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Preface

This manual contains solutions to all of the exercises in Probability and Statistics, 4th edition, by Morris
DeGroot and myself. I have preserved most of the solutions to the exercises that existed in the 3rd edition.
Certainly errors have been introduced, and I will post any errors brought to my attention on my web page
http://www.stat.cmu.edu/ mark/ along with errors in the text itself. Feel free to send me comments.

For instructors who are familiar with earlier editions, I hope that you will find the 4th edition at least as
useful. Some new material has been added, and little has been removed. Assuming that you will be spending
the same amount of time using the text as before, something will have to be skipped. I have tried to arrange
the material so that instructors can choose what to cover and what not to cover based on the type of course
they want. This manual contains commentary on specific sections right before the solutions for those sections.
This commentary is intended to explain special features of those sections and help instructors decide which
parts they want to require of their students. Special attention is given to more challenging material and how
the remainder of the text does or does not depend upon it.

To teach a mathematical statistics course for students with a strong calculus background, one could safely
cover all of the material for which one could find time. The Bayesian sections include 4.8, 7.2, 7.3, 7.4, 8.6,
9.8, and 11.4. One can choose to skip some or all of this material if one desires, but that would be ignoring
one of the unique features of the text. The more challenging material in Sections 7.7–7.9, and 9.2–9.4 is really
only suitable for a mathematical statistics course. One should try to make time for some of the material in
Sections 12.1–12.3 even if it meant cutting back on some of the nonparametrics and two-way ANOVA. To teach
a more modern statistics course, one could skip Sections 7.7–7.9, 9.2–9.4, 10.8, and 11.7–11.8. This would
leave time to discuss robust estimation (Section 10.7) and simulation (Chapter 12). Section 3.10 on Markov
chains is not actually necessary even if one wishes to introduce Markov chain Monte Carlo (Section 12.5),
although it is helpful for understanding what this topic is about.

Using Statistical Software

The text was written without reference to any particular statistical or mathematical software. However,
there are several places throughout the text where references are made to what general statistical software
might be able to do. This is done for at least two reasons. One is that different instructors who wish to use
statistical software while teaching will generally choose different programs. I didn’t want the text to be tied
to a particular program to the exclusion of others. A second reason is that there are still many instructors
of mathematical probability and statistics courses who prefer not to use any software at all.

Given how pervasive computing is becoming in the use of statistics, the second reason above is becoming
less compelling. Given the free and multiplatform availability and the versatility of the environment R, even
the first reason is becoming less compelling. Throughout this manual, I have inserted pointers to which R

functions will perform many of the calculations that would formerly have been done by hand when using this
text. The software can be downloaded for Unix, Windows, or Mac OS from
http://www.r-project.org/

That site also has manuals for installation and use. Help is also available directly from within the R envi-
ronment.

Many tutorials for getting started with R are available online. At the official R site there is the detailed
manual: http://cran.r-project.org/doc/manuals/R-intro.html
that starts simple and has a good table of contents and lots of examples. However, reading it from start to
finish is not an efficient way to get started. The sample sessions should be most helpful.

One major issue with using an environment like R is that it is essentially programming. That is, students
who have never programmed seriously before are going to have a steep learning curve. Without going into
the philosophy of whether students should learn statistics without programming, the field is moving in the
direction of requiring programming skills. People who want only to understand what a statistical analysis
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is about can still learn that without being able to program. But anyone who actually wants to do statistics
as part of their job will be seriously handicapped without programming ability. At the end of this manual
is a series of heavily commented R programms that illustrate many of the features of R in the context of a
specific example from the text.

Mark J. Schervish
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Chapter 1

Introduction to Probability

1.2 Interpretations of Probability

Commentary

It is interesting to have the students determine some of their own subjective probabilities. For example, let
X denote the temperature at noon tomorrow outside the building in which the class is being held. Have each
student determine a number x1 such that the student considers the following two possible outcomes to be
equally likely: X ≤ x1 andX > x1. Also, have each student determine numbers x2 and x3 (with x2 < x3) such
that the student considers the following three possible outcomes to be equally likely: X ≤ x2, x2 < X < x3,
and X ≥ x3. Determinations of more than three outcomes that are considered to be equally likely can also
be made. The different values of x1 determined by different members of the class should be discussed, and
also the possibility of getting the class to agree on a common value of x1.

Similar determinations of equally likely outcomes can be made by the students in the class for quantities
such as the following ones which were found in the 1973 World Almanac and Book of Facts: the number
of freight cars that were in use by American railways in 1960 (1,690,396), the number of banks in the
United States which closed temporarily or permanently in 1931 on account of financial difficulties (2,294),
and the total number of telephones which were in service in South America in 1971 (6,137,000).

1.4 Set Theory

Solutions to Exercises

1. Assume that x ∈ Bc. We need to show that x ∈ Ac. We shall show this indirectly. Assume, to the
contrary, that x ∈ A. Then x ∈ B because A ⊂ B. This contradicts x ∈ Bc. Hence x ∈ A is false and
x ∈ Ac.

2. First, show that A ∩ (B ∪ C) ⊂ (A ∩B) ∪ (A ∩ C). Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C.
That is, x ∈ A and either x ∈ B or x ∈ C (or both). So either (x ∈ A and x ∈ B) or (x ∈ A
and x ∈ C) or both. That is, either x ∈ A ∩ B or x ∈ A ∩ C. This is what it means to say that
x ∈ (A∩B)∪ (A∩C). Thus A∩ (B∪C) ⊂ (A∩B)∪ (A∩C). Basically, running these steps backwards
shows that (A ∩B) ∪ (A ∩C) ⊂ A ∩ (B ∪C).

3. To prove the first result, let x ∈ (A ∪ B)c. This means that x is not in A ∪ B. In other words, x is
neither in A nor in B. Hence x ∈ Ac and x ∈ Bc. So x ∈ Ac∩Bc. This proves that (A∪B)c ⊂ Ac∩Bc.
Next, suppose that x ∈ Ac ∩Bc. Then x ∈ Ac and x ∈ Bc. So x is neither in A nor in B, so it can’t be
in A ∪ B. Hence x ∈ (A ∪ B)c. This shows that Ac ∩ Bc ⊂ (A ∪ B)c. The second result follows from
the first by applying the first result to Ac and Bc and then taking complements of both sides.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



2 Chapter 1. Introduction to Probability

4. To see that A∩B and A∩Bc are disjoint, let x ∈ A∩B. Then x ∈ B, hence x �∈ Bc and so x �∈ A∩Bc. So
no element of A∩B is in A∩Bc, hence the two events are disjoint. To prove that A = (A∩B)∪(A∩Bc),
we shall show that each side is a subset of the other side. First, let x ∈ A. Either x ∈ B or x ∈ Bc. If
x ∈ B, then x ∈ A ∩ B. If x ∈ Bc, then x ∈ A ∩ Bc. Either way, x ∈ (A ∩ B) ∪ (A ∩ Bc). So every
element of A is an element of (A∩B)∪ (A∩Bc) and we conclude that A ⊂ (A∩B)∪ (A∩Bc). Finally,
let x ∈ (A ∩ B) ∪ (A ∩ Bc). Then either x ∈ A ∩ B, in which case x ∈ A, or x ∈ A ∩ Bc, in which
case x ∈ A. Either way x ∈ A, so every element of (A ∩ B) ∪ (A ∩ Bc) is also an element of A and
(A ∩B) ∪ (A ∩Bc) ⊂ A.

5. To prove the first result, let x ∈ (∪iAi)
c. This means that x is not in ∪iAi. In other words, for every

i ∈ I, x is not in Ai. Hence for every i ∈ I, x ∈ Ac
i . So x ∈ ∩iA

c
i . This proves that (∪iAi)

c ⊂ ∩iA
c
i .

Next, suppose that x ∈ ∩iA
c
i . Then x ∈ Ac

i for every i ∈ I. So for every i ∈ I, x is not in Ai. So x
can’t be in ∪iAi. Hence x ∈ (∪iAi)

c. This shows that ∩iA
c
i ⊂ (∪iAi)

c. The second result follows from
the first by applying the first result to Ac

i for i ∈ I and then taking complements of both sides.

6. (a) Blue card numbered 2 or 4.

(b) Blue card numbered 5, 6, 7, 8, 9, or 10.

(c) Any blue card or a red card numbered 1, 2, 3, 4, 6, 8, or 10.

(d) Blue card numbered 2, 4, 6, 8, or 10, or red card numbered 2 or 4.

(e) Red card numbered 5, 7, or 9.

7. (a) These are the points not in A, hence they must be either below 1 or above 5. That is Ac = {x :
x < 1 or x > 5}.

(b) These are the points in either A or B or both. So they must be between 1 and 5 or between 3 and
7. That is, A ∪B = {x : 1 ≤ x ≤ 7}.

(c) These are the points in B but not in C. That is BCc = {x : 3 < x ≤ 7}. (Note that B ⊂ Cc.)

(d) These are the points in none of the three sets, namely AcBcCc = {x : 0 < x < 1 or x > 7}.
(e) These are the points in the answer to part (b) and in C. There are no such values and (A∪B)C = ∅.

8. Blood type A reacts only with anti-A, so type A blood corresponds to A ∩ Bc. Type B blood reacts
only with anti-B, so type B blood corresponds to AcB. Type AB blood reacts with both, so A ∩ B
characterizes type AB blood. Finally, type O reacts with neither antigen, so type O blood corresponds
to the event AcBc.

9. (a) For each n, Bn = Bn+1 ∪ An, hence Bn ⊃ Bn+1 for all n. For each n, Cn+1 ∩ An = Cn, so
Cn ⊂ Cn+1.

(b) Suppose that x ∈ ∩∞
n=1Bn. Then x ∈ Bn for all n. That is, x ∈ ∪∞

i=nAi for all n. For n = 1, there
exists i ≥ n such that x ∈ Ai. Assume to the contrary that there are at most finitely many i such
that x ∈ Ai. Let m be the largest such i. For n = m+ 1, we know that there is i ≥ n such that
x ∈ Ai. This contradicts m being the largest i such that x ∈ Ai. Hence, x is in infinitely many
Ai. For the other direction, assume that x is in infinitely many Ai. Then, for every n, there is a
value of j > n such that x ∈ Aj , hence x ∈ ∪∞

i=nAi = Bn for every n and x ∈ ∩∞
n=1Bn.

(c) Suppose that x ∈ ∪∞
n=1Cn. That is, there exists n such that x ∈ Cn = ∩∞

i=nAi, so x ∈ Ai for
all i ≥ n. So, there at most finitely many i (a subset of 1, . . . , n − 1) such that x �∈ Ai. Finally,
suppose that x ∈ Ai for all but finitely many i. Let k be the last i such that x �∈ Ai. Then x ∈ Ai

for all i ≥ k + 1, hence x ∈ ∩∞
i=k+1Ai = Ck+1. Hence x ∈ ∪∞

n=1Cn.
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10. (a) All three dice show even numbers if and only if all three of A, B, and C occur. So, the event is
A ∩B ∩ C.

(b) None of the three dice show even numbers if and only if all three of Ac, Bc, and Cc occur. So, the
event is Ac ∩Bc ∩ Cc.

(c) At least one die shows an odd number if and only if at least one of Ac, Bc, and Cc occur. So, the
event is Ac ∪Bc ∪ Cc.

(d) At most two dice show odd numbers if and only if at least one die shows an even number, so
the event is A ∪ B ∪ C. This can also be expressed as the union of the three events of the form
A∩B∩Cc where exactly one die shows odd together with the three events of the form A∩Bc∩Cc

where exactly two dice show odd together with the even A ∩B ∩ C where no dice show odd.

(e) We can enumerate all the sums that are no greater than 5: 1+1+1, 2+1+1, 1+2+1, 1+1+2,
2 + 2 + 1, 2 + 1 + 2, and 1 + 2 + 2. The first of these corresponds to the event A1 ∩B1 ∩ C1, the
second to A2 ∩B1 ∩ C1, etc. The union of the seven such events is what is requested, namely

(A1∩B1∩C1)∪(A2∩B1∩C1)∪(A1∩B2∩C1)∪(A1∩B1∩C2)∪(A2∩B2∩C1)∪(A2∩B1∩C2)∪(A1∩B2∩C2).

11. (a) All of the events mentioned can be determined by knowing the voltages of the two subcells. Hence
the following set can serve as a sample space

S = {(x, y) : 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5},
where the first coordinate is the voltage of the first subcell and the second coordinate is the voltage
of the second subcell. Any more complicated set from which these two voltages can be determined
could serve as the sample space, so long as each outcome could at least hypothetically be learned.

(b) The power cell is functional if and only if the sum of the voltages is at least 6. Hence, A = {(x, y) ∈
S : x + y ≥ 6}. It is clear that B = {(x, y) ∈ S : x = y} and C = {(x, y) ∈ S : x > y}. The
powercell is not functional if and only if the sum of the voltages is less than 6. It needs less than
one volt to be functional if and only if the sum of the voltages is greater than 5. The intersection
of these two is the event D = {(x, y) ∈ S : 5 < x + y < 6}. The restriction “∈ S” that appears
in each of these descriptions guarantees that the set is a subset of S. One could leave off this
restriction and add the two restrictions 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5 to each set.

(c) The description can be worded as “the power cell is not functional, and needs at least one more
volt to be functional, and both subcells have the same voltage.” This is the intersection of Ac, Dc,
and B. That is, Ac ∩Dc ∩B. The part of Dc in which x+ y ≥ 6 is not part of this set because of
the intersection with Ac.

(d) We need the intersection of Ac (not functional) with Cc (second subcell at least as big as first) and
with Bc (subcells are not the same). In particular, Cc ∩Bc is the event that the second subcell is
strictly higher than the first. So, the event is Ac ∩Bc ∩ Cc.

1.5 The Definition of Probability

Solutions to Exercises

1. Define the following events:

A = {the selected ball is red},
B = {the selected ball is white},
C = {the selected ball is either blue, yellow, or green}.
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4 Chapter 1. Introduction to Probability

We are asked to find Pr(C). The three events A, B, and C are disjoint and A ∪ B ∪ C = S. So
1 = Pr(A) + Pr(B) + Pr(C). We are told that Pr(A) = 1/5 and Pr(B) = 2/5. It follows that
Pr(C) = 2/5.

2. Let B be the event that a boy is selected, and let G be the event that a girl is selected. We are told
that B ∪G = S, so G = Bc. Since Pr(B) = 0.3, it follows that Pr(G) = 0.7.

3. (a) If A and B are disjoint then B ⊂ Ac and BAc = B, so Pr(BAc) = Pr(B) = 1/2.

(b) If A ⊂ B, then B = A ∪ (BAc) with A and BAc disjoint. So Pr(B) = Pr(A) + Pr(BAc). That is,
1/2 = 1/3 + Pr(BAc), so Pr(BAc) = 1/6.

(c) According to Theorem 1.4.11, B = (BA) ∪ (BAc). Also, BA and BAc are disjoint so, Pr(B) =
Pr(BA) + Pr(BAc). That is, 1/2 = 1/8 + Pr(BAc), so Pr(BAc) = 3/8.

4. Let E1 be the event that student A fails and let E2 be the event that student B fails. We want
Pr(E1 ∪ E2). We are told that Pr(E1) = 0.5, Pr(E2) = 0.2, and Pr(E1E2) = 0.1. According to
Theorem 1.5.7, Pr(E1 ∪ E2) = 0.5 + 0.2− 0.1 = 0.6.

5. Using the same notation as in Exercise 4, we now want Pr(Ec
1 ∩ Ec

2). According to Theorems 1.4.9
and 1.5.3, this equals 1− Pr(E1 ∪E2) = 0.4.

6. Using the same notation as in Exercise 4, we now want Pr([E1 ∩Ec
2]∪ [Ec

1 ∩E2]). These two events are
disjoint, so

Pr([E1 ∩ Ec
2] ∪ [Ec

1 ∩ E2]) = Pr(E1 ∩ Ec
2) + Pr(Ec

1 ∩ E2).

Use the reasoning from part (c) of Exercise 3 above to conclude that

Pr(E1 ∩ Ec
2) = Pr(E1)− Pr(E1 ∩E2) = 0.4,

Pr(Ec
1 ∩E2) = Pr(E2)− Pr(E1 ∩E2) = 0.1.

It follows that the probability we want is 0.5.

7. Rearranging terms in Eq. (1.5.1) of the text, we get

Pr(A ∩B) = Pr(A) + Pr(B)− Pr(A ∪B) = 0.4 + 0.7 − Pr(A ∪B) = 1.1− Pr(A ∪B).

So Pr(A ∩ B) is largest when Pr(A ∪ B) is smallest and vice-versa. The smallest possible value for
Pr(A∪B) occurs when one of the events is a subset of the other. In the present exercise this could only
happen if A ⊂ B, in which case Pr(A ∪B) = Pr(B) = 0.7, and Pr(A ∩ B) = 0.4. The largest possible
value of Pr(A ∪ B) occurs when either A and B are disjoint or when A ∪ B = S. The former is not
possible since the probabilities are too large, but the latter is possible. In this case Pr(A ∪B) = 1 and
Pr(A ∩B) = 0.1.

8. Let A be the event that a randomly selected family subscribes to the morning paper, and let B be the
event that a randomly selected family subscribes to the afternoon paper. We are told that Pr(A) = 0.5,
Pr(B) = 0.65, and Pr(A∪B) = 0.85. We are asked to find Pr(A∩B). Using Theorem 1.5.7 in the text
we obtain

Pr(A ∩B) = Pr(A) + Pr(B)− Pr(A ∪B) = 0.5 + 0.65 − 0.85 = 0.3.
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9. The required probability is

Pr(A ∩BC) + Pr(ACB) = [Pr(A)− Pr(A ∩B)] + [Pr(B)− Pr(A ∩B)]

= Pr(A) + Pr(B)− 2Pr(A ∩B).

10. Theorem 1.4.11 says that A = (A∩B)∪ (A∩Bc). Clearly the two events A∩B and A∩Bc are disjoint.
It follows from Theorem 1.5.6 that Pr(A) = Pr(A ∩B) + Pr(A ∩Bc).

11. (a) The set of points for which (x−1/2)2+(y−1/2)2 < 1/4 is the interior of a circle that is contained
in the unit square. (Its center is (1/2, 1/2) and its radius is 1/2.) The area of this circle is π/4, so
the area of the remaining region (what we want) is 1− π/4.

(b) We need the area of the region between the two lines y = 1/2−x and y = 3/2−x. The remaining
area is the union of two right triangles with base and height both equal to 1/2. Each triangle has
area 1/8, so the region between the two lines has area 1− 2/8 = 3/4.

(c) We can use calculus to do this. We want the area under the curve y = 1− x2 between x = 0 and
x = 1. This equals∫ 1

0
(1− x2)dx = x− x3

3

∣∣∣∣∣
1

x=0

=
2

3
.

(d) The area of a line is 0, so the probability of a line segment is 0.

12. The events B1, B2, . . . are disjoint, because the event B1 contains the points in A1, the event B2 contains
the points in A2 but not in A1, the event B3 contains the points in A3 but not in A1 or A2, etc. By
this same reasoning, it is seen that ∪n

i=1Ai = ∪n
i=1Bi and ∪∞

i=1Ai = ∪∞
i=1Bi. Therefore,

Pr

(
n⋃

i=1

Ai

)
= Pr

(
n⋃

i=1

Bi

)

and

Pr

( ∞⋃
i=1

Ai

)
= Pr

( ∞⋃
i=1

Bi

)
.

However, since the events B1, B2, . . . are disjoint,

Pr

(
n⋃

i=1

Bi

)
=

n∑
i=1

Pr(Bi)

and

Pr

( ∞⋃
i=1

Bi

)
=

∞∑
i=1

Pr(Bi).

13. We know from Exercise 12 that

Pr

(
n⋃

i=1

Ai

)
=

n∑
i=1

Pr(Bi).
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6 Chapter 1. Introduction to Probability

Furthermore, from the definition of the events B1, . . . , Bn it is seen that Bi ⊂ Ai for i = 1, . . . , n.
Therefore, by Theorem 1.5.4, Pr(Bi) ≤ Pr(Ai) for i = 1, . . . , n. It now follows that

Pr

(
n⋃

i=1

Ai

)
≤

n∑
i=1

Pr(Ai).

(Of course, if the events A1, . . . , An are disjoint, there is equality in this relation.)

For the second part, apply the first part with Ai replaced by Ac
i for i = 1, . . . , n. We get

Pr
(⋃

Ac
i

)
≤

n∑
i=1

Pr(Ac
i ). (S.1.1)

Exercise 5 in Sec. 1.4 says that the left side of (S.1.1) is Pr ([
⋂
Ai]

c). Theorem 1.5.3 says that this last
probability is 1− Pr (

⋂
Ai). Hence, we can rewrite (S.1.1) as

1− Pr
(⋂

Ai

)
≤

n∑
i=1

Pr(Ac
i ).

Finally take one minus both sides of the above inequality (which reverses the inequality) and produces
the desired result.

14. First, note that the probability of type AB blood is 1−(0.5+0.34+0.12) = 0.04 by using Theorems 1.5.2
and 1.5.3.

(a) The probability of blood reacting to anti-A is the probability that the blood is either type A or
type AB. Since these are disjoint events, the probability is the sum of the two probabilities, namely
0.34 + 0.04 = 0.38. Similarly, the probability of reacting with anti-B is the probability of being
either type B or type AB, 0.12 + 0.04 = 0.16.

(b) The probability that both antigens react is the probability of type AB blood, namely 0.04.

1.6 Finite Sample Spaces

Solutions to Exercises

1. The safe way to obtain the answer at this stage of our development is to count that 18 of the 36
outcomes in the sample space yield an odd sum. Another way to solve the problem is to note that
regardless of what number appears on the first die, there are three numbers on the second die that will
yield an odd sum and three numbers that will yield an even sum. Either way the probability is 1/2.

2. The event whose probability we want is the complement of the event in Exercise 1, so the probability
is also 1/2.

3. The only differences greater than or equal to 3 that are available are 3, 4 and 5. These large difference
only occur for the six outcomes in the upper right and the six outcomes in the lower left of the array
in Example 1.6.5 of the text. So the probability we want is 1− 12/36 = 2/3.

4. Let x be the proportion of the school in grade 3 (the same as grades 2–6). Then 2x is the proportion in
grade 1 and 1 = 2x + 5x = 7x. So x = 1/7, which is the probability that a randomly selected student
will be in grade 3.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 1.7. Counting Methods 7

5. The probability of being in an odd-numbered grade is 2x+ x+ x = 4x = 4/7.

6. Assume that all eight possible combinations of faces are equally likely. Only two of those combinations
have all three faces the same, so the probability is 1/4.

7. The possible genotypes of the offspring are aa and Aa, since one parent will definitely contribute an
a, while the other can contribute either A or a. Since the parent who is Aa contributes each possible
allele with probability 1/2 each, the probabilities of the two possible offspring are each 1/2 as well.

8. (a) The sample space contains 12 outcomes: (Head, 1), (Tail, 1), (Head, 2), (Tail, 2), etc.

(b) Assume that all 12 outcomes are equally likely. Three of the outcomes have Head and an odd
number, so the probability is 1/4.

1.7 Counting Methods

Commentary

If you wish to stress computer evaluation of probabilities, then there are programs for computing factorials
and log-factorials. For example, in the statistical software R, there are functions factorial and lfactorial

that compute these. If you cover Stirling’s formula (Theorem 1.7.5), you can use these functions to illustrate
the closeness of the approximation.

Solutions to Exercises

1. Each pair of starting day and leap year/no leap year designation determines a calendar, and each
calendar correspond to exactly one such pair. Since there are seven days and two designations, there
are a total of 7× 2 = 14 different calendars.

2. There are 20 ways to choose the student from the first class, and no matter which is chosen, there are 18
ways to choose the student from the second class. No matter which two students are chosen from the first
two classes, there are 25 ways to choose the student from the third class. The multiplication rule can be
applied to conclude that the total number of ways to choose the three members is 20× 18× 25 = 9000.

3. This is a simple matter of permutations of five distinct items, so there are 5! = 120 ways.

4. There are six different possible shirts, and no matter what shirt is picked, there are four different slacks.
So there are 24 different combinations.

5. Let the sample space consist of all four-tuples of dice rolls. There are 64 = 1296 possible outcomes.
The outcomes with all four rolls different consist of all of the permutations of six items taken four at a
time. There are P6,4 = 360 of these outcomes. So the probability we want is 360/1296 = 5/18.

6. With six rolls, there are 66 = 46656 possible outcomes. The outcomes with all different rolls are
the permutations of six distinct items. There are 6! = 720 outcomes in the event of interest, so the
probability is 720/46656 = 0.01543.

7. There are 2012 possible outcomes in the sample space. If the 12 balls are to be thrown into different
boxes, the first ball can be thrown into any one of the 20 boxes, the second ball can then be thrown
into any one of the other 19 boxes, etc. Thus, there are 20 · 19 · 18 · · · 9 possible outcomes in the event.
So the probability is 20!/[8!2012 ].
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8 Chapter 1. Introduction to Probability

8. There are 75 possible outcomes in the sample space. If the five passengers are to get off at different
floors, the first passenger can get off at any one of the seven floors, the second passenger can then get
off at any one of the other six floors, etc. Thus, the probability is

7 · 6 · 5 · 4 · 3
75

=
360

2401
.

9. There are 6! possible arrangements in which the six runners can finish the race. If the three runners
from team A finish in the first three positions, there are 3! arrangements of these three runners among
these three positions and there are also 3! arrangements of the three runners from team B among the
last three positions. Therefore, there are 3! × 3! arrangements in which the runners from team A
finish in the first three positions and the runners from team B finish in the last three positions. Thus,
the probability is (3!3!)/6! = 1/20.

10. We can imagine that the 100 balls are randomly ordered in a list, and then drawn in that order. Thus,
the required probability in part (a), (b), or (c) of this exercise is simply the probability that the first,

fiftieth, or last ball in the list is red. Each of these probabilities is the same
r

100
, because of the random

order of the list.

11. In terms of factorials, Pn,k = n!/[k!(n − k)!]. Since we are assuming that n and n = k are large, we
can use Stirling’s formula to approximate both of them. The approximation to n! is (2π)1/2nn+1/2e−n,
and the approximation to (n − k)! is (2π)1/2(n − k)n−k+1/2e−n+k. The approximation to the ratio is
the ratio of the approximations because the ratio of each approximation to its corresponding factorial
converges to 1. That is,

n!

k!(n− k)!
≈ (2π)1/2nn+1/2e−n

k!(2π)1/2(n− k)n−k+1/2e−n+k
=

e−knk

k!

(
1− k

n

)−n−k−1/2

.

Further simplification is available if one assumes that k is small compared to n, that is k/n ≈ 0. In this
case, the last factor is approximately ek, and the whole approximation simplifies to nk/k!. This makes
sense because, if n/(n− k) is essentially 1, then the product of the k largest factors in n! is essentially
nk.

1.8 Combinatorial Methods

Commentary

This section ends with an extended example called “The Tennis Tournament”. This is an application of
combinatorics that uses a slightly subtle line of reasoning.

Solutions to Exercises

1. We have to assign 10 houses to one pollster, and the other pollster will get to canvas the other 10
houses. Hence, the number of assignments is the number of combinations of 20 items taken 10 at a
time, (

20

10

)
= 184,756.

2. The ratio of

(
93

30

)
to

(
93

31

)
is 31/63 < 1, so

(
93

31

)
is larger.
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3. Since 93 = 63 + 30, the two numbers are the same.

4. Let the sample space consist of all subsets (not ordered tuples) of the 24 bulbs in the box. There are(
24

4

)
= 10626 such subsets. There is only one subset that has all four defectives, so the probability we

want is 1/10626.

5. The number is
4251!

(97!4154!)
=

(
4251

97

)
, an integer.

6. There are

(
n

2

)
possible pairs of seats that A and B can occupy. Of these pairs, n − 1 pairs comprise

two adjacent seats. Therefore, the probability is
n− 1(
n

2

) =
2

n
.

7. There are

(
n

k

)
possible sets of k seats to be occupied, and they are all equally likely. There are n−k+1

sets of k adjacent seats, so the probability we want is

n− k + 1(
n

k

) =
(n− k + 1)!k!

n!
.

8. There are

(
n

k

)
possible sets of k seats to be occupied, and they are all equally likely. Because the circle

has no start or end, there are n sets of k adjacent seats, so the probability we want is

n(
n

k

) =
(n− k)!k!

(n− 1)!
.

9. This problem is slightly tricky. The total number of ways of choosing the n seats that will be occupied

by the n people is

(
2n

n

)
. Offhand, it would seem that there are only two ways of choosing these seats

so that no two adjacent seats are occupied, namely:

X0X0 . . . 0 and 0X0X . . . 0X

Upon further consideration, however, n− 1 more ways can be found, namely:

X00X0X . . . 0X, X0X00X0X . . . 0X, etc.

Therefore, the total number of ways of choosing the seats so that no two adjacent seats are occupied is
n+ 1. The probability is (n+ 1)/

(2n
n

)
.
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10 Chapter 1. Introduction to Probability

10. We shall let the sample space consist of all subsets (unordered) of 10 out of the 24 light bulbs in the

box. There are

(
24

10

)
such subsets. The number of subsets that contain the two defective bulbs is the

number of subsets of size 8 out of the other 22 bulbs,

(
22

8

)
, so the probability we want is

(
22

8

)
(
24

10

) =
10× 9

24× 23
= 0.1630.

11. This exercise is similar to Exercise 10. Let the sample space consist of all subsets (unordered) of 12 out

of the 100 people in the group. There are

(
100

12

)
such subsets. The number of subsets that contain A

and B is the number of subsets of size 10 out of the other 98 people,

(
98

10

)
, so the probability we want

is (
98

10

)
(
100

12

) =
12× 11

100 × 99
= 0.01333.

12. There are

(
35

10

)
ways of dividing the group into the two teams. As in Exercise 11, the number of ways

of choosing the 10 players for the first team so as to include both A and B is

(
33

8

)
. The number of

ways of choosing the 10 players for this team so as not to include either A or B (A and B will then be

together on the other team) is

(
33

10

)
. The probability we want is then

(
33

8

)
+

(
33

10

)
(
35

10

) =
10 × 9 + 25× 24

35× 34
= 0.5798.

13. This exercise is similar to Exercise 12. Here, we want four designated bulbs to be in the same group.
The probability is

(
20

6

)
+

(
20

10

)
(
24

10

) = 0.1140.
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14.

(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n − k)!
+

n!

(k − 1)!(n − k + 1)!

=
n!

(k − 1)!(n − k)!

(
1

k
+

1

n− k + 1

)
=

n!

(k − 1)!(n − k)!
· n+ 1

k(n− k + 1)

=
(n + 1)!

k!(n − k + 1)!
=

(
n+ 1

k

)
.

15. (a) If we express 2n as (1 + 1)n and expand (1 + 1)n by the binomial theorem, we obtain the desired
result.

(b) If we express 0 as (1 − 1)n and expand (1 − 1)n by the binomial theorem, we obtain the desired
result.

16. (a) It is easier to calculate first the probability that the committee will not contain either of the two

senators from the designated state. This probability is

(
98

8

)
/

(
100

8

)
. Thus, the final answer is

1−

(
98

8

)
(
100

8

) ≈ 1− .08546 = 0.1543.

(b) There are

(
100

50

)
combinations that might be chosen. If the group is to contain one senator from

each state, then there are two possible choices for each of the fifty states. Hence, the number of
possible combinations containing one senator from each state is 250.

17. Call the four players A, B, C, and D. The number of ways of choosing the positions in the deck that

will be occupied by the four aces is

(
52

4

)
. Since player A will receive 13 cards, the number of ways

of choosing the positions in the deck for the four aces so that all of them will be received by player

A is

(
13

4

)
. Similarly, since player B will receive 13 other cards, the number of ways of choosing the

positions for the four aces so that all of them will be received by player B is

(
13

4

)
. A similar result is

true for each of the other players. Therefore, the total number of ways of choosing the positions in the

deck for the four aces so that all of them will be received by the same player is 4

(
13

4

)
. Thus, the final

probability is 4

(
13

4

)
/

(
52

4

)
.

18. There are

(
100

10

)
ways of choosing ten mathematics students. There are

(
20

2

)
ways of choosing two
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12 Chapter 1. Introduction to Probability

students from a given class of 20 students. Therefore, there are

(
20

2

)5

ways of choosing two students

from each of the five classes. So, the final answer is

(
20

2

)5

/

(
100

10

)
≈ 0.0143.

19. From the description of what counts as a collection of customer choices, we see that each collection
consists of a tuple (m1, . . . ,mn), wheremi is the number of customers who choose item i for i = 1, . . . , n.
Each mi must be between 0 and k and m1 + · · ·+mn = k. Each such tuple is equivalent to a sequence
of n+ k − 1 0’s and 1’s as follows. The first m1 terms are 0 followed by a 1. The next m2 terms are 0
followed by a 1, and so on up to mn−1 0’s followed by a 1 and finally mn 0’s. Since m1 + · · ·+mn = k
and since we are putting exactly n− 1 1’s into the sequence, each such sequence has exactly n+ k − 1
terms. Also, it is clear that each such sequence corresponds to exactly one tuple of customer choices.
The numbers of 0’s between successive 1’s give the numbers of customers who choose that item, and
the 1’s indicate where we switch from one item to the next. So, the number of combinations of choices

is the number of such sequences:

(
n+ k − 1

k

)
.

20. We shall use induction. For n = 1, we must prove that

x+ y =

(
1

0

)
x0y1 +

(
1

1

)
x1y0.

Since the right side of this equation is x + y, the theorem is true for n = 1. Now assume that the
theorem is true for each n = 1, . . . , n0 for n0 ≥ 1. For n = n0 + 1, the theorem says

(x+ y)n0+1 =
n0+1∑
k=0

(
n0 + 1

k

)
xkyn0+1−k. (S.1.2)

Since we have assumed that the theorem is true for n = n0, we know that

(x+ y)n0 =
n0∑
k=0

(
n0

k

)
xkyn0−k. (S.1.3)

We shall multiply both sides of (S.1.3) by x+ y. We then need to prove that x+ y times the right side
of (S.1.3) equals the right side of (S.1.2).

(x+ y)(x+ y)n0 = (x+ y)
n0∑
k=0

(
n0

k

)
xkyn0−k

=
n0∑
k=0

(
n0

k

)
xk+1yn0−k +

n0∑
k=0

(
n0

k

)
xkyn0+1−k

=
n0+1∑
k=1

(
n0

k − 1

)
xkyn0+1−k +

n0∑
k=0

(
n0

k

)
xkyn0+1−k

= yn0+1 +
n0∑
k=1

[(
n0

k − 1

)
+

(
n0

k

)]
xkyn0+1−k + xn0+1.

Now, apply the result in Exercise 14 to conclude that(
n0

k − 1

)
+

(
n0

k

)
=

(
n0 + 1

k

)
.
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Section 1.9. Multinomial Coefficients 13

This makes the final summation above equal to the right side of (S.1.2).

21. We are asked for the number of unordered samples with replacement, as constructed in Exercise 19.
Here, n = 365, so there are

(365+k
k

)
different unordered sets of k birthdays chosen with replacement

from 1, . . . , 365.

22. The approximation to n! is (2π)1/2nn+1/2e−n, and the approximation to (n/2)! is (2π)1/2(n/2)n/2+1/2e−n/2.
Then

n!

(n/2)!2
≈ (2π)1/2nn+1/2e−n

[(2π)1/2(n/2)n/2+1/2e−n/2]2
= (2π)−1/22n+1n−1/2.

With n = 500, the approximation is e343.24, too large to represent on a calculator with only two-digit
exponents. The actual number is about 1/20 of 1% larger.

1.9 Multinomial Coefficients

Commentary

Multinomial coefficients are useful as a counting method, and they are needed for the definition of the
multinomial distribution in Sec. 5.9. They are not used much elsewhere in the text. Although this section
does not have an asterisk, it could be skipped (together with Sec. 5.9) if one were not interested in the
multinomial distribution or the types of counting arguments that rely on multinomial coefficients.

Solutions to Exercises

1. We have three types of elements that need to be assigned to 21 houses so that exactly seven of each
type are assigned. The number of ways to do this is the multinomial coefficient

(
21

7, 7, 7

)
= 399,072,960.

2. We are asked for the number of arrangements of four distinct types of objects with 18 or one type, 12

of the next, 8 of the next and 12 of the last. This is the multinomial coefficient

(
50

18, 12, 8, 12

)
.

3. We need to divide the 300 members of the organization into three subsets: the 5 in one committee, the

8 in the second committee, and the 287 in neither committee. There are

(
300

5, 8, 287

)
ways to do this.

4. There are

(
10

3, 3, 2, 1, 1

)
arrangements of the 10 letters of four distinct types. All of them are equally

likely, and only one spells statistics. So, the probability is 1/

(
10

3, 3, 2, 1, 1

)
= 1/50400.

5. There are

(
n

n1, n2, n3, n4, n5, n6

)
many ways to arrange nj j’s (for j = 1, . . . , 6) among the n rolls. The

number of possible equally likely rolls is 6n. So, the probability we want is
1

6n

(
n

n1, n2, n3, n4, n5, n6

)
.
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14 Chapter 1. Introduction to Probability

6. There are 67 possible outcomes for the seven dice. If each of the six numbers is to appear at least once
among the seven dice, then one number must appear twice and each of the other five numbers must
appear once. Suppose first that the number 1 appears twice and each of the other numbers appears
once. The number of outcomes of this type in the sample space is equal to the number of different

arrangements of the symbols 1, 1, 2, 3, 4, 5, 6, which is
7!

2!(1!)5
=

7!

2
. There is an equal number of

outcomes for each of the other five numbers which might appear twice among the seven dice. Therefore,

the total number of outcomes in which each number appears at least once is
6(7!)

2
, and the probability

of this event is

6(7!)

(2)67
=

7!

2(66)
.

7. There are

(
25

10, 8, 7

)
ways of distributing the 25 cards to the three players. There are

(
12

6, 2, 4

)
ways

of distributing the 12 red cards to the players so that each receives the designated number of red

cards. There are then

(
13

4, 6, 3

)
ways of distributing the other 13 cards to the players, so that each

receives the designated total number of cards. The product of these last two numbers of ways is,
therefore, the number of ways of distributing the 25 cards to the players so that each receives the
designated number of red cards and the designated total number of cards. So, the final probability is(

12

6, 2, 4

)(
13

4, 6, 3

)
/

(
25

10, 8, 7

)
.

8. There are

(
52

13, 13, 13, 13

)
ways of distributing the cards to the four players. There are

(
12

3, 3, 3, 3

)
ways of distributing the 12 picture cards so that each player gets three. No matter which of these ways

we choose, there are

(
40

10, 10, 10, 10

)
ways to distribute the remaining 40 nonpicture cards so that each

player gets 10. So, the probability we need is(
12

3, 3, 3, 3

)(
40

10, 10, 10, 10

)
(

52

13, 13, 13, 13

) =

12!

(3!)4
40!

(10!)4

52!

(13!)4

≈ 0.0324.

9. There are

(
52

13, 13, 13, 13

)
ways of distributing the cards to the four players. Call these four players A,

B, C, and D. There is only one way of distributing the cards so that player A receives all red cards,
player B receives all yellow cards, player C receives all blue cards, and player D receives all green cards.
However, there are 4! ways of assigning the four colors to the four players and therefore there are 4!
ways of distributing the cards so that each player receives 13 cards of the same color. So, the probability
we need is

4!(
52

13, 13, 13, 13

) =
4!(13!)4

52!
≈ 4.474 × 10−28.
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Section 1.9. Multinomial Coefficients 15

10. If we do not distinguish among boys with the same last name, then there are

(
9

2, 3, 4

)
possible arrange-

ments of the nine boys. We are interested in the probability of a particular one of these arrangements.
So, the probability we need is

1(
9

2, 3, 4

) =
2!3!4!

9!
≈ 7.937 × 10−4.

11. We shall use induction. Since we have already proven the binomial theorem, we know that the conclusion
to the multinomial theorem is true for every n if k = 2. We shall use induction again, but this time
using k instead of n. For k = 2, we already know the result is true. Suppose that the result is true for
all k ≤ k0 and for all n. For k = k0 + 1 and arbitrary n we must show that

(x1 + · · · + xk0+1)
n =

∑(
n

n1, . . . , nk0+1

)
xn1
1 · · · xnk0+1

k0+1 , (S.1.4)

where the summation is over all n1, . . . , nk0+1 such that n1 + · · · + nk0+1 = n. Let yi = xi for
i = 1, . . . , k0 − 1 and let yk0 = xk0 + xk0+1. We then have

(x1 + · · · + xk0+1)
n = (y1 + · · ·+ yk0)

n.

Since we have assumed that the theorem is true for k = k0, we know that

(y1 + · · ·+ yk0)
n =

∑(
n

m1, . . . ,mk0

)
ym1
1 · · · ymk0

k0
, (S.1.5)

where the summation is over all m1, . . . ,mk0 such that m1+ · · ·+mk0 = n. On the right side of (S.1.5),
substitute xk0 + xk0+1 for yk0 and apply the binomial theorem to obtain

∑(
n

m1, . . . ,mk0

)
ym1
1 · · · ymk0−1

k0−1

mk0∑
i=0

(
mk0

i

)
xik0x

mk0
−i

k0+1 . (S.1.6)

In (S.1.6), let ni = mi for i = 1, . . . , k0−1, let nk0 = i, and let nk0+1 = mk0−i. Then, in the summation
in (S.1.6), n1 + · · ·+ nk0+1 = n if and only if m1 + · · · +mk0 = n. Also, note that

(
n

m1, . . . ,mk0

)(
mk0

i

)
=

(
n

n1, . . . , nk0+1

)
.

So, (S.1.6) becomes

∑(
n

n1, . . . , nk0+1

)
xn1
1 · · · xnk0+1

k0+1 ,

where this last sum is over all n1, . . . , nk0+1 such that n1 + · · ·+ nk0+1 = n.
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16 Chapter 1. Introduction to Probability

12. For each element s′ of S′, the elements of S that lead to boxful s′ are all the different sequences of
elements of s′. That is, think of each s′ as an unordered set of 12 numbers chosen with replacement
from 1 to 7. For example, {1, 1, 2, 3, 3, 3, 5, 6, 7, 7, 7, 7} is one such set. The following are some of
the elements of S lead to the same set s′: (1, 1, 2, 3, 3, 3, 5, 6, 7, 7, 7, 7), (1, 2, 3, 5, 6, 7, 1, 3, 7, 3, 7, 7),
(7, 1, 7, 2, 3, 5, 7, 1, 6, 3, 7, 3). This problem is pretty much the same as that which leads to the definition
of multinomial coefficients. We are looking for the number of orderings of 12 digits chosen from the
numbers 1 to 7 that have two of 1, one of 2, three of 3, none of 4, one of 5, one of 6, and four of 7. This
is just

( 12
1,1,3,0,1,1,4

)
. For a general s′, for i = 1, . . . , 7, let ni(s

′) be the number of i’s in the box s′. Then
n1(s

′) + · · ·+ n7(s
′) = 12, and the number of orderings of these numbers is

N(s′) =

(
12

n1(s′), n2(s′), . . . , n7(s′)

)
.

The multinomial theorem tells us that∑
All s′

N(s′) =
∑(

12

n1, n2, . . . , n7

)
1n1 · · · 1n7 = 712,

where the sum is over all possible combinations of nonnegative integers n1, . . . , n7 that add to 12. This
matches the number of outcomes in S.

1.10 The Probability of a Union of Events

Commentary

This section ends with an example of the matching problem. This is an application of the formula for the
probability of a union of an arbitrary number of events. It requires a long line of argument and contains an
interesting limiting result. The example will be interesting to students with good mathematics backgrounds,
but it might be too challenging for students who have struggled to master combinatorics. One can use
statistical software, such as R, to help illustrate how close the approximation is. The formula (1.10.10) can
be computed as
ints=1:n

sum(exp(-lfactorial(ints))*(-1)^(ints+1)),
where n has previously been assigned the value of n for which one wishes to compute pn.

Solutions to Exercises

1. Let Ai be the event that person i receives exactly two aces for i = 1, 2, 3. We want Pr(∪3
i=1Ai). We

shall apply Theorem 1.10.1 directly. Let the sample space consist of all permutations of the 52 cards
where the first five cards are dealt to person 1, the second five to person 2, and the third five to person
3. A permutation of 52 cards that leads to the occurrence of event Ai can be constructed as follows.
First, choose which of person i’s five locations will receive the two aces. There are C5,2 ways to do
this. Next, for each such choice, choose the two aces that will go in these locations, distinguishing the
order in which they are placed. There are P4,2 ways to do this. Next, for each of the preceding choices,
choose the locations for the other two aces from among the 47 locations that are not dealt to person i,
distinguishing order. There are P47,2 ways to do this. Finally, for each of the preceding choices, choose
a permutation of the remaining 48 cards among the remaining 48 locations. There are 48! ways to do
this. Since there are 52! equally likely permutations in the sample space, we have

Pr(Ai) =
C5,2P4,2P47,248!

52!
=

5!4!47!48!

2!3!2!45!52!
≈ 0.0399.
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Section 1.10. The Probability of a Union of Events 17

Careful examination of the expression for Pr(Ai) reveals that it can also be expressed as

Pr(Ai) =

(
4

2

)(
48

3

)
(
52

5

) .

This expression corresponds to a different, but equally correct, way of describing the sample space in
terms of equally likely outcomes. In particular, the sample space would consist of the different possible
five-card sets that person i could receive without regard to order.

Next, compute Pr(AiAj) for i �= j. There are still C5,2 ways to choose the locations for person i’s aces
amongst the five cards and for each such choice, there are P4,2 ways to choose the two aces in order.
For each of the preceding choices, there are C5,2 ways to choose the locations for person j’s aces and 2
ways to order the remaining two aces amongst the two locations. For each combination of the preceding
choices, there are 48! ways to arrange the remaining 48 cards in the 48 unassigned locations. Then,
Pr(AiAj) is

Pr(AiAj) =
2C2

5,2P4,248!

52!
=

2(5!)24!48!

(2!)3(3!)252!
≈ 3.694 × 10−4.

Once again, we can rewrite the expression for Pr(AiAj) as

Pr(AiAj) =

(
4

2

)(
48

3, 3, 42

)
(

52

5, 5, 42

) .

This corresponds to treating the sample space as the set of all pairs of five-card subsets.

Next, notice that it is impossible for all three players to receive two aces, so Pr(A1A2A3) = 0. Applying
Theorem 1.10.1, we obtain

Pr
(
∪3
i=1Ai

)
= 3× 0.0399 − 3× 3.694 × 10−4 = 0.1186.

2. Let A, B, and C stand for the events that a randomly selected family subscribes to the newspaper
with the same name. Then Pr(A ∪ B ∪ C) is the proportion of families that subscribe to at least one
newspaper. According to Theorem 1.10.1, we can express this probability as

Pr(A) + Pr(B) + Pr(C)− Pr(A ∩B)− Pr(AC)− Pr(BC) + Pr(A ∩BC).

The probabilities in this expression are the proportions of families that subscribe to the various com-
binations. These proportions are all stated in the exercise, so the formula yields

Pr(A ∪B ∪ C) = 0.6 + 0.4 + 0.3− 0.2− 0.1 − 0.2 + 0.05 = 0.85.

3. As seen from Fig. S.1.1, the required percentage is P1 + P2 + P3. From the given values, we have, in
percentages,
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18 Chapter 1. Introduction to Probability

A

B

C

P1

P4

P7

P6

P3
P5

P2

Figure S.1.1: Figure for Exercise 3 of Sec. 1.10.

P7 = 5,
P4 = 20− P7 = 15,
P5 = 20− P7 = 15,
P6 = 10− P7 = 5,
P1 = 60− P4 − P6 − P7 = 35,
P2 = 40− P4 − P5 − P7 = 5,
P3 = 30− P5 − P6 − P7 = 5.

Therefore, P1 + P2 + P3 = 45.

4. This is a case of the matching problem with n = 3. We are asked to find p3. By Eq. (1.10.10) in the
text, this equals

p3 = 1− 1

2
+

1

6
=

2

3
.

5. Determine first the probability that at least one guest will receive the proper hat. This probability is
the value pn specified in the matching problem, with n = 4, namely

p4 = 1− 1

2
+

1

6
− 1

24
=

5

8
.

So, the probability that no guest receives the proper hat is 1− 5/8 = 3/8.

6. Let A1 denote the event that no red balls are selected, let A2 denote the event that no white balls
are selected, and let A3 denote the event that no blue balls are selected. The desired probability is
Pr(A1 ∪ A2 ∪ A3) and we shall apply Theorem 1.10.1. The event A1 will occur if and only if the ten
selected balls are either white or blue. Since there are 60 white and blue balls, out of a total of 90 balls,

we have Pr(A1) =

(
60

10

)
/

(
90

10

)
. Similarly, Pr(A2) and Pr(A3) have the same value. The event A1A2

will occur if and only if all ten selected balls are blue. Therefore, Pr(A1A2) =

(
30

10

)
/

(
90

10

)
. Similarly,

Pr(A2A3) and Pr(A1A3) have the same value. Finally, the event A1A2A3 will occur if and only if all
three colors are missing, which is obviously impossible. Therefore, Pr(A1A2A3) = 0. When these values
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are substituted into Eq. (1.10.1), we obtain the desired probability,

Pr(A1 ∪A2 ∪A3) = 3

(
60

10

)
(
90

10

) − 3

(
30

10

)
(
90

10

) .

7. Let A1 denote the event that no student from the freshman class is selected, and let A2, A3, and
A4 denote the corresponding events for the sophomore, junior, and senior classes, respectively. The
probability that at least one student will be selected from each of the four classes is equal to 1−Pr(A1∪
A2 ∪ A3 ∪ A4). We shall evaluate Pr(A1 ∪ A2 ∪ A3 ∪ A4) by applying Theorem 1.10.2. The event A1

will occur if and only if the 15 selected students are sophomores, juniors, or seniors. Since there are

90 such students out of a total of 100 students, we have Pr(A1) =

(
90

15

)
/

(
100

15

)
. The values of Pr(Ai)

for i = 2, 3, 4 can be obtained in a similar fashion. Next, the event A1A2 will occur if and only if the
15 selected students are juniors or seniors. Since there are a total of 70 juniors and seniors, we have

Pr(A1A2) =

(
70

15

)
/

(
100

15

)
. The probability of each of the six events of the form AiAj for i < j can be

obtained in this way. Next the event A1A2A3 will occur if and only if all 15 selected students are seniors.

Therefore, Pr(A1A2A3) =

(
40

15

)
/

(
100

15

)
. The probabilities of the events A1A2A4 and A1A3A4 can also

be obtained in this way. It should be noted, however, that Pr(A2A3A4) = 0 since it is impossible that
all 15 selected students will be freshmen. Finally, the event A1A2A3A4 is also obviously impossible, so
Pr(A1A2A3A4) = 0. So, the probability we want is

1−

⎡⎢⎢⎢⎢⎣
(
90

15

)
(
100

15

) +

(
80

15

)
(
100

15

) +

(
70

15

)
(
100

15

) +

(
60

15

)
(
100

15

)

−

(
70

15

)
(
100

15

) −

(
60

15

)
(
100

15

) −

(
50

15

)
(
100

15

) −

(
50

15

)
(
100

15

) −

(
40

15

)
(
100

15

) −

(
30

15

)
(
100

15

) +

(
40

15

)
(
100

15

) +

(
30

15

)
(
100

15

) +

(
20

15

)
(
100

15

)
⎤⎥⎥⎥⎥⎦ .

8. It is impossible to place exactly n−1 letters in the correct envelopes, because if n−1 letters are placed
correctly, then the nth letter must also be placed correctly.

9. Let pn = 1 − qn. As discussed in the text, p10 < p300 < 0.63212 < p53 < p21. Since pn is smallest for
n = 10, then qn is largest for n = 10.

10. There is exactly one outcome in which only letter 1 is placed in the correct envelope, namely the
outcome in which letter 1 is correctly placed, letter 2 is placed in envelope 3, and letter 3 is placed in
envelope 2. Similarly there is exactly one outcome in which only letter 2 is placed correctly, and one
in which only letter 3 is placed correctly. Hence, of the 3! = 6 possible outcomes, 3 outcomes yield the
result that exactly one letter is placed correctly. So, the probability is 3/6 = 1/2.

11. Consider choosing 5 envelopes at random into which the 5 red letters will be placed. If there are exactly
r red envelopes among the five selected envelopes (r = 0, 1, . . . , 5), then exactly x = 2r envelopes will
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contain a card with a matching color. Hence, the only possible values of x are 0, 2, 4. . . , 10. Thus,
for x = 0, 2, . . . , 10 and r = x/2, the desired probability is the probability that there are exactly r red

envelopes among the five selected envelopes, which is

(
5

r

)(
5

5− r

)
(
10

5

) .

12. It was shown in the solution of Exercise 12 of Sec. 1.5. that

Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Bi) = lim
n→∞

n∑
i=1

Pr(Bi) = lim
n→∞Pr

(
n⋃

i=1

Bi

)
= lim

n→∞Pr

(
n⋃

i=1

Ai

)
.

However, since A1 ⊂ A2 ⊂ . . . ⊂ An, it follows that
⋃n

i=1Ai = An. Hence,

Pr

( ∞⋃
i=1

Ai

)
= lim

n→∞Pr(An).

13. We know that

∞⋂
i=1

Ai =

( ∞⋃
i=1

Ac
i

)c

.

Hence,

Pr

( ∞⋂
i=1

Ai

)
= 1− Pr

( ∞⋃
i=1

Ac
i

)
.

However, since A1 ⊃ A2 ⊃ . . ., then Ac
1 ⊂ Ac

2 ⊂ . . . . Therefore, by Exercise 12,

Pr

( ∞⋃
i=1

Ac
i

)
= lim

n→∞Pr(Ac
n) = lim

n→∞[1− Pr(An)] = 1− lim
n→∞ Pr(An).

It now follows that

Pr

( ∞⋂
i=1

Ai

)
= lim

n→∞Pr(An).

1.12 Supplementary Exercises

Solutions to Exercises

1. No, since both A and B might occur.

2. Pr(Ac ∩Bc ∩Dc) = Pr[(A ∪B ∪D)c] = 0.3.

3.

(
250

18

)
·
(
100

12

)
(
350

30

) .
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4. There are

(
20

10

)
ways of choosing 10 cards from the deck. For j = 1, . . . , 5, there

(
4

2

)
ways of choosing

two cards with the number j. Hence, the answer is(
4

2

)
· · ·
(
4

2

)
(
20

10

) =
65(
20

10

) ≈ 0.0421.

5. The region where total utility demand is at least 215 is shaded in Fig. S.1.2. The area of the shaded

Water
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ric
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0
50

10
0

15
0

(65,150)

(200,15)

Figure S.1.2: Region where total utility demand is at least 215 in Exercise 5 of Sec. 1.12.

region is

1

2
× 135 × 135 = 9112.5

The probability is then 9112.5/29204 = 0.3120.

6. (a) There are

(
r +w

r

)
possible positions that the red balls could occupy in the ordering as they are

drawn. Therefore, the probability that they will be in the first r positions is 1/

(
r + w

r

)
.

(b) There are

(
r + 1

r

)
ways that the red balls can occupy the first r + 1 positions in the ordering.

Therefore, the probability is

(
r + 1

r

)
/

(
r + w

r

)
= (r + 1)/

(
r + w

r

)
.

7. The presence of the blue balls is irrelevant in this problem, since whenever a blue ball is drawn it is
ignored. Hence, the answer is the same as in part (a) of Exercise 6.

8. There are

(
10

7

)
ways of choosing the seven envelopes into which the red cards will be placed. There
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are

(
7

j

)(
3

7− j

)
ways of choosing exactly j red envelopes and 7 − j green envelopes. Therefore, the

probability that exactly j red envelopes will contain red cards is(
7

j

)(
3

7− j

)/(
10

7

)
for j = 4, 5, 6, 7.

But if j red envelopes contain red cards, then j − 4 green envelopes must also contain green cards.
Hence, this is also the probability of exactly k = j + (j − 4) = 2j − 4 matches.

9. There are

(
10

5

)
ways of choosing the five envelopes into which the red cards will be placed. There

are

(
7

j

)(
3

5− j

)
ways of choosing exactly j red envelopes and 5 − j green envelopes. Therefore the

probability that exactly j red envelopes will contain red cards is(
7

j

)(
3

5− j

)/(
10

5

)
for j = 2, 3, 4, 5.

But if j red envelopes contain red cards, then j − 2 green envelopes must also contain green cards.
Hence, this is also the probability of exactly k = j + ( j − 2) = 2j − 2 matches.

10. If there is a point x that belongs to neither A nor B, then x belongs to both Ac and Bc. Hence, Ac

and Bc are not disjoint. Therefore, Ac and Bc will be disjoint if and only if A ∪B = S.

11. We can use Fig. S.1.1 by relabeling the events A, B, and C in the figure as A1, A2, and A3 respectively.
It is now easy to see that the probability that exactly one of the three events occurs is p1 + p2 + p3.
Also,

Pr(A1) = p1 + p4 + p6 + p7,

Pr(A1 ∩ A2) = p4 + p7, etc.

By breaking down each probability in the given expression in this way, we obtain the desired result.

12. The proof can be done in a manner similar to that of Theorem 1.10.2. Here is an alternative argument.
Consider first a point that belongs to exactly one of the events A1, . . . , An. Then this point will be
counted in exactly one of the Pr(Ai) terms in the given expression, and in none of the intersections.
Hence, it will be counted exactly once in the given expression, as required. Now consider a point that
belongs to exactly r of the events A1, . . . , An(r ≥ 2). Then it will be counted in exactly r of the Pr(Ai)

terms, exactly

(
r

2

)
of the Pr(AiAj) terms, exactly

(
r

3

)
of the Pr(AiAjAk) terms, etc. Hence, in the

given expression it will be counted the following number of times:

r − 2

(
r

2

)
+ 3

(
r

3

)
− · · · ± r

(
r

r

)

= r

[(
r − 1

0

)
−
(
r − 1

1

)
+

(
r − 1

2

)
− · · · ±

(
r − 1

r − 1

)]
= 0,

by Exercise b of Sec. 1.8. Hence, a point will be counted in the given expression if and only if it belongs
to exactly one of the events A1, . . . , An, and then it will be counted exactly once.
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13. (a) In order for the winning combination to have no consecutive numbers, between every pair of
numbers in the winning combination there must be at least one number not in the winning com-
bination. That is, there must be at least k − 1 numbers not in the winning combination to be
in between the pairs of numbers in the winning combination. Since there are k numbers in the
winning combination, there must be at least k + k − 1 = 2k − 1 numbers available in order for it
to be possible to have no consecutive numbers in the winning combination. So, n must be at least
2k − 1 to allow consecutive numbers.

(b) Let i1, . . . , ik and j1, . . . , jk be as described in the problem. For one direction, suppose that
i1, . . . , ik contains at least one pair of consecutive integers, say ia+1 = ia + 1. Then

ja+1 = ia+1 − a = ia + 1− a = ia − (a− 1) = ja.

So, j1, . . . , jk contains repeats. For the other direction, suppose that j1, . . . , jk contains repeats,
say ja+1 = ja. Then

ia+1 = ja+1 + a = ja + a = ia + 1.

So i1, . . . , ik contains a pair of consecutive numbers.

(c) Since i1 < i2 < · · · < ik, we know that ia + 1 ≤ ia+1, so that ja = ia − a+ 1 ≤ ia+1 − a = ja+1 for
each a = 1, . . . , k − 1. Since ik ≤ n, jk = ik − k + 1 ≤ n − k + 1. The set of all (j1, . . . , jk) with
1 ≤ j1 < · · · < jk ≤ n− k + 1 is just the number of combinations of n− k + 1 items taken k at a

time, that is

(
n− k + 1

k

)
.

(d) By part (b), there are no pairs of consecutive integers in the winning combination (i1, . . . , ik) if

and only if (j1, . . . , jk) has no repeats. The total number of winning combinations is

(
n

k

)
. In part

(c), we computed the number of winning combinations with no repeats among (j1, . . . , jk) to be(
n− k + 1

k

)
. So, the probability of no consecutive integers is

(
n− k + 1

k

)
(
n

k

) =
(n− k)!(n− k + 1)!

n!(n− 2k + 1)!
.

(e) The probability of at least one pair of consecutive integers is one minus the answer to part (d).
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Chapter 2

Conditional Probability

2.1 The Definition of Conditional Probability

Commentary

It is useful to stress the point raised in the note on page 59. That is, conditional probabilities behave just
like probabilities. This will come up again in Sec. 3.6 where conditional distributions are introduced.

This section ends with an extended example called “The Game of Craps”. This example helps to reinforce
a subtle line of reasoning about conditional probability that was introduced in Example 2.1.5. In particular,
it uses the idea that conditional probabilities given an event B can be calculated as if we knew ahead of time
that B had to occur.

Solutions to Exercises

1. If A ⊂ B, then A ∩B = A and Pr(A ∩B) = Pr(A). So Pr(A|B) = Pr(A)/Pr(B).

2. Since A ∩B = ∅, it follows that Pr(A ∩B) = 0. Therefore, Pr(A | B) = 0.

3. Since A ∩ S = A and Pr(S) = 1, it follows that Pr(A | S) = Pr(A).

4. Let Ai stand for the event that the shopper purchases brand A on his ith purchase, for i = 1, 2, . . ..
Similarly, let Bi be the event that he purchases brand B on the ith purchase. Then

Pr(A1) =
1

2
,

Pr(A2 | A1) =
1

3
,

Pr(B3 | A1 ∩A2) =
2

3
,

Pr(B4 | A1 ∩A2 ∩B3) =
1

3
.

The desired probability is the product of these four probabilities, namely 1/27.

5. Let Ri be the event that a red ball is drawn on the ith draw, and let Bi be the event that a blue ball
is drawn on the ith draw for i = 1, . . . , 4. Then

Pr(R1) =
r

r + b
,

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



26 Chapter 2. Conditional Probability

Pr(R2 | R1) =
r + k

r + b+ k
,

Pr(R3 | R1 ∩R2) =
r + 2k

r + b+ 2k
,

Pr(B4 | R1 ∩R2 ∩R3) =
b

r + b+ 3k
.

The desired probability is the product of these four probabilities, namely

r(r + k)(r + 2k)b

(r + b)(r + b+ k)(r + b+ 2k)(r + b+ 3k)
.

6. This problem illustrates the importance of relying on the rules of conditional probability rather than
on intuition to obtain the answer. Intuitively, but incorrectly, it might seem that since the observed
side is green, and since the other side might be either red or green, the probability that it will be
green is 1/2. The correct analysis is as follows: Let A be the event that the selected card is green on
both sides, and let B be the event that the observed side is green. Since each of the three cards is
equally likely to be selected, Pr(A) = Pr(A ∩B) = 1/3. Also, Pr(B) = 1/2. The desired probability is

Pr(A | B) =

(
1

3

)
/

(
1

2

)
=

2

3
.

7. We know that Pr(A) = 0.6 and Pr(A ∩B) = 0.2. Therefore, Pr(B | A) = 0.2

0.6
=

1

3
.

8. In Exercise 2 in Sec. 1.10 it was found that Pr(A ∪ B ∪ C) = 0.85. Since Pr(A) = 0.6, it follows that

Pr(A | A ∪B ∪ C) =
0.60

0.85
=

12

17
.

9. (a) If card A has been selected, each of the other four cards is equally likely to be the other selected
card. Since three of these four cards are red, the required probability is 3/4.

(b) We know, without being told, that at least one red card must be selected, so this information does
not affect the probabilities of any events. We have

Pr(both cards red) = Pr(R1) Pr(R2 | R1) =
4

5
· 3
4
=

3

5
.

10. As in the text, let π0 stand for the probability that the sum on the first roll is either 7 or 11, and let
πi be the probability that the sum on the first roll is i for i = 2, . . . , 12. In this version of the game of
craps, we have

π0 =
2

9
,

π4 = π10 =
3

36
·

3

36
3

36
+

6

36
+

2

36

=
1

44
,

π5 = π9 =
4

36
·

4

36
4

36
+

6

36
+

2

36

=
1

27
,

π6 = π8 =
5

36
·

5

36
5

36
+

6

36
+

2

36

=
25

468
.

The probability of winning, which is the sum of these probabilities, is 0.448.
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11. This is the conditional version of Theorem 1.5.3. From the definition of conditional probability, we
have

Pr(Ac|B) =
Pr(Ac ∩B)

Pr(B)
,

1− Pr(A|B) = 1− Pr(A ∩B)

Pr(B)
,

=
Pr(B)− Pr(A ∩B)

Pr(B)
. (S.2.1)

According to Theorem 1.5.6 (switching the names A and B), Pr(B) − Pr(A ∩ B) = Pr(Ac ∩ B).
Combining this with (S.2.1) yields 1− Pr(A|B) = Pr(Ac|B).

12. This is the conditional version of Theorem 1.5.7. Let A1 = A ∩D and A2 = B ∩D. Then A1 ∪ A2 =
(A ∪B) ∩D and A1 ∩ A2 = A ∩B ∩D. Now apply Theorem 1.5.7 to determine Pr(A1 ∪A2).

Pr([A ∪B] ∩D) = Pr(A1 ∪A2) = Pr(A1) + Pr(A2)− Pr(A1 ∩A2) = Pr(A ∩D)

+Pr(B ∩D)− Pr(A ∩B ∩D).

Now, divide the extreme left and right ends of this string of equalities by Pr(D) to obtain

Pr(A ∪B|D) =
Pr([A ∪B] ∩D)

Pr(D)
=

Pr(A ∩D) + Pr(B ∩D)− Pr(A ∩B ∩D)

Pr(D)

= Pr(A|D) + Pr(B|D)− Pr(A ∩B|D).

13. Let A1 denote the event that the selected coin has a head on each side, let A2 denote the event that it
has a tail on each side, let A3 denote the event that it is fair, and let B denote the event that a head
in obtained. Then

Pr(A1) =
3

9
, Pr(A2) =

4

9
, Pr(A3) =

2

9
,

Pr(B | A1) = 1, Pr(B | A2) = 0, Pr(B | A3) =
1

2
.

Hence,

Pr(B) =
3∑

i=1

Pr(Ai) Pr(B | Ai) =
4

9
.

14. We partition the space of possibilities into three events B1, B2, B3 as follows. Let B1 be the event that
the machine is in good working order. Let B2 be the event that the machine is wearing down. Let B3 be
the event that it needs maintenance. We are told that Pr(B1) = 0.8 and Pr(B2) = Pr(B3) = 0.1. Let
A be the event that a part is defective. We are asked to find Pr(A). We are told that Pr(A|B1) = 0.02,
Pr(A|B2) = 0.1, and Pr(A|B3) = 0.3. The law of total probability allows us to compute Pr(A) as
follows

Pr(A) =
3∑

j=1

Pr(Bj) Pr(A|Bj) = 0.8× 0.02 + 0.1× 0.1 + 0.1 × 0.3 = 0.056.
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15. The analysis is similar to that given in the previous exercise, and the probability is 0.47.

16. In the usual notation, we have

Pr(B2) = Pr(A1 ∩B2) + Pr(B1 ∩B2) = Pr(A1) Pr(B2 | A1) + Pr(B1) Pr(B2 | B1)

=
1

4
· 2
3
+

3

4
· 1
3
=

5

12
.

17. Clearly, we must assume that Pr(Bj ∩C) > 0 for all j, otherwise (2.1.5) is undefined. By applying the
definition of conditional probability to each term, the right side of (2.1.5) can be rewritten as

k∑
i=1

Pr(Bj ∩ C)

Pr(C)

Pr(A ∩Bj ∩ C)

Pr(Bj ∩ C)
=

1

Pr(C)

k∑
i=1

Pr(A ∩Bj ∩ C).

According to the law of total probability, the last sum above is Pr(A ∩C), hence the ratio is Pr(A|C).

2.2 Independent Events

Commentary

Near the end of this section, we introduce conditionally independent events. This is a prelude to conditionally
independent and conditionally i.i.d. random variables that are introduced in Sec. 3.7. Conditional indepen-
dence has become more popular in statistical modeling with the introduction of latent-variable models and
expert systems. Although these models are not introduced in this text, students who will encounter them in
the future would do well to study conditional independence early and often.

Conditional independence is also useful for illustrating how learning data can change the distribution of
an unknown value. The first examples of this come in Sec. 2.3 after Bayes’ theorem. The assumption that
a sample of random variables is conditionally i.i.d. given an unknown parameter is the analog in Bayesian
inference to the assumption that the random sample is i.i.d. marginally. Instructors who are not going to
cover Bayesian topics might wish to bypass this material, even though it can also be useful in its own right.
If you decide to not discuss conditional independence, then there is some material later in the book that you
might wish to bypass as well:

• Exercise 23 in this section.

• The discussion of conditionally independent events on pages 81–84 in Sec. 2.3.

• Exercises 12, 14 and 15 in Sec. 2.3.

• The discussion of conditionally independent random variables that starts on page 163.

• Exercises 13 and 14 in Sec. 3.7.

• Virtually all of the Bayesian material.

This section ends with an extended example called “The Collector’s Problem”. This example combines
methods from Chapters 1 and 2 to solve an easily stated but challenging problem.
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Solutions to Exercises

1. If Pr(B) < 1, then Pr(Bc) = 1− Pr(B) > 0. We then compute

Pr(Ac|Bc) =
Pr(Ac ∩Bc)

Pr(Bc)

=
1− Pr(A ∪B)

1− Pr(B)

=
1− Pr(A)− Pr(B) + Pr(A ∩B)

1− Pr(B)

=
1− Pr(A)− Pr(B) + Pr(A) Pr(B)

1− Pr(B)

=
[1− Pr(A)][1 − Pr(B)]

1− Pr(B)

= 1− Pr(A) = Pr(Ac).

2.

Pr(AcBc) = Pr[(A ∪B)c] = 1− Pr(A ∪ B)

= 1− [Pr(A) + Pr(B)− Pr(A ∩B)]

= 1− Pr(A)− Pr(B) + Pr(A) Pr(B)]

= [1− Pr(A)][1 − Pr(B)]

= Pr(Ac) Pr(Bc).

3. Since the event A∩B is a subset of the event A, and Pr(A) = 0, it follows that Pr(A∩B) = 0. Hence,
Pr(A ∩B) = 0 = Pr(A) Pr(B).

4. The probability that the sum will be seven on any given roll of the dice is 1/6. The probability that
this event will occur on three successive rolls is therefore (1/6)3.

5. The probability that both systems will malfunction is (0.001)2 = 10−6. The probability that at least
one of the systems will function is therefore 1− 10−6.

6. The probability that the man will win the first lottery is 100/10000 = 0.01, and the probability that
he will win the second lottery is 100/5000 = 0.02. The probability that he will win at least one lottery
is, therefore,

0.01 + 0.02 − (0.01)(0.02) = 0.0298.

7. Let E1 be the event that A is in class, and let E2 be the event that B is in class. Let C be the event
that at least one of the students is in class. That is, C = E1 ∪ E2.

(a) We want Pr(C). We shall use Theorem 1.5.7 to compute the probability. Since E1 and E2 are
independent, we have Pr(E1 ∩E2) = Pr(E1) Pr(E2). Hence

Pr(C) = Pr(E1) + Pr(E2)− Pr(E1 ∩E2) = 0.8 + 0.6− 0.8× 0.6 = 0.92.

(b) We want Pr(E1|C). We computed Pr(C) = 0.92 in part (a). Since E1 ⊂ C, Pr(E1∩C) = Pr(E1) =
0.8. So, Pr(E1|C) = 0.8/0.92 = 0.8696.
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8. The probability that all three numbers will be equal to a specified value is 1/63. Therefore, the
probability that all three numbers will be equal to any one of the six possible values is 6/63 = 1/36.

9. The probability that exactly n tosses will be required on a given performance is 1/2n. Therefore, the
probability that exactly n tosses will be required on all three performances is (1/2n)3 = 1/8n. The

probability that the same number of tosses will be required on all three performances is
∞∑
n=1

1

8n
=

1

7
.

10. The probability pj that exactly j children will have blue eyes is

pj =

(
5

j

)(
1

4

)j (3
4

)5−j

for j = 0, 1, . . . , 5.

The desired probability is

p3 + p4 + p5
p1 + p2 + p3 + p4 + p5

.

11. (a) We must determine the probability that at least two of the four oldest children will have blue eyes.
The probability pj that exactly j of these four children will have blue eyes is

pj =

(
4

j

)(
1

4

)j (3
4

)4−j

.

The desired probability is therefore p2 + p3 + p4.

(b) The two different types of information provided in Exercise 10 and part (a) are similar to the two
different types of information provided in part (a) and part (b) of Exercise 9 of Sec. 2.1.

12. (a) Pr(Ac ∩Bc ∩ Cc) = Pr(Ac) Pr(Bc) Pr(Cc) =
3

4
· 2
3
· 1
2
=

1

4
.

(b) The desired probability is

Pr(A ∩Bc ∩ Cc) + Pr(Ac ∩B ∩Cc) + Pr(Ac ∩Bc ∩ C) =
1

4
· 2
3
· 1
2

+
3

4
· 1
3
· 1
2
+

3

4
· 2
3
· 1
2
=

11

24
.

13. The probability of obtaining a particular sequence of ten particles in which one particle penetrates the
shield and nine particles do not is (0.01)(0.99)9 . Since there are 10 such sequences in the sample space,
the desired probability is 10(0.01)(0.99)9 .

14. The probability that none of the ten particles will penetrate the shield is (0.99)10. Therefore, the
probability that at least one particle will penetrate the shield is 1− (0.99)10.

15. If n particles are emitted, the probability that at least one particle will penetrate the shield is 1−(0.99)n.
In order for this value to be at least 0.8 we must have

1− (0.99)n ≥ 0.8

(0.99)n ≤ 0.2

n log(0.99) ≤ log (0.2).
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Since log(0.99) is negative, this final relation is equivalent to the relation

n ≥ log(0.2)

log(0.99)
≈ 160.1.

So 161 or more particles are needed.

16. To determine the probability that team A will win the World Series, we shall calculate the probabilities
that A will win in exactly four, five, six, and seven games, and then sum these probabilities. The
probability that A will win four straight game is (1/3)4. The probability that A will win in five games
is equal to the probability that the fourth victory of team A will occur in the fifth game. As explained

in Example 2.2.8, this probability is

(
4

3

)(
1

3

)4 (2
3

)
. Similarly, the probabilities that A will win in six

games and in seven games are

(
5

3

)(
1

3

)4 (2
3

)2

and

(
6

3

)(
1

3

)4 (2
3

)3

, respectively. By summing these

probabilities, we obtain the result
6∑

i=3

(
i

3

)(
1

3

)4 (2
3

)i−3

, which equals 379/2187.

A second way to solve this problem is to pretend that all seven games are going to be played, regardless
of whether one team has won four games before the seventh game. From this point of view, of the
seven games that are played, the team that wins the World Series might win four, five, six, or seven
games. Therefore, the probability that team A will win the series can be determined by calculating the
probabilities that team A will win exactly four, five, six, and seven games, and then summing these
probabilities. In this way, we obtain the result

7∑
i=4

(
7

i

)(
1

3

)i (2
3

)7−i

.

It can be shown that this answer is equal to the answer that we obtained first.

17. In order for the target to be hit for the first time on the third throw of boy A, all five of the following
independent events must occur: (1) A misses on his first throw, (2) B misses on his first throw, (3)
A misses on his second throw, (4) B misses on his second throw, (5) A hits on his third throw. The

probability of all five events occurring is
2

3
· 3
4
· 2
3
· 3
4
· 1
3
=

1

12
.

18. Let E denote the event that boy A hits the target before boy B. There are two methods of solving
this problem. The first method is to note that the event E can occur in two different ways: (i) If A

hits the target on the first throw. This event occurs with probability
1

3
. (ii) If both A and B miss the

target on their first throws, and then subsequently A hits the target before B. The probability that

A and B will both miss on their first throws is
2

3
· 3
4
=

1

2
. When they do miss, the conditions of the

game become exactly the same as they were at the beginning of the game. In effect, it is as if the boys
were starting a new game all over again, and so the probability that A will subsequently hit the target
before B is again Pr(E). Therefore, by considering these two ways in which the event E can occur, we
obtain the relation

Pr(E) =
1

3
+

1

2
Pr(E) .

The solution is Pr(E) =
2

3
.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



32 Chapter 2. Conditional Probability

The second method of solving the problem is to calculate the probabilities that the target will be hit
for the first time on boy A’s first throw, on his second throw, on his third throw, etc., and then to sum
these probabilities. For the target to be hit for the first time on his jth throw, both A and B must
miss on each of their first j− 1 throws, and then A must hit on his next throw. The probability of this
event is(

2

3

)j−1 (3
4

)j−1(1
3

)
=

(
1

2

)j−1 (1
3

)
.

Hence,

Pr(E) =
1

3

∞∑
j=1

(
1

2

)j−1

=
1

3
(2) =

2

3
.

19. Let A1 denote the event that no red balls are selected, let A2 denote the event that no white balls are
selected, and let A3 denote the event that no blue balls are selected. We must determine the value
of Pr(A1 ∪ A2 ∪ A3). We shall apply Theorem 1.10.1. The event A1 will occur if and only if all ten
selected balls are white or blue. Since there is probability 0.8 that any given selected ball will be white
or blue, we have Pr(A1) = (0.8)10. Similarly, Pr(A2) = (0.7)10 and Pr(A3) = (0.5)10. The event A1∩A2

will occur if and only if all ten selected balls are blue. Therefore Pr(A1 ∩ A2) = (0.5)10. Similarly,
Pr(A2∩A3) = (0.2)10 and Pr(A1∩A3) = (0.3)10. Finally, the event A1∩A2∩A3 cannot possibly occur,
so Pr(A1 ∩A2 ∩ A3) = 0. So, the desired probability is

(0.8)10 + (0.7)10 + (0.5)10 − (0.5)10 − (0.2)10 − (0.3)10 ≈ 0.1356.

20. To prove that B1, . . . , Bk are independent events, we must prove that for every subset of r of these
events (r = 1, . . . , k), we have

Pr(Bi1 ∩ . . . ∩Bir) = Pr(Bi1) · · ·Pr(Bir).

We shall simplify the notation by writing simply B1, . . . , Br instead of Bi1 , . . . , Bir . Hence, we must
show that

Pr(B1 ∩ . . . ∩Br) = Pr(B1) · · ·Pr(Br). (S.2.2)

Suppose that the relation (S.2.2) is satisfied whenever Bj = Ac
j for m or fewer values of j and Bj = Aj

for the other k −m or more values of j. We shall show that (S.2.2) is also satisfied whenever Bj = Ac
j

for m + 1 values of j. Without loss of generality, we shall assume that j = r is one of these m + 1
values, so that Br = Ac

r. It is always true that

Pr(B1 ∩ . . . ∩Br) = Pr(B1 ∩ . . . ∩Br−1)− Pr(B1 ∩ . . . ∩Br−1 ∩Bc
r).

Since among the events B1, . . . , Br−1 there are m or fewer values of j such that Bj = Ac
j, it follows

from the induction hypothesis that

Pr(B1 ∩ . . . ∩Br−1) = Pr(B1) · · ·Pr(Br−1).

Furthermore, since Bc
r = Ar, the same induction hypothesis implies that

Pr(B1 ∩ . . . ∩Br−1B
c
r) = Pr(B1) · · ·Pr(Br−1) Pr (B

c
r) .
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It now follows that

Pr(B1 ∩ . . . ∩Br) = Pr(B1) · · ·Pr(Br−1)[1− Pr (Bc
r)] = Pr(B1) . . . P r(Br).

Thus, we have shown that if the events B1, . . . , Bk are independent whenever there are m or fewer
values of j such that Bj = Ac

j, then the events B1, . . . , Bk are also independent whenever there are
m + 1 values of j such that Bj = Ac

j . Since B1, . . . , Bk are obviously independent whenever there are
zero values of j such that Bj = Ac

j (i.e., whenever Bj = Aj for j = 1, . . . , k), the induction argument is
complete. Therefore, the events B1, . . . , Bk are independent regardless of whether Bj = Aj or Bj = Ac

j

for each value of j.

21. For the “only if” direction, we need to prove that if A1, . . . , Ak are independent then

Pr(Ai1 ∩ · · · ∩Aim |Aj1 ∩ · · · ∩ Aj�) = Pr(Ai1 ∩ · · · ∩Aim),

for all disjoint subsets {i1, . . . , im} and {j1, . . . , j�} of {1, . . . , k}. If A1, . . . , Ak are independent, then

Pr(Ai1 ∩ · · · ∩Aim ∩Aj1 ∩ · · · ∩ Aj�) = Pr(Ai1 ∩ · · · ∩Aim) Pr(Aj1 ∩ · · · ∩Aj�),

hence it follows that

Pr(Ai1 ∩ · · · ∩Aim |Aj1 ∩ · · · ∩ Aj�) =
Pr(Ai1 ∩ · · · ∩Aim ∩Aj1 ∩ · · · ∩Aj�)

Pr(Aj1 ∩ · · · ∩Aj�)
= Pr(Ai1 ∩ · · · ∩ Aim).

For the “if” direction, assume that Pr(Ai1 ∩ · · · ∩ Aim |Aj1 ∩ · · · ∩ Aj�) = Pr(Ai1 ∩ · · · ∩ Aim) for
all disjoint subsets {i1, . . . , im} and {j1, . . . , j�} of {1, . . . , k}. We must prove that A1, . . . , Ak are
independent. That is, we must prove that for every subset {s1, . . . , sn} of {1, . . . , k}, Pr(As1∩· · ·∩Asn) =
Pr(As1) · · ·Pr(Asn). We shall do this by induction on n. For n = 1, we have that Pr(As1) = Pr(As1)
for each subset {s1} of {1, . . . , k}. Now, assume that for all n ≤ n0 and for all subsets {s1, . . . , sn} of
{1, . . . , k} it is true that Pr(As1 ∩ · · · ∩ Asn) = Pr(As1) · · ·Pr(Asn). We need to prove that for every
subset {t1, . . . , tn0+1} of {1, . . . , k}

Pr(At1 ∩ · · · ∩ Atn0+1) = Pr(At1) · · ·Pr(Atn0+1). (S.2.3)

It is clear that

Pr(At1 ∩ · · · ∩ Atn0+1) = Pr(At1 ∩ · · · ∩Atn0
|Atn0+1) Pr(Atn0+1). (S.2.4)

We have assumed that Pr(At1∩· · ·∩Atn0
|Atn0+1) = Pr(At1∩· · ·∩Atn0

) for all disjoint subsets {t1, . . . , tn0}
and {tn0+1} of {1, . . . , k}. Since the right side of this last equation is the probability of the intersection
of only n0 events, then we know that

Pr(At1 ∩ · · · ∩Atn0
) = Pr(At1) · · ·Pr(Atn0

).

Combining this with Eq. (S.2.4) implies that (S.2.3) holds.

22. For the “only if” direction, we assume that A1 and A2 are conditionally independent given B and we
must prove that Pr(A2|A1 ∩B) = Pr(A2|B). Since A1 and A2 are conditionally independent given B,
Pr(A1 ∩ A2|B) = Pr(A1|B) Pr(A2|B). This implies that

Pr(A2|B) =
Pr(A1 ∩ A2|B)

Pr(A1|B)
.
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Also,

Pr(A2|A1 ∩B) =
Pr(A1 ∩A2 ∩B)

Pr(A1 ∩B)
=

Pr(A1 ∩A2 ∩B)/Pr(B)

Pr(A1 ∩B)/Pr(B)
=

Pr(A1 ∩A2|B)

Pr(A1|B)
.

Hence, Pr(A2|A1 ∩B) = Pr(A2|B).

For the “if” direction, we assume that Pr(A2|A1∩B) = Pr(A2|B), and we must prove that A1 and A2 are
conditionally independent given B. That is, we must prove that Pr(A1 ∩A2|B) = Pr(A1|B) Pr(A2|B).
We know that

Pr(A1 ∩A2|B) Pr(B) = Pr(A2|A1 ∩B) Pr(A1 ∩B),

since both sides are equal to Pr(A1 ∩A2 ∩B). Divide both sides of this equation by Pr(B) and use the
assumption Pr(A2|A1B) = Pr(A2|B) together with Pr(A1 ∩B)/Pr(B) = Pr(A1|B) to obtain

Pr(A1 ∩A2|B) = Pr(A2|B) Pr(A1|B).

23. (a) Conditional on B the events A1, . . . , A11 are independent with probability 0.8 each. The con-
ditional probability that a particular collection of eight programs out of the 11 will compile is

0.880.23 = 0.001342. There are

(
11

8

)
= 165 different such collections of eight programs out of the

11, so the probability of exactly eight programs will compile is 165× 0.001342 = 0.2215.

(b) Conditional on Bc the events A1, . . . , A11 are independent with probability 0.4 each. The con-
ditional probability that a particular collection of eight programs out of the 11 will compile is

0.480.63 = 0.0001416. There are

(
11

8

)
= 165 different such collections of eight programs out of

the 11, so the probability of exactly eight programs will compile is 165 × 0.0001416 = 0.02335.

24. Let n > 1, and assume that A1, . . . , An are mutually exclusive. For the “if” direction, assume that at
most one of the events has strictly positive probability. Then, the intersection of every collection of size
2 or more has probability 0. Also, the product of every collection of 2 or more probabilities is 0, so the
events satisfy Definition 2.2.2 and are mutually independent. For the “only if” direction, assume that
the events are mutually independent. The intersection of every collection of size 2 or more is empty
and must have probability 0. Hence the product of the probabilities of every collection of size 2 or more
must be 0. This means that at least one factor from every product of at least 2 probabilities must itself
be 0. Hence there can be no more than one of the probabilities greater than 0, otherwise the product
of the two nonzero probabilities would be nonzero.

2.3 Bayes’ Theorem

Commentary

This section ends with two extended discussions on how Bayes’ theorem is applied. The first involves a
sequence of simple updates to the probability of a specific event. It illustrates how conditional independence
allows one to use posterior probabilities after observing some events as prior probabilities before observing
later events. This idea is subtle, but very useful in Bayesian inference. The second discussion builds upon this
idea and illustrates the type of reasoning that can be used in real inference problems. Examples 2.3.7 and 2.3.8
are particularly useful in this regard. They show how data can bring very different prior probabilities into
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closer posterior agreement. Exercise 12 illustrates the effect of the size of a sample on the degree to which
the data can reduce differences in subjective probabilities.

Statistical software like R can be used to facilitate calculations like those that occur in the above-mentioned
examples. For example, suppose that the 11 prior probabilities are assigned to the vector prior and that
the data consist of s successes and f failures. Then the posterior probabilities can be computed by
ints=1:11

post=prior*((ints-1)/10)^s*(1-(ints-1)/10)^f

post=post/sum(post)

Solutions to Exercises

1. It must be true that
k∑

i=1

Pr(Bi) = 1 and
k∑

i=1

Pr(Bi | A) = 1. However, if Pr(B1 | A) < Pr(B1) and

Pr(Bi | A) ≤ Pr(Bi) for i = 2, . . . , k, we would have
k∑

i=1

Pr(Bi | A) <
k∑

i=1

Pr(Bi), a contradiction.

Therefore, it must be true that Pr(Bi | A) > Pr(Bi) for at least one value of i (i = 2, . . . , k).

2. It was shown in the text that Pr(A2 | B) = 0.26 < Pr(A2) = 0.3. Similarly,

Pr(A1 | B) =
(0.2)(0.01)

(0.2)(0.01) + (0.3)(0.02) + (0.5)(0.03)
= 0.09.

Since Pr(A1) = 0.2, we have Pr(A1 | B) < Pr(A1). Furthermore,

Pr(A3 | B) =
(0.5)(0.03)

(0.2)(0.01) + (0.3)(0.02) + (0.5)(0.03)
= 0.65.

Since Pr(A3) = 0.5, we have Pr(A3 | B) > Pr(A3).

3. Let C denote the event that the selected item is nondefective. Then

Pr(A2 | C) =
(0.3)(0.98)

(0.2)(0.99) + (0.3)(0.98) + (0.5)(0.97)
= 0.301.

Commentary: It should be noted that if the selected item is observed to be defective, the probability
that the item was produced by machine M2 is decreased from the prior value of 0.3 to the posterior
value of 0.26. However, if the selected item is observed to be nondefective, this probability changes
very little, from a prior value of 0.3 to a posterior value of 0.301. In this example, therefore, obtaining
a defective is more informative than obtaining a nondefective, but it is much more probable that a
nondefective will be obtained.

4. The desired probability Pr(Cancer | Positive) can be calculated as follows:

Pr(Cancer)Pr(Positive | Cancer)
Pr(Cancer)Pr(Positive | Cancer) + Pr(No Cancer)Pr(Positive | No Cancer)

=
(0.00001)(0.95)

(0.00001)(0.95) + (0.99999)(0.05)
= 0.00019.

Commentary: It should be noted that even though this test provides a correct diagnosis 95 percent of
the time, the probability that a person has this type of cancer, given that he has a positive reaction to
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the test, is not 0.95. In fact, as this exercise shows, even though a person has a positive reaction, the
probability that she has this type of cancer is still only 0.00019. In other words, the probability that the

person has this type of cancer is 19 times larger than it was before he took this test

(
0.00019

0.000001
= 19

)
,

but it is still very small because the disease is so rare in the population.

5. The desired probability Pr(Lib.|NoVote) can be calculated as follows:

Pr(Lib.) Pr(NoVote|Lib.)
Pr(Cons.) Pr(NoVote|Cons.) + Pr(Lib.) Pr(NoVote|Lib.) + Pr(Ind.) Pr(NoVote|Ind.)
=

(0.5)(0.18)

(0.3)(0.35) + (0.5)(0.18) + (0.2)(0.50)
=

18

59
.

6. (a) Let A1 denote the event that the machine is adjusted properly, let A2 denote the event that it
is adjusted improperly, and let B be the event that four of the five inspected items are of high
quality. Then

Pr(A1 | B) =
Pr(A1) Pr(B | A1)

Pr(A1) Pr(B | A1) + Pr(A2) Pr(B | A2)

=

(0.9)

(
5

4

)
(0.5)5

(0.9)
(5
4

)
(0.5)5 + (0.1)

(5
4

)
(0.25)4(0.75)

=
96

97
.

(b) The prior probabilities before this additional item is observed are the values found in part (a):
Pr(A1) = 96/97 and Pr(A2) = 1/97. Let C denote the event that the additional item is of medium
quality. Then

Pr(A1 | C) =

96

97
· 1
2

96

97
· 1
2
+

1

97
· 3
4

=
64

65
.

7. (a) Let πi denote the posterior probability that coin i was selected. The prior probability of each coin
is 1/5. Therefore

πi =

1

5
pi

5∑
j=1

1

5
pj

for i = 1, . . . , 5.

The five values are π1 = 0, π2 = 0.1, π3 = 0.2, π4 = 0.3, and π5 = 0.4.

(b) The probability of obtaining another head is equal to

5∑
i=1

Pr(Coin i) Pr(Head | Coin i) =
5∑

i=1

πipi =
3

4
.

(c) The posterior probability πi of coin i would now be

πi =

1

5
(1− pi)

5∑
j=1

1

5
(1− pj)

for i = 1, . . . , 5.
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Thus, π1 = 0.4, π2 = 0.3, π3 = 0.2, π4 = 0.1, and π5 = 0. The probability of obtaining a head on

the next toss is therefore
5∑

i=1

πipi =
1

4
.

8. (a) If coin i is selected, the probability that the first head will be obtained on the fourth toss is
(1− pi)

3pi. Therefore, the posterior probability that coin i was selected is

πi =

1

5
(1− pi)

3pi

5∑
j=1

1

5
(1− pj)

3pj

for i = 1, . . . , 5.

The five values are π1 = 0, π2 = 0.5870, π3 = 0.3478, π4 = 0.0652, and π5 = 0.

(b) If coin i is used, the probability that exactly three additional tosses will be required to obtain
another head is (1− pi)

2pi. Therefore, the desired probability is

5∑
i=1

πi(1− pi)
2pi = 0.1291.

9. We shall continue to use the notation from the solution to Exercise 14 in Sec. 2.1. Let C be the
event that exactly one out of seven observed parts is defective. We are asked to find Pr(Bj |C) for
j = 1, 2, 3. We need Pr(C|Bj) for each j. Let Ai be the event that the ith part is defective. For all
i, Pr(Ai|B1) = 0.02, Pr(Ai|B2) = 0.1, and Pr(Ai|B3) = 0.3. Since the seven parts are conditionally
independent given each state of the machine, the probability of each possible sequence of seven parts
with one defective is Pr(Ai|Bj)[1− Pr(Ai|Bj)]

6. There are seven distinct such sequences, so

Pr(C|B1) = 7× 0.02 × 0.986 = 0.1240,

Pr(C|B2) = 7× 0.1 × 0.96 = 0.3720,

Pr(C|B3) = 7× 0.3 × 0.76 = 0.2471.

The expression in the denominator of Bayes’ theorem is

Pr(C) = 0.8 × 0.1240 + 0.1 × 0.3720 + 0.1 × 0.2471 = 0.1611.

Bayes’ theorem now says

Pr(B1|C) =
0.8× 0.1240

0.1611
= 0.6157,

Pr(B2|C) =
0.1× 0.3720

0.1611
= 0.2309,

Pr(B3|C) =
0.1× 0.2471

0.1611
= 0.1534.

10. Bayes’ theorem says that the posterior probability of each Bi is Pr(Bi|E) = Pr(Bi) Pr(E|Bi)/Pr(E).
So Pr(Bi|E) < Pr(Bi) if and only if Pr(E|Bi) < Pr(E). Since Pr(E) = 3/4, we need to find those i for
which Pr(E|Bi) < 3/4. These are i = 5, 6.

11. This time, we want Pr(B4|Ec). We know that Pr(Ec) = 1 − Pr(E) = 1/4 and Pr(Ec|B4) = 1 −
Pr(E|B4) = 1/4. This means that Ec and B4 are independent so that Pr(B4|Ec) = Pr(B4) = 1/4.
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12. We are doing the same calculations as in Examples 2.3.7 and 2.3.8 except that we only have five patients
and three successes. So, in particular

Pr(Bj | A) =
Pr(Bj)

(
5

3

)
([j − 1]/10)3(1− [j − 1]/10)2

11∑
i=1

Pr(Bi)

(
5

3

)
([i− 1]/10)3(1− [i− 1]/10)2

. (S.2.5)

In one case, Pr(Bi) = 1/11 for all i, and in the other case, the prior probabilities are given in the table
in Example 2.3.8 of the text. The numbers that show up in both calculations are

i

(
i− 1

10

)3 (
1− i− 1

10

)2

i

(
i− 1

10

)3 (
1− i− 1

10

)2

1 0 7 0.0346
2 0.0008 8 0.0309
3 0.0051 9 0.0205
4 0.0132 10 0.0073
5 0.0230 11 0
6 0.0313

We can use these with the two sets of prior probabilities to compute the posterior probabilities according
to Eq. (S.2.5).

i Example 2.3.7 Example 2.3.8 i Example 2.3.7 Example 2.3.8

1 0 0 7 0.2074 0.1641
2 0.0049 0.0300 8 0.1852 0.0879
3 0.0307 0.0972 9 0.1229 0.0389
4 0.07939 0.1633 10 0.0437 0.0138
5 0.1383 0.1969 11 0 0
6 0.1875 0.2077

These numbers are not nearly so close as those in the examples in the text because we do not have as
much information in the small sample of five patients.

13. (a) Let B1 be the event that the coin is fair, and let B2 be the event that the coin has two heads.
Let Hi be the event that we obtain a head on the ith toss for i = 1, 2, 3, 4. We shall apply Bayes’
theorem conditional on H1H2.

Pr(B1|H1 ∩H2 ∩H3)

=
Pr(B1|H1 ∩H2) Pr(H3|B1 ∩H1 ∩H2)

Pr(B1|H1 ∩H2) Pr(H3|B1 ∩H1 ∩H2) + Pr(B2|H1 ∩H2) Pr(H3|B2 ∩H1 ∩H2)

=
(1/5) × (1/2)

(1/5) × (1/2) + (4/5) × 1
=

1

9
.

(b) If the coin ever shows a tail, it can’t have two heads. Hence the posterior probability of B1 becomes
1 after we observe a tail.

14. In Exercise 23 of Sec. 2.2, B is the event that the programming task was easy. In that exercise, we
computed Pr(A|B) = 0.2215 and Pr(A|Bc) = 0.02335. We are also told that Pr(B) = 0.4. Bayes’
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theorem tells us that

Pr(B|A) =
Pr(B) Pr(A|B)

Pr(B) Pr(A|B) + Pr(Bc) Pr(A|Bc)
=

0.4 × 0.2215

0.4× 0.2215 + (1− 0.4)0.02335

= 0.8635.

15. The law of total probability tells us how to compute Pr(E1).

Pr(E1) =
11∑
i=1

Pr(Bi)
i− 1

10
.

Using the numbers in Example 2.3.8 for Pr(Bi) we obtain 0.274. This is smaller than the value 0.5
computed in Example 2.3.7 because the prior probabilities in Example 2.3.8 are much higher for the Bi

with low values of i, particularly i = 2, 3, 4, and they are much smaller for those Bi with large values
of i. Since Pr(E1) is a weighted average of the values (i − 1)/10 with the weights being Pr(Bi) for
i = 1, . . . 11, the more weight we give to small values of (i − 1)/10, the smaller the weighted average
will be.

16. (a) From the description of the problem Pr(Di|B) = 0.01 for all i. If we can show that Pr(Di|Bc) =
0.01 for all i, then Pr(Di) = 0.01 for all i. We will prove this by induction. We have assumed that
D1 is independent of B and hence it is independent of Bc. This makes Pr(D1|Bc) = 0.01. Now,
assume that Pr(Di|Bc) = 0.01 for all i ≤ j. Write

Pr(Dj+1|Bc) = Pr(Dj+1|Dj ∩Bc) Pr(Dj |Bc) + Pr(Dj+1|Dc
j ∩Bc) Pr(Dc

j |Bc).

The induction hypothesis says that Pr(Dj |Bc) = 0.01 and Pr(Dc
j |Bc) = 0.99. In the problem

description, we have Pr(Dj+1|Dj ∩Bc) = 2/5 and Pr(Dj+1|Dc
j ∩Bc) = 1/165. Plugging these into

(16a) gives

Pr(Dj+1|Bc) =
2

5
× 0.01 +

1

165
× 0.99 = 0.01.

This completes the proof.

(b) It is straightforward to compute

Pr(E|B) = 0.99 × 0.99× 0.01 × 0.01 × 0.99 × 0.99 = 0.00009606.

By the conditional independence assumption stated in the problem description, we have

Pr(E|Bc) = Pr(Dc
1|Bc) Pr(Dc

2|Dc
1∩Bc) Pr(D3|Dc

2∩Bc) Pr(D4|D3∩Bc) Pr(Dc
5|D4∩Bc) Pr(Dc

6|Dc
5∩Bc).

The six factors on the right side of this equation are respectively 0.99, 164/165, 1/165, 2/5, 3/5,
and 164/165. The product is 0.001423. It follows that

Pr(B|E) =
Pr(E|B) Pr(B)

Pr(E|B) Pr(B) + Pr(E|Bc) Pr(Bc)

=
0.00009606 × (2/3)

0.00009606 × (2/3) + 0.001423 × (1/3)
= 0.1190.
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2.4 The Gambler’s Ruin Problem

Commentary

This section is independent of the rest of the book. Instructors can discuss this section at any time that they
find convenient or they can omit it entirely.

If Sec. 3.10 on Markov chains has been discussed before this section is discussed, it is helpful to point out
that the game considered here forms a Markov chain with stationary transition probabilities. The state of
the chain at any time is the fortune of gambler A at that time. Therefore, the possible states of the chain are
the k + 1 integers 0, 1, . . . , k. If the chain is in state i (i = 1, . . . , k − 1) at any time n, then at time n+ 1 it
will move to state i+1 with probability p and it will move to state i−1 with probability 1−p. It is assumed
that if the chain is either in the state 0 or the state k at any time, then it will remain in that same state at
every future time. (These are absorbing states.) Therefore, the (k + 1)× (k + 1) transition matrix P of the
chain is as follows:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0 0 0
1− p 0 p 0 · · · 0 0 0
0 1− p 0 p · · · 0 0 0
0 0 1− p 0 · · · 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 · · · 1− p 0 p
0 0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Solutions to Exercises

1. Clearly ai in Eq. (2.4.9) is an increasing function of i. Hence, if a98 < 1/2, then ai < 1/2 for all i ≤ 98.
For i = 98, Eq. (2.4.9) yields almost exactly 4/9, which is less that 1/2.

2. The probability of winning a fair game is just the ratio of the initial fortune to the total funds available.
This ratio is the same in all three cases.

3. If the initial fortune of gambler A is i dollars, then for conditions (a), (b), and (c), the initial fortune of
gambler B is i/2 dollars. Hence, k = 3i/2. If we let r = (1− p)/p > 1, then it follows from Eq. (2.4.8)
that the probability that A will win under conditions (a), (b), or (c) is

ri − 1

r3i/2 − 1
=

1− (1/ri)

ri/2 − (1/ri)
.

If i and j are positive integers with i < j, it now follows that

1− (1/rj)

rj/2 − (1/rj)
<

1− (1/rj)

ri/2 − (1/rj)
<

1− (1/ri)

ri/2 − (1/ri)
.

Thus the larger the initial fortune of gambler A is, the smaller is his probability of winning. Therefore,
he has the largest probability of winning under condition (a).

4. If we consider this problem from the point of view of gambler B, then each play of the game is
unfavorable to her. Hence, by a procedure similar to that described in the solution to Exercise 3, it
follows that she has the smallest probability of winning when her initial fortune is largest. Therefore,
gambler A has the largest probability of winning when her initial fortune is largest, which corresponds
to condition (c).
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5. In this exercise, p = 1/2 and k = i+ 2. Therefore ai = i/(i + 2). In order to make ai ≥ 0.99, we must
have i ≥ 198.

6. In this exercise p = 2/3, and k = i+ 2. Therefore, by Eq. (2.4.9),

ai =

(
1

2

)i

− 1(
1

2

)i+2

− 1

.

It follows that ai ≥ 0.99 if and only if

2i ≥ 75.25.

Therefore, we must have i ≥ 7.

7. In this exercise p = 1/3 and k = i+ 2. Therefore, by Eq. (2.4.9)

ai =
2i − 1

2i+2 − 1
=

1− (1/2i)

4− (1/2i)
.

But for every number x (0 < x < 1), we have
1− x

4− x
<

1

4
. Hence, ai < 1/4 for every positive integer i.

8. This problem can be expressed as a gambler’s ruin problem. Suppose that the initial fortunes of both
gambler A and gambler B are 3 dollars, that gambler A will win one dollar from gambler B whenever
a head is obtained on the coin, and gambler B will win one dollar from gambler A whenever a tail is
obtained on the coin. Then the condition that Xn = Yn + 3 means that A has won all of B’s fortune, and
the condition that Yn = Xn + 3 means that A is ruined. Therefore, if p = 1/2, the required probability
is given by Eq. (2.4.6) with i = 3 and k = 6, and the answer is 1/2. If p �= 1/2, the required probability
is given by Eq. (2.4.9) with i = 3 and k = 6. In either case, the answer can be expressed in the form

1(
1− p

p

)3

+ 1

.

9. This problem can be expressed as a gambler’s ruin problem. We consider the initial fortune of gambler
A to be five dollars and the initial fortune of gambler B to be ten dollars. Gambler A wins one dollar
from gambler B each time that box B is selected, and gambler B wins one dollar from gambler A each
time that box A is selected. Since i = 5, k = 15, and p = 1/2, it follows from Eq. (2.4.6) that the
probability that gambler A will win (and box B will become empty) is 1/3. Therefore, the probability
that box A will become empty first is 2/3.

2.5 Supplementary Exercises

Solutions to Exercises

1. Let Pr(D) = p > 0. Then

Pr(A) = pPr(A | D) + (1− p) Pr(A | Dc)

≥ pPr(B | D) + (1− p) Pr(B | Dc) = Pr(B).
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2. (a) Sample space:

HT TH

HHT TTH

HHHT TTTH

· · · · · ·

(b) Pr(HHT or TTH) =

(
1

2
· 1
2
· 1
2

)
+

(
1

2
· 1
2
· 1
2

)
=

1

4
.

3. Since Pr(A | B) =
Pr(A ∩B)

Pr(B)
and Pr(B | A) =

Pr(A ∩B)

Pr(A)
, we have

Pr(A ∩B)

(1/5)
+

Pr(A ∩B)

(1/3)
=

2

3
.

Hence Pr(A ∩B) = 1/12, and Pr(Ac ∪Bc) = 1− Pr(A ∩B) = 11/12.

4. Pr(A ∪Bc | B) = Pr(A | B) + Pr(Bc | B)− Pr(A ∩Bc | B) = Pr(A) + 0− 0 = Pr(A).

5. The probability of obtaining the number 6 exactly three times in ten rolls is a =

(
10

3

)(
1

6

)3 (5
6

)7

.

Hence, the probability of obtaining the number 6 on the first three rolls and on none of the subsequent

rolls is b =

(
1

6

)3 (5
6

)7

. Hence, the required probability is
b

a
= 1/

(
10

3

)
.

6. Pr(A ∩B) =
Pr(A ∩B ∩D)

Pr(D | A ∩B)
=

0.04

0.25
= 0.16. But also, by independence,

Pr(A ∩B) = Pr(A) Pr(B) = 4[Pr (A)]2.

Hence, 4[Pr(A)]2 = 0.16, so Pr(A) = 0.2. It now follows that

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B) = (0.2) + 4(0.2) − (0.16) = 0.84.

7. The three events are always independent under the stated conditions. The proof is a straightforward
generalization of the proof of Exercise 2 in Sec. 2.2.

8. No, since Pr(A ∩B) = 0 but Pr(A) Pr(B) > 0. This also follows from Theorem 2.2.3.

9. Let Pr(A) = p. Then Pr(A ∩B) = Pr(A ∩B ∩ C) = 0, Pr(A ∩ C) = 4p2, Pr(B ∩C) = 8p2. Therefore,
by Theorem 1.10.1, 5p = p+ 2p+ 4p− [0 + 4p2 + 8p2] + 0, and p = 1/6.

10. Pr(Sum = 7) = 2Pr[(1, 6)] + 2Pr[(2, 5)] + 2Pr[(3, 4)] = 2(0.1)(0.1) + 2(0.1)(0.1) + 2(0.3)(0.3) = 0.22.

11. 1− Pr(losing 50 times) = 1−
(
49

50

)50

.

12. The event will occur when (X1,X2,X3) has the following values:

(6, 5, 1) (6, 4, 1) (6, 3, 1) (5, 4, 1) (5, 3, 1) (4, 3, 1)
(6, 5, 2) (6, 4, 2) (6, 3, 2) (5, 4, 2) (5, 3, 2) (4, 3, 2)
(6, 5, 3) (6, 4, 3) (6, 2, 1) (5, 4, 3) (5, 2, 1) (4, 2, 1)
(6, 5, 4) (3, 2, 1).

Each of these 20 points has probability 1/63, so the answer is 20/216 = 5/54.
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13. Let A, B, and C stand for the events that each of the students is in class on a particular day.

(a) We want Pr(A∪B∪C). We can use Theorem 1.10.1. Independence makes it easy to compute the
probabilities of the various intersections.

Pr(A ∪B ∪ C) = 0.3 + 0.5 + 0.8− [0.3 × 0.5 + 0.3× 0.8 + 0.5 × 0.8] + 0.3 × 0.5× 0.8 = 0.93.

(b) Once again, use independence to calculate probabilities of intersections.

Pr(A ∩Bc ∩ Cc) + Pr(Ac ∩B ∩ Cc) + Pr(Ac ∩Bc ∩C)

= (0.3)(0.5)(0.2) + (0.7)(0.5)(0.2) + (0.7)(0.5)(0.8) = 0.38.

14. Seven games will be required if and only if team A wins exactly three of the first six games. This

probability is

(
6

3

)
p3(1− p)3, following the model calculation in Example 2.2.5.

15. Pr(Each box contains one red ball) =
3!

33
=

2

9
= Pr(Each box contains one white ball).

So Pr(Each box contains both colors) =

(
2

9

)2

.

16. Let Ai be the event that box i has at least three balls. Then

Pr(Ai) =
5∑

j=3

Pr(Box i has exactly j balls) =

(
5

3

)
(n− 1)2

n5 +

(
5

4

)
(n− 1)

n5 +
1

n5
= p, say.

Since there are only five balls, it is impossible for two boxes to have at least three balls at the same
time. Therefore, the events Ai are disjoint, and the probability that at least one of the events Ai occurs
is np. Hence, the probability that no box contains more than two balls is 1− np.

