 − 1)θθ′}/(n − 1),

where

ρi =
∫ 1

−1
tig(λ, t)

(1 − t2)(n−3)/2

B( 1
2 , 1

2 (n − 1))
dt < ∞, i = 1, 2.
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Hint: Use the representation u d= tθ+(1−t2)1/2ζ, where t = u′θ
and ζ is distributed uniformly on the sphere orthogonal to θ,
t |= ζ [Watson (1983), p. 44].

(vii) Prove

fx(x) = g(λ, θ′x/|x|)(2π)−n/2 exp
(− 1

2x
′x
)

is a density on R
n by transforming to polar coordinates x �→

(r,u), r ≥ 0, u ∈ Sn−1.
(viii) Demonstrate that the distribution Gn(λ, θ) can be obtained by

projecting the distribution for x ∼ fx onto Sn−1; i.e., if x ∼ fx,
then u = x/|x| ∼ Gn(λ, θ).

Remark: The very special case g(λ, t) = exp(λt) yields the Langevin
distribution also known, for n = 2 and 3, as the Fisher-von Mises dis-
tribution on the circle and sphere [Fisher (1953), von Mises (1918)].
Tests for the mean direction, θ, of the Langevin distribution are
discussed by Fujikoshi and Watamori (1992). Robust estimators of
(λ, θ) for the Langevin distribution include the circular median [Mar-
dia (1972)], the normalized spatial median [Ducharme and Milasevic
(1987)], and the M-estimator on spheres [Ko and Chang (1993)].
Goodness-of-fit for directional data using smooth tests was considered
by Boulerice and Ducharme (1997). Asymptotic behavior of sample
mean direction on spheres, without symmetry condition on the p.d.f.,
was recently derived by Hendriks at al. (1996).



6
Multivariate sampling

6.1 Introduction

The basic tools for manipulating random samples from a multivariate dis-
tribution are developed in this chapter. We introduce random matrices in
Section 6.2 and show the usefulness of the “vec operator” and Kronecker
product in this regard. Also, the matrix variate normal distribution is de-
fined and its basic properties are explained. Section 6.3 deals with theorems
in the “asymptotic world” as the sample size goes to infinity. These are the
central limit theorem, a general Slutsky theorem, and the so-called delta
method.

6.2 Random matrices and multivariate sample

For A = (aij) = (a1, . . . ,aq) ∈ R
p
q , we may always regard A as a vector in

R
pq where we define

vec(A) =




a1
...
aq


 .

This operation is obviously linear R
p
q → R

pq and we may regard A and
vec(A) as synonymous.
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For

X = (xij) =




x′
1
...

x′
p




random on R
p
q , we may denote the mean of X by E X = M = (µij).

However, the variance of X is a quadruply indexed array consisting of all
covariances of the individual entries

var X = (σijkl) = (cov(xij , xkl)) .

Since there is no inherent order to this array, we find it convenient to impose
one by equating

var X = var vec(X′) = Ω = (Ωij) = (cov(xi,xj)) .

The element in position (k, l) of the block Ωij is cov(xik, xjl). One must be
very careful to remember that Ω is pq × pq. For instance, if we write X ∼
Np

q (M,Ω), we really mean that vec(X′) ∼ Npq(vec(M′),Ω). In fact, this
will be the definition. Moments of a multivariate normal matrix, Np

q (M,Ω),
were given by Wong and Liu (1994). Characterization of a multivariate
normal matrix distribution via conditioning is discussed by Gupta and
Varga (1992) and Nguyen (1997).

The Kronecker product will be very handy for manipulating random
matrices. The Kronecker product of A ∈ R

p
q and B ∈ R

r
s is a block-matrix

with the block in position (i, j) being aijB,

A ⊗ B = (aijB) ∈ R
pr
qs .

One can verify the basic properties.

Lemma 6.1 The Kronecker product satisfies the following:

(i) (aA) ⊗ (bB) = ab(A ⊗ B), a, b ∈ R

(ii) (A + B) ⊗ C = (A ⊗ C) + (B ⊗ C)

(iii) (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

(iv) (A ⊗ B)′ = A′ ⊗ B′,

(v) (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D)

(vi) (A ⊗ B)−1 = A−1 ⊗ B−1, whenever A and B are nonsingular.

(vii) If v �= 0 and u �= 0 are eigenvectors of A and B, respectively, Av =
λv, and Bu = γu, then v⊗u is an eigenvector of A⊗B corresponding
to the eigenvalue λγ.

(viii) tr (A ⊗ B) = (tr A)(tr B)

(ix) |A ⊗ B| = |A|q |B|p, A ∈ R
p
p, B ∈ R

q
q
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(x) If A > 0 and B > 0, then A ⊗ B > 0.

The following lemma will also be useful for handling random matrices. Its
proof is left as an exercise.

Lemma 6.2 A ∈ R
r
p, X ∈ R

p
q , and B ∈ R

q
s =⇒ vec(AXB) = (B′ ⊗

A)vec(X).

As a corollary useful for densities (v. Problem 6.4.4) we also have:

Corollary 6.1 Let A ∈ R
p
p, X ∈ R

p
q , and B ∈ R

q
q. If Y = AXB, then

J(Y → X) = |A|q+ |B|p+.

Proof. Since vec(Y) = vec(AXB) = (B′ ⊗ A)vec(X), then

J(Y → X) = J(vec(Y) → vec(X)) = |B′ ⊗ A|+ = |A|q+ |B|p+.

�

Example 6.1 Consider a sample x1, . . . ,xn i.i.d. x, where x ∼ Np(µ,Σ)
and forms the “sample matrix”

X =




x′
1
...

x′
n


 .

Then, we see that

X ∼ Nn
p (1µ′, In ⊗ Σ).

Example 6.2 As another example, suppose that z ∼ Np(0, I) and form
the “outer product” matrix

W = zz′ = (z1z, . . . , zpz).

Then, obviously,

E W = var z = I,

but the variance of W depends on the fourth-order moments of z. Since
E zi = E z3

i = 0, E z2
i = 1, and E z4

i = 3, it follows easily that

E ziz = ei,

E zizjzz′ = δijI + eie′
j + eje′

i,

from which

cov(ziz, zjz) = δijI + eje′
i.

At this point it becomes useful to define the “commutation matrix” Kp, a
block-matrix whose block in position (i, j) is eje′

i ∈ R
p
p,

Kp = (eje′
i) ∈ R

p2

p2 .
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For example, for p = 2, we have

K2 =




1 0
... 0 0

0 0
... 1 0

· · · · · · · · · · · · · · ·
0 1

... 0 0

0 0
... 0 1




.

This enables one to write succinctly [Magnus and Neudecker (1979)]

var W = (I + Kp).

To generalize slightly, suppose that x ∼ Np(0,Σ) and let W = xx′. Since

W = xx′ d= Azz′A′, where z ∼ Np(0, I) and Σ = AA′, the variance of W
becomes

var W = var Azz′A′ = var (A ⊗ A)vec(zz′)
= (A ⊗ A)(I + Kp)(A′ ⊗ A′).

However, since Kp commutes with A⊗A (why?) (v. Problem 6.4.2), then,
finally,

var W = (I + Kp)(Σ ⊗ Σ).

We can also write this expression componentwise as

cov(wik, wjl) = σijσkl + σkjσil, (6.1)

where Σ = (σij). Suppose that
(

x
y

)
∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
.

We may use the above result to determine the variance of (x2, y2, xy).
This is needed later in obtaining the asymptotic distribution of the sample
correlation coefficient.

For x ∼ unif(Bn), W = xx′, the above method may be adapted to help
determine E W and var W.

The distribution for linear transformations of multivariate normal matrices
is straightforward with Lemma 6.2.

Proposition 6.1 If A ∈ R
r
p, X ∼ Np

q (M,Ω), and B ∈ R
q
s, then

AXB ∼ Nr
s (AMB, (A ⊗ B′)Ω(A′ ⊗ B)) .

Proof. Since vec(X′) ∼ Npq(vec(M′),Ω), then

vec ((AXB)′) = (A ⊗ B′)vec(X′)
∼ Nrs ((A ⊗ B′)vec(M′), (A ⊗ B′)Ω(A′ ⊗ B)) .

The proof is complete as (A ⊗ B′)vec(M′) = vec ((AMB)′). �
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Example 6.3 Assuming X ∼ Np
q (M,A ⊗ B), A ≥ 0 is in R

p
p and B ≥ 0

is in R
q
q. We evaluate E XX′. Let X = (x1, . . . ,xq) and observe, with

the choice A = Ip and B = ei, that xi ∼ Np(mi, biiA), where M =
(m1, . . . ,mq). Then,

E XX′ =
q∑

i=1

E xix′
i =

q∑
i=1

(biiA + mim′
i)

leads to the expression

E XX′ = (tr B)A + MM′.

We now turn to considerations of convergence. For the general sample
x1, . . . ,xn i.i.d. x, where E x = µ and var x = Σ, the strong law of
large numbers (S.L.L.N.) provides the sample mean as a natural estimate
x̄ =

∑n
j=1 xj/n for µ:

x̄
w.p.1→ µ.

Of course, Wi = xix′
i, i = 1, . . . , n, are i.i.d. xx′, where E xx′ = Σ + µµ′

and the S.L.L.N. applies to W =
∑n

j=1 xjx′
j/n so that

W
w.p.1→ Σ + µµ′.

Then, obviously, if we let Σ̂ = W − x̄x̄′, we find

Σ̂
w.p.1→ Σ.

However, E x̄x̄′ = Σ/n + µµ′, so that

E
n

n − 1
Σ̂ = Σ

and it has become customary to use this “unbiased” estimate.
The reader should have no particular difficulty in showing that as explicit

functions of the sample matrix, these (unbiased and consistent) estimates
may be expressed by

x̄ =
1
n
X′1 and S ≡ n

n − 1
Σ̂ =

1
(n − 1)

X′QX,

where Q = I − n−111′. The estimate S is the sample variance, which is
often written as

S =
1

(n − 1)

n∑
i=1

(xi − x̄)(xi − x̄)′.

As an expression of “pythagorus,” we find

X = QX + PX, where P = I − Q = n−111′
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and, thus,

X′X = X′QX + X′PX = (n − 1)S + nx̄x̄′.

6.3 Asymptotic distributions

The central limit theorem (C.L.T.) states that for any sample x1, . . . ,xn

i.i.d. x, where E x = µ and var x = Σ,
√

n(x̄ − µ) d→ z, where z ∼ Np(0,Σ).

Now, recall the very general fact that if xn
d→ x on R

p and g : R
p → R

q

is any continuous (with Px probability 1)1 function, then g(xn) d→ g(x)
on R

q. Note that since matrices in R
p
q are really only vectors in R

pq, this
result is considerably more general than it might appear at first.

Thus, if Σ is nonsingular (the singular case goes through as well; v.
Problem 6.4.10),

n(x̄ − µ)′Σ−1(x̄ − µ) d→ χ2
p.

There is another very basic fact that derives from the Cramér-Wold
theorem and the (univariate) Slutsky theorem.

Lemma 6.3 (Multivariate Slutsky) If Xn
d→ X on R

p
q and Yn

d→ C
on R

r
s where C is any constant matrix, then

(Xn,Yn) d→ (X,C) on R
p
q × R

r
s.

Proof. From Cramér-Wold Proposition 2.10, for any linear combination
∑
i,j

tijxn,ij
d→

∑
i,j

tijxij ,

∑
k,l

sklyn,kl
d→

∑
k,l

sklckl,

and from the univariate Slutsky theorem,
∑
i,j

tijxn,ij +
∑
k,l

sklyn,kl
d→

∑
i,j

tijxij +
∑
k,l

sklckl.

Using Cramér-Wold again, the conclusion is reached. �

A more general statement on metric spaces can be found in Billingsley
(1968, p. 27). It follows, of course, that for any continuous function,

g(Xn,Yn) d→ g(X,C).

1Let Cg = {t ∈ R
p : g is continuous at t}. Then, g is continuous with Px probability

1 means that Px(Cg) = P (x ∈ Cg) = 1.
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As a simple example

n(x̄ − µ)′S−1(x̄ − µ) d→ χ2
p.

One more general proposition:

Proposition 6.2 (Delta method) If
√

n(xn − c) d→ z on R
p and g :

R
p → R

q is differentiable at c, then
√

n (g(xn) − g(c)) d→ Dg(c) z.

Proof. This is simply because by the very definition of the derivative at
c, the function

k(t) =
{

h(t)/|t − c|, t �= c
0, t = c,

where

h(t) = (g(t) − g(c)) − Dg(c) (t − c),

is continuous at c, and we may, therefore, write
√

n (g(xn) − g(c)) = Dg(c)
√

n(xn − c) + k(xn)|√n(xn − c)|.
Using Slutsky’s theorem, we may conclude that since k(xn) d→ 0 and
|√n(xn − c)| d→ |z|,

√
n (g(xn) − g(c)) d→ Dg(c) z.

�

This, of course, applies directly to the C.L.T. to give
√

n (g(x̄) − g(µ)) d→ Nq (0,Dg(µ)ΣDg(µ)′) .

However, consider a more elaborate application: Let x1, . . . ,xn be i.i.d. x
as before with E x = 0 and var x = Σ. Then, let Wi = xix′

i, i = 1, . . . , n,
and W = xx′ so that(

W1
x′

1

)
, . . . ,

(
Wn

x′
n

)
are i.i.d.

(
W
x′

)

with

E

(
W
x′

)
=

(
Σ
0′

)

and

var
(

W
x′

)
=

(
var W cov(vec(W),x)

cov(x, vec(W)) Σ

)
≡ Ω.

By the C.L.T.,
√

n

(
W − Σ

x̄′

)
d→ Np+1

p (0,Ω)
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and the reader may then use Lemma 6.3 to find that
√

n(Σ̂ − Σ) =
√

n(W − Σ) − 1√
n

(
√

nx̄)(
√

nx̄)′ d→ Np
p (0, var W)

and, of course,
√

n(S − Σ) d→ Np
p (0, var W).

Note that since the function S is unchanged if x is replaced by x− µ, this
result is automatically valid for the more general case where E x = µ. The
expression for var W was given in Example 6.2 for the normal case, and
the elliptical case is treated in the sequel in Example 13.6.

Unfortunately, var W is seldom of a particular tractable form. It depends
on the fourth-order multivariate cumulants of x. The relation between
product-moments and multivariate cumulants is rather technical and is rel-
egated to Appendix B. There, it is proven generally for W = (wij) = xx′

that

cov(wik, wjl) = µijkl
1111 − µik

11µ
jl
11 = kijkl

1111 + kkl
11k

ij
11 + kil

11k
jk
11 ,

where the µ’s are the product-moments and the k’s are the cumulants of
x.

Example 6.4 For a sample of size n from a bivariate distribution with
finite fourth-order moments, we find the asymptotic distribution

√
n






s2
1

s12
s2
2


−




σ2
1

σ12
σ2

2




 d→ N3(0,Ω),

where

Ω =




µ1
4 − (µ1

2)
2 µ12

31 − µ12
11µ

1
2 µ12

22 − µ1
2µ

2
2

· µ12
22 − (µ12

11)
2 µ12

13 − µ12
11µ

2
2

· · µ2
4 − (µ2

2)
2


 .

The product-moments are

µ1
4 = E (x1 − µ1)4,

µ1
2 = E (x1 − µ1)2 = σ2

1 ,

µ12
31 = E (x1 − µ1)3(x2 − µ2),

µ12
11 = E (x1 − µ1)(x2 − µ2) = σ12,

µ2
2 = E (x2 − µ2)2 = σ2

2 ,

µ12
22 = E (x1 − µ1)2(x2 − µ2)2, etc.

In general, x̄ and S will not be asymptotically independent unless all third-
order product-moments of x in cov (vec(W),x) are null. But this is exactly
the case when z = Σ−1/2x has a spherical distribution since

cov (vec(W),x) = cov (vec(xx′),x)
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= (Σ1/2 ⊗ Σ1/2) cov (vec(zz′), z)Σ1/2

and all third-order product-moments of z are null (v. Problem 4.6.5). How-
ever, if the underlying random vector x is already normal, then things
reduce considerably.

For p = 2, the correlation coefficient, r, is a very simple function of S and,
thus, it should be straightforward for the reader to obtain the asymptotic
distribution of r (v. Problems 6.4.8-6.4.9). In fact, since this function is
unchanged if the individual coordinates are normalized, we may assume at
the outset that (

x
y

)
∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
.

6.4 Problems

1. Prove Lemma 6.2: If A ∈ R
r
p, X ∈ R

p
q , and B ∈ R

q
s, then

vec(AXB) = (B′ ⊗ A)vec(X).

2. Let A, B ∈ R
p
p and Kp be the “commutation matrix.” Show the

following:

(i) Kp =
∑p

i=1
∑p

j=1 eie′
j ⊗ eje′

i,
(ii) Kpvec(A) = vec(A′),
(iii) Kp(A ⊗ B) = (B ⊗ A)Kp,
(iv) tr A′B = [vec(A)]′vec(B),
(v) If A is symmetric, tr A2 = [vec(A)]′ 1

2 (I + Kp)vec(A).

3. Show that if Z ∼ Np
q (0, I) and P and Q in R

p
p are orthogonal

projections such that PQ = 0, then PZ |= QZ.
Hint: Obtain

var
(

PZ
QZ

)
.

4. Obtain the p.d.f. of X ∼ Np
q (M,A ⊗ B), where A > 0 is in R

p
p and

B > 0 is in R
q
q:

f(X) = (2π)− pq
2 |A|− q

2 |B|− p
2 etr

[− 1
2A

−1(X − M)B−1(X − M)′] ,

where etr(·) ≡ exp[tr(·)].
Hint: Let X = A1/2ZB1/2 + M, where Z ∼ Np

q (0, Ip ⊗ Iq), and use
Corollary 6.1.

5. Assume E E = 0 and var E = In ⊗ Σ, Σ ≥ 0 is in R
p
p. Show that

(i) var E′ = Σ ⊗ In,
(ii) E E′AE = (tr A)Σ.
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6. Assume Σ22 is nonsingular and

(X1,X2) ∼ Nn
p1+p2

(
1(µ′

1, µ
′
2), In ⊗

(
Σ11 Σ12
Σ21 Σ22

))
,

where Xi ∈ R
n
pi

, µi ∈ R
pi , and Σij ∈ R

pi
pj

, i, j = 1, 2. Prove

X1 | X2 ∼ Nn
p1

(1µ′
1 + (X2 − 1µ′

2)B
′, In ⊗ Σ11.2) ,

with B = Σ12Σ−1
22 .

7. For W = xx′, in each case determine E W and var W:

(i) x ∼ N2(0,Σ) and Σ =
(

1 ρ
ρ 1

)
,

(ii) x ∼ unif(S1),
(iii) x ∼ unif(B2).

8. Assume (xi, yi)′, i = 1, . . . , n, are i.i.d.
(

x
y

)
∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))

and let r be the sample correlation coefficient. Prove the asymptotic
result

√
n(r − ρ) d→ N

(
0, (1 − ρ2)2

)
.

9. Fisher’s z-transform is

z = tanh−1(r) = 1
2 log

1 + r

1 − r
,

ζ = tanh−1(ρ) = 1
2 log

1 + ρ

1 − ρ
.

(i) Show that it is a “variance stabilizing transformation” for the
correlation coefficient:

√
n − 3(z − ζ) d→ N(0, 1).

(ii) Use the fact that z is a monotone function of r to obtain an
approximate (1 − α)100% confidence interval for ρ,

[
tanh

(
z − zα/2

(n − 3)1/2

)
, tanh

(
z +

zα/2

(n − 3)1/2

)]
,

where P (N(0, 1) > zα/2) = α/2.

10. Let x1, . . . ,xn i.i.d. x, where E x = µ and var x = Σ. Prove that

n(x̄ − µ)′Σ−(x̄ − µ) d→ χ2
r,

where r = rank Σ.

11. Demonstrate the following representation of Mahalanobis distance:

sup
|h|=1

∣∣∣h′xi − 1
n

∑n
j=1 h′xj

∣∣∣
[

1
(n−1)

∑n
k=1

(
h′xk − 1

n

∑n
j=1 h′xj

)2
]1/2 = di,
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where di = [(xi−x̄)′S−1(xi−x̄)]1/2 is the Mahalanobis distance from
xi to x̄.
Remark: This was used by Stahel (1981) and Donoho (1982) to
suggest the robust estimate of location as a weighted average

µ̂ =
∑n

i=1 w(ui)xi∑n
i=1 w(ui)

,

where w(·) is a positive and strictly decreasing function and

ui = sup
|h|=1

|h′xi − medj(h′xj)|
medk |h′xk − medj(h′xj)| .

The notation “med” refers to the ordinary median.

12. Multivariate familial data [Konishi and Khatri (1990)].
Suppose a random sample of n families on x = (x1, . . . , xp)′ ∈ R

p

with E x = µ and var x = Σ. Let

Zi =




x′
1i
...

x′
ki,i


 , i = 1, . . . , n,

denote the measurements on the ith family with ki ≥ 1 siblings,
where xji = (x1ji, . . . , xpji)′, j = 1, . . . , ki, is the score of the jth
child on p characteristics. It is assumed that Z1, . . . ,Zn are mutually
independent and

E Zi = 1ki
µ′,

var Zi = (Iki
⊗ Σ) + (1ki

1′
ki

− Iki
) ⊗ Σs.

The matrix Σs reflects the dependence among siblings. For the
estimation of Σ, let

X̄ =




x̄′
1
...

x̄′
n


 , Vi =

ki∑
j=1

(xji − x̄i)(xji − x̄i)′,

where x̄i = (x1i + · · · + xki,i)/ki. Further, let B ∈ R
n
n, B ≥ 0, such

that B1n = 0.

(i) Prove that

Σ̂ = (tr B)−1

(
X̄′BX̄ +

n∑
i=1

ωiVi

)
,

where the weights ω1, . . . , ωn are non-negative constants, satis-
fies

E Σ̂ = Σ+(tr B)−1

{
n∑

i=1

ωi(ki − 1) − tr[B(In − D−1
n )]

}
(Σ−Σs),
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where Dn = diag(k1, . . . , kn).
(ii) Find a condition on the weights so that Σ̂ is unbiased for Σ.
(iii) The corresponding estimate of Σs is given by

Σ̂s = (tr B)−1

(
X̄′BX̄ +

n∑
i=1

νiVi

)
,

where ν1, . . . , νn are constants. Prove that for weights satisfying
the condition

n∑
i=1

νi(ki − 1) + tr(BD−1
n ) = 0,

Σ̂s is unbiased for Σs.

A multivariate familial model for interclass correlation, with a
“mother” for each family, was considered earlier by Srivastava et al.
(1988). Principal component analysis for the model described here
was developed by Konishi and Rao (1992). A general description of
principal components is given in Chapter 10.



7
Wishart distributions

7.1 Introduction

As before,

X =




x′
1
...

x′
n




denotes the sample matrix from which x̄ and S,

nx̄ = X′1,

(n − 1)S = X′X − nx̄x̄′,

provide consistent unbiased estimates for µ and Σ, respectively. In Sec-
tion 7.2, the maximum likelihood estimates of µ and Σ are derived
assuming x1, . . . ,xn i.i.d. x with x ∼ Np(µ,Σ), Σ > 0. The fundamental
result about the joint distribution of x̄ and S is proved in Proposi-
tion 7.1. The basic properties of Wishart distributions are studied in
Section 7.3. Section 7.4 presents the Box-Cox transformation to enhance
the multivariate normality of the data.

7.2 Joint distribution of x̄ and S

With underlying normality, x̄ and S are “optimal” in some respects. Denote
V = (n − 1)S. Using the notation exp[tr(·)] = etr(·), the p.d.f. for X can
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be written in various ways:

f(X) = (2π)− np
2 |Σ|− n

2 exp

[
− 1

2

n∑
i=1

(xi − µ)′Σ−1(xi − µ)

]

= (2π)− np
2 |Σ|− n

2 e− n
2 µ′Σ−1µ exp

[− 1
2 tr Σ−1X′X + nµ′Σ−1x̄

]

= (2π)− np
2 |Σ|− n

2 etr
{− 1

2 [V + n(x̄ − µ)(x̄ − µ)′]Σ−1} . (7.1)

By general properties of exponential families [Fraser (1976), pp. 339, 342,
406, or Casella and Berger (1990), pp. 254-255, 263], it is plain that
(X′X, x̄) (or any one-to-one function such as (S, x̄)) is minimal sufficient
and complete for (Σ, µ), so that by the Rao-Blackwell/Lehmann-Scheffé
theorems, among all unbiased estimates of µ and Σ, x̄ and S have minimum
variance. We say that (S, x̄) is the MVUE (Minimum Variance Unbiased
Estimate) of (Σ, µ).

Furthermore, to obtain the maximum likelihood estimates (MLE) µ̂ and
Σ̂ when n − 1 ≥ p, we minimize

ln |Σ| + tr
1
n
VΣ−1 + (x̄ − µ)′Σ−1(x̄ − µ) (7.2)

and (since the last term is ≥ 0) it is clear that µ̂ = x̄, so we need only
minimize

ln |nV−1Σ| + tr
1
n
VΣ−1,

where the constant, ln |nV−1|, was added. The condition n−1 ≥ p ensures
that V is nonsingular w.p.1. This is proved later in Corollary 7.2. But then,
letting T = nV−1Σ, we need only determine the T that minimizes

ln |T| + tr T−1.

However, this is accomplished when all the eigenvalues of T are 1 so that
T = I and we conclude altogether

µ̂ = x̄ and Σ̂ =
1
n
V.

Remark: It is a well-known result, which can be traced back to Gauss, that
the only location family, f(x− θ), of p.d.f. on R for which x̄ is a MLE of θ
originates from the normal density. This MLE characterization of normal
density also holds on R

p [Stadje (1993)].
Let us consider the exact distribution of x̄ and S. It is obvious that

x̄ ∼ Np

(
µ,

1
n
Σ
)

.

We begin by representing x d= Az + µ, for any AA′ = Σ, which, for the
sample matrix, means that X d= ZA′ + 1µ′. Thus,

(x̄,Sx) d= (Az̄ + µ,ASzA′).
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However, in Z = (zij), all the components are i.i.d. N(0, 1) so that even the
columns are mutually independent. Thus, with orthogonal projections P =
n−111′ and Q = I−n−111′, it is clear that PZ |= QZ (v. Problem 6.4.3),
and since nz̄ = Z′P1 and (n− 1)Sz = Z′QQZ, we see that z̄ |= Sz, hence
x̄ |= Sx.

If next we express Q = HH′, where H gives an orthonormal basis for
1⊥ (of dimension (n − 1)), it is made plain that

(n − 1)Sz = Z′HH′Z = U′U,

where Z′H = U′ = (u1, . . . ,un−1), ui i.i.d. Np(0, I). Accordingly, we make
the following definition.

Definition 7.1 Wishart distribution:

W ∼ Wp(m) iff W d=
m∑

i=1

ziz′
i, zi i.i.d. Np(0, I).

V ∼ Wp(m,Σ) iff V d= AWA′, Σ = AA′, W ∼ Wp(m).

Thus, we have the fundamental statistical result:

Proposition 7.1 For xi i.i.d. Np(µ,Σ), i = 1, . . . , n,

x̄ ∼ Np(µ,Σ/n), (n − 1)S ∼ Wp(n − 1,Σ), and x̄ |= S.

One may, of course, go to some trouble to obtain an explicit density for
the Wishart. However, one needs primarily to understand some of its basic
properties and the density will not really reveal very much.

7.3 Properties of Wishart distributions

The distribution of the trace of W ∼ Wp(m) follows almost immediately
from the definition.

Proposition 7.2 W ∼ Wp(m) =⇒ tr W ∼ χ2
mp.

Proof. By definition of Wp(m),

tr W d= tr
m∑

i=1

ziz′
i =

m∑
i=1

z′
izi,

where zi are i.i.d. Np(0, I). From Proposition 4.4, z′
izi ∼ χ2

p. Corollary 3.1
then gives tr W ∼ χ2

mp. �

Now, a useful lemma to determine when V ∼ Wp(m,Σ) is nonsingular
w.p.1. is the following:

Lemma 7.1 Z = (zij) ∈ R
n
n with zij i.i.d. N(0, 1) =⇒ P (|Z| = 0) = 0.
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Proof. The proof proceeds by induction. The result is true for n = 1, as
z11 has an absolutely continuous distribution. Next, partition

Z =
(

z11 z′
12

z21 Z22

)

and assume the result holds for Z22 ∈ R
n−1
n−1. Then,

P (|Z| = 0) = P (|Z| = 0, |Z22| �= 0) + P (|Z| = 0, |Z22| = 0)
= P (z11 = z′

12Z
−1
22 z21, |Z22| �= 0)

= E
[
P (z11 = z′

12Z
−1
22 z21, |Z22| �= 0 | z12, z21,Z22)

]

= 0.

�

A slight generalization is contained in

Corollary 7.1 Z = (zij) ∈ R
n
n with zij i.i.d. N(0, 1) =⇒ P (|Z| = t) =

0, ∀t.

Proof.

P (|Z| = t)

= E

[
P

(
z11 = z′

12Z
−1
22 z21 +

t

|Z22| , |Z22| �= 0 | z12, z21,Z22

)]

= 0.

�

It should be observed that Lemma 7.1 and Corollary 7.1 remain valid if
Z has any absolutely continuous distribution. We can now prove [Stein
(1969), Dykstra (1970)]:

Proposition 7.3 W ∼ Wp(m), m ≥ p =⇒ W is nonsingular w.p.1.

Proof. The representation W d= Z′Z, where Z′ = (z1, . . . , zm) and zi’s
are i.i.d. Np(0, I), gives

rank W d= rank Z′Z = rank Z ≥ rank (z1, . . . , zp)
w.p.1

= p

whence rank W
w.p.1

= p. �

Its corollary gives a condition on the sample size and the population
variance for the sample variance matrix S to be nonsingular w.p.1.

Corollary 7.2 V ∼ Wp(m,Σ), m ≥ p, |Σ| �= 0 =⇒ |V| �= 0 w.p.1.

Eaton and Perlman (1973) established that the sample variance matrix S is
nonsingular w.p.1 for independent observations, which are not necessarily
normal or identically distributed.

Concerning linear transformations of Wishart matrices, we have
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Proposition 7.4 V ∼ Wp(m,Σ), B ∈ R
q
p =⇒ BVB′ ∼ Wq(m,BΣB′).

Proof. Let W ∼ Wp(m). Since V d= AWA′, for any AA′ = Σ, then

BVB′ d= (BA)W(BA)′ ∼ Wq(m,BAA′B′).

�

Example 7.1 Suppose W ∼ Wp(m). What is E WAW for a fixed A ≥ 0?

Since HWH′ d= W, for all H ∈ Op, we see that

WAW d= HWH′AHWH′, ∀H ∈ Op

d= HWDWH′,

where H was chosen to diagonalize A, H′AH = D = diag(λi). Thus,
E WAW = H(E WDW)H′. But using W d=

∑m
i=1 zizi, where zi ∼

Np(0, I) are independent, we find

E WDW =
∑
i,j

E ziz′
iDzjz′

j

=
∑

i

E ziz′
iDziz′

i +
∑
i �=j

E ziz′
iDzjz′

j

= mE xx′Dxx′ + m(m − 1)E xx′Dyy′,

where x and y are i.i.d. Np(0, I). However,

E xx′Dxx′ =
∑

i

λiE x2
i xx′

=
∑

i

λi(I + 2eie′
i)

= (tr A)I + 2D

and

E xx′Dyy′ =
∑

i

λiE xiyixy′

=
∑

i

λieie′
i

= D.

Hence,

E WDW = m(tr A)I + m(m + 1)D

and, finally, we obtain

E WAW = m(tr A)I + m(m + 1)A.

The characteristic function of Wishart distributions also follows from basic
principles.
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Example 7.2 The characteristic function of V ∼ Wp(m,Σ), evaluated

at S symmetric, is defined by cV(S) = E exp(i tr SV). Write V d=
A

(∑m
j=1 zjz′

j

)
A′, for any AA′ = Σ, and diagonalize A′SA = HDH′

to obtain

cV(S) = E exp


i tr SA

m∑
j=1

zjz′
jA

′




= E exp


i tr HDH′

m∑
j=1

zjz′
j




= E exp


i tr D

m∑
j=1

(H′zj)(H′zj)′




= E exp


i tr D

m∑
j=1

zjz′
j


 since H′zj

d= zj

= E exp


i

m∑
j=1

p∑
k=1

z2
jkdk


 , where D = diag(d1, . . . , dp)

=
m∏

j=1

p∏
k=1

cχ2
1
(dk)

=
m∏

j=1

p∏
k=1

(1 − 2idk)−1/2

= |I − 2iD|−m/2

= |I − 2iSΣ|−m/2.

Hence, the characteristic function is given by

cV(S) = |I − 2iΣS|−m/2.

Now, consider some results concerning the marginals of a Wishart. For
this reason, partition V ∈ R

p
p as

V =
(

V11 V12
V21 V22

)
,

where V11 ∈ R
r
r and V22 ∈ R

s
s, r + s = p. The matrix Σ is partitioned

similarly.

Proposition 7.5 V ∼ Wp(m,Σ) =⇒ V11 ∼ Wr(m,Σ11).

Proof. Choose B = ( Ir 0 ) ∈ R
r
p in Proposition 7.4. �

Concerning independence, we have:
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Proposition 7.6 V ∼ Wp(m,Σ) and Σ12 = 0 =⇒ V11 |= V22.

Proof. By the very definition,

V d= U′U =
(

X′

Y′

)
(X Y ) =

(
X′X X′Y
Y′X Y′Y

)
,

where U′ = (u1, . . . ,um) and the ui’s are i.i.d Np(0,Σ). Then, it suffices
to recall (v. Problem 6.4.6) that for a multivariate normal, Σ12 = 0 implies
X |= Y. �

The previous two propositions are not surprising if we consider their sta-
tistical interpretation. First, the distribution of V is associated with the
sample variance based on all p components, whereas that of V11 corre-
sponds to a sample variance but considering only the first r components.
Second, if Σ12 = 0, then the distributions of V11 and V22 are associated
with sample variances based on two independent subvectors of dimension
r and s, r + s = p.

The next proposition, the proof of which is left as an exercise, relates to
sums of independently distributed Wishart matrices. It has to do with the
way one would pool information from independent samples to estimate the
population variance (v. Problem 8.9.1).

Proposition 7.7 If Vi
indep∼ Wp(mi,Σ), i = 1, . . . , k, then

k∑
i=1

Vi ∼ Wp

(
k∑

i=1

mi,Σ

)
.

Lemma 7.2 Let H = (h1, . . . ,hr), where the hi’s are orthonormal in R
n

and Z ∼ Nn
p (0, In ⊗ Ip). Then,

1. H′Z ∼ Nr
p (0, Ir ⊗ Ip),

2. Z′HH′Z ∼ Wp(r).

Proof. Using Proposition 6.1, H′Z ∼ Nr
p (0, (H′H) ⊗ Ip). This proves part

1 because H′H = Ir. Since Z′hi, i = 1, . . . , r, are i.i.d. Np(0, I), part
2 follows from the Wishart definition: Z′HH′Z =

∑r
i=1(Z

′hi)(Z′hi)′ ∼
Wp(r). �

Proposition 7.8 Let

X =




x′
1
...

x′
n


 ∼ Nn

p (0, In ⊗ Σ).

If V ⊂ R
n is a linear subspace, dim V = r, and P is the orthogonal

projection on V, then X′PX ∼ Wp(r,Σ).
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Proof. Choose an orthonormal basis H = (h1, . . . ,hr) for V and observe
that P = HH′ and r = rank P = dim V. Write Σ = AA′ and X d= ZA′,
where Z ∼ Nn

p (0, In ⊗ Ip). Therefore, using Lemma 7.2,

X′PX = X′HH′X
d= AZ′HH′ZA′
d= AWA′, where W ∼ Wp(r).

Hence, X′PX ∼ Wp(r,Σ). �

General results on Wishart and chi-square distributions associated with
matrix quadratic forms are available in Mathew and Nordström (1997). A
fundamental result on marginals useful in the sequel is now stated, but first
recall the notation V11.2 = V11 − V12V−1

22 V21, where V was partitioned
as on page 90.

Proposition 7.9 If V ∼ Wp(m,Σ), m ≥ p, Σ > 0, then

V11.2 ∼ Wr(m − s,Σ11.2),
V21 | V22 ∼ Ns

r (V22Σ−1
22 Σ21,V22 ⊗ Σ11.2),

V22 ∼ Ws(m,Σ22),

and V11.2 |= (V21,V22).

Proof. As before, write

V d= U′U =
(

X′

Y′

)
(X Y ) =

(
X′X X′Y
Y′X Y′Y

)
,

where U ∼ Nm
p (0, Im ⊗ Σ). Thus, X | Y ∼ Nm

r (YΣ−1
22 Σ21, Im ⊗ Σ11.2)

(v. Problem 6.4.6). Let P = Y(Y′Y)−1Y′ be the orthogonal projection on
the column space of Y and Q = I − P, rank Q = m − s. It is clear, since
Y = PY, that

V11.2 = X′[I − Y(Y′Y)−1Y′]X = (QX)′(QX),
V21 = Y′X = (PY)′(PX),
V22 = Y′Y = (PY)′(PY).

Since Y′X | Y ∼ Ns
r ((Y′Y)Σ−1

22 Σ21, (Y′Y)⊗Σ11.2) depends only on Y′Y,
then V21 | V22 ∼ Ns

r (V22Σ−1
22 Σ21,V22 ⊗ Σ11.2). From Proposition 7.8

and QY = 0, V11.2 | Y ∼ Wr(m − s,Σ11.2), which does not depend
on Y; hence, V11.2 |= Y and V11.2 ∼ Wr(m − s,Σ11.2), unconditionally.
It is clear V22 ∼ Ws(m,Σ22). Only independence remains to be shown.
However, conditionally on Y, PX |= QX. To see this, note PQ = 0 and

var
[(

P
Q

)
X | Y

]
=

[(
P
Q

)
(P′,Q′)

]
⊗ Σ11.2

=
(

P ⊗ Σ11.2 0
0 Q ⊗ Σ11.2

)
.
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Hence, given Y, V11.2 |= V21. Finally, using Proposition 2.13,

E [f(V11.2) · g(V21,V22)] = E [E f(V11.2) g(V21,V22) | Y]
= E {E [f(V11.2) | Y] E [g(V21,V22) | Y]}
= E {Ef(V11.2) E [g(V21,V22) | Y]}
= Ef(V11.2) · Eg(V21,V22),

which proves independence. �

Proposition 7.9 with r = 1 and s = p−1 can be used to prove inductively
several results concerning Wishart distributions. Here are two corollaries:
the distribution of the generalized variance, |V|, and the Wishart density.

Corollary 7.3 If V ∼ Wp(m,Σ), m ≥ p, Σ > 0, then

|V| ∼ |Σ|
p∏

i=1

χ2
m−p+i;

i.e., |V|/|Σ| is distributed as a product of p mutually independent chi-square
variables.

Proof. The result obviously holds for p = 1. Assume it holds for p − 1.
Let r = 1 and s = p − 1 in Proposition 7.9. Then, |V| = v11.2|V22|, where
v11.2 ∼ σ11.2χ

2
m−p+1, V22 ∼ Wp−1(m,Σ22), and v11.2 |= V22. From the

induction hypothesis,

|V22| ∼ |Σ22|
p−1∏
i=1

χ2
m−p+1+i

d= |Σ22|
p∏

i=2

χ2
m−p+i

and the conclusion follows. �

Corollary 7.4 If W ∼ Wp(m), m ≥ p, then the p.d.f. of W is

fW(W) =
1

2mp/2Γp

( 1
2m

) |W|(m−p−1)/2 etr
(− 1

2W
)
, W > 0, (7.3)

where Γp(u) = πp(p−1)/4 ∏p
i=1 Γ

[
u − 1

2 (i − 1)
]
, u > 1

2 (p − 1).

Proof. The result holds for p = 1, as the density reduces to a chi-square
density. Let r = 1 and s = p − 1 in Proposition 7.9, then

w11.2 ∼ χ2
m−p+1,

w21 | W22 ∼ Np−1(0,W22),
W22 ∼ Wp−1(m).

Thus, the joint p.d.f. of (w11.2,w21,W22) is

1
2(m−p+1)/2Γ[ 12 (m − p + 1)]

w
(m−p+1)/2−1
11.2 exp(− 1

2w11.2)

· (2π)−(p−1)/2|W22|−1/2 exp(− 1
2w

′
21W

−1
22 w21)
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· 1
2m(p−1)/2Γp−1( 1

2m)
|W22|(m−p)/2etr(− 1

2W22).

Make the change of variables

(w11.2,w21,W22) �→ (w11,w21,W22)

with jacobian J(w11.2,w21,W22 → w11,w21,W22) = J(w11.2 → w11) = 1
while using the relations |W| = w11.2|W22| and w11.2 = w11−w′

21W
−1
22 w21

to get the result. �

The reader should check that Γp(u) is a generalized gamma function in
the sense that Γ1(u) = Γ(u), u > 0. The density of V ∼ Wp(m,Σ),
Σ > 0, m ≥ p, follows directly from the transformation V = AWA′, for
any AA′ = Σ, and the jacobian in Proposition 2.19 (v. Problem 7.5.7).
James (1954) and Olkin and Roy (1954) proposed a constructive proof
by jacobians of transformations on k-surfaces (manifolds). It requires a
knowledge of differential forms and integration on k-surfaces which goes
beyond the scope of this book. The theory of singular Wishart distributions
(m < p) is available in Uhlig (1994).

The function (7.3) is a density function even when the number of degrees
of freedom m ∈ R, possibly noninteger, satisfies m > p − 1 [Muirhead
(1982), p. 62].

7.4 Box-Cox transformations

A method [Andrews et al. (1971)] that is an extension of the technique of
Box and Cox (1964) is described for obtaining data-based transformations
of multivariate observations to enhance the normality of their distribution.
Specifically, power transformations of the original variables are estimated
to effect both marginal and joint normality. The likelihood method, used by
Box and Cox (1964) for the univariate problem, is the one adopted here for
the multivariate case. The simple family of power transformations defined
by

x
(λj)
j =

{
(xλj

j − 1)/λj , λj �= 0,
lnxj , λj = 0,

j = 1, . . . , p, will be considered. Each variable xj must be non-negative,
otherwise, with a known lower bound, we may add a constant sufficiently
large, aj , and consider xj + aj as the original variable. Let

X =




x′
1
...

x′
n


 = (xij) ∈ R

n
p ,
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X(λ) =




x(λ)
1

′

...
x(λ)

n

′


 = (x(λj)

ij ) ∈ R
n
p ,

be the sample matrices of the original and transformed data, respectively,
where λ = (λ1, . . . , λp)′ is the unknown vector of power transformation pa-
rameters. If λ is the vector of parameters yielding joint normality, Np(µ,Σ),
the density of X(λ) is from (7.1):

f(X(λ)) = (2π)− np
2 |Σ|− n

2

·etr
{
− 1

2

[
V(λ) + n(x̄(λ) − µ)(x̄(λ) − µ)′

]
Σ−1

}
,

where

x̄(λ) =
1
n

n∑
i=1

x(λ)
i ,

V(λ) =
n∑

i=1

(x(λ)
i − x̄(λ))(x(λ)

i − x̄(λ))′.

The jacobian of the transformation, J(X(λ) → X), is

J =
p∏

j=1

n∏
i=1

x
λj−1
ij .

Hence, the density of the genuine data X is

f(X) = f(X(λ)) · J
= (2π)− np

2 |Σ|− n
2 etr

{
− 1

2

[
V(λ) + n(x̄(λ) − µ)(x̄(λ) − µ)′

]
Σ−1

}
· J.

The log-likelihood of (Σ, µ, λ) is, up to an additive constant,

l(Σ, µ, λ) = −n

2
ln |Σ| − 1

2
tr(V(λ)Σ−1)

−n

2
(x̄(λ) − µ)′Σ−1(x̄(λ) − µ) +

p∑
j=1

(λj − 1)
n∑

i=1

lnxij . (7.4)

For a specified λ, the maximum likelihood estimate of (Σ, µ), exactly as
for (7.2), is given by

(
V(λ)/n, x̄(λ)

)
.

If these estimates are substituted in (7.4), the maximized log-likelihood
function is, up to an additive constant,

lmax(λ) = −n

2
ln |V(λ)| +

p∑
j=1

(λj − 1)
n∑

i=1

lnxij , (7.5)
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a function of p parameters which can be computed and studied. The max-
imum likelihood estimate λ̂ may be obtained by numerically maximizing
(7.5). Also, confidence regions for λ may be obtained. One such (1−α)100%
confidence region for λ based on asymptotic considerations [Fraser (1976),
p. 357] is

{λ : lmax(λ̂) − lmax(λ) ≤ 1
2χ2

1−α,p},
where χ2

1−α,p is the (1 − α)-quantile of a χ2
p distribution. The likelihood

criterion used here specifies joint normality rather than marginal normality
as the goal of the transformation.

7.5 Problems

1. The maximum likelihood estimates µ̂ and Σ̂ were derived by
minimizing

ln |Σ| + tr
1
n
VΣ−1 + (x̄ − µ)′Σ−1(x̄ − µ).

Derive the MLE, this time by calculus, using the vector and matrix
differentiation rules of Problems 1.8.9-1.8.10.

2. Prove Proposition 7.7.

3. Show that if V ∼ Wp(m,Σ), then:

(i) var V = m[Σ ⊗ Σ + (σjσ
′
i)] = m(I + Kp)(Σ ⊗ Σ) where Kp is

the “commutation matrix.”
(ii) Prove Proposition 7.7 again, but using characteristic functions

this time.

4. Let W ∼ Wp(m), m ≥ p. Prove:

(i) 1/(t′W−1t) ∼ χ2
m−p+1, for any t, |t| = 1.

(ii) If x |= W and px(0) = 0, then x is independent of

(x′x)
(x′W−1x)

∼ χ2
m−p+1.

Hint: HWH′ d= W, ∀H ∈ Op.

5. Assume W ∼ Wp(m), m ≥ p, and A ≥ 0. Prove:

(i) E W = mI,
(ii) E W−1 = I/(m − p − 1).

6. Moments of generalized variance.

(i) Let W ∼ Wp(m), m ≥ p. Prove

E |W|h = 2ph Γp( 1
2m + h)

Γp( 1
2m)

, h > 1
2 (p − m − 1).
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Hint: E |W|h has an integrand of the form of a Wp(m + 2h)
density. Use the normalizing constant cp,m = [2mp/2Γp( 1

2m)]−1.
(ii) If V ∼ Wp(m,Σ), m ≥ p, Σ > 0, then

E |V|h = |Σ|h2ph Γp( 1
2m + h)

Γp( 1
2m)

, h > 1
2 (p − m − 1).

7. Wishart density.
Obtain the p.d.f. of V ∼ Wp(m,Σ), m ≥ p, Σ > 0:

fV(V) =
1

2mp/2Γp

( 1
2m

) |Σ|m/2
|V|(m−p−1)/2 etr

(− 1
2Σ

−1V
)
,

V > 0.

8. Let W ∼ Wp(m) and consider the correlation matrix R = (rij),
where

rij =
wij

w
1/2
ii w

1/2
jj

.

Demonstrate that the density of R is

f(R) =
[Γ( 1

2m)]p

Γp( 1
2m)

|R|(m−p−1)/2.

Hint: Use the transformation W �→ w11, . . . , wpp,R.

9. Inverted Wishart distribution.
Derive the p.d.f. of U = V−1, where V ∼ Wp(m,Σ), m ≥ p, Σ > 0:

fU(U) =
1

2mp/2Γp

( 1
2m

) |Σ|m/2
|U|−(m+p+1)/2etr

(− 1
2Σ

−1U−1) ,

U > 0.

10. Assume W ∼ Wp(m) and define W = TT′ for a unique T ∈ L+
p .

(i) Prove tij ∼ N(0, 1), 1 ≤ i < j ≤ p, and t2ii ∼ χ2
m−i+1, 1 ≤ i ≤ p,

are all mutually independent.
(ii) Using (i) prove tr W ∼ χ2

pm.
(iii) Using (i) again, prove that if V ∼ Wp(m,Σ), m ≥ p, Σ > 0,

then |V| ∼ |Σ|∏p
i=1 χ2

m−p+i.



8
Tests on mean and variance

8.1 Introduction

Having laid the distribution of (S, x̄) on a good footing in Chapter 7, we
now present inference problems such as the Hotelling-T 2 test on the mean
vector, the simultaneous confidence intervals on means, the inference about
multiple and partial correlation coefficients, the test of sphericity, and the
test of equality of variances. In some cases, the tests are optimal in some
sense. This is the case of the Hotelling-T 2 test and the test of multiple corre-
lation, which are shown to be uniformly most powerful invariant (UMPI).
The asymptotic distribution of eigenvalues, both in the one-sample and
two-sample cases, is treated in Section 8.8. Tables of critical points with
references to applications for most multivariate tests are available in Kres
(1983). The approach adopted here rests mainly on likelihood ratio tests,
although other general and valid testing procedures based on minimization
of divergence measures exist in the literature [Wakaki et al. (1990)].

8.2 Hotelling-T 2

Now, assume that x1, . . . ,xn are i.i.d. x with x ∼ Np(µ,Σ) and Σ > 0.
The properties of Wishart distributions in Chapter 7 provide an easy way
to obtain the distribution of the Hotelling-T 2 statistic

T 2 = n(x̄ − µ0)
′S−1(x̄ − µ0), (8.1)
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where x̄ and S are the unbiased estimate for µ and Σ. This is needed
to test the hypothesis H0 : µ = µ0 against all alternatives or to build a
confidence ellipsoid for µ. In fact, the following proposition shows that the
Hotelling-T 2 statistic is a monotone function of the likelihood ratio test
(LRT) statistic. As usual, let

V =
n∑

i=1

(xi − x̄)(xi − x̄)′

be the matrix of sums of squares and cross-products.

Proposition 8.1 The likelihood ratio statistic for H0 : µ = µ0 against
H1 : µ �= µ0 is

Λ =
(

1 +
1

(n − 1)
T 2

)−n/2

.

Proof. The unrestricted MLE of (Σ, µ) is µ̂ = x̄ and Σ̂ = 1
nV. However,

the MLE of Σ under H1 is obtained from (7.2) by minimizing

ln |Σ| + tr
1
n
VΣ−1 + (x̄ − µ0)

′Σ−1(x̄ − µ0)

= ln |Σ| + tr
1
n

[V + n(x̄ − µ0)(x̄ − µ0)
′]Σ−1.

Using the same technique as on page 86 we find

ˆ̂Σ =
1
n

[V + n(x̄ − µ0)(x̄ − µ0)
′]

=
1
n

n∑
i=1

(xi − µ0)(xi − µ0)
′.

Thus, with (7.1), the LRT becomes

Λ =
L( ˆ̂Σ, µ0)
L(Σ̂, µ̂)

=
| ˆ̂Σ|−n/2

|Σ̂|−n/2

exp(− 1
2np)

exp(− 1
2np)

=
| 1n [V + n(x̄ − µ0)(x̄ − µ0)′]|−n/2

| 1nV|−n/2

= |I + nV−1(x̄ − µ0)(x̄ − µ0)
′|−n/2

=
(

1 +
1

(n − 1)
T 2

)−n/2

,

where the last equality made use of Problem 1.8.3. �

The distribution of T 2 is a direct consequence of the following proposition.
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Proposition 8.2 If z ∼ Np(δ, I), W ∼ Wp(m), m ≥ p, and z |= W, then

z′W−1z ∼ Fc(p, m − p + 1; δ′δ/2).

Proof. Using an orthogonal transformation H = (z/|z|,Γ)′ ∈ Op, we get
immediately

z′W−1z = (Hz)′(HWH′)−1(Hz)
= |z|2e′

1V
−1e1,

where V = HWH′. Since the conditional distribution V | z ∼ Wp(m) does
not depend on z, then V ∼ Wp(m), unconditionally, and V |= z. Letting

V−1 =
(

v11 v21′

v21 V22

)
,

z′W−1z = |z|2v11 = z′z/v11.2,

where the last equality made use of Problem 1.8.1. The conclusion follows
since z′z ∼ χ2

p(δ
′δ/2) and, by Proposition 7.9, v11.2 ∼ χ2

m−p+1. �

As a corollary, we obtain the distribution of Hotelling-T 2.

Corollary 8.1 The non-null distribution of T 2 for n ≥ p + 1 is

T 2/(n − 1) ∼ Fc(p, n − p; δ), with δ = n(µ − µ0)
′Σ−1(µ − µ0)/2.

Proof. In terms of the sample matrix, as on page 86, X d= ZA′+1µ′, where
Z ∼ Nn

p (0, In ⊗ Ip) and Σ = AA′, and, thus, (x̄,Sx) d= (Az̄ + µ,ASzA′).
Therefore,

T 2

(n − 1)
= n(x̄ − µ0)

′[(n − 1)S]−1(x̄ − µ0)

d= n (Az̄ + µ − µ0)
′ [(n − 1)ASzA′]−1 (Az̄ + µ − µ0)

= n
[
z̄ + A−1(µ − µ0)

]′
[(n − 1)Sz]−1 [z̄ + A−1(µ − µ0)

]
.

The proof follows from Proposition 8.2, as

n1/2 [z̄ + A−1(µ − µ0)
] ∼ Np

(
n1/2A−1(µ − µ0), I

)

(n − 1)Sz ∼ Wp(n − 1)

are independent. �

Example 8.1 The power function of an α significance level Hotelling-T 2

test may now be evaluated as a function of

δ = n(µ − µ0)
′Σ−1(µ − µ0)/2

in the following manner:

β = P (Fc(p, n − p; δ) ≥ tα) ,
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Figure 8.1. Power function of Hotelling-T 2 when p = 3 and n = 40 at a level of
significance α = 0.05.

where tα = [p/(n− p)]Fα(p, n− p) is the critical point. Proposition 4.7 and
Problem 3.5.6 yields

β =
∞∑

k=0

e−δ δk

k!
P (Fc(p + 2k, n − p) ≥ tα)

=
∞∑

k=0

e−δ δk

k!

∫ ∞

tα

B
( 1

2 (p + 2k), 1
2 (n − p)

)−1 F (p+2k)/2−1

(1 + F )(n+2k)/2 dF.

Numerical evaluation in Mathematica for p = 3, n = 40 and α = 0.05
produced the plot in Figure 8.1.

The robustness of Hotelling-T 2 is easily established. Without normality,
assuming x1, . . . ,xn are i.i.d. x, E x = µ0 and var x = Σ, the asymptotic
distributions in Section 6.3 gave T 2 d→ χ2

p. This asymptotic distribution is
the same regardless of the underlying distribution of x.

A different situation arises in presence of “contamination.” Assume the
simple situation x1, . . . ,xn−1 are i.i.d. Np(µ0,Σ), but there is one (or more)
contaminated observation xn ∼ Np(µ0+γ,Σ). We assume Σ known for the
sake of simplicity. It is easily checked that n1/2(x̄ − µ0) ∼ Np(γ/n1/2,Σ)
and, thus, from Corollary 5.1,

T 2 = n(x̄ − µ0)
′Σ−1(x̄ − µ0) ∼ χ2

p(γ
′Σ−1γ/2n).

Since P (χ2
p(δ) ≥ c) is monotone increasing in δ [Ghosh (1970), p. 302], all

other parameters being fixed, it follows that T 2 will reject H0 : µ = µ0
with probability converging to 1 as |γ| → ∞ (for fixed n) even though all
observations, but one, have mean µ0. A procedure which is insensitive to
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contamination of the data consists of building an Hotelling-T 2 test

T 2 = n(µn − µ0)Σ
−1
n (µn − µ0)

from a robust estimate (Σn, µn) such as an M-estimate or S-estimate. These
truly robust tests are studied in Chapter 13.

We end this section with a discussion of invariant tests on the mean
vector. Consider the canonical problem of testing H0 : µ = 0 against
H1 : µ �= 0. The group of transformations Gp acts on the observations
as xi �→ Axi, where A ∈ Gp. This transformation induces the following
transformations on the minimal sufficient statistic (x̄,S) and parameters,
x̄ �→ Ax̄, S �→ ASA′, and µ �→ Aµ, Σ �→ AΣA′. Note that the hypotheses
are preserved because µ = 0 iff Aµ = 0, for any A ∈ Gp. We define a test
function f(x̄,S) to be invariant iff it yields the same value on the original
as on the transformed data, i.e.,

f(y,W) = f(Ay,AWA′), ∀A ∈ Gp,∀(y,W) ∈ R
p × Pp.

This has important implications. First, the choice A = S−1/2 yields

f(x̄,S) = f(S−1/2x̄, I).

Now, there exists an orthogonal transformation H ∈ Op (v. Problem 1.8.14)
such that HS−1/2x̄ = (x̄′S−1x̄)1/2e1. Choosing now A = H, we find

f(x̄,S) = f(HS−1/2x̄,HH′)
= f((x̄′S−1x̄)1/2e1, I),

which shows that any invariant test function depends on the data only
through T 2 = nx̄′S−1x̄.

Second, selecting A = Σ−1/2 gives

f(x̄,S) = f(Σ−1/2x̄,Σ−1/2SΣ−1/2),

where

Σ−1/2x̄ ∼ Np(Σ−1/2µ, n−1I)

(n − 1)Σ−1/2SΣ−1/2 ∼ Wp(n − 1).

Using the same argument, there exists an orthogonal transformation H ∈
Op such that HΣ−1/2µ = (µ′Σ−1µ)1/2e1. Choosing this time A = H, we
find

f(x̄,S) = f(HΣ−1/2x̄,HΣ−1/2SΣ−1/2H′),

where

HΣ−1/2x̄ ∼ Np((µ′Σ−1µ)1/2e1, n
−1I)

(n − 1)HΣ−1/2SΣ−1/2H′ ∼ Wp(n − 1),

and, thus, the power function of any invariant test depends on (µ,Σ)
only through the parameter function δ = nµ′Σ−1µ/2. These results are
summarized.
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Proposition 8.3 For testing H0 : µ = 0 against H1 : µ �= 0, any in-
variant test with respect to the group Gp depends on the minimal sufficient
statistic (x̄,S) only through T 2 = nx̄′S−1x̄. Moreover, the power function
of any invariant test depends on (µ,Σ) only through the parameter function
δ = nµ′Σ−1µ/2.

The LRT is obviously invariant. In the class of invariant tests, it is possi-
ble to show that the Hotelling-T 2 is uniformly most powerful. We say that
T 2 is the UMPI test.

Proposition 8.4 For testing H0 : µ = 0 against H1 : µ �= 0, the
Hotelling-T 2 test, T 2 = nx̄′S−1x̄, is UMPI.

Proof. It has already been established that T 2 is invariant and that all
invariant tests, depending on (x̄,S), are a function of T 2. The problem thus
reduces to finding the UMP test for H0 : δ = 0 based on one observation
from x ≡ T 2/(n− 1) ∼ Fc(p, n− p; δ), where δ = nµ′Σ−1µ/2. The density
of x was given in Problem 4.6.3:

f(x; δ) =
∞∑

k=0

e−δ δk

k!
Γ
( 1

2 (n + 2k)
)

Γ
( 1

2 (p + 2k)
)

Γ
( 1

2 (n − p)
) x(p+2k)/2−1

(1 + x)(n+2k)/2 , x > 0.

From the Neyman-Pearson lemma, the most powerful test for H0 : δ = 0
rejects H0 for large values of the ratio

f(x; δ)
f(x; 0)

= c1

∞∑
k=0

e−δ δk

k!
Γ
( 1

2 (n + 2k)
)

Γ
( 1

2 (p + 2k)
)
[

x

(1 + x)

]k

≥ c2.

Since this ratio is monotone increasing in x, this is equivalent to rejecting
H0 for large values of x, x ≥ c3. This rejection region does not depend on
δ and, thus, the test is uniformly most powerful. �

An asymptotic expansion of the distribution function of T 2 was obtained
whose first term is χ2

p under the elliptical distribution [Iwashita (1997)] and
for general non-normality [Fujikoshi (1997), Kano (1995)]. Improvement to
the chi-square approximation by monotone transformation of T 2 is also
possible [Fujisawa (1997)]. For a modification to T 2 with the same chi-
square asymptotic distribution but in the case of infinite second moment,
refer to Sepanski (1994).

Kudô (1963) was the first to propose a multivariate analogue, when Σ
is known, to the one-sided t-test. The multivariate problem is to test the
null hypothesis, H0 : µ = 0, against the one-sided alternative hypothesis,
H1 : µ ≥ 0, where µ ≥ 0 is interpreted componentwise. It can be stated
even more generally in terms of cone. The LRT for the one-sided problem,
with unknown Σ, was obtained by Perlman (1969). Tang (1994, 1996) dis-
cussed unbiasedness and invariance of tests in the one-sided multivariate
problem. Silvapulle (1995) derived the null distribution of a Hotelling-T 2
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type statistic. There is a conditional test by Fraser, Guttman and Srivastava
(1991); v. also Wang and McDermott (1998a, 1998b).

8.3 Simultaneous confidence intervals on means

Let x1, . . . ,xn be i.i.d. Np(µ,Σ). For any preassigned level β = 1−α, define
the quantile Fα(p1, p2) by the equation P (F (p1, p2) ≥ Fα(p1, p2)) = α. By
applying Hotelling’s result, we have exactly

P

(
n(x̄ − µ)′S−1(x̄ − µ) ≤ (n − 1)p

(n − p)
Fα(p, n − p)

)
= β,

whereby we see that in β × 100% of such experiments, the “true” µ lies in
the random ellipsoid

{µ ∈ R
p : n(µ − x̄)′S−1(µ − x̄) ≤ cα},

where we have simply let

cα =
(n − 1)p
(n − p)

Fα(p, n − p).

We are β × 100% “confident” that our particular observed ellipsoid,

CR(µ; β) = {µ ∈ R
p : n(µ − x̄)′S−1(µ − x̄) ≤ cα},

contains µ since P (µ ∈ CR(µ; β)) = β.
Sequential fixed-size confidence regions for the mean vector were

investigated by Srivastava (1967) and Datta and Mukhopadhyay (1997).

8.3.1 Linear hypotheses
In many experiments, one simply wishes to compare the various compo-
nents of µ to each other. For instance, one may ask: “Is µ1 equal to µ3?”
“Is the difference between µ2 and the average of µ1 and µ3 equal to 3.1?”
Answering the first question amounts to testing the hypothesis

H0 : µ1 − µ3 = 0,

while the second question is equivalent to testing the hypothesis

H0 : 2µ2 − (µ1 + µ3) = 6.2.

Questions like these are said to be linear in µ, and in the general case,
there would be a certain specified vector a ∈ R

p and constant c ∈ R for
which we would wish to test

H0 : a′µ = c.
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Given x1, . . . ,xn i.i.d. Np(µ,Σ), if we let yi = a′xi, i = 1, . . . , n, then
clearly y1, . . . , yn are i.i.d. N1(a′µ,a′Σa). Obviously, one may apply the
univariate results directly to the y data so that

H0 is correct iff
√

n(ȳ − c)/sy
d= tn−1

and, of course,

CI(a′µ; β) =
[
ȳ − sy√

n
tα/2,n−1, ȳ +

sy√
n

tα/2,n−1

]
.

One should notice that, conveniently, ȳ = a′x̄ and s2
y = a′Sa.

Realistically, one would have more than one such question to consider,
and so that there would be r specified vectors ai ∈ R

p, i = 1, . . . , r, with
corresponding constants ci ∈ R, i = 1, . . . , r, for which we would wish
simultaneously to test

H0 : a′
1µ = c1, . . . ,a′

rµ = cr.

This is clearly equivalent to testing

H0 : A′µ = c,

where A = (a1, . . . ,ar) and c = (c1, . . . , cr)′. Letting yi = A′xi, i =
1, . . . , n, then, clearly, y1, . . . ,yn are i.i.d. Nr(A′µ,A′ΣA). Under the as-
sumption that the vectors a1, . . . ,ar are linearly independent, one may
apply the multivariate results above directly to the y data so that

H0 is correct iff n(ȳ − c)′S−1
y (ȳ − c) d=

(n − 1)r
n − r

F (r, n − r)

and a confidence ellipsoid for ν = A′µ is

CR(ν; β) = {ν ∈ R
r : n(ν − ȳ)′S−1

y (ν − ȳ) ≤ kα},
where

kα =
(n − 1)r
(n − r)

Fα(r, n − r).

Notice that ȳ = A′x̄ and Sy = A′SA.
For obvious pragmatic reasons, one might in practice wish to have in-

dividual confidence intervals for each component νi, i = 1, . . . , r. Thus,
we would like to specify r intervals for these quantities in which we are
simultaneously confident. The following lemma is needed.

Lemma 8.1 Assume S ∈ Pp and A = (a1, . . . ,ar) ∈ R
p
r is of rank r.

Then

(a′
ix)2

a′
iSai

≤ x′A(A′SA)−1A′x ≤ x′S−1x, ∀x ∈ R
p.
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Proof. Using Rayleigh’s quotient (v. Problem 1.8.12),

sup
x�=0

x′A(A′SA)−1A′x
x′S−1x

= λ1
(
A(A′SA)−1A′S

)
= 1

and the right inequality follows. Let y = A′x = (y1,y′
2)

′ and B = A′SA ∈
Pr partitioned as

B =
(

b11 b′
21

b21 B22

)

with inverse (v. Problem 1.8.1)

B−1 =
(

b−1
11 + b−2

11 b′
21B

−1
22.1b21 −b−1

11 b′
21B

−1
22.1

−b−1
11 B−1

22.1b21 B−1
22.1

)
.

Then,

y′B−1y =
y2
1

b11
+ ||y1b11B

−1/2
22.1 b21 − B−1/2

22.1 y2||2 ≥ y2
1

b11
=

(a′
1x)2

a′
1Sa1

,

which is the left inequality. �

Since by simple algebra in Lemma 8.1, we have the inequalities

(ȳi − νi)2

a′
iSai

≤ (ȳ − ν)′S−1
y (ȳ − ν) ≤ (x̄ − µ)′S−1(x̄ − µ),

we find that

P

(
n1/2 | ȳi − νi |

(a′
iSai)1/2 ≤ k1/2

α , i = 1, . . . , r

)

≥ P
(
n(ȳ − ν)′S−1

y (ȳ − ν) ≤ kα

)
= β.

Therefore, we are at least β × 100% confident in simultaneously presenting
the r observed “Roy-Bose” intervals

ȳi − k
1/2
α

n1/2 (a′
iSai)1/2 ≤ νi ≤ ȳi +

k
1/2
α

n1/2 (a′
iSai)1/2, i = 1, . . . , r. (8.2)

One should note that kα ≤ cα (why?), so we do somewhat better using kα.
The constant cα, however, allows all possible linear combinations since

sup
a �=0

(a′x̄ − a′µ)2

a′Sa
= (x̄ − µ)′S−1(x̄ − µ).

Therefore, we are at least β × 100% confident in simultaneously presenting
all of the observed “Scheffé” intervals

a′x̄ − c
1/2
α

n1/2 (a′Sa)1/2 ≤ a′µ ≤ a′x̄ +
c
1/2
α

n1/2 (a′Sa)1/2, ∀a ∈ R
p. (8.3)

Although the “Scheffé” intervals are wider, they can be useful in making a
great number of unplanned comparisons between means.
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Actually, if the number, r, of questions that one asks is very small, we
can sometimes even improve on kα. Let

Ti = n1/2 (ȳi − νi)
(a′

iSai)1/2 , i = 1, . . . , r.

Note Ti
d= tn−1, i = 1, . . . , r, but they are not independent. Then, if we

define the event Ai = {|Ti| ≤ t0},
P (|Ti| ≤ t0, i = 1, . . . , r) = P (∩r

i=1Ai)
= 1 − P (∪r

i=1A
c
i )

≥ 1 −
r∑

i=1

P (Ac
i ) (8.4)

= 1 − r P (|tn−1| > t0) .

The inequality (8.4) is the Bonferroni inequality. If we deliberately equate
the final term to β = 1 − α and then solve for t0, we find that

P (tn−1 > t0) =
α

2r
,

or, equivalently,

t0 = tα/2r,n−1.

Therefore, one can see that if we let

bα = t2α/2r,n−1,

we will still be at least β × 100% confident if, instead of the “Roy-Bose”
intervals (8.2), we present the r “Bonferroni” intervals

ȳi − b
1/2
α

n1/2 (a′
iSai)1/2 ≤ νi ≤ ȳi +

b
1/2
α

n1/2 (a′
iSai)1/2, i = 1, . . . , r.

Note that the relative length of “Roy-Bose” to “Bonferroni” is obviously√
bα/kα, and in a particular application, one would use the method with

the shorter intervals.
For non-normal data x1, . . . ,xn i.i.d. x with E x = µ and var x = Σ,

large sample “Roy-Bose” and “Scheffé” simultaneous confidence intervals
can be constructed similarly (v. Problems 8.9.5 and 8.9.6) by appealing
first to the central limit theorem.

8.3.2 Nonlinear hypotheses
In certain experiments, one might wish to compare the various components
of µ to each other in ways that are plainly nonlinear. For instance, one may
ask: “Is µ1 equal to µ2

3?” “Is the difference between µ2 and the product of
µ1 and µ3 equal to 5.7?” The first question corresponds to the hypothesis

H0 : µ1 − µ2
3 = 0
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and the second to

H0 : µ2 − µ1µ3 = 5.7.

In each case, there is a certain function g : R
p → R and constant c ∈ R for

which we are entertaining the hypothesis

H0 : g(µ) = c.

If we actually had r such hypotheses to consider in the same experiment,
then there would, of course, be r specified real-valued functions gi, i =
1, . . . , r, with constants ci ∈ R, i = 1, . . . , r, for which we would wish
simultaneously to test

H0 : g1(µ) = c1, . . . , gr(µ) = cr.

By letting g : R
p → R

r defined by g(x) = (g1(x), . . . , gr(x)) be con-
tinuously differentiable at µ, and c ∈ R

r, this is simply equivalent
to

H0 : g(µ) = c.

The results in this section are asymptotic, so we assume possibly non-
normal data x1, . . . ,xn i.i.d. x with E x = µ and var x = Σ. One may
not apply the specific results in Section 8.3.1 directly to this situation, but
one may yet apply the same essential logic as formulated in that section
by appealing to the central limit theorem,

√
n(x̄−µ) d→ Np(0,Σ), and the

delta method in Proposition 6.2,
√

n (g(x̄) − g(µ)) d→ Nr (0,Σg), where
Σg = [Dg(µ)]Σ[Dg(µ)]′. This time, if we let y = g(x̄), ν = g(µ), and
Sg = [Dg(x̄)]S[Dg(x̄)]′ then, as on page 79,

n(y − ν)′S−1
g (y − ν) d→ χ2

r.

Thus, with

dα = χ2
α,r,

the confidence ellipsoid for ν,

CR(ν; β) = {ν ∈ R
r : n(ν − y)′S−1

g (ν − y) ≤ dα},
has an asymptotic coverage probability of β, i.e., P (ν ∈ CR(ν; β)) → β as
n → ∞.

To have individual confidence intervals on each component νi, i =
1, . . . , r, we have the inequality in Lemma 8.1:

(yi − νi)2

Sg,ii
≤ (y − ν)′S−1

g (y − ν).

From this purely algebraic fact, it follows that

lim
n→∞ P

(
n1/2 | yi − νi |

S1/2
g,ii

≤ d1/2
α , i = 1, . . . , r

)
≥ β.
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Thus, asymptotically, we are at least β × 100% confident in simultaneously
presenting the r observed intervals

yi − d
1/2
α

n1/2 S1/2
g,ii ≤ νi ≤ yi +

d
1/2
α

n1/2 S1/2
g,ii, i = 1, . . . , r.

If r is quite small, one might try to improve on dα using a Bonferroni
approach.

The construction of simultaneous confidence intervals on functions φ(Σ)
is treated quite generally in Dümbgen (1998). Asymptotic considerations
for the Wishart model show that the resulting confidence bounds are
substantially smaller than those obtained by inverting likelihood ratio tests.

8.4 Multiple correlation

The multiple correlation coefficient R is the maximum correlation possible
between a variable x1 and a linear combination, t′x2, of a vector x2. Not
surprisingly, with underlying normality, the likelihood ratio test of H0 :
x1 |= x2 will be a function of the sample multiple correlation coefficient R̂.
Assume x1 ∈ R and x2 ∈ R

p−1 have a joint normal distribution,
(

x1
x2

)
∼ Np

(
0,

(
σ11 σ′

21
σ21 Σ22

))
,

where Σ22 = A2 > 0. We have set the mean to 0 without any loss of
generality. Since the simple correlation coefficient is invariant to rescaling
of each variable, we can assume at the outset that var t′x2 = t′Σ22t = 1
and solve

max
t′Σ22t=1

cor(x1, t′x2).

For any t such that t′Σ22t = 1,

cor2(x1, t′x2) = (σ′
21t)

2/σ11 = 〈A−1σ21,At〉2/σ11 ≤ σ′
21Σ

−1
22 σ21/σ11.

The last inequality follows from the Cauchy-Schwarz inequality given in
Proposition 1.1. It is an equality iff At ∝ A−1σ21, or, equivalently,
t ∝ Σ−1

22 σ21. The maximum correlation possible is R ≥ 0, where R2 =
σ′

21Σ
−1
22 σ21/σ11, and is called the multiple correlation coefficient between

x1 and x2. It should be noted immediately that the maximum correlation is
achieved by t′x2 = E (x1 | x2) = σ′

21Σ
−1
22 x2, i.e., by the conditional mean

of x1 given x2. In order to test H0 : R = 0 (equivalently, H0 : σ21 = 0 or
H0 : x1 |= x2), the sample variance, based on a random sample of size n,

(n − 1)S ≡ V =
(

v11 v′
21

v21 V22

)
,



110 8. Tests on mean and variance

is partitioned and is distributed as V ∼ Wp(n − 1,Σ). In the obvious
manner, the sample version is R̂2 = v′

21V
−1
22 v21/v11 and R̂ ≥ 0 is called

the sample multiple correlation coefficient.

Proposition 8.5 The likelihood ratio test Λ rejects H0 for small values of
Λ = (1 − R̂2)n/2.

Proof. Based on the likelihood (7.1) from x1, . . . ,xn i.i.d. Np(µ,Σ), Σ >
0, the MLE of µ is always µ̂ = x̄. Without constraints, the MLE of Σ is
Σ̂ = 1

nV, but when σ21 = 0, the constrained MLE becomes

ˆ̂Σ =
1
n

(
v11 0′

0 V22

)
.

Thus,

Λ =
L( ˆ̂Σ, µ̂)
L(Σ̂, µ̂)

=
| ˆ̂Σ|−n/2

|Σ̂|−n/2

etr(− 1
2V

ˆ̂Σ
−1

)

etr(− 1
2VΣ̂−1)

=
[
v11|V22|

|V|
]−n/2 exp(− 1

2np)
exp(− 1

2np)

=
(

v11.2

v11

)n/2

= (1 − R̂2)n/2,

where the last equality made use of |V| = v11.2|V22|. �

Of greater interest is the distribution of R̂2 in which negative binomial
probabilities intervene. The reader should recall at this point that a nega-
tive binomial variable represents the number of failures, k, before the rth
success in a sequence of independent bernoulli trials.

Definition 8.1 Negative binomial: x ∼ nb(r, p), r > 0 and 0 ≤ p ≤ 1, iff
the probability function of x is given by

pk = P (x = k) =
(

r + k − 1
k

)
pr(1 − p)k, k = 0, 1, . . . .

In Definition 8.1, r need not be an integer. In that case, the combination
factor is calculated via the gamma function:

(
r + k − 1

k

)
=

Γ(r + k)
k!Γ(r)

=
(r)k

k!
,

where (r)0 = 1 and (r)k = r(r + 1) · · · (r + k − 1) for k = 1, 2, . . .. Recall
that Fc(s1, s2) denotes the canonical Fc distribution (v. Definition 3.7).

Proposition 8.6

P

(
R̂2

1 − R̂2
≤ t

)
=

∞∑
k=0

pk · P (Fc(p − 1 + 2k, n − p) ≤ t) ,
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P
(
R̂2 ≤ t

)
=

∞∑
k=0

pk · P (
beta

( 1
2 (p − 1 + 2k); 1

2 (n − p)
) ≤ t

)
,

where pk are the negative binomial probabilities

pk =

( 1
2 (n − 1)

)
k

k!
(1 − R2)(n−1)/2R2k, k = 0, 1, . . . .

Proof. Since v11.2 = v11(1 − R̂2), then R̂2/(1 − R̂2) = v′
21V

−1
22 v21/v11.2.

With the help of Proposition 7.9, v11.2 |= (v21,V22) and v11.2 ∼ σ11.2χ
2
n−p.

We also have

v21 | V22 ∼ Np−1(V22Σ−1
22 σ21, σ11.2V22)

from which

σ
−1/2
11.2 V−1/2

22 v21 | V22 ∼ Np−1(σ
−1/2
11.2 V1/2

22 Σ−1
22 σ21, I)

and, therefore, v′
21V

−1
22 v21 | V22 ∼ σ11.2χ

2
p−1(δ), where

δ = σ′
21Σ

−1
22 V22Σ−1

22 σ21/(2σ11.2).

Hence, conditional on V22,

R̂2/(1 − R̂2) ∼ Fc(p − 1, n − p; δ).

Using Proposition 4.7,

P

(
R̂2

1 − R̂2
≤ t | V22

)
=

∞∑
k=0

e−δ δk

k!
P (Fc(p − 1 + 2k, n − p) ≤ t) .

To obtain the unconditional distribution, take expectations on both sides
with respect to the distribution of V22. First, we need the distribution of
δ. Since V22 ∼ Wp−1(n − 1,Σ22), then

δ ∼ R2

(1 − R2)
1
2χ2

n−1
d= G

(
1
2 (n − 1),

R2

(1 − R2)

)
.

The expectation computation is immediate (v. Problem 8.9.10) if we use
a result well known in bayesian inference [Johnson et al. (1992), p. 204]
that if K given δ is Poisson(δ) and δ ∼ G(p, θ), then the marginal of K is
negative binomial, K ∼ nb(p, (1 + θ)−1). Hence,

pk = P (K = k) = E P (K = k | δ) = E e−δ δk

k!
,

completing the proof of the first result. The second result follows with the
obvious monotone transformation. �

Thus, R̂2/(1−R̂2) is distributed as a negative binomial mixture of canonical
Fc distributions, whereas that of R̂2 is a negative binomial mixture of beta
distributions. The moments of R̂ (v. Problem 8.9.9) follow directly from
the later characterization. The null distribution is just a special case.
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Proposition 8.7 Assuming R = 0, R̂2/(1 − R̂2) ∼ Fc(p − 1, n − p).

The exact distribution of the simple correlation coefficient, introduced
earlier in Section 5.6.3, when ρ �= 0 is just another special case when
p = 2. The invariance of the multiple correlation coefficient is discussed
in Problem 8.9.13.

Proposition 8.8 For testing H0 : R = 0 against H1 : R > 0, the test
which rejects for large values of R̂ is UMPI.

Proof. The statistic R̂ is clearly invariant and it was established in Prob-
lem 8.9.13 that all invariant tests, depending on (x̄,V), are a function of R̂.
The problem thus reduces to finding the UMP test based on one observation
from R̂. The density of x ≡ R̂2 follows from Proposition 8.6,

f(x; R2) =
∞∑

k=0

pk
1

B( 1
2 (p − 1 + 2k), 1

2 (n − p))
x

1
2 (p−1+2k)−1(1−x)

1
2 (n−p)−1,

0 < x < 1. From the Neyman-Pearson lemma, the most powerful test
rejects H0 for large values of the ratio

f(x; R2)
f(x; 0)

= c1

∞∑
k=0

pk

Γ
( 1

2 (n − 1 + 2k)
)

Γ
( 1

2 (p − 1 + 2k)
)xk ≥ c2.

Since this ratio is monotone increasing in x this is equivalent to rejecting
H0 for large values of x, x ≥ c3. This rejection region does not depend on
R and, thus, the test is uniformly most powerful. �

Example 8.2 The power function of the likelihood ratio test for H0 : R =
0 may be evaluated with Proposition 8.6:

β =
∞∑

k=0

pk

∫ 1

tα

B
( 1

2 (p − 1 + 2k), 1
2 (n − p)

)−1

·x(p−1+2k)/2−1(1 − x)(n−p)/2−1dx,

where tα = betaα

( 1
2 (p − 1); 1

2 (n − p)
)

is the critical point. A numerical
evaluation in Mathematica of β for p = 3 and n = 20 at the significance
level α = 0.05 gave the plot in Figure 8.2.

For large samples, the asymptotic distribution provides a simpler dis-
tribution. By the delta method in Proposition 6.2, R̂2 is asymptotically
normal since it is a function of the sample variance S, which is itself asymp-
totically normal. However, rather than calculating the derivatives, it is
somewhat easier to use op(n−1/2) asymptotic expansions. This technique
is illustrated in the following proof.

Proposition 8.9 The null and alternative asymptotic distributions of R̂2,
when sampling from a multivariate normal distribution, are given by
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Figure 8.2. Power function of the likelihood ratio test for H0 : R = 0 when p = 3,
and n = 20 at a level of significance α = 0.05.

(i) n1/2(R̂2 − R2) d→ N
(
0, 4R2(1 − R2)2

)
,

(ii) If R = 0, then nR̂2 d→ χ2
p−1.

Proof. By invariance arguments (v. Problem 8.9.13), assume without loss
of generality,

Σ =
(

1 Re′
1

Re1 Ip−1

)
,

where e1 = (1, 0, . . . , 0)′ ∈ R
p−1. Since

n1/2(S − Σ) d→ Z =
(

z11 z′
21

z21 Z22

)
,

where Z ∼ Np
p (0, (I + Kp)(Σ ⊗ Σ)), then we can write the op(n−1/2)

expansions

s11 = 1 + n−1/2z11 + op(n−1/2),

s21 = Re1 + n−1/2z21 + op(n−1/2),

S22 = I + n−1/2Z22 + op(n−1/2),

where op(n−1/2) is such that n1/2 · op(n−1/2)
p→ 0 [Serfling (1980), p. 9].

Straightforward algebra, with the aid of Problem 1.8.15, then gives

s′
21S

−1
22 s21

s11

= [1 + n−1/2z11 + op(n−1/2)]−1 · [Re1 + n−1/2z21 + op(n−1/2)]′



114 8. Tests on mean and variance

·[I + n−1/2Z22 + op(n−1/2)]−1 · [Re1 + n−1/2z21 + op(n−1/2)]

= [1 − n−1/2z11 + op(n−1/2)] · [Re1 + n−1/2z21 + op(n−1/2)]′

·[I − n−1/2Z22 + op(n−1/2)] · [Re1 + n−1/2z21 + op(n−1/2)]

= R2 + 2n−1/2Rz21 − n−1/2R2z22 − n−1/2R2z11 + op(n−1/2).

Thus, n1/2(R̂2−R2) d→ 2Rz21−R2z22−R2z11, but since (v. equation (6.1))
(z21, z11, z22)′ ∼ N3(0,Ω), where

Ω =




1 + R2 2R 2R
2R 2 2R2

2R 2R2 2


 ,

the linear combination with a = (2R,−R2,−R2)′ yields

2Rz21 − R2z22 − R2z11 ∼ N(0,a′Ωa),

whereby a direct evaluation provides a′Ωa = 4R2(1−R2)2. This proves (i).
To prove (ii), note that when R = 0, n1/2s21

d→ z21, where z21 ∼ Np−1(0, I).

However, since S22
p→ I and s11

p→ 1, then n1/2s
−1/2
11 S−1/2

22 s21
d→ z21 and

nR̂2 d→ |z21|2 d= χ2
p−1. �

As a corollary, we get the asymptotic distribution of R̂ and of Fisher’s
z-transform.

Corollary 8.2 The asymptotic distributions of R̂ and of its Fisher’s z
transform, when sampling from a multivariate normal distribution, are
given by

(i) n1/2(R̂ − R) d→ N
(
0, (1 − R2)2

)
,

(ii) n1/2
(
tanh−1(R̂) − tanh−1(R)

)
d→ N(0, 1).

Proof. It follows directly from the delta method applied to the square root
transformation and to the tanh−1 transformation. �

More general results on the asymptotic distributions of correlation coef-
ficients obtained from any asymptotically normal equivariant estimate of
variance, not necessarily S, will be given in Chapter 13 for a sample from
an elliptical distribution.

8.4.1 Asymptotic moments
The mixture beta characterization of R̂2 in Proposition 8.6 can be used
to obtain immediately the exact moments of R̂2 in terms of those of beta
distributions (v. Problem 8.9.9). Simple approximations for large n are,
however, possible as is now shown.
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Using Proposition 8.6, we have

P
(
1 − R̂2 ≤ t

)
=

∞∑
k=0

pk · P (
beta

( 1
2 (n − p); 1

2 (p − 1 + 2k)
) ≤ t

)
.

From the moments of x ∼ beta(a, b) given by

E xh =
Γ(a + b)Γ(a + h)
Γ(a)Γ(a + b + h)

=
(a)h

(a + b)h
, h = 1, 2, . . . ,

we can write

E (1 − R̂2)h =
∞∑

k=0

( 1
2 (n − 1)

)
k

k!
(1 − R2)(n−1)/2R2k

( 1
2 (n − p)

)
h( 1

2 (n − 1 + 2k)
)
h

.

The hypergeometric function

2F1(a, b; c; z) ≡
∞∑

k=0

(a)k(b)k

(c)k

zk

k!

after some simple algebra allows to write

E (1 − R̂2)h =

( 1
2 (n − p)

)
h( 1

2 (n − 1)
)
h

·(1 − R2)(n−1)/2
2F1( 1

2 (n − 1), 1
2 (n − 1); 1

2 (n − 1) + h; R2).

Then, upon using Kummer’s formula [Erdélyi et al. (1953), p. 105]

2F1(a, b; c; z) = (1 − z)(c−a−b)
2F1(c − a, c − b; c; z),

we finally find

E (1 − R̂2)h =

( 1
2 (n − p)

)
h( 1

2 (n − 1)
)
h

(1 − R2)h
2F1(h, h; 1

2 (n − 1) + h; R2).

For h = 1, we then obtain

E (1 − R̂2) =
(n − p)
(n − 1)

(1 − R2) 2F1(1, 1; 1
2 (n + 1); R2)

=
(n − p)
(n − 1)

(1 − R2)
[
1 +

2R2

(n + 1)
+ O(n−2)

]

and

E R̂2 = R2 +
(p − 1)
(n − 1)

(1 − R2) − 2
(n − p)
(n2 − 1)

R2(1 − R2) + O(n−2).

This expression shows that R̂2 is biased, as it overestimates R2. The MVUE
of R2 [Olkin and Pratt (1958)] is

U(R̂2) = 1 − (n − 3)
(n − p)

(1 − R̂2) 2F1(1, 1; 1
2 (n − p + 2); 1 − R̂2).
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The MVUE has the drawback of taking negative values when R̂ is close to
0. In fact, using the relation [Erdélyi et al. (1953), p. 61]

2F1(a, b; c; 1) =
Γ(c) Γ(c − a − b)
Γ(c − a) Γ(c − b)

,

it is easily established that U(0) = −(p−1)/(n−p−2) and, of course, U(1) =
1. A similar expansion for h = 2 can be done to obtain an asymptotic
expansion for var R̂2.

8.5 Partial correlation

Assume two subsets of variables x1 ∈ R
p1 and x2 ∈ R

p2 have a joint normal
distribution,

(
x1
x2

)
∼ Np

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

The partial correlation coefficient between variables xi and xj , in the subset
x1, is just the ordinary simple correlation ρ between xi and xj but with
the variables in the subset x2 held fixed. This will be denoted by ρij|x2 .
It can be expressed in terms of Σ if one recalls the conditional normal of
Section 5.5:

x1 | x2 ∼ Np1(µ1 + Σ12Σ−1
22 (x2 − µ2),Σ11.2).

Writing Σ11.2 = (σij|x2), where σij|x2 denotes the (i, j) element of Σ11.2,
then

ρij|x2 =
σij|x2

σ
1/2
ii|x2

σ
1/2
jj|x2

.

Using Proposition 7.9, we already know that since (n−1)S = V ∼ Wp(n−
1,Σ), then

V11.2 ∼ Wp1(n − 1 − p2,Σ11.2),

where V was partitioned in conformity as

V =
(

V11 V12
V21 V22

)
.

Since V is proportional to the MLE Σ̂ of Σ, it is clear that the MLE of
ρij|x2 is just

rij|x2 =
vij|x2

v
1/2
ii|x2

v
1/2
jj|x2

,

where V11.2 = (vij|x2) and vij|x2 denotes the (i, j) element of V11.2. Con-
sidering the distribution of V11.2, the distribution of rij|x2 is the same as
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for a simple correlation coefficient but with n − p2 in place of n. We have
proved:

Proposition 8.10

P

(
r2
ij|x2

1 − r2
ij|x2

≤ t

)
=

∞∑
k=0

pk · P (Fc(1 + 2k, n − p2 − 2) ≤ t) ,

P
(
r2
ij|x2

≤ t
)

=
∞∑

k=0

pk · P (
beta

( 1
2 (1 + 2k); 1

2 (n − p2 − 2)
) ≤ t

)
,

where pk are the negative binomial probabilities

pk =

( 1
2 (n − p2 − 1)

)
k

k!
(1 − ρ2

ij|x2
)(n−p2−1)/2ρ2k

ij|x2
, k = 0, 1, . . . .

For large samples, as for the simple correlation coefficient, it follows from
Problem 6.4.8 that

n1/2 (rij|x2 − ρij|x2

) d→ N
(
0, (1 − ρ2

ij|x2
)2
)

.

A Fisher’s z-transform as for the simple correlation coefficient in Prob-
lem 6.4.9 is definitely possible for a partial correlation coefficient.

8.6 Test of sphericity

Assume x ∼ Np(µ,Σ), Σ > 0, and consider testing the hypothesis that
the p variables in x = (x1, . . . , xp)′ are independent and have the same
variance:

H0 : Σ = γI, γ > 0.

Based on a random sample x1, . . . ,xn, regardless of the hypothesis H0, as
long as Σ > 0, the MLE of µ is always µ̂ = x̄. Now, without constraint,
the MLE of Σ is Σ̂ = 1

nV, where, as usual,

V =
n∑

i=1

(xi − x̄)(xi − x̄)′.

However, under H0, the MLE is obtained by solving

max
γ>0

|γI|−n/2 etr
(− 1

2γ−1V
)
.

Taking logarithms, the function to maximize is

− 1
2np ln γ − 1

2γ−1 tr V,
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and the solution is easily calculated, γ̂ = tr V/np. Therefore, the likelihood
ratio, first derived by Mauchly (1940), becomes

Λ =
L(γ̂I, µ̂)
L(Σ̂, µ̂)

=
|γ̂I|−n/2

|Σ̂|−n/2

etr
(− 1

2 γ̂−1V
)

etr
(
− 1

2Σ̂
−1V

)

=

[
| 1nV|

|( 1
np tr V)I|

]n/2
exp(− 1

2np)
exp(− 1

2np)
.

Thus,

Λ̃ ≡ Λ2/n =
|V|

( 1
p tr V)p

=

(∏p
i=1 l

1/p
i

1
p

∑p
i=1 li

)p

,

where l1 ≥ · · · ≥ lp are the ordered eigenvalues of V. The LRT compares
the geometric and arithmetic means of those eigenvalues; they coincide
when V has the structure as in H0.

Proposition 8.11 The LRT for testing H0 : Σ = γI, γ > 0 against
H1 : Σ > 0 rejects H0 for small values of Λ̃ = |V|/( 1

p tr V)p.

At this point, we remind the reader about the general expression for
the asymptotic degrees of freedom for likelihood ratio tests. In general, for
testing H0 : θ ∈ Θ0 against H1 : θ ∈ Θc

0 under regularity conditions, then,
under H0, −2 ln Λ d→ χ2

f as the sample size n → ∞. The degrees of freedom
f is the difference between the number of free parameters in Θ = Θ0 ∪Θc

0
and the number of free parameters in Θ0.

From the general theory of LRT, it is clear that the asymptotic null
distribution is

−2 ln Λ d→ χ2
f , f = 1

2p(p + 1) − 1.

Better approximations can be obtained by calculating the moments of Λ (or
Λ̃) as in Section 12.3. The moments are easily calculated with the following
lemma.

Lemma 8.2 When Σ = γI, γ > 0, tr V |= |V|/(tr V)p.

Proof. When Σ = γI, clearly the distribution of |V|/(tr V)p does not
depend on γ. From the likelihood for (µ, γ), which forms an exponen-
tial family, the minimal sufficient and complete statistic is (x̄, tr V). The
conclusion follows using Basu’s1 theorem. �

1Basu’s theorem: If T is complete and sufficient for the family P = {Pθ : θ ∈ Θ},
then T |= A, for any ancillary statistic A. By definition, a statistic A is ancillary iff its
distribution does not depend on θ.
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But then, since

Λ̃
(

1
p

tr V
)p

= |V|,

then

E Λ̃h · E
(

1
p

tr V
)ph

= E |V|h,

from which

E Λ̃h =
E |V|h

E ( 1
p tr V)ph

.

Proposition 8.12 When Σ = γI, γ > 0, then

E Λ̃h = pph Γ
( 1

2 (n − 1)p
)

Γ
( 1

2 (n − 1)p + ph
) Γp

( 1
2 (n − 1) + h

)

Γp

( 1
2 (n − 1)

) .

Proof. We have V ∼ γWp(n − 1). The proof follows directly from the
above remark in conjunction with Corollary 7.3, Proposition 7.2, and the
definition of Γp(·) on page 93. Moments of chi-square distributions can be
obtained from Section 3.2 (v. Problem 3.5.1). �

Finally, the exact distribution of Λ̃ can be characterized as a product of
independent beta variables [Srivastava and Khatri (1979), p. 209].

Proposition 8.13 The exact null distribution of Λ̃ is

Λ̃ d=
p−1∏
i=1

beta[ 12 (n − 1 − i), i( 1
2 + 1

p )]; (8.5)

i.e., Λ̃ is distributed as the product of p − 1 mutually independent beta
variables.

Proof. We make use of the multiplicative formula of Gauss [Erdélyi et al.
(1953), p. 4]

Γ(mz) = (2π)−(m−1)/2mmz− 1
2

m−1∏
r=0

Γ(z + r
m ), m = 2, 3, . . . ,

with m = p and z = 1
2 (n − 1), 1

2 (n − 1) + h. We can then rewrite the
moments as

E Λ̃h =
∏p

i=1 Γ[ 12 (n − 1) + h − 1
2 (i − 1)]∏p

i=1 Γ[ 12 (n − 1) − 1
2 (i − 1)]

∏p−1
r=0 Γ[ 12 (n − 1) + r

p ]
∏p−1

r=0 Γ[ 12 (n − 1) + h + r
p ]

=

∏p−1
i=1 Γ[ 12 (n − 1) + h − 1

2 i] Γ[ 12 (n − 1) + i
p ]

∏p−1
i=1 Γ[ 12 (n − 1) − 1

2 i] Γ[ 12 (n − 1) + h + i
p ]

.
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It is then straightforward to check that all moments of order h > 0 on the
left and right sides of d= in (8.5) are the same. Since the domain is the
bounded interval [0, 1], there is a unique distribution with these moments
[Serfling (1980), p. 46]. �

The group Op×R
p × (R\{0}) transforms the data as xi �→ aHxi +b, for

any H ∈ Op, b ∈ R
p, and a �= 0. It preserves normality and induces trans-

formations on the minimal sufficient statistic (x̄,V) and parameters (µ,Σ)
as x̄ �→ aHx̄+b, V �→ a2HVH′, µ �→ aHµ+b, and Σ �→ a2HΣH′. Thus,
the transformation also preserves the sphericity. A test function f(x̄,V) is
said to be invariant with respect to this group of transformations when it
takes the same value on the original data as on the transformed data, i.e.,

f(y,W) = f(aHy + b, a2HWH′),

∀(H,b, a) ∈ Op × R
p × (R\{0}), ∀(y,W) ∈ R

p × Pp. This invariance
property yields formidable simplifications.

First, if we diagonalize V = HDH′, where D = diag(l1, . . . , lp), then
choosing a = l

−1/2
p and b = −aH′x̄, we find

f(x̄,V) = f(aH′x̄ + b, a2H′VH)
= f(0, D̃),

where D̃ = diag(l1/lp, . . . , lp−1/lp, 1) depends on the sample only through
the ratios l1/lp, . . . , lp−1/lp. So, any invariant test can be written as a
function of li/lp, i = 1, . . . , p − 1.

Second, if we diagonalize Σ = GDλG′, where Dλ lists the eigenvalues
λ1 ≥ · · · ≥ λp on its diagonal, then choosing a = λ

−1/2
p and b = −aG′µ,

we find

aG′x̄ + b ∼ Np(0, n−1D̃λ),

a2G′VG ∼ Wp(n − 1, D̃λ),

where D̃λ = diag(λ1/λp, . . . , λp−1/λp, 1). Thus, the non-null distri-
bution of any invariant test depends on (µ,Σ) only through the ra-
tios λ1/λp, . . . , λp−1/λp. These invariance results are summarized in a
proposition.