17. Pr(U + V = j) is as follows, for j = 0, 1, . . . , 18:

j Prob. j Prob.
0 0.01 10 0.09
1 0.02 11 0.08
2 0.03 12 0.07
3 0.04 13 0.06
4 0.05 14 0.05
5 0.06 15 0.04
6 0.07 16 0.03
7 0.08 17 0.02
8 0.09 18 0.01
9 0.10

Thus

Pr(U + V = W +X) =
18∑
j=0

Pr(U + V = j) Pr(W +X = j)

= (0.01)2 + (0.02)2 + · · ·+ (0.01)2 = 0.067 .
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18. Let Ai denote the event that member i does not serve on any of the three committees (i = 1, . . . , 8).
Then

Pr(Ai) =

(
7

3

)
(
8

3

) ·

(
7

4

)
(
8

4

) ·

(
7

5

)
(
8

5

) =
5

8
· 4
8
· 3
8
= a

Pr(Ai ∩Aj) =

(
6

3

)
(
8

3

) ·

(
6

4

)
(
8

4

) ·

(
6

5

)
(
8

5

) =

(
5

8
· 4
7

)(
4

8
· 3
7

)(
3

8
· 2
7

)
=b for i<j,

Pr(Ai ∩Aj ∩Ak) =

(
5

3

)
(
8

3

) ·

(
5

4

)
(
8

4

) ·

(
5

5

)
(
8

5

) =

(
5

8
· 4
7
· 3
6

)(
4

8
· 3
7
· 2
6

)(
3

8
· 2
7
· 1
6

)

= c for i < j < k,

Pr(Ai ∩ Aj ∩Ak ∩A�) = 0, i < j < k < �.

Hence, by Theorem 1.10.2,

Pr

(
8⋃

i=1

Ai

)
= 8a−

(
8

2

)
b+

(
8

3

)
c+ 0

Therefore, the required probability is 1− .7207 = .2793 .

19. Let Ei be the event that A and B are both selected for committee i (i = 1, 2, 3) and let Pr(Ei) = pi.
Then

p1 =

(
6

1

)
(
8

3

) ≈ 0.1071, p2 =

(
6

2

)
(
8

4

) ≈ 0.2143, p3 =

(
6

3

)
(
8

5

) ≈ 0.3571.

Since E1, E2, and E3 are independent, it follows from Theorem 1.10.1 that the required probability is

Pr(E1 ∪ E2 ∪E3) = p1 + p2 + p3 − p1p2 − p2p3 − p1p3 + p1p2p3

≈ 0.5490.

20. Let E denote the event that B wins. B will win if A misses on her first turn and B wins on her

first turn, which has probability

(
5

6

)(
1

6

)
, or if both players miss on their first turn and B then goes

on to subsequently win, which has probability

(
5

6

)(
5

6

)
Pr(E). (See Exercise 17, Sec. 2.2.) Hence,

Pr(E) =

(
5

6

)(
1

6

)
+

(
5

6

)(
5

6

)
Pr(E), and Pr(E) =

5

11
. This problem could also be solved by summing

the infinite series

(
5

6

)(
1

6

)
+

(
5

6

)3 (1
6

)
+

(
5

6

)5 (1
6

)
+ · · ·
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21. A will win if he wins on his first toss (probability 1/2) or if all three players miss on their first tosses
(probability 1/8) and then A subsequently wins. Hence,

Pr(A wins) =
1

2
+

1

8
Pr(A wins),

and Pr(A wins) = 4/7.

Similarly, B will win if A misses on his first toss and B wins on his first toss, or if all three players miss
on their first tosses and then B subsequently wins. Hence,

Pr(B wins) =
1

4
+

1

8
Pr(B wins),

and Pr(B wins) = 2/7. Thus, Pr(C wins) = 1− 4/7 − 2/7 = 1/7.

22. Let Aj denote the outcome of the jth roll. Then

Pr(X = x) = Pr(A2 �= A1, A3 �= A2, . . . , Ax−1 �= Ax−2, Ax = Ax=1).

= Pr(A2 �=A1) Pr(A3 �=A2 | A2 �=A1) · · ·Pr(Ax = Ax−1 | Ax−1 �=Ax−2, etc.).

=

(
5

6

)
· · ·
(
5

6

)
︸ ︷︷ ︸

x−2 factors

(
1

6

)
=

(
5

6

)x−2 (1
6

)
.

23. Let A be the event that the person you meet is a statistician, and let B be the event that he is shy.
Then

Pr(A | B) =
(0.8)(0.1)

(0.8)(0.1) + (0.15)(0.9)
= 0.372.

24. Pr(A | lemon) =
(0.05)(0.2)

(0.05)(0.2)+ (0.02)(0.5)+ (0.1)(0.3)
= 1

5.

25. (a) Pr(Defective | Removed) =
(0.9)(0.3)

(0.9)(0.3) + (0.2)(0.7)
=

27

41
= 0.659.

(b) Pr(Defective | Not Removed) =
(0.1)(0.3)

(0.1)(0.3) + (0.8)(0.7)
=

3

59
= 0.051.

26. Let X and Y denote the number of tosses required on the first experiment and second experiment,
respectively. Then X = n if and only if the first n− 1 tosses of the first experiment are tails and the
nth toss is a head, which has probability 1/2n. Furthermore, Y > n if and only if the first n tosses of
the second experiment are all tails, which also has probability 1/2n.
Hence

Pr(Y > X) =
∞∑
n=1

Pr(Y > n | X = n) Pr(X = n)

=
∞∑
n=1

1

2n
· 1

2n
=

∞∑
n=1

1

4n
=

1

3
.
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27. Let A denote the event that the family has at least one boy, and B the event that it has at least one
girl. Then

Pr(B) = 1− (1/2)n,

Pr(A ∩B) = 1− Pr(All girls)− Pr(All boys) = 1− (1/2)n − (1/2)n.

Hence,

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

1− (1/2)n−1

1− (1/2)n

28. (a) Let X denote the number of heads, Then

Pr(X = n− 1 | X ≥ n− 2) =
Pr(X = n− 1)

Pr(X ≥ n− 2)

=

(
n

n− 1

)
(1/2)n[(

n

n− 2

)
+

(
n

n− 1

)
+

(
n

n

)]
(1/2)n

=
n

n(n− 1)

2
+ n+ 1

=
2n

n2 + n+ 2
.

(b) The required probability is the probability of obtaining exactly one head on the last two tosses,
namely 1/2.

29. (a) Let X denote the number of aces selected.
Then

Pr(X = i) =

(
4

i

)(
48

13− i

)
(
52

13

) , i = 0, 1, 2, 3, 4.

Pr(X ≥ 2 | X ≥ 1) =
1− Pr(X = 0)− Pr(X = 1)

1− Pr(X = 0)

≈ 1− 0.3038 − 0.4388

1− 0.3038
= 0.3697.

(b) Let A denote the event that the ace of hearts and no other aces are obtained, and let H denote
the event that the ace of hearts is obtained.
Then

Pr(A) =

(
48

12

)
(
52

13

) ≈ 0.1097, Pr(H) =
13

52
= 0.25.

The required probability is

Pr(H)− Pr(A)

Pr(H)
≈ 0.25 − 0.1097

0.25
= 0.5612.
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30. The probability that a particular letter, say letter A, will be placed in the correct envelope is 1/n.
The probability that none of the other n − 1 letters will then be placed in the correct envelope is
qn−1 = 1−pn−1. Therefore, the probability that only letter A, and no other letter, will be placed in the
correct envelope is qn−1/n. It follows that the probability that exactly one of the n letters will be placed
in the correct envelope, without specifying which letter will be correctly placed is nqn−1/n = qn−1.

31. The probability that two specified letters will be placed in the correct envelopes is 1[n(n − 1)]. The
probability that none of the other n − 2 letters will then be placed in the correct envelopes is qn−2.
Therefore, the probability that only the two specified letters, and no other letters, will be placed

in the correct envelopes is
1

n(n− 1)
qn−2. It follows that the probability that exactly two of the n

letters will be placed in the correct envelopes, without specifying which pair will be correctly placed,

is

(
n

2

)
1

n(n− 1)
qn−2 =

1

2
qn−2.

32. The probability that exactly one student will be in class is

Pr(A) Pr(Bc) + Pr(Ac) Pr(B) = (0.8)(0.4) + (0.2)(0.6) = 0.44.

The probability that exactly one student will be in class and that student will be A is

Pr(A) Pr(Bc) = 0.32.

Hence, the required probability is
32

44
=

8

11
.

33. By Exercise 3 of Sec. 1.10, the probability that a family subscribes to exactly one of the three newspapers
is 0.45. As can be seen from the solution to that exercise, the probability that a family subscribes only
to newspaper A is 0.35. Hence, the required probability is 35/45 = 7/9.

34. A more reasonable analysis by prisoner A might proceed as follows: The pair to be executed is equally
likely to be (A,B), (A,C), or (B,C). If it is (A,B) or (A,C), the jailer will surely respond B or C,
respectively. If it is (B,C), the jailer is equally likely to respond B or C. Hence, if the jailer responds
B, the conditional probability that the pair to be executed is (A,B) is

Pr[(A,B) | response] =
1 · Pr(A,B)

1 · Pr(A,B) + 0 · Pr(A,C) +
1

2
Pr(B,C)

=
1 · 1

3

1 · 1
3
+ 0 · 1

3
+

1

2
· 1
3

=
2

3
.

Thus, the probability that A will be executed is the same 2/3 as it was before he questioned the jailer.
This answer will change if the probability that the jailer will respond B, given (B,C), is assumed to
be some value other than 1/2.

35. The second situation, with stakes of two dollars, is equivalent to the situation in which A and B have
initial fortunes of 25 dollars and bet one dollar on each play. In the notation of Sec. 2.4, we have i = 50
and k = 100 in the first situation and i = 25 and k = 50 in the second situation. Hence, if p = 1/2,
it follows from Eq. (2.4.6) that gambler A has the same probability 1/2 of ruining gambler B in either
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situation. If p �= 1/2, then it follows from Eq. (2.4.9) that the probabilities α1 and α2 of winning in the
two situations equal the values

α1 =
([1 − p]/p)50 − 1

([1− p]/p)100 − 1
=

1

([1 − p]/p)50 + 1
,

α2 =
([1− p]/p)25 − 1

([1− p]/p)50 − 1
=

1

([1− p]/p)25 + 1
.

Hence, if p < 1/2, then ([1− p]/p) > 1 and α2 > α1. If p > 1/2, then ([1 − p]/p) < 1 and α1 > α2.

36. (a) Since each candidate is equally likely to appear at each point in the sequence, the one who happens
to be the best out of the first i has probability r/i of appearing in the first r interviews when
i > r.

(b) If i ≤ r, then A and Bi are disjoint and Pr(A ∩Bi) = 0 because we cannot hire any of the first r
candidates. So Pr(A|Bi) = Pr(A ∩ Bi)/Pr(Bi) = 0. Next, let i > r and assume that Bi occurs.
Let Ci denote the event that we keep interviewing until we see candidate i. If Ci also occurs, then
we shall rank candidate i higher than any of the ones previously seen and the algorithm tells us
to stop and hire candidate i. In this case A occurs. This means that Bi ∩Ci ⊂ A. However, if Ci

fails, then we shall hire someone before we get to interview candidate i and A will not occur. This
means that Bi∩Cc

i ∩A = ∅. Since Bi∩A = (Bi∩Ci∩A)∪ (Bi∩Cc
i ∩A), we have Bi∩A = Bi∩Ci

and Pr(Bi∩A) = Pr(Bi∩Ci). So Pr(A|Bi) = Pr(Ci|Bi). Conditional on Bi, Ci occurs if and only
if the best of the first i− 1 candidates appears in the first r positions. The conditional probability
of Ci given Bi is then r/(i− 1).

(c) If we use the value r > 0 to determine our algorithm, then we can compute

pr = Pr(A) =
n∑

i=1

Pr(Bi) Pr(A|Bi) =
n∑

i=r+1

1

n

r

i− 1
=

r

n

n∑
i=r+1

1

i− 1
.

For r = 0, if we take r/r = 1, then only the first term in the sum produces a nonzero result and
p0 = 1/n. This is indeed the probability that the first candidate will be the best one seen so far
when the first interview occurs.

(d) Using the formula for pr with r > 0, we have

qr = pr − pr−1 =
1

n

⎡⎣ n∑
i=r+1

1

i− 1
− 1

⎤⎦ ,
which clearly decreases as r increases because the terms in the sum are the same for all r, but
there are fewer terms when r is larger. Since all the terms are positive, qr is strictly decreasing.

(e) Since pr = qr + pr−1 for r ≥ 1, we have that pr = p0 + q1 + · · · + qr. If there exists r such that
qr ≤ 0, then qj < 0 for all j > r and pj ≤ pr−1 for all j ≥ r. On the other hand, for each r such
that qr > 0, pr > pr−1. Hence, we should choose r to be the last value such that qr > 0.

(f) For n = 10, the first few values of qr are

r 1 2 3 4

qr 0.1829 0.0829 0.0390 −0.0004

So, we should use r = 3. We can then compute p3 = 0.3987.
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Chapter 3

Random Variables and Distributions

3.1 Random Variables and Discrete Distributions

Solutions to Exercises

1. Each of the 11 integers from 10 to 20 has the same probability of being the value of X. Six of the 11
integers are even, so the probability that X is even is 6/11.

2. The sum of the values of f(x) must be equal to 1. Since
5∑

x=1

f(x) = 15c, we must have c = 1/15.

3. By looking over the 36 possible outcomes enumerated in Example 1.6.5, we find that X = 0 for 6
outcomes, X = 1 for 10 outcomes, X = 2 for 8 outcomes, X = 3 for 6 outcomes, X = 4 for 4 outcomes,
and X = 5 for 2 outcomes. Hence, the p.f. f(x) is as follows:

x 0 1 2 3 4 5

f(x) 3/18 5/18 4/18 3/18 2/18 1/18

4. For x = 0, 1, . . . , 10, the probability of obtaining exactly x heads is

(
10

x

)(
1

2

)10

.

5. For x = 2, 3, 4, 5, the probability of obtaining exactly x red balls is

(
7

x

)(
3

5− x

)
/

(
10

5

)
.

6. The desired probability is the sum of the entries for k = 0, 1, 2, 3, 4, and 5 in that part of the table of
binomial probabilities given in the back of the book corresponding to n = 15 and p = 0.5. The sum is
0.1509.

7. Suppose that a machine produces a defective item with probability 0.7 and produces a nondefective
item with probability 0.3. If X denotes the number of defective items that are obtained when 8 items
are inspected, then the random variable X will have the binomial distribution with parameters n = 8
and p = 0.7. By the same reasoning, however, if Y denotes the number of nondefective items that are
obtained, then Y will have the binomial distribution with parameters n = 8 and p = 0.3. Furthermore,
Y = 8 − X. Therefore, X ≥ 5 if and only if Y ≤ 3 and it follows that Pr(X ≥ 5) = Pr(Y ≤ 3).
Probabilities for the binomial distribution with n = 8 and p = 0.3 are given in the table in the back of
the book. The value of Pr(Y ≤ 3) will be the sum of the entries for k = 0, 1, 2, and 3.
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8. The number of red balls obtained will have the binomial distribution with parameters n = 20 and
p = 0.1. The required probability can be found from the table of binomial probabilities in the back of
the book. Add up the numbers in the n = 20 and p = 0.1 section from k = 4 to k = 20. Or add up the
numbers from k = 0 to k = 3 and subtract the sum from 1. The answer is 0.1330.

9. We need
∑∞

x=0 f(x) = 1, which means that c = 1/
∑∞

x=0 2
−x. The last sum is known from Calculus to

equal 1/(1 − 1/2) = 2, so c = 1/2.

10. (a) The p.f. of X is f(x) = c(x+1)(8−x) for x = 0, . . . , 7 where c is chosen so that
7∑

x=0

f(x) = 1. So, c

is one over
7∑

x=0

(x+1)(8−x), which sum equals 120, so c = 1/120. That is f(x) = (x+1)(8−x)/120

for x = 0, . . . , 7.

(b) Pr(X ≥ 5) = [(5 + 1)(8 − 5) + (6 + 1)(8− 6) + (7 + 1)(8 − 7)]/120 = 1/3.

11. In order for the specified function to be a p.f., it must be the case that
∞∑
x=1

c

x
= 1 or equivalently

∞∑
x=1

1

x
=

1

c
. But

∞∑
x=1

1

x
= ∞, so there cannot be such a constant c.

3.2 Continuous Distributions

Commentary

This section ends with a brief discussion of probability distributions that are neither discrete nor continuous.
Although such distributions have great theoretical interest and occasionally arise in practice, students can
go a long way without actually concerning themselves about these distributions.

Solutions to Exercises

1. We compute Pr(X ≤ 8/27) by integrating the p.d.f. from 0 to 8/27.

Pr

(
X ≤ 8

27

)
=

∫ 8/27

0

2

3
x−1/3dx = x2/3

∣∣∣8/27
0

=
4

9
.

2. The p.d.f. has the appearance of Fig. S.3.1.

4
3

0 1 x

Figure S.3.1: Figure for Exercise 2 of Sec. 3.2.

(a) Pr

(
X <

1

2

)
=

∫ 1/2

0
4(1− x3)dx/3 = 0.6458.
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(b) Pr

(
1

4
< X <

3

4

)
=

∫ 3/4

1/4
4(1 − x3)dx/3 = 0.5625.

(c) Pr

(
X >

1

3

)
=

∫ 1

1/3
4(1− x3)dx/3 = 0.5597.

3. The p.d.f. has the appearance of Fig. S.3.2.

−3 0 3 x

Figure S.3.2: Figure for Exercise 3 of Sec. 3.2.

(a) Pr(X < 0) =
1

36

∫ 0

−3
(9− x2)dx = 0.5.

(b) Pr(−1 < X < 1) =
1

36

∫ 1

−1
(9− x2)dx = 0.4815.

(c) Pr(X > 2) =
1

36

∫ 3

2
(9− x2)dx = 0.07407.

The answer in part (a) could also be obtained directly from the fact that the p.d.f. is symmetric about
the point x = 0. Therefore, the probability to the left of x = 0 and the probability to the right of x = 0
must each be equal to 1/2.

4. (a) We must have∫ ∞

−∞
f(x) dx =

∫ 2

1
cx2dx =

7

3
c = 1.

Therefore, c = 3/7. This p.d.f. has the appearance of Fig. S.3.3.

1 2 x

Figure S.3.3: Figure for Exercise 4a of Sec. 3.2.

(b)

∫ 2

3/2
f(x)dx = 37/56.

5. (a)

∫ t

0

1

8
x dx = 1/4, or t2/16 = 1/4. Hence, t = 2.

(b)

∫ 4

t
(x/8) dx = 1/2, or 1− t2/16 = 1/2. Hence, t =

√
8.
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6. The value of X must be between 0 and 4. We will have

Y =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ X < 1/2,

1 if 1/2 < X < 3/2,

2 if 3/2 < X < 5/2,

3 if 5/2 < X < 7/2,

4 if 7/2 < X ≤ 4.

We need not worry about how to define Y if X ∈ {1/2, 3/2, 5/2, 7/2}, because the probability that X
will be equal to one of these four values is 0. It now follows that

Pr(Y = 0) =

∫ 1/2

0
f(x)dx =

1

64
,

Pr(Y = 1) =

∫ 3/2

1/2
f(x)dx =

1

8
,

Pr(Y = 2) =

∫ 5/2

3/2
f(x)dx =

1

4
,

Pr(Y = 3) =

∫ 7/2

5/2
f(x)dx =

3

8
,

Pr(Y = 4) =

∫ 4

7/2
f(x)dx =

15

64
.

7. Since the uniform distribution extends over an interval of length 10 units, the value of the p.d.f. must
be 1/10 throughout the interval. Hence,

∫ 7

0
f(x) dx =

7

10
.

8. (a) We must have∫ ∞

−∞
f(x) dx =

∫ ∞

0
c exp(−2x) dx =

1

2
c = 1.

Therefore, c = 2. This p.d.f. has the appearance of Fig. S.3.4.

x

Figure S.3.4: Figure for Exercise 8a of Sec. 3.2.

(b)

∫ 2

1
f(x) dx = exp(−2)− exp(−4).

9. Since

∫ ∞

0
1/(1 + x) dx = ∞, there is no constant c such that

∫ ∞

0
f (x) dx = 1.
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10. (a) We must have∫ ∞

−∞
f(x) dx =

∫ 1

0

c

(1− x)1/2
dx = 2c = 1.

Therefore c = 1/2. This p.d.f. has the appearance of Fig. S.3.5.

0 1

Figure S.3.5: Figure for Exercise 10a of Sec. 3.2.

It should be noted that although the values of f(x) become arbitrarily large in the neighborhood
of x = 1, the total area under the curve is equal to 1. It is seen, therefore, that the values of a
p.d.f. can be greater than 1 and, in fact, can be arbitrarily large.

(b)

∫ 1/2

0
f(x) dx = 1− (1/2)1/2 .

11. Since

∫ 1

0
(1/x)dx = ∞, there is no constant c such that

∫ 1

0
f(x) dx = 1.

12. We shall find the c.d.f. of Y and evaluate it at 50. The c.d.f. of a random variable Y is F (y) = Pr(Y ≤ y).
In Fig. 3.1, on page 94 of the text, the event {Y ≤ y} has area (y − 1) × (200 − 4) = 196(y − 1) if
1 ≤ y ≤ 150. We need to divide this by the area of the entire rectangle, 29,204. The c.d.f. of Y is then

F (y) =

⎧⎪⎪⎨⎪⎪⎩
0 for y < 1,
196(y − 1)

29204
for 1 ≤ y ≤ 150,

1 for y > 150.

.

So, in particular, Pr(Y ≤ 50) = 0.3289.

13. We find Pr(X < 20) =
∫ 20
0 cxdx = 200c. Setting this equal to 0.9 yields c = 0.0045.

3.3 The Cumulative Distribution Function

Commentary

This section includes a discussion of quantile functions. These arise repeatedly in the construction of hy-
pothesis tests and confidence intervals later in the book.
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Solutions to Exercises

1. The c.d.f. F (x) of X is 0 for x < 0. It jumps to 0.3 = Pr(X = 0) at x = 0, and it jumps to 1 and stays
there at x = 1. The c.d.f. is sketched in Fig. S.3.6.

x

F
(x

)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

•

•

Figure S.3.6: C.d.f. of X in Exercise 1 of Sec. 3.3.

2. The c.d.f. must have the appearance of Fig. S.3.7.

−2 4 x0 1

0.2

0.6
0.8

1

Figure S.3.7: C.d.f. for Exercise 2 of Sec. 3.3.

3. Here Pr(X = n) = 1/2n for n = 1, 2, . . . . Therefore, the c.d.f. must have the appearance of Fig. S.3.8.

1

0.75

0.5

0 1 2 3 4 5 6 x

Figure S.3.8: C.d.f. for Exercise 3 of Sec. 3.3.

4. The numbers can be read off of the figure or found by subtracting two numbers off of the figure.

(a) The jump at x = −1 is F (−1)− F (−1−) = 0.1.

(b) The c.d.f. to the left of x = 0 is F (0−) = 0.1.

(c) The c.d.f. at x = 0 is F (0) = 0.2.
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(d) There is no jump at x = 1, so Pr(X = 1) = 0.

(e) F (3) − F (0) = 0.6.

(f) F (3−)− F (0) = 0.4.

(g) F (3) − F (0−) = 0.7.

(h) F (2) − F (1) = 0.

(i) F (2) − F (1−) = 0.

(j) 1− F (5) = 0.

(k) 1− F (5−) = 0.

(l) F (4) − F (3−) = 0.2.

5. f(x) =
dF (x)

dx
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 for x < 0,
2

9
x for 0 < x < 3,

0 for x > 3.

The value of f(x) at x = 0 and x = 3 is irrelevant. This p.d.f. has the appearance of Fig. S.3.9.

0 3 x

Figure S.3.9: Figure for Exercise 5 of Sec. 3.3.

6. f(x) =
dF (x)

dx
=

{
exp(x− 3) for x < 3,
0 for x > 3.

The value of f(x) at x = 3 is irrelevant. This p.d.f. has the appearance of Fig. S.3.10.

3 x

Figure S.3.10: Figure for Exercise 6 of Sec. 3.3.

It should be noted that although this p.d.f. is positive over the unbounded interval where x < 3, the
total area under the curve is finite and is equal to 1.

7. The c.d.f. equals 0 for x < −2 and it equals 1 for x > 8. For −2 ≤ x ≤ 8, the c.d.f. equals

F (x) =

∫ x

−2

dy

10
=

x+ 2

10
.

The c.d.f. has the appearance of Fig. S.3.11.
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x

F(x)

-2 80

1

Figure S.3.11: Figure for Exercise 7 of Sec. 3.3.

8. Pr(Z ≤ z) is the probability that Z lies within a circle of radius z centered at the origin. This probability
is

Area of circle of radius z

Area of circle of radius 1
= z2, for 0 ≤ z ≤ 1.

The c.d.f. is plotted in Fig. S.3.12.

0 1 z

F(z)

Figure S.3.12: C.d.f. for Exercise 8 of Sec. 3.3.

9. Pr(Y = 0) = Pr(X ≤ 1) = 1/5 and Pr(Y = 5) = Pr(X ≥ 3) = 2/5. Also, Y is distributed uniformly
between Y = 1 and Y = 3, with a total probability of 2/5. Therefore, over this interval F (y) will be
linear with a total increase of 2/5. The c.d.f. is plotted in Fig. S.3.13.

10. To find the quantile function F−1(p) when we know the c.d.f., we can set F (x) = p and solve for x.

x

1 + x
= p; x = p+ px; x(1− p) = p; x =

p

1− p
.

The quantile function is F−1(p) = p/(1− p).

11. As in Exercise 10, we set F (x) = p and solve for x.

1

9
x2 = p; x2 = 9p; x = 3p1/2.

The quantile function of X is F−1(p) = 3p1/2.
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•

y

F(y)

0 1 2 3 4 5

1

0.2

0.6

Figure S.3.13: C.d.f. for Exercise 9 of Sec. 3.3.

12. Once again, we set F (x) = p and solve for x.

exp(x− 3) = p; x− 3 = log(p); x = 3 + log(p).

The quantile function of X is F−1(p) = 3 + log(p).

13. VaR at probability level 0.95 is the negative of the 0.05 quantile. Using the result from Example 3.3.8,
the 0.05 quantile of the uniform distribution on the interval [−12, 24] is 0.05× 24− 0.95× 12 = −10.2.
So, VaR at probability level 0.95 is 10.2

14. Using the table of binomial probabilities in the back of the book, we can compute the c.d.f. F of
the binomial distribution with parameters 10 and 0.2. We then find the first values of x such that
F (x) ≥ 0.25, F (x) ≥ 0.5, and F (x) ≥ 0.75. The first few distinct values of the c.d.f. are

x 0 1 2 3

F (x) 0.0174 0.3758 0.6778 0.8791

So, the quartiles are 1 and 3, while the median is 2.

15. Since f(x) = 0 for x ≤ 0 and for x ≥ 1, the c.d.f. F (x) will be flat (0) for x ≤ 0 and flat (1) for x ≥ 1.
Between 0 and 1, we compute F (x) by integrating the p.d.f. For 0 < x < 1,

F (x) =

∫ x

0
2ydy = x2.

The requested plot is identical to Fig. S.3.12 for Exercise 8 in this section.

16. For each 0 < p < 1, we solve for x in the equation F (x) = p, with F specified in (3.3.2):

p = 1− 1

1 + x
,

1

1− p
= 1 + x,

1

1− p
− 1 = x.

The quantile function is F−1(p) = 1/(1 − p)− 1 for 0 < p < 1.
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17. (a) Let 0 < p1 < p2 < 1. Define Ai = {x : F (x) ≥ pi} for i = 1, 2. Since p1 < p2 and F is
nondecreasing, it follows that A2 ⊂ A1. Hence, the smallest number in A1 (which equals F−1(p1)
by definition) is no greater than the smallest number in A2 (which equals F−1(p2) by definition.
That is, F−1(p1) ≤ F−1(p2), and the quantile function is nondecreasing.

(b) Let x0 = lim
p→0
p>0

F−1(p). We are asked to prove that x0 is the greatest lower bound of the set

C = {c : F (c) > 0}. First, we show that no x > x0 is a lower bound on C. Let x > x0 and
x1 = (x + x0)/2. Then x0 < x1 < x. Because F−1(p) is nondecreasing, it follows that there
exists p > 0 such that F−1(p) < x1, which in turn implies that p ≤ F (x1), and F (x1) > 0.
Hence x1 ∈ C, and x is not a lower bound on C. Next, we prove that x0 is a lower bound on C.
Let x ∈ C. We need only prove that x0 ≤ x. Because F−1(p) is nondecreasing, we must have
lim
p→0
p>0

F−1(p) ≤ F−1(q) for all q > 0. Hence, x0 ≤ F−1(p) for all q > 0. Because x ∈ C, we have

F (x) > 0. Let q = F (x) so that q > 0. Then x0 ≤ F−1(q) ≤ x. The proof that x1 is the least
upper bound on the set of all d such that F (d) < 1 is very similar.

(c) Let 0 < p < 1. Because F−1 is nondecreasing, F−1(p−) is the least upper bound on the set
C = {F−1(q) : q < p}. We need to show that F−1(p) is also that least upper bound. Clearly,
F−1(p) is an upper bound, because F−1 is nondecreasing and p > q for all q < p. To see that
F−1(p) is the least upper bound, let y be an upper bound. We need to show F−1(p) ≤ y. By
definition, F−1(p) is the greatest lower bound on the set D = {x : F (x) ≥ p}. Because y is an
upper bound on C, it follows that F−1(q) ≤ y for all q < p. Hence, F (y) ≥ q for all q < p. Because
F is nondecreasing, we have F (y) ≥ p, hence y ∈ D, and F−1(p) ≤ y.

18. We know that Pr(X = c) = F (c) − F (c−). We will prove that p1 = F ∗ (c) and p0 = F (c−). For each
p ∈ (0, 1) define

Cp = {x : F (x) ≥ p}.
Condition (i) says that, for every p ∈ (p0, p1), c is the greatest lower bound on the set Cp. Hence
F (c) ≥ p for all p < p1 and F (c) ≥ p1. If F (c) > p1, then for p = (p1 + F (c))/2, F−1(p) ≤ c, and
condition (iii) rules this out. So F (c) = p1. The rest of the proof is broken into two cases. First, if
p0 = 0, then for every ε > 0, c is the greatest lower bound on the set Cε. This means that F (x) < ε for
all x < c. Since this is true for all ε > 0, F (x) = 0 for all x < c, and F (c−) = 0 = p0. For the second
case, assume p0 > 0. Condition (ii) says F−1(p0) < c. Since F−1(p0) is the greatest lower bound on
the set Cp0 , we have F (x) < p0 for all x < c. Hence, p0 ≥ F (c−). Also, for all p < p0, p ≤ F (c−), hence
p0 ≤ F (c−). Together, the last two inequalities imply p0 = F (c−).

19. First, we show that F−1(F (x)) ≤ x. By definition F−1(F (x)) is the smallest y such that F (y) ≥ F (x).
Clearly F (x) ≥ F (x), hence F−1(F (x)) ≤ x. Next, we show that, if p > F (x), then F−1(p) > x. Let
p > F (x). By Exercise 17, we know that F−1(p) ≥ x. By definition, F−1(p) is the greatest lower bound
on the set Cp = {y : F (y) ≥ p}. All y ∈ Cp satisfy F (y) > (p + F (x))/2. Since F is continuous from
the right, F (F−1(p)) ≥ (p+ F (x))/2. But F (x) < (p + F (x))/2, so x �= F−1(p), hence F−1(p) > x.

20. Figure S.3.14 has the plotted c.d.f., which equals 0.0045x2/2 for 0 < x < 20. On the plot, we see that
F (10) = 0.225.

3.4 Bivariate Distributions

Commentary

The bivariate distribution function is mentioned at the end of this section. The only part of this discussion
that is used later in the text is the fact that the joint p.d.f. is the second mixed partial derivative of the
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Figure S.3.14: C.d.f. for Exercise 20 of Sec. 3.3.

bivariate p.d.f. (in the discussion of functions of two or more random variables is Sec. 3.9.) If an instructor
prefers not to discuss how to calculate probabilities of rectangles and is not going to cover functions of two
or more random variables, there will be no loss of continuity.

Solutions to Exercises

1. (a) Let the constant value of the p.d.f. on the rectangle be c. The area of the rectangle is 2. So, the
integral of the p.d.f. is 2c = 1, hence c = 1/2.

(b) Pr(X ≥ Y ) is the integral of the p.d.f. over that part of the rectangle where x ≥ y. This region is
shaded in Fig. S.3.15. The region is a trapezoid with area 1× (1+ 2)/2 = 1.5. The integral of the

x

y

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4
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6

0.
8

1.
0

Figure S.3.15: Region where x ≥ y in Exercise 1b of Sec. 3.4.

constant 1/2 over this region is then 0.75 = Pr(X ≥ Y ).

2. The answers are found by summing the following entries in the table:

(a) The entries in the third row of the table: 0.27.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



60 Chapter 3. Random Variables and Distributions

(b) The last three columns of the table: 0.53.

(c) The nine entries in the upper left corner of the table: 0.69

(d) (0, 0), (1, 1), (2, 2), and (3, 3): 0.3.

(e) (1, 0), (2, 0), (3, 0), (2, 1), (3, 1), (3, 2): 0.25.

3. (a) If we sum f(x, y) over the 25 possible pairs of values (x, y), we obtain 40c. Since this sum must
be equal to 1, it follows that c = 1/40.

(b) f(0,−2) = (1/40) · 2 = 1/20.

(c) Pr(X = 1) =
2∑

y=−2

f(1, y) = 7/40.

(d) The answer is found by summing f(x, y) over the following pairs: (−2,−2), (−2,−1), (−1,−2),
(−1,−1), (−1, 0), (0,−1), (0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), and (2, 2). The sum is 0.7.

4. (a)

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ 1

0

∫ 2

0
cy2 dx dy = 2c/3. Since the value of this integral must be 1, it

follows that c = 3/2.

(b) The region over which to integrate is shaded in Fig. S.3.16.

1

y

0 1 2 x

Figure S.3.16: Region of integration for Exercise 4b of Sec. 3.4.

Pr(X + Y > 2) =

∫ ∫
shaded
region

f(x, y) dx dy

=

∫ 2

1

∫ 1

2−x

3

2
y2 dy dx =

3

8
.

(c) The region over which to integrate is shaded in Fig. S.3.17.

y

1

0 2 x

1
2

Figure S.3.17: Region of integration for Exercise 4c of Sec. 3.4.

Pr

(
Y <

1

2

)
=

∫ 2

0

∫ 1/2

0

3

2
y2 dy dx =

1

8
.
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Figure S.3.18: Region of integration for Exercise 4d of Sec. 3.4.

(d) The region over which to integrate is shaded in Fig. S.3.18.

Pr(X ≤ 1) =

∫ 1

0

∫ 1

0

3

2
y2 dy dx =

1

2
.

(e) The probability that (X,Y ) will lie on the line x = 3y is 0 for every continuous joint distribution.

5. (a) By sketching the curve y = 1 − x2, we find that y ≤ 1 − x2 for all points on or below this curve.
Also, y ≥ 0 for all points on or above the x-axis. Therefore, 0 ≤ y ≤ 1− x2 only for points in the
shaded region in Fig. S.3.19.

−1 0 1

1 y

y = 1−x2

x

Figure S.3.19: Figure for Exercise 5a of Sec. 3.4.

Hence,∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ 1

−1

∫ 1−x2

0
c (x2 + y) dy dx =

4

5
c ·

Therefore, c = 5/4.

(b) Integration is done over the shaded region in Fig. S.3.20.

Pr

(
0 ≤ X ≤ 1

2

)
=

∫ ∫
shaded
region

f(x, y) dx dy =

∫ 1
2

0

∫ 1−x2

0

5

4
(x2 + y) dy dx =

79

256
.

y

0 11/2−1 x

Figure S.3.20: Region of integration for Exercise 5b of Sec. 3.4.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



62 Chapter 3. Random Variables and Distributions

0 1 x

1

−1

y
y = x + 1

Figure S.3.21: Region of integration for Exercise 5c of Sec. 3.4.

(c) The region over which to integrate is shaded in Fig. S.3.21.

Pr(Y ≤ X + 1) =

∫ ∫
shaded
region

f(x, y) dx dy = 1−
∫ ∫

unshaded
region

f(x, y) dx dy

= 1−
∫ 0

−1

∫ 1−x2

x+1

5

4
(x2 + y) dy dx =

13

16
.

(d) The probability that (X,Y ) will lie on the curve y = x2 is 0 for every continuous joint distribution.

6. (a) The region S is the shaded region in Fig. S.3.22. Since the area of S is 2, and the joint p.d.f. is to

1

y

4

4y + x = 4

x

Figure S.3.22: Figure for Exercise 6a of Sec. 3.4.

be constant over S, then the value of the constant must be 1/2.

(b) The probability that (X,Y ) will belong to any subset S0 is proportional to the area of that subset.
Therefore,

Pr [(X,Y ) ∈ S0] =

∫
S0

∫
1

2
dx dy =

1

2
(area of S0) =

α

2
.

7. (a) Pr(X ≤ 1/4) will be equal to the sum of the probabilities of the corners (0, 0) and (0, 1) and
the probability that the point is an interior point of the square and lies in the shaded region in
Fig. S.3.23. The probability that the point will be an interior point of the square rather than one

y

x
(0,0)

(0,1)

1/4 (1,0)

(1,1)

Figure S.3.23: Figure for Exercise 7a of Sec. 3.4.
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of the four corners is 1− (0.1 + 0.2 + 0.4+ 0.1)= 0.2. The probability that it will lie in the shaded
region, given that it is an interior point is 1/4. Therefore,

Pr

(
X ≤ 1

4

)
= 0.1 + 0.4 + (0.2)

(
1

4

)
= 0.55.

(b) The region over which to integrate is shaded in Fig. S.3.24.

Figure S.3.24: Figure for Exercise 7b of Sec. 3.4.

Pr(X + Y ≤ 1) = 0.1 + 0.2 + 0.4 + (0.2)

(
1

2

)
= 0.8.

8. (a) Since the joint c.d.f. is continuous and is twice-differentiable in the given rectangle, the joint
distribution of X and Y is continuous. Therefore,

Pr (1 ≤ X ≤ 2 and 1 ≤ Y ≤ 2) = Pr (1 < X ≤ 2 and 1 < Y ≤ 2) =

F (2, 2) − F (1, 2) − F (2, 1) + F (1, 1) =
24

156
− 6

156
− 10

156
+

2

156
=

5

78

(b)

Pr (2 ≤ X ≤ 4 and 2 ≤ Y ≤ 4) = Pr (2 ≤ X ≤ 3 and 2 ≤ Y ≤ 4)

= F (3, 4) − F (2, 4) − F (3, 2) + F (2, 2)

= 1− 64

156
− 66

156
+

24

156
=

25

78
.

(c) Since y must lie in the interval 0 ≤ y ≤ 4, F2(y) = 0 for y < 0 and F2(y) = 1 for y > 4. For
0 ≤ y ≤ 4,

F2(y) = lim
x→∞F (x, y) = lim

x→3

1

156
xy(x2 + y) =

1

52
y (9 + y).

(d) We have f(x, y) = 0 unless 0 ≤ x ≤ 3 and 0 ≤ y ≤ 4. In this rectangle we have

f(x, y) =
∂2F (x, y)

∂x∂y
=

1

156
(3x2 + 2y).

(e) The region over which to integrate is shaded in Fig. S.3.25.

Pr(Y ≤ X) =

∫ ∫
shaded
region

f(x, y) dx dy =

∫ 3

0

∫ x

0

1

156
(3x2 + 2y) dy dx =

93

208
.

9. The joint p.d.f. of water demand X and electricy demand Y is in (3.4.2), and is repeated here:

f(x, y) =

{
1/29204 if 4 ≤ x ≤ 200 and 1 ≤ y ≤ 150,
0 otherwise.
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4

y

0 3 x

Figure S.3.25: Figure for Exercise 8e of Sec. 3.4.

We need to integrate this function over the set where x > y. That region can be written as {(x, y) :
4 < x < 200, 1 < y < min{x, 150}}. The reason for the complicated upper limit on y is that we require
both y < x and y < 150.

∫ 200

4

∫ min{x,150}

1

1

29204
dydx =

∫ 200

4

min{x− 1, 149}
29204

dx

=

∫ 150

4

x− 1

29204
dx+

∫ 200

150

149

29204
dx

=
(x− 1)2

2× 29204

∣∣∣∣∣
150

x=4

+
50× 149

29204

=
1492 − 32

58408
+

7450

29204
= 0.63505.

10. (a) The sum of f(x, y) over all x for each fixed y is

exp(−3y)
∞∑
x=0

(2y)2

x!
= exp(−3y) exp(2y) = exp(−y),

where the first equality follows from the power series expansion of exp(2y). The integral of the
resulting sum is easily calculated to be 1.

(b) We can compute Pr(X = 0) by integrating f(0, y) over all y:

Pr(X = 0) =

∫ ∞

0

(2y)0

0!
exp(−3y)dy =

1

3
.

11. Let f(x, y) stand for the joint p.f. in Table 3.3 in the text for x = 0, 1 and y = 1, 2, 3, 4.

(a) We are asked for the probability for the set {Y ∈ {2, 3}} ∩ {X = 1}, which is f(1, 2) + f(1, 3) =
0.166 + 0.107 = 0.273.

(b) This time, we want Pr(X = 0) = f(0, 1) + f(0, 2) + f(0, 3) + f(0, 4) = 0.513.

3.5 Marginal Distributions

Commentary

Students can get confused when solving problems like Exercises 7 and 8 in this section. They notice that the
functional form of f(x, y) factors into g1(x)g2(y) for those (x, y) pairs such that f(x, y) > 0, but they don’t
understand that the factorization needs to hold even for those (x, y) pairs such that f(x, y) = 0. When the
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two marginal p.d.f.’s are both strictly positive on intervals, then the set of (x, y) pairs where f1(x)f2(y) > 0
must be a rectangle (with sides parallel to the coordinate axes), even if the rectangle is infinite in one or
more directions. Hence, it is a necessary condition for independence that the set of (x, y) pairs such that
f(x, y) > 0 be a rectangle with sides parallel to the coordinate axes. Of course, it is also necessary that
f(x, y) = g1(x)g2(y) for those (x, y) such that f(x, y) > 0. The two necessary conditions together are
sufficient to insure independence, but neither is sufficient alone. See the solution to Exercise 8 below for an
illustration of how to illustrate that point.

Solutions to Exercises

1. The joint p.d.f. is constant over a rectangle with sides parallel to the coordinate axes. So, for each x,
the integral over y will equal the constant times the length of the interval of y values, namely d − c.
Similarly, for each y, the integral over x will equal the constant times the length of the interval of
x values, namely b − a. Of course the constant k must equal one over the area of the rectangle. So
k = 1/[(b− a)(d − c)]. So the marginal p.d.f.’s of X and Y are

f1(x) =

⎧⎪⎨⎪⎩
1

b− a
for a ≤ x ≤ b,

0 otherwise,

f2(y) =

⎧⎪⎨⎪⎩
1

d− c
for c ≤ y ≤ d,

0 otherwise.

2. (a) For x = 0, 1, 2, we have

f1(x) =
3∑

y=0

f(x, y) =
1

30
(4x+ 6) =

1

15
(2x+ 3).

Similarly, for y = 0, 1, 2, 3, we have

f2(y) =
2∑

x=0

f(x, y) =
1

30
(3 + 3y) =

1

10
(1 + y).

(b) X and Y are not independent because it is not true that f(x, y) = f1(x)f2(y) for all possible
values of x and y.

3. (a) For 0 ≤ x ≤ 2, we have

f1(x) =

∫ 1

0
f(x, y) dy =

1

2
.

Also, f1(x) = 0 for x outside the interval 0 ≤ x ≤ 2. Similarly, for 0 ≤ y ≤ 1,

f2(y) =

∫ 2

0
f(x, y) dx = 3y2.

Also, f2(y) = 0 for y outside the interval 0 ≤ y ≤ 1.

(b) X and Y are independent because f(x, y) = f1(x) f2(y) for −∞ < x < ∞ and −∞ < y < ∞.

(c) We have

Pr

(
X < 1 and Y ≥ 1

2

)
=

∫ 1

0

∫ 1

1/2
f(x, y) dx dy
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=

∫ 1

0

∫ 1

1/2
f1(x)f2(y) dx dy

=

∫ 1

0
f1(x) dx

∫ 1

1/2
f2(y) dy=Pr(X < 1)Pr

(
Y >

1

2

)
.

Therefore, by the definition of the independence of two events (Definition 2.2.1), the two given
events are independent.

We can also reach this answer, without carrying out the above calculation, by reasoning as follows:
Since the random variables X and Y are independent, and since the occurrence or nonoccurence
of the event {X < 1} depends on the value of X only while the occurrence or nonoccurence of
the event {Y ≥ 1/2} depends on the value of Y only, it follows that these two events must be
independent.

4. (a) The region where f(x, y) is non-zero is the shaded region in Fig. S.3.26. It can be seen that the

y

1

1−1 x

Figure S.3.26: Figure for Exercise 4a of Sec. 3.5.

possible values of X are confined to the interval −1 ≤ X ≤ 1. Hence, f1(x) = 0 for values of x
outside this interval. For −1 ≤ x ≤ 1, we have

f1(x) =

∫ 1−x2

0
f(x, y) dy =

15

4
x2(1− x2).

Similarly, it can be seen from the sketch that the possible values of Y are confined to the interval
0 ≤ Y ≤ 1. Hence, f2(y) = 0 for values of y outside this interval. For 0 ≤ y ≤ 1, we have

f2(y) =

∫ (1−y)1/2

−(1−y)1/2
f(x, y) dx =

5

2
(1− y)3/2.

(b) X and Y are not independent because f(x, y) �= f1(x)f2(y).

5. (a) Since X and Y are independent,

f(x, y) = Pr(X = x and Y = y) = Pr(X = x) Pr(Y = y) = pxpy.

(b) Pr(X = Y ) =
3∑

i=0

f(i, i) =
3∑

i=0

p2i = 0.3.

(c) Pr(X > Y ) = f(1, 0) + f(2, 0) + f(3, 0) + f(2, 1) + f(3, 1) + f(3, 2) = 0.35.

6. (a) Since X and Y are independent

f(x, y) = f1(x) f2(y) = g(x)g(y) =

⎧⎪⎨⎪⎩
9

64
x2y2 for 0 ≤ x ≤ 2, 0 ≤ y ≤ 2

0 otherwise.

(b) Since X and Y have a continuous joint distribution, Pr(X = Y ) = 0.
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(c) Since X and Y are independent random variables with the same probability distribution, it must
be true that Pr(X > Y ) = Pr(Y > X). Since Pr(X = Y ) = 0, it therefore follows that Pr(X >
Y ) = 1/2.

(d) Pr(X + Y ≤ 1) = Pr(shaded region in sketch)

=

∫ 1

0

∫ 1−y

0
f(x, y) dx dy =

1

1280
.

0

1

2

1 2 x

y

Figure S.3.27: Figure for Exercise 6d of Sec. 3.5.

7. Since f(x, y) = 0 outside a rectangle and f(x, y) can be factored as in Eq. (3.5.7) inside the rectangle
(use h1(x) = 2x and h2(y) = exp(−y)), it follows that X and Y are independent.

8. Although f(x, y) can be factored as in Eq. (3.5.7) inside the triangle where f(x, y) > 0, the fact that
f(x, y) > 0 inside a triangle, rather than a rectangle, implies that X and Y cannot be independent.
(Note that y ≥ 0 should have appeared as part of the condition for f(x, y) > 0 in the statement of
the exercise.) For example, to factor f(x, y) as in Eq. (3.5.7) we write f(x, y) = g1(x)g2(y). Since
f(1/3, 1/4) = 2 and f(1/6, 3/4) = 3, it must be that g1(1/3) > 0 and g2(3/4) > 0. However, since
f(1/3, 3/4) = 0, it must be that either g1(1/3) = 0 or g2(3/4) = 0. These facts contradict each other,
hence f cannot have a factorization as in (3.5.7).

9. (a) Since f(x, y) is constant over the rectangle S and the area of S is 6 units, it follows that f(x, y) =
1/6 inside S and f(x, y) = 0 outside S. Next, for 0 ≤ x ≤ 2,

f1(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 4

1

1

6
dy =

1

2
.

Also, f1(x) = 0 otherwise. Similarly, for 1 ≤ y ≤ 4,

f2(y) =

∫ 2

0

1

6
dx =

1

3
.

Also, f2(y) = 0 otherwise. Thus, the marginal distribution of both X and Y are uniform distri-
butions.

(b) Since f(x, y) = f1(x) f2(y) for all values of x and y, it follows that X and Y are independent.

10. (a) f(x, y) is constant over the circle S in Fig. S.3.28. The area of S is π units, and it follows that
f(x, y) = 1/π inside S and f(x, y) = 0 outside S. Next, the possible values of x range from −1 to
1. For any value of x in this interval, f(x, y) > 0 only for values of y between −(1 − x2)1/2 and
(1− x2)1/2. Hence, for −1 ≤ x ≤ 1,

f1(x) =

∫ (1−x2)1/2

−(1−x2)1/2

1

π
dy =

2

π
(1− x2)1/2.

Also, f1(x) = 0 otherwise. By symmetry, the random variable Y will have the same marginal
p.d.f. as X.
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y

x

1

−1

−1

 1

x2 + y2 = 1

Figure S.3.28: Figure for Exercise 10 of Sec. 3.5.

(b) Since f(x, y) �= f1(x)f2(y), X and Y are not independent.

The conclusions found in this exercise in which X and Y have a uniform distribution over a circle
should be contrasted with the conclusions found in Exercise 9, in which X and Y had a uniform
distribution over a rectangle with sides parallel to the axes.

11. Let X and Y denote the arrival times of the two persons, measured in terms of the number of minutes
after 5 P.M. Then X and Y each have the uniform distribution on the interval (0, 60) and they are
independent. Therefore, the joint p.d.f. of X and Y is

f(x, y) =

⎧⎪⎨⎪⎩
1

3600
for 0 < x < 60, 0 < y < 60,

0 otherwise.

We must calculate Pr(|X −Y | < 10), which is equal to the probability that the point (X,Y ) lies in the
shaded region in Fig. S.3.29. Since the joint p.d.f. of X and Y is constant over the entire square, this

y

60

10

0 10 60 x

Figure S.3.29: Figure for Exercise 11 of Sec. 3.5.

probability is equal to (area of shaded region)/3600. The area of the shaded region is 1100. Therefore,
the required probability is 1100/3600 = 11/36.

12. Let the rectangular region be R = {(x, y) : x0 < x < x1, y0 < y < y1} with x0 and/or y0 possibly −∞
and x1 and/or y1 possibly ∞. For the “if” direction, assume that f(x, y) = h1(x)h2(y) for all (x, y)
that satisfy f(x, y) > 0. Then define

h∗1(x) =

{
h1(x) if x0 < x < x1,
0 otherwise.
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h∗2(y) =

{
h2(y) if y0 < y < y1,
0 otherwise.

Then h∗1(x)h∗2(y) = h1(x)h2(y) = f(x, y) for all (x, y) ∈ R and h∗1(x)h∗2(y) = 0 = f(x, y) for all
(x, y) �∈ R. Hence f(x, y) = h∗1(x)h∗2(y) for all (x, y), and X and Y are independent.

For the “only if” direction, assume that X and Y are independent. According to Theorem 3.5.5,
f(x, y) = h1(x)h2(y) for all (x, y). Then f(x, y) = h1(x)h2(y) for all (x, y) ∈ R.

13. Since f(x, y) = f(y, x) for all (x, y), it follows that the marginal p.d.f.’s will be the same. Each of those
marginals will equal the integral of f(x, y) over the other variable. For example, to find f1(x), note
that for each x, the values of y such that f(x, y) > 0 form the interval [−√

1− x2,
√
1− x2]. Then, for

−1 ≤ x ≤ 1,

f1(x) =

∫
f(x, y)dy

=

∫ √
1−x2

−√
1−x2

kx2y2dy

= kx2
y3

3

∣∣∣∣∣
√
1−x2

y=−√
1−x2

= 2kx2(1− x2)3/2/3.

14. The set in Fig. 3.12 is not rectangular, so X and Y are not independent.

15. (a) Figure S.3.30 shows the region where f(x, y) > 0 as the union of two shaded rectangles. Although
the region is not a rectangle, it is a product set. That is, it has the form {(x, y) : x ∈ A, y ∈ B}
for two sets A and B of real numbers.

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure S.3.30: Region of positive p.d.f. for Exercise 15a of Sec. 3.5.
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(b) The marginal p.d.f. of X is

f1(x) =

∫ 1

0
f(x, y)dy =

{
1
3 if 1 < x < 3,
1
6 if 6 < x < 8.

The marginal p.d.f. of Y is

f2(y) =

∫ 3

1

1

3
dx+

∫ 8

6

1

6
dx = 1,

for 0 < y < 1. The distribution of Y is the uniform distribution on the interval [0, 1].

(c) The product of the two marginal p.d.f.’s is

f1(x)f2(y) =

⎧⎪⎨⎪⎩
1
3 if 1 < x < 3 and 0 < y < 1,
1
6 if 6 < x < 8 and 0 < y < 1,
0 otherwise,

which is the same as f(x, y), hence the two random variables are independent. Although the
region where f(x, y) > 0 is not a rectangle, it is a product set as we saw in part (a). Although
it is sufficient in Theorem 3.5.6 for the region where f(x, y) > 0 to be a rectangle, it is necessary
that the region be a product set. Technically, it is necessary that there is a version of the p.d.f.
that is strictly positive on a product set. For continuous joint distributions, one can set the p.d.f.
to arbitrary values on arbitrary one-dimensional curves without changing it’s being a joint p.d.f.

3.6 Conditional Distributions

Commentary

When introducing conditional distributions given continuous random variables, it is important to stress that
we are not conditioning on a set of 0 probability, even if the popular notation makes it appear that way.
The note on page 146 can be helpful for students who understand two-variable calculus. Also, Exercise 25 in
Sec. 3.11 can provide additional motivation for the idea that the conditional distribution of X given Y = y
is really a surrogate for the conditional distribution of X given that Y is close to y, but we don’t wish to
say precisely how close. Exercise 26 in Sec. 3.11 (the Borel paradox) brings home the point that conditional
distributions really are not conditional on the probability 0 events such as {Y = y}.

Also, it is useful to stress that conditional distributions behave just like distributions. In particular,
conditional probabilities can be calculated from conditional p.f.’s and conditional p.d.f.’s in the same way
that probabilities are calculated from p.f.’s and p.d.f.’s. Also, be sure to advertise that all future concepts
and theorems will have conditional versions that behave just like the marginal versions.

Solutions to Exercises

1. We begin by finding the marginal p.d.f. of Y . The set of x values for which f(x, y) > 0 is the interval
[−(1− y2)1/2, (1− y2)1/2]. So, the marginal p.d.f. of Y is, for −1 ≤ y ≤ 1,

f2(y) =

∫ (1−y2)1/2

−(1−y2)1/2
kx2y2dx =

ky2

3
x3
∣∣∣∣∣
(1−y2)1/2

x=−(1−y2)1/2

=
2k

3
y2(1− y2)3/2,

and 0 otherwise. The conditional p.d.f. of X given Y = y is the ratio of the joint p.d.f. to the marginal
p.d.f. just found.

g1(x|y) =

⎧⎪⎨⎪⎩
3x2

2(1− y2)3/2
for −(1− y2)1/2 ≤ x ≤ (1− y2)1/2,

0 otherwise.
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2. (a) We have Pr(Junior) = 0.04 + 0.20 + 0.09 = 0.33. Therefore,

Pr(Never|Junior) = Pr(Junior and Never)

Pr(Junior)
=

0.04

0.33
=

4

33
.

(b) The only way we can use the fact that a student visited the museum three times is to classify the
student as having visited more than once. We have

Pr(More than once) = 0.04 + 0.04 + 0.09 + 0.10 = 0.27.
Therefore,

Pr(Senior|More than once) =
Pr(Senior and More than once)

Pr(More than once)

=
0.10

0.27
=

10

27
.

3. The joint p.d.f. of X and Y is positive for all points inside the circle S shown in the sketch. Since the
area of S is 9π and the joint p.d.f. of X and Y is constant over S, this joint p.d.f. must have the form:

f (x, y) =

⎧⎪⎨⎪⎩
1

9π
for (x, y) ∈ S,

0 otherwise.

y

x

S

(1,1)

(4,−2)

(−5,1)

(−2,−2)

Figure S.3.31: Figure for Exercise 3 of Sec. 3.6.

It can be seen from Fig. S.3.31 that the possible values of X lie between −2 and 4. Therefore, for
−2 < x < 4,

f1(x) =

∫ −2+[ 9−(x−1)2]1/2

−2−[ 9−(x−1)2]1/2

1

9π
dy =

2

9π
[9− (x− 1)2]1/2.

(a) It follows that for −2 < x < 4 and −2− [9− (x− 1)2]1/2 < y < −2 + [9− (x− 1)2]1/2,

g2(y |x) = f(x, y)

f1(x)
=

1

2
[9− (x− 1)2]−1/2.

(b) When X = 2, it follows from part (a) that

g2(y |x = 2) =

⎧⎪⎨⎪⎩
1

2
√
8

for− 2−√
8 < y < −2 +

√
8

0 otherwise.
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Therefore,

Pr(Y > 0 |X = 2) =

∫ −2+
√
8

0
g2(y |x = 2) dy =

−2 +
√
8

2
√
8

=
2−√

2

4
.

4. (a) For 0 ≤ y ≤ 1, the marginal p.d.f. of y is

f2(y) =

∫ 1

0
f(x, y) dx = c

(
1

2
+ y2

)
.

Therefore, for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the conditional p.d.f. of X given that Y = y is

g1(x | y) = f(x, y)

f2(y)
=

x+ y2

1
2 + y2

.

It should be noted that it was not necessary to evaluate the constant c in order to determine this
conditional p.d.f.

(b) When Y = 1/2, it follows from part (a) that

g1

(
x | y =

1

2

)
=

⎧⎪⎨⎪⎩
4

3

(
x+

1

4

)
for 0 ≤ x ≤ 1,

0 otherwise.

Therefore,

Pr

(
X <

1

2
|Y =

1

2

)
=

∫ 1
2

0
g1

(
x | y =

1

2

)
dx =

1

3
.

5. (a) The joint p.d.f. f(x, y) is given by Eq. (3.6.15) and the marginal p.d.f. f2(y) was also given in
Example 3.6.10. Hence, for 0 < y < 1 and 0 < x < y, we have

g1(x | y) = f(x, y)

f2(y)
=

−1

(1− x) log(1− y)
.

(b) When Y = 3/4, it follows from part (a) that

g1

(
x | y =

3

4

)
=

⎧⎪⎨⎪⎩
1

(1− x) log 4
for 0 < x < 3

4 ,

0 otherwise.

Therefore,

Pr

(
X >

1

2
|Y =

3

4

)
=

∫ 3/4

1/2
g1

(
x | y =

3

4

)
dx =

log 4− log 2

log 4
=

1

2
.

6. Since f(x, y) = 0 outside a rectangle with sides parallel to the x and y axes and since f(x, y) can be
factored as in Eq. (3.5.7), with g1(x) = c sin(x) and g2(y) = 1, it follows that X and Y are independent
random variables. Furthermore, for 0 ≤ y ≤ 3, the marginal p.d.f. f2(y) must be proportional to g2(y).
In other words, f2(y) must be constant for 0 ≤ y ≤ 3. Hence, Y has the uniform distribution on the
interval [0, 3] and

f2(y) =

⎧⎪⎨⎪⎩
1

3
for 0 ≤ y ≤ 3,

0 otherwise.

(a) Since X and Y are independent, the conditional p.d.f. of Y for any given value of X is the same
as the marginal p.d.f. f2(y).
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(b) Since X and Y are independent,

Pr(1 < Y < 2 |X = 0.73) = Pr(1 < Y < 2) =

∫ 2

1
f2(y) dy =

1

3
.

7. The joint p.d.f. of X and Y is positive inside the triangle S shown in Fig. S.3.32. It is seen from
Fig. S.3.32 that the possible values of X lie between 0 and 2. Hence, for 0 < x < 2,

s

y

0 2 x

4

Figure S.3.32: Figure for Exercise 7 of Sec. 3.6.

f1(x) =

∫ 4−2x

0
f(x, y) dy =

3

8
(x− 2)2.

(a) It follows that for 0 < x < 2 and 0 < y < 4− 2x,

g2(y |x) = f(x, y)

f1(x)
=

4− 2x− y

2(x− 2)2
.

(b) When X = 1/2, it follows from part (a) that

g2

(
y |x =

1

2

)
=

⎧⎪⎨⎪⎩
2

9
(3− y) for 0 < y < 3,

0 otherwise.

Therefore,

Pr

(
Y ≥ 2 |X =

1

2

)
=

∫ 3

2
g2

(
y |x =

1

2

)
dy =

1

9
.

8. (a) The answer is∫ 1

0

∫ 1

0.8
f(x, y) dx dy = 0.264.

(b) For 0 ≤ y ≤ 1, the marginal p.d.f. of Y is

f2(y) =

∫ 1

0
f(x, y) dx =

2

5
(1 + 3y).

Hence, for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

g1(x | y) = 2x+ 3y

1 + 3y
.

When Y = 0.3, it follows that

g1(x | y = 0.3) =
2x+ 0.9

1.9
for 0 ≤ x ≤ 1.
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Hence,

Pr(X > 0.8 |Y = 0.3) =

∫ 1

0.8
g1(x | y = 0.3)dx = 0.284.

(c) For 0 ≤ x ≤ 1, the marginal p.d.f. of X is

f1(x) =

∫ 1

0
f(x, y) dy =

2

5

(
2x+

3

2

)
.

Hence, for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

g2(y |x) = 2x+ 3y

2x+ 3
2

.

When X = 0.3, it follows that

g2(y |x = 0.3) =
0.6 + 3y

2.1
for 0 ≤ y ≤ 1.

Hence,

Pr(Y > 0.8 |X = 0.3) =

∫ 1

0.8
g2(y |x = 0.3) dy = 0.314.

9. Let Y denote the instrument that is chosen. Then Pr(Y = 1) = Pr(Y = 2) = 1/2. In this exercise the
distribution of X is continuous and the distribution of Y is discrete. Hence, the joint distribution of X
and Y is a mixed distribution, as described in Sec. 3.4. In this case, the joint p.f./p.d.f. of X and Y is
as follows:

f(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2
· 2x = x for y = 1 and 0 < x < 1,

1

2
· 3x2 = 3

2
x2 for y = 2 and 0 < x < 1,

0 otherwise.

(a) It follows that for 0 < x < 1,

f1(x) =
2∑

y=1

f(x, y) = x+
3

2
x2,

and f1(x) = 0 otherwise.

(b) For y = 1, 2 and 0 < x < 1, we have

Pr(Y = y |X = x) = g2(y |x) = f(x, y)

f1(x)
.

Hence,

Pr

(
Y = 1 |X =

1

4

)
=

f

(
1

4
, 1

)
f1

(
1

4

) =

1

4
1

4
+

3

2
· 1

16

=
8

11
.

10. Let Y = 1 if a head is obtained when the coin is tossed and let Y = 0 if a tail is obtained. Then
Pr(Y = 1 |X = x) = x and Pr(Y = 0 |X = x) = 1 − x. In this exercise, the distribution of X is
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continuous and the distribution of Y is discrete. Hence, the joint distribution of X and Y is a mixed
distribution as described in Sec. 3.4. The conditional p.f. of Y given that X = x is

g2(y |x) =

⎧⎪⎨⎪⎩
x for y = 1,
1− x for y = 0,
0 otherwise.

The marginal p.d.f. f1(x) of X is given in the exercise, and the joint p.f./p.d.f. of X and Y is f(x, y)
= f1(x)g2(y |x). Thus, we have

f(x, y) =

⎧⎪⎨⎪⎩
6x2(1− x) for 0 < x < 1 and y = 1,
6x(1 − x)2 for 0 < x < 1 and y = 0,
0 otherwise.

Furthermore, for y = 0, 1,

Pr(Y = y) = f2(y) =

∫ 1

0
f(x, y) dx.

Hence,

Pr(Y = 1) =

∫ 1

0
6x2(1− x) dx =

∫ 1

0
(6x2 − 6x3) dx =

1

2
.

(This result could also have been derived by noting that the p.d.f. f1(x) is symmetric about the point
x = 1/2.)

It now follows that the conditional p.d.f. of X given that Y = 1 is, for 0 < x < 1,

g1(x | y = 1) =
f(x, 1)

Pr(Y = 1)
=

6x2(1− x)

1/2
= 12x2(1− x).

11. Let F2 be the c.d.f. of Y . Since f2 is continuous at both y0 and y1, we can write, for i = 0, 1,

Pr(Y ∈ Ai) = F2(yi + ε)− F2(yi − ε) = 2εf2(y
′
i),

where y′i is within ε of yi. This last equation follows from the mean value theorem of calculus. So

Pr(Y ∈ A0)

Pr(Y ∈ A1)
=

f2(y
′
0)

f2(y′1)
. (S.3.1)

Since f2 is continuous, lim
ε→0

f2(y
′
i) = f2(yi), and the limit of (S.3.1) is 0/f2(y1) = 0.

12. (a) The joint p.f./p.d.f. of X and Y is the product f2(y)g1(x|y).

f(x, y) =

{
(2y)x exp(−3y)/x! if y > 0 and x = 0, 1, . . .,
0 otherwise.

The marginal p.f. of X is obtained by integrating over y.

f1(x) =

∫ ∞

0

(2y)x

x!
exp(−3y)dy =

1

3

(
2

3

)x

,

for x = 0, 1, . . ..
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(b) The conditional p.d.f. of Y given X = 0 is the ratio of the joint p.f./p.d.f. to f1(0).

g2(y|0) = (2y)0 exp(−3y)/0!

(1/3)(2/3)0
= 3exp(−3y),

for y > 0.

(c) The conditional p.d.f. of Y given X = 1 is the ratio of the joint p.f./p.d.f. to f1(1).

g2(y|1) = (2y)1 exp(−3y)/1!

(1/3)(2/3)1
= 9y exp(−3y),

for y > 0.

(d) The ratio of the two conditional p.d.f.’s is

g2(y|1)
g2(y|0) =

9y exp(−3y)

3 exp(−3y)
= 3y.

The ratio is greater than 1 if y > 1/3. This corresponds to the intuition that if we observe more
calls, then we should think the rate is higher.

13. There are four different treatments on which we are asked to condition. The marginal p.f. of treatment
Y is given in the bottom row of Table 3.6 in the text. The conditional p.f. of response given each
treatment is the ratio of the two rows above that to the bottom row:

g1(x|1) =

{
0.120
0.267 = 0.4494 if x = 0,
0.147
0.267 = 0.5506 if x = 1.

g1(x|2) =

{
0.087
0.253 = 0.3439 if x = 0,
0.166
0.253 = 0.6561 if x = 1.

g1(x|3) =

{
0.146
0.253 = 0.5771 if x = 0,
0.107
0.253 = 0.4229 if x = 1.

g1(x|4) =

{
0.160
0.227 = 0.7048 if x = 0,
0.067
0.227 = 0.2952 if x = 1.

The fourth one looks quite different from the others, especially from the second.

3.7 Multivariate Distributions

Commentary

The material around Definition 3.7.8 and Example 3.7.8 reintroduces the concept of conditionally independent
random variables. This concept is important in Bayesian inference, but outside of Bayesian inference, it
generally appears only in more advanced applications such as expert systems and latent variable models.
If an instructor is going to forego all discussion of Bayesian inference then this material (and Exercises 13
and 14) could be skipped.

Solutions to Exercises

1. (a) We have∫ 1

0

∫ 1

0

∫ 1

0
f(x1, d2, x3) dx1 dx2 dx3 = 3c.

Since the value of this integral must be equal to 1, it follows that c = 1/3.
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(b) For 0 ≤ x1 ≤ 1 and 0 ≤ x3 ≤ 1,

f13(x1, x3) =

∫ 1

0
f(x1, x2, x3) dx2 =

1

3
(x1 + 1 + 3x3) .

(c) The conditional p.d.f. of x3 given that x1 = 1/4 and x2 = 3/4 is, for 0 ≤ x3 ≤ 1,

g3

(
x3

∣∣∣∣x1 = 1

4
, x2 =

3

4

)
=

f

(
1

4
,
3

4
, x3

)
f12

(
1

4
,
3

4

) =
7

13
+

12

13
x3 .

Therefore,

Pr

(
X3 <

1

2

∣∣∣∣ X1 =
1

4
,X2 =

3

4

)
=

∫ 1
2

0

(
7

13
+

12

13
x3

)
dx3 =

5

13
.

2. (a) First, integrate over x1. We need to compute

∫ 1

0
cx1+x2+x3

1 (1−x1)
3−x2−x3dx1. The two exponents

always add to 4 and each is always at least 1. So the possible pairs of exponents are (1, 3), (2, 2),
and (3, 1). By the symmetry of the function, the first and last will give the same value of the
integral. In this case, the values are∫ 1

0
c[x31 − x41]dx1 =

c

4
− c

5
=

c

20
. (S.3.2)

In the other case, the integral is∫ 1

0
c[x21 − 2x31 + x41]dx1 =

c

3
− 2c

4
+

c

5
=

c

30
. (S.3.3)

Finally, sum over the possible (x2, x3) pairs. The mapping between (x2, x3) values and the expo-
nents in the integral is as follows:

(x2, x3) Exponents

(0, 0) (1, 3)
(0, 1) (2, 2)
(1, 0) (2, 2)
(1, 1) (3, 1)

Summing over the four possible (x2, x3) pairs gives the sum of c/6, so c = 6.

(b) The marginal joint p.f. of (X2,X3) is given by setting c = 6 in (S.3.2) and (S.3.3) and using the
above table.

f23(x2, x3) =

{
0.3 if (x2, x3) ∈ {(0, 0), (1, 1)},
0.2 if (x2, x3) ∈ {(1, 0), (0, 1)}.

(c) The conditional p.d.f. of X1 given X2 = 1 and X3 = 1 is 1/0.3 times the joint p.f./p.d.f. evaluated
at x2 = x3 = 1:

g1(x1|1, 1) =
{

20x31(1− x1) if 0 < x1 < 1,
0 otherwise.

3. The p.d.f. should be positive for all xi > 0 not just for all xi > 1 as stated in early printings. This will
match the answers in the back of the text.
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(a) We have∫ ∞

0

∫ ∞

0

∫ ∞

0
f(x1, x2, x3) dx1 dx2 dx3 =

1

6
c.

Since the value of this integral must be equal to 1, it follows that c = 6. If one used xi > 1 instead,
then the integral would equal exp(−6)/6, so that c = 6exp(6).

(b) For x1 > 0, x3 > 0,

f13(x1, x3)

∫ ∞

0
f(x1, x2, x3) dx2 = 3exp[−(x1 + 3x3)].

If one used xi > 1 instead, then for x1 > 1 and x3 > 1, f13(x1, x3) = 3 exp(−x1 − 3x3 + 4).

(c) It is helpful at this stage to recognize that the random variables X1, X2, and X3 are independent
because their joint p.d.f. f(x1, x2, x3) can be factored as in Eq. (3.7.7); i.e., for xi > 0 (i = 1, 2, 3),

f(x1, x2, x3) = (exp(−x1)) = (2 exp(−x2))(3 exp(−x3)).

It follows that

Pr(X1 < 1 |X2 = 2,X3 = 1) = Pr(X1 < 1) =

∫ 1

0
f1(x1) dx1 =

∫ 1

0
exp(−x1)dx1 = 1− 1

e
.

This answer could also be obtained without explicitly using the independence of X1,X2, and X3

by calculating first the marginal joint p.d.f.

f23(x2, x3) =

∫ ∞

0
f(x1, x2, x3) dx1,

then calculating the conditional p.d.f.

g1(x1 |x2 = 2, x3 = 1) =
f(x1, 2, 1)

f2,3(2, 1)
,

and finally calculating the probability

Pr(X1 < 1 |X2 = 2,X3 = 1) =

∫ 1

0
g1(x1 |x2 = 2, x3 = 1)dx1.

If one used xi > 1 instead, then the probability in this part is 0.

4. The joint p.d.f. f(x1, x2, x3) is constant over the cube S. Since

∫∫∫
S

dx1 dx2 dx3 =

∫ 1

0

∫ 1

0

∫ 1

0
dx1 dx2 dx3 = 1,

it follows that f(x1, x2, x3) = 1 for (x1, x2, x3) ∈ S. Hence, the probability of any subset of S will be
equal to the volume of that subset.

(a) The set of points such that (x1 − 1/2)2 + (x2 − 1/2)2 + (x3 − 1/2)2 ≤ 1/4 is a sphere of radius 1/2
with center at the point (1/2, 1/2, 1/2, ). Hence, this sphere is entirely contained with in the cube
S. Since the volume of any sphere is 4πr3/3, the volume of this sphere, and also its probability, is
4π(1/2)3/3 = π/6.

(b) The set of points such that c21 + x22 + x23 ≤ 1 is a sphere of radius 1 with center at the origin (0, 0,
0). Hence, the volume of this sphere is 4π/3. However, only one octant of this sphere, the octant
in which all three coordinates are nonnegative, lies in S. Hence, the volume of the intersection of

the sphere with the set S, and also its probability, is
1

8
· 4
3
π =

1

6
π.
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5. (a) The probability that all n independent components will function properly is the product of their

individual probabilities and is therefore equal to
n∏

i=1

pi.

(b) The probability that all n independent components will not function properly is the product of

their individual probabilities of not functioning properly and is therefore equal to
n∏

i=1

(1− pi). The

probability that at least one component will function properly is 1−
n∏

i=1

(1− pi).

6. Since the n random variables x1, . . . , xn are i.i.d. and each has the p.f. f, the probability that a particular
variable Xi will be equal to a particular value x is f(x), and the probability that all n variables will
be equal to a particular value x is [f(x)]n. Hence, the probability that all n variables will be equal,
without any specification of their common value, is

∑
x[f(x)]

n.

7. The probability that a particular variable Xi will lie in the interval (a, b) is p =
∫ b
a f(x) dx. Since the

variables X1, . . . ,Xn are independent, the probability that exactly i of these variables will lie in the
interval (a, b) is

(n
i

)
pi(1− p)n−i. Therefore, the required probability is

n∑
i= k

(
n

i

)
pi(1− p)n−i.

8. For any given value x of X, the random variables Y1, . . . , Yn are i.i.d., each with the p.d.f. g(y |x).
Therefore, the conditional joint p.d.f. of Y1 . . . , Yn given that X = x is

h(y1, . . . , yn |x) = g(y1 |x) . . . g(yn |x) =

⎧⎪⎨⎪⎩
1

xn
for 0 < yi < x, i = 1, . . . , n,

0 otherwise.

The joint p.d.f. of X and Y1, . . . , Yn is, therefore,

f(x)h(y1, . . . , yn |x) =

⎧⎪⎨⎪⎩
1

n!
exp(−x) for 0 < yi < x (i = 1, . . . , n),

0 otherwise.

This joint p.d.f. is positive if and only if each yi > 0 and x is greater than every yi. In other words, x
must be greater than m = max{y1, . . . , yn}.
(a) For y1 > 0 (i = 1, . . . , n), the marginal joint p.d.f. of Y1, . . . , Yn is

g0(y1, . . . , yn) =

∫ ∞

−∞
f(x)h(y1, . . . , yn |x) dx =

∫ ∞

m

1

n!
exp(−x) dx =

1

n!
exp(−m).

(b) For yi > 0 (i = 1, . . . , n), the conditional p.d.f. of X given that Yi = yi(i = 1, . . . , n) is

g1(x | y1, . . . , yn) = f(x)h(y1, . . . , yn |x)
g0(y1, . . . , yn)

=

{
exp(−(x−m)) for x > m,
0 otherwise.

9. (a) Since Xi = X for i = 1, 2, we know that Xi has the same distribution as X. Since X has a
continuous distribution, then so does Xi for i = 1, 2.

(b) We know that Pr(X1 = X2) = 1. Let A = {(x1, x2) : x1 = x2}. Then Pr((X1,X2) ∈ A) = 1.

However, for every function f ,

∫
A

∫
f(x1, x2)dx1dx2 = 0. So there is no possible joint p.d.f.
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10. The marginal p.d.f. of Z is 2 exp(−2z), for z > 0. The coordinates of X are conditionally i.i.d. given
Z = z with p.d.f. z exp(−zx), for x > 0. This makes the joint p.d.f. of (Z,X) equal to 2z5 exp(−z[2 +
x1 + · · ·+x5]) for all variables positive. The marginal joint p.d.f. of X is obtained by integrating z out
of this.

f2(x) =

∫ ∞

0
2z5 exp(−z[2 + x1 + · · ·+ x5])dz =

240

(2 + x1 + · · · + x5)6
, for all xi > 0.

Here, we use the formula

∫ ∞

0
yk exp(−y)dy = k! from Exercise 12 in Sec. 3.6. The conditional p.d.f. of

Z given X = (x1, . . . , x5) is then

g1(z|x) = (2 + x1 + · · ·+ x5)
6

120
z5 exp(−z[2 + x1 + · · ·+ x5]),

for z > 0.

11. Since X1, . . . ,Xn are independent, their joint p.f., p.d.f., or p.f./p.d.f. factors as

f(x1, . . . , xn) = f1(x1) · · · fn(xn),

where each fi is a p.f. or p.d.f. If we sum or integrate over all xj such that j �∈ {i1, . . . , ik} we obtain
the joint p.f., p.d.f., or p.f./p.d.f. of Xi1 , . . . ,Xik equal to fi1(xi1) · · · fik(xik), which is factored in a way
that makes it clear that Xi1 , . . . ,Xik are independent.

12. Let h(y,w) be the marginal joint p.d.f. of Y and W , and let h2(w) be the marginal p.d.f. of w. Then

h(y,w) =

∫
f(y,z,w)dz,

h2(w) =

∫ ∫
f(y,z,w)dzdy,

g1(y,z|w) =
f(y,z,w)

h2(w)
,

g2(y|w) =
h(y,w)

h2(w)
=

∫
f(y,z,w)dz

h2(w)
=

∫
g1(y,z|w)dz.

13. Let f(x1, x2, x3, z) be the joint p.d.f. of (X1,X2,X3, Z). Let f12(x1, x2) be the marginal joint p.d.f. of
(X1,X2). The the conditional p.d.f. of X3 given (X1,X2) = (x1, x2) is∫

f(x1, x2, x3, z)dz

f12(x1, x2)
=

∫
g(x1|z)g(x2|z)g(x3|z)f0(z)dz

f12(x1, x2)
=

∫
g(x3|z)g(x1|z)g(x2|z)f0(z)

f12(x1, x2)
dz.

According to Bayes’ theorem for random variables, the fraction in this last integral is g0(z|x1, x2). Using
the specific formulas in the text, we can calculate the last integral as∫ ∞

0
z exp(−zx3)

1

2
(2 + x1 + x2)

3z2 exp(−z(2 + x1 + x2))dx

=
(2 + x1 + x2)

3

2

∫ ∞

0
z3 exp(−z(2 + x1 + x2 + x3))dz

=
(2 + x1 + x2)

3

2

6

(2 + x1 + x2 + x3)4
=

3(2 + x1 + x2)
3

(2 + x1 + x2 + x3)4
.
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The joint p.d.f. of (X1,X2,X3) can be computed in a manner similar to the joint p.d.f. of (X1,X2) and
it is

f123(x1, x2, x3) =
12

(2 + x1 + x2 + x3)4
.

The ratio of f123(x1, x2, x3) to f12(x1, x2) is the conditional p.d.f. calculated above.

14. (a) We can substitute x1 = 5 and x2 = 7 in the conditional p.d.f. computed in Exercise 13.

g3(x3|5, 7) = 3(2 + 5 + 7)3

(2 + 5 + 7 + x3)4
=

8232

(14 + x3)4
,

for x3 > 0.

(b) The conditional probability we want is the integral of the p.d.f. above from 3 to ∞.∫ ∞

3

8232

(14 + x3)4
dx3 = − 2744

(14 + x3)3

∣∣∣∣∞
x3=3

= 0.5585.

In Example 3.7.9, we computed the marginal probability Pr(X3 > 3) = 0.4. Now that we have
observed two service times that are both longer than 3, namely 5 and 7, we think that the
probability of X3 > 3 should be larger.

15. Let A be an arbitrary n-dimensional set. Because Pr(W = c) = 1, we have

Pr((X1, . . . ,Xn) ∈ A,W = w) =

{
Pr(X1, . . . ,Xn) ∈ A) if w = c,
0 otherwise.

It follows that

Pr((X1, . . . ,Xn) ∈ A|W = w) =

{
Pr(X1, . . . ,Xn) ∈ A) if w = c,
0 otherwise.

Hence the conditional joint distribution of X1, . . . ,Xn given W is the same as the unconditional joint
distribution of X1, . . . ,Xn, which is the distribution of independent random variables.

3.8 Functions of a Random Variable

Commentary

A brief discussion of simulation appears at the end of this section. This can be considered a teaser for the
more detailed treatment in Chapter 12. Simulation is becoming a very important tool in statistics and applied
probability. Even those instructors who prefer not to cover Chapter 12 have the option of introducing the
topic here for the benefit of students who will need to study simulation in more detail in another course.

If you wish to use the statistical software R, then the function runif will be most useful. For the purposes
of this section, runif(n) will return n pseudo-uniform random numbers on the interval [0, 1]. Of course, either
n must be assigned a value before expecting R to understand runif(n), or one must put an explicit value
of n into the function. The following two options both produce 1,000 pseudo-uniform random numbers and
store them in an object called unumbs:

• unumbs=runif(1000)

• n=1000

unumbs=runif(n)
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Solutions to Exercises

1. The inverse transformation is x = (1−y)1/2, whose derivative is −(1−y)−1/2/2. The p.d.f. of Y is then

g(y) = f([1− y]1/2)(1 − y)−1/2/2 =
3

2
(1− y)1/2,

for 0 < y < 1.

2. For each possible value of x, we have the following value of y = x2 − x :
x y

−3 12
−2 6
−1 2
0 0
1 0
2 2
3 6

Since the probability of each value of X is 1/7, it follows that the p.f. g(y) is as follows:
y g(y)

0
2

7

2
2

7

6
2

7

12
1

7

3. It is seen from Fig. S.3.33 that as x varies over the interval 0 < x < 2, y varies over the interval

y

x210

(1,1)

y = x(2 − x)

Figure S.3.33: Figure for Exercise 3 of Sec. 3.8.

0 < y ≤ 1. Therefore, for 0 < y ≤ 1,

G(y) = Pr(Y ≤ y) = Pr [X(2 −X) ≤ y] = Pr(X2 − 2X ≥ −y)

= Pr(X2 − 2X + 1 ≥ 1− y) = Pr[(X − 1)2 ≥ 1− y]

= Pr(X − 1 ≤ −√1− y) + Pr(X − 1 ≥ √1− y)

= Pr(X ≤ 1−√1− y) + Pr(X ≥ 1 +
√
1− y)

=

∫ 1−√
1−y

0

1

2
x dx+

∫ 2

1+
√
1−y

1

2
x dx
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= 1−√1− y.

It follows that, for 0 < y < 1,

g(y) =
dG(y)

dy
=

1

2(1 − y)1/2
.

4. The function y = 4 − x3 is strictly decreasing for 0 < x < 2. When x = 0, we have y = 4, and when
x = 2 we have y = −4. Therefore, as x varies over the interval 0 < x < 2, y varies over the interval
−4 < y < 4. The inverse function is x = (4− y)1/3 and

dx

dy
= −1

3
(4− y)−2/3.

Therefore, for −4 < y < 4,

g(y) = f [(4− y)1/3].

∣∣∣∣dxdy
∣∣∣∣ = 1

2
(4− y)1/3.

1

3
(4− y)−2/3 =

1

6(4 − y)1/3
.

5. If y = ax+ b, the inverse function is x = (y − b)/a and dx/dy = 1/a. Therefore,

g(y) = f

[
1

a
(y − b)

] ∣∣∣∣dxdy
∣∣∣∣ = 1

| a | f
(
y − b

a

)
.

6. X lies between 0 and 2 if and only if Y lies between 2 and 8. Therefore, it follows from Exercise 3 that
for 2 < y < 8,

g(y) =
1

3
f

(
y − 2

3

)
=

1

3
· 1
2
· y − 2

3
=

1

18
(y − 2).

7. (a) If y = x2, then as x varies over the interval (0, 1), y also varies over the interval (0, 1). Also,
x = y1/2 and dx/dy = y−1/2/2. Hence, for 0 < y < 1,

g(y) = f(y1/2)

∣∣∣∣dxdy
∣∣∣∣ = 1 · 1

2
y−1/2 =

1

2
y−1/2.

(b) If y = −x3, then as x varies over the interval (0, 1), y varies over the interval (−1, 0). Also,
x = −y1/3 and dx/dy = −y−2/3/3. Hence, for −1 < y < 0,

g(y) = f(−y1/3)

∣∣∣∣dxdy
∣∣∣∣ = 1

3
| y |−2/3.

(c) If y = x1/2, then as x varies over the interval (0, 1), y also varies over the interval (0, 1). Also,
x = y2 and dx/dy = 2y. Hence, for 0 < y < 1, g(y) = f(y2)2y = 2y.

8. As x varies over all positive values, y also varies over all positive values. Also, x = y2 and dx/dy = 2y.
Therefore, for y > 0,

g(y) = f(y2)(2y) = 2y exp(−y2).

9. The c.d.f. G(y) corresponding to the p.d.f. g(y) is, for 0 < y < 2,

G(y) =

∫ y

0
g(t)dt =

∫ y

0

3

8
t2dt =

1

8
y3.

We know that the c.d.f. of the random variable Y = G−1(X) will be G. We must therefore determine
the inverse function G−1. If X = G(Y ) = Y 3/8 then Y = G−1(X) = 2X1/3. It follows that Y = 2X1/3.
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10. For 0 < x < 2, the c.d.f. of X is

F (x) =

∫ x

0
f(t)dt =

∫ x

0

1

2
t dt =

1

4
x2.

Therefore, by the probability integral transformation, we know that U = F (X) = X2/4 will have
the uniform distribution on the interval [0, 1]. Since U has this uniform distribution, we know from
Exercise 8 that Y = 2U1/3 will have the required p.d.f. g. Therefore, the required transformation is
Y = 2U1/3 = 2(X2/4)1/3 = (2X2)1/3.

11. We can use the probability integral transformation if we can find the inverse of the c.d.f. The c.d.f. is,
for 0 < y < 1,

G(y) =

∫ y

−∞
g(t)dt =

1

2

∫ y

0
(2t+ 1)dt =

1

2
(y2 + y).

The inverse of this function can be found by setting G(y) = p and solving for y.

1

2
(y2 + y) = p; y2 + y − 2p = 0; y =

−1 + (1 + 8p)1/2

2
.

So, we should generate four independent uniform pseudo-random variables P1, P2, P3, P4 and let Yi =
[−1 + (1 + 8Pi)

1/2]/2 for i = 1, 2, 3, 4.

12. Let X have the uniform distribution on [0, 1], and let F be a c.d.f. Let F−1(p) be defined as the smallest
x such that F (x) ≥ p. Define Y = F−1(X). We need to show that Pr(Y ≤ y) = F (y) for all y, First,
suppose that y is the unique x such that F (x) = F (y). Then Y ≤ y if and only if X ≤ F (y). Since
X has a uniform distribution Pr(X ≤ F (y)) = F (y). Next, suppose that F (x) = F (y) for all x in the
interval [a, b) of [a, b] with b > a, and suppose that F (x) < F (y) for all x < a. Then F−1(X) ≤ y if
and only if X ≤ F (a) = F (y). Once again Pr(X ≤ F (y)) = F (y).

13. The inverse transformation is z = 1/t with derivative −1/t2. the p.d.f. of T is

g(t) = f(1/t)/t2 = 2exp(−2/t)/t2,

for t > 0.

14. Let Y = cX + d. The inverse transformation is x = (y − d)/c. Assumethat c > 0. The derivative of
the inverse is 1/c. The p.d.f. of Y is

g(y) = f([y − d]/c)/c = [c(b − a)]−1, for a ≤ (y − d)/c ≤ b.

It is easy to see that a ≤ (y−d)/c ≤ b if and only if ca+d ≤ y ≤ cb+d, so g is the p.d.f. of the uniform
distribution on the interval [ca + d, cb + d]. If c < 0, the distribution of Y would be uniform on the
interval [cb+ d, ca+ d]. If c = 0, the distribution of Y is degenerate at the value d, i.e., Pr(Y = d) = 1.

15. Let F be the c.d.f. of X. First, find the c.d.f. of Y , namely, for y > 0,

Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−y1/2 ≤ X ≤ y1/2) = F (y1/2 − F (−y1/2).

Now, the p.d.f. of Y is the derivative of the above expression, namely,

g(y) =
d

dy
[F (y1/2)− F (−y1/2)] =

f(y1/2)

2y1/2
+

f(−y1/2)

2y1/2
.

This equals the expression in the exercise.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 3.9. Functions of Two or More Random Variables 85

16. Because 0 < X < 1 with probability 1, squaring X produces smaller values. There are wide intervals
of values of X that produce small values of X2 but the values of X that produce large values of X2 are
more limited. For example, to get Y ∈ [0.9, 1], you need X ∈ [0.9487, 1], whereas to get Y ∈ [0, 0.1] (an
interval of the same length), you need X ∈ [0, 0.3162], a much bigger set.

17. (a) According to the problem description, Y = 0 if X ≤ 100, Y = X − 100 if 100 < X ≤ 5100, and
Y = 5000 if X > 5100. So, Y = r(X), where

r(x) =

⎧⎪⎨⎪⎩
0 if x ≤ 100,
x− 100 if 100 < x ≤ 5100,
5000 if x > 5100.

(b) Let G be the c.d.f. of Y . Then G(y) = 0 for y < 0, and G(y) = 1 for y ≥ 5000. For 0 ≤ y < 5000,

Pr(Y ≤ y) = Pr(r(X) ≤ y)

= Pr(X ≤ y + 100)

=

∫ y+100

0

dx

(1 + x)2

= 1− 1

y + 101
.

In summary,

G(y) =

⎧⎪⎨⎪⎩
0 if y < 0,
1− 1

y+101 if 0 ≤ y < 5000,

1 if y ≥ 5000.

(c) There is positive probability that Y = 5000, but the rest of the distribution of Y is spread out in
a continuous manner between 0 and 5000.

3.9 Functions of Two or More Random Variables

Commentary

The material in this section can be very difficult, even for students who have studied calculus. Many textbooks
at this level avoid the topic of general bivariate and multivariate transformations altogether. If an instructor
wishes to avoid discussion of Jacobians and multivariate transformations, it might still be useful to introduce
convolution, and the extremes of a random sample. The text is organized so that these topics appear early
in the section, before any discussion of Jacobians. In the remainder of the text, the method of Jacobians is
used in the following places:

• The proof of Theorem 5.8.1, the derivation of the beta distribution p.d.f.

• The proof of Theorem 5.10.1, the derivation of the joint p.d.f. of the bivariate normal distribution.

• The proof of Theorem 8.3.1, the derivation of the joint distribution of the sample mean and sample
variance from a random sample of normal random variables.

• The proof of Theorem 8.4.1, the derivation of the p.d.f. of the t distribution.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



86 Chapter 3. Random Variables and Distributions

Solutions to Exercises

1. The joint p.d.f. of X1 and X2 is

f(x1, x2) =

{
1 for 0 < x1 < 1, 0 < x2 < 1,
0 otherwise.

By Eq. (3.9.5), the p.d.f. of Y is

g(y) =

∫ ∞

−∞
f(y − z, z)dz.

The integrand is positive only for 0 < y − z < 1 and 0 < z < 1. Therefore, for 0 < y ≤ 1 it is positive
only for 0 < z < y and we have

g(y) =

∫ y

0
1 · dz = y.

For 1 < y < 2. the integrand is positive only for y − 1 < z < 1 and we have

g(y) =

∫ 1

y−1
1 · dz = 2− y.

2. Let f be the p.d.f. of Y = X1 + X2 found in Exercise 1, and let Z = Y/2. The inverse of this
transformation is y = 2z with derivative 2. The p.d.f. of Z is

g(z) = 2f(2z) =

⎧⎪⎨⎪⎩
4z for 0 < z < 1/2,
4(1 − z) for 1/2 < z < 1,
0 otherwise.

3. The inverse transformation is:

x1 = y1,

x2 = y2/y1,

x3 = y3/y2.

Furthermore, the set S where 0 < xi < 1 for i = 1, 2, 3 corresponds to the set T where 0 < y3 < y2 <
y1 < 1. We also have

J = det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂x1
∂y1

∂x1
∂y2

∂x1
∂y3

∂x2
∂y1

∂x2
∂y2

∂x2
∂y3

∂x3
∂y1

∂x3
∂y2

∂x3
∂y3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= det

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

−y2
y21

1

y1
0

0 −y3
y22

1

y2

⎤⎥⎥⎥⎥⎥⎥⎦ =
1

y1y2
.

Therefore, for 0 < y3 < y2 < y1 < 1, the joint p.d.f. of Y1, Y2, and Y3 is

g(y1, y2, y3) = f

(
y1,

y2
y1

,
y3
y2

)
|J |

= 8y1
y2
y1

y3
y2

1

y1y2
=

8y3
y1y2

.
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4. As a convenient device, let Z = X1. Then the transformation from X1 and X2 to Y and Z is a one-
to-one transformation between the set S where 0 < x1 < 1 and 0 < x2 < 1 and the set T where
0 < y < z < 1. The inverse transformation is

x1 = z,

x2 =
y

z
.

Therefore,

J = det

⎡⎢⎢⎣
∂x1
∂y

∂x1
∂z

∂x2
∂y

∂x2
∂z

⎤⎥⎥⎦ = det

⎡⎢⎣ 0 1

1

z
− y

z2

⎤⎥⎦ = −1

z
.

For 0 < y < z < 1, the joint p.d.f. of Y and Z is

g(y, z) = f

(
z,

y

z

)
|J | =

(
z +

y

z

)(
1

z

)
.

It follows that for 0 < y < 1, the marginal p.d.f. of Y is

g1(y) =

∫ 1

y
g(y, z)dz = 2(1 − y).

5. As a convenient device let Y = X2. Then the transformation from X1 and X2 to Y and Z is a one-
to-one transformation between the set S where 0 < x1 < 1 and 0 < x2 < 1 and the set T where
0 < y < 1 and 0 < yz < 1. The inverse transformation is

x1 = yz,

x2 = y.

Therefore,

J = det

[
z y
1 0

]
= −y.

The region where the p.d.f. of (Z, Y ) is positive is in Fig. S.3.34. For 0 < y < 1 and 0 < yz < 1, the

y

T

(1,1)

z

yz = 1

Figure S.3.34: The region where the p.d.f. of (Z, Y ) is positive in Exercise 5 of Sec. 3.9.

joint p.d.f. of Y and Z is

g(y, z) = f(yz, y) |J | = (yz + y)(y).
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It follows that for 0 < z ≤ 1, the marginal p.d.f. of Z is

g2(z) =

∫ 1

0
g(y, z) dy =

1

3
(z + 1).

Also, for z > 1,

g2(z) =

∫ 1
z

0
g(y, z) dy =

1

3z3
(z + 1).

6. By Eq. (3.9.5) (with a change in notation),

g(z) =

∫ ∞

−∞
f(z − t, t) dt for −∞ < z < ∞.

However, the integrand is positive only for 0 ≤ z − t ≤ t ≤ 1. Therefore, for 0 ≤ z ≤ 1, it is positive
only for z/2 ≤ t ≤ z and we have

g(z) =

∫ z

z/2
2z dt = z2.

For 1 < z < 2, the integrand is positive only for z/2 ≤ t ≤ 1 and we have

g(z) =

∫ z

z/2
2z dt = z(2 − z).

7. Let Z = −X2. Then the p.d.f. of Z is

f2(z) =

{
exp(z) for z < 0,
0 for z ≥ 0.

Since X1 and Z are independent, the joint p.d.f. of X1 and Z is

f(x1, z) =

{
exp(−(x− z)) for x > 0, z < 0,
0 otherwise.

It now follows from Eq. (3.9.5) that the p.d.f. of Y = X1 −X2 = X1 + Z is

g(y) =

∫ ∞

−∞
f(y − z, z) dz.

The integrand is positive only for y − z > 0 and z < 0. Therefore, for y ≤ 0,

g(y) =

∫ y

−∞
exp(−(y − 2z)) dz =

1

2
exp(y).

Also, for y > 0,

g(y) =

∫ 0

−∞
exp(−(y − 2z)) dz =

1

2
exp(−y).
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8. We have

Pr(Yn ≥ 0.99) = 1− Pr(Yn < 0.99)

= 1− Pr(All n observations < 0.99)

= 1− (0.99)n.

Next, 1− (0.99)n ≥ 0.95 if and only if

(0.99)n ≤ 0.05 or n log(0.99) ≤ log(0.05)

or n ≥ log(0.05)

log(0.99)
≈ 298.1.

So, n ≥ 299 is needed.

9. It was shown in this section that the joint c.d.f. of Y1 and Yn is, for −∞ < y1 < yn < ∞,

G(y1, yn) = [F (yn)]
n − [F (yn)− F (y1)]

n.

Since F (y) = y for the given uniform distribution, we have

Pr(Y1 ≤ 0.1, Yn ≤ 0.8) = G(0.1, 0.8) = (0.8)n − (0.7)n.

10. Pr(Y1 ≤ 0.1 and Yn ≥ 0.8)

= Pr(Y1 ≤ 0.1)− Pr(Y1 ≤ 0.1 and Yn ≤ 0.8).

It was shown in this section that the p.d.f. of Y1 is

G1(y) = 1− [1− F (y)]n.

Therefore, Pr(Y1 ≤ 0.1) = G1(0.1) = 1− (0.9)n. Also, by Exercise 9,

Pr(Y1 ≤ 0.1 and Yn ≤ 0.8) = (0.8)n − (0.7)n.

Therefore,

Pr(Y1 ≤ 0.1 and Yn ≥ 0.8) = 1− (0.9)n − (0.8)n + (0.7)n.

11. The required probability is equal to

Pr

(
All n observations <

1

3

)
+ Pr

(
All n observations >

1

3

)
=

(
1

3

)n

+

(
2

3

)n

.

This exercise could also be solved by using techniques similar to those used in Exercise 10.

12. The p.d.f. h1(w) of W was derived in Example 3.9.8. Therefore,

Pr(W > 0.9) =

∫ 1

0.9
h1(w)dw =

∫ 1

0.9
n(n− 1)wn−2(1− w)dw

= 1− n(0.9)n−1 + (n− 1)(0.9)n.
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13. If X has the uniform distribution on the interval [0, 1], then aX+b (a > 0) has the uniform distribution
on the interval [b, a + b]. Therefore, 8X − 3 has the uniform distribution on the interval [−3, 5]. It
follows that if X1, . . . ,Xn form a random sample from the uniform distribution on the interval [0, 1],
then the n random variables 8X1 − 3, . . . , 8Xn − 3 will have the same joint distribution as a random
sample from the uniform distribution on the interval [−3, 5].

Next, it follows that if the range of the sample X1, . . . ,Xn is W , then the range of the sample 8X1 −
3, . . . , 8Xn−3 will be 8W . Therefore, ifW is the range of a random sample from the uniform distribution
on the interval [0, 1], then Z = 8W will have the same distribution as the range of a random sample
from the uniform distribution on the interval [−3, 5].

The p.d.f. h(w) of W was given in Example 3.9.8. Therefore, the p.d.f. f(z) of Z = 8W is

g(z) = h

(
z

8

)
· 1
8
=

n(n− 1)

8

(
z

8

)n−2 (
1− z

8

)
,

for −3 < z < 5.

This p.d.f. g(z) could also have been derived from first principles as in Example 3.9.8.

14. Following the hint given in this exercise, we have

G(y) = Pr(At least n− 1 observations are ≤ y)

= Pr(Exactly n− 1 observations are ≤ y) + Pr(All n observations are ≤ y)

= nyn−1(1− y) + yn = nyn−1 − (n− 1)yn.

Therefore, for 0 < y < 1,

g(y) = n (n− 1)yn−2 − n(n− 1)yn−1

= n(n− 1)yn−2(1− y).

It is a curious result that for this uniform distribution, the p.d.f. of Y is the same as the p.d.f. of the
range W , as given in Example 3.9.8. There actually is intuition to support those two distributions
being the same.

15. For any n sets of real numbers A1, . . . , An, we have

Pr(Y1 ∈ A1, . . . , Yn ∈ An) = Pr [r1(X1) ∈ A1, . . . , rn(Xn) ∈ An]

= Pr [r1(X1) ∈ A1] . . .Pr [rn(Xn) ∈ An]

= Pr(Y1 ∈ A1) . . .Pr(Yn ∈ An).

Therefore, Y1, . . . , Yn are independent by Definition 3.5.2.

16. If f factors in the form given in this exercise, then there must exist a constant c > 0 such that the
marginal joint p.d.f. of X1 and X2 is

f12(x1, x2) = cg(x1, x2) for (x1, x2) ∈ R2,

the marginal joint p.d.f. of X3,X4, and X5 is

f345(x3, x4, x5) =
1

c
h(x3, x4, x5) for (x3, x4, x5) ∈ R3,
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and, therefore, for every point (x1 . . . , x5) ∈ R5 we have

f(x1, . . . , x5) = f12(x1, x2)f345(x3, x4, x5).

It now follows that for any sets of real numbers A1 and A2,

Pr(Y1 ∈ A1 and Y2 ∈ A2) =

∫
. . .

∫
r1(x1,x2)∈A1 and
r2(x3,x4,x5)∈A2

f(x1, . . . , x5) dx1 . . . dx5

=

∫ ∫
r1(x1,x2)∈A1

f12(x1, x2) dx1 dx2

∫ ∫ ∫
r2(x3,x4,x5)∈A2

f345(x3, x4, x5) dx3 dx4 dx5

= Pr(Y1 ∈ A1)Pr(Y2 ∈ A2).

Therefore, by definition, Y1 and Y2 are independent.

17. We need to transform (X,Y ) to (Z,W ), where Z = XY and W = Y . The joint p.d.f. of (X,Y ) is

f(x, y) =

{
y exp(−xy)f2(y) if x > 0,
0 otherwise.

The inverse transformation is x = z/w and y = w. The Jacobian is

J = det

(
1/w −z/w2

0 1

)
=

1

w
.

The joint p.d.f. of (Z,W ) is

g(z, w) = f(z/w,w)/w = w exp(−z)f2(w)/w = exp(−z)f2(w), for z > 0.

This is clearly factored in the appropriate way to show that Z and W are independent. Indeed, if we
integrate g(z, w) over w, we obtain the marginal p.d.f. of Z, namely g1(z) = exp(−z), for z > 0. This
is the same as the function in (3.9.18).

18. We need to transform (X,Y ) to (Z,W ), where Z = X/Y and W = Y . The joint p.d.f. of (X,Y ) is

f(x, y) =

{
3x2f2(y)/y

3 if x > 0,
0 otherwise.

The inverse transformation is x = zw and y = w. The Jacobian is

J = det

(
w z
0 1

)
= w.

The joint p.d.f. of (Z,W ) is

g(z, w) = f(zw,w)w = 3z2w2f2(w)w/w
3 = 3z2f2(w), for 0 < x < 1.

This is clearly factored in the appropriate way to show that Z and W are independent. Indeed, if we
integrate g(z, w) over w, we obtain the marginal p.d.f. of Z, namely g1(z) = 3z2, for 0 < z < 1.
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19. This is a convolution. Let g be the p.d.f. of Y . By (3.9.5) we have, for y > 0,

g(y) =

∫
f(y − z)f(z)dx

=

∫ y

0
ez−ye−zdz

= ye−y.

Clearly, g(y) = 0 for y < 0, so the p.d.f.øf Y is

g(y) =

{
ye−y for y > 0,
0 otherwise.

20. Let f1 stand for the marginal p.d.f. of X1, namely f1(x) =
∫
f(x, x2)dx2. With a2 = 0 and a1 = a in

(3.9.2) we get

g(y) =

∫ ∞

−∞
f

(
y − b

a
, x2

)
1

|a|dx2

=
1

|a|f1
(
y − b

a

)
,

which is the same as (3.8.1).

21. Transforming to Z1 = X1/X2 and Z2 = X1 has the inverse X1 = Z2 and X2 = Z2/Z1. The set of
values where the joint p.d.f. of Z1 and Z2 is positive is where 0 < z2 < 1 and 0 < z2/z1 < 1. This can
be written as 0 < z2 < min{1, z1}. The Jacobian is the determinant of the matrix

(
0 1

−z2/z
2
1 1/z1

)
,

which is |z2/z21 |. The joint p.d.f. of Z1 and Z2 is then

g(z1, z2) =

∣∣∣∣z2z21
∣∣∣∣ 4z2 z2z1 = 4z32z

3
1 ,

for 0 < z2 < min{1, z1}. Integrating z2 out of this yields, for z1 > 0,

g1(z1) =

∫ min{1,z1}

0
4
z32
z31

dz2

=
min{z1, 1}4

z31

=

{
z1 if z1 < 1,

z−3
1 if z1 ≥ 1.

This is the same thing we got in Example 3.9.11.
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3.10 Markov Chains

Commentary

Instructors can discuss this section at any time that they find convenient or they can omit it entirely.
Instructors who wish to cover Sec. 12.5 (Markov chain Monte Carlo) and who wish to give some theoretical
justification for the methodology will want to discuss some of this material before covering Sec. 12.5. On
the other hand, one could cover Sec. 12.5 and skip the justification for the methodology without introducing
Markov chains at all.

Students may notice the following property, which is exhibited in some of the exercises at the end of this
section: Suppose that the Markov chain is in a given state si at time n. Then the probability of being in a
particular state sj a few periods later, say at time n+3 or n+4, is approximately the same for each possible
given state si at time n. For example, in Exercise 2, the probability that it will be sunny on Saturday is
approximately the same regardless of whether it is sunny or cloudy on the preceding Wednesday, three days
earlier. In Exercise 5, for given probabilities on Wednesday, the probability that it will be cloudy on Friday is
approximately the same as the probability that it will be cloudy on Saturday. In Exercise 7, the probability
that the student will be on time on the fourth day of class is approximately the same regardless of whether
he was late or on time on the first day of class. In Exercise 10, the probabilities for n = 3 and n = 4, are
generally similar. In Exercise 11, the answers in part (a) and part (b) are almost identical.

This property is a reflection of the fact that for many Markov chains, the nth power of the transition
matrix P n will converge, as n → ∞, to a matrix for which all the elements in any given column are equal.
For example, in Exercise 2, the matrix P n converges to the following matrix:⎡⎢⎢⎣

2

3

1

3
2

3

1

3

⎤⎥⎥⎦ .
This type of convergence is an example of Theorem 3.10.4. This theorem, and analogs for more com-

plicated Markov chains, provide the justification of the Markov chain Monte Carlo method introduced in
Sec. 12.5.

Solutions to Exercises

1. The transition matrix for this Markov chain is

P =

⎡⎢⎢⎣
1

3

2

3
2

3

1

3

⎤⎥⎥⎦ .
(a) If we multiply the initial probability vector by this matrix we get

vP =

(
1

2

1

3
+

1

2

2

3
,
1

2

2

3
+

1

2

1

3

)
=

(
1

2
,
1

2

)
.

(b) The two-step transition matrix is P 2, namely⎡⎢⎢⎣
1

3

1

3
+

2

3

2

3

1

3

2

3
+

2

3

1

3
2

3

1

3
+

1

3

2

3

2

3

2

3
+

1

3

1

3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
5

9

4

9
4

9

5

9

⎤⎥⎥⎦ .
2. (a) 0.4, the lower right corner of the matrix.
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(b) (0.7)(0.7) = 0.49.

(c) The probability that it will be cloudy on the next three days is (0.4)(0.4)
(0.4) = 0.064. The desired probability is 1− 0.064 = 0.936.

3. Saturday is three days after Wednesday, so we first compute

P 3 =

[
0.667 0.333
0.666 0.334

]
.

Therefore, the answers are (a) 0.667 and (b) 0.666.

4. (a) From Exercise 3, the probability that it will be sunny on Saturday is 0.667. Therefore, the answer
is (0.667)(0.7) = 0.4669.

(b) From Exercise 3, the probability that it will be sunny on Saturday is 0.666. Therefore, the answer
is (0.666)(0.7) = 0.4662.

5. Let v = (0.2, 0.8).

(a) The answer will be the second component of the vector vP . We easily compute vP = (0.62, 0.38),
so the probability is 0.38.

(b) The answer will be the second component of vP 2. We can compute vP 2 by multiplying vP by
P to get (0.662, 0.338), so the probability is 0.338.

(c) The answer will be the second component of of vP 3. Since vP 3 = (0.6662, 0.3338), the answer is
0.3338.

6. In this exercise (and the next two) the transition matrix P is

Late On time

Late 0.2 0.8

On time 0.5 0.5

(a) (0.8)(0.5)(0.5) = 0.2

(b) (0.5)(0.2)(0.2) = 0.02.

7. Using the matrix in Exercise 6, it is found that

P 3 =

[
0.368 0.632
0.395 0.605

]
.

Therefore, the answers are (a) 0.632 and (b) 0.605.

8. Let v = (0.7, 0.3).

(a) The answer will be the first component of the vector vP . We can easily compute vP = (0.29, 0.71),
so the answer is 0.29.