Proposition 8.14 With respect to the above group of transformations,
any invariant test depends on the minimal sufficient statistic (x̄,V) only
through the ratios l1/lp, . . . , lp−1/lp of eigenvalues of V. The power func-
tion of any invariant test depends on (µ,Σ) only through the ratios
λ1/λp, . . . , λp−1/λp of eigenvalues of Σ.

The LRT is obviously invariant. There is no uniformly most power-
ful invariant (UMPI) test for the sphericity hypothesis, but John (1971)
showed the test based on J = tr V2/(tr V)2 is locally most powerful (best)
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invariant (LBI). The null distribution of the LBI test is given in John
(1972).

8.7 Test of equality of variances

The data consist of a independent samples xi1, . . . ,xini i.i.d. Np(µi,Σi),
Σi > 0, i = 1, . . . , a. Let n =

∑a
i=1 ni be the total number of observations.

The hypothesis in question here is the equality of variances

H0 : Σ1 = · · · = Σa

which is being tested against all alternatives. Since the samples are
independent, the likelihood function can be built immediately from (7.1),

L(Σ1, . . . ,Σa, µ1, . . . ,µa)

∝
a∏

i=1

|Σi|−
ni
2 etr

{− 1
2 [Vi + ni(x̄i − µi)(x̄i − µi)

′]Σ−1
i

}
,

where, as usual,

x̄i =
1
ni

ni∑
j=1

xij ,

Vi =
ni∑

j=1

(xij − x̄i)(xij − x̄i)′, i = 1, . . . , a.

Without the restriction specified in H0, the parameters are unrelated and,
thus, the unrestricted MLE is just the usual µ̂i = x̄i and Σ̂i = 1

ni
Vi. Under

H0, however, we have Σ1 = · · · = Σa = Σ, for some unknown Σ, and, thus,
ˆ̂µi = x̄i and ˆ̂Σ = 1

nV, where V =
∑a

i=1 Vi pools all the variances together.
Thus, the LRT becomes

Λ =
L( 1

nV, . . . , 1
nV, x̄1, . . . , x̄a)

L( 1
n1

V1, . . . ,
1

na
Va, x̄1, . . . , x̄a)

=
∏a

i=1 | 1nV|−ni/2

∏a
i=1 | 1

ni
Vi|−ni/2

exp(− 1
2np)

exp(− 1
2np)

=
∏a

i=1 |Vi|ni/2

|V|n/2

npn/2

∏a
i=1 n

pni/2
i

.

Proposition 8.15 The LRT for testing H0 : Σ1 = · · · = Σa rejects the
hypothesis for small values of

Λ =
∏a

i=1 |Vi|ni/2

|V|n/2

npn/2

∏a
i=1 n

pni/2
i

.
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The group Gp × (Rp)a transforms the observations as xij �→ Axij + bi,
for any A ∈ Gp and bi ∈ R

p, i = 1, . . . , a. This obviously preserves the
normality and transforms the statistics as x̄i �→ Ax̄i + bi, Vi �→ AViA′,
and V �→ AVA′, and induces the parameter transformation Σi �→ AΣiA′.
The hypothesis H0 is thus also preserved by this group of transformations.
Therefore, the LRT statistic evaluated at the transformed data Axij + bi

is

Λ =
∏a

i=1 |AViA′|ni/2

|AVA′|n/2

npn/2

∏a
i=1 n

pni/2
i

=
∏a

i=1 |Vi|ni/2

|V|n/2

npn/2

∏a
i=1 n

pni/2
i

,

which is identical to the LRT statistic evaluated at the original data xij . We
say that the LRT is invariant with respect to this group of transformations.
In general, a test function f(x̄1, . . . , x̄a,V1, . . . ,Va) is termed invariant iff

f(y1, . . . ,ya,W1, . . . ,Wa)
= f(Ay1 + b1, . . . ,Aya + ba,AW1A′, . . . ,AWaA′),

∀(A,b1, . . . ,ba) ∈ Gp×(Rp)a, ∀(y1, . . . ,ya,W1, . . . ,Wa) ∈ (Rp)a×(Pp)a.
This has important consequences.

First, by deliberately choosing A = Σ−1/2, where Σ1 = · · · = Σa =
Σ under H0, and bi = −Ax̄i, it is clear that AViA′ ∼ Wp(ni − 1) do
not involve any unknown parameters. Thus, the null distribution of any
invariant test function

f(x̄1, . . . , x̄a,V1, . . . ,Va)
= f(Ax̄1 + b1, . . . ,Ax̄a + ba,AV1A′, . . . ,AVaA′)
= f(0, . . . ,0,AV1A′, . . . ,AVaA′)

such as Λ is parameter free. Note that we need only consider test
functions of this form since (x̄1, . . . , x̄a,V1, . . . ,Va) is sufficient for
(µ1, . . . ,µa,Σ1, . . . ,Σa).

Second, in the special case a = 2, diagonalize V−1/2
1 V2V

−1/2
1 = HDH′,

where H ∈ Op and D = diag(l1, . . . , lp) contains the eigenvalues of V−1
1 V2.

This time by deliberately choosing A = H′V−1/2
1 , bi = −Ax̄i, we find that

for any invariant test

f(x̄1, x̄2,V1,V2) = f(0,0,AV1A′,AV2A′)
= f(0,0, I,D)

is a function of l1, . . . , lp only. Thus, any invariant test function depends on
the data only through l1, . . . , lp. Similarly, diagonalizing Σ−1/2

1 Σ2Σ
−1/2
1 =

GDλG′, where G ∈ Gp and Dλ contains the eigenvalues λ1, . . . , λp of
Σ−1

1 Σ2, we have after choosing A = G′Σ−1/2
1 , AV1A′ ∼ Wp(n1 − 1) and
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AV2A′ ∼ Wp(n2−1,Dλ). Thus, the non-null distribution of any invariant
test function depends on (µ1, µ2,Σ1,Σ2) only through the eigenvalues of
Σ−1

1 Σ2.

Proposition 8.16 With respect to the group of transformations Gp ×
(Rp)2, any invariant test for testing H0 : Σ1 = Σ2 depends on
(x̄1, x̄2,V1,V2) only through the eigenvalues l1, . . . , lp of V−1

1 V2. The
power function of any invariant test depends on (µ1, µ2,Σ1,Σ2) only
through the eigenvalues λ1, . . . , λp of Σ−1

1 Σ2.

For example, the LRT when a = 2 can be written

Λ =
npn/2

n
pn1/2
1 n

pn2/2
2

p∏
i=1

l
n2/2
i

(1 + li)n/2 .

An alternative invariant test function [Nagao (1973)] is

N = 1
2

a∑
i=1

ni tr
(

n

ni
ViV−1 − I

)2

.

Continuing now with the moments of the null distribution of the LRT, we
comment first on a result of unbiasedness. Although the LRT is a biased
test, Perlman (1980) proved that the slight modification

Λ∗ =
∏a

i=1 |Vi|mi/2

|V|m/2

mpm/2

∏a
i=1 m

pmi/2
i

,

where the sample sizes ni are replaced by the corresponding degrees of
freedom mi = ni − 1 and m =

∑a
i=1 mi = n − a, yields an unbiased test.

We will, thus, concentrate on the latter. It was Bartlett (1937) who first
proposed the use of the modified LRT, Λ∗. For a = 2, unbiasedness of Λ∗

was established earlier by Sugiura and Nagao (1968), whereas Srivastava,
Khatri, and Carter (1978) proved a monotonicity property stronger than
unbiasedness.

The null moments of Λ∗ is a simple consequence of invariance coupled
with the normalizing constant cp,m = [2mp/2Γp( 1

2m)]−1 of a Wp(m) p.d.f.

Proposition 8.17 Under H0, the moments of the modified LRT Λ∗ are
given by

E Λ∗h =
mpmh/2

∏a
i=1 m

pmih/2
i

Γp( 1
2m)

Γp[ 12m(1 + h)]

a∏
i=1

Γp[ 12mi(1 + h)]
Γp( 1

2mi)
.

Proof. Under H0, by invariance, we can assume Σi = I and Vi ∼ Wp(mi)
are independently distributed. Thus, from the Wp(mi) densities, we have

E Λ∗h =
a∏

i=1

cp,mi

∫

V1>0
· · ·

∫

Va>0
|V|−mh/2
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·
a∏

i=1

|Vi|[mi(1+h)−p−1]/2etr(− 1
2Vi)dV1 · · · dVa.

The integrand is seen to contain the p.d.f. of Vi ∼ Wp(mi(1 + h)) inde-
pendently distributed. However, when this is the case V ∼ Wp(m(1 + h)).
Thus, we find

E Λ∗h =
∏a

i=1 cp,mi∏a
i=1 cp,mi(1+h)

E |V|−mh/2,

where V ∼ Wp(m(1 + h)). Using the moments of the generalized variance
in Problem 7.5.6 and simplifying, the conclusion is reached. �

An accurate approximation to the null distribution of the modified LRT
Λ∗ by asymptotic expansion of high order is discussed in Example 12.4.

8.8 Asymptotic distributions of eigenvalues

Based on a random sample x1, . . . ,xn from Np(µ,Σ), several tests on the
variance Σ are a function of the eigenvalues of V =

∑n
i=1(xi−x̄)(xi−x̄)′ ∼

Wp(n−1,Σ). It was seen that an invariant test for sphericity, H0 : Σ = σ2I,
depends only on (l1/lp, . . . , lp−1/lp)′ where l1 ≥ · · · ≥ lp are the eigenvalues
of V. Also, in the two independent samples problem,

x11, . . . ,x1n1 i.i.d. Np(µ1,Σ1),
x21, . . . ,x2n2 i.i.d. Np(µ2,Σ2),

an invariant test for the equality of variances, H0 : Σ1 = Σ2, depends only
on the eigenvalues of V−1

1 V2, where

Vi =
ni∑

j=1

(xij − x̄i)(xij − x̄i)′ ∼ Wp(ni − 1,Σi), i = 1, 2.

The distribution of eigenvalues of various random matrices thus plays an
important role in testing hypotheses.

8.8.1 The one-sample problem
We investigate the asymptotic distribution of the eigenvalues l1, . . . , lp of
V ∼ Wp(m,Σ). We already know there exists H ∈ Op such that H′ΣH =
Λ, where Λ = diag(λ1, . . . , λp), and since V and H′VH have the same
eigenvalues, we can assume at the outset that Σ = Λ is diagonal. An
effective method for such problems is to write

S =
V
m

= Λ + m−1/2V(1),
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where V(1) = m1/2(S − Λ) is Op(1), and expand the eigenvalues of S,
li/m, around λi in powers of m−1/2. This is called the perturbation method
[Bellman (1960), Kato (1982)]. We now clearly outline the steps to obtain
an approximation, with remainder of the order O(m−1), to the distribution
function of a nearly arbitrary function f(l/m) of l = (l1, . . . , lp)′.
Step 1: Perturbation method
More generally, consider a diagonal matrix Λ = diag(λ1, . . . , λp) and as-
sume that the perturbation of Λ can be expressed as a power series in ε as
follows:

R = Λ + εV(1) + ε2V(2) + O(ε3),

where V(j), j = 1, 2, are symmetric and ε is a small real number. We shall
discuss the case when λα is distinct from the other p − 1 eigenvalues. Let
lα be the αth eigenvalue of R and cα = (c1α, . . . , cpα)′ the corresponding
normalized eigenvector with cαα > 0. The quantities lα and cα can be
assumed of the form [Bellman (1960), p. 61]

lα = λα + ελ(1)
α + ε2λ(2)

α + O(ε3), (8.6)

cα = eα + ε

p∑
i=1

a
(1)
iα ei + ε2

p∑
i=1

a
(2)
iα ei + O(ε3), (8.7)

where ei = (0, . . . , 1, . . . , 0)′ is the ith canonical basis vector. We determine
the unknown coefficients λ

(1)
α , λ

(2)
α , a

(1)
iα , and a

(2)
iα by substituting (8.6) and

(8.7) into the equation

Rcα = lαcα

and equating the coefficients of the powers of ε. This gives

[Λ + εV(1) + ε2V(2) + O(ε3)][eα + ε

p∑
i=1

a
(1)
iα ei + ε2

p∑
i=1

a
(2)
iα ei + O(ε3)]

= [λα + ελ(1)
α + ε2λ(2)

α + O(ε3)][eα + ε

p∑
i=1

a
(1)
iα ei + ε2

p∑
i=1

a
(2)
iα ei + O(ε3)],

and equating the coefficients, we obtain the equations

λαeα = λαeα, (8.8)
p∑

i=1

a
(1)
iα λiei + v(1)

α =
p∑

i=1

a
(1)
iα λαei + λ(1)

α eα, (8.9)

and∑p
i=1 a

(2)
iα λiei +

∑p
i=1 a

(1)
iα v(1)

i + v(2)
α

=
p∑

i=1

a
(2)
iα λαei +

p∑
i=1

a
(1)
iα λ(1)

α ei + λ(2)
α eα, (8.10)
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where V(j) = (v(j)
1 , . . . ,v(j)

p ), j = 1, 2. The αth component of (8.9) yields

a(1)
ααλα + v(1)

αα = a(1)
ααλα + λ(1)

α

from which λ
(1)
α = v

(1)
αα. The component i �= α of the same equation yields

a
(1)
iα λi + v

(1)
iα = a

(1)
iα λα,

from which a
(1)
iα = −v

(1)
iα λiα, i �= α, where

λiα = 1/(λi − λα).

Note that a
(1)
αα can be chosen arbitrarily and we set a

(1)
αα = 0 here. The

unknown quantities λ
(2)
α and a

(2)
iα can be determined similarly using (8.10).

The expansions (8.6)-(8.7) from the perturbation analysis thus take the
final form

lα = λα + εv(1)
αα + ε2


v(2)

αα +
∑
β �=α

λαβv
(1)
αβ

2


 + O(ε3), (8.11)

ciα = −λiα


εv

(1)
iα + ε2


λiαv

(1)
iα v(1)

αα +
∑
β �=α

λαβv
(1)
iβ v

(1)
βα






+O(ε3), i �= α,

cαα = 1 + ε2


− 1

2

∑
β �=α

λ2
αβv

(1)
αβ

2


 + O(ε3).

Returning to our one-sample problem, assuming λα is distinct, the
eigenvalue lα/m of S can be expanded by setting V(2) = 0 as

lα/m = λα + m−1/2v(1)
αα + m−1

∑
β �=α

λαβv
(1)
αβ

2
+ Op(m−3/2). (8.12)

Step 2: Taylor series of f(l/m)
Assuming f(·) is continuously differentiable in a neighborhood of

λ = (λ1, . . . , λp)′,

we can write the Taylor series around λ,

f(l/m) = f(λ) + Df(λ)(l/m − λ)
+ 1

2 (l/m − λ)′D2f(λ)(l/m − λ) + Op(m−3/2).

Upon using (8.12), this becomes

f(l/m) = f(λ) + m−1/2
p∑

i=1

fiv
(1)
ii + m−1

p∑
i=1

fi

∑
β �=i

λiβv
(1)
iβ

2

+ 1
2m−1

p∑
i=1

p∑
j=1

fijv
(1)
ii v

(1)
jj + Op(m−3/2), (8.13)
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where

Df(λ) = (f1, . . . , fp)′ = (∂f(λ)/∂λi) ,

D2f(λ) = (fij) =
(
∂2f(λ)/∂λi∂λj

)
.

Step 3: Expansion of the characteristic function
The characteristic function of m1/2 [f(l/m) − f(λ)] thus becomes

E exp{itm1/2[f(l/m) − f(λ)]}

= E exp

(
it

p∑
i=1

fiv
(1)
ii

)
exp


 it√

m




p∑
i=1

fi

∑
β �=i

λiβv
(1)
iβ

2

+ 1
2

p∑
i=1

p∑
j=1

fijv
(1)
ii v

(1)
jj


 + Op(m−1)




= E exp

(
it

p∑
i=1

fiv
(1)
ii

)
1 +

it√
m




p∑
i=1

fi

∑
β �=i

λiβv
(1)
iβ

2

+ 1
2

p∑
i=1

p∑
j=1

fijv
(1)
ii v

(1)
jj


 + Op(m−1)


 . (8.14)

We need then to evaluate the following expectations in (8.14):

E exp

(
it

p∑
i=1

fiv
(1)
ii

)
, (8.15)

E exp

(
it

p∑
i=1

fiv
(1)
ii

)
· v(1)

iβ

2
, β �= i, (8.16)

E exp

(
it

p∑
i=1

fiv
(1)
ii

)
· v(1)

ii v
(1)
jj . (8.17)

Step 4: Sugiura’s lemma [Sugiura (1973)]
Let V ∼ Wp(m,Σ) and S = V/m.

Lemma 8.3 Let g(S) be an analytic function at S = Σ and put T =
m1/2(S − Σ). Define a matrix of differential operators by

∂ =
( 1

2 (1 + δij)∂/∂ij

)

applied to the function g(Γ) of a symmetric matrix Γ = (γij). Then, for
any symmetric matrix A and sufficiently large m,

E g(S)etr(itAT) = etr[−t2(AΣ)2] ·

1 + m−1/2

2∑
j=1

d2j−1(it)2j−1
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+m−1
3∑

j=1

g2j(it)2j + O(m−3/2)


 g(Γ)|Γ=Σ,

where each coefficient is given by

d1 = 2 tr (ΣAΣ∂),

d3 =
4
3

tr (ΣA)3,

g0 = tr (Σ∂)2,

g2 = 4 tr (ΣA)2Σ∂ +
1
2
d2
1,

g4 = 2 tr (ΣA)4 + d1d3,

g6 =
1
2
d2
3.

Before presenting the proof, we comment on Taylor series and differential
operators. An analytic function g(x), at x0, of a real variable x can be
written as a Taylor series

g(x) = g(x0) +
∞∑

j=1

g(j)(x0)
j!

(x − x0)j

= e(x−x0)∂ · g(x)|x=x0

= [1 + (x − x0)∂ + 1
2 (x − x0)2∂2 + · · ·]g(x)|x=x0 ,

where ∂jg(x)|x=x0 = ∂jg(x0)/∂xj is the jth derivative of g evaluated at x0.
In the same way, for a function g(S) analytic at Σ, of a symmetric matrix
S, we have

g(S) = {etr(S − Σ)∂} g(Γ)|Γ=Σ.

Proof. Note that S
p→ Σ. Taylor series expansion of g(S) at Σ gives

g(S) = {etr(S − Σ)∂} g(Γ)|Γ=Σ.

After multiplying by etr(itAT) and taking expectations with respect to
V ∼ Wp(m,Σ), we get

E etr(itAT)g(S) = |I − 2m−1/2itAΣ − 2m−1Σ∂|−m/2

·
{

etr(−m1/2itAΣ − Σ∂)
}

g(Γ)|Γ=Σ.

The above determinant can be arranged according to powers of m as in
Sugiura and Nagao (1971). �

Evaluation of (8.15)
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Let A = diag(f1, . . . , fp), g(Γ) ≡ 1, and Σ = Λ, and note that

tr AV(1) =
p∑

i=1

fiv
(1)
ii ,

tr(AΛ)2 =
p∑

i=1

f2
i λ2

i ≡ τ2/2 (say).

Since d1g(Γ) = 0, the lemma yields

E exp

(
it

p∑
i=1

fiv
(1)
ii

)
= exp(− 1

2 t2τ2)[1 + m−1/2d3(it)3 + O(m−1)],

where d3 = (4/3)
∑p

i=1 f3
i λ3

i .
Evaluation of (8.16)
Let A = diag(f1, . . . , fp) and g(Γ) = mγ2

iβ , i �= β. Note that g(Λ) = 0 and
the differential operator d1,

d1 = 2
p∑

k=1

fkλ2
k∂kk,

is a linear combination of ∂kk ≡ ∂/∂kk and, thus, d1g(Γ) = 0. For sim-
ilar reasons, we also have g2g(Γ) = 0 and d3g(Γ)|Γ=Λ = g4g(Γ)|Γ=Λ =
g6g(Γ)|Γ=Λ = 0, which implies

E exp

(
it

p∑
i=1

fiv
(1)
ii

)
· v(1)

iβ

2
= exp(− 1

2 t2τ2)[m−1g0 + O(m−3/2)]g(Γ)|Γ=Λ.

However, g0 is the differential operator

g0 = tr(Λ∂)2 =
p∑

k=1

p∑
l=1

λkλl∂
2
kl

and, thus,

g0g(Γ)|Γ=Λ =
p∑

k=1

p∑
l=1

λkλl∂
2
kl(mγ2

iβ)|Γ=Λ = mλiλβ .

Hence, we get

E exp

(
it

p∑
i=1

fiv
(1)
ii

)
· v(1)

iβ

2
= exp(− 1

2 t2τ2)[λiλβ + O(m−1/2)].

Evaluation of (8.17)
Similarly, letting A = diag(f1, . . . , fp) and g(Γ) = m(γii − λi)(γjj − λj),
we find

E exp

(
it

p∑
i=1

fiv
(1)
ii

)
· v(1)

ii v
(1)
jj = exp(− 1

2 t2τ2)[2λ2
i δij + O(m−1/2)].
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We now return to the expansion of the characteristic function in (8.14).
Hence, altogether, the expansion of the characteristic function becomes
E exp{itm1/2[f(l/m) − f(λ)]/τ}

= exp(− 1
2 t2τ2)[1 + m−1/2

2∑
j=1

a2j−1

τ2j−1 (it)2j−1 + O(m−1)],

where

a1 =
p∑

i=1

∑
β �=i

fiλiβλiλβ +
p∑

i=1

fiiλ
2
i , (8.18)

a3 =
4
3

p∑
i=1

f3
i λ3

i . (8.19)

Step 5: Inversion of the characteristic function
Using the inversion formula (2.2), an expansion for the density function of

s = m1/2[f(l/m) − f(λ)]/τ

is

f(s) =
1
2π

∫ ∞

−∞
e−itse− 1

2 t2dt

+m−1/2
2∑

j=1

a2j−1

τ2j−1

1
2π

∫ ∞

−∞
e−itse− 1

2 t2(it)2j−1dt + O(m−1)

= φ(s) − m−1/2
2∑

j=1

a2j−1

τ2j−1 φ(2j−1)(s) + O(m−1),

and similarly for the distribution function of s,

F (s) = Φ(s) − m−1/2
2∑

j=1

a2j−1

τ2j−1 Φ(2j−1)(s) + O(m−1),

where φ and Φ are respectively the density function and distribution
function of the standard normal distribution. We have proved:

Proposition 8.18 Let f(·) be continuously differentiable in a neighbor-
hood of λ. If the population eigenvalues λα are all distinct and τ2 =
2
∑p

i=1 f2
i λ2

i �= 0, then the distribution function of

s = m1/2[f(l/m) − f(λ)]/τ

can be expanded for large m as

Φ(s) − m−1/2
2∑

j=1

a2j−1

τ2j−1 Φ(2j−1)(s) + O(m−1).
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Corollary 8.3 Let f(·) be continuously differentiable in a neighborhood of
λ. If the population eigenvalues λα are all distinct and τ2 = 2

∑p
i=1 f2

i λ2
i �=

0, then the limiting distribution is given by

s = m1/2[f(l/m) − f(λ)]/τ
d→ N(0, 1).

For an individual eigenvalue the expansion follows immediately.

Corollary 8.4 Let lα be the αth largest eigenvalue of V ∼ Wp(m,Λ). If
λα is distinct from all other p − 1 eigenvalues, the distribution function of

s = m1/2(lα/m − λα)/(
√

2λα)

can be expanded for large m as

Φ(s) − m−1/2
2∑

j=1

a2j−1

τ2j−1 Φ(2j−1)(s) + O(m−1),

where

a1 =
∑
β �=α

λαλβ/(λα − λβ),

a3 =
4
3
λ3

α.

The sample eigenvalues are asymptotically independent, as the following
corollary shows.

Corollary 8.5 Let l = (l1, . . . , lp)′ be the eigenvalues of V ∼ Wp(m,Λ).
If the population eigenvalues λα are all distinct, then the joint limiting
distribution is given by

(m/2)1/2Λ−1(l/m − λ) d→ Np(0, I).

Proof. From (8.12), we can write

m1/2(l/m − λ) = (v(1)
11 , . . . , v(1)

pp )′ + Op(m−1/2) ≡ v(1) + Op(m−1/2).

The asymptotic distribution of V(1) was derived in Section 6.3, and for the
marginal v(1), we find, using (6.1), v(1) d→ Np(0, 2Λ2). �

The asymptotic expansion in Corollary 8.4 gives the first two terms of a
more accurate approximation, with remainder O(m−3/2),

Φ(s) − m−1/2
2∑

j=1

a2j−1

τ2j−1 Φ(2j−1)(s) + m−1
3∑

j=1

b2j

τ2j
Φ(2j)(s) + O(m−3/2),

where a1 and a3 are given in Corollary 8.4 and

b2 = 2λ2
α

∑
β �=α

λβ/(λα − λβ) − 2λ3
α

∑
β �=α

λβ/(λα − λβ)2
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+
3
2
λ2

α

∑
β �=α

λ2
β/(λα − λβ)2 + λ2

α

∑
γ<β

γ,β �=α

λγλβ/(λα − λγ)(λα − λβ),

b4 = 2λ4
α +

4
3
λ4

α

∑
β �=α

λβ/(λα − λβ),

b6 =
8
9
λ6

α,

provided by Sugiura (1973). The O(m−3/2) asymptotic expansion of the
joint distribution function of (m/2)1/2Λ−1(l/m−λ) can be found in Sugiura
(1976).

This expansion was independently obtained by Muirhead and Chikuse
(1975) by a different technique based on G.A. Anderson (1965). Water-
naux (1976) gave the asymptotic distributions of the sample eigenvalues
for a non-normal population. Kollo and Neudecker (1993) presented the
result of Waternaux (1976) in matrix form with other results on the the
eigenstructure of the sample correlation matrix. The case of multiple pop-
ulation eigenvalues is considerably more complicated; the interested reader
is referred to Fujikoshi (1977, 1978). However, in the case of multiple eigen-
values, the leading term of the asymptotic distribution is easier to obtain
using a method of Eaton and Tyler (1991). This is done in Section 8.8.3.
The asymptotic distribution in Corollary 8.5 for sampling from an ellip-
tical distribution is given in Problem 13.6.18. Asymptotic distributions of
eigenvalues of the sample correlation matrix are treated in Section 10.5 on
principal components. Seminal papers on asymptotic expansions for the
distribution of eigenvalues are those of T.W. Anderson (1963, 1965).

8.8.2 The two-sample problem
The asymptotic distribution of the eigenvalues l1, . . . , lp of S−1

1 S2, where

m1S1 ∼ Wp(m1,Σ1), m2S2 ∼ Wp(m2,Σ2), S1 |= S2,

is now derived. Let λ = (λ1, . . . , λp)′ be the eigenvalues of Σ−1
1 Σ2. There

exists A ∈ Gp such that

AΣ1A′ = I,

AΣ2A′ = diag(λ1, . . . , λp),

and since the eigenvalues of S−1
1 S2 and (AS1A′)−1AS2A′ are identical, we

can assume at the outset without any loss of generality that Σ1 = I and
Σ2 ≡ Λ = diag(λ1, . . . , λp). Let m = m1 + m2, mi/m → ρi (i = 1, 2) and
note that

S1 = I + m−1/2W1,

S2 = Λ + m−1/2W2,
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where W1 = m1/2(S1 − I) and W2 = m1/2(S2 − Λ) are Op(1). The per-
turbation method is now adapted to this situation. Using Problem 1.8.15,
the inverse of S1 is expanded as

S−1
1 = I − m−1/2W1 + Op(m−1).

Hence, the expansion

S−1
1 S2 = Λ + m−1/2(W2 − ΛW1) + Op(m−1)

is obtained. From (8.11), the eigenvalue of S−1
1 S2, lα, is expanded as

lα = λα + m−1/2[w2,αα − λαw1,αα], (8.20)

where Wk = (wk,ij), k = 1, 2. From (8.20), l = (l1, . . . , lp)′ can be expanded
as

m1/2(l − λ) = (w2 − Λw1) + Op(m−1/2),

where wk = (wk,11, . . . , wk,pp)′, k = 1, 2. From the asymptotic results of
Chapter 6,

w1
d→ Np(0, 2I/ρ1),

w2
d→ Np(0, 2Λ2/ρ2),

and, hence,

w2 − Λw1
d→ Np

(
0, 2

(
1
ρ1

+
1
ρ2

)
Λ2

)
.

Finally, with the suitable norming constant, we find

(mρ1ρ2/2)1/2Λ−1(l − λ) d→ Np(0, I).

We have proved:

Proposition 8.19 Let l = (l1, . . . , lp)′ be the eigenvalues of S−1
1 S2, where

S1 = V1/m1, S2 = V2/m2, m = m1 + m2, mi/m → ρi (i = 1, 2), V1 ∼
Wp(m1), V2 ∼ Wp(m2,Λ), and V1 |= V2. If the population eigenvalues
λα are all distinct, then the joint limiting distribution can be expressed as

(mρ1ρ2/2)1/2Λ−1(l − λ) d→ Np(0, I).

An expansion of the joint distribution function of (mρ1ρ2/2)1/2Λ−1(l−λ),
with remainder of the order O(m−3/2), can be found in Sugiura (1976).

8.8.3 The case of multiple eigenvalues
The asymptotic distribution, with remainder of the order Op(n−1/2), of the
eigenvalues of random symmetric matrices is derived using the Wielandt’s
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inequality method introduced in Eaton and Tyler (1991). Consider a
symmetric matrix

A =
(

B C
C′ D

)
,

where A ∈ R
p
p, B ∈ R

q
q, D ∈ R

r
r, and p = q + r. Let ρ2(C) denote the

largest eigenvalue of CC′ and let

α1 ≥ α2 ≥ · · · ≥ αp,

β1 ≥ β2 ≥ · · · ≥ βq,

δ1 ≥ δ2 ≥ · · · ≥ δr,

be the ordered eigenvalues of A, B, and D, respectively.

Proposition 8.20 (Wielandt (1967)) If βq > δ1, then

0 ≤ αj − βj ≤ ρ2(C)/(βj − δ1), j = 1, . . . , q,

0 ≤ δr−i − αp−i ≤ ρ2(C)/(βq − δr−i), i = 0, . . . , r − 1.

A proof of Wielandt’s inequality can be found in Eaton and Tyler (1991),
who used it to find the asymptotic distribution of the eigenvalues of sym-
metric random matrices in the case of multiple eigenvalues. The matrix
A can be viewed as a perturbation of a block-diagonal matrix, namely
A = A0 + E, where

A0 =
(

B 0
0 D

)
and E =

(
0 C
C′ 0

)
.

By Wielandt’s inequality, the eigenvalues of A0 are perturbed quadratically
in E when A0 is perturbed linearly in E. Generally, eigenvalues are only
perturbed linearly when the matrix is perturbed linearly. The quadratic
perturbation of eigenvalues in Wielandt’s inequality is due to the special
structure of E relative to A0.

Let Sp be the set of p × p real symmetric matrices. Consider a sequence
of random matrices Sn ∈ Sp, and assume that

Wn = n1/2(Sn − Σ) d→ W, (8.21)

for some Σ ∈ Sp, and hence W ∈ Sp. Given Σ ∈ Sp, let

φ(Σ) = (φ1(Σ), . . . , φp(Σ))′

be the vector of ordered eigenvalues

φ1(Σ) ≥ φ2(Σ) ≥ · · · ≥ φp(Σ).

The asymptotic distribution of

n1/2 (φ(Sn) − φ(Σ))

is studied.
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We consider in the first place the case Σ = diag(d1Ip1 , . . . , dkIpk
), p =

p1 + · · · + pk, where d1 > d2 > · · · > dk represent the distinct eigenvalues
of Σ with the multiplicity of di being pi, i = 1, . . . , k. To reflect the block
structure of Σ, consider the partitioned matrix

Sn =




Sn,11 Sn,12 · · · Sn,1k

Sn,21 Sn,22 · · · Sn,2k

...
...

. . .
...

Sn,k1 Sn,k2 · · · Sn,kk


 ,

where Sn,ij ∈ R
pi
pj

.

Lemma 8.4 For k = 2,

φ(Sn) −
(

φ(Sn,11)
φ(Sn,22)

)
is Op(n−1).

Proof. Let An = {Sn | φp1(Sn,11) > φ1(Sn,22)}. Since φ is continuous and,
from (8.21), Sn,11

p→ d1Ip1 and Sn,22
p→ d2Ip2 , it follows that φp1(Sn,11)

p→
d1 and φ1(Sn,22)

p→ d2. Thus, P (An) → 1, so attention can be restricted to
An, n = 1, 2, . . .. For Sn ∈ An, Wielandt’s inequality implies for 1 ≤ i ≤ p1,

0 ≤ φi(Sn) − φi(Sn,11) ≤ ρ2(Sn,12)/ (φi(Sn,11) − φ1(Sn,22)) .

By (8.21), Sn,12 is Op(n−1/2), and since ρ is continuous, it follows that
ρ2(Sn,12) is Op(n−1). Since

φi(Sn,11) − φ1(Sn,11)
p→ d1 − d2 > 0,

then φi(Sn)−φi(Sn,11) is Op(n−1), i = 1, . . . , p1. The proof of φp−j(Sn)−
φp2−j(Sn,22) is Op(n−1), j = 0, . . . , p2 − 1, is analogous. �

By applying Lemma 8.4, k − 1 times, the following asymptotic equivalence
result is obtained. The vector 1pi

∈ R
pi is the vector of ones.

Proposition 8.21

n1/2 (φ(Sn) − φ(Σ)) = Zn + Rn,

where

Zn = n1/2




φ(Sn,11) − d11p1

...
φ(Sn,kk) − dk1pk




and the remainder term Rn is Op(n−1/2).

Since Rn
p→ 0, using Slutsky’s theorem the asymptotic distribution of

n1/2 (φ(Sn) − φ(Σ))
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is that of the leading term Zn. Considering the partitioned W = (Wij),
Wij ∈ R

pi
pj

, i, j = 1, . . . , k, we have immediately from (8.21) that

n1/2




Sn,11 − d1Ip1

...
Sn,kk − dkIpk


 d→




W11
...

Wkk


 .

Now, because the function

G(W) =




φ(W11)
...

φ(Wkk)




is continuous and since

φ
(
n1/2(Sn,11 − d1Ip1)

)
= n1/2 (φ(Sn,11) − d11p1) ,

it follows that

Zn = G(Wn) d→ G(W).

We have proved:

Proposition 8.22 If n1/2(Sn − Σ) d→ W and Σ is diagonal, then

n1/2 (φ(Sn) − φ(Σ)) d→ G(W).

In the general case where Σ is not diagonal, there exists H ∈ Op such
that

Σ = H diag (d1Ip1 , . . . , dkIpk
)H′ ≡ HDH′.

From (8.21), n1/2(HSnH′ −D) d→ HWH′. Since φ(HSnH′) = φ(Sn) and
φ(Σ) = φ(D), we obtain the general result

n1/2 (φ(Sn) − φ(Σ)) d→ G(HWH′).

This general result is summarized.

Proposition 8.23 If n1/2(Sn − Σ) d→ W, then

n1/2 (φ(Sn) − φ(Σ)) d→ G(HWH′),

where H diagonalizes Σ, Σ = H diag (d1Ip1 , . . . , dkIpk
)H′.

An important special case is when W in (8.21) is a multivariate normal
matrix and all eigenvalues of Σ are distinct. In that case, HWH′ is also
a multivariate normal matrix. Also, since all eigenvalues of Σ have multi-
plicity 1, then G(HWH′) is just a p-dimensional marginal of HWH′ and,
hence, has a p-dimensional normal distribution.
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Example 8.3 It was seen in Chapter 6 that when sampling from a
Np(µ,Σ) distribution, the asymptotic distribution of the sample variance

S is n1/2(S − Σ) d→ W, where

W ∼ Np
p (0, (I + K)(Σ ⊗ Σ)).

We derive the asymptotic distribution of the eigenvalues of S when
all eigenvalues of Σ are distinct. Using Proposition 8.23, we have
n1/2 (φ(S) − φ(Σ)) d→ G(HWH′), where H diagonalizes Σ, HΣH′ ≡ D
(say). But from Proposition 6.1, HWH′ ∼ Np

p (0, (I + K)(D ⊗ D)).
From (6.1), (HWH′)ii ∼ N(0, 2d2

i ), i = 1, . . . , p, and are independently
distributed. Since all eigenvalues of Σ are distinct, then

n1/2 (φ(S) − φ(Σ)) d→ Np(0, 2D2),

which is the result proven previously in Corollary 8.5.

Example 8.4 We now derive the asymptotic distribution of the r smallest
eigenvalues of S when the smallest eigenvalue of Σ has multiplicity r,

φ(Σ) = (φ1(Σ), . . . , φp−r(Σ), λ, . . . , λ)′.

As in Example 8.3, HWH′ ∼ Np
p (0, (I + Kp)(D ⊗ D)). Hence, the lower

right r × r block of HWH′ is distributed as Nr
r (0, λ2(I + Kr)). Using

Proposition 8.23, we have finally

n1/2λ−1 (φp−r+1(S) − λ, . . . , φp(S) − λ) d→ w,

where w is distributed as the eigenvalues of a Nr
r (0, (I+Kr)) distribution.

An application of Wielandt’s inequality to bootstrapping eigenvalues can
be found in Eaton and Tyler (1991), who extend the work of Beran and
Srivastava (1985, 1987). Earlier papers on the case of multiple eigenvalues
include those of James (1969), Chattopadhyay and Pillai (1973), Chikuse
(1976), Khatri and Srivastava (1978), and Srivastava and Carter (1980).

8.9 Problems

1. Two-sample T 2.
Let x1, . . . ,xn i.i.d. Np(µ,Σ) and y1, . . . ,ym i.i.d. Np(τ ,Σ), Σ > 0,
be two independent samples. Define the sample variances

Sx =
1

(n − 1)

n∑
i=1

(xi − x̄)(xi − x̄)′,

Sy =
1

(m − 1)

m∑
i=1

(yi − ȳ)(yi − ȳ)′,
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and

Spool =
1

(n + m − 2)
[(n − 1)Sx + (m − 1)Sy].

Determine

(i) the distribution of Spool,
(ii) the distribution of

T 2 =
(

1
n

+
1
m

)−1

(x̄ − ȳ)′S−1
pool(x̄ − ȳ)

used for testing H0 : µ = τ against H1 : µ �= τ .

2. Invariance of two-sample T 2.
This is a continuation of Problem 8.9.1.

(i) Prove (x̄, ȳ,Spool) is minimal sufficient for (µ, τ ,Σ).
(ii) Consider (A,b) in the group of transformations Gp ×R

p acting
as x̄ �→ Ax̄ + b, ȳ �→ Aȳ + b, and Spool �→ ASpoolA′. Prove
that this group of transformations leaves the testing problem
invariant and that any invariant test depends on (x̄, ȳ,Spool)
only through T 2.

(iii) Prove that any invariant test has a power function depending
on (µ, τ ,Σ) only through (µ − τ )′Σ−1(µ − τ ).

3. Common mean vector.
For independent samples

xi1, . . . ,xini , i.i.d. Np(µ,Σi), i = 1, . . . , a,

from distributions with a common mean vector µ, let (Si, x̄i) be the
MVUE from each sample. Consider estimating the common mean µ
with respect to the weighted least-squares criterion

min
µ

a∑
i=1

cini(x̄i − µ)′S−1
i (x̄i − µ)

for some constants ci > 0,
∑a

i=1 ci = 1. Establish the estimate of µ
is given by

µ̃ =

(
a∑

i=1

ciniS−1
i

)−1 ( a∑
i=1

ciniS−1
i x̄i

)
.

Remark: Jordan and Krishnamoorthy (1995) built an exact β×100%
confidence region centered at µ̃.

4. Test of symmetry.
Assume x1, . . . ,xn i.i.d. Np(µ,Σ), Σ > 0. Choose C ∈ R

p−1
p of

rank C = p − 1 such that C1 = 0. Prove the following:
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(i) ker C = span{1} and, therefore,

H0 : Cµ = 0 ⇐⇒ H0 : µ1 = · · · = µp.

(ii) Any p − 1 columns of C are linearly independent, which im-
plies that C = A(Ip−1,−1), for some nonsingular A ∈ R

p−1
p−1.

Conclude that, thereafter, the value of

T 2 = n(Cx̄)′(CSC′)−1(Cx̄),

where x̄ =
∑n

i=1 xi/n and (n − 1)S =
∑n

i=1(xi − x̄)(xi − x̄)′,
does not depend on the choice of C.

(iii) The null (under H0) distribution of T 2 is

T 2/(n − 1) ∼ Fc(p − 1, n − p + 1).

5. Assume x1, . . . ,xn i.i.d. x ∈ R
p (possibly non-normal) with E x = µ

and var x = Σ. Establish that, asymptotically, we are at least (1 −
α) × 100% confident in simultaneously presenting all of the observed
“Scheffé” intervals:

a′x̄ −
(

χ2
α,p

n

)1/2

(a′Sa)1/2 ≤ a′µ ≤ a′x̄ +

(
χ2

α,p

n

)1/2

(a′Sa)1/2,

∀a ∈ R
p.

6. Assume x1, . . . ,xn i.i.d. x ∈ R
p (possibly non-normal) with E x = µ

and var x = Σ. Let a1, . . . ,ar be linearly independent in R
p. Establish

that, asymptotically, we are at least (1 − α) × 100% confident in
simultaneously presenting the observed “Roy-Bose” intervals:

a′
ix̄ −

(
χ2

α,r

n

)1/2

(a′
iSai)1/2 ≤ a′

iµ ≤ a′
ix̄ +

(
χ2

α,r

n

)1/2

(a′
iSai)1/2,

i = 1, . . . , r.

7. Test of proportionality.
Given x1, . . . ,xn a random sample from Np(µ,Σ), Σ > 0, obtain the
likelihood ratio test Λ for

H0 : Σ = γΣ0, γ > 0 versus H1 : Σ > 0,

where Σ0 > 0 is a known matrix:

Λ2/n = |Σ−1
0 V|/

(
1
p

tr Σ−1
0 V

)p

,

with V =
∑n

i=1(xi − x̄)(xi − x̄)′ as usual.

8. Test for a given variance.
Let x1, . . . ,xn i.i.d. Np(µ,Σ), Σ > 0.
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(i) Prove that the LRT for H0 : Σ = I versus H1 : Σ �= I is given by

Λ = (e/n)pn/2|V|n/2 etr(− 1
2V),

where V =
∑n

i=1(xi − x̄)(xi − x̄)′.
Remark: This test is biased, but Sugiura and Nagao (1968)
have shown the slight modification

Λ∗ = (e/m)pm/2|V|m/2 etr(− 1
2V),

where m = n − 1, gives an unbiased test.
(ii) Using the Wishart density in Problem 7.5.7, prove that

E Λ∗h =
(

2e

m

)mph/2 |Σ|mh/2

|I + hΣ|m(1+h)/2

Γp[ 12m(1 + h)]
Γp( 1

2m)
.

Hint: The integrand has the form of a Wishart density. Simply
find the normalizing constant.

(iii) Under H0,

E Λ∗h =
(

2e

m

)mph/2

(1 + h)−mp(1+h)/2 Γp[ 12m(1 + h)]
Γp( 1

2m)
.

Remark: An accurate approximation to the null distribution of
Λ∗ using those moments is given in Example 12.5.

9. Use Proposition 8.6 to obtain the moments of R̂2:

E R̂2h =
∞∑

k=0

pk

Γ
( 1

2 (p − 1 + 2k) + h
)

Γ
( 1

2 (p − 1 + 2k)
) Γ

( 1
2 (n − 1 + 2k)

)

Γ
( 1

2 (n − 1 + 2k) + h
) ,

where pk are the negative binomial probabilities given in Proposi-
tion 8.6.

10. Demonstrate that if K given δ is Poisson(δ) and δ ∼ G(p, θ), then
the marginal of K is the negative binomial K ∼ nb(p, (1 + θ)−1).

11. Write Nagao’s test for the equality of two variances, H0 : Σ1 = Σ2,
as a function of the eigenvalues l1, . . . , lp of V−1

1 V2, where as usual
Vi =

∑ni

j=1(xij − x̄i)(xij − x̄i)′, i = 1, 2.

12. Write the LBI test for sphericity as a function of l1/lp, . . . , lp−1/lp,
where l1 ≥ · · · ≥ lp are the ordered eigenvalues of V =

∑n
i=1(xi −

x̄)(xi − x̄)′.

13. Invariance of multiple correlation.
Let xi = (xi1,x′

i2)
′, i = 1, . . . , n, be i.i.d. Np(µ,Σ), Σ > 0. Consider

the group of transformations

xi �→
(

axi1 + b
Axi2 + b

)
,

for any a �= 0, b ∈ R, A ∈ Gp−1, and b ∈ R
p−1.
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(i) Show that this transformation induces the following transforma-
tions on the sufficient statistics and parameters:

x̄ �→
(

ax̄1 + b
Ax̄2 + b

)
,

V �→
(

a2v11 av′
21A

′

aAv21 AV22A′

)
,

µ �→
(

aµ1 + b
Aµ2 + b

)
,

Σ �→
(

a2σ11 aσ′
21A

′

aAσ21 AΣ22A′

)
.

(ii) Choose a = v
−1/2
11 , b = −ax̄1, A = V−1/2

22 , and b = −Ax̄2 to
prove that any invariant test f(x̄,V) depends on the data only
through u = V−1/2

22 v21/v
1/2
11 .

(iii) Prove that there exists an orthogonal transformation H ∈ Op−1

such that Hu = R̂e1 (v. Problem 1.8.14).
(iv) Choosing further a = 1, b = 0, A = H, and b = 0, prove that

any invariant test is necessarily a function of R̂.
(v) Prove that the non-null distribution of any invariant test depends

on the parameters only through R.

14. Test of equality of means and variances.
The data consists of a independent samples xi1, . . . ,xini

i.i.d.
Np(µi,Σi), Σi > 0, i = 1, . . . , a. Let n =

∑a
i=1 ni be the to-

tal number of observations. The hypothesis is the equality of the
distributions

H0 : µ1 = · · · = µa; Σ1 = · · · = Σa

which is being tested against all alternatives. Let

x̄i =
1
ni

ni∑
j=1

xij ,

x̄ =
1
n

a∑
i=1

nix̄i,

be the ith sample mean and overall mean, respectively, and

Vi =
ni∑

j=1

(xij − x̄i)(xij − x̄i)′, i = 1, . . . , a,

B =
a∑

i=1

ni(x̄i − x̄)(x̄i − x̄)′

be the usual “within” and “between” sums of squares, respectively.
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(i) Prove that the LRT is

Λ =
∏a

i=1 |Vi|ni/2

|∑a
i=1 Vi + B|n/2

nnp/2

∏a
i=1 n

nip/2
i

.

Remark: Perlman (1980) proved this LRT yields an unbiased
test.

(ii) Use the group of transformations xij �→ Axij + a, for any A ∈
Gp, a ∈ R

p, to argue that the null distribution of Λ (or any other
invariant test) can be obtained by setting µi = 0 and Σi = I
without loss of generality.

(iii) Establish that V1, . . . ,Va,B are mutually independent when-
ever Σ1 = · · · = Σa holds. Moreover, verify that, under H0,
Vi ∼ Wp(ni − 1) and B ∼ Wp(a − 1).
Hint: Let

Xi =




x′
i1
...

x′
ini


 and X =




X1
...

Xa




be the sample matrices. For appropriately chosen orthogonal
projections Qi, i = 1, . . . , a, and Q, so that Vi = X′

iQiXi and
B = X′QX, write




Q1X1
...

QaXa

QX


 =




Q1 0 · · · 0
0 Q2 · · · 0
...

...
. . .

...
0 0 · · · Qa

Q




X

≡ CX.

Then use Proposition 6.1 and verify that CC′ is block-diagonal.
(iv) Obtain the null moments of Λ:

E Λh =
nnph/2

∏a
i=1 n

niph/2
i

Γp[ 12 (n − 1)]
Γp[ 12n(1 + h) − 1

2 ]

a∏
i=1

Γp[ 12ni(1 + h) − 1
2 ]

Γp[ 12 (ni − 1)]
.

Hint: Recall the normalizing constant cp,m of a Wp(m) p.d.f.
and use a similar argument as in the proof of Proposition 8.17
to establish

E Λh =
nnph/2

∏a
i=1 n

niph/2
i

a∏
i=1

cp,ni−1

cp,ni(1+h)−1
E |W|−nh/2,

where W ∼ Wp(n(1 + h) − 1).
Remark: The null moments are invoked in Problem 12.4.1 to
develop an accurate approximation to the null distribution of Λ.
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15. Assume the population eigenvalue λα is distinct from all other
p − 1 eigenvalues. Establish that the logarithmic transformation is
a variance stabilizing transformation for the sample eigenvalue lα of
V ∼ Wp(m,Λ).



9
Multivariate regression

9.1 Introduction

Multivariate regression with p responses as opposed to p multiple regres-
sions is getting increasingly more attention, especially in the context of
prediction. In this chapter, we generalize the multiple regression model of
Section 5.6.2 to the multivariate case. The estimation method of Section 9.2
relies also on orthogonal projections. The model considered is

Y = XB + E,

where Y ∈ R
n
p , B ∈ R

k
p, and X ∈ R

n
k of rank X = k is fixed. The error

term E is such that E E = 0 and var E = In ⊗ Σ with Σ > 0 in R
p
p.

The observation vectors consisting of the rows of Y are thus uncorrelated.
The Gauss-Markov estimate is derived first. Then, assuming normality, the
maximum likelihood estimates of B and Σ are obtained together with the
fundamental result about their joint distribution. Section 9.3 derives the
likelihood ratio test for the general linear hypothesis

H0 : CB = 0

against all alternatives where C ∈ R
r
k of rank C = r in the above model. In

the last sections, we discuss the practical and more commonly encountered
situation of k random (observed) predictors and the problem of prediction
of p responses from the same set of k predictors. Finally, an application to
the MANOVA one-way classification model is treated as a special case.
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The multivariate regression model can be seen as a set of p correlated
multiple regression models of Section 5.6.2. With the partition

Y = (y1, . . . ,yp),
B = (β1, . . . ,βp), (9.1)
E = (e1, . . . , ep),

we can rewrite Y = XB + E as

yi = Xβi + ei, i = 1, . . . , p,

where ei ∼ Nn(0, σiiI). However, the p multiple regression models are cor-
related since cov(ei, ej) = σijI. Testing a relationship between the various
βi’s will require one to treat the p models as one multivariate regression
model.

9.2 Estimation

First, observe that R
n
p is a linear space on which we define the usual inner

product

〈Y,Z〉 = tr(Y′Z) =
n∑

i=1

p∑
j=1

yijzij , for any Y,Z ∈ R
n
p .

The mean of Y is in a subspace V = {XA : A ∈ R
k
p}. To define the

orthogonal projection of Y on V, a basis for V is needed. Partition X into
columns

X = (x1, . . . ,xk).

An element XA ∈ V, where

A =




a′
1
...

a′
k




is partitioned into rows, is of the form

XA =
k∑

i=1

xia′
i =

k∑
i=1

xi




p∑
j=1

aije′
j




=
k∑

i=1

p∑
j=1

aij(xie′
j);
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hence, {xie′
j ∈ R

n
p : i = 1, . . . , k; j = 1, . . . , p} spans V. Moreover, linear

independence holds since

k∑
i=1

p∑
j=1

aij(xie′
j) = 0 =⇒

k∑
i=1

xi




p∑
j=1

aije′
j


 = 0

=⇒
p∑

j=1

aije′
j = 0, ∀i

=⇒ aij = 0,∀i, j.

Next, to calculate the orthogonal projection, say XB̂, of Y on V, note that
since Y −XB̂ ∈ V⊥, then 〈xie′

j ,Y −XB̂〉 = 0, ∀i, j. But, this means that

tr
[
ejx′

i(Y − XB̂)
]

= x′
i(Y − XB̂)ej = 0, ∀i, j.

Therefore, X′(Y − XB̂) = 0, which gives

B̂ = (X′X)−1X′Y.

With the partition in (9.1) we find B̂ = (β̂1, . . . , β̂p), where

β̂i = (X′X)−1X′yi.

For the purpose of estimation of the regression coefficients, the p multiple
regression models can be treated separately.

The orthogonal projection of Y on V becomes XB̂ = X(X′X)−1X′Y ≡
PY, where P = X(X′X)−1X′. This provides the “orthogonal direct sum”

Y = PY + QY

with Q = I − P as usual.
The Gauss-Markov property is the subject of Proposition 9.1. Consider

the parameter C = D(XB)F and its natural estimate Ĉ = D(PY)F.
Among all linear unbiased estimates, Ĉ is the “best” (blue) in the sense
that it has the minimum variance:

Proposition 9.1 (Gauss-Markov) Ĉ = blue(C).

Proof. Let C̃ = GYH be any linear unbiased estimate. Then,

E C̃ = C, ∀B ∈ R
k
p ⇐⇒ GXBH = DXBF, ∀B ∈ R

k
p

⇐⇒ GPYH = DPYF, ∀Y ∈ R
n
p

⇐⇒ H′Y′PG′ = F′Y′PD′, ∀Y ∈ R
n
p

⇐⇒ [(GP) ⊗ H′]vec(Y′) = [(DP) ⊗ F′]vec(Y′)
⇐⇒ (GP) ⊗ H′ = (DP) ⊗ F′.

Now, we have

var Ĉ = [(DP) ⊗ F′](In ⊗ Σ)[(DP)′ ⊗ F]
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= [(GP) ⊗ H′](In ⊗ Σ)[(GP)′ ⊗ H]
= (GPG′) ⊗ (H′ΣH) ≤ (GG′) ⊗ (H′ΣH) = var C̃,

with equality iff

GP = G ⇐⇒ [(GP) ⊗ H′]vec(Y′) = (G ⊗ H′)vec(Y′), ∀Y ∈ R
n
p

⇐⇒ [(DP) ⊗ F′]vec(Y′) = (G ⊗ H′)vec(Y′), ∀Y ∈ R
n
p

⇐⇒ Ĉ = C̃.

�

In Proposition 9.1, if F = I and D = (X′X)−1X′, then B̂ = blue(B); also,
if F = ej and D = e′

i(X
′X)−1X′, then b̂ij = blue(bij), and so on.

The estimate B̂ is obviously unbiased for B; furthermore, noting that
QY = QE and using Problem 6.4.5,

E Y′QY = E E′QE = (tr Q)Σ = (n − k)Σ.

Thus, S ≡ Y′QY/(n − k) is an unbiased estimate of Σ.
Under normality, these estimates are optimal in the sense that they have

minimum variance among all unbiased estimates. The likelihood for (B,Σ)
from Y is

L(B,Σ) ∝ |Σ|−n/2 etr
[− 1

2Σ
−1(Y − XB)′(Y − XB)

]

∝ |Σ|−n/2 etr
[− 1

2Σ
−1B′X′XB

]

· exp
{− 1

2 tr
[
Σ−1 · (Y′Y) − 2Σ−1B′ · (X′Y)

]}
.

From general properties of exponential families [Fraser (1976), pp. 339,
342, 406 or Casella and Berger (1990), pp. 254-255, 263], the statistic
(Y′Y,X′Y) is minimal sufficient and complete for (B,Σ). Of course, any
one-to-one function such as (B̂,S) is also minimal sufficient and complete.
Thus, from Rao-Blackwell/Lehmann-Scheffé theorems, among all unbiased
estimates, B̂ and S have minimum variance.

Using the decomposition Y = PY + QY, where PQ = 0, the log-
likelihood can be written as

l(B,Σ) = cte− n

2
ln |Σ|− 1

2
tr

{
Σ−1 [Y′QY + (PY − XB)′(PY − XB)]

}
.

Thus, to obtain the maximum likelihood estimates (MLE) B̂ and Σ̂ when
n−k ≥ p (for V ≡ (n−k)S = Y′QY to be nonsingular w.p.1), we minimize

ln |Σ| + tr
1
n
VΣ−1 +

1
n

tr (PY − XB)Σ−1(PY − XB)′,

and since the last term is ≥ 0, it is clear that B̂ = (X′X)−1X′Y, so we
need only minimize

ln |Σ| + tr
1
n
VΣ−1.
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However, we already solved a similar problem in Chapter 7 when we de-
rived the maximum likelihood estimates of the mean and variance of a
multivariate normal distribution. Using the same result, we find that

Σ̂ =
1
n
V

is the maximum likelihood estimate of Σ. Proposition 9.2 gives the joint
distribution of B̂ and S.

Proposition 9.2 With underlying normality, the joint distribution of B̂
and S is

B̂ ∼ Nk
p

(
B, (X′X)−1 ⊗ Σ

)
,

(n − k)S ∼ Wp(n − k,Σ).

Moreover, B̂ |= S.

Proof. Since Y ∼ Nn
p (XB, In ⊗Σ), the distribution of B̂ = (X′X)−1X′Y

follows from Proposition 6.1. Next, since (n − k)S = Y′QY = E′QE, the
distribution of (n − k)S is a direct consequence of Proposition 7.8. Since
PQ = 0, we obtain immediately that

var
[(

P
Q

)
Y
]

=
((

P
Q

)
⊗ Ip

)
(In ⊗ Σ) ((P,Q) ⊗ Ip)

=
(

P 0
0 Q

)
⊗ Σ =

(
P ⊗ Σ 0

0 Q ⊗ Σ

)

and, thus, PY |= QY, which implies B̂ |= S. �

9.3 The general linear hypothesis

Consider now the problem of testing the general linear hypothesis

H0 : CB = 0

against all alternatives where C ∈ R
r
k of rank C = r in the multivariate

regression model

Y ∼ Nn
p (XB, In ⊗ Σ)

with X ∈ R
n
k of rank X = k. The likelihood ratio test will be more easily

expressed using a “canonical” form for this problem.

9.3.1 Canonical form
The canonical form is obtained by transforming the original response Y,
in two steps, so that in the new model X becomes X0 and C reduces to
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C0, where

X0 =
(

Ik

0

)
and C0 = (Ir,0).

Step 1 : This step is to reduce X to X0. The Gram-Schmidt method applied
to the columns of X (v. Problem 1.8.7) gives X = H1U, where U ∈ U+

k

and H′
1H1 = Ik. There exists Γ1 ∈ R

n
n−k such that (H1,Γ1) ∈ On. Let

Ỹ =
(

H′
1

Γ′
1

)
Y,

then Ỹ ∼ Nn
p (X0B̃, In ⊗ Σ) with B̃ = UB. But since CB = CU−1B̃, the

hypothesis H0 : CB = 0 becomes H0 : C̃B̃ = 0, where C̃ = CU−1.

Step 2 : The second step is to reduce C̃ to C0. Once again, the Gram-
Schmidt method applied to the rows of C̃ yields C̃ = LH2, where H2H′

2 =
Ir, L ∈ L+

r . There exists Γ2 ∈ R
k−r
k such that

(
H2
Γ2

)
∈ Ok.

Let

˜̃Y =




(
H2
Γ2

)
0

0 In−k


 Ỹ,

then ˜̃Y ∼ Nn
p (E ˜̃Y, In ⊗ Σ), where

E ˜̃Y =




H2
Γ2
0


 B̃

or

E




˜̃Y1
˜̃Y2
˜̃Y3


 ≡




˜̃B1
˜̃B2
0


 ,

where ˜̃Y was partitioned in conformity with ˜̃B1 = H2B̃ ∈ R
r
p and ˜̃B2 =

Γ2B̃ ∈ R
k−r
p . Now, to transform the hypothesis, note that

C̃B̃ = LH2B̃ = L ˜̃B1 = 0 ⇐⇒ ˜̃B1 = 0.

Hence, the hypothesis becomes H0 : ˜̃B1 = 0. Because the rows of ˜̃Y are all
independent, an equivalent problem in its canonical form, with the obvious
change of notation, is to test

H0 : M1 = 0 against H1 : M1 �= 0
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based on

Z1 ∼ N t
s(M1, It ⊗ Σ),

Z2 ∼ Nu
s (M2, Iu ⊗ Σ),

Z3 ∼ Nv
s (0, Iv ⊗ Σ), v ≥ s,

where Z1, Z2, and Z3 are independent.

9.3.2 LRT for the canonical problem
We can now obtain a simple expression for the likelihood ratio test. In the
canonical model, the likelihood function for (M1,M2,Σ) is

L(M1,M2,Σ) ∝ |Σ|−n/2 etr
[− 1

2Σ
−1(Z1 − M1)′(Z1 − M1)

]

·etr [− 1
2Σ

−1(Z2 − M2)′(Z2 − M2)
]

·etr [− 1
2Σ

−1Z′
3Z3

]
,

where n = t + u + v. Note that in this form, the minimal and sufficient
statistic is (Z1,Z2,Z′

3Z3). For maximum likelihood estimates when v ≥ s
(for Z′

3Z3 to be nonsingular w.p.1), we minimize

− 2
n

l(M1,M2,Σ) = cte + ln |Σ| + 1
n

tr Σ−1(Z1 − M1)′(Z1 − M1)

+
1
n

tr Σ−1(Z2 − M2)′(Z2 − M2) +
1
n

tr Σ−1Z′
3Z3.

Since each term is ≥ 0, it follows that the maximum likelihood estimates
are

M̂1 = Z1, M̂2 = Z2, and Σ̂ = Z′
3Z3/n.

Also, when M1 = 0, the maximum likelihood estimates become

ˆ̂M1 = 0,
ˆ̂M2 = Z2, and ˆ̂Σ = (Z′

1Z1 + Z′
3Z3)/n.

Therefore, the LRT is the test which rejects H0 for small values of

Λ =
L( ˆ̂M1,

ˆ̂M2,
ˆ̂Σ)

L(M̂1, M̂2, Σ̂)
=

| ˆ̂Σ|−n/2

|Σ̂|−n/2
=

|Z′
3Z3|n/2

|Z′
1Z1 + Z′

3Z3|n/2 .

Definition 9.1 U-distribution: U ∼ U(p; m, n) iff U
d= |W1|/|W1 +W2|,

where W1 ∼ Wp(n), W2 ∼ Wp(m), and W1 |= W2, m + n > p.

Properties of U -distributions are deferred to Section 11.4.
Going back to the original model, the likelihood ratio test can be ex-

pressed in terms of B̂, Σ̂, and X. Composing the two transformations
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Y �→ Ỹ and Ỹ �→ ˜̃Y, we obtain



˜̃Y1
˜̃Y2
˜̃Y3


 =




H2H′
1Y

Γ2H′
1Y

Γ′
1Y


 ,

and after long but straightforward calculations, the LRT is expressed as

Λ2/n =
| ˜̃Y

′
3
˜̃Y3|

| ˜̃Y
′
1
˜̃Y1 + ˜̃Y

′
3
˜̃Y3|

=
|nΣ̂|

|nΣ̂ + B̂′C′[C(X′X)−1C′]−1CB̂| .

The null distribution of the LRT statistic follows directly from the canonical
form of the model and the definition of U -distributions.

Proposition 9.3 The null distribution of the LRT statistic Λ for testing
H0 : CB = 0 against H1 : CB �= 0, where C ∈ R

r
k of rank C = r,

in the model Y ∼ Nn
p (XB, In ⊗ Σ), with X ∈ R

n
k of rank X = k, is

Λ2/n ∼ U(p; r, n − k).

When n is large, a simple approximation can be used for the null
distribution of Λ. From the LRT general theory, we can immediately write

−2 ln Λ d→ χ2
pr, n → ∞.

9.3.3 Invariant tests
The problem in its canonical form is to test

H0 : M1 = 0 against H1 : M1 �= 0 (9.2)

based on

Z1 ∼ N t
s(M1, It ⊗ Σ),

Z2 ∼ Nu
s (M2, Iu ⊗ Σ),

Z3 ∼ Nv
s (0, Iv ⊗ Σ), v ≥ s,

where Z1, Z2, and Z3 are independent. Since v ≥ s, Z′
3Z3 is nonsingular

w.p.1 and let m ≡ min(s, t) = rank Z1 w.p.1.
The group Gs × R

u
s × Ot × Ou × Ov transforms the variables as

Z1 �→ H1Z1A, Z2 �→ H2Z2A + B, and Z3 �→ H3Z3A for any
(A,B,H1,H2,H3) ∈ Gs×R

u
s ×Ot×Ou×Ov. This induces the parameter

transformations M1 �→ H1M1A, M2 �→ H2M2A + B, and Σ �→ A′ΣA.
Thus, we will say that a test function is invariant iff

f(Z1,Z2,Z3) = f(H1Z1A,H2Z2A + B,H3Z3A),
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∀(A,B,H1,H2,H3) ∈ Gs × R
u
s × Ot × Ou × Ov, ∀(Z1,Z2,Z3) ∈ R

t
s ×

R
u
s ×R

v
s . The choice B = −H2Z2A shows that any invariant test does not

depend on Z2,

f(Z1,Z2,Z3) = f(H1Z1A,0,H3Z3A).

Since rank Z3 = s w.p.1., then using Problem 1.8.7, there exists U ∈ U+
s

and H ∈ R
v
s satisfying H′H = Is such that Z3 = HU. The choice A =

U−1G, where G ∈ Gs is arbitrary for now, yields

f(Z1,Z2,Z3) = f(H1Z1U−1G,0,H3HG).

From the singular value decomposition (Proposition 1.11) there exists G ∈
Os and H1 ∈ Ot such that

H1(Z1U−1)G =
(

D 0
0 0

)
,

where D is diagonal and contains the square root of the nonzero eigenvalues
of (Z1U−1)(Z1U−1)′ = Z1(Z′

3Z3)−1Z′
1. We thus have

f(Z1,Z2,Z3) = f

((
D 0
0 0

)
,0,H3HG

)
.

Finally, since (HG)′(HG) = Is, the s columns of HG are orthonormal in
R

v, and by completing to an orthonormal basis of R
v, there exists Γ such

that

H3 ≡
(

(HG)′

Γ′

)
∈ Ov

and

H3HG =
(

Is

0

)
.

Thus, altogether, we find

f(Z1,Z2,Z3) = f

((
D 0
0 0

)
,0,

(
Is

0

))
,

which shows that any invariant test depends on (Z1,Z2,Z3) only through
the nonzero eigenvalues of Z1(Z′

3Z3)−1Z′
1.

Invariance permits a reduction of the parameter space also. Since the
transformed parameters are M1 �→ H1M1A, M2 �→ H2M2A+B, and Σ �→
A′ΣA, the choice B = −H2M2A shows that the non-null distribution of
any invariant test is independent of M2. Similarly, using the singular value
decomposition, there exists G ∈ Os and H1 ∈ Ot such that

H1(M1Σ−1/2)G =
(

D 0
0 0

)
,
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where D is diagonal and contains the square root of the nonzero eigenvalues
of

(M1Σ−1/2)(M1Σ−1/2)′ = M1Σ−1M′
1.

Thus, the choice A = Σ−1/2G shows that the non-null distribution of
any invariant test depends on (M1,M2,Σ) only through the nonzero
eigenvalues of

M1Σ−1M′
1.

We have proved:

Proposition 9.4 For the hypothesis testing situation (9.2) and group of
transformations described above, any invariant test depends on (Z1,Z2,Z3)
only through the nonzero eigenvalues of Z1(Z′

3Z3)−1Z′
1. Moreover, the non-

null distribution of any invariant test depends on (M1,M2,Σ) only through
the nonzero eigenvalues of M1Σ−1M′

1.

The non-null distribution of those eigenvalues is complicated except in
the case m ≡ min(s, t) = 1, where there is only one such eigenvalue. From
Proposition 9.4, assume without loss of generality that

Z1 ∼ N t
s

((
D 0
0 0

)
, It ⊗ Is

)
,

Z3 ∼ Nv
s (0, Iv ⊗ Is),

where D contains the square root of the nonzero eigenvalues of M1Σ−1M′
1.

(i) The case t = 1. Here, we have

Z′
1 ∼ Ns((M1Σ−1M′

1)
1/2e1, Is)

and Z′
3Z3 ∼ Ws(v). Hence, from Proposition 8.2 on Hotelling’s test,

the conclusion is

Z1(Z′
3Z3)−1Z′

1 ∼ Fc(s, v − s + 1;M1Σ−1M′
1/2).

(ii) The case s = 1. Here, the distributions are

Z1 ∼ Nt((M′
1M1/σ2)1/2e1, It),

where Σ = σ2 was set, and Z′
3Z3 ∼ χ2

v. Thus, by definition,

Z′
1Z1

Z′
3Z3

∼ Fc(t, v;M′
1M1/2σ2).

Another equivalent expression for the LRT is

Λ2/n =
|Z′

3Z3|
|Z′

1Z1 + Z′
3Z3|

= |Is + Z′
1Z1(Z′

3Z3)−1|−1

=
m∏

i=1

(1 + li)−1,
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where l1 ≥ · · · ≥ lm are the ordered nonzero eigenvalues of

Z1(Z′
3Z3)−1Z′

1.

Thus, Λ takes on small values when those eigenvalues are large. Other
possible tests could be used such as the following:

Lawley-Hotelling: T 2
0 =

∑m
i=1 li = tr Z′

1Z1(Z′
3Z3)−1

Pillai: V =
∑m

i=1
li

1+li
= tr Z′

1Z1(Z′
1Z1 + Z′

3Z3)−1

Roy: l1 = largest eigenvalue of Z1(Z′
3Z3)−1Z′

1.

None of these tests has a power function which dominates the others over
the whole parameter space or even locally [Fujikoshi (1988)]. However, it
is easy to see that the asymptotic (as v → ∞, s, t, and u are fixed) null
distribution of the three tests −2 ln Λ, vT 2

0 , and vV is χ2
st. From the LRT

general theory, we already know −2 ln Λ d→ χ2
st. Under H0, we can assume

Σ = Is without loss of generality. From the law of large numbers, Z′
3Z3/v

p→
Is; hence, we have from Lemma 6.3

v tr Z′
1Z1(Z′

3Z3)−1 d→ tr Z′
1Z1

d= χ2
st.

The same argument applies to vV . The asymptotic null distribution of
Roy’s test is quite different and is given as Problem 9.7.5 together with an
interpretation as a union-intersection test.

In the very special case m ≡ min(s, t) = 1, these three tests are equiva-
lent to the LRT, which is uniformly most powerful invariant (UMPI). The
proof of this UMPI property is the same as for the Hotelling-T 2 test (v.
Proposition 8.4) since the non-null distribution in both cases (i) and (ii)
above is a noncentral canonical Fc distribution.

Kariya et al. (1987) considered hypotheses related to selection and in-
dependence under multivariate regression models. Breiman and Friedman
(1997) presented several methods of predicting responses in a multivariate
regression model. The likelihood ratio test for detecting a single outlier
(a shift in the mean) in a multivariate regression model was obtained by
Srivastava and von Rosen (1998).

9.4 Random design matrix X

When the prediction variables X, just as the dependent variables Y, are
observed, then it is appropriate to consider X as a random matrix. The
model most commonly encountered assumes

Y = XB + E, E ∼ Nn
p (0, In ⊗ Σ),
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where the errors are independently distributed of the prediction variables,
i.e., E |= X. When X has an absolutely continuous distribution, the argu-
ment in the proof of Proposition 7.5 shows that X′X is nonsingular w.p.1.
The conditional model

Y|X ∼ Nn
p (XB, In ⊗ Σ)

is thus identical to the case of a fixed X. Using Proposition 9.2, we find the
following properties of the same estimates:

(i) B̂ is unbiased,

E B̂ = E E(B̂|X) = E B = B.

(ii) (n − k)S ∼ Wp(n − k,Σ). Indeed,

(n − k)S|X ∼ Wp(n − k,Σ)

and this conditional distribution does not depend on X.

(iii) B̂ |= S. With Proposition 2.13,

E g(B̂) · h(S) = E E[g(B̂)h(S)|X]

= E{E[g(B̂)|X]E[h(S)|X]}
= E{E[g(B̂)|X]E[h(S)]}
= E g(B̂) · E h(S).

Moreover, for testing the general linear hypothesis H0 : CB = 0, the
conditional null distribution of Λ2/n does not depend on X and, thus,

Λ2/n ∼ U(p; r, n − k), unconditionally.

The non-null distribution of Λ2/n, however, will depend on the distribution
of X, as is the case for p = 1 as exemplified by Problem 5.7.8, where the
noncentrality parameter of the distribution of the F -test depends on X.

Example 9.1 The variance of B̂ may be evaluated as

var B̂ = var vec(B̂′)

= E var[vec(B̂′)|X] + var E[vec(B̂′)|X]
= E[(X′X)−1 ⊗ Σ] + var vec(B′)
=

(
E (X′X)−1)⊗ Σ.

The last expectation may be evaluated directly in some cases. For example,
if X ∼ Nn

k (0, In ⊗ Ω), Ω > 0, then with Problem 7.5.5 and since X′X ∼
Wk(n,Ω),

E (X′X)−1 = (n − k − 1)−1Ω−1.
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9.5 Predictions

The problem of predicting several, possibly correlated, responses from the
same set of predictors is becoming increasingly important. Applications by
Breiman and Freidman (1997) include prediction of changes in the valua-
tions of stocks in 60 industry groups by using over 100 econometric variables
as predictors. Or, in chemometrics, the prediction of 6 output character-
istics of the polymers produced as predicted by 22 predictor variables.
Another example by Brown (1980, pp. 247-292) lists electoral results for
all 71 Scottish constituencies in the Bristish general elections of February
and October 1974. Data consist of total votes for each of the four parties
(Conservative, Labour, Liberal, and Nationalist) in each election, together
with a categorical variable listing the location of the constituency by six
regions, and the size of the electorate in each constituency. The objective
is to use the February and October results from part of the constituencies
to predict the remaining October results from the corresponding February
data. Research papers related to predictions include Stone (1974), van der
Merwe and Zidek (1980), Bilodeau and Kariya (1989), and Breiman and
Friedman (1997).

Assume the “centered” model

Y = XB + E, E ∼ Nn
p (0, In ⊗ Σ), X |= E.

For the sake of simplicity, we take X centered, X ∼ Nn
k (0, In ⊗ Ω). For

given values of the prediction variables, x′ = (x1, . . . , xk), it is desired to
obtain a prediction of the dependent variables, y′ = (y1, . . . , yp). Using the
Gauss-Markov (GM) estimate B̂, an obvious prediction method is

ŷ′ = x′B̂ = (x′β̂1, . . . ,x
′β̂p)

so that prediction of the ith variable is done considering only the ith multi-
ple regression model. Assuming the “future” observation follows the same
model, i.e., y′ = x′B + e′, where x ∼ Nk(0,Ω), e ∼ Np(0,Σ), and x |= e,
and is independent of the past, (x, e) |= (X,E), one can evaluate the risk
of the GM prediction as

E (ŷ − y)′Σ−1(ŷ − y) = E [x′(B̂ − B) − e′]Σ−1[(B̂ − B)′x − e]

= E tr
[
(B̂ − B)Σ−1(B̂ − B)′Ω

]
+ p

= tr
[
E (B̂ − B)Σ−1(B̂ − B)′Ω

]
+ p.

The SPER (sum of Squares of Prediction Error when the independent
variable is Random) risk is obtained on subtracting p from the above:

RSPER(B̂) = E tr (B̂ − B)Σ−1(B̂ − B)′Ω.
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Letting U = (B̂ − B)Σ−1/2 ∼ Nk
p (0, (X′X)−1 ⊗ I), Example 6.3 gives

E(UU′|X) = p(X′X)−1. Finally, with Example 9.1, we get

RSPER(B̂) = pk/(n − k − 1).

A closely related risk function, more tractable mathematically, is SPE
defined by

RSPE(B̂) = E tr (B̂ − B)Σ−1(B̂ − B)′X′X.

Smaller risk may be achieved with an estimate B̃ = B̂A for a certain
A ∈ R

p
p. The corresponding prediction for each variable in ỹ = A′ŷ is seen

to be a linear combination (multivariate flattening) of the p prediction
equations.

Example 9.2 Multivariate flattening. Assuming (B,Σ,Ω) is known,
then an optimal multivariate flattening [Breiman and Friedman (1997)]
would be solution of

min
A

E (A′ŷ − y)′Σ−1(A′ŷ − y).

Now, since

(A′ŷ − y)′Σ−1(A′ŷ − y) = (Σ−1/2A′ŷ − Σ−1/2y)′(Σ−1/2A′ŷ − Σ−1/2y),

letting C = Σ−1/2A′ and z = Σ−1/2y, the optimization problem becomes
equivalent to

min
C

E |z − Cŷ|2.

With Problem 5.7.6, the solution is readily obtained:

C = cov(z, ŷ) · [var ŷ]−1.

Each factor is evaluated as

cov(z, ŷ) = Σ−1/2cov(y, ŷ)
= Σ−1/2E yŷ′

= Σ−1/2E (B′x + e)x′B̂

= Σ−1/2E B′xx′B̂
= Σ−1/2B′ΩB

and, similarly,

var ŷ = E ŷŷ′

= E [B + (X′X)−1X′E]′xx′[B + (X′X)−1X′E]
= B′ΩB + E E′X(X′X)−1xx′(X′X)−1X′E
= B′ΩB + E

(
x′(X′X)−1x

)
Σ (v. Problem 6.4.5)

= B′ΩB + [k/(n − k − 1)]Σ (v. Problem 7.5.4).
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Hence, altogether, the optimal A is given by

A = [(B′ΩB) + rΣ]−1(B′ΩB), r = k/(n − k − 1).

Sample-based Â and modifications thereof are given in the above papers.
In particular, for small r, A ≈ I − r(B′ΩB)−1Σ (v. Problem 1.8.15) and
van der Merwe and Zidek (1980) established that the sample-based

Â = I − r(n − k)(B̂′X′XB̂)−1S

which they called FICYREG (FIltered Canonical Y REGression) leads to
smaller SPE risk than GM for

r = (k − p − 1)/(n − k + p + 1)

provided n > k > p+1. Bilodeau and Kariya (1989) proposed the modified
Efron-Morris (1976)

Â = I − r(n − k)(B̂′X′XB̂)−1S − b(n − k)S/tr(B̂′X′XB̂)

and showed that it leads still to a smaller SPE risk than FICYREG for

r = (k − p − 1)/(n − k + p + 1) and b = (p − 1)/(n − k + p + 1).

Note that the choice b = 0 reduces to FICYREG. Breiman and Fried-
man (1997) considered Â built from cross-validation (CV) and generalized
cross-validation (GCV). Their large-scale simulations point strongly toward
the superiority of CV and GCV over other commonly used prediction tech-
niques. The GCV in particular seems very promising since its evaluation
is nearly as simple as GM. The CV, in contrast, is computationally inten-
sive. The unbiased estimate of the SPE risk for the GCV predictions was
recently obtained by Bilodeau (1998).

9.6 One-way classification

In this section, the one-factor univariate analysis of variance is generalized
to test the equality of several means of multivariate normal populations.
Let yi1, . . . ,yini i.i.d. Np(µi,Σ), i = 1, . . . , a, be a independent samples
from multivariate normal distributions with common variance Σ > 0. In
matrix notation, let

Y =




y′
11
...

y′
1n1

...
y′

a1
...

y′
ana




, X = diag(1n1 , . . . ,1na
), B =




µ′
1
...

µ′
a


 .
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Then, the a samples can be written as the multivariate regression model

Y = XB + E, E ∼ Nn
p (0, In ⊗ Σ),

where n =
∑a

i=1 ni. The hypothesis of equality of means

H0 : µ1 = · · · = µa

can be translated into a general linear hypothesis. Define

C = (Ia−1,−1a−1);

then the hypothesis becomes H0 : CB = 0, where C ∈ R
a−1
a of rank C =

a−1. Using the canonical formulation of this problem, the reader can verify
that the LRT is

Λ2/n =
|SSw|

|SSw + SSb| ,

where

SSw =
a∑

i=1

ni∑
j=1

(yij − ȳi)(yij − ȳi)′,

SSb =
a∑

i=1

ni(ȳi − ȳ)(ȳi − ȳ)′

are the usual “within” and “between” sums of squares with

ȳi =
ni∑

j=1

yij/ni and ȳ =
a∑

i=1

niȳi/n.

The other analysis-of-variance models such as the two-way classification
model can be generalized similarly to test the effect of each factor or the
presence of interactions between factors. We will not pursue this any further
here.

9.7 Problems

1. Show that the likelihood ratio test statistic Λ for testing the general
linear hypothesis can be written

Λ2/n =
|nΣ̂|

|nΣ̂ + B̂′C′[C(X′X)−1C′]−1CB̂| .

2. The estimate XB̂ = PY is the orthogonal projection of Y on V =
{XA : A ∈ R

k
p}. Use this fact to prove that XB̂ is also the solution

of the least-squares problem

min
V∈V

tr Ω(Y − V)′(Y − V),
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for any fixed Ω ∈ R
p
p, Ω > 0.

3. Prove that if Z1 ∼ N t
s(M1, It⊗Σ), Z3 ∼ Nv

s (0, Iv⊗Σ), and Z1 |= Z3,
where Σ > 0 and v ≥ s + 2, then

E Z′
1Z1(Z′

3Z3)−1 =
t

v − s − 1
Is +

1
v − s − 1

M′
1M1Σ−1.

4. Using the canonical model, prove that the LRT Λ for the hypothesis
of the equality of several multivariate means is

Λ2/n = |SSw|/|SSw + SSb|,
as described in Section 9.6. What is the null distribution of this test?

5. The general linear hypothesis in its canonical form is to test

H0 : M1 = 0 against H1 : M1 �= 0

based on

Z1 ∼ N t
s(M1, It ⊗ Σ),

Z2 ∼ Nu
s (M2, Iu ⊗ Σ),

Z3 ∼ Nv
s (0, Iv ⊗ Σ), v ≥ s,

where Z1, Z2, and Z3 are independent.
(i) Prove the asymptotic result as v → ∞ concerning Roy’s test:

If M1 = 0 then vl1
d→ α1, where l1 is the largest eigenvalue

of Z1(Z′
3Z3)−1Z′

1 and α1 is the largest eigenvalue of a random
matrix W ∼ Ws(t).

(ii) Union-intersection test.
(a) For a given h ∈ R

t, |h| = 1, define Hh,0 : M′
1h = 0 and

Hh,1 : M′
1h �= 0. Prove

H0 = ∩h{Hh,0 : |h| = 1},
H1 = ∪h{Hh,1 : |h| = 1}.

(b) For a given h, |h| = 1, prove that the LRT for Hh,0 against
Hh,1 accepts Hh,0 for small values of

Rh = h′Z1(Z′
3Z3)−1Z′

1h.

Demonstrate the null distribution Rh ∼ Fc(s, v−s+1) does
not depend on h.

(c) The union-intersection test accepts H0 iff sup|h|=1 Rh ≤ c
for some constant c. Demonstrate the union-intersection test
statistic sup|h|=1 Rh = l1 is, in fact, Roy’s test.

Remark: For a given h, the test based on Rh is UMPI for testing
Hh,0 against Hh,1 (the non-null distribution of Rh is a noncentral
canonical Fc distribution just like Hotelling’s-T 2; v. Proposition 8.4),
but Roy’s test is not generally UMPI for testing H0 against H1.
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Principal components

10.1 Introduction

In this chapter we assume that x ∈ R
p with E x = µ and var x = Σ = (σij).

When the dimension p is large, the principal components method seeks to
replace x by y ∈ R

k, where k < p (and hopefully much smaller), without
losing too much “information.” This is sometimes particularly useful for a
graphical description of the data since it is much easier to view vectors of
low dimension. Section 10.2 defines principal components and gives their
interpretation as normalized linear combinations with maximum variance.
In Section 10.3, we explain an optimal property of principal components as
best approximating subspace of dimension k in terms of squared prediction
error. Section 10.4 introduces the sample principal components; they give
the coordinates of the projected data which is closest, in terms of euclid-
ian distance, to the original data. Section 10.5 treats the sample principal
components calculated from the correlation matrix. Finally, Section 10.6
presents a simple test for multivariate normality which generalizes the uni-
variate Shapiro and Wilk’s statistic. A book entirely devoted to principal
component analysis is that of Jolliffe (1986).
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10.2 Definition and basic properties

The total variance of x is defined as

E |x − µ|2 =
p∑

i=1

var xi =
p∑

i=1

σii = tr Σ.

Recall that Σ ≥ 0 can be written as Σ = HDH′, where

H = (h1, . . . ,hp) ∈ Op,

D = diag(λ1, . . . , λp),

and λ1 ≥ · · · ≥ λp are the ordered eigenvalues of Σ. Since we are only
interested in var x, we will assume throughout this chapter that µ = 0. If
we let

y = H′x =




h′
1x
...

h′
px


 ,

var y = D. Then
∑p

i=1 var yi =
∑p

i=1 λi = tr Σ, so x and y have the same
“total variance.” Moreover, the variables yi’s are uncorrelated,

cov(h′
ix,h′

jx) = h′
iΣhj = λjh′

ihj = λjδij .

Definition 10.1 The variables yi = h′
ix, i = 1, . . . , p, are, by definition,

the principal components of x.

Since HH′ = I, then x = (
∑p

i=1 hih′
i)x =

∑p
i=1 yihi and the principal

components can be viewed as the coordinates of x with respect to the
orthonormal basis {h1, . . . ,hp} of R

p. When the ratio
∑k

i=1 λi/tr Σ is
close to 1, then (y1, . . . , yk)′ can effectively replace x without losing much
in terms of “total variance.”

The principal components can also be got sequentially as follows. First
a normalized linear combination t′x, |t| = 1, is sought such that var t′x =
t′Σt is maximum. Since for all t, |t| = 1,

t′Σt =
p∑

i=1

λi(t′hi)2 ≤ λ1

p∑
i=1

(t′hi)2 = λ1t′
(

p∑
i=1

hih′
i

)
t = λ1|t|2 = λ1;

hence, maxt′t=1 t′Σt = λ1, which is attained for t = h1. So, the first
principal component y1 = h′

1x is the normalized linear combination with
maximum variance. Now, given yi = h′

ix, i = 1, . . . , k, another linear com-
bination s′x, |s| = 1, is sought which maximizes the variance s′Σs and is
uncorrelated with y1, . . . , yk. Note that cov(s′x, yi) = λis′hi, i = 1, . . . , k.
As above, for all s ⊥ h1, . . . ,hk, |s| = 1, we have

s′Σs =
p∑

i=k+1

λi(s′hi)2 ≤ λk+1

p∑
i=k+1

(s′hi)2 = λk+1

p∑
i=1

(s′hi)2 = λk+1.
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Hence,

max
s′s=1

s⊥h1,...,hk

s′Σs = λk+1

is attained for s = hk+1, which means that yk+1 = h′
k+1x is the normalized

linear combination with maximum variance among all those uncorrelated
with y1, . . . , yk.

10.3 Best approximating subspace

The orthogonal projection of x on the subspace spanned by the first k
eigenvectors, Pkx, is

Pkx =

(
k∑

i=1

hih′
i

)
x =

k∑
i=1

yihi.

Proposition 10.1 shows that Pkx gives the best approximation to x by
a subspace of dimension at most k in terms of squared prediction error.
Before stating the result, we present a lemma. Denote by P⊥

k the set of all
orthogonal projections P ∈ R

p
p of rank P = k.

Lemma 10.1 Let Σ ≥ 0 in R
p
p with eigenvalues λ1 ≥ · · · ≥ λp. Then,

max
P∈P⊥

k

tr ΣP =
k∑

i=1

λi,

min
P∈P⊥

k

tr Σ(I − P) =
p∑

i=k+1

λi

are attained at P =
∑k

i=1 hih′
i, where

Σ = HDH′, H = (h1, . . . ,hp) ∈ Op, D = diag(λ1, . . . , λp).

Proof. Take any P ∈ P⊥
k . Let A = (a1, . . . ,ak) whose columns form an

orthonormal basis for Im P, then P = AA′. Now,

tr ΣP = tr HDH′AA′ = tr D(H′A)(H′A)′,

and note that G = (g1, . . . ,gk) ≡ H′A has orthonormal columns too, i.e.,
G′G = Ik. Therefore,

tr ΣP = tr D
k∑

i=1

gig′
i =

k∑
i=1

g′
iDgi

≤
k∑

i=1

max
g′g=1

g⊥g1,...,gi−1

g′Dg =
k∑

i=1

λi
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(when i = 1 the orthogonality condition is void) with equality if gi = ei,
which means A = HG = (h1, . . . ,hk). This shows the first part related to
the maximum. The second part is immediate. �

Proposition 10.1 Assume x ∼ Np(0,Σ), Σ > 0, and let B ∈ R
k
p of

rank B = k, C ∈ R
p
k. Then,

min
B,C

E |x − CBx|2 =
p∑

i=k+1

λi

is attained when CB = Pk.

Proof. Fix B. We have(
x

Bx

)
∼ Np+k

((
0
0

)
,

(
Σ ΣB′

BΣ BΣB′

))

and x | Bx ∼ Np(0,Σ − ΣB′(BΣB′)−1BΣ). Using Problem 5.7.6,

min
C

E |x − CBx|2 = tr
[
Σ − ΣB′(BΣB′)−1BΣ

]

= tr Σ
[
I − AB′(BΣB′)−1BA

]

= tr Σ(I − P),

where A = HD1/2H′ and P = AB′(BΣB′)−1BA, and the extremum is
reached at C = (ΣB′)(BΣB′)−1. Now, P is an orthogonal projection of
rank k. From Lemma 10.1, tr Σ(I − P) is minimized when

AB′(BΣB′)−1BA =
k∑

i=1

hih′
i

or

B′(BΣB′)−1B =
k∑

i=1

λ−1
i hih′

i.

Finally, CB = Σ[B′(BΣB′)−1B] =
∑k

i=1 hih′
i = Pk. �

Obviously, if µ �= 0 in Proposition 10.1, the best approximation of rank k
is Pk(x − µ) + µ, which represents the orthogonal projection of x on the
affine subspace span{h1, . . . ,hk} + µ.

10.4 Sample principal components from S

The variance Σ is usually unknown. Sample principal components can be
obtained from the estimate S = V/m, m = n − 1, where, as usual,

V =
n∑

i=1

(xi − x̄)(xi − x̄)′.
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Since S ≥ 0, write

S = Ĥ diag(l1/m, . . . , lp/m) Ĥ′,

where

Ĥ = (ĥ1, . . . , ĥp) ∈ Op

and l1 ≥ · · · ≥ lp are the ordered eigenvalues of V. The sample principal
components of x are defined as ĥ′

ix, i = 1, . . . , p.
Let V ⊂ R

p be a k-dimensional subspace and denote by V +a = {x+a :
x ∈ V} the corresponding affine subspace. What is the affine subspace V+a
of dimension k such that the orthogonal projection of the data on V + a
is “closest” to the original data? First, we must specify what is meant by
“closest.” As a measure of distance, take the usual euclidian distance

d(V,a) =
n∑

i=1

|xi − x̂i|2,

where x̂i = P̂(xi − a) + a is the orthogonal projection of xi on V + a.

Proposition 10.2 Among all k-dimensional subspaces V and vectors a ∈
R

p, the distance d(V,a) is minimized for a = x̄ and V = span{ĥ1, . . . , ĥk}.
Proof. Define V =

∑n
i=1(xi − x̄)(xi − x̄)′, P̂ the orthogonal projection on

V, and Q̂ = I − P̂. Then,

d(V,a) =
n∑

i=1

|xi − P̂(xi − a) − a|2

=
n∑

i=1

|Q̂xi − Q̂a|2

=
n∑

i=1

|(Q̂xi − Q̂x̄) + (Q̂x̄ − Q̂a)|2

=
n∑

i=1

|Q̂xi − Q̂x̄|2 +
n∑

i=1

|Q̂x̄ − Q̂a|2

= tr Q̂V + n(x̄ − a)′Q̂(x̄ − a).

The two terms in the last expression are non-negative; hence, a = x̄. Also,
from Lemma 10.1 and since V ∝ S, P̂ =

∑k
i=1 ĥiĥ′

i. �

The ratio f(λ) =
∑k

i=1 λi/
∑p

i=1 λi of total variance explained by the
first k principal components is estimated by f(l/m) =

∑k
i=1 li/

∑p
i=1 li.

A large sample (1 − α) × 100% confidence interval on this ratio f(λ),
when all population eigenvalues λα are distinct, can be constructed with
Proposition 8.18.
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We end this section with a word of caution: Principal components are
not invariant with respect to individual rescaling of the p variables in x;
that is, if w = Φx, where Φ = diag(φ1, . . . , φp), then ΦΣΦ does not have
the same eigen-structure as Σ. This means, for example, that the interest-
ing projections of the data found with Proposition 10.2 may look entirely
different after rescaling. Also, if the first variable x1 has a variance much
larger than the variances of all other variables, x2, . . . , xp, then the first
principal component y1 will be approximately equivalent to x1. Principal
components are thus most meaningful when all variables are measured in
the same units and have variances of the same magnitude. For this rea-
son, principal components are often calculated from the sample correlation
matrix R rather than the sample variance S.

10.5 Sample principal components from R

If we let

S0 = diag(s11, . . . , spp),
Σ0 = diag(σ11, . . . , σpp),

then the population and sample correlation matrices are given by

R = S−1/2
0 SS−1/2

0 ,

ρ = Σ−1/2
0 ΣΣ−1/2

0 .

Then, as in the previous section, we can decompose

ρ = G diag(γ1, . . . , γp) G′,

R = Ĝ diag(f1, . . . , fp) Ĝ′,

and define the sample principal components from the standardized vari-
ables, z = S−1/2

0 (x− x̄), and R as ĝ′
iz, i = 1, . . . , p, where G = (g1, . . . ,gp)

and similarly for Ĝ. The ratio of total variance (of the standardized vari-
ables zi = (xi − x̄i)/

√
sii) explained by the first k principal components

becomes

f(γ) =
k∑

i=1

γi/p.

The construction of a confidence interval on this ratio f(γ) thus necessitates
the asymptotic distribution of the eigenvalues fi of the sample correlation
matrix R. This is now derived using the perturbation method of Section 8.8.

Using the Taylor series

x−1/2 = a−1/2 − 1
2a−3/2(x − a) + · · · ,
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we have directly

S−1/2
0 = [I − 1

2Σ
−1/2
0 (S0 − Σ0)Σ

−1/2
0 + · · ·]Σ−1/2

0 .

Define

V = (vij) = n1/2(Σ−1/2
0 SΣ−1/2

0 − ρ),
V0 = diag(v11, . . . , vpp),

and note that V is Op(1). Then, we can write

R = [I − 1
2n−1/2V0 + · · ·]Σ−1/2

0 [Σ + (S − Σ)]Σ−1/2
0 [I − 1

2n−1/2V0 + · · ·]
= [I − 1

2n−1/2V0 + · · ·](ρ + n−1/2V)[I − 1
2n−1/2V0 + · · ·]

= ρ + n−1/2(V − 1
2ρV0 − 1

2V0ρ) + Op(n−1),

from which

G′RG = Γ + n−1/2V(1) + Op(n−1),

where

Γ = diag(γ1, . . . , γp),

V(1) = (v(1)
ij ) = G′(V − 1

2ρV0 − 1
2V0ρ)G. (10.1)

Equation (8.11) in the perturbation method then leads, assuming γα to be
a distinct eigenvalue, to the expansion

fα = γα + n−1/2v(1)
αα + Op(n−1),

or, in vector form, assuming all eigenvalues γα to be distinct, to the
expansion

n1/2(f − γ) = (v(1)
11 , . . . , v(1)

pp )′ + Op(n−1/2)

≡ v(1) + Op(n−1/2).

Now, since V is asymptotically normal with mean 0, so is V(1) and its
marginal v(1). We need only calculate the asymptotic variance of v(1).

From (10.1) and the relation ρG = GΓ, we have

v(1)
αα = g′

αVgα − γαg′
αV0gα

=
p∑

j=1

p∑
k=1

gjαgkαvjk − γα

p∑
j=1

g2
jαvjj ;

hence,

cov(v(1)
αα, v

(1)
ββ ) =

p∑
j=1

p∑
k=1

p∑
i=1

p∑
l=1

gjαgkαgiβglβ cov(vjk, vil)

+γαγβ

p∑
j=1

p∑
i=1

g2
jαg2

iβ cov(vjj , vii)
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−γα

p∑
j=1

p∑
i=1

p∑
l=1

g2
jαgiβglβ cov(vjj , vil)

−γβ

p∑
i=1

p∑
j=1

p∑
k=1

g2
iβgjαgkα cov(vii, vjk).

Since V d→ Np
p (0, (I + Kp)(ρ ⊗ ρ)), we find upon using (6.1) that

lim
n→∞ cov(v(1)

αα, v
(1)
ββ ) =

p∑
j=1

p∑
k=1

p∑
i=1

p∑
l=1

gjαgkαgiβglβ(ρklρji + ρjlρki)

+γαγβ

p∑
j=1

p∑
i=1

g2
jαg2

iβ2ρ2
ji

−γα

p∑
j=1

p∑
i=1

p∑
l=1

g2
jαgiβglβ2ρjlρji

−γβ

p∑
i=1

p∑
j=1

p∑
k=1

g2
iβgjαgkα2ρikρij .

Finally, with the simple relations

p∑
k=1

p∑
l=1

gkαglβρkl = γαδαβ ,

p∑
l=1

glβρjl = γβgjβ ,

we obtain the simplification

lim
n→∞ cov(v(1)

αα, v
(1)
ββ ) = 2γαγβ


δαβ − (γα + γβ)

p∑
j=1

g2
jαg2

jβ

+
p∑

j=1

p∑
i=1

g2
jαg2

iβρ2
ji


 .