(b) The answer will be the second component of the vector vP 3. We compute vP 3 = (0.3761, 0.6239),
so the answer is 0.6239.
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9. (a) It is found that

P 2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
16

7

16

2

16

4

16

0 1 0 0

3

8

1

8

2

8

2

8
4

16

6

16

3

16

3

16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The answer is given by the element in the third row and second column.

(b) The answer is the element in the first row and third column of P 3, namely 0.125.

10. Let v =

(
1

8
,
1

4
,
3

8
,
1

4

)
.

(a) The probabilities for s1, s2, s3, and s4 will be the four components of the vector vP .

(b) The required probabilities will be the four components of vP 2.

(c) The required probabilities will be the four components of vP 3.

11. The transition matrix for the states A and B is⎡⎢⎢⎣
1

3

2

3
2

3

1

3

⎤⎥⎥⎦ .
It is found that

P 4 =

⎡⎢⎢⎣
41

81

40

81
40

81

41

81

⎤⎥⎥⎦ .

Therefore, the answers are (a)
40

81
and (b)

41

81
.

12. (a) Using the transition probabilities stated in the exercise, we construct

P =

⎡⎢⎣ 0.0 0.2 0.8
0.6 0.0 0.4
0.5 0.5 0.0

⎤⎥⎦ .
(b) It is found that

P 2 =

⎡⎢⎣ 0.52 0.40 0.08
0.20 0.32 0.48
0.30 0.10 0.60

⎤⎥⎦ .
Let v =

(
1

3
,
1

3
,
1

3

)
. The probabilities that A,B, and C will have the ball are equal to the three

components of vP 2. Since the third component is largest, it is most likely that C will have the
ball at time n+ 2.
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13. The states are triples of possible outcomes: (HHH), (HHT ), (HTH), etc. There are a total of eight
such triples. The conditional probabilities of the possible values of the outcomes on trials (n−1, n, n+1)
given all trials up to time n depend only on the trials (n − 2, n − 1, n) and not on n itself, hence we
have a Markov chain with stationary transition probabilities. Every row of the transition matrix has
the following form except the two corresponding to (HHH) and (TTT ). Let a, b, c stand for three
arbitrary elements of {H,T}, not all equal. The row for (abc) has 0 in every column except for the two
columns (abH) and (abT ), which have 1/2 in each. In the (HHH) row, every column has 0 except the
(HHT ) column, which has 1. In the (TTT ) row, every column has 0 except the (TTH) column which
has 1.

14. Since we switch a pair of balls during each operation, there are always three balls in box A during this
process. There are a total of nine red balls available, so there are four possible states of the proposed
Markov chain, 0, 1, 2, 3, each state giving the number of red balls in box A. The possible compositions
of box A after the nth operation clearly depend only on the composition after the n− 1st operation, so
we have a Markov chain. Also, balls are drawn at random during each operation, so the probabilities of
transition depend only on the current state. Hence, the transition probabilities are stationary. If there
are currently 0 red balls in box A, then we shall certainly remove a green ball. The probability that we
get a red ball from box B is 9/10, otherwise we stay in state 0. So, the first row of P is (1/10, 9/10, 0, 0).
If we start with 1 red ball, then we remove that ball with probability 1/3. We replace whatever we
draw with a red ball with probability 8/10. So we can either go to state 0 (probability 1/3 × 2/10),
stay in state 1 (probability 1/3 × 8/10 + 2/3 × 2/10), or go to state 2 (probability 2/3 × 8/10). The
second row of P is (1/15, 2/5, 8/15, 0). If we start with 2 red balls, we remove one with probability 2/3
and we replace it with red with probability 7/10. So, the third row of P is (0, 1/5, 17/30, 7/30). If we
start with 3 red balls, we certainly remove one and we replace it by red with probability 6/10, so the
fourth row of P is (0, 0, 2/5, 3/5).

15. We are asked to verify the numbers in the second and fifth rows of the matrix in Example 3.10.6. For
the second row, the parents have genotypes AA and Aa, so that the only possible offspring are AA and
Aa. Each of these occurs with probability 1/2 because they are determined by which allele comes from
the Aa parent. Since the two offspring in the second generation are independent, we will get {AA,AA}
with probability (1/2)2 = 1/4 and we will get {Aa,Aa} with probability 1/4 also. The remaining
probability, 1/2, is the probability of {AA,Aa}. For the fifth row, the parent have genotypes Aa and
aa. The only possible offspring are Aa and aa. Indeed, the situation is identical to the second row with
a and A switched. The resulting probabilities are also the same after this same switch.

16. We have to multiply the initial probability vector into the transition matrix and do the arithmetic. For
the first coordinate, we obtain

1

16
× 1 +

1

4
× 0.25 +

1

4
× 0.0625 =

9

64
.

The other five elements are calculated in a similar fashion. The resulting vector is(
9

64
,
3

16
,
1

32
,
5

16
,
3

16
,
9

64

)
.

17. (a) We are asked to find the conditional distribution of Xn given Xn−1 = {Aa, aa} and Xn+1 =
{AA, aa}. For each possible state xn, we can find

Pr(Xn = xn|Xn−1 = {Aa, aa},Xn+1 = {AA, aa}) (S.3.4)

=
Pr(Xn = xn,Xn+1 = {AA, aa}|Xn−1 = {Aa, aa})

Pr(Xn+1 = {AA, aa}|Xn−1 = {Aa, aa}) .
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The denominator is 0.0313 from the 2-step transition matrix in Example 3.10.9. The numerator
is the product of two terms from the 1-step transition matrix: one from {Aa, aa} to xn and the
other from xn to {AA, aa}. These products are as follows:

xn
{AA,AA} {AA,Aa} {AA, aa} {Aa,Aa} {Aa, aa} {aa, aa}

0 0 0 0.25 × 0.125 0 0
Plugging these into (S.3.4) gives

Pr(Xn = {Aa,Aa}|Xn+1 = {Aa, aa},Xn+1 = {AA, aa}) = 1,

and all other states have probability 0.

(b) This time, we want

Pr(Xn = xn|Xn−1 = {Aa, aa},Xn+1 = {aa, aa})
=

Pr(Xn = xn,Xn+1 = {aa, aa}|Xn−1 = {Aa, aa})
Pr(Xn+1 = {aa, aa}|Xn−1 = {Aa, aa}) .

The denominator is 0.3906. The numerator products and their ratios to the denominator are:
xn {AA,AA} {AA,Aa} {AA, aa} {Aa,Aa} {Aa, aa} {aa, aa}
Numerator 0 0 0 0.25× 0.0625 0.5× 0.25 0.25 × 1
Ratio 0 0 0 0.0400 0.3200 0.6400

This time, we get

Pr(Xn = xn|Xn−1 = {Aa, aa},Xn+1 = {Aa,Aa}) =

⎧⎪⎨⎪⎩
0.04 if xn = {Aa,Aa},
0.32 if xn = {Aa, aa},
0.64 if xn = {aa, aa},

,

and all others are 0.

18. We can see from the 2-step transition matrix that it is possible to get from every non-absorbing state
into each of the absorbing states in two steps. So, no matter what non-absorbing state we start in,
the probability is one that we will eventually end up in one of absorbing states. Hence, no distribution
with positive probability on any non-absorbing state can be a stationary distribution.

19. The matrix G and its inverse are

G =

(
−0.3 1
0.6 1

)
,

G−1 = −10

9

(
1 −1

−0.6 −0.3

)
.

The bottom row of G−1 is (2/3, 1/3), the unique stationary distribution.

20. The argument is essentially the same as in Exercise 18. All probability in non-absorbing states eventu-
ally moves into the absorbing states after sufficiently many transitions.

3.11 Supplementary Exercises

Solution to Exercises

1. We can calculate the c.d.f. of Z directly.

F (z) = Pr(Z ≤ z) = Pr(Z = X) Pr(X ≤ z) + Pr(Z = Y ) Pr(Y ≤ z)

=
1

2
Pr(X ≤ z) +

1

2
Pr(Y ≤ z)
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The graph is in Fig. S.3.35.

.2

.4

.6

.8

1

F(z)

0 1 2 3 4 5 z

Figure S.3.35: Graph of c.d.f. for Exercise 1 of Sec. 3.11.

2. Let x1, . . . , xk be the finitely many values for which f1(x) > 0. Since X and Y are independent, the
conditional distribution of Z = X + Y given X = x is the same as the distribution of x + Y , which
has the p.d.f. f2(z − x), and the c.d.f. F2(z − x). By the law of total probability the c.d.f. of Z is∑k

i=1 F2(z − xi)f1(xi). Notice that this is a weighted average of continuous functions of z, F2(z − xi)
for i = 1, . . . , k, hence it is a continuous function. The p.d.f. of Z can easily be found by differentiating
the c.d.f. to obtain

∑k
i=1 f2(z − xi)f1(xi).

3. Since F (x) is continuous and differentiable everywhere except at the points x = 0, 1, and 2,

0

F(x)

1 2 x

Figure S.3.36: Graph of c.d.f. for Exercise 3 of Sec. 3.11.

f(x) =
dF (x)

dx

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2

5
for 0 < x < 1,

3

5
for 1 < x < 2,

0 otherwise.

4. Since f(x) is symmetric with respect to x = 0, F (0) = Pr(X ≤ 0) = 0.5. Hence,∫ x0

0
f(x) dx =

1

2

∫ x0

0
exp(−x) dx = .4.

It follows that exp(−x0) = .2 and x0 = log 5.

5. X1 and X2 have the uniform distribution over the square, which has area 1. The area of the quarter
circle in Fig. S.3.37, which is the required probability, is π/4.
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1

0 1 x1

x2

Figure S.3.37: Region for Exercise 5 of Sec. 3.11.

6. (a) Pr(X divisible by n) = f(n) + f(2n) + f(3n) + · · · =
∞∑
x=1

1

c(p) (nx)p
=

1

np
.

(b) By part (a), Pr(X even) = 1/2p. Therefore, Pr(X odd) = 1− 1/2p.

7.

Pr(X +X2 even) = Pr(X1 even)Pr(X2 even) + Pr(X1 odd)Pr(X2 odd)

=

(
1

2p

)(
1

2p

)
+

(
1− 1

2p

)(
1− 1

2p

)
= 1− 1

2p−1
+

1

22p−1
.

8. Let G(x) devote the c.d.f. of the time until the system fails, let A denote the event that component 1
is still operating at time x, and let B denote the event that at least one of the other three components
is still operating at time x. Then

1−G(x) = Pr(System still operating at time x) = Pr(A ∩B) = Pr(A) Pr(B) = [1− F (x)][1 − F 3(x)].

Hence, G(x) = F (x) [1 + F 2(x)− F 3(x)].

9. Let A denote the event that the tack will land with its point up on all three tosses. Then Pr(A |X =
x) = x3. Hence,

Pr(A) =

∫ 1

0
x3f(x) dx =

1

10
.

10. Let Y denote the area of the circle. Then Y = πX2, so the inverse transformation is

x = (y/π)1/2 and
dx

dy
=

1

2(πy)1/2
.

Also, if 0 < x < 2, then 0 < y < 4π. Thus,

g(y) =
1

16(πy)1/2

[
3

(
y

π

)1/2

+ 1

]
for 0 < y < 4π

and g(y) = 0 otherwise.
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11. F (x) = 1− exp(−2x) for x > 0. Therefore, by the probability integral transformation, F (X) will have
the uniform distribution on the interval [0, 1]. Therefore,

Y = 5F (X) = 5(1− exp(−2X))

will have the uniform distribution on the interval [0, 5].

It might be noted that if Z has the uniform distribution on the interval [0, 1], then 1−Z has the same
uniform distribution. Therefore,

Y = 5[1− F (X)] = 5 exp(−2X)

will also have the uniform distribution on the interval [0, 5].

12. This exercise, in different words, is exactly the same as Exercise 7 of Sec. 1.7 and, therefore, the solution
is the same.

13. Only in (c) and (d) is the joint p.d.f. of X and Y positive over a rectangle with sides parallel to the
axes, so only in (c) and (d) is there the possibility of X and Y being independent. Since the uniform
density is constant, it can be regarded as being factored in the form of Eq. (3.5.7). Hence, X and Y
are independent in (c) and (d).

14. The required probability p is the probability of the shaded area in Fig. S.3.38. Therefore,

10 x

1

y

A

2

Figure S.3.38: Figure for Exercise 14 of Sec. 3.11.

p = 1− Pr(A) = 1−
∫ 1/2

0

∫ y

0
f1(x) f2(y) dx dy = 1− 1/3 = 2/3.

15. This problem is similar to Exercise 11 of Sec. 3.5, but now we have Fig. S.3.39. The area of the shaded

region is now 550 + 787.5 = 1337.5. Hence, the required probability is
1337.5

3600
= .3715

16. For 0 < x < 1,

f1(x) =

∫ 1

x
2(x+ y)dy = 1 + 2x− 3x2.

Therefore, Pr

(
X <

1

2

)
=

∫ 1/2

0
f1(x) dx =

1

2
+

1

4
− 1

8
=

5

8
.

Finally, for 0 < x, y < 1,

g2(y |x) = f(x, y)

f1(x)
=

2(x+ y)

1 + 2x− 3x2
.
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B

60

15

0
10 60 A

Figure S.3.39: Figure for Exercise 15 of Sec. 3.11.

17. f(x, y) = f(x) g(y |x) = 9y2

x
for 0 < y < x < 1.

Hence,

f2(y) =

∫ 1

y
f(x, y) dx = −9y2 log(y) for 0 < y < 1

and

g1(x | y) = f(x, y)

f2(y)
= − 1

x log(y)
for 0 < y < x < 1.

18. X and Y have the uniform distribution over the region shown in Fig. S.3.40. The area of this region is

y
2

2

1

−1

−1

1 x

Figure S.3.40: Region for Exercise 18 of Sec. 3.11.

4. The area in the second plus the fourth quadrants is 1. Therefore, the area in the first plus the third
quadrants is 3, and

Pr(XY > 0) =
3

4
.
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Furthermore, for any value of x (−1 < x < 1), the conditional distribution of Y given that X = x will
be a uniform distribution over the interval [x− 1, x+ 1]. Hence,

g2(y |x) =

⎧⎪⎨⎪⎩
1

2
for x− 1 < y < x+ 1,

0 otherwise.

19.

f1(x) =

∫ 1

x

∫ 1

y
6 dz dy = 3− 6x+ 3x2 = 3(1 − x)2 for 0 < x < 1,

f2(y) =

∫ y

0

∫ 1

y
6 dz dx = 6y(1− y) for 0 < y < 1.

f3(z) =

∫ z

0

∫ y

0
6 dx dy = 3z2 for 0 < z < 1.

20. Since f(x, y, z) can be factored in the form g(x, y)h(z) it follows that Z is independent of the random
variables X and Y . Hence, the required conditional probability is the same as the unconditional
probability Pr(3X > Y ). Furthermore, it follows from the factorization just given that the marginal
p.d.f. h(z) is constant for 0 < z < 1. Thus, this constant must be 1 and the marginal joint p.d.f. of X
and Y must be simply g(x, y) = 2, for 0 < x < y < 1. Therefore,

Pr(3X > Y ) =

∫ 1

0

∫ y

y/3
2dxdy =

2

3
.

The range of integration is illustrated in Fig. S.3.41.

y

1

0 1 x

Figure S.3.41: Range of integration for Exercise 20 of Sec. 3.11.

21. (a) f(x, y) =

{
exp(−(x+ y)) for x > 0, y > 0,
0 otherwise.

Also, x = uv and y = (1− u)v, so

J =

∣∣∣∣∣ v u
−v 1− u

∣∣∣∣∣ = v > 0.

Therefore,

g(u, v) = f(uv, [1− u]v) |J | =
{

v exp(−v) for 0 < u < 1, v > 0,
0 otherwise.
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(b) Because g can be appropriately factored (the factor involving u is constant) and it is positive over
an appropriate rectangle, it follows that U and V are independent.

22. Here, x = uv and y = v, so

J =

∣∣∣∣∣ v u
0 1

∣∣∣∣∣ = v > 0.

Therefore,

g(u, v) = f(uv, v) |J | =
{

8uv3 for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1,
0 otherwise.

X and Y are not independent because f(x, y) > 0 over a triangle, not a rectangle. However, it can be
seen that U and V are independent.

23. Here, f(x) =
dF (x)

dx
= exp(−x) for x > 0. It follows from the results in Sec. 3.9 that

g(y1, yn) = n(n− 1)(exp(−y1)− exp(−yn))
n−2 exp(−(y1 + yn))

for 0 < y1 < yn. Also, the marginal p.d.f. of Yn is

gn(yn) = n(1− exp(−yn))
n−1 exp(−yn) for yn > 0.

Hence,

h(y1 | yn) = (n− 1)(exp(−y1)− exp(−yn))
n−2 exp(−y1)

(1− exp(−yn))n−1
for 0 < y1 < yn.

24. As in Example 3.9.7, let W = Yn − Y1 and Z = Y1. The joint p.d.f. g(w, z) of (W,Z) is, for 0 < w < 1
and 0 < z < 1− w,

g(w, z) = 24[(w + z)2 − z2] z (w + z) = 24 w (2z3 + 3wz2 + w2z),

and 0 otherwise. Hence, the p.d.f. of the range is, for 0 < w < 1,

h(w) =

∫ 1−w

0
g(w, z) dz = 12w(1 − w)2.

25. (a) Let f2 be the marginal p.d.f. of Y . We approximate

Pr(y − ε < Y ≤ y + ε) =

∫ y+ε

y−ε
f2(t)dt ≈ 2εf2(y).

(b) For each s, we approximate∫ y+ε

y−ε
f(s, t)dt ≈ 2εf(s, y).

Using this, we can approximate

Pr(X ≤ x, y − ε < Y ≤ y + ε) =

∫ x

−∞

∫ y+ε

y−ε
f(s, t)dtds ≈ 2ε

∫ x

−∞
f(s, y)ds.
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(c) Taking the ratio of the approximation in part (b) to the approximation in part (a), we obtain

Pr(X ≤ x|y − ε < Y ≤ y + ε) =
Pr(X ≤ x, y − ε < Y ≤ y + ε)

Pr(y − ε < Y ≤ y + ε)

≈
∫ x
−∞ f(s, y)ds

f2(y)

=

∫ x

−∞
g1(s|y)ds.

26. (a) Let Y = X1. The transformation is Y = X1 and Z = X1 − X2. The inverse is x1 = y and
x2 = y − z. The Jacobian has absolute value 1. The joint p.d.f. of (Y,Z) is

g(y, z) = exp(−y − (y − z)) = exp(−2y + z),

for y > 0 and z < y.

(b) The marginal p.d.f. of Z is∫ ∞

max{0,z}
exp(−2y + z)dy =

1

2
exp(z) exp(−2max{0, z}) = 1

2

{
exp(−z) if z ≥ 0,
exp(z) if z < 0.

The conditional p.d.f. of Y = X1 given Z = 0 is the ratio of these two with z = 0, namely

g1(x1|0) = 2 exp(−2x1), for x1 > 0.

(c) Let Y = X1. The transformation is now Y = X1 and W = X1/X2. The inverse is x1 = y and
x2 = y/w. The Jacobian is

J = det

(
1 0

1/w −y/w2

)
= − y

w2
.

The joint p.d.f. of (Y,W ) is

g(y,w) = exp(−y − y/w)y/w2 = y exp(−y(1 + 1/w))/w2 ,

for y,w > 0.

(d) The marginal p.d.f. of W is∫ ∞

0
y exp(−y(1 + 1/w))/w2dy =

1

w2(1 + 1/w)2
=

1

(1 + w)2
,

for w > 0. The conditional p.d.f. of Y = X1 given W = 1 is the ratio of these two with w = 1,
namely

h1(x1|1) = 4x1 exp(−2x1), for x1 > 0.

(e) The conditional p.d.f. g1 in part (b) is supposed to be the conditional p.d.f. of X1 given that Z
is close to 0, that is, that |X1 − X2| is small. The conditional p.d.f. h1 in part (d) is supposed
to be the conditional p.d.f. of X1 given that W is close to 1, that is, that |X1/X2 − 1| is small.
The sets of (x1, x2) values such that |x1 − x2| is small and that |x1/x2 − 1| is small are drawn
in Fig. S.3.42. One can see how the two sets, although close, are different enough to account for
different conditional distributions.

27. The transition matrix is as follows:

Players in game n+ 1
(A,B) (A,C) (B,C)

Players in (A,B) 0 0.3 0.7
game n (A,C) 0.6 0 0.4

(B,C) 0.8 0.2 0
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x1

x2

0 1 2 3 4 5

0
1

2
3

4
5

Boundary of |x1-x2|<0.1
Boundary of |x1/x2-1|<.1

Figure S.3.42: Boundaries of the two regions where |x1 − x2| < 0.1 and |x1/x2 − 1| < 0.1 in Exercise 26e of
Sec. 3.11.

28. If A and B play in the first game, then there are the following two sequences of outcomes which result
in their playing in the fourth game:
i) A beats B in the first game, C beats A in the second game, B beats C in the third game;
ii) B beats A in the first game, C beats B in the second game, A beats C in the third game.

The probability of the first sequence is (0.3) (0.4) (0.8) = 0.096. The probability of the second sequence
is (0.7) (0.2) (0.6) = 0.084. Therefore, the overall probability that A and B will play again in the fourth
game is 0.18. The same sort of calcuations show that this answer will be the same if A and C play in
the first game or if B and C play in the first game.

29. The matrix G and its inverse are

G =

⎛⎜⎝ −1.0 0.3 1.0
0.6 −1.0 1.0
0.8 0.2 1.0

⎞⎟⎠ ,

G−1 =

⎛⎜⎝ −0.5505 −0.4587 0.5963
0.0917 −0.8257 0.7339
0.4220 0.2018 0.3761

⎞⎟⎠ .

The bottom row of G−1 is the unique stationary distribution, (0.4220, 0.2018, 0.3761).
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Chapter 4

Expectation

4.1 The Expectation of a Random Variable

Commentary

It is useful to stress the fact that the expectation of a random variable depends only on the distribution
of the random variable. Every two random variables with the same distribution will have the same mean.
This also applies to variance (Sec. 4.3), other moments and m.g.f. (Sec. 4.4), and median (Sec. 4.5). For this
reason, one often refers to means, variance, quantiles, etc. of a distribution rather than of a random variable.
One need not even have a random variable in mind in order to calculate the mean of a distribution.

Solutions to Exercises

1. The mean of X is

E(X) =

∫
xf(x)dx =

∫ b

a

x

b− a
dx =

b2 − a2

2(b− a)
=

a+ b

2
.

2. E(X) =
1

100
(1 + 2 + · · ·+ 100) =

1

100

(100)(101)

2
= 50.5.

3. The total number of students is 50. Therefore,

E(X) = 18

(
20

50

)
+ 19

(
22

50

)
+ 20

(
4

50

)
+ 21

(
3

50

)
+ 25

(
1

50

)
= 18.92.

4. There are eight words in the sentence and they are each equally probable. Therefore, the possible values
of X and their probabilities are as follows:

x f(x)

2 1/8
3 5/8
4 1/8
9 1/8

It follows that E(X) = 2

(
1

8

)
+ 3

(
5

8

)
+ 4

(
1

8

)
+ 9

(
1

8

)
= 3.75.
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5. There are 30 letters and they are each equally probable:

2 letters appear in the only two-letter word;

15 letters appear in three-letter words;

4 letters appear in the only four-letter word;

9 letters appear in the only nine-letter word.

Therefore, the possible values of Y and their probabilities are as follows:

y g(y)

2 2/30
3 15/30
4 4/30
9 9/30

E(Y ) = 2

(
2

30

)
+ 3

(
15

30

)
+ 4

(
4

30

)
+ 9

(
9

30

)
= 4.867.

6. E

(
1

X

)
=

∫ 1

0

1

x
· 2xdx = 2.

7. E

(
1

X

)
=

∫ 1

0

1

x
dx = − lim

x→0
log(x) = ∞. Since the integral is not finite, E

(
1

X

)
does not exist.

8. E(XY ) =

∫ 1

0

∫ x

0
xy · 12y2dydx =

1

2
.

9. If X denotes the point at which the stick is broken, then X has the uniform distribution on the interval
[0, 1]. If Y denotes the length of the longer piece, then Y = max{X, 1 −X}. Therefore,

E(Y ) =

∫ 1

0
max(x, 1− x)dx =

∫ 1/2

0
(1− x)dx+

∫ 1

1/2
xdx =

3

4
.

10. Since α has the uniform distribution on the interval [−π/2, π/2], the p.d.f. of α is

f(α) =

⎧⎪⎨⎪⎩
1

π
for −π

2
< α <

π

2
,

0 otherwise.

0

y

1 x

α

Figure S.4.1: Figure for Exercise 10 of Sec. 4.1.
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Also, Y = tan(α). Therefore, the inverse transformation is α = tan−1 Y and dα/dy = 1/(1 + y2). As
α varies over the interval (−π/2, π/2), Y varies over the entire real line. Therefore, for −∞ < y < ∞,
the p.d.f. of Y is

g(y) = f(tan−1y)
1

1 + y2
=

1

π(1 + y2)
.

11. The p.d.f.’s of Y1 and Yn were found in Sec. 3.9. For the given uniform distribution, the p.d.f. of Y1 is

g1(y) =

{
n(1− y)n−1 for 0 < y < 1,
0 otherwise.

Therefore,

E(Y1) =

∫ 1

0
yn(1− y)n−1dy =

1

n+ 1
.

The p.d.f. of Yn is

gn(y) =

{
nyn−1 for 0 < y < 1,
0 otherwise.

Therefore,

E(Yn) =

∫ 1

0
y · nyn−1dy =

n

n+ 1
.

12. It follows from the probability integral transformation that the joint distribution of F (X1), . . . , F (Xn)
is the same as the joint distribution of a random sample from the uniform distribution on the interval
[0, 1]. Since F (Y1) is the smallest of these values and F (Yn) is the largest, the distributions of these
variables will be the same as the distributions of the smallest and the largest values in a random sample
from the uniform distribution on the interval [0, 1]. Therefore, E[F (Y1)] and E[F (Yn)] will be equal to
the values found in Exercise 11.

13. Let p = Pr(X = 300). Then E(X) = 300p + 100(1 − p) = 200p + 100. For risk-neutrality, we need
E(X) = 110 ∗ (1.058) = 116.38. Setting 200p+100 = 116.38 yields p = 0.0819. The option has a value
of 150 if X = 300 and it has a value of 0 if X = 100, so the mean of the option value is 150p = 12.285.
The present value of this amount is 12.285/1.058 = 11.61, the risk-neutral price of the option.

14. For convenience, we shall not use dollar signs in these calculations.

(a) We need to check the investor’s net worth at the end of the year in four situations:

i. X = 180 and she makes the transactions

ii. X = 180 and she doesn’t make the transactions

iii. X = 260 and she makes the transactions

iv. X = 260 and she doesn’t make the transactions
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Since we don’t know the investor’s entire net worth, we shall only calculate it relative to all other
investments. This means that we only need to pretend as if the investor had one share of the
stock worth 200. We don’t care what else she has. We need to show that cases (i) and (ii) lead
to the same net worth and that cases (iii) and (iv) lead to the same net worth. In case (ii), her
net worth will change by −20. In case (iv), her net worth will change by 60. In case (i), nobody
will exercise the options. So she will sell the three extra shares for 180 each (total 540) and pay
the loan of 519.24 plus interest 20.77 for a net 0.01 loss. Plus her one original share of stock has
lost 20 and her net worth has changed a total of −20.01, which is the same as case (i) except for
the accumulated rounding error. In case (iii), the options will be exercised, and she will receive
800 for four shares of the stock. She will have to pay back the loan of 519.24 plus 20.77 in interest
for a net gain of 259.99. But she no longer has the one share of stock that was worth 200, so her
change in net worth is 59.99, the same as case (iv) to within the same one cent of rounding.

(b) If the option price is x < 20.19, then the investor only receives 4x for selling the options, but still
needs to pay 600 for the three shares, so she must borrow 600 − 4x. The rest of the calculations
proceed just as in part (a) but we must replace 519.24 by 600−4x, and the interest 20.77 must be
replaced by 0.04(600− 4x). That is, to pay back the loan with interest, she must pay 624− 4.16x
instead of 540.01. So she pays an additional 83.99 − 4.16x relative to the situation in case (a)
regardless of what happens to the stock price.

(c) This situation is the same as part (b) except now the value of 83.99 − 4.16x is negative instead
of positive, so the investor pays back less and hence makes additional profit rather than suffers
additional loss.

15. The value of the option is 0 if X = 260 and it is 40 if X = 180, so the expected value of the option is
40(1 − p) = 40 × 0.65 = 26. The present value of this amount is 26/1.04 = 25.

16. If f is the p.f. of X, and Y = |X|, then for y ≥ 0, Pr(Y = y) = Pr(X = y) + Pr(X = −y). In
Example 4.1.4, Pr(X = y) = Pr(X = −y) = 1/[2y(y + 1)], and this makes Pr(Y = y) the p.f. in
Example 4.1.5.

4.2 Properties of Expectations

Commentary

Be sure to stress the fact that Theorem 4.2.6 on the expected value of a product of random variables has the
condition that the random variables are independent. This section ends with a derivation for the expectation
of a nonnegative discrete random variable. Although this method has theoretical interest, it is not central to
the rest of the text.

Solutions to Exercises

1. The random variable Y is equal to 10(R − 1.5) in dollars. The mean of Y is 10[E(R) − 1.5]. From
Exercise 1 in Sec. 4.1, we know that E(R) = (−3 + 7)/2 = 2, so E(Y ) = 5.

2. E(2X1 − 3X2 +X3 − 4) = 2E(X1)− 3E(X2) + E(X3)− 4 = 2(5) − 3(5) + 5− 4 = −4.

3.

E[(X1 − 2X2 +X3)
2] = E(X2

1 + 4X2
2 +X2

3 − 4X1X2 + 2X1X3 − 4X2X3)

= E(X2
1 ) + 4E(X2

2 ) + E(X2
3 )− 4E(X1X2)

+ 2E(X1X3)− 4E(X2X3).
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Since X1,X2, and X3 are independent,

E(XiXj) = E(Xi)E(Xj) for i �= j.

Therefore, the above expectation can be written in the form:

E(X2
1 ) + 4E(X2

2 ) + E(X2
3 )− 4E(X1)E(X2) + 2E(X1)E(X3)− 4E(X2)E(X3).

Also, since each Xi has the uniform distribution on the interval [0, 1], then E(Xi) =
1
2 and

E(X2
i ) =

∫ 1

0
x2dx =

1

3
.

Hence, the desired expectation has the value 1/2.

4. The area of the rectangle is XY . Since X and Y are independent, E(XY ) = E(X)E(Y ). Also,
E(X) = 1/2 and E(Y ) = 7. Therefore, E(XY ) = 7/2.

5. For i = 1, . . . , n, let Yi = 1 if the observation Xi falls within the interval (a, b), and let Yi = 0 otherwise.

Then E(Yi) = Pr(Yi = 1) =

∫ b

a
f(x)dx. The total number of observations that fall within the interval

(a, b) is Y1 + · · ·+ Yn, and

E(Y1 + · · ·+ Yn) = E(Y1) + · · · + E(Yn) = n

∫ b

a
f(x)dx.

6. Let Xi = 1 if the ith jump of the particle is one unit to the right and let Xi = −1 if the ith jump is
one unit to the left. Then, for i = 1, . . . , n,

E(Xi) = (−1)p + (1)(1 − p) = 1− 2p.

The position of the particle after n jumps is X1 + · · ·+Xn, and

E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = n(1− 2p).

7. For i = 1, . . . , n, let Xi = 2 if the gambler’s fortune is doubled on the ith play of the game and let
Xi = 1/2 if his fortune is cut in half on the ith play. Then

E(Xi) = 2

(
1

2

)
+

(
1

2

)(
1

2

)
=

5

4
.

After the first play of the game, the gambler’s fortune will be cX1, after the second play it will be
(cX1)X2, and by continuing in this way it is seen that after n plays the gambler’s fortune will be
cX1X2 . . . Xn. Since X1, . . . ,Xn are independent,

E(cX1 . . . Xn) = cE(X1) . . . E(Xn) = c

(
5

4

)n

.

8. It follows from Example 4.2.4 that

E(X) = 8

(
10

25

)
=

16

5
.

Since Y = 8−X, E(Y ) = 8− E(X) =
24

5
. Finally, E(X − Y ) = E(X) − E(Y ) = −8

5
.
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9. We know that E(X) = np. Since Y = n−X, E(X − Y ) = E(2X − n) = 2E(X) − n = n(2p− 1).

10. (a) Since the probability of success on any trial is p = 1/2, it follows from the material presented at
the end of this section that the expected number of tosses is 1/p = 2.

(b) The number of tails that will be obtained is equal to the total number of tosses minus one (the
final head). Therefore, the expected number of tails is 2− 1 = 1.

11. We shall use the notation presented in the hint for this exercise. It follows from part (a) of Exercise 10
that E(Xi) = 2 for i = 1, . . . , k. Therefore,

E(X) = E(X1) + · · ·+ E(Xk) = 2k.

12. (a) We need the p.d.f. of X = 54R1 + 110R2 where R1 has the uniform distribution on the interval
[−10, 20] and R2 has the uniform distribution on the interval [−4.5, 10]. We can rewrite X as
X1 + X2 where X1 = 54R1 has the uniform distribution on the interval [−540, 1080] and X2 =
110R2 has the uniform distribution on the interval [−495, 1100]. Let fi be the p.d.f. of Xi for
i = 1, 2, and use the same technique as in Example 3.9.5. First, compute

f1(z)f2(x− z) =

{
3.87 × 10−7 for −540 ≤ z ≤ 1080 and −495 ≤ x− z ≤ 1100,
0 otherwise.

We need to integrate this over z for each fixed x. The set of x for which the function above is ever
positive is the interval [−1035, 2180]. For −1035 ≤ x < 560, we must integrate z from −540 to
x+ 495. For 560 ≤ x < 585, we must integrate z from x− 1100 to x+ 495. For 585 ≤ x ≤ 2180,
we must integrate z from x− 1100 to 1080. The resulting integral is

g(x) =

⎧⎪⎨⎪⎩
3.87 × 10−7x+ 4.01 × 10−4 for −1035 ≤ x < 560,
6.17 × 10−4 for 560 ≤ x < 585,
8.44 × 10−4 − 3.87 × 10−7x for 585 ≤ x ≤ 2180.

(b) We need the negative of the 0.03 quantile. For −1035 ≤ x ≤ 560, the c.d.f. of X is

F (x) =
3.87 × 10−7(x2 − 10352)

2
+ 4.01 × 10−4(x+ 1035).

This function is a second degree polynomial in x. To be sure that the 0.03 quantile is between
−1035 and 560, we compute F (−1035) = 0 and F (560) = 0.493, which assures us that the 0.03
quantile is in this range. Setting F (x) = 0.03 and solving for x using the quadratic formula yields
x = −642.4, so VaR is 642.4.

13. Use Taylor’s theorem with remainder to write

g(X) = g(μ) + (X − μ)g′(μ) +
(X − μ)2

2
g′′(Y ), (S.4.1)

where μ = E(X) and Y is between X and μ. Take the mean of both sides of (S.4.1). We get

E[g(X)] = g(μ) + 0 + E

(
(X − μ)2

2
g′′(Y )

)
.

The random variable whose mean is on the far right is nonnegative, hence the mean is nonnegative and
E[g(X)] ≥ g(μ).
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4.3 Variance

Commentary

Be sure to stress the fact that Theorem 4.3.5 on the variance of a sum of random variables has the condition
that the random variables are independent.

Solutions to Exercises

1. We found in Exercise 1 of Sec. 4.1 that E(X) = (0 + 1)/2 = 1/2. We can find

E(X2) =

∫ 1

0
x2dx =

1

3
.

So Var(X) = 1/3− (1/2)2 = 1/12.

2. The p.f. of X and the value of E(X) were determined in Exercise 4 of Sec. 4.1. From the p.f. given
there we also find that

E(X2) = 22
(
1

8

)
+ 32

(
5

8

)
+ 42

(
1

8

)
+ 92

(
1

8

)
=

73

4
.

Therefore, Var(X) = E(X2)− [E(X)]2 =
73

4
−
(
15

4

)2

=
67

16
.

3. The p.d.f. of this distribution is

f(x) =

⎧⎪⎨⎪⎩
1

b− a
for a < x < b,

0 otherwise.

Therefore, E(X) =
b+ a

2
and

E(X2) =

∫ b

a
x2

1

b− a
dx =

b3 − a3

3(b− a)
=

1

3
(b2 + ab+ a2).

It follows that Var(X) = E(X2)− [E(X)]2 = 1
12(b− a)2.

4. E[X(X − 1)] = E(X2 −X) = E(X2)− μ = Var(X) + [E(X)]2 − μ = σ2 + μ2 − μ.

5. E[(X−c)2] = E(X2)−2cE(X)+c2 = Var(X)+[E(X)]2−2cμ+c2 = σ2+μ2−2cμ+c2 = σ2+(μ−c)2.

6. Since E(X) = E(Y ), E(X − Y ) = 0. Therefore,

E[(X − Y )2] = Var(X − Y ) = Var[X + (−Y )].

Since X and −Y are independent, it follows that

E[(X − Y )2] = Var(X) + Var(−Y ) = Var(X) + Var(Y ).

7. (a) Since X and Y are independent, Var(X − Y ) = Var(X) + Var(Y ) = 3 + 3 = 6.

(b) Var(2X − 3Y + 1) = 22 Var(X) + 32 Var(Y ) = 4(3) + 9(3) = 39.
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8. Consider a p.d.f. of the form

f(x) =

⎧⎪⎨⎪⎩ c
1

x3
for x ≥ 1,

0 for x < 1.

Here,

E(X) =

∫ ∞

1
c
1

x2
dx < ∞

but

E(X2) =

∫ ∞

1
c
1

x
dx is not finite.

Therefore, E(X) is finite but E(X2) is not. Therefore, Var(X) is not finite.

9. The mean of X is (n+ 1)/2, and the mean of X2 is
n∑

k=1

k2/n = (n+ 1)(2n + 1)/6. So,

Var(X) =
(n+ 1)(2n + 1)

6
− (n+ 1)2

4
=

n2 − 1

12
.

10. The example efficient portfolio has s1 = 524.7, s2 = 609.7, and s3 = 39250.

(a) We know that R1 has a mean of 6 and a variance of 55, while R2 has a mean of 4 and a variance of
28. Since we are assuming that Ri has the uniform distribution on the interval [ai, bi] for i = 1, 2,
we know that

E(Ri) =
ai + bi

2
,

Var(Ri) =
(bi − ai)

2

12
.

(See Exercise 1 of this section for the variance of a uniform distribution.) For i = 1, we set
(a1 + b1)/2 = 6 and (b1 − a1)

2/12 = 55. The solution is a1 = −6.845 and b1 = 18.845. For i = 2,
we set (a2 + b2)/2 = 4 and (b2 − a2)

2/12 = 28. The solution is a2 = −5.165 and b2 = 13.165.

(b) Let X1 = s1R1 and X2 = s2R2. Then the distribution of X1 is the uniform distribution on the
interval [−3591.6, 9888.0], and X2 has the uniform distribution on the interval [−3149.1, 8026.7].
The value of the return on the portfolio is Y = X1+X2 +1413. We need to find the 0.03 quantile
of Y . As in Exercise 12 of Sec. 4.2, the p.d.f. of Y will be linear for the lowest values of y. Those
values are −5327.7 ≤ y < 5848.1. The line is g(y) = 6.638 × 10−9y + 3.537 × 10−5. In this range,
the c.d.f. is

G(y) =
6.638 × 10−9

2
(y2 − 5327.72) + 3.537 × 10−5(y + 5327.7).

Since G(−5327.7) = 0 and G(5848.1) = 0.4146, we know that the 0.03 quantile is in this range.
Setting G(y) = 0.03, we find y = −2321.9. So VaR is 2321.9.

11. The quantile function of X can be found from Example 3.3.8 with a = 0 and b = 1. It is F−1(p) = p.
So, the IQR is 0.75− 0.25 = 0.5.
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12. The c.d.f. is F (x) = 1 − exp(−x), for x > 0 and F (x) = 0 for x ≤ 0. The quantile function is
F−1(p) = − log(1 − p). So, the 0.25 and 0.75 quantiles are respectively − log(0.75) = 0.2877 and
− log(0.25) = 1.3863. The IQR is then 1.3863 − 0.2877 = 1.0986.

13. From Table 3.1, we find the 0.25 and 0.75 quantiles of the distribution of X to be 1 and 2 respectively.
This makes the IQR equal to 2− 1 = 1.

14. The result will follow from the following general result: If x is the p quantile of X and a > 0, then ax
is the p quantile of Y = aX. To prove this, let F be the c.d.f. of X. Note that x is the greatest lower
bound on the set Cp = {z : F (z) ≥ p}. Let G be the c.d.f. of Y , then G(z) = F (z/a) because Y ≤ z if
and only if aX ≤ z if and only if X ≤ z/a. The p quantile of Y is the greatest lower bound on the set

Dp = {y : G(y) ≥ p} = {y : F (y/a) ≥ p} = {az : F (z) ≥ p} = aCp,

where the third equality follows from the fact that F (y/a) ≥ p if and only if y = za where F (z) ≥ p.
The greatest lower bound on aCp is a times the greatest lower bound on Cp because a > 0.

4.4 Moments

Commentary

The moment generating function (m.g.f.) is a challenging topic that is introduced in this section. The m.g.f.
is used later in the text to outline a proof of the central limit theorem (Sec. 6.3). It is also used in a few
places to show that certain sums of random variables have particular distributions (e.g., Poisson, Bernoulli,
exponential). If students are not going to study the proofs of these results, one could skip the material on
moment generating functions.

Solutions to Exercises

1. Since the uniform p.d.f. is symmetric with respect to its mean μ = (a+b)/2, it follows that E[(X−μ)5] =
0.

2. The mean of X is (b+ a)/2, so the 2kth central moment of X is the mean of (X − [b + a]/2)2k. Note
that Y = X − [b + a]/2 has the uniform distribution on the interval [−(b − a)/2, (b − a)/2]. Also,
Z = 2Y/(b− a) has the uniform distribution on the interval [−1, 1]. So E(Y 2k) = [(b− a)/2]2kE(Z2k).

E(Z2k) =

∫ 1

−1

z2k

2
dz =

1

2k + 1
.

So, the 2kth central moment of X is [(b− a)/2]2k/(2k + 1).

3. E[(X − μ)3] = E[(X − 1)3] = E(X3 − 3X2 + 3X − 1) = 5− 3(2) + 3(1)− 1 = 1.

4. Since Var(X) ≥ 0 and Var(X) = E(X2)− [E(X)]2, it follows that E(X2) ≥ [E(X)]2. The second part
of the exercise follows from Theorem 4.3.3.

5. Let Y = (X − μ)2. Then by Exercise 4,

E(Y 2) = E[(X − μ)4] ≥ [E(Y )]2 = [Var(X)]2 = σ4.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



116 Chapter 4. Expectation

6. Since

f(x) =

⎧⎪⎨⎪⎩
1

b− a
for a < x < b,

0 otherwise,

then

ψ(t) =

∫ b

a
exp(tx)

1

b− a
dx.

Therefore, for t �= 0,

ψ(t) =
exp(tb)− exp(ta)

t (b− a)
.

As always, ψ(0) = 1.

7. ψ′(t) =
1

4
(3 exp(t) − exp(−t)) and ψ′′(t) =

1

4
(3 exp(t) + exp(−t)). Therefore, μ = ψ′(0) = 1/2 and

σ2 = ψ′′(0)− μ2 = 1−
(
1

2

)2

=
3

4
.

8. ψ′(t) = (2t+3)exp(t2 + 3t) and ψ′′(t) = (2t+3)2exp(t2 + 3t) + 2 exp(t2 + 3t). Therefore, μ = ψ′(0) = 3
and σ2 = ψ′′(0)− μ2 = 11− (3)2 = 2.

9. ψ′
2(t) = cψ′

1(t) exp(c[ψ1(t)− 1]) and ψ′′
2(t) = {[cψ′

1(t)]
2 + cψ′′

1 (t)} exp(c[ψ1(t)− 1]). We know that

ψ1(0) = 1, ψ′
1(0) = μ, and ψ′′

1 (0) = σ2 + μ2.

Therefore, E(Y ) = ψ′
2(0) = cμ and

Var(Y ) = ψ′′
2 (0)− [E(Y )]

2
= {(cμ)2 + c(σ2 + μ2)} − (cμ)2 = c(σ2 + μ2).

10. The m.g.f. of Z is

ψ1(t) = E(exp(tZ)) = E[exp(t(2X − 3Y + 4))]

= exp(4t)E(exp(2tX) exp(−3ty))

= exp(4t)E(exp(2tX))E(exp(−3tY )) (since X and Y are independent)

= exp(4t)ψ(2t)ψ(−3t)

= exp(4t) exp(4t2 + 6t) exp(9t2 − 9t)

= exp(13t2 + t).

11. If X can take only a finite number of values x1, . . . , xk with probabilities p1, . . . , pk, respectively, then
the m.g.f. of X will be

ψ(t) = p1 exp(tx1) + p2 exp(tx2) + · · · + pk exp(txk).

By matching this expression for ψ(t) with the expression given in the exercise, it can be seen that X
can take only the three values 1, 4, and 8, and that f(1) = 1/5, f(4) = 2/5, and f(8) = 2/5.
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12. We shall first rewrite ψ(t) as follows:

ψ(t) =
4

6
exp(0) +

1

6
exp(t) +

1

6
exp(−t).

By reasoning as in Exercise 11, it can now be seen that X can take only the three value 0, 1, and −1,
and that f(0) = 4/6, f(1) = 1/6, and f(−1) = 1/6.

13. The m.g.f. of a Cauchy random variable would be

ψ(t) =

∫ ∞

−∞
exp(tx)

π(1 + x2)
dx. (S.4.2)

If t > 0, lim
x→∞ exp(tx)/(1 + x2) = ∞, so the integral in Eq. (S.4.2) is infinite. Similarly, if t < 0,

lim
x→−∞ exp(tx)/(1 + x2) = ∞, so the integral is still infinite. Only for t = 0 is the integral finite, and

that value is ψ(0) = 1 as it is for every random variable.

14. The m.g.f. is

ψ(t) =

∫ ∞

1

exp(tx)

x2
dx.

If t ≤ 0, exp(tx) is bounded, so the integral is finite. If t > 0, then lim
x→∞ exp(tx)/x2 = ∞, and the

integral is infinite.

15. Let X have a discrete distribution with p.f. f(x). Assume that E(|X|a) < ∞ for some a > 0. Let
0 < b < a. Then

E(|X|b) =
∑
x

|x|bf(x) =
∑
|x|≤1

|x|bf(x) +
∑
|x|>1

|x|bf(x)

≤ 1 +
∑
|x|>1

|x|af(x) ≤ 1 + E(|X|a) < ∞,

where the first inequality follows from the fact that 0 ≤ |x|b ≤ 1 for all |x| ≤ 1 and |x|b < |x|a for all
|x| > 1. The next-to-last inequality follows from the fact that the final sum is only part of the sum
that makes up E(|X|a).

16. Let Z = n − X. It is easy to see that Z has the same distribution as Y since, if X is the number of
successes in n independent Bernoulli trials with probability of success p, then Z is the number of failures
and the probability of failure is 1 − p. It is known from Theorem 4.3.5 that Var(Z) = Var(X), which
also equals Var(Y ). Also E(Z) = n − E(X), so Z − E(Z) = n −X − n + E(X) = E(X) −X. Hence
the third central moment of Z is the negative of the third central moment of X and the skewnesses are
negatives of each other.

17. We already computed the mean μ = 1 and variance σ2 = 1 in Example 4.4.3. Using the m.g.f., the
third moment is computed from the third derivative:

ψ′′′(t) =
6

(1− t)4
.

The third moment is 6. The third central moment is

E([X − 1]3) = E(X3)− 3E(X2) + 3E(X) − 1 = 6− 6 + 3− 1 = 2.

The skewness is then 2/1 = 2.
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4.5 The Mean and the Median

Solutions to Exercises

1. The 1/2 quantile defined in Definition 3.3.2 applies to a continuous random variable whose c.d.f. is
one-to-one. The 1/2 quantile is then x0 = F−1(1/2). That is, F (x0) = 1/2. In order for a number m
to be a median as define in this section, it must be that Pr(X ≤ m) ≥ 1/2 and Pr(X ≥ m) ≥ 1/2.
If X has a continuous distribution, then Pr(X ≤ m) = F (m) and Pr(X ≥ m) = 1 − F (m). Since
F (x0) = 1/2, m = x0 is a median.

2. In this example,
∑6

x=1 f(x) = 21c. Therefore, c = 1/21. Since Pr(X ≤ 5) = 15/21 and Pr(X ≥ 5) =
11/21, it follows that 5 is a median and it can be verified that it is the unique median.

3. A median m must satisfy the equation

∫ m

0
exp(−x)dx =

1

2
.

Therefore, 1− exp(−m) = 1/2. It follows that m = log 2 is the unique median of this distribution.

4. Let X denote the number of children per family. Then

Pr(X ≤ 2) =
21 + 40 + 42

153
≥ 1

2

and

Pr(X ≥ 2) =
42 + 27 + 23

153
≥ 1

2
.

Therefore, 2 is the unique median. Since all families with 4 or more children are in the upper half of
the distribution no matter how many children they have (so long as it is at least 4), it doesn’t matter
how they are distributed among the values 4, 5, . . . . Next, let Y = min{X, 4}, that is Y is the number
of children per family if we assume that all families with more than 4 children have exactly 4. We can
compute the mean of Y as

E(Y ) =
1

153
(0× 21 + 1× 40 + 2× 42 + 3× 27 + 4× 23) = 1.941.

5. The p.d.f. of X will be h(x) = [f(x) + g(x)]/2 for −∞ < x < ∞. Therefore,

E(X) =
1

2

∫ ∞

−∞
x[f(x) + g(x)]dx =

1

2
(μf + μg).

Since

∫ 1

−∞
h(X)dx =

∫ 1

0

1

2
f(x)dx =

1

2
and

∫ ∞

2
h(x)dx =

∫ 4

2

1

2
g(x)dx =

1

2
, it follows that every value

of m in the interval 1 ≤ m ≤ 2 will be a median.

6. (a) The required value is the mean E(X), and

E(X) =

∫ 1

0
x · 2x dx =

2

3
.
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(b) The required value is the median m, where∫ m

0
2x dx =

1

2
.

Therefore, m = 1/
√
2.

7. (a) The required value is E(X), and

E(X) =

∫ 1

0
x

(
x+

1

2

)
dx =

7

12
.

(b) The required value is the median m, where∫ m

0

(
x+

1

2

)
dx =

1

2
.

Therefore, m = (
√
5− 1)/2.

8. E[(X − d)4] = E(X4)− 4E(X3)d+ 6E(X2)d2 − 4E(X)d3 + d4. Since the distribution of X is symmet-
ric with respect to 0,

E(X) = E(X3) = 0.

Therefore,

E[(X − d)4] = E(X4) + 6E(X2)d2 + d4.

For any given nonnegative values of E(X4) and E(X2), this is a polynomial of fourth degree in d and
it is a minimum when d = 0.

9. (a) The required point is the mean E(X), and

E(X) = (0.2)(−3) + (0.1)(−1) + (0.1)(0) + (0.4)(1) + (0.2)(2) = 0.1.

(b) The required point is the median m. Since Pr(X ≤ 1) = 0.8 and Pr(X ≥ 1) = 0.6, the point 1 is
the unique median.

10. Let x1 < · · · < xn denote the locations of the n houses and let d denote the location of the store. We

must choose d to minimize
n∑

i=1

|xi − d| or equivalently to minimize
n∑

i=1

|xi − d|/n. This sum can be

interpreted as the M.A.E. of d for a discrete distribution in which each of the n points x1, . . . , xn has
probability 1/n. Therefore, d should be chosen equal to a median of this distribution. If n is odd, then
the middle value among x1, . . . , xn is the unique median. If n is even, then any point between the two
middle values among x1, . . . , xn (including the two middle values themselves) will be a median.

11. The M.S.E. of any prediction is a minimum when the prediction is equal to the mean of the variable
being predicted, and the minimum value of the M.S.E. is then the variance of the variable. It was
shown in the derivation of Eq. (4.3.3) that the variance of the binomial distribution with parameters
n and p is np(1− p). Therefore, the minimum M.S.E. that can be attained when predicting X is
Var(X) = 7(1/4)(3/4) = 21/16 and the minimum M.S.E. that can be attained when predicting Y is
Var(Y ) = 5(1/2)(1/2) = 5/4 = 20/16. Thus, Y can be predicted with the smaller M.S.E.

12. (a) The required value is the mean E(X). The random variable X will have the binomial distribution
with parameters n = 15 and p = 0.3. Therefore, E(X) = np = 4.5.
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(b) The required value is the median of the binomial distribution with parameters n = 15 and p = 0.3.
From the table of this distribution given in the back of the book, it is found that 4 is the unique
median.

13. To say that the distribution of X is symmetric around m, means that X and 2m −X have the same
distribution. That is, Pr(X ≤ x) = Pr(2m −X ≤ x) for all x. This can be rewritten as Pr(X ≤ x) =
Pr(X ≥ 2m − x). With x = m, we see that Pr(X ≤ m) = Pr(X ≥ m). If Pr(X ≤ m) < 1/2, then
Pr(X ≤ m) + Pr(X > m) < 1, which is impossible. Hence Pr(X ≤ m) ≥ 1/2 and Pr(X ≥ m) ≥ 1/2,
and m is a median.

14. The Cauchy distribution is symmetric around 0, so 0 is a median by Exercise 13. Since the p.d.f. of
the Cauchy distribution is strictly positive everywhere, the c.d.f. will be one-to-one and 0 is the unique
median.

15. (a) Since a is assumed to be a median, F (a) = Pr(X ≤ a) ≥ 1/2. Since b > a is assumed to be a
median Pr(X ≥ b) ≥ 1/2. If Pr(X ≤ a) > 1/2, then Pr(X ≤ a) + Pr(X ≥ b) > 1. But {X ≤ a}
and {X ≥ b} are disjoint events, so the sum of their probabilities can’t be greater than 1. This
means that F (a) > 1/2 is impossible, so F (a) = 1/2.

(b) The c.d.f. F is nondecreasing, so A = {x : F (x) = 1/2} is an interval. Since F is continuous
from the right, the lower endpoint c of the interval A must also be in A. For every x, Pr(X ≤
x) + Pr(X ≥ x) ≥ 1. For every x ∈ A, Pr(X ≤ x) = 1/2, hence it must be that Pr(X ≥ x) ≥ 1/2
and x is a median. Let d be the upper endpoint of the interval A. We need to show that d is
also a median. Since F is not necessarily continuous from the left, F (d) > 1/2 is possible. If
F (d) = 1/2, then d ∈ A and d is a median by the argument just given. If F (d) > 1/2, then
Pr(X = d) = F (d)− 1/2. This makes

Pr(X ≥ d) = Pr(X > d) + Pr(X = d) = 1− F (d) + F (d) − 1/2 = 1/2.

Hence d is also a median

(c) If X has a discrete distribution, then clearly F must be discontinuous at d otherwise F (x) = 1/2
even for some x > d and d would not be the right endpoint of A.

16. We know that 1 = Pr(X < m) + Pr(X = m) + Pr(X > m). Since Pr(X < m) = Pr(X > m),
both Pr(X < m) ≤ 1/2 and Pr(X > m) ≤ 1/2, otherwise their sum would be more than 1. Since
Pr(X < m) ≤ 1/2, Pr(X ≥ m) = 1−Pr(X < m) ≥ 1/2. Similarly, Pr(X ≤ m) = 1−Pr(X > m) ≥ 1/2.
Hence m is a median.

17. As in the previous problem, 1 = Pr(X < m) + Pr(X = m) + Pr(X > m). Since Pr(X < m) < 1/2 and
Pr(X > m) < 1/2, we have Pr(X ≥ m) = 1− Pr(X < m) > 1/2 and Pr(X ≤ m) = 1− Pr(X > m) >
1/2. Hence m is a median. Let k > m. Then Pr(X ≥ k) ≤ Pr(X > m) < 1/2, and k is not a median.
Similarly, if k < m, then Pr(X ≤ k) ≤ Pr(X < m) < 1/2, and k is not a median. So, m is the unique
median.

18. Let m be the p quantile of X, and let r be strictly increasing. Let Y = r(X) and let G(y) be the c.d.f.
of Y while F (x) is the c.d.f. of X. Since Y ≤ y if and only if r(X) ≤ y if and only if X ≤ r−1(y), we
have G(y) = F (r−1(y)). The p quantile of Y is the smallest element of the set

Cp = {y : G(y) ≥ p} = {y : F (r−1(y)) ≥ p} = {r(x) : F (x) ≥ p}.

Also, m is the smallest x such that F (x) ≥ p. Because r is strictly increasing, the smallest r(x) such
that F (x) ≥ p is r(m). Hence, r(m) is the smallest number in Cp.
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4.6 Covariance and Correlation

Solutions to Exercises

1. The location of the circle makes no difference since it only affects the means of X and Y . So, we
shall assume that the circle is centered at (0,0). As in Example 4.6.5, Cov(X,Y ) = 0. It follows that
ρ(X,Y ) = 0 also.

2. We shall follow the hint given in this exercise. The relation [(X − μX)+ (Y − μY )]
2 ≥ 0 implies that

(X − μX)(Y − μY ) ≤ 1

2
[(X − μX)2 + (Y − μY )

2].

Similarly, the relation [(X − μX)− (Y − μY )]
2 ≥ 0 implies that

−(X − μX)(Y − μY ) ≤ 1

2
[(X − μX)2 + (Y − μY )

2].

Hence, it follows that

|(X − μX)(Y − μY )| ≤ 1

2
[(X − μX)2 + (Y − μY )

2].

By taking expectations on both sides of this relation, we find that

E[|(X − μX)(Y − μY )|] ≤ 1

2
[Var(X) + Var(Y )] < ∞.

Since the expectation on the left side of this relation is finite, it follows that

Cov(X,Y ) = E[(X − μX)(Y − μY )]

exists and is finite.

3. Since the p.d.f. of X is symmetric with respect to 0, it follows that E(X) = 0 and that E(Xk) = 0 for
every odd positive integer k. Therefore, E(XY ) = E(X7) = 0. Since E(XY ) = 0 and E(X)E(Y ) = 0,
it follows that Cov(X,Y ) = 0 and ρ(X,Y ) = 0.

4. It follows from the assumption that 0 < E(X4) < ∞, that 0 < σ2
X < ∞ and 0 < σ2

Y < ∞. Hence,
ρ(X,Y ) is well defined. Since the distribution of X is symmetric with respect to 0, E(X) = 0 and
E(X3) = 0. Therefore, E(XY ) = E(X3) = 0. It now follows that Cov(X,Y ) = 0 and ρ(X,Y ) = 0.

5. We have E(aX + b) = aμX + b and E(cY + d) = cμY + d. Therefore,

Cov(aX + b, cY + d) = E[(aX + b− aμX − b)(cY + d− cμY − d)]

= E[ac(X − μX)(Y − μY )] = acCov(X,Y ).

6. By Exercise 5, Cov(U, V ) = acCov(X,Y ). Also, Var(U) = a2σ2
X and Var(V ) = c2σ2

Y . Hence

p(U, V ) =
acCov(X,Y )

|a|σX · |c|σY =

{
ρ(X,Y ) if ac > 0,

−ρ(X,Y ) if ac < 0.
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7. We have E(aX + bY + c) = aμX + bμY + c. Therefore,

Cov(aX + bY + c, Z) = E[(aX + bY + c− aμX − bμY − c)(Z − μZ)]

= E{[a(X − μX) + b(Y − μY )](Z − μZ)}
= aE[(X − μX)(Z − μZ)] + bE[(Y − μY )(Z − μZ)]

= aCov(X,Z) + bCov(Y,Z).

8. We have

Cov

⎛⎝ m∑
i=1

aiXi,
n∑

j=1

bjYj

⎞⎠ = E

⎡⎣ m∑
i=1

ai(Xi − μXi)
n∑

j=1

bj(Yj − μYj )

⎤⎦
= E

⎡⎣ m∑
i=1

n∑
j=1

aibj(Xi − μXi)(Yj − μYj)

⎤⎦
=

m∑
i=1

n∑
j=1

aibjE
[
(Xi − μXi)(Yj − μYj)

]

=
m∑
i=1

n∑
j=1

aibj Cov(Xi, Yj).

9. Let U = X + Y and V = X − Y . Then

E(UV ) = E[(X + Y )(X − Y )] = E(X2 − Y 2) = E(X2)− E(Y 2).

Also,

E(U)E(V ) = E(X + Y )E(X − Y ) = (μX + μY )(μX − μY ) = μ2
X − μ2

Y .

Therefore,

Cov(U, V ) = E(UV )− E(U)E(V ) = [E(X2)− μ2
X ]− [E(Y 2)− μ2

Y ]

= Var(X)−Var(Y ) = 0.

It follows that ρ(U, V ) = 0.

10. Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ) and Var(X − Y ) = Var(X) + Var(Y ) − 2Cov(X,Y ).
Since Cov(X,Y ) < 0, it follows that

Var(X + Y ) < Var(X − Y ).

11. For the given values,

Var(X) = E(X2)− [E(X)]2 = 10− 9 = 1,

Var(Y ) = E(Y 2)− [E(Y )]2 = 29− 4 = 25,

Cov(X,Y ) = E(XY )− E(X)E(Y ) = 0− 6 = −6.

Therefore,

ρ(X,Y ) =
−6

(1)(5)
= −6

5
, which is impossible.
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12.

E(X) =

∫ 1

0

∫ 2

0
x · 1

3
(x+ y)dy dx =

5

9
,

E(Y ) =

∫ 1

0

∫ 2

0
y · 1

3
(x+ y)dy dx =

11

9
,

E(X2) =

∫ 1

0

∫ 2

0
x2 · 1

3
(x+ y)dy dx =

7

18
,

E(Y 2) =

∫ 1

0

∫ 2

0
y2 · 1

3
(x+ y)dy dx =

16

9
,

E(XY ) =

∫ 1

0

∫ 2

0
xy · 1

3
(x+ y)dy dx =

2

3
.

Therefore,

Var(X) =
7

18
−
(
5

9

)2

=
13

162
,

Var(Y ) =
16

9
−
(
11

9

)2

=
23

81
,

Cov(XY ) =
2

3
−
(
5

9

)(
11

9

)
= − 1

81
.

It now follows that

Var(2X − 3Y + 8) = 4Var(X) + 9Var(Y )− (2)(2)(3)Cov(X,Y )

=
245

81
.

13. Cov(X,Y ) = ρ(X,Y )σXσY = −1

6
(3)(2) = −1.

(a) Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ) = 11.

(b) Var(X − 3Y + 4) = Var(X) + 9Var(Y )− (2)(3)Cov(X,Y ) = 51.

14. (a) Var(X + Y + Z) = Var(X) + Var(Y ) + Var(Z) + 2Cov(X,Y ) + 2Cov(X,Z) + 2Cov(Y,Z) = 17.

(b) Var(3X−Y −2Z+1) = 9Var(X)+Var(Y )+4Var(Z)−6Cov(X,Y )−12Cov(X,Z)+4Cov(Y,Z) =
59.

15. Since each variance is equal to 1 and each covariance is equal to 1/4,

Var(X1 + · · · +Xn) =
∑
i

Var(Xi) + 2
∑∑

i<j

Cov(Xi,Xj)

= n(1) + 2.
n(n− 1)

2

(
1

4

)
= n+

n(n− 1)

4
.

16. We need the cost to be 6000 dollars, so that 50s1 + 30s2 = 6000. We also need the variance to be 0.
The variance of s1R1 + s2R2 is

s21Var(R1) + s22Var(R2) + 2s1s2 Cov(R1, R2).
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The variances of R1 and R2 are Var(R1) = 75 and Var(R2) = 17.52. Since the correlation between
R1 and R2 is −1, their covariance is −1(75)1/2(17.52)1/2 = −36.25. To make the variance 0, we need
75s21 + 17.52s22 − 36.25s1s2 = 0. This equation can be rewritten (751/2s1 − 17.521/2s2)

2 = 0. So, we
need to solve the two equations

751/2s1 − 17.521/2s2 = 0, and 50s1 + 30s2 = 6000.

The solution is s1 = 53.54 and s2 = 110.77. The reason that such a portfolio is unrealistic is that it
has positive mean (1126.2) but zero variance, that is one can earn money with no risk. Such a “money
pump” would surely dry up the moment anyone recognized it.

17. Let μX = E(X) and μY = E(Y ). Apply Theorem 4.6.2 with U = X − μX and V = Y − μY . Then
(4.6.4) becomes

Cov(X,Y )2 ≤ Var(X)Var(Y ). (S.4.3)

Now |ρ(X,Y )| = 1 is equivalent to equality in (S.4.3). According to Theorem 4.6.2, we get equality
in (4.6.4) and (S.4.3) if and only if there exist constants a and b such that aU + bV = 0, that is
a(X − μX) + b(Y − μY ) = 0, with probability 1. So |ρ(X,Y )| = 1 implies aX + bY = aμX = bμY with
probability 1.

18. The means of X and Y are the same since f(x, y) = f(y, x) for all x and y. The mean of X (and the
mean of Y ) is

E(X) =

∫ 1

0

∫ 1

0
x(x+ y)dxdy =

∫ 1

0

(
1

3
+

y

2

)
dy =

1

3
+

1

4
=

7

12
.

Also,

E(XY ) =

∫ 1

0

∫ 1

0
xy(x+ y)dxdy =

∫ 1

0

(
y

3
+

y2

2

)
dy =

1

6
+

1

6
=

1

3
.

So,

Cov(X,Y ) =
1

3
−
(

7

12

)2

= −0.00695.

4.7 Conditional Expectation

Solutions to Exercises

1. The M.S.E. after observing X = 18 is Var(P |18) = 19× (41 − 18)/[422 × 43] = 0.00576. This is about
seven percent of the marginal M.S.E.

2. If X denotes the score of the selected student, then

E(X) = E[E(X | School)] = (0.2)(80) + (0.3)(76) + (0.5)(84) = 80.8.

3. Since E(X | Y ) = c, then E(X) = E[E(X | Y )] = c and
E(XY ) = E[E(XY | Y )] = E(Y E(X | Y )] = E(cY ) = cE(Y ).

Therefore,

Cov(X,Y ) = E(XY )− E(X)E(Y ) = cE(Y )− cE(Y ) = 0.
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4. Since X is symmetric with respect to 0, E(Xk) = 0 for every odd integer k. Therefore,

E(X2mY ) = E[E(X2mY | X)] = E[X2mE(Y | X)] = E[aX2m+1 + bX2m] = bE(X2m).

Also,

E(Y ) = E[E(Y | X)] = E(aX + b) = b.

It follows that

Cov(X2m, Y ) = E(X2mY )−E(X2m)E(Y ) = bE(X2m)− bE(X2m) = 0.

5. For any given value xn−1 ofXn−1, E(Xn | xn−1) will be the midpoint of the interval (xn−1, 1). Therefore,

E(Xn | Xn−1) =
1 +Xn−1

2
.

It follows that

E(Xn) = E[E(Xn | Xn−1)] =
1

2
+

1

2
E(Xn−1).

Similarly, E(Xn−1) =
1

2
+

1

2
E(Xn−2), etc. Since E(X1) =

1

2
, we obtain

E(Xn) =
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
= 1− 1

2n
.

6. The joint p.d.f. of X and Y is

f(x, y) =

{
c for x2 + y2 < 1,
0 otherwise.

Therefore, for any given value of y in the interval −1 < y < 1, the conditional p.d.f. of X given that
Y = y will be of the form

g(x | y) = f(x, y)

f2(y)
=

⎧⎨⎩
c

f2(y)
for −√1− y2 < x <

√
1− y2,

0 otherwise.

For each given value of y, this conditional p.d.f. is a constant over an interval of values of x symmetric
with respect to x = 0. Therefore, E(X | y) = 0 for each value of y.

7. The marginal p.d.f. of X is

f1(x) =

∫ 1

0
(x+ y)dy = x+

1

2
for 0 ≤ x ≤ 1.

Therefore, for 0 ≤ x ≤ 1, the conditional p.d.f. of Y given that X = x is

g(y | x) = f(x, y)

f1(x)
=

2(x+ y)

2x+ 1
for 0 ≤ y ≤ 1.
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Hence,

E(Y | x) =

∫ 1

0

2(xy + y2)

2x+ 1
dy =

3x+ 2

3(2x+ 1)
,

E(Y 2 | x) =

∫ 1

0

2(xy2 + y3)

2x+ 1
dy =

4x+ 3

6(2x + 1)
,

and

Var(Y | x) = 4x+ 3

6(2x+ 1)
−
[

3x+ 2

3(2x+ 1)

]2
=

1

36

[
3− 1

(2x+ 1)2

]
.

8. The prediction is E

(
Y | X =

1

2

)
=

7

12
and the M.S.E. is Var

(
Y | X =

1

2

)
=

11

144
.

9. The overall M.S.E. is

E[Var(Y | X)] =

∫ 1

0

1

36

[
3− 1

(2x+ 1)2

]
f1(x)dx.

It was found in the solution of Exercise 7 that

f1(x) = x+
1

2
for 0 ≤ x ≤ 1.

Therefore, it can be found that E[Var(Y | X)] =
1

12
− log 3

144
.

10. It was found in Exercise 9 that when Y is predicted fromX, the overall M.S.E. is
1

12
− log 3

144
. Therefore,

the total loss would be

1

12
− log 3

144
+ c.

If Y is predicted without using X, the M.S.E. is Var(Y ). It is found that

E(Y ) =

∫ 1

0

∫ 1

0
y(x+ y)dx dy =

7

12

and

E(Y 2) =

∫ 1

0

∫ 1

0
y2(x+ y)dx dy =

5

12
.

Hence, Var(Y ) =
5

12
−
(

7

12

)2

=
11

144
. The total loss when X is used for predicting Y will be less than

Var(Y ) if and only if c <
log 3− 1

144
.
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11. Let E(Y ) = μY . Then

Var(Y ) = E[(Y − μY )
2] = E{[(Y − E(Y | X)) + (E(Y | X)− μY )]

2}
= E{[Y − E(Y | X)]2}+ 2E{[Y − E(Y | X)][E(Y | X)− μY ]}

+E{[E(Y | X)− μY ]
2}.

We shall now consider further each of the three expectations in the final sum. First,

E{[Y − E(Y | X)]2} = E(E{[Y − E(Y | X]2 | X}) = E[Var(Y | X)].

Next,

E{[Y − E(Y | X)][E(Y | X)− μY ]} = E(E{[Y − E(Y | X)][E(Y | X)− μY ] | X})
= E([E(Y | X)− μY ]E{Y − E(Y | X) | X})
= E([E(Y | X)− μY ] · 0)
= 0.

Finally, since the mean of E(Y | X) is E[E(Y | X)] = μY , we have

E{[E(Y | X)− μY ]
2} = Var[E(Y | X)].

It now follows that

Var(Y ) = E[Var(Y | X)] + Var[E(Y | X)].

12. Since E(Y ) = E[E(Y | X)], then

E(Y ) = aE(X) + b.

Also, as found in Example 4.7.7,

E(XY ) = aE(X2) + bE(X).

By solving these two equations simultaneously for a and b we obtain,

a =
E(XY )− E(X)E(Y )

E(X2)− [E(X)]2
=

Cov(X,Y )

Var(X)

and

b = E(Y )− aE(X).

13. (a) The prediction is the mean of Y :

E(Y ) =

∫ 1

0

∫ 1

0
y · 2

5
(2x+ 3y)dx dy =

3

5
.
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(b) The prediction is the median m of X. The marginal p.d.f. of X is

f1(x) =

∫ 1

0

2

5
(2x+ 3y)dy =

1

5
(4x+ 3) for 0 ≤ x ≤ 1.

We must have∫ m

0

1

5
(4x+ 3)dx =

1

2
.

Therefore, 4m2 + 6m− 5 = 0 and m =

√
29− 3

4
.

14. First,

E(XY ) =

∫ 1

0

∫ 1

0
xy · 2

5
(2x+ 3y)dx dy =

1

3
.

Next, the marginal p.d.f. f1 of X was found in Exercise 13(b). Therefore,

E(X) =

∫ 1

0
xf1(x)dx =

17

30
.

Furthermore, it was found in Exercise 13(a) that E(Y ) = 3/5. It follows that Cov(X,Y ) = 1/3 −
(17/30)(3/5) = 17/51 − 17/50 < 0. Therefore, X and Y are negatively correlated.

15. (a) For 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the conditional p.d.f. of Y given that X = x is

g(y | x) = f(x, y)

f1(x)
=

2(2x+ 3y)

4x+ 3
.

When X = 0.8, the prediction of Y is

E(Y | X = 0.8) =

∫ 1

0
yg(y | x = 0.8)dy =

∫ 1

0

y(1.6 + 3y)

3.1
dy =

18

31
.

(b) The marginal p.d.f. of Y is

f2(y) =

∫ 1

0

2

5
(2x+ 3y)dx =

2

5
(1 + 3y) for 0 ≤ y ≤ 1.

Therefore, for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the conditional p.d.f. of X given that Y = y is

h(x | y) = f(x, y)

f2(y)
=

2x+ 3y

1 + 3y
.

When Y = 1/3, the prediction of X is the median m of the conditional p.d.f. h(x | y = 1/3). We
must have∫ m

0

2x+ 1

2
dx =

1

2
.

Hence, m2 +m = 1 and m = (
√
5− 1)/2.

16. Rather than repeat the entire proof of Theorem 4.7.3 with the necessary changes, we shall merely point
out what changes need to be made. Let d(X) be a conditional median of Y given X. Replace all
squared differences by absolute differences. For example [Y − d(X)]2 becomes |Y − d(X)|, [Y − d∗(x)]2

becomes |Y − d∗(x)|, and so on. When we refer to Sec. 4.5 near the end of the proof, replace each
“M.S.E.” by “M.A.E.” and replace the word “mean” by “median” each time it appears in the last four
sentences.
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17. Let Z = r(X,Y ), and let (X,Y ) have joint p.f. f(x, y). Also, let W = r(x0, Y ), for some possible value
x0 of X. We need to show that the conditional p.f. of Z given X = x0 is the same as the conditional
p.f. of W given X = x0 for all x0.

Let f1(x) be the marginal p.f. of X. For each possible value (z, x) of (Z,X), define B(z,x) = {y :
r(x, y) = z}. Then, (Z,X) = (z, x) if and only if X = x and Y ∈ B(z,x). The joint p.f. of (Z,X) is then

g(z, x) =
∑

y∈B(z,x)

f(x, y).

The conditional p.f. of Z given X = x0 is g1(z|x0) = g(z, x0)/f1(x0) for all z and all x0.

Next, notice that (W,X) = (w, x) if and only if X = x and w ∈ B(w,x0). The joint p.f. of (W,X) is
then

h(w, x) =
∑

y∈B(w,x0)

f(x, y).

The conditional p.f. of W given X = x is h1(w|x) = h(w, x)/f1(x). Now, for x = x0, we get h1(w|x0) =
h(w, x0)/f1(x0). But h(w, x0) = g(w, x0) for all w and all x0. Hence h1(w|x0) = g1(w|x0) for all w and
all x0. This is the desired conclusion.

4.8 Utility

Commentary

It is interesting to have the students in the class determine their own utility functions for any possible gain
between, say, 0 dollars and 100 dollars; in the other words, to have each student determine their own function
U(x) for 0 ≤ x ≤ 100. One method for determining various points on a person’s utility function is as follows:

First, notice that if U(x) is a person’s utility function, then the function V (x) = aU(x) + b, where a and
b are constants with a > 0, could also be used as the person’s utility function, because for any two gambles X
and Y, we will have E[U(X)] > E[U(Y )] if and only if E[V (X)] = aE[U(X)] + b > E[V (Y )] = aE[U(Y )]+b.
Therefore, the function V reflects exactly the same preferences as U . The effect of being able to transform
a person’s utility function in this way by choosing any constants a > 0 and b is that we can arbitrarily fix
the values of the person’s utility function at the two points x = 0 and x = 100, as long as we use values such
that U(0) < U(100). For convenience, we shall assume that U(0) = 0 and U(100) = 100.

Now determine a value x1 such that the person is indifferent between accepting a gamble from which the
gain will be either 100 dollars with probability 1/2 or 0 dollars with probability 1/2 and accepting x1 dollars
as a sure thing. For this value x1, we must have

U(X1) =
1

2
U(0) +

1

2
U(100) =

1

2
· 0 + 1

2
· 100 = 50.

Hence, U(x1) = 50.

Next, we might determine a value x2 such that the person is indifferent between accepting a gamble from
which the gain will be either x1 dollars with probability 1/2 or 0 dollars with probability 1/2 and accepting
x2 dollars as a sure thing. For this value x2, we must have

U(x2) =
1

2
U(x1) +

1

2
U(0) =

1

2
· 50 + 1

2
· 0 = 25.

Hence, U(x2) = 25.
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Similarly, we can determine a value x3 such that the person is indifferent between accepting a gamble
from which the gain will be either x1 dollars with probability 1/2 or 100 dollars with probability 1/2 and
accepting x3 dollars as a sure thing. For this value x3, we must have

U(x3) =
1

2
U(x1) +

1

2
U(100) =

1

2
· 50 + 1

2
· 100 = 75.

Hence, U(x3) = 75.

By continuing in this way, arbitrarily many points on a person’s utility function can be determined and
the curve U(x) for 0 ≤ x ≤ 100 can then be sketched. The difficulty is in having the person determine the
values of x1, x2, x3, etc., honestly and accurately in a hypothetical situation where he will not actually have
to gamble. For this reason, it is necessary to check and recheck the values that are determined. For example,
since

U(x1) = 50 =
1

2
U(x2) +

1

2
U(x3),

the person should be indifferent between accepting x1 dollars as a sure thing and accepting a gamble from
which the gain will be either x2 dollars with probability 1/2 or x3 dollars with probability 1/2. By repeat-
edly carrying out checks of this type and allowing the person to adjust his answers, a reasonably accurate
representation of a person’s utility function can usually be obtained.

Solutions to Exercises

1. The utility of not buying the ticket is U(0) = 0. If the decision maker buys the ticket, the utility is
U(499) if the ticket is a winner and and U(−1) if the ticket is a loser. That is the utility is 499α with
probability 0.001 and it is −1 with probability 0.999. The expected utility is then 0.001×499α −0.999.
The decision maker prefers buying the ticket if this expected utility is greater than 0. Setting the
expected utility greater than 0 means 499α > 999. Taking logarithms of both sides yields α > 1.11.

2.

E[U(X)] =
1

2
· 52 + 1

2
· 252 = 325,

E[U(Y )] =
1

2
· 102 + 1

2
· 202 = 250,

E[U(Z)] = 152 = 225.

Hence, X is preferred.

3.

E[U(X)] =
1

2

√
5 +

1

2

√
25 = 3.618,

E[U(Y )] =
1

2

√
10 +

1

2

√
20 = 3.817,

E[U(Z)] =
√
15 = 3.873.

Hence, Z is preferred.
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4. For any gamble X, E[U(X)] = aE(X) + b. Therefore, among any set of gambles, the one for which the
expected gain is largest will be preferred. We have

E(X) =
1

2
· 5 + 1

2
· 25 = 15,

E(Y ) =
1

2
· 10 + 1

2
· 20 = 15,

E(Z) = 15.

Hence, all three gambles are equally preferred.

5. Since the person is indifferent between the gamble and the sure thing,

U(50) =
1

3
U(0) +

2

3
U(100) =

1

3
· 0 + 2

3
· 1 =

2

3
.

6. Since the person is indifferent between X and Y , E[U(X)] = E[U(Y )]. Therefore,

(0.6)U(−1) + (0.2)U(0) + (0.2)U(2) = (0.9)U(0) + (0.1)U(1).

It follows from the given values that U(−1) = 23/6.

7. For any given values of a,

E[U(X)] = p log a+ (1− p) log(1− a).

The maximum of this expected utility can be found by elementary differentiation. We have

∂E[U(X)]

∂a
=

p

a
− 1− p

1− a
.

When this derivative is set equal to 0, we find that a = p. Since

∂2E[U(X)]

∂a2
= − p

a2
− 1− p

(1− a)2
< 0,

It follows that E[U(X)] is a maximum when a = p.

8. For any given value of a,

E[U(X)] = pa1/2 + (1− p)(1− a)1/2.

Therefore,

∂E[U(X)]

∂a
=

p

2a1/2
− 1− p

2(1− a)1/2
.

When this derivative is set equal to 0, we find that

a =
p2

p2 + (1− p)2
.

Since
∂2 E[U(X)]

∂a2
< 0, it follows that E[U(X)] is a maximum at this value of a.
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0 1

(ii)

a

0 1

(i)

a

Figure S.4.2: Figure for Exercise 9 of Sec. 4.8.

9. For any given value of a,

E[U(X)] = pa+ (1− p)(1− a).

This is a linear function of a. If p < 1/2, it has the form shown in sketch (i) of Fig. S.4.2.

Therefore, E[U(X)] is a maximum when a = 0. If p > 1/2, it has the form shown in sketch (ii) of
Fig. S.4.2. Therefore, E[U(X)] is a maximum when a = 1. If p = 1/2, then E[U(X)] = 1/2 for all
values of a.

10. The person will prefer X3 to X4 if and only if

E[U(X3)] = (0.3)U(0) + (0.3)U(1) + (0.4)U(2) > E[U(X4)]

= (0.5)U(0) + (0.5)U(2).

Therefore, the person will prefer X3 to X4 if and only if

(0.2)U(0) − (0.3)U(1) + (0.1)U(2) < 0.

Since the person prefers X1 to X2, we know that

E[U(X1)] = (0.2)U(0) + (0.5)U(1) + (0.3)U(2) > E[U(X2)]

= (0.4)U(0) + (0.2)U(1) + (0.4)U(2),

which implies that

(0.2)U(0) − (0.3)U(1) + (0.1)U(2) < 0.

This is precisely the inequality which was needed to conclude that the person will prefer X3 to X4.
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11. For any given value of b,

E[U(X)] = p log(A+ b) + (1− p) log(A− b).

Therefore,

∂E[U(X)]

∂b
=

p

A+ b
− 1− p

A− b
.

When this derivative is set equal to 0, we find that

b = (2p − 1)A.

Since
∂2E[U(X)]

∂b2
< 0, this value of b does yield a maximum value of E[U(X)]. If p ≥ 1/2, this value of

b lies between 0 and A as required. However, if p < 1/2, this value of b is negative and not permissible.
In this case, it can be shown that the maximum value of E[U(X)] for 0 ≤ b ≤ A occurs when b = 0;
that is, when the person does not bet at all.

12. For any given value of b,

E[U(X)] = p(A+ b)1/2 + (1− p)(A− b)1/2.

Therefore,

∂E[U(X)]

∂b
=

p

2(A+ b)1/2
− 1− p

2(A − b)1/2
.

When this derivative is set equal to 0, we find that

b =
p2 − (1− p)2

p2 + (1− p)2
A.

As in Exercise 11, if p ≥ 1/2, then this value of b lies in the interval 0 ≤ b ≤ A and will maximize
E[U(X)]. However, if p < 1/2, the value of b in the interval 0 ≤ b ≤ A for which E[U(X)] is a maximum
is b = 0.

13. For any given value of b,

E[U(X)] = p(A+ b) + (1− p)(A− b).

This is a linear function of b. If p > 1/2, it has the form shown in sketch (i) of Fig. S.4.3 and b = A
is best. If p < 1/2, it has the form shown in sketch (ii) of Fig. S.4.3 and b = 0 is best. If p = 1/2,
E[U(X)] = A for all values of b.

14. For any given value of b,

E[U(X)] = p(A+ b)2 + (1− p)(A− b)2.

This is a parabola in b. If p ≥ 1/2, it has the shape shown in sketch (i) of Fig. S.4.4. Therefore,
E[U(X)] is a maximum for b = A. If 1/4 < p ≤ 1/2, it has the shape shown in sketch (ii) of Fig. S.4.4.
Therefore, E[U(X)] is again a maximum for b = A. If 0 ≤ p < 1/4, it has the shape shown in sketch
(iii) of Fig. S.4.4. Therefore, E[U(X)] is a maximum for b = 0. Finally, if p = 1/4, then it is symmetric
with respect to the point b = A/2, as shown in sketch (iv) of Fig. S.4.4. Therefore, E[U(X)] is a
maximum for b = 0 and b = A.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



134 Chapter 4. Expectation

A

A

(i) (ii)

0 A0

A

b b

Figure S.4.3: Figure for Exercise 13 of Sec. 4.8.

15. The expected utility for the lottery ticket is

E[U(X)] =

∫ 4

0
xα

1

4
dx =

4α

α+ 1
.

The utility of accepting x0 dollars instead of the lottery ticket is U(x0) = xα0 . Therefore, the person
will prefer to sell the lottery ticket for x0 dollars if

xα0 >
4α

α+ 1
or if x0 >

4

(α+ 1)1/α
.

It can be shown that the right-hand side of this last inequality is an increasing function of α.

16. The expected utility from choosing the prediction d is

E[U(−[Y − d]2) = E(|Y − d|).

We already saw (in Sec. 4.5) that d equal to a median of the distribution of Y minimizes this expectation.

17. The gain is 106 if P > 1/2 and −106 if P ≤ 1/2. The utility of continuing to promote is then 105.4

if P > 1/2 and −106 if P ≤ 1/2. To find the expected utility, we need Pr(P ≤ 1/2). Using the

stated p.d.f. for P , we get Pr(P ≤ 1/2) =

∫ 1/2

0
56p6(1 − p)dp = 0.03516. The expected utility is then

105.4× (1−0.03516)−106 ×0.03516 = 207197. This is greater than 0, so we would continue to promote
the treatment.

4.9 Supplementary Exercises

Solutions to Exercises

1. If u ≥ 0,∫ ∞

u
xf(x)dx ≥ u

∫ ∞

u
f(x)dx = u[1− F (u)].

Since

lim
u→∞

∫ u

−∞
xf(x)dx = E(X) =

∫ ∞

−∞
xf(x)dx < ∞,

it follows that

lim
u→∞

[
E(X)−

∫ u

−∞
xf(x)dx

]
= lim

u→∞

∫ ∞

u
xf(x)dx = 0.
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0 A b

0 A b

(i)

(ii)

0 A

(iii)

b 0 A bA/2

(iv)

Figure S.4.4: Figure for Exercise 14 of Sec. 4.8.

2. We use integration by parts. Let u = 1− F (x) and dv = dx. Then du = −f(x)dx and v = x, and the
integral given in this exercise becomes

[uv]∞0 −
∫ ∞

0
vdu =

∫ ∞

0
xf(x)dx = E(X).

3. Let x1, x2, . . . denote the possible values of X. Since F (X) is a step function, the integral given in
Exercise 1 becomes the following sum:

(x1 − 0) + [1− f(x1)](x2 − x1) + [1− f(x1)− f(x2)](x3 − x2) + · · ·
= x1f(x1) + x2 f(x2) + x3f(x3) + · · ·
= E(X).

4. If X, Y , and Z each had the required uniform distribution, then

E(X + Y + Z) = E(X) + E(Y ) + E(Z) =
1

2
+

1

2
+

1

2
=

3

2
.

But since X + Y + Z ≤ 1.3, this is impossible.
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5. We need E(Y ) = aμ+ b = 0 and

Var(Y ) = a2σ2 = 1.

Therefore, a = ± 1
σ and b = −aμ.

6. The p.d.f. h1(w) of the range W is given at the end of Sec. 3.9. Therefore,

E(W ) = n(n− 1)

∫ 1

0
wn−1(1− w)dw =

n− 1

n+ 1
.

7. The dealer’s expected gain is

E(Y −X) =
1

36

∫ 6

0

∫ y

0
(y − x)x dx dy =

3

2
.

8. It follows from Sec. 3.9 that the p.d.f. of Yn is

gn(y) = n[F (y)]n−1 f(y).

Here, F (y) =

∫ y

0
2xdx = y2, so

gn(y) = 2ny2n−1 for 0 < y < 1.

Hence, E(Yn) =

∫ 1

0
y gn(y)dy =

2n

2n+ 1
.

9. Suppose first that r(X) is nondecreasing. Then

Pr[Y ≥ r(m)] = Pr[r(X) ≥ r(m)] ≥ Pr(X ≥ m) ≥ 1

2
,

and

Pr[Y ≤ r(m)] = Pr[r(X) ≤ r(m)] ≥ Pr(X ≤ m) ≥ 1

2
.

Hence, r(m) is a median of the distribution of Y . If r(X) is nonincreasing, then

Pr[Y ≥ r(m)] ≥ Pr(X ≤ m) ≥ 1

2

and

Pr[Y ≤ r(m)] ≥ Pr(X ≥ m) ≥ 1

2
.

10. Since m is the median of a continuous distribution,

Pr(X < m) = Pr(X > m) =
1

2
. Hence,

Pr(Yn > m) = 1− Pr(All X ′
i s < m)

= 1− 1

2n
.
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11. Suppose that you order s liters. If the demand is x < s, you will make a profit of gx cents on the x
liters sold and suffer a loss of c(s− x) cents on the s− x liters that you do not sell. Therefore, your
net profit will be gx− c(s − x) = (g + c)x− cs. If the demand is x ≥ s, then you will sell all s liters
and make a profit of gs cents. Hence, your expected net gain is

E =

∫ s

0
[(g + c)x− cs]f(x)dx+ gs

∫ ∞

s
f(x)dx

=

∫ s

0
(g + c)x f(x)dx− csF (s) + gs[1 − F (s)].

To find the value of s that maximizes E, we find, after some calculations, that

dE

ds
= g − (g + c) F (s).

Thus, dE
ds = 0 and E is maximized when s is chosen so that F (s) = g/(g + c).

12. Suppose that you return at time t. If the machine has failed at time x ≤ t, then your cost is c(t− x).
If the machine has net yet failed (x > t), then your cost is b. Therefore, your expected cost is

E =

∫ t

0
c(t− x)f(x)dx+ b

∫ ∞

t
f(x)dx = ctF (t)− c

∫ t

0
xf(x)dx+ b[1− F (t)].

Hence,

dE

dt
= cF (t) − bf(t).

and E will be maximized at a time t such that cF (t) = bf(t).

13. E(Z) = 5(3) − 1 + 15 = 29 in all three parts of this exercise. Also,

Var(Z) = 25Var(X) + Var(Y )− 10Cov(X,Y ) = 109− 10Cov(X,Y ).

Hence, Var(Z) = 109 in parts (a) and (b). In part (c),

Cov(X,Y ) = ρσXσY = (.25)(2)(3) = 1.5

so Var(Z) = 94.

14. In this exercise,
n∑

j=1

yj = xn − x0. Therefore,

Var(Y n) =
1

n2
Var(Xn −X0).

Since Xn and X0 are independent,

Var(Xn −X0) = Var(Xn) + Var(X0).

Hence, Var(Y n) =
2σ2

n2
.
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15. Let v2 = Var(X1 + · · ·+Xn) =
∑
i

Var(Xi) + 2
∑
i<j

Cov(Xi,Xj). In this problem Var(Xi) = σ2 for all i

and Cov(Xi,Xj) = ρσ2 for all i �= j. Therefore,

v2 = nσ2 + n(n− 1)ρσ2.

Since v2 ≥ 0, it follows that ρ ≥ −1/(n − 1).

16. Since the correlation is unaffected by a translation of the distribution of X and Y in the xy-plane,
we can assume without loss of generality that the origin is at the center of the rectangle. Hence, by
symmetry, E(X) = E(Y ) = 0. But it also follows from symmetry that E(XY ) = 0 because, for any
positive value of XY in the first or third quadrant, there is a corresponding negative value in the second
or fourth quadrant with the same constant density. Thus, Cov(X,Y ) = 0 and ρ(X,Y ) = 0.

More directly, one can argue that the joint p.d.f. of (X,Y ) factors into constants times the indicator
functions of the two intervals that define the sides of the rectangles, hence X and Y are independent
and uncorrelated.

17. For i = 1, . . . , n, let Xi = 1 if the ith letter is placed in the correct envelope and let Xi = 0 otherwise.
Then E(Xi) = 1/n and, for i �= j,

E(XiXj) = Pr(XiXj = 1) = Pr(Xi = 1 and Xj = 1) =
1

n(n− 1)
.

Also, E(X2
i ) = E(Xi) = 1/n. Hence,

Var(Xi) =
1

n
− 1

n2
=

n− 1

n2

and Cov(Xi,Xj) =
1

n(n− 1)
− 1

n2
=

1

n2(n− 1)
. The total number of correct matches is X =

∑n
i=1Xi.

Therefore,

Var(X) =
n∑

i=1

Var(Xi) + 2
∑
i<j

Cov(Xi,Xj) = n · n− 1

n2
+ n(n− 1) · 1

n2(n− 1)
= 1.

18.

E[(X − μ)3] = E(X3)− 3μE(X2) + 3μ2E(X)− μ3

= E(X3)− 3μ(σ2 + μ2) + 3μ3 − μ3

= E(X3)− 3μσ2 − μ3.

19. c′(t) =
ψ′(t)
ψ(t)

and c′′(t) =
ψ(t)ψ′′(t)− [ψ′(t)]2

[ψ(t)]2

Since ψ(0) = 1, ψ′(0) = μ, and ψ′′(0) = E(X2) = σ2 + μ2, it follows that c′(0) = μ and c′′(0) = σ2.

20. It was shown in Exercise 12 of Sec. 4.7 that if E(Y | X) = aX + b, then

a =
Cov(X,Y )

Var(X)
=

ρσy
σx

and b = μY − aμX . The desired result now follows immediately.
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21. Since the coefficient of X in E(Y | X) is negative, it follows from Exercise 20 that ρ < 0. Furthermore,
it follows from Exercise 20 that the product of the coefficients of X and Y in E(Y | X) and E(X | Y )
must be ρ2. Hence, ρ2 = 1/4 and, since ρ < 0, ρ = −1/2.

22. Let X and Y denote the lengths of the longer and shorter pieces, respectively. Since Y = 3−X with
probability 1, it follows that ρ = −1.

23.

Cov(X,X + bY ) = Var(X) + bCov(X,Y )

= 1 + bρ.

Var(X) = 1,Var(X + bY ) = 1 + b2 + 2bρ.

Hence,

ρ(X,X + bY ) =
1 + bρ

(1 + b2 + 2bρ)1/2
.

If we set this quantity equal to ρ, square both sides, and solve for b, we obtain b = −1/(2ρ).

24. The p.f. of the distribution of employees is

f(0) = .1, f(1) = .2, f(3) = .3, and f(5) = .4 .

(a) The unique median of this distribution is 3, so the new office should be located at the point 3.

(b) The mean of this distribution is (.1)(0) + (.2)(1) + (.3)(3) + (.4)(5) = 3.1, so the new office should
be located at the point 3.1.

25. (a) The marginal p.d.f. of X is

f1(x) =

∫ x

0
8xy dy = 4x3 for 0 < x < 1.

Therefore, the conditional p.d.f. of Y given that X = .2 is

g1(y | X = .2) =
f(.2, y)

f1(.2)
= 50y for 0 < y < .2 .

The mean of this distribution is

E(Y | X = .2) =
2

15
= .1333.

(b) The median of g1(y | X = .2) is m =
(

1
50

)1/2
= .1414.

26.

Cov(X,Y ) = E[(X − μX)(Y − μY )]

= E{[X − E(X | Z) + E(X | Z)− μX ] · [Y − E(Y | Z) + E(Y | Z)− μY ]}
= E{[X − E(X | Z)][Y − E(Y | Z)]}+ E{[X − E(X | Z)][E(Y | Z)− μY ]}

+E{[E(X | Z)− μX ][Y − E(Y | Z)]}+ E{[E(X | Z)− μX ][E(Y | Z)− μY ]}.

Consider these final four expectations. In the first one, if we first calculate the conditional expectation
given Z and then take the expectation over Z we obtain E[Cov(X,Y | Z)]. In the second and third
expectations, we obtain the value 0 when we take the conditional expectation given Z. The fourth
expectation is Cov[E(X | Z), E(Y | Z)].
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27. Let N be the number of balls in the box. Since the proportion of red balls is p, there are Np red balls
in the box. (Clearly, p must be an integer multiple of 1/N .) There are N(1− p) blue balls in the box.
Let K = Np so that there are N −K blue balls and K red balls. If n > K, then Pr(Y = n) = 0 since
there are not enough red balls. Since Pr(X = n) > 0 for all n, the result is true if n > K. For n ≤ K,
let Xi = 1 if the ith ball is red for i = 1, . . . , n. For sampling without replacement,

Pr(Y = n) = Pr(X1 = 1)
n∏

i=2

Pr(Xi = 1|X1 = 1, . . . ,Xi−1 = 1) =
K

N

K − 1

N − 1
· · · K − n+ 1

N − n+ 1
. (S.4.4)

For sampling with replacement, the Xi’s are independent, so

Pr(X = n) =
n∏

i=1

Pr(Xi = 1) =

(
K

N

)n

. (S.4.5)

For j = 1, . . . , n− 1, KN − jN < KN − jK, so (K − j)/(N − j) < K/N . Hence the product in (S.4.4)
is smaller than the product in (S.4.5). This argument makes sense only if N is finite. If N is infinite,
then sampling with and without replacement are equivalent.

28. The expected utility from the gamble X is E[U(X)] = E(X2). The utility of receiving E(X) is
U [E(X)] = [E(X)]2. We know from Theorem 4.3.1 that E(X2) ≥ [E(X)]2 for any gamble X, and
from Theorem 4.3.3 that there is strict inequality unless X is actually constant with probability 1.

29. The expected utility from allocating the amounts a and m− a is

E = p log(g1a) + (1− p) log[g2(m− a)]

= p log a+ (1− p) log(m− a)

+ p log g1 + (1− p) log g2.

The maximum over all values of a can now be found by elementary differentiation, as in Exercise 7 of
Sec.4.8, and we obtain a = pm.
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Special Distributions

5.2 The Bernoulli and Binomial Distributions

Commentary

If one is using the statistical software R, then the functions dbinom, pbinom, and qbinom give the p.f., the
c.d.f., and the quantile function of binomial distributions. The syntax is that the first argument is the
argument of the function, and the next two are n and p respectively. The function rbinom gives a random
sample of binomial random variables. The first argument is how many you want, and the next two are n and
p. All of the solutions that require the calculation of binomial probabilites can be done using these functions
instead of tables.

Solutions to Exercises

1. Since E(Xk) has the same value for every positive integer k, we might try to find a random variable
X such that X, X2, X3, X4,. . . all have the same distribution. If X can take only the values 0 and 1,
then Xk = X for every positive integer k since 0k = 0 and 1k = 1. If Pr(X = 1) = p = 1− Pr(X = 0),
then in order for E(Xk) = 1/3, as required, we must have p = 1/3. Therefore, a random variable X
such that Pr(X = 1) = 1/3 and Pr(X = 0) = 2/3 satisfies the required conditions.

2. We wish to express f(x) in the form pα(x)(1 − p)β(x), where α(x) = 1 and β(x) = 0 and x = a and
α(x) = 0 and β(x) = 1 for x = b. If we choose α(x) and β(x) to be linear functions of the form
α(x) = α1 + α2x and β(x) = β1 + β2x, then the following two pairs of equations must be satisfied:

α1 + α2a = 1
α1 + α2b = 0,

and

β1 + β2a = 0
β1 + β2b = 1.

Hence,

α1 = − b

a− b
, α2 =

1

a− b

β1 = − a

b− a
, β2 =

1

b− a
.
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3. Let X be the number of heads obtained. Then strictly more heads than tails are obtained if X ∈
{6, 7, 8, 9, 10}. The probability of this event is the sum of the numbers in the binomial table corre-
sponding to p = 0.5 and n = 10 for k = 6, . . . , 10. By the symmetry of this binomial distribution, we
can also compute the sum as (1− Pr(X = 5))/2 = (1− 0.2461)/2 = 0.37695.

4. It is found from a table of the binomial distribution with parameters n = 15 and p = 0.4 that

Pr(6 ≤ X ≤ 9) = Pr(X = 6) + Pr(X = 7) + Pr(X = 8) + Pr(X = 9)

= .2066 + .1771 + .1181 + .0612 = .5630.

5. The tables do not include the value p = 0.6, so we must use the trick described in Exercise 7 of
Sec. 3.1. The number of tails X will have the binomial distribution with parameters n = 9 and p = 0.4.
Therefore,

Pr(Even number of heads) = Pr(Odd number of tails)

= Pr(X = 1) + Pr(X = 3) + Pr(X = 5) + Pr(X = 7) + Pr(X = 9)

= .0605 + .2508 + .1672 + .0212 + .0003

= .5000.

6. Let NA, NB , and NC denote the number of times each man hits the target. Then

E(NA +NB +NC) = E(NA) + E(NB) + E(NC)

= 3 · 1
8
+ 5 · 1

4
+ 2 · 1

2
=

21

8
.

7. If we assume that NA, NB , and NC are independent, then

Var(NA +NB +NC) = Var(NA) + Var(NB) + Var(NC)

= 3 · 1
8
· 7
8
+ 5 · 1

4
· 3
4
+ 2 · 1

2
· 1
2
=

113

64
.

8. The number X of components that fail will have the binomial distribution with parameters n = 10 and
p = 0.2. Therefore,

Pr(X ≥ 2 |X ≥ 1) =
Pr(X ≥ 2)

Pr(X ≥ 1)
=

1− Pr(X = 0)− Pr(X = 1)

1− Pr(X = 0)

=
1− .1074 − .2684

1− .1074
=

.6242

.8926
= .6993.

9. Pr

(
X1 = 1

∣∣∣∣ n∑
i=1

Xi = k

)
=

Pr

(
X1 = 1 and

n∑
i=1

Xi = k

)

Pr

(
n∑

i=1

Xi = k

) =

Pr

(
X1 = 1 and

n∑
i=2

Xi = k − 1

)

Pr

(
n∑

i=1

Xi = k

) .

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 5.2. The Bernoulli and Binomial Distributions 143

Since the random variablesX1, . . . ,Xn are independent, it follows thatX1 and
∑n

i=2 Xi are independent.
Therefore, the final expression can be rewritten as

Pr(X1 = 1)Pr

(
n∑

i=2

Xi = k − 1

)

Pr

(
n∑

i=1

Xi = k

) .

The sum
∑n

i=2 Xi has the binomial distribution with parameters n−1 and p, and the sum
∑n

i=1 Xi has
the binomial distribution with parameters n and p. Therefore,

Pr

(
n∑

i=2

Xi = k − 1

)
=

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1) =

(
n− 1

k − 1

)
pk−1(1− p)n−k,

and

Pr

(
n∑

i=1

Xi = k

)
=

(
n

k

)
pk(1− p)n−k.

Also, Pr(X1 = 1) = p. It now follows that

Pr

(
X1 = 1

∣∣∣∣ n∑
i=1

Xi = k

)
=

(
n− 1

k − 1

)
pk(1− p)n−k

(
n

k

)
pk(1− p)n−k

=
k

n
.

10. The number of children X in the family who will inherit the disease has the binomial distribution with
parameters n and p. Let f(x|n, p) denote the p.f. of this distribution. Then

Pr(X ≥ 1) = 1− Pr(X = 0) = 1− f(0|n, p) = 1− (1− p)n.

For x = 1, 2, . . . , n,

Pr(X = x|X ≥ 1) =
Pr(X = x)

Pr(X ≥ 1)
=

f(x|n, p)
1− (1− p)n

.

Therefore, the conditional p.f. of X given that X ≥ 1 is f(x|n, p)/(1− [1− p]n) for x = 1, 2, . . . , n. The
required expectation E(X |X ≥ 1) is the mean of this conditional distribution. Therefore,

E(X|X ≥ 1) =
n∑

x=1

x
f(x |n, p)

1− (1− p)n
=

1

1− (1− p)n

n∑
x=1

xf(x|n, p).

However, we know that the mean of the binomial distribution is np; i.e.,

E(X) =
n∑

x=0

xf(x |n, p) = np.

Furthermore, we can drop the term corresponding to x = 0 from this summation without affecting the

value of the summation, because the value of that term is 0. Hence,
n∑

x=1

xf(x|n, p) = np. It now follows

that E(X|X ≥ 1) = np/(1− [1− p]n).

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



144 Chapter 5. Special Distributions

11. Since the value of the term being summed here will be 0 for x = 0 and for x = 1, we may change
the lower limit of the summation from x = 2 to x = 0, without affecting the value of the sum. The
summation can then be rewritten as

n∑
x=0

x2
(
n

x

)
px(1− p)n−x −

n∑
x=0

x

(
n

x

)
px(1− p)n−x.

If X has the binomial distribution with parameters n and p, then the first summation is simply E(X2)
and the second summation is simply E(X). Finally,

E(X2)− E(X) = Var(X) + [E(X)]2 − E(X) = np(1− p) + (np)2 − np = n(n− 1)p2.

12. Assuming that p is not 0 or 1,

f(x+ 1 |n, p)
f(x |n, p) =

(
n

x+ 1

)
px+1(1− p)n−x−1

(
n

x

)
px(1− p)n−x

=
n− x

x+ 1
=

p

1− p
.

Therefore,

f(x+ 1 |n, p)
f(x |n, p) ≥ 1 if and only if x ≤ (n+ 1)p − 1.

It follows from this relation that the values of f(x |n, p) will increase as x increases from 0 up to the
greatest integer less than (n+1)p, and will then decrease as x continues increasing up to n. Therefore,
if (n+1)p is not an integer, the unique mode will be the greatest integer less than (n+1)p. If (n+1)p
is an integer, then both (n+ 1)p and (n+ 1)p− 1 are modes. If p = 0, the mode is 0 and if p = 1, the
mode is n.

13. Let X be the number of successes in the group with probability 0.5 of success. Let Y be the number
of successes in the group with probability 0.6 of success. We want Pr(X ≥ Y ). Both X and Y have
discrete (binomial) distributions with possible values 0, . . . , 5. There are 36 possible (X,Y ) pairs and
we need the sum of the probabilities of the 21 of them for which X ≥ Y . To save time, we shall calculate
the probabilities of the 15 other ones and subtract the total from 1. Since X and Y are independent,
we can write Pr(X = x, Y = y) = Pr(X = x) Pr(Y = y), and find each of the factors in the binomial
table in the back of the book. For example, for x = 1 and y = 2, we get 0.1562 × 0.2304 = 0.03599.
Adding up all 15 of these and subtracting from 1 we get 0.4957.

14. Before we prove the three facts, we shall show that they imply the desired result. According to (c),
every distribution with the specified moments must take only the values 0 and 1. The mean of such a
distribution is Pr(X = 1). This number, Pr(X = 1), uniquely determines every distribution that can
only take the two values 0 an 1.

(a) Suppose that Pr(|X| > 1) > 0. Then there exists ε > 0 such that Pr(|X| > 1 + ε) > 0. Then

E(X2k) ≥ (1 + ε)2k Pr(|X| > 1 + ε).

Since the right side of this equation goes to ∞ as k → ∞, it cannot be the case that E(X2k) = 1/3
for all k. This contradiction means that our assumption that Pr(|X| > 1) > 0 must be false. That
is, Pr(|X| ≤ 1) = 1.
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(b) Since X4 < X2 whenever |X| ≤ 1 and X2 �∈ {0, 1}, it follows that E(X4) < E(X2) whenever
Pr(|X| ≤ 1) = 1 and Pr(X2 �∈ {0, 1}) > 0. Since we know that E(X4) = E(X2) and Pr(|X| ≤
1) = 1, it must be that Pr(X2 �∈ {0, 1}) = 0. That is, Pr(X2 ∈ {0, 1}) = 1.

(c) From (b) we know that Pr(X ∈ {−1, 0, 1}) = 1. We also know that

E(X) = Pr(X = 1)− Pr(X = −1)

E(X2) = Pr(X = 1) + Pr(X = −1).

Since these two are equal, it follows that Pr(X = −1) = 0.

15. We need the maximum number of tests if and only if every first-stage and second-stage subgroup has
at least one positive result. In that case, we would need 10 + 100 + 1000 = 1110 total tests. The
probability that we have to run this many tests is the probability that every Y2,i,k = 1, which in turn
is the probability that every Z2,i,k > 0. The Z2,i,k’s are independent binomial random variables with
parameters 10 and 0.002, and there are 100 of them altogether. The probability that each is positive
is 0.0198, as computed in Example 5.2.7. The probability that they are all positive is (0.0198)100 =
4.64 × 10−171.

16. We use notation like that in Example 5.2.7 with one extra stage. For i = 1, . . . , 5, let Z1,i be the
number of people in group i who test positive. Let Y1,i = 1 if Z1,i > 0 and Y1,i = 0 if not. Then Z1,i

has the binomial distribution with parameters 200 and 0.002, while Y1,i has the Bernoulli distribution
with parameter 1− 0.998200 = 0.3299. Let Z2,i,k be the number of people who test positive in the kth
subgroup of group i for k = 1, . . . , 5. Let Y2,i,k = 1 if Z2,i,k > 0 and Y2,i,k = 0 if not. Each Z2,i,k has
the binomial distribution with parameters 40 and 0.002, while Y2,i,k has the Bernoulli distribution with
parameter 1 − 0.99840 = 0.0770. Finally, let Z3,i,k,j be the number of people who test positive in the
jth sub-subgroup of the kth subgroup of the ith group. Let Y3,i,k,j = 1 if Z3,i,k,j > 0 and Y3,i,k,j = 0
otherwise. Then Z3,i,k,j has the binomial distribution with parameters 8 and 0.002, while Y3,i,k,j has
the Bernoulli distribution with parameter 1− 0.9988 = 0.0159.