We summarize the result.

Proposition 10.3 Let f = (f1, . . . , fp)′ be the eigenvalues of the sample
correlation matrix R. If the eigenvalues γα of the population correlation
matrix ρ are all distinct, then the joint limiting distribution is

n1/2(f − γ) d→ Np(0,Ω),
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where Ω = (ωαβ) is given by

ωαβ = 2γαγβ


δαβ − (γα + γβ)

p∑
j=1

g2
jαg2

jβ +
p∑

j=1

p∑
i=1

g2
jαg2

iβρ2
ji


 .

The limiting distribution of a function such as f(f) =
∑k

i=1 fi/p for the
ratio of total variance explained by the first k principal components is
easily derived by the delta method [v. Problem 10.7.5]. Problem 13.6.19
provides the asymptotic distribution of n1/2(f − γ) when sampling from
an elliptical distribution. Konishi (1979) obtained, with Sugiura’s lemma,
a more accurate approximation with remainder O(n−1), similar to that of
Proposition 8.18, for the distribution function of

s = (n − 1)1/2 (f(f) − f(γ)) ,

where f(·) is a continuously differentiable function in a neighborhood of γ.

10.6 A test for multivariate normality

Shapiro and Wilk’s (1965) W statistic has been found to be the best
omnibus test for detecting departures from univariate normality. Royston
(1983) extends the application of W to testing multivariate normality, but
the procedure involves a certain approximation which needs to be justi-
fied. The procedure of Srivastava and Hui (1987) does not require such
an approximation and has a simple asymptotic null distribution and the
calculations are straightforward.

Srivastava and Hui (1987) proposed two test statistics for testing mul-
tivariate normality. These are based on principal components and may
be considered as a generalization of the Shapiro-Wilk statistic. As in
Section 10.4, write

S = Ĥ diag(l1/m, . . . , lp/m) Ĥ′, m = n − 1,

where

Ĥ = (ĥ1, . . . , ĥp) ∈ Op.

The sample principal components of xj , j = 1, . . . , n, are defined as
yij = ĥ′

ixj , i = 1, . . . , p, j = 1, . . . , n. Thus, under the null hypothesis of
multivariate normality, we can treat yi1, . . . , yin, i = 1, . . . , p, as p approx-
imately independent samples. For sample i, the univariate Shapiro-Wilk
statistic is defined as

W (i) =
m

nli




n∑
j=1

ajyi(j)




2

, i = 1, . . . , p,
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where aj ’s are the constants tabulated in Shapiro and Wilk (1965) and

yi(1) ≤ yi(2) ≤ · · · ≤ yi(n)

are the ordered values of yi1, . . . , yin. For n > 50, the values of aj are given
by Shapiro and Francia (1972) and up to 2000 by Royston (1982).

From Shapiro and Wilk (1968), we note that for each i, W (i) can be
transformed to an approximate standard normal variable G(W (i)) by using
Johnson’s (1949) SB system,

G(W (i)) = γ + δ ln
[

W (i) − ε

1 − W (i)

]
,

where γ, δ, and ε can be found in Table 1 of Shapiro and Wilk (1968) up
to n = 50. For n > 50, values of γ, δ, and ε can be obtained with the help
of the results in Shapiro and Francia (1972) and Royston (1982). Let

M1 = −2
p∑

i=1

ln [Φ (G(W (i)))] ,

where Φ(·) is the distribution of a standard normal variable. Note that if
U ∼ unif(0, 1), then −2 lnU ∼ χ2

2. Srivastava and Hui (1987) proposed
M1 as their first test statistic for testing multivariate normality, where M1
is approximately distributed as χ2

2p under the hypothesis of multivariate
normality. Large values of M1 will indicate non-normality.

Next, they observed that small values of W (i) indicate a departure
from normality for variate i. Thus, they considered the minimum of all
components and proposed

M2 = min
1≤i≤p

W (i)

as the second test statistic. The null distribution of M2 is approximately
given by

P (M2 ≤ t) = 1 − [1 − Φ (G(t))]p . (10.2)

For p =2, 4, and 6 and n =10, 25, and 50, a simulation study [Srivastava
and Hui (1987)] found that the null distribution of both M1 and M2 are
well approximated by χ2

2p and (10.2), respectively. Examples of the use of
M1 and M2 on data sets are provided by Looney (1995) with the necessary
SAS procedures or FORTRAN subroutines.

Most tests for multivariate normality are functions of the squared radii
(or squared Mahalanobis distances of xi to x̄),

d2
i = |zi|2 = (xi − x̄)′S−1(xi − x̄), i = 1, . . . , n.

Some graphical procedures [Andrews et al. (1973), Cox and Small (1978),
Gnanadesikan and Kettenring (1972)] are based on d2

i . One such Q-Q
plot is described in Section 11.4.1. Malkovich and Afifi (1973) considered
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the supremum of the standardized skewness and kurtosis over all linear
combinations t′x,

βM
1 = max

t∈Sp−1

{E (t′x − t′µ)3}2

(t′Σt)3
,

βM
2 = max

t∈Sp−1

∣∣∣∣
E (t′x − t′µ)4

(t′Σt)2
− 3

∣∣∣∣ .

The tests are based on the sample versions

βM
1,n = max

t∈Sp−1
b1,n(t),

βM
2,n = max

t∈Sp−1
|b2,n(t) − 3|,

respectively, where

b1,n(t) =
{ 1

n

∑n
i=1(t

′xi − t′x̄)3}2

(t′St)3
,

b2,n(t) =
1
n

∑n
i=1(t

′xi − t′x̄)4

(t′St)2
.

Mardia’s kurtosis test [Mardia (1970)] is a function of d2
i and his skewness

test is a function of the scaled residuals

zi = S−1/2(xi − x̄), i = 1, . . . , n.

Mardia’s measures of multivariate skewness and kurtosis are

B1,n =
1
n2

n∑
i,j=1

{(xi − x̄)′S−1(xj − x̄)}3,

B2,n =
1
n

n∑
i=1

{(xi − x̄)′S−1(xi − x̄)}2,

respectively. The tests of multivariate normality based on multivariate
skewness, βM

1,n and B1,n, are inconsistent against each fixed non-normal
elliptical distribution [Baringhaus and Henze (1991)]. However, the tests
based on multivariate kurtosis, βM

2,n and B2,n, are consistent. An approxi-
mation formula of the power of the test βM

2,n against elliptically symmetric
distributions was derived by Naito (1998). Cox and Small (1978) proposed
tests based on linearity of regression rather than directly on normality. An
omnibus test based on empirical characteristic function of the scaled residu-
als was also proposed [Henze and Zirkler (1990), v. also Henze and Wagner
(1997)]. Goodness-of-fit tests for a general multivariate distribution by the
empirical characteristic function was treated by Fan (1997). A character-
ization of multivariate normality by hermitian polynomials was recently
proposed by Kariya et al. (1997) to build an omnibus test. A comparative
study of goodness-of-fit tests for multivariate normality was carried out by
Romeu and Ozturk (1993).
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10.7 Problems

1. In morphometric studies, it is often the case that all variables are
positively correlated. Prove that if Σ has all positive covariances,
σij > 0 for i �= j, then all the coefficients in h1 of the first principal
component may be taken non-negative.

2. For Σ ≥ 0 in R
p
p with spectral decomposition Σ = HDH′ as in

Section 10.2, prove that Θ =
∑k

i=1 λihih′
i is the matrix of rank k

such that

||Σ − Θ||2 =
p∑

i=1

p∑
j=1

(σij − θij)2

is minimum.
Hint: ||Σ − Θ||2 = tr(D − E)(D − E)′, where E = H′ΘH.

3. Assume x ∈ R
p has density

fx(x) = |Λ|−1/2g[(x − µ1)′Λ−1(x − µ1)],

where Λ = σ2[(1 − ρ)I + ρ11′]. Prove there exists H ∈ Op such that
y = Hx has density

fy(y) = λ
−1/2
1 λ

−(p−1)/2
2 g

[
(y1 − p1/2µ)2

λ1
+

∑p
i=2 y2

i

λ2

]
.

4. Parent-child interclass correlation [Srivastava (1984)].
Assume x ∈ R

p+1 has density

fx(x) = |Σ|−1/2 exp[(x − µ)′Σ−1(x − µ)],

where

µ =
(

µm

µs1

)
,

Σ =
(

σ2
m σms1′

σms1 σ2
s [(1 − ρss)I + ρss11′]

)
.

Here, “m” stands for mother and “s” means siblings. Let A′ =
(1/p,Γ′) ∈ R

p for some Γ satisfying Γ1 = 0 and ΓΓ′ = Ip−1.

(i) Interpret the parameters (µm, µs, σ
2
m, σms, ρss).

(ii) Prove that if

Ã =
(

1 0′

0 A

)
,

then ÃΣÃ′ = diag(Ω, γ2
sIp−1), where

Ω =
(

σ2
m σms

σms η2

)
,
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γ2
s = σ2

s(1 − ρss),
η2 = [1 + (p − 1)ρss]σ2

s/p.

(iii) Deduce that y = Ãx is such that (y1, y2)′ ∼ N2 ((µm, µs)′,Ω),
yi ∼ N(0, γ2

s ) (i = 3, . . . , p + 1), and (y1, y2) |= (y3, . . . , yp+1).
(iv) What are the implications for maximum likelihood estimation

of the unknown parameters in i)?

Remark: The yi’s are not the principal components but are closely
related to the concept.

5. Let f = (f1, . . . , fp)′ be the eigenvalues of the sample correlation
matrix R. If the eigenvalues γα of the population correlation matrix ρ
are all distinct, then find the limiting distribution of

∑k
i=1 fi/p for the

ratio of total variance explained by the first k principal components.



11
Canonical correlations

11.1 Introduction

The objective of canonical correlation analysis is to get a simple description
of the structure of correlation between subsets of variables. Assume that
two subsets of variables x1 and x2 have a joint normal distribution,

(
x1
x2

)
∼ Np

((
µ1
µ2

)
,

(
Σ11 Σ12
Σ21 Σ22

))
.

The analysis searches for a pair of linear combinations t′
1x1 and t′

2x2 with
maximum correlation. This is the first canonical correlation. Having found
such a pair, the analysis is pursued one step further by searching for a
second pair of linear combinations with maximum correlation among all
those uncorrelated with the first pair. The correlation found is the second
canonical correlation. The argument is repeated until all possible correla-
tions are exhausted. This analysis is explained in detail in Section 11.2.
In Section 11.3, tests of independence between x1 and x2 are derived. Not
surprisingly, the tests proposed will be functions of the sample canoni-
cal correlations. Section 11.4 uses advantageously the context of testing
independence to derive simple proofs of the properties of U(p; m, n) distri-
butions introduced earlier in Section 9.3.2. As a by-product we also obtain
a method of constructing Q-Q plots of squared radii for a visual inspection
of multivariate normality. Asymptotic distributions of sample canonical
correlations is the subject of Section 11.5.
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11.2 Definition and basic properties

Assume Σjj > 0, Σij ∈ R
pi
pj

, i, j = 1, 2. Without any loss of generality,
suppose p1 ≤ p2. Write Σjj = A2

j , where Aj > 0, j = 1, 2. Now using the
SVD (v. Proposition 1.11), we have

A−1
1 Σ12A−1

2 = G(Dρ,0)H′,

where Dρ = diag(ρ1, . . . , ρp1), ρ1 ≥ · · · ≥ ρp1 ≥ 0,

G = (g1, . . . ,gp1) ∈ Op1 ,

H = (h1, . . . ,hp2) ∈ Op2 .

If we define

u = G′A−1
1 x1 = (u1, . . . , up1)

′,
v = H′A−1

2 x2 = (v1, . . . , vp2)
′,

then

var
(

u
v

)
=




Ip1 (Dρ,0)(
Dρ
0

)
Ip2


 .

Obviously, var ui = var vj = 1 and cor(ui, vj) = ρiδij , i = 1, . . . , p1,
j = 1, . . . , p2.

Definition 11.1 The variables u1, . . . , up1 and v1, . . . , vp2 are defined to
be the canonical variables. The numbers ρi’s, 1 ≥ ρ1 ≥ ρ2 ≥ · · · ≥ ρp1 ≥ 0,
are the canonical correlations.

Note that the number of nonzero canonical correlations is rank Σ12 ≡ c. In a
similar manner as the principal components were interpreted, the canonical
variables can also be derived sequentially.

First, we seek linear combinations t′
1x1 and t′

2x2 such that cor(t′
1x1, t′

2x2)
is maximal. But, in general, since cor(x, y) is invariant with respect to lin-
ear transformations, x �→ ax + b, y �→ cy + d, a, c > 0, we may assume at
the outset that var t′

jxj = t′
jΣjjtj = 1, j = 1, 2. Introducing the ellipsoids

Ej = {tj : t′
jΣjjtj = 1}, j = 1, 2,

the problem is thus

max
t1∈E1
t2∈E2

t′
1Σ12t2.

For tj ∈ Ej , |Ajtj | = 1, j = 1, 2, the Cauchy-Schwarz inequality gives

(t′
1Σ12t2)2 = 〈A1t1,A−1

1 Σ12A−1
2 h〉2

≤ |A−1
1 Σ12A−1

2 h|2,
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where h = A2t2 has norm 1. Letting B = A−1
1 Σ12A−1

2 , then |Bh|2 =
h′B′Bh, where

B′B = (A−1
1 Σ12A−1

2 )′(A−1
1 Σ12A−1

2 ) = H
(

Dρ2 0
0 0

)
H′.

Thus, from the method used for principal components, we find h′B′Bh ≤
ρ2
1 with equality when h = h1. This gives t′

2x2 = h′
1A

−1
2 x2 = v1. Finally,

the Cauchy-Schwarz inequality is, in fact, an equality iff A1t1 ∝ Bh1 or,
equivalently,

t1 ∝ A−1
1 A−1

1 Σ12A−1
2 h1

= A−1
1 G(Dρ,0)H′h1

= A−1
1 G(Dρ,0)e1

= ρ1A−1
1 g1,

which, in turn, gives t′
1x1 = g′

1A
−1
1 x1 = u1. We have proved that (u1, v1)

is the pair of linear combinations with maximum correlation ρ1.
Second, having found pairs of linear combinations

(ui, vi) = (g′
iA

−1
1 x1,h′

iA
−1
2 x2), i = 1, . . . , k, k < rank Σ12 ≡ c,

another pair (t′
1x1, t′

2x2) is sought with maximum correlation among all
those uncorrelated with the preceding pairs; i.e., the restriction

cov(t′
jxj , ui) = cov(t′

jxj , vi) = 0, i = 1, . . . , k; j = 1, 2,

is imposed. This last restriction is characterized in terms of orthogonality:

cov(t′
1x1, ui) = t′

1Σ11A−1
1 gi = t′

1A1gi = 0 ⇐⇒ t1 ⊥ A1gi.

Similarly, cov(t′
2x2, vi) = 0 iff t2 ⊥ A2hi. We note that when t1 ⊥ A1gi,

the other condition, cov(t′
1x1, vi) = 0, is automatically satisfied:

cov(t′
1x1, vi) = t′

1Σ12A−1
2 hi

= t′
1A1(A−1

1 Σ12A−1
2 )hi

= t′
1A1G(Dρ,0)H′hi

= ρit′
1A1gi = 0.

Similarly, when t2 ⊥ A2hi then cov(t′
2x2, ui) = 0 is automatically satisfied.

So the problem becomes

max
t1∈E⊥

1
t2∈E⊥

2

t′
1Σ12t2,

where

E⊥
1 = {t1 ∈ E1 : t1 ⊥ A1g1, . . . ,A1gk},

E⊥
2 = {t2 ∈ E2 : t2 ⊥ A2h1, . . . ,A2hk}.
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The Cauchy-Schwarz inequality gives for tj ∈ E⊥
j ,

(t′
1Σ12t2)2 = 〈A1t1,Bh〉2 ≤ h′B′Bh,

where, as before, B = A−1
1 Σ12A−1

2 and h = A2t2. But, using the
orthogonality restrictions,

h′B′Bh = t′
2A2H

(
Dρ2 0
0 0

)
H′A2t2

=
c∑

i=k+1

(t′
2A2hi)2ρ2

i ≤ ρ2
k+1,

with equality when h = A2t2 = hk+1, which yields t′
2x2 = h′

k+1A
−1
2 x2 =

vk+1. As before, the Cauchy-Schwarz inequality becomes an equality iff
A1t1 ∝ Bhk+1, which implies t1 = A−1

1 gk+1 and t′
1x1 = g′

k+1A
−1
1 x1 =

uk+1. The solution is the pair of canonical variables (uk+1, vk+1).
Repeating the second stage for k = 1, . . . , c−1, all the pairs of canonical

variables (ui, vi), i = 1, . . . , c, can be generated. Each pair of canonical
variables is identified with the pair of linear combinations of x1 and x2
with maximum correlation among all those uncorrelated with the preceding
pairs.

Finally, the canonical correlations can be characterized as solutions of a
determinant equation. In fact, the nonzero squared canonical correlations
ρ2

i , i = 1, . . . , c, are the nonzero eigenvalues of

B′B = (A−1
1 Σ12A−1

2 )′(A−1
1 Σ12A−1

2 ) = A−1
2 Σ21Σ−1

11 Σ12A−1
2 .

Hence, the nonzero ρ2
i are the nonzero solutions λ of the equation

|Σ12Σ−1
22 Σ21Σ−1

11 − λI| = 0.

11.3 Tests of independence

Based on a random sample of size n from a Np1+p2(µ,Σ), where

Σ =
(

Σ11 Σ12
Σ21 Σ22

)

with Σij ∈ R
pi
pj

, we construct a test of independence reflected by the
hypothesis,

H0 : Σ12 = 0 ⇐⇒ H0 : ρ1 = · · · = ρp1 = 0,

against all alternatives. The unbiased estimator S of Σ is partitioned in
conformity as

(n − 1)S ≡ V =
(

V11 V12
V21 V22

)
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and we know already that V ∼ Wp(n − 1,Σ). The MLE Σ̂ = V/n is
proportional to S. Without any restriction, the MLE of Σij , i, j = 1, 2, is
Σ̂ij = Vij/n. However, under H0, the restricted MLE’s are given by

ˆ̂Σ11 = Σ̂11,
ˆ̂Σ22 = Σ̂22,

ˆ̂Σ12 = 0.

The LRT takes the form

Λ =
L(x̄,

ˆ̂Σ11,
ˆ̂Σ22,

ˆ̂Σ12)
L(x̄, Σ̂11, Σ̂22, Σ̂12)

=
|Σ̂11|−n/2|Σ̂22|−n/2

|Σ̂|−n/2
.

Thus, since Σ̂ ∝ V and using the relation |V| = |V11||V22.1|,

Λ2/n =
|V22.1|
|V22| =

|V11.2|
|V11|

= |I − V12V−1
22 V21V−1

11 |

=
p1∏

i=1

(1 − r2
i )

is a function of the sample canonical correlations ri’s, where r2
i is a solution

λ of the equation

|V12V−1
22 V21V−1

11 − λI| = 0.

They satisfy w.p.1, 1 > r2
1 > · · · > r2

p1
> 0.

Consider now the invariant tests. The group Gp1 × Gp2 × R
p1 × R

p2

transforms the observations as(
xi1
xi2

)
�→

(
B1 0
0 B2

)(
xi1
xi2

)
+

(
b1
b2

)

=
(

B1xi1 + b1
B2xi2 + b2

)
, i = 1, . . . , n,

for any (B1,B2,b1,b2) ∈ Gp1×Gp2×R
p1×R

p2 . This induces the following
transformations on the minimal sufficient statistic (x̄,V):

(
x̄1
x̄2

)
�→

(
B1x̄1 + b1
B2x̄2 + b2

)
,

(
V11 V12
V21 V22

)
�→

(
B1 0
0 B2

)(
V11 V12
V21 V22

)(
B′

1 0
0 B′

2

)

=
(

B1V11B′
1 B1V12B′

2
B2V21B′

1 B2V22B′
2

)
.

A test function f(x̄,V) is invariant iff

f(y,W) = f

((
B1y1 + b1
B2y2 + b2

)
,

(
B1W11B′

1 B1W12B′
2

B2W21B′
1 B2W22B′

2

))
,
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∀(B1,B2,b1,b2) ∈ Gp1 ×Gp2 ×R
p1 ×R

p2 , ∀(y,W) ∈ R
p ×Pp. The choice

bi = −Bix̄i, i = 1, 2, immediately yields

f(x̄,V) = f

(
0,

(
B1V11B′

1 B1V12B′
2

B2V21B′
1 B2V22B′

2

))
.

Using the same arguments as in the definition of canonical correlations, let
Vii = A2

i , where Ai > 0, i = 1, 2, and consider the SVD

A−1
1 V12A−1

2 = G(Dr,0)H′,

where Dr = diag(r1, . . . , rp1), 1 > r1 > · · · > rp1 > 0, and we still assume
p1 ≤ p2 without loss of generality. Then, the choice B1 = G′A−1

1 and
B2 = H′A−1

2 finally gives

f(x̄,V) = f


0,




Ip1 (Dr,0)(
Dr

0

)
Ip2




 ;

i.e., any invariant test is a function of the sample canonical correlations
ri’s. A similar argument shows that the power function of any invariant
test depends only on the population canonical correlations ρi’s.

Proposition 11.1 With respect to the block-diagonal group of transforma-
tions above, any invariant test depends on the minimal sufficient statistic
(x̄,V) only through the sample canonical correlations ri’s. The power func-
tion of any invariant test depends on (µ,Σ) only through the population
canonical correlations ρi’s.

We now derive the null distribution of the LRT test.

Proposition 11.2 Under the hypothesis of independence, H0 : Σ12 = 0
and n − 1 > min(p1, p2), Λ2/n ∼ U(p2; p1, n − 1 − p1).

Proof. By invariance, assume without loss of generality that Σ = I and
let m = n − 1. Write

(
V11 V12
V21 V22

)
d=
(

X′
1

X′
2

)
(X1,X2),

where

(X1,X2) ∼ Nm
p (0, Im ⊗ Ip).

The conditional distribution of X2 given X1 is

X2 | X1 ∼ Nm
p2

(0, Im ⊗ Ip2).

Now, for X1 ∈ R
m
p1

, rank X1
w.p.1

= p1. Therefore, we have the SVD

G′X1H =
(

D
0

)
,
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where G ∈ Om, H ∈ Op1 , and D ∈ R
p1
p1

is diagonal and nonsingular. Thus,

G′X1 =
(

DH′

0

)
≡

(
X̃1
0

)
,

where X̃1 ∈ R
p1
p1

is nonsingular. Since G (a function of X1) is orthogonal,

G′X2 | X1 ∼ Nm
p2

(0, Im ⊗ Ip2),

which does not depend on X1 and so G′X2 ∼ Nm
p2

(0, Im ⊗ Ip2)
unconditionally. Now, partition

G′X2 =
(

Y
Z

)
,

where Y ∈ R
p1
p2

and Z ∈ R
m−p1
p2

. Then, Y |= Z and

V22 = X′
2X2 = (G′X2)′(G′X2) = Y′Y + Z′Z,

V11 = X′
1X1 = (G′X1)′(G′X1) = X̃′

1X̃1,

V12 = X′
1X2 = (G′X1)′(G′X2) = X̃′

1Y.

Finally,

Λ2/n =
|V22.1|
|V22|

=
|Y′Y + Z′Z − Y′X̃1(X̃′

1X̃1)−1X̃′
1Y|

|Y′Y + Z′Z| =
|Z′Z|

|Y′Y + Z′Z| ,

where Z′Z ∼ Wp2(m − p1), and Y′Y ∼ Wp2(p1). By definition,

Λ2/n ∼ U(p2; p1, m − p1).

�

Let R = V12V−1
22 V21V−1

11 . As for multivariate regression, other invariant
tests can be constructed such as

tr R =
p1∑

i=1

r2
i ,

tr R(I − R)−1 =
p1∑

i=1

r2
i

(1 − r2
i )

,

r2
1 = max{r2

1, . . . , r
2
p1
}.

Again, none of these tests has a power function which uniformly dominates
the others. It is shown in Example 14.10 how to perform a bootstrap test
using the test statistics tr R or tr R(I − R)−1.
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11.4 Properties of U distributions

We end this chapter with some properties and characterizations useful for
the tabulation and moments of U distributions. These simplified proofs are
from Bilodeau (1996).

Assume x1 ∈ R
p1 is fixed and x2 ∼ Np2 (0,Σ22), p = p1 + p2, Σ22 > 0.

Based on a random sample of size n, say X ∈ R
n
p , the matrix of sums of

squares and cross-products V is partitioned in conformity as

V = X′X =
(

X′
1

X′
2

)
(X1,X2) =

(
V11 V12
V21 V22

)
.

When n > min(p1, p2) and rank X1 = p1, consider

Λ̃ =
|V|

|V11||V22| =
|V22.1|
|V22| =

|V11.2|
|V11| .

Proposition 11.3 If n > min(p1, p2) and rank X1 = p1, then

Λ̃ ∼ U(p2; p1, n − p1).

Proof. Assume without loss of generality Σ22 = I and thus X2 ∼
Nn

p2
(0, I). Now, X1 ∈ R

n
p1

has rank X1 = p1. Its singular value
decomposition is

G′X1H =
(

D
0

)
,

where G ∈ On, H ∈ Op1 , and D ∈ R
p1
p1

is diagonal and nonsingular. Thus,

G′X1 =
(

DH′

0

)
≡

(
X̃1
0

)

where X̃1 ∈ R
p1
p1

is nonsingular. Since G (a function of X1) is orthogonal,
G′X2 ∼ Nn

p2
(0, I). Partition

G′X2 =
(

Y
Z

)
,

where Y ∈ R
p1
p2

and Z ∈ R
n−p1
p2

. Then, Y |= Z and V22 = Y′Y + Z′Z,
V11 = X̃′

1X̃1, and V12 = X̃′
1Y. Finally,

Λ̃ =
|V22.1|
|V22| =

|Y′Y + Z′Z − Y′X̃1(X̃′
1X̃1)−1X̃′

1Y|
|Y′Y + Z′Z| =

|Z′Z|
|Y′Y + Z′Z| ,

where Z′Z ∼ Wp2(n−p1), Y′Y ∼ Wp2(p1). By definition, Λ̃ ∼ U(p2; p1, n−
p1). �

Proposition 11.3 remains valid if X1 has any absolutely continuous distri-
bution (and thus has rank X1 = p1 w.p.1 (v. Lemma 7.1 and the remark
on page 88)) and X1 |= X2. It suffices to notice the distribution of Λ̃ does
not depend on X1.
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Vice versa, writing Λ̃ = |V11.2|/|V11|, if X1 is normal and X2 is fixed,
rank X2 = p2, it is clear the same proof yields Λ̃ ∼ U(p1; p2, n − p2). The
duality property asserts that, in fact, U(p1; p2, n − p2)

d= U(p2; p1, n − p1).
As a by-product, we show the “duality” property:

Corollary 11.1 U(p; m, n) d= U(m; p, m + n − p) when m + n > p.

Proof. Assume X1 and X2 are both normal and X1 |= X2. Since X1 is
normal, Λ̃ ∼ U(p1; p2, n−p2), and since X2 is also normal, Λ̃ ∼ U(p2; p1, n−
p1). The distribution of Λ̃ being unique, U(p1; p2, n−p2)

d= U(p2; p1, n−p1).
Substitute (p, m, m + n) for (p1, p2, n). �

In order to obtain a characterization of U distributions as a product of
independent beta variables, we prove the following lemma.

Lemma 11.1 If n ≥ p,

U(p; 1, n) d= beta
( 1

2 (n − p + 1); 1
2p

)
.

Proof. When m = 1, recalling the identity |I + AB| = |I + BA| (v.
Problem 1.8.3),

U(p; 1, n) d=
|W|

|W + zz′| = |I + W−1zz′|−1 = (1 + z′W−1z)−1,

where z |= W, z ∼ Np(0, I), and W ∼ Wp(n). Using Proposition 8.2,

z′W−1z ∼ Fc(p, n − p + 1).

Finally, using Problem 3.5.5,

(1 + z′W−1z)−1 ∼ beta
( 1

2 (n − p + 1); 1
2p

)
.

�

Proposition 11.4 A variable distributed as U(p; m, n), n ≥ p, has the two
characterizations

U(p; m, n) d=
m∏

i=1

beta
( 1

2 (n − p + i); 1
2p

)

and

U(p; m, n) d=
p∏

i=1

beta
( 1

2 (n − p + i); 1
2m

)
;

i.e., a U(p; m, n) variable has the same distribution as a product of
independent beta variables.

Proof. The second representation follows from the first and the duality
property of U distributions. We need only show the first representation. Its
proof proceeds by induction on m. From Lemma 11.1, the result is true for
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m = 1. Assume the result is true for m − 1 and show it holds for m. By
definition,

U(p; m, n) d=
|W|

|W + Z′Z| , W ∼ Wp(n), Z ∼ Nm
p (0, Im ⊗ Ip), Z |= W

=
|W|

|W + z1z′
1|

· |(W + z1z′
1)|

|(W + z1z′
1) + Z′

2Z2| ≡ U1 · U2,

where

Z =
(

z′
1

Z2

)
,

z1 ∼ Np(0, I), Z2 ∼ Nm−1
p (0, Im−1 ⊗ Ip), and z1 |= Z2. Consider

now the distribution of U2. Let W1 = W + z1z′
1 and W2 = Z′

2Z2.
Then, W1 ∼ Wp(n + 1), W2 ∼ Wp(m − 1), and W1 |= W2. There-
fore, U2 ∼ U(p; m − 1, n + 1) and the induction hypothesis gives U2 ∼∏m−1

i=1 beta
( 1

2 (n + 1 − p + i); 1
2p

)
. Translating i �→ i + 1,

U2 ∼
m∏

i=2

beta
( 1

2 (n − p + i); 1
2p

)
.

The factor missing for i = 1 is U1. The proof is complete if we prove
U1 |= U2. First, note that if U1 |= W1, then U1, W1, and Z2 are mutu-
ally independent and, therefore, U1 |= U2. So, we prove U1 |= W1. But, if
V ∼ Wp(n,Σ), Σ > 0, x ∼ Np(0,Σ), and V |= x, then (V,x) d= (Y′Y,x),
where Y ∼ Nn

p (0, In ⊗ Σ), Y |= x. In the model for (Y,x), Y′Y + xx′

is complete and sufficient for Σ. Therefore, V + xx′ is complete and suf-
ficient for Σ. Using Basu’s theorem in the footnote on page 118, V + xx′

is independent of any ancillary statistic such as |V|/|V +xx′|. This proves
U1 |= W1. �

This representation is useful for finding the distribution function or quan-
tiles of a U(p; m, n) distribution since lnU(p; m, n) can be represented as
a convolution of simple distributions. Of course, it is advantageous to use
the representation with min(p, m) number of factors. This number of fac-
tors can be reduced further by 1

2 by grouping adjacent factors by pairs
[Anderson (1984), p. 304]. The following lemma allows the pairing.

Lemma 11.2 For n > 1,

[beta(n − 1; m)]2 d= beta( 1
2 (n − 1); 1

2m) · beta( 1
2n; 1

2m).

Proof. It is straightforward to check that all moments of order h > 0 on
the left and right sides of d= are the same (v. Problem 11.6.3). Since the
domain is the bounded interval [0, 1], there is a unique distribution with
these moments [Serfling (1980), p. 46]. �

The following representation has a reduced number of factors as p is even
or odd.
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Corollary 11.2 For n ≥ p, a U(p; m, n) variable can be represented as
r∏

i=1

[beta(n + 1 − 2i; m)]2, if p = 2r

beta( 1
2 (n − p + 1); 1

2m) ·
r∏

i=1

[beta(n + 1 − 2i; m)]2, if p = 2r + 1.

Proof. The proof for p = 2r is as follows. From Proposition 11.4, we have

U(p; m, n) d=
r∏

i=1

beta( 1
2 (n − p + 2i − 1); 1

2m) beta( 1
2 (n − p + 2i); 1

2m),

and from Lemma 11.2,

U(p; m, n) d=
r∏

i=1

[beta(n − p + 2i − 1; m)]2.

The conclusion follows after reversing the index i �→ r − i + 1. The proof
for p odd is identical except for the first isolated factor. �

The asymptotic distribution as n → ∞ of U(p; m, n) should be
clear from the asymptotic distribution of the likelihood ratio statistic in
Proposition 11.2,

−n lnU(p; m, n) d→ χ2
pm. (11.1)

The slight modification

−[n − 1
2 (p − m + 1)] lnU(p; m, n) d→ χ2

pm

is often used as an improved approximation since it has a remainder of order
O(n−2), whereas the remainder in (11.1) is O(n−1). The general asymp-
totic expansion of order O(n−α) [Box (1949)] is treated in Section 12.3. As
an alternative to asymptotic expansion an S-plus program in Appendix C
uses the fast Fourier transform [Press (1992)] to compute the density of
U(p; m, n) by convolution and thus calculates exact probabilities (up to
a discretization of the beta variables) and quantiles. Srivastava and Yau
(1989) presented the saddlepoint method for obtaining tail probabilities. An
exact closed form solution without series representation was also recently
derived [Coelho (1998)].

11.4.1 Q-Q plot of squared radii
The scaled residuals of n observations, xi, may be defined as

zi = S−1/2(xi − x̄), i = 1, . . . , n.

Then, the squared radii (or squared Mahalanobis distances of xi to x̄) are

d2
i = |zi|2 = (xi − x̄)′S−1(xi − x̄), i = 1, . . . , n.
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Note that if xi ∼ Np(µ,Σ), then di is an ancillary statistic; i.e., the distri-
bution of di, say F (·), does not depend on (µ,Σ). One aspect of multivariate
normality can thus be tested with a Q-Q plot of the ordered d2

i against
the quantiles of the distribution F (·) [Small (1978)]. Gnanadesikan and
Kettenring (1972) derived the following result.

Lemma 11.3 If x1, . . . ,xn are i.i.d. Np(µ,Σ), then
n

(n − 1)2
d2

i ∼ beta
( 1

2p; 1
2 (n − p − 1)

)
.

Proof.

1 − n

(n − 1)2
d2

i = |V − n

(n − 1)
(xi − x̄)(xi − x̄)′|/|V|

= |W1|/|W1 + W2|,
where V =

∑n
i=1(xi − x̄)(xi − x̄)′, W1 = V − W2, and W2 = n

(n−1) (xi −
x̄)(xi− x̄)′. Assume without loss of generality that µ = 0 and Σ = I. Thus,
with Z ∼ Nn

p (0, In ⊗ Ip),

(W1,W2)
d= (Z′(Q − H)Z,Z′HZ) ,

where

H =
n

(n − 1)
(ei − n−11)(ei − n−11)′,

Q = I − n−111′.

The following can be verified easily:

(i) H is idempotent of rank 1,

(ii) Q is idempotent of rank n − 1,

(iii) Q(ei − n−11) = (ei − n−11) and, thus, QH = H,

(iv) Q − H is idempotent of rank n − 2, (Q − H)H = 0.

Thus, W1 |= W2, W1 ∼ Wp(n− 2), and W2 ∼ Wp(1) (v. Proposition 7.8
and Problem 6.4.3), which implies

|W1|/|W1 + W2| ∼ U(p; 1, n − 2) d= beta
( 1

2 (n − p − 1); 1
2p

)
.

�

Consider the ordered d2
i ,

d2
(1) ≤ d2

(2) ≤ · · · ≤ d2
(n).

Assuming d2
i , i = 1, . . . , n, are i.i.d. according to the distribution in

Lemma 11.3, one could evaluate the expected order statistics, E d2
(i). Then,

the Q-Q plot consists of a graph of the points(
d2
(i), E d2

(i)

)
, i = 1, . . . , n.
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To simplify matters, we can assign to d2
(i) a cumulative probability of i/n

and approximate E d2
(i) by the quantile γi = i/n of the distribution

[(n − 1)2/n] beta
( 1

2p; 1
2 (n − p − 1)

)
.

Blom (1958) has shown how to select α and β so that the expected order
statistic E d2

(i) may be well approximated by the quantile

γi = (i − α)/(n − α − β + 1). (11.2)

For beta, the distribution at hand, the indicated choice is

α =
(p − 2)

2p
,

β =
(n − p − 2)
2(n − p − 1)

. (11.3)

Thus, the recommended Q-Q plot is the graph of the points
(
d2
(i), [(n − 1)2/n] betaγi

( 1
2p; 1

2 (n − p − 1)
))

, i = 1, . . . , n,

where betaα(a; b) denotes the quantile α of a beta(a; b) distribution and
γi is given by (11.2) and (11.3). The Splus function qqbeta in Appendix C
produces the Q-Q plot. One should not forget, however, that the d2

i are
correlated, but from Wilks (1963),

cor(d2
i , d

2
j ) = − 1

(n − 1)
, i �= j,

and the correlation, of the order O(n−1), is negligible for moderate to large
sample sizes. A Q-Q plot approaching a 45◦ straight line is consistent with
multivariate normality. Figure 11.1 gives the Q-Q plot for 50 observations
generated from a N3(0, I) distribution and Figure 11.2 is the Q-Q plot for
50 observations generated from a trivariate Cauchy distribution. These are
easily generated with Example 13.2. The deviations from the straight line
are clearly more systematic in Figure 11.2 associated with a distribution
with heavier “tails” than the multivariate normal.

For large n, the beta distribution can be approximated by a χ2
p distri-

bution. Gnanadesikan (1977, p. 172) remarked that in the bivariate case
n = 25 may provide a sufficiently large sample for this chi-squared approx-
imation to be adequate. However, n = 100 does not seem large enough for
p = 4, for there is a marked deviation from linearity when the ordered d2

i

are plotted against expected order statistics of chi-squared, and this effect
becomes more marked as p increases. We therefore recommend the use of
the beta distribution.
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Figure 11.1. Q-Q plot for a sample of size n = 50 from a trivariate normal,
N3(0, I), distribution.
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Figure 11.2. Q-Q plot for a sample of size n = 50 from a trivariate t on 1 degree
of freedom, t3,1(0, I) ≡ Cauchy3(0, I), distribution.
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11.5 Asymptotic distributions

Assuming xi, i = 1, . . . , n, are i.i.d. Np(µ,Σ), we derive the asymptotic
distribution of r2

α, α = 1, . . . , p1, when ρα is distinct from all other canonical
correlations.

A squared sample canonical correlation, r2
α, is a value of l for which there

is a nonzero solution c to the equation

(S−1
11 S12S−1

22 S21 − l I)c = 0. (11.4)

Using the result n1/2(S − Σ) d→ W of Section 6.3, where

W ∼ Np
p (0, (I + K)(Σ ⊗ Σ)),

we write

S11 = I + n−1/2W11,

S22 = I + n−1/2W22,

S12 = (Dρ,0) + n−1/2W12.

Using Problem 1.8.15, S−1
22 = I − n−1/2W22 + Op(n−1) and similarly for

S−1
11 . Keeping terms up to order n−1/2,

S−1
11 S12S−1

22 S21 = D2
ρ + n−1/2

[
−D2

ρW11 + (Dρ,0)W21

−(Dρ,0)W22

(
Dρ
0

)
+ W12

(
Dρ
0

)]
+ Op(n−1).

We now apply the perturbation method as in Section 8.8.1 and obtain from
(8.11) the expansion

r2
α = ρ2

α + n−1/2[−ρ2
αwαα

11 − ρ2
αwαα

22 + 2ραwαα
21 ] + Op(n−1),

where wαα
ij is the element (α, α) of the matrix Wij . From (6.1), we have

(wαα
11 , wαα

22 , wαα
21 )′ d→ N3(0,Ω),

where

Ω =




2 2ρ2
α 2ρα

2ρ2
α 2 2ρα

2ρα 2ρα 1 + ρ2
α


 .

Finally, defining the linear combination vector a = (−ρ2
α,−ρ2

α, 2ρα)′, we
obtain n1/2(r2

α − ρ2
α) d→ N(0,a′Ωa), whereby a direct calculation shows

a′Ωa = 4ρ2
α(1 − ρ2

α)2. We have shown:

Proposition 11.5 The asymptotic distribution of the squared sample
canonical correlation r2

α, α = 1, . . . , p1, assuming ρα is distinct from all
other canonical correlations is n1/2(r2

α − ρ2
α) d→ N(0, 4ρ2

α(1 − ρ2
α)2).
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Various extensions of Proposition 11.5 to the joint distribution of sample
canonical correlations can be envisaged. The simplest extension is to the
joint distribution of r2

1, . . . , r
2
p1

when all canonical correlations are distinct,
ρ1 > · · · > ρp1 .

Corollary 11.3 The asymptotic joint distribution of r2
1, . . . , r

2
p1

when all
population canonical correlations are distinct, ρ1 > · · · > ρp1 , is

n1/2(r2
1 − ρ2

1, . . . , r
2
p1

− ρ2
p1

)
d→ Np1

(
0, 4 diag

(
ρ2
1(1 − ρ2

1)
2, . . . , ρ2

p1
(1 − ρ2

p1
)2
))

.

Proof. It suffices to consider the asymptotic covariance of two squared
sample canonical correlations, r2

α and r2
β , when the population canonical

correlations, ρα and ρβ , are of multiplicity 1. But, it is immediate from the
proof of Proposition 11.5 that

cov(−ρ2
αwαα

11 − ρ2
αwαα

22 + 2ραwαα
21 ,−ρ2

βwββ
11 − ρ2

βwββ
22 + 2ρβwββ

21 ) = 0

since from (6.1), all the covariances satisfy, cov(wαα
ij , wββ

kl ) = 0, i, j, k, l =
1, 2. �

Hsu (1941) derived the asymptotic joint density when

1 > ρ1 > · · · > ρc > ρc+1 = · · · = ρp1 = 0.

Muirhead and Waternaux (1980) obtained the asymptotic joint distribution
when all population canonical correlations are distinct, as in Proposi-
tion 11.3 but for any underlying distribution with finite fourth moments.
Eaton and Tyler (1994), assuming an underlying elliptical distribution or,
in fact, any other distribution with finite fourth moments, derived the
asymptotic joint distribution in full generality,

ρ1 ≥ · · · ≥ ρc > ρc+1 = · · · = ρp1 = 0,

using an extension of Wielandt’s inequality to singular values.
In canonical correlation analysis, the number of nonzero population

correlations is called the dimensionality. Asymptotic distributions of the
dimensionality estimated by Mallow’s criterion and Akaike’s criterion were
derived [Gunderson and Muirhead (1997)] for non-normal multivariate
populations with finite fourth moments.

11.6 Problems

1. Obtain the hth moment, h > 0, of U ∼ U(p; m, n), n ≥ p,

E Uh =
m∏

i=1

Γ
[ 1
2 (n − p + i) + h

]

Γ
[ 1
2 (n − p + i)

] · Γ
[ 1
2 (n + i)

]

Γ
[ 1
2 (n + i) + h

]
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=
p∏

i=1

Γ
[ 1
2 (n − p + i) + h

]

Γ
[ 1
2 (n − p + i)

] · Γ
[ 1
2 (m + n − p + i)

]

Γ
[ 1
2 (m + n − p + i) + h

] .

2. Establish the following exact results concerning U distributions:

n[1 − U(1; m, n)]
m U(1; m, n)

∼ F (m, n),

(n − p + 1)[1 − U(p; 1, n)]
p U(p; 1, n)

∼ F (p, n − p + 1),

(n − 1)[1 − U(2; m, n)1/2]
m U(2; m, n)1/2 ∼ F (2m, 2(n − 1)),

(n − p + 1)[1 − U(p; 2, n)1/2]
p U(p; 2, n)1/2 ∼ F (2p, 2(n − p + 1)).

3. Prove that [beta(n − 1, m)]2 and beta(1
2 (n − 1), 1

2m) · beta( 1
2n, 1

2m),
a product of two independent betas, have the same moments of order
h > 0.

4. For

x = (x′
1,x

′
2)

′ = (x1, . . . , xp1 ; xp1+1, . . . , xp1+p2)
′

establish that simple correlation and multiple correlation coefficients
are bounded above as

(i) |ρxi,xj
| ≤ ρ1, i = 1, . . . , p1, j = p1 + 1, . . . , p1 + p2,

(ii) Rxi,x2 ≤ ρ1, i = 1, . . . , p1,

where ρ1 is the largest canonical correlation.

5. Let Σ12 = ρ1p11
′
p2

, Σii = ρ1pi
1′

pi
+ (1 − ρ)Ipi

, i = 1, 2, correspond-
ing to the equicorrelated case. Determine the canonical variables
corresponding to the nonzero canonical correlation.
Hint: Σ111p1 = [1 + (p1 − 1)ρ]1p1 .

6. Let x1, . . . ,xn be i.i.d. Np(µ,Σ), where

Σ =
(

Σ11 Σ12
Σ21 Σ22

)

with Σ12 ∈ R
p1
p2

, p = p1 + p2. For testing H0 : Σ12 = 0 against
H1 : Σ12 �= 0, consider the test statistic [Escoufier (1973)]

E =
tr(S12S21)

[tr(S2
11)]1/2[tr(S2

22)]1/2 ,

where S is the sample variance partitioned as Σ. Prove:

(i) E is invariant under the group of transformations

xi =
(

xi1
xi2

)
�→

(
H1 0
0 H2

)(
xi1
xi2

)
+

(
b1
b2

)
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for any (H1,H2,b1,b2) ∈ Op1 × Op2 × R
p1 × R

p2 .
(ii) If H0 holds, then the distribution of E is the same as when

Σ =
(

diag(λi) 0
0 diag(γj)

)
,

where λi and γj are, respectively, the eigenvalues of Σ11 and
Σ22.

(iii) Under H0, n1/2S12
d→ Z = (zij), where zij are independently

distributed as N(0, λiγj), i = 1, . . . , p1, j = 1, . . . , p2.
(iv) Conclude the null distribution

n E
d→

(
p1∑

i=1

λ2
i

)−1/2



p2∑
j=1

γ2
j




−1/2
p1∑

i=1

p2∑
j=1

λiγjz
2
ij .

Remark: Unlike for canonical correlations, the asymptotic null
distribution depends on unknown parameters because of the lack
of invariance of E (the group Op1 × Op2 × R

p1 × R
p2 is only a

subgroup of Gp1×Gp2×R
p1×R

p2). The asymptotic distribution
of E for sampling from an elliptical distribution was derived by
Cléroux and Ducharme (1989).

7. Test of mutual independence of several subvectors.
This problem given in the form of a project derives the exact null
distribution of the likelihood ratio test for mutual independence.
Consider a random sample of size n ≥ p + 1 from Np(µ,Σ), where

Σ =




Σ11 Σ12 · · · Σ1r

Σ21 Σ22 · · · Σ2r
...

...
. . .

...
Σr1 Σr2 · · · Σrr




with Σij ∈ R
pi
pj

, p =
∑r

j=1 pj . We wish to test H0 : Σij = 0, 1 ≤ i <
j ≤ r, versus all alternatives.

(i) Prove the likelihood ratio test Λ for H0 can be written

Λ2/n =
|V|∏r

i=1 |Vii| ,

where as usual V =
∑n

i=1(xi − x̄)(xi − x̄)′ ∼ Wp(n − 1,Σ).
(ii) Obtain the exact null moments of Λ̃ = Λ2/n,

E Λ̃h =
Γp( 1

2m + h)
Γp( 1

2m)

r∏
i=1

Γpi
( 1
2m)

Γpi(
1
2m + h)

,

where m = n − 1.
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Hint:

E Λ̃h =
cp,m

cp,m+2h

r∏
i=1

E |Vii|−h,

where cp,m = [2pm/2Γp( 1
2m)]−1 is the normalizing constant

of a Wp(m) density and where Vii are mutually independent
Wpi(m + 2h).

(iii) Define the upper left corner of V to be

Ṽii =




V11 V12 · · · V1i

V21 V22 · · · V2i
...

...
. . .

...
Vi1 Vi2 · · · Vii


 ∈ R

p̄i
p̄i

,

where p̄i = p1+ · · ·+pi, and note that Ṽrr = V and Ṽ11 = V11.
Derive the equivalent form Λ2/n =

∏r
i=2 Ui, where

Ui =
|Ṽii|

|Vii||Ṽi−1,i−1|
, i = 2, . . . , r.

(iv) Use Proposition 11.2 to obtain immediately under H0

Ui ∼ U (pi; p̄i−1, n − 1 − p̄i−1) , i = 2, . . . , r.

(v) When

Σ =
(

Σ̃r−1,r−1 0
0 Σrr

)
,

prove that (Ṽr−1,r−1,Vrr) is sufficient and complete and that
Ur is ancillary. Conclude that, under H0, Ur |= Vr−1,r−1,Vrr).