The maximum number of tests is needed if and only if there is at least one positive amongst every one of
the 125 sub-subgroups of size 8. In that case, we need to make 1000+125+25+5 = 1155 total tests. Let
Y1 =

∑5
i=1 Y1,i, which is the number of groups that need further attention. Let Y2 =

∑5
i=1

∑5
k=1 Y2,i,k,

which is the number of subgroups that need further attention. Let Y3 =
∑5

i=1

∑5
k=1

∑5
j=1 Y3,i,k,j, which

is the number of sub-subgroups that need all 8 members tested. The actual number of tests needed is
Y = 5+5Y1+5Y2+8Y3. The mean of Y1 is 5×0.3299 = 1.6497. The mean of Y2 is 25×0.0770 = 1.9239.
The mean of Y3 is 125 × 0.0159 = 1.9861. The mean of Y is then

E(Y ) = 5 + 5× 1.6497 + 5× 1.9239 + 8× 1.9861 = 38.7569.

5.3 The Hypergeometric Distributions

Commentary

The hypergeometric distribution arises in finite population sampling and in some theoretical calculations.
It actually does not figure in the remainder of this text, and this section could be omitted despite the fact
that it is not marked with an asterisk. The section ends with a discussion of how to extend the definition of
binomial coefficients in order to make certain formulas easier to write. This discussion is not central to the
rest of the text. It does arise again in a theoretical discussion at the end of Sec. 5.5.

If one is using the statistical software R, then the functions dhyper, phyper, and qhyper give the p.f.,
the c.d.f., and the quantile function of hypergeometric distributions. The syntax is that the first argument is
the argument of the function, and the next three are A, B, and n in the notation of the text. The function
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rhyper gives a random sample of hypergeometric random variables. The first argument is how many you
want, and the next three are A, B, and n. All of the solutions that require the calculation of hypergeometric
probabilites can be done using these functions.

Solutions to Exercises

1. Using Eq. (5.3.1) with the parameters A = 10, B = 24, and n = 11, we obtain the desired probability

Pr(X = 10) =

(
10

10

)(
24

1

)
(
34

11

) = 8.389 × 10−8.

2. Let X denote the number of red balls that are obtained. Then X has the hypergeometric distribution
with parameters A = 5, B = 10, and n = 7. The maximum value of X is min{n,A} = 5, hence,

Pr(X ≥ 3) =
5∑

x=3

(
5

x

)(
10

7− x

)
(
15

7

) =
2745

6435
≈ 0.4266.

3. As in Exercise 2, let X denote the number of red balls in the sample. Then, by Eqs. (5.3.3) and (5.3.4),

E(X) =
nA

A+B
=

7

3
and Var(X) =

nAB

(A+B)2
· A+B − n

A+B − 1
=

8

9
.

Since X = X/n,

E(X) =
1

n
E(X) =

1

3
and Var(X) =

1

n2
Var(X) =

8

441
.

4. By Eq. (5.3.4),

Var(X) =
(8)(20)

(28)2(27)
n(28 − n).

The quadratic function n(28− n) is a maximum when n = 14.

5. By Eq. (5.3.4),

Var(X) =
A(T −A)

T 2(T − 1)
n(T − n).

If T is an even integer, then the quadratic function n(T − n) is a maximum when n = T/2. If T is
an odd integer, then the maximum value of n(T − n), for n = 0, 1, 2, . . . , T , occurs at the two integers
(T − 1)/2 and (T + 1)/2.
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6. For x = 0, 1, . . . , k,

Pr(X1 = x|X1 +X2 = k) =
Pr(X1 = x and X1 +X2 = k)

Pr(X1 +X2 = k)
=

Pr(X1 = x and X2 = k − x)

Pr(X1 +X2 = k)
.

Since X1 and X2 are independent,

Pr(X1 = x and X2 = k − x) = Pr(X1 = x) Pr(X2 = k − x).

Furthermore, it follows from a result given in Sec. 5.2 that X1 +X2 will have the binomial distribution
with parameters n1 + n2 and p. Therefore,

Pr(X1 = x) =

(
n1

x

)
px(1− p)n1−x,

Pr(X2 = k − x) =

(
n2

k − x

)
pk−x(1− p)n2−k+x,

Pr(X1 +X2 = k) =

(
n1 + n2

k

)
pk(1− p)n1+n2−k.

By substituting these values into the expression given earlier, we find that for x = 0, 1, . . . , k,

Pr(X1 = x|X1 +X2 = k) =

(
n1

x

)(
n2

k − x

)
(
n1 + n2

k

) .

It can be seen that this conditional distribution is a hypergeometric distribution with parameters n1, n2,
and k.

7. (a) The probability of obtaining exactly x defective items is(
0.3T

x

)(
0.7T

10− x

)
(
T

10

) .

Therefore, the probability of obtaining not more than one defective item is the sum of these
probabilities for x = 0 and x = 1.

Since (
0.3T

0

)
= 1 and

(
0.3T

1

)
= 0.3T,

this sum is equal to(
0.7T

10

)
+ 0.3T

(
0.7T

9

)
(
T

10

) .
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(b) The probability of obtaining exactly x defectives according to the binomial distribution, is(
10

x

)
(0.3)x(0.7)10−x.

The desired probability is the sum of these probabilities for x = 0 and x = 1, which is

(0.7)10 + 10(0.3)(0.7)9 .

For a large value of T , the answers in (a) and (b) will be very close to each other, although this
fact is not obvious from the different forms of the two answers.

8. If we let Xi denote the height of the ith person selected, for i = 1, . . . , n, then X = X1 + · · · + Xn.
Furthermore, since Xi is equally likely to have any one of the T values a1, . . . , aT , then

E(Xi) =
1

T

T∑
i=1

ai = μ

and

Var(Xi) =
1

T

T∑
i=1

(ai − μ)2 = σ2.

It follows that E(X) = nμ. Furthermore, by Theorem 4.6.7,

Var(X) =
n∑

i=1

Var(Xi) + 2
∑

i< j

∑
Cov(Xi,Xj).

Because of the symmetry among the variables X1, . . . ,Xn, it follows that

Var(X) = nσ2 + n(n− 1)Cov(X1,X2).

We know that Var(X) = 0 for n = T . Therefore,

Cov(X1,X2) = − 1

T − 1
σ2.

It now follows that

Var(X) = nσ2 − n(n− 1)

T − 1
σ2 = nσ2

(
T − n

T − 1

)
.

9. By Eq. (5.3.14),(
3/2

4

)
=

(3/2)(1/2)(−1/2)(−3/2)

4!
=

3

128
.

10. By Eq. (5.3.14),(
−n

k

)
=

(−n)(−n− 1) · · · (−n− k + 1)

k!
=

(−1)k(n)(n+ 1) . . . (n+ k − 1)

k!
.

If we reverse the order of the factors in the numerator, we can rewrite this relation as follows:(
−n

k

)
=

(−1)k(n+ k − 1)(n + k − 2) · · · (n)
k!

= (−1)k
(
n+ k − 1

k

)
.
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11. Write (1 + an)
cne−ancn = exp[cn log(1 + an)− ancn]. The result is proven if we can show that

lim
n→∞[cn log(1 + an)− ancn] = 0. (S.5.1)

Use Taylor’s theorem with remainder to write

log(1 + an) = an − a2n
2(1 + yn)2

,

where yn is between 0 and an. It follows that

cn log(1 + an)− ancn = cnan − cna
2
n

2(1 + yn)2
− ancn = − cna

2
n

2(1 + yn)2
.

We have assumed that cna
2
n goes to 0. Since yn is between 0 and an, and an goes to 0, we have

1/[2(1 + yn)
2] goes to 0. This establishes (S.5.1).

5.4 The Poisson Distributions

Commentary

This section ends with a more theoretical look at the assumptions underlying the Poisson process. This
material is designed for the more mathematically inclined students who might wish to see a derivation of the
Poisson distribution from those assumptions. Such a derivation is outlined in Exercise 16 in this section.

If one is using the statistical software R, then the functions dpois, ppois, and qpois give the p.f., the
c.d.f., and the quantile function of Poisson distributions. The syntax is that the first argument is the argument
of the function, and the second is the mean. The function rpois gives a random sample of Poisson random
variables. The first argument is how many you want, and the second is the mean. All of the solutions that
require the calculation of Poisson probabilites can be done using these functions instead of tables.

Solutions to Exercises

1. The number of oocysts X in t = 100 liters of water has the Poisson distribution with mean 0.2× 0.1×
100 = 2. Using the Poisson distribution table in the back of the book, we find

Pr(X ≥ 2) = 1− Pr(X ≤ 1) = 1− 0.1353 − 0.2707 = 0.594.

2. From the table of the Poisson distribution in the back of the book it is found that

Pr(X ≥ 3) = .0284 + .0050 + .0007 + .0001 + .0000 = .0342.

3. Since the number of defects on each bolt has the Poisson distribution with mean 0.4, and the observa-
tions for the five bolts are independent, the sum for the numbers of defects on five bolts will have the
Poisson distribution with mean 5(0.4) = 2. It is found from the table of the Poisson distribution that

Pr(X ≥ 6) = .0120 + .0034 + .0009 + .0002 + .0000 = .0165.

There is some rounding error in this, and 0.0166 is closer.
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4. If f(x |λ) is the p.f. of the Poisson distribution with mean λ, then

Pr(X = 0) = f(0 |λ) = exp(−λ).

5. Let Y denote the number of misprints on a given page. Then the probability p that a given page will
contain more than k misprints is

p = Pr(Y > k) =
∞∑

i=k+1

f(i |λ) =
∞∑

i=k+1

exp(−λ)λi

i!
.

Therefore,

1− p =
k∑

i=0

f(i |λ) =
k∑

i=0

exp(−λ)λi

i!
.

Now let X denote the number of pages, among the n pages in the book, on which there are more than
k misprints. Then for x = 0, 1, . . . , n,

Pr(X = x) =

(
n

x

)
px(1− p)n−x

and

Pr(X ≥ m) =
n∑

x=m

(
n

x

)
px(1− p)n−x.

6. We shall assume that defects occur in accordance with a Poisson process. Then the number of defects
in 1200 feet of tape will have the Poisson distribution with mean μ = 3(1.2) = 3.6. Therefore, the
probability that there will be no defects is exp(−μ) = exp(−3.6).

7. We shall assume that customers are served in accordance with a Poisson process. Then the number of
customers served in a two-hour period will have the Poisson distribution with mean μ = 2(15) = 30.
Therefore, the probability that more than 20 customers will be served is

Pr(X > 20) =
∞∑

x=21

exp(−30)(30)x

x!
.

8. For x = 0, 1, . . . , k,

Pr(X1 = x |X1 +X2 = k) =
Pr(X1 = x and X1 +X2 = k)

Pr(X1 +X2 = k)
=

Pr(X1 = x and X2 = k − x)

Pr(X1 +X2 = k)
.

Since X1 and X2 are independent,

Pr(X1 = x and X2 = k − x) = Pr(X1 = x) Pr(X2 = k − x).

Also, by Theorem 5.4.4 the sum X1 +X2 will have the Poisson distribution with mean λ1+ λ2. Hence,

Pr(X1 = x) =
exp(−λ1)λ

x
1

x!

Pr(X2 = k − x) =
exp(−λ2)λ

k−x
2

(k − x)!

Pr(X1 +X2 = k) =
exp(−(λ1 + λ2))(λ1 + λ2)

k

k!
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It now follows that

Pr(X1 = x |X1 +X2 = k) =
k!

x!(k − x)!

(
λ1

λ1 + λ2

)x ( λ2

λ1 + λ2

)k−x

=

(
k

x

)
px(1− p)k−x,

where p = λ1/(λ1+λ2). It can now be seen that this conditional distribution is a binomial distribution
with parameters k and p = λ1/(λ1 + λ2).

9. Let N denote the total number of items produced by the machine and let X denote the number of
defective items produced by the machine. Then, for x = 0, 1, . . . ,

Pr(X = x) =
∞∑
n=0

Pr(X = x |N = n) Pr(N = n).

Clearly, it must be true that X ≤ N . Therefore, the terms in this summation for n < x will be 0, and
we may write

Pr(X = x) =
∑
n=x

Pr(X = x |N = n) Pr(N = n).

Clearly, Pr(X = 0 |N = 0) = 1. Also, given that N = n > 0, the conditional distribution of X will be
a binomial distribution with parameters n and p. Therefore,

Pr(X = x |N = n) =
n!

x!(n− x)!
px(1− p)n−x.

Also, since N has the Poisson distribution with mean λ,

Pr(N = n) =
exp(−λ)λn

n!
.

Hence,

Pr(X = x) =
∞∑
n=x

n!

x!(n− x)!
px(1− p)n−x exp(−λ)λn

n!
=

1

x!
px exp(−λ)

∞∑
n=x

1

(n − x)!
(1− p)n−xλn.

If we let t = n− x, then

Pr(X = x) =
1

x!
px exp(−λ)

∞∑
t=0

1

t!
(1− p)tλt+x

=
1

x!
(λp)x exp(−λ)

∞∑
t=0

[λ(1 − p)]t

t!

=
1

x!
(λp)x exp(−λ) exp(λ(1 − p)) =

exp(−λp)(λp)x

x!
.

It can be seen that this final term is the value of the p.f. of the Poisson distribution with mean λp.
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10. It must be true that X + Y = N . Therefore, for any nonnegative integers x and y,

Pr(X = x and Y = y) = Pr(X = x and N = x+ y)

= Pr(X = x |N = x+ y) Pr(N = x+ y)

=
(x+ y)!

x!y!
px(1− p)y

exp(−λ)λx+y

(x+ y)!

= exp(−λ)
(λp)x

x!
· [λ(1 − p)]y

y!
.

The fact that we have factored Pr(X = x and Y = y) into the product of a function of x and a function
of y is sufficient for us to be able to conclude that X and Y are independent. However, if we continue
further and write

exp(−λ) = exp(−λp) exp(−λ(1− p))

then we can obtain the factorization

Pr(X = x and Y = y) =
exp(−λ)p(λp)x

x!
· exp(−λ(1− p))[λ(1− p)]y

y!
= Pr(X = x) Pr(Y = y).

11. If f(x |λ) denotes the p.f. of the Poisson distribution with mean λ, then

f(x+ 1 |λ)
f(x |λ) =

λ

x+ 1
.

Therefore, f(x |λ) < f(x+1 |λ) if and only if x+1 < λ. It follows that if λ is not an integer, then the
mode of this distribution will be the largest integer x that is less than λ or, equivalently, the smallest
integer x such that x+ 1 > λ. If λ is an integer, then both the values λ− 1 and λ will be modes.

12. It can be assumed that the exact distribution of the number of colorblind people in the group is a
binomial distribution with parameters n = 600 and p = 0.005. Therefore, this distribution can be
approximated by a Poisson distribution with mean 600(0.005) = 3. It is found from the table of the
Poisson distribution that

Pr(X ≤ 1) = .0498 + .1494 = .1992.

13. It can be assumed that the exact number of sets of triplets in this hospital is a binomial distribution
with parameters n = 700 and p = 0.001. Therefore, this distribution can be approximated by a Poisson
distribution with mean 700(0.001) = 0.7. It is found from the table of the Poisson distribution that

Pr(X = 1) = 0.3476.

14. Let X denote the number of people who do not appear for the flight. Then everyone who does appear
will have a seat if and only if X ≥ 2. It can be assumed that the exact distribution of X is a binomial
distribution with parameters n = 200 and p = 0.01. Therefore, this distribution can be approximated
by a Poisson distribution with mean 200(0.01) = 2. It is found from the table of the Poisson distribution
that

Pr(X ≥ 2) = 1− Pr(X ≤ 1) = 1− .1353 − .2707 = .5940.
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15. The joint p.f./p.d.f. of X and λ is the Poisson p.f. with parameter λ times f(λ) which equals

exp(−λ)
λx

x!
2 exp(−2λ) = 2 exp(−3λ)

λx

x!
. (S.5.2)

We need to compute the marginal p.f. of X at x = 1 and divide that into (S.5.2) to get the conditional
p.d.f. of λ given X = 1. The marginal p.f. of X at x = 1 is the integral of (S.5.2) over λ when x = 1 is
plugged in.

f1(1) =

∫ ∞

0
2λ exp(−3λ)dλ =

2

9
.

This makes the conditional p.d.f. of λ equal to 9λ exp(−3λ) for λ > 0.

16. (a) Let A = ∪n
i=1Ai. Then

{X = k} = ({X = k} ∩A) ∪ ({X = k} ∩Ac) .

The second event on the right side of this equation is {Wn = k}. Call the first event on the right
side of this equation B. Then B ⊂ A. Since B and {Wn = k} are disjoint, Pr(X = k) = Pr(Wn =
k) + Pr(B).

(b) Since the subintervals are disjoint, the events A1, . . . , An are independent. Since the subintervals
all have the same length t/n, each Ai has the same probability. It follows that

Pr (∩n
i=1A

c
i ) = [1− Pr(A1)]

n.

By assumption, Pr(Ai) = o(1/n), so

Pr(A) = 1− Pr (∩n
i=1A

c
i ) = 1− [1− o(1/n)]n.

So,

lim
n→∞Pr(A) = 1− lim

n→∞[1− o(1/n)]n = 1,

according to Eq. (5.4.9).

(c) Since the Yi are i.i.d. Bernoulli random variables with parameter pn = λt/n + o(1/n), we know
that Wn has the binomial distribution with parameters n and pn. Hence

Pr(Wn = k) =

(
n

k

)
pkn(1− pn)

n−k =
n!

(n − k)!k!

[
λt

n
+ o(1/n)

]k [
1− λt

n
− o(1/n)

]n−k

.

For fixed k,

lim
n→∞nk

[
λt

n
+ o(1/n)

]k
= (λt)k.

Also, using the formula stated in the exercise,

lim
n→∞nk

[
1− λt

n
− o(1/n)

]n−k

= exp(−λt).

It follows that

lim
n→∞Pr(Wn = k) = exp(−λt)

(λt)k

k!
lim
n→∞

n!

nk(n− k)!
.

We can write

n!

nk(n− k)!
=

n(n− 1) · · · (n − k + 1)

n · n · · ·n .

For fixed k, the limit of this ratio is 1 as n → ∞.
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(d) We have established that

Pr(X = k) = Pr(Wn = k) + Pr(B).

Since the left side of this equation does not depend on n, we can write

Pr(X = k) = lim
n→∞Pr(Wn = k) + lim

n→∞Pr(B).

In earlier parts of this exercise we showed that the two limits on the right are exp(−λt)(λt)k/k!
and 0 respectively. So, X has the Poisson distribution with mean λt.

17. Because nTAT /(AT + BT ) converges to λ, nT/(AT + BT ) goes to 0. Hence, BT eventually gets larger
than nT . Once BT is larger than nT + x and AT is larger than x, we have

Pr(XT = x) =

(AT
x

)( BT
nT−x

)(AT+BT
nT

) =
AT !BT !nT !(AT +BT − nT )!

x!(AT − x)!(nT − x)!(BT − nT + x)!(AT +BT )!
.

Apply Stirling’s formula to each of the factorials in the above expression except x!. A little manipulation
gives that

lim
T→∞

A
AT+1/2
T B

BT+1/2
T n

nT+1/2
T (AT +BT − nT )

AT+BT−nT+1/2ex

Pr(XT = x)x!(AT − x)AT−x+1/2(nT − x)nT−x+1/2(BT − n+ x)BT−n+x+1/2(AT +BT )AT+BT+1/2

= 1. (S.5.3)

Each of the following limits follows from Theorem 5.3.3:

lim
T→∞

(
AT

AT − x

)AT−x+1/2

= ex,

lim
T→∞

(
BT

BT − nT + x

)BT−nT+x+1/2

e−nT = e−x,

lim
T→∞

(
AT +BT − nT

AT +BT

)AT+BT−n+1/2

enT = 1,

lim
T→∞

(
nT

nT − x

)nT−x+1/2

= e−x,

lim
T→∞

(
BT

AT +BT

)nT−x

= e−λ,

Inserting these limits in (S.5.3) yields

lim
T→∞

Ax
T e

−λnx
T

Pr(XT = x)x!(AT +BT )x
= 1. (S.5.4)

Since nTAT /(AT +BT ) converges to λ, we have

lim
T→∞

Ax
Tn

x
T

(AT +BT )x
= λx. (S.5.5)

Together (S.5.4) and (S.5.5) imply that

lim
T→∞

λxe−λ/x!

Pr(XT = x)
= 1.

The numerator of this last expression is Pr(Y = x), which completes the proof.
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18. First write

nTAT

BT
− nTAT

AT +BT
=

nTA
2
T

BT (AT +BT )
= nT

AT

BT

AT

AT +BT
. (S.5.6)

For the “if” part, assume that nTAT /BT converges to λ. Since nT goes to ∞, then AT /BT goes to 0,
which implies that AT /(AT + BT ) (which is smaller) goes to 0. In the final expression in (S.5.6),
the product of the first two factors goes to λ by assumption, and the third factor goes to 0, so
nTAT /(AT + BT ) converges to the same thing as nTAT /BT , namely λ. For the “only if” part, as-
sume that nTAT /(AT + BT ) converges to λ. It follows that AT /(AT + BT ) = 1/(1 + BT /AT ) goes to
0, hence AT /BT goes to 0. In the last expression in (S.5.6), the product of the first and third factors
goes to λ by assumption, and the second factor goes to 0, hence nTAT /BT converges to the same thing
as nTAT /(AT +BT ), namely λ.

5.5 The Negative Binomial Distributions

Commentary

This section ends with a discussion of how to extend the definition of negative binomial distribution by
making use of the extended definition of binomial coefficients from Sec. 5.3.

If one is using the statistical software R, then the functions dnbinom, pnbinom, and qnbinom give the
p.f., the c.d.f., and the quantile function of negative binomial distributions. The syntax is that the first
argument is the argument of the function, and the next two are r and p in the notation of the text. The
function rnbinom gives a random sample of binomial random variables. The first argument is how many you
want, and the next two are r and p. All of the solutions that require the calculation of negative binomial
probabilites can be done using these functions. There are also functions dgeom, pgeom, qgeom, and rgeom

that compute similar features of geometric distributions. Just remove the “r” argument.

Solutions to Exercises

1. (a) Two particular days in a row have independent draws, and each draw has probability 0.01 of
producing triples. So, the probability that two particular days in a row will both have triples is
10−4.

(b) Since a particular day and the next day are independent, the conditional probability of triples on
the next day is 0.01 conditional on whatever happens on the first day.

2. (a) The number of tails will have the negative binomial distribution with parameters r = 5 and
p = 1/30. By Eq. (5.5.7),

E(X) =
r(1− p)

p
= 5(29) = 145.

(b) By Eq. (5.5.7), Var(X) =
r(1− p)

p2
= 4350.

3. (a) Let X denote the number of tails that are obtained before five heads are obtained, and let Y denote
the total number of tosses that are required. Then Y = X + 5. Therefore, E(Y ) = E(X) + 5. It
follows from Exercise 2(a) that E(Y ) = 150.

(b) Suppose Y = X + 5, then Var(Y ) = Var(X). Therefore, it follows from Exercise 2(b) that
Var(Y ) = 4350.
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4. (a) The number of failuresXA obtained by player A before he obtains r successes will have the negative
binomial distribution with parameters r and p. The total number of throws required by player A
will be YA = XA + r. Therefore,

E(YA) = E(XA) + r = r
1− p

p
+ r =

r

p
.

The number of failures XB obtained by player B before he obtains mr successes will have the
negative binomial distribution with parameters mr and mp. The total number of throws required
by player B will be YB = XB +mr. Therefore,

E(YB) = E(XB) +mr = (mr)
(1−mp)

mp
+mr =

r

p
.

(b)

Var(YA) = Var(XA) =
r(1− p)

p2
=

r

p2
(1− p) and

Var(YB) = Var(XB) =
(mr)(1−mp)

(mp)2
=

r

p2

(
1

m
− p

)
.

Therefore, Var(YB) < Var(YA).

5. By Eq. (5.5.6), the m.g.f. of Xi is

ψi(t) =

(
p

1− (1− p) exp(t)

)ri

for t < log

(
1

1− p

)
.

Therefore, the m.g.f. of X1 + · · ·+Xk is

ψ(t) =
k∏

i=1

ψi(t) =

(
p

1− (1− p) exp(t)

)r1+···+rk

for t < log

(
1

1− p

)
.

Since ψ(t) is the m.g.f. of the negative binomial distribution with parameters r1 + · · ·+ rk and p, that
must be the distribution of X1 + · · ·+Xk.

6. For x = 0, 1, 2, . . . ,

Pr(X = x) = p(1− p)x.

If we let x = 2i, then as i runs through all the integers 0, 1, 2, . . . , the value of 2i will run through all
the even integers 0, 2, 4, . . . . Therefore,

Pr(X is an even integer) =
∞∑
i=0

p(1− p)2i = p
∞∑
i=0

([1− p]2)i = p
1

1− (1− p)2
.

7. Pr(X ≥ k) =
∞∑
x=j

p(1− p)x = p(1− p)k
∞∑
x=j

(1− p)x−k. If we let i = x− k, then

Pr(X ≥ k) = p(1− p)k
∞∑
x=j

(1− p)i = p(1− p)k
1

1− [1− p]
= (1− p)k.
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8. Pr(X = k + t |X ≥ k) =
Pr(X = k + t and X ≥ k)

Pr(X ≥ k)
=

Pr(X = k + t)

Pr(X ≥ k)
.

By Eq. (5.5.3), Pr(X = k + t) = p(1 − p)k+t. By Exercise 7, Pr(X≥k) = (1 − p)k. Therefore,
Pr(X = k + t |X ≥ k) = p(1− p)t = Pr(X = t).

9. Since the components are connected in series, the system will function properly only as long as every
component functions properly. Let Xi denote the number of periods that component i functions prop-
erly, for i = 1, . . . , n, and let X denote the number of periods that system functions properly. Then for
any nonnegative integer x,

Pr(X ≥ x) = Pr(X1 ≥ x, . . . ,Xn ≥ x) = Pr(X1 ≥ x) . . .Pr(Xn ≥ x),

because the n components are independent. By Exercise 7,

Pr(Xi ≥ x) = (1− pi)
x = (1− pi)

x .

Therefore, Pr(X ≥ x) =
∏n

i=1(1− pi)
x. It follows that

Pr(X = x) = Pr(X ≥ x)− Pr(X ≥ x+ 1) =
n∏

i=1

(1− pi)
x −

∏
i=1

(1− pi)
x+1

=

(
1−

n∏
i=1

(1− pi)

)(
n∏

i=1

(1− pi)

)x

.

It can be seen that this is the p.f. of the geometric distribution with p = 1−∏n
i=1(1− pi).

10. By the assumptions of the problem we have p = 1−λ/r and r → ∞. To simplify some of the formulas,
let q = 1− p so that q = λ/r. It now follows from Eq. (5.5.1) that

f(x | r, p) =
(r + x− 1)(r + x− 2) . . . r

x!

(
1− λ

r

)r

qx

=
[q(r + x− 1)][q(r + x− 2)] . . . (qr)

x!

(
1− λ

r

)r

=
[λ+ q(x− 1)][λ + q(x− 2)] . . . (λ)

x!

(
1− λ

r

)r

.

As r → ∞, q → 0 and

[λ+ q(x− 1)][λ + q(x− 2)] . . . (λ) → λx, and(
1− λ

r

)r

→ exp(−λ).

Hence, f(x | r, p) → λx

x!
exp(−λ) = f(x |λ).

11. According to Exercise 10 in Sec. 5.3,(
−r

x

)
= (−1)x

(
r + x− 1

x

)
.
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This makes(
−r

x

)
pr(−[1− p])x =

(
r + x− 1

x

)
pr(1− p)x,

which is the proper form of the negative binomial p.f. for x = 0, 1, 2, . . ..

12. The joint p.f./p.d.f. of X and P is f(p) times the geometric p.f. with parameter p, that is

p(1− p)x10(1 − p)9 = p(1− p)x+9, for x = 0, 1, . . . and 0 < p < 1. (S.5.7)

The marginal p.f. of X at x = 12 is the integral of (S.5.7) over p with x = 12 substituted:

∫ 1

0
p(1− p)21dp =

∫ 1

0
p21(1− p)dp =

1

22
− 1

23
=

1

506
.

The conditional p.d.f. of P given X = 12 is (S.5.7) divided by this last value

g(p|12) = 506p(1 − p)21, for 0 < p < 1.

13. (a) The memoryless property says that, for all k, t ≥ 0,

Pr(X = k + t)

1− F (t− 1)
= Pr(X = k).

(The above version switches the use of k and t from Theorem 5.5.5.) If we sum both sides of this
over k = h, h + 1, . . ., we get

1− F (t+ h− 1)

1− F (t− 1)
= 1− F (h − 1).

(b) �(t+ h) = log[1− F (t+ h− 1)]. From part (a), we have

1− F (t+ h− 1) = [1− F (t− 1)][1 − F (h− 1)],

Hence

�(t+ h) = log([1− F (t− 1)] + log[1− F (h− 1)] = �(t) + �(h).

(c) We prove this by induction. Clearly �(1) = 1× �(1), so the result holds for t = 1. Assume that the
result holds for all t ≤ t0. Then �(t0 + 1) = �(t0) + �(1) by part (b). By the induction hypothesis,
�(t0) = t0�(1), hence �(t0 + 1) = (t0 + 1)�(1), and the result holds for t = t0 + 1.

(d) Since �(1) = log[1 − F (0)], we have �(1) < 0. Let p = 1 − exp[�(1)], which between 0 and 1. For
every integer x ≥ 1, we have, from part (c) and the definition of �, that

F (x− 1) = 1− exp[�(x)] = 1− exp[x�(1)] = 1− (1− p)x.

Setting t = x− 1 for x ≥ 1, we get

F (t) = 1− (1− p)t+1, for t = 0, 1, . . .. (S.5.8)

It is easy to verify that (S.5.8) is the c.d.f. of the geometric distribution with parameter p.
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5.6 The Normal Distributions

Commentary

In addition to introducing the family of normal distributions, we also describe the family of lognormal dis-
tributions. These distributions arise frequently in engineering and financial applications. (Examples 5.6.9
and 5.6.10 give two such cases.) It is true that lognormal distributions are nothing more than simple trans-
formations of normal distributions. However, at this point in their study, many students will not yet be
sufficiently comfortable with transformations to be able to derive these distributions and their properties
without a little help.

If one is using the statistical software R, then the functions dnorm, pnorm, and qnorm give the p.d.f.,
the c.d.f., and the quantile function of normal distributions. The syntax is that the first argument is the
argument of the function, and the next two are the mean and standard deviation. The function rnorm gives
a random sample of normal random variables. The first argument is how many you want, and the next two
are the mean and standard deviation. All of the solutions that require the calculation of normal probabilites
and quantiles can be done using these functions instead of tables. There are also functions dlnorm, plnorm,
qlnorm, and rlnorm that compute similar features for lognormal distributions.

Solutions to Exercises

1. By the symmetry of the standard normal distribution around 0, the 0.5 quantile must be 0. The 0.75
quantile is found by locating 0.75 in the Φ(x) column of the standard normal table and interpolating in
the x column. We find Φ(0.67) = 0.7486 and Φ(0.68) = 0.7517. Interpolating gives the 0.75 quantile as
0.6745. By symmetry, the 0.25 quantile is −0.6745. Similarly we find the 0.9 quantile by interpolation
using Φ(1.28) = 0.8997 and Φ(1.29) = 0.9015. The 0.9 quantile is then 1.282 and the 0.1 quantile is
−1.282.

2. Let Z = (X − 1)/2. Then Z has the standard normal distribution.

(a) Pr(X ≤ 3) = Pr(Z ≤ 1) = Φ(1) = 0.8413

(b) Pr(X > 1.5) = Pr(Z > 0.25) = 1− Φ(0.25) = 0.4013.

(c) Pr(X = 1) = 0, because X has a continuous distribution.

(d) Pr(2 < X < 5) = Pr(0.5 < Z < 2) = Φ(2)− Φ(0.5) = 0.2858.

(e) Pr(X ≥ 0) = Pr(Z ≥ −0.5) = Pr(Z ≤ 0.5) = Φ(0.5) = 0.6915.

(f) Pr(−1 < X < 0.5) = Pr(−1 < Z < −0.25) = Pr(0.25 < Z < 1) = Φ(1)− Φ(0.25) = 0.2426.

(g)

Pr( |X | ≤ 2) = Pr(−2 ≤ X ≤ 2) = Pr(−1.5 ≤ Z ≤ 0.5)
= Pr(Z ≤ 0.5) − Pr(Z ≤ −1.5) = Pr(Z ≤ 0.5)

−Pr(Z ≥ 1.5) = Φ(0.5)− [1− Φ(1.5)] = 0.6247.

(h)

Pr(1 ≤ −2X + 3 ≤ 8) = Pr(−2 ≤ −2X ≤ 5) = Pr(−2.5 ≤ X ≤ 1)
= Pr(−1.75 ≤ Z ≤ 0) = Pr(0 ≤ Z ≤ 1.75)
= Φ(1.75) − Φ(0) = 0.4599.
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3. If X denotes the temperature in degrees Fahrenheit and Y denotes the temperature in degrees Celsius,
then Y = 5(X − 32)/9. Since Y is a linear function of X, then Y will also have a normal distribution.
Also,

E(Y ) =
5

9
(68 − 32) = 20 and Var(Y ) =

(
5

9

)2

(16) =
400

81
.

4. The q quantile of the temperature in degrees Fahrenheit is 68 + 4Φ−1(q). Using Exercise 1, we have
Φ−1(0.75) = 0.6745 and Φ−1(0.25) = −0.6745. So, the 0.25 quantile is 65.302, and the 0.75 quantile is
70.698.

5. Let Ai be the event that chip i lasts at most 290 hours. We want the probability of ∪3
i=1A

c
i , whose

probability is

1− Pr
(
∩3
i=1Ai

)
= 1−

3∏
i=1

Pr(Ai).

Since the lifetime of each chip has the normal distribution with mean 300 and standard deviation 10,
each Ai has probability

Φ([290− 300]/10) = Φ(−1) = 1− 0.8413 = 0.1587.

So the probability we want is 1− 0.15873 = 0.9960.

6. By comparing the given m.g.f. with the m.g.f. of a normal distribution presented in Eq. (5.6.5), we can
see that, for the given m.g.f., μ = 0 and σ2 = 2.

7. If X is a measurement having the specified normal distribution, and if Z = (X − 120)/2, then Z will
have the standard normal distribution. Therefore, the probability that a particular measurement will
lie in the given interval is

p = Pr(116 < X < 118) = Pr(−2 < Z < −1) = Pr(1 < Z < 2) = Φ(2)− Φ(1) = 0.1360.

The probability that all three measurements will lie in the interval is p3.

8. Except for a constant factor, this integrand has the form of the p.d.f. of a normal distribution for which
μ = 0 and σ2 = 1/6. Therefore, if we multiply the integrand by

1

(2π)1/2σ
=

(
3

π

)1/2

,

we obtain the p.d.f. of a normal distribution and we know that the integral of this p.d.f. over the entire
real line must be equal to 1. Therefore,∫ ∞

−∞
exp(−3x2)dx =

(
π

3

)1/2

.

Finally, since the integrand is symmetric with respect to x = 0, the integral over the positive half of
the real line must be equal to the integral over the negative half of the real line. Hence,∫ ∞

0
exp(−3x2)dx =

1

2

(
π

3

)1/2

.
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9. The total length of the rod is X = A+B +C − 4. Since X is a linear combination of A, B, and C, it
will also have the normal distribution with

E(X) = 20 + 14 + 26− 4 = 56

and Var(X) = 0.04 + 0.01 + 0.04 = 0.09. If we let Z = (X − 56)/0.3, then Z will have the standard
normal distribution. Hence,

Pr(55.7 < X < 56.3) = Pr(−1 ≤ Z ≤ 1) = 2Φ(1) − 1 = 0.6827.

10. We know that E(Xn) = μ and Var(Xn) = σ2/n = 4/25. Hence, if we let Z = (Xn − μ)/(2/5) =
(5/2)(Xn − μ), then Z will have the standard normal distribution. Hence,

Pr( |Xn − μ | ≤ 1) = Pr( |Z | ≤ 2.5) = 2Φ(2.5) − 1 = 0.9876.

11. If we let Z =
√
n(Xn − μ)/2, then Z will have the standard normal distribution. Therefore,

Pr( |Xn − μ | < 0.1) = Pr( |Z | < 0.05
√
n) = 2Φ(0.05

√
n)− 1.

This value will be at least 0.9 if 2Φ(0.05
√
n) − 1 ≥ 0.9 or Φ(0.05

√
n) ≥ 0.95. It is found from a table

of the values of Φ that we must therefore have 0.05
√
n ≥ 1.645. The smallest integer n which satisfies

this inequality is n = 1083.

12. (a) The general shape is as shown in Fig. S.5.1.

Figure S.5.1: Figure for Exercise 12 of Sec. 5.6.

(b) The sketch remains the same with the scale changed on the x-axis so that the points −1 and
0 become −5 and −2, respectively. It turns out that the point x = 1 remains fixed in this
transformation.

13. Let X denote the diameter of the bolt and let Y denote the diameter of the nut. The Y −X will have
the normal distribution for which

E(Y −X) = 2.02 − 2 = 0.02

and

Var(Y −X) = 0.0016 + 0.0009 = 0.0025.

If we let Z = (Y −X − 0.02)/0.05, then Z will have the standard normal distribution. Therefore,

Pr(0 < Y −X ≤ 0.05) = Pr(−0.4 < Z ≤ 0.6) = Φ(0.6) − [1− Φ(0.4)] = 0.3812.
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14. Let X denote the average of the two scores from university A and let Y denote the average of the three
scores from university B. Then X has the normal distribution for which

E(X) = 625 and Var(X) =
100

2
= 50.

Also, Y has the normal distribution for which

E(Y ) = 600 and Var(Y ) =
150

3
= 50.

Therefore X − Y has the normal distribution for which

E(X − Y ) = 625 − 600 = 25 and Var(X − Y ) = 50 + 50 = 100.

It follows that if we let Z = (X−Y −25)/10, then Z will have the standard normal distribution. Hence,

Pr(X − Y > 0) = Pr(Z > −2.5) = Pr(Z < 2.5) = Φ(2.5) = 0.9938.

15. Let f1(x) denote the p.d.f. of X if the person has glaucoma and let f2(x) denote the p.d.f. of X if the
person does not have glaucoma. Furthermore, let A1 denote the event that the person has glaucoma
and let A2 = AC

1 denote the event that the person does not have glaucoma. Then

Pr(A1) = 0.1, Pr(A2) = 0.9,

f1(x) =
1

(2π)1/2
exp

{
−1

2
(x− 25)2

}
for −∞ < x < ∞,

f2(x) =
1

(2π)1/2
exp

{
−1

2
(x− 20)2

}
for −∞ < x < ∞.

(a) Pr(A1 |X = x) =
Pr(A1)f1(x)

Pr(A1)f1(x) + Pr(A2)f2(x)

(b) The value found in part (a) will be greater than 1/2 if and only if

Pr(A1)f1(x) > Pr(A2)f2(x).

All of the following inequalities are equivalent to this one:

(i) exp{−(x− 25)2/2} > 9 exp{−(x− 20)2/2}
(ii) −(x− 25)2/2 > log 9− (x− 20)2/2

(iii) (x− 20)2 − (x− 25)2 > 2 log 9

(iv) 10x− 225 > 2 log 9

(v) x > 22.5 + log(9)/5.

16. The given joint p.d.f. is the joint p.d.f. of two random variables that are independent and each of which
has the standard normal distribution. Therefore, X + Y has the normal distribution for which

E(X + Y ) = 0 + 0 = 0 and Var(X + Y ) = 1 + 1 = 2.

If we let Z = (X + Y )/
√
2, then Z will have the standard normal distribution. Hence,

Pr(−
√
2 < X + Y < 2

√
2) = Pr(−1 < Z < 2)

= Pr(Z < 2)− Pr(Z < −1)

= Φ(2)− [1− Φ(1)] = 0.8186.
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17. If Y = logX, then the p.d.f. of Y is

g(y) =
1

(2π)1/2σ
exp

{
− 1

2σ2
(y − μ)2

}
for −∞ < y < ∞.

Since
dy

dx
=

1

x
, it now follows that the p.d.f. of X, for x > 0, is f(x) = g(log x)/x.

18. Let U = X/Y and, as a convenient device, let V = Y . If we exclude the possibility that Y = 0, the
transformation from X and Y to U and V is then one-to-one. (Since Pr(Y = 0) = 0, we can exclude
this possibility.) The inverse transformation is

X = UV and Y = V.

Hence, the Jacobian is

J = det

⎡⎢⎢⎣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂u

⎤⎥⎥⎦ = det

[
v u
0 1

]
= v.

Since X and Y are independent and each has the standard normal distribution, their joint p.d.f. f(x, y)
is as given in Exercise 16. Therefore, the joint p.d.f. g(u, v) of U and V will be

g(u, v) = f(uv, v) | v | = | v |
2π

exp

{
−1

2
(u2 + 1)v2

}
.

To find the marginal p.d.f. g1(u) of U , we can now integrate g(u, v) over all values of v. (The fact that
the single point v = 0 was excluded does not affect the value of the integral over the entire real line.)
We have

g1(u) =

∫ ∞

−∞
| v |
2π

exp

{
−1

2
(u2 + 1)v2

}
dv

=

∫ ∞

0

1

π
exp

{
−1

2
(u2 + 1)v2

}
vdv

=
1

π(u2 + 1)
for −∞ < u < ∞.

It can now be seen that g1(u) is the p.d.f. of a Cauchy distribution as defined in Eq. (4.1.7).

19. The conditional p.d.f. of X given μ is

g1(x|μ) = 1

(2π)1/2
exp(−(x− μ)2/2),

while the marginal p.d.f. of μ is f2(μ) = 0.1 for 5 ≤ μ ≤ 15. We need the marginal p.d.f. of X, which
we get by integrating μ out of the joint p.d.f.

g1(x|μ)f2(μ) = 0.1

(2π)1/2
exp(−(x− μ)2/2), for 5 ≤ μ ≤ 15.
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The integral is

f1(x) =

∫ 15

5

0.1

(2π)1/2
exp(−(x− μ)2/2)dμ = 0.1[Φ(15 − x)− Φ(5− x)].

With x = 8, the value is 0.1[Φ(7) − Φ(−3)] = 0.0999. This makes the conditional p.d.f. of μ given
X = 8

g2(μ|8) = 1.0013

(2π)1/2
exp(−(8− μ)2/2), for 5 ≤ μ ≤ 15.

20. This probability is the probability that log(X) ≤ log(6.05) = 1.80, which equals

Φ([1.80 − 3]/1.441/2) = Φ(−1) = 0.1587.

21. Note that log(XY ) = log(X) + log(Y ). Since X and Y are independent with normal distributions,
we have that log(XY ) has the normal distribution with the sum of the means (4.6) and sum of the
variances (10.5). This means that XY has the lognormal distribution with parameters 4.6 and 10.5.

22. Since log(1/X) = − log(X), we know that − log(X) has the normal distribution with mean −μ and
variance σ2. This mean that 1/X has the lognormal distribution with parameters −μ and σ2.

23. Since log(3X1/2) = log(3)+ log(X)/2, we know that log(3X1/2) has the normal distribution with mean
log(3) + 4.1/2 = 3.149 and variance 8/4 = 2. This means that 3X1/2 has the lognormal distribution
with parameters 3.149 and 2.

24. First expand the left side of the equation to get

n∑
i=1

ai(x− bi)
2 + cx = cx+

n∑
i=1

[aix
2 − 2aibix+ b2i ]. (S.5.9)

Now collect all the squared and linear terms in x. The coefficient of x2 is
∑n

i=1 ai. The coefficient of x
is c− 2

∑n
i=1 aibi. The constant term is

∑n
i=1 aib

2
i . This makes (S.5.9) equal to

x2
n∑

i=1

ai + x

[
c− 2

n∑
i=1

aibi

]
+

n∑
i=1

aib
2
i . (S.5.10)

Next, expand each term on the right side of the original equation to produce

(
n∑

i=1

ai

)⎡⎢⎢⎢⎢⎣x2 − 2x

n∑
i=1

aibi − c/2

n∑
i=1

ai

⎤⎥⎥⎥⎥⎦+
(

n∑
i=1

aibi

)2

− c
n∑

i=1

aibi + c2/4

n∑
i=1

ai

+
n∑

i=1

aib
2
i −

(
n∑

i=1

aibi

)2

n∑
i=1

ai

+

c
n∑

i=1

aibi − c2/4

n∑
i=1

ai

.

Combining like terms in this expression produces the same terms that are in (S.5.10).
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25. Divide the time interval of u years into n intervals of length u/n each. At the end of n such intervals,
the principal gets multiplied by (1 + ru/n)n. The limit of this as n → ∞ is exp(ru).

26. The integral that defines the mean is

E(X) =

∫ ∞

−∞
x

(2π)1/2
exp

[
−x2

2

]
dx.

The integrand is a function f with the property that f(−x) = −f(x). Since the range of integration is
symmetric around 0, the integral is 0. The integral that defines the variance is then

Var(X) = E(X2) =

∫ ∞

−∞
x2

(2π)1/2
exp

[
−x2

2

]
dx.

In this integral, let u = x and

dv =
x

(2π)1/2
exp

[
−x2

2

]
dx.

It is easy to see that du = dx and

v = − 1

(2π)1/2
exp

[
−x2

2

]
.

Integration by parts yields

Var(X) = − x

(2π)1/2
exp

[
−x2

2

]∣∣∣∣∣
∞

x=−∞
+

∫
1

(2π)1/2
exp

[
−x2

2

]
dx.

The term on the right above equals 0 at both ∞ and −∞. The remaining integral is 1 because it is the
integral of the standard normal p.d.f. So Var(X) = 1.

5.7 The Gamma Distributions

Commentary

Gamma distributions are used in the derivation of the chi-square distribution in Sec. 8.2 and as conjugate
prior distributions for various parameters. The gamma function arises in several integrals later in the text
and is interesting in its own right as a generalization of the factorial function to noninteger arguments.

If one is using the statistical software R, then the function gamma computes the gamma function, and
lgamma computes the logarithm of the gamma function. They take only one argument. The functions dgamma,
pgamma, and qgamma give the p.d.f., the c.d.f., and the quantile function of gamma distributions. The syntax
is that the first argument is the argument of the function, and the next two are α and β in the notation
of the text. The function rgamma gives a random sample of gamma random variables. The first argument
is how many you want, and the next two are α and β. All of the solutions that require the calculation of
gamma probabilites and quantiles can be done using these functions. There are also functions dexp, pexp,
qexp, and rexp that compute similar features for exponential distributions. Just remove the “α” parameter.

Solutions to Exercises

1. Let f(x) denote the p.d.f. of X and let Y = cX. Then X = Y/c. Since dx = dy/c, then for x > 0,

g(y) =
1

c
f

(
y

c

)
=

1

c

βα

Γ(α)

(
y

c

)α−1

exp(−β(y/c)) =
(β/c)α

Γ(α)
yα−i exp(−(β/c)y).
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2. The c.d.f. of the exponential distribution with parameter β is F (x) = 1 − exp(−βx) for x > 0. The
inverse of this is the quantile function F−1(p) = − log(1− p)/β.

3. The three p.d.f.’s are in Fig. S.5.2.

Figure S.5.2: Figure for Exercise 3 of Sec. 5.7.

4.

f(x) =
βα

Γ(α)
xα−1 exp(−βx) for x > 0.

f ′(x) =
βα

Γ(α)
(α − 1− βx)xα−2 exp(−βx) for x > 0.

If α ≤ 1, then f ′(x) < 0 for x > 0. Therefore, the maximum value of f(x) occurs at x = 0. If α > 1,
then f ′(x) = 0 for x = (α − 1)/β and it can be verified that f(x) is actually a maximum at this value
of x.

5. All three p.d.f.’s are in Fig. S.5.3.

6. Each Xi has the gamma distribution with parameters 1 and β. Therefore, by Theorem 5.7.7, the sum
n∑

i=1

Xi has the gamma distribution with parameters n and β. Finally, by Exercise 1, Xn =
n∑

i=1

Xi/n

has the gamma distribution with parameters n and nβ.

7. Let Ai = {Xi > t} for i = 1, 2, 3. The event that at least one Xi is greater than t is
⋃3

i=1 Ai. We could
use the formula in Theorem 1.10.1, or we could use that Pr(

⋃3
i=1Ai) = 1− Pr(

⋂3
i=1 A

c
i ). The latter is

easier because the Xi are mutually independent and identically distributed.

Pr

(
3⋂

i=1

Ac
i

)
= Pr(Ac

1)
3 = [1− exp(−βt)]3.

So, the probability we want is 1− [1− exp(−βt)]3.
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0

f(x)

2

1

x

1/2

β = 2

β = 1

β = 1/2

Figure S.5.3: Figure for Exercise 5 of Sec. 5.7.

8. For any number y > 0,

Pr(Y > y) = Pr(X1 > y, . . . ,Xk > y) = Pr(X1 > y) . . .Pr(Xk > y)

= exp(−β1y) . . . exp(−βky) = exp(−(β1 + · · ·+ βk)y),

which is the probability that an exponential random variable with parameter β1 + · · · + βk is greater
than y. Hence, Y has that exponential distribution.

9. Let Y denote the length of life of the system. Then by Exercise 8, Y has the exponential distribution
with parameter 0.001 + 0.003 + 0.006 = 0.01. Therefore,

Pr(Y > 100) = exp(−100 (0.01)) =
1

e
.

10. Since the mean of the exponential distribution is μ, the parameter is β = 1/μ. Therefore, the distri-
bution of the time until the system fails is an exponential distribution with parameter nβ = n/μ. The
mean of this distribution is 1/(nβ) = μ/n and the variance is 1/(nβ)2 = (μ/n)2.

11. The length of time Y1 until one component fails has the exponential distribution with parameter nβ.
Therefore, E(Y1) = 1/(nβ). The additional length of time Y2 until a second component fails has
the exponential distribution with parameter (n − 1)β. Therefore, E(Y2) = 1/[(n − 1)β]. Similarly,
E(Y3) = 1/[(n− 2)β]. The total time until three components fail is Y1+Y2+Y3 and E(Y1+Y2+Y3) =(
1

n
+

1

n− 1
+

1

n− 2

)
1

β
.

12. The length of time until the system fails will be Y1 + Y2, where these variables were defined in Exer-

cise 11. Therefore, E(Y1 + Y2) =
1

nβ
+

1

(n− 1)β
=

(
1

n
+

1

n− 1

)
μ. Also, the variables Y1 and Y2 are

independent, because the distribution of Y2 is always the same exponential distribution regardless of
the value of Y1. Therefore,

Var(Y1 + Y2) = Var(Y1) + Var(Y2) =
1

(nβ)2
+

1

[(n− 1)β]2
=

[
1

n2
+

1

(n− 1)2

]
μ2.
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13. The time Y1 until one of the students completes the examination has the exponential distribution with
parameter 5β = 5/80 = 1/16. Therefore,

Pr(Y1 < 40) = 1− exp(−40/16) = 1− exp(−5/2) = 0.9179.

14. The time Y2 after one students completes the examination until a second student completes it has the
exponential distribution with parameter 4β = 4/80 = 1/20. Therefore,

Pr(Y2 < 35) = 1− exp(−35/20) = 1− exp(−7/4) = 0.8262.

15. No matter when the first student completes the examination, the second student to complete the
examination will do so at least 10 minutes later than the first student if Y2 > 10. Similarly, the third
student to complete the examination will do so at least 10 minutes later than the second student if
Y3 > 10. Furthermore, the variables Y1, Y2, Y3, Y4, and Y5 are independent. Therefore, the probability
that no two students will complete the examination within 10 minutes of each other is

Pr(Y2 > 10, . . . , Y5 > 10) = Pr(Y2 > 10) . . .Pr(Y5 > 10)

= exp(−(10)4β) exp(−(10)3β) exp(−(10)2β) exp(−10β)

= exp(−40/80) exp(−30/80) exp(−20/80) exp(−10/80)

= exp(−5/4) = 0.2865.

16. If Y = log(X/x0), then X = x0 exp(Y ). Also, dx = x0 exp(y)dy and x > x0 if and only if y > 0.
Therefore, for y > 0,

g(y) = f(x0 exp(y)|x0, α)x0 exp(y) = αey−αy.

17.

E[(X − μ)2n] =

∫ ∞

−∞
(x− μ)2n

1

(2π)1/2σ
exp

{
−(x− μ)2

2σ2

}
dx

=
2

(2π)1/2σ

∫ ∞

μ
(x− μ)2n exp

{
−(x− μ)2

2σ2

}
dx.

Let y = (x− μ)2. Then dx = dy/(2y1/2) and the above integral can be rewritten as

2

(2π)1/2σ

∫ ∞

0
yn exp

{
− y

2σ2

}
1

2y1/2
dy =

1

(2π)1/2σ

∫ ∞

0
yn−1/2 exp

{
− y

2σ2

}
dy.

The integrand in this integral is the p.d.f. of a gamma distribution with parameters α = n + 1/2 and
β = 1/(2σ2), except for the constant factor

βα

Γ(α)
=

1

(2σ2)n+1/2Γ(n+ 1/2)
.

Since the integral of the p.d.f. of the gamma distribution must be equal to 1, it follows that∫ ∞

0
yn−1/2 exp

{
− y

2σ2

}
dy = (2σ2)n+1/2Γ(n+ 1/2).
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From Eqs. (5.7.6) and (5.7.9), Γ

(
n+

1

2

)
=

(
n− 1

2

)(
n− 3

2

)
· · ·
(
1

2

)
π1/2. Therefore,

E[(X − μ)2n] =
1

(2π)1/2σ
(2σ2)n+1/2

(
n− 1

2

)(
n− 3

2

)
· · ·
(
1

2

)
π1/2

= 2n
(
n− 1

2

)(
n− 3

2

)
· · ·
(
1

2

)
σ2n

= (2n − 1)(2n − 3) . . . (1)σ2n.

18. For the exponential distribution with parameter β,

f(x) = β exp(−βx)

and

1− F (x) = Pr(X > x) = exp(−βx).

Therefore, h(x) = β for x > 0.

19. Let Y = Xb. Then X = Y 1/b and dx =
1

b
y(1−b)/bdy. Therefore, for y > 0,

g(y) = f(y1/b|a, b)1
b
y(1−b)/b =

1

ab
exp(−y/ab).

20. If X has the Weibull distribution with parameters a and b, then the c.d.f. of X is

F (x) =

∫ x

0

b

ab
tb−1 exp(−(t/a)b)dt = [− exp(−(t/a)b)]x0 = 1− exp(−(x/a)b).

Therefore,

h(x) =
b

ab
xb−1.

If b > 1, then h(x) is an increasing function of x for x > 0, and if b < 1, then h(x) is an decreasing
function of x for x > 0.

21. (a) The mean of 1/X is∫ ∞

0

1

x

βα

Γ(α)
xα−1 exp(−βx)dx =

βα

Γ(α)

∫ ∞

0
xα−2 exp(−βx)dx =

βα

Γ(α)

Γ(α− 1)

βα−1
=

β

α− 1
.

(b) The mean of 1/X2 is∫ ∞

0

1

x2
βα

Γ(α)
xα−1 exp(−βx)dx =

βα

Γ(α)

∫ ∞

0
xα−3 exp(−βx)dx =

βα

Γ(α)

Γ(α− 2)

βα−2

=
β2

(α− 1)(α − 2)
.

This makes the variance of 1/X equal to

β2

(α− 1)(α − 2)
−
(

β

α− 1

)
=

β2

(α − 1)2(α− 2)
.
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22. The conditional p.d.f. of λ given X = x can be obtained from Bayes’ theorem for random variables
(Theorem 3.6.4). We know

g1(x|λ) = exp(−λt)
(λt)x

x!
, for x = 0, 1, . . .,

f2(λ) =
βα

Γ(α)
λα−1 exp(−λβ), for λ > 0.

The marginal p.f. of X is

f1(x) =
txβα

x!Γ(α)

∫ ∞

0
λα+x−1 exp(−λ[β + t])dλ

=
txβαΓ(α+ x)

x!Γ(α)(β + t)α+x
.

So, the conditional p.d.f. of λ given X = x is

g2(λ|x) = (β + t)α+x

Γ(α+ x)
λα+x−1 exp(−λ[β + t]), for λ > 0,

which is easily recognized as the p.d.f. of a gamma distribution with parameters α+ x and β + t.

23. The memoryless property means that Pr(X > t+ h|X > t) = Pr(X > h).

(a) In terms of the c.d.f. the memoryless property means

1− F (t+ h)

1− F (t)
= 1− F (h).

(b) From (a) we obtain [1 − F (h)][1 − F (t)] = [1 − F (t + h)]. Taking logarithms of both sides yields
�(h) + �(t) = �(t+ h).

(c) Apply the result in part (b) with h and t both replaced by t/m. We obtain �(2t/m) = 2�(t/m).
Repeat with t replaced by 2t/m and h = t/m. The result is �(3t/m) = 3�(t/m). After k − 1 such
applications, we obtain

�(kt/m) = k�(t/m). (S.5.11)

In particular, when k = m, we get �(t) = m�(t/m) or �(t/m) = �(t)/m. Substituting this into
(S.5.11) we obtain �(kt/m) = (k/m)�(t).

(d) Let c > 0 and let c1, c2, . . . be a sequence of rational numbers that converges to c. Since � is a
continuous function, �(cnt) → �(ct). But �(cnt) = cn�(t) by part (c) since cn is rational. It follows
that cn�(t) → �(ct). But, we know that cn�(t) → c�(t). So, c�(t) = �(ct).

(e) Apply part (d) with c = 1/t to obtain �(t)/t = �(1), a constant.

(f) Let β = �(1). According to part (e), �(t) = βt for all t > 0. Then log[1 − F (x)] = βx for x > 0.
Solving for F (x) gives F (x) = 1− exp(−βx), which is the c.d.f. the exponential distribution with
parameter β = �(1).

24. Let ψ be the m.g.f. of Wu. The mean of Su is

E(Su) = S0E(exp(μu+Wu)) = S0 exp(μu)ψ(1).
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(a) Since Wu has the gamma distribution with parameters αu and β > 1, the m.g.f. is ψ(t) = (β/[β−
t])αu. This makes the mean

E(Su) = S0 exp(μu)

(
β

β − 1

)αu

.

So exp(−ru)E(Su) = S0 if and only if

exp((μ − r)u)

(
β

β − 1

)αu

= 1.

Solving this equation for μ yields

μ = r − α log

(
β

β − 1

)
.

(b) Once again, we use the function

h(x) =

{
x− q if x ≥ q,
0 if x < q.

The value of the option at time u is h(Su). Notice that Su ≥ q if and only if Wu ≥ log(q/S0)−μu =
c, as defined in the exercise. Then the present value of the option is

exp(−ru)E[h(Su)] = exp(−ru)

∫ ∞

c
[S0 exp(μu+ w)− q]

βαu

Γ(αu)
wαu−1 exp(−βw)dw

= S0 exp([μ− r]u)
βαu

Γ(αu)

∫ ∞

c
wαu−1exp(−w[β − 1])dw

−q exp(−ru)
βαu

Γ(αu)

∫ ∞

c
wαu−1 exp(−βw)dw

= S0
(β − 1)αu

Γ(αu)

∫ ∞

c
wαu−1 exp(−(β − 1)w)dw − q exp(−ru)R(cβ)

= S0R(c[β − 1])− q exp(−ru)R(cβ).

(c) We plug the values u = 1, q = S0, r = 0.06, α = 1, and β = 10 into the previous formula to get

c = log(10/9) − 0.06 = 0.0454

S0

[
R(0.0454 × 9)− e−0.06R(0.0454 × 10)

]
= 0.0665S0.

5.8 The Beta Distributions

Commentary

Beta distributions arise as conjugate priors for the parameters of the Bernoulli, binomial, geometric, and
negative binomial distributions. They also appear in several exercises later in the text, either because of
their relationship to the t and F distributions (Exercise 1 in Sec. 8.4 and Exercise 6 in Sec. 9.7) or as
examples of numerical calculation of M.L.E.’s (Exercise 10 in Sec. 7.6) or calculation of sufficient statistics
(Exercises 24(h), 24(i) in Sec. 7.3, Exercise 7 in Sec. 7.7, and Exercises 2 and 7(c) in Sec. 7.8). The derivation
of the p.d.f. of the beta distribution relies on material from Sec. 3.9 (particularly Jacobians) which the
instructor might have skipped earlier in the course.

If one is using the statistical software R, then the function beta computes the beta function, and lbeta

computes the logarithm of the beta function. They take only the two necessary arguments. The functions
dbeta, pbeta, and qbeta give the p.d.f., the c.d.f., and the quantile function of beta distributions. The syntax
is that the first argument is the argument of the function, and the next two are α and β in the notation of the
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text. The function rbeta gives a random sample of beta random variables. The first argument is how many
you want, and the next two are α and β. All of the solutions that require the calculation of beta probabilites
and quantiles can be done using these functions.

Solutions to Exercises

1. The c.d.f. of the beta distribution with parameters α > 0 and β = 1 is

F (x) =

⎧⎪⎨⎪⎩
0 for x ≤ 0,
xα for 0 < x < 1,
1 for x ≥ 1.

Setting this equal to p and solving for x yields F−1(p) = p1/α.

2. f ′(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
[(α − 1)(1 − x) − (β − 1)x]xα−2(1 − x)β−2. Therefore, f ′(x|α, β) = 0 and

x = (α − 1)/(α + β − 2). It can be verified that if α > 1 and β > 1, then f(x|α, β) is actually a
maximum for this value of x.

3. The vertical scale is to be chosen in each part of Fig. S.5.4 so that the area under the curve is 1. The
figure in (h) is the mirror image of the figure in (g) with respect to x = 1/2.

4. Let Y = 1−X. Then X = 1− Y . Therefore, |dx/dy| = 1 and, 0 < y < 1,

g(y) = f(1− y) =
Γ(α+ β)

Γ(α)Γ(β)
(1− y)α−1yβ−1.

This is the p.d.f. of the beta distribution with the values α and β interchanged.

5.

E[Xr(1−X)S ] =

∫ 1

0
xr(1− x)S

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1dx

=
Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
xα+r−1(1− x)β+s−1dx

=
Γ(α+ β)

Γ(α)Γ(β)
· Γ(α+ r)Γ(β + s)

Γ(α+ β + r + s)

=
Γ(α+ r)

Γ(α)
· Γ(β + s)

Γ(β)
· Γ(α+ β)

Γ(α+ β + r + s)

=
[α(α+ 1) · · · (α+ r − 1)][β(β + 1) · · · (β + s− 1)]

(α+ β)(α + β + 1) · · · (α+ β + r + s− 1)
.

6. The joint p.d.f. of X and Y will be the product of their marginal p.d.f.’s Therefore, for x > 0 and y > 0,

f(x, y) =
βα1

Γ(α1)
xα1−1 exp(−βx)

βα2

Γ(α2)
yα2−1 exp(−βy)

=
βα1+α2

Γ(α1)Γ(α2)
xα1−1yα2−1 exp(−β(x+ y)).
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(g)
0 1 x 1 x

(h)
0 99/123 

(e)
0 1 x

(c)
0 1 x

(d)

(a)
0 1/2 1 x

(b)
0 x1

0 1 x

0 1/2 1 x
(f)

24/123 

Figure S.5.4: Figure for Exercise 3 of Sec. 5.8.

Also, X = UV and Y = (1− U)V . Therefore, the Jacobian is

J = det

⎡⎢⎢⎣
∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

⎤⎥⎥⎦ = det

[
v u
−v 1− u

]
= v.

As x and y vary over all positive values, u will vary over the interval (0, 1) and v will vary over all
possible values. Hence, for 0 < u < 1 and v > 0, the joint p.d.f. of U and V will be

g(u, v) = f [uv, (1− u)v]v =
Γ(α1 + α2)

Γ(α1)Γ(α2)
uα1−1(1− u)α2−1 βα1+α2

Γ(α1 + α2)
vα1+α2−1 exp(−βv).

It can be seen that this joint p.d.f. has been factored into the product of the p.d.f. of a beta distribution
with parameters α1 and α2 and the p.d.f. of a gamma distribution with parameters α1 + α2 and β.
Therefore, U and V are independent, the distribution of U is the specified beta distribution, and the
distribution of V is the specified gamma distribution.
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7. Since X1 and X2 each have the gamma distribution with parameters α = 1 and β, it follows from
Exercise 6 that the distribution of X1/(X1 + X2) will be a beta distribution with parameters α = 1
and β = 1. This beta distribution is the uniform distribution on the interval (0, 1).

8. (a) Let A denote the event that the item will be defective. Then

Pr(A) =

∫ 1

0
Pr(A |x)f(x) dx =

∫ 1

0
xf(x) dx = E(X) =

α

α+ β
.

(b) Let B denote the event that both items will be defective. Then

Pr(B) =

∫ 1

0
Pr(B |x)f(x) dx =

∫ 1

0
x2f(x) dx = E(X2) =

α(α + 1)

(α+ β)(α+ β + 1)
.

9. Prior to observing the sample, the mean of P is α/(α+β) = 0.05, which means that α = β/19. If we use
the result in the note that follows Example 5.8.3, the distribution of P after finding 10 defectives in a
sample of size 10 would be beta with parameters α+10 and β, whose mean is (α+10)/(α+β+10) = 0.9.
This means that α = 9β − 10. So 9β − 10 = β/19 and β = 19/17 so α = 1/17. The distribution of P
is then a beta distribution with parameters 1/17 and 19/17.

10. The distribution of P is a beta distribution with parameters 1 and 1. Applying the note after Exam-
ple 5.8.3 with n = 25 and x = 6, the conditional distribution of P after observing the data is a beta
distribution with parameters 7 and 20.

5.9 The Multinomial Distributions

Commentary

The family of multinomial distributions is the only named family of discrete multivariate distributions in the
text. It arises in finite population sampling problems, but does not figure in the remainder of the text.

If one is using the statistical software R, then the function dmultinom gives the joint p.f. of a multinomial
vector. The syntax is that the first argument is the argument of the function and must be a vector of the
appropriate length with nonnegative integer coordinates. The next argument must be specified as prob=

followed by the vector of probabilities, which must be a vector of the same length as the first argument.
The function rmultinom gives a random sample of multinomial random vectors. The first argument is how
many you want, the next argument specifies what the sum of the coordinates of every vector must be (n
in the notation of the text), and the third argument is prob as above. All of the solutions that require the
calculation of multinomial probabilites can be done using these functions.

Solutions to Exercises

1. Let Y = X1 + · · · + X�. We shall show that Y has the binomial distribution with parameters n and
p1 + · · ·+ p�. Let Z1, . . . , Zn be i.i.d. random variables with the p.f.

f(z) =

{
pi for z = i, i = 1, . . . , k,
0 otherwise.

For each i = 1, . . . , k and each j = 1, . . . , n, define

Aij = {Zj = i},

Wij =

{
1 if Aij occurs,
0 if not.
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Finally, define Vi =
n∑

j=1

Wij for i = 1, . . . , k. It follows from the discussion in the text that (X1, . . . ,Xk)

has the same distribution as (V1, . . . , Vk). Hence Y has the same distribution as U = V1+ · · ·+V�. But

U = V1 + · · · + V� =
�∑

i=1

n∑
j=1

Wij =
n∑

j=1

�∑
i=1

Wij.

Define Uj =
�∑

i=1

Wij. It is easy to see that Uj = 1 if ∪�
i=1Aij occurs and Uj = 0 if not. Also

Pr(∪�
i=1Aij) = p1 + · · · + p�. Hence, U1, . . . , Un are i.i.d. random variables each having a Bernoulli

distribution with parameter p1+· · ·+p�. Since U =
n∑

i=1

Ui, we know that U has the binomial distribution

with parameters n and p1 + · · ·+ p�.

2. The probability that a given observed value will be less than α1 is p1 = F (α1) = 0.3, the probability
that it will be between α1 and α2 is p2 = F (α2) − F (α1) = 0.5, and the probability that it will be
greater than α2 is p3 = 1 − F (α2) = 0.2. Therefore, the numbers of the 25 observations in each of
these three intervals will have the multinomial distribution with parameters n = 25 and p = (p1, p2, p3).
Therefore, the required probability is

25!

6!10!9!
(0.3)6(0.5)10(0.2)9.

3. Let X1 denote the number of times that the number 1 appears, let X2 denote the number of times
that the number 4 appears, and let X3 denote the number of times that a number other than 1 or 4
appears. Then the vector (X1,X2,X3) has the multinomial distribution with parameters n = 5 and
p = (1/6, 1/6, 4/6). Therefore,

Pr(X1 = X2) = Pr(X1 = 0, X2 = 0, X3 = 5) + Pr(X1 = 1, X2 = 1, X3 = 3)

+Pr(X1 = 2, X2 = 2, X3 = 1)

=

(
4

6

)5

+
5!

1!1!3!

(
1

6

)(
1

6

)(
4

6

)3

+
5!

2!2!1!

(
1

6

)2 (1
6

)2 (4
6

)
=

1024

65
+

1280

65
+

120

65
=

2424

65
.

4. Let X3 denote the number of rolls for which the number 5 appears. If X1 = 20 and X2 = 15, then
it must also the true that X3 = 5. The vector (X1,X2,X3) has the multinomial distribution with
parameters

n = 40,

q1 = p2 + p4 + p6 = 0.30 + 0.05 + 0.07 = 0.42,

q2 = p1 + p3 = 0.11 + 0.22 = 0.33,

q3 = p5 = 0.25.

Therefore,

Pr(X1 = 20 and X2 = 15) = Pr(X1 = 20,X2 = 15,X3 = 5) =
40!

20!15!5!
(0.42)20(0.33)15(0.25)5.
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5. The number X of freshman or sophomores selected will have the binomial distribution with parameters
n = 15 and p = 0.16 + 0.14 = 0.30. Therefore, it is found from the table in the back of the book that

Pr(X ≥ 8) = .0348 + .0116 + .0030 + .0006 + .0001 = .0501.

6. By Eq. (5.9.3)

E(X3) = 15(0.38) = 5.7,

E(X4) = 15(0.32) = 4.8,

Var(X3) = 15(0.38)(0.62) = 3.534,

Var(X4) = 15(0.32)(0.68) = 3.264.

By Eq. (5.9.3),

Cov(X3,X4) = −15(0.38)(0.32) = −1.824.

Hence,

E(X3 −X4) = 5.7 − 4.8 = 0.9

and

Var(X3 −X4) = 3.534 + 3.264 − 2(−1.824) = 10.446.

7. For any nonnegative integers x1, . . . , xk such that
∑k

i=1 xi = n,

Pr

(
X1 = x1, . . . ,Xk = xk

∣∣∣∣∣
k∑

i=1

Xi = n

)
=

Pr(X1 = x1, . . . ,Xk = xk)

Pr

(
k∑

i=1

Xi = n

)

Since X1, . . . ,Xk are independent,

Pr(X1 = x1, . . . ,Xk = xk) = Pr(X1 = x1) . . .Pr(Xk = xk).

Since Xi has the Poisson distribution with mean λi,

Pr(Xi = xi) =
exp(−λi)λ

xi
i

xi!
.

Also, by Theorem 5.4.4, the distribution of
∑k

i=1 Xi will be a Poisson distribution with mean λ =∑k
i=1 λi. Therefore,

Pr

(
k∑

i=1

Xi = n

)
=

exp(−λ)λn

n!
.

It follows that

Pr

(
X1 = x1, . . . ,Xk = xk

∣∣∣∣∣
k∑

i=1

Xi = n

)
=

n!

xi! . . . xk!

k∏
i=1

(
λi

λ

)xi
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8. Let the data be called X = (X1,X2,X3), with X1 being the number of working parts, X2 being the
number of impaired parts, and X3 being the number of defective parts. The conditional distribution
of X given p is a multinomial distribution with parameters 10 and p. So, the conditional p.f. of the
observed data is

g(8, 2, 0|p) =
(

10

8, 2, 0

)
p81, p

2
2.

The joint p.f./p.d.f. of X and p is the product of this with the p.d.f. of p:

12

(
10

8, 2, 0

)
p101 p22 = 540p101 p22.

To find the conditional p.d.f. of p given X = (10, 2, 0), we need to divide this expression by the marginal
p.f. of X, which is the integral of this last expression over all (p1, p2) such that pi > 0 and p1 + p2 < 1.
This integral can be written as∫ 1

0

∫ 1−p1

0
540p101 p22dp2dp1 =

∫ 1

0
180p101 (1− p1)

3 = 180
Γ(11)Γ(4)

Γ(15)
= 0.0450.

For the second equality, we Theorem 5.8.1. So, the conditional p.d.f. of p given X = (10, 2, 0) is{
12012p101 p22 if 0 < p1, p2 < 1 and p1 + p2 < 1,
0 otherwise.

5.10 The Bivariate Normal Distributions

Commentary

The joint distribution of the least squares estimators in a simple linear regression model (Sec. 11.3) is a
bivariate normal distribution, as is the posterior distribution of the regression parameters in a Bayesian
analysis of simple linear regression (Sec. 11.4). It also arises in the regression fallacy (Exercise 19 in Sec. 11.2
and Exercise 8 in Sec. 11.9) and as another theoretical avenue for introducing regression concepts (Exercises 2
and 3 in Sec. 11.9). The derivation of the bivariate normal p.d.f. relies on Jacobians from Sec. 3.9 which the
instructor might have skipped earlier in the course.

Solutions to Exercises

1. The conditional distribution of the height of the wife given that the height of the husband is 72 inches is
a normal distribution with mean 66.8+0.68×2(72−70)/2 = 68.16 and variance (1−0.682)22 = 2.1504.
The 0.95 quantile of this distribution is

68.16 + 2.15041/2Φ−1(0.95) = 68.16 + 1.4664 × 1.645 = 70.57.

2. Let X1 denote the student’s score on test A and let X2 denote his score on test B. The conditional

distribution of X2 given that X1 = 80 is a normal distribution with mean 90+ (0.8)(16)

(
80− 85

10

)
=

83.6 and variance (1 − 0.64)(256) = 92.16. Therefore, given that X1 = 80, the random variable
Z = (X2 − 83.6)/9.6 will have the standard normal distribution. It follows that

Pr(X2 > 90 |X1 = 80) = Pr

(
Z >

2

3

)
= 1− Φ

(
2

3

)
= 0.2524.
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3. The sum X1 + X2 will have the normal distribution with mean 85 + 90 = 175 and variance (10)2 +
(16)2 + 2(0.8)(10)(16) = 612. Therefore, Z = (X1 +X2 − 175)/24.7386 will have the standard normal
distribution. It follows that

Pr(X1 +X2 > 200) = Pr(Z > 1.0106) = 1− Φ(1.0106) = 0.1562.

4. The difference X1 − X2 will have the normal distribution with mean 85 − 90= − 5 and variance
(10)2 + (16)2 − 2(0.8)(10)(16) = 100. Therefore, Z = (X1 −X2 + 5)/10 will have the standard normal
distribution. It follows that

Pr(X1 > X2) = Pr(X1 −X2 > 0) = Pr(Z > 0.5) = 1− Φ(0.5) = 0.3085.

5. The predicted value should be the mean of the conditional distribution of X1 given that X2 = 100.

This value is 85 + (0.8)(10)

(
100− 90

16

)
= 90. The M.S.E. for this prediction is the variance of the

conditional distribution, which is (1− 0.64)100 = 36.

6. Var(X1+bX2) = σ2
1+b2σ2

2+2bρσ1σ2. This is a quadratic function of b. By differentiating with respect
to b and setting the derivative equal to 0, we obtain the value b = −ρσ1/σ2.

7. Since E(X1|X2) = 3.7− 0.15X2, it follows from Eq. (5.10.8) that

(i) μ1 − ρ
σ1
σ2

μ2 = 3.7,

(ii) ρ
σ1
σ2

= −0.15. Since E(X2|X1) = 0.4− 0.6X1, it follows from Eq. (5.10.6) that

(iii) μ2 − ρ
σ2
σ1

μ1 = 0.4,

(iv) ρ
σ2
σ1

= −0.6.

Finally, since Var(X2|X1) = 3.64, it follows that

(v) (1− ρ2)σ2
2 = 3.64.

By multiplying (ii) and (iv) we find that ρ2 = 0.09. Therefore, ρ = ±0.3. Since the right side of (ii)
is negative, ρ must be negative also. Hence, ρ = −0.3. It now follows from (v) that σ2

2 = 4. Hence,
σ2 = 2 and it is found from (ii) that σ1 = 1. By using the values we have obtained, we can rewrite (i)
and (iii) as follows:

(i) μ1 + 0.15μ2 = 3.7,

(iii) 0.6μ1 + μ2 = 0.4.
By solving these two simultaneous linear equations, we find that μ1 = 4 and μ2 = −2.

8. The value of f(x1, x2) will be a maximum when the exponent inside the curly braces is a maximum. In
turn, this exponent will be a maximum when the expression inside the square brackets is a minimum.
If we let

a1 =
x1 − μ1

σ1
and a2 =

x2 − μ2

σ2
,

then this expression is

a21 − 2ρa1a2 + a22.
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We shall now show that this expression must be nonnegative. We have

0 ≤ (|a1| − |a2|)2 = a21 + a22 − 2|a1a2| ≤ a21 + a22 − 2|ρa1a2|,

since |ρ| < 1. Furthermore, |ρa1a2| ≥ ρa1a2. Hence,

0 ≤ a21 + a22 − 2ρa1a2.

The minimum possible value of a21 − 2ρa1a2 + a22 is therefore 0, and this value is attained when a1 = 0
and a2 = 0 or, equivalently, when x1 = μ1 and x2 = μ2.

9. Let a1 and a2 be as defined in Exercise 8. If f(x1, x2) = k, then a21 − 2ρa1a2 + a22 = b2, where b is a
particular positive constant. Suppose first that ρ = 0 and σ1 = σ2 = σ. Then this equation has the
form

(x1 − μ1)
2 + (x2 − μ2)

2 = b2σ2.

This is the equation of a circle with center at (μ1, μ2) and radius bσ. Suppose next that ρ = 0 and
σ1 �= σ2. Then the equation has the form

(x1 − μ1)
2

σ2
1

+
(x2 − μ2)

2

σ2
2

= b2.

This is the equation of an ellipse for which the center is (μ1, μ2) and the major and minor axes are parallel
to the x1 and x2 axes. Suppose finally that ρ �= 0. It was shown in Exercise 8 that a21−2ρa1a2+a22 ≥ 0
for all values of a1 and a2. It therefore follows from the methods of analytic geometry and elementary
calculus that the set of points which satisfy the equation

(x1 − μ1)
2

σ2
1

− 2ρ
(x1 − μ1)

σ1
· (x2 − μ2)

σ2
+

(x2 − μ2)
2

σ2
2

= b2.

will be an ellipse for which the center is (μ1, μ2) and for which the major and minor axes are rotated
so that they are not parallel to the x1 and x2 axes.

10. Let Δ = det

[
a11 a12
a21 a22

]
. Since Δ �= 0, the transformation from X1 and X2 to Y1 and Y2 is a one-to-one

transformation, for which the inverse transformation is:

X1 =
1

Δ
[a22(y1 − b1)− a12(Y2 − b2)],

X2 =
1

Δ
[−a21(y1 − b1) + a22(Y2 − b2)].

The joint p.d.f. of Y1 and Y2 can therefore be obtained by replacing x1 and x2 in f(x1, x2) by their
expressions in terms of y1 and y2, and then multiplying the result by the constant 1/|Δ|. After a great
deal of algebra the exponent in this joint p.d.f. can be put into the following form:

− 1

2(1− r2)

[(
y1 −m1

s1

)2

− 2r

(
y1 −m1

s1

)(
y2 −m2

s2

)
+

(
y2 −m2

s2

)2
]
,
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where

m1 = E(Y1) = a11μ1 + a12μ2 + b1,

m2 = E(Y2) = a21μ1 + a22μ2 + b2,

s21 = Var(Y1) = a211σ
2
1 + a212σ

2
2 + 2a11a12ρσ1σ2,

s22 = Var(Y2) = a221σ
2
1 + a222σ

2
2 + 2a21a22ρσ1σ2,

r =
Cov(Y1, Y2)

s1s2
=

1

s1s2
[a11a21σ

2
1 + (a11a22 + a12a21)ρσ1σ2 + a212a

2
22σ

2
2 .

It can then be concluded that this joint p.d.f. is the p.d.f. of a bivariate normal distribution for which
the means are m1 and m2, the variances are s21 and s22, and the correlation is r.

11. By Exercise 10, the joint distribution of X1 +X2 and X1 −X2 is a bivariate normal distribution. By
Exercise 9 of Sec. 4.6, these two variables are uncorrelated. Therefore, they are also independent.

12. (a) For the first species, the mean of a1X1 + a2X2 is 201a1 + 118a2, while the variance is

15.22a21 + 6.62a22 + 2× 15.2 × 6.6× 0.64a1a2.

The square-root of this is the standard deviation, (231.04a21 + 43.56a22 + 128.41a1a2)
1/2. For the

second species, the mean is 187a1 + 131a2. The standard deviation will be the same as for the
first species because the values of σ1, σ2 and ρ are the same for both species.

(b) At first, it looks like we need a two-dimensional maximization. However, it is clear that the ratio
in question, namely,

−14a1 + 13a2
(231.04a21 + 43.56a22 + 128.41a1a2)1/2

(S.5.12)

will have the same value if we multiply both a1 and a2 by the same positive constant. We could
then assume that the pair (a1, a2) lies on a circle and hence reduce the maximization to a one-
dimensional problem. Alternatively, we could assume that a1+a2 = 1 and then find the maximum
of the square of (S.5.12). (We would also have to check the one extra case in which a1 = −a2 to
see if that produced a larger value.) We shall use this second approach. If we replace a2 by 1−a1,
we need to find the maximum of

(13 − 27a1)
2

231.04a21 + 43.56(1 − a1)2 + 128.41a1(1− a1)
.

The derivative of this is the ratio of two polynomials, the denominator of which is always positive.
So, the derivative is 0 when the numerator is 0. The numerator of the derivative is 13 − 27a1
times a linear function of a1. The two roots of the numerator are 0.4815 and −0.5878. The first
root produces the value 0 for (S.5.12), while the second produces the value 3.456. All pairs with
a1 = −a2 lead to the values ±2.233. So a1 = −0.5878 and a2 = 1.5878 provide the maximum of
(S.5.12).

13. The exponent of a bivariate normal p.d.f. can be expressed as −[ax2 + by2 + cxy + ex+ gy + h], where

a =
1

2σ2
1(1− ρ2)

,

b =
1

2σ2
2(1− ρ2)

,

c = − ρ

σ1σ2(1− ρ2)
,
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e = − μ1

σ2
1(1− ρ2)

+
μ2ρ

σ1σ2(1− ρ2)
,

g = − μ2

σ2
2(1− ρ2)

+
μ1ρ

σ1σ2(1− ρ2)
,

and h is irrelevant because exp(−h) just provides an additional constant factor that we are ignoring
anyway. The only restrictions that the bivariate normal p.d.f. puts on the numbers a, b, c, e, and g
are that a, b > 0 and whatever is equivalent to |ρ| < 1. It is easy to see that, so long as a, b > 0, we
will have |ρ| < 1 if and only if ab > (c/2)2. Hence, every set of numbers that satisfies these inequalities
corresponds to a bivariate normal p.d.f. Assuming that these inequalities are satisfied, we can solve the
above equations to find the parameters of the bivariate normal distribution.

ρ = − c/2

(ab)1/2
,

σ2
1 =

1

2a− c2/[2b]
,

σ2
2 =

1

2b− c2/[2a]
,

μ1 =
cg − 2be

4ab− c2
,

μ2 =
ce− 2ag

4ab− c2
.

14. The marginal p.d.f. of X is

f1(x) =
1

(2πσ2)1/2
exp

(
− 1

2σ2
[x− μ]2

)
,

where μ and σ2 are the mean and variance of X. The conditional p.d.f. of Y given X = x is

g2(y|x) = 1

(2πτ2)1/2
exp

(
− 1

2τ2
[y − ax− b]2

)
.

The joint p.d.f. of (X,Y ) is the product of these two

f(x, y) =
1

2πστ
exp

(
−[a′x2 + b′y2 + cxy + ex+ gy + h]

)
,

where

a′ =
1

2σ2
+

a2

2τ2
,

b′ =
1

2τ2
,

c = − a

τ2
,

e = − μ

σ2
+

ab

τ2
,

g = − b

τ2
,
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and h is irrelevant since we are going to apply the result from Exercise 13. Clearly a′ and b′ are positive.
We only need to check that a′b′ > (c/2)2. Notice that

a′b′ =
1

4σ2τ2
+

a2

4τ2
= (c/2)2 +

1

4σ2τ2
,

so the conditions of Exercise 13 are met.

15. (a) Let Y =
∑
j 	=i

Xj . Since X1, . . . ,Xn are independent, we know that Y is independent of Xi. Since

Y is the sum of independent normal random variables it has a normal distribution. The mean
and variance of Y are easily seen to be (n − 1)μ and (n − 1)σ2 respectively. Since Y and Xi are
independent, all pairs of linear combinations of them have a bivariate normal distribution. Now
write

Xi = 1Xi + 0Y,

Xn =
1

n
Xi +

1

n
Y.

Clearly, both Xi and Y have mean μ, and we already know that Xi has variance σ2 while Y has
variance σ2/n. The correlation can be computed from the covariance of the two linear combina-
tions.

Cov

(
1Xi + 0Y,

1

n
Xi +

1

n
Y

)
=

1

n
σ2.

The correlation is then (σ2/n)/[σ2σ2/n]1/2 = 1/n1/2.

(b) The conditional distribution of Xi given Xn = xn is a normal distribution with mean equal to

μ+
1

n1/2

σ

σ/n1/2
(xn − μ) = xn.

The conditional variance is

σ2 −
(
1− 1

n

)
.

5.11 Supplementary Exercises

Solutions to Exercises

1. Let g1(x|p) be the conditional p.f. of X given P = p, which is the binomial p.f. with parameters n and
p. Let f2(p) be the marginal p.d.f. of P , which is beta p.d.f. with parameters 1 and 1, also known as
the uniform p.d.f. on the interval [0, 1]. According to the law of total probability for random variables,
the marginal p.f. of X is

f1(x) =

∫
g1(x|p)f2(p)dp =

∫ 1

0

(
n

x

)
px(1− p)n−xdp =

(
n

x

)
x!(n− x)!

(n+ 1)!
=

1

n+ 1
,

for x = 0, . . . , n. In the above, we used Theorem 5.8.1 and the fact that Γ(k + 1) = k! for each integer
k.

2. The random variable U = 3X + 2Y − 6Z has the normal distribution with mean 0 and variance
32 +22 +62 = 49. Therefore, Z = U/7 has the standard normal distribution. The required probability
is

Pr(U < −7) = Pr(Z < −1) = 1− Φ(1) = .1587.
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3. Since Var(X) = E(X) = λ1 and Var(Y ) = E(Y ) = λ2, it follows that λ1 + λ2 = 5. Hence, X + Y has
the Poisson distribution with mean 5 and

Pr(X + Y < 2) = Pr(X + Y = 0) + Pr(X + Y = 1) = exp(−5) + 5 exp(−5) = .0067 + .0337 = .0404.

4. It can be found from the table of the standard normal distribution that 116 must be .84 standard
deviations to the left of the mean and 328 must be 1.28 standard deviations to the right of the mean.
Hence,

μ− .84σ = 116,

μ+ 1.28σ = 328 .

Solving these equations, we obtain μ = 200 and σ = 100, σ2 = 10, 000.

5. The event {X < 1/2} can occur only if all four observations are 0, which has probability (exp(−λ))4,
or three of the observations are 0 and the other is 1, which has probability 4(λ exp(−λ))(exp(−λ))3.
Hence, the total probability is as given in this exercise.

6. If X has the exponential distribution with parameter β, then

.25 = Pr(X > 1000) = exp(−(1000)β).

Hence, β =
1

1000
log 4 and E(X) =

1

β
=

1000

log 4
.

7. It follows from Exercise 18 of Sec. 4.9 that

E[(X − μ)3] = E(X3)− 3μσ2 − μ3.

Because of the symmetry of the normal distribution with respect to μ, the left side of this relation is
0. Hence,

E(X3) = 3μσ2 + μ3.

8. X and Y have independent normal distributions with the same mean μ, and Var(X) = 144/16 =
9, Var(Y ) = 400/25 = 16. Hence, X − Y has the normal distribution with mean 0 and variance
9 + 16 = 25. Thus, Z = (X − Y )/5 has the standard normal distribution. It follows that the required
probability is Pr(|Z| < 1) = .6826.

9. The number of men that arrive during the one-minute period has the Poisson distribution with mean
2. The number of women is independent of the number of men and has the Poisson distribution with
mean 1. Therefore, the total number of people X that arrive has the Poisson distribution with mean
3. From the table in the back of the book it is found that

Pr(X ≤ 4) = .0498 + .1494 + .2240 + .2240 + .1680 = .8152.
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10.

ψ̇Y (t) = E(exp(tY )) = E[exp(tX1 + · · ·+ tXN )]

= E{E[exp(tX1 + · · ·+ tXN )|N ]}
= E{[ψ(t)]N }

=
∞∑
x=0

[ψ(t)]X
exp(−λ)λx

x!

= exp(−λ)
∞∑
x=0

[λψ(t)]x

x!

= exp(−λ) exp(λψ(t)) = exp{λ[ψ(t)− 1]}.

11. The probability that at least one of the two children will be successful on a given Sunday is (1/3) +
(1/5)−(1/3)(1/5) = 7/15. Therefore, from the geometric distribution, the expected number of Sundays
until a successful launch is achieved is 15/7.

12. For any positive integer n, the event X > n will occur if and only if the first n tosses are either all
heads or all tails. Therefore,

Pr(X > n) =

(
1

2

)n

+

(
1

2

)n

=

(
1

2

)n−1

,

and, for n = 2, 3, . . . .

Pr(X = n) = Pr(X > n− 1)− Pr(X > n) =

(
1

2

)n−2

−
(
1

2

)n−1

=

(
1

2

)n−1

.

Hence,

f(x) =

⎧⎪⎨⎪⎩
(
1

2

)x−1

for x = 2, 3, 4, . . .

0 otherwise.

13. By the Poisson approximation, the distribution of X is approximately Poisson with mean 120(1/36) =
10/3. The probability that such a Poisson random variable equals 3 is exp(−10/3)(10/3)3/3! = 0.2202.
(The actual binomial probability is 0.2229.)

14. It was shown in Sec. 3.9 that the p.d.f.’s of Y1, Yn, and W , respectively, are as follows:

g1(y) = n(1− y)n−1 for 0 < y < 1,

gn(y) = nyn−1 for 0 < y < 1,

h1(w) = n(n− 1)wn−2(1− w) for 0 < w < 1.

Each of these is the p.d.f. of a beta distribution. For g1, α = 1 and β = n. For gn, α = n and β = 1.
For h1, α = n− 1 and β = 2.

15. (a) Pr(T1 > t) = Pr(X = 0), where X is the number of occurrences between time 0 and time t. Since
X has the Poisson distribution with mean 5t, it follows that Pr(T1 > t) = exp(−5t). Hence, T1

has the exponential distribution with parameter β = 5.
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(b) Tk is the sum of k i.i.d. random variables, each of which has the exponential distribution given
in part (a). Therefore, the distribution of Tk is a gamma distribution with parameters α = k and
β = 5.

(c) Let Xi denote the time following the ith occurrence until the (i + 1)st occurrence. Then the
random variable X1, . . . ,Xk−1 are i.i.d., each of which has the exponential distribution given in
part (a). Since t is measured in hours in that distribution, the required probability is

Pr

(
Xi >

1

3
, i = 1, . . . , k − 1

)
= (exp(−5/3))k−1.

16. We can express T5 as T1+V , where V is the time required after one of the components has failed until
the other four have failed. By the memoryless property of the exponential distribution, we know that
T1 and V are independent. Therefore,

Cov(T1, T5) = Cov(T1, T1 + V ) = Cov(T1, T1) + Cov(T1, V ) = Var(T1) + 0 =
1

25β2
,

since T1 has the exponential distribution with parameter 5β.

17. Pr(X1 > kX2) =

∫ ∞

0
Pr(X1 > kX2|X2 = x)(f2x)dx =

∫ ∞

0
exp(−β1kx)β2 exp(−β2x)dx =

β2
kβ1 + β2

.

18. Since the sample size is small relative to the size of the population, the distribution of the number X
of people in the sample who are watching will have essentially the binomial distribution with n = 200
and p = 15000/500000 = .03, even if sampling is done without replacement. This binomial distribution
is closely approximated by Poisson distribution with mean λ = np = 6. Hence, from the table in the
back of the text,

Pr(X < 4) = .0025 + .0149 + .0446 + .0892 = .1512.

19. It follows from Eq. (5.3.8) that

Var(X) =
1

n2
Var(X) =

p(1− p)

n
· T − n

T − 1
,

where T is the population size, p is the proportion of persons in the population who have the charac-
teristic, and n = 100. Since p(1− p) ≤ 1/4 for 0 ≤ p ≤ 1 and (T − n)(T − 1) ≤ 1 for all values of T , it
follows that

Var(Xn) ≤ 1

400
.

Hence, the standard deviation is ≤ 1/20 = .05.

20. Consider the event that less than r successes are obtained in the first n Bernoulli trials. The left side
represents the probability of this event in terms of the binomial distribution. But the event also means
that more than n trials are going to be required in order to obtain r successes, which means that more
than n − r failures are going to be obtained before r successes are obtained. The right side expresses
this probability in terms of the negative binomial distribution.

21. Consider the event that there are at least k occurrences between time 0 and time t. The number X
of occurrences in this interval has the specified Poisson distribution, so the left side represents the
probability of this event. But the event also means that the total waiting time Y until the kth event
occurs is ≤ t. It follows from part (b) of Exercise 15 that Y has the specified gamma distribution.
Hence, the right side also expresses the probability of this same event.
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22. It follows from the definition of h(x) that

∫ x

0
h(t)dt =

∫ x

0

f(t)

1− F (t)
dt = − log [1− F (x)].

Therefore,

exp

[
−
∫ x

0
h(t) dt

]
= 1− F (x).

23. (a) It follows from Theorem 5.9.2 that

ρ(Xi,Xj) =
Cov(Xi,Xj)

[Var(Xi)Var(Xj)]1/2
=

−10pipj
10[pi(1− pi)pj(1− pj)]1/2

= −
(

pi
1− pi

· pj
1− pj

)1/2

(b) ρ(Xi,Xj) is most negative when pi and pj have their largest values; i.e., for i = 1 (pi = .4) and
j = 2 (p2 = .3).

(c) ρ(Xi,Xj) is closest to 0 when pi and pj have their smallest values; i.e., for i = 3 (p3 = .2) and
j = 4 (p4 = .1).

24. It follows from Theorem 5.10.5 that X1 − 3X2 will have the normal distribution with mean μ1 − 3μ2

and variance σ2
1 + 9σ2

2 − 6ρσ1σ2.

25. Since X has a normal distribution and the conditional distribution of Y given X is also normal with a
mean that is a linear function ofX and constant variance, it follows thatX and Y jointly have a bivariate
normal distribution. Hence, Y has a normal distribution. From Eq. (5.10.6), 2X − 3 = μ2 + ρσ2X.
Hence, μ2 = −3 and ρσ2 = 2. Also, (1− ρ2)σ2

2 = 12. Therefore σ2
2 = 16 and ρ = 1/2. Thus, Y has the

normal distribution with mean −3 and variance 16, and ρ(X,Y ) = 1/2.

26. We shall use the relation

E(X2
1X2) = E[E(X2

1X2 |X2)] = E[X2E(X2
1 |X2)].

But

E(X2
1 |X2) = Var(X1|X2) + [E(X1|X2)]

2 = (1− ρ2)σ2
1 +

(
μ1 + ρ

σ1
σ2

X2

)2

.

Hence,

X2E(X2
1 |X2) = (1− ρ2)σ2

1X2 + μ2
1X2 + 2ρμ1

σ1
σ2

X2
2 +

(
ρ
σ1
σ2

)2

X3
2 .

The required value E(X2
1X2) is the expectation of this quantity. But since X2 has the normal distri-

bution with E(X2) = 0, it follows that E(X2
2 ) = σ2

2 and E(X3
2 ) = 0.

Hence,

E(X2
1X2) = 2ρμ1σ1σ2.
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Large Random Samples

6.1 Introduction

Solutions to Exercises

1. The p.d.f. of Y = X1 +X2 is

g(y) =

⎧⎪⎨⎪⎩
y if 0 < y ≤ 1,
2− y if 1 < y < 2,
0 otherwise.

It follows easily from the fact that X2 = Y/2 that the p.d.f. of X2 is

h(x) =

⎧⎪⎨⎪⎩
4x if 0 < x ≤ 1/2,
4− 4x if 1/2 < x < 1,
0 otherwise.

We easily compute

Pr(|X1 − 0.5| < 0.1) = 0.6− 0.4 = 0.2,

Pr(|X2 − 0.5| < 0.1) =

∫ 0.5

0.4
4xdx+

∫ 0.6

0.5
(4− 4x)dx

= 2(0.52 − 0.42) + 4(0.6 − 0.5) − 2(0.62 − 0.52) = 0.36.

The reason that X2 has higher probability of being close to 0.5 is that its p.d.f. is much higher near
0.5 than is the uniform p.d.f. of X1 (twice as high right at 0.5).

2. The distribution of Xn is (by Corollary 5.6.2) the normal distribution with mean μ and variance σ2/n.
By Theorem 5.6.6,

Pr(|Xn − μ| ≤ c) = Pr(Xn ≤ c)− Pr(Xn ≤ −c)

= Φ

(
c

σ/n1/2

)
− Φ

( −c

σ/n1/2

)
. (S.6.1)

As n → ∞, c/(σ/n1/2) → ∞ and −c/(σ/n1/2) → −∞. It follows from Property 3.3.2 of all c.d.f.’s that
(S.6.1) goes to 1 as n → ∞.

3. To do this by hand we would have to add all of the binomial probabilities corresponding to W =
80, . . . , 120. Most statistical software will do this calculation automatically. The result is 0.9964. It
looks like the probability is increasing to 1.
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6.2 The Law of Large Numbers

Commentary

The discussion of the strong law of large numbers at the end of the section might be suitable only for the
more mathematically inclined students.

Solutions to Exercises

1. Let ε > 0. We need to show that

lim
n→∞Pr(|Xn − 0| ≥ ε) = 0. (S.6.2)

Since Xn ≥ 0, we have |Xn−0| ≥ ε if and only if Xn ≥ ε. By the Markov inequality Pr(Xn ≥ ε) ≤ μn/ε.
Since lim

n→∞μn = 0, Eq. (S.6.2) holds.

2. By the Markov inequality,

E(X) ≥ 10Pr(X ≥ 10) = 2.

3. By the Chebyshev inequality,

Var(X) ≥ 9Pr(|X − μ| ≥ 3) = 9Pr(X ≤ 7 or X ≥ 13) = 9(0.2 + 0.3) =
9

2
.

4. Consider a distribution which is concentrated on the three points μ, μ + 3σ, and μ− 3σ. Let Pr(X =
μ) = p1, Pr(X = μ+ 3σ) = p2, and Pr(X = μ − 3σ) = p3. If we are to have E(X) = μ, then we must
have p2 = p3. Let p denote the common value of p2 and p3. Then p1 = 1− 2p, because p1 + p2 + p3 = 1.
Now

Var(X) = E[(X − μ)2] = 9σ2(p) + 9σ2(p) + 0(1 − 2p) = 18σ2p.

Since we must have Var(X) = σ2, then we must choose p = 1/18. Therefore, the only distribution which
is concentrated on the three points μ, μ + 3σ, and μ− 3σ, and for which E(X) = μ and Var(X) = σ2,
is the one with p1 = 8/9 and p2 = p3 = 1/18. It can now be verified that for this distribution we have

Pr(|X − μ| ≥ 3σ) = Pr(X = μ+ 3σ) + Pr(X = μ− 3σ) =
1

18
+

1

18
=

1

9
.

5. By the Chebyshev inequality,

Pr(|Xn − μ| ≤ 2σ) ≥ 1− 1

4n
.

Therefore, we must have 1− 1

4n
≥ 0.99. or n ≥ 25.

6. By the Chebyshev inequality,

Pr(6 ≤ Xn ≤ 7) = Pr

(
|Xn − μ| ≤ 1

2

)
≥ 1− 16

n
.

Therefore, we must have 1− 16

n
≥ 0.8 or n ≥ 80.
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7. By the Markov inequality,

Pr(|X − μ| ≥ t) = Pr(|X − μ|4 ≥ t4) ≤ E(|X − μ|4)
t4

=
β4
t4

.

8. (a) In this example E(Qn) = 0.3 and Var(Qn) = (0.3)(0.7)/n = 0.21/n. Therefore,

Pr(0.2 ≤ Qn ≤ 0.4) = Pr(|Qn − E(Qn)| ≤ 0.1) ≥ 1− 0.21

n(0.01)
= 1− 21

n
.

Therefore, we must have 1− 21

n
≥ 0.75 or n ≥ 84.

(b) Let Xn denote the total number of items in the sample that are of poor quality. Then Xn = nQn

and

Pr(0.2 ≤ Qn ≤ 0.4) = Pr(0.2n ≤ Xn ≤ 0.4n).

Since Xn has a binomial distribution with parameters n and p = 0.3, the value of this probability
can be determined for various values of n from the table of the binomial distribution given in the
back of the book. For n = 15, it is found that

Pr(0.2n ≤ Xn ≤ 0.4n) = Pr(3 ≤ Xn ≤ 6) = 0.7419.

For n = 20, it is found that

Pr(0.2n ≤ Xn ≤ 0.4n) = Pr(4 ≤ Xn ≤ 8) = 0.7796.

Since this probability must be at least 0.75, we must have n = 20, although it is possible that
some value between n = 15 and n = 20 will also satisfy the required condition.

9. E(Zn) = n2 · 1
n
+ 0

(
1− 1

n

)
= n. Hence, lim

n→∞E(Zn) = ∞. Also, for any given ε > 0,

Pr(|Zn| < ε) = Pr(Zn = 0) = 1− 1

n
.

Hence, lim
n→∞Pr(|Zn| < ε) = 1, which means that Zn

p→ 0.

10. By Exercise 5 of Sec. 4.3,

E[(Zn − b)2] = [E(Zn)− b]2 +Var(Zn).

Therefore, the limit of the left side will be 0 if and only if the limit of each of the two terms on the
right side is 0. Moreover, lim

n→∞[E(Zn)− b]2 = 0 if and only if lim
n→∞E(Zn) = b.

11. Suppose that the sequence Z1, Z2, . . . converges to b in the quadratic mean. Since

|Zn − b| ≤ |Zn − E(Zn)|+ |E(Zn)− b| ,

then for any value of ε > 0,

Pr(|Zn − b| < ε) ≥ Pr(|Zn −E(Zn)|+ |E(Zn)− b| < ε)

= Pr(|Zn −E(Zn)| < ε− |E(Zn)− b|).
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By Exercise 10, we know that lim
n→∞E(Zn) = b. Therefore, for sufficiently large values of n, it will be

true that ε− |E(Zn)− b| > 0. Hence, by the Chebyshev inequality, the final probability will be at least
as large as

1− Var(Zn)

[ε− |E(Zn)− b|]2 .

Again, by Exercise 10,

lim
n→∞Var(Zn) = 0 and lim

n→∞[ε− |E(Zn)− b|]2 = ε2.

Therefore,

lim
n→∞Pr(|Zn − b| < ε) ≥ lim

n→∞

{
1− Var(Zn)

[ε− |E(Zn)− b|]2
}
= 1,

which means that Zn
p→ b.

12. We know that E(Xn)=μ and Var(Xn)=σ2/n. Therefore, lim
n→∞E(Xn)=μ and lim

n→∞Var(Xn) = 0.

The desired result now follows from Exercise 10.

13. (a) For any value of n large enough so that 1/n < ε, we have

Pr(|Zn| < ε) = Pr

(
Zn =

1

n

)
= 1− 1

n2
.

Therefore, lim
n→∞Pr(|Zn| < ε) = 1, which means that Zn

p→ 0.

(b) E(Zn) =
1

n

(
1− 1

n2

)
+n

(
1

n2

)
=

2

n
− 1

n3
. Therefore, lim

n→∞E(Zn) = 0. It follows from Exercise 10

that the only possible value for the constant c is c = 0, and there will be convergence to this value
if and only if lim

n→∞Var(Zn) = 0. But

E(Z2
n) =

1

n2

(
1− 1

n2

)
+ n2 · 1

n2
= 1 +

1

n2
− 1

n4
.

Hence, Var(Zn) = 1 +
1

n2
− 1

n4
−
(
2

n
− 1

n3

)2

and lim
n→∞Var(Zn) = 1.

14. Let X have p.f. equal to f . Assume that Var(X) > 0 (otherwise it is surely less than 1/4). First,
suppose that X has only two possible values, 0 and 1. Let p = Pr(X = 1). Then E(X) = E(X2) = p
and Var(X) = p−p2. The largest possible value of p−p2 occurs when p = 1/2, and the value is 1/4. So
Var(X) ≤ 1/4 if X only has the two possible values 0 and 1. For the remainder of the proof, we shall
show that if X has any possible values strictly between 0 and 1, then there is another random variable
Y taking only the values 0 and 1 and with Var(Y ) ≥ Var(X). So, assume that X takes at least one
value strictly between 0 and 1. Without loss of generality, assume that one of those possible values is
between 0 and μ. (Otherwise replace X by 1 −X which has the same variance.) Let μ = E(X), and
let x1, x2, . . . be the values such that xi ≤ μ and f(xi) > 0. Define a new random variable

X∗ =

{
0 if X ≤ μ,
X if X > μ.
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The p.f. of X∗ is

f∗(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(x) for all x > μ,∑
i

f(xi) for x = 0,

0 otherwise.

The mean of X∗ is μ∗ = μ−∑i xif(xi). The mean of X∗2 is E(X2)−∑i x
2
i f(xi). So, the variance of

X∗ is

Var(X∗) = E(X2)−
∑
i

x2i f(xi)−
[
μ−

∑
i

xif(xi)

]2

= Var(X) −
∑
i

x2i f(xi) + 2μ
∑
i

xif(xi)−
[∑

i

xif(xi)

]2
. (S.6.3)

since xi ≤ μ for each i, we have

−
∑
i

x2i f(xi) + 2μ
∑
i

xif(xi) ≥
∑
i

x2i f(xi). (S.6.4)

Let t =
∑

i f(xi) > 0. Then

g(x) =

{
f(x)/t for x ∈ {x1, x2, . . .},
0 otherwise,

is a p.f. Let Z be a random variable whose p.f. is g. Then

E(Z) =
1

t

∑
i

xif(xi),

Var(Z) =
1

t

∑
i

x2i f(xi).

Since Var(Z) ≥ 0 and t ≤ 1, we have

∑
i

x2i f(xi) ≥
1

t

[∑
i

xif(xi)

]2
≥
[∑

i

xif(xi)

]2
.

Combine this with (S.6.3) and (S.6.4) to see that Var(X∗) ≥ Var(X). If f∗(x) > 0 for some x strictly
between 0 and 1, replace X∗ by 1 −X∗ and repeat the above process to produce the desired random
variable Y .

15. We need to prove that, for every ε > 0,

lim
n→∞Pr(|g(Zn)− g(b)| < ε) = 1.

Let ε > 0. Since g is continuous at b, there exists δ such that |z − b| < δ implies that |g(z)− g(b)| < ε.

Also, since Zn
P→ b, we know that

lim
n→∞Pr(|Zn − b| < δ) = 1.
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But {|Zn − b| < δ} ⊂ {|g(Zn)− g(b)| < ε}. So

Pr(|g(Zn)− g(b)| < ε) ≥ Pr(|Zn − b| < δ) (S.6.5)

Since the right side of (S.6.5) goes to 1 as n → ∞ so does the left side.

16. The argument here is similar to that given in Exercise 15. Let ε > 0. Since g is continuous at (b, c),
there exists δ such that

√
(z − b)2 + (y − c)2 < δ implies |g(z, y) − g(b, c)| < ε. Also, |z − b| < δ/

√
2

and |y − c| < δ/
√
2 together imply

√
(z − b)2 + (y − c)2 < δ. Let Bn = {|Zn − b| < δ/

√
2} and

Cn = {|Yn − c| < δ/
√
2}. It follows that

Bn ∩Cn ⊂ {|g(Zn, Yn)− g(b, c)| < δ}. (S.6.6)

We can write

Pr(Bn ∩Cn) = 1− Pr([Bn ∩ Cn]
c) = 1− Pr(Bc

n ∪ Cc
n) ≥ 1− Pr(Bc

n)− Pr(Cc
n)

= Pr(Bn) + Pr(Cn)− 1.