(vi) Using (iii), prove that Ur |= U2, . . . , Ur−1) under H0.
(vii) Repeat this argument to prove Ui |= U2, . . . , Ui−1), i =

3, . . . , r, whence, altogether, U2, . . . , Ur are mutually indepen-
dent under H0.

(viii) Use Proposition 11.4 to obtain the exact null distribution

Λ̃ d=
r∏

i=2

pi∏
j=1

beta
( 1

2 (n − p̄i−1 − j); 1
2 p̄i−1

)
.

Note that a further representation with a reduced number of
factors as pi is odd or even is immediate from Corollary 11.2.

(ix) Prove U
n/2
i is the likelihood ratio test for Hi : Σli = 0, l =

1, . . . , i − 1 when it is known that all the hypotheses Hi+1, · · ·,
Hr are true. Note that H0 = ∩r

i=2Hi.
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(x) Use (viii) to obtain the equivalent expression for the exact null
moments of Λ̃:

E Λ̃h =
r∏

i=2




pi∏
j=1

Γ[ 12 (n − p̄i−1 − j) + h] Γ[ 12 (n − j)]
Γ[ 12 (n − p̄i−1 − j)] Γ[ 12 (n − j) + h]


 .

8. Generalized squared interpoint distance [Gnanadesikan and
Kettenring (1972)]
Let d2

ij = (xi−xj)′S−1(xi−xj) be the generalized squared interpoint
distance (or squared Mahalanobis distance) between xi and xj , i �= j.
Prove that if x1, . . . ,xn are i.i.d. Np(µ,Σ), then

1
2(n − 1)

d2
ij ∼ beta

( 1
2p; 1

2 (n − p − 1)
)
.



12
Asymptotic expansions

12.1 Introduction

The exact distribution of likelihood ratio tests in multivariate analysis is
often too complicated to be of any practical use. An asymptotic expansion
due to Box (1949) is rather simple and easy to program on a computer to
obtain the distribution function to any degree of accuracy. This approxima-
tion is applied on several of the testing situations previously encountered.
In at least one situation where the exact distribution is known, an eval-
uation of the approximation is carried out for small to moderate sample
sizes.

12.2 General expansions

The method can be used whenever the likelihood ratio criterion Λ (or a
suitable power W ) has moment of order h of the form

E Wh = K

[ ∏b
j=1 y

yj

j∏a
k=1 xxk

k

]h ∏a
k=1 Γ[xk(1 + h) + ζk]∏b
j=1 Γ[yj(1 + h) + ηj ]

, (12.1)

where
b∑

j=1

yj =
a∑

k=1

xk,
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and K is just a constant (not depending on h) so that E W 0 = 1. Equa-
tion (12.1) is usually obtained for real h; it is, however, generally valid
on the domain where the functions are analytic. This means if we let
M = −2 log W , then we can write the characteristic function of ρM , for a
constant 0 < ρ ≤ 1 to be determined later, as

cρM (t) = E W−2itρ

= K

[ ∏b
j=1 y

yj

j∏a
k=1 xxk

k

]−2itρ ∏a
k=1 Γ[xk(1 − 2itρ) + ζk]∏b
j=1 Γ[yj(1 − 2itρ) + ηj ]

.

Taking logarithms and defining

βk = (1 − ρ)xk, εj = (1 − ρ)yj , (12.2)

the cumulant generating function is

KρM (t) = log cρM (t) = g(t) − g(0), (12.3)

where

g(t) = 2itρ[
a∑

k=1

xk log xk −
b∑

j=1

yj log yj ]

+
a∑

k=1

log Γ[ρxk(1 − 2it) + βk + ζk]

−
b∑

j=1

log Γ[ρyj(1 − 2it) + εj + ηj ],

with

g(0) = − log K =
a∑

k=1

log Γ[ρxk + βk + ζk] −
b∑

j=1

log Γ[ρyj + εj + ηj ].

We use the asymptotic expansion in z as |z| → ∞ [Erdélyi et al. (1953),
p. 48] for bounded h,

log Γ(z + h) = log
√

2π + (z + h − 1
2 ) log z − z (12.4)

−
l∑

α=1

(−1)α Bα+1(h)
α(α + 1)

z−α + O(z−(l+1)), | arg z| < π.

The terms Br(h) are the Bernoulli polynomials defined to be the coefficients
in the Taylor series

zehz

ez − 1
=

∞∑
r=0

Br(h)
zr

r!
, |z| < 2π.

The reader can verify the first few Bernoulli polynomials

B0(h) = 1,
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B1(h) = h − 1
2 ,

B2(h) = h2 − h + 1
6 ,

B3(h) = h3 − 3
2h2 + 1

2h,

B4(h) = h4 − 2h3 + h2 − 1
30 ,

B5(h) = h5 − 5
2h4 + 5

3h3 − 1
6h,

B6(h) = h6 − 3h5 + 5
2h4 − 1

2h2 + 1
42 .

Bernoulli polynomials can be generated at will with modern symbolic
computations software such as the function bernoulli(r,h); in Maple [Red-
fern (1996)] or BernoulliB[h,r] in Mathematica [Wolfram (1996)]. Let
(z, h) = (ρxk(1 − 2it), βk + ζk), (ρyj(1 − 2it), εj + ηj), (ρxk, βk + ζk), and
(ρyj , εj + ηj) in turn in (12.4). We assume that xk and yj are terms be-
having as O(n), where n is the sample size. This will have to be checked in
each application. When ρ = 1, then βk = εj = 0, and h is bounded in all
cases. Later, ρ will be allowed to depend on the sample size n and we will
need to check that βk and εj are bounded.

Then substitute the four expansions for log Γ(z + h) in g(t) and g(0) of
(12.3) to obtain, after long but straightforward simplifications,

KρM (t) = − 1
2f log(1− 2it) +

l∑
α=1

ωα[(1− 2it)−α − 1] + O(n−(l+1)), (12.5)

where

f = −2




a∑
k=1

ζk −
b∑

j=1

ηj − 1
2 (a − b)


 , (12.6)

ωα =
(−1)α+1

α(α + 1)




a∑
k=1

Bα+1(βk + ζk)
(ρxk)α

−
b∑

j=1

Bα+1(εj + ηj)
(ρyj)α


 . (12.7)

Note that ωα = O(n−α) if xk and yj are O(n), and βk and εj are O(1).
The next step consists of deriving the characteristic function cρM by

exponentiation of KρM and then using the inversion formula (2.2) to derive
the p.d.f.:

cρM (t) = eKρM (t)

= (1 − 2it)−f/2
l∏

α=1

exp[ωα(1 − 2it)−α]
l∏

α=1

exp(−ωα)

·[1 + O(n−(l+1))]

= (1 − 2it)−f/2
l∏

α=1

∞∑
k=0

ωk
α

k!
(1 − 2it)−αk

l∏
α=1

∞∑
k=0

(−1)k ωk
α

k!
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·[1 + O(n−(l+1))].

The expansion of order O(n−(l+1)) is then obtained by keeping and col-
lecting terms of order up to O(n−l). Let us illustrate the procedure for an
expansion of order O(n−2) and leave the higher-order expansion to the sym-
bolic calculators Mathematica [Wolfram (1996)] or Maple [Redfern (1996)].
For the expansion of order O(n−2), set l = 1 and note that

cρM (t) = (1 − 2it)−f/2[1 + ω1(1 − 2it)−1](1 − ω1) + O(n−2)

= (1 − 2it)−f/2{1 + ω1[(1 − 2it)−1 − 1]} + O(n−2)
= cf (t) + ω1[cf+2(t) − cf (t)] + O(n−2), (12.8)

where cf (t) = (1 − 2it)−f/2 denotes the characteristic function of χ2
f on f

degrees of freedom. Then, by the inversion formula (2.2),

fρM (s) =
1
2π

∫ ∞

−∞
cρM (t)e−itsdt

= gf (s) + ω1[gf+2(s) − gf (s)] + O(n−2), (12.9)

where gf (t) is the p.d.f. of χ2
f . Finally, by integration on (−∞, x], the d.f.

takes the form

P (ρM ≤ x) = Gf (x) + ω1[Gf+2(x) − Gf (x)] + O(n−2),

where Gf (t) is the d.f. of χ2
f . A full justification of the last two integrations

would require one to show that the remainders in (12.8) and (12.9) are
O(n−2) uniformly in t and s, respectively; v. Box (1949) for details.

The whole purpose of introducing ρ in the expansion is to reduce the
number of terms. In the above example, one can choose ρ to annihilate the
term of order O(n−1), i.e., to make ω1 = 0. Recalling (12.2) and B2(h) =
h2 − h + 1

6 , we have

ω1 =
1
2ρ




a∑
k=1

x−1
k B2(βk + ζk) −

b∑
j=1

y−1
j B2(εj + ηj)




=
1
2ρ


−(1 − ρ)f +

a∑
k=1

x−1
k (ζ2

k − ζk + 1
6 ) −

b∑
j=1

y−1
j (η2

j − ηj + 1
6 )


 .

Thus, ω1 vanishes by choosing

ρ = 1 − f−1




a∑
k=1

x−1
k (ζ2

k − ζk + 1
6 ) −

b∑
j=1

y−1
j (η2

j − ηj + 1
6 )


 . (12.10)

Even though ρ now depends on xk and yj , assumed to be of order O(n), the
asymptotic expansion is still valid since for this choice of ρ, βk = (1− ρ)xk

and εj = (1 − ρ)yj are terms of order O(1) and, thus, ωα is still O(n−α).
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Proposition 12.1 If W has moments (12.1), where xk and yj are terms
O(n), then with the choice of ρ in (12.10),

P (ρM ≤ x) = Gf (x) + O(n−2). (12.11)

The asymptotic expansions of order O(n−2) were proposed by Bartlett
(1938). The factor ρ which annihilates the term ω1 of order O(n−1) is
referred to as the Bartlett correction factor.

We now give the general result for an expansion of order O(n−6) (l = 5)
calculated with the help of Maple [Redfern (1996)]:

P (ρM ≤ x) = Gf (x) + ω1[Gf+2(x) − Gf (x)] + ω2[Gf+4(x) − Gf (x)]
+ 1

2ω2
1 [Gf+4(x) − 2Gf+2(x) + Gf (x)] + ω3[Gf+6(x) − Gf (x)]

+ω2ω1[Gf+6(x) − Gf+4(x) − Gf+2(x) + Gf (x)]
+ 1

6ω3
1 [Gf+6(x) − 3Gf+4(x) + 3Gf+2(x) − Gf (x)]

+ω4[Gf+8(x) − Gf (x)] + ω3ω1[Gf+8(x) − Gf+6(x) − Gf+2(x) + Gf (x)]
+ 1

2ω2ω
2
1 [Gf+8(x) − 2Gf+6(x) + 2Gf+2(x) − Gf (x)]

+ 1
24ω4

1 [Gf+8(x) − 4Gf+6(x) + 6Gf+4(x) − 4Gf+2(x)] + Gf (x)]

+ 1
2ω2

2 [Gf+8(x) − 2Gf+4(x) + Gf (x)] + ω5[Gf+10(x) − Gf (x)]
+ω4ω1[Gf+10(x) − Gf+8(x) − Gf+2(x) + Gf (x)]
+ω3ω2[Gf+10(x) − Gf+6(x) − Gf+4(x) + Gf (x)]
+ 1

2ω3ω
2
1 [Gf+10(x) − 2Gf+8(x) + Gf+6(x)

−Gf+4(x) + 2Gf+2(x) − Gf (x)]
+ 1

6ω2ω
3
1 [Gf+10(x) − 3Gf+8(x) + 2Gf+6(x)

+2Gf+4(x) − 3Gf+2(x) + Gf (x)]
+ 1

120ω5
1 [Gf+10(x) − 5Gf+8(x) + 10Gf+6(x)

−10Gf+4(x) + 5Gf+2(x) − Gf (x)]
+ 1

2ω2
2ω1[Gf+10(x) − Gf+8(x) − 2Gf+6(x)

+2Gf+4(x) + Gf+2(x) − Gf (x)]
+O(n−6).

When ρ is chosen as in (12.10) so that ω1 = 0, then things reduce
considerably.

Proposition 12.2 If W has moments (12.1) where xk and yj are terms
O(n), then with the choice of ρ in (12.10),

P (ρM ≤ x) = Gf (x) + ω2[Gf+4(x) − Gf (x)] + ω3[Gf+6(x) − Gf (x)]
+ω4[Gf+8(x) − Gf (x)] + 1

2ω2
2 [Gf+8(x) − 2Gf+4(x) + Gf (x)]

+ω5[Gf+10(x) − Gf (x)] + ω3ω2[Gf+10(x) − Gf+6(x) − Gf+4(x) + Gf (x)]
+O(n−6).
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Automatic correction of coverage probability of confidence intervals
[Martin (1990) or of error in rejection probability of tests [Beran (1987,
1988)] is now made possible by the resampling or “bootstrap” technology
(v. Chapter 14). Bootstrap of a Bartlett corrected likelihood ratio test re-
duces level error in Proposition 12.1 from O(n−2) to O(n−3) automatically
without further analytical expansions.

12.3 Examples

We now present some examples.

Example 12.1 Test of sphericity.
The likelihood ratio test (LRT) of sphericity was derived in Proposition 8.11
and its moments are given in Proposition 8.12. Now, it is simply a matter
of rewriting things in the form (12.1) to obtain the asymptotic expansion.
Hence, for W = Λm/n, m = n − 1,

E Wh = Kppmh/2 Γp[ 12m + 1
2mh]

Γ[ 12mp + 1
2pmh]

= Kppmh/2

∏p
k=1 Γ[ 12m + 1

2mh − 1
2 (k − 1)]

Γ[ 12mp + 1
2pmh]

= Kppmh/2

∏p
k=1 Γ[ 12m(1 + h) − 1

2 (k − 1)]
Γ[ 12mp(1 + h)]

,

so that we have the form (12.1) with

a = p, xk = 1
2m, ζk = − 1

2 (k − 1),

b = 1, y1 = 1
2mp, η1 = 0.

Observe that
∑p

k=1 xk = y1 is satisfied and xk and y1 are terms behaving
as O(n). The asymptotic expansion with remainder O(n−6) as in Proposi-
tion 12.2 is now a simple matter of calculating with (12.6) and (12.10),

f = 1
2 (p + 2)(p − 1),

ρ = 1 − 2p2 + p + 2
6pm

,

βk and ε1 in (12.2), and, finally, ωα, α = 2, 3, 4, 5, in (12.7). Of course, one
could go to great lengths to obtain the most simplified algebraic expressions
in terms of p and n. For example, Davis (1971) using properties of Bernoulli
polynomials showed

ωα =
2(−1)α

α(α + 1)(α + 2)ρα
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s Bs δs

0 1 − 1
2p

1 − 1
2

1
4p(p + 1)

2 1
6 − 1

16p(2p2 + 3p − 1)

3 0 1
16p(p − 1)(p + 1)(p + 2)

4 − 1
30 − 1

192p(6p4 + 15p3 − 10p2 − 30p + 3)

5 0 1
128p(p − 1)(p + 1)(p + 2)(2p2 + 2p − 7)

6 1
42 − 1

768p(6p6 + 21p5 − 21p4 − 105p3 + 21p2 + 147p − 5)

7 0 1
768p(p − 1)(p + 1)(p + 2)(3p4 + 6p3 − 23p2 − 26p + 62)

Table 12.1. Polynomials δs and Bernoulli numbers Bs for asymptotic expansions.

·
α+1∑
s=1

(
α + 2
s + 1

)
(1 − ρ)α+1−s

[
δs + 1

2 (s + 1)
Bs

ps−1

]
( 1
2m)1−s,

where Bs ≡ Bs(0) are the Bernoulli numbers and the δs are certain
polynomials in p defined by Box (1949) (v. Table 12.1).

Example 12.2 Asymptotics for U(p; m, n) distributions.
The LRT for the general linear hypothesis in multivariate regression was
described in Proposition 9.3 as Λ2/n ∼ U(p; r, n − k). Another example is
the LRT for independence between two subvectors in Proposition 11.2 where
Λ2/n ∼ U(p2; p1, n − 1 − p1).

Thus, we derive the asymptotic expansion for W ∼ [U(p; m, n − c)]n/2,
where n − c ≥ p, which includes both cases. Now, the moments of U
distributions were given in Problem 11.6.1. Hence,

E Wh = E [U(p; m, n − c)]nh/2

= K

∏p
k=1 Γ[ 12 (n − c − p + k) + 1

2nh]∏p
j=1 Γ[ 12 (m + n − c − p + j) + 1

2nh]

= K

∏p
k=1 Γ[ 12n(1 + h) + 1

2 (−c − p + k)]∏p
j=1 Γ[ 12n(1 + h) + 1

2 (m − c − p + j)]
,

which is of the form (12.1) with
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a = p, xk = 1
2n, ζk = 1

2 (−c − p + k),

b = p, yj = 1
2n, ηj = 1

2 (m − c − p + j).

Note, again, that xk and yj are O(n) and
∑p

k=1 xk =
∑p

j=1 yj is satisfied.
Using (12.6) and (12.10), we have

f = pm,

ρ = 1 − n−1[c − 1
2 (m − p − 1)].

An interesting peculiarity in this case which derives from a symmetry
property of Bernoulli polynomials [Erdélyi et al. (1953), p. 37], namely
Bα(1 − h) = (−1)αBα(h), is that ω2α−1 = 0, α = 1, 2, . . . , which means
the series involves only terms of even powers of n−1 [Lee (1972)]. To see
this, first note

βk = (1 − ρ)xk = 1
2 [c − 1

2 (m − p − 1)],
βk + ζk = − 1

2 [ 12 (m + p − 1) − k],

and, similarly,

εk + ηk = 1
2 [ 12 (m − p + 1) + k].

Therefore, we find (note that k �→ p − k + 1 reverses the order of terms in
the following sums)

p∑
k=1

B2α(βk + ζk) =
p∑

k=1

B2α

(− 1
2 [ 12 (m + p − 1) − k]

)

=
p∑

k=1

B2α

(− 1
2 [ 12 (m + p − 1) − (p − k + 1)]

)

=
p∑

k=1

B2α

(
1 + 1

2 [ 12 (m + p − 1) − (p − k + 1)]
)

=
p∑

k=1

B2α(εk + ηk),

and from (12.7), ω2α−1 = 0, α = 1, 2, . . .. Thus, the expansion in
Proposition 12.2 further reduces to

P (ρM ≤ x) = Gf (x) + ω2[Gf+4(x) − Gf (x)] + ω4[Gf+8(x) − Gf (x)]

+ 1
2ω2

2 [Gf+8(x) − 2Gf+4(x) + Gf (x)] + O(n−6), (12.12)

where from the same symmetry property of Bernoulli polynomials, one can
easily establish that

ω2α =
22α

α(2α + 1)(ρn)2α

p∑
k=1

B2α+1
( 1

2 [ 12 (m − p + 1) + k]
)
, α = 1, 2, . . . .
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n = 2 n = 5 n = 10 n = 15 n = 20 n = 30

O(n−2) .9500 .9500 .9500 .9500 .9500 .9500
O(n−4) .8107 .8848 .9220 .9345 .9402 .9451
O(n−6) .7168 .8642 .9182 .9334 .9397 .9449
exact .4714 .8315 .9139 .9322 .9393 .9448

Table 12.2. Asymptotic expansions for U(2; 12, n) distributions.

A small-scale numerical evaluation of (12.12) would help to determine
how large n should be for the asymptotics of U(p; m, n) distributions to
be accurate. Fix p = 2 and m = 12, and vary n =2, 5, 10, 15, 20, and 30.
The asymptotic distribution of −n log U(2; 12, n) is χ2

24. So, we choose the
critical point x = χ2

.95,24 = 36.41502. The evaluation of

P
[− (

n + 1
2 (12 − 2 − 1)

)
log U(2; 12, n) ≤ 36.41502

]

using (12.12) led to Table 12.2.
The exact values were obtained for p = 2 with the transformation in

Problem 11.6.2:

P (−ρn log U(2; 12, n) ≤ x) = P
(
U(2; 12, n) ≥ e−x/ρn

)

= P

(
F (24, 2(n − 1)) ≤ (n − 1)(1 − y1/2)

12y1/2

)
,

with y = e−x/ρn. The approximations of order O(n−6) can thus be used
in practice for n as small as 10 in this case. They are nearly exact to four
decimal places for n = 30.

Example 12.3 Test of mutual independence between subvectors.
This is a continuation of Problem 11.6.7, where in item (ii), we found the
moments of Λ̃ = Λ2/n,

E Λ̃h =
Γp( 1

2m + h)
Γp( 1

2m)

r∏
j=1

Γpj
( 1
2m)

Γpj (
1
2m + h)

,

with m = n − 1. This can be written in the form of (12.1) for W = Λ as

E Wh = E Λ̃nh/2 = K

∏p
k=1 Γ[ 12n(1 + h) − 1

2k]∏r
j=1

∏pj

l=1 Γ[ 12n(1 + h) − 1
2 l]

,

with the identification

a = p, xk = 1
2n, ζk = − 1

2k, k = 1, . . . , a,

b =
∑r

j=1 pj = p, yjl
= 1

2n, ηjl
= − 1

2 l, j = 1, . . . , r, l = 1, . . . , pj.
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The constants f and ρ can be verified with (12.6) and (12.10):

f = −2




p∑
k=1

− 1
2k −

r∑
j=1

pj∑
l=1

− 1
2 l


 = 1

2Σ2,

ρ = 1 − 2Σ3 + 9Σ2

6nΣ2
,

where Σs ≡ ps−∑r
j=1 ps

j . For simplified algebraic expressions of ω2 through
ω6, the reader is referred to Box (1949).

Example 12.4 Test of equality of variances.
The null moments of the modified likelihood ratio test Λ∗ for the hypothesis
H0 : Σ1 = · · · = Σa were obtained in Proposition 8.17. Thus, for W = Λ∗,
we can write

E Wh =
mpmh/2

∏a
i=1 m

pmih/2
i

Γp( 1
2m)

Γp[ 12m(1 + h)]

a∏
i=1

Γp[ 12mi(1 + h)]
Γp( 1

2mi)

= K

[ ∏a
i=1(

1
2m)m/2

∏a
i=1

∏p
l=1(

1
2mi)mi/2

]h ∏a
i=1

∏p
l=1 Γ[ 12mi(1 + h) − 1

2 (l − 1)]∏p
j=1 Γ[ 12m(1 + h) − 1

2 (j − 1)]
,

which is of the form (12.1) with the identification

a = pa, xkl
= 1

2mk, ζkl
= − 1

2 (l − 1), k = 1, . . . , a, l = 1, . . . , p,

b = p, yj = 1
2m, ηj = − 1

2 (j − 1), j = 1, . . . , p.

The degrees of freedom f and ρ in (12.6) and (12.10) are

f = −2




a∑
k=1

p∑
l=1

ζkl
−

p∑
j=1

ηj − 1
2 (pa − p)




= 1
2p(p + 1)(a − 1),

ρ = 1 − f−1




a∑
k=1

p∑
l=1

x−1
kl

(ζ2
kl

− ζkl
+ 1

6 ) −
p∑

j=1

y−1
j (η2

j − ηj + 1
6 )




= 1 − (2p2 + 3p − 1)
6(p + 1)(a − 1)

(
a∑

k=1

1
mk

− 1
m

)
.

Values of ωα can be calculated from (12.7) in simplified algebraic form but
this is unnecessary since they can be easily programmed for the computer
to evaluate the expansion in Proposition 12.2. Note finally that since we
require (1−ρ)xkl

and (1−ρ)yj to remain bounded, the expansion is asymp-
totic as m → ∞ while mk/m → αk for some proportions 0 < αk < 1 such
that

∑a
k=1 αk = 1.
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The basic idea in asymptotic expansions was to represent the cumulant
generating function in the form (12.5). This is often possible even though
the moments may not be of the form (12.1).

Example 12.5 An example is provided by the modified likelihood ratio test
for a given variance in Problem 8.9.8, where

E Λ∗h =
(

2e

m

)mph/2

(1 + h)−mp(1+h)/2 Γp[ 12m(1 + h)]
Γp( 1

2m)
, m = n − 1.

For W = Λ∗, Davis (1971) showed that Proposition 12.2 holds with

f = 1
2p(p + 1),

ρ = 1 − 2p2 + 3p − 1
6m(p + 1)

,

ωα =
2(−1)α

α(α + 1)(α + 2)ρα

α+1∑
s=1

(
α + 2
s + 1

)
(1 − ρ)α+1−sδs( 1

2m)1−s, (ω1 = 0).

The δs are the same as those of Table 12.1.

For asymptotic expansions of the null distribution of Lawley-Hotelling
and Pillai trace tests, the reader is referred to Muirhead (1970) and
Fujikoshi (1970).

12.4 Problem

1. This problem develops the asymptotic expansion of the LRT for the
equality of means and variances

H0 : µ1 = · · · = µa; Σ1 = · · · = Σa

between a multivariate normal populations. The LRT Λ, together
with its moments, are given in Problem 8.9.14. Using the same
notation and W = Λ, establish the following:

(i) The moments of W have the equivalent form

E Wh = K

[ ∏p
j=1(

1
2n)n/2

∏p
k=1

∏a
l=1(

1
2nl)nl/2

]h ∏p
k=1

∏a
l=1 Γ[ 12nl(1 + h) − 1

2k]∏p
j=1 Γ[ 12n(1 + h) − 1

2j]
.

(ii) Perform the usual identification to conclude the validity of
Proposition 12.2 with

f = 1
2 (a − 1)p(p + 3),

ρ = 1 − (2p2 + 9p + 11)
6(a − 1)(p + 3)

(
a∑

i=1

1
ni

− 1
n

)
.



13
Robustness

13.1 Introduction

Many inference methods were presented in previous chapters for multi-
variate normal populations. A question of theoretical and utmost practical
importance is the effect of non-normality on the inference. For example,
what happens if the likelihood ratio test of sphericity, derived assuming
normality, is performed, but, in fact, the population follows a multivariate
student distribution on 10 degrees of freedom? Is the significance level of
α = 5%, say, still close to 5%? The theory of robustness gives answers
as to how sensitive multivariate normal inferences are to departures from
normality. Most importantly, it proposes some remedies, i.e., more robust
procedures. In Section 13.2, we present some non-normal models often used
in robustness, the so-called elliptical distributions. The rest of the chapter
is devoted to robust estimation and adjusted likelihood ratio tests.

A robust analysis of data is useful in several ways. It can validate or re-
buff data analysis done on classical assumptions of multivariate normality.
It also comes into play in the identification of outliers, which is a challeng-
ing task for data sets with more than two variables. Robust estimates of
location vector and scale matrix serve this role admirably. They can be
used to evaluate robust Mahalanobis distances from an observation vector
xi to the location vector. Points with large Mahalanobis distances can then
be singled out and scrutinized.
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13.2 Elliptical distributions

Suppose that x ∈ R
p has a density

fx(x) = |Λ|−1/2g[(x − µ)′Λ−1(x − µ)],

where g : [0,∞) → [0,∞) is a fixed function independent of µ and Λ =
(Λij) and depends on x only through (x − µ)′Λ−1(x − µ). Denote this
elliptical distribution by x ∼ Ep(µ,Λ). The main reference for elliptical
distributions is Kelker (1970). The affine linear transformation y = Bx+b
with B ∈ Gp and b ∈ R

p has density

fy(y) = |BΛB′|−1/2g[(y − Bµ − b)′(BΛB′)−1(y − Bµ − b)].

Thus, y ∼ Ep(Bµ + b,BΛB′); i.e., the transformation x �→ Bx + b in-
duces the parameter transformation µ �→ Bµ + b and Λ �→ BΛB′. In
particular, z = Λ−1/2(x − µ) ∼ Ep(0, I) has a spherical or rotationally
invariant distribution. Elliptical distributions are a location scale general-
ization of spherical distributions. Thus, for example, if z ∼ Ep(0, I) with
characteristic function necessarily of the form cz(t) = φ(t′t) (v. Prob-
lem 4.6.6), then x = Λ1/2z + µ ∼ Ep(µ,Λ) has characteristic function
cx(t) = exp(it′µ)φ(t′Λt). Moreover, if z has a finite second moment,
E z = 0 and var z = αI, for some constant α, implies E x = µ and
var x ≡ Σ = αΛ. An important implication is that all elliptical distribu-
tions with finite second moments have the same correlation matrix. The
constant α = −2φ′(0) (v. Problem 4.6.15) is easily found by differentiation
of cz(t).

Examples of spherical distributions commonly used in robustness are
members of the normal mixture family with density

fx(x) =
∫ ∞

0
(2πw)−p/2 exp(− 1

2w−1x′x)dF (w),

where F (·) is the “mixing” distribution function on [0,∞). These can be
simulated easily using the representation x d= w1/2z, where w ∼ F , z ∼
Np(0, I), w |= z (v. Problem 13.6.1).

Example 13.1 Obviously, P (w = σ2) = 1 yields the Np(0, σ2I)
distribution.

Example 13.2 The two-point distribution,

P (w = 1) = 1 − ε,

P (w = σ2) = ε

for some “contamination” proportion 0 < ε < 1, yields the symmetric
contaminated normal distribution.

Example 13.3 The multivariate t on ν degrees of freedom denoted tp,ν is
obtained with νw−1 ∼ χ2

ν . The reader is asked to show in Problem 13.6.1
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that x has density

fx(x) = cp,ν(1 + x′x/ν)−(ν+p)/2, x ∈ R
p,

where cp,ν = (νπ)−p/2Γ
[ 1
2 (ν + p)

]
/Γ

( 1
2ν

)
. The general multivariate

tp,ν(µ,Λ) is obtained by relocating and rescaling, y = Λ1/2x + µ, and
has density

fy(y) = cp,ν |Λ|−1/2 [1 + (y − µ)′Λ−1(y − µ)/ν
]−(ν+p)/2

, y ∈ R
p.

The multivariate t on 1 degree of freedom is also known as the multivariate
Cauchy distribution.

The Kotz-type distributions form another important class of elliptical
distributions [Fang et al. (1991), p. 76]. Their characteristic function was
obtained recently by Kotz and Ostrovskii (1994). Elliptical distributions
that can be expanded as a power series are defined in Steyn (1993) and
used to define other nonelliptical distributions with heterogeneous kurtosis.

The following result gives the marginal and conditional distributions for
an Ep(µ,Λ) distribution. Let x = (x′

1,x
′
2)

′ with xi ∈ R
pi , i = 1, 2, p =

p1 + p2, and partition µ and Λ in conformity as

µ = (µ′
1, µ

′
2)

′,

Λ =
(

Λ11 Λ12
Λ21 Λ22

)
.

Proposition 13.1 The marginal and conditional distributions of an
Ep(µ,Λ) distribution are elliptical:

(i) x2 ∼ Ep2(µ2,Λ22),

(ii) x1|x2 ∼ Ep1(µ1.2,Λ11.2), where

µ1.2 = µ1 + Λ12Λ−1
22 (x2 − µ2),

Λ11.2 = Λ11 − Λ12Λ−1
22 Λ21.

The conditional variance is of the form var(x1|x2) = w(x2)Λ11.2, for some
function w(x2) ∈ R which depends on x2 only through the quadratic form

(x2 − µ2)
′Λ−1

22 (x2 − µ2).

Proof. Letting t = (0′, t′
2)

′ in cx(t) = exp(it′µ)φ(t′Λt), we find cx2(t2) =
exp(it′

2µ2)φ(t′
2Λ22t2) and, thus, x2 ∼ Ep2(µ2,Λ22). For the conditional

distribution, let

z = x1 − [µ1 + Λ12Λ−1
22 (x2 − µ2)]

with jacobian J(x → z,x2) = 1. Upon using Problem 1.8.2, the conditional
density z|x2 is

|Λ|−1/2g[z′Λ−1
11.2z + (x2 − µ2)′Λ−1

22 (x2 − µ2)]
|Λ22|−1/2fx2(x2)

,
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where fx2(x2) depends only on (x2 − µ2)′Λ−1
22 (x2 − µ2). Thus, we have

z|x2 ∼ Ep1(0,Λ11.2) and, in turn, x1|x2 ∼ Ep1(µ1.2,Λ11.2). �

Example 13.4 The univariate power exponential distribution has p.d.f.

fx(x) = c1,αΛ−1/2 exp

(
− 1

2

∣∣∣∣
x − µ

Λ1/2

∣∣∣∣
2α

)
, α > 0. (13.1)

A multivariate extension seems to be

fx(x) = cp,α|Λ|−1/2 exp
{
− 1

2

[
(x − µ)′Λ−1(x − µ)

]α
}

. (13.2)

This elliptical distribution has an advantage of generating distributions with
heavier and lighter tails than the multivariate normal by taking α < 1 or
α > 1, whereas many other elliptical distributions including the multivariate
t cannot generate lighter-tail distributions. Kuwana and Kariya (1991) used
this property to derive a locally best invariant test of multivariate normality
(α = 1). Taking α = 0.5 simply, in (13.2),

E (x1 − µ1)2 = 4(p + 1)Λ11,

which depends on p (v. Problem 13.6.5); the corresponding moment in (13.1)
is

E (x − µ)2 = 8Λ11, with Λ = Λ11.

So, the marginal distribution of x1 in (13.2) is not that of x in (13.1).
The inconsistency takes place for many other elliptical distributions. Kano
(1994) characterized the consistency property of elliptical distributions: An
elliptical family is consistent iff it is a normal mixture family. In partic-
ular, the multivariate normal and multivariate t families are consistent.
In Proposition 13.1 the marginal is elliptical but possibly of a different
functional form since the characteristic function φ may be related to p.

For the estimation of (µ,Λ), it seems natural to ask that location and
scatter estimates transform in exactly the same manner as the parame-
ters; i.e., that they be “affine equivariant” as described in the following
definition. Formally, let

X =




x′
1
...

x′
n


 ∈ R

n
p

be the sample matrix.

Definition 13.1 The location and scatter estimates µ̂(X) and Λ̂(X) are
affine equivariant iff for all B ∈ Gp and b ∈ R

p,

µ̂(XB′ + 1b′) = Bµ̂(X) + b,

Λ̂(XB′ + 1b′) = BΛ̂(X)B′.
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When the underlying distribution belongs to an elliptical family, the distri-
bution of affine equivariant estimates has a special structure. In particular,
the general form of the mean and variance estimates can be characterized
for finite samples. To establish this general form, we need to extend the no-
tion of rotational invariance of random vectors in Section 4.4 to symmetric
random matrices.

Definition 13.2 A random symmetric matrix W is rotationally invariant
iff W d= HWH′, ∀H ∈ Op.

The following lemma [Tyler (1982)] characterizes the general form of the
mean and variance of any rotationally invariant random matrix.

Proposition 13.2 Let W ∈ R
p
p symmetric be rotationally invariant with

finite second moments. Then, there exist constants η, σ1 ≥ 0, and σ2 ≥
−2σ1/p such that

E W = ηI,

var W = σ1(I + Kp) + σ2 vec(I)[vec(I)]′.

Proof. For the mean, let E W ≡ A. By rotational invariance, A = HAH′,
∀H ∈ Op. Hence,

x′Ax = x′HAH′x = y′Ay, ∀x,y ∈ R
p, |x| = |y| = 1.

Choosing x = hi and y = hj , the ith and jth eigenvectors of A corre-
sponding to eigenvalues λi and λj , respectively, we get λi = λj ≡ η (say).
This means A = ηI. For the variance, let

Ω ≡ var W =
∑

Ωijkleie′
j ⊗ eke′

l,

where cov(wki, wlj) = Ωijkl. Note that {eie′
j ⊗ eke′

l, i, j, k, l = 1, . . . , p}
forms a basis for R

p2

p2 . Since W d= HWH′, ∀H ∈ Op, then vec(W) d=
(H ⊗ H)vec(W) and, thus, Ω = (H ⊗ H)Ω(H′ ⊗ H′), or

∑
Ωijklhih′

j ⊗ hkh′
l =

∑
Ωijkleie′

j ⊗ eke′
l,

where H = (h1, . . . ,hp). By choosing for some m, hm = −em and hr = er,
r �= m, we obtain Ωijkl = 0 unless i = j = k = l, i = j and k = l, i = k
and j = l, or i = l and j = k. By choosing H to give a permutation of the
rows, we obtain Ωiiii = σ0, ∀i = 1, . . . , p, Ωiikk = σ1 for i �= k, Ωijij = σ2
for i �= j, and Ωijji = σ3 for i �= j. Thus,

Ω = σ0

(∑
i

eie′
i ⊗ eie′

i

)
+ σ1


∑

i �=k

eie′
i ⊗ eke′

k




+σ2


∑

i �=j

eie′
j ⊗ eie′

j


 + σ3


∑

i �=j

eie′
j ⊗ eje′

i



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= σ1I + σ2 vec(I)[vec(I)]′ + σ3 Kp

+(σ0 − σ1 − σ2 − σ3)

(∑
i

eie′
i ⊗ eie′

i

)
.

Since ∀H ∈ Op,

(H ⊗ H)I(H′ ⊗ H′) = I,

(H ⊗ H)vec(I)[vec(I)]′(H′ ⊗ H′) = vec(I)[vec(I)]′,
(H ⊗ H)Kp(H′ ⊗ H′) = Kp,

and

(H ⊗ H)

(∑
i

eie′
i ⊗ eie′

i

)
(H′ ⊗ H′) �=

(∑
i

eie′
i ⊗ eie′

i

)
,

for some H ∈ Op, it follows that σ0 − σ1 − σ2 − σ3 = 0. Also, since W is
symmetric, cov(wij , wji) = var wij , which implies σ1 = σ3. Therefore,

Ω = σ1(I + Kp) + σ2vec(I)[vec(I)]′.

The conditions on σ1 and σ2 follow since Ω is positive semidefinite. �

The variance of W = (wij) can be written componentwise with the
Kronecker delta

cov(wki, wlj) = σ1(δijδkl + δkjδil) + σ2δkiδlj .

The form of var W states that the off-diagonal elements of W are un-
correlated with each other and uncorrelated with the diagonal elements.
Each off-diagonal element has variance σ1. The diagonal elements all have
variance 2σ1 + σ2 with the covariance between any two diagonal elements
being σ2.

Example 13.5 A simple example is W ∼ Wp(m) which is rotationally
invariant with var W = m(I + Kp).

Example 13.6 Assume x ∼ Ep(0,Λ) and let W = xx′. Then

var W = (Λ1/2 ⊗ Λ1/2)var(zz′)(Λ1/2 ⊗ Λ1/2),

where z ∼ Ep(0, I). Using Proposition 13.2 var(zz′) is evaluated with

σ1 = var(z1z2) = E(z2
1z2

2) = µ22,

σ2 = cov(z2
1 , z2

2) = E(z2
1z2

2) − E(z2
1)E(z2

2) = µ22 − µ2
2.

In terms of cumulants we have σ1 = k22 + k2
2 and σ2 = k22. These

cumulants are easily found with the Taylor series

lnφ(t21 + t22) = k2
(it1)2

2!
+ k2

(it2)2

2!
+ k4

(it1)4

4!
+ k4

(it2)4

4!

+k22
(it1)2

2!
(it2)2

2!
+ o(|t|4).
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The reader can verify by differentiation (v. Problem 13.6.3)

k2 = −2φ′(0) = α,

k4 = 12(φ′′(0) − φ′(0)2),
k22 = 4(φ′′(0) − φ′(0)2).

The kurtosis of z1 is

k4

k2
2

= 3
(φ′′(0) − φ′(0)2)

φ′(0)2
≡ 3k,

where k represents a kurtosis parameter. Thus, k4 = 3kα2 and k22 = kα2.
Finally, we obtain σ1 = (1 + k)α2 and σ2 = kα2 from which

var(zz′) = α2(1 + k)(I + Kp) + α2k vec(I)[vec(I)]′

and

var W = (1 + k)(I + Kp)(Σ ⊗ Σ) + k vec(Σ)[vec(Σ)]′,

where Σ = αΛ is the variance of x.

Corollary 13.1 If µ̂(X) and Λ̂(X) are affine equivariant with finite sec-
ond moment and x1, . . . ,xn are i.i.d. Ep(µ,Λ), then there exist constants
η, β ≥ 0, σ1 ≥ 0 and σ2 ≥ −2σ1/p such that

E µ̂(X) = µ,

var µ̂(X) = βΛ,

E Λ̂(X) = ηΛ,

var Λ̂(X) = σ1(I + Kp)(Λ ⊗ Λ) + σ2 vec(Λ)[vec(Λ)]′.

Proof. First, X d= ZΛ1/2 + 1µ′, where

Z =




z′
1
...

z′
n




and zi’s are i.i.d. Ep(0, I). Hence, µ̂(X) d= µ̂(ZΛ1/2+1µ′) = Λ1/2µ̂(Z)+µ.
Obviously, µ̂(Z) is a rotationally invariant random vector. Using the result
of Section 4.5, E µ̂(Z) = 0 and var µ̂(Z) = βI, for some β ≥ 0. Therefore,
E µ̂(X) = µ and var µ̂(X) = βΛ. Similarly, Λ̂(X) d= Λ1/2Λ̂(Z)Λ1/2, where
Λ̂(Z) is a rotationally invariant matrix whose mean and variance have the
general form in Proposition 13.2. Hence, E Λ̂(X) = ηΛ, for some η, and

var Λ̂(X) = var
[
(Λ1/2 ⊗ Λ1/2)vec(Λ̂(Z))

]

= (Λ1/2 ⊗ Λ1/2)
[
var Λ̂(Z)

]
(Λ1/2 ⊗ Λ1/2)

= σ1(I + Kp)(Λ ⊗ Λ) + σ2 vec(Λ)[vec(Λ)]′



13.3. Maximum likelihood estimates 213

for some σ1 ≥ 0, σ2 ≥ −2σ1/p. �

Complicated expressions using tensor methods for third-order and
fourth-order cumulants of affine equivariant estimates in elliptical families
were obtained by Grübel and Rocke (1990).

Another way of writing var Λ̂(X) is to give the covariances between any
two elements of Λ̂(X) = (Λ̂ij):

cov(Λ̂ki, Λ̂lj) = σ1(ΛijΛkl + ΛkjΛil) + σ2ΛkiΛlj .

One should note that a reasonable estimate of Λ assumed positive definite
should satisfy Λ̂(X) > 0 w.p.1, and in that case, η > 0.

13.3 Maximum likelihood estimates

Assume x1, . . . ,xn i.i.d. x ∼ Ep(µ,Λ) with var x = αΛ = Σ. The simplest
but inefficient method to estimate (µ,Λ) would be to use the MLE under a
Np(µ,Σ) distribution, x̄ and Σ̂ = 1

n

∑n
i=1(xi− x̄)(xi− x̄)′. A more efficient

procedure would be the MLE under the “true” Ep(µ,Λ) model. These two
possibilities are now investigated.

13.3.1 Normal MLE
When x has finite fourth-order moments, the general discussion of
Section 6.3 showed that

n1/2
(

Σ̂ − Σ
x̄′ − µ′

)
d→ Np+1

p

(
0,

(
var W 0

0 Σ

))
,

where W = xx′. From the calculation of var W in Example 13.6, it follows
that

n1/2(Σ̂ − Σ, x̄ − µ) d→ (N,n),

where n |= N,

n ∼ Np(0,Σ)
N ∼ Np

p (0, (1 + k)(I + Kp)(Σ ⊗ Σ) + k vec(Σ)[vec(Σ)]′).

13.3.2 Elliptical MLE
For x ∼ Ep(µ,Λ) defined with a known function g(·) the log-likelihood for
(µ,Λ) is simply

ln(µ,Λ) = cte +
n∑

i=1

ln g[(xi − µ)′Λ−1(xi − µ)] − 1
2n ln |Λ|. (13.3)
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Differention with respect to µ and Λ (v. Problems 1.8.9 and 1.8.10) leads
to the equations

n∑
i=1

u(si)Λ̂−1(xi − µ̂) = 0

1
2

n∑
i=1

u(si)Λ̂−1(xi − µ̂)(xi − µ̂)′Λ̂−1 − 1
2nΛ̂−1 = 0,

where u(s) = −2g′(s)/g(s) and si = (xi − µ̂)′Λ̂−1(xi − µ̂). Thus, the MLE
satisfies the implicit (because si depends on (µ̂, Λ̂)) estimating equations

µ̂ = ave [u(si)xi] /ave [u(si)] , (13.4)

Λ̂ = ave [u(si)(xi − µ̂)(xi − µ̂)′] . (13.5)

The notation “ave” means arithmetic average over i = 1, . . . , n.

Example 13.7 The multivariate Student’s tp,ν has g(s) ∝ (1+s/ν)−(ν+p)/2

and u(s) = (ν + p)/(ν + s). Note that u(s) ≥ 0 and is strictly decreasing.
It acts as a weight function, giving more weight to data points with small
squared Mahalanobis distances.

The existence and unicity of a solution to the estimating equations is
a difficult problem. For the location-only problem, it is known in the uni-
variate case [Reeds (1985)] that the estimating equation is susceptible to
multiple solutions. Uniqueness of the solution in the univariate location-
scale Cauchy (ν = 1) problem was established by Copas (1975) and for
ν > 1 by Märkeläinen et al. (1981). The approach presented here is that of
Kent and Tyler (1991), which works equally well in the multivariate case.
The location-scale problem is very tricky, but the scale-only problem is
quite simple. We will thus concentrate on the latter problem.

Scale-only problem

For the scale-only problem, we assume without any loss of generality that
µ = 0. The log-likelihood reduces to

l(A) = cte +
n∑

i=1

ln g(x′
iA

−1xi) − 1
2n ln |A|

and the estimating equation simplifies to

Â = ave [u(si)xix′
i] , (13.6)

where u(·) is as before and si = x′
iÂ

−1xi. Let ψ(s) = su(s) and assume
that

lim
s→∞ ψ(s) = a0 > 0.
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This condition is satisfied for the tp,ν distribution, as lims→∞ ψ(s) = ν +p.
The following condition on the data is to ensure the existence of a solution
to (13.6). It specifies that the data points should not be too concentrated
in low-dimensional linear subspaces of R

p. Let Pn(·) denote the empirical
distribution of x1, . . . ,xn, i.e., for any borel set B ⊂ R

p

Pn(B) =
1
n

n∑
i=1

I(xi ∈ B).

Condition D. For all linear subspaces V ⊂ R
p with dim V ≤ p − 1,

Pn(V) < 1 − [p − dim V]/a0.

The existence of a solution under condition D is proved in Kent and
Tyler (1991). Proving existence is the most difficult part, but uniqueness
of the solution and convergence of a numerical algorithm is much simpler.

Proposition 13.3 Under condition D, there exists Â > 0 such that
l(Â) ≤ l(A), ∀A > 0.

Note that when sampling from an absolutely continuous distribution con-
dition D is satisfied w.p.1 for a0 > p and sample sizes n ≥ p since for any
subspace V, k = dim V ≤ p − 1,

Pn(V)
w.p.1
≤ k

n
≤ k

p
= 1 − (p − k)

p
< 1 − (p − k)

a0
.

The following condition of monotonicity is for unicity of the solution.

Condition M.

(i) For s ≥ 0, u(s) ≥ 0 and u(s) is continuous and nonincreasing.

(ii) For s ≥ 0, ψ(s) = su(s) is strictly increasing.

Proposition 13.4 If conditions D and M hold, then there exists a unique
solution Â to (13.6).

Proof. Existence is ensured by condition D. Now, assume there are two
solutions Â = I and Â = A. Let A have eigenvalues λ1 ≥ · · · ≥ λp and
assume, if possible, λ1 > 1. Since su(s) is strictly increasing and u(s) is
nonincreasing, it follows that for x �= 0,

u(x′A−1x) ≤ u(λ−1
1 x′x) ≤ λ−1

1 x′x
λ−1

1 x′x
u(λ−1

1 x′x) < λ1u(x′x),

where the first inequality used Rayleigh’s quotient. This implies

A = ave
[
u(x′

iA
−1xi)xix′

i

]
< λ1 ave [u(x′

ixi)xix′
i] = λ1I.
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This gives the contradiction λ1 < λ1, and so λ1 ≤ 1. A similar argument
shows λp ≥ 1. Thus, A = I. �

Under conditions D and M, the unique solution can be found by regarding
the estimating equation as a fixed-point equation. Given a starting value
A0 > 0, define the iterative numerical algorithm

Am+1 = ave
[
u(x′

iA
−1
m xi)xix′

i

]
, m = 0, 1, . . . .

Proposition 13.5 Under conditions D and M, for any A0 > 0, Am

converges as m → ∞ to the unique solution (the MLE) of (13.6).