Combining this with (S.6.6), we get

Pr(|g(Zn, Yn)− g(b, c)| < δ) ≥ Pr(Bn) + Pr(Cn)− 1.

Since Zn
P→ b and Yn

P→ c, we know that both Pr(Bn) and Pr(Cn) go to 1 as n → ∞. Hence
Pr(|g(Zn, Yn)− g(b, c)| < δ) goes to 1 as well.

17. (a) The mean of X is np, and the mean of Y is np/k. Since Z = kY , the mean of Z is knp/k = np.

(b) The variance of X is np(1−p), and the variance of Y is n(p/k)(1−p/k). So, the variance Z = kY
is k2 times the variance of Y , i.e.,

Var(Z) = k2n(p/k)(1 − p/k) = knp(1− p/k).

If p is small, then both 1 − p and 1 − p/k will be close to 1, and Var(Z) is approximately knp
while the variance of X is approximately np.

(c) In Fig. 6.1, each bar has height equal to 0.01 times a binomial random variable with parameters
100 and the probability that X1 is in the interval under the bar. In Fig. 6.2, each bar has height
equal to 0.02 times a binomial random variable with parameters 100 and probability that X1 is
in the interval under the bar. The bars in Fig. 6.2 have approximately one-half of the probability
of the bars in Fig. 6.1, but their heights have been multiplied by 2. By part (b), we expect the
heights in Fig. 6.2 to have approximately twice the variance of the heights in Fig. 6.1.

18. The result is trivial if the m.g.f. is infinite for all s > 0. So, assume that the m.g.f. is finite for at least
some s > 0. For every t and every s > 0 such that the m.g.f. is finite, we can write

Pr(X > t) = Pr(exp(sX) > exp(st) ≤ E(exp(sX))

exp(st)
= ψ(s) exp(−st),

where the second equality follows from the Markov inequality. Since Pr(X > t) ≤ ψ(s) exp(−st) for
every s Pr(Y > t) ≤ mins ψ(s) exp(−st).
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19. (a) First, insert s from (6.2.15) into the expression in (6.2.14). We get

n

⎡⎣log(p) + (1− p

p
+ u

)
log

{
(1 + u)p+ 1− p

up+ 1− p
(1− p)

}
− log

⎧⎨⎩1− 1− p
(1+u)p+1−p

up+1−p (1− p)

⎫⎬⎭
⎤⎦ .

The last term can be rewritten as

− log

{
1− up+ 1− p

(1 + u)p+ 1− p

}
= − log(p) + log {(1 + u)p + 1− p} .

The result is then

n

[(
1− p

p
+ u

)
log

{
(1 + u)p+ 1− p

up+ 1− p
(1− p)

}
+ log {(1 + u)p + 1− p}

]
.

This is easily recognized as n times the logarithm of (6.2.16).

(b) For all u, q is given by (6.2.16). For u = 0, q = (1−p)(1−p)/p. Since 0 < 1−p < 1 and (1−p)/p > 0,
we have 0 < q < 1 when u = 0. For general u, let x = p(1 + u) + 1− p and rewrite

log(q) = log(p+ x) +
p+ x

p
log

(1− p)(p + x)

x
.

Since x is a linear increasing function of u, if we show that log(q) is decreasing in x, then q is
decreasing in u. The derivative of log(q) with respect to x is

− p

x(p+ x)
+

1

p
log

(1− p)(p+ x)

x
.

The first term is negative, and the second term is negative at u = 0 (x = 1). To be sure that the
sum is always negative, examine the second term more closely. The derivative of the second term
is

1

p

(
1

p+ x
− 1

x

)
=

−1

x(p + x)
< 0.

Hence, the derivative is always negative, and q is less than 1 for all u.

20. We already have the m.g.f. of Y in (6.2.9). We can multiply it by e−sn/10 and minimize over s > 0.
Before minimizing, take the logarithm:

log[ψ(s)e−sn/10] = n

[
log(1/2) + log[exp(s) + 1]− 3s

5

]
. (S.6.7)

The derivative of this logarithm is

n

[
exp(s)

exp(s) + 1
− 3

5

]
.

The derivative is 0 at s = log(3/2), and the second derivative is positive there, so s = log(3/2) provides
the minimum. The minimum value of (S.6.7) is −0.02014, and the Chernoff bound is exp(−0.02014n) =
(0.98)n for Pr(Y > n/10). Similarly, for Pr(−Y > n/10), we need to minimize

log[ψ(−s)e−sn/10] = n

[
log(1/2) + log[exp(−s) + 1] +

2s

5

]
. (S.6.8)

The derivative is

n

[ − exp(−s)

exp(−s) + 1
+

2

5

]
,
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which equals 0 at s = log(3/2). The minimum value of (S.6.8) is again −0.02014, and the Chernoff
bound for the entire probability is 2(0.98)n, a bit smaller than in the example.

21. (a) The m.g.f. of the exponential distribution with parameter 1 is 1/(1− s) for s < 1, hence the m.g.f.
of Yn is 1/(1− s)n for t < 1. The Chernoff bound is the minimum (over s > 0) of e−nus/(1− s)n.
The logarithm of this is −n[us+log(1− s)], which is minimized at s = (u−1)/u, which is positive
if and only if u > 1. The Chernoff bound is [u exp(1− u)]n.

(b) If u < 1, then the expression in Theorem 6.2.7 is minimized over s > 0 near s = 0, which provides
a useless bound of 1 for Pr(Yn > nu).

22. (a) The numbers (k − 1)k/2 for k = 1, 2, . . . form a strictly increasing sequence starting at 0. Hence,
every integer n falls between a unique pair of these numbers. So, kn is the value of k such that n
is larger than (k − 1)k/2 but no larger than k(k + 1)/2.

(b) Clearly jn is the excess of n over the lower bound in part (a), hence jn runs from 1 up to the
difference between the bounds, which is easily seen to be kn.

(c) The intervals where hn equals 1 are defined to be disjoint for jn = 1, . . . , kn, and they cover the
whole interval [0, 1). Hence, for each x hn(x) = 1 for one and only one of these intervals, which
correspond to n between the bounds in part (a).

(d) For every x ∈ [0, 1), hn(x) = 1 for one n between the bounds in part (a). Since there are infintely
many values of kn, hn(x) = 1 infintely often for every x ∈ [0, 1), and Pr(X ∈ [0, 1)) = 1.

(e) For every ε > 0 |Zn − 0| > ε whenever Zn = 1. Since Pr(Zn = 1 infinitely often) = 1, the
probability is 1 that Zn fails to converge to 0. Hence, the probability is 0 that Zn does converge
to 0.

(f) Notice that hn(x) = 1 on an interval of length 1/kn. Hence, for each n, Pr(|Zn − 0| > ε) = 1/kn,

which goes to 0. So, Zn
P→ 0.

23. Each Zn has the Bernoulli distribution with parameter 1/kn, hence E[(Zn − 0)2] = 1/kn, which goes
to 0.

24. (a) By construction, {Zn converges to 0} = {X > 0}. Since Pr(X > 0) = 1, we have Zn converges to
0 with probability 1.

(b) E[(Zn − 0)2] = E(Z2
n) = n4/n, which does not go to 0.

6.3 The Central Limit Theorem

Commentary

The delta method is introduced as a practical application of the central limit theorem. The examples of the
delta method given in this section are designed to help pave the way for some approximate confidence interval
calculations that arise in Sec. 8.5. The delta method also helps in calculating the approximate distributions
of some summaries of simulations that arise in Sec. 12.2. This section ends with two theoretical topics that
might be of interest only to the more mathematically inclined students. The first is a central limit theorem
for random variables that don’t have identical distributions. The second is an outline of the proof of the i.i.d.
central limit theorem that makes use of moment generating functions.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 6.3. The Central Limit Theorem 195

Solutions to Exercises

1. The length of rope produced in one hour X has a mean of 60× 4 = 240 feet and a standard deviation
of 601/2 × 5 = 38.73 inches, which is 3.23 feet. The probability that X ≥ 250 is approximately the
probability that a normal random variable with mean 240 and standard deviation 3.23 is at least 250,
namely 1−Φ([250 − 240]/3.23) = 1− Φ(3.1) = 0.001.

2. The total number of people X from the suburbs attending the concert can be regarded as the sum of
1200 independent random variables, each of which has a Bernoulli distribution with parameter p = 1/4.
Therefore, the distribution ofX will be approximately a normal distribution with mean 1200(1/4) = 300
and variance 1200(1/4)(3/4) = 225. If we let Z = (X − 300)/15, then the distribution of Z will be
approximately a standard normal distribution. Hence,

Pr(X < 270) = Pr(Z < −2) � 1− Φ(2) = 0.0227.

3. Since the variance of a Poisson distribution is equal to the mean, the number of defects on any bolt
has mean 5 and variance 5. Therefore, the distribution of the average number Xn on the 125 bolts
will be approximately the normal distribution with mean 5 and variance 5/125 = 1/25. If we let
Z = (Xn − 5)/(1/5), then the distribution of Z will be approximately a standard normal distribution.
Hence,

Pr(Xn < 5.5) = Pr(Z < 2.5) � Φ(2.5) = 0.9938.

4. The distribution of Z =
√
n(Xn−μ)/3 will be approximately the standard normal distribution. There-

fore,

Pr( |Xn − μ | < 0.3) = Pr( |Z | < 0.1
√
n) � 2Φ(0.1

√
n)− 1.

But 2Φ(0.1
√
n)−1 ≥ 0.95 if and only if Φ(0.1

√
n) ≥ (1+0.95)/2 = 0.975, and this inequality is satisfied

if and only if 0.1
√
n ≥ 1.96 or, equivalently, n ≥ 384.16. Hence, the smallest possible value of n is 385.

5. The distribution of the proportion Xn of defective items in the sample will be approximately the
normal distribution with mean 0.1 and variance (0.1)(0.9)/n = 0.09/n. Therefore, the distribution of
Z =

√
n(Xn − 0.1)/0.3 will be approximately the standard normal distribution. It follows that

Pr(Xn < 0.13) = Pr(Z < 0.1
√
n) � Φ(0.1

√
n).

For this value to be at least 0.99, we must have 0.1
√
n ≥ 2.327 or, equivalently, n ≥ 541.5. Hence, the

smallest possible value of n is 542.

6. The distribution of the total number of times X that the target is hit will be approximately the nor-
mal distribution with mean 10(0.3) + 15(0.2) + 20(0.1) = 8 and variance 10(0.3)(0.7) + 15(0.2)(0.8) +
20(0.1)(0.9) = 6.3. Therefore, the distribution of Z = (X − 8)/

√
6.3 = (X − 8)/2.51 will be approxi-

mately a standard normal distribution. It follows that

Pr(X ≥ 12) = Pr(Z ≥ 1.5936) � 1− Φ(1.5936) = 0.0555.

7. The mean of a random digit X is

E(X) =
1

10
(0 + 1 + · · ·+ 9) = 4.5.
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Also,

E(X2) =
1

10
(02 + 12 + · · ·+ 92) =

1

10
· (9)(10)(19)

6
= 28.5.

Therefore, Var(X) = 28.5 − (4.5)2 = 8.25. The distribution of the average Xn of 16 random digits
will therefore be approximately the normal distribution with mean 4.5 and variance 8.25/16 = 0.5156.
Hence, the distribution of

Z =
Xn − 4.5√
0.5156

=
Xn − 4.5

0.7181

will be approximately a standard normal distribution. It follows that

Pr(4 ≤ Xn ≤ 6) = Pr(−0.6963 ≤ Z ≤ 2.0888)

= Φ(2.0888) − [1− Φ(0.6963)]

= 0.9816 − 0.2431 = 0.7385.

8. The distribution of the total amount X of 36 drinks will be approximately the normal distribution with
mean 36(2) = 72 and variance 36(1/4) = 9. Therefore, the distribution of Z = (X − 72)/3 will be
approximately a standard normal distribution. It follows that

Pr(X < 63) = Pr(Z < −3) = 1− Φ(3) = 0.0013.

9. (a) By Eq. (6.2.4),

Pr

(
|Xn − μ | ≥ σ

4

)
≤ σ2

n
· 16
σ2

=
16

25
.

Therefore, Pr

(
|Xn − μ| ≤ σ

4

)
≥ 1− 16

25
= 0.36.

(b) The distribution of

Z =
Xn − μ

σ/
√
n

=
5

σ
(Xn − μ)

will be approximately a standard normal distribution. Therefore,

Pr

(
|Xn − μ| ≤ σ

4

)
= Pr

(
|Z| ≤ 5

4

)
� 2Φ(1.25) − 1 = 0.7887.

10. (a) As in part (a) of Exercise 9,

Pr

(
|Xn − μ| ≤ σ

4

)
≥ 1− 16

n
.

Now 1− 16/n ≥ 0.99 if and only if n ≥ 1600.

(b) As in part (b) of Exercise 9,

Pr

(
|Xn − μ| ≤ σ

4

)
= Pr

(
|Z| ≤

√
n

4

)
= 2Φ

(√
n

4

)
− 1.

Now 2Φ (
√
n/4)− 1 ≥ 0.99 if and only if Φ (

√
n/4) ≥ 0.995. This inequality will be satisfied if and

only if
√
n/4 ≥ 2.567 or, equivalently, n ≥ 105.4. Therefore, the smallest possible sample size is

106.
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11. For a student chosen at random, the number of parents X who will attend the graduation ceremony has
mean μ = 0/3 + 1/3 + 2/3 = 1 and variance σ2 = E[(X −μ)2] = (0− 1)2/3+ (1− 1)2/3 + (2− 1)2/3 =
2/3. Therefore, the distribution of the total number of parents W who attend the ceremony will
be approximately the normal distribution with mean (600)(1) = 600 and variance 600(2/3) = 400.
Therefore, the distribution of Z = (W −600)(20) will be approximately a standard normal distribution.
It follows that

Pr(W ≤ 650) = Pr(Z ≤ 2.5) = Φ(2.5) = 0.9938.

12. The m.g.f. of the binomial distribution with parameters n and pn is ψn(t) = (pn exp(t) + 1 − pn)
n. If

npn → λ,

lim
n→∞ψn(t) = lim

n→∞

(
1 +

npn
n

[exp(t)− 1]

)n

.

This converges to exp(λ[et − 1]), which is the m.g.f. of the Poisson distribution with mean λ.

13. We are asking for the asymptotic distribution of g(Xn), where g(x) = x3. The distribution of Xn is
normal with mean θ and variance σ2/n. According to the delta method, the asymptotic distribution of
g(Xn) should be the normal distribution with mean g(θ) = θ3 and variance (σ2/n)[g′(θ)]2 = 9θ4σ2/n.

14. First, note that Yn =
∑n

i=1 X
2
i /n has asymptotically the normal distribution with mean σ2 and variance

2σ4/n. Here, we have used the fact that E(X2
i ) = σ2 and E(X4

i ) = 2σ4.

(a) Let g(x) = 1/x. Then g′(x) = −1/x2. So, the asymptotic distribution of g(Yn) is the normal
distribution with mean 1/σ2 and variance (2σ4/n)/σ8 = 2/[nσ4].

(b) Let h(μ) = 2mu2. If the asymptotic mean of Yn is μ the asymptotic variance of Yn is h(μ)/n. So,
a variance stabilizing transformation is

α(μ) =

∫ μ

a

dx

21/2x
=

1

21/2
log(μ),

where we have taken a = 1 to make the integral finite. So the asymptotic distribution of
log(Yn)/2

1/2 is the normal distribution with mean 2 log(σ)/21/2 and variance 1/n.

15. (a) Clearly, Yn ≤ y if and only if Xi ≤ y for i = 1, . . . , n. Hence,

Pr(Yn ≤ y) = Pr(X1 ≤ y)n =

⎧⎪⎨⎪⎩
(y/θ)nif 0 < y < θ,
0 if y ≤ 0,
1 if y ≥ θ.

(b) The c.d.f. of Zn is, for z < 0,

Pr(Zn ≤ z) = Pr(Yn ≤ θ + z/n) = (1 + z/[nθ])n. (S.6.9)

Since Zn ≤ 0, the c.d.f. is 1 for z ≥ 0. According to Theorem 5.3.3, the expression in (S.6.9)
converges to exp(z/θ).

(c) Let α(y) = y2. Then α′(y) = 2y. We have n(Yn − θ) converging in distribution to the c.d.f. in
part (b). The delta method says that, for θ > 0, n(Y 2

n − θ2)/[2θ] converges in distribution to the
same c.d.f.
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6.4 The Correction for Continuity

Solutions to Exercises

1. The mean of Xi is 1 and the mean of X2
i is 1.5. So, the variance of Xi is 0.5. The central limit theorem

says that Y = X1 + · · · +X30 has approximately the normal distribution with mean 30 and variance
15. We want the probability that Y ≤ 33. Using the correction for continuity, we would assume that Y
has the normal distribution with mean 30 and variance 15 and compute the probability that Y ≤ 33.5.
This is Φ([33.5 − 30]/151/2) = Φ(0.904) = 0.8169.

2. (a) E(X) = 15(.3) = 4.5 and σX = [(15)(.3)(.7)]1/2 = 1.775. Therefore,

Pr(X = 4) = Pr(3.5 ≤ X ≤ 4.5) = Pr

(
3.5− 4.5

1.775
≤ Z ≤ 0

)
= Pr(−.5634 ≤ Z ≤ 0) ≈ Φ(.5634) − .5 ≈ .214.

(b) The exact value is found from the table of binomial probabilities (n=15, p = 0.3, k = 4) to be
.2186.

3. In the notation of Example 2,

Pr(H > 495) = Pr(H ≥ 495.5) = Pr

(
Z ≥ 495.5 − 450

15

)
≈ 1− Φ(3.033) ≈ .0012.

4. We follow the notation of the solution to Exercise 2 of Sec. 6.3:

Pr(X < 270) = Pr(X ≤ 269.5) = Pr

(
Z ≤ 269.5 − 300

15

)
≈ 1− Φ(2.033) ≈ .0210.

5. Let X denote the total number of defects in the sample. Then X has a Poisson distribution with mean
5(125) = 625, so σX is (625)1/2 = 25. Hence,

Pr(Xn < 5.5) = Pr[X < 125(5.5)] = Pr(X < 687.5).

Since this final probability is just the value that would be used with the correction for continuity, the
probability to be found here is the same as that originally found in Exercise 3 of Sec. 6.3.

6. We follow the notation of the solution to Exercise 6 of Sec. 6.3:

Pr(X ≥ 12) = Pr(X ≥ 11.5) = Pr

(
Z ≥ 11.5− 8

2.51

)
≈ 1− Φ(1.394) ≈ .082.

7. Let S denote the sum of the 16 digits. Then

E(S) = 16(4.5) = 72 and σX = [16(8.25)]1/2 = 11.49.

Hence,

Pr(4 ≤ Xn ≤ 6) = Pr(64 ≤ S ≤ 96) = Pr(63.5 ≤ S ≤ 96.5)

= Pr

(
63.5 − 72

11.49
≤ Z ≤ 96.5 − 72

11.49

)
≈ Φ(2.132) − Φ(−.740) ≈ .9835 − .2296 = .7539.
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6.5 Supplementary Exercises

Solutions to Exercises

1. By the central limit theorem, the distribution of X is approximately normal with mean (120)(1/6) = 20
and standard deviation [120(1/6)(5/6)]1/2 = 4.082. Let Z = (X − 20)/4.082. Then from the table of
the standard normal distribution we find that Pr(|Z| ≤ 1.96) = .95. Hence, k = (1.96)(4.082) = 8.00.

2. Because of the property of the Poisson distribution described in Theorem 5.4.4, the random variable X
can be thought of as the sum of a large number of i.i.d. random variables, each of which has a Poisson
distribution. Hence, the central limit theorem (Lindeberg and Lévy) implies the desired result. It can
also be shown that the m.g.f. of X converges to the m.g.f. of the standard normal distribution.

3. By the previous exercise, X has approximately a normal distribution with mean 10 and standard
deviation (10)1/2 = 3.162. Thus, without the correction for continuity,

Pr(8 ≤ X ≤ 12) = Pr

(
8− 10

3.162
≤ Z ≤ 12− 10

3.162

)
≈ Φ(.6325) − Φ(−.6325) = .473.

With the correction for continuity, we find

Pr(7.5 ≤ X ≤ 12.5) = Pr

(
− 2.5

3.162
≤ Z ≤ 2.5

3.162

)
≈ Φ(.7906) − Φ(−.7906) = .571.

The exact probability is found from the Poisson table to be

(.1126) + (.1251) + (.1251) + (.1137) + (.0948) = .571.

Thus, the approximation with the correction for continuity is almost perfect.

4. If X has p.d.f. f(x), then

E(Xk) =

∫ ∞

0
xkf(x)dx ≥

∫ ∞

t
xkf(x)dx ≥ tk

∫ ∞

t
f(x)dx = tk Pr(X ≥ t).

A similar proof holds if X has a discrete distribution.

5. The central limit theorem says that Xn has approximately the normal distribution with mean p and
variance p(1− p)/n. A variance stabilizing transformation will be

α(x) =

∫ x

a
[p(1− p)]−1/2dp.

To perform this integral, transform to z = p1/2, that is, p = z2. Then

α(x) =

∫ x1/2

a1/2

dz

(1− z2)1/2
.

Next, transform so that z = sin(w) or w = arcsin(z). Then dz = cos(w)dw and

α(x) =

∫ arcsinx1/2

arcsin a1/2
dw = arcsin x1/2,

where we have chosen a = 0. The variance stabilizing transformation is α(x) = arcsin(x1/2).
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6. According to the central limit theorem, Xn has approximately the normal distribution with mean θ
and variance θ2. A variance stabilizing transformation will be

α(x) =

∫ x

a
θ−1dθ = log(x),

where we have used a = 1.

7. Let Fn be the c.d.f. of Xn. The most direct proof is to show that lim
n→∞Fn(x) = F (x) for every point at

which F is continuous. Since F is the c.d.f. of an integer-valued distribution, the continuity points are
all non-integer values of x together with those integer values of x to which F assigns probability 0. It is
clear, that it suffices to prove that lim

n→∞Fn(x) = F (x) for every non-integer x, because continuity of F

from the right and the fact that F is nondecreasing will take care of the integers with zero probability.
For each non-integer x, let mx be the largest integer such that m < x. Then

Fn(x) =
m∑
k=1

Pr(Xn = k) →
m∑
k=1

f(k) = F (m) = F (x),

where the convergence follows because the sums are finite.

8. We know that Pr(Xn = m) =
( k
m

)
pmn (1− pn)

k−m for m = 0, . . . , k and all n. We also know that

lim
n→∞

(
k

m

)
pmn (1− pn)

k−m =

(
k

m

)
pm(1− p)k−m,

for all m. By Exercise 7, Xn converges in distribution to the binomial distribution with parameters k
and p.

9. Let X1, . . . ,X16 be the times required to serve the 16 customers. The parameter of the exponenital
distribution is 1/3. According to Theorem 5.7.8, the mean and variance of each Xi are 3 and 9
respectively. Let

∑16
k=1Xk = Y be the total time. The central limit theorem approximation to the

distribution of Y is the normal distribution with mean 16 × 3 = 48 and variance 16 × 9 = 144. The
approximate probablity that Y > 60 is

1− Φ

(
60− 48

(144)1/2

)
= 1− Φ(1) = 0.1587.

The actual distribution of Y is the gamma distribution with parameters 16 and 1/3. Using the gamma
c.d.f., the probability is 0.1565.

10. The number of defects in 2000 square-feet has the Poisson distribution with mean 2000 × 0.01 = 20.
The central limit theorem approximation is the normal distribution with mean 20 and variance 20.
Without correction for continuity, the approximate probability of at least 15 defects is

1− Φ

(
15− 20

(20)1/2

)
= 1− Φ(−1.1180) = 0.8682.

With the continuity correction, we get

1− Φ

(
14.5 − 20

(20)1/2

)
= 1−Φ(−1.2298) = 0.8906.

The actual Poisson probability is 0.8951.
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11. (a) The gamma distribution with parameters n and 3 is the distribution of the sum of n i.i.d. expo-
nential random variables with parameter 3. If n is large, the central limit theorem should apply
to approximate the distribution of the sum of n exponentials.

(b) The mean and variance of each exponential random variable are 1/3 and 1/9 respectively. The
distribution of the sum of n of these has approximately the normal distribution with mean n/3
and variance n/9.

12. (a) The exponential distribution with parameters n and 0.2 is the distribution of the sum of n i.i.d.
geometric random variables with parameter 0.2. If n is large, the central limit theorem should
apply to approximate the distribution of the sum of n geometrics.

(b) The mean and variance of each geometric random variable are 0.8/0.2 = 4 and 0.8/(0.2)2 = 20.
The distribution of the sum of n of these has approximately the normal distribution with mean
4n and variance 20n.
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Chapter 7

Estimation

7.1 Statistical Inference

Commentary

Many students find statistical inference much more difficult to comprehend than elementary probability
theory. For this reason, many examples of statistical inference problems have been introduced in the early
chapters of this text. This will give instructors the opportunity to point back to relatively easy-to-understand
examples that the students have already learned as a preview of what is to come. In addition to the examples
mentioned in Sec. 7.1, some additional examples are Examples 2.3.3–2.3.5, 3.6.9, 3.7.14, 3.7.18, 4.8.9–4.8.10,
and 5.8.1–5.8.2. In addition, the discussion of M.S.E. and M.A.E. in Sec. 4.5 and the discussion of the variance
of the sample mean in Sec. 6.2 contain inferential ideas. Most of these are examples of Bayesian inference
because the most common part of a Bayesian inference is the calculation of a conditional distribution or a
conditional mean.

Solutions to Exercises

1. The random variables of interest are the observables X1,X2, . . . and the hypothetically observable
(parameter) P . The Xi’s are i.i.d. Bernoulli with parameter p given P = p.

2. The statistical inferences mentioned in Example 7.1.3 are computing the conditional distribution of P
given observed data, computing the conditional mean of P given the data, and computing the M.S.E.
of predictions of P both before and after observing data.

3. The random variables of interest are the observables Z1, Z2, . . ., the times at which successive particles
hit the target, and β, the hypothetically observable (parameter) rate of the Poisson process. The hit
times occur occording to a Poisson process with rate β conditional on β. Other random variables of
interest are the observable inter-arrival times Y1 = Z1, and Yk = Zk − Zk−1 for k ≥ 2.

4. The random variables of interest are the observable heights X1, . . . ,Xn, the hypothetically observable
mean (parameter) μ, and the sample mean Xn. The Xi’s are modeled as normal random variables with
mean μ and variance 9 given μ.

5. The statement that the interval (Xn − 0.98,Xn + 0.98) has probability 0.95 of containing μ is an
inference.

6. The random variables of interest are the observable number X of Mexican-American grand jurors and
the hypothetically observable (parameter) P . The conditional distribution of X given P = p is the
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binomial distribution with parameters 220 and p. Also, P has the beta distribution with parameters α
and β, which have not yet been specified.

7. The random variables of interest are Y , the hypothetically observable number of oocysts in t liters, the
hypothetically observable indicators X1,X2, . . . of whether each oocyst is counted, X the observable
count of oocysts, the probability (parameter) p of each oocyst being counted, and the (parameter) λ
the rate of oocysts per liter. We model Y as a Poisson random variable with mean tλ given λ. We
model X1, . . . ,Xy as i.i.d. Bernoulli random variables with parameter p given p and given Y = y. We
define X = X1 + . . . +Xy.

7.2 Prior and Posterior Distributions

Commentary

This section introduces some common terminology that is used in Bayesian inference. The concepts should all
be familiar already to the students under other names. The prior distribution is just a marginal distribution
while the posterior distribution is just a conditional distribution. The likelihood function might seem strange
since it is a conditional density for the data given θ but thought of as a function of θ after the data have
been observed.

Solutions to Exercises

1. We still have y = 16178, the sum of the five observed values. The posterior distribution of β is now the
gamma distribution with parameters 6 and 21178. So,

f(x6|x) =

∫ ∞

0
7.518 × 1023β5 exp(−21178β)β exp(−x6β)dβ

= 7.518 × 1023
∫ ∞

0
β6 exp(−β[21178 + x6])dβ

= 7.518 × 1023
Γ(7)

(21178 + x6)7
=

5.413 × 1026

(21178 + x6)7
,

for x6 > 0. We can now compute Pr(X6 > 3000|x) as

Pr(X6 > 3000|x) =
∫ ∞

3000

5.413 × 1026

(21178 + x6)7
dx6 =

5.413 × 1026

6× 241786
= 0.4516.

2. The joint p.f. of the eight observations is given by Eq. (7.2.11). Since n = 8 and y = 2 in this exercise,

fn(x | θ) = θ2(1− θ)6.

Therefore,

ξ(0.1 | x) = Pr(θ = 0.1 | x) =
ξ(0.1)fn(x | 0.1)

ξ(0.1)fn(x | 0.1) + ξ(0.2)fn(x | 0.2)
=

(0.7)(0.1)2(0.9)6

(0.7)(0.1)2(0.9)6 + (0.3)(0.2)2(0.8)6

= 0.5418.

It follows that ξ(0.2 | x) = 1− ξ(0.1 | x) = 0.4582.
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3. Let X denote the number of defects on the selected roll of tape. Then for any given value of λ, the p.f.
of X is.

f(x | λ) = exp(−λ)λx

x!
for x = 0, 1, 2, . . . .

Therefore,

ξ(1.0 | X = 3) = Pr(λ = 1.0 | X = 3) =
ξ(1.0)f(3 | 1.0)

ξ(1.0)f(3 | 1.0) + ξ(1.5)f(3 | 1.5) .

From the table of the Poisson distribution in the back of the book it is found that

f(3 | 1.0) = 0.0613 and f(3 | 1.5) = 0.1255.

Therefore, ξ(1.0 | X = 3) = 0.2456 and ξ(1.5 | X = 3) = 1− ξ(1.0 | X = 3) = 0.7544.

4. If α and β denote the parameters of the gamma distribution, then we must have

α

β
= 10 and

α

β2
= 5.

Therefore, α = 20 and β = 2. Hence, the prior p.d.f. of θ is as follows, for θ > 0:

ξ(θ) =
220

Γ(20)
θ19exp(−2θ).

5. If α and β denote the parameters of the beta distribution, then we must have

α

α+ β
=

1

3
and

αβ

(α+ β)2(α+ β + 1)
=

2

90
.

Since
α

α+ β
=

1

3
, it follows that

β

(α+ β)
=

2

3
. Therefore,

αβ

(α+ β)2
=

α

α+ β
· β

α+ β
=

1

3
· 2
3
=

2

9
.

It now follows from the second equation that
2

9(α + β + 1)
=

2

90
and, hence, that α + β + 1 = 10.

Therefore, α + β = 9 and it follows from the first equation that α = 3 and β = 6. Hence, the prior
p.d.f. of θ is as follows, for 0 < θ < 1:

ξ(θ) =
Γ(9)

Γ(3)Γ(6)
θ2(1− θ)5.

6. The conditions of this exercise are precisely the conditions of Example 7.2.7 with n = 8 and y = 3.
Therefore, the posterior distribution of θ is a beta distribution with parameters α = 4 and β = 6.

7. Since fn(x | θ) is given by Eq. (7.2.11) with n=8 and y=3, then

fn(x | θ)ξ(θ) = 2θ3(1− θ)6.

When we compare this expression with Eq. (5.8.3), we see that it has the same form as the p.d.f. of a
beta distribution with parameters α = 4 and β = 7. Therefore, this beta distribution is the posterior
distribution of θ.
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8. By Eq. (7.2.14),

ξ(θ | x1) ∝ f(x1 | θ)ξ(θ),

and by Eq. (7.2.15),

ξ(θ | x1, x2) ∝ f(x2 | θ)ξ(θ | x1).

Hence,

ξ(θ | x1, x2) ∝ f(x1 | θ)f(x2 | θ)ξ(θ).

By continuing in this way, we find that

ξ(θ | x1, x2, x3) ∝ f(x3 | θ)ξ(θ | x1, x2) ∝ f(x1 | θ)f(x2 | θ)f(x3 | θ)ξ(θ).

Ultimately, we will find that

ξ(θ | x1, . . . , xn) ∝ f(x1 | θ) . . . f(xn | θ)ξ(θ).

From Eq. (7.2.4) it follows that, in vector notation, this relation can be written as

ξ(θ | x) ∝ fn(x | θ)ξ(θ),

which is precisely the relation (7.2.10). Hence, when the appropriate factor is introduced on the right
side of this relation so that the proportionality symbol can be replaced by an equality, ξ(θ | x) will be
equal to the expression given in Eq. (7.2.7).

9. It follows from Exercise 8 that if the experiment yields a total of three defectives and five nondefectives,
the posterior distribution will be the same regardless of whether the eight items were selected in one
batch or one at a time in accordance with some stopping rule. Therefore, the posterior distribution in
this exercise will be the same beta distribution as that obtained in Exercise 6.

10. In this exercise

f(x|θ) =

⎧⎪⎨⎪⎩ 1 for θ − 1

2
< x < θ +

1

2
,

0 otherwise,

and

ξ(θ) =

⎧⎪⎨⎪⎩
1

10
for 10 < θ < 20,

0 otherwise.

The condition that θ − 1/2 < x < θ + 1/2 is the same as the condition that x − 1/2 < θ < x + 1/2.
Therefore, f(x | θ)ξ(θ) will be positive only for values of θ which satisfy both the requirement that
x−1/2 < θ < x+1/2 and the requirement that 10 < θ < 20. Since X = 12 in this exercise, f(x | θ)ξ(θ)
is positive only for 11.5 < θ < 12.5. Furthermore, since f(x | θ)ξ(θ) is constant over this interval, the
posterior p.d.f. ξ(θ | x) will also be constant over this interval. In other words, the posterior distribution
of θ must be a uniform distribution on this interval.
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11. Let y1 denote the smallest and let y6 denote the largest of the six observations. Then the joint p.d.f.
of the six observations is

fn(x | θ) =
⎧⎨⎩ 1 for θ − 1

2
< y1 < y6 < θ +

1

2
,

0 otherwise.

The condition that θ− 1

2
< y1 < y6 < θ +

1

2
is the same as the condition that y6 − 1/2 < θ < y1 +1/2.

Since ξ(θ) is again as given in Exercise 10, it follows that fn(x | θ)ξ(θ) will be positive only for values of
θ which satisfy both the requirement that 10 < θ < 20. Since y1 = 10.9 and y6 = 11.7 in this exercise,
fn(x | θ)ξ(θ) is positive only for y6 − 1/2 < θ < y1 + 1/2 and the requirement that 10 < θ < 20. Since
y1 = 10.9 and y6 = 11.7 in this exercise, fn(x | θ)ξ(θ) is positive only for 11.2 < θ < 11.4. Furthermore,
since fn(x | θ)ξ(θ) is constant over this interval, the posterior p.d.f. ξ(θ | x) will also be constant over
the interval. In other words, the posterior distribution of θ must be a uniform distribution on this
interval.

7.3 Conjugate Prior Distributions

Commentary

This section introduces some convenient prior distributions that make Bayesian inferences mathematically
tractable. The instructor can remind the student that numerical methods are available for performing
Bayesian inferences even when other prior distributions are used. Mathematical tractability is useful when
introducing a new concept so that attention can focus on the meaning and interpretation of the new concept
rather than the numerical methods required to perform the calculations. Although conjugate priors for the
parameter of the uniform distribution are not discussed in the body of the section, Exercises ‘17 and 18
illustrate how the general concept extends to these distributions.

Solutions to Exercises

1. The posterior mean of θ will be

100× 0 + 20v2 × 0.125

100 + 20v2
= 0.12.

We can solve this equation for v2 by multiplying both sides by 100 + 20v2 and collecting terms. The
result is v2 = 120.

2. If we let γ = (y + 1)(y + z + 2), then 1 − γ = (z + 1)(y + z + 2) and V = γ(1 − γ)/(y + z + 3). The
maximum value of γ(1 − γ) is 1/4, and is attained when γ = 1/2. Therefore, V ≤ 1/[4(y + z + 3)]. It
now follows that if 1/[4(y + z + 3)] ≤ 0.01, then V ≤ 0.01. But the first inequality will be satisfied if
y+ z ≥ 22. Since y+ z is the total number of items that have been selected, it follows that this number
need not exceed 22.

3. Since the observed number of defective items is 3 and the observed number of nondefective items is 97,
it follows from Theorem 7.3.1 that the posterior distribution of θ is a beta distribution with parameters
2 + 3 = 5 and 200 + 97 = 297.
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4. Let α1 and β1 denote the parameters of the posterior beta distribution, and let γ = α1/(α1+β1). Then
γ is the mean of the posterior distribution and we are told that γ = 2/51. The variance of the posterior
distribution is

α1β1
(α1 + β1)2(α1 + β1 + 1)

=
α1

α1 + β1
· β1
α1 + β1

· 1

α1 + β1 + 1

= γ(1− γ)
1

α1 + β1 + 1

=
2

51
· 49
51

· 1

α1 + β1 + 1
=

98

(51)2
· 1

α1 + β1 + 1
.

From the value of this variance given in the exercise it is now evident that α1 + β1 + 1 = 103. Hence,
α1 + β1 = 102 and α1 = γ(α1 + β1) = 2(102)/51 = 4. In turn, it follows that β1 = 102 − 4 = 98.
Since the posterior distribution is a beta distribution, it follows from Theorem 7.3.1 that the prior
distribution must have been a beta distribution with parameters α and β such that α + 3 = α1 and
β + 97 = β1. Therefore, α = β = 1. But the beta distribution for which α = β = 1 is the uniform
distribution on the interval [0,1].

5. By Theorem 7.3.2, the posterior distribution will be the gamma distribution for which the parameters

are 3 +
n∑

i=1

xi = 3 + 13 = 16 and 1 + n = 1 + 5 = 6.

6. The number of defects on a 1200-foot roll of tape has the same distribution as the total number of
defects on twelve 100-foot rolls, and it is assumed that the number of defects on a 100-foot roll has
the Poisson distribution with mean θ. By Theorem 7.3.2, the posterior distribution of θ is the gamma
distribution for which the parameters are 2 + 4 = 6 and 10 + 12 = 22.

7. In the notation of Theorem 7.3.3, we have σ2 = 4, μ = 68, υ2 = 1, n = 10, and x̄n = 69.5. Therefore,
the posterior distribution of θ is the normal distribution with mean μ1 = 967/14 and variance υ21 = 2/7.

8. Since the p.d.f. of a normal distribution attains its maximum value at the mean of the distribution
and then drops off on each side of the mean, among all intervals of length 1 unit, the interval that is
centered at the mean will contain the most probability. Therefore, the answer in part (a) is the interval
centered at the mean of the prior distribution of θ and the answer in part (b) is the interval centered at
the mean of the posterior distribution of θ. In part (c), if the distribution of θ is specified by its prior
distribution, then Z = θ − 68 will have a standard normal distribution. Therefore,

Pr(67.5 ≤ θ ≤ 68.5) = Pr(−0.5 ≤ Z ≤ 0.5) = 2Φ(0.5) = 1 = 0.3830.

Similarly, if the distribution of θ is specified by its posterior distribution, then Z = (θ − μ1)/υ1 =
(θ − 69.07)/0.5345 will have a standard normal distribution. Therefore,

Pr(68.57 ≤ θ ≤ 69.57 | θ) = Pr(−0.9355 ≤ Z ≤ 0.9355)

= 2Φ(0.9355) − 1 = 0.6506.

9. Since the posterior distribution of θ is normal, the prior distribution of θ must also have been normal.
Furthermore, from Eqs. (7.3.1) and (7.3.2), we obtain the relations:

8 =
μ+ (20)(10)υ2

1 + 20υ2

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 7.3. Conjugate Prior Distributions 209

and

1

25
=

υ2

1 + 20υ2
.

It follows that υ2 = 1/5 and μ = 0.

10. In this exercise, σ2 = 4 and υ2 = 1. Therefore, by Eq. (7.3.2)

υ21 =
4

4 + n
.

It follows that υ21 ≤ 0.01 if and only if n ≥ 396.

11. In this exercise, σ2 = 4 and n = 100. Therefore, by Eq. (7.3.2),

υ21 =
4υ2

4 + 100υ2
=

1

25 + (1/υ2)
<

1

25
.

Since the variance of the posterior distribution is less than 1/25, the standard deviation must be less
than 1/5.

12. Let α and β denote the parameters of the prior gamma distribution of θ. Then α/β = 0.2 and
α/β2 = 1. Therefore, β = 0.2 and α = 0.04. Furthermore, the total time required to serve the sample
of 20 customers is y = 20(3.8) = 76. Therefore, by Theorem 7.3.4, the posterior distribution of θ is the
gamma distribution for which the parameters are 0.04 + 20 = 20.04 and 0.2 + 76 = 76.2.

13. The mean of the gamma distribution with parameters α and β is α/β and the standard deviation is
α1/2/β. Therefore, the coefficient of variation is α−1/2. Since the coefficient of variation of the prior
gamma distribution of θ is 2, it follows that α = 1/4 in the prior distribution. Furthermore, it now
follows from Theorem 7.3.4 that the coefficient of variation of the posterior gamma distribution of θ is
(α+n)−1/2 = (n+ 1/4)

−1/2. This value will be less than 0.1 if and only if n ≥ 99.75.Thus, the required
sample size is n ≥ 100.

14. Consider a single observation X from a negative binomial distribution with parameters r and p, where
the value of r is known and the value of p is unknown. Then the p.f. of X has the form f(x | p) ∝ prqx.
If the prior distribution of p is the beta distribution with parameters α and β, then the prior p.d.f. ξ(p)
has the form ξ(p) ∝ pα−1qβ−1. Therefore, the posterior p.d.f. ξ(p | x) has the form

ξ(p | x) ∝ ξ(p)f(p | x) ∝ pα+r−1qβ+x−1.

This expression can be recognized as being, except for a constant factor, the p.d.f. of the beta distri-
bution with parameters α + r and β + x. Since this distribution will be the prior distribution of p for
future observations, it follows that the posterior distribution after any number of observations will also
be a beta distribution.

15. (a) Let y = 1/θ. Then θ = 1/y and dθ = −dy/y2. Hence,∫ ∞

0
ξ(θ)dθ =

∫ ∞

0

βα

Γ(α)
yα−1 exp(−βy)dy = 1.
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(b) If an observation X has a normal distribution with a known value of the mean μ and an unknown
value of the variance θ, then the p.d.f. of X has the form

f(x | θ) ∝ 1

θ1/2 exp

[
−(x− μ)2

2θ

] .
Also, the prior p.d.f. of θ has the form

ξ(θ) ∝ θ−(α+1) exp(−β/θ).

Therefore, the posterior p.d.f. ξ(θ | x) has the form

ξ(θ | x) ∝ ξ(θ)f(x | θ) ∝ θ−(α+3/2) exp

{
−
[
β +

1

2
(x− μ)2

]
· 1
θ

}
.

Hence, the posterior p.d.f. of θ has the same form as ξ(θ) with α replaced by α + 1/2 and β
replaced by β + 1/2(x − μ)2. Since this distribution will be the prior distribution of θ for future
observations, it follows that the posterior distribution after any number of observations will also
belong to the same family of distributions.

16. If X has the normal distribution with a known value of the mean μ and an unknown value of the
standard deviation σ, then the p.d.f. of X has the form

f(x | σ) ∝ 1

σ
exp

[
−(x− μ)2

2σ2

]
.

Therefore, if the prior p.d.f. ξ(σ) has the form

ξ(σ) ∝ σ−a exp(−b/σ2),

then the posterior p.d.f. of σ will also have the same form, with a replaced by a+ 1 and b replaced by
b + (x − μ)2/2. It remains to determine the precise form of ξ(σ). If we let y = 1/σ2, then σ = y−1/2

and dσ = −dy/(2y3/2). Therefore,∫ ∞

0
σ−a exp(−b/σ2)dσ =

1

2

∫ ∞

0
y(a−3)/2 exp(−by)dy.

The integral will be finite if a > 1 and b > 0, and its value will be

Γ

[
1

2
(a− 1)

]
b(a−1)/2

.

Hence, for a > 1 and b > 0, the following function will be a p.d.f. for σ > 0:

ξ(σ) =
2b(a−1)/2

Γ

[
1

2
(a− 1)

]σ−a exp(−b/σ2).

Finally, we can obtain a more standard form for this p.d.f. by replacing a and b by α = (a− 1)/2 and
β = b. Then

ξ(σ) =
2βα

Γ(α)
σ−(2α+1) exp(−β/σ2) for σ > 0.

The family of distributions for which the p.d.f. has this form, for all values of α > 0 and β > 0, will be
a conjugate family of prior distributions.
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17. The joint p.d.f. of the three observations is

f(x1, x2, x3 | θ) =
{

1/θ3 for 0 < xi < θ (i = 1, 2, 3),
0 otherwise.

Therefore, the posterior p.d.f. ξ(θ | x1, x2, x3) will be positive only if θ ≥ 4, as required by the prior
p.d.f., and also θ > 8, the largest of the three observed values. Hence, for θ > 8,

ξ(θ | x1, x2, x3) ∝ ξ(θ)f(x1, x2, x3 | θ) ∝ 1/θ7.

Since ∫ ∞

8

1

θ7
dθ =

1

6(8)6
,

it follows that

ξ(θ | x1, x2, x3) =
{

6(86)/θ7 for θ > 8
0 for θ ≤ 8.

18. Suppose that the prior distribution of θ is the Pareto distribution with parameters x0 and α (x0 > 0
and α > 0). Then the prior p.d.f. ξ(θ) has the form

ξ(θ) ∝ 1/θα+1 for θ ≥ x0.

If X1, . . . ,Xn form a random sample from a uniform distribution on the interval [0, θ], then

fn(x | θ) ∝ 1/θn for θ > max{x1, . . . , xn}.

Hence, the posterior p.d.f. of θ has the form

ξ(θ | x) ∝ ξ(θ)fn(x | θ) ∝ 1/θα+n+1,

for θ > max{x0, x1, . . . , xn}, and ξ(θ | x) = 0 for θ ≤ max{x0, x1, . . . , xn}. This posterior p.d.f. can
now be recognized as also being the Pareto distribution with parameters α+n and max{x0, x1, . . . , xn}.
Commentary: Exercise 17 provides a numerical illustration of the general result presented in Exercise 18.

19. The joint p.d.f. of X1, . . . ,Xn has the following form, for 0 < xi < 1(i = 1, . . . , n):

fn(x | θ) = θn
(

n∏
i=1

xi

)θ−1

∝ θn
(

n∏
i=1

xi

)θ

= θn exp

(
θ

n∑
i=1

log xi

)
.

The prior p.d.f. of θ has the form

ξ(θ) ∝ θα−1 exp(−βθ).
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Hence, the posterior p.d.f. of θ has the form

ξ(θ | x) ∝ ξ(θ)fn(x | θ) ∝ θα+n−1 exp

[
−
(
β −

n∑
i=1

log xi

)
θ

]
.

This expression can be recognized as being, except for a constant factor, the p.d.f. of the gamma
distribution with parameters α1 = α+n and β1 = β−∑n

i=1 log xi. Therefore, the mean of the posterior
distribution is α1/β1 and the variance is α1/β

2
1 .

20. The mean lifetime conditional on β is 1/β. The mean lifetime is then the mean of 1/β. Prior to
observing the data, the distribution of β is the gamma distribution with parameters a and b, so the
mean of 1/β is b/(a−1) according to Exercise 21 in Sec. 5.7. After observing the data, the distribution
of β is the gamma distribution with parameters a+10 and b+60, so the mean of 1/β is (b+60)/(a+9).
So, we must solve the following equations:

b

a− 1
= 4,

b+ 60

a+ 9
= 5.

These equations convert easily to the equations b = 4a− 4 and b = 5a− 15. So a = 11 and b = 40.

21. The posterior p.d.f. is proportional to the likelihood θn exp

(
−θ

n∑
i=1

xi

)
times 1/θ. This product can

be written as θn−1 exp(−θnxn). As a function of θ this is recognizable as the p.d.f. of the gamma
distribution with parameters n and nxn. The mean of this posterior distribution is then n/[nxn] = 1/xn.

22. The posterior p.d.f. is proportional to the likelihood since the prior “p.d.f.” is constant. The likelihood
is proportional to

exp

[
− 20

2× 60
(θ − (−0.95))2

]
,

using the same reasoning as in the proof of Theorem 7.3.3 of the text. As a function of θ this is easily
recognized as being proportional to the p.d.f. of the normal distribution with men −0.95 and variance
60/20 = 3. The posterior probability that θ > 1 is then

1− Φ

(
1− (−0.95)

31/2

)
= 1−Φ(1.126) = 0.1301.

23. (a) Let the prior p.d.f. of θ be ξα,β(θ). Suppose that X1, . . . ,Xn are i.i.d. with conditional p.d.f. f(x|θ)
given θ, where f is as stated in the exercise. The posterior p.d.f. after observing these data is

ξ(θ|x) =
a(θ)α+n exp

[
c(θ)

{
β +

∑b
i=1 d(xi)

}]
∫
Ω a(θ)α+n exp

[
c(θ)

{
β +

∑b
i=1 d(xi)

}]
dθ

. (S.7.1)

Eq. (S.7.1) is of the form of ξα′,β′(θ) with α′ = α + n and β′ = β +
∑n

i=1 d(xi). The integral in
the denominator of (S.7.1) must be finite with probability 1 (as a function of x1, . . . , xn) because∏n

i=1 b(xi) times this denominator is the marginal (joint) p.d.f. of X1, . . . ,Xn.

(b) This was essentially the calculation done in part (a).
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24. In each part of this exercise we shall first present the p.d.f. or the p.f. f , and then we shall identify the
functions a, b, c, and d in the form for an exponential family given in Exercise 23.

(a) f(x | p) = px(1−p)1−x = (1−p)

(
p

1− p

)x

. Therefore, a(p) = 1−p, b(x) = 1, c(p) = log

(
p

1− p

)
,

d(x) = x.

(b) f(x | θ) = exp(−θ)θx

x!
. Therefore, a(θ) = exp(−θ), b(x) = 1/x!, c(θ) = log θ, d(x) = x.

(c) f(x | p) =

(
r + x− 1

x

)
pr(1 − p)x. Therefore, a(p) = pr, b(x) =

(r+x−1
x

)
, c(p) = log(1 − p),

d(x) = x.

(d)

f(x | μ) =
1

(2πσ2)1/2
exp

[
−(x− μ)2

2σ2

]

=
1

(2πσ2)1/2
exp

(
− x2

2σ2

)
exp

(
− μ2

2σ2

)
exp

(
μx

σ2

)
.

Therefore, a(μ) =
1

(2πσ2)1/2
exp(− μ2

2σ2
), b(x) = exp(− x2

2σ2
), c(μ) =

μ

σ2
, d(x) = x.

(e) f(x | σ2) = 1
(2πσ2)1/2

exp[− (x−μ)2

2σ2 ]. Therefore, a(σ2) =
1

(2πσ2)1/2
, b(x) = 1, c(σ2) = − 1

2σ2
,

d(x) = (x− μ)2.

(f) f(x | α) =
βα

Γ(α)
xα−1 exp(−βx). Therefore, a(α) =

βα

Γ(α)
, b(x) = exp(−βx), c(α) = α − 1,

d(x) = log x.

(g) f(x | β) in this part is the same as the p.d.f. in part (f). Therefore, a(β) = βα, b(x) =
xα−1

Γ(α)
,

c(β) = −β, d(x) = x.

(h) f(x | α) = Γ(α+ β)

Γ(α)Γ(β)
xα−1(1−x)β−1. Therefore, a(α) =

Γ(α+ β)

Γ(α)
, b(x) =

(1− x)β−1

Γ(β)
, c(α) = α−1,

d(x) = log x.

(i) f(x | β) in this part is the same as the p.d.f. given in part (h). Therefore, a(β) =
Γ(α+ β)

Γ(β)
,

b(x) =
xα−1

Γ(α)
, c(β) = β − 1, d(x) = log(1− x).

25. For every θ, the p.d.f. (or p.f.) f(x|θ) for an exponential family is strictly postive for all x such that
b(x) > 0. That is, the set of x for which f(x|θ) > 0 is the same for all θ. This is not true for uniform
distributions where the set of x such that f(x|θ) > 0 is [0, θ].

26. The same reasoning applies as in the previous exercise, for uniform distributions, the set of x such that
f(x|θ) > 0 depends on θ. For exponential families, the set of x such that f(x|θ) > 0 is the same for all
θ.
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7.4 Bayes Estimators

Commentary

We introduce the fundamental concepts of Bayesian decision theory. The use of a loss function arises again
in Bayesian hypothesis testing in Sec. 9.8. This section ends with foundational discussion of the limitations
of Bayes estimators. This material is included for those instructors who want their students to have both a
working and a critical understanding of the topic.

If you are using the statistical software R, the function mentioned in Example 7.4.5 to compute the
median of a beta distribution is qbeta with the first argument equal to 0.5 and the next two equal to α+ y
and β + n− y, in the notation of the example.

Solutions to Exercises

1. The posterior distribution of θ would be the beta distribution with parameters 2 and 1. The mean
of the posterior distribution is 2/3, which would be the Bayes estimate under squared error loss. The
median of the posterior distribution would be the Bayes estimate under absolute error loss. To find the
median, write the c.d.f. as

F (θ) =

∫ θ

0
2tdt = θ2,

for 0 < θ < 1. The quantile function is then F−1(p) = p1/2, so the median is (1/2)1/2 = 0.7071.

2. The posterior distribution of θ is the beta distribution with parameters 5 + 1 = 6 and 10 + 19 = 29.
The mean of this distribution is 6/(6 + 29) = 6/35. Therefore, the Bayes estimate of θ is 6/35.

3. If y denotes the number of defective items in the sample, then the posterior distribution of θ will be
the beta distribution with parameters 5 + y and 10 + 20 − y = 30 − y. The variance V of this beta
distribution is

V =
(5 + y)(30 − y)

(35)2(36)
.

Since the Bayes estimate of θ is the mean μ of the posterior distribution, the mean squared error of
this estimate is E[(θ − μ)2 | x], which is the variance V of the posterior distribution.

(a) V will attain its maximum at a value of y for which (5+y)(30−y) is a maximum. By differentiating
with respect to y and setting the derivative equal to 0, we find that the maximum is attained when
y = 12.5. Since the number of defective items y must be an integer, the maximum of V will be
attained for y = 12 or y = 13. When these values are substituted into (5 + y)(30 − y), it is found
that they both yield the same value.

(b) Since (5+ y)(30− y) is a quadratic function of y and the coefficient of y2 is negative, its minimum
value over the interval 0 ≤ y ≤ 20 will be attained at one of the endpoints of the interval. It is
found that the value for y = 0 is smaller than the value for y = 20.

4. Suppose that the parameters of the prior beta distribution of θ are α and β. Then μ0 = α/(α+β). As
shown in Example 7.4.3, the mean of the posterior distribution of θ is

α+
∑n

i=1Xi

α+ β + n
=

α+ β

α+ β + n
μ0 +

n

α+ β + n
Xn.

Hence, γn = n/(α+ β + n) and γn → 1 as n → ∞.
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5. It was shown in Exercise 5 of Sec. 7.3 that the posterior distribution of θ is the gamma distribution
with parameters α = 16 and β = 6. The Bayes estimate of θ is the mean of this distribution and is
equal to 16/6 = 8/3.

6. Suppose that the parameters of the prior gamma distribution of θ are α and β. Then μ0 = α/β. The
posterior distribution of θ was given in Theorem 7.3.2. The mean of this posterior distribution is

α+
∑n

i=1Xi

β + n
=

β

β + n
μ0 +

n

β + n
Xn.

Hence, γn = n/(β + n) and γn → 1 as n → ∞.

7. The Bayes estimator is the mean of the posterior distribution of θ, as given in Exercise 6. Since θ is
the mean of the Poisson distribution, it follows from the law of large numbers that Xn converges to θ
in probability as n → ∞. It now follows from Exercise 6 that, since γn → 1, the Bayes estimators will
also converge to θ in probability as n → ∞. Hence, the Bayes estimators form a consistent sequence of
estimators of θ.

8. It was shown in Exercise 7 of Sec. 7.3 that the posterior distribution of θ is the normal distribution
with mean 69.07 and variance 0.286.

(a) The Bayes estimate is the mean of this distribution and is equal to 69.07.

(b) The Bayes estimate is the median of the posterior distribution and is therefore again equal to
69.07.

9. For any given values in the random sample, the Bayes estimate of θ is the mean of the posterior
distribution of θ. Therefore, the mean squared error of the estimate will be the variance of the posterior
distribution of θ. It was shown in Exercise 10 of Sec. 7.3 that this variance will be 0.01 or less for n ≥ 396.

10. It was shown in Exercise 12 of Sec. 7.3 that the posterior distribution of θ will be a gamma distribution
with parameters α = 20.04 and β = 76.2. The Bayes estimate is the mean of this distribution and is
equal to 20.04/76.2 = 0.263.

11. Let X1, . . . ,Xn denote the observations in the random sample, and let α and β denote the parameters
of the prior gamma distribution of θ. It was shown in Theorem 7.3.4 that the posterior distribution of
θ will be the gamma distribution with parameters α+ n and β + nXn. The Bayes estimator, which is
the mean of this posterior distribution is, therefore,

α+ n

β + nXn
=

1 + (α/n)

Xn + (β/n)
.

Since the mean of the exponential distribution is 1/θ, it follows from the law of large numbers that
Xn will converge in probability to 1/θ as n → ∞. It follows, therefore, that the Bayes estimators will
converge in probability to θ as n → ∞. Hence, the Bayes estimators form a consistent sequence of
estimators of θ.

12. (a) A’s prior distribution for θ is the beta distribution with parameters α = 2 and β = 1. Therefore,
A’s posterior distribution for θ is the beta distribution with parameters 2+710 = 712 and 1+290 =
291. B’s prior distribution for θ is a beta distribution with parameters α = 4 and β = 1.
Therefore, B’s posterior distribution for θ is the beta distribution with parameters 4 + 710 = 714
and 1 + 290 = 291.
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(b) A’s Bayes estimate of θ is 712/(712+291) = 712/1003. B’s Bayes estimate of θ is 714/(714+291) =
714/1005.

(c) If y denotes the number in the sample who were in favor of the proposition, then A’s posterior
distribution for θ will be the beta distribution with parameters 2+ y and 1+1000− y = 1001− y,
and B’s posterior distribution will be a beta distribution with parameters 4+y and 1+1000−y =
1001− y. Therefore, A’s Bayes estimate of θ will be (2+ y)/1003 and B’s Bayes estimate of θ will
be (4 + y)/1005. But∣∣∣∣4 + y

1005
− 2 + y

1003

∣∣∣∣ = 2(1001 − y)

(1005)(1003)
.

This difference is a maximum when y = 0, but even then its value is only

2(1001)

(1005)(1003)
<

2

1000
.

13. If θ has the Pareto distribution with parameters α > 1 and x0 > 0, then

E(θ) =

∫ ∞

x0

θ · αx
α
0

θα+1
dθ =

α

α− 1
x0.

It was shown in Exercise 18 of Sec. 7.3 that the posterior distribution of θ will be a Pareto distribution
with parameters α + n and max{x0,X1, . . . ,Xn}. The Bayes estimator is the mean of this posterior
distribution and is, therefore, equal to (α+ n)max{x0,X1, . . . ,Xn}/(α + n− 1).

14. Since ψ = θ2, the posterior distribution of ψ can be derived from the posterior distribution of θ. The
Bayes estimator ψ̂ will then be the mean E(ψ) of the posterior distribution of ψ. But E(ψ) = E(θ)2,
where the first expectation is calculated with respect to the posterior distribution of ψ and the second
with respect to the posterior distribution of θ. Since θ̂ is the mean of the posterior distribution of θ, it
is also true that θ̂ = E(θ). Finally, since the posterior distribution of θ is a continuous distribution, it
follows from the hint given in this exercise that

ψ̂ = E(θ2) > [E(θ)]2 = θ̂2.

15. Let a0 be a 1/(1 + c) quantile of the posterior distribution, and let a1 be some other value. Assume
that a1 < a0. The proof for a1 > a0 is similar. Let g(θ|x) denote the posterior p.d.f. The posterior
mean of the loss for action a is

h(a) = c

∫ a

−∞
(a− θ)g(θ|x)dθ +

∫ ∞

a
(θ − a)g(θ|x)dθ.

We shall now show that h(a1) ≥ h(a0), with strict inequality if a1 is not a 1/(1 + c) quantile.

h(a1)− h(a0) = c

∫ a0

−∞
(a1 − a0)g(θ|x)dθ +

∫ a1

a0
(ca1 − (1 + c)θ + a0)g(θ|x)dθ

+

∫ ∞

a1
(a0 − a1)g(θ|x)dθ (S.7.2)

The first integral in (S.7.2) equals c(a1−a0)/(1+ c) because a0 is a 1/(1+ c) quantile of a the posterior
distribution, and the posterior distribution is continuous. The second integral in (S.7.2) is at least as
large as (a0 − a1) Pr(a0 < θ ≤ a1|x) since −(1 + c)θ > −(1 + c)a1 for all θ in that integral. In fact, the
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integral will be strictly larger than (a0 − a1) Pr(a0 < θ ≤ a1|x) if this probability is positive. The last
integral in (S.7.2) equals (a0 − a1) Pr(θ > a1|x). So

h(a1)− h(a0) ≥ c
a1 − a0
1 + c

+ (a0 − a1) Pr(θ > a0|x) = 0. (S.7.3)

The equality follows from the fact that Pr(θ > a0|x) = c/(1+ c). The inequality in (S.7.3) will be strict
if and only if Pr(a0 < θ ≤ a1|x) > 0, which occurs if and only if a1 is not another 1/(1 + c) quantile.

7.5 Maximum Likelihood Estimators

Commentary

Although maximum likelihood is a popular method of estimation, it can be valuable for the more capable
students to see some limitations that are described at the end of this section. These limitations arise only in
more complicated situations than those that are typically encountered in practice. This material is probably
not suitable for students with a limited mathematical background who are learning statistical inference for
the first time.

Solutions to Exercises

1. We can easily compute

E(Y ) =
1

n

n∑
i=1

xi = xn,

E(Y 2) =
1

n

n∑
i=1

x2i .

Then

Var(Y ) =
1

n

n∑
i=1

x2i − x2n =
1

n

n∑
i=1

(xi − xn)
2.

2. It was shown in Example 7.5.4 that the M.L.E. is xn. In this exercise, xn = 58/70 = 29/35.

3. The likelihood function for the given sample is p58(1 − p)12. Among all values of p in the interval
1/2 ≤ p ≤ 2/3, this function is a maximum when p = 2/3.

4. Let y denote the sum of the observations in the sample. Then the likelihood function is py(1 − p)n−y.
If y = 0, this function is a decreasing function of p. Since p = 0 is not a value in the parameter space,
there is no M.L.E. Similarly, if y = n, then the likelihood function is an increasing function of p. Since
p = 1 is not a value in the parameter space, there is no M.L.E.

5. Let y denote the sum of the observed values x1, . . . , xn. Then the likelihood function is

fn(x | θ) = exp(−nθ)θy

n∏
i=1

(xi!)

.
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(a) If y > 0 and we let L(θ) = log fn(x | θ), then
∂

∂θ
L(θ) = −n+

y

θ
.

The maximum of L(θ) will be attained at the value of θ for which this derivative is equal to 0. In
this way, we find that θ̂ = y/n = xn.

(b) If y = 0, then fn(x | θ) is a decreasing function of θ. Since θ = 0 is not a value in the parameter
space, there is no M.L.E.

6. Let θ = σ2. Then the likelihood function is

fn(x | θ) = 1

(2πθ)n/2
exp

{
− 1

2θ

n∑
i=1

(xi − μ)2
}
.

If we let L(θ) = log fn(x | θ), then

∂

∂θ
L(θ) = − n

2θ
+

1

2θ2

n∑
i=1

(xi − μ)2.

The maximum of L(θ) will be attained at a value of θ for which this derivative is equal to 0. In this
way, we find that

θ̂ =
1

n

n∑
i=1

(xi − μ)2.

7. Let y denote the sum of the observed values x1, . . . , xn. Then the likelihood function is

fn(x | β) = βn exp(−βy).

If we let L(β) = log fn(x | β), then
∂L(β)

∂β
=

n

β
− y.

The maximum of L(β) will be attained at the value of β for which this derivative is equal to 0. Therefore,
β̂ = n/y = 1/xn.

8. Let y denote the sum of the observed values x1, . . . , xn. Then the likelihood function is

fn(x | θ) =
{

exp(nθ − y) for min{x1, . . . , xn} > θ
0 otherwise.

(a) For each value of x, fn(x | θ) will be a maximum when θ is made as large as possible subject
to the strict inequality θ < min{x1, . . . , xn}. Therefore, the value θ = min{x1, . . . , xn} cannot be
used and there is no M.L.E.

(b) Suppose that the p.d.f. given in this exercise is replaced by the following equivalent p.d.f., in which
strict and weak inequalities have been changed:

f(x | θ) =
{

exp(θ − x) for x ≥ θ,
0 for x < θ.

Then the likelihood function fn(x | θ) will be nonzero for θ ≤ min{x1, . . . , xn} and the M.L.E. will
be θ̂ = min{x1, . . . , xn}.
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9. If 0 < xi < 1 for i = 1, . . . , n, then the likelihood function will be as follows:

fn(x | θ) = θn
(

n∏
i=1

xi

)θ−1

.

If we let L(θ) = log fn(x | θ), then
∂

∂θ
L(θ) =

n

θ
+

n∑
i=1

log xi.

Therefore, θ̂ = −n/
∑n

i=1 log xi. It should be noted that θ̂ > 0.

10. The likelihood function is

fn(x | θ) = 1

2n
exp

{
−

n∑
i=1

|xi − θ|
}
.

Therefore, the M.L.E. of θ will be the value that minimizes
n∑

i=1

|xi−θ|. The solution to this minimization

problem was given in the solution to Exercise 10 of Sec. 4.5.

11. The p.d.f. of each observation can be written as follows:

f(x | θ1, θ2) =
{

1
θ2−θ1

for θ1 ≤ x ≤ θ2,

0 otherwise.

Therefore, the likelihood function is

fn(x | θ1, θ2) = 1

(θ2 − θ1)n

for θ1≤ min{x1, . . . , xn}< max{x1, . . . , xn}≤ θ2, and fn(x | θ1, θ2)= 0 otherwise. Hence, fn(x | θ1, θ2)
will be a maximum when θ2− θ1 is made as small as possible. Since the smallest possible value of θ2 is
max{x1, . . . , xn} and the largest possible value of θ1 is min{x1, . . . , xn}, these values are the M.L.E.’s.

12. The likelihood function is

fn(x | θ1, . . . , θk) = θn1
1 · · · θnk

k .

If we let L(θ1, . . . , θk) = log fn(x | θ1, . . . , θk) and let θk = 1−∑k−1
i=1 θi, then

∂L(θ1, . . . , θk)

∂θi
=

ni

θi
− nk

θk
for i = 1, . . . , k − 1.

If each of these derivatives is set equal to 0, we obtain the relations

θ1
n1

=
θ2
n2

= · · · = θk
nk

.

If we let θi = αni for i = 1, . . . , k, then

1 =
k∑

i=1

θi = α
k∑

i=1

ni = αn.

Hence α = 1/n. It follows that θ̂i = ni/n for i = 1, . . . , k.
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13. It follows from Eq. (5.10.2) (with x1 and x2 now replaced by x and y) that the likelihood function is

fn(x,y | μ1, μ2) ∝ exp

{
− 1

2(1− ρ2)

n∑
i=1

[(
xi − μ1

σ1

)2

− 2ρ

(
xi − μ1

σ1

)(
yi − μ2

σ2

)
+

(
yi − μ2

σ2

)2
]}

.

If we let L(μ1, μ2) = log f(x,y | μ1, μ2), then

∂L(μ1, μ2)

∂μ1
=

1

1− ρ2

[
1

σ2
1

(
n∑

i=1

xi − nμ1

)
− ρ

σ1σ2

(
n∑

i=1

yi − nμ2

)]
,

∂L(μ1, μ2)

∂μ2
=

1

1− ρ2

[
1

σ2
2

(
n∑

i=1

yi − nμ2

)
− ρ

σ1σ2

(
n∑

i=1

xi − nμ1

)]
.

When these derivatives are set equal to 0, the unique solution is μ1 = xn and μ2 = yn. Hence, these
values are the M.L.E.’s.

7.6 Properties of Maximum Likelihood Estimators

Commentary

The material on sampling plans at the end of this section is a bit more subtle than the rest of the section,
and should only be introduced to students who are capable of a deeper understanding of the material.

If you are using the software R, the digamma function mentioned in Example 7.6.4 can be computed with
the function digamma which takes only one argument. The trigamma function mentioned in Example 7.6.6
can be computed with the function trigamma which takes only one argument. R also has several functions like
nlm and optim for minimizing general functions. The required arguments to nlm are the name of another R
function with a vector argument over which the minimization is done, and a starting value for the argument.
If the function has additional arguments that remain fixed during the minimization, those can be listed after
the starting vector, but they must be named explicitly. For optim, the first two arguments are reversed.
Both functions have an optional argument hessian which, if set to TRUE, will tell the function to compute a
matrix of numerical second partial derivatives. For example, if we want to minimize a function f(x,y) over
x with y fixed at c(3,1.2) starting from x=x0, we could use
optim(x0,f,y=c(3,1.2)). If we wish to maximize a function g, we can define f to be −g and pass that to
either optim or nlm.

Solutions to Exercises

1. The M.L.E. of exp(−1/θ) is exp(−1/θ̂), where θ̂ = −n/
n∑

i=1

log(xi) is the M.L.E. of θ. That is, the

M.L.E. of exp(−1/θ) is

exp

(
n∑

i=1

log(xi)/n

)
= exp

⎛⎝log [ n∏
i=1

xi

]1/n⎞⎠ =

(
n∏

i=1

xi

)1/n

.

2. The standard deviation of the Poisson distribution with mean θ is σ = θ1/2. Therefore, σ̂ = θ̂1/2. It
was found in Exercise 5 of Sec. 7.5 that θ̂ = Xn.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 7.6. Properties of Maximum Likelihood Estimators 221

3. The median of an exponential distribution with parameter β is the number m such that∫ m

0
β exp(−βx)dx =

1

2
.

Therefore, m = (log 2)/β, and it follows that m̂ = (log 2)/β̂. It was shown in Exercise 7 of Sec. 7.5
that β̂ = 1/Xn.

4. The probability that a given lamp will fail in a period of T hours is p = 1 − exp(−βT ), and the

probability that exactly x lamps will fail is

(
n

x

)
px(1 − p)n−x. It was shown in Example 7.5.4 that

p̂ = x/n. Since β = − log(1− p)/T , it follows that β̂ = − log(1− x/n)/T .

5. Since the mean of the uniform distribution is μ = (a+ b)/2, it follows that μ̂ = (â+ b̂)/2. It was shown
in Exercise 11 of Sec. 7.5 that â = min{X1, . . . ,Xn} and b̂ = max{X1, . . . ,Xn}.

6. The distribution of Z = (X − μ)/σ will be a standard normal distribution. Therefore,

0.95 = Pr(X < θ) = Pr

(
Z <

θ − μ

σ

)
= Φ

(
θ − μ

σ

)
.

Hence, from a table of the values of Φ it is found that (θ − μ)/σ = 1.645. Since θ = μ+ 1.645σ, it
follows that θ̂ = μ̂+ 1.645σ̂. By example 6.5.4, we have

μ̂ = Xn and σ̂ =

[
1

n

n∑
i=1

(Xi −Xn)
2

]1/2
.

7. ν = Pr(X > 2) = Pr

(
Z >

2− μ

σ

)
= 1− Φ

(
2− μ

σ

)
= Φ

(
μ− 2

σ

)
.

Therefore, ν̂ = Φ((μ̂− 2)/σ̂).

8. Let θ = Γ′(α)/Γ(α). Then θ̂ = Γ′(α̂)/Γ(α̂). It follows from Eq. (7.6.5) that θ̂ =
∑n

i=1(log Xi)/n.

9. If we let y =
∑n

i=1 xi, then the likelihood function is

fn(x | α, β) = βnα

[Γ(α)]n

(
n∏

i=1

xi

)α−1

exp(−βy).

If we now let L(α, β) = log fn(x | α, β), then

L(α, β) = nα log β − n log Γ(α) + (α− 1) log

(
n∏

i=1

xi

)
− βy.

Hence,

∂L(α, β)

∂β
=

nα

β
− y.

Since α̂ and β̂ must satisfy the equation ∂L(α, β)/∂β = 0 [as well as the equation ∂L(α, β)/∂α = 0], it
follows that α̂/β̂ = y/n = xn.
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10. The likelihood function is

fn(x |α, β) =
[
Γ(α+ β)

Γ(α)Γ(β)

]n( n∏
i=1

xi

)α−1 [ n∏
i=1

(1− xi)

]β−1

.

If we let L(α, β) = log fn(x | α, β), then

L(α, β) = n log Γ(α+ β)− n log Γ(α)− n log Γ(β)

+(α− 1)
n∑

i=1

log xi + (β − 1)
n∑

i=1

log(1− xi).

Hence,

∂L(α, β)

∂α
= n

Γ′(α+ β)

Γ(α+ β)
− n

Γ′(α)
Γ(α)

+
n∑

i=1

log xi

and

∂L(α, β)

∂β
= n

Γ′(α+ β)

Γ(α+ β)
− n

Γ′(β)
Γ(β)

+
n∑

i=1

log(1− xi).

The estimates α̂ and β̂ must satisfy the equations ∂L(α, β)/∂α = 0 and ∂L(α, β)/∂β = 0. Therefore,
α̂ and β̂ must also satisfy the equation ∂L(α, β)/∂α = ∂L(α, β)/∂β. This equation reduces to the one
given in the exercise.

11. Let Yn = max{X1, . . . ,Xn}. It was shown in Example 7.5.7 that θ̂ = Yn. Therefore, for ε > 0,

Pr(|θ̂ − θ| < ε) = Pr(Yn > θ − ε) = 1−
(
θ − ε

θ

)n

.

It follows that lim
n→∞Pr(|θ̂ − θ| < ε) = 1. Therefore, θ̂

p→ θ.

12. We know that β̂ = 1/Xn. Also, since the mean of the exponential distribution is μ = 1/β, it follows

from the law of large numbers that Xn
p→ 1/β. Hence, β̂

p→ β.

13. Let Zi = − log Xi for i = 1, . . . , n. Then by Exercise 9 of Sec. 7.5, θ̂ = 1/Zn. If Xi has the p.d.f.
f(x | θ) specified in that exercise, then the p.d.f. g(z | θ) of Zi will be as follows, for z > 0:

g(z | θ) = f(exp(−z) | θ)
∣∣∣∣dxdz
∣∣∣∣ = θ(exp(−z))θ−1 exp(−z) = θ exp(−θz).

Therefore, Zi has an exponential distribution with parameter θ. It follows that E(Zi) = 1/θ. Further-
more, since X1, . . . ,Xn form a random sample from a distribution for which the p.d.f. is f(x | θ), it
follows that Z1, . . . , Zn will have the same joint distribution as a random sample from an exponential
distribution with parameter θ. Therefore, by the law of large numbers, Zn

p→ 1/θ. It follows that

θ̂
p→ θ.

14. The M.L.E. p̂ is equal to the proportion of butterflies in the sample that have the special marking,
regardless of the sampling plan. Therefore, (a)p̂ = 5/43 and (b) p̂ = 3/58.
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15. As explained in this section, the likelihood function for the 21 observations is equal to the joint p.d.f.
of the 20 observations for which the exact value is known, multiplied by the probability exp(−15/μ)
that the 21st observation is greater than 15. If we let y denote the sum of the first 20 observations,
then the likelihood function is

1

μ20
exp(−y/μ) exp(−15/μ).

Since y = (20)(6) = 120, this likelihood function reduces to

1

μ20
exp(−135/μ).

The value of μ which maximizes this likelihood function is μ̂ = 6.75.

16. The likelihood function determined by any observed value x of X is θ3x2 exp(−θx)/2. The likelihood
function determined by any observed value y of Y is (2θ)y exp(−2θ)/y!. Therefore, when X = 2 and
Y = 3, each of these functions is proportional to θ3 exp(−2θ). The M.L.E. obtained by either statistician
will be the value of θ. which maximizes this expression. That value is θ̂ = 3/2.

17. The likelihood function determined by any observed value x of X is

(
10

x

)
px(1− p)10−x. By Eq. (5.5.1)

the likelihood function determined by any observed value y of Y is

(
3 + y

y

)
p4(1−p)y. Therefore, when

X = 4 and Y = 6, each of these likelihood functions is proportional to p4(1−p)6. The M.L.E. obtained
by either statistician will be the value of p which maximizes this expression. That value is p̂ = 2/5.

18. The mean of a Bernoulli random variable with parameter p is p. Hence, the method of moments
estimator is the sample mean, which is also the M.L.E.

19. The mean of an exponential random variable with parameter β is 1/β, so the method of moments
estimator is one over the sample mean, which is also the M.L.E.

20. The mean of a Poisson random variable is θ, hence the method of moments estimator of θ is the sample
mean, which is also the M.L.E.

21. The M.L.E. of the mean is the sample mean, which is the method of moments estimator. The M.L.E. of
σ2 is the mean of the X2

i ’s minus the square of the sample mean, which is also the method of moments
estimator of the variance.

22. The mean of Xi is θ/2, so the method of moments estimator is 2Xn. The M.L.E. is the maximum of
the Xi values.

23. (a) The means of Xi and X2
i are respectively α/(α + β) and α(α + 1)/[(α + β)(α + β + 1). We set

these equal to the sample moments xn and x2n and solve for α and β. After some tedious algebra,
we get

α̂ =
xn(xn − x2n)

x2n − x2n
,

β̂ =
(1− xn)(xn − x2n)

x2n − x2n
.
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(b) The M.L.E. involves derivatives of the gamma function and the products
∏n

i=1 xi and
∏n

i=1(1−xi).

24. The p.d.f. of each (Xi, Yi) pair can be factored as

1

(2π)1/2σ1
exp

(
− 1

2σ2
1

(xi − μ1)
2
)

1

(2π)1/2σ2.1
exp

(
− 1

2σ2
2.1

(yi − α− βxi)
2
)
, (S.7.4)

where the new parameters are defined in the exercise. The product of n factors of the form (S.7.4) can
be factored into the product of the n first factors times the product of the n second factors, each of
which can be maximized separately because there are no parameters in common. The product of the
first factors is the same as the likelihood of a sample of normal random variables, and the M.L.E.’s are

μ̂1 and σ̂2
1 as stated in the exercise. The product of the second factors is slightly more complicated than

the likelihood from a sample of normal random variables, but not much more so. Take the logarithm
to get

−n

2
[log(2π) + log(σ2

2.1)]−
1

2σ2
2.1

n∑
i=1

(yi − α− βxi)
2. (S.7.5)

Taking the partial derivatives with respect to α and β yields

∂

∂α
=

1

σ2
2.1

n∑
i=1

(yi − α− βxi),

∂

∂β
=

1

σ2
2.1

n∑
i=1

xi(yi − α− βxi).

Setting the first line equal to 0 and solving for α yields

α = yn − βxn. (S.7.6)

Plug (S.7.6) into the second of the partial derivatives to get (after a bit of algebra)

β̂ =

∑n
i=1(xi − xn)(yi − yn)∑n

i=1(xi − xn)2
. (S.7.7)

Substitute (S.7.7) back into (S.7.6) to get

α̂ = yn − β̂μ̂1.

Next, take the partial derivative of (S.7.5) with respect to σ2
2.1 to get

− n

2σ2
2.1

+
1

2σ4
2.1

∑
i=1

(yi − α− βxi)
2. (S.7.8)

Now, substitue both α̂ and β̂ into (S.7.8) and solve for σ2
2.1. The result is

σ̂2
2.1 =

1

n

n∑
i=1

(yi − α̂− β̂xi)
2.
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Finally, we can solve for the M.L.E.’s of the original parameters. We already have μ̂1 and σ̂2
1 . The

equation α = μ2 − ρσ2μ1/σ1 can be rewritten α = μ2 − βμ1. It follows that

μ̂2 = α̂+ β̂μ̂1 = yn.

The equation β = ρσ2/σ1 can be rewritten ρσ2 = βσ1. Plugging this into σ2
2.1 = (1 − ρ2)σ2

2 yields
σ2
2.1 = σ2

2 − β2σ2
1 . Hence,

σ̂2
2 = σ̂2

2.1 + β̂2σ̂2
1

=
1

m

n∑
i=1

(yi − α̂− β̂xi)
2 +

[
∑n

i=1(yi − yn)(xi − xn)]
2∑n

i=1(xi − xn)2

=
1

n

n∑
i=1

(yi − yn)
2,

where the final equality is tediuous but straightforward algebra. Finally,

ρ̂ =
β̂σ̂1
σ̂2

=

∑n
i=1(yi − yn)(xi − xn)

[
∑n

i=1(xi − xn)2]
1/2 [

∑n
i=1(yi − yn)

2]1/2
.

25. When we observe only the first n− k Yi’s, the M.L.E.’s of μ1 and σ2
1 are not affected. The M.L.E.’s of

α, β and σ2
2.1 are just as in the previous exercise but with n replaced by n− k. The M.L.E.’s of μ2, σ

2
2

and ρ are obtained by substituting α̂, β̂ and σ̂2
2.1 into the three equations Exercise 24:

μ̂2 = α̂+ β̂μ̂1

σ̂2
2 = σ̂2

2.1 + β̂2σ̂2
1

ρ̂ =
β̂σ̂1
σ̂2

.

7.7 Sufficient Statistics

Commentary

The concept of sufficient statistics is fundamental to much of the traditional theory of statistical inference.
However, it plays little or no role in the most common practice of statistics. For the most popular distribu-
tional models for real data, the most obvious data summaries are sufficient statistics. In Bayesian inference,
the posterior distribution is automatically a function of every sufficient statistic, so one does not even have
to think about sufficiency in Bayesian inference. For these reasons, the material in Secs. 7.7–7.9 should only
be covered in courses that place a great deal of emphasis on the mathematical theory of statistics.

Solutions to Exercises

In Exercises 1–11, let t denote the value of the statistic T when the observed values of X1, . . . ,Xn are
x1, . . . , xn. In each exercise, we shall show that T is a sufficient statistic by showing that the joint p.f. or
joint p.d.f. can be factored as in Eq. (7.7.1).

1. The joint p.f. is

fn(x | p) = pt(1− p)n−t.
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2. The joint p.f. is

fn(x | p) = pn(1− p)t.

3. The joint p.f. is

fn(x | p) =
[

n∏
i=1

(
r + xi − 1

xi

)]
[pnr(1− p)t].

Since the expression inside the first set of square brackets does not depend on the parameter p, it follows
that T is a sufficient statistic for p.

4. The joint p.d.f. is

fn(x | σ2) =
1

(2πσ2)n/2
exp

{
− t

2σ2

}
.

5. The joint p.d.f. is

fn(x | β) =
⎧⎨⎩ 1

[Γ(α)]n

(
n∏

i=1

xi

)α−1
⎫⎬⎭ {βnα exp(−nβt)}.

6. The joint p.d.f. in this exercise is the same as that given in Exercise 5. However, since the unknown
parameter is now α instead of β, the appropriate factorization is now as follows:

fn(x | α) =
{
exp

(
−β

n∑
i=1

xi

)}{
βnα

[Γ(α)]n
tα−1

}
.

7. The joint p.d.f. is

fn(x | α) =
⎧⎨⎩ 1

[Γ(β)]n

[
n∏

i=1

(1− xi)

]β−1
⎫⎬⎭
{[

Γ(α+ β)

Γ(α)

]n
tα−1

}

8. The p.f. of an individual observation is

f(x | θ) =

⎧⎪⎨⎪⎩
1

θ
for x = 1, 2, . . . , θ,

0 otherwise.

Therefore, the joint p.f. is

fn(x | θ) =

⎧⎪⎨⎪⎩
1

θn
for t ≤ θ,

0 otherwise.

If the function h(t, θ) is defined as in Example 7.7.5, with the values of t and θ now restricted to positive
integers, then it follows that

fn(x | θ) = 1

θn
h(t, θ).
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9. The joint p.d.f. is

fn(x | b) = h(t, b)

(b− a)n
,

where h is defined in Example 7.7.5.

10. The joint p.d.f. is

fn(x | a) = h(a, t)

(b− a)n
,

where h is defined in Example 7.7.5.

11. The joint p.d.f. or joint p.f. is

fn(x | θ) =
{

n∏
i=1

b(xi)

}
{[a(θ)]n exp[c(θ)t]}.

12. The likelihood function is

αnxαn0∏n
i=1 xi]

α+1
, (S.7.9)

for all xi ≥ x0.

(a) If x0 is known, α is the parameter, and (S.7.9) has the form u(x)v[r(x), α], with u(x) = 1 if all
xi ≥ x0 and 0 if not, r(x) =

∏n
i=1 xi, and v[t, α] = αnxαn0 /tα+1. So

∏n
i=1 Xi is a sufficient statistic.

(b) If α is known, x0 is the parameter, and (S.7.9) has the form u(x)v[r(x), x0], with u(x) =
αn/[

∏n
i=1 xi]

α+1, r(x) = min{x1, . . . , xn}, and v[t, x0] = 1 if t ≥ x0 and 0 if not. Hence
min{X1, . . . ,Xn} is a sufficient statistic.

13. The statistic T will be a sufficient statistic for θ if and only if fn(x | θ) can be factored as in Eq. (7.7.1).
However, since r(x) can be expressed as a function of r′(x), and conversely, there will be a factorization
of the form given in Eq. (7.7.1) if and only if there is a similar factorization in which the function v
is a function of r′(x) and θ. Therefore, T will be a sufficient statistic if and only if T ′ is a sufficient
statistic.

14. This result follows from previous exercises in two different ways. First, by Exercise 6, the statistic
T ′ =

∏n
i=1Xi is a sufficient statistic. Hence, by Exercise 13, T = log T ′ is also a sufficient statistic.

A second way to establish the same result is to note that, by Exercise 24(g) of Sec. 7.3, the gamma
distributions form an exponential family with d(x) = log x. Therefore, by Exercise 11, the statistic
T =

∑n
i=1 d(Xi) is a sufficient statistic.

15. It follows from Exercise 11 and Exercise 24(i) of Sec. 7.3 that the statistic T ′ =
∑n

i=1 log(1 −Xi) is a
sufficient statistic. Since T is a one-to-one function of T ′, it follows from Exercise 13 that T is also a
sufficient statistic.

16. Let f(θ) be a prior p.d.f. for θ. The posterior p.d.f. of θ is, according to Bayes’ theorem,

g(θ|x) = fn(x|θ)f(θ)∫
fn(x|ψ)f(ψ)dψ

=
u(x)v[r(x), θ]f(θ)∫
u(x)v[r(x, ψ)]f(ψ)dψ

=
v[r(x), θ]f(θ)∫
v[r(x), ψ]f(ψ)dψ

,

where the second equality uses the factorization criterion. One can see that this last expression depends
on x only through r(x).
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17. First, suppose that T is sufficient. Then the likelihood function from observing X = x is u(x)v[r(x), θ],
which is proportional to v[r(x), θ]. The likelihood from observing T = t (when t = r(x)) is

∑
u(x)v[r(x), θ] = v[t, θ]

∑
u(x), (S.7.10)

where the sums in (S.7.10) are over all x such that t = r(x). Notice that the right side of (S.7.10)
is proportional to v[t, θ] = v[r(x), θ]. So the two likelihoods are proportional. Next, suppose that the
two likelihoods are proportional. That is, let f(x|θ) be the p.f. of X and let h(t|θ) be the p.f. of T . If
t = r(x) then there exists c(x) such that

f(x|θ) = u(x)h(t|θ).

Let v[t, θ] = h(t|θ) and apply the factorization criterion to see that T is sufficient.

7.8 Jointly Sufficient Statistics

Commentary

Even those instructors who wish to cover the concept of sufficient statistic in Sec. 7.7, may decide not to
cover jointly sufficient statistics. This material is at a slightly more mathematical level than most of the text.

Solutions to Exercises

In Exercises 1–4, let t1 and t2 denote the values of T1 and T2 when the observed values of X1, . . . ,Xn are
x1, . . . , xn. In each exercise, we shall show that T1 and T2 are jointly sufficient statistics by showing that the
joint p.d.f. of X1, . . . ,Xn can be factored as in Eq. (7.8.1).

1. The joint p.d.f. is

fn(x | α, β) = βnα

[Γ(α)]n
tα−1
1 exp(−βt2).

2. The joint p.d.f. is

fn(x | α, β) =
[
Γ(α+ β)

Γ(α)Γ(β)

]n
tα−1
1 tβ−1

2 .

3. Let the function h be as defined in Example 7.8.4. Then the joint p.d.f. can be written in the following
form:

fn(x | x0, α) = (αxα0 )
n

tα+1
2

h(x0, t1).

4. Again let the function h be as defined in Example 7.8.4. Then the joint p.d.f. can be written as follows:

fn(x | θ) = h(θ, t1)h(t2, θ + 3)

3n
.
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5. The joint p.d.f. of the vectors (Xi, Yi), for i = 1, . . . , n, was given in Eq. (5.10.2). The following relations
hold:

n∑
i=1

(xi − μ1)
2 =

n∑
i=1

x2i − 2μ1

n∑
i=1

xi + nμ2
1,

n∑
i=1

(yi − μ2)
2 =

n∑
i=1

y2i − 2μ2

n∑
i=1

yi + nμ2
2,

n∑
i=1

(xi − μ1)(yi − μ2) =
n∑

i=1

xiyi − μ2

n∑
i=1

xi − μ1

n∑
i=1

yi + nμ1μ2.

Because of these relations, it can be seen that the joint p.d.f. depends on the observed values of the
n vectors in the sample only through the values of the five statistics given in this exercise. Therefore,
they are jointly sufficient statistics.

6. The joint p.d.f. or joint p.f. is

fn(x | θ) =
⎧⎨⎩

n∏
j=1

b(xj)

⎫⎬⎭
⎧⎨⎩[a(θ)]n exp

⎡⎣ k∑
i=1

ci(θ)
k∑

j=1

di(xj)

⎤⎦⎫⎬⎭.
It follows from the factorization criterion that T1, . . . , Tk are jointly sufficient statistics for θ.

7. In each part of this exercise we shall first present the p.d.f. f, and then we shall identify the functions
a, b, c1, d1, c2, and d2 in the form for a two-parameter exponential family given in Exercise 6.

(a) Let θ = (μ, σ2). Then f(x | θ) is as given in the solution to Exercise 24(d) of Sec. 7.3. Therefore,

a(θ) =
1

(2πσ2)1/2
exp

(
− μ2

2σ2

)
, b(x) = 1, c1(θ) = − 1

2σ2
, d1(x) = x2, c2(θ) =

μ

σ2
, d2(x) = x.

(b) Let θ = (α, β). Then f(x | θ) is as given in the solution to Exercise 24(f) of Sec. 7.3. Therefore,

a(θ) =
βα

Γ(α)
, b(x) = 1, c1(θ) = α− 1, d1(x) = log x, c2(θ) = −β, d2(x) = x.

(c) Let θ = (α, β). Then f(x | θ) is as given in the solution to Exercise 24(h) of Sec. 7.3. Therefore,

a(θ) =
Γ(α+ β)

Γ(α)Γ(β)
, b(x) = 1, c1(θ) = α− 1, d1(x) = log x, c2(θ) = β − 1, and d2(x) = log(1− x).

8. The M.L.E. of β is n/
∑n

i=1Xi. (See Exercise 7 in Sec. 7.5.) This is a one-to-one function of the
sufficient statistic found in Exercise 5 of Sec. 7.7. Hence, the M.L.E. is sufficient. This makes it
minimal sufficient.

9. By Example 7.5.4, p̂ = Xn. By Exercise 1 of Sec. 7.7, p̂ is a sufficient statistic. Therefore, p̂ is a minimal
sufficient statistic.

10. By Example 7.5.7, θ̂ = max{X1, . . . ,Xn}. By Example 7.7.5, θ̂ is a sufficient statistic. Therefore, θ̂ is
a minimal sufficient statistic.

11. By Example 7.8.5, the order statistics are minimal jointly sufficient statistics. Therefore, the M.L.E.
of θ, all by itself, cannot be a sufficient statistic. (We know from Example 7.6.5 that there is no
simple expression for this M.L.E., so we cannot solve this exercise by first deriving the M.L.E. and then
checking to see whether it is a sufficient statistic.)

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



230 Chapter 7. Estimation

12. If we let T = max{X1, . . . ,Xn}, let t denote the observed value of T , and let the function h be as
defined in Example 7.8.4, then the likelihood function can be written as follows:

fn(x | θ) =
2n
(

n∏
i=1

xi

)
θ2n

h(t, θ).

This function will be a maximum when θ is chosen as small as possible, subject to the constraint that
h(t, θ) = 1. Therefore, the M.L.E. of θ is θ̂ = t. The median m of the distribution will be the value
such that∫ m

0
f(x | θ) dx =

1

2
.

Hence, m = θ/
√
2. It follows from the invariance principle that the M.L.E. of m is m̂ = θ̂/

√
2 = t/

√
2.

By applying the factorization criterion to fn(x | θ), it can be seen that the statistic T is a sufficient
statistic for θ. Therefore, the statistic T/

√
2 which is the M.L.E. of m, is also a sufficient statistic for

θ.

13. By Exercise 11 of Sec. 7.5, â = min{X1, . . . ,Xn} and b̂ = max{X1, . . . Xn}. By Example 7.8.4, â and b̂
are jointly sufficient statistics. Therefore, â and b̂ are minimal jointly sufficient statistics.

14. It can be shown that the values of the five M.L.E.’s given in Exercise 24 of Sec. 7.6 can be derived from
the values of the five statistics given in Exercise 5 of this section by a one-to-one transformation. Since
the five statistics in Exercise 5 are jointly sufficient statistics, the five M.L.E.’s are also jointly sufficient
statistics. Hence, the M.L.E.’s will be minimal jointly sufficient statistics.

15. The Bayes estimator of p is given by Eq. (7.4.5). Since
∑n

i=1 xi is a sufficient statistic for p, the Bayes
estimator is also a sufficient statistic for p. Hence, this estimator will be a minimal sufficient statistic.

16. It follows from Theorem 7.3.2 that the Bayes estimator of λ is (α+
∑n

i=1Xi)/(β+n). Since
∑n

i=1Xi is
a sufficient statistic for λ, the Bayes estimator is also a sufficient statistic for λ. Hence, this estimator
will be a minimal sufficient statistic.

17. The Bayes estimator of μ is given by Eq. (7.4.6). Since Xn is a sufficient statistic for μ, the Bayes
estimator is also a sufficient statistic. Hence, this estimator will be a minimal sufficient statistic.

7.9 Improving an Estimator

Commentary

If you decided to cover the material in Secs. 7.7 and 7.8, this section gives one valuable application of that
material, Theorem 7.9.1 of Blackwell and Rao. This section ends with some foundational discussion of the
use of sufficient statistics. This material is included for those instructors who want their students to have
both a working and a critical understanding of the topic.

Solutions to Exercises

1. The statistic Yn =
∑n

i=1X
2
i is a sufficient statistic for θ. Since the value of the estimator δ1 cannot be

determined from the value of Yn alone, δ1 is inadmissible.
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2. A sufficient statistic in this example is max{X1, . . . ,Xn}. Since 2Xn is not a function of the sufficient
statistic, it cannot be admissible.

3. The mean of the uniform distribution on the interval [0, θ] is θ/2 and the variance is θ2/12. Therefore,
Eθ(Xn) = θ/2 and Varθ(Xn) = θ2/(12n). In turn, it now follows that

Eθ(δ1) = θ and Varθ(δ1) =
θ2

3n
.

Hence, for θ > 0,

R(θ, δ1) = Eθ[(δ1 − θ)2] = Varθ(δ1) =
θ2

3n
.

4. (a) It follows from the discussion given in Sec. 3.9 that the p.d.f. of Yn is as follows:

g(y | θ) =

⎧⎪⎨⎪⎩
nyn−1

θn
for 0 ≤ y ≤ θ,

0 otherwise.

Hence, for θ > 0,

R(θ, δ2) = Eθ[(Yn − θ)2] =

∫ θ

0
(y − θ)2

nyn−1

θn
dy =

2θ2

(n+ 1)(n + 2)
.

(b) if n = 2, R(θ, δ1) = R(θ, δ2) = θ2/6.

(c) Suppose n ≥ 3. Then R(θ, δ2) < R(θ, δ1) for any given value of θ > 0 if and only if 2/[(n +
1)(n + 2)] < 1/(3n) or, equivalently, if and only if 6n < (n + 1)(n + 2) = n2 + 3n + 2. Hence,
R(θ, δ2) < R(θ, δ1) if and only if n2− 3n+2 > 0 or, equivalently, if and only if (n− 2)(n− 1) > 0.
Since this inequality is satisfied for all values of n ≥ 3, it follows that R(θ, δ2) < R(θ, δ1) for every
value of θ > 0. Hence, δ2 dominates δ1.

5. For any constant c,

R(θ, cYn) = Eθ[(cYn − θ)2] = c2Eθ(Y
2
n )− 2cθEθ(Yn) + θ2

=

(
n

n+ 2
c2 − 2n

n+ 1
c+ 1

)
θ2.

Hence, for any given value of n and any given value of θ > 0, R(θ, cY n) will be a minimum when c is
chosen so that the coefficient of θ2 in this expression is a minimum. By differentiating with respect to
c, we find that the minimizing value of c is c = (n+ 2)(n+ 1). Hence, the estimator (n+ 2)Yn/(n+ 1)
dominates every other estimator of the form cYn.

6. It was shown in Exercise 6 of Sec. 7.7 that
∏n

i=1 Xi is a sufficient statistic in this problem. Since the
value of Xn cannot be determined from the value of the sufficient statistic alone, Xn is inadmissible.

7. (a) Since the value of δ is always 3, R(β, δ) = (β − 3)2.

(b) Since R(3, δ) = 0, no other estimator δ1 can dominate δ unless it is also true that R(3, δ1) = 0.
But the only way that the M.S.E. of an estimator δ1 can be 0 is for the estimator δ1 to be equal
to 3 with probability 1. In other words, the estimator δ1 must be the same as the estimator δ.
Therefore, δ is not dominated by any other estimator and it is admissible.

In other words, the estimator that always estimates the value of β to be 3 is admissible because it
is the best estimator to use if β happens to be equal to 3. Of course, it is a poor estimator to use
if β happens to be different from 3.
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8. It was shown in Example 7.7.2 that
∑n

i=1Xi is a sufficient statistic in this problem. Since the proportion
β̂ of observations that have the value 0 cannot be determined from the value of the sufficient statistic
alone, β̂ is inadmissible.

9. Suppose that X has a continuous distribution for which the p.d.f. is f. Then

E(X) =

∫ 0

−∞
xf(x) dx+

∫ ∞

0
xf(x) dx.

Suppose first that E(X) ≤ 0. Then

|E(X)| = −E(X) =

∫ 0

−∞
(−x)f(x) dx−

∫ ∞

0
xf(x) dx

≤
∫ 0

−∞
(−x)f(x) dx+

∫ ∞

0
xf(x) dx

=

∫ ∞

−∞
|x|f(x) dx = E(|X|).

A similar proof can be given if X has a discrete distribution or a more general type of distribution, or
if E(X) > 0.

Alternatively, the result is immediate from Jensen’s inequality, Theorem 4.2.5.

10. We shall follow the steps of the proof of Theorem 7.9.1. It follows from Exercise 9 that

Eθ(| δ − θ ||T ) ≥ |Eθ(δ − θ |T )| = |Eθ(δ |T )− θ| = |δ0 − θ|.

Therefore,

Eθ(| δ0 − θ |) ≤ Eθ[Eθ(| δ − θ ||T )] = Eθ(| δ − θ |).

11. Since θ̂ is the M.L.E. of θ, we know from the discussion in Sec. 7.8 that θ̂ is a function of T alone.
Since θ̂ is already a function of T , taking the conditional expectation E(θ̂|T ) will not affect θ̂. Hence,
δ0 = E(θ̂|T ) = θ̂.

12. Since X1 must be either 0 or 1,

E(X1 |T = t) = Pr(X1 = 1 |T = t).

If t = 0 then every Xi must be 0. Therefore,

E(X1 |T = 0) = 0.

Suppose now that t > 0. Then

Pr(X1 = 1 |T = t) =
Pr(X1 = 1 and T = t)

Pr(T = t)
=

Pr

(
X1 = 1 and

n∑
i=2

Xi = t− 1

)
Pr(T = t)

.
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Since X1 and
∑n

i=2 Xi are independent,

Pr

(
X1 = 1 and

n∑
i=2

Xi = t− 1

)
= Pr(X1 = 1)Pr

(
n∑

i=2

Xi = t− 1

)

= p ·
(
n− 1

t− 1

)
pt−1(1− p)(n−1)−(t−1)

=

(
n− 1

t− 1

)
pt(1− p)n−t.

Also, Pr(T = t) =

(
n

t

)
pt(1− p)n−t. It follows that

Pr(X1 = 1|T = t) =

(
n− 1

t− 1

)/(
n

t

)
=

t

n
.

Therefore, for any value of T,

E(X1|T ) = T/n = Xn.

A more elegant way to solve this exercise is as follows: By symmetry, E(X1|T ) = E(X2|T ) = . . . =
E(Xn |T ). Therefore, nE(X1 |T ) =∑n

i=1 E(Xi |T ). But
n∑

i=1

E(Xi |T ) = E

(
n∑

i=1

Xi |T
)

= E(T |T ) = T.

Hence, E(X1|T ) = T/n.

13. We shall carry out the analysis for Y1. The analysis for every other value of i is similar. Since Y1 must
be 0 or 1,

E(Y1|T = t) = Pr(Y1 = 1|T = t) = Pr(X1 = 0|T = t)

=
Pr(X1 = 0 and T = t)

Pr(T = t)
=

Pr

(
X1 = 0 and

n∑
i=2

Xi = t

)
Pr(T = t)

.

The random variables X1 and
∑n

i=2 Xi are independent, X1 has a Poisson distribution with mean θ,
and

∑n
i=2Xi has a Poisson distribution with mean (n− 1)θ. Therefore,

Pr

(
X1 = 0 and

n∑
i=2

Xi = t

)
= Pr(X1 = 0)Pr

(
n∑

i=2

Xi = t

)
= exp(−θ) · exp(−(n− 1)θ)[(n − 1)θ]t

t!
.

Also, since T has a Poisson distribution with mean nθ,

Pr(T = t) =
exp(−nθ)(nθ)t

t!

It now follows that E(Y1|T = t) = ([n − 1]/n)t.
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14. If Yi is defined as in Exercise 12 for i = 1, . . . , n, then β̂ =
n∑

i=1

Yi/n. Also, we know from Exercise 12

that E(Yi|T ) = ([n − 1]/n)T for i = 1, . . . , n. Therefore,

E(β̂ | T ) = E

(
1

n

n∑
i=1

Yi | T
)

=
1

n

n∑
i=1

E(Yi | T ) = 1

n
· n
(
n− 1

n

)T

=

(
n− 1

n

)T

.

15. Let θ̂ be the M.L.E. of θ. Then the M.L.E. of exp(θ+0.125) is exp(θ̂+0.125). The M.L.E. of θ is Xn,
so the M.L.E. of exp(θ+0.125) is exp(Xn+0.125). The M.S.E. of an estimator of the form exp(Xn+c)
is

E
[
(exp[Xn + c]− exp[θ + 0.125])2

]
= Var(exp[Xn + c]) +

[
E(exp[Xn + c])− exp(θ + 0.125)

]2
= exp(2θ + 0.25/n + 2c)[exp(0.25/n) − 1] + [exp(θ + 0.125/n + c)− exp(θ + 0.125)]2

= exp(2θ){exp(0.25/n + 2c)[exp(0.25/n) − 1] + exp(0.25/n + 2c)− 2 exp(0.125[1 + 1/n] + c)

+ exp(0.5)}
= exp(2θ) [exp(2c) exp(0.5/n) − 2 exp(c) exp(0.125[1 + 1/n]) + exp(0.5)] .

Let a = exp(c) in this last expression. Then we can minimize the M.S.E. simultaneously for all θ by
minimizing

a2 exp(0.5/n) − 2a exp(0.125[1 + 1/n]) + exp(0.5).

The minimum occurs at a = exp(0.125 − 0.375/n), so c = 0.125 − 0.375/n.

16. p = Pr(Xi = 1|θ) = exp(−θ)θ. The M.L.E. of θ is the number of arrivals divided by the observation
time, namely Xn. So, the M.L.E. of p is exp(−Xn)Xn. In Example 7.9.2, T/n = Xn. If n is large,
then T should also be large so that (1− 1/n)T ≈ exp(−T/n) according to Theorem 5.3.3.

7.10 Supplementary Exercises

Solutions to Exercises

1. (a) The prior distribution of θ is the beta distribution with parameters 1 and 1, so the posterior
distribution of θ is the beta distribution with parameters 1 + 10 = 11 and 1 + 25− 10 = 16.

(b) With squared error loss, the estimate to use is the posterior mean, which is 11/27 in this case.

2. We know that the M.L.E. of θ = Xn. Hence, by the invariance property described in Sec. 7.6, the

M.L.E. of θ2 is X
2
n.

3. The prior distribution of θ is the beta distribution with α = 3 and β = 4, so it follows from Theorem 7.3.1
that the posterior distribution is the beta distribution with α = 3 + 3 = 6 and β = 4 + 7 = 11. The
Bayes estimate is the mean of this posterior distribution, namely 6/17.

4. Since the joint p.d.f. of the observations is equal to 1/θn provided that θ ≤ xi ≤ 2θ for i = 1, . . . , n,
the M.L.E. will be the smallest value of θ that satisfies these restrictions. Since we can rewrite the
restrictions in the form

1

2
max{x1, . . . , xn} ≤ θ ≤ min{x1, . . . , xn}
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it follows that the smallest possible value of θ is

θ̂ =
1

2
max{x1, . . . , xn}.

5. The joint p.d.f. of X1 and X2 is

1

2πσ1σ2
exp

[
− 1

2σ2
1

(x1 − b1μ)
2 − 1

2σ2
2

(x2 − b2μ)
2
]
.

If we let L(μ) denote the logarithm of this expression, and solve the equation dL(μ)/dμ = 0, we find
that

μ̂ =
σ2
2b1x1 + σ2

1b2x2
σ2
2b

2
1 + σ2

1b
2
2

.

6. Since Γ(α+ 1) = αΓ(α), it follows that Γ′(α+ 1) = αΓ′(α) + Γ(α). Hence,

ψ(α+ 1) =
Γ′(α+ 1)

Γ(α+ 1)
=

αΓ′(α)
Γ(α+ 1)

+
Γ(α)

Γ(α+ 1)

=
Γ′(α)
Γ(α)

+
1

α
= ψ(α) +

1

α
.

7. The joint p.d.f. of X1,X2,X3 is

f(x|θ) = 1

θ
exp

(
−1

θ
x1

)
· 1

2θ
exp

(
− 1

2θ
x2

)
· 1

3θ
exp

(
− 1

3θ
x3

)
=

1

6θ3
exp

[
−
(
x1 +

x2
2

+
x3
3

)
1

θ

]
.

(a) By solving the equation ∂ log(f)/∂θ = 0, we find that

θ̂ =
1

3

(
X1 +

1

2
X2 +

1

3
X3

)
.

(b) In terms of ψ, the joint p.d.f. of X1,X2,X3 is

f(x | ψ) = ψ3

6
exp

[
−
(
x1 +

1

2
x2 +

1

3
x3

)
ψ

]
.

Since the prior p.d.f. of ψ is

ξ(ψ) ∝ ψα−1 exp(−βψ),

it follows that the posterior p.d.f. is

ξ(ψ | x) ∝ f(x | ψ)ξ(ψ) ∝ ψα+2 exp

[
−
(
β + x1 +

1

2
x2 +

1

3
x3

)
ψ

]
.

Hence, the posterior distribution of ψ is the gamma distribution with parameters α+ 3 and β + x1 +
x2/2 + x3/3.
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8. The joint p.f. of X2, . . . ,Xn+1 is the product of n factors. If Xi = xi and Xi+1 = xi+1, then the ith
factor will be the transition probability of going from state xi to state xi+1 (i = 1, . . . , n). Hence, each
transition from s1 to s1 will introduce the factor θ, each transition from s1 to s2 will introduce the
factor 1 − θ, and every other transition will introduce either the constant factor 3/4 or the constant
factor 1/4. Hence, if A denotes the number of transitions from s1 to s1 among the n transitions and B
denotes the number from s1 to s2, then the joint p.f. of X2, . . . ,Xn+1 has the form (const.) θA(1− θ)B.
Therefore, this joint p.f., or likelihood function, is maximized when

θ̂ =
A

A+B
.

9. The posterior p.d.f. of θ given X = x satisfies the relation

ξ(θ | x) ∝ f(x | θ)ξ(θ) ∝ exp(−θ), for θ > x.

Hence,

ξ(θ | x) =
{

exp(x− θ) for θ > x,
0 otherwise.

(a) The Bayes estimator is the mean of this posterior distribution, θ̂ = x+ 1.

(b) The Bayes estimator is the median of this posterior distribution, θ̂ = x+ log 2.

10. In this exercise, θ must lie in the interval 1/3 ≤ θ ≤ 2/3. Hence, as in Exercise 3 of Sec. 7.5, the M.L.E.
of θ is

θ̂ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xn if
1

3
≤ Xn ≤ 2

3
,

1

3
if Xn <

1

3
,

2

3
if Xn >

2

3
.

It then follows from Sec. 7.6 that β̂ = 3θ̂ − 1.

11. Under these conditions, X has a binomial distribution with parameters n and θ =
1

2
· 1
2
+

1

2
p =

1

4
+

1

2
p.

Since 0 ≤ p ≤ 1, it follows that 1/4 ≤ θ ≤ 3/4. Hence, as in Exercise 3 of Sec. 7.5, the M.L.E. of θ̂ is

θ̂ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X

n
if

1

4
≤ X

n
≤ 3

4
,

1

4
if

X

n
<

1

4
,

3

4
if

X

n
>

3

4
.

It then follows from Theorem 7.6.1 that the M.L.E. of p is p̂ = 2(θ̂ − 1/4).
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12. The prior distribution of θ is the Pareto distribution with parameters x0 = 1 and α = 1. Therefore,
it follows from Exercise 18 of Sec. 7.3 that the posterior distribution of θ will be a Pareto distribution
with parameters α + n and max{x0, x1, . . . , xn}. In this exercise n = 4 and max{x0, x1, . . . , xn} = 1.
Hence, the posterior Pareto distribution has parameters α = 5 and x0 = 1. The Bayes estimate of θ
will be the mean of this posterior distribution, namely

θ̂ =

∫ ∞

1
θ

5

θ6
dθ =

5

4
.

13. The Bayes estimate of θ will be the median of the posterior Pareto distribution. This will be the value
m such that

1

2
=

∫ ∞

m

5

θ6
dθ =

1

m5
.

Hence, θ̂ = m = 21/5.

14. The joint p.d.f. of X1, . . . ,Xn can be written in the form

fn(x|β, θ) = βn exp

(
nβθ − β

n∑
i=1

xi

)

for min{x1, . . . , xn} ≥ θ, and fn(x|β, θ) = 0 otherwise. Hence, by the factorization criterion,
n∑

i=1

Xi

and min{X1, . . . ,Xn} is a pair of jointly sufficient statistics and so is any other pair of statistics that
is a one-to-one function of this pair.

15. The joint p.d.f. of the observations is αn x0
nα/

(
n∏

i=1

xi

)α+1

for min{x1, . . . , xn} ≥ x0. This p.d.f. is

maximized when x0 is made as large as possible. Thus,

x̂0 = min{X1, . . . ,Xn}.
16. Since α is known in Exercise 15, it follows from the factorization criterion, by a technique similar to

that used in Example 7.7.5 or Exercise 12 of Sec. 7.8, that min{X1, . . . ,Xn} is a sufficient statistic.
Thus, from Theorem 7.8.3, since the M.L.E. x̂0 is a sufficient statistic, it is a minimal sufficient statistic.

17. It follows from Exercise 15 that x̂0 = min{X1, . . . ,Xn} will again be the M.L.E. of x0 , since this value
of x0 maximizes the likelihood function regardless of the value of α. If we substitute x̂0 for x0 and let
L(α) denote the logarithm of the resulting likelihood function, which was given in Exercise 15, then

L(α) = n logα+ n α log x̂0 − (α+ 1)
n∑

i=1

log xi

and

dL(α)

dα
=

n

α
+ n log x̂0 −

n∑
i=1

log xi.

Hence, by setting this expression equal to 0, we find that

α̂ =

(
1

n

n∑
i=1

log xi − log x̂0

)−1

.
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18. It can be shown that the pair of estimators x̂0 and α̂ found in Exercise 17 form a one-to-one transform
of the pair of jointly sufficient statistics T1 and T2 given in Exercise 3 of Sec. 7.8. Hence, x̂0 and α̂
are themselves jointly sufficient statistics. It now follows from Sec. 7.8 that x̂0 and α̂ must be minimal
jointly sufficient statistics.

19. The p.f. of X is

f(x|n, p) =
(
n

x

)
px(1− p)n−x.

The M.L.E. of n will be the value that maximizes this expression for given values of x and p. The ratio
given in the hint to this exercise reduces to

R =
n+ 1

n+ 1− x
(1− p).

Since R is a decreasing function of n, it follows that f(x|n, p) will be maximized at the smallest value
of n for which R < 1. After some algebra, it is found that R < 1 if and only if n > x/p − 1. Hence, n
will be the smallest integer greater than x/p − 1. If x/p − 1 is itself an integer, then x/p − 1 and x/p
are both M.L.E.’s.

20. The joint p.d.f. of X1 and X2 is 1/(4θ
2) provided that each of the observations lies in either the interval

(0, θ) or the interval (2θ, 3θ). Thus, the M.L.E. of θ will be the smallest value of θ for which these
restrictions are satisfied.

(a) If we take 3θ̂ = 9, or θ̂ = 3, then θ̂ will be as small as possible, and the restrictions will be satisfied
because both observed values will lie in the interval (2θ̂, 3θ̂).

(b) It is not possible that both X1 and X2 lie in the interval (2θ, 3θ), because for that to be true it is
necessary that X2/X1 ≤ 3/2. Here, however, X2/X1 = 9/4. Therefore, if we take θ̂ = 4, then θ̂
will be as small as possible and the restrictions will be satisfied because X1 will lie in the interval
(0, θ̂) and X2 will lie in (2θ̂, 3θ̂).

(c) It is not possible that both X1 and X2 lie in the interval (2θ, 3θ) for the reason given in part (b).
It is also not possible that X1 lies in (0, θ) and X2 lies in (2θ, 3θ), because for that to be true it is
necessary that X2/X1 ≥ 2. Here, however, X2/X1 = 9/5. Hence, it must be true that both X1

and X2 lie in the interval (0, θ). Under this condition, the smallest possible value of θ is θ̂ = 9.

21. The Bayes estimator of θ is the mean of the posterior distribution of θ, and the expected loss or M.S.E.
of this estimator is the variance of the posterior distribution. This variance, as given by Eq. (7.3.2), is

ν21 =
(100)(25)

100 + 25n
=

100

n+ 4
.

Hence, n must be chosen to minimize

100

n+ 4
+

1

4
n.

By setting the first derivative equal to 0, it is found that the minimum occurs when n = 16.

22. It was shown in Example 7.7.2 that T =
n∑

i=1

Xi is a sufficient statistic in this problem. Since the sample

variance is not a function of T alone, it follows from Theorem 7.9.1 that it is inadmissible.
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Chapter 8

Sampling Distributions of Estimators

8.1 The Sampling Distribution of a Statistic

Solutions to Exercises

1. The c.d.f. of U = max{X1, . . . ,Xn} is

F (u) =

⎧⎪⎨⎪⎩
0 for u ≤ 0,
(u/θ)n for 0 < u < θ,
1 for u ≥ θ.

Since U ≤ θ with probability 1, the event that |U − θ| ≤ 0.1θ is the same as the event that U ≥ 0.9θ.
The probability of this is 1−F (0.9θ) = 1−0.9n. In order for this to be at least 0.95, we need 0.9n ≤ 0.05
or n ≥ log(0.05)/ log(0.9) = 28.43. So n ≥ 29 is needed.

2. It is known that Xn has the normal distribution with mean θ and variance 4/n. Therefore,

Eθ(|Xn − θ|2) = Varθ(Xn) = 4/n,

and 4/n ≤ 0.1 if and only if n ≥ 40.

3. Once again, Xn has the normal distribution with mean θ and variance 4/n. Hence, the random variable
Z = (Xn − θ)/(2/

√
n) will has the standard normal distribution. Therefore,

Eθ(|Xn − θ|) =
2√
n
Eθ(|Z|) = 2√

n

∫ ∞

−∞
|z| 1√

2π
exp(−z2/2)dz = 2

√
2

nπ

∫ ∞

0
z exp(−z2/2)dz

= 2

√
2

nπ
.

But 2
√
2/(nπ) ≤ 0.1 if and only if n ≥ 800/π = 254.6. Hence, n must be least 255.

4. If Z is defined as in the solution of Exercise 3, then

Pr(|Xn − θ| ≤ 0.1) = Pr(|Z| ≤ 0.05
√
n) = 2Φ(0.05

√
n)− 1.

Therefore, this value will be at least 0.95 if and only if Φ(0.05
√
n) ≥ 0.975. It is found from a table of

values of Φ that we must have 0.05
√
n ≥ 1.96. Therefore, we must have n ≥ 1536.64 or, since n must

be an integer, n ≥ 1537.
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5. When p = 0.2, the random variable Zn = nXn will have a binomial distribution with parameters n and
p = 0.2, and

Pr(|Xn − p| ≤ 0.1) = Pr(0.1n ≤ Zn ≤ 0.3n).

The value of n for which this probability will be at least 0.75 must be determined by trial and error
from the table of the binomial distribution in the back of the book. For n = 8, the probability becomes

Pr(0.8 ≤ Z8 ≤ 2.4) = Pr(Z8 = 1) + Pr(Z8 = 2) = 0.3355 + 0.2936 = 0.6291.

For n = 9, we have

Pr(0.9 ≤ Z9 ≤ 2.7) = Pr(Z9 = 1) + Pr(Z9 = 2) = 0.3020 + 0.3020 = 0.6040.

For n = 10, we have

Pr(1 ≤ Z10 ≤ 3) = Pr(Z10 = 1) + Pr(Z10 = 2) + Pr(Z10 = 3) = 0.2684 + 0.3020 + 0.2013 = 0.7717.

Hence, n = 10 is sufficient.

It should be noted that although a sample size of n = 10 will meet the required conditions, a sample
size of n = 11 will not meet the required conditions. For n = 11, we would have

Pr(1.1 ≤ Z11 ≤ 3.3) = Pr(Z11 = 2) + Pr(Z11 = 3).

Thus, only two terms of the binomial distribution for n = 11 are included, whereas three terms of
binomial distribution for n = 10 were included.

6. It is known that when p = 0.2, E(Xn) = p = 0.2 and Var(Xn) = (0.2)(0.8)/n = 0.16/n. Therefore,
Z = (Xn−0.2)/(0.4/

√
n) will have approximately a standard normal distribution. It now follows that

Pr(|Xn − p| ≤ 0.1) = Pr(|Z| ≤ 0.25
√
n) ≈ 2Φ(0.25

√
n)− 1.

Therefore, this value will be at least 0.95 if and only if Φ(0.25
√
n) ≥ 0.975 or, equivalently, if and only

if 0.25
√
n ≥ 1.96. This final relation is satisfied if and only if n ≥ 61.5. Therefore, the sample size must

be n ≥ 62.

7. It follows from the results given in the solution to Exercise 6 that, when p = 0.2,

Ep(|Xn − p|2) = Var(Xn) =
0.16

n
,

and 0.16/n ≤ 0.01 if and only if n ≥ 16.

8. For an arbitrary value of p,

Ep(|Xn − p|2) = Var(Xn) =
p(1− p)

n
.

This variance will be a maximum when p = 1/2, at which point its value is 1/(4n). Therefore, this
variance will be not greater than 0.01 for all values of p(0 ≤ p ≤ 1) if and only if 1/(4n) ≤ 0.01 or,
equivalently, if and only if n ≥ 25.

9. The M.L.E. is θ̂ = n/T , where T was shown to have the gamma distribution with parameters n and
θ. Let G(·) denote the c.d.f. of the sampling distribution of T . Let H(·) be the c.d.f. of the sampling
distribution of θ̂. Then H(t) = 0 for t ≤ 0, and for t > 0,

H(t) = Pr(θ̂ ≤ t) = Pr

(
n

T
≤ t

)
= Pr

(
T ≥ n

t

)
= 1−G

(
n

t

)
.
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8.2 The Chi-Square Distributions

Commentary

If one is using the software R, then the functions dchisq, pchisq, and qchisq give the p.d.f., the c.d.f.,
and the quantile function of χ2 distributions. The syntax is that the first argument is the argument of the
function, and the second is the degrees of freedom. The function rchisq gives a random sample of χ2 random
variables. The first argument is how many you want, and the second is the degrees of freedom. All of the
solutions that require the calculation of χ2 probabilites or quantiles can be done using these functions instead
of tables.

Solutions to Exercises

1. The distribution of 20T/0.09 is the χ2 distribution with 20 degrees of freedom. We can write Pr(T ≤
c) = Pr(20T/0.09 ≤ 20c/0.09). In order for this probability to be 0.9, we need 20c/0.09 to equal the 0.9
quantile of the χ2 distribution with 20 degrees of freedom. That quantile is 28.41. Set 28.41 = 20c/0.09
and solve for c = 0.1278.

2. The mode will be the value of x at which the p.d.f. f(x) is a maximum or, equivalently, the value of x
at which log f(x) is a maximum. We have

log f(x) = (const.) +

(
m

2
− 1

)
log x− x

2
.

If m = 1, this function is strictly decreasing and increases without bound as x → 0. If m = 2, this
function is strictly decreasing and attains its maximum value when x = 0. If m ≥ 3, the value of x at
which the maximum is attained can be found by setting the derivative with respect to x equal to 0. In
this way it is found that x = m− 2.

3. The median of each distribution is found from the table of the χ2 distribution given at the end of the
book.
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m
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m
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(a) m = 1

Figure S.8.1: First figure for Exercise 3 of Sec. 8.2.
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(d) m = 4
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(c) m = 3

Figure S.8.2: Second figure for Exercise 3 of Sec. 8.2.
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4. Let r denote the radius of the circle. The point (X,Y ) will lie inside the circle if and only if
X2 + Y 2 < r2. Also, X2 + Y 2 has a χ2 distribution with two degrees of freedom. It is found from the
table at the end of the book that Pr(X2 + Y 2 ≤ 9.210) = 0.99. Therefore, we must have r2 ≥ 9.210.

5. We must determine Pr(X2 + Y 2 + Z2 ≤ 1). Since X2 + Y 2 + Z2 has the χ2 distribution with three
degrees of freedom, it is found from the table at the end of the book that the required probability is
slightly less than 0.20.

6. We must determine the probability that, at time 2, X2 + Y 2 + Z2 ≤ 16σ2. At time 2, each of the
independent variables X, Y, and Z will have a normal distribution with mean 0 and variance 2σ2.
Therefore, each of the variables X/

√
2σ, Y/

√
2σ, and Z/

√
2σ will have a standard normal distribution.

Hence, V = (X2 + Y 2 + Z2)/(2σ2) will have a χ2 distribution with three degrees of freedom. It now
follows that

Pr(X2 + Y 2 + Z2 ≤ 16σ2) = Pr(V < 8).

It can now be found from the table at the end of the book that this probability is slightly greater than
0.95.

7. By the probability integral transformation, we know that Ti = Fi(Xi) has a uniform distribution on
the interval [0, 1]. Now let Zi = − log Ti. We shall determine the p.d.f. g of Zi. The p.d.f. of Ti is

f(t) =

{
1 for 0 < t < 1,
0 otherwise.

Since Ti = exp(−Zi), we have dt/dz = − exp(−z). Therefore, for z > 0,

g(z) = f(exp(−z))

∣∣∣∣ dtdz
∣∣∣∣ = exp(−z).

Thus, it is now seen that Zi has the exponential distribution with parameter β = 1 or, in other words,
the gamma distribution with parameters α = 1 and β = 1. Therefore, by Exercise 1 of Sec. 5.7, 2Zi has

the gamma distribution with parameters α = 1 and β = 1/2. Finally, by Theorem 5.7.7
n∑

i=1

2Zi will

have the gamma distribution with parameters α = n and β = 1/2 or, equivalently, the χ2 distribution
with 2n degrees of freedom.

8. It was shown in Sec. 3.9 that the p.d.f. of W is as follows, for 0 < w < 1:

h1(w) = n(n− 1)wn−2(1− w).

Let X = 2n(1−W ). Then W = 1−X/(2n) and dw/dx = −1/(2n). Therefore, the p.d.f. gn(x) is as
follows, for 0 < x < 2n:

gn(x) = h1

(
1− x

2n

) ∣∣∣∣dwdx
∣∣∣∣ = n(n− 1)

(
1− x

2n

)n−2( x

2n

)(
1

2n

)
=

(
1

4

)(
n− 1

n

)
x

(
1− x

2n

)−2(
1− x

2n

)n

.
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Now, as n → ∞,

n− 1

n
→ 1 and

(
1− x

2n

)−2

→ 1.

Also, for any real number t, (1 + t/n)n → exp(t). Therefore, (1− x/(2n))n → exp(−x/2). Hence, for
x > 0,

gn(x) → 1

4
x exp(−x/2).

This limit is the p.d.f. of the χ2 distribution with four degrees of freedom.

9. It is known that Xn has the normal distribution with mean μ and variance σ2/n. Therefore, (Xn −
μ)/(σ/

√
n) has a standard normal distribution and the square of this variable has the χ2 distribution

with one degree of freedom.

10. Each of the variables X1 +X2 +X3 and X4 +X5 +X6 will have the normal distribution with mean
0 and variance 3. Therefore, if each of them is divided by

√
3, each will have a standard normal

distribution. Therefore, the square of each will have the χ2 distribution with one degree of freedom
and the sum of these two squares will have the χ2 distribution with two degrees of freedom. In other
words, Y/3 will have the χ2 distribution with two degrees of freedom.

11. The simplest way to determine the mean is to calculate E(X1/2) directly, where X has the χ2 distri-
bution with n degrees of freedom. Thus,

E(X1/2) =

∫ ∞

0
x1/2

1

2n/2Γ(n/2)
x(n/2)−1 exp(−x/2)dx =

1

2n/2Γ(n/2)

∫ ∞

0
x(n−1)/2 exp(−x/2)dx

=
1

2n/2Γ(n/2)
· 2(n+1)/2Γ[(n + 1)/2] =

√
2Γ[(n+ 1)/2]

Γ(n/2)
.

12. For general σ2,

Pr(Y ≤ 0.09) = Pr

(
W ≤ 10× 0.09

σ2

)
, (S.8.1)

where W = 10Y/σ2 has the χ2 distribution with 10 degrees of freedom. The probability in (S.8.1) is
at least 0.9 if and only if 0.9/σ2 is at least the 0.9 quantile of the χ2 distribution with 10 degrees of
freedom. This quantile is 15.99, so 0.9/σ2 ≥ 15.99 is equivalent to σ2 ≤ 0.0563.

13. We already found that the distribution of W = nσ̂2/σ2 is the χ2 distribution with n degrees of freedom,
which is also the gamma distribution with parameters n/2 and 1/2. If we multiply a gamma random
variable by a constant, we change its distribution to another gamma distribution with the same first
parameter and the second parameter gets divided by the constant. (See Exercise 1 in Sec. 6.3.) Since

σ̂2 = (σ2/n)W , we see that the distribution of σ̂2 is the gamma distribution with parameters n/2 and
n/(2σ2).
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8.3 Joint Distribution of the Sample Mean and Sample Variance

Commentary

This section contains some relatively mathematical results that rely on some matrix theory. We prove
the statistical independence of the sample average and sample variance. We also derive the distribution
of the sample variance. If your course does not focus on the mathematical details, then you can safely
cite Theorem 8.3.1 and look at the examples without going through the orthogonal matrix results. The
mathematical derivations rely on a calculation involving Jacobians (Sec. 3.9) which the instructor might have
skipped earlier in the course.

Solutions to Exercises

1. We found that U = nσ̂2/σ2 has the χ2 distribution with n − 1 degrees of freedom, which is also the
gamma distribution with parameters (n − 1)/2 and 1/2. If we multiply a gamma random variable by
a number c, we change the second parameter by dividing it by c. So, with c = σ2/n, we find that

cU = σ̂2 has the gamma distribution with parameters (n− 1)/2 and n/(2σ2).

2. It can be verified that the matrices in (a), (b), and (e) are orthogonal because in each case the sum of
the squares of the elements in each row is 1 and the sum of the products of the corresponding terms
in any two different rows is 0. The matrix in (c) is not orthogonal because the sum of squares for the
bottom row is not 1. The matrix in (d) is not orthogonal because the sum of the products for rows 1
and 2 (or any other two rows) is not 0.

3. (a) Consider the matrix

A =

[
1/
√
2 1/

√
2

a1 a2

]
.

For A to be orthogonal, we must have a21 + a22 = 1 and
1√
2
a1 +

1√
2
a2 = 0. It follows from the

second equation that a1 = −a2 and, in turn, from the first equation that a21 = 1/2. Hence, either
the pair of values a1 = 1/

√
2 and a2 = −1/

√
2 or the pair a1 = −1/

√
2 and a2 = 1/

√
2 will make

A orthogonal.

(b) Consider the matrix

A =

⎡⎢⎣1/
√
3 1/

√
3 1/

√
3

a1 a2 a3
b1 b2 b3

⎤⎥⎦
For A to be orthogonal, we must have

a21 + a22 + a23 = 1

and

1√
3
a1 +

1√
3
a2 +

1√
3
a3 = 0.

Therefore, a3 = −a1 − a2 and it follows from the first equation that

a21 + a22 + (a1 + a2)
2 = 2a21 + 2a22 + 2a1a2 = 1.

Any values of a1 and a2 satisfying this equation can be chosen. We shall use a1 = 2/
√
6 and

a2 = −1/
√
6. Then a3 = −1/

√
6.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



246 Chapter 8. Sampling Distributions of Estimators

Finally, we must have b21 + b22 + b23 = 1 as well as

1√
3
b1 +

1√
3
b2 +

1√
3
b3 = 0

and

2√
6
b1 − 1√

6
b2 − 1√

6
b3 = 0.

This final pair of equations can be rewritten as

b2 + b3 = −b1 and b2 + b3 = 2b1.

Therefore, b1 = 0 and b2 = −b3. Since we must have b22 + b23 = 1, it follows that we can use either
b2 = 1/

√
2 and b3 = −1/

√
2 or b2 = −1/

√
2 and b3 = 1/

√
2. Thus, one orthogonal matrix is

A =

⎡⎢⎣1/
√
3 1/

√
3 1/

√
3

2/
√
6 −1/

√
6 −1/

√
6

0 1/
√
2 −1/

√
2

⎤⎥⎦
4. The 3× 3 matrix of coefficients of this transformation is

A =

⎡⎢⎣0.8 0.6 0

(0.3)
√
2 −(0.4)

√
2 −(0.5)

√
2

(0.3)
√
2 −(0.4)

√
2 (0.5)

√
2

⎤⎥⎦ .
Since the matrix A is orthogonal, it follows from Theorem 8.3.4 that Y1, Y2, and Y3 are independent
and each has a standard normal distribution.

5. Let Zi = (Xi − μ)/σ for i = 1, 2. Then Z1 and Z2 are independent and each has a standard normal
distribution. Next, let Y1 = (Z1+Z2)/

√
2 and Y2 = (Z1−Z2)/

√
2. Then the 2×2 matrix of coefficients

of this transformation is

A =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
.

Since the matrix A is orthogonal, it follows from Theorem 8.3.4 that Y1 and Y2 are also independent
and each has a standard normal distribution. Finally, let W1 = X1 +X2 and W2 = X1 −X2. Then
W1 =

√
2σY1 + 2μ and W2=

√
2σY2. Since Y1 and Y2 are independent, it now follows from Exercise 15

of Sec. 3.9 that W1 and W2 are also independent.

6. (a) Since (Xi − μ)/σ has a standard normal distribution for i = 1, . . . , n, then W =
n∑

i=1

(Xi − μ)2

σ2

has the χ2 distribution with n degrees of freedom. The required probability can be rewritten as
follows:

Pr

(
n

2
≤ W ≤ 2n

)
.

Thus, when n=16, we must evaluate Pr(8≤W ≤ 32)= Pr(W ≤ 32)− Pr(W ≤ 8), Where W has
the χ2 distribution with 16 degrees of freedom. It is found from the table at the end of the book
that Pr(W ≤ 32) = 0.99 and Pr(W ≤ 8) = 0.05.
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(b) By Theorem 8.3.1, V =

∑n
i=1(Xi −Xn)

2

σ2
has the χ2 distribution with n− 1 degrees of freedom.

The required probability can be rewritten as follows:

Pr

(
n

2
≤ V ≤ 2n

)
.

Thus, when n=16, we must evaluate Pr(8≤ V ≤ 32) = Pr(V ≤ 32) − Pr(V ≤ 8), Where V has the
χ2 distribution with 15 degrees of freedom. It is found from the table that Pr(V ≤ 32) = 0.993
and Pr(V ≤ 8) = 0.079.

7. (a) The random variable V = nσ̂2/σ2 has a χ2 distribution with n− 1 degrees of freedom. The
required probability can be written in the form Pr(V ≤ 1.5n) ≥ 0.95. By trial and error, it is
found that for n = 20, V has 19 degrees of freedom and Pr(V ≤ 30) < 0.95. However, for n = 21,
V has 20 degrees of freedom and Pr(V ≤ 31.5) > 0.95.

(b) The required probability can be written in the form

Pr

(
n

2
≤ V ≤ 3n

2

)
= Pr

(
V ≤ 3n

2

)
− Pr

(
V ≤ n

2

)
,

where V again has the χ2 distribution with n − 1 degrees of freedom. By trial and error, it is
found that for n = 12, V has 11 degrees of freedom and

Pr(V ≤ 18)− Pr(V ≤ 6) = 0.915 − 0.130 < 0.8.

However, for n = 13, V has 12 degrees of freedom and

Pr(V ≤ 19.5) − Pr(V ≤ 6.5) = 0.919 − 0.113 > 0.8.

8. If X has the χ2 distribution with 200 degrees of freedom, then it follows from Theorem 8.2.2 that X
can be represented as the sum of 200 independent and identically distributed random variables, each
of which has a χ2 distribution with one degree of freedom. Since E(X) = 200 and Var(X) = 400,
it follows from the central limit theorem that Z = (X − 200)/20 will have approximately a standard
normal distribution. Therefore,

Pr(160 < X < 240) = Pr(−2 < Z < 2) ≈ 2Φ(2)− 1 = 0.9546.

9. The sample mean and the sample variance are independent. Therefore, the information that the sample
variance is closer to σ2 in one sample than it is in the other sample provides no information about which
of the two sample means will be closer to μ. In other words, in either sample, the conditional distribution
of Xn, given the observed value of the sample variance, is still the normal distribution with mean μ
and variance σ2/n.

8.4 The t Distributions

Commentary

In this section, we derive the p.d.f. of the t distribution. That portion of the section (entitled “Derivation
of the p.d.f.”) can be skipped by instructors who do not wish to focus on mathematical details. Indeed,
the derivation involves the use of Jacobians (Sec. 3.9) that the instructor might have skipped earlier in the
course.

If one is using the software R, then the functions dt, pt, and qt give the p.d.f., the c.d.f., and the quantile
function of t distributions. The syntax is that the first argument is the argument of the function, and the
second is the degrees of freedom. The function rt gives a random sample of t random variables. The first
argument is how many you want, and the second is the degrees of freedom. All of the solutions that require
the calculation of t probabilites or quantiles can be done using these functions instead of tables.
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Solutions to Exercises

1. E(X2) = c

∫ ∞

−∞
x2
(
1 +

x2

n

)−(n+1)/2

dx = 2c

∫ ∞

0
x2
(
1 +

x2

n

)−(n+1)/2

dx,

where c =
Γ[(n+ 1)/2]

(nπ)1/2Γ(n/2)
. If y is defined as in the hint for this exercise, then x =

(
ny

1− y

)1/2

and

dx

dy
=

√
n

2
y−1/2(1− y)−3/2. Therefore,

E(X2) =
√
n(const.)

∫ 1

0

ny

1− y

(
1 +

y

1− y

)−(n+1)/2

y−1/2(1− y)−3/2dy

= n3/2(const.)

∫ 1

0
y1/2(1− y)(n−4)/2dy

= n3/2(const.)
Γ(3/2)Γ[(n − 2)/2]

Γ[(n+ 1)/2]
= nπ−1/2Γ

(
3

2

)
· Γ[(n− 2)/2]

Γ(n/2)

= nπ−1/2
(
1

2

√
π

)
1

[(n − 2)/2]
=

n

n− 2
.

Since E(X) = 0, it now follows that Var(X) = n/(n− 2).

2. Since μ̂ = Xn and σ̂2 = S2
n/n, it follows from the definition of U in Eq. (8.4.4) that

Pr(μ̂ > μ+ kσ̂) = Pr

(
Xn − μ

σ̂
> k

)
= Pr[U > k(n− 1)1/2].

Since U has the t distribution with n− 1 degrees of freedom and n = 17, we must choose k such that
Pr(U > 4k) = 0.95. It is found from a table of the t distribution with 16 degrees of freedom that
Pr(U < 1.746) = 0.95. Hence, by symmetry, Pr(U > −1.746) = 0.95. It now follows that 4k = −1.746
and k = −0.4365.

3. X1 +X2 has the normal distribution with mean 0 and variance 2. Therefore, Y = (X1 +X2)/
√
2 has

a standard normal distribution. Also, Z = X2
3 +X2

4 +X2
5 has the χ2 distribution with 3 degrees of

freedom, and Y and Z are independent. Therefore, U =
Y

(Z/3)1/2
has the t distribution with 3 degrees

of freedom. Thus, if we choose c =
√
3/2, the given random variable-will be equal to U .

4. Let y = x/2. Then∫ 2.5

−∞
dx

(12 + x2)2
=

1

144

∫ 2.5

−∞

(
1 +

x2

12

)−2

dx

=
1

72

∫ 1.25

−∞

(
1 +

y2

3

)−2

dy

=

√
3πΓ(3/2)

Γ(2)

(
1

72

)∫ 1.25

−∞
g3(y)dy,

where g3(y) is the p.d.f. of the t distribution with 3 degrees of freedom. It is found from the table of
this distribution that the value of the integral is 0.85. Hence, the desired value is

√
3πΓ

(
3

2

)
Γ(2)

(
1

72

)
(0.85) =

√
3π

(
1

2

√
π

)
(0.85)

72
=

√
3(0.85)π

144
.
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5. Let X2 = (X1 +X2)/2 and S2
2 =

2∑
i=1

(Xi −X2)
2. Then

W =
(X1 +X2)

2

(X1 −X2)2
=

2X
2
2

S2
2

.

It follows from Eq. (8.4.4) that U =
√
2X2/

√
S2
2 has the t distribution with one degree of freedom.

Since W = U2, we have

Pr(W < 4) = Pr(−2 < U < 2) = 2Pr(U < 2)− 1.

It can be found from a table of the t distribution with one degree of freedom that Pr(U < 2) is just
slightly greater than 0.85. Hence, Pr(W < 4) = 0.70.

6. The distribution of U = (20)1/2(X20 − μ)/σ′ is a t distribution with 19 degrees of freedom. Let v be
the 0.95 quantile of this t distribution, namely 1.729. Then

0.95 = Pr(U ≤ 1.729) = Pr(X20 ≤ μ+ 1.729/(20)1/2σ′).

It follows that we want c = 1.729/(20)1/2 = 0.3866.

7. According to Theorem 5.7.4,

lim
m→∞

(2π)1/2(m+ 1/2)m exp(−m− 1/2)

Γ(m+ 1/2)
= 1,

lim
m→∞

(2π)1/2(m)m−1/2 exp(−m)

Γ(m)
= 1.

Taking the ratio of the above and dividing by m1/2, we get

lim
m→∞

Γ(m+ 1/2)

Γ(m)m1/2
= lim

m→∞
(2π)1/2(m+ 1/2)m exp(−m− 1/2)

(2π)1/2(m)m−1/2 exp(−m)m1/2

= lim
m→∞

(
m+ 1/2

m

)m

exp(−1/2)

= 1,

where the last equality follows from Theorem 5.3.3 applied to (1 + 1/(2m))m.

8. Let f be the p.d.f. of X and let g be the p.d.f. of Y . Define

h(c) = Pr(−c < X < c)− Pr(−c < Y < c) =

∫ c

−c
[f(x)− g(x)]dx. (S.8.2)

Suppose that c0 can be chosen so that f(x) > g(x) for all −c0 < x < c0 and f(x) < g(x) for all |x| > c0.
It should now be clear that h(c0) = maxc h(c). To prove this, first let c > c0. Then

h(c) = h(c0) +

∫ −c0

−c
[f(x)− g(x)]dx +

∫ c

c0
[f(x)− g(x)]dx.
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Since f(x)− g(x) < 0 for all x in these last two integrals, h(c) < h(c0). Similarly, if 0 < c < c0,

h(c) = h(c0)−
∫ c

−c0
[f(x)− g(x)]dx −

∫ c0

c
[f(x)− g(x)]dx.

Since f(x)−g(x) > 0 for all x in these last two integrals, h(c) < h(c0). Finally, notice that the standard
normal p.d.f. is greater than the t p.d.f. with five degrees of freedom for all −c < x < c if c = 1.63 and
the normal p.d.f. is smaller that the t p.d.f. if |x| > 1.63.

8.5 Confidence Intervals

Commentary

This section ends with an extended discussion of shortcomings of confidence intervals. The first paragraph
on interpretation is fairly straightforward. Students at this level should be able to understand what the
confidence statement is and is not saying. The long Example 8.5.11 illustrates how additional information that
is available can be ignored in the confidence statement. Instructors should gauge the mathematical abilities
of their students before discussing this example in detail. Although there is nothing more complicated than
what has appeared earlier in the text, it does make use of multivariable calculus and some subtle reasoning.

Many instructors will recognize the statistic Z in Example 8.5.11 as an ancillary. In many examples, con-
ditioning on an ancillary is one way of making confidence levels (and significance levels) more representative
of the amount of information available. The concept of ancillarity is beyond the scope of this text, and it
is not pursued in the example. The example merely raises the issue that available information like Z is not
necessarily taken into account in reporting a confidence coefficient. This makes the connection between the
statistical meaning of confidence and the colloquial meaning more tenuous.

If one is using the software R, remember that qnorm and qt compute quantiles of normal and t distribu-
tions. These quantilies are ubiquitous in the construction of confidence intervals.

Solutions to Exercises

1. We need to show that

Pr

[
Xn − Φ−1

(
1 + γ

2

)
σ

n1/2
< μ < Xn +Φ−1

(
1 + γ

2

)
σ

n1/2

]
= γ. (S.8.3)

By subtracting Xn from all three sides of the above inequalities and then dividing all three sides by
σ/n1/2 > 0, we can rewrite the probability in (S.8.3) as

Pr

[
−Φ−1

(
1 + γ

2

)
<

μ−Xn

σ/n1/2
< Φ−1

(
1 + γ

2

)]
.

The random variable (μ − Xn)/(σ/n
1/2) has a standard normal distribution no matter what μ and

σ2 are. And the probability that a standard normal random variable is between −Φ−1([1 + γ]/2) and
Φ−1([1 + γ]/2) is (1 + γ)/2− [1− (1 + γ)/2] = γ.

2. In this exercise, Xn = 3.0625, σ′ =

[
n∑

i=1

(Xi −Xn)
2/(n− 1)

]1/2
= 0.5125 and σ′/n1/2 = 0.1812. There-

fore, the shortest confidence interval for μ will have the form 3.0625 − 0.1812c < μ < 3.0625 + 0.1812c.
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If a confidence coefficient γ is to be used, then c must satisfy the relation Pr(−c < U < c) = γ, where
U has the t distribution with n− 1 = 7 degrees of freedom. By symmetry,

Pr(−c < U < c) = Pr(U < c)− Pr(U < −c) = Pr(U < c)− [1− Pr(U < c)] = 2Pr(U < c)− 1.

As in the text, we find that c must be the (1 + γ)/2 quantile of the t distribution with 7 degrees of
freedom.

(a) Here γ = 0.90, so (1 + γ)/2 = 0.95. It is found from a table of the t distribution with 7 degrees of
freedom that c = 1.895. Therefore, the confidence interval for μ has endpoints 3.0625 − (0.1812)
(1.895) = 2.719 and 3.0625 + (0.1812) (1.895) = 3.406.

(b) Here γ = 0.95, (1 + γ)/2 = 0.975, and c = 2.365. Therefore, the endpoints of the confidence
interval for μ are 3.0625 − (0.1812)(2.365) = 2.634 and 3.0625 + (0.1813)(2.365) = 3.491.

(c) Here γ = 0.99, (1 + γ)/2 = 0.995, and c = 3.499. Therefore, the endpoints of the interval are 2.428
and 3.697.

One obvious feature of this exercise, that should be emphasized, is that the larger the confidence
coefficient γ, the wider the confidence interval must be.

3. The endpoints of the confidence interval are Xn−cσ′/n1/2 and Xn+cσ′/n1/2. Therefore, L = 2σ′/n1/2

and L2 = 4c2σ′2/n. Since

W =

n∑
i=1

(Xi −Xn)
2

σ2

has the χ2 distribution with n− 1 degrees of freedom, E(W ) = n−1. Therefore, E(σ′2) = E(σ2W/[n−
1]) = σ2. It follows that E(L2) = 4c2σ2/n. As in the text, c must be the (1 + γ)/2 quantile of the t
distribution with n− 1 degrees of freedom.

(a) Here, (1 + γ)/2 = 0.975. Therefore, from a table of the t distribution with n− 1 = 4 degrees of
freedom it is found that c = 2.776. Hence, c2 = 7.706 and E(L2) = 4(7.706)σ2/5 = 6.16σ2.

(b) For the t distribution with 9 degrees of freedom, c = 2.262. Hence, E(L2) = 2.05σ2.

(c) Here, c = 2.045 and E(L2) = 0.56σ2.

It should be noted from parts (a), (b), and (c) that for a fixed value of γ, E(L2) decreases as the
sample size n increases.

(d) Here, γ = 0.90, so (1 + γ)/2 = 0.95. It is found that c = 1.895. Hence, E(L2) = 4(1.895)2σ2/8 =
1.80σ2.

(e) Here, γ = 0.95, so (1 + γ)/2 = 0.975 and c = 2.365. Hence, E(L2) = 2.80σ2.

(f) Here, γ = 0.99, so (1 + γ)/2 = 0.995 and c = 3.499. Hence, E(L2) = 6.12σ2.

It should be noted from parts (d), (e), and (f) that for a fixed sample size n, E(L2) increases as γ
increases.

4. Since
√
n(Xn − μ)/σ has a standard normal distribution, Pr

[
−1.96 <

√
n(Xn − μ)

σ
< 1.96

]
= 0.95.

This relation can be rewritten in the form

Pr

(
Xn − 1.96σ√

n
< μ < Xn +

1.96σ√
n

)
= 0.95.
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Therefore, the interval with endpoints Xn−1.96σ/
√
n and Xn+1.96σ/

√
n will be a confidence interval

for μ with confidence coefficient 0.95. The length of this interval will be 3.92σ/
√
n. It now follows that

3.92σ/
√
n < 0.01σ if and only if

√
n > 392. This means that n > 153664 of n = 153665 or more.

5. Since
n∑

i=1

(Xi − Xn)
2/σ2 has a χ2 distribution with n − 1 degrees of freedom, it is possible to find

constants c1 and c2 which satisfy the relation given in the hint for this exercise. (As explained in this
section, there are an infinite number of different pairs of values of c1 and c2 that might be used.) The
relation given in the hint can be rewritten in the form

Pr

[
1

c2

n∑
i=1

(Xi −Xn)
2 < σ2 <

1

c1

n∑
i=1

(Xi −Xn)
2

]
= γ.

Therefore, the interval with endpoints equal to the observed values of
n∑

i=1

(Xi −Xn)
2/c2 and

n∑
i=1

(Xi −

Xn)
2/c1 will be a confidence interval for σ2 with confidence coefficient γ.

6. The exponential distribution with mean μ is the same as the gamma distribution with α = 1 and

β = 1/μ. Therefore, by Theorem 5.7.7,
n∑

i=1

Xi will have the gamma distribution with parameters

α = n and β = 1/μ . In turn, it follows from Exercise 1 of Sec. 5.7 that
n∑

i=1

Xi/μ has the gamma

distribution with parameters α = n and β = 1. It follows from Definition 8.2.1 that 2
n∑

i=1

Xi/μ has

the χ2 distribution with 2n degrees of freedom. Constants c1 and c2 which satisfy the relation given
in the hint for this exercise will then each be 1/2 times some quantile of the χ2 distribution with 2n
degrees of freedom. There are an infinite number of pairs of values of such quantiles, one corresponding
to each pair of numbers q1 ≥ 0 and q2 ≥ 0 such that q2 − q1 = γ. For example, with q1 = (1 − γ)/2
and q2 = (1 + γ)/2 we can let ci be 1/2 times the qi quantile of the χ2 distribution with 2n degrees of
freedom for i = 1, 2. It now follows that

Pr

(
1

c2

n∑
i=1

Xi < μ <
1

c1

n∑
i=1

Xi

)
= γ.

Therefore, the interval with endpoints equal to the observed values of
n∑

i=1

Xi/c2 and
n∑

i=1

Xi/c1 will be

a confidence interval for μ with confidence coefficient γ.

7. The average of the n = 20 values is xn = 156.85, and σ′ = 22.64. The appropriate t distribution quantile
is T−1

19 (0.95) = 1.729. The endpoints of the confidence interval are then 156.85 ± 22.64 × 1.729/201/2 .
Completing the calculation, we get the interval (148.1, 165.6).

8. According to (8.5.15), Pr(|X2 − θ| < 0.3|Z = 0.9) = 1, because 0.3 > (1 − 0.9)/2. Since Z = 0.9, we
know that the interval between X1 and X2 covers a length of 0.9 in the interval [θ−1/2, θ+1/2]. Hence
X2 has to lie between

θ − 1/2 + (θ − 1/2 + .9)

2
= θ − 0.05 and

θ − 1/2 + 0.1 + θ + 1/2

2
= θ + 0.05.

Hence X2 must be within 0.05 of θ, hence well within 0.3 of θ.
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9. (a) The interval between the smaller an larger values is (4.7, 5.3).

(b) The values of θ consistent with the observed data are those between 5.3−0.5 = 4.8 and 4.7+0.5 =
5.2.

(c) The interval in part (a) contains the set of all possible θ values, hence it is larger than the set of
possible θ values.

(d) The value of Z is 5.3− 4.7 = 0.6.

(e) According to (8.5.15),

Pr(|X2 − θ| < 0.1|Z = 0.6) =
2× 0.1

1− 0.6
= 0.5.

10. (a) The likelihood function is

f(x|θ) =
{

1 if 4.8 < θ < 5.2,
0 otherwise.

(See the solution to Exercise 9(b) to see how the numbers 4.8 and 5.2 arise.) The posterior p.d.f.
of θ is proportional to this likelihood times the prior p.d.f., hence the posterior p.d.f. is{

c exp(−0.1θ) if 4.8 < θ < 5.2,
0 otherwise,

where c is a constant that makes this function into a p.d.f. The constant must satisfy

c

∫ 5.2

4.8
exp(−0.1θ)dθ = 1.

Since the integral above equals 10[exp(−0.48)−exp(−0.52)] = 0.2426, we must have c = 1/0.2426 =
4.122.

(b) The observed value of X2 is x2 = 5. So, the posterior probability that |θ − x2| < 0.1 is∫ 5.1

4.9
4.122 exp(−0.1θ)dθ = 41.22[exp(−0.49) − exp(−0.51)] = 0.5.

(c) Since the interval in part (a) of Exercise 9 contains the entire set of possible θ values, the posterior
probability that θ lies in that interval is 1.

(d) The posterior p.d.f. of θ is almost constant over the interval (4.8, 5.2), hence the c.d.f. will be
almost linear. The function in (8.5.15) is also linear. Indeed, for c ≤ 0.2, the posterior probability
of |θ − 5| < c equals∫ 5+c

5−c
4.122 exp(−0.1θ)dθ = 41.22 exp(−0.5)[exp(0.1c) − exp(−0.1c)]

≈ 25× 2× 0.1c = 5c.

Since z = 0.6 in this example, 5c = 2c/(1 − z), the same as (8.5.15).

11. The variance stabilizing transformation is α(x) = arcsin(x1/2), and the approximate distribution of
α(Xn) is the normal distribution with mean α(p) and variance 1/n. So,

Pr
(
arcsin(X

1/2
n )− Φ−1([1 + γ]/2)n−1/2 < arcsin p1/2 < arcsin(X

1/2
n ) + Φ−1([1 + γ]/2)n−1/2

)
≈ γ.

This would make the interval with endpoints

arcsin(x1/2n )±Φ−1([1 + γ]/2)n−1/2 (S.8.4)
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an approximate coefficient γ confidence interval for arcsin(p1/2). The transformation α(x) has an inverse
α−1(y) = sin2(y) for 0 ≤ y ≤ π/2. If the endpoints in (S.8.4) are between 0 and π/2, then the interval
with endpoints

sin2
(
arcsin(x1/2

n )± Φ−1([1 + γ]/2)n−1/2
)

(S.8.5)

will be an approximate coefficient γ confidence interval for p. If the lower endpoint in (S.8.4) is negative
replace the lower endpoint in (S.8.5) by 0. If the upper endpoint in (S.8.4) is greater than π/2, replace
the upper endpoint in (S.8.5) by 1. With these modifications, the interval with the endpoints in (S.8.5)
becomes an approximate coefficient γ confidence interval for p.

12. For this part of the proof, we define

A = r
(
G−1(γ2),X

)
,

B = r
(
G−1(γ1),X

)
.

If r(v,x) is strictly decreasing in v for each x, we have

V (X, θ) < c if and only if g(θ) > r(c,X). (S.8.6)

Let c = G−1(γi) in Eq. (S.8.6) for each of i = 1, 2 to obtain

Pr(g(θ) > B) = γ1, Pr(g(θ) > A) = γ2. (S.8.7)

Because V has a continuous distribution and r is strictly decreasing,

Pr(A = g(θ)) = Pr(V (X, θ) = G−1(γ2)) = 0,

and similarly Pr(B = g(θ)) = 0. The two equations in (S.8.7) combine to give Pr(A < g(θ) < B) = γ.

8.6 Bayesian Analysis of Samples from a Normal Distribution

Commentary

Obviously, this section should only be covered by those who are treating Bayesian topics. One might find it
useful to discuss the interpretation of the prior hyperparameters in terms of amount of information and prior
estimates. In this sense λ0 and 2α0 represent amounts of prior information about the mean and variance
respectively, while μ0 and β0/α0 are prior estimates of the and variance respectively. The corresponding
posterior estimates are then weighted averages of the prior estimates and data-based estimates with weights
equal to the amounts of information. The posterior estimate of variance, namely β1/α1 is the weighted
average of β0/α0 (with weight 2α0), σ

′2 (with weight n − 1), and nλ0(xn − μ0)
2/(λ0 + n) (with weight 1).

This last term results from the fact that the prior distribution of the mean depends on variance (precision),
hence how far xn is from μ0 tells us something about the variance also.

If one is using the software R, the functions qt and pt respectively compute the quantile function and
c.d.f. of a t distribution. These functions can replace the use of tables for some of the calculations done in
this section and in the exercises.
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Solutions to Exercises

1. Since X has the normal distribution with mean μ and variance 1/τ , we know that Y has the normal
distribution with mean aμ + b and variance a2/τ . Therefore, the precision of Y is τ/a2.

2. This exercise is merely a restatement of Theorem 7.3.3 with θ replaced by μ, σ2 replaced by 1/τ , μ
replaced by μ0, and υ2 replaced by 1/λ0. The precision of the posterior distribution is the reciprocal
of the variance of the posterior distribution given in that theorem.

3. The joint p.d.f. fn(x|τ) of X1, . . . ,Xn is given shortly after Definition 8.6.1 in the text, and the prior
p.d.f. ξ(τ) is proportional to the expression ξ2(τ) in the proof of Theorem 8.6.1. Therefore, the posterior
p.d.f. of τ satisfies the following relation:

ξ(τ | x) ∝ fn(x| τ)ξ(τ) ∝ τn/2 exp

{[
−1

2

n∑
i=1

(xi − μ)2
]
τ

}
τα0−1 exp(−β0τ)

= τα0+(n/2)−1 exp

{
−
[
β0 +

1

2

n∑
i=1

(xi − μ)2
]
τ

}
.

It can now be seen that this posterior p.d.f. is, except for a constant factor, the p.d.f. of the gamma
distribution specified in the exercise.

4. The posterior distribution of τ , after using the usual improper prior, is the gamma distribution with
parameters (n−1)/2 and s2n/2. Now, V is a constant (n−1)σ

′2 times τ , so V has the gamma distribution
with parameters (n − 1)/2 and (s2n/2)/[(n − 1)σ

′2] = 1/2. This last gamma distribution is also known
as the χ2 distribution with n− 1 degrees of freedom.

5. Since E(τ) = α0/β0 = 1/2 and Var(τ) = α0/β
2
0 = 1/3, then α0 = 2 and β0 = 4. Also, μ0 = E(μ) = −5.

Finally, Var(μ) = β0/[λ0(α0 − 1)] = 1. Therefore, λ0 = 4.

6. Since E(τ) = α0/β0 = 1/2 and Var(τ) = α0/β
2
0 = 1/4, then α0 = 1 and β0 = 2. But Var(μ) is finite

only if α0 > −1.

7. Since E(τ) = α0/β0 = 1 and Var(τ) = α0/β
2
0 = 4, then α0 = β0 = 1/4. But E(μ) exists only if

α0 > 1/2.

8. It follows from Theorem 8.6.2 that the random variable U = (μ − 4)/4 has the t distribution with
2α0 = 2 degrees of freedom.

(a) Pr(μ > 0) = Pr(Y > −1) = Pr(Y < 1) = 0.79.

(b)

Pr(0.736 < μ < 15.680) = Pr(−0.816 < Y < 2.920)

= Pr(Y < 2.920) − Pr(Y < −0.816)

= Pr(Y < 2.920) − [1− Pr(Y < 0.816)]

= 0.95 − (1− 0.75) = 0.70.

9. (a) The posterior hyperparameters are computed in the example. The degrees of freedom are 2α1 = 22,
so the quantile from the t distribution is T−1

22 ([1 + .9]/2) = 1.717, and the interval is

μ1 ± 1.717

(
β1

λ1α1

)1/2

= 183.95 ± 1.717

(
50925.37

20× 11

)1/2

= (157.83, 210.07).
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(b) This interval has endpoints 182.17± (88678.5/[17×18])1/2T−1
17 (0.95). With T−1

17 (0.95) = 1.740, we
get the interval (152.55, 211.79).

10. Since E(τ) = α0/β0 = 2 and

Var(τ) =
α0

β2
0

= E(τ2)− [E(τ)]2 = 1,

then α0 = 4 and β0 = 2. Also μ0 = E(μ) = 0. Therefore, by Eq. (14), Y = (2λ0)
1
2μ has a t distribution

with 2α0 = 8 degrees of freedom. It is found from a table of the t distribution that Pr(|Y | < 0.706) = 0.5.

Therefore, Pr

(
|μ| < 0.706

(2λ0)1/2

)
= 0.5. It now follows from the condition given in the exercise that

0.706

(2λ0)1/2
= 1.412. Hence, λ0 = 1/8.

11. It follows from Theorem 8.6.1 that μ1 = 80/81, λ1 = 81/8, α1 = 9, and β1 = 491/81. Therefore, if Eq.
(8.6.9) is applied to this posterior distribution, it is seen that the random variable U = (3.877)(μ−0.988)
has the t distribution with 18 degrees of freedom. Therefore, it is found from a table Pr(−2.101 < Y <
2.101) = 0.95. An equivalent statement is Pr(0.446 < μ < 1.530) = 0.95. This interval will be the
shortest one having probability 0.95 because the center of the interval is μ1, the point where the p.d.f.
of μ is a maximum. Since the p.d.f. of μ decreases as we move away from μ1 in either direction, it
follows that an interval having given length will have the maximum probability when it is centered at
μ1.

12. Since E(τ) = α0/β0 = 1 and Var(τ) = α0/β
2
0 = 1/3, it follows that α0 = β0 = 3. Also, since

the distribution of μ is symmetric with respect to μ0 and we are given that Pr(μ > 3) = 0.5, then

μ0 = 3. Now, by Theorem 8.6.2, U = λ
1/2
0 (μ − 3) has the t distribution with 2α0 = 6 degrees of

freedom. It is found from a table that Pr(Y < 1.440) = 0.90. Therefore, Pr(Y > −1.440) = 0.90 and

it follows that Pr

(
μ > 3− 1.440

λ
1/2
0

)
= 0.90. It now follows from the condition given in the exercise that

3− 1.440

λ
1/2
0

= 0.12. Hence, λ0 = 1/4.

13. It follows from Theorem 8.6.1 that μ1 = 67/33, λ1 = 33/4, α1 = 7, and β1 = 367/33. In calculating
the value of β1, we have used the relation

n∑
i=1

(xi − xn)
2 =

n∑
i=1

x2i − nx2n.

If Theorem 8.6.2 is now applied to this posterior distribution, it is seen that the random variable
U = (2.279)(μ − 2.030) has the t distribution with 14 degrees of freedom. Therefore, it is found from a
table that Pr(−2.977 < Y < 2.977) = 0.99. An equivalent statement is Pr(0.724 < μ < 3.336) = 0.99.

14. The interval should run between the values μ1 ± (β1/[λ1α1])
1/2T−1

2α1
(0.95). The values we need are

available from the example or the table of the t distribution: μ1 = 1.345, β1 = 1.0484, λ1 = 11,
α1 = 5.5, and T−1

11 (0.95) = 1.796. The resulting interval is (1.109, 1.581). This interval is a bit wider
than the confidence interval in Example 8.5.4. This is due mostly to the fact that (β1/α1)

1/2 is somewhat
larger than σ′.
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15. (a) The posterior hyperparameters are

μ1 =
2× 3.5 + 11× 7.2

2 + 11
= 6.63,

λ1 = 2 + 11 = 13,

α1 = 2 +
11

2
= 7.5,

β1 = 1 +
1

2

(
20.3 +

2× 11

2 + 11
(7.2 − 3.5)2

)
= 22.73.

(b) The interval should run between the values μ1 ± (β1/[λ1α1])
1/2T−1

2α1
(0.975). From the table of the

t distribution in the book, we obtain T−1
15 (0.975) = 2.131. The interval is then (5.601, 7.659).

16. (a) The average of all 30 observations is x30 = 1.442 and s230 = 2.671. Using the prior from Exam-
ple 8.6.2, we obtain

μ1 =
1× 1 + 30× 1.442

1 + 30
= 1.428,

λ1 = 1 + 30 = 31,

α1 = 0.5 +
30

2
= 15.5,

β1 = 0.5 +
1

2

(
2.671 +

1× 30

1 + 30
(1.442 − 1)2

)
= 1.930.

The posterior distribution of μ and τ is a joint normal-gamma distribution with the above hyper-
parameters.

(b) The average of the 20 new observations is x20 − 1.474 and s220 = 1.645. Using the posterior in
Example 8.6.2 as the prior, we obtain the hyperparameters

μ1 =
11× 1.345 + 20× 1.474

11 + 20
= 1.428,

λ1 = 11 + 20 = 31,

α1 = 5.5 +
20

2
= 15.5,

β1 = 1.0484 +
1

2

(
1.645 +

11× 20

11 + 20
(1.474 − 1.345)2

)
= 1.930.

The posterior hyperparameters are the same as those found in part (a). Indeed, one can prove
that they must be the same when one updates sequentially or all at once.

17. Using just the first ten observations, we have xn = 1.379 and s2n = 0.9663. This makes μ1 = 1.379,
λ1 = 10, α1 = 4.5, and β1 = 0.4831. The posterior distribution of μ and τ is the normal-gamma
distribution with these hyperparameters

18. Now, we use the hyperparameters found in Exercise 18 as prior hyperparameters and combine these
with the last 20 observations. The average of the 20 new observations is x20 − 1.474 and s220 = 1.645.
We then obtain

μ1 =
10× 1.379 + 20× 1.474

10 + 20
= 1.442,

λ1 = 10 + 20 = 30,

α1 = 4.5 +
20

2
= 14.5,

β1 = 0.4831
1

2

(
1.645 +

10× 20

10 + 20
(1.474 − 1.379)2

)
= 1.336.
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Comparing two sets of hyperparameters is not as informative as comparing inferences. For example, a
posterior probability interval will be centered at μ1 and have half-width proportional to (β1/[α1λ1])

1/2.
Since μ1 is nearly the same in this case and in Exercise 16 part (b), the two intervals will be centered
in about the same place. The values of (β1/[α1λ1])

1/2 for this exercise and for Exercise 16 part (b) are
respectively 0.05542 and 0.06338. So we expect the intervals to be slightly shorter in this exercise than
in Exercise 16. (However, the quantiles of the t distribution with 31 degrees of freedom are a bit larger
in this exercise than the quantiles of the t distribution with 31 degrees of freedom in Exercise 16.)

19. (a) For the 20 observations given in Exercise 7 of Sec. 8.5, the data summaries are xn = 156.85 and
s2n = 9740.55. So, the posterior hyperparameters are

μ1 =
0.5× 150 + 20× 156.85

0.5 + 20
= 156.68,

λ1 = 0.5 + 20 = 20.5,

α1 = 1 +
20

2
= 11,

β1 = 4 +
1

2

(
9740.55 +

0.5 × 20

0.5 + 20
(156.85 − 150)2

)
= 4885.7.

The joint posterior of μ and τ is the normal-gamma distribution with these hyperparameters.

(b) The interval we want has endpoints μ1 ± (β1/[α1λ1])
1/2T−1

2α1
(0.95). The quantile we want is

T−1
22 (0.95) = 1.717. Substituting the posterior hyperparameters gives the endpoints to be a =

148.69 and b = 164.7.

20. The data summaries in Example 7.3.10 are n = 20, x20 = 0.125. Combine these with s220 = 2102.9 to
get the posterior hyperparameters:

μ1 =
1× 0 + 20× 0.125

1 + 20
= 0.1190,

λ1 = 1 + 20 = 21,

α1 = 1 +
20

2
= 11,

β1 = 60 +
2102.9

2
+

20 × 1× (0.125 − 0)2

2(1 + 20)
= 1111.5.

(a) The posterior distribution of (μ, τ) is the normal-gamma distribution with the posterior hyperpa-
rameters given above.

(b) The posterior distribution of(
21× 11

1111.5

)1/2

(μ− 0.1190) = 0.4559(μ − 0.1190) = T

is the t distribution with 22 degrees of freedom. So,

Pr(μ > 1|x) = Pr[0.4559(μ − 0.1190) > 0.4559(1 − 0.1190)] = Pr(T > 0.4016) = 0.3459,

where the final probability can be found by using statistical software or interpolating in the table
of the t distribution.

8.7 Unbiased Estimators

Commentary

The subsection on limitations of unbiased estimators at the end of this section should be used selectively by
instructors after gauging the ability of their students to understand examples with nonstandard structure.
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Solutions to Exercises

1. (a) The variance of a Poisson random variable with mean θ is also θ. So the variance is σ2 = g(θ) = θ.

(b) The M.L.E. of g(θ) = θ was found in Exercise 5 of Sec. 7.5, and it equals Xn. The mean of Xn is
the same as the mean of each Xi, namely θ, hence the M.L.E. is unbiased.

2. Let E(Xk) = βk. Then

E

(
1

n

n∑
i=1

Xk
i

)
=

1

n

n∑
i=1

E(Xk
i ) =

1

n
· nβk = βk.

3. By Exercise 2, δ1 =
1

n

n∑
i=1

X2
i is an unbiased estimator of E(X2). Also, we know that δ2 =

1

n− 1

n∑
i=1

(Xi−

Xn)
2 is an unbiased estimator of Var(X). Therefore, it follows from the hint for this exercise that δ1−δ2

will be an unbiased estimator of [E(X)]2.

4. If X has the geometric distribution with parameter p, then it follows from Eq. (5.5.7) that E(X) =
(1− p)/p = 1/p− 1. Therefore, E(X + 1) = 1/p, which implies that X + 1 is an unbiased estimator of
1/p.

5. We shall follow the hint for this exercise. If E[δ(X)] = exp(λ), then

exp(λ) = E[δ(X)] =
∞∑
x=0

δ(x)f(x | λ) =
∞∑
x=0

δ(x) exp(−λ)λx

x!
.

Therefore,

∞∑
x=0

δ(x)λx

x!
= exp(2λ) =

∞∑
x=0

(2λ)x

x!
=

∞∑
x=0

2xλx

x!
.

Since two power series in λ can be equal only if the coefficients of λx are equal for x = 0, 1, 2, . . . , if
follows that δ(x) = 2x for x = 0, 1, 2, . . . . This argument also shows that this estimator δ(X) is the
unique unbiased estimator of exp(λ) in this problem.

6. The M.S.E. of σ̂2
0 is given by Eq. (8.7.8) with c = 1/n and it is, therefore, equal to (2n− 1)σ4/n2. The

M.S.E. of σ̂2
1 is given by Eq. (8.7.8) with c = 1/(n− 1) and it is, therefore, equal to 2σ4/(n− 1). Since

(2n − 1)/n2 < 2/(n − 1) for every positive integer n, it follows that the M.S.E. of σ̂2
0 is smaller than

the M.S.E. of σ̂2
1 for all values of μ and σ2.

7. For any possible values x1, . . . , xn of X1, . . . ,Xn, let y =
∑n

i=1 xi. Then

E[δ(X1, . . . ,Xn)] =
∑

δ(x1, . . . , xn)p
y(1− p)n−y,

where the summation extends over all possible values of x1, . . . , xn. Since
py(1− p)n−y is a polynomial in p of degree n, it follows that E[δ(X1, . . . ,Xn)] is the sum of a finite
number of terms, each of which is equal to a constant δ(x1, . . . , xn) times a polynomial in p of degree
n. Therefore, E[δ(X1, . . . ,Xn)] must itself be a polynomial in p of degree n or less. The degree would
actually be less than n if the sum of the terms of order pn is 0.
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8. If E[δ(X)] = p, then

p = E[δ(X)] =
∞∑
x=0

δ(x)p(1 − p)x.

Therefore,
∑∞

x=0 δ(x)(1 − p)x = 1. Since this relation must be satisfied for all values of 1− p, it follows
that the constant term δ(0) in the power series must be equal to 1, and the coefficient δ(x) of (1− p)x

must be equal to 0 for x = 1, 2, . . . .

9. If E[δ(X)] = exp(−2λ), then

∞∑
x=0

δ(x)
exp(−λ)λx

x!
= exp(−2λ).

Therefore,

∞∑
x=0

δ(x)λx

x!
= exp(−λ) =

∞∑
x=0

(−1)xλx

x!
.

Therefore, δ(X) = (−1)x or, in other world, δ(X) = 1 if x is even and δ(x) = −1 if x is odd.

10. Let X denote the number of failures that are obtained before k successes have been obtained. Then X
has the negative binomial distribution with parameters k and p, and N = X + k. Therefore, by Eq.
(5.5.1),

E

(
k − 1

N − 1

)
= E

(
k − 1

X + k − 1

)
=

∞∑
x=0

k − 1

x+ k − 1

(
x+ k − 1

x

)
pk(1− p)x

=
∞∑
x=0

(x+ k − 2)!

x!(k − 2)!
pk(1− p)x

= p
∞∑
x=0

(
x+ k − 2

x

)
pk−1(1− p)x.

But the final summation is the sum of the probabilities for a negative binomial distribution with
parameters k − 1 and p. Therefore, the value of this summation is 1, and E([k − 1]/[N − 1]) = p.

11. (a) E(θ̂) = αE(Xm) + (1− α)E(Y n) = αθ + (1− α)θ = θ. Hence, θ̂ is an unbiased estimator of θ for
all values of α, m and n.

(b) Since the two samples are taken independently, Xm and Y n are independent. Hence,

Var(θ̂) = α2 Var(Xm) + (1− α)2 Var(Y n) = α2

(
σ2
A

m

)
+ (1− α)2

(
σ2
B

n

)
.

Since σ2
A = 4σ2

B , it follows that

Var(θ̂) =

[
4α2

m
+

(1− α)2

n

]
σ2
B.

By differentiating the coefficient of σ2
B , it is found that Var(θ̂) is a minimum when α = m/(m+4n).
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12. (a) Let X denote the value of the characteristic for a person chosen at random from the total popu-
lation, and let Ai denote the event that the person belongs to stratum i (i = 1, . . . , k).
Then

μ = E(X) =
k∑

i=1

E(X | Ai) Pr(Ai) =
k∑

i=1

μipi.

Also,

E(μ̂) =
k∑

i=1

piE(X i) =
k∑

i=1

piμi = μ.

(b) Since the samples are taken independently of each other, the variables X1, . . . ,Xk are independent.
Therefore,

Var(μ̂) =
k∑

i=1

p2i Var(X i) =
k∑

i=1

p2iσ
2
i

ni
.

Hence, the values of n1, . . . , nk must be chosen to minimize v =
k∑

i=1

(piσi)
2

ni
, subject to the con-

straint that
k∑

i=1

ni = n. If we let nk = n−
k−1∑
i=1

ni, then

∂v

∂ni
=

−(piσi)
2

n2
i

+
(pkσk)

2

n2
k

for i = 1, . . . , k − 1.

When each of these partial derivatives is set equal to 0, it is found that ni/(piσi) has the same value

for i = 1, . . . , k. Therefore, ni = cpiσi for some constant c. It follows that n =
k∑

j=1

nj = c
k∑

j=1

pjσj .

Hence, c = n/
k∑

j=1

pjσj and, in turn,

ni =
npiσi
k∑

j=1

pjσj

.

This analysis ignores the fact that the values of n1, . . . , nk must be integers. The integers n1, . . . , nk

for which v is a minimum would presumably be near the minimizing values of n1, . . . , nk which
have just been found.

13. (a) By Theorem 4.7.1,

E(δ) = E[E(δ|T )] = E(δ0).

Therefore, δ and δ0 have the same expectation. Since δ is unbiased, E(δ) = θ. Hence, E (δ0) = θ
also. In other words, δ0 is also unbiased.

(b) Let Y = δ(X) and X = T in Theorem 4.7.4. The result there implies that

Varθ(δ(X)) = Varθ(δ0(X)) + Eθ Var(δ(X)|T ).
Since Var(δ(X)|T ) ≥ 0, so too is Eθ Var(δ(X)|T ), so Varθ(δ(X)) ≥ Varθ(δ0(X)).
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14. For 0 < y < θ, the c.d.f. of Yn is

F (y | θ) = Pr(Y ≤ y | θ) = Pr(X1 ≤ y, . . . ,Xn ≤ y | θ) =
(
y

θ

)n

.

Therefore, for 0 < y < θ, the p.d.f. of Yn is

f(y | θ) = d

dy
F (y | θ) = nyn−1

θn
.

It now follows that

Eθ(Yn) =

∫ θ

0
y
nyn−1

θn
dy =

n

n+ 1
θ.

Hence, Eθ([n+ 1]Yn/n) = θ, which means that (n+ 1)Yn/n is an unbiased estimator of θ.

15. (a) f(1 | θ) + f(2 | θ) = θ2[θ + (1− θ)] = θ2,
f(4 | θ) + f(5 | θ) = (1− θ)2[θ + (1− θ)] = (1− θ)2,
f(3 | θ) = 2θ(1− θ).

The sum of the five probabilities on the left sides of these equations is equal to the sum the right
sides, which is

θ2 + (1− θ)2 + 2θ(1− θ) = [θ + (1− θ)]2 = 1.

(b) Eθ[δc(X)] =
5∑

x=1

δc(x)f(x | θ) = 1 · θ3 + (2− 2c)θ2(1− θ) + (c)2θ(1− θ) + (1− 2c)θ(1− θ)2 + 0.

It will be found that the sum of the coefficients of θ3 is 0, the sum of the coefficients of θ2 is 0,
the sum of the coefficients of θ is 1, and the constant term is 0. Hence, Eθ[δc(X)] = θ.

(c) For every value of c,

Varθ0(δc) = Eθ0(δ
2
c )− [Eθ0(δc)]

2 = Eθ0(δ
2
c )− θ2.

Hence, the value of c for which Varθ0(δc) is a minimum will be the value of c for which Eθ0(δ
2
c ) is

a minimum. Now

Eθ0(δ
2
c ) = (1)2θ30 + (2− 2c)2θ20(1− θ0) + (c)22θ0(1− θ0)

+(1− 2c)2θ0(1− θ0)
2 + 0

= 2c2[2θ20(1− θ0) + θ0(1− θ0) + 2θ0(1− θ0)
2]

−4c[2θ20(1− θ0) + θ0(1− θ0)
2] + terms not involving c.

After further simplification of the coefficients of c2 and c, we obtain the relation

Eθ0(δ
2
c ) = 6θ0(1− θ0)c

2 + 4θ0(1− θ20)c+ terms not involving c.

By differentiating with respect to c and setting the derivative equal to 0, it is found that the value
of c for which Eθ0(δ

2
c ) is a minimum is c = (1 + θ0)/3.

16. The unbiased estimator in Exercise 3 is

1

n

n∑
i=1

X2
i − 1

n− 1

n∑
i=1

(Xi −Xn)
2.

For the observed values X1 = 2 and X2 = −1, we obtain the value −2 for the estimate. This is
unacceptable. Because [E(X)]2 ≥ 0, we should demand an estimate that is also nonnegative.
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8.8 Fisher Information

Commentary

Although this section is optional, it does contain the interesting theoretical result on asymptotic normality
of maximum likelihood estimators. It also contains the Cramér-Rao inequality, which can be useful for
finding minimum variance unbiased estimators. However, the material is really only suitable for a fairly
mathematically oriented course.

Solutions to Exercises

1.

f(x | μ) =
1√
2πσ

exp

{
− 1

2σ2
(x− μ)2

}
,

f ′(x | μ) =
1√
2πσ

(x− μ)

σ2
exp

{
− 1

2σ2
(x− μ)2

}
=

x− μ

σ2
f(x | μ),

f ′′(x | μ) =

[
(x− μ)2

σ4
− 1

σ2

]
f(x | μ).

Therefore,∫ ∞

−∞
f ′(x | μ)dx =

1

σ2

∫ ∞

−∞
(x− μ)f(x | μ)dμ =

1

σ2
E(X − μ) = 0,

and ∫ ∞

−∞
f ′′(x | μ)dx =

E[(X − μ)2]

σ4
− 1

σ2
=

σ2

σ4
− 1

σ2
= 0.

2. The p.f. is

f(x|p) = p(1− p)x, for x = 0, 1, . . ..

The logarithm of this is log(p) + x log(1− p), and the derivative is

1

p
− x

1− p
.

According to Eq. (5.5.7) in the text, the variance of X is (1− p)/p2, hence the Fisher information is

I(p) = Var

[
1

p
− X

1− p

]
=

Var(X)

(1− p)2
=

1

p2(1− p)
.

3.

f(x | θ) =
exp(−θ)θx

x!
,

λ(x | θ) = −θ + x log θ − log(x!),

λ′(x | θ) = −1 +
x

θ
,

λ′′(x | θ) = − x

θ2
.
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Therefore, by Eq. (8.8.3),

I(θ) = −Eθ[λ
′′(X | θ)] = E(X)

θ2
=

1

θ
.

4.

f(x | σ) =
1√
2πσ

exp

{
− x2

2σ2

}
,

λ(x | σ) = −log σ − x2

2σ2
+ const.

λ′(x | σ) = − 1

σ
+

x2

σ3
,

λ′′(x | σ) =
1

σ2
− 3x2

σ4
.

Therefore,

I(θ) = −Eθ[λ
′′(X | θ)] = − 1

σ2
+

3E(X2)

σ4
= − 1

σ2
+

3

σ2
=

2

σ2
.

5. Let ν = σ2. Then

f(x | ν) =
1√
2πν

exp

{
−x2

2ν

}
,

λ(x | ν) = −1

2
log ν − x2

2ν
+ const.,

λ′(x | ν) = − 1

2ν
+

x2

2ν2
,

λ′′(x | ν) =
1

2ν2
− x2

ν3
.

Therefore,

I(σ2) = I(ν) = −Eν [λ
′′(X | ν)] = − 1

2ν2
+

ν

ν3
=

1

2ν2
=

1

2σ4
.

6. Let g(x | μ) denote the p.d.f. or the p.f. of X when μ is regarded as the parameter. Then g(x | μ) =
f [x | ψ(μ)]. Therefore,

log g(x | μ) = log f [x | ψ(μ)] = λ[x | ψ(μ)],

and

∂

∂μ
log g(x | μ) = λ′[x | ψ(μ)]ψ′(μ).

It now follows that

I1(μ) = Eμ

{[
∂

∂μ
log g(X | μ)

]2}
= [ψ′(μ)]2Eμ({λ′[X | ψ(μ)]}2) = [ψ′(μ)]2I0[ψ(μ)].
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7. We know that E(Xn) = p and Var(Xn) = p(1 − p)/n. It was shown in Example 8.8.2 that I(P ) =
1/[p(1 − p)]. Therefore, Var(Xn) is equal to the lower bound 1/[nI(p)] provided by the information
inequality.

8. We know that E(Xn) = μ and Var (Xn) =
σ2

n . It was shown in Example 8.8.3 that I(μ) = 1/σ2.
Therefore, Var (Xn) is equal to the lower bound 1/[nI(μ)] provided by the information inequality.

9. We shall attack this exercise by trying to find an estimator of the form c|X| that is unbiased. One
approach is as follows: We know that X2/σ2 has the χ2 distribution with one degree of freedom.
Therefore, by Exercise 11 of Sec. 8.2, |X|/σ has the χ distribution with one degree of freedom, and it
was shown in that exercise that

E

( |X|
σ

)
=

√
2Γ(1)

Γ(1/2)
=

√
2

π
.

Hence, E(|X|) = σ
√
2/π. It follows that E(|X|√π/2) = σ. Let δ = |X|√π/2. Then

E(δ2) =
π

2
E(|X|2) = π

2
σ2.

Hence,

Var δ = E(δ2)− [E(δ)]2 =
π

2
σ2 − σ2 =

(
π

2
− 1

)
σ2.

Since 1/I(σ) = σ2/2, it follows that Var(δ) > 1/I(σ).

Another unbiased estimator is δ1(X) =
√
2π X if X ≥ 0 and δ1(X) = 0 if X < 0. However, it can

be shown, using advanced methods, that the estimator δ found in this exercise is the only unbiased
estimator of σ that depends on X only through |X|.

10. If m(σ) = log σ, then m′(σ) = 1/σ and [m′(σ)]2 = 1/σ2. Also, it was shown in Exercise 4 that
I(σ) = 2/σ2. Therefore, if T is an unbiased estimator of log σ, it follows from the relation (8.8.14) that

Var(T ) ≥ 1

σ2
· σ

2

2n
=

1

2n
.

11. If f(x | θ) = a(θ)b(x) exp[c(θ)d(x)], then

λ(x | θ) = log a(θ) + log b(x) + c(θ)d(x)

and

λ′(x | θ) = a′(θ)
a(θ)

+ c′(θ)d(x).

Therefore,

λ′
n(X | θ) =

n∑
i=1

λ′(Xi | θ) = n
a′(θ)
a(θ)

+ c′(θ)
n∑

i=1

d(Xi).

If we choose

u(θ) =
1

c′(θ)
and v(θ) = − na′(θ)

a(θ)c
′

(θ)
,
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then Eq. (8.8.14) will be satisfied with T =
n∑

i=1

d(Xi). Hence, this statistic is an efficient estimator of

its expectation.

12. Let θ = σ2 denote the unknown variance. Then

f(x | θ) = 1√
2πθ

exp

{
− 1

2θ
(x− μ)2

}
.

This p.d.f. f(x | θ) has the form of an exponential family, as given in Exercise 12, with d(x) = (x− μ)2.

Therefore, T =
n∑

i=1

(Xi − μ)2 will be an efficient estimator. Since E[(Xi − μ)2] = σ2 for i = 1, . . . , n,

then E(T ) = nσ2. Also, by Exercise 17 of Sec. 5.7, E[(Xi − μ)4] = 3σ4 for i = 1, . . . , n. Therefore,
Var[(Xi − μ)2] = 3σ4 − σ4 = 2σ4, and it follows that Var(T ) = 2nσ4.

It should be emphasized that any linear function of T will also be an efficient estimator. In particular,
T/n will be an efficient estimator of σ2.

13. The incorrect part of the argument is at the beginning, because the information inequality cannot be
applied to the uniform distribution. For each different value of θ, there is a different set of values of x
for which f(x | θ) ≥ 0.

14.

f(x | α) =
βα

Γ(α)
xα−1 exp(−βx),

λ(x | α) = α log β − log Γ(α) + (α− 1) log x− βx,

λ′(x | α) = log β − Γ′(α)
Γ(α)

+ log x,

λ′′(x | α) = −Γ(α)Γ′′(α)− [Γ′(α)]2

[Γ(α)]2

Therefore,

I(α) =
Γ(α)Γ′′(α) − [Γ′(α)]2

[Γ(α)]2

The distribution of the M.L.E. of α will be approximately the normal distribution with mean α and
variance 1/[nI(α)].
It should be noted that we have determined this distribution without actually determining the M.L.E.
itself.

15. We know that the M.L.E. of μ is μ̂=xn and, from Example 8.8.3, that I(μ) = 1/σ2. The posterior dis-
tribution of μ will be approximately a normal distribution with mean μ̂ and variance 1/[nI(μ̂)] = σ2/n.

16. We know that the M.L.E. of p is p̂=xn and, from Example 8.8.2, that I(p) = 1/[p(1 − p)]. The
posterior distribution of p will be approximately a normal distribution with mean p̂ and variance
1/[nI(p̂)] = xn(1− xn)/n.
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17. The derivative of the log-likelihood with respect to p is

λ′(x|p) = ∂

∂p

[
log

(
n

x

)
+ x log(p) + (n− x) log(1− p)

]
=

x

p
− n− x

1− p
=

x− np

p(1− p)
.

The mean of λ′(X|p) is clearly 0, so its variance is

I(p) =
Var(X)

p2(1− p)2
=

n

p(1− p)
.

18. The derivative of the log-likelihood with respect to p is

λ′(x|p) = ∂

∂p

[
log

(
r + x− 1

x

)
+ r log(p) + x log(1− p)

]
=

r

p
− x

1− p
=

r − rp− xp

p(1− p)
.

The mean of λ′(X|p) is clearly 0, so its variance is

I(p) =
p2Var(X)

p2(1− p)2
=

r

p2(1− p)
.

8.9 Supplementary Exercises

Solutions to Exercises

1. According to Exercise 5 in Sec. 8.8, the Fisher information I(σ2) based on a sample of size 1 is 1/[2σ4].
According to the information inequality, the variance of an unbiased estimator of σ2 must be at least

2σ4/n. The variance of V =
n∑

i=1

X2
i /n is Var(X2

1 )/n. Since X2
1/σ

2 has a χ2 distribution with 1 degree

of freedom, its variance is 2. Hence Var(X2
1 ) = 2σ4 and Var(V ) equals the lower bound from the

information inequality. E(V ) = E(X2
1 ) = σ2, so V is unbiased.

2. The t distribution with one degree of freedom is the Cauchy distribution. Therefore, by Exercise 18 of
Sec. 5.6, we can represent the random variable X in the formX = U/V , where U and V are independent
and each has a standard normal distribution. But 1/X can then be represented as 1/X = V/U . Since
V/U is again the ratio of independent, standard normal variables, it follows that 1/X again has the
Cauchy distribution.

3. It is known from Exercise 18 of Sec. 5.6 that U/V has a Cauchy distribution, which is the t distribution
with one degree of freedom. Next, since |V | = (V 2)1/2, it follows from Definition 8.4.1 that U/|V | has
the required t distribution. Hence, by the previous exercise in this section, |V |/U will also have this t
distribution. Since U and V are i.i.d., it now follows that |U |/V must have the same distribution as
|V |/U .

4. It is known from Exercise 5 of Sec. 8.3 that X1 +X2 and X1 −X2 are independent. Further, if we let

Y1 =
1√
2σ

(X1 +X2) and Y2 =
1√
2σ

(X1 −X2),

then Y1 and Y2 have standard normal distributions. It follows, therefore, from Exercise 18 of Sec. 5.6
that Y1/Y2 has a Cauchy distribution, which is the same as the t distribution with one degree of freedom.
But

Y1

Y2
=

X1 +X2

X1 −X2
,
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so the desired result has been established. This result could also have been established by a direct
calculation of the required p.d.f.

5. Since Xi has the exponential distribution with parameter β, it follows that 2β Xi has the exponential
distribution with parameter 1/2. But this exponential distribution is the χ2 distribution with 2 degrees
of freedom. Therefore, the sum of the i.i.d. random variables 2βXi (i = 1, . . . , n) will have a χ2

distribution with 2n degrees of freedom.

6. Let θ̂n be the proportion of the n observations that lie in the set A. Since each observation has
probability θ of lying in A, the observations can be thought of as forming n Bernoulli trials, each with
probability θ of success. Hence, E(θ̂n) = θ and Var(θ̂n) = θ(1− θ)/n.

7. (a) E(αS2
X + βS2

Y ) = α(m− 1)σ2 + β(n− 1)2σ2.
Hence, this estimator will be unbiased if α(m− 1) + 2β(n − 1) = 1.
(b) Since S2

X and S2
Y are independent,

Var (αS2
X + βS2

Y ) = α2 Var (S2
X) + β2var(S2

Y )

= α2[2(m− 1)σ4] + β2[2(n− 1) · 4σ4]

= 2σ4[(m− 1)α2 + 4(n− 1)β2].

Therefore, we must minimize

A = (m− 1)α2 + 4(n − 1)β2

subject to the constraint (m− 1)α+ 2(n − 1)β = 1. If we solve this constraint for β in terms of α,
and make this substitution for β in A, we can then minimize A over all values of α. The result is

α =
1

m+ n− 2
and, hence, β =

1

2(m+ n− 2)
.

8. Xn+1 −Xn has the normal distribution with mean 0 and variance (1+ 1/n)σ2. Hence, the distribution
of (n/[n+ 1])1/2(Xn+1 −Xn)/σ is a standard normal distribution. Also, nT 2

n/σ
2 has an independent

χ2 distribution with n− 1 degrees of freedom. Thus, the following ratio will have the t distribution
with n− 1 degrees of freedom:

(
n

n+ 1

)1/2

(Xn+1 −Xn)/σ[
nT 2

n

(n− 1)σ2

]1/2 =

(
n− 1

n+ 1

)1/2 Xn+1 −Xn

Tn
.

It can now be seen that k = ([n − 1]/[n + 1])1/2.

9. Under the given conditions, Y/(2σ) has a standard normal distribution and S2
n/σ

2 has an independent
χ2 distribution with n− 1 degrees of freedom. Thus, the following random variable will have a t
distribution with n− 1 degrees of freedom:

Y/(2σ)

{S2
n/[σ

2(n− 1)]}1/2 =
Y/2

σ′ ,

where σ′ = [S2
n/(n− 1)]1/2.
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10. As found in Exercise 3 of Sec. 8.5, the expected squared length of the confidence interval is E(L2) =
4c2σ2/n, where c is found from the table of the t distribution with n− 1 degrees of freedom in the back
of the book under the .95 column (to give probability .90 between −c and c). We must compute the
value of 4c2/n for various values of n and see when it is less than 1/2. For n = 23, it is found that
c22 = 1.717 and the coefficient of σ2 in E(L2) is 4(1.717)2/23 = .512. For n = 24, c23 = 1.714 and the
coefficient of σ2 is 4(1.714)2/24 = .490. Hence, n = 24 is the required value.

11. Let c denote the .99 quantile of the t distribution with n− 1 degrees of freedom; i.e., Pr(U < c) = .99

if U has the specified t distribution. Therefore, Pr

[
n1/2(Xn − μ)

σ′ < c

]
= .99 or, equivalently,

Pr

[
μ > Xn − cσ′

n1/2

]
= .99. Hence, L = Xn − cσ′/n1/2.

12. Let c denote the .01 quantile of the χ2 distribution with n− 1 degrees of freedom; i.e., Pr(V < c) = .01
if V has the specified χ2 distribution. Therefore,

Pr

(
S2
n

σ2
> c

)
= .99

or, equivalently,

Pr (σ2 < S2
n/c) = .99.

Hence, U = S2
n/c.

13. (a) The posterior distribution of θ is the normal distribution with mean μ1 and variance ν21 , as given
by (7.3.1) and (7.3.2). Therefore, under this distribution,

Pr(μ1 − 1.96ν1 < θ < μ1 + 1.96ν1) = .95.

This interval I is the shortest one that has the required probability because it is symmetrically
placed around the mean μ1 of the normal distribution.

(b) It follows from (7.3.1) that μ1 → xn as ν2 → ∞ and from (7.3.2) that ν21 → σ2/n. Hence, the
interval I converges to the interval

xn − 1.96σ

n1/2
< θ < xn +

1.96σ

n1/2
.

It was shown in Exercise 4 of Sec. 8.5 that this interval is a confidence interval for θ with confidence
coefficient .95.

14. (a) Since Y has a Poisson distribution with mean nθ, it follows that

E(exp(−cY )) =
∞∑
y=0

exp(−cy) exp(−nθ)(nθ)y

y!
= exp(−nθ)

∞∑
y=0

(nθ exp(−c))y

y!

= exp(−nθ) exp[nθ exp(−c)] = exp(nθ[exp(−c)− 1]).

Since this expectation must be exp(−θ), it follows that n(exp(−c)− 1)= − 1 or c = log[n/(n−1)].

(b) It was shown in Exercise 3 of Sec. 8.8 that I(θ) = 1/θ in this problem. Since m(θ) = exp(−θ),
[m′(θ)]2 = exp(−2θ). Hence, from Eq. (8.8.14),

Var(exp(−cY )) ≥ θ exp(−2θ)

n
.
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15. In the notation of Sec. 8.8,

λ(x | θ) = log θ + (θ − 1) log x,

λ′(x | θ) =
1

θ
+ log x,

λ′′(x | θ) = −1/θ2.

Hence, by Eq. (8.8.3), I(θ) = 1/θ2 and it follows that the asymptotic distribution of

n1/2

θ
(θ̂n − θ)

is standard normal.

16.

f(x | θ) = θ−1 exp(−x/θ),

λ(x | θ) = − log θ − x/θ,

λ′(x | θ) = −1

θ
+

x

θ2
,

λ′′(x | θ) =
1

θ2
− 2x

θ3
,

Therefore,

I(θ) = −Eθ[λ
′′(X|θ)] = 1

θ2
.

17. If m(p) = (1− p)2, then m′(p) = −2(1− p) and [m′(p)]2 = 4(1− p)2. It was shown in Example 8.8.2
that I(p) = 1/[p(1 − p)]. Therefore, if T is an unbiased estimator of m(p), it follows from the relation
(8.8.14) that

Var(T ) ≥ 4(1− p)2p(1− p)

n
=

4p(1− p)3

n
.

18. f(x|β) = β exp(−βx). This p.d.f. has the form of an exponential family, as given in Exercise 11 of

Sec. 8.8, with d(x) = x. Therefore, T =
n∑

i=1

Xi will be an efficient estimator. We know that E(Xi) = 1/β

and Var (Xi) = 1/β2. Hence, E(T ) = n/β and Var(T ) = n/β2.

Since any linear function of T will also be an efficient estimator, it follows that Xn = T/n will be an
efficient estimator of 1/β. As a check of this result, it can be verified directly that Var(Xn) = 1/[nβ2] =
[m′(β)]2/[nI(β)], where m(β) = 1/β and I(β) was obtained in Example 8.8.6.

19. It was shown in Example 8.8.6 that I(β) = 1/β2. The distribution of the M.L.E. of β will be approxi-
mately the normal distribution with mean β and variance 1/[nI(β)].

20. (a) Let α(β) = 1/β. Then α′(β) = −1/β2. By Exercise 19, it is known that β̂n is approximately
normal with mean β and variance β2/n. Therefore, 1/β̂n will be approximately normal with mean
1/β and variance [α′(β)]2(β2/n) = 1/(nβ2). Equivalently, the asymptotic distribution of

(nβ2)1/2(1/β̂n − 1/β)

is standard normal.
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(b) Since the mean of the exponential distribution is 1/β and the variance is 1/β2, it follows directly
from the central limit theorem that the asymptotic distribution of Xn = 1/β̂n is exactly that found
in part (a).

21. (a) The distribution of Y is the Poisson distribution with mean nθ. In order for r(Y ) to be an unbiased
estimator of 1/θ, we need

1

θ
= Eθ(r(Y )) =

∞∑
y=0

r(y) exp(−nθ)
(nθ)y

y!
.

This equation can be rewritten as

exp(nθ) =
∞∑
y=0

r(y)ny

y!
θy+1. (S.8.8)

The function on the left side of (S.8.8) has a unique power series representation, hence the right
side of (S.8.8) must equal that power series. However, the limit as θ → 0 of the left side of (S.8.8)
is 1, while the limit of the right side is 0, hence the power series on the right cannot represent the
function on the left.

(b) E(n/[Y + 1]) =
∞∑
y=0

n exp(−nθ)[nθ]y/(y + 1)!. By letting u = y + 1 in this sum, we get n[1 −

exp(−nθ)]/[nθ] = 1/θ − exp(−nθ)/θ. So the bias is exp(−nθ)/θ. Clearly exp(−nθ) goes to 0 as
n → ∞.

(c) n/(1 + Y ) = 1/(Xn + 1/n). We know that Xn + 1/n has approximately the normal distribution
with mean θ + 1/n and variance θ/n. We can ignore the 1/n added to θ in the mean since this
will eventually be small relative to θ. Using the delta method, we find that 1/(Xn + 1/n) has
approximately the normal distribution with mean 1/θ and variance (1/θ2)2θ/n = (nθ3)−1.

22. (a) The p.d.f. of Yn is

f(y|θ) =
{

nyn−1/θn if 0 ≤ y ≤ θ,
0 otherwise.

This can be found using the method of Example 3.9.6. If X = Yn/θ, then the p.d.f. of X is

g(x|θ) = f(xθ|θ)θ =

{
nxn−1 if 0 ≤ x ≤ 1,
0 otherwise.

Notice that this does not depend on θ. The c.d.f. is then G(x) = xn for 0 < x < 1. The quantile
function is G−1(p) = p1/n.

(b) The bias of Yn as an estimator of θ is

Eθ(Yn)− θ =

∫ θ

0
y
nyn−1

θn
dy − θ = − θ

n+ 1
.

(c) The distribution of Z = Yn/θ has p.d.f.

g(z) = θf(zθ|θ) =
{

nzn−1 for 0 ≤ z ≤ 1,
0 otherwise,

where f(·|θ) comes from part (a). One can see that g(z) does not depend on θ, hence the distri-
bution of Z is the same for all θ.
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(d) We would like to find two random variables A(Yn) and B(Yn) such that

Pr(A(Yn) ≤ θ ≤ B(Yn)) = γ, for all θ. (S.8.9)

This can be arranged by using the fact that Yn/θ has the c.d.f. G(x) = xn for all θ. This means
that

Pr

(
a ≤ Yn

θ
≤ b

)
= bn − an,

for all θ. Let a and b be constants such that bn − an = γ (e.g., b = ([1 + γ]/2)1/n and a =
([1 − γ]/2)1/n). Then set A(Yn) = Yn/b and B(Yn) = Yn/a. It follows that (S.8.9) holds.
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Chapter 9

Testing Hypotheses

9.1 Problems of Testing Hypotheses

Commentary

This section was augemented in the fourth edition. It now includes a general introduction to likelihood ratio
tests and some foundational discussion of the terminology of hypothesis testing. After covering this section,
one could skip directly to Sec. 9.5 and discuss the t test without using any of the material in Sec. 9.2–9.4.
Indeed, unless your course is a rigorous mathematical statistics course, it might be highly advisable to skip
ahead.

Solutions to Exercises

1. (a) Let δ be the test that rejects H0 when X ≥ 1.The power function of δ is

π(β|δ) = Pr(X ≥ 1|β) = exp(−β),

for β > 0.

(b) The size of the test δ is supβ≥1 π(β|δ). Using the answer to part (a), we see that π(β|δ) is a
decreasing function of β, hence the size of the test is π(1|δ) = exp(−1).

2. (a) We know that if 0 < y < θ, then Pr(Yn ≤ y) = (y/θ)n. Also, if y ≥ θ, then Pr(Yn ≤ y) = 1.
Therefore, if θ ≤ 1.5, then π(θ) = Pr(Yn ≤ 1.5) = 1. If θ > 1.5, then π(θ) = Pr(Yn ≤ 1.5) =
(1.5/θ)n.

(b) The size of the test is

α = sup
θ≥2

π(θ) = sup
θ≥2

(
1.5

θ

)n

=

(
1.5

2

)n

=

(
3

4

)n

.

3. (a) For any given value of p, π(p) = Pr(Y ≥ 7)+Pr(Y ≤ 1), where Y has a binomial distribution with
parameters n = 20 and p. For p = 0,Pr(Y ≥ 7) = 0 and Pr(Y ≤ 1) = 1. Therefore, π(0) = 1. For
p = 0.1, it is found from the table of the binomial distribution that

Pr(Y ≥ 7) = .0020 + .0003 + .0001 + .0000 = .0024

and Pr(Y ≤ 1) = .1216+ .2701 = .3917. Hence, π(0.1) = 0.3941. Similarly, for p = 0.2, it is found
that

Pr(Y ≥ 7) = .0545 + .0222 + .0074 + .0020 + .0005 + .0001 = .0867
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and Pr(Y ≤ 1) = .0115 + .0576 = .0691. Hence, π(0.2) = 0.1558. By continuing to use the tables
in this way, we can find the values of π(0.3), π(0.4), and π(0.5). For p = 0.6, we must use the
fact that if Y has a binomial distribution with parameters 20 and 0.6, then Z = 20 − Y has a
binomial distribution with parameters 20 and 0.4. Also, Pr(Y ≥ 7) = Pr(Z ≤ 13) and Pr(Y ≤
1) = Pr(Z ≥ 19). It is found from the tables that Pr(Z ≤ 13) = .9935 and Pr(Z ≥ 19) = .0000.
Hence, π(0.6) = .9935. Similarly, if p = 0.7, then Z = 20−Y will have a binomial distribution with
parameters 20 and 0.3. In this case it is found that Pr(Z ≤ 13) = .9998 and Pr(Z ≥ 19) = .0000.
Hence, π(0.7) = 0.9998. By continuing in this way, the values of π(0.8), π(0.9), and π(1.0) = 1
can be obtained.

(b) Since H0 is a simple hypothesis, the size α of the test is just the value of the power function at
the point specified by H0. Thus, α = π(0.2) = 0.1558.

4. The null hypothesis H0 is simple. Therefore, the size α of the test is α = Pr(Rejecting H0 |μ = μ0).
When μ = μ0, the random variable Z = n1/2(Xn − μ0) will have the standard normal distribution.
Hence, since n = 25,

α = Pr(|Xn − μ0| ≥ c) = Pr(|Z| ≥ 5c) = 2[1− Φ(5c)].

Thus, α = 0.05 if and only if Φ(5c) = 0.975. It is found from a table of the standard normal distribution
that 5c = 1.96 and c = 0.392.

5. A hypothesis is simple if and only if it specifies a single value of both μ and σ. Therefore, only the
hypothesis in (a) is simple. All the others are composite. In particular, although the hypothesis in (d)
specifies the value of μ, it leaves the value of σ arbitrary.

6. If H0 is true, then X will surely be smaller than 3.5. If H1 is true, then X will surely be greater than
3.5. Therefore, the test procedure which rejects H0 if and only if X > 3.5 will have probability 0 of
leading to a wrong decision, no matter what the true value of θ is.

7. Let C be the critical region of Yn values for the test δ, and let C∗ be the critical region for δ∗. It is
easy to see that C∗ ⊂ C. Hence

π(θ|δ)− π(θ|δ∗) = Pr
(
Yn ∈ C ∩ (C∗)C

∣∣∣ θ) .
Here C ∩ (C∗)C = [4, 4.5], so

π(θ|δ)− π(θ|δ∗) = Pr(4 ≤ Yn ≤ 4.5|θ). (S.9.1)

(a) For θ ≤ 4 Pr(4 ≤ Yn|θ) = 0, so the two power functions must be equal by (S.9.1).

(b) For θ > 4,

Pr(4 ≤ Yn ≤ 4.5|θ) = (min{θ, 4.5})n − 4n

θn
> 0.

Hence, π(θ|δ) > π(θ|δ∗) by (S.9.1).

(c) The only places where the power functions differ are for θ > 4. Since these values are all in Ω1,
it is better for a test to have higher power function for these values. Since δ has higher power
function than δ∗ for all of these values, δ is the better test.
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8. (a) The distribution of Z given μ is the normal distribution with mean n1/2(μ − μ0) and variance 1.
We can write

Pr(Z ≥ c|μ) = 1− Φ([c− n1/2(μ− μ0)]) = Φ(n1/2μ− n1/2μ0 − c).

Since Φ is an increasing function and n1/2μ− n1/2μ0 − c is an increasing function of μ, the power
function is an increasing function of μ.

(b) The size of the test will be the power function at μ = μ0, since μ0 is the largest value in Ω0 and
the power function is increasing. Hence, the size is Φ(−c). If we set this equal to α0, we can solve
for c = −Φ−1(α0).

9. A sensible test would be to reject H0 if Xn < c′. So, let T = μ0 −Xn. Then the power function of the
test δ that rejects H0 when T ≥ c is

π(μ|δ) = Pr(T ≥ c|μ)
= Pr(Xn ≤ μ0 − c|μ)
= Φ(

√
n[μ0 − c− μ]).

Since Φ is an increasing function and
√
n[μ0 − c − μ] is a decreasing function of μ, it follows that

Φ(
√
n[μ0 − c− μ]) is a decreasing function of μ.

10. When Z = z is observed, the p-value is Pr(Z ≥ z|μ0) = Φ(n1/2[μ0 − z]).

11. (a) For c1 ≥ 2, Pr(Y ≤ c1|p = 0.4) ≥ 0.23, hence c1 ≤ 1. Also, for c2 ≤ 5, Pr(Y ≥ c2|p = 0.4) ≥ 0.26,
hence c2 ≥ 6. Here are some values of the desired probability for various (c1, c2) pairs

c1 c2 Pr(Y ≤ c1|p = 0.4) + Pr(Y ≥ c2|p = 0.4)

1 6 0.1699
1 7 0.0956
0 6 0.1094
−1 6 0.0994

So, the closest we can get to 0.1 without going over is 0.0994, which is achieved when c1 < 0 and
c2 = 6.

(b) The size of the test is 0.0994, as we calculated in part (a).

(c) The power function is plotted in Fig. S.9.1. Notice that the power function is too low for values of
p < 0.4. This is due to the fact that the test only rejects H0 when Y ≥ 6 A better test might be
one with c1 = 1 and c2 = 7. Even though the size is slightly smaller (as is the power for p > 0.4),
its power is much greater for p < 0.4.

12. (a) The power function of δc is

π(θ|δc) = Pr(X ≥ c|θ) =
∫ ∞

c

dx

π[1 + (x− θ)2]
=

1

π

[
π

2
− arctan(c− θ)

]
.

Since arctan is an increasing function and c − θ is a decreasing function of θ, the power function
is increasing in θ.

(b) To make the size of the test 0.05, we need to solve

0.05 =
1

π

[
π

2
− arctan(c− θ0)

]
,

for c. We get

c = θ0 + tan(0.45π) = θ0 + 6.314.
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Figure S.9.1: Power function of test in Exercise 11c of Sec. 9.1.

(c) The p-value when X = x is observed is

Pr(X ≥ x|θ = θ0) =
1

π

[
π

2
− arctan(x− θ0)

]
.

13. For c = 3, Pr(X ≥ c|θ = 1) = 0.0803, while for c = 2, the probability is 0.2642. Hence, we must use
c = 3.

14. (a) The distribution of X is a gamma distribution with parameters n and θ and Y = Xθ has a
gamma distribution with parameters n and 1. Let Gn be the c.d.f. of the gamma distribution with
parameters n and 1. The power function of δc is then

π(θ|δc) = Pr(X ≥ c|θ) = Pr(Y ≥ cθ|θ) = 1−Gn(cθ).

Since 1 − Gn is an decreasing function and cθ is an increasing function of θ, 1 − Gn(cθ) is a
decreasing function of θ.

(b) We need 1−Gn(cθ0) = α0. This means that c = G−1
n (1− α0)/θ0.

(c) With α0 = 0.1, n = 1 and θ0 = 2, we find that Gn(y) = 1 − exp(−y) and G−1
n (p) = − log(1 − p).

So, c = − log(0.1)/2 = 1.151. The power function is plotted in Fig. S.9.2.

15. The p-value when X = x is observed is the size of the test that rejects H0 when X ≥ x, namely

Pr(X ≥ x|θ = 1) =

{
0 if x ≥ 1,
1− x if 0 < x < 1.

16. The confidence interval is (s2n/c2, s
2
n/c1), where s2n =

n∑
i=1

(xi − xn)
2 and c1, c2 are the (1 − γ)/2 and

(1 + γ)/2 quantiles of the χ2 distribution with n − 1 degrees of freedom. We create the test δc of
H0 : σ

2 = c by rejecting H0 if c is not in the interval. Let T (x) = s2n and notice that c is outside of the
interval if and only if T (x) is not in the interval (c1c, c2c).

17. We need q(y) to have the property that Pr(q(Y ) < p|p) ≥ γ for all p. We shall prove that q(y)
equal to the smallest p0 such that Pr(Y ≥ y|p = p0) ≥ 1 − γ satisfies this property. For each p, let
Ap = {y : q(y) < p}. We need to show that Pr(Y ∈ Ap|p) ≥ γ. First, notice that q(y) is an increasing
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Figure S.9.2: Power function of test in Exercise 14c of Sec. 9.1.

function of y. This means that for each p there is yp such that Ap = {0, . . . , yp}. So, we need to show
that Pr(Y ≤ yp|p) ≥ γ for all p. Equivalently, we need to show that Pr(Y > yp|p) ≤ 1− γ. Notice that
yp is the largest value of y such that q(y) < p. That is, yp is the largest value of y such that there exists
p0 < p with Pr(Y ≥ y|p0) ≥ 1− γ. For each y, Pr(Y > y|p) is a continuous nondecreasing function of
p. If Pr(Y > yp|p) > 1− γ, then there exists p0 < p such that

1− γ < Pr(Y > yp|p0) = Pr(Y ≥ yp + 1|p0).

This contradicts the fact that yp is the largest y such that there is p0 < p with Pr(Y ≥ y|p0) ≥ 1− γ.
Hence Pr(Y > yp|p) ≤ 1− γ and the proof is complete.

18. Our tests are all of the form “Reject H0 if T ≥ c.” Let δc be this test, and define

α(c) = sup
θ∈Ω0

Pr(T ≥ c|θ),

the size of the test δc. Then δc has level of significance α0 if and only if α(c) ≤ α0. Notice that α(c) is
a decreasing function of c. When T = t is observed, we reject H0 at level of significance α0 using δc if
and only if t ≥ c, which is equivalent to α(t) ≤ α0. Hence α(t) is the smallest level of significance at
which we can reject H0 if T = t is observed. Notice that α(t) is the expression in Eq. (9.1.12).

19. We want our test to reject H0 if Xn ≤ Y , where Y might be a random variable. We can write this as
not rejecting H0 if Xn > Y . We want Xn > Y to be equivalent to μ0 being inside of our interval. We
need the test to have level α0, so

Pr(Xn ≤ Y |μ = μ0, σ
2) = α0 (S.9.2)

is necessary. We know that n1/2(Xn − μ0)/σ
′ has the t distribution with n − 1 degrees of freedom if

μ = μ0, hence Eq. (S.9.2) will hold if Y = μ0 − n−1/2σ′T−1
n−1(1 − α0). Now, Xn > Y if and only if

μ0 < Xn + n−1/2σ′T−1
n−1(1− α0). This is equivalent to μ0 in our interval if our interval is

(
−∞,Xn + n−1/2σ′T−1

n−1(1− α0)
)
.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



278 Chapter 9. Testing Hypotheses

20. Let θ0 ∈ Ω, and let g0 = g(θ0). By construction, g(θ0) ∈ ω(X) if and only if δg0 does not reject
H0,g0 : g(θ) ≤ g0. Given θ = θ0, the probability that δg0 does not reject H0,g0 is at least γ because the
null hypothesis is true and the level of the test is α0 = 1− γ. Hence, (9.1.15) holds.

21. Let U = n1/2(Xn − μ0)/σ
′.

(a) We reject the null hypothesis in (9.1.22) if and only if

U ≥ T−1
n−1(1− α0). (S.9.3)

We reject the null hypothesis in (9.1.27) if and only if

U ≤ −T−1
n−1(1− α0). (S.9.4)

With α0 < 0.5, T−1
n−1(1− α0) > 0. So, (S.9.3) requires U > 0 while (S.9.4) requires U < 0. These

cannot both occur.

(b) Both (S.9.3) and (S.9.4) fail if and only if U is strictly between −T−1
n−1(1− α0) and T−1

n−1(1− α0).
This can happen if Xn is sufficiently close to μ0. This has probability 1− 2α0 > 0.

(c) If α0 > 0.5, then T−1
n−1(1 − α0) < 0, and both null hypotheses would be rejected if U is between

the numbers T−1
n−1(1− α0) < 0 and −T−1

n−1(1− α0) > 0. This has probability 2α0 − 1 > 0.

9.2 Testing Simple Hypotheses

Commentary

This section, and the two following, contain some traditional optimality results concerning tests of hypotheses
about one-dimensional parameters. In this section, we present the Neyman-Pearson lemma which gives
optimal tests for simple null hypotheses against simple alternative hypotheses. It is recommended that one
skip this section, and the two that follow, unless one is teaching a rigorous mathematical statistics course.
This section ends with a brief discussion of randomized tests. Randomized tests are mainly of theoretical
interest. They only show up in one additional place in the text, namely the proof of Theorem 9.3.1.

Solutions to Exercises

1. According to Theorem 9.2.1, we should reject H0 if f1(x) > f0(x), not reject H0 if f1(x) < f0(x) and
do whatever we wish if f1(x) = f0(x). Here

f0(x) =

{
0.3 if x = 1,
0.7 if x = 0,

f1(x) =

{
0.6 if x = 1,
0.4 if x = 0.

We have f1(x) > f0(x) if x = 1 and f1(x) < f0(x) if x = 0. We never have f1(x) = f0(x). So, the test
is to reject H0 if X = 1 and not reject H0 if X = 0.

2. (a) Theorem 9.2.1 can be applied with a = 1 and b = 2. Therefore, H0 should not be rejected if
f1(x)/f0(x) < 1/2. Since f1(x)/f0(x) = 2x, the procedure is to not reject H0 if x < 1/4 and to
reject H0 if x > 1/4.
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(b) For this procedure,

α(δ) = Pr(Rej. H0 | f0) =
∫ 1

1/4
f0(x) dx =

3

4

and

β(δ) = Pr(Acc. H0 | f1) =
∫ 1/4

0
2x dx =

1

16
.

Therefore, α(δ) + 2β(δ) = 7/8.

3. (a) Theorem 9.2.1 can be applied with a = 3 and b = 1. Therefore, H0 should not be rejected if
f1(x)/f0(x) = 2x < 3. Since all possible values of X lie in the interval (0,1), and since 2x < 3 for
all values in this interval, the optimal procedure is to not reject H0 for every possible observed
value.

(b) Since H0 is never rejecte, α(δ) = 0 and β(δ) = 1. Therefore, 3α(δ) + β(δ) = 1.

4. (a) By the Neyman-Pearson lemma, H0 should be rejected if f1(x)/f0(x) = 2x > k, where k is chosen
so that Pr(2x > k | f0) = 0.1. For 0 < k < 2,

Pr(2X > k | f0) = Pr

(
X >

k

2

∣∣∣∣ f0) = 1− k

2
.

If this value is to be equal to 0.1, then k = 1.8. Therefore, the optimal procedure is to reject H0

if 2x > 1.8 or, equivalently, if x > 0.9.

(b) For this procedure,

β(δ) = Pr(Acc. H0 | f1) =
∫ 0.9

0
f1(x)dx = 0.81.

5. (a) The conditions here are different from those of the Neyman-Pearson lemma. Rather than fixing
the value of α(δ) and minimizing β(δ), we must here fix the value of β(δ) and minimize α(δ).
Nevertheless, the same proof as that given for the Neyman-Pearson lemma shows that the optimal
procedure is again to reject H0 if f1(X)/f0(X) > k, where k is now chosen so that

β(δ) = Pr(Acc. H0 |H1) = Pr

[
f1(X)

f0(X)
< k |H1

]
= 0.05.

In this exercise,

f0(X) =
1

(2π)n/2
exp

[
−1

2

n∑
i=1

(xi − 3.5)2
]

and

f1(X) =
1

(2π)n/2
exp

[
−1

2

n∑
i=1

(xi − 5.0)2
]
.

Therefore,

log
f1(X)

f0(X)
=

1

2

[
n∑

i=1

(xi − 3.5)2 −
n∑

i=1

(xi − 5.0)2
]

=
1

2

[
n∑

i=1

x2i − 7
n∑

i=1

xi + 12.25n −
n∑

i=1

x2i + 10
n∑

i=1

xi − 25n

]

=
3

2
nxn − (const.).
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It follows that the likelihood ratio f1(X)/f0(X) will be greater than some specified constant k
if and only if xn is greater than some other constant k′. Therefore, the optimal procedure is to
reject H0 if xn > k′, where k′ is chosen so that

Pr(Xn < k′ |H1) = 0.05.