Proof. Conditions D and M ensure existence and uniqueness of a solution
Â. Since xi �→ Bxi, B ∈ Gp, induces the new solution Â �→ BÂB′,
one can assume without loss of generality that Â = I is the solution. Let
λ1,m ≥ · · · ≥ λp,m be the eigenvalues of Am, m = 1, 2, . . ..
Step 1: The following results are established:

(i) λ1,m ≤ 1 =⇒ λ1,m+1 ≤ 1,

(ii) λ1,m > 1 =⇒ λ1,m+1 < λ1,m,

(iii) λp,m ≥ 1 =⇒ λp,m+1 ≥ 1, and

(iv) λp,m < 1 =⇒ λp,m+1 > λp,m.

Note that (iii) and (iv) imply Am+1 > 0 whenever Am > 0. To prove (i),
if λ1,m ≤ 1, then

x′A−1
m x ≥ λ−1

1,mx′x ≥ x′x,

and since u(s) is nonincreasing, u(x′A−1
m x) ≤ u(x′x). Given that Â = I is

the solution, this implies Am+1 ≤ ave [u(x′
ixi)xix′

i] = I. Thus, λ1,m+1 ≤ 1.
The proof of (iii) is similar. To prove (ii), since x′A−1

m x ≥ λ−1
1,mx′x, u(s) is

nonincreasing and su(s) is strictly increasing, it follows that if λ1,m > 1,
then

u(x′A−1
m x) ≤ u(λ−1

1,mx′x) ≤ λ1,mu(x′x),

with the second inequality strict for x �= 0. This implies

Am+1 < λ1,m ave [u(x′
ixi)xix′

i] = λ1,mI.

Thus, λ1,m+1 < λ1,m. The proof of (iv) is similar.
Step 2: We shall now show that

(v) lim supλ1,m ≤ 1,

(vi) lim inf λp,m ≥ 1,

from which it follows that λ1,m → 1 and λp,m → 1, so that Am → I (v.
Problem 1.8.13). Given A > 0, let λ1(A) denote the largest eigenvalue and
define

φ(A) = ave
[
u(x′

iA
−1xi)xix′

i

]
.
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Step 1 implies that if λ1(A) > 1 and B = φ(A), then λ1(B) < λ1(A).
In view of step 1, statement (v) requires proof only in the case in which
λ1,m = λ1(Am) > 1, ∀m. Note that λ1,m is a decreasing sequence in this
case. Let λ∗ = limλ1,m ≥ 1 and suppose, if possible, that λ∗ > 1. From step
1, the eigenvalues of the sequence Am are bounded away from 0 and ∞.
Thus, we can find a convergent subsequence Amj

→ B0 say, where B0 > 0.
Further, Amj+1 = φ(Amj

) → φ(B0) = B1, say. Since λ1,m is decreasing,
λ1(B0) = limλ1,mj = λ∗ and λ1(B1) = limλ1,mj+1 = λ∗. However, step 1
implies that λ1(B1) < λ1(B0), giving a contradiction. Hence, (v) follows.
Item (vi) is proved similarly. �

Location-scale problem

Results for location scale are derived by embedding the p-dimensional
location-scale problem into a (p + 1)-dimensional scale-only problem. For
given Λ ∈ Pp, µ ∈ R

p, and γ > 0, let

A =
(

Λ + γ−1µµ′ γ−1µ
γ−1µ′ γ−1

)
∈ R

p+1
p+1 (13.7)

and observe that any A ∈ Pp+1 can be written in this form. On using the
inverse of a partitioned matrix (v. Problem 1.8.1), one finds

A−1 =
(

Λ−1 −Λ−1µ
−µ′Λ−1 γ + µ′Λ−1µ

)
.

Now define the artificial vectors yi = (x′
i, 1)′ ∈ R

p+1 and note that

y′
iA

−1yi = (xi − µ)′Λ−1(xi − µ) + γ. (13.8)

Let A(1) be defined as in (13.7) but with γ = 1. Upon using (13.8) and
|A(1)| = |Λ|, the objective function (13.3) can be expressed as

ln(µ,Λ) = l(A(1)) = cte +
n∑

i=1

ln g(y′
iA

−1
(1)yi − 1) − 1

2n ln |A(1)|. (13.9)

Thus, the problem of maximizing (13.3) over µ ∈ R
p and Λ ∈ Pp is equiv-

alent to maximizing l(A(1)) over A(1) ∈ Pp+1 with the restriction that the
(p + 1, p + 1) element of A(1) be 1. Moreover, the estimating equations
(13.4) and (13.5) can be rewritten in a single estimating equation as

Â =
(

Λ̂ + γ̂−1µ̂µ̂′ γ̂−1µ̂
γ̂−1µ̂′ γ̂−1

)
= ave[u(si)yiy′

i], (13.10)

where γ̂−1 = ave[u(si)] with si = (xi − µ̂)′Λ̂−1(xi − µ̂), as in the original
location-scale formulation. Using (13.8), the single estimating equation can
be reexpressed as

Â = ave
[
u∗(y′

iÂ
−1yi; γ̂)yiy′

i

]
, (13.11)
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where u∗(s; γ) = u(s−γ), for s ≥ γ. This looks very similar to the estimat-
ing equation of a scale-only problem, the difference being that the function
u∗(·; γ̂) depends on the data through γ̂. The next condition for existence of
a solution is just the previous condition D on yi’s recast in terms of xi’s.

Condition D1. For all translated linear subspaces (hyperplanes) H ⊂ R
p

with dim H ≤ p − 1,

Pn(H) < 1 − (p − dim H)/a0.

This time if a0 > p + 1, n ≥ p + 1, then condition D1 is satisfied w.p.1
when sampling from an absolutely continuous distribution.

Proposition 13.6 If conditions D1 and M hold, then there exists a solu-
tion µ̂ ∈ R

p and Λ̂ > 0 to (13.11). This solution is unique if (s + γ̂)u(s) is
strictly increasing in s ≥ 0 for γ̂−1 = ave[u(si)] defined above.

A difficulty in applying Proposition 13.6 is the strictly increasing condition
which depends on the unknown γ̂. However, given a solution (µ̂, Λ̂) the
condition guarantees that no other solutions exist. For the tp,ν distribution,
ν ≥ 1, we prove that γ̂ is independent of the data (γ̂ = 1) and the condition
is thus automatically satisfied for ν > 1 since

(s + γ̂)u(s) = (ν + p)(s + 1)/(s + ν)

is strictly increasing.

Lemma 13.1 For the tp,ν distribution ν ≥ 1, γ̂ = 1.

Proof. If γu ≥ γ and (s + γu)u(s) is strictly increasing and condition M
holds, then (s + γ)u(s) is also strictly increasing. Multiplying by Λ̂−1 and
taking the trace of (13.5), we get ave[siu(si)] = p. Thus, ∀b > 0,

p = ave[(si + b)u(si)] − bγ̂−1,

which implies γl ≤ γ̂ ≤ γu, where

γ−1
u = sup

b>0
inf
s>0

[(s + b)u(s) − p]/b,

γ−1
l = inf

b>0
sup
s>0

[(s + b)u(s) − p]/b.

Letting b = ν, we obtain 1 ≤ γl ≤ γ̂ ≤ γu ≤ 1. �

The Cauchy case, ν = 1, has (s + 1)u(s) = p + 1, which is not strictly
increasing. It requires a special treatment, but the MLE is also unique
under condition D1 [Kent and Tyler (1991)]. For the tp,ν case, since γ̂ is
independent of the data, this means that when condition D1 is satisfied,
the fixed-point algorithm still converges to the MLE. So, for any starting
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values µ0 and Λ0 > 0, the iterative equations

µm+1 =
ave

{
u
[
(xi − µm)′Λ−1

m (xi − µm)
]
xi

}

ave
{
u
[
(xi − µm)′Λ−1

m (xi − µm)
]} ,

Λm+1 = ave
{
u
[
(xi − µm)′Λ−1

m (xi − µm)
]
(xi − µm)(xi − µm)′}

converge to the MLE.

Asymptotics for the MLE

The general theory of maximum likelihood coupled with the fact that the
MLE is affine equivariant tells us that for some constants β, σ1, and σ2,

n1/2(Λ̂ − Λ, µ̂ − µ) d→ (N,n),

where

n ∼ Np (0, βΛ)
N ∼ Np

p (0, σ1(I + Kp)(Λ ⊗ Λ) + σ2 vec(Λ)[vec(Λ)]′) .

Using Fisher’s information, these constants can now be evaluated and we
can also show that N |= n; i.e., they are asymptotically independent. The
score function is the derivative of

l(µ,Λ) = cte + ln g[(x − µ)′Λ−1(x − µ)] − 1
2 ln |Λ|

with respect to (µ,Λ) and its variance is called Fisher’s information and is
denoted by I(µ,Λ). It is also well known that the asymptotic variance is the
inverse of Fisher’s information. Let us show that I(µ,Λ) is block-diagonal
and thus N |= n. We have

∂l/∂µ = u(s)Λ−1(x − µ)
∂l/∂Λ = − 1

2Λ
−1 + 1

2u(s)Λ−1(x − µ)(x − µ)′Λ−1,

where s = (x − µ)′Λ−1(x − µ). The constants β, σ1, and σ2 being inde-
pendent of (µ,Λ), it suffices to evaluate the variance of the score while
assuming (µ,Λ) = (0, I) and x d= z ∼ Ep(0, I). The expectation

E{∂l/∂µi · ∂l/∂Λjk}
involves only first-order and third-order product moments of z, which is
spherical. Since these moments are all null, it follows that I(0, I) is block-
diagonal with blocks I1 and I2, say. We then calculate β from I−1

1 . Now,

I1 = E
{
(∂l/∂µ) (∂l/∂µ)′} = E u2(s)zz′

= E[su2(s)]E[uu′],

where we have let z = s1/2u, where s
d= |z|2, u ∼ unif(Sp−1), and

s |= u. Then, I1 = p−1E[su2(s)]I if we note that E uu′ = p−1I (v. Prob-
lem 13.6.4). Thus, we have shown that β = p/E[su2(s)]. We now evaluate
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σ1 and σ2 from I2. We would like to identify var N with I−1
2 , but we must

first eliminate the redundant elements of the symmetric N for var N to
become nonsingular. For this reason, define

Aj = (0, Ij)′ : p × j, j = 1, . . . , p,

Mp = diag(Ap, . . . ,A1) : p2 × 1
2p(p + 1),

and verify that for any symmetric A ∈ R
p
p, M′

pvec(A) is the 1
2p(p + 1)-

dimensional vector formed by stacking the columns of A after deleting the
upper triangular part of A. Now, var(M′

p vec(N)) = M′
p var(N)Mp. It is

easy to check that

M′
pMp = I, M′

pKpMp = Dp, M′
p vec(Ip) = ap,

where

αj = (1, 0, . . . , 0)′ ∈ R
j , j = 1, . . . , p,

ap = (α′
p, . . . ,α

′
1)

′ : 1
2p(p + 1) × 1,

Dp = diag(ap).

Then, we can identify

I−1
2 = σ1(I + Dp) + σ2apa′

p.

Using the inverse of a perturbed matrix (v. Problem 1.8.8), we have with
the relations (I + Dp)−1ap = 1

2ap and a′
pap = p,

I2 = σ−1
1 (I + Dp)−1 − σ2[4σ2

1(1 + 1
2pσ2σ

−1
1 )]−1apa′

p

= i1(I + Dp)−1 + i2apa′
p,

where

i1 = σ−1
1 , i2 = −σ2[4σ2

1(1 + 1
2pσ2σ

−1
1 )]−1. (13.12)

As an example for p = 2, we thus have the identification

I2 = i1(I + Dp)−1 + i2apa′
p

=




1
2 i1 + i2 0 i2

0 i1 0
i2 0 1

2 i1 + i2




= E




(
∂l

∂Λ11

)2 (
∂l

∂Λ11

)(
∂l

∂Λ21

) (
∂l

∂Λ11

)(
∂l

∂Λ22

)
(

∂l
∂Λ11

)(
∂l

∂Λ21

) (
∂l

∂Λ21

)2 (
∂l

∂Λ21

)(
∂l

∂Λ22

)
(

∂l
∂Λ11

)(
∂l

∂Λ22

) (
∂l

∂Λ21

)(
∂l

∂Λ22

) (
∂l

∂Λ22

)2




.

Thus, in general for i �= j,

i1 = E
{
(∂l/∂Λij)2

}
,

i2 = E {(∂l/∂Λii)(∂l/∂Λjj)} .



13.3. Maximum likelihood estimates 221

These are evaluated with

∂l/∂Λij = u(s)zizj
d= ψ(s)uiuj ,

∂l/∂Λii = − 1
2 + 1

2u(s)z2
i

d= − 1
2 + 1

2ψ(s)u2
i .

Using Problem 13.6.4, E u2
i = p−1 and E u2

i u
2
j = [p(p + 2)]−1, i �= j, the

final result is thus

i1 = [p(p + 2)]−1E ψ2(s),
i2 = − 1

4 + [p(p + 2)]−1E ψ2(s)

if we note that E ψ(s) = p. The constants σ1 and σ2 are obtained by solving
equation (13.12). The density of s was given in Problem 4.5.13. We have
proved that under regularity conditions for the MLE [Lehmann (1983), pp.
429-430]

Proposition 13.7

n1/2(Λ̂ − Λ, µ̂ − µ) d→ (N,n),

where N |= n and

n ∼ Np (0, βΛ) ,

N ∼ Np
p (0, σ1(I + Kp)(Λ ⊗ Λ) + σ2 vec(Λ)[vec(Λ)]′) ,

with

β = p/E[su2(s)],
σ1 = p(p + 2)/E[ψ2(s)],
σ2 = −2σ1(1 − σ1)/[2 + p(1 − σ1)]

and s has density

πp/2

Γ( 1
2p)

s
1
2p−1g(s), s > 0.

The parameter σ1 of the asymptotic variance will play a major role as an
index of relative efficiency for robust tests.

Example 13.8 For the tp,ν distribution, the reader can check σ1 = 1 +
2/(p + ν).

The maximum likelihood estimation of the multivariate tp,ν distribution
with possibly missing data and unknown degrees of freedom was treated by
Liu (1997). Missing data imputation using the multivariate tp,ν distribution
was also the subject of Liu (1995).
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13.4 Robust estimates

An alternative approach to MLE consists of robust location and scatter
estimates such as the M estimate [Maronna (1976), Huber (1981)] or the S
estimate [Davies (1987), Lopuhaä (1989)]. The theoretical proofs for exis-
tence, unicity, consistency, and asymptotic normality of these estimates go
beyond the scope of this book. Of importance to us, however, is to show how
easily these affine equivariant and

√
n-asymptotically normal estimates can

serve as the building block to robust tests on location and scatter. They
are succintly introduced now and invoked later to construct robust tests.

13.4.1 M estimate
Let x1, . . . ,xn i.i.d. x ∼ Ep(µ,Λ) and z ∼ Ep(0, I). The idea behind M
estimate is to modify the MLE estimating equations to gain robustness. The
M estimate of location and scatter are defined as solution to the equations

µn = ave [u1(ti)xi] /ave [u1(ti)] , (13.13)
Vn = ave

[
u2(t2i )(xi − µn)(xi − µn)′] , (13.14)

where ti =
[
(xi − µn)′V−1

n (xi − µn)
]1/2.

The M estimates are obviously affine equivariant. Interestingly, they in-
clude, as a particular case, the MLE estimate with the functions u1(t) =
−2g′(t2)/g(t2) and u2(t2) = u1(t). Define ψi(s) = sui(s), i = 1, 2.
The following conditions on the functions are needed and will always be
assumed:

M1. u1 and u2 are non-negative, nonincreasing, and continuous on [0,∞).

M2. ψ1 and ψ2 are bounded. Let Ki = sups≥0 ψi(s).

M3. ψ2 is nondecreasing and is strictly increasing in the interval where
ψ2 < K2.

M4. There exists s0 such that ψ2(s2
0) > p and that u1(s) > 0 for s ≤ s0

(and, hence, K2 > p).

Example 13.9 The tp,ν MLE has ψ1(s) = (ν + p)s/(ν + s2) and ψ2(s) =
(ν + p)s/(ν + s). It is easy to verify M1 through M4.

Example 13.10 Huber’s ψ function is defined as

ψ(s, k) = max[−k,min(s, k)].

Let k > 0 be a constant and take ψ1(s) = ψ(s, k) and ψ2(s) = ψ(s, k2).

A further condition on the data is needed for existence of the M estimate.
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Condition D2. There exists a > 0 such that for every hyperplane H,
dim H ≤ p − 1,

Pn(H) ≤ 1 − p

K2
− a.

When sampling from an absolutely continuous distribution, condition D2
is satisfied w.p.1 for n sufficiently large.

Proposition 13.8 If condition D2 is satisfied, there exists a solution (µn,
Vn) to (13.13) and (13.14). Moreover, µn belongs to the convex hull of {x1,
· · · ,xn}.
Proposition 13.9 Assume condition D2 and g is decreasing. Let (µn,Vn)
be a solution to (13.13) and (13.14), then (µn,Vn) → (µ,V) almost surely,
where V = σ−1Λ with σ being the solution to E ψ2(σt2) = p and t = |z|.
The reason for the presence of σ is that Vn is consistent for a certain
multiple of Λ, σ−1Λ say, defined by the implicit equation

V = E u2[(x − µ)′V−1(x − µ)](x − µ)(x − µ)′.

Multiplying by V−1 and taking trace yields E ψ2(σ|z|2) = p. This expec-
tation can be evaluated as a simple integral if one recalls the density of
t = |z| (v. Problem 4.6.13):

f(t) =
2πp/2

Γ( 1
2p)

tp−1g(t2), t ≥ 0.

Proposition 13.10 Assume sψ′
i(s) are bounded (i = 1, 2) and g is

decreasing such that E ψ′
1(σ

1/2t) > 0. Then,

n1/2(Vn − V, µn − µ) d→ (N,n),

where n |= N and

n ∼ Np

(
0, (α/β2)V

)
,

N ∼ Np
p (0, σ1(I + Kp)(V ⊗ V) + σ2 vec(V)[vec(V)]′) ,

with σ being the solution to E ψ2(σt2) = p, where

α = p−1E ψ2
1(σ1/2t),

β = E
[(

1 − p−1) u1(σ1/2t) + p−1ψ′
1(σ

1/2t)
]
,

σ1 = a1(p + 2)2(2a2 + p)−2,

σ2 = a−2
2

{
(a1 − 1) − 2a1(a2 − 1)[p + (p + 4)a2](2a2 + p)−2} ,

and

a1 = [p(p + 2)]−1E ψ2
2(σt2),

a2 = p−1E [σt2ψ′
2(σt2)].
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Those results are due to Maronna (1976), but Tyler (1982) found the
asymptotic variance parameters σ1 and σ2 in Proposition 13.10. Asymptotic
theory for robust principal components was developed by Tyler (1983b) and
Boente (1987).

13.4.2 S estimate
Recently, Davies (1987) and Lopuhaä (1989) investigated properties of the S
estimate for multivariate location and scatter. As before, consider a random
sample x1, . . . ,xn i.i.d. x ∼ Ep(µ,Λ) and z ∼ Ep(0, I). Again, let t =
|z|. In the context of regression, Rousseeuw and Yohai (1984) obtained an
asymptotically normal and robust estimate from a function ρ assumed to
satisfy the following:

S1: ρ is symmetric, has a continuous derivative ψ, and ρ(0) = 0.

S2: There exists a finite constant c0 > 0 such that ρ is strictly increasing
on [0, c0] and constant on [c0,∞). Let a0 = sup ρ.

A typical ρ function is Tukey’s biweight

ρ(t) =
{

t2/2 − t4/(2c2
0) + t6/(6c4

0) if |t| ≤ c0
c2
0/6 if |t| ≥ c0.

The S estimate (µn,Vn) is defined as the solution of the optimization
problem where ti =

[
(xi − µn)′V−1

n (xi − µn)
]1/2:

min |Vn| subject to
1
n

n∑
i=1

ρ(ti) = b0

over all µn ∈ R
p and Vn > 0. The constant b0, 0 < b0 < a0, chosen so

that 0 < b0/a0 ≡ r ≤ (n− p)/2n, leads to a finite-sample breakdown point
[Lopuhaä and Rousseeuw (1991)] of ε∗

n = �nr�/n. The choice r = (n−p)/2n
results in the maximal breakdown point  (n− p + 1)/2!/n (asymptotically
50%). Roughly speaking, the breakdown point is the minimum percentage
of contaminated data necessary to bring the estimate beyond any given
bound. The sample mean requires only one point and thus has a breakdown
point 1/n, or asymptotically 0%. To obtain simultaneously a breakdown
point of ε∗

n = �nr�/n and a consistent estimate of scale, i.e., Vn → Λ
w.p.1, for a given Ep(µ,Λ) distribution the constant c0 is chosen so that
E ρ(t)/a0 = r and then b0 is set to E ρ(t).

A geometrical interpretation of S estimate can be given with the el-
lipsoidal contours of an Ep(µ,Λ). First, the volume of a p-dimensional
ellipsoid z′Λ−1z ≤ 1 is |Λ|1/22πp/2/[pΓ( 1

2p)]; thus, minimizing |Λ| corre-
sponds to finding a minimum volume ellipsoid [Rousseeuw (1985)]. Second,
if we could allow discontinuous ρ, then ρ(t) = 1 − I[−c0,c0](t) would count
the points outside the ellipsoid. So, for r = 25%, the optimization would
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find the minimum volume ellipsoid containing 75% of the data. An S es-
timate is thus a smoothed version of a minimum volume ellipsoid. The
smoothing is done to get

√
n-asymptotically normal estimates. Assuming

further

S3: ρ has a second derivative ψ′, both ψ′(t) and u(t) = ψ(t)/t are bounded
and continuous,

the asymptotic normality of the S estimate holds.

Proposition 13.11 Assume S1 through S3. Let V = Λ and assume

E ψ′(t) > 0,

E
[
ψ′(t)t2 + (p + 1)ψ(t)t

]
> 0.

Let

α = p−1E ψ2(t),
β = E

[(
1 − p−1) u(t) + p−1ψ′(t)

]
,

σ1 =
p(p + 2)E[ψ2(t)t2]

E2[ψ′(t)t2 + (p + 1)ψ(t)t]
,

σ2 = −2p−1σ1 + 4
E [ρ(t) − b0]

2

E2[ψ(t)t]
,

then

n1/2(Vn − V, µn − µ) d→ (N,n),

where n |= N and

n ∼ Np

(
0, (α/β2)V

)

N ∼ Np
p (0, σ1(I + Kp)(V ⊗ V) + σ2 vec(V)[vec(V)]′) .

p = 1 p = 2 p = 10

r = .5 26.9% 37.7% 91.5%
r = .3 40.5% 77.0% 98.0%
r = .1 49.1% 98.9% 99.9%

Table 13.1. Asymptotic efficiency of S estimate of scatter at the normal
distribution.

According to Lopuhaä (1989) the asymptotic efficiency for the estimation
of the scatter as measured by the index σ1 (or 2σ1 + σ2 for p = 1) are as
in Table 13.1 at the normal distribution. The asymptotic efficiency of the
location estimate are even higher.

For the S estimate, a high breakdown point corresponds to a low effi-
ciency and vice versa. Let us mention that S estimates are able to achieve
the asymptotic variance of M estimates. However, S estimates can have a
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high breakdown point in any dimension, whereas the asymptotic breakdown
point of an M estimate is at most 1/(p+1) [Tyler (1986)]. Lopuhaä (1991)
defines τ estimates which can have the same high breakdown point as S
estimates but can attain simultaneously high efficiency. The τ estimates
are also

√
n-asymptotically normal.

An S-plus [Statistical Sciences, (1995)] function, s.estimate, to evalu-
ate S estimate is described in Appendix C. The implementation follows
the recommendations of Ruppert (1992) to increase the speed of numeri-
cal convergence of this numerically intensive problem. The S-plus function
asymp evaluates the asymptotic variance constants λ = α/β2, σ1, and σ2,
at the normal distribution.

13.4.3 Robust Hotelling-T 2

Assume x1, . . . ,xn are i.i.d. x ∼ Ep(µ,Λ). Consider a test of hypothesis
on the mean, H0 : µ = µ0 against H1 : µ �= µ0, using a robust version of
the classical Hotelling-T 2. Assume (Vn, µn) is a robust affine equivariant
and asymptotically normal estimate (M or S estimate for example),

n1/2(Vn − V, µn − µ) d→ (N,n),

where n |= N and

n ∼ Np

(
0, (α/β2)V

)
,

N ∼ Np
p (0, σ1(I + Kp)(V ⊗ V) + σ2 vec(V)[vec(V)]′) .

Proposition 13.12 Under the sequence of contiguous alternatives H1,n :
µ = µ0 + n−1/2γ,

T 2
R = n(µn − µ0)

′V−1
n (µn − µ0),

where (Vn, µn) is asymptotically normal as above, satisfies

T 2
R

d→ α

β2 · χ2
p

(
β2

2α
γ′V−1γ

)
.

In particular, T 2
R

d→ α
β2 χ2

p under H0.

Proof. Let X and Y be the sample matrices under H0 and H1,n,
respectively. Then, we can write

Y d= X + n−1/21γ′.

Affine equivariance of the estimate immediately gives

µn(Y) d= µn(X) + n−1/2γ,

Vn(Y) d= Vn(X) → V w.p.1.

Since

n1/2(µn(Y) − µ0)
d= n1/2(µn(X) − µ0) + γ

d→ Np

(
γ, (α/β2)V

)
,
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it follows from Corollary 5.1 on quadratic forms (with A = (β2/α)V−1)
that

T 2
R = n(µn(Y) − µ0)

′V−1
n (Y)(µn(Y) − µ0)

d→ α

β2 χ2
p

(
β2

2α
γ′V−1γ

)
.

�

Another type of robustness found in the literature assumes an elliptical
distribution on the whole data matrix X ∈ R

n
p with mean 1µ′ and variance

of the form I ⊗ Σ. Under weak assumptions on the p.d.f., the classical
Hotelling-T 2 (8.1) remains UMPI and the null distribution of T 2 is the same
as if xi had been i.i.d. Np(µ,Σ), i.e., T 2 ∼ Fc(p, n − p) [v. Corollary 8.1].
The main difference in the two approaches resides in that the observations
under an elliptical distribution on X cannot be independent, although they
are uncorrelated, unless the elliptical distribution is normal. Independence
and spherical symmetry do not go together, except in the normal case,
by virtue of the Maxwell-Hershell theorem [v. Proposition 4.11]. One may
consult the book by Kariya and Sinha (1989) on this type of robustness for
many statistical tests.

Having found the asymptotic null distribution of Hotelling-T 2, it is now
a simple matter to extend the results of Section 8.3 to construct robust
simultaneous confidence intervals on means. For example, asymptotically,
we are at least (1− γ)× 100% confident in simultaneously presenting all of
the observed “Scheffé” intervals:

a′µn−
(

α

β2

χ2
γ,p

n

)1/2

(a′Vna)1/2 ≤ a′µ ≤ a′µn+

(
α

β2

χ2
γ,p

n

)1/2

(a′Vna)1/2,

∀a ∈ R
p. Realistically, the parametric family Ep(µ,Λ) is unknown. Thus,

α and β will have to be replaced by consistent estimates.

13.5 Robust tests on scale matrices

Assume x1, . . . ,xn are i.i.d. x ∼ Ep(µ,Λ). Consider a test of hypothe-
sis on Λ which is of the general form h(Λ) = 0, where h(Λ) ∈ R

q is
a continuously differentiable function. We will assume µ = 0. Under a
Np(0,Λ) distribution, recall that a likelihood ratio test on Λ is based
uniquely on the likelihood statistic Sn = 1

n

∑n
i=1 xix′

i. We know that
nSn ∼ Wp(n,Λ). Thus, Sn has density (up to a multiplicative constant)
|Λ|−n/2 etr(− 1

2nΛ−1Sn). So, we define

f(A,Λ) = |Λ|−n/2 etr(− 1
2Λ

−1A),
fh(A) = sup

h(Λ)=0
f(A,Λ),

Lh(A) =
fh(A)

f(A,A)
.
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Note that Lh(Sn) is the likelihood ratio test for H0 : h(Λ) = 0 when
x ∼ Np(0,Λ). The idea to build a robust test when x ∼ Ep(0,Λ) is
to use the test statistic Lh(Λ̂n) where Λ̂n could be Sn [Muirhead and
Waternaux, (1980)] or, preferably, a more robust estimate [Tyler (1983a)].
Other approaches which will not be considered here include those based on
minimum discrepancy test statistics [Browne and Shapiro (1987), Shapiro
and Browne (1987)].

13.5.1 Adjusted likelihood ratio tests
A general method of making a simple correction to the likelihood ratio
test is possible for hypotheses satisfying the following condition H on the
function h.

Condition H. h(Γ) = h(γΓ), ∀γ > 0, ∀Γ > 0.

Examples of hypothesis satisfying condition H are the test of sphericity and
the test of covariance.

Example 13.11 The test of sphericity H0 : Λ = γI for some unknown γ
can be written as H0 : h(Λ) = 0 with hij(Λ) = Λij/Λpp, 1 ≤ i < j ≤ p, and
hii(Λ) = Λii/Λpp −1, i = 1, . . . , p−1. Here, we have q = 1

2 (p−1)p+p−1.

Example 13.12 The test of covariance between two subvectors H0 : Λ12 =
0, where Λ12 ∈ R

p1
p2

can be written as H0 : h(Λ) = 0 by choosing h(Λ) =

vec(Λ−1/2
11 Λ12Λ

−1/2
22 ). Obviously, q = p1p2.

Condition H is not dependent on the location or the spread of the ellip-
tical contours, but concerns only the direction and relative lengths of the
axes of the contours. A condition E on the estimate Λ̂n is also necessary.
However, as we encountered in M and S estimation, we usually have an
estimate Vn of a multiple V of Λ. Note that hypothesis H0 : h(Λ) = 0 is
equivalent to H0 : h(V) = 0 under condition H.

Condition E. Vn is affine equivariant and n1/2(Vn − V) d→ Z, where

Z ∼ Np
p (0, σ1(I + Kp)(V ⊗ V) + σ2vec(V)[vec(V)]′).

Normal and elliptical MLE, the M estimate, and the S estimate satisfy
condition E under regularity conditions. An estimate of h(V) is h(Vn),
whose asymptotic distribution follows from the delta method (v. Proposi-
tion 6.2). A difficulty is the redundance of variables due to the symmetry
of V. For this reason, the following derivative will be very useful. Define
da/db = (dai/dbj), where i varies over rows and j runs over columns. The
derivative of h(V) with respect to V is defined as

h′(V) = 1
2 [d h(V)/d vec(V)](I + Jp) ∈ R

q
p2 ,
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where Jp =
∑p

i=1 eie′
i ⊗ eie′

i and ei ∈ R
p is a vector of zero but a 1 in

position i. An example when q = 1 and p = 2 is enlightening:

1
2 (dh/ds11, dh/ds21, dh/ds12, dh/ds22)




2 0
... 0 0

0 1
... 0 0

· · · · · · · · · · · · · · ·
0 0

... 1 0

0 0
... 0 2




=
(
dh/ds11,

1
2dh/ds21,

1
2dh/ds12, dh/ds22

)

is the usual gradiant of h taking into account the symmetry. Before stating
the result, we need a lemma on gradiants.

Lemma 13.2 Let f : R
p → R be continuously differentiable. Then,

〈df(x)/dx,x〉 = 0

for all x in a neighborhood of x0 iff f(x) = f(αx) for all x and αx in a
neighborhood of x0.

Proof. It suffices to notice that the contours of f are rays coming out of
the origin and that the gradiant is a perpendicular vector to the contour.�

Proposition 13.13 Under conditions H and E, n1/2[h(Vn) − h(V)] d→
Zh, where

Zh ∼ Nq (0, 2σ1[h′(V)](V ⊗ V)[h′(V)]′) .

Proof. As in Proposition 6.2, we can write

n1/2[h(Vn) − h(V)] = h′(V) n1/2 vec(Vn − V) + op(1).

Therefore,

n1/2[h(Vn) − h(V)] d→ h′(V) vec(Z).

From Lemma 13.2 and condition H, we have h′(V) vec(V) = 0. Thus, the
asymptotic variance is

var h′(V) vec(Z) = σ1[h′(V)](I + Kp)(V ⊗ V)[h′(V)]′,
= σ1[h′(V)](V ⊗ V)(I + Kp)[h′(V)]′.

Applying the identity Kp vec(A) = vec(A′) to the columns of [h′(V)]′

gives (I + Kp)[h′(V)]′ = 2[h′(V)]′ and the conclusion follows. �

An important consequence of condition H is the asymptotic variance
which becomes independent of σ2. This means that for Vn satisfying con-
dition E, all the asymptotic distributions of h(Vn), under condition H, such
as a simple correlation coefficient, a multiple correlation coefficient, a ratio
of eigenvalues, etc., are the same as those for the sample variance S, when
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sampling from a multivariate normal distribution, except for the factor σ1
in the asymptotic variance. For completeness, the results for correlations
are now given.

Denote by rij the simple correlation defined from the scale estimate
Vn = (vn,ij), i.e.,

rij =
vn,ij

v
1/2
n,iiv

1/2
n,jj

,

and let

ρij =
Λij

Λ1/2
ii Λ1/2

jj

be the correlation for the Ep(µ,Λ) distribution.

Proposition 13.14 Assume condition E holds on Vn. Then,

n1/2(rij − ρij)
d→ σ

1/2
1 · N(0, (1 − ρ2

ij)
2).

From the delta method it is also clear that an arbitrary number of cor-
relation coefficients is jointly asymptotically normal. Thus, it suffices to
consider the case of two correlation coefficients rij and rkl.

Proposition 13.15 Assume condition E holds on Vn. Then,

n1/2
(

rij − ρij

rkl − ρkl

)
d→ σ

1/2
1 · N2

(
0,

(
(1 − ρ2

ij)
2 ω

ω (1 − ρ2
kl)

2

))
,

where the asymptotic covariance ω is given by

ω = ρijρkl + ρkjρil − ρlj(ρijρkj + ρilρkl) − ρki(ρijρil + ρkjρkl)
+ 1

2ρkiρlj(ρ2
ij + ρ2

il + ρ2
kj + ρ2

kl).

Proof. Assume V = (ρij) without loss of generality. Write down the
asymptotic distribution

n1/2







vn,ij

vn,ii

vn,jj

vn,kl

vn,kk

vn,ll




−




ρij

1
1

ρkl

1
1







d→ N6(0,Ω)

for a certain Ω and apply the delta method. �

Similarly, for the multiple correlation coefficient R̂ ≡ R̂(Vn) and par-
tial correlation coefficient rij|x2 ≡ rij|x2(Vn), obtained from Vn satisfying
condition E, we can write the asymptotic distributions:

n1/2(R̂2 − R2) d→ σ
1/2
1 · N (

0, 4R2(1 − R2)2
)
,

n1/2 (rij|x2 − ρij|x2

) d→ σ
1/2
1 · N

(
0, (1 − ρ2

ij|x2
)2
)

.
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Higher-order asymptotic distributions for functions of the sample variance
S can also be derived with the use of zonal polynomials [Iwashita and
Siotani (1994)].

For the same reason, adjustment to the likelihood ratio test will take a
rather simple form. The asymptotic distribution of the modified likelihood
ratio test Lh(Vn), where Vn may be a robust estimate, is obtained with the
equivalent form of Wald’s test for the same hypothesis. Let un ∼ vn mean
un − vn

p→ 0. The following result on Wald’s formulation holds regardless
of condition H.

Proposition 13.16 Let An > 0, n = 1, 2, . . ., be such that n1/2(An −
A) d→ (·) for a fixed A > 0 satisfying h(A) = 0. If rank h′(Γ) = q, ∀Γ in
a neighborhood of A, then

−2 ln Lh(An) ∼ n[h(An)]′[Ch(An)]−1h(An),

where Ch(Γ) = 2[h′(Γ)](Γ ⊗ Γ)[h′(Γ)]′.

Proof. This is a generalization of Wald’s formulation for the asymptotic
behavior of the likelihood ratio statistic. Refer to Tyler (1983a) for details.
�

Corollary 13.2 Assume conditions H and E. Then:

(i) under H0, −2 ln Lh(Vn) d→ σ1χ
2
q,

(ii) under the sequence of contiguous alternatives Λn = Λ+n−1/2B, where
h(Λ) = 0 and B is a fixed symmetric matrix,

−2 ln Lh(Vn) d→ σ1χ
2
q (δh(Λ,B)/2σ1) ,

where

δh(Λ,B) = [vec(B)]′[h′(Λ)]′[Ch(Λ)]−1h′(Λ)vec(B).

Proof. From conditions H and E, n1/2(Vn − V) d→ Z and n1/2[h(Vn) −
h(V)] d→ Zh, where Zh ∼ Nq(0, σ1Ch(V)). Under H0 : h(V) = 0,

n1/2h(Vn) d→ Zh, and since h′(·) is continuous, Ch(Vn)
p→ Ch(V). Hence,

we have

[n1/2h(Vn)]′[Ch(Vn)]−1[n1/2h(Vn)] d→ Z′
h[Ch(V)]−1Zh

d= σ1χ
2
q.

For contiguous alternatives, under condition H, the noncentrality pa-
rameter is invariant with respect to scalar multiplication δh(Λ,B) =
δh(αΛ, αB), ∀α > 0. �

As a particular case for Sn which has σ1 = 1 + k, we have, under H0,

−2 ln Lh(Sn)/(1 + k̂) d→ χ2
q
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for some consistent estimate k̂ of the kurtosis parameter. So, in the class
of Ep(0,Λ) with finite fourth-order moments, this adjusted LRT is robust
in the sense that the asymtotic distribution is the same as if x ∼ Np(0,Λ).
Note that a consistent estimate k̂ can be obtained by the method of moment
with the identity

1 + k = pE(s2)/[(p + 2)E2(s)], (13.15)

where s = |z|2 and z ∼ Ep(0, I) has fourth-order moments (v. Prob-
lem 13.6.12). More generally, the test statistic −2 ln Lh(Vn)/σ̂1 will be
referred to as an adjusted LRT.

The test of sphericity can serve as an example to illustrate Proposi-
tion 13.16 and Corollary 13.2. Wald’s formulation is generally obtained by
a Taylor series of −2 ln Lh(Vn) around V, satisfying H0 : h(V) = 0. For
the test of sphericity, we have

−2 ln Lh(Vn) = −n ln |Vn| + pn ln(p−1tr Vn).

Under H0 : V = γI and condition E, we can write Vn = γI + n−1/2Zn,
where Zn is bounded in probability. Since ln(1 + x) =

∑∞
i=1(−1)i+1xi/i,

−1 < x < 1, it follows that for a fixed symmetric A,

ln |I + tA| =
∞∑

i=1

(−1)i+1tr(Ai)ti/i

for all t sufficiently small. Hence, we get the expansion

−2 ln Lh(Vn) = 1
2γ−2[tr(Z2

n) − p−1(tr Zn)2] + Op(n−1/2)
d→ 1

2γ−2[tr(Z2) − p−1(tr Z)2],

where Z ∼ γNp
p (0, σ1(I + Kp) + σ2 vec(I)[vec(I)]′). From the relations

(v. Problem 6.4.2) tr Z2 = [vec(Z)]′ 1
2 (I + Kp) vec(Z) and tr Z =

[vec(I)]′ vec(Z), it follows that
1
2γ−2[tr(Z2) − p−1(tr Z)2] = [vec(Z)]′A vec(Z),

where A = 1
2γ−2{ 1

2 (I+Kp)−p−1 vec(I)[vec(I)]′} is a quadratic form. This
is Wald’s equivalent formulation for this test. The asymptotic result

−2 ln Lh(Vn)/σ1
d→ χ2

q, q = 1
2 (p − 1)(p + 2)

follows from Corollary 5.1 on quadratic forms.
When condition H is not satisfied, simple adjustments to the LRT is

generally not possible, as the following corollary shows.

Corollary 13.3 Under H0 : h(V) = 0 and condition E,

−2 ln Lh(Vn) d→ σ1χ
2
q−1 + [σ1 + σ2δh(V,V)]χ2

1,

with χ2
q−1 |= χ2

1. The term δh(V,V) = 0 iff for some neighborhood of V,
h(Γ) = h(γΓ) for all Γ and γΓ in this neighborhood.
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Proof. Take a closer look at the distribution of Zh in Proposition 13.13
when condition H is not satisfied. Under H0, we still have n1/2h(Vn) d→
h′(V) vec(Z) but with an added term in the variance:

var h′(V) vec(Z) = σ1[h′(V)](V ⊗ V)(I + Kp)[h′(V)]′

+σ2h′(V) vec(V)[vec(V)]′[h′(V)]′

≡ Dh(V).

Using Proposition 13.16, the equivalent Wald’s formulation is

−2 lnLh(Vn) ∼ [n1/2h(Vn)]′[Ch(Vn)]−1[n1/2h(Vn)],

and, thus,

−2 ln Lh(Vn) d→ Z′
h[Ch(V)]−1Zh,

where Zh ∼ Nq(0, Dh(V)). The result follows since [Ch(V)]−1Dh(V) has
eigenvalues σ1 of multiplicity (q − 1) and σ1 + σ2δh(V,V). The second
statement follows since h′(V) vec(V) = 0 iff the stated condition holds. �

13.5.2 Weighted Nagao’s test for a given variance
In this section, we consider an example where the condition H on the hy-
pothesis is not satisfied, but a simple test, robust to large kurtosis, can
still be built. For testing the hypothesis, H0 : Σ = I, against H1 : Σ �= I,
the modified likelihood ratio test based on n i.i.d. vectors from a Np(µ,Σ)
distribution is (v. Problem 8.9.8)

Λ∗ = epm/2|Sn|m/2 etr(− 1
2mSn), m = n − 1,

where Sn =
∑n

i=1(xi − x̄)(xi − x̄)′/m. It is invariant to orthogonal
transformations, unbiased, and −2 ln Λ∗ is asymptotically distributed as
a noncentral chi-square [Khatri and Srivastava (1974)], χ2

f (δ), with f =
1
2p(p + 1) and δ =

∑p
i=1 d2

i /4, under the sequence of local alternatives

Σn = I + n−1/2D, D = diag(d1, . . . , dp). (13.16)

However, Muirhead (1982, p. 365) showed that if the sample came from an
elliptical distribution, Ep(µ,Σ), with kurtosis 3k, then the asymptotic null
distribution is

−2 ln Λ∗/(1 + k̂) d→
[
1 +

kp

2(1 + k)

]
χ2

1 + χ2
f−1,

where χ2
1 and χ2

f−1 are independently distributed and k̂ is a consistent
estimate of k. A generalization to robust estimates of scale is proposed in
Problem 13.6.16. Therefore, even the adjusted test statistic −2 ln Λ∗/(1 +
k̂) is not robust to non-normality of the data, especially for large values
of k or long-tailed distribution. Moreover, the procedure of estimating k
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in the asymptotic distribution and calculating the critical points of the
convolution of

[
1 +

k̂p

2(1 + k̂)

]
χ2

1 and χ2
f−1,

as if k̂ were a constant, is obviously not a valid procedure.
A new test statistic W is proposed, which is also invariant to orthog-

onal transformations and has an asymptotic null distribution χ2
f for all

underlying elliptical distributions with finite fourth moments. The asymp-
totic non-null distribution under the sequence of local alternatives (13.16)
is noncentral chi-square. It is asymptotically fully efficient at the normal
distribution as compared to the modified likelihood ratio test.

Let Sn = I + n−1/2Un, Sn = (sij), Un = (uij). Then, when H0 is true,
the asymptotic distribution of

un = (u11/
√

2, . . . , upp/
√

2, u12, . . . , u1p, u23, . . . , u2p, . . . , up−1,p)′ ∈ R
f

when the observations xi are drawn from an elliptical distribution with
kurtosis 3k is Nf (0,Γ), where

Γ =
(

Ω 0
0 (1 + k)If−p

)

with Ω = (1+k)Ip + 1
2k11′, 1 = (1, . . . , 1)′ ∈ R

p. Then, from Corollary 5.1,
we have under H0,

u′
nΓ−1un = 1

2 (u11, . . . , upp)Ω−1




u11
...

upp


 +

∑
i<j

u2
ij/(1 + k) d→ χ2

f .

The test statistic proposed [Bentler (1983)] is

W =
n

2
(s11 − 1, . . . , spp − 1)Ω̂−1




s11 − 1
...

spp − 1


 + n

∑
i<j

s2
ij/(1 + k̂),

where Ω̂ = (1 + k̂)Ip + 1
2 k̂11′ and k̂ is a consistent estimate of k.

Note that when k̂ ≡ 0, then W reduces to Nagao’s (1973) test statistic

(n/2) tr(Sn − I)2.

Asymptotic expansions of Nagao’s test for elliptical distributions were de-
rived by Purkayastha and Srivastava (1995). The test statistic W can
be seen as a weighted form of Nagao’s statistic with the diagonal and
off-diagonal elements of the sample variance matrix, Sn, being assigned
different weights.
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The identity (13.15) leads by the method of moments to the consistent
and orthogonally invariant estimate

k̂ = pn

∑n
i=1 |xi − x̄|4

(
∑n

i=1 |xi − x̄|2)2
− 1. (13.17)

Since Ω̂ is (1 + k̂)I perturbed by a rank 1 matrix, namely 1
2 k̂11′, it has a

known inverse which leads to the equivalent expression

W =
n

2
tr(Sn − I)2/(1 + k̂) − n

2
k̂

(1 + k̂)[2(1 + k̂) + k̂p]
(tr Sn − p)2,

showing that W is invariant to orthogonal transformations, xi �→ Hxi for
any orthogonal matrix H. Thus, without loss of generality, we can take for
W the sequence of local alternatives (13.16) with a diagonal matrix D. The
following result was given in Bilodeau (1997b).

Proposition 13.17 Under the sequence of local alternatives Σn = I +
n−1/2D, D = diag(d1, . . . , dp), the asymptotic distribution of W is
noncentral chi-square,

W
d→ χ2

f (d′Ω−1d/4),

where

f = 1
2p(p + 1),

d = (d1, . . . , dp)′,
Ω = (1 + k)I + 1

2k11′.

Proof. Let xi = Σ1/2
n zi, where zi ∼ Ep(0, I). Also, let

X =




x′
1
...

x′
n


 and Z =




z′
1
...

z′
n




be the sample matrices, and Sn(X) and Sn(Z) be the sample variance
matrices obtained from X and Z, respectively. Then, we have

Un(X) ≡ n1/2[Sn(X) − I] = Σ1/2
n Un(Z)Σ1/2

n + n1/2(Σn − I),

where Un(Z) d→ Np
p (0, (1 + k)(I + K) + k vec(I)vec(I)′), Σn → I, and

n1/2(Σn − I) = D. Hence, the asymptotic result

Un(X) d→ Np
p (D, (1 + k)(I + K) + k vec(I)vec(I)′)

is obtained. Since W is a continuous function of Un(X) and k̂,

W = g(Un(X), k̂),
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the conclusion follows from Lemma 6.3 and classical results on quadratic
forms if k̂ in (13.17) is consistent under the same sequence of local alter-
natives. This is now shown. From x̄ = Σ1/2

n z̄ and since z̄
p→ 0, Σn → I, we

have x̄
p→ 0. Thus, the asymptotic equivalences

1
n

n∑
i=1

|xi − x̄|2 ∼ 1
n

n∑
i=1

|xi|2, 1
n

n∑
i=1

|xi − x̄|4 ∼ 1
n

n∑
i=1

|xi|4,

where u ∼ v means u − v
p→ 0, hold. But now, since

(1 + n−1/2d(1))j/2 1
n

n∑
i=1

|zi|j ≤ 1
n

n∑
i=1

|xi|j ≤ (1 + n−1/2d(p))j/2 1
n

n∑
i=1

|zi|j ,

where d(1) = min{di} and d(p) = max{di}, we also have the equivalences

1
n

n∑
i=1

|xi|2 ∼ 1
n

n∑
i=1

|zi|2, 1
n

n∑
i=1

|xi|4 ∼ 1
n

n∑
i=1

|zi|4.

Thus, 1 + k̂
p→ pE|zi|4/E2|zi|2 = 1 + k, which completes the proof. �

When k = 0, the test statistic W is asymptotically distributed, under
the sequence of local alternatives (13.16), as χ2

f (d′d/4). Therefore, W is
asymptotically fully efficient at the normal distribution as compared to
the modified likelihood ratio test, −2 ln Λ∗. Sutradhar (1993) discusses the
score test of the multivariate t.

For testing the hypothesis H0 : µ = 0 and Σ = I against H1 : µ �= 0
or Σ �= I, consider the test statistic W + nx̄′x̄ under the sequence of local
alternatives

µn = n−1/2τ , Σn = I + n−1/2D,

where D = diag(d1, . . . , dp). Then, it can be established along the same
lines

W + nx̄′x̄ d→ χ2
f (δ),

where f = 1
2p(p + 3), δ = d′Ω−1d/4 + τ ′τ/2, and d and Ω are as in

Proposition 13.17. The test W +nx̄′x̄ is thus robust in the class of elliptical
distributions with finite fourth moments. Its full efficiency at the normal
distribution as compared to the likelihood ratio test follows immediately by
comparing the asymptotic non-null distributions of the two tests [Khatri
and Srivastava (1974)].