We shall now determine the value of k′. If H1 is true, then Xn will have a normal distribution
with mean 5.0 and variance 1/n. Therefore, Z =

√
n(Xn − 5.0) will have the standard normal

distribution, and it follows that

Pr(Xn < k′ |H1) = Pr[Z <
√
n(k′ − 5.0)] = Φ[

√
n(k′ − 5.0)].

If this probability is to be equal to 0.05, then it can be found from a table of values of Φ that√
n(k′ − 5.0) = −1.645. Hence, k′ = 5.0− 1.645n−1/2.

(b) For n = 4, the test procedure is to reject H0 if Xn > 5.0 − 1.645/2 = 4.1775. Therefore,

α(δ) = Pr(Rej. H0 |H0) = Pr(Xn > 4.1775 |H0).

When H0 is true, Xnhas a normal distribution with mean 3.5 and variance 1/n = 1/4. Therefore,
Z = 2(Xn − 3.5) will have the standard normal distribution, and

α(δ) = Pr[Z > 2(4.1775 − 3.5)] = Pr(Z > 1.355)

= 1− Φ(1.355) = 0.0877.

6. Theorem 9.2.1 can be applied with a = b = 1. Therefore, H0 should be rejected if f1(X)/f0(X) > 1.

If we let y =
n∑

i=1

xi, then

f1(X) = py1(1− p1)
n−y

and

f0(X) = py0(1− p0)
n−y.

Hence,

f1(X)

f0(X)
=

[
p1(1− p0)

p0(1− p1)

]y (1− p1
1− p0

)n

.

But f1(X)/f0(X) > 1 if and only if log[f1(X)/f0(X)] > 0, and this inequality will be satisfied if and
only if

y log

[
p1(1− p0)

p0(1− p1)

]
+ n log

(
1− p1
1− p0

)
> 0.

Since p1 < p0 and 1−p0 < 1−p1, the first logarithm on the left side of this relation is negative. Finally,
if we let xn = y/n, then this relation can be rewritten as follows:

xn <

log

(
1− p1
1− p0

)
log

[
p0(1− p1)

p1(1− p0)

] .
The optimal procedure is to reject H0 when this inequality is satisfied.
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7. (a) By the Neyman-Pearson lemma, H0 should be rejected if f1(X)/f0(X) > k. Here,

f0(X) =
1

(2π)n/22n/2
exp

[
−1

4

n∑
i=1

(xi − μ)2
]

and

f1(X) =
1

(2π)n/23n/2
exp

[
−1

6

n∑
i=1

(xi − μ)2
]
.

Therefore,

log
f1(X)

f0(X)
=

1

12

n∑
i=1

(xi − μ)2 + (const.).

It follows that the likelihood ratio will be greater than a specified constant k if and only if
n∑

i=1

(xi−

μ)2 is greater than some other constant c. The constant c is to be chosen so that

Pr

[
n∑

i=1

(Xi − μ)2 > c

∣∣∣∣∣ H0

]
= 0.05.

The value of c can be determined as follows. When H0 is true, W =
n∑

i=1

(Xi − μ)2/2 will have χ2

distribution with n degrees of freedom. Therefore,

Pr

[
n∑

i=1

(Xi − μ)2 > c

∣∣∣∣∣ H0

]
= Pr

(
W >

c

2

)
.

If this probability is to be equal to 0.05, then the value of c/2 can be determined from a table of
the χ2 distribution.

(b) For n = 8, it is found from a table of the χ2 distribution with 8 degrees of freedom that c/2 = 15.51
and c = 31.02.

8. (a) The p.d.f.’s f0(x) and f1(x) are as sketched in Fig. S.9.3. Under H0 it is impossible to obtain a
value of X greater than 1, but such values are possible under H1. Therefore, if a test procedure
rejects H0 only if x > 1, then it is impossible to make an error of type 1, and α(δ) = 0. Also,

β(δ) = Pr(X < 1 |H1) =
1

2
.

f0(x)

f1(x)

0 1 2 x

1/2

1

Figure S.9.3: Figure for Exercise 8a of Sec. 9.2.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



282 Chapter 9. Testing Hypotheses

(b) To have α(δ) = 0, we can include in the critical region only a set of points having probability 0
under H0. Therefore, only points x > 1 can be considered. To minimize β(δ) we should choose
this set to have maximum probability under H1. Therefore, all points x > 1 should be used in the
critical region.

9. As in Exercise 8, we should reject H0 if at least one of the n observations is greater than 1. For this
test, α(δ) = 0 and

β(δ) = Pr(Acc. H0 |H1) = Pr(X1 < 1, . . . ,Xn < 1 |H1) =

(
1

2

)n

.

10. (a) and (b). Theorem 9.2.1 can be applied with a = b = 1. The optimal procedure is to reject H0 if

f1(X)/f0(X) > 1. If we let y =
n∑

i=1

xi, then for i = 0, 1,

fi(X) =
exp(−nλi)λ

y
i∏n

i=1(xi!)
.

Therefore,

log
f1(X)

f0(X)
= y log

(
λ1

λ0

)
− n(λ1 − λ0).

Since λ1 > λ0, it follows that f1(X)/f0(X) > 1 if and only if xn = y/n > (λ1−λ0)/(log λ1−log λ0).

(c) If Hi is true, then Y will have a Poison distribution with mean nλi. For λ0 = 1/4, λ1 = 1/2, and
n = 20,

n(λ1 − λ0)

log λ1 − log λ0
=

20(0.25)

0.69314
= 7.214.

Therefore, it is found from a table of the Poison distribution with mean 20(1/4) = 5 that

α(δ) = Pr(Y > 7.214 |H0) = Pr(Y ≥ 8 |H0) = 0.1333.

Also, it is found from a table with mean 20(1/2) = 10 that

β(δ) = Pr(Y ≤ 7.214 |H1) = Pr(Y ≤ 7 |H1) = 0.2203.

Therefore, α(δ) + β(δ) = 0.3536.

11. Theorem 9.2.1 can be applied with a = b = 1. The optimal procedure is to reject H0 if f1(X)/f0(X) >
1. Here,

f0(X) =
1

(2π)n/22n
exp

[
−1

8

n∑
i=1

(xi + 1)2
]

and

f1(X) =
1

(2π)n/22n
exp

[
−1

8

n∑
i=1

(xi − 1)2
]
.

After some algebraic reduction, it can be shown that f1(X)/f0(X) > 1 if and only if xn > 0. If
H0 is true, Xn will have the normal distribution with mean −1 and variance 4/n. Therefore, Z =√
n(Xn + 1)/2 will have the standard normal distribution, and

α(δ) = Pr(Xn > 0 |H0) = Pr

(
Z >

1

2

√
n

)
= 1− Φ

(
1

2

√
n

)
.
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Similarly, if H1 is true, Xnwill have the normal distribution with mean 1 and variance 4/n. Therefore,
Z ′ =

√
n(Xn − 1)/2 will have the standard normal distribution, and

β(δ) = Pr(Xn < 0 |H1) = Pr

(
Z ′ < −1

2

√
n

)
= 1− Φ

(
1

2

√
n

)
.

Hence, α(δ) + β(δ) = 2[1 − Φ(
√
n/2)]. We can now use a program that computes Φ to obtain the

following results:

(a) If n = 1, α(δ) + β(δ) = 2(0.3085) = 0.6170.

(b) If n = 4, α(δ) + β(δ) = 2(0.1587) = 0.3173.

(c) If n = 16, α(δ) + β(δ) = 2(0.0228) = 0.0455.

(d) If n = 36, α(δ) + β(δ) = 2(0.0013) = 0.0027.

Slight discrepancies appear above due to rounding after multiplying by 2 rather than before.

12. In the notation of this section, fi(x) = θni exp
(
−θi

∑n
j=1 xj

)
for i = 0, 1. The desired test has the

following form: reject H0 if f1(x)/f0(x) > k where k is chosen so that the probability of rejecting H0

is α0 given θ = θ0. The ratio of f1 to f0 is

f1(x)

f0(x)
=

θn1
θn0

exp

(
[θ0 − θ1]

n∑
i=1

xi

)
.

Since θ0 < θ1, the above ratio will be greater than k if and only if
∑n

i=1 xi is less than some other
constant, c. That c is chosen so that Pr (

∑n
i=1Xi < c| θ = θ0) = α0. The distribution of

∑n
i=1Xi given

θ = θ0 is the gamma distribution with parameters n and θ0. Hence, c must be the α0 quantile of that
distribution.

13. (a) The test rejects H0 if f0(X) < f12(X). In this case, f0(x) = exp(−[x1 + x2]/2)/4, and f1(x) =
4/(2 + x1 + x2)

3 for both x1 > 0 and x2 > 0. Let T = X1 +X2. Then we reject H0 if

exp(−T/2)/4 < 4/(2 + T )3. (S.9.5)

(b) If X1 = 4 and X2 = 3 are observed, then T = 7. The inequality in (S.9.5) is exp(−7/2)/4 < 4/93

or 0.007549 < 0.00549, which is false, so we do not reject H0.

(c) If H0 is true, then T is the sum of two independent exponential random variables with parameter
1/2. Hence, it has the gamma distribution with parameters 2 and 1/2 by Theorem 5.7.7.

(d) The test is to reject H0 if f1(X)/f0(X) > c, where c is chosen so that the probability is 0.1 that
we reject H0 given θ = θ0. We can write

f1(X)

f0(X)
=

16 exp(T/2)

(2 + T )3
. (S.9.6)

The function on the right side of (S.9.6) takes the value 2 at T = 0, decreases to the value
0.5473 at T = 4, and increases for T > 4. Let G be the c.d.f. of the gamma distribution with
parameters 2 and 1/2 (also the χ2 distribution with 4 degrees of freedom). The level 0.01 test
will reject H0 if T < c1 or T > c2 where c1 and c2 satisfy G(c1) + 1 − G(c2) = 0.01, and either
16 exp(c1/2)/(2+c1)

3 = 16 exp(c2/2)/(2+c2)
3 or c1 = 0 and 16 exp(c2/2)/(2+c2)

3 > 2. It follows
that 1−G(c2) ≤ 0.01, that is, c2 ≥ G−1(0.99) = 13.28. But

16 exp(13.28)/(2 + 13.28)3 = 3.4 > 2.

It follows that c1 = 0 and the test is to reject H0 if T > 13.28.

(e) If X1 = 4 and X2 = 3, then T = 7 and we do not reject H0.
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9.3 Uniformly Most Powerful Tests

Commentary

This section introduces the concept of monotone likelihood ratio, which is used to provide conditions under
which uniformly most powerful tests exist for one-sided hypotheses. One may safely skip this section if one
is not teaching a rigorous mathematical statistics course. One step in the proof of Theorem 9.3.1 relies on
randomized tests (Sec. 9.2), which the instructor might have skipped earlier.

Solutions to Exercises

1. Let y =
n∑

i=1

xi. Then the joint p.f. is

fn(X |λ) = exp(−nλ)λy∏n
i=1(xi!)

Therefore, for 0 < λ1 < λ2,

fn(X |λ2)

fn(X |λ1)
= exp(−n(λ2 − λ1))

(
λ2

λ1

)y

,

which is an increasing function of y.

2. Let y =
n∑

i=1

(x1 − μ)2. Then the joint p.d.f. is

fn(X |σ2) =
1

(2π)
n
2 σn

exp(− y

2σ2
).

Therefore, for 0 < σ2
1 < σ2

2 ,

fn(X |σ2
2)

fn(X |σ2
1)

=
σn
1

σn
2

exp

{
1

2

(
1

σ2
1

− 1

σ2
2

)
y

}
,

which is an increasing function of y.

3. Let y =
n∏

i=1

xi and let z =
n∑

i=1

xi. Then the joint p.d.f. is

fn(X |α) = βnα

[Γ(α)]n
yα−1 exp(−βz).

Therefore, for 0 < α1 < α2,

fn(X |α2)

fn(X |α1)
= (const.)yα2−α1 ,

which is an increasing function of y.
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4. The joint p.d.f. fn(X |β) in this exercise is the same as the joint p.d.f. fn(X |α) given in Exercise 3,
except that the value of β is now unknown and the value of α is known. Since z = nxn, it follows that
for 0 < β1 < β2,

fn(X |β2)
fn(X |β1) = (const.) exp([β1 − β2]nxn).

The expression on the right side of this relation is a decreasing function of xn, because β1 − β2 < 0.
Therefore, this expression is an increasing function of −xn.

5. Let y =
n∑

i=1

d(xi). Then the joint p.d.f. or the joint p.f. is

fn(X | θ) = [a(θ)]n
[

n∏
i=1

b(xi)

]
exp[c(θ)y].

Therefore, for θ1 < θ2,

fn(X | θ2)
fn(X | θ1) =

[
a(θ2)

a(θ1)

]n
exp{[c(θ2)− c(θ1)]y}.

Since c(θ2)− c(θ1) > 0, this expression is an increasing function of y.

6. Let θ1 < θ2. The range of possible values of r(X) = max{X1, . . . ,Xn} is the interval [0, θ2] when
comparing θ1 and θ2. The likelihood ratio for values of r(x) in this interval is⎧⎪⎨⎪⎩

θn1
θn2

if 0 ≤ r(x) ≤ θ1,

∞ if θ1 < r(x) ≤ θ2.

This is monotone increasing, even though it takes only two values. It does take the larger value ∞
when r(x) is large and it takes the smaller value θn1 /θ

n
2 when r(x) is small.

7. No matter what the true value of θ is, the probability that H0 will be rejected is 0.05. Therefore, the
value of the power function at every value of θ is 0.05.

8. We know from Exercise 2 that the joint p.d.f. of X1, . . . ,Xn has a monotone likelihood ratio in the

statistic
n∑

i=1

X2
i . Therefore, by Theorem 9.3.1, a test which rejects H0 when

n∑
i=1

X2
i ≥ c will be a

UMP test. To achieve a specified level of significance α0, the constant c should be chosen so that

Pr

(
n∑

i=1

X2
i ≥ c/σ2 = 2

)
= α0. Since

n∑
i=1

X2
i has a continuous distribution and not a discrete distribu-

tion, there will be a value of c which satisfies this equation for any specified value of α0 (0 < α0 < 1).

9. The first part of this exercise was answered in Exercise 8. When n = 10 and σ2 = 2, the distribution

of Y =
n∑

i=1

X2
i /2 will be the χ2 distribution with 10 degrees of freedom, and it is found from a table of

this distribution that Pr(Y ≥ 18.31) = 0.05. Also,

Pr

(
n∑

i=1

X2
i ≥ c |σ2 = 2

)
= Pr

(
Y ≥ c

2

)
.

Therefore, if this probability is to be equal to 0.05, then c/2 = 18.31 or c = 36.62.
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10. Let Y =
n∑

i=1

Xi. As in Example 9.3.7, a test which specifies rejecting H0 if Y ≥ c is a UMP test. When

n = 20 and p = 1/2, it is found from the table of the binomial distribution given at the end of the book
that

Pr(Y ≥ 14) = .0370 + .0148 + .0046 + .0011 + .0002 = .0577.

Therefore, the level of significance of the UMP test which rejects H0 when Y ≥ 14 will be 0.0577.
Similarly, the UMP test that rejects H0 when Y ≥ 15 has level of significance 0.0207.

11. It is known from Exercise 1 that the joint p.f. of X1, . . . ,Xn has a monotone likelihood ratio in he

statistic Y =
n∑

i=1

Xi. Therefore, by Theorem 9.3.1, a test which rejects H0 when Y ≥ c will be a UMP

test. When λ = 1 and n = 10, Y will have a Poisson distribution with mean 10, and it is found from
the table of the Poisson distribution given at the end of this book that

Pr(Y ≥ 18) = .0071 + .0037 + .0019 + .0009 + .0004 + .0002 + .0001 = .0143.

Therefore, the level of significance of the UMP test which rejects H0 when Y ≥ 18 will be 0.0143.

12. Change the parameter from θ to ζ = −θ. In terms of the new parameter ζ, the hypotheses to be tested
are:

H0 : ζ ≤ −θ0,

H1 : ζ > −θ0.

Let gn(X | ζ) = fn(X | − ζ) denote the joint p.d.f. or the joint p.f. of X1, . . . ,Xn when ζ is regarded
as the parameter. If ζ1 < ζ2, then θ1 = −ζ1 > −ζ2 = θ2. Therefore, the ratio gn/(X | ζ2)/gn(X | ζ1)
will be a decreasing function of r(X). It follows that this ratio will be an increasing function of the
statistic s(X) = −r(X).

Thus, in terms of ζ, the hypotheses have the same form as the hypotheses (9.3.8) and gn(x∼ | ζ) has a
monotone likelihood ratio in the statistic s(X). Therefore, by Theorem 9.3.1, a test which rejects H0

when s(X) ≥ c′, for some constant c′, will be a UMP test. But s(X) ≥ c′ if and only if T = r(X) ≤ c,
where c = −c′. Therefore, the test which rejects H0 when T ≤ c will be a UMP test. If c is chosen to
satisfy the relation given in the exercise, then it follows from Theorem 9.3.1 that level of significance
of this test will be α0.

13. (a) By Exercise 12, the test which rejects H0 when Xn ≤ c will be a UMP test. For the level of
significance to be 0.1, c should be chosen so that Pr(Xn ≤ c |μ = 10) = 0.1. In this exercise,
n = 4. When μ = 10, the random variable z = 2(Xn − 10) has a standard normal distribution
and Pr(Xn ≤ c |μ = 10) = Pr[Z ≤ 2(c − 10)]. It is found from a table of the standard normal
distribution that Pr(Z ≤ −1.282) = 0.1. Therefore, 2(c− 10) = −1.282 or c = 9.359.

(b) When μ = 9, the random variable 2(Xn− 9) has the standard normal distribution. Therefore, the
power of the test is

Pr(Xn ≤ 9.359 |μ = 9) = Pr(Z ≤ 0.718) = Φ(0.718) = 0.7636,

where we have interpolated in the table of the normal distribution between 0.71 and 0.72.
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(c) When μ = 11, the random variable Z = 2(Xn − 11) has the standard normal distribution. There-
fore, the probability of rejecting H0 is

Pr(Xn ≥ 93359 |μ = 11) = Pr(Z ≥ −3.282) = Pr(Z ≤ 3.282) = Φ(3.282) = 0.9995.

14. By Exercise 12, a test which rejects H0 when
n∑

i=1

Xi ≤ c will be a UMP test. When n = 10 and

λ = 1,
∑n

i=1 Xi will have a Poisson distribution with mean 10 and α0 = Pr

(
n∑

i=1

Xi ≤ c |λ = 1

)
. From

a table of the Poisson distribution, the following values of α0 are obtained.

c = 0, α0 = .0000;

c = 1, α0 = .0000 + .0005 = .0005;

c = 2, α0 = .0000 + .0005 + .0023 = .0028;

c = 3, α0 = .0000 + .0005 + .0023 + .0076 = .0104;

c = 4, α0 = .0000 + .0005 + .0023 + .0076 + .0189 = .0293.

For larger values of c, α0 > 0.03.

15. By Exercise 4, the joint p.d.f. of X1, . . . ,Xn has a monotone likelihood ratio in the statistic −Xn.
Therefore, by Exercise 12, a test which rejects H0 when −Xn ≤ c′, for some constant c′, will be a UMP
test. But this test is equivalent to a test which rejects H0 when Xn ≥ c, where c = −c′. Since Xn has
a continuous distribution, for any specified value of α0(0 < α0 < 1) there exists a value of c such that
Pr(Xn ≥ c |β = 1/2) = α0.

16. We must find a constant c such that when n = 10,Pr(Xn ≥ c |β = 1/2) = 0.05. When β = 1/2,
each observation Xi has an exponential distribution with β = 1/2, which is a gamma distribution

with parameters α = 1 and β = 1/2. Therefore,
n∑

i=1

Xi has a gamma distribution with parameters

α = n = 10 and β = 1/2, which is a χ2 distribution with 2n = 20 degrees of freedom. But

Pr

(
Xn ≥ c |β =

1

2

)
= Pr

(
n∑

i=1

Xi ≥ 10c |β =
1

2

)
.

It is found from a table of the χ2 distribution with 20 degrees of freedom that Pr(
∑n

i=1Xi ≥ 31.41) =
0.05. Therefore, 10c = 31.41 and c = 3.141.

17. In this exercise, H0 is a simple hypothesis. By the Neyman-Pearson lemma, the test which has maximum
power at a particular alternative value θ1 > 0 will reject H0 if f(x | θ = θ1)/f(x | θ = 0) > c, where c is
chosen so that the probability that this inequality will be satisfied when θ = 0 is α0. Here,

f(x | θ = θ1)

f(x | θ = 0)
> c

if and only if (1 − c)x2 + 2cθ1x > cθ21 − (1 − c). For each value of θ1, the value of c is to be chosen so
that the set of points satisfying this inequality has probability α0 when θ = 0. For two different values
of θ1, these two sets will be different. Therefore, different test procedures will maximize the power at
the two different values of θ1. Hence, no single test is a UMP test.
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18. The UMP test will reject H0 when Xn ≥ c, where Pr(Xn ≥ c |μ = 0) = Pr(
√
nXn ≥ √

nc |μ = 0) =
0.025. However, when μ = 0,

√
nXn has the standard normal distribution. Therefore, Pr(

√
nXn ≥

1.96 |μ = 0) = 0.025. It follows that
√
nc = 1.96 and c = 1.96n−1/2.

(a) When μ = 0.5, the random variable Z =
√
n(Xn − 0.5) has the standard normal distribution.

Therefore,

π(0.5 | δ∗) = Pr(Xn ≥ 1.96n−1/2 |μ = 0.5) = Pr(Z ≥ 1.96 − 0.5n1/2)

= Pr(Z ≤ 0.5n1/2 − 1.96) = Φ(0.5n1/2 − 1.96).

But Φ(1.282) = 0.9. Therefore, π(0.5 | δ∗) ≥ 0.9 if and only if 0.5n1/2 − 1.96 ≥ 1.282, or, equiv-
alently, if and only if n ≥ 42.042. Thus, a sample of size n = 43 is required in order to have
π(0.5 | δ∗) ≥ 0.9. Since the power function is a strictly increasing function of μ, it will then also
be true that π(0.5 | δ∗) ≥ 0.9 for μ > 0.5.

(b) When μ = −0.1, the random variable Z =
√
n(Xn + 0.1) has the standard normal distribution.

Therefore,

π(−0.1 | δ∗) = Pr(Xn ≥ 1.96n−1/2 |μ = −0.1) = Pr(Z ≥ 1.96 + 0.1n1/2)

= 1− Φ(1.96 + 0.1n1/2).

But Φ(3.10) = 0.999. Therefore, π(−0.1 | δ∗) ≤ 0.001 if and only if 1.96 + 0.1n1/2 ≥ 3.10 or,
equivalently, if and only if n ≥ 129.96. Thus, a sample of size n = 130 is required in order to have
π(−0.1 | δ∗) ≤ 0.001. Since the power function is a strictly increasing function of μ, it will then
also be true that π(μ | δ∗) ≤ 0.001 for μ < −0.1.

19. (a) Let f(x|μ) be the joint p.d.f. of X given μ. For each set A and i = 0, 1,

Pr(X ∈ A|μ = μi) =

∫
. . .

A

∫
f(x|μi)dx. (S.9.7)

It is clear that f(x|μ0) > 0 for all x and so is f(x|μ1) > 0 for all x. Hence (S.9.7) is strictly
positive for i = 0 if and only if it is strictly positive for i = 1.

(b) Both δ and δ1 are size α0 tests of H ′
0 : μ = μ0 versus H ′

1 : μ > μ0. Let

A = {x : δ rejects but δ1 does not reject},
B = {x : δ does not reject but δ1 rejects},
C = {x : both tests reject}.

Because both tests have the same size, it must be the case that

Pr(X ∈ A|μ = μ0) + Pr(X ∈ |μ = μ0) = α0 = Pr(X ∈ B|μ = μ0) + Pr(X ∈ |μ = μ0).

Hence,

Pr(X ∈ A|μ = μ0) = Pr(X ∈ B|μ = μ0). (S.9.8)

Because of the MLR and the form of the test δ1, we know that there is a constant c such that for
every μ > μ0 and every x ∈ B and every y ∈ A,

f(x|μ)
f(x|μ0)

> c >
f(y|μ)
f(y|μ0)

. (S.9.9)

Now,

π(μ|δ) =
∫

. . .

A

∫
f(x|μ)dx+

∫
. . .

C

∫
f(x|μ)dx.
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Also,

π(μ|δ1) =
∫

. . .

B

∫
f(x|μ)dx+

∫
. . .

C

∫
f(x|μ)dx.

It follows that, for μ > μ0,

π(μ|δ1)− π(μ|δ) =

∫
. . .

B

∫
f(x|μ)dx−

∫
. . .

A

∫
f(x|μ)dx

=

∫
. . .

B

∫
f(x|μ)
f(x|μ0)

f(x|μ0)dx−
∫

. . .

A

∫
f(x|μ)
f(x|μ0)

f(x|μ0)dx

>

∫
. . .

B

∫
cf(x|μ0)dx−

∫
. . .

A

∫
cf(x|μ0)dx = 0,

where the inequality follows from (S.9.9), and the final equality follows from (S.9.8).

9.4 Two-Sided Alternatives

Commentary

This section considers tests for simple (and interval) null hypotheses against two-sided alternative hypotheses.
The concept of unbiased tests is introduced in a subsection at the end. Even students in a mathematical
statistics course may have trouble with the concept of unbiased test.

Solutions to Exercises

1. If π(μ | δ) is to be symmetric with respect to the point μ = μ0, then the constants c1 and c2 must be
chosen to be symmetric with respect to the value μ0. Let c1 = μ0 − k and c1 = μ0 + k. When μ = μ0,
the random variable Z = n1/2(Xn − μ0) has the standard normal distribution. Therefore,

π(μ0 | δ) = Pr(Xn ≤ μ0 − k |μ0) + Pr(Xn ≥ μ0 + k |μ0)

= Pr(Z ≤ −n1/2k) + Pr(Z ≥ n1/2k)

= 2Pr(Z ≥ n1/2k) = 2[1 − Φ(n1/2k)].

Since k must be chosen so that π(μ0 | δ) = 0.10, it follows that Φ(n1/2k) = 0.95. Therefore, n1/2k = 1.645
and k = 1.645n−1/2.

2. When μ = μ0, the random variable Z = n1/2(Xn−μ0) has the standard normal distribution. Therefore,

π(μ0 | δ) = Pr(Xn ≤ c1 |μ0) + Pr(Xn ≥ c2 |μ0)

= Pr(Z ≤ −1.96) + Pr [Z ≥ n1/2(c2 − μ0)]

= Φ(−1.96) + 1− Φ[n1/2(c2 − μ0)]

= 1.025 − Φ[n1/2(c2 − μ0)].

If we are to have π(μ0 | δ) = 0.10, then we must have Φ[n1/2(c2−μ0)] = 0.925. Therefore, n1/2(c2−μ0) =
1.439 and c2 = μ0 + 1.439n−1/2.

3. From Exercise 1, we know that if c1 = μ0 − 1.645n−1/2 and c2 = μ0 + 1.645n−1/2, then π(μ0 | δ) =
0.10 and, by symmetry, π(μ0 + 1 | δ) = π(μ0 − 1 | δ). Also, when μ = μ0 + 1, the random variable
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n1/2(Xn − μ0 − 1) has the standard normal distribution. Therefore,

π(μ0 + 1 | δ) = Pr(Xn ≤ c1 |μ0 + 1) + Pr(Xn ≥ c2 |μ0 + 1)

= Pr(Z ≤ −1.645 − n1/2) + Pr(Z ≥ 1.645 − n1/2)

= Φ(−1.645 − n1/2) + Φ(n1/2 − 1.645).

For n = 9, π(μ0 + 1 | δ) = Φ(−4.645) + Φ(1.355) < 0.95.

For n = 10, π(μ0 + 1 | δ) = Φ(−4.807) + Φ(1.517) < 0.95.

For n = 11, π(μ0 + 1 | δ) = Φ(−4.962) + Φ(1.672) > 0.95.

4. If we choose c1 and c2 to be symmetric with respect to the value 0.15, then it will be true that
π(0.1 | δ) = π(0.2 | δ). Accordingly, let c1 = 0.15 − k and c2 = 0.15 + k. When μ = 0.1, the random
variable Z = 5(Xn − 0.1) has a standard normal distribution. Therefore,

π(0.1 | δ) = Pr(Xn ≤ c1 | 0.1) + Pr(Xn ≥ c2 | 0.1)
= Pr(Z ≤ 0.25 − 5k) + Pr(Z ≥ 0.25 + 5k)

= Φ(0.25− 5k) + Φ(−0.25 − 5k).

We must choose k so that π(0.1 | δ) = 0.07. By trial and error, using the table of the standard normal
distribution, we find that when 5k = 1.867,

π(0.1 | δ) = Φ(−1.617) + Φ(−2.117) = 0.0529 + 0.0171 = 0.07.

Hence, k = 0.3734.

5. As in Exercise 4,

π(0.1 | δ) = Pr [Z ≤ 5(c1 − 0.1)] + Pr [Z ≥ 5(c2 − 0.1)] = Φ(5c1 − 0.5) + Φ(0.5− 5c2).

Similarly,

π(0.2 | δ) = Pr [Z ≤ 5(c1 − 0.2)] + Pr [Z ≥ 5(c2 − 0.2)] = Φ(5c1 − 1) + Φ(1− 5c2).

Hence, the following two equations must be solved simultaneously:

Φ(5c1 − 0.5) + Φ(0.5− 5c2) = 0.02,

Φ(5c1 − 1) + Φ(1− 5c2) = 0.05.

By trial and error, using the table of the standard normal distribution, it is found ultimately that if
5c1 = −2.12 and 5c2 = 2.655, then

Φ(5c1 − 0.5) + Φ(0.5− 5c2) = Φ(−2.62) + Φ(−2.155) = 0.0044 + 0.0155 = 0.02.

and

Φ(5c1 − 0.1) + Φ(1− 5c2) = Φ(−3.12) + Φ(−1.655) = 0.0009 + 0.0490 = 0.05.
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6. Let T = max(X1, . . . ,Xn). Then

fn(X | θ) =
⎧⎨⎩

1

θn
for 0 ≤ t ≤ θ,

0 otherwise.

Therefore, for θ1 < θ2,

fn(X | θ2)
fn(X | θ1) =

⎧⎨⎩
(
θ1
θ2

)n

for 0 ≤ t ≤ θ1,

∞ for θ1 < t ≤ θ2.

It can be seen from this relationship that fn(X | θ) has a monotone likelihood ratio in the statistic T
(although we are being somewhat nonrigorous by treating ∞ as a number).

For any constant c (0 < c ≤ 3), Pr(T ≥ c | θ = 3) = 1 − (c/3)n. Therefore, to achieve a given level of
significance α0, we should choose c = 3(1−α0)

1/n. It follows from Theorem 9.3.1 that the corresponding
test will be a UMP test.

7. For θ > 0, the power function is π(θ | δ) = Pr(T ≥ c | θ). Hence,

π(θ | δ) =
⎧⎨⎩ 0 for θ ≤ c,

1−
(
c

θ

)n

for θ > c.

The plot is in Fig. S.9.4.

0

1

3 θc

α0

π(θ/δ)

Figure S.9.4: Figure for Exercise 7 of Sec. 9.4.

8. (a) It follows from Exercise 8 of Sec. 9.3 that the specified test will be a UMP test.

(b) For any given value of c (0 < c < 3), Pr(T ≤ c | θ = 3) = (c/3)n. Therefore, to achieve a given

level of significance α0, we should choose c = 3α
1/n
0 .

9. A sketch is given in Fig. S.9.5.

10. (a) Let α0 = 0.05 and let c1 = 3α
1/n
0 as in Exercise 8. Also, let c2 = 3. Then

π(θ | δ) = Pr(T ≤ 3α
1/n
0 | θ) + Pr(T ≥ 3 | θ).

Since Pr(T ≥ 3 | θ) = 0 for θ ≤ 3, the function π(θ | δ) is as sketched in Exercise 10 for θ ≤ 3. For
θ > 3,

π(θ | δ) =
[
3α

1/n
0

θ

]n
+

[
1−

(
3

θ

)n]
> α0. (S.9.10)
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0

1

c 3 θ

α0

Figure S.9.5: Figure for Exercise 9 of Sec. 9.4.

(b) In order for a test δ to be UMP level α0, for (9.4.15), it necessary and sufficient that the following
three things happen:

• δ has the same power function as the test in Exercise 6 for θ > 3.

• δ has the same power function as the test in Exercise 8 for θ < 3.

• π(3|δ) ≤ α0.

Because c2 = 3, we saw in part (a) that π(θ|δ) is the same as the power function of the test in
Exercise 8 for θ < 3. We also saw in part (a) that π(3|δ) = 0.05 = α0. For θ > 3, the power
function of the test in Exercise 6 is

Pr(T ≥ 3(1 − α0)
1/n|θ) = 1−

(
3(1 − α0)

1/n

θ

)n

= 1−
(
3

θ

)n

(1 − α0).

It is straightforward to see that this is the same as (S.9.10).

11. It can be verified that if c1 and c2 are chosen to be symmetric with respect to the value μ0, then the
power function π(μ | δ) will be symmetric with respect to the point μ = μ0 and will attain its minimum
value at μ = μ0. Therefore, if c1 and c2 are chosen as in Exercise 1, the required conditions will be
satisfied.

12. The power function of the test δ described in this exercise is

π(β|δ) = 1− exp(−c1β) + exp(−c2β).

(a) In order for δ to have level of significance α0, we must have π(1|δ) ≤ α0. Indeed, the test will have
size α0 exactly if

α0 = 1− exp(−c1) + exp(−c2).

(b) We can let c1 = − log(1− α0/2) and c2 = − log(α0/2) to solve this equation.

13. The first term on the right of (9.4.13) is

n

θ

∫ x

0

θn

Γ(n)
tn−1 exp(−tθ)dt =

n

θ
G(x;n, θ).

The second term on the right of (9.4.13) is the negative of

n

θ

∫ x

0

θn+1

Γ(n+ 1)
tn exp(−tθ)dt =

n

θ
G(x;n + 1, θ).
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9.5 The t Test

Commentary

This section provides a natural continuation to Sec. 9.1 in a modern statistics course. We introduce the t
test and its power function, defined in terms of the noncentral t distribution. The theoretical derivation of
the t test as a likelihood ratio test is isolated at the end of the section and could easily be skipped without
interrupting the flow of material. Indeed, that derivation should only be of interest in a fairly mathematical
statistics course.

As with confidence intervals, computer software can replace tables for obtaining quantiles of the t distri-
butions that are used in tests. The R function qt can compute these. For computing p-values, one can use pt.
The precise use of pt depends on whether the alternatoive hypothesis is one-sided or two-sided. For testing
H0 : μ ≤ μ0 versus H1 : μ > μ0 using the statistic U in Eq. (9.5.2), the p-value would be 1-pt(u,n-1),
where u is the observed value of U . Fot the opposite one-sided hypotheses, the p-value would be pt(u,n-1).
For testing H0 : μ = μ0 versus H1 : μ �= μ0, the p-value is 2*(1-pt(abs(u),n-1)). The power function of
a t test can be computed using the optional third parameter with pt, which is the noncentrality parameter
(whose default value is 0). Similar considerations apply to the comparison of two means in Sec. 9.6.

Solutions to Exercises

1. We computed the summary statistics xn = 1.379 and σ′ = 0.3277 in Example 8.5.4.

(a) The test statistic is U from (9.5.2)

U = 101/2
1.379 − 1.2

0.3277
= 1.727.

We reject H0 at level α0 = 0.05 if U ≥ 1.833, the 0.95 quantile of the t distribution with 9 degrees
of freedom. Since 1.727 �≥ 1.833, we do not reject H0 at level 0.05.

(b) We need to compute the probability that a t random variable with 9 degrees of freedom exceeds
1.727. This probability can be computed by most statistical software, and it equals 0.0591. With-
out a computer, one could interpolate in the table of the t distribution in the back of the book.
That would yield 0.0618.

2. When μ0 = 20, the statistic U given by Eq. (9.5.2) has a t distribution with 8 degrees of freedom. The
value of U in this exercise is 2.

(a) We would reject H0 if U ≥ 1.860. Therefore, we reject H0.

(b) We would reject H0 if U ≤ −2.306 or U ≥ 2.306. Therefore, we don’t reject H0.

(c) We should include in the confidence interval, all values of μ0 for which the value of U given by Eq.
(9.5.2) will lie between −2.306 and 2.306. These values form the interval 19.694 < μ0 < 24.306.

3. It must be assumed that the miles per gallon obtained from the different tankfuls are independent and
identically distributed, and that each has a normal distribution. When μ0 = 20, the statistic U given
by Eq. (9.5.2) has the t distribution with 8 degrees of freedom. Here, we are testing the following
hypotheses:

H0 :μ ≥ 20,
H1 :μ < 20.

We would reject H0 if U ≤ −1.860. From the given value, it is found that Xn = 19 and S2
n = 22.

Hence, U = −1.809 and we do not reject H0.
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4. When μ0 = 0, the statistic U given by Eq. (9.5.2) has the t distribution with 7 degrees of freedom.
Here

Xn =
−11.2

8
= −1.4

and

n∑
i=1

(Xi −Xn)
2 = 43.7 − 8(1.4)2 = 28.02.

The value of U can now be found to be −1.979. We should reject H0 if U ≤ −1.895 or U ≥ 1.895.
Therefore, we reject H0.

5. It is found from the table of the t distribution with 7 degrees of freedom that c1 = −2.998 and c2 lies
between 1.415 and 1.895. Since U = −1.979, we do not reject H0.

6. Let U be given by Eq. (9.5.2) and suppose that c is chosen so that the level of significance of the test
is α0. Then

π(μ, σ2 | δ) = Pr(U ≥ c |μ, σ2).

If we let Y = n1/2(Xn−μ)/σ and Z =
∑n

i=1(Xi−Xn)
2/σ2, then Y will have a standard normal distri-

bution, Z will have a χ2 distribution with n− 1 degrees of freedom, and Y and Z will be independent.
Also,

U =
Y + n1/2

(
μ− μ0

σ

)
[Z/(n − 1)]1/2

.

It follows that all pairs (μ, σ2) which yield the same value of (μ − μ0)/σ will yield the same value of
π(μ, σ2 | δ).

7. The random variable T = (X − μ)/σ will have the standard normal distribution, the random variable

Z =
n∑

i=1

Y 2
i /σ

2 will have a χ2 distribution with n degrees of freedom, and T and Z will be independent.

Therefore, when μ = μ0, the following random variable U will have the t distribution with n degrees of
freedom:

U =
T

[Z/n]1/2
=

n1/2(X − μ0)[
n∑

i=1

Y 2
i

]1/2 .

The hypothesis H0 would be rejected if U ≥ c.

8. When σ2 = σ2
0, S

2
n/σ

2
0 has a χ2 distribution with n − 1 degrees of freedom. Choose c so that, when

σ2 = σ2
0 ,Pr(S

2
n/σ

2
0 ≥ c) = α0, and reject H0 if S

2
n/σ

2
0 ≥ c. Then π(μ, σ2 | δ) = α0 if σ

2 = σ2
0. If σ

2 �= σ2
0 ,

then Z = S2
n/σ

2 has the χ2 distribution with n − 1 degrees for freedom, and S2
n/σ

2
0 = (σ2/σ2

0)T .
Therefore,

π(μ, σ2 | δ) = Pr(S2
n/σ

2
0 ≥ c |μ, σ2) = Pr(T ≥ cσ2

0/σ
2).

If σ2
0/σ

2 > 1, then π(μ, σ2 | δ) < Pr(T ≥ c) = α0. If σ
2
0/σ

2 < 1, then π(μ, σ2 | δ) > Pr(T ≥ c) = α0 .
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9. When σ2 = 4, S2
n/4 has the χ2 distribution with 9 degrees of freedom. We would reject H0 if S2

n/4 ≥
16.92. Since S2

n/4 = 60/4 = 15, we do not reject H0.

10. When σ2 = 4, S2
n/4 has the χ2 distribution with 9 degrees of freedom. Therefore, Pr(S2

n/4 < 2.700) =
Pr(S2

n/4 > 19.02) = 0.025. It follows that c1 = 4(2.700) = 10.80 and c2 = 4(19.02) = 76.08.

11. U1 has the distribution of X/Y where X has a normal distribution with mean ψ and variance 1, and
Y is independent of X such that mY 2 has the χ2 distribution with m degrees of freedom. Notice that
−X has a normal distribution with mean −ψ and variance 1 and is independent of Y . So U2 has the
distribution of −X/Y = −U1. So

Pr(U2 ≤ −c) = Pr(−U1 ≤ −c) = Pr(U1 ≥ c).

12. The statistic U has the t distribution with 16 degrees of freedom. The calculated value is

U =

√
17(Xn − 3)

[S2
n/16]

1/2
=

0.2

(0.09/16)1/2
=

8

3

and the corresponding tail area is Pr(U > 8/3).

13. The test statistic is U = 1691/2(3.2 − 3)/(0.09)1/2 = 8.667. The p-value can be calculated using
statistical software as 1− T169(8.667) = 1.776 × 10−15.

14. The statistic U has the t distribution with 16 degrees of freedom. The calculated value of U is

U =
0.1

(0.09/16)1/2
=

4

3
.

Because the alternative hypothesis is two-sided, the corresponding tail area is

Pr

(
U ≥ 4

3

)
+ Pr

(
U ≤ −4

3

)
= 2Pr

(
U ≥ 4

3

)
.

15. The test statistic is U = 1691/2(3.2 − 3.1)/(0.09)1/2 = 4.333. The p-value can be calculated using
statistical software as 2[1− T169(4.333)] = 2.512 × 10−5.

16. The calculated value of U is

U =
−0.1

(0.09/16)1/2
= −4

3
.

Since this value is the negative of the value found in Exercise 14, the corresponding tail area will be
the same as in Exercise 14.

17. The denominator of Λ(x) is still (9.5.11). The M.L.E. (μ̂0, σ̂
2
0) is easier to calculate in this exercise,

namely μ̂0 = μ0 (the only possible value) and

σ̂2
0 =

1

n

n∑
i=1

(xi − μ0)
2.

These are the same values that lead to Eq. (9.5.12) in the text. Hence, Λ(x) has the value given in
Eq. (9.5.14). For k < 1, Λ(x) ≤ k if and only if

|U | ≥ ((n − 1)[k2/n − 1])1/2 = c.
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18. In this case Ω0 = {(μ, σ2) : μ ≥ μ0}, and Λ(x) = 1 if xn ≥ μ0. If xn < μ0, then the numerator of Λ(x)
is (9.5.12), and the formula for Λ(x) is the same as (9.5.13) with the branch labels switched. This time,
Λ(x) is a non-decreasing function of u, the observed value of U . So for k < 1, Λ(x) ≤ k if and only if
U ≤ c, for the same c as in Example 9.5.12.

9.6 Comparing the Means of Two Normal Distributions

Commentary

The two-sample t test is introduced for the case of equal variances. There is some material near the end
of the section about the case of unequal variances. This is useful material, but is not traditionally covered
and can be skipped. Also, the derivation of the two-sample t test as a likelihood ratio test is provided for
mathematical interest at the end of the section.

Solutions to Exercises

1. In this example, n = 5, m = 5, Xm = 18.18, Y n = 17.32, S2
X = 12.61, and S2

Y = 11.01. Then

U =
(5 + 5− 2)1/2(18.18 − 17.32)(
1
5 + 1

5

)1/2
(11.01 + 12.61)1/2

= 0.7913.

We see that |U | = 0.7913 is much smaller than the 0.975 quantile of the t distribution with 8 degrees
of freedom.

2. In this exercise, m = 8, n = 6, xm = 1.5125, yn = 1.6683, S2
X = 0.18075, and S2

Y = 0.16768. When
μ1 = μ2, the statistic U defined by Eq. (9.6.3) will have the t distribution with 12 degrees of freedom.
The hypotheses are as follows:

H0 : μ1 ≥ μ2,

H1 : μ1 < μ2.

Since the inequalities are reversed from those in (9.6.1), the hypothesis H0 should be rejected if U < c.
It is found from a table that c = −1.356. The calculated value of U is −1.692. Therefore, H0 is rejected.

3. The value c = 1.782 can be found from a table of the t distribution with 12 degrees of freedom. Since
U = −1.692, H0 is not rejected.

4. The random variable Xm−Y n has a normal distribution with mean 0 and variance (σ2
1/m)+ (kσ2

1/n).
Therefore, the following random variable has the standard normal distribution:

Z1 =
Xm − Y n(
1

m
+

k

n

)1/2

σ1

.

The random variable S2
X/σ2

1 has a χ2 distribution with m-1 degrees of freedom. The random variable
S2
Y /(kσ

2
1) has a χ2 distribution with n − 1 degrees of freedom. These two random variables are inde-

pendent. Therefore, Z2 = (1/σ2
1)(S

2
X +S2

Y /k) has a χ2 distribution with m+n− 2 degrees of freedom.

Since Z1 and Z2 are independent, it follows that U = (m+n−2)1/2Z1/Z
1/2
2 has the t distribution with

m+ n− 2 degrees of freedom.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 9.6. Comparing the Means of Two Normal Distributions 297

5. Again, H0 should be rejected if U < −1.356. Since U = −1.672,H0 is rejected.

6. If μ1 −μ2 = λ, the following statistic U will have the t distribution with m+n− 2 degrees of freedom:

U =
(m+ n− 2)1/2(Xm − Y n − λ)(

1

m
+

1

n

)1/2

(S2
X + S2

Y )
1/2

.

The hypothesis H0 should be rejected if either U < c1 or U > c2.

7. To test the hypotheses in Exercise 6, H0 would not be rejected if −1.782 < U < 1.782. The set of
all values of λ for which H0 would not be rejected will form a confidence interval for μ1 − μ2 with
confidence coefficient 0.90. The value of U , for an arbitrary value of λ, is found to be

U =

√
12(−0.1558 − λ)

0.3188
.

It is found that −1.782 < U < 1.782 if and only if −0.320 < λ < 0.008.

8. The noncentrality parameter when |μ1 − μ2| = σ is

ψ =
1(

1

8
+

1

10

)1/2
= 2.108.

The degrees of freedom are 16. Figure 9.14 in the text makes it look like the power is about 0.23. Using
computer software, we can compute the noncentral t probability to be 0.248.

9. The p-value can be computed as the size of the test that rejects H0 when |U | ≥ |u|, where u is the
observed value of the test statistic. Since U has the t distribution with m+ n − 2 degrees of freedom
when H0 is true, the size of the test that rejects H0 when |U | ≥ |u| is the probability that a t random
variable with m+n− 2 degrees of freedom is either less than −|u| or greater than |u|. This probability
is

Tm+n−2(−|u|) + 1− Tm+n−2(|u|) = 2[1− Tm+n−2(|u|),

by the symmetry of t distributions.

10. Let Xi stand for an observation in the calcium supplement group and let Yj stand for and observation
in the placebo group. The summary statistics are

m = 10,

n = 11,

xm = 109.9,

yn = 113.9,

s2x = 546.9,

s2y = 1282.9.

We would reject the null hypothesis if U > T−1
19 (0.9) = 1.328. The test statistic has the observed value

u = −0.9350. Since u < 1.328, we do not reject the null hypothesis.
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11. (a) The observed value of the test statistic U is

u =
(43 + 35− 2)1/2(8.560 − 5.551)(
1

43
+

1

35

)1/2

(2745.7 + 783.9)1/2
= 1.939.

We would reject the null hypothesis at level α0 = 0.01 if U > 2.376, the 0.99 quantile of the t
distribution with 76 degrees of freedom. Since u < 2.376, we do not reject H0 at level 0.01. (The
answer in the back of the book is incorrect in early printings.)

(b) For Welch’s test, the approximate degrees of freedom is

ν =

(
2745.7

43× 42
+

783.9

35× 34

)2

1

423

(
2745.7

43

)2

+
1

343

(
783.9

35

)2 = 70.04.

The corresponding t quantile is 2.381. The test statistic is

8.560 − 5.551(
2745.7

43× 42
+

783.9

35× 34

)1/2
= 2.038.

Once again, we do not reject H0. (The answer in the back of the book is incorrect in early
printings.) book is incorrect.)

12. The W in (9.6.15) is the sum of two independent random variables, one having a gamma distribution
with parameters (m − 1)/2 and m(m − 1)/(2σ2

1) and the other having a gamma distribution with
parameters (n− 1)/2 and n(n− 1)/(2σ2

2). So, the mean and variance of W are

E(W ) =
(m− 1)/2

m(m− 1)/(2σ2
1)

+
(n− 1)/2

n(n− 1)/(2σ2
2)

=
σ2
1

m
+

σ2
2

n
,

Var(W ) =
(m− 1)/2

m2(m− 1)2/(4σ4
1)

+
(n− 1)/2

n2(n− 1)2/(4σ4
2)

=
2σ4

1

m2(m− 1)
+

2σ4
2

n2(n− 1)
.

The gamma distribution with parameters α and β has the above mean and variance if α/β = E(W )
and α/β2 = Var(W ). In particular, α = E(W )2/Var(W ), so

2α =

(
σ2
1

m
+

σ2
2

n

)2

σ4
1

m2(m− 1)
+

σ4
2

n2(n− 1)

.

This is easily seen to be the same as the expression in (9.6.16).

13. The likelihood ratio statistic for this case is

Λ(x,y) =
sup{(μ1,μ2,σ2):μ1 	=μ2} g(x,y | μ1, μ2, σ

2)

sup{(μ1,μ2,σ2):μ1=μ2} g(x,y | μ1, μ2, σ2)
. (S.9.11)

Maximizing the numerator of (S.9.11) is identical to maximizing the numerator of (9.6.10) when xm ≤ yn
because we need μ1 = μ2 in both cases. So the M.L.E.’s are

μ̂1 = μ̂2 =
mxm + nyn

m+ n
,

σ̂2 =
mn(xm − yn)

2/(m+ n) + s2x + s2y
m+ n

.
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Maximizing the denominator of (S.9.11) is identical to the maximization of the denominator of (9.6.10)
when xm ≤ yn. We use the overall M.L.E.’s

μ̂1 = xm, μ̂2 = yn, and σ̂2 =
1

m+ n
(s2x + s2y).

This makes Λ(x,y) equal to (1+ v2)−(m+n)/2 where v is defined in (9.6.12). So Λ(x,y) ≥ k if and only
if v2 ≤ k′ for some other constant k′. This translates easily to |U | ≥ c.

9.7 The F Distributions

Commentary

The F distributions are introduced along with the F test for equality of variances from normal samples. The
power function of the F test is derived also. The derivation of the F test as a likelihood ratio test is provided
for mathematical interest.

Those using the software R can make use of the functions df, pf, and qf which compute respectively
the p.d.f., c.d.f., and quantile function of an arbitrary F distribution. The first argument is the argument of
the function and the next two are the degrees of freedom. The function rf produces a random sample of F
random variables.

Solutions to Exercises

1. The test statistic is V = [2745.7/42]/[783.9/34] = 2.835. We reject the null hypothesis if V is greater
than the 0.95 quantile of the F distribution with 42 and 34 degrees of freedom, which is 1.737. So, we
reject the null hypothesis at level 0.05.

2. Let Y = 1/X. Then Y has the F distribution with 8 and 3 degrees of freedom. Also

Pr(X > c) = Pr

(
Y <

1

c

)
= 0.975.

It can be found from the table given at the end of the book that Pr(Y < 14.54) = 0.975. Therefore,
1/c = 14.54 and c = 0.069.

3. If Y has the t distribution with 8 degrees of freedom, then X = Y 2 will have the F distribution with 1
and 8 degrees of freedom. Also,

0.3 = Pr(X > c) = Pr(Y >
√
c) + Pr(Y < −√

c) = 2Pr(Y >
√
c).

Therefore, Pr(Y >
√
c) = 0.15. It can be found from the table given at the end of the book that

Pr(Y > 1.108) = 0.15. Hence,
√
c = 1.108 and c = 1.228.

4. Suppose that X is represented as in Eq. (9.7.1). Since Y and Z are independent,

E(X) =
n

m
E

(
Y

Z

)
=

n

m
E(Y )E

(
1

z

)
.
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Since Y has the χ2 distribution with m degrees of freedom, E(Y ) = m. Since Z has the χ2 distribution
with n degrees of freedom,

E

(
1

Z

)
=

∫ ∞

0

1

z
f(z)dz =

1

2n/2Γ(n/2)

∫ ∞

0
z(n/2)−2 exp(−z/2)dz

=
2(n/2)−1Γ[(n/2)− 1]

2n/2Γ(n/2)
=

1

2[(n/2) − 1]
=

1

n− 2
.

Hence, E(X) = n/(n − 2).

5. By Eq. (9.7.1), X can be represented in the form X = Y/Z, where Y and Z are independent and have
identical χ2 distributions. Therefore, Pr(Y > Z) = Pr(Y < Z) = 1/2. Equivalently, Pr(X > 1) =
Pr(X < 1) = 1/2. Therefore, the median of the distribution of X is 1.

6. Let f(x) denote the p.d.f. of X, let W = mX/(mX + n), and let g(w) denote the p.d.f. of W . Then

X = nW/[m(1−W )] and
dx

dw
=

n

m
· 1

(1− w)2
. For 0 < w < 1,

g(w) = f

[
nw

m(1− w)

]
·
∣∣∣∣ dxdw

∣∣∣∣
= k

(
n

m

)(m/2)−1 w(m/2)−1

(1− w)(m/2)−1
· (1− w)(m+n)/2

n(m+n)/2

(
n

m

)
1

(1− w)2

= k
1

mm/2nn/2
w(m/2)−1(1− w)(n/2)−1,

where

k =
Γ[(m+ n)/2]mm/2nn/2

Γ(m/2)Γ(n/2)
.

It can be seen g(w) is the p.d.f. of the required beta distribution.

7. (a) Here, Xm = 84/16 = 5.25 and Y n = 18/10 = 1.8. Therefore, S2
1 =

16∑
i=1

X2
i − 16(X

2
m) = 122 and

S2
2 =

10∑
i=1

Y 2
i − 10(Y

2
n) = 39.6. It follows that

σ̂2
1 =

1

16
S2
1 = 7.625 and σ̂2

2 =
1

10
S2
2 = 3.96.

If σ2
1 = σ2

2 , the following statistic V will have the F distribution with 15 and 9 degrees of freedom:

V =
S2
1/15

S2
2/9

.

(b) If the test is to be carried out at the level of significance 0.05, then H0 should be rejected if
V > 3.01. It is found that V = 1.848. Therefore, we do not reject H0.

8. For any values of σ2
1 and σ2

2 , the random variable

S2
1/(15σ

2
1)

S2
2/(9σ

2
2)
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has the F distribution with 15 and 9 degrees of freedom. Therefore, if σ2
1 = 3σ2

2 , the following statistic
V will have that F distribution:

V =
S2
1/45

S2
2/9

.

As before, H0 should be rejected if V > c, where c = 3.01 if the desired level of significance is 0.05.

9. When σ2
1 = σ2

2 , V has an F distribution with 15 and 9 degrees of freedom. Therefore, Pr(V > 3.77) =
0.025, which implies that c2 = 3.77. Also, 1/V has an F distribution with 9 and 15 degrees of freedom.
Therefore, Pr(1/V > 3.12) = 0.025. It follows that Pr(V < 1/(3.12)) = 0.025, which means that
c1 = 1/(3.12) = 0.321.

10. Let V be as defined in Exercise 9. If σ2
1 = rσ2

2, then V/r has the F distribution with 15 and 9 degrees
of freedom. Therefore, H0 would be rejected if V/r < c1 or V/r > c2, where c1 and c2 have the values
found in Exercise 9.

11. For any positive number r, the hypothesis H0 in Exercise 9 will not be rejected if c1 < V/r < c2. The
set of all values of r for which H0 would not be rejected will form a confidence interval with confidence
coefficient 0.95. But c1 < V/r < c2 if and only if V/c2 < r < V/c1. Therefore, the confidence interval
will contain all values of r between V/3.77 = 0.265V and V/0.321 = 3.12V .

12. If a random variable Z has the χ2 distribution with n degrees of freedom, Z can be represented as
the sum of n independent and identically distributed random variables Z1, . . . , Zn, each of which has
a χ2 distribution with 1 degree of freedom. Therefore, Z/n =

∑n
i=1 Zi/n = Zn. As n → ∞, it follows

from the law of large numbers that Zn will converge in probability to the mean of each Zi, which is

1. Therefore Z/n
P→ 1 . It follows from Eq. (9.7.1) that if X has the F distribution with m0 and n

degrees of freedom, then as n → ∞, the distribution of X will become the same as the distribution of
Y/m0.

13. Suppose that X has the F distribution withm and n degrees of freedom, and consider the representation

of X in Eq. (9.7.1). Then Y/m
P→ 1. Therefore, as m → ∞, the distribution of X will become the

same as the distribution of n/Z, where Z has a χ2 distribution with n degrees of freedom. Suppose that
c is the 0.05 quantile of the χ2 distribution with n degrees of freedom. Then Pr(n/Z < n/c) = 0.95.
Hence, Pr(X < n/c) = 0.95, and the value n/c should be entered in the column of the F distribution
with m = ∞.

14. The test rejects the null hypothesis if the F statistic is greater than the 0.95 quantile of the F dis-
tribution with 15 and 9 degrees of freedom, which is 3.01. The power of the test when σ2

1 = 2σ2
2 is

1−G15,9(3.01/2) = 0.2724. This can be computed using a computer program that evaluates the c.d.f.
of an arbitrary F distribution.

15. The p-value will be the value of α0 such that the observed v is exactly equal to either c1 or c2. The
problem is deciding wheter v = c1 or v = c2 since, we haven’t constructed a specific test. Since c1
and c2 are assumed to be the α0/2 and 1 − α0/2 quantiles of the F distribution with m − 1 and
n − 1 degrees of freedom, we must have c1 < c2 and Gm=1,n−1(c1) < 1/2 and Gm−1,n−1(c2) > 1/2.
These inequalities allow us to choose whether v = c1 or v = c2. Every v > 0 is some quantile
of each F distribution, indeed the G−1

m−1,n−1(v) quantile. If Gm−1,n−1(v) < 1/2, then v = c1 and
α0 = 2Gm−1,n−1(v). If Gm−1,n−1(v) > 1/2, then v = c2, and α0 = 2[1 − Gm−1,n−1(v)]. (There is 0
probability that Gm−1,n−1(v) = 1/2.) Hence, α0 is the smaller of the two numbers 2Gm−1,n−1(v) and
2[1 −Gm−1,n−1(v)].
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In Example 9.7.4, v = 0.9491 was the observed value and 2G25,25(0.9491) = 0.8971, so this would be
the p-value.

16. The denominator of the likelihood ratio is maximized when all parameters equal their M.L.E.’s. The
numerator is maximized when σ2

1 = σ2
2 . As in the text, the likelihood ratio then equals

Λ(x,y) = dwm/2(1− w)n/2,

where w and d are defined in the text. In particular, w is a strictly increasing function of the observed
value of V . Notice that Λ(x,y) ≤ k when w ≤ k1 or w ≥ k2. This corresponds to V ≤ c1 or V ≥ c2. In
order for the test to have level α0, the values c1 and c2 have to satisfy Pr(V ≤ c1) + Pr(V ≥ c2) = α0

when σ2
1 = σ2

2.

17. The test found in Exercise 9 uses the values c1 = 0.321 and c2 = 3.77. The likelihood ratio test rejects
H0 when dw8(1−w)5) ≤ k, which is equivalent to w8(1−w)5 ≤ k/d. If V = v, then w = 15v/(15v+9).
In order for a test to be a likelihood ratio test, the two values c1 and c2 must lead to the same value of
the likelihood ratio. In particular, we must have

(
15c1

15c1 + 9

)8 (
1− 15c1

15c1 + 9

)5

=

(
15c2

15c2 + 9

)8 (
1− 15c2

15c2 + 9

)5

.

Plugging the values of c1 and c2 from Exercise 9 into this formula we get 2.555 × 10−5 on the left and
1.497 × 10−5 on the right.

18. Let V ∗ be defined as in (9.7.5) so that V ∗ has the F distribution with m − 1 and n − 1 degrees of
freedom and The distribution of V = (σ2

1/σ
2
2)V

∗. It is straightforward to compute

Pr(V ≤ c1) = Pr

(
σ2
1

σ2
2

V ∗ ≤ c1

)
= Pr

(
V ∗ ≤ σ2

2

σ2
1

c1

)
= Gm−1,n−1

(
σ2
2

σ2
1

c1

)
,

and similarly,

Pr(V ≥ c2) = 1−Gm−1,n−1

(
σ2
2

σ2
1

c2

)
.

19. (a) Apply the result of Exercise 18 with c1 = G−1
10,20(0.025) = 0.2952 and c2 = G−1

10,20(0.975) = 2.774

and σ2
2/σ

2
1 = 1/1.01. The result is

G10,20(c1/1.01) + 1−G10,20(c2/1.01) = G10,20(0.289625) + 1−G10,20(2.746209) = 0.0503.

(b) Apply the result of Exercise 18 with c1 = G−1
10,20(0.025) = 0.2952 and c2 = G−1

10,20(0.975) = 2.774

and σ2
2/σ

2
1 = 1.01. The result is

G10,20(1.01 × c1) + 1−G10,20(1.01 × c2) = G10,20(0.2954475) + 1−G10,20(2.80148) = 0.0498.

(c) Since the answer to part (b) is less than 0.05 (the value of the power function for all parameters
in the null hypothesis set), the test is not unbiased.
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9.8 Bayes Test Procedures

Commentary

This section introduces Bayes tests for the situations described in the earlier sections of the chapter. It
derives Bayes tests as solutions to decision problems in which the loss function takes only three values: 0 for
correct decision, and one positive value for each type of error. The cases of simple and one-sided hypotheses
are covered as are the various situations involving samples from normal distributions. The calculations are
done with improper prior distributions so that attention can focus on the methodology and similarity with
the non-Bayesian results.

Solutions to Exercises

1. In this exercise, ξ0 = 0.9, ξ1 = 0.1, w0 = 1000, and w1 = 18,000. Also,

f0(x) =
1

(2π)1/2
exp

[
−1

2
(x− 50)2

]
and

f1(x) =
1

(2π)1/2
exp

[
−1

2
(x− 52)2

]
.

By the results of this section, it should be decided that the process is out of control if

f1(x)

f0(x)
>

ξ0w0

ξ1w1
=

1

2
.

This inequality can be reduced to the inequality 2x− 102 > − log 2 or, equivalently, x > 50.653.

2. In this exercise, ξ0 = 2/3, ξ1 = 1/3, w0 = 1, and w1 = 4. Therefore, by the results of this section, it
should be decided that f0 is correct if

f1(x)

f0(x)
<

ξ0w0

ξ1w1
=

1

2
.

Since f1(x)/f0(x) = 4x3, it should be decided that f0 is correct if 4x
3 < 1/2 or, equivalently, if x < 1/2.

3. In this exercise, ξ0 = 0.8, ξ1 = 0.2, w0 = 400, and w1 = 2500. Also, if we let y =
∑n

i=1 xi, then

f0(X) =
exp(−3n) 3y

n∏
i=1

(xi!)

and

f1(X) =
exp(−7n) 7y

n∏
i=1

(xi!)

.

By the results of this section, it should be decided that the failure was caused by a major defect if

f1(X)

f0(X)
= exp(−4n)

(
7

3

)y

>
ξ0w0

ξ1w1
= 0.64
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or, equivalently, if

y >
4n+ log (0.64)

log

(
7

3

) .

4. In this exercise, ξ0 = 1/4, ξ1 = 3/4, and w0 = w1 = 1. Let x1, . . . , xn denote the observed values in the

sample, and let y =
n∑

i=1

xi. Then

f0(X) = (0.3)y(0.7)n−y

and

f1(X) = (0.4)y(0.6)n−y .

By the results of this section, H0 should be rejected if

f1(X)

f0(X)
>

ξ0w0

ξ1w1
=

1

3
.

But

f1(X)

f0(X)
=

(
4

3
· 7
6

)y (6
7

)n

>
1

3

if and only if

y log
14

9
+ n log

6

7
> log

1

3

or, equivalently, if and only if

xn =
y

n
>

log
7

6
+

1

n
log

1

3

log
14

9

.

5. (a) In the notation of this section ξ0 = Pr(θ = θ0) and fi is the p.f. or p.d.f. of X given θ = θi. By
the law of total probability, the marginal p.f. or p.d.f. of X is ξ0f0(x) + ξ1f1(x). Applying Bayes’
theorem for random variables gives us that

Pr(θ = θ0|x) = ξ0f0(x)

ξ0f0(x) + ξ1f1(x)
.

(b) The posterior expected value of the loss given X = x is

w0ξ0f0(x)

ξ0f0(x) + ξ1f1(x)
if reject H0,

w1ξ1f1(x)

ξ0f0(x) + ξ1f1(x)
if don’t reject H0.
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The tests δ that minimize r(δ) have the form

Don’t Reject H0 if ξ0w0f0(x) > ξ1w1f1(x),

Reject H0 if ξ0w0f0(x) < ξ1w1f1(x),

Do either if ξ0w0f0(x) = ξ1w1f1(x).

Notice that these tests choose the action that has smaller posterior expected loss. If neither action
has smaller posterior expected loss, these tests can do either, but either would then minimize the
posterior expected loss.

(c) The “reject H0” condition in part (b) is ξ0w0f0(x) < ξ1w1f1(x). This is equivalent to w0 Pr(θ =
θ0|x) < w1[1 − Pr(θ = θ0|x)]. Simplifying this inequality yields Pr(θ = θ0|x) < w1/(w0 + w1).
Since we can do whatever we want when equality holds, and since “H0 true” means θ = θ0, we see
that the test described in part (c) is one of the tests from part (b).

6. The proof is just as described in the hint. For example, (9.8.12) becomes

∫ ∞

θ0

∫ θ0

−∞
w1(θ)w0(ψ)ξ(θ)ξ(ψ)[fn(x1 | θ)fn(x2 | ψ)− fn(x2 | θ)fn(x1 | ψ)]dψdθ.

The steps after (9.8.12) are unchanged.

7. We shall argue indirectly. Suppose that there is x such that the p-value is not equal to the posterior
probability that H0 is true. First, suppose that the p-value is greater. Let α0 be greater than the
posterior probability and less than the p-value. Then the test that rejects H0 when Pr(H0 true|x) ≤ α0

will reject H0, but the level α0 test will not reject H0 because the p-value is greater than α0. This
contradicts the fact that the two tests are the same. The case in which the p-value is smaller is very
similar.

8. (a) The joint p.d.f. of the data given the parameters is

(2π)−(m+n)/2τ (m+n)/2 exp

⎛⎝−τ

2

⎡⎣ m∑
i=1

(xi − μ1)
2 +

n∑
j=1

(yj − μ2)
2

⎤⎦⎞⎠ .

Use the following two identities to complete the proof of this part:

m∑
i=1

(xi − μ1)
2 =

m∑
i=1

(xi − xm)2 +m(xm − μ1)
2,

n∑
j=1

(yj − μ2)
2 =

n∑
j=1

(yj − yn)
2 + n(yn − μ2)

2.

(b) The prior p.d.f. is just 1/τ .

i. As a function of μ1, the posterior p.d.f. is a constant times exp(−mτ(xm − μ1)
2/2), which is

just like the p.d.f. of a normal distribution with mean xm and variance 1/(mτ).

ii. The result for μ2 is similar to that for μ1.

iii. As a function of (μ1, μ2), the posterior p.d.f. looks like a constant times

exp(−mτ(xm − μ1)
2/2) exp(−nτ(yn − μ2)

2/2),

which is like the product of the two normal p.d.f.’s from parts (i) and (ii). Hence, the con-
ditional posterior distribution of (μ1, μ2) given τ is that of two independent normal random
variables with the two distributions from parts (i) and (ii).
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iv. We can integrate μ1 and μ2 out of the joint p.d.f. Integrating exp(−mτ(xm − μ1)
2) yields

(2π)1/2τ−1/2. Integrating exp(−nτ(yn − μ2)
2) yields (2π)1/2τ−1/2 also. So, the marginal

posterior p.d.f. of τ is a constant times τ (m+n−2)/2 exp(−0.5τ(s2x + s2y)). This is the p.d.f. of
a gamma distribution with parameters (m+ n − 2)/2 and (s2x + s2y)/2, except for a constant
factor.

(c) Since μ1 and μ2 are independent, conditional on τ , we have that μ1−μ2 has a normal distribution
conditional on τ with mean equal to the difference of the means and variance equal to the sum
of the variances. That is, μ1 − μ2 has a normal distribution with mean xm − yn and variance
τ−1(1/m + 1/n) given τ . If we subtract the mean and divide by the square-root of the variance,
we get a standard normal distribution for the result, which is the Z stated in this part of the
problem. Since the standard normal distribution is independent of τ , then Z is independent of τ
and has the standard normal distribution marginally.

(d) Recall that τ has a gamma distribution with parameters (m + n − 2)/2 and (s2x + s2y)/2. If we
multiply τ by s2x + s2y, the result W has a gamma distribution with the same first parameter but
with the second parameter divided by s2x + s2y, namely 1/2.

(e) Since Z and W are independent with Z having the standard normal distribution and W having
the χ2 distribution with m + n − 2 degrees of freedom, it follows from the definition of the t
distribution that Z/(W/[m+ n− 2])1/2 has the t distribution with m+ n− 2 degrees of freedom.
It is easy to check that Z/(W/[m + n− 2])1/2 is the same as (9.8.17).

9. (a) The null hypothesis can be rewritten as τ1 ≥ τ2, where τi = 1/σ2
i . This can be further rewritten as

τ1/τ2 ≥ 1. Using the usual improper prior for all parameters yields the posterior distribution of τ1
and τ2 to be that of independent gamma random variables with τ1 having parameters (m − 1)/2
and s2x/2 while τ2 has parameters (n−1)/2 and s2y/2. Put another way, τ1s

2
x has the χ2 distribution

with m−1 degrees of freedom independent of τ22 s
2
y which has the χ2 distribution with n−1 degrees

of freedom. This makes the distribution of

W =
τ1s

2
x/(m− 1)

τ2s2y/(n − 1)

the F distribution with m− 1 and n− 1 degrees of freedom. The posterior probability that H0 is
true is

Pr(τ1/τ2 ≥ 1) = Pr

(
W ≥ s2x/(m− 1)

s2y/(n − 1)

)
= 1−Gm−1,n−1

(
s2x/(m− 1)

s2y/(n − 1)

)
.

The posterior probability is at most α0 if and only if

s2x/(m− 1)

s2y/(n − 1)
≥ F−1

m−1,n−1(1− α0).

This is exactly the form of the rejection region for the level α0 F test of H0.

(b) This is a special case of Exercise 7.

10. (a) Using Theorem 9.8.2, the posterior distribution of

(26 + 26− 2)1/2
μ1 − μ2 − [5.134 − 3.990]

(1/26 + 1/26)1/2(63.96 + 67.39)1/2
=

μ1 − μ2 − 1.144

0.4495

is the t distribution with 50 degrees of freedom.

(b) We can compute

Pr(|μ1 − μ2| ≤ d) = T50

(
d− 1.144

0.4495

)
− T50

(−d− 1.144

0.4495

)
.
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Figure S.9.6: Figure for Exercise 10b of Sec. 9.8.

A plot of this function is in Fig. S.9.6.

11. (a) First, let H0 : θ ∈ Ω′ and H1 : θ ∈ Ω′′. Then Ω0 = Ω′ and Ω1 = Ω′′. Since d0 is the decision that
H0 is true we have d0 = d′ and d1 = d′′. Since w0 is the cost of type II error, and type I error is
to choose θ ∈ Ω′′ when θ ∈ Ω′, w0 = w′, and w1 = w′′. It is straightforward to see that everything
switches for the other case.

(b) The test procedure is to

choose d1 if Pr(θ ∈ Ω0|x) < w1

w0 + w1
, (S.9.12)

and choose either action if the two sides are equal. (S.9.13)

In the first case, this translates to “choose d” if Pr(θ ∈ Ω′|x) < w”/(w′ + w”), and choose either
action if the two sides are equal.” This is equivalent to “choose d′ if Pr(θ ∈ Ω′|x) > w”/(w′ +w”),
and choose either action if the two sides are equal.” This, in turn, is equivalent to “choose d′

if Pr(θ ∈ Ω”|x) < w′/(w′ + w”), and choose either action if the two sides are equal.” This
last statement, in the second case, translates to (S.9.12). Hence, the Bayes test produces the
same action (d′ or d′′) regardless of which hypothesis you choose to call the null and which the
alternative.

9.9 Foundational Issues

Commentary

This section discusses some subtle issues that arise when the foundations of hypothesis testing are examined
closely . These issues are the relationship between sample size and the level of a test and the distinction
between statistical significance and practical significance. The term “statistical significance” is not introduced
in the text until this section, hence instructors who do not wish to discuss this issue can avoid it altogether.

Solutions to Exercises

1. (a) When μ = 0, X has the standard normal distribution. Therefore, c = 1.96. Since H0 should be
rejected if |X| > c, then H0 will be rejected when X = 2.
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(b)
f(X |μ = 0)

f(X |μ = 5)
=

exp
(
−1

2X
2
)

exp[−1
2(X − 5)2]

= exp

[
1

2
(25− 10X)

]
.

When X = 2, this likelihood ratio has the value exp(5/2) = 12.2. Also,

f(X |μ = 0)

f(X |μ = −5)
=

exp
(
−1

2X
2
)

exp
[
−1

2(X + 5)2
] = exp[

1

2
(25 + 10X)].

When X = 2, this likelihood ratio has the value exp(45/2) = 5.9× 109.

2. When μ = 0, 100Xn has the standard normal distribution. Therefore, Pr (100 |Xn | > 1.96 |μ = 0) =
0.05. It follows that c = 1.96/100 = 0.0196.

(a) When μ = 0.01, the random variable Z = 100(Xn − 0.01) has the standard normal distribution.
Therefore,

Pr( |Xn | < c |μ = 0.01) = Pr(−1.96 < 100Xn < 1.96 |μ = 0.01)

= Pr(−2.96 < z < 0.96)

= 0.8315 − 0.0015 = 0.8300.

It follows that Pr( |Xn | ≥ c |μ = 0.01) = 1− 0.8300 = 0.1700.

(b) When μ = 0.02, the random variable Z = 100(Xn − 0.02) has the standard normal distribution.
Therefore,

Pr( |Xn | < c |μ = 0.02) = Pr(−3.96 < Z < −0.04)

= Pr(0.04 < Z < 3.96) = 1− 0.5160.

It follows that Pr( |Xn | < c |μ = 0.02) = 0.5160.

3. When μ = 0, 100Xn has the standard normal distribution. The calculated value of 100Xn is 100(0.03) =
3. The corresponding tail area is Pr(100Xn > 3) = 0.0013.

4. (a) According to Theorem 9.2.1, we reject H0 if

19

(2π)n/2
exp

(
−1

2

n∑
i=1

x2i

)
<

1

(2π)n/2
exp

(
−1

2

n∑
i=1

(xi − 0.5)2
)
.

This inequality is equivalent to

2 log(19)

n
+

1

4
< xn.

That is, cn = 2 log(19)/n + 1/4. For n = 1, 100, 100000, the values of cn are 6.139, 0.3089, and
0.2506.

(b) The size of the test is

Pr(Xn ≥ cn|θ = 0) = 1− Φ(cn × n1/2).

For n = 1, 100, 10000, the sizes are 4.152 × 10−10, 0.001, and 0.

5. (a) We want to choose cn so that

19[1− Φ(
√
ncn)] = Φ(

√
n[cn − 0.5]).

Solving this equation must be done numerically. For n = 1, the equation is solved for cn = 1.681.
For n = 100, we need cn = 0.3021. For n = 10000, we need cn = 0.25 (both sides are essentially
0).

(b) The size of the test is 1−Φ(cnn
1/2), which is 0.0464 for n = 1, 0.00126 for n = 100 and essentially

0 for n = 10000.
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9.10 Supplementary Exercises

Solutions to Exercises

1. According to Theorem 9.2.1, we want to reject H0 when

(1/2)3 < (3/4)x(1/4)3−x.

We don’t reject H0 when the reverse inequality holds, and we can do either if equality holds. The
inequality above can be simplified to x > log(8)/ log(3) = 1.892. That is, we reject H0 if X is 2 or 3,
and we don’t reject H0 if X is 0 or 1. The probability of type I error is 3(1/2)3 + (1/2)3 = 1/2 and the
probability of type II error is (1/4)3 + 3(1/4)2(3/4) = 5/32.

2. The probability of an error of type 1 is

α = Pr(Rej. H0 |H0) = Pr(X ≤ 5 | θ = 0.1) = 1− (.9)5 = .41.

The probability of an error of type 2 is

β = Pr(Acc. H0 |H1) = Pr(X ≥ 6 | θ = 0.2) = (.8)5 = .33.

3. It follows from Sec. 9.2 that the Bayes test procedure rejects H0 when f1(x)/f0(x) > 1. In this problem,

f1(x) = (.8)x−1(.2) for x = 1, 2, . . . ,

and

f0(x) = (.9)x−1(.1) for x = 1, 2, . . . .

Hence, H0 should be rejected when 2(8/9)x−1 ≥ 1 or x − 1 ≤ 5.885. Thus, H0 should be rejected for
X ≤ 6.

4. It follows from Theorem 9.2.1 that the desired test will reject H0 if

f1(x)

f0(x)
=

f(x | θ = 0)

f(x | θ = 2)
>

1

2
.

In this exercise, the ratio on the left side reduces to x/(1 − x). Hence, the test specifies rejecting
H0 if x > 1/3. For this test,

α(δ) = Pr

(
X >

1

3
| θ = 2

)
=

4

9
,

β(δ) = Pr

(
X <

1

3
| θ = 0

)
=

1

9
.

Hence, α(δ) + 2β(δ) = 2/3.
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5. It follows from the previous exercise and the Neyman-Pearson lemma that the optimal procedure δ
specifies rejecting H0 when x/(1−x) > k′ or, equivalently, when x > k. The constant k must be chosen
so that

α = Pr(X > k | θ = 2) =

∫ 1

k
f(x | θ = 2)dx = (1− k)2.

Hence, k = 1− α1/2 and

β(δ) = Pr(X < k | θ = 0) = k2 = (1− α1/2)2.

6. (a) The power function is given by

π(θ | δ) = Pr(X > 0.9 | θ) =
∫ 1

0.9
f(x | θ)dx = .19− .09θ.

(b) The size of δ is

sup
θ≥1

π(θ | δ) = .10.

7. A direct calculation shows that for θ1 < θ2,

d

dx

[
f(x | θ2)
f(x | θ1)

]
=

2(θ1 − θ2)

[2(1 − θ1)x+ θ1]2
< 0.

Hence, the ratio f(x | θ2)/f(x | θ1) is a decreasing function of x or, equivalently, an increasing function
of r(x) = −x. It follows from Theorem 9.3.1 that a UMP test of the given hypotheses will reject H0

when r(X) ≥ c or , equivalently, when X ≤ k. Hence, k must be chosen so that

.05 = Pr

(
X ≤ k | θ =

1

2

)
=

∫ k

0
f

(
x | θ =

1

2

)
dx =

1

2
(k2 + k), or k =

1

2
(
√
1.4− 1).

8. Suppose that the proportions of red, brown, and blue chips are p1, p2, and p3, respectively. It follows
from the multinomial distribution that the probability of obtaining exactly one chip of each color is

3!

1!1!1!
p1p2p3 = 6p1p2p3.

Hence, Pr(Rej. H0 | p1, p2, p3) = 1− 6p1p2p3.

(a) The size of the test is

α = Pr

(
Rej. H0

∣∣∣∣ 13 , 13 , 13
)
=

7

9
.

(b) The power under the given alternative distribution is Pr(Rej. H0 |1/7, 2/7, 4/7) = 295/343 = .860.

9. Let fi(x) denote the p.d.f. of X under the hypotheses Hi(i = 0, 1). Then

f1(x)

f0(x)
=

{
∞ for x ≤ 0 or x ≥ 1,
ϕ(x) for 0 < x < 1,

where ϕ(x) is the standard normal p.d.f. The most powerful test δ of size 0.01 rejects H0 when
f1(x)/f0(x) > k. Since ϕ(x) is strictly decreasing for 0 < x < 1, it follows that δ will reject H0 if
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X ≤ 0, X ≥ 1, or 0 < X < c, where c is chosen so that Pr(0 < X < c |H0) = .01. Since X has a
uniform distribution under H0 , c = .01. Thus, δ specifies rejecting H0 if X ≤ .01 or X ≥ 1. The power
of δ under H1 is

Pr(X ≤ .01 |H1) + Pr(X ≥ 1 |H1) = Φ(.01) + [1− Φ(1)] = .5040 + .1587 = .6627.

10. The usual t statistic U is defined by Eq. (9.5.2) with n = 12 and μ0 = 3. Because the one-sided
hypotheses H0 and H1 are reversed from those in (9.5.1), we now want to reject H0 if U ≤ c. If
μ0 = 3, then U has the t distribution with 11 degrees of freedom. Under these conditions, we want
Pr(U ≤ c) = 0.005 or equivalently, by the symmetry of the t distribution, Pr(U ≤ −c) = 0.995. It is
found from the table of the t distribution that −c = 3.106. Hence, H0 should be rejected if U ≤ −3.106.

11. It is known from Example 4 that the UMP test rejects H0 if Xn ≥ c. Hence, c must be chosen so that

0.95 = Pr(Xn ≥ c | θ = 1) = Pr [Z ≥ √
n(c− 1)],

where Z has the standard normal distribution. Hence,
√
n(c− 1) = −1.645, and c = 1− (1.645)/n1/2 .

Since the power function of this test will be a strictly increasing function of θ, the size of the test will
be

α = sup
θ≤0

Pr(Rej. H0 | θ) = Pr(Rej. H0 | θ = 0) = Pr

[
Xn ≥ 1− (1.645)

n1/2

∣∣∣∣ θ = 0

]
= Pr(Z ≥ n1/2 − 1.645),

where Z again has the standard normal distribution. When n = 16,

α = Pr(Z ≥ 2.355) = .0093.

12. For θ1 < θ2,

fn(x | θ2)
fn(x | θ1) =

(
θ2
θ1

)8
(

8∏
i=1

xi

)θ2−θ1

,

which is an increasing function of T =
8∏

i=1

xi. Hence, the UMP test specifies rejecting H0 when T > c

or, equivalently, when −2
8∑

i=1

logXi < k. The reason for expressing the test in this final form is that

when θ = 1, the observations X1, . . . ,X8 are i.i.d. and each has a uniform distribution on the interval

(0,1). Under these conditions, −2
8∑

i=1

logXi has a χ2 distribution with 2n = 16 degrees of freedom (see

Exercise 7 of Sec. 8.2 and Exercise 5 of Sec. 8.9). Hence, in accordance with Theorem 9.3.1, H0 should

be rejected if −2
8∑

i=1

logXi ≤ 7.962, which is the 0.05 quantile of the χ2 distribution with 16 degrees of

freedom, or equivalently if
8∑

i=1

log xi ≥ −3.981.
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13. The χ2 distribution with θ degrees of freedom is a gamma distribution with parameters α = θ/2 and β =
1/2. Hence, it follows from Exercise 3 of Sec. 9.3 that the joint p.d.f. of Xi, . . . ,Xn has a monotone

likelihood ratio in the statistic T =
n∏

i=1

Xi. Hence, there is a UMP test of the given hypotheses, and it

specifies rejecting H0 when T ≥ c or, equivalently, when log T =
n∑

i=1

logXi ≥ k.

14. Let X1 be the average of the four observations X1, . . . ,X4 and let X2 be the average of the six obser-

vations X5, . . . ,X10. Let S2
1 =

4∑
i=1

(Xi − X1)
2 and S2

2 =
10∑
i=5

(Xi − X2)
2. Then S2

1/σ
2 and S2

2/σ
2 have

independent χ2 distributions with 3 and 5 degrees of freedom, respectively. Hence, (5S2
1 )/(3S

2
2 ) has the

desired F distribution.

15. It was shown in Sec. 9.7 that the F test rejects H0 if V ≥ 2.20, where V is given by (9.7.4) and 2.20 is
the 0.95 quantile of the F distribution with 15 and 20 degrees of freedom. For any values of σ2

1 and σ2
2 ,

the random variable V ∗ given by (9.7.5) has the F distribution with 15 and 20 degrees of freedom.
When σ2

1 = 2σ2
2 , V

∗ = V/2. Hence, the power when σ2
1 = 2σ2

2 is

P ∗(Rej. H0) = P ∗(V ≥ 2.20) = P ∗
(
1

2
V ≥ 1.10

)
= Pr(V ∗ ≥ 1.1),

where P ∗ denotes a probability calculated under the assumption that σ2
1 = 2σ2

2 .

16. The ratio V = S2
X/S2

Y has the F distribution with 8 and 8 degrees of freedom, and so does 1/V =
S2
Y /S

2
X . Thus,

.05 = Pr(T > c) = Pr(V > c) + Pr(1/V > c) = 2 Pr(V > c).

It follows that c must be the .975 quantile of the distribution of V , which is found from the tables to
be 4.43.

17. (a) Carrying out a test of size α on repeated independent samples is like performing a sequence of
Bernoulli trials on each of which the probability of success is α. With probability 1, a success
will ultimately be obtained. Thus, sooner or later, H0 will ultimately be rejected. Therefore, the
overall size of the test is 1.

(b) As we know from the geometric distribution, the expected number samples, or trials, until a success
is obtained is 1/α.

18. If U is defined as in Eq. (8.6.9), then the prior distribution of U is the t distribution with 2α0 = 2
degrees of freedom. Since the t distribution is symmetric with respect to the origin, it follows that
under the prior distribution, Pr(H0) = Pr(μ ≤ 3) = Pr(U ≤ 0) = 1/2. It follows from (8.6.1) and
(8.6.2) that under the posterior distribution,

μ1 =
3 + (17)(3.2)

1 + 17
= 3.189 , λ1 = 18 ,

α1 = 1 +
17

2
= 9.5 ,

β1 = 1 +
1

2
(17) +

(17)(.04)

2(18)
= 9.519.
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If we now define Y to be the random variable in Eq. (8.6.12) then Y = (4.24)(μ − 3.19) and Y has the
t distribution with 2α1 = 19 degrees of freedom. Thus, under the posterior distribution,

Pr(H0) = Pr(μ ≤ 3) = Pr[Y ≤ (4.24)(3 − 3.19)] = Pr(Y ≤ −.81) = Pr(Y ≥ .81).

It is found from the table of the t distribution with 19 degrees of freedom that this probability is
approximately 0.21.

19. At each point θ ∈ Ω1, π(θ | δ) must be at least as large as it is at any point in Ω0, because δ is unbiased.
But sup

θ∈Ω0

π(θ | δ) = α, at every point θ ∈ Ω1 .

20. Since δ is unbiased and has size α, it follows from the previous exercise that π(θ | δ) ≤ α for all θ inside
the circle A and π(θ | δ) ≥ α for all θ outside A. Since π(θ | δ) is continuous, it must therefore be equal
to α everywhere on the boundary of A. Note that this result is true regardless of whether all of any
part of the boundary belongs to H0 or H1.

21. Since H0 is simple and δ has size α, then π(θ0 | δ) = α. Since δ is unbiased, π(θ | δ) ≥ α for all other
values of θ. Therefore, π(θ | δ) is a minimum at θ = θ0. Since π is assumed to be differentiable, it
follows that π′(θ0 | δ) = 0.

22. (a) We want Pr(X > c1 |H0) = Pr(Y > c2 |H0) = .05. Under H0, both X and Y/10 are standard
normal. Therefore, c1 = 1.645 and c2 = 16.45.

(b) The most powerful test of a size α0, conditional on observing X with a variance of σ2 is to reject
H0 if X > σΦ−1(1−α0). In this problem we are asked to find two such tests: one with σ = 1 and
α0 = 2.0× 10−7 and the other with σ = 10 and α0 = 0.0999998. The resulting critical values are

Φ−1(1− 2.0× 10−7) = 5.069,

10Φ−1(1− 0.0999998) = 12.8155.

(c) The overall size of a test in this problem is the average of the two conditional sizes, since the
two types of meteorological conditions have probability 1/2 each. In part (a), the two conditional
sizes are both 0.05, so that is the average as well. In part (b), the average of the two sizes is
(2.0 × 10−7 + 0.0999998)/2 = 0.05 also. The powers are also the averages of the two conditional
powers. The power of the conditional size α0 test with variance σ2 is

1− Φ(σΦ−1(1− α0)− 10).

The results are tabulated below:

Part Good Poor Average

(a) 1 0 0.5
(b) 0.9999996 0.002435 0.5012

23. (a) The data consist of both X and Y , where X is defined in Exercise 22 and Y = 1 if meteorological
conditions are poor and Y = 0 if not. The joint p.f./p.d.f. of (X,Y ) given Θ = θ is

1

2(2π)1/210y
exp

(
−1− y

2
[x− θ]2 − y

200
[x− θ]2

)
.

The Bayes test will choose H0 when

w0ξ0
1

2(2π)1/210y
exp

(
−1− y

2
x2 − y

200
x2
)

> w1ξ1
1

2(2π)1/210y
exp

(
−1− y

2
[x− 10]2 − y

200
[x− 10]2

)
.
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It will choose H1 when the reverse inequality holds, and it can do either when equality holds. This
inequality can be rewritten by splitting according to the value of y. That is, choose H0 if{

x < 5 + log(w0ξ0/(w1ξ1))/10 if y = 0,
x < 5 + 10 log(w0ξ0/(w1ξ1)) if y = 1.

(b) In order for a test to be of the form of part (a), the two critical values c0 and c1 used for y = 0 and
y = 1 respectively must satisfy c1 − 5 = 100(c0 − 5). In part (a) of Exercise 22, the two critical
values are c0 = 1.645 and c1 = 16.45. These do not even approximately satisfy c1−5 = 100(c0−5).

(c) In part (b) of Exercise 22, the two critical values are c0 = 5.069 and c1 = 12.8155. These
approximately satisfy c1 − 5 = 100(c0 − 5).

24. (a) The Poisson distribution has M.L.R. in Y , so rejection H0 when Y ≤ c is a UMP test of its size.
With c = 0, the size is Pr(Y = 0|θ = 1) = exp(−n).

(b) The power function of the test is Pr(Y = 0|θ) = exp(−nθ).

25. Let I be the random interval that corresponds to the UMP test, and let J be a random interval that
corresponds to some other level α0 test. Translating UMP into what it says about the random interval
I compared to J , we have for all θ > c

Pr(c ∈ I|θ) ≤ Pr(c ∈ J |θ).

In other words, the observed value of I is a uniformly most accurate coefficient 1−α0 confidence interval
if, for every random interval J such that the observed value of J is a coefficient 1−α0 confidence interval
and for all θ2 > θ1,

Pr(θ1 ∈ I|θ = θ2) ≤ Pr(θ1 ∈ J |θ = θ2).
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Chapter 10

Categorical Data and Nonparametric

Methods

10.1 Tests of Goodness-of-Fit

Commentary

This section ends with a discussion of some issues related to the meaning of the χ2 goodness-of-fit test for
readers who want a deeper understanding of the procedure.

Solutions to Exercises

1. Let Y = N1, the number of defective items, and let θ = p1, the probability that each item is defective.
The level α0 test requires us to choose c1 and c2 such that Pr(Y ≤ c1|θ = 0.1) + Pr(Y ≥ c2|θ = 0.1)
is close to α0. We can compute the probability that Y = y for each y = 0, . . . , 100 and arrange the
numbers from smallest to largest. The smallest values correspond to large values of y down to y = 25,
then some values corresponding to small values of y start to appear in the list. The sum of the values
reaches 0.0636 when c1 = 4 and c2 = 16. So α0 = 0.0636 is the smallest α0 for which we would reject
H0 : θ = 0.1 using such a test.

2.

Q =
k∑

i=1

(Ni − n/k)2

n/k
=

k

n

k∑
i=1

(
N2

i − 2
n

k
Ni +

n2

k2

)
=

k

n

(
k∑

i=1

N2
i − 2

n

k

k∑
i=1

Ni +
n2

k

)

=
k

n

(
k∑

i=1

N2
i − 2

n2

k
+

n2

k

)
=

(
k

n

k∑
i=1

N2
i

)
− n.

3. We obtain the following frequencies:

i 0 1 2 3 4 5 6 7 8 9
Ni 25 16 19 20 20 22 24 15 14 25

Since P 0
i = 1/10 for every value of i, and n = 200, we find from Eq. (10.1.2) that Q = 7.4. If Q has

the χ2 distribution with 9 degrees of freedom, Pr(Q ≥ 7.4) = 0.6.
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4. We obtain the following table:
AA Aa aa

Ni 10 10 4
np0i 6 12 6

It is found from Eq. (10.1.2) that Q = 11/3. If Q has a χ2 distribution with 2 degrees of freedom, then
the value of Pr(Q ≥ 11/3) is between 0.1 and 0.2.

5. (a) The number of successes is nXn and the number of failures is n(1−Xn). Therefore,

Q =
(nXn − np0)

2

np0
+

[n(1−Xn)− n(1− p0)]
2

n(1− p0)

= n(Xn − p0)
2
(

1

p0
+

1

1− p0

)
=

n(Xn − p0)
2

p0(1− p0)

(b) If p = p0, then E(Xn) = p0 and Var(Xn) = p0(1− p0)/n. Therefore, by the central limit theorem,
the c.d.f. of

Z =
Xn − p0

[p0(1− p0)/n]1/2

converges to the c.d.f. of the standard normal distribution. Since Q = Z2, the c.d.f. of Q will
converge to the c.d.f. of the χ2 distribution with 1 degree of freedom.

6. Here, p0 = 0.3, n = 50, and Xn = 21/50. By Exercise 5, Q = 3.44. If Q has a χ2 distribution with 1
degree of freedom, then Pr(Q ≥ 3.4) is slightly greater than 0.05.

7. We obtain the following table:

0 < x < 0.2 0.2 < x < 0.5 0.5 < x < 0.8 0.8 < x < 1.
Ni 391 490 580 339
np0i 360 540 540 360

If Q has a χ2 distribution with 3 degrees of freedom, then Pr(Q ≥ 11.34) = 0.01. Therefore, we should
reject H0 if Q ≥ 11.34. It is found from Eq. (10.1.2) that Q = 11.5.

8. If Z denotes a random variable having a standard normal distribution and X denotes the height of a
man selected at random from the city, then

Pr (X < 66) = Pr (Z < −2) = 0.0227,

Pr (66 < X < 67.5) = Pr (−2 < Z < −0.5) = 0.2858,

Pr (67.5 < X < 68.5) = Pr (−0.5 < Z < 0.5) = 0.3830,

Pr (68.5 < X < 70) = Pr (0.5 < Z < 2) = 0.2858,

Pr (X > 70) = Pr (Z > 2) = 0.0227.

Therefore, we obtain the following table:
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Ni np0i
x < 66 18 11.35

66 < x < 67.5 177 142.9
67.5 < x < 68.5 198 191.5
68.5 < x < 70 102 142.9

x > 70 5 11.35

It is found from Eq. (10.1.2) that Q = 27.5. If Q has a χ2 distribution with 4 degrees of freedom, then
Pr(Q ≥ 27.5) is much less than 0.005.

9. (a) The five intervals, each of which has probability 0.2, are as follows:

(−∞,−0.842), (−0.842,−0.253), (−0.253, 0.253), (0.253, 0.842), (0.842,∞).

We obtain the following table:

Ni np0i
−∞ < x < −0.842 15 10

−0.842 < x < −0.253 10 10
−0.253 < x < 0.253 7 10
0.253 < x < 0.842 12 10
0.842 < x < ∞ 6 10

The calculated value of Q is 5.4. If Q has a χ2 distribution with 4 degrees of freedom, then
Pr(Q ≥ 5.4) = 0.25.

(b) The ten intervals, each of which has probability 0.1, are as given in the following table:

Ni np0i
−∞ < x < −1.282 8 5

−1.282 < x < −0.842 7 5
−0.842 < x < −0.524 3 5
−0.524 < x < −0.253 7 5

−0.253 < x < 0 5 5
0 < x < 0.253 2 5

0.253 < x < 0.524 5 5
0.524 < x < 0.842 7 5
0.842 < x < 1.282 2 5
1.282 < x < ∞ 4 5

The calculated value of Q is 8.8. If Q has the χ2 distribution with 9 degrees of freedom, then the
value of Pr(Q ≥ 8.8) is between 0.4 and 0.5.

10.2 Goodness-of-Fit for Composite Hypotheses

Commentary

The maximization of the log-likelihood in Eq. (10.2.5) could be performed numerically if one had appropriate
software. The R functions optim and nlm can be used as described in the Commentary to Sec. 7.6 in this
manual.
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Solutions to Exercises.

1. There are many ways to perform a χ2 test. For example, we could divide the real numbers into the
intervals (−∞, 15], (15, 30], (30, 45], (45, 60], (60, 75], (75, 90], (90,∞). The numbers of observations in
these intervals are 14, 14, 4, 4, 3, 0, 2

(a) The M.L.E.’s of the parameters of a normal distribution are μ̂ = 30.05 and σ̂2 = 537.51. Using
the method of Chernoff and Lehmann, we compute two different p-values with 6 and 4 degrees
of freedom. The probabilities for the seven intervals are 0.2581, 0.2410, 0.2413, 0.1613, 0.0719,
0.0214, 0.0049. The expected counts are 41 times each of these numbers. This makes Q = 24.53.
The two p-values are both smaller than 0.0005.

(b) The M.L.E.’s of the parameters of a lognormal distribution are μ̂ = 3.153 and σ̂2 = 0.48111. Using
the method of Chernoff and Lehmann, we compute two different p-values with 6 and 4 degrees
of freedom. The probabilities for the seven intervals are 0.2606, 0.3791, 0.1872, 0.0856, 0.0407,
0.0205, 0.0261. The expected counts are 41 times each of these numbers. This makes Q = 5.714.
The two p-values are both larger than 0.2.

2. First, we must find the M.L.E. of Θ. From Eq. (10.2.5), ignoring the multinomial coefficient,

L(θ) =
4∏

i=0

pNi
i = CθN1+2N2+3N3+4N4(1− θ)4N0+3N1+2N2+N3 , where C = 4N16N24N3 .

Therefore,

logL(θ) = log C + (N1 + 2N2 + 3N3 + 4N4) log θ + (4N0 + 3N1 + 2N2 +N3) log(1− θ).

By solving the equation ∂ logL(θ)/∂θ = 0, we obtain the result

Θ̂ =
N1 + 2N2 + 3N3 + 4N4

4(N0 +N1 +N2 +N3 +N4)
=

N1 + 2N2 + 3N3 + 4N4

4n
.

It is found that Θ̂ = 0.4. Therefore, we obtain the following table:

No. of

Games Ni Nπi(Θ̂)
0 33 25.92
1 67 69.12
2 66 69.12
3 15 30.72
4 19 5.12

It is found from Eq. (10.2.4) that Q = 47.81. If Q has a χ2 distribution with 5− 1− 1 = 3 degrees of
freedom, then Pr(Q ≥ 47.81) is less than 0.005.

3. (a) It follows from Eqs. (10.2.2) and (10.2.6) that (aside from the multinomial coefficient)

logL(θ) = (N4 +N5 +N6) log 2 + (2N1 +N4 +N5) log θ1 + (2N2 +N4 +N6) log θ2

+(2N3 +N5 +N6) log(1− θ1 − θ2).

By solving the equations

∂ log L(θ)

∂θ1
= 0 and

∂ log L (θ)

∂θ2
= 0,

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 10.2. Goodness-of-Fit for Composite Hypotheses 319

we obtain the results

Θ̂1 =
2N1 +N4 +N5

2n
and Θ̂2 =

2N2 +N4 +N6

2n
,

where n =
∑6

i=1Ni.

(b) For the given values, n = 150, Θ̂1 = 0.2, and Θ̂2 = 0.5. Therefore, we obtain the following table:

i Ni nπi(Θ̂)
1 2 6
2 36 37.5
3 14 13.5
4 36 30
5 20 18
6 42 45

It is found from Eq. (10.2.4) that Q = 4.37. If Q has the χ2 distribution with 6−1−2 = 3 degrees
of freedom, then the value of Pr(Q ≥ 4.37) is approximately 0.226.

4. Suppose that X has the normal distribution with mean 67.6 and variance 1, and that Z has the standard
normal distribution. Then:

π1(Θ̂) = Pr (X < 66) = Pr (Z < −1.6) = 0.0548,

π2(Θ̂) = Pr (66 < X < 67.5) = Pr (−1.6 < Z < −0.1) = 0.4054,

π3(Θ̂) = Pr (67.5 < X < 68.5) = Pr (−0.1 < Z < 0.9) = 0.3557,

π4(Θ̂) = Pr (68.5 < X < 70) = Pr (0.9 < Z < 2.4) = 0.1759,

π5(Θ̂) = Pr (X > 70) = Pr (Z > 2.4) = 0.0082.

Therefore, we obtain the following table:

i Ni nπi(Θ̂)

1 18 27.4
2 177 202.7
3 198 177.85
4 102 87.95
5 5 4.1

The value of Q is found from Eq. (10.2.4) to be 11.2. Since μ and σ2 are estimated from the original
observations rather than from the grouped data, the approximate distribution of Q when H0 is true lies
between the χ2 distribution with 2 degrees of freedom and a χ2 distribution with 4 degrees of freedom.

5. From the given observations, it is found that the M.L.E. of the mean Θ of the Poisson distribution is
Θ̂ = Xn = 1.5. From the table of the Poisson distribution with Θ = 1.5, we can obtain the values of
πi(Θ̂). In turn, we can then obtain the following table:

No. of tickets Ni nπi(Θ̂)

0 52 44.62
1 60 66.94
2 55 50.20
3 18 25.10
4 8 9.42

5 or more 7 3.70
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It is found from Eq. (10.2.4) that Q = 7.56. Since Θ̂ is calculated from the original observations rather
than from the grouped data, the approximate distribution of Q when H0 is true lies between the χ2

distribution with 4 degrees of freedom and the χ2 distribution with 5 degrees of freedom. The two
p-values for 4 and 5 degrees of freedom are 0.1091 and 0.1822.

6. The value of Θ̂ = Xn can be found explicitly from the given data, and it equals 3.872. However, before
carrying cut the χ2 test, the observations in the bottom few rows of the table should be grouped together
to obtain a single cell in which the expected number of observations is not too small. Reasonable choices
would be to consider a single cell for the periods in which 11 or more particles were emitted (there
would be 6 observations in that cell) or to consider a single cell for the periods in which 10 or more
particles were emitted (there would be 16 observations in that cell). If the total number of cells after
this grouping has been made is k, then under H0 the statistic Q will have a distribution which lies
between the χ2 distribution with k − 2 degrees of freedom and the χ2 distribution with k − 1 degrees
of freedom. For example, with k = 12, the expected cell counts are

54.3, 210.3, 407.1, 525.3, 508.4, 393.7, 254.0, 140.5, 68.0, 29.2, 11.3, 5.8

The statistic Q is then 12.96. The two p-values for 10 and 11 degrees of freedom are 0.2258 and 0.2959.

7. There is no single correct answer to this problem. The M.L.E.’s μ̂ = Xn and σ̂2 = S2
n/n should be

calculated from the given observations. These observations should then be grouped into intervals and
the observed number in each interval compared with the expected number in that interval if each of
the 50 observations had the normal distribution with mean Xn and variance S2

n/n. If the number of
intervals is k, then when H0 is true, the approximate distribution of the statistic Q will lie between the
χ2 distribution with k − 3 degrees of freedom and the χ2 distribution with k − 1 degrees of freedom.

8. There is no single correct answer to this problem. The M.L.E. β̂ = 1/Xn of the parameter of the
exponential distribution should be calculated from the given observations. These observations should
then be grouped into intervals and the observed number in each interval compared with the expected
number in that interval if each of the 50 observations had an exponential distribution with parameter
1/Xn. If the number of intervals is k, then whenH0 is true, the approximate distribution of the statistic
Q will lie between a χ2 distribution with k − 2 degrees of freedom and the χ2 distribution with k − 1
degrees of freedom.

10.3 Contingency Tables

Solutions to Exercises.

1. Table S.10.1 contains the expected counts for this example. The value of the χ2 statistic Q calculated

Table S.10.1: Expected cell counts for Exercise 1 of Sec. 10.3.

Good grades Athletic ability Popularity

Boys 117.3 42.7 67.0

Girls 129.7 47.3 74.0

from these data is Q = 21.5. This should be compared to the χ2 distribution with two degrees of
freedom. The tail area can be calculated using statistical software as 2.2× 10−5.
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2. Q =
R∑
i=1

C∑
j=1

(Nij − Êij)
2

Êij

=
R∑
i=1

C∑
j=1

(
N2

ij

Êij

− 2Nij + Êij

)
=

⎛⎝ R∑
i=1

C∑
j=1

N2
ij

Êij

⎞⎠− 2n + n

=

⎛⎝ R∑
i=1

C∑
j=1

N2
ij

Êij

⎞⎠− n.

3. By Exercise 2,

Q =
R∑
i=1

N2
i1

Êi1

+
R∑
i=1

N2
i2

Êi2

− n.

But

R∑
i=1

N2
i2

Êi2

=
R∑
i=1

(Ni+ −Ni1)
2

Êi2

=
R∑
i=1

N2
i+

Êi2

− 2
R∑
i=1

Ni+Ni1

Êi2

+
R∑
i=1

N2
i1

Êi2

.

In the first two sums on the right, we let Êi2 = Ni+N+2/n, and in the third sum we let Êi2 =
N+2Êi1/N+1. We then obtain

R∑
i=1

N2
i2

Êi2

=
n

N+2

R∑
i=1

Ni+ − 2n

N+2

R∑
i=1

Ni1 +
N+1

N+2

R∑
i=1

N2
i1

Êi1

=
n2

N+2
− 2n

N+1

N+2
+

N+1

N+2

R∑
i=1

N2
i1

Êi1

.

It follows that

Q =

(
1 +

N+1

N+2

) R∑
i=1

N2
i1

Êi1

+
n

N+2
(n− 2N+1 −N+2).

Since n = N+1 +N+2,

Q =
n

N+2

R∑
i=1

N2
i1

Êi1

− n

N+2
N+1.

4. The values of Êij are as given in the following table:

8 32
12 48

The value of Q is found from Eq. (10.3.4) to be 25/6. If Q has a χ2 distribution with 1 degree of
freedom, then Pr (Q ≥ 25/6) lies between 0.025 and 0.05.

5. The values of Êij are as given in the following table.

77.27 94.35 49.61 22.77
17.73 21.65 11.39 5.23

The value of Q is found from Eq. (10.3.4) to be 8.6. If Q has the χ2 distribution with (2−1)(4−1) = 3
degrees of freedom, then Pr(Q ≥ 8.6) lies between 0.025 and 0.05.

6. The values of Êij are as given in the following table:

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



322 Chapter 10. Categorical Data and Nonparametric Methods

7.5 7.5
14.5 14.5

The value of Q is found from Eq. (10.3.4) to be 0.91. If Q has the χ2 distribution with 1 degree of
freedom, then Pr(Q ≥ 0.91) lies between 0.3 and 0.4.

7. (a) The values of pi+ and p+j are the marginal totals given in the following table:

0.3
0.3
0.4

0.5 0.3 0.2 1.0

It can be verified that pij = pi+p+j for each of the 9 entries in the table. It can be seen in advance
that this relation will be satisfied for every entry in the table because it can be seen that the
three rows of the table are proportional to each other or, equivalently, that the three columns are
proportional to each other.

(b) Here is one example of a simulated data set

44 32 16 92
45 25 15 85
63 33 27 123
152 90 58 300

(c) The statistic Q calculated by any student from Eq. (10.3.4) will have the χ2 distribution with
(3− 1)(3 − 1) = 4 degrees of freedom. For the data in part (b), the table of Êij values is

46.6 27.6 17.8

43.1 25.5 16.4

62.3 36.9 23.8

The value of Q is then 2.105. The p-value 0.7165.

8. To test whether the values obtained by n different students form a random sample of size n from a χ2

distribution with 4 degrees of freedom, follow these steps: (1) Partition the positive part of the real line
into k intervals; (2) Determine the probabilities p01, . . . , p

0
k of these intervals for the χ2 distribution with

4 degrees of freedom; (3) Calculate the value of the statistic Q given by Eq. (10.1.2). If the hypothesis
H0 is true, this statistic Q will have approximately the χ2 distribution with k − 1 degrees of freedom.

9. Let Nijk denote the number of observations in the random sample that fall into the (i, j, k) cell, and let

Ni++ =
C∑

j=1

T∑
k=1

Nijk, N+j+ =
R∑
i=1

T∑
k=1

Nijk,

N++k =
R∑
i=1

C∑
j=1

Nijk.