13.5.3 Relative efficiency of adjusted LRT
Under condition H, the adjusted LRT based on Sn has noncentrality
parameter

δh(Λ,B)/2(1 + k)
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and for k moderately large, it is expected to have low power. A measure
of efficiency can be derived by comparing the adjusted LRT with the exact
LRT derived under a particular Ep(0,Λ) with known density defined by
the function g(·). The likelihood for Λ built from the sample matrix

X =




x′
1
...

x′
n




is

Lg(Λ) = |Λ|−n/2
n∏

i=1

g(x′
iΛ

−1xi).

Then,

Λ̂n = arg min
Λ>0

Lg(Λ),

ˆ̂Λn = arg min
h(Λ)=0

Lg(Λ)

are respectively the restricted and unrestricted elliptical MLE of Λ. Then,
the optimal procedure is the LRT derived for a given g(·):

Lh,g(X) =
Lg(

ˆ̂Λn)
Lg(Λ̂n)

.

Then, Wald’s classical formulation for this “elliptical” LRT is

−2 ln Lh,g(X) ∼ n[h(Λ̂n)]′[Ch(Λ̂n)]−1h(Λ̂n)/σ1,g

under H0 or under the sequence of alternatives Λn = Λ + n−1/2B. The
parameter σ1,g is the value of σ1 in the asymptotic variance of the MLE
given in Proposition 13.7, i.e., σ1,g = p(p + 2)/E[ψ2(s)].

Corollary 13.4 Assume condition H holds. Then:

(i) under H0, −2 ln Lh,g(X) d→ χ2
q,

(ii) under the sequence of contiguous alternatives Λn = Λ+n−1/2B, where
h(Λ) = 0 and B is a fixed symmetric matrix,

−2 lnLh,g(X) d→ χ2
q (δh(Λ,B)/2σ1,g) ,

where, as before,

δh(Λ,B) = [vec(B)]′[h′(Λ)]′[Ch(Λ)]−1h′(Λ) vec(B).

When g(·) is known, another test which is first-order efficient and asymp-
totically distributed as chi-square is the minimum geodesic distance test
[Berkane et al. (1997)].

The proof of Corollary 13.4 is identical to that of Corollary 13.2. The
asymptotic efficiency of the adjusted LRT −2 ln Lh(Sn)/(1 + k̂) to the
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ν =5 ν = 6 ν = 7 ν = 8 ν = 30

q = 1 .26 .17 .13 .11 .06
q = 2 .37 .22 .17 .14 .06
q = 3 .46 .27 .20 .16 .06

Table 13.2. Asymptotic significance level of unadjusted LRT for α = 5%.

elliptical LRT can thus be measured by the ratio of the noncentrality
parameters, i.e., σ1,g/(1 + k). For the tp,ν density, it was evaluated that
σ1,g = 1 + 2/(p + ν), whereas 1 + k = (ν − 2)/(ν − 4) for a relative effi-
ciency of (ν − 4)(ν + 2)/[(ν − 2)(ν + p)]. For p = 2 and ν = 5, this gives an
efficiency of 33%. This is due to the poor robustness property of Sn. This
adjusted LRT cannot really be thought of as a robust test because of its
low efficiency. To obtain a truly robust adjusted LRT, one has to replace
Sn by an efficient robust estimate, i.e., one with a σ1 close to σ1,g.

We conclude this analysis by guarding the practitioner against assuming
indiscriminantly the normality of the data and using the “optimal” test for
normality. If the data came from an elliptical distribution with a kurtosis
parameter k and the hypothesis (satisfying condition H) was H0 : h(Λ) =
0, where h(Λ) ∈ R

q, then what was supposed to be an α = 5% significance
level test would be, in fact, for large samples, a test of significance level:

P (−2 ln Lh(Sn) ≥ χ2
.95,q) = P (−2 ln Lh(Sn)/(1 + k) ≥ χ2

.95,q/(1 + k))

→ P
(
χ2

q ≥ χ2
.95,q/(1 + k)

)
.

For a tp,ν distribution with 1+ k = (ν − 2)/(ν − 4), the significance level
may be far from 5%, as evidenced by Table 13.2. The situation worsens as
ν decreases, which means the tails become heavier or q increases, which is
related to the complexity of the hypothesis. For q = 3 and ν = 5, tossing a
coin is nearly as reliable!

13.6 Problems

1. Demonstrate the following on normal mixture representation:

(i) If x d= w1/2z, where w ∼ F , z ∼ Np(0, I), and w |= z, then

fx(x) =
∫ ∞

0
(2πw)−p/2 exp(− 1

2w−1x′x)dF (w),

where F (·) is a distribution function on [0,∞).
(ii) If νw−1 ∼ χ2

ν , then x = w1/2z ∼ tp,ν has density

fx(x) = cp,ν(1 + x′x/ν)−(ν+p)/2, x ∈ R
p,

where cp,ν = (νπ)−p/2Γ
( 1

2 (ν + p)
)
/Γ

( 1
2ν

)
.
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2. Assume x ∼ tp,ν(µ,Λ) where x is partitioned as x = (x′
1,x

′
2)

′, xi ∈
R

pi , i = 1, 2, p = p1 + p2. Demonstrate the following:

(i) E x = µ, var x = [ν/(ν − 2)]Λ, ν > 2.
(ii) p−1(x − µ)′Λ−1(x − µ) ∼ F (p, ν).
(iii) The marginal distribution is x2 ∼ tp2,ν(µ2,Λ22), where

µ = (µ′
1, µ

′
2)

′,

Λ =
(

Λ11 Λ12
Λ21 Λ22

)

are partitioned in conformity.
(iv) The conditional distribution is

x1|x2 ∼ tp1,ν+p2

(
µ1 + Λ12Λ−1

22 (x2 − µ2), h(x2)Λ11.2
)
,

where h(x2) = [ν/(ν + p2)] · [1 + (x2 − µ2)′Λ−1
22 (x2 − µ2)/ν].

Determine E(x1|x2), var(x1|x2) and the condition for their
existence.

3. Verify by differentiation of lnφ(t21 + t22) the cumulants

k2 = −2φ′(0),
k4 = 12(φ′′(0) − φ′(0)2),

k22 = 4(φ′′(0) − φ′(0)2),

where φ(t21 + t22) is the characteristic function of a bivariate
rotationally invariant vector.

4. Obtain E uu′ = p−1I and

var(uu′) =
1

p(p + 2)
(I + Kp) − 2

p2(p + 2)
vec(I)[vec(I)]′,

where u ∼ unif(Sp−1).

5. For the multivariate power exponential family (13.2), prove the
following:

(i) The normalizing constant is

cp,α =
αΓ(p/2)

πp/22p/2αΓ(p/2α)
.

(ii) The variance of x is

var x =
21/αΓ[(p/2 + 1)/α]

pΓ(p/2α)
Λ.

(iii) For α = 1/2, verify the assertion in Example 13.4.

Hint: Use the representation in polar coordinates in Proposition 4.10
together with Problems 4.6.13 and 13.6.4.
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6. Check that when Λ̂ = (Λ̂ij) is affine equivariant with variance

var Λ̂ = σ1(I + Kp)(Λ ⊗ Λ) + σ2 vec(Λ)[vec(Λ)]′,

then

cov(Λ̂ki, Λ̂lj) = σ1(ΛijΛkl + ΛkjΛil) + σ2ΛkiΛlj .

7. Prove if a0 > p + 1, n ≥ p + 1, then condition D1 is satisfied w.p.1
when sampling from an absolutely continuous distribution.

8. Verify conditions M1 through M4 for u1 and u2 corresponding to the
MLE under the tp,ν distribution.

9. Verify conditions M1 through M4 for Huber’s ψ function in
Example 13.10.

10. Assume z ∼ Ep(0, I) with density g(|z|2). Define u(s) = −2g′(s)/g(s)
and ψ(s) = su(s). Prove E ψ(|z|2) = p.
Hint: Integrate by parts.

11. For the tp,ν distribution, verify that the asymptotic variance param-
eter σ1 of the elliptical MLE in Proposition 13.7 is σ1 = 1 + 2/(p +
ν).

12. Prove 1+k = pE(s2)/[(p+2)E2(s)], where s = |z|2 and z ∼ Ep(0, I)
has fourth-order moments.

13. Define u(s) = −2g′(s)/g(s) and ψ(s) = su(s). Let s = |z|2, where
z ∼ Ep(0, I). Derive an upper bound for σ1,g/(1 + k), the index of
relative efficiency, by going through the following steps:

(i) E ψ2(s) ≥ [E ψ(s)]2,
(ii) E(s2) E[ψ2(s)] ≥ [Esψ(s)]2 = (p + 2)2E2(s),
(iii) σ1,g/(1 + k) ≤ min{1, (1 + 2p−1)(1 + k)−1}.
(iv) Interpret the bound in (iii).

14. Demonstrate that if ρ(t) = t2 and b0 = p in the definition of the S
estimate, then the solution is the normal MLE.

15. Demonstrate that the S estimate (µn,Vn) is necessarily a solution of
the equations

ave [u(ti)(xi − µn)] = 0

ave [pu(ti)(xi − µn)(xi − µn)′ − v(ti)Vn] = 0,

where ti =
[
(xi − µn)′V−1

n (xi − µn)
]1/2 and v(t) = tψ(t)−ρ(t)+ b0.

M and S estimates are close relatives!

16. Test for a given variance.
This is a continuation of Problem 8.9.8. The LRT under the Np(0,Λ)
for H0 : Λ = I versus H1 : Λ �= I is given by

Lh(Sn) = epn/2|Sn|n/2 etr(− 1
2nSn),
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where Sn = 1
n

∑n
i=1 xix′

i. Suppose that, in fact, xi ∼ Ep(0,Λ) and
one decides to use a robust estimate Λ̂n satisfying condition E instead
of Sn. Then, demonstrate that under H0,

−2 lnLh(Λ̂n) d→ (σ1 + 1
2σ2p)χ2

1 + σ1χ
2
p(p+1)/2−1,

where χ2
1 |= χ2

p(p+1)/2−1 by following these steps:

(i) Write Λ̂n = I + n−1/2Zn and use the Taylor series for ln |I + tA|
around t = 0 to show that under H0,

−2 ln Lh(Λ̂n) d→ 1
2 [vec(Z)]′ vec(Z),

where Z ∼ Np
p (0, σ1(I + Kp) + σ2 vec(I)[vec(I)]′).

(ii) Demonstrate

var(z11/
√

2, . . . , zpp/
√

2, z12, . . . , z1p, z23, . . . , z2p, . . . , zp−1,p)′

is given by
(

σ1Ip + 1
2σ211′ 0

0 σ1Ip(p−1)/2

)
≡ Ω.

(iii) Verify the eigenvalues of Ω are σ1 of multiplicity 1
2p(p + 1) − 1

and σ1 + 1
2σ2p of multiplicity 1.

17. Test of multiple correlation.
The LRT under (x1,x′

2)
′ ∼ Np(0,Λ) for H0 : R2 = 0 versus H1 :

R2 �= 0 is given by

Lh(Sn) = (1 − R̂2(Sn))n/2,

where Sn = 1
n

∑n
i=1 xix′

i and R̂2(Sn) = s′
21S

−1
22 s21/s11 in terms of

the partition

Sn =
(

s11 s′
21

s21 S22

)
.

Suppose, in fact, that (x1,x′
2)

′ ∼ Ep(0,Λ) and one decides to use
a robust estimate Λ̂n satisfying condition E instead of Sn. Then,
demonstrate that under H0,

−2 lnLh(Λ̂n) d→ σ1χ
2
p−1,

by following these steps:

(i) Argue that one can assume Λ = I.
(ii) Using a Taylor series, prove that

−2 lnLh(Λ̂n) ∼ nR̂2(Λ̂n).

(iii) Finally, prove that nR̂2(Λ̂n) d→ z′z, where z ∼ Np−1(0, σ1I) to
conclude.
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18. Let l = (l1, . . . , lp)′ be the eigenvalues of Sn = 1
n

∑n
i=1 xix′

i, calcu-
lated from a sample of an Ep(0,Λ) distribution, Λ = diag(λ1, . . . , λp).
If the population eigenvalues λα are all distinct, then prove that the
joint limiting distribution is given by

n1/2Λ−1(l − λ) d→ Np(0, 2(1 + k)I + k11′).

19. Suppose the sample is taken from an elliptical distribution with
kurtosis 3k. Let f = (f1, . . . , fp)′ be the eigenvalues of the sample
correlation matrix R = (rij). If the eigenvalues γα of the population
correlation matrix

ρ = (ρij) = G diag(γ1, . . . , γp) G′,

where G = (gij) ∈ Op, are all distinct, then prove that the joint
limiting distribution is

n1/2(f − γ) d→ Np(0, (1 + k)Ω),

where Ω = (ωαβ) is given by

ωαβ = 2γαγβ


δαβ − (γα + γβ)

p∑
j=1

g2
jαg2

jβ +
p∑

j=1

p∑
i=1

g2
jαg2

iβρ2
ji


 .



14
Bootstrap confidence regions and tests

An important part of multivariate analysis deals with confidence regions
and tests of hypotheses on the mean vector and variance matrix. The clas-
sical theoretical developments for such procedures rest mainly upon the
multivariate normality assumption. Without multivariate normality, the
asymptotic distribution of many tests becomes more complex and often
leads to untabulated limit distributions. The bootstrap confidence regions
and tests on the mean vector and variance matrix have the desired asymp-
totic levels under very mild conditions. We will present the bootstrap
technique main ideas without formal proofs. The interested reader should
consult the cited references. General references for the bootstrap are Efron
(1982), who made the technique widely applicable by using modern com-
putational power, Efron and Tibshirani (1993) and Hall (1992). The book
by Davison and Hinkley (1997) has S-plus code which may prove useful.

14.1 Confidence regions and tests for the mean

Let x = (x1, . . . , xp)′ ∼ F with mean µF = (µF,i) and variance ΣF =
(σF,ij). Let x1, . . . ,xn be i.i.d. F and

x̄n =
1
n

n∑
i=1

xi,

Sn =
1

(n − 1)

n∑
i=1

(xi − x̄n)(xi − x̄n)′,
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be the sample mean and sample variance, respectively. Define the “pivot”

wn = n1/2|S−1/2
n (x̄n − µF )|.

Then, by the central limit theorem,

wn
d→ |z|, z ∼ Np(0, I).

The empirical distribution function of the data x1, . . . ,xn is denoted by

F̂n(t) =
1
n

n∑
i=1

I(xi ≤ t),

where I(xi ≤ t) is the indicator function. In other words, F̂n is the dis-
crete distribution function with equal probability 1/n at the points xi,
i = 1, . . . , n. Then, for x∗ ∼ F̂n, we have

E x∗ = µF̂n
=

1
n

n∑
i=1

xi,

var x∗ = ΣF̂n
=

1
n

n∑
i=1

(xi − x̄n)(xi − x̄n)′.

The nonparametric bootstrap estimate of the probability distribution of wn

under F , Jn(F ), is the bootstrap estimate Jn(F̂n), which can be interpreted
as follows. Let x∗

i , i = 1, . . . , n, be i.i.d. F̂n, and let x̄∗
n and S∗

n be the sample
mean and sample variance, respectively, of the x∗

i ’s. Then, Jn(F̂n) is the
probability law under F̂n of

w∗
n = n1/2|S∗

n
−1/2(x̄∗

n − µF̂n
)|.

In practice, Jn(F̂n) may be approximated to any degree of accuracy with
resampling by Monte Carlo methods. The consistency of the bootstrap was
established by Beran (1984, example 3) using a triangular array version of
the C.L.T.,

w∗
n

d→ |z| w.p.1,

which means that wn and w∗
n converge in distribution to the same limit.

However, it was Singh (1981), and Bickel and Freedman (1981) who first
established the consistency of the bootstrap in the univariate situation.
Let cn(α, F̂n) be a (1 − α)-quantile of the bootstrap distribution Jn(F̂n).
By the consistency of the bootstrap, if Dn(α) is the bootstrap confidence
region for µF ,

Dn(α) = {µF : n1/2|S−1/2
n (x̄n − µF )| ≤ cn(α, F̂n)},

then

lim
n→∞ P (µF ∈ Dn(α)) = 1 − α.
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The bootstrap confidence region Dn(α) handles all norms, | · |, on R
p with

equal ease. Most often though, the euclidian norm is intended, and in that
case, the ellipsoidal bootstrap confidence region can be written as

Dn(α) = {µF : n(x̄n − µF )′S−1
n (x̄n − µF ) ≤ c2

n(α, F̂n)}.
A (1−α)-acceptance region, A(µ0), for testing the hypothesis H0 : µF = µ0
against H1 : µF �= µ0 may be obtained by inverting the confidence region,
Dn(α), in the usual way [Fraser (1976), p. 580]. Here, the test which rejects
H0 : µF = µ0 iff µ0 �∈ Dn(α) is a test with asymptotic type I error
probability α.

More generally, suppose a confidence region on g(µF ) ∈ R
k, k ≤ p, is

wanted where g : R
p → R

k is a continuously differentiable function and
has first derivative ġ ∈ R

k
p. Let u : R

k → R be continuous on R
k such that

{z ∈ R
k : u(z) = c}

has Lebesgue measure 0 for every c ∈ R. Consider the statistic

wn,g = u
[
n1/2 (g(x̄n) − g(µF ))

]
.

The central limit theorem coupled with the delta method yields

wn,g
d→ u[ġ(µF ) zF ], zF ∼ Np(0,ΣF ).

The condition imposed on u ensures that the limit distribution is contin-
uous. Using arguments as in Beran (1984), it can be established that the
bootstrap estimate is consistent, i.e.,

w∗
n,g = u

[
n1/2

(
g(x̄∗

n) − g(µF̂n
)
)]

d→ u[ġ(µF ) zF ] w.p.1.

To construct the bootstrap confidence region, let cn,g(α, F̂n) be a (1 − α)-
quantile of the bootstrap distribution. A bootstrap confidence region for
g(µF ) having asymptotic coverage probability 1 − α is

Dn,g(α) = {g(µF ) : u
[
n1/2 (g(x̄n) − g(µF ))

]
≤ cn,g(α, F̂n)}.

In the examples to be considred, the function u has the additional property,
u(bz) = bu(z), ∀z ∈ R

k, ∀b > 0. Then, the factor n1/2 may be omitted and
we may write equivalently

Dn,g(α) = {g(µF ) : u [g(x̄n) − g(µF )] ≤ c∗
n,g(α)},

where c∗
n,g(α) is a (1−α)-quantile of the distribution of u[g(x̄∗

n)−g(µF̂n
)]

when F̂n is fixed at its realized value and x̄∗
n is the bootstrap sample mean.

Judicious choices of u and g give interesting confidence regions, as the
following examples show.
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Example 14.1 Let g(µF ) = µF and u(z) = |z|1 =
∑p

i=1 |zi| be the l1-
norm. Then, the bootstrap confidence region

Dn,g(α) =

{
µF :

p∑
i=1

|x̄n,i − µF,i| ≤ c∗
n,g(α)

}
,

has asymptotic coverage probability 1−α, where c∗
n,g(α) is a (1−α)-quantile

of the distribution of
∑p

i=1 |x̄∗
n,i−µF̂n,i| when F̂n is fixed at its realized value

and x̄∗
n is the bootstrap sample mean.

Example 14.2 Let g(µF ) = µF and u(z) = |z|∞ = max1≤i≤p |zi| be the
l∞-norm. The bootstrap simultaneous confidence intervals

Dn,g(α) = {µF : |x̄n,i − µF,i| ≤ c∗
n,g(α), i = 1, . . . , p},

have asymptotic simultaneous coverage probability 1 − α, where c∗
n,g(α) is

a (1−α)-quantile of the distribution of max1≤i≤p |x̄∗
n,i − µF̂n,i| when F̂n is

fixed at its realized value and x̄∗
n is the bootstrap sample mean.

Example 14.3 This example provides the bootstrap algorithm, easy to im-
plement on a computer, to construct simultaneous confidence intervals on
the means µF,i, i = 1, . . . , p. We are given a sample x1, . . . ,xn from F .

Bootstrap algorithm

• Calculate x̄n = (x̄n,i).
• b ← 1
• B ← 2000 (say)
• Do while b ≤ B.

• Draw a bootstrap sample x∗
1, . . . ,x

∗
n from F̂n.

• Calculate x̄∗
n = (x̄∗

n,i).
• ub ← max1≤i≤p |x̄∗

n,i − x̄n,i|
• b ← b + 1

• End.
• Order the ub’s: u(1) ≤ u(2) ≤ · · · ≤ u(B).
• q ←  (1 − α)B! ( ·! is the integer part function)
• Simultaneous confidence intervals for µF,i with approximate simultaneous
coverage probability 1 − α are

x̄n,i − u(q) ≤ µF,i ≤ x̄n,i + u(q), i = 1, . . . , p.

14.2 Confidence regions for the variance

This time, define

Wn = n1/2(Sn − ΣF ).
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The asymptotic distribution of Sn was given in Section 6.3 for all underlying
distribution F with finite fourth moments. The asymptotic distribution is

Wn
d→ XF , XF ∼ Np

p (0,ΩF ),

where XF = (xF,ij), the elements of ΩF given by

cov(xF,ik, xF,jl) = kijkl
1111 + kkl

11k
ij
11 + kil

11k
jk
11

with the k’s representing the cumulants of F . The nonparametric bootstrap
estimate of the probability distribution under F of Wn is the probability
distribution under F̂n of

W∗
n = n1/2

(
S∗

n − ΣF̂n

)
.

Beran and Srivastava (1985) established the consistency of the bootstrap

W∗
n

d→ XF w.p.1.

A difficulty in deriving a confidence region for a function of ΣF is the
redundancy of elements due to the symmetry of ΣF . So let

uvec(S) = (s11, s12, s22, . . . , s1p, s2p, . . . , spp)′

be the vec operator applied only to the upper triangular part of S ∈ Sp.
Suppose a confidence region for g(ΣF ) ∈ R

k is desired where g is a function
of uvec(ΣF ), which is continuously differentiable and has first derivative
ġ ∈ R

k
p(p+1)/2. Let u : R

k → R be continuous on R
k such that

{z ∈ R
k : u(z) = c}

has Lebesgue measure 0 for every c ∈ R and u(bz) = bu(z), ∀z ∈ R
k,

∀b > 0. Let

Wn,g = u
[
n1/2 (g(Sn) − g(ΣF ))

]
.

The delta method (v. Proposition 6.2) immediately yields

Wn,g
d→ u[ġ(ΣF ) uvec(XF )] (14.1)

and

W∗
n,g

d→ u[ġ(ΣF ) uvec(XF )] w.p.1,

so the bootstrap is consistent [Beran and Srivastava (1985)]. The condition
on u implies the limiting distribution in (14.1) is continuous. A bootstrap
confidence region for g(ΣF ) having asymptotic coverage probability 1 − α
is

Dn,g(α) = {g(ΣF ) : u [g(Sn) − g(ΣF )] ≤ c∗
n,g(α)},

where c∗
n,g(α) is a (1−α)-quantile of the distribution of u[g(S∗

n)−g(ΣF̂n
)]

when F̂n is fixed at its realized value and S∗
n is the bootstrap sample

variance.
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Example 14.4 Let

g(ΣF ) = ρF,ij =
σF,ij

σ
1/2
F,iiσ

1/2
F,jj

.

Then, g(Sn) is the sample correlation coefficient rn,ij and bootstrap confi-
dence regions based on |rn,ij − ρF,ij | have the correct asymptotic coverage
probability. Also covered is the Fisher z-transform

g(ΣF ) = 1
2 ln

(
1 + ρF,ij

1 − ρF,ij

)
= tanh−1(ρF,ij).

Example 14.5 This example provides the bootstrap algorithm, in an easily
programmable form, to construct a confidence interval for the correlation
coefficient ρF,ij using the Fisher z-transformation to stabilize the variance.
We are given a sample x1, . . . ,xn from F .

Bootstrap algorithm

• Calculate Sn = (sn,ij).
• Calculate rn,ij = sn,ij/[s1/2

n,iis
1/2
n,jj ].

• b ← 1
• B ← 2000 (say)
• Do while b ≤ B.

• Draw a bootstrap sample x∗
1, . . . ,x

∗
n from F̂n.

• Calculate S∗
n = (s∗

n,ij).

• Calculate r∗
n,ij = s∗

n,ij/[s∗1/2

n,ii s∗1/2

n,jj ].
• ub ← ∣∣tanh−1(r∗

n,ij) − tanh−1(rn,ij)
∣∣

• b ← b + 1
• End.
• Order the ub’s: u(1) ≤ u(2) ≤ · · · ≤ u(B).
• q ←  (1 − α)B!
• An approximate (1 − α) confidence interval for ρF,ij is

tanh[tanh−1(rn,ij) − u(q)] ≤ ρF,ij ≤ tanh[tanh−1(rn,ij) + u(q)].

Example 14.6 Let

φ1(ΣF ) > φ2(ΣF ) > · · · > φp(ΣF ) > 0

be the ordered eigenvalues of ΣF assumed distinct. The vector

φ(ΣF ) = (φ1(ΣF ), . . . , φp(ΣF ))′

is a continuously differentiable function of uvec(ΣF ) [Kato (1982), Section
6 of Chapter 2]. The ordered sample eigenvalues are

φ(Sn) = (φ1(Sn), . . . , φp(Sn))′.

The bootstrap confidence region based on

max
1≤i≤p

| lnφi(Sn) − lnφi(ΣF )| (14.2)
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has the correct asymptotic coverage probability. Here, u(z) = max1≤i≤p |zi|,
z ∈ R

p. The logarithmic transformation stabilizes the variance in the nor-
mal model asymptotic for sample eigenvalues (v. Problem 8.9.15). The
bootstrap confidence region for φ(ΣF ) corresponding to (14.2) is

{φi(ΣF ) : φi(Sn)/An ≤ φi(ΣF ) ≤ φi(Sn)An, i = 1, . . . , p},
where

An = ec∗
n,g(α)

and c∗
n,g(α) is a (1 − α)-quantile of the distribution of

max
1≤i≤p

| lnφi(S∗
n) − lnφi(ΣF̂n

)|

when F̂n is fixed at its realized value and S∗
n is the bootstrap sample

variance.

The problem of efficiently bootstrapping sample eigenvalues when ΣF

may have multiple eigenvalues is still an unresolved problem [Beran and
Srivastava (1987), Eaton and Tyler (1991)].

14.3 Tests on the variance

Rather than inverting a confidence region, it is sometimes possible to con-
struct bootstrap tests directly from test statistics. This approach [Beran
and Srivastava (1985)] to testing structural hypotheses about ΣF is the
subject of this section.

Assume x1, . . . ,xn are i.i.d. F with finite fourth moments. Let π : Pp →
Pp be a linear projection (π2 = π), not the identity map. Suppose Tn(Sn) =
n h(Sn) is a test statistic for the null hypothesis,

H0 : ΣF = π(ΣF ).

Let F0 be any distribution function satisfying H0.

Example 14.7 Define the constant linear projection π(ΣF ) = I. Then,
the hypothesis H0 : ΣF = I is equivalent to H0 : ΣF = π(ΣF ).

Example 14.8 Partition ΣF as

ΣF =
(

σF,11 σ′
F,21

σF,21 ΣF,22

)

and define the linear projection

π(ΣF ) =
(

σF,11 0′

0 ΣF,22

)
.

The hypothesis on the multiple correlation, H0 : R = 0, or H0 : σ12 = 0
is equivalent to H0 : ΣF = π(ΣF ).
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Example 14.9 Define the linear map π(ΣF ) = (
∑p

i=1 σF,ii/p) I. Then,
the sphericity hypothesis H0 : ΣF = γI, γ > 0 is equivalent to H0 : ΣF =
π(ΣF ).

The function h defining the test statistic Tn(Sn) is twice continuously differ-
entiable at uvec(ΣF0) ∈ R

p(p+1)/2, with h(ΣF0) = 0 and ḣ(ΣF0) = 0. This
formulation includes the normal model likelihood ratio test in particular.
Let ḧ ∈ R

p(p+1)/2
p(p+1)/2 denote the second derivative of h and xF0

d= uvec(XF0).
Then, using the Taylor series,

Tn(Sn)|F0
d→ x′

F0
ḧ(ΣF0)xF0 .

We can construct a bootstrap estimate for the null distribution of Tn(Sn)
as follows. Let

Vn,F = [π(ΣF )]1/2Σ−1/2
F SnΣ−1/2

F [π(ΣF )]1/2.

The bootstrap estimate for the null distribution of Tn(Sn) is defined to
be that of Tn(Vn,F̂n

). Let dn,h(α, F̂n) be a (1 − α)-quantile of Tn(Vn,F̂n
).

Beran and Srivastava (1985) established the consistency of the bootstrap,

Tn(Vn,F̂n
) d→ x′

F0
ḧ(ΣF0)xF0 w.p.1.

Hence, the test which rejects H0 whenever Tn(Sn) > dn,h(α, F̂n) has
asymptotic size α, provided ḧ(ΣF0) �= 0.

In practice the bootstrap null distribution can be constructed as follows.
Let

yi = [π(Sn)]1/2S−1/2
n xi, i = 1, . . . , n.

Let F̂n,y be the empirical distribution function of the yi’s. Note that
ΣF̂n,y

= π(ΣF̂n
), which satisfies H0 since π = π2. If y∗

1, . . . ,y
∗
n are

i.i.d. F̂n,y and S∗
n,y is the sample variance of the y∗

i ’s, then Tn(Vn,F̂n
) d=

Tn(S∗
n,y) whose distribution can be approximated by Monte Carlo methods.

Example 14.10 We wish to test the hypothesis H0 : ΣF,12 = 0 using the
invariant test statistic (v. Section 11.3)

Tn = n tr[Sn,12S−1
n,22Sn,21S−1

n,11]

= n

p1∑
i=1

r2
n,i,

where r2
n,i are the squared sample canonical correlations. The linear

projection in this case is defined by

π(Sn) =
(

Sn,11 0
0 Sn,22

)
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with its square root

[π(Sn)]1/2 =

(
S1/2

n,11 0

0 S1/2
n,22

)
.

We are given a sample x1, . . . ,xn from F .

Bootstrap algorithm

• Calculate Sn and partition

Sn =
(

Sn,11 Sn,12
Sn,21 Sn,22

)
.

• Calculate the square roots S1/2
n , S1/2

n,11, and S1/2
n,22 and the inverse S−1/2

n .

• Transform yi = [π(Sn)]1/2S−1/2
n xi, i = 1, . . . , n.

• b ← 1
• B ← 2000 (say)
• Do while b ≤ B.

• Draw a bootstrap sample y∗
1, . . . ,y

∗
n from F̂n,y.

• Calculate S∗
n and partition

S∗
n =

(
S∗

n,11 S∗
n,12

S∗
n,21 S∗

n,22

)
.

• ub ← n tr[S∗
n,12S

∗−1

n,22S
∗
n,21S

∗−1

n,11]
• b ← b + 1

• End.
• Order the ub’s: u(1) ≤ u(2) ≤ · · · ≤ u(B).
• q ←  (1 − α)B!
• An approximate size α test rejects H0 : ΣF,12 = 0 whenever Tn > u(q).

It is an easy matter to modify this bootstrap algorithm to bootstrap the
test statistic

Tn = n tr
[
Sn,12S−1

n,22Sn,21S−1
n,11

(
I − Sn,12S−1

n,22Sn,21S−1
n,11

)−1
]

= n

p1∑
i=1

r2
n,i/(1 − r2

n,i).

However, the test based on the largest sample canonical correlation, Tn =
n r2

n,1, should not be bootstraped unless the user is sure the largest popula-
tion canonical correlation is distinct. In case of multiplicity the population
canonical correlations are not a differentiable function of ΣF [Kato (1982),
Section 6 of Chapter 2].

Bootstrap algorithms for estimating the power function of a test statistic
can be found in Beran (1986). Nagao and Srivastava (1992) considered
high-order asymptotic expansions to the distribution of some test criteria
on the variance matrix under local alternatives. For the test of sphericity
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in dimension p = 3, they compared these expansions to the bootstrap
approximations for both the normal model likelihood ratio test and Nagao’s
test when the distribution is actually multivariate normal or multivariate
t.

14.4 Problem

1. John (1971) showed that the test based on

J = tr V2/(tr V)2,

where V =
∑n

i=1(xi−x̄)(xi−x̄)′, is LBI for the hypothesis of spheric-
ity, H0 : ΣF = γI, γ > 0, when the underlying distribution F is
multivariate normal. Write down a detailed bootstrap algorithm to
evaluate the α critical point of the test J but when F is multivariate
student, tp,ν(0, I).
Hint: A tp,ν(0, I) distribution can be simulated with Problem 13.6.1.



Appendix A
Inversion formulas

Assume x ∼ F , y ∼ G, x |= y on R
n. Then, z = x + y has a d.f., z ∼ H,

given by

H(t) = P (x + y ≤ t)
= E P (x + y ≤ t|y)

= E F (t − y) =
∫

Rn

F (t − y)dG(y).

Similarly, inverting the roles of x and y, we also have

H(t) = E G(t − x) =
∫

Rn

G(t − x)dF (x).

This leads to the smoothing lemma on convolution.

Lemma A.1 (Smoothing lemma) If x is absolutely continuous with
p.d.f. f(t), then z = x + y, where y ∼ G and x |= y, is absolutely
continuous with p.d.f.

h(t) = E f(t − y).

Proof. It follows readily that

H(t) =
∫

Rn

F (t − y)dG(y)

=
∫

Rn

[∫

(−∞,t−y]
f(x)dx

]
dG(y)
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=
∫

Rn

[∫

(−∞,t]
f(x − y)dx

]
dG(y).

By Tonelli’s theorem, it is posible to interchange the order of integration
whereby

H(t) =
∫

(−∞,t]

[∫

Rn

f(x − y)dG(y)
]

dx =
∫

(−∞,t]
E f(x − y)dx.

�

We can now establish the inversion formula on R
n. The proof resembles

that of Feller (1966, p. 480) for n = 1.

Proposition A.1 (Inversion formula) The probability measure Px is
given in terms of the characteristic function c(t) = cx(t) by

Px(a,b] = lim
N→∞

1
(2π)n

∫

(a,b]

∫

Rn

e−it′xc(t)e−t′t/2N2
dtdx,

∀a,b such that Px (∂(a,b]) = 0.

Proof. Take any random t such that t |= x. Then, conditioning yields

E eix′t = E E(eix′t|x) = E ct(x) = E cx(t).

Replace x by x − s for any fixed value of s to find Parseval’s relation:

E ct(x − s) = E e−is′tcx(t).

However, letting t ∼ Nn(0, σ−2I) with ct(s) = exp(−|s|2/2σ2),

E exp(−|s − x|2/2σ2) = E e−it′sc(t)

=
(

σ2

2π

)n/2 ∫

Rn

e−it′sc(t) exp
(−σ2|t|2/2

)
dt.

Divide by (2πσ2)n/2 to obtain

E
1

(2πσ2)n/2 exp(−|s−x|2/2σ2) =
1

(2π)n

∫

Rn

e−it′sc(t) exp
(−σ2|t|2/2

)
dt.

This is of the form E g(s − x) = h(s) in the smoothing lemma where g(s)
is the p.d.f. for a Nn(0, σ2I). Thus, h(s) is the p.d.f. of x + σz, where
z ∼ Nn(0, I), and if we let Pσ denote the probability measure for x + σz,

Pσ(a,b] =
1

(2π)n

∫

(a,b]

∫

Rn

e−it′sc(t)e−σ2|t|2/2dtds,

whereby Slutsky’s theorem with σ = 1/N gives the result. �

An immediate corollary is the inversion formula for absolutely continuous
distribution.
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Corollary A.1 If c(t) is integrable with respect to Lebesgue measure, then

f(x) =
1

(2π)n

∫

Rn

e−it′xc(t)dt.

Proof. If c(t) is integrable, then the integrand in Proposition A.1 is dom-
inated by an integrable function. By the D.C.T., we can interchange the
limit and the integral, which gives the result. �



Appendix B
Multivariate cumulants

B.1 Definition and properties

The moments of a univariate random variable x, µr = E xr, are the
coefficients of (it)r/r! in the Taylor series of the characteristic function,

cx(t) =
∞∑

r=0

µr(it)r/r!

whereas the cumulants are the coefficients in the series for Kx(t) ≡ ln[cx(t)],

Kx(t) =
∞∑

r=0

kr(it)r/r!,

provided the expansions are valid. The function Kx(t) is the cumulant
generating function. Relations between moments and cumulants are thus
obtained by equating the coefficients in the Taylor series of exp(·) in the
equation

∞∑
r=0

µr(it)r/r! = exp

( ∞∑
r=0

kr(it)r/r!

)
.

We require only the relations between the first four moments and cumulants
(assuming they exist):

µ1 = k1,

µ2 = k2 + k2
1,
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µ3 = k3 + 3k2k1 + k3
1,

µ4 = k4 + 4k3k1 + 3k2
2 + 6k2k

2
1 + k4

1,

k1 = µ1,

k2 = µ2 − µ2
1,

k3 = µ3 − 3µ2µ1 + 2µ3
1,

k4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1.

When x is centered, i.e., E x = µ1 = k1 = 0, these simplify to

µ2 = k2, k2 = µ2,
µ3 = k3, k3 = µ3,
µ4 = k4 + 3k2

2, k4 = µ4 − 3µ2
2.

For a random vector x ∈ R
p, product-moments µr1,...,rp

= E(xr1
1 · · ·xrp

p )
and multivariate cumulants kr1,...,rp

of order r =
∑p

i=1 ri are defined
similarly,

cx(t) =
∞∑

r1,...,rp=0

µr1,...,rp

(it1)r1

r1!
· · · (itp)rp

rp!
,

Kx(t) = ln[cx(t)] =
∞∑

r1,...,rp=0

kr1,...,rp

(it1)r1

r1!
· · · (itp)rp

rp!
.

Example B.1 For x ∼ Np(µ,Σ), we have Kx(t) = it′µ − 1
2t

′Σt, a
quadratic function of t, and, thus, all multivariate cumulants of order r > 2
are null. Multivariate cumulants of order 1 are the means, µi, and those of
order 2 are the variances, σii, and covariances, σij.

Obtaining product-moments in terms of cumulants, and vice versa, is a
laborious task which can be greatly simplified with a “symbolic differential
operator” [Kendall et al. (1987)]. For example, when E x = 0, consider
the relation µ4 = k4 + 3k2

2, which we write symbolically as

µ(r4
1) = k(r4

1) + 3k2(r2
1).

To obtain a relation between fourth-order product-moments and cumulants
of a bivariate distribution, consider the operator r2∂(·)/∂r1. When applied
to µ(r4

1), it yields

4µ(r3
1r2) = 4k(r3

1r2) + 12k(r2
1)k(r1r2),

which means, after dividing by 4,

µ31 = k31 + 3k20k11.

Example B.2 The same method can be used to obtain cumulants in terms
of product-moments. Considering the relation

k4 = µ4 − 3µ2
2
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in symbolic form

k(r4
1) = µ(r4

1) − 3µ2(r2
1),

and applying the operator r2∂(·)/∂r1, we get

4k(r3
1r2) = 4µ(r3

1r2) − 12µ(r2
1)µ(r1r2)

or

k31 = µ31 − 3µ20µ11.

Continuing this process, it is possible to obtain relations for trivariate
distributions with either operator, r3∂(·)/∂r1 or r3∂(·)/∂r2. The operator
r3∂(·)/∂r1 applied to the last symbolic equation yields

12µ(r2
1r2r3) = 12k(r2

1r2r3) + 24k(r1r3)k(r1r2) + 12k(r2
1)k(r2r3),

which is equivalent to

µ211 = k211 + 2k101k110 + k200k011.

The operator r4∂(·)/∂r1 finally gives the relation for fourth-order product-
moments and cumulants of a four-dimensional distribution

24µ(r1r2r3r4) = 24k(r1r2r3r4) + 24k(r3r4)k(r1r2) + 24k(r1r3)k(r2r4)

+24k(r1r4)k(r2r3),

or

µ1111 = k1111 + k0011k1100 + k1010k0101 + k1001k0110.

For fourth-order product-moments of a p-dimensional, p > 4, distribution,
we need only specify which four variables enter. For example, µijkl

1111 =
E(xixjxkxl) satisfies

µijkl
1111 = kijkl

1111 + kijkl
0011k

ijkl
1100 + kijkl

1010k
ijkl
0101 + kijkl

1001k
ijkl
0110.

A zero subscript means the superscript variable does not enter, so we can
rewrite

µijkl
1111 = kijkl

1111 + kkl
11k

ij
11 + kik

11k
jl
11 + kil

11k
jk
11 .

When a variable is repeated, the indices can be amalgamated. For example,
the equation where i = j,

µiikl
1111 = kiikl

1111 + kkl
11k

ii
11 + kik

11k
il
11 + kil

11k
ik
11,

becomes

µikl
211 = kikl

211 + kkl
11k

i
2 + kik

11k
il
11 + kil

11k
ik
11,

and if i = j = k = l, then we recover the initial equation µi
4 = ki

4 + 3(ki
2)

2.
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Departures from normality is often assessed with the coefficients of skew-
ness, γ1, and kurtosis, γ2. For a centered variable x, they are defined
as

γ1 =
µ3

µ
3/2
2

=
k3

k
3/2
2

,

γ2 =
µ4

µ2
2
− 3 =

k4

k2
2
.

For a normal variable, γ1 = γ2 = 0.
Cumulants of random symmetric matrices can also be defined. For a

description of miminal moments and cumulants of symmetric matrices with
an application to the Wishart distribution, the reader is referred to Kollo
and von Rosen (1995).

B.2 Application to asymptotic distributions

Let x1, . . . ,xn i.i.d. x ∈ R
p which has finite fourth-order moments

and E x = 0 and var x = Σ. The asymptotic distribution of S =
1

(n−1)

∑n
i=1(xi − x̄)(xi − x̄)′ was derived generally in Section 6.3:

n1/2(S − Σ) d→ Np
p (0, var W),

where W = xx′. The only problem is to calculate var W. This can now be
done in terms of multivariate cumulants. The block (i, j) of var W is

E(xixjxx′) − E(xix)E(xjx′)

and the element (k, l) of the block (i, j) becomes

E(xixjxkxl) − E(xixk)E(xjxl) = µijkl
1111 − µik

11µ
jl
11

= kijkl
1111 + kkl

11k
ij
11 + kil

11k
jk
11 .

The general result is thus

cov(wik, wjl) = kijkl
1111 + kkl

11k
ij
11 + kil

11k
jk
11 .

B.3 Problems

1. Establish the following:

(i) µ11 = k11 and µ21 = k21.
(ii) µ22 = k22 + k20k02 + 2k2

11.
(iii) Given µ5 = k5 + 10k3k2, calculate µ32 and µ41.
(iv) Obtain µ301 in terms of lower-order cumulants.
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2. Demonstrate the kurtosis γ2 of a symmetric contaminated normal
density

(1 − ε)(2π)−1/2 exp(− 1
2x2) + ε(2πσ)−1/2 exp(− 1

2x2/σ2)

is

γ2 = 3
[1 + ε(σ4 − 1)]
[1 + ε(σ2 − 1)]2

− 3.

3. Evaluate the kurtosis of a Student’s tν distribution as γ2 = 6/(ν−4),
ν > 4.



Appendix C
S-plus functions

This appendix describes three S-plus programs which the reader can down-
load from the World Wide Web site www.dms.umontreal.ca/∼bilodeau.
Simply download the file named multivariate and, at the S-plus prompt,
type: source(“multivariate”) to compile the functions.

1. U(p; m, n) distribution function.
Usage: pu(ζ, p, m, n)
Value: The function returns P (U(p; m, n) ≤ ζ).

2. U(p; m, n) quantiles.
Usage: qu(α, p,m, n)
Value: The function returns the α-quantile , Uα(p; m, n) say,
satisfying

P (U(p; m, n) ≤ Uα(p; m, n)) = α.

It returns as well a Cfactor, frequently used by people relying on the
asymptotic result

−[n − 1
2 (p − m + 1)] lnU(p; m, n) d→ χ2

pm,

to make the approximate χ2
pm quantile an exact quantile of −[n −

1
2 (p − m + 1)] lnU(p; m, n). More precisely,

Cfactor · χ2
1−α,pm = −[n − 1

2 (p − m + 1)] lnUα(p; m, n).

Note that lower quantiles of U(p; m, n) correspond to upper quantiles
of χ2

pm.
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3. Beta Q-Q plot for multivariate normality.
Usage: qqbeta(x)
The input x is the n × p sample matrix.
Value: The function returns the Q-Q plot of the points

(
d2
(i), [(n − 1)2/n] betaγi

( 1
2p; 1

2 (n − p − 1)
))

, i = 1, . . . , n,

as described in Section 11.4.1. The graphic device must be activated
before using this function.

4. Robust S estimate.
Usage: s.estimate(x, r, nr, Nsamp)
The input x denotes the n × p sample matrix. The input r in the
interval (0, .5) is the asymptotic breakdown point, nr and Nsamp
are positive integer parameters of the numerical algorithm [Ruppert
(1992)]. Values of nr = 3 and Nsamp = 80p are appropriate for
most purposes. The user is urged to experiment with other values of
nr and Nsamp to certify that the s.estimate function returned the
global minimum.
Value: The function returns the S estimate of location and scatter,
µn and Vn, the Mahalanobis distances, distance.mahalanobis, for
outlier detection and the objective function, determinant, which the
S estimate seeks to minimize. Points with a Mahalanobis distance
greater than (χ2

.95,p)
1/2 should be checked for outliers [Rousseeuw

and van Zomeren (1990)].
The implementation uses the biweight ρ(·) function of Section 13.4.2
and determines c0 such that E ρ(|z|)/(c2

0/6) = r, where z ∼ Np(0, I),
to achieve the desired breakdown point.

5. Asymptotic variance of S estimate.
Usage: asymp(p, r)
The input p is the number of variables, whereas r is the breakdown
point.
Value: The function returns the asymptotic variance constants, at
the normal distribution, in Proposition 13.11: λ = α/β2, σ1, and
σ2. The constants λ−1 and σ−1

1 , in particular, serve as measures of
relative efficiencies of the location and scatter estimates, respectively,
at the normal distribution.
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[154] Lopuhaä, H.P. (1991). Multivariate τ -estimators for location and scatter.
The Canadian Journal of Statistics 19, 307-321.
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Grübel, R., 213, 268
Gunderson, B.K., 190, 268
Gupta, A.K., 41, 50, 74, 268
Guttman, I., 104, 267

Hall, P., 243, 268
Hayakawa, T., 274
Hendriks, H., 72, 268
Henze, N., 171, 269
Hinkley, D.V., 243, 266
Hsu, P.L., 190, 269
Huber, P.J., 222, 269

Hui, T.K., 169, 170, 274
Hwang, J.T., 66, 264

Iwashita, T., 103, 231, 269

James, A.T., 30, 33, 94, 137, 269
John, S., 120, 121, 252, 269
Johnson, M.E., 26, 34, 266
Johnson, N.L., 111, 170, 269
Johnson, R.A., 269
Jolliffe, I.T., 161, 269
Jordan, S.M., 138, 269

Kano, Y., 103, 209, 269
Kariya, T., 51, 154, 156, 158, 171,

209, 227, 265, 269–271
Katapa, R.S., 84, 274
Kato, T., 125, 248, 251, 270
Keen, K.J., 84, 274
Kelker, D., 207, 270
Kemp, A.W., 111, 269
Kendall, M., 257, 270
Kent, J.T., 214, 218, 270, 272
Kettenring, J.R., 170, 185, 194,

268
Khatri, C.G., 12, 13, 30, 31, 83,

119, 123, 137, 233, 236, 270,
274

Ko, D., 72, 270
Koehler, K.J., 26, 270
Kollo, T., 132, 259, 270
Koltchinskii, V.I., 49, 270
Konishi, S., 83, 84, 169, 270
Kotz, S., 111, 208, 267, 269, 271
Kres, H., 98, 271
Krishnaiah, P.R., 154, 270
Krishnamoorthy, K., 138, 269
Kshirsagar, A.M., 271
Kudo, A., 103, 271
Kuwana, Y., 209, 271

Landsman, Z., 72, 268
Lee, Y.-S., 202, 271
Lehmann, E.L., 221, 271
Li, Haijun, 26, 271



Author Index 279

Li, Hong, 171, 270
Li, L., 49, 270
Liu, C., 221, 271
Liu, D., 74, 276
Looney, S.W., 170, 271
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