Then the M.L.E.’s are

p̂i++ =
Ni++

n
, p̂+j+ =

N+j+

n
, p̂++k =

N++k

n
.
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Therefore, when H0 is true,

Êijk = np̂i++p̂+j+p̂++k =
Ni++N+j+N++k

n2
.

Since
∑R

i=1 p̂i++ =
∑C

j=1 p̂+j+ =
∑T

k=1 p̂++k = 1, the number of parameters that have been estimated
is (R−1)+(C−1)+(T −1) = R+C+T −3. Therefore, when H0 is true, the approximate distribution
of

Q =
R∑
i=1

C∑
j=1

T∑
k=1

(Nijk − Êijk)
2

Êijk

will be the χ2 distribution for which the number of degrees of freedom is RCT −1− (R+C+T −3) =
RCT −R− C − T + 2.

10. The M.L.E.’s are

p̂ij+ =
Nij+

n
and p̂++k =

N++k

n
.

Therefore, when H0 is true,

Êijk = np̂ij+ p̂++k =
Nij+N++k

n
.

Since
R∑
i=1

C∑
j=1

p̂ij+ =
T∑

k=1
p̂++k = 1, the number of parameters that have been estimated is (RC − 1) +

(T − 1) = RC + T − 2. Therefore, when H0 is true, the approximate distribution of

Q =
R∑
i=1

C∑
j=1

T∑
k=1

(Nijk − Êijk)
2

Êijk

.

will be the χ2 distribution for which the number of degrees of freedom is RCT − 1 − (RC + T − 2) =
RCT −RC − T + 1.

10.4 Tests of Homogeneity

Solutions to Exercises.

1. Table S.10.2 contains the expected cell counts. The value of the χ2 statistic is Q = 18.8, which should

Table S.10.2: Expected cell counts for Exercise 1 of Sec. 10.4.

Good grades Athletic ability Popularity

Rural 77.0 28.0 44.0

Suburban 78.0 28.4 44.5

Urban 92.0 33.5 52.5

be compared to the χ2 distribution with four degrees of freedom. The tail area is 8.5 × 10−4.
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2. The value of the statistic Q given by Eqs. (10.4.3) and (10.4.4) is 7.57. If Q has a χ2 distribution with
(2− 1)(3 − 1) = 2 degrees of freedom, then Pr(Q ≥ 7.57) < 0.025.

3. The value of the statistic Q given by Eqs. (10.4.3) and (10.4.4) is 18.9. If Q has the χ2 distribution
with (4− 1)(5 − 1) = 12 degrees of freedom, then the value of Pr(Q ≥ 18.9) lies between 0.1 and 0.05.

4. The table to be analyzed is as follows:

Person Hits Misses

1 8 9
2 4 12
3 7 3
4 13 11
5 10 6

The value of the statistic Q given by Eqs. (10.4.3) and (10.4.4) is 6.8. If Q has the χ2 distribution with
(5− 1)(2 − 1) = 4 degrees of freedom, then the value of Pr (Q ≥ 6.8) lies between 0.1 and 0.2.

5. The correct table to be analyzed is as follows:

Supplier Defectives Nondefectives

1 1 14
2 7 8
3 7 8

The value of Q found from this table is 7.2. If Q has the χ2 distribution with (3− 1)(2− 1) = 2 degrees
of freedom, then Pr(Q ≥ 7.2) < 0.05.

6. The proper table to be analyzed is as follows:

After demonstration
Hit Miss

Before Hit 27
demonstration Miss 73

35 65

Although we are given the marginal totals, we are not given the entries in the table. If we were told
the value in just a single cell, such as the number of students who hit the target both before and after
the demonstration, we could fill in the rest of the table.

7. The proper table to be analyzed is as follows:

After meeting
Favors A Favors B No preference

Favors A
Before Favors B
meeting No preference

Each person who attended the meeting can be classified in one of the nine cells of this table. If a speech
was made on behalf of A at the meeting, we could evaluate the effectiveness of the speech by comparing
the numbers of persons who switched from favoring B or having no preference before the meeting to
favoring A after the meeting with the number who switched from favoring A before the meeting to one
of the other positions after the meeting.
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10.5 Simpson’s Paradox

Solutions to Exercises

1. If population II has a relatively high proportion of men and population I has a relatively high proportion
of women, then the indicated result will occur. For example, if 90 percent of population II are men and
10 percent are women, then the proportion of population II with the characteristic will be (.9)(.6) +
(.1)(.1) = .55. If 10 percent of population I are men and 90 percent are women, then the proportion of
population I with the characteristic will be only (.1)(.8) + (.9)(.3) = .35.

2. Each of these equalities holds if and only if A and B are independent events.

3. Assume that Pr(B|A) = Pr(B|Ac). This means that A and B are independent. According to the law
of total probability, we can write

Pr(I|B) = Pr(I|A ∩B) Pr(A|B) + Pr(I|Ac ∩B) Pr(Ac|B)

= Pr(I|A ∩B) Pr(A) + Pr(I|Ac ∩B) Pr(Ac),

where the last equality follows from the fact that A and B are independent. Similarly,

Pr(I|Bc) = Pr(I|A ∩Bc) Pr(A) + Pr(I|Ac ∩Bc) Pr(Ac).

If the first two inequalities in (10.5.1) hold then the weighted average of the left sides of the inequalities
must be larger than the same weighted average of the right sides. In particular,

Pr(I|A ∩B) Pr(A) + Pr(I|Ac ∩B) Pr(Ac) > Pr(I|A ∩Bc) Pr(A) + Pr(I|Ac ∩Bc) Pr(Ac).

But, we have just shown that this last equality is equivalent to Pr(I|B) > Pr(I|Bc), which means that
the third inequality cannot hold if the first two hold.

4. Define A to be the event if that a subject is a man, Ac the event that a subject is a woman, B the
event that a subject receives treatment I, and Bc the event that a subject receives treatment II. Then
the relation to be proved here is precisely the same as the relation that was proved in Exercise 2 in
symbols.

5. Suppose that the first two inequalities in (10.5.1) hold, and that Pr (A|B) = Pr (A|Bc), Then

Pr (I|B) = Pr (I | A ∩B) Pr (A | B) + Pr (I | Ac ∩B) Pr (Ac | B)

> Pr (I | A ∩Bc) Pr (A | B) + Pr (I | Ac ∩Bc) Pr (Ac | B)

= Pr (I | A ∩Bc) Pr (A | Bc) + Pr (I | Ac ∩Bc) Pr (Ac | Bc)

= Pr (I | Bc).

Hence, the final inequality in (10.5.1) must be reversed.

6. This result can be obtained if the colleges that admit a relatively small proportion of their applicants
receive a relatively large proportion of female applicants and the colleges that admit a relatively large
proportion of their applicants receive a relatively small proportion of female applicants. As a specific
example, suppose that the data are as given in the following table:
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Proportion
of total ProportionProportion
University Proportion Proportion of males of females

College applicants male female admitted admitted

1 .1 .9 .1 .32 .56
2 .1 .9 .1 .32 .56
3 .2 .8 .2 .32 .56
4 .2 .8 .2 .32 .56
5 .4 .1 .9 .05 .10

This table indicates, for example, that College 1 receives 10 percent of all the applications submitted
to the university, that 90 percent of the applicants to College 1 are male and 10 percent are female,
that 32 percent of the male applicants to College 1 are admitted, and that 56 percent of the female
applicants are admitted. It can be seen from the last two columns of this table that in each college the
proportion of females admitted is larger than the proportion of males admitted. However, in the whole
university, the proportion of males admitted is

(.1)(.9)(.32) + (.1)(.9)(.32) + (.2)(.8)(.32) + (.2)(.8)(.32) + (.4)(.1)(.05)

(.1)(.9) + (.1)(.9) + (.2)(.8) + (.2)(.8) + (.4)(.1)
= .3

and the proportion of females admitted is

(.1)(.1)(.56) + (.1)(.1)(.56) + (.2)(.2)(.56) + (.2)(.2)(.56) + (.4)(.9)(.10)

(.1)(.1) + (.1)(.1) + (.2)(.2) + (.2)(.2) + (.4)(.9)
= .2 .

7. (a) Table S.10.3 shows the proportions helped by each treatment in the four categories of subjects.
The proportion helped by Treatment II is higher in each category.

Table S.10.3: Table for Exercise 7a in Sec. 10.5.

Proportion helped
Category Treatment I Treatment II

Older males .200 .667
Younger males .750 .800
Older females .167 .286
Younger females .500 .640

(b) Table S.10.4 shows the proportions helped by each treatment in the two aggregated categories.
Treatment I helps a larger proportion in each of the two categories

Table S.10.4: Table for Exercise 7b in Sec. 10.5.

Proportion helped
Category Treatment I Treatment II

Older subjects .433 .400
Younger subjects .700 .667

(c) When all subjects are grouped together, the proportion helped by Treatment I is 200/400 = 0.5,
while the proportion helped by Treatment II is 240/400 = 0.6.
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10.6 Kolmogorov-Smirnov Tests

Commentary

This section is optional. However, some of the topics discussed here are useful in Chapter 12. In particular, the
bootstrap in Sec. 12.6 makes much use of the sample c.d.f. Some of the plots done after Markov chain Monte
Carlo also make use of the sample c.d.f. The crucial material is at the start of Sec. 10.6. The Glivenko-Cantelli
lemma, together with the asymptotic distribution of the Kolmogorov-Smirnov test statistic in Table 10.32
are useful if one simulates sample c.d.f.’s and wishes to compute simulation standard errors for the entire
sample c.d.f.

Empirical c.d.f.’s can be computed by the R function ecdf. The argument is a vector of data values. The
result is an R function that computes the empirical c.d.f. at its argument. For example, if x has a sample
of observations, then empd.x=ecdf(x) will create a function empd.x which can be used to compute values
of the empirical c.d.f. For example, empd.x(3) will be the proportion of the sample with values at most 3.
Kolmogorov-Smirnov tests can be performed using the R function ks.test. The first argument is a vector of
data values. The second argument depends on whether one is doing a one-sample or two-sample test. In the
two-sample case, the second argument is the second sample. In the one-sample case, the second argument
is the name of a function that will compute the hypothesized c.d.f. If that function has any additional
arguments, they can be provided next or named explicitly later in the argument list.

Solutions to Exercises.

1. Fn(x) = 0 for x < y, and Fn(y1) = 0.2. Suppose first that F (y1) ≥ 0.1. Since F is continuous, the values
of F (x) will be arbitrarily close to F (y1) for x arbitrarily close to y1. Therefore, sup

x<y1
|Fn(x)− F (x)| =

F (y1) ≥ 0.1, and it follows that Dn ≥ 0.1. Suppose next that F (y1) ≤ 0.1. Since Fn(y1) = 0.2, it
follows that | Fn(y1)− F (y1) | ≥ 0.1. Therefore, it is again true that Dn ≥ 0.1. We can now conclude
that it must always be true that Dn ≥ 0.1. If the values of F (yi) are as specified in the second part of
the exercise, for i = 1, . . . , 5, then:

| Fn(x)− F (x) | =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F (x) ≤ 0.1 for x < y1,
0.2− 0.1 = 0.1 for x = y1,

| F (x)− 0.2 | ≤ 0.1 for y1 < x < y2,
0.4− 0.3 = 0.1 for x = y2,

| F (x)− 0.4 | ≤ 0.1 for y2 < x < y3,
etc.

Hence, Dn = sup
− ∞ < x < ∞

| Fn(x)− F (x) | = 0.1.

2. Fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < y1,
0.2 for y1 ≤ x < y2,
0.4 for y2 ≤ x < y3,
0.6 for y3 ≤ x < y4,
0.8 for y4 ≤ x < y5,
1 for x ≥ y5.

If F satisfies the inequalities given in the exercise, then | Fn(x)− F (x) | ≤ 0.2 for every value of x.
Hence, Dn ≤ 0.2. Conversely, if F (yi) > 0.2i for some value of i, then F (x) − Fn(x) > 0.2 for values
of x approaching yi from below. Hence, Dn > 0.2. Also, if F (yi) < 0.2(i − 1) for some value of i, then
Fn(yi)− F (yi) > 0.2. Hence, again Dn > 0.2.
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3. The largest value of the difference between the sample c.d.f. and the c.d.f. of the normal distribution
with mean 3.912 and variance 0.25 occurs right before x = 4.22, the 12th observation. For x just below
4.22, the sample c.d.f. is Fn(x) = 0.48, while the normal c.d.f. is Φ([4.22 − 3.912]/0.5) = 0.73. The
difference is D∗

n = 0.25. The Kolmogorov-Smirnov test statistic is 231/2 × 0.25 = 1.2. The tail area can
be found from Table 10.32 as 0.11.

4. When the observations are ordered, we obtain Table S.10.5. The maximum value of | Fn(x) − F (x) |

Table S.10.5: Table for Exercise 4 in Sec. 10.6.

i yi = F (yi) Fn(yi) i yi = F (yi) Fn(yi)
1 .01 .04 14 .41 .56
2 .06 .08 15 .42 .60
3 .08 .12 16 .48 .64
4 .09 .16 17 .57 .68
5 .11 .20 18 .66 .72
6 .16 .24 19 .71 .76
7 .22 .28 20 .75 .80
8 .23 .32 21 .78 .84
9 .29 .36 22 .79 .88

10 .30 .40 23 .82 .92
11 .35 .44 24 .88 .96
12 .38 .48 25 .90 1.00
13 .40 .52

occurs at x = y15 where its value is 0.60 − 0.42 = 0.18. Since n = 25, n1/2Dn
∗ = 0.90. From

Table 10.32, H(0.90) = 0.6073. Therefore, the tail area corresponding to the observed value of Dn
∗ is

1− 0.6073 = 0.3927.

5. Here,

F (x) =

⎧⎪⎪⎨⎪⎪⎩
3

2
x for 0 < x ≤ 1/2,

1

2
(1 + x) for 1

2 < x < 1.

Therefore, we obtain Table S.10.6. The supremum of | Fn(x)− F (x) | occurs as x → y18 from below.

Table S.10.6: Table for Exercise 5 in Sec. 10.6.

i yi F (yi) Fn(yi) i yi F (yi) Fn(yi)
1 .01 .015 .04 14 .41 .615 .56
2 .06 .09 .08 15 .42 .63 .60
3 .08 .12 .12 16 .48 .72 .64
4 .09 .135 .16 17 .57 .785 .68
5 .11 .165 .20 18 .66 .83 .72
6 .16 .24 .24 19 .71 .855 .76
7 .22 .33 .28 20 .75 .875 .80
8 .23 .345 .32 21 .78 .89 .84
9 .29 .435 .36 22 .79 .895 .88
10 .30 .45 .40 23 .82 .91 .92
11 .35 .525 .44 24 .88 .94 .96
12 .38 .57 .48 25 .90 .95 1.00
13 .40 .60 .52

Here, F (x) → 0.83 while Fn(x) remains at 0.68. Therefore, Dn
∗ = 0.83 − 0.68 = 0.15. It follows that
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n1/2Dn
∗ = 0.75 and, from Table 10.32, H(0.75) = 0.3728. Therefore, the tail area corresponding to the

observed value of Dn
∗ is 1− 0.3728 = 0.6272.

6. Since the p.d.f. of the uniform distribution is identically equal to 1, the value of the joint p.d.f. of the
25 observations under the uniform distribution has the value L1 = 1. Also, sixteen of the observations
are less than 1/2 and nine are greater than 1/2. Therefore, the value of the joint p.d.f. of the observa-
tions under the other distribution is L2 = (3/2)16(1/2)9 = 1.2829. The posterior probability that the
observations came from a uniform distribution is

1

2
L1

1

2
L1 +

1

2
L2

= 0.438

7. We first replace each observed value xi by the value (xi − 26)/2. Then, under the null hypothesis,
the transformed values will form a random sample from a standard normal distribution. When these
transformed values are ordered, we obtain Table S.10.7. The maximum value of | Fn(x) − Φ(x) |

Table S.10.7: Table for Exercise 7 in Sec. 10.6.

i yi Φyi Fn(yi) i yi Φ(yi) Fn(yi)
1 −2.2105 .0136 .02 26 −0.010 .4960 .52
2 −1.9265 .0270 .04 27 −0.002 .4992 .54
3 −1.492 .0675 .06 28 1/40.010 .5040 .56
4 −1.3295 .0919 .08 29 1/40.1515 .5602 .58
5 −1.309 .0953 .10 30 1/40.258 .6018 .60
6 −1.2085 .1134 .12 31 1/40.280 .6103 .62
7 −1.1995 .1152 .14 32 1/40.3075 .6208 .64
8 −1.125 .1307 .16 33 1/40.398 .6547 .66
9 −1.0775 .1417 .18 34 1/40.4005 .6556 .68

10 −1.052 .1464 .20 35 1/40.4245 .6645 .70
11 −0.961 .1682 .22 36 1/40.482 .6851 .72
12 −0.8415 .2001 .24 37 1/40.614 .7304 .74
13 −0.784 .2165 .26 38 1/40.689 .7546 .76
14 −0.767 .2215 .28 39 1/40.7165 .7631 .78
15 −0.678 .2482 .30 40 1/40.7265 .7662 .80
16 −0.6285 .2648 .32 41 1/40.9262 .8320 .82
17 −0.548 .2919 .34 42 1/41.0645 .8564 .84
18 −0.456 .3242 .36 43 1/41.120 .8686 .86
19 −0.4235 .3359 .38 44 1/41.176 .8802 .88
20 −0.340 .3669 .40 45 1/41.239 .8923 .90
21 −0.3245 .3728 .42 46 1/41.4615 .9281 .92
22 −0.309 .3787 .44 47 1/41.6315 .9487 .94
23 −0.266 .3951 .46 48 1/41.7925 .9635 .96
24 −0.078 .4689 .48 49 1/41.889 .9705 .98
25 −0.0535 .4787 .50 50 1/42.216 .9866 1.00

is attained at x = y23 and its value is 0.0649. Since n = 50, n1/2Dn
∗ = 0.453. It follows from

Table 10.32 that H(0.453) = 0.02. Therefore, the tail area corresponding to the observed value of Dn
∗

is 1− 0.02 = 0.98.

8. We first replace each observed value xi by the value (xi − 24)/2. Then, under the null hypothesis,
the transformed values will form a random sample from a standard normal distribution. Each of the
transformed values will be one unit larger than the corresponding transformed value in Exercise 7.
The ordered values are therefore omitted from the tabulation in Table S.10.8. The supremum of
| Fn(x) − Φ(x) | occurs as x → y18 from below. Here, Φ(x) → 0.7068 while Fn(x) remains at 0.34.
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Table S.10.8: Table for Exercise 8 in Sec. 10.6.

i Φ(yi) Fn(yi) i Φ(yi) Fn(yi)
1 .1130 .02 26 .8389 .52
2 .1779 .04 27 .8408 .54
3 .3114 .06 28 .8437 .56
4 .3710 .08 29 .8752 .58
5 .3787 .10 30 .8958 .60
6 .4174 .12 31 .8997 .62
7 .4209 .14 32 .9045 .64
8 .4502 .16 33 .9189 .66
9 .4691 .18 34 .9193 .68
10 .4793 .20 35 .9229 .70
11 .5136 .22 36 .9309 .72
12 .5630 .24 37 .9467 .74
13 .5856 .26 38 .9544 .76
14 .5921 .28 39 .9570 .78
15 .6263 .30 40 .9579 .80
16 .6449 .32 41 .9751 .82
17 .6743 .34 42 .9805 .84
18 .7068 .36 43 .9830 .86
19 .7178 .38 44 .9852 .88
20 .7454 .40 45 .9875 .90
21 .7503 .42 46 .9931 .92
22 .7552 .44 47 .9958 .94
23 .7685 .46 48 .9974 .96
24 .8217 .48 49 .9980 .98
25 .8280 .50 50 .9993 1.00

Therefore, Dn
∗ = 0.7068 − 0.34 = 0.3668. It follows that n1/2Dn

∗ = 2.593 and, from Table 10.32,
H(2.593) = 1.0000. Therefore, the tail area corresponding to the observed value of Dn

∗ is 0.0000.

9. We shall denote the 25 ordered observations in the first sample by x1 < · · · < x25 and shall denote
the 20 ordered observations in the second sample by y1 < · · · < y20. We obtain Table S.10.9. The
maximum value of | Fm(x) − Gn(x) | is attained at x = −0.39, where its value is 0.32 − 0.05 = 0.27.

Therefore, Dmn = 0.27 and, since m = 25 and n = 20, (mn/[m+ n])1/2 Dmn = 0.9. From Table 10.32,
H(0.9) = 0.6073. Hence, the tail area corresponding to the observed value ofDmn is 1−0.6073 = 0.3927.

10. We shall add 2 units to each of the values in the first sample and then carry out the same procedure
as in Exercise 9. We now obtain Table S.10.10. The maximum value of | Fm(x) −Gn(x) | is attained
at x = 1.56, where its value is 0.80− 0.24 = 0.56. Therefore, Dmn = 0.56 and (mn/[m+ n])1/2 Dmn =
1.8667. From Table 10.32, H(1.8667) = 0.998. Therefore, the tail area corresponding to the observed
value of Dmn is 1− 0.998 = 0.002.

11. We shall multiply each of the observations in the second sample by 3 and then carry out the same proce-
dure as in Exercise 9. We now obtain Table S.10.11. The maximum value of | Fm(x)−Gn(x) | is attained
at x = 1.06, where its value is 0.80− 0.30 = 0.50. Therefore, Dmn = 0.50 and (mn/[m+ n])1/2 Dmn =
1.667. From Table 10.32, H(1.667) = 0.992. Therefore, the tail area corresponding to the observed
value of Dmn is 1− 0.992 = 0.008.

12. The maximum difference between the c.d.f. of the normal distribution with mean 3.912 and variance
0.25 and the empirical c.d.f. of the observed data is D∗

n = 0.2528 which occurs at the observation 4.22
where the empirical c.d.f. jumps from 11/23 = 0.4783 to 12/23 = 0.5217 and the normal c.d.f. equals
Φ([4.22 − 3.912]/0.5) = 0.7311. We now compare (23)1/2D∗

n = 1.2123 to Table 10.32, where we find
that H(1.2123) ≈ 0.89. The tail area (p-value) is then about 0.11.
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Table S.10.9: Table for Exercise 9 in Sec. 10.6.

xi yj Fm(x) Gn(x) xi yj Fm(x) Gn(x)
−2.47 .04 0 0.51 .60 .45
−1.73 .08 0 0.52 .60 .50
−1.28 .12 0 0.59 .64 .50
−0.82 .16 0 0.61 .68 .50
−0.74 .20 0 0.64 .72 .50

−0.71 .20 .05 0.66 .72 .55
−0.56 .24 .05 0.70 .72 .60
−0.40 .28 .05 0.96 .72 .65
−0.39 .32 .05 1.05 .76 .65

−0.37 .32 .10 1.06 .80 .65
−0.32 .36 .10 1.09 .84 .65

−0.30 .36 .15 1.31 .88 .65
−0.27 .36 .20 1.38 .88 .70

−0.06 .40 .20 1.50 .88 .75
0.00 .40 .25 1.56 .88 .80

0.05 .44 .25 1.64 .92 .80
0.06 .48 .25 1.66 .92 .85

0.26 .48 .30 1.77 .96 .85
0.29 .52 .30 2.20 .96 .90
0.31 .56 .30 2.31 .96 .95

0.36 .56 .35 2.36 1.00 .95
0.38 .56 .40 3.29 1.00 1.00
0.44 .56 .45

Table S.10.10: Table for Exercise 10 in Sec. 10.6.

xi yj Fm(x) Gn(x) xi yj Fm(x) Gn(x)
−0.71 0 .05 1.61 .32 .80

−0.47 .04 .05 1.66 .32 .85
−0.37 .04 .10 1.68 .36 .85
−0.30 .04 .15 1.94 .40 .85
−0.27 .04 .20 2.05 .44 .85
0.00 .04 .25 2.06 .48 .85
0.26 .04 .30 2.20 .48 .90

0.27 .08 .30 2.29 .52 .90
0.36 .08 .35 2.31 2.31 .56 .95
0.38 .08 .40 2.51 .60 .95
0.44 .08 .45 2.59 .64 .95
0.52 .08 .50 2.61 .68 .95
0.66 .08 .55 2.64 .72 .95
0.70 .08 .60 3.05 .76 .95

0.72 .12 .60 3.06 .80 .95
0.96 .12 .65 3.09 .84 .95

1.18 .16 .65 3.29 .84 1.00
1.26 .20 .65 3.31 .88 1.00

1.38 .20 .70 3.64 .92 1.00
1.44 .24 .70 3.77 .96 1.00

1.50 .24 .75 4.36 1.00 1.00
1.56 .24 .80

1.60 .28 .80
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Table S.10.11: Table for Exercise 11 in Sec. 10.6

xi yj Fm(x) Gn(x) xi yj Fm(x) Gn(x)
−2.47 .04 0 0.78 .

¯
72 .30

−2.13 .04 .05 1.05 .
¯
76 .30

−1.73 .08 .05 1.06 .
¯
80 .30

−1.28 .12 .05 1.08 .
¯
80 .35

−1.11 .12 .10 1.09 .
¯
84 .35

−0.90 .12 .15 1.14 .
¯
84 .40

−0.82 .16 .15 1.31 .
¯
88 .40

−0.81 .16 .20 1.32 .
¯
88 .45

−0.74 .20 .20 1.56 .
¯
88 .50

−0.56 .24 .20 1.64 .
¯
92 .50

−0.40 .28 .20 1.77 .
¯
96 .50

−0.39 .32 .20 1.98 .
¯
96 .55

−0.32 .36 .20 2.10 .
¯
96 .60

−0.06 .40 .20 2.36 1.00 .60
0.00 .40 .25 2.88 1.00 .65

0.05 .44 .25 4.14 1.00 .70
0.06 .48 .25 4.50 1.00 .75
0.29 .52 .25 4.68 1.00 .80
0.31 .56 .25 4.98 1.00 .85
0.51 .60 .25 6.60 1.00 .90
0.59 .64 .25 6.93 1.00 .95
0.61 .68 .25 9.87 1.00 1.00
0.64 .72 .25
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10.7 Robust Estimation

Commentary

In recent years, interest has grown in the use of robust statistical methods. Although many robust methods
are more suitable for advanced courses, this section introduces some robust methods that can be understood
at the level of the rest of this text. This includes M -estimators of a location parameter.

The software R contains some functions that can be used for robust estimation. The function quantile

computes sample quantiles. The first argument is a vector of observed values. The second argument is a vector
of probabilities for the desired quantiles. For example quantile(x,c(0.25,0.75)) computes the sample
quartiles of the data x. The function median computes the sample median. The function mad computes the
median absolute deviation of a sample. If you issue the command library(MASS), some additional functions
become available. One such function is huber, which computes M -estimators as on page 673 with σ̂ equal
to the median absolute deviation. The first argument is the vector of data values, and the second argument
is k, in the notation of the text. To find the M -estimator with a general σ̂, replace the second argument by
kσ̂ divided by the mean absolute deviation of the data.

Solutions to Exercises.

1. The observed values ordered from smallest to largest are 2.1, 2.2, 21.3, 21.5, 21.7, 21.7, 21.8, 22.1, 22.1,
22.2, 22.4, 22.5, 22.9, 23.0, 63.0.

(a) The sample mean is the average of the numbers, 22.17.

(b) The trimmed mean for a given value of k is found by dropping k values from each end of this
ordered sequence and averaging the remaining values. In this problem we get

k 1 2 3 4

kth level trimmed mean 20.57 22.02 22 22

(c) The sample median is the middle observation, 22.1.

(d) The median absolute deviation is 0.4. Suppose that we start iterating with the sample average
22.17. The 7th and 8th iterations are both 22.

2. The observed values ordered from smallest to largest are −2.40,−2.00, −0.11, 0.00, 0.03, 0.10, 0.12,
0.23, 0.24, 0.24, 0.36, 0.69, 1.24, 1.78.

(a) The sample mean is the average of these values, 0.0371.

(b) The trimmed mean for a given value of k is found by dropping k values from each end of this
ordered sequence and averaging the remaining values. In this problem we get

k 1 2 3 4

kth level trimmed mean 0.095 0.19 0.165 0.16

(c) Since the number of observed values is even, the sample median is the average of the two middle
values 0.12 and 0.23, which equals 0.175.

(d) The median absolute deviation is 0.18. Suppose that we start iterating with the sample average
0.0371. The 9th and 10th iterations are both 0.165.

3. The distribution of θ̃.5,nwill be approximately normal with mean θ and standard deviation 1/[2n1/2f(θ)].
In this exercise,

f(x) =
1√
2π

exp

[
−1

2
(x− θ)2

]
.
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Hence, f(θ) = 1/
√
2π. Since n = 100, the standard deviation of the approximate distribution of θ̃.5,n

is
√
2π/20 = 0.1253. It follows that the distribution of Z = (θ̃.5,n − θ)/0.1253 will be approximately

standard normal. Thus,

Pr(|θ̃.5,n − θ| ≤ 0.1) = Pr

(
|Z| ≤ 0.1

0.1253

)
= Pr(|Z| ≤ 0.798) = 2Φ(0.798) − 1 = 0.575.

4. Here,

f(x) =
1

π[1 + (x− θ)2]

Therefore, f(θ) = 1/π and, since n = 100, it follows that the distribution of θ̃.5,n will be approximately
normal with mean θ and standard deviation π/20 = 0.1571. Thus, the distribution of Z = (θ̃.5,n −
θ)/0.1571 will be approximately standard normal. Hence,

Pr(|θ̃.5,n − θ| ≤ 0.1) = Pr

(
|Z| ≤ 0.1

0.1571

)
= Pr(|Z| ≤ 0.637) = 2Φ(0.637) − 1 = 0.476.

5. Let the first density on the right side of Eq. (10.7.1) be called h. Since both h and g are symmetric
with respect to μ, so also is f(x). Therefore, both the sample mean Xn and the sample median X̃n are
unbiased estimators of μ. It follows that the M.S.E. of Xn is equal to Var(Xn) and that the M.S.E. of
X̃n is equal to Var(X̃n). The variance of a single observation X is

Var(X) =

∫ ∞

−∞
(x− μ)2f(x)dx

=
1

2

∫ ∞

−∞
(x− μ)2h(x)dx +

1

2

∫ ∞

−∞
(x− μ)2g(x)dx

=
1

2
(1) +

1

2
(4) =

5

2
.

Since n = 100, Var(Xn) = (1/100)(5/2) = 0.025.

The variance of X̃n will be approximately 1/[4nh2(μ)]. Since

h(x) =
1√
2π

exp

[
−1

2
(x− μ)2

]
and g(x) =

1

2
√
2π

exp

[
− 1

2(4)
(x− μ)2

]
,

it follows that

f(μ) =
1

2
h(μ) +

1

2
g(μ) =

1

2
· 1√

2π
+

1

2
· 1

2
√
2π

=
3

4
√
2π

.

Therefore, Var(X̃n) is approximately 2π/225 = 0.028.

6. Let gn(x) be the joint p.d.f. of the data given that they came from the uniform distribution, and
let fn(x) be the joint p.d.f. given that they come from the p.d.f. in Exercise 5. According to Bayes’
theorem, the posterior probability that they came from the uniform distribution is

1

2
gn(x)

1

2
gn(x) +

1

2
fn(x)

.

It is easy to see that gn(x) = 1 for these data, while fn(x) = (3/2)16(1/2)9 = 1.283. This makes the
posterior probability of the uniform distribution 1/2.283 = 0.4380.
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7. (a) The mean Xn is the mean of each Xi. Since f(x) is a weighted average of two other p.d.f.’s,
the

∫
xf(x)dx is the same mixture of the means of the other two distributions. Since each of the

distributions in the mixture has mean μ, so does the distribution with p.d.f. f .

(b) The variance Xn is 1/n times the variance of Xi. The variance of Xi is E(X2
i ) − μ2. Since the

p.d.f. of Xi is a weighted average of two other p.d.f.’s, the mean of X2
i is the same weighted average

of the two means of X2
i from the two p.d.f.’s. The mean of X2

i from the first p.d.f. (the normal
distribution with mean μ and variance σ2) is μ2+σ2. The mean of X2

i from the second p.d.f. (the
normal distribution with mean μ and variance 100σ2) is μ2 + 100σ2. The weighted average is

(1− ε)(μ2 + σ2) + ε(μ2 + 100σ2) = μ2 + σ2(1 + 99ε).

The variance of Xi is then (1 + 99ε)σ2, and the variance Xn is (1 + 99ε)σ2/n.

8. When ε = 1, the distribution whose p.d.f. is in Eq. (10.7.2) is the normal distribution with mean μ
and variance 100σ2. When ε = 0, the distribution is the normal distribution with mean μ and variance
σ2. The ratio of the variances of the sample mean and sample median from a normal distribution
does not depend on the variance of the normal distribution, hence the ratio will be the same whether
the variance is σ2 or 100σ2. The reason that the ratio doesn’t depend on the variance of the specific
normal distribution is that both the sample mean and the sample median have variances that equal
the variance of the original distribution times constants that depend only on the sample size.

9. The likelihood function is

1

2nσn
exp

(
− 1

σ

n∑
i=1

|xi − θ|
)
.

It is easy to see that, no matter what σ equals, the M.L.E. of θ is the number that minimizes
∑
i=1

|xi−θ|.

This is the same as the number that minimizes
∑
i=1

|xi − θ|/n. The value
n∑

i=1

|xi − θ|/n is the mean of

|X − θ| when the c.d.f. of X is the sample c.d.f. of X1, . . . ,Xn. The mean of |X − θ| is minimized by
θ equal to a median of the distribution of X according to Theorem 4.5.3. The median of the sample
distribution is the sample median.

10. The likelihood was given in Exercise 9. The logarithm of the likelihood equals

−n log(2σ) − 1

σ

n∑
i=1

|xi − θ|.

For convenience, assume that x1 < x2 < . . . < xn. Let θ be a given number between two consecutive
xi values. In particular, let xk < θ < xk+1. For known σ, the likelihood can be written as a constant
plus a constant times

n∑
i=k+1

xi − (n− k)θ −
k∑

i=1

xi + kθ.

For θ between xk and xk+1, the derivative of this is k − (n− k), the difference between the number of
observations below θ and the number above θ.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



336 Chapter 10. Categorical Data and Nonparametric Methods

11. Let xq be the q quantile of X. The result will follow if we can prove that the q quantile of aX + b is
axq + b. Since

Pr(aX + b ≤ axq + b) = Pr(X ≤ xq),

for all a > 0 and b and q, it follows that axq + b is the q quantile of aX + b.

12. According to the solution to Exercise 11, the median of aX + b is am+ b, where m is the median of X.
The median absolute deviation of X is the median of |X −m|, which equals σ. The median absolute
deviation of aX + b is the median of |aX + b − (am + b)| = a|X − m|. According to the solution to
Exercise 11, the median of a|X −m| is a times the median of |X −m|, that is, aσ.

13. The Cauchy distribution is symmetric around 0, so the median is 0, and the median absolute deviation
is the median of Y = |X|. If F is the c.d.f. of X, then the c.d.f. of Y is

G(y) = Pr(Y ≤ y) = Pr(|X| ≤ y) = Pr(−y ≤ X ≤ y) = F (y)− F (−y),

because X has a continuous distribution. Because X has a symmetric distribution around 0, F (−y) =
1 − F (y), and G(y) = 2F (y) − 1. The median of Y is where G(y) = 0.5, that is 2F (y) − 1 = 0.5 or
F (y) = 0.75. So, the median of Y is the 0.75 quantile of X, namely y = 1.

14. (a) The c.d.f. of X is F (x) = 1− exp(−xλ), so the quantile function is F−1(p) = − log(1− p)/λ. The
IQR is

F−1(0.75) − F−1(0.25) = − log(0.25)

λ
+

log(0.75)

λ
=

log(3)

λ
.

(b) The median of X is log(2)/λ, and the median absolute deviation is the median of |X−log(2)/λ|. It
is the value x such that Pr(log(2)/λ−x ≤ X ≤ log(2)/λ+x) = 0.5. If we try letting x = log(3)/[2λ]
(half of the IQR), then

Pr(log(2)/λ − x ≤ X ≤ log(2)/λ + x) = [1− exp(− log(2
√
3))]− [1− exp(− log(2/

√
3))]

=
1

2
[
√
3− 1/

√
3] = 0.5773.

This is greater than 0.5, so the median absolute deviation is smaller than 1/2 of the IQR.

15. (a) The quantile function of the normal distribution with mean μ and variance σ2 is the inverse of the
c.d.f., F (x) = Φ([x− μ]/σ). So,

F−1(p) = μ+ σΦ−1(p). (S.10.1)

The IQR is

F−1(0.75) − F−1(0.25) = σ[Φ−1(0.75) − Φ−1(0.25)].

Since the standard normal distribution is symmetric around 0, Φ−1(0.25) = −Φ−1(0.75), so the
IQR is 2σΦ−1(0.75).

(b) Let F be the c.d.f. of a distribution that is symmetric around its median μ. The median absolute
deviation is then the value x such that F (μ + x) − F (μ − x) = 0.5. By symmetry around the
median, we know that F (μ−x) = 1−F (μ+x), so x solves 2F (μ+x)−1 = 0.5 or F (μ+x) = 0.75.
That is, x = F−1(0.75)−μ. For the case of normal random variables, use Eq. (S.10.1) to conclude
that x = σΦ−1(0.75).
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16. Here are the sorted values from smallest to largest:

−67, −48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75.

(a) The average is 20.93.

(b) The trimmed means are

k 1 2 3 4

Trimmed mean 25.54 26.73 25.78 25

(c) The sample median is 24.

(d) The median absolute deviation divided by 0.6745 is 25.20385. Starting at θ = 0 and iterating the
procedure described on page 673 of the text, we get the following sequence of values for θ:

20.805, 24.017, 26.278, 24.342, 24.373, 24.376, 24.377, 24.377, . . .

After 9 iterations, the value stays the same to 7 significant digits.

17. Let μ stand for the median of the distribution, and let μ + c be the 0.75 quantile. By symmetry, the
0.25 quantile is μ − c. Also, f(μ + c) = f(μ − c). The large sample joint distribution of the 0.25 and
0.75 sample quantiles is a bivariate normal distribution with means μ − c and μ + c, variances both
equal to 3/[16nf(μ + c)2], and covariance 1/[16nf(μ + c)2]. The IQR is the difference between these
two sample quantiles, so its large sample distribution is normal with mean 2c and variance

3

16nf(μ+ c)2
+

3

16nf(μ+ c)2
− 2

1

16nf(μ+ c)2
=

1

4nf(μ+ c)2
.

10.8 Sign and Rank Tests

Commentary

This section ends with a derivation of the power function of the Wilcoxon-Mann-Whitney ranks test. This
derivation is a bit more technical than the rest of the section and is perhaps suitable only for the more
mathematically inclined reader.

If one is using the software R, the function wilcox.test performs the Wilcoxon-Mann-Whitney ranks
test. The two arguments are the two samples whose distributions are being compared.

Solutions to Exercises.

1. Let W be the number of (Xi, Yi) pairs with Xi ≤ Yi. Then W has a binomial distribution with
parameters n and p. To test H0, we reject H0 if W is too large. In particular, if c is chosen so that

n∑
w=c+1

(
n

w

)(
1

2

)n

< α0 ≤
n∑

w=c

(
n

w

)(
1

2

)n

,

then we can reject H0 if W ≥ c for a level α0 test.

2. The largest difference between the two sample c.d.f.’s occurs between 2.336 and 2.431 and equals
|0.8 − 0.125| = 0.675. The test statistic is then(

8× 10

8 + 10

)1/2

0.675 = 1.423.

The tail area is between 0.0397 and 0.0298.
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3. This test was performed in Example 9.6.5, and the tail area is 0.003.

4. By ordering all the observations, we obtain Table S.10.12. The sum of the ranks of x1, . . . , x25 is

Table S.10.12: Table for Exercise 4 of Sec. 10.8.

Observed Observed
Rank value Sample Rank value Sample
1 0.04 x 21 1.01 y
2 0.13 x 22 1.07 y
3 0.16 x 23 1.12 x
4 0.28 x 24 1.15 x
5 0.35 x 25 1.20 x
6 0.39 x 26 1.25 y
7 0.40 x 27 1.26 y
8 0.44 x 28 1.31 y
9 0.49 x 29 1.38 x
10 0.58 x 30 1.48 y
11 0.68 y 31 1.50 x
12 0.71 x 32 1.54 x
13 0.72 x 33 1.59 y
14 0.75 x 34 1.63 y
15 0.77 x 35 1.64 x
16 0.83 x 36 1.73 x
17 0.86 y 37 1.78 y
18 0.89 y 38 1.81 y
19 0.90 x 39 1.82 y
20 0.91 x 40 1.95 y

S = 399. Since m = 25 and n = 15, it follows from Eqs. (10.8.3) and (10.8.4) that E(S) = 512.5,
Var(S) = 1281.25, and σ = (1281.25)1/2 = 35.7946. Hence, Z = (399− 512.5)/35.7946 = −3.17. It can
be found from a table of the standard normal distribution that the corresponding two-sided tail area is
0.0015.

5. Since there are 25 observations in the first sample, Fm(x) will jump by the amount 0.04 at each observed
value. Since there are 15 observations in the second sample, Gn(x) will jump by the amount 0.0667 at
each observed value. From the table given in the solution to Exercise 4, we obtain Table S.10.13. It
can be seen from this table that the maximum value of |Fm(x)−Gn(x)| occurs when x is equal to the
observed value of rank 16, and its value at this point is .60− .0667 = .5333. Hence, Dmn = 0.5333 and(

mn

m+ n

)1/2

Dmn =

(
375

40

)1/2

(0.5333) = 1.633. It is found from Table 10.32 that the corresponding

tail area is almost exactly 0.01.

6. It is found from the values given in Tables 10.44 and 10.45 that x =
∑25

i=1 xi/25 = 0.8044, y =∑15
i=1 yi/15 = 1.3593, S2

x =
∑25

i=1(xi − x)2 = 5.8810, and S2
y =

∑15
i=1(yi − y)2 = 2.2447. Since m = 25

and n = 15, it follows from Eq. (9.6.3) that U = −3.674. It can be found from a table of the t
distribution with m+ n− 2 = 38 degrees of freedom that the corresponding two-sided tail area is less
than 0.01.

7. We need to show that F (θ +G−1(p)) = p. Compute

F (θ +G−1(p)) =

∫ θ+G−1(p)

−∞
f(x)dx =

∫ θ+G−1(p)

−∞
g(x− θ)dx =

∫ G−1(p)

−∞
g(y)dy = G(G−1(p)) = p,

where the third equality follows by making the change of variables y = x− θ.

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 10.8. Sign and Rank Tests 339

Table S.10.13: Table for Exercise 5 of Sec. 10.8.

Rank of Rank of
observations Fm(x) Gn(x) observations Fm(x) Gn(x)
1 .04 0 21 .68 .2667
2 .08 0 22 .68 .3333
3 .12 0 23 .72 .3333
4 .16 0 24 .76 .3333
5 .20 0 25 .80 .3333
6 .24 0 26 .80 .4000
7 .28 0 27 .80 .4667
8 .32 0 28 .80 .5333
9 .36 0 29 .84 .5333
10 .40 0 30 .84 .6000
11 .40 .0667 31 .88 .6000
12 .44 .0667 32 .92 .6000
13 .48 .0667 33 .92 .6667
14 .52 .0667 34 .92 .7333
15 .56 .0667 35 .96 .7333
16 .60 .0667 36 1.00 .7333
17 .60 .1333 37 1.00 .8000
18 .60 .2000 38 1.00 .8667
19 .64 .2000 39 1.00 .9333
20 .68 .2000 40 1.00 1.0000

8. Since Y +θ and X have the same distribution, it follows that if θ > 0 then the values in the first sample
will tend to be larger than the values in the second sample. In other words, when θ > 0, the sum S of
the ranks in the first sample will tend to be larger than it would be if θ = 0 or θ < 0. Therefore, we
will reject H0 if Z > c, where Z is as defined in this section and c is an appropriate constant. If we
want the test to have a specified level of significance α0 (0 < α0 < 1), then c should be chosen so that
when Z has a standard normal distribution, Pr(Z > c) = α0. It should be kept in mind that the level
of significance of this test will only be approximately α0 because for finite sample sizes, the distribution
of Z will only be approximately a standard normal distribution when θ = 0.

9. To test these hypotheses, add θ0 to each observed value yi in the second sample and then carry out the
Wilcoxon-Mann-Whitney procedure on the original values in the first sample and the new values in the
second sample.

10. For each value of θ0, carry out a test of the hypotheses given in Exercise 7 at the level of significance
1−α. The confidence interval for θ will contain all values of θ0 for which the null hypothesis H0 would
be accepted.

11. Let r1 < r2 < · · · < rm denote the ranks of the observed values in the first sample, and let Xi1 < Xi2 <
· · · < Xim denote the corresponding observed values. Then there are r1 − 1 values of Y in the second
sample that are smaller than Xi1 . Hence, there are r1 − 1 pairs (Xi1 , Yj) with Xi1 > Yj. Similarly,
there are r2 − 2 values of Y in the second sample that are smaller than Xi2 . Hence, there are r2 − 2
pairs (Xi2 , Yj) with Xi2 > Yj . By continuing in this way, we see that the number U is equal to

(r1 − 1) + (r2 − 2) + · · ·+ (rm −m) =
m∑
i=1

ri −
m∑
i=1

i = S − 1

2
m(m+ 1).

12. Using the result in Exercise 11, we find that E(S) = E(U)+m(m+1)/2, where U is defined in Exercise 11
to be the number of (Xi, Yj) pairs for whichXi ≥ Yj. So, we need to show that E(U) = nmPr(X1 ≥ Y1).
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We can let Zi,j = 1 if Xi ≥ Yj and Zi,j = 0 otherwise. Then

U =
∑
i

∑
j

Zi,j, (S.10.2)

and

E(U) =
m∑
i=1

n∑
j=1

E(Zi,j).

Since all of the Xi are i.i.d. and all of the Yj are i.i.d., it follows that E(Zi,j) = E(Z1,1) for all i and j.
Of course E(Z1,1) = Pr(X1 ≥ Y1), so E(U) = mnPr(X1 ≥ Y1).

13. Since S and U differ by a constant, we need to show that Var(U) is given by Eq. (10.8.6). Once again,
write

U =
∑
i

∑
j

Zi,j,

where Zi,j = 1 if Xi ≥ Yj and Zi,j = 0 otherwise. Hence,

Var(U) =
∑
i

∑
j

Var(Zi,j) +
∑

(i′,j′)	=(i,j)

Cov(Zi,j , Zi′,j′).

The first sum is mn[Pr(X1 ≥ Y1)− Pr(X1 ≥ Y1)
2]. The second sum can be broken into three parts:

• The terms with i′ = i but j′ �= j.

• The terms with j′ = j but i′ �= i.

• The terms with both i′ �= i and j′ �= j.

For the last set of terms Cov(Zi,j, Zi′,j′) = 0 since (Xi, Yj) is independent of (Xi′ , Yj′). For each term
in the first set

E(Zi,jZi,j′) = Pr(X1 ≥ Y1,X1 ≥ Y2),

so the covariances are

Cov(Zi,j , Zi,j′) = Pr(X1 ≥ Y1,X1 ≥ Y2)− Pr(X1 ≥ Y1)
2.

There are mn(n− 1) terms of this sort. Similarly, for the second set of terms

Cov(Zi′,j, Zi,j) = Pr(X1 ≥ Y1,X2 ≥ Y1)− Pr(X1 ≥ Y1)
2.

There are nm(m− 1) of these terms. The variance is then

nm [Pr(X1 ≥ Y1) + (n− 1)Pr(X1 ≥ Y1,X1 ≥ Y2)

+(m− 1)Pr(X1 ≥ Y1,X2 ≥ Y1)− (m+ n− 1)Pr(X1 ≥ Y1)
2
]
.
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14. When F = G, Pr(X1 ≥ Y1) = 1/2, so Eq. (10.8.5) yields

E(S) =
mn

2
+

m(m+ 1)

2
=

m(m+ n+ 1)

2
,

which is the same as (10.8.3). When F = G,

Pr(X1 ≥ Y1,X1 ≥ Y2) = 1/3 = Pr(X1 ≥ Y1,X2 ≥ Y1),

so the corrected version of (10.8.6) yields

nm

[
1

2
− (m+ n− 1)

1

4
+ (m+ n− 2)

1

3

]
=

mn

12
[6− 3m− 3n+ 3 + 4m+ 4n− 8]

=
mn(m+ n+ 1)

12
,

which is the same as (10.8.4).

15. (a) Arrange the observations so that |D1| ≤ · · · ≤ |Dn|. Then Di > 0 if and only if Xi > Yi if and

only if Wi = 1. Since rank i gets added into SW if and only if Di > 0, we see that
n∑

i=1

iWi adds

just those ranks that correspond to positive Di.

(b) Since the distribution of each Di is symmetric around 0, the magnitude |D1|, . . . , |Dn| are inde-
pendent of the sign indicators W1, . . . ,Wn. Using the result of part (a), if we assume that the |Di|
are ordered from smallest to largest, E(SW ) =

n∑
i=1

iE(Wi). Since the |Di| are independent of the

Wi, we have E(Wi) = 1/2 even after we condition on the |Di| being arranged from smallest to

largest. Since
n∑

i=1

i = n(n+ 1)/2, we have E(SW ) = n(n+ 1)/4.

(c) Since the Wi are independent before we condition on the |Di| and they are independent of the |Di|,
then the Wi are independent conditional on the |Di|. Hence, Var(SW ) =

n∑
i=1

i2 Var(Wi). Since

Var(Wi) = 1/4 for all i and
n∑

i=1

i2 = n(n+1)(2n+1)/6, we have Var(SW ) = n(n+ 1)(2n+ 1)/24.

16. For i = 1, . . . , 15, let

Di =(thickness for material A in pair i)− (thickness for material B in pair i).

(a) Of the 15 values of Di, 10 are positive, 3 are negative, and 2 are zero. If we first regard the
zeroes as positive, then there are 12 positive differences with n = 15, and it is found from the
binomial tables that the corresponding tail area is 0.0176. If we next regard the zeroes as negative,
then there are only 10 positive differences with n = 15, and it is found from the tables that the
corresponding tail area is 0.1509. The results are not conclusive because of the zeroes present in
the sample.

(b) For the Wilcoxon signed-ranks test, use Table S.10.14. Two different methods have been used. In
Method (I), the differences that are equal to 0 are regarded as positive, and whenever two or more
values of | Di | are tied, the positive differences Di are assigned the largest possible ranks and the
negative differences Di are assigned the smallest ranks. In Method (II), the differences that are 0
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Table S.10.14: Computation of Wilcoxon signed-ranks test statistic for Exercise 16b in Sec. 10.8.

Method (I) Method (I) Method (II) Method (II)
Pair Di Rank of |Di| Signed rank Rank of |Di| Signed rank

1 −0.8 6 −6 7 −7
2 1.6 12 12 11 11
3 −0.5 5 −5 5 −5
4 0.2 3 3 3 3
5 −1.6 11 −11 13 −13
6 0.2 4 4 4 4
7 1.6 13 13 12 12
8 1.0 9 9 9 9
9 0.8 7 7 6 6
10 0.9 8 8 8 8
11 1.7 14 14 14 14
12 1.2 10 10 10 10
13 1.9 15 15 15 15
14 0 2 2 2 −2
15 0 1 1 1 −1

are regarded as negative, and among tied values of | Di |, the negative differences are assigned the
largest ranks and the positive differences are assigned the smallest ranks. Let Sn denote the sum
of the positive ranks. Since n = 15, E(Sn) = 60 and Var (Sn) = 310. Hence, σn =

√
310 = 17.607.

For Method (I), Sn = 98. Therefore, Zn = (98 − 60)/17.607 = 2.158 and it is found from a table
of the standard normal distribution that the corresponding tail area is 0.0155. For Method (II),
Sn = 92. Therefore, Zn = 1.817 and it is found that the corresponding tail area is 0.0346. By
either method of analysis, the null hypothesis would be rejected at the 0.05 level of significance,
but not at the 0.01 level.

(c) The average of the pairwise differences (material A minus material B) is 0.5467. The value of σ′

computed from the differences is 1.0197, so the t statistic is 2.076, and the p-value is 0.0284.

10.9 Supplementary Exercises

Solutions to Exercises

1. Here, α0/2 = 0.025. From a table of binomial probabilities we find that

5∑
x=0

(
20

x

)
0.520 = 0.021 ≤ 0.025 ≤

6∑
x=0

(
20

x

)
0.520 = 0.058.

So, the sign test would reject the null hypothesis that θ = θ0 if the numberW of observations with values
at most θ0 satisfies either W ≤ 5 or W ≥ 20 − 5. Equivalently, we would accept the null hypothesis
if 6 ≤ W ≤ 14. This, in turn, is true if and only if θ0 is strictly between the sixth and fourteenth
ordered values of the original data. These values are 141 and 175, so our 95 percent confidence interval
is (141, 175).
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2. It follows from Eq. (10.1.2) that

Q =
5∑

i=1

(Ni − 80)2

80
=

1

80

[
5∑

i=1

N2
i − 2(80)(400) + 5(80)2

]
=

1

80

5∑
i=1

N2
i − 400.

It is found from the χ2 distribution with 4 degrees of freedom that H0 should be rejected for Q > 13.28
or, equivalently, for

∑5
i=1 N

2
i > 80(413.28) = 33, 062.4.

3. Under H0, the proportion p0i of families with i boys is as follows:

i p0i np0i
0 1/8 16
1 3/8 48
2 3/8 48
3 1/8 16

Hence, it follows from Eq. (10.1.2) that

Q =
(26− 16)2

16
+

(32− 48)2

48
+

(40− 48)2

48
+

(30− 16)2

16
= 25.1667.

Under H0, Q has the χ2 distribution with 3 degrees of freedom. Hence, the tail area corresponding to
Q = 25.1667 is less than 0.005, the smallest probability in the table in the back of the book. It follows
that H0 should be rejected for any level of significance greater than this tail area.

4. The likelihood function of p based on the observed data is

(q3)26(3pq2)32(3p2q)40(p3)30 = (const.) p202q182,

where q = 1− p. Hence, the M.L.E. of p̂ based on these data is p̂ = 202/384 = .526. Under H0, the
estimated expected proportion p̂0i of families with i boys is as follows:

i p̂0i np̂0i
0 q̂3 = .1065 13.632
1 3p̂q̂2 = .3545 45.376
2 3p̂2q̂ = .3935 50.368
3 p̂3 = .1455 18.624

It follows from Eq. (10.2.4) that

Q =
(26− 13.632)2

13.632
+

(32 − 45.376)2

45.376
+

(40 − 50.368)2

50.368
+

(30− 18.624)2

18.624
= 24.247.

Under H0, Q has the χ2 distribution with 2 degrees of freedom. The tail area corresponding to
Q = 24.247 is again less than 0.005. H0 should be rejected for any level of significance greater than
this tail area.

5. The expected numbers of observations in each cell, as specified by Eq. (10.4.4), are presented in the
following table:
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A B AB O
Group 1 19.4286 11 4.8571 14.7143
Group 2 38.8571 22 9.7143 29.4286
Group 3 77.7143 44 19.4286 58.8571

It is now found from Eq. (10.4.3) that Q = 6.9526. Under the hypothesis H0 that the distribution is
the same in all three groups, Q will have approximately the χ2 distribution with 3× 2 = 6 degrees of
freedom. It is found from the tables that the 0.9 quantile of that distribution is 10.64, so H0 should
not be rejected.

6. If Table 10.47 is changed in such a way that the row and column totals remain unchanged, then the
expected numbers given in the solution of Exercise 5 will remain unchanged. If we switch one person
in group 1 from B to AB and one person in group 2 from AB to B, then all row and column totals
will be unchanged and the new observed numbers in each of the four affected cells will be further from
their expected values than before. Hence, the value of the χ2 statistic Q as given by Eq. (10.4.3) is
increased. Continuing to switch persons in this way will continue to increase Q. There are other similar
switches that will also increase Q, such as switching one person in group 2 from O to A and one person
in group 3 from A to O.

7.

(N11 − Ê11)
2 =

(
N11 − N1+N+1

n

)2

=

[
N11 − (N11 +N12)(N11 +N21)

n

]2
=

1

n2
[nN11 − (N11 +N12)(N11 +N21)]

2

=
1

n2
(N11N22 −N12N21)

2,

since n = N11 +N21 +N21 +N22. Exactly the same value is obtained for (N12 − Ê12)
2, (N21 − Ê21)

2,
and (N22 − Ê22)

2.

8. It follows from Eq. (10.3.4) and Exercise 7 that

Q =
1

n2
(N11N22 −N12N21)

2
2∑

i=1

2∑
j=1

1

Êij

.

But

2∑
i=1

2∑
j=1

1

Êij

=
n

N1+N+1
+

n

N1+N+2
+

n

N2+N+1
+

n

N2+N+2

=
n(N2+N+2 +N2+N+1 +N1+N+2 +N1+N+1)

N1+N2+N+1N+2

=
n3

N1+N2+N+1N+2
,

since N1+ +N2+ = N+1 +N+2 = n. Hence, Q has the specified form.
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9. In this exercise, N1+ = N2+ = N+1 = N+2 = 2n and N11N22 − N12N21 = (n + a)2 − (n − a)2 = 4na.
It now follows from Exercise 8 (after we replace n by 4n in the expression for Q) that Q = 4a2/n.
Since H0 should be rejected if Q > 6.635, it follows that H0 should be rejected if a > (6.635n)1/2/2 or
a < −(6.635n)1/2/2.

10. In this exercise N1+ = N2+ = N+1 = N+2 = n and N11N22−N12N21 = (2α−1)n2. It now follows from
Exercise 8 (after we replace n by 2n in the expression for Q) that Q = 2n(2α − 1)2. Since H0 should
be rejected if Q > 3.841, it follows that H0 should be rejected if either

α >
1

2

[
1 +

(
3.841

2n

)1/2
]

or

α <
1

2

[
1−

(
3.841

2n

)1/2
]
.

11. Results of this type are an example of Simpson’s paradox. If there is a higher rate of respiratory diseases
among older people than among younger people, and if city A has a higher proportion of older people
than city B, then results of this type can very well occur.

12. Results of this type are another example of Simpson’s paradox. If scores on the test tend to be higher
for certain classes, such as seniors and juniors, and lower for the other classes, such as freshmen and
sophomores, and if school B has a higher proportion of seniors and juniors than school A, then results
of this type can very well occur.

13. The fundamental aspect of this exercise is that it is not possible to assess the effectiveness of the
treatment without having any information about how the levels of depression of the patients would
have changed over the three-month period if they had not received the treatment. In other words,
without the presence of a control group of similar patients who received some other standard treatment
or no treatment at all, there is little meaningful statistical analysis that can be carried out. We can
compare the proportion of patients at various levels who showed improvement after the treatment with
the proportion who remained the same or worsened, but without a control group we have no way of
deciding whether these proportions are unusually large or small.

14. If Y1 < Y2 < Y3 are the order statistics of the sample, then Y2 is the sample median. For 0 < y < 1,

G(y) = Pr (Y2 < y)

= Pr(At least two obs. < y)

= Pr(Exactly two obs. < y) + Pr(All three obs. < y)

= 3(yθ)2(1− yθ) + (yθ)3

= 3y2θ − 2y3θ.

Hence, for 0 < y < 1. the p.d.f. of Y2 is g(y) = G′(y) = 6θ(y2θ−1 − y3θ−1).

15. The c.d.f. of this distribution is F (x) = xθ, so the median of the distribution is the point m such
that mθ = 1/2. Thus, m = (1/2)1/θ and f(m) = θ21/θ/2. It follows from Theorem 10.7.1 that the
asymptotic distribution of the sample median will be normal with mean m and variance

1

4nf2(m)
=

1

nθ222/θ
.
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16. We know from Exercise 1 of Sec. 8.4 that the variance of the t distribution is finite only for α > 2 and
its value is α/(α − 2). Hence, it follows from the central limit theorem that for α > 2, the asymptotic
distribution of Xn will be normal with mean 0 and variance

σ2
1 =

α

n(α− 2)
.

Since the median of the t distribution is 0, it follows from Theorem 10.7.1 (with n replaced by α) that
the asymptotic distribution of X̃n will be normal with mean 0 and variance

σ2
2 =

απΓ2
(
α

2

)
4nΓ2

(
α+ 1

2

) .
Thus, σ2

1 < σ2
2 if and only if

π(α− 2)Γ2
(
α

2

)
4Γ2

(
α+ 1

2

) > 1.

If we denote the left side of this inequality by L, then we obtain the following values:

α Γ

(
α

2

)
Γ

(
α+ 1

2

)
L

3
1

2

√
π 1 π2/16

4 1
3

2
· 1
2
· √π 8/9

5
3

2
· 1
2
· √π 2 27π2/(16)2 = 1.04.

Thus, σ2
1 < σ2

2 for α = 5, 6, 7, . . . .

17. As shown in Exercise 5 of Sec. 10.7, E(Xn) = E(X̃n) = θ, so the M.S.E. of each of these estimators is
equal to its variance. Furthermore, Var(Xn) =

1
n [α · 1 + (1− α)σ2] and

Var(X̃n) =
1

4n[h(θ|θ)]2 ,

where

[h(θ|θ)]2 = 1

2π

(
α+

1− α

σ

)2

.

(a) For σ2 = 100, Var(X̃n) < Var(Xn) if and only if

50π

[10α+ (1− α)]2
< α+ 100(1 − α).

Some numerical calculations show that this inequality is satisfied for .031 < α < .994.

(b) For α = 1
2 , Var(X̃n) < Var(Xn) if and only if σ < .447 or σ > 1/.447 = 2.237.
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18. The simplest and most intuitive way to establish this result is to note that for any fixed values
y1 < y2 < · · · < yn,

g(y1, . . . , yn)�y1 · · · �yn ≈
Pr(y1 < Y1 < y1 +�y1, . . . , yn < Yn < yn +�yn) =

Pr(Exactly one observation in the interval (yj, yj +�yj) for j = 1, . . . , n) =

n!
n∏

j=1

[F (yj +�yj)− F (yj)] ≈

n!
n∏

j=1

[f(yj)�yj] = n! f(y1) · · · f(yn)�y1 · · · �yn,

where the factor n! appears because there are n! different arrangements of X1, . . . ,Xn such that exactly
one of them is in each of the intervals (yj , yj +�yj), j = 1, . . . , n. Another, and somewhat more
complicated, way to establish this result is to determine the general form of the joint c.d.f. G(y1, . . . , yn)
of Y1, . . . , Yn for y1 < y2 < · · · < yn, and then to note that

g(y1, . . . , yn) =
∂nG(y1, . . . , yn)

∂y1 · · · ∂yn
= n! f(y1) · · · f(yn).

19. It follows from Exercise 18 that the joint p.d.f. g(y1, y2, y3) = 3!, a constant, for 0 < y1 < y2 < y3 < 1.
Since the required conditional p.d.f. of Y2 is proportional to g(y1, y2, y3), as a function of y2 for fixed y1
and y3, it follows that this conditional p.d.f. is also constant. In other words, the required conditional
distribution is uniform on the interval (y1, y3).

20. We have Yr < θ < Yr+3 if and only if at least r observations and at most r+2 observation are below θ
Let X stand for the number of observations out of the sample of size 20 that are below θ. Then X has
a binomial distribution with parameters 20 and 0.3. It follows that

Pr(Yr < θ < Yr+3) = Pr(r ≤ X ≤ r + 2).

For each value of r, we can find this probability using a binomial distribution table or a computer. By
searching through all values of r, we find that r = 5 yields a probability of 0.5348, which is the highest.

21. As shown in Exercise 10 of Sec. 10.8, we add θ0 to each observation Yj and then carry out the Wilcoxon-
Mann-Whitney test on the sum Sθ0 of the ranks of the Xi’s among these new values Y1 + θ0, . . . , Yn + θ0.
We accept H0 if and only if

| Sθ0 − E(S) |
[Var(S)]1/2

< c

(
1− α

2

)
,

where E(S) and Var(S) are given by (10.8.3) and (10.8.4). However, by Exercise 11 of Sec. 10.8,

Sθ0 = Uθ0 +
1

2
m(m+ 1).

When we make this substitution for Sθ0 in the above inequality, we obtain the desired result.

22. We know from general principles that the set of all values θ0 for which H0 would be accepted in
Exercise 21 will from a confidence interval with the required confidence coefficient 1−α. But if Uθ0 , the
number of differencesXi − Yj that are greater than θ0, is greater than the lower limit given in Exercise 21
then θ0 must be less than B. Similarly, if Uθ0 is less than the upper limit given in Exercise 22, then θ0
must be greater than A. Hence, A < θ < B is a confidence interval.
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23. (a) We know that θp = b if and only if Pr(X ≤ b) = p. So, let Yi = 1 if Xi ≤ b and Yi = 0 if not.
Then Y1, . . . , Yn are i.i.d. with a Bernoulli distribution with parameter p if and only if H0 is true.
Define W =

∑n
i=1 Yi To test H0, reject H0 if W is too big or too small. For an equal tailed level

α0 test, choose two numbers c1 < c2 such that

c1∑
w=0

(
n

w

)
pw(1− p)n−w ≤ α0

2
<

c1+1∑
w=0

(
n

w

)
pw(1− p)n−w,

n∑
w=c2

(
n

w

)
pw(1− p)n−w ≤ α0

2
<

n∑
w=c2−1

(
n

w

)
pw(1− p)n−w.

Then a level α0 test rejects H0 if W ≤ c1 or W ≥ c2.

(b) For each b, we have shown how to construct a test of H0,b : θp = b. For given observed data
X1, . . . ,Xn find all values of b such that the test constructed in part (a) accepts H0,b. The set
of all such b forms our coefficient 1 − α0 confidence interval. It is clear from the form of the test
that, once we find three values b1 < b2 < b3 such that H0,b2 is accepted and H0,b1 and H0,b3 are
rejected, we don’t have to check any more values of b < b1 or b > b3 since all of those would be
rejected also. Similarly, if we find b4 < b5 such that both H0,b4 and H0,b5 are accepted, the so are
H0,b for all b4 < b < b5. This will save some time locating all of the necessary b values.
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Chapter 11

Linear Statistical Models

11.1 The Method of Least Squares

Commentary

If one is using the software R, the functions lsfit and lm will perform least squares. While lsfit has
simpler syntax, lm is more powerful. The first argument to lsfit is a matrix or vector with one row for each
observation and one column for each x variable in the notation of the text (call this x). The second argument
is a vector of the response values, one for each observation (call this y). By default, an intercept is fit. To
prevent an intercept from being fit, use the optional argument intercept=FALSE. To perform the fit and store
the result in regfit, use regfit=lsfit(x,y). The result regfit is a “list” which contains (among other
things) coef, the vector of coefficients β0, . . . , βk in the notation of the text, and residuals which are defined
later in the text. To access the parts of regfit, use regfit$coef, etc. To use lm, regfit=lm(y~x) will
perform least squares with an intercept and store the result in regfit. To prevent an intercept from being fit,
use regfit=lm(y~x-1). The result of lm also contains coefficients and residuals plus fitted.values
which equals the original y minus residuals. The components of the output are accessed as above.

The plot function in R is useful for visualizing data in linear models. In the notation above, suppose
that x has only one column. Then plot(x,y) will produce a scatterplot of y versus x. The least-squares
line can be added to the plot by lines(x,regfit$fitted.values). (If one used lsfit, one can create the
fitted values by regfit$fitted.values=y-regfit$residuals.)

Solutions to Exercises

1. First write c1xi + c2 = c1(xi − xn) + (c1xn + c2) for every i. Then

(c1xi + c2)
2 = c21(xi − xn)

2 + (c1xn + c2)
2 + 2c1(xi − xn)(c1xn + c2).

The sum over all i from 1 to n of the first two terms on the right produce the formula we desire. The
sum of the last term over all i is 0 because c1(c1xn + c2) is the same for all i and

∑n
i=1(xi − xn) = 0.

2. (a) The result can be obtained from Eq. (11.1.1) and the following relations:
n∑

i=1

(xi − x̄n)(yi − ȳn) =
n∑

i=1

(xiyi − x̄nyi − ȳnxi + x̄nȳn)

=
n∑

i=1

xiyi − x̄n

n∑
i=1

yi − ȳn

n∑
i=1

xi + nx̄nȳn

=
n∑

i=1

xiyi − nx̄nȳn − nx̄nȳn + nx̄nȳn
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=
n∑

i=1

xiyi − nx̄nȳn, and

n∑
i=1

(xi − x̄n)
2 =

n∑
i=1

(x2i − 2x̄nxi + x̄2n)

=
n∑

i=1

x2i − 2x̄n

n∑
i=1

xi + nx̄2n

=
n∑

i=1

x2i − 2nx̄2n + nx̄2n

=
n∑

i=1

x2i − nx̄2n.

(b) The result can be obtained from part (a) and the following relation:

n∑
i=1

(xi − x̄n)(yi − ȳn) =
n∑

i=1

(xi − x̄n)yi −
n∑

i=1

(x̄i − x̄n)ȳn

=
n∑

i=1

(xi − x̄n)yi − ȳn

n∑
i=1

(xi − x̄n)

=
n∑

i=1

(xi − x̄n)yi, since
n∑

i=1

(xi − x̄n) = 0.

(c) This result can be obtained from part (a) and the following relation:

n∑
i=1

(xi − x̄n)(yi − ȳn) =
n∑

i=1

xi(yi − ȳn)− x̄n

n∑
i=1

(yi − ȳn)

=
n∑

i=1

xi(yi − ȳn), since
n∑

i=1

(yi − ȳn) = 0.

3. It must be shown that ȳn = β̂0 + β̂1x̄n. But this result follows immediately from the expression for β̂0
given in Eq. (11.1.1).

4. Since the values of β0 and β1 to be chosen must satisfy the relation ∂Q/∂β0 = 0, it follows from Eq.

(11.1.3) that they must satisfy the relation
n∑

i=1

(yi − ŷi) = 0. Similarly, since they must also satisfy

relation ∂Q/∂β1 = 0, it follows from Eq. (11.1.4) that
n∑

i=1

(yi − ŷi)xi = 0. These two relations are

equivalent to the normal equations (11.1.5), for which β̂0 and β̂1 are the unique solution.

5. The least squares line will have the form x = γ0 + γ1y, where γ0 and γ1 are defined similarly to β̂0 and
β̂1 in Eq. (11.1.1) with the roles of x and y interchanged. Thus,

γ1 =

n∑
i=1

xiyi − nx̄nȳn

n∑
i=1

y2i − nȳ2n

and γ̂0 = x̄n − γ̂1ȳn. It is found that γ̂1 = 0.9394 and γ̂0 = 1.5691. Hence, the least squares line is
x = 1.5691+0.9394 y or, equivalently, y = −1.6703+1.0645x. This line and the line y = −0.786+0.685x
given in Fig. 11.4 can now be sketched on the same graph.
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6. The sum of the squares of the deviations from the least squares parabola is the minimum possible value

of
n∑

i=1

(yi − β0 − β1xi − β2x
2
i )

2 as β0, β1, and β2 vary over all possible real numbers. The sum of the

squares of the deviations from the least squares line is the minimum possible value of this same sum
when β2 is restricted to have the value 0. This minimum cannot therefore be smaller than the first
minimum.

7. (a) Here, n = 8, x̄n = 2.25, ȳn = 42.125,
n∑

i=1

xiyi = 764, and
n∑

i=1

x2i = 51. Therefore, by Eq. (11.1.1),

β̂1 = 0.548 and β̂0 = 40.893. Hence, the least squares line is y = 40.893 + 0.548x.

(b) The normal equations (11.1.8) are found to be:

8β0 + 18β1 + 51β2 = 337,

18β0 + 51β1 + 162β2 = 764,

51β0 + 162β1 + 548.25β2 = 2167.5.

Solving these three simultaneous linear equations, we obtain the solution:

β̂0 = 38.483, β̂1 = 3.440, and β̂2 = −0.643.

8. If the polynomial is to pass through the k+1 given points, then the following k+1 equations must be
satisfied:

β0 + β1x1 + · · ·+ βkx
k
1 = y1,

β0 + β1x2 + · · ·+ βkx
k
2 = y2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β0 + β1xk+1 + · · · + βkx
k
k+1 = yk+1.

These equations form a set of k+1 simultaneous linear equations in β0, . . . , βk. There will be a unique
polynomial having the required properties if and only if these equations have a unique solution. These
equations will have a unique solution if and only if the (k+1)×(k+1) matrix of coefficients of β0, . . . , βk
is nonsingular (i.e., has a nonzero determinant). Thus, it must be shown that

det

⎡⎢⎢⎢⎣
1 x1 x21 · · · xk1
1 x2 x22 · · · xk2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 xk+1 x2k+1 · · · xkk+1

⎤⎥⎥⎥⎦ �= 0.

This determinant will be 0 if and only if the k + 1 columns of the matrix are linearly dependent; i.e.,
if and only if there exist constants a1, . . . , ak+1, not all of which are 0, such that

a1

⎡⎢⎣ 1...
1

⎤⎥⎦+ a2

⎡⎢⎣ x1
...

xk+1

⎤⎥⎦+ a3

⎡⎢⎣ x21
...

x2k+1

⎤⎥⎦+ · · ·+ ak+1

⎡⎢⎣ xk1
...

xkk+1

⎤⎥⎦ =

⎡⎢⎣ 0...
0

⎤⎥⎦ .
But if such constants exist, then the k + 1 distinct values x1, . . . , xk+1 will all be roots of the equation

a1 + a2x+ a3x
2 + · · ·+ ak+1x

k.

It is impossible, however, for a polynomial of degree k or less to have k+1 distinct roots unless all the
coefficients a1, . . . , ak+1 are 0. It now follows that the determinant cannot be 0.
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9. The normal equations (11.1.13) are found to be

10β0 + 1170β1 + 18β2 = 1359,

1170β0 + 138, 100β1 + 2130β2 = 160, 380,

18β0 + 2130β1 + 38β2 = 2483.

Solving these three simultaneous linear equations, we obtain the solution β̂0 = 3.7148, β̂1 = 1.1013, and
β̂2 = 1.8517.

10. We begin by taking the partial derivative of the following sum with respect to β0, β1, and β2, respec-
tively:

n∑
i=1

(yi − β0xi1 − β1xi2 − β2x
2
i2)

2.

By setting each of these derivatives equal to 0, we obtain the following normal equations:

β0

n∑
i=1

x2i1 + β1

n∑
i=1

xi1xi2 + β2

n∑
i=1

xi1x
2
i2 =

n∑
i=1

xi1yi,

β0

n∑
i=1

xi1xi2 + β1

n∑
i=1

x2i2 + β2

n∑
i=1

x3i2 =
n∑

i=1

xi2yi,

β0

n∑
i=1

xi1x
2
i2 + β1

n∑
i=1

x3i2 + β2

n∑
i=1

x4i2 =
n∑

i=1

x2i2yi.

When the given numerical data are used, these equations are found to be:

138, 100β0 + 2130β1 + 4550β2 = 160, 380,
2130β0 + 38β1 + 90β2 = 2483,

4550β0 + 90β1 + 230β2 = 5305.

Solving these three simultaneous linear equations, we obtain the solution β̂0 = 1.0270, β̂1 = 17.2934,
and β̂2 = −4.0186.

11. In Exercise 9, it is found that

10∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2)
2 = 102.28.

In Exercise 10, it is found that

10∑
i=1

(yi − β̂0xi1 − β̂1xi2 − β̂2x
2
i2)

2 = 42.72.

Therefore, a better fit is obtained in Exercise 10.
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11.2 Regression

Commentary

The regression fallacy is an interesting issue that students ought to see. The description of the regression
fallacy appears in Exercise 19 of this section. The discussion at the end of the section on “Design of the
Experiment” is mostly of mathematical interest and could be skipped without disrupting the flow of material.

If one is using the software R, the variances and covariance of the least-squares estimators can be computed
using the function ls.diag or the function summary.lm. The first takes as argument the result of lsfit, and
the second takes as argument the result of lm. Both functions return a list containing a matrix that can be
extracted via $cov.unscaled. For example, using the notation in the Commentary to Sec. 11.1 above, if we
had used lsfit, then morefit=ls.diag(regfit) would contain the matrix morefit$cov.unscaled. This
matrix, multiplied by the unknown parameter σ2, would contain the variances of the least-squares estimators
on its diagonal and the covarainces between them in the off-diagonal locations. (If we had used lm, then
morefit=summary.lm(regfit) would be used.)

Solutions to Exercises

1. After we have replaced β0 and β1 in (11.2.2) with β̂0 and β̂1, the maximization with respect to σ2 is
exactly the same as the maximization carried out in Example 7.5.6 in the text for finding the M.L.E.
of σ2.

2. Since E(Yi) = β0 + β1xi, it follows from Eq. (11.2.7) that

E(β̂1) =

n∑
i=1

(xi − x̄n)(β0 + β1xi)

n∑
i=1

(xi − x̄n)
2

=

β0

n∑
i=1

(xi − x̄n) + β1

n∑
i=1

xi(xi − x̄n)

n∑
i=1

(xi − x̄n)
2

.

But
∑n

i=1(xi − x̄n) = 0 and

n∑
i=1

xi(xi − x̄n) =
n∑

i=1

xi(xi − x̄n)− x̄n

n∑
i=1

(xi − x̄n) =
n∑

i=1

(xi − x̄n)
2.

It follows that E(β̂1) = β1.

3. E(Ȳn) =
1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

(β0 + β1xi) = β0 + β1x̄n.

Hence, as shown near the end of the proof of Theorem 11.2.2,

E(β̂0) = E(Ȳn)− x̄nE(β̂1) = (β0 + β1x̄n)− x̄nβ1 = β0.

4. Let s2x =
n∑

i=1

(xi − x̄n)
2. Then

β̂0 = Ȳn − β̂1x̄n =
1

n

n∑
i=1

Yi − x̄n

n∑
i=1

(xi − x̄n)Yi

s2x
=

n∑
i=1

[
1

n
− x̄n

s2x
(xi − x̄n)

]
Yi.
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Since Y1, . . . , Yn are independent and each has variance σ2,

Var(β̂0) =
n∑

i=1

[
1

n
− x̄n

s2x
(xi − x̄n)

]2
Var(Yi)

= σ2
n∑

i=1

[
1

n2
+

x̄2n
s4x

(xi − x̄n)
2 − 2x̄n

ns2x
(xi − x̄n)

]

= σ2

(
1

n
+

x̄2n
s2x

− 0

)
=

s2x + nx̄2n
ns2x

σ2 =

n∑
i=1

x2i

ns2x
σ2,

as shown in part (a) of Exercise 2 of Sec. 11.1.

5. Since Ȳn = β̂0 + β̂1x̄n, then

Var(Ȳn) = Var(β̂0) + x̄2nVar(β̂1) + 2x̄nCov(β̂0, β̂1).

Therefore, if x̄n �= 0,

Cov(β̂0, β̂1) =
1

2x̄n

[
Var(Ȳn)−Var(β̂0)− x̄2nVar(β̂1)

]

=
1

2x̄n

⎛⎜⎜⎜⎜⎝σ2

n
−

n∑
i=1

x2i

ns2x
σ2 − x̄2n

s2x
σ2

⎞⎟⎟⎟⎟⎠

=
σ2

2x̄n

⎛⎜⎜⎜⎜⎝
s2x −

n∑
i=1

x2i − nx̄2n

ns2x

⎞⎟⎟⎟⎟⎠
=

σ2

2x̄n

(
−2nx̄2n
ns2x

)
=

−x̄nσ
2

s2x
.

If x̄n = 0, then β̂0 = Ȳn =
1

n

n∑
i=1

Yi, and

Cov(β̂0, β̂1) = Cov

⎛⎝ 1

n

n∑
i=1

Yi,
1

s2x

n∑
j=1

xjYj

⎞⎠ =
1

ns2x

n∑
i=1

n∑
j=1

xj Cov(Yi, Yj),

by Exercise 8 of Sec. 4.6. Since Y1, . . . , Yn are independent and each has variance σ2, then Cov(Yi, Yj) =
0 for i �= j and Cov(Yi, Yj) = σ2 for i = j.

Hence,

Cov(β̂0, β̂1) =
σ2

ns2x

n∑
i=1

xi = 0.
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6. Both β̂0 and β̂1 are linear functions of the random variables Y1, . . . , Yn which are independent and
have identical normal distributions. As stated in the text, it can therefore be shown that the joint
distribution of β̂0 and β̂1 is a bivariate normal distribution. It follows from Eq. (11.2.6) that β̂0 and β̂1
are uncorrelated when x̄n = 0. Therefore, by the property of the bivariate normal distribution discussed
in Sec. 5.10, β̂0 and β̂1 are independent when x̄n = 0.

7. (a) The M.L.E.’s β̂0 and β̂1 are the same as the least squares estimates found in Sec. 11.1 for Table 11.1.
The value of σ̂2 can then be found from Eq. (11.2.3).

(b) Also, Var(β̂0) = 0.2505σ2 can be determined from Eq. (11.2.5) and Var(β̂1) = 0.0277σ2 from Eq.
(11.2.9).

(c) It can be found from Eq. (11.2.6) that Cov(β̂0, β̂1) = −0.0646σ2. By using the values of Var(β̂0)
and Var(β̂1) found in part (b), we obtain

ρ(β̂0, β̂1) =
Cov(β̂0, β̂1)

[Var(β̂0)Var(β̂1)]1/2
= −0.775.

8. θ̂ = 3β̂0 − 2β̂1 +5 = 1.272. Since θ̂ is an unbiased estimator of θ, the M.S.E. of θ̂ is the same as Var(θ̂)
and

Var(θ̂) = 9Var(β̂0) + 4Var(β̂1)− 12 Cov(β̂0, β̂1) = 3.140σ2.

9. The unbiased estimator is 3β̂0 + c1β̂1. The M.S.E. of an unbiased estimator is its variance, and

Var(θ̂) = 9Var(β̂0) + 6c1 Cov(β̂0, β̂1) + c21 Var(β̂1).

Using the values in Exercise 7, we get

Var(θ̂) = σ2[9× 0.2505 − 6c1(0.0646) + c210.0277].

We can minimize this by taking the derivative with respect to c1 and setting the derivative equal to 0.
We get c1 = 6.996.

10. The prediction is Ŷ = β̂0 + 2β̂1 = 0.584. The M.S.E. of this prediction is

Var(Ŷ ) + Var(Y ) = Var(β̂0) + 4Var(β̂1) + 4Cov(β̂0, β̂1) + σ2 = 1.103σ2.

Alternatively, the M.S.E. of Ŷ could be calculated from Eq. (11.2.11) with x = 2.

11. By Eq. (11.2.11), the M.S.E. is[
1

ns2x

n∑
i=1

(xi − x)2 + 1

]
σ2.

We know that
∑n

i=1(xi − x)2 will be a minimum (and, hence, the M.S.E. will be a minimum) when
x = x̄n.

12. The M.L.E.’s β̂0 and β̂1 have the same values as this least squares estimates found in part (a) of
Exercise 7 of Sec. 11.1. The value of σ̂2 can then be found from Eq. (11.2.3). Also, Var(β̂0) can be
determined from Eq. (11.2.5) and Var(β̂1) from Eq. (11.2.9).
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13. It can be found from Eq. (11.2.6) that Cov(β̂0, β̂1) = −0.214σ2. By using the values of Var(β̂0) and
Var(β̂1) found in Exercise 12, we obtain

ρ(β̂0, β̂1) =
Cov(β̂0, β̂1)

[Var(β̂0)Var(β̂1)]1/2
= −0.891.

14. θ̂ = 5− 4β̂0 + β̂1 = −158.024. Since θ̂ is an unbiased estimator of θ, the M.S.E. is the same as Var(θ̂)
and

Var(θ̂) = 16Var(β̂0) + Var(β̂1)− 8Cov(β̂0, β̂1) = 11.524σ2.

15. This exercise, is similar to Exercise 9. Var(θ̂) attains its minimum value when c1 = −x̄n.

16. The prediction is Ŷ = β̂0 + 3.25β̂1 = 42.673. The M.S.E. of this prediction is

Var(Ŷ ) + Var(Y ) = Var(β̂0) + (3.25)2 Var(β̂1) + 6.50Cov(β̂0, β̂1) + σ2 = 1.220σ2.

Alternatively, the M.S.E. of Ŷ could be calculated from Eq. (11.2.11) with x = 3.25.

17. It was shown in Exercise 11, that the M.S.E. of Ŷ will be a minimum when x = x̄n = 2.25.

18. (a) It is easiest to use a computer to find the least-squares coefficients. These are β̂0 = −1.234 and
β̂1 = 2.702.

(b) The predicted 1980 selling price for a species that sold for x = 21.4 in 1970 is

β̂0 + β̂1x = −1.234 + 2.702 × 21.4 = 56.59.

(c) The average of the xi values is 41.1, and s2x = 18430. Use Eq. (11.2.11) to compute the M.S.E. as

σ2

[
1 +

1

14
+

(21.4 − 41.1)2

18430

]
= 1.093σ2.

19. The formula for E(X2|x1) is Eq. (5.10.6), which we repeat here for the case in which μ1 = μ2 = μ and
σ1 = σ2 = σ:

E(X2|x1) = μ+ ρσ

(
x1 − μ

σ

)
= μ+ ρ(x1 − μ).

We are asked to show that |E(X2|x1)− μ| < |x1 − μ| for all x1. Since 0 < ρ < 1,

|E(X2|x1)− μ| = |μ+ ρ(x1 − μ)− μ| = ρ|x1 − μ| < |x1 − μ|.

11.3 Statistical Inference in Simple Linear Regression

Commentary

Computation and plotting of residuals is really only feasible with the help of a computer, except in problems
that are so small that you can’t learn much from residuals anyway. There is a subsection at the end of this
section on joint inference about β0 and β1. This material is mathematically more challenging than the rest
of the section and might be suitable only for special sets of students.

If one is using the software R, both lm and lsfit provide the residuals. These can then be plotted
against any other available variables using plot. Normal quantile plots are done easily using qqnorm with
one argument being the residuals. The function qqline (with the same argument) will add a straight line to
the plot to help identify curvature and outliers.
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Solutions to Exercises

1. It is found from Table 11.9 that x̄n = 0.42, ȳn = 0.33,
n∑

i=1

x2i = 10.16,
n∑

i=1

xiyi = 5.04, β̂1 = 0.435 and

β̂0 = 0.147 by Eq. (11.1.1), and S2 = 0.451 by Eq. (11.3.9). Therefore, from Eq. (11.3.19) with n = 10
and β∗

0 = 0.7, it is found that U0 = −6.695. It is found from a table of the t distribution with n− 2 = 8
degrees of freedom that to carry out a test at the 0.05 level of significance, H0 should be rejected if
|U0| > 2.306. Therefore H0 is rejected.

2. In this exercise, we must test the following hypotheses:

H0 : β0 = 0,
H1 : β0 �= 0.

Hence, β∗
0 = 0 and it is found from Eq. (11.3.19) that U0 = 1.783. Since |U0| < 2.306, the critical value

found in Exercise 1, we should not reject H0.

3. It follows from Eq. (11.3.22), with β∗
1 = 1, that U1 = −6.894. Since |U1| > 2.306, the critical value

found in Exercise 1, we should reject H0.

4. In this exercise, we want to test the following hypotheses:

H0 : β1 = 0,
H1 : β1 �= 0.

Hence, β∗
1 = 0 and it is found from Eq. (11.3.22) that U1 = 5.313. Since |U1| > 2.306, we should reject

H0.

5. The hypotheses to be tested are:

H0 : 5β0 − β1 = 0,
H1 : 5β0 − β1 �= 0.

Hence, in the notation of (11.3.13), c0 = 5, c1 = −1, and c∗ = 0. It is found that
n∑

i=1

(c0xi − c1)
2 = 306

and, from Eq. (11.3.14), that U01 = 0.664. It is found from a table of the t distribution with n− 2 = 8
degrees of freedom that to carry out a test at the 0.10 level of significance, H0 should be rejected if
|U01| > 1.860. Therefore, H0 is not rejected.

6. The hypotheses to be tested are:

H0 : β0 + β1 = 1,

H1 : β0 + β1 �= 1.

Therefore, c0 = c1 = c∗ = 1. It is found that
n∑

i=1

(c0xi − c1)
2 = 11.76 and, from Eq. (11.3.14), that

U01 = −4.701. It is found from a table of the t distribution with n− 2 = 8 degrees of freedom that to
carry out a test at the 0.10 level of significance, H0 should be rejected if |U01| > 3.355. Therefore, H0

is rejected.
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7.

Cov(β̂1,D) = Cov(β̂1, β̂0 + β̂1x̄n)

= Cov(β̂1, β̂0) + x̄nCov(β̂1, β̂1)

= Cov(β̂0, β̂1) + x̄nVar(β̂1)

= 0, by Eqs. (11.2.9) and (11.2.6).

Since β̂0 and β̂1 have a bivariate normal distribution, it follows from Exercise 10 of Sec. 5.10 that D
and β̂1 will also have a bivariate normal distribution. Therefore, as discussed in Sec. 5.10, since D and
β̂1 are uncorrelated they are also independent.

8. (a) We shall add nx̄2n(β̂1 − β̂∗
1)

2 and subtract the same amount to the right side of Q2, as given by
Eq. (11.3.30). The Q2 can be rewritten as follows:

Q2 =

(
n∑

i=1

x2i − nx̄2n

)
(β̂1 − β∗

1)
2 + n[(β̂0 − β∗

0)
2 + 2x̄n(β̂0 − β∗

0)(β̂1 − β∗
1) + x̄2n(β̂1 − β∗

1)
2]

= σ2 (β̂1 − β∗
1)

2

Var(β̂1)
+ n[(β̂0 − β∗

0) + x̄n(β̂1 − β∗
1)]

2.

Hence,

Q2

σ2
=

(β̂1 − β∗
1)

2

Var(β̂1)
+

n

σ2
(D − β∗

0 − β∗
1 x̄n)

2.

It remains to show that Var(D) = σ2

n . But

Var(D) = Var(β̂0) + x̄2nVar(β̂1) + 2x̄nCov(β̂0, β̂1).

The desired result can now be obtained from Eqs. (11.2.9), (11.2.5), and (11.2.6).

(b) It follows from Exercise 7 that the random variables β̂1 and D are independent and each has a
normal distribution. When H0 is true, E(β̂1) = β∗

1 and E(D) = β∗
0 + β∗

1 x̄n. Hence, H0 is true,
each of the two summands on the right side of the equation given in part (a) is the square of a
random variable having a standard normal distribution.

9. Here, β∗
0 = 0 and β∗

1 = 1. It is found that Q2 = 2.759, S2 = 0.451, and U2 = 24.48. It is found from a
table of the F distribution with 2 and 8 degrees of freedom that to carry out a test at the 0.05 level of
significance, H0 should be rejected if U2 > 4.46. Therefore, H0 is rejected.

10. To attain a confidence coefficient of 0.95, it is found from a table of the t distribution with 8 degrees of
freedom that the confidence interval will contain all values of β∗

0 for which |U0| < 2.306. When we use
the numerical values found in Exercise 1, we find that this is the interval of all values of β∗

0 such that
−2.306 < 12.111(0.147 − β∗

0) < 2.306 or, equivalently, −0.043 < β∗
0 < 0.338. This interval is, therefore,

the confidence interval for β0.

11. The solution here is analogous to the solution of Exercise 9. Since the confidence coefficient is again
0.95, the confidence interval will contain all values of β∗

1 for which |U1| < 2.306 or, equivalently, for
which −2.306 < 12.207(0.435−β∗

1) < 2.306. The interval is, therefore, found to be 0.246 < β1 < 0.624.

12. We shall first determine a confidence interval for 5β0 − β1 with confidence coefficient 0.90. It is found
from a table of the t distribution with 8 degrees of freedom (as in Exercise 5) that this confidence
interval will contain all values of c∗ for which |U01| < 1.860 or, equivalently, for which −1.860 <
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2.207(0.301 − c∗) < 1.860. This interval reduces to −0.542 < c∗ < 1.144. Since this is a confidence
interval for 5β0 − β1, the corresponding confidence interval for 5β0 − β1 + 4 is the interval with end
points (−0.542) + 4 = 3.458 and (1.144) + 4 = 5.144.

13. We must determine a confidence interval for y = β0+β1 with confidence coefficient 0.99. It is found from
a table of the t distribution with 8 degrees of freedom (as in Exercise 6) that this confidence interval will
contain all values of c∗ for which |U01| < 3.355 or, equivalently, for which −3.355 < 11.257(0.582− b) <
3.355. This interval reduces to 0.284 < c∗ < 0.880. This interval is, therefore, the confidence interval
for y.

14. We must determine a confidence interval for y = β0 + 0.42β1. Since the confidence coefficient is again
0.99, as in Exercise 13, this interval will again contain all values of c∗ for which |U01| < 3.355. Since

c0 = 1 and c1 = 0.42 = x̄n in this exercise, the value of
n∑

i=1

(c0xi − c1)
2, which is needed in determining

U01, is equal to
n∑

i=1

(xi − x̄n)
2 = 8.396. Also, c0β̂0 + c1β̂1 = β̂0 + β̂1, x̄n = ȳn = 0.33. Hence it is found

that the confidence interval for y contains all values of c∗ for which −3.355 < 13.322(0.33− c∗) < 3.355
or, equivalently, for which 0.078 < c∗ < 0.582.

15. Let q be the 1− α0/2 quantile of the t distribution n− 2 degrees of freedom. A confidence interval for
β0 + β1x contains all values of c∗ for which |U01| < c, where c0 = 1 and c1 = x in Eq. (11.3.14). The
inequality |U01| < q can be reduced to the following form

β̂0 + xβ̂1 − q

⎡⎢⎢⎢⎢⎣
S2

n∑
i=1

(xi − x)2

n(n− 2)s2x

⎤⎥⎥⎥⎥⎦
1/2

< b < β̂0 + xβ̂1 + q

⎡⎢⎢⎢⎢⎣
S2

n∑
i=1

(xi − x)2

n(n− 2)s2x

⎤⎥⎥⎥⎥⎦
1/2

The length of this interval is

2q

[
S2

n(n− 2)s2x

n∑
i=1

(xi − x)2
]1/2

The length will, therefore, be a minimum for the value of x which minimizes
n∑

i=1

(xi − x)2. We know

that this quantity is a minimum when x = x̄n.

16. It is known from elementary calculus that the set of points (x, y) which satisfy an inequality of the
form Ax2 +Bxy +Cy2 < c2 will be an ellipse (with center at the origin) if and only if B2 − 4AC < 0.
It follows from Eqs. (11.3.30) and (11.3.32) that U2 < γ if and only if

n(β∗
0 − β̂0)

2 + 2nx̄n(β
∗
0 − β̂0)(β

∗
1 − β̂1) +

(
n∑

i=1

x2i

)
(β∗

1 − β̂1)
2 < γ

2

n− 2
S2.

Hence, the set of points (β∗
0 , β

∗
1) which satisfy this inequality will be an ellipse [with center at (β̂0, β̂1)]

if and only if

(2nx̄n)
2 − 4n

n∑
i=1

x2i < 0
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or, equivalently, if and only if

n∑
i=1

x2i − nx̄2n > 0.

Since the left side of this relation is equal to
n∑

i=1

(xi − x̄n)
2, it must be positive, assuming that the

numbers x1, . . . , xn are not all the same.

17. To attain a confidence coefficient of 0.95, it is found from a table of the F distribution with 2 and
8 degrees of freedom (as in Exercise 9) that the confidence ellipse for (β0, β1) will contain all points
(β∗

0 , β
∗
1) for which U2 < 4.46. Hence, it will contain all points for which

10(β∗
0 − 0.147)2 + 8.4(β∗

0 − 0.147)(β∗
1 − 0.435) + 10.16(β∗

1 − 0.435)2 < 0.503.

18. (a) The upper and lower limits of the confidence band are defined by (11.3.33). In this exercise, n = 10
and (2γ)1/2 = 2.987. The values of β̂0, β̂1, and S2 have been found in Exercise 1.

Numerical computation yields the following points on the upper and lower limits of the confidence
band:

x Upper limit Lower limit

−2 −.090 −1.356
−1 .124 −.700
0 .395 −.101

x̄n = 0.42 .554 .106
1 .848 .316
2 1.465 .569

The upper and lower limits containing these points are shown as the solid curves in Fig. S.11.1.

(b) The upper and lower limits are now given by (11.3.25), where Tn−2(1 − α0/2) = 2.306. The
corresponding values of these upper and lower limits are as follows:

x Upper limit Lower limit

−2 −.234 −1.212
−1 .030 −.606
0 .338 −.044

x̄n = 0.42 .503 .157
1 .787 .377
2 1.363 .671

These upper and lower limits are shown as the dashed curves in Fig. S.11.1.

19. If S2 is defined by Eq. (11.3.9), then S2/σ2 has a χ2 distribution with n − 2 degrees of freedom.
Therefore, E(S2/σ2) = n− 2, E(S2) = (n− 2)σ2, and E(S2/[n− 2]) = σ2.

20. (a) The prediction is β̂0 + β̂1X = 68.17 − 1.112 × 24 = 41.482.

(b) The 95% predicition interval is centered at the prediction from part (a) and has half-width equal
to

T−1
30 (0.975)4.281

[
1 +

1

32
+

(24− 30.91)2

2054.8

]1/2
= 8.978.

So, the interval is 41.482 ± 8.978 = [32.50, 50.46].
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Figure S.11.1: Confidence bands and intervals for Exercise 18a in Sec. 11.3.

21. (a) A computer is useful to perform the regressions and plots for this exercise. The two plots for parts
(a) and (b) are side-by-side in Fig. S.11.2. The plot for part (a) shows residuals that are more
spread out for larger values of 1970 price than they are for smaller values. This suggests that the
variance of Y is not constant as X changes.

(b) The plot for part (b) in Fig. S.11.2 has more uniform spread in the residuals as 1970 price varies.
However, there appear to be two points that are not fit very well.

22. In this problem we are asked to regress logarithm of 1980 fish price on the 1970 fish price. (It would
have made more sense to regress on the logarithm of 1970 fish price, but the problem didn’t ask for
that.) The summary of the regression fit is β̂0 = 3.099, β̂1 = 0.0266, σ′ = 0.6641, xn = 41.1, and
s2x = 18430.

(a) The test statistic is given in Eq. (11.3.22),

U = sx
β̂1 − 2

σ′ = 135.8
0.0266 − 2

0.6641
= −403.5.

We would reject H0 at level 0.01 if U is greater than the 0.99 quantile of the t distribution with
12 degrees of freedom. We do not reject the null hypothesis at level 0.01.

(b) A 90% confidence interval is centered at 0.0266 and has half-width equal to

T−1
12 (0.95)

σ′

sx
= 1.782

0.6641

135.8
= 0.00872.

So, the interval is 0.0266 ± 0.00872 = [0.0179, 0.0353].
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Figure S.11.2: Residual plots for Exercise 21a of Sec. 11.3. The plot on the left is for part (a) and the plot
on the right is for part (b).

(c) A 90% prediction interval for the logarithm of 1980 price is centered at 3.099+0.0266×21.4 = 3.668
and has half-width equal to

T−1
12 (0.95)σ′

[
1 +

1

n
+

(x− xn)
2

s2x

]1/2
= 1.782 × 0.6641

[
1 +

1

14
+

(21.4 − 41.1)2

18430

]1/2
= 1.237.

So, the interval for the logarithm of 1980 price is 3.668 ± 1.237 = [2.431, 4.905]. To convert this
to 1980 price take e to the power of both endpoints to get [11.37, 134.96].

If we had been asked to regress on the logarithm of 1970 fish price, the summary results would have been
β̂0 = 1.132, β̂1 = 0.9547, σ′ = 0.2776, xn = 3.206, and s2x = 19.11. The test statistic for part (a) would
have been 4.371(0.9547 − 2)/0.2776 = −16.46. Still, we would not reject the null hypothesis at level
0.01. The confidence interval for β1 would have been 0.9547 ± 1.782(0.2776/4.371) = [0.8415, 1.067].
The prediction interval for the logarithm of price would have been

1.132 + 0.9547 log(21.4) ± 0.2776

(
1 +

1

14
+

(log(21.4) − 3.206)2

19.11

)1/2

= [3.769, 4.344].

The interval for 1980 price would then be [43.34, 77.02].

23. Define

W01 =

[
c20
n

+
(c0xn − c1)

2

s2x

]−1/2
c0(β̂0 − β0) + c2(β̂1 − β1)

σ′ ,

which has the t distribution with n− 2 degrees of freedom. Hence

Pr(W01 ≥ T−1
n−2(1− α0)) = α0.

Suppose that c0β0 + c1β1 < c∗. Because [(c20/n) + (c0xn − c1)
2/s2x]/σ

′ > 0, it follows that W01 > U01.
Finally, he probability of type I error is

Pr(U01 ≥ T−1
n−2(1− α0)) ≤ Pr(W01 ≥ T−1

n−2(1− α0)) = α0,
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where the first inequality follows from W01 > U01.

24. (a) When c0 = 1 and c1 = x > 0, the smallest possible value of β∗
0 +xβ∗

1 occurs at the smallest values
of β∗

0 and β∗
1 simultaneously. These values are

β̂0 − σ′
[
1
n + x2

n
s2x

]1/2
T−1
n−2

(
1− α0

4

)
,

β̂1 − σ′

sx
T−1
n−2

(
1− α0

4

)
.

Similarly, the largest values occur when β∗
0 and β∗

1 both take their largest possible values, namely

β̂0 + σ′
[
1
n + x2

n
s2x

]1/2
T−1
n−2

(
1− α0

4

)
,

β̂1 +
σ′

sx
T−1
n−2

(
1− α0

4

)
.

The confidence interval is then⎛⎝β̂0 + β̂1x− σ′
⎧⎨⎩
[
1

n
+

x2n
s2x

]1/2
+

x

sx

⎫⎬⎭T−1
n−2

(
1− α0

4

)
,

β̂0 + β̂1x+ σ′
⎧⎨⎩
[
1

n
+

x2n
s2x

]1/2
+

x

sx

⎫⎬⎭T−1
n−2

(
1− α0

4

)⎞⎠ .

(b) When c0 = 1 and c1 = x < 0, the smallest possible value of β∗
0 + xβ∗

1 occurs when β∗
0 takes its

smallest possible value and β∗
1 takes its largest possible value. Similarly, the largest possible value

of β∗
0 +xβ∗

1 occurs when β∗
0 takes its largest possible value and β∗

1 takes its smallest possible value.
All of these extreme values are given in part (a). The resulting interval is then⎛⎝β̂0 + β̂1x− σ′

⎧⎨⎩
[
1

n
+

x2n
s2x

]1/2
− x

sx

⎫⎬⎭T−1
n−2

(
1− α0

4

)
,

β̂0 + β̂1x+ σ′
⎧⎨⎩
[
1

n
+

x2n
s2x

]1/2
− x

sx

⎫⎬⎭T−1
n−2

(
1− α0

4

)⎞⎠ .

25. (a) The simultaneous intervals are the same as (11.3.33) with [2F−1
2,n−2(1−α0)]

1/2 replaced by T−1
n−2(1−

α0/4), namely for i = 0, 1,

β0 + β1xi ± T−1
n−2(1− α0/4)σ

′
[
1

n
+

(xi − xn)
2

s2x

]1/2
.

(b) Set x = αx0 + (1− α)x1 and solve for α. The result is, by straightforward algebra,

α(x) =
x− x1
x0 − x1

.

(c) First, notice that for all x,

β0 + β1x = α(x)[β0 + β1x0] + [1− α(x)][β0 + β1x1]. (S.11.1)

That is, each parameter for which we want a confidence interval is a convex combination of the
parameters for which we already have confidence intervals.

Suppose that C occurs. There are three cases that depend on where α(x) lies relative to the interval
[0, 1]. The first case is when 0 ≤ α(x) ≤ 1. In this case, the smallest of the four numbers defining
L(x) and U(x) is L(x) = α(x)A0 + [1−α(x)]A1 and the largest is U(x) = α(x)B0 + [1−α(x)]B1,
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because both α(x) and 1 − α(x) are nonnegative. For all such x, A0 < β0 + β1x0 < B0 and
A1 < β0 + β1x1 < B1 together imply that

α(x)A0 + [1− α(x)]A1 < α(x)[β0 + β1x0] + [1− α(x)][β0 + β1x1] < α(x)B0 + [1− α(x)]B1.

Combining this with (S.11.1) and the formulas for L(x) and U(x) yields L(x) < β0 + β1x < U(x)
as desired. The other two cases are similar, so we shall do one only of them. If α(x) < 0,
then 1 − α(x) > 0. In this case, the smallest of the four numbers defining L(x) and U(x) is
L(x) = α(x)B0 + [1 − α(x)]A1, and the largest is U(x) = α(x)A0 + [1 − α(x)]B1. For all such x,
A0 < β0 + β1x0 < B0 and A1 < β0 + β1x1 < B1 together imply that

α(x)B0 + [1− α(x)]A1 < α(x)[β0 + β1x0] + [1− α(x)][β0 + β1x1] < α(x)A0 + [1− α(x)]B1.

Combining this with (S.11.1) and the formulas for L(x) and U(x) yields L(x) < β0 + β1x < U(x)
as desired.

11.4 Bayesian Inference in Simple Linear Regression

Commentary

This section only discusses Bayesian analysis with improper priors. There are a couple of reasons for this.
First, the posterior distribution that results from the improper prior makes many of the Bayesian inferences
strikingly similar to their non-Bayesian counterparts. Second, the derivation of the posterior distribution
from a proper prior is mathematically much more difficult than the derivation given here, and I felt that
this would distract the reader from the real purpose of this section, namely to illustrate Bayesian posterior
inference. This section describes some inferences that are similar to non-Bayesian inferences as well as some
that are uniquely Bayesian.

Solutions to Exercises

1. The posterior distribution of β1 is given as a special case of (11.4.1), namely that U = sx(β1 − β̂1)/σ
′

has the t distribution with n − 2 degrees of freedom. The coefficient 1 − α0 confidence interval from
Sec. 11.3 has endpoints β̂1 ± T−1

n−2(1 − α0/2)σ
′/sx. So, we can compute the posterior probability that

β1 is in the interval as follows:

Pr

(
β̂1 − T−1

n−2(1− α0/2)
σ′

sx
< β1 < β̂1 + T−1

n−2(1− α0/2)
σ′

sx

)
= Pr

(
−T−1

n−2(1− α0/2) < sx
β1 − β̂1

σ′ < T−1
n−2(1− α0/2)

)
. (S.11.2)

Since the t distributions are symmetric around 0, −T−1
n−2(1 − α0/2) = T−1

n−2(α0/2). Also, the random
variable between the inequalities on the right side of (S.11.2) is U , which has the t distribution with
n− 2 degrees of freedom. Hence the right side of (S.11.2) equals

Pr(U < T−1(1− α0/2)) − Pr(U ≤ T−1(α0/2)) = 1− α0/2− α0/2 = 1− α0.

2. The posterior distribution of β1 is given in (11.4.1), namely that

U =

[
c20
n

+
(c0xn − c1)

2

s2x

]−1/2
c0β0 + c1β1 − [c0β̂0 + c1β̂1]

σ′
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has the t distribution with n − 2 degrees of freedom. The coefficient 1 − α0 confidence interval from
Sec. 11.3 has endpoints

c0β̂0 + c1β̂1 ± T−1
n−2(1− α0/2)σ

′
[
c20
n

+
(c0xn − c1)

2

s2x

]1/2
.

So, we can compute the posterior probability that β1 is in the interval as follows:

Pr

⎛⎝c0β̂0 + c1β̂1 − T−1
n−2(1− α0/2)σ

′
[
c20
n

+
(c0xn − c1)

2

s2x

]1/2
< c0β0 + c1β1

< c0β̂0 + c1β̂1 − T−1
n−2(1− α0/2)σ

′
[
c20
n

+
(c0xn − c1)

2

s2x

]1/2⎞⎠
= Pr

(
−T−1

n−2(1− α0/2) < U < T−1
n−2(1− α0/2)

)
.

As in the proof of Exercise 1, this equals 1− α0.

3. The joint distribution of (β0, β1) given τ is a bivariate normal distribution as specified in Theorem 11.4.1.
Using the means, variances, and correlation given in that theorem, we compute the mean of β0 + β1x
as β̂0 + β̂1x = Ŷ . The variance of β0 + β1x given τ is

1

τ

⎡⎢⎢⎢⎢⎢⎣
1

n
+

x2n
s2x

+
x2

s2x
− 2xn

xn(
n

n∑
i=1

x2i

)1/2

⎤⎥⎥⎥⎥⎥⎦
(
1

n
+

x2n
s2x

)1/2
1

sx
.

Use the fact that 1/n + x2n/s
2
x =

∑n
i=1 x

2
i /[ns

2
x] to simplify the above variance to the expression

1

τ

[
1

n
+

(x− xn)
2

s2x

]1/2
.

It follows that the conditional distribution of τ1/2(β0 − β1x− Ŷ ) is the normal distribution with mean
0 and variance as stated in the exercise.

4. The summaries from a simple linear regression are β̂0 = 0.1472, β̂1 = 0.4352, σ′ = 0.2374, xn = 0.42,
n = 10 and s2x = 8.396.

(a) The posterior distribution of the parameters is given in Theorem 11.4.1. With the numerical sum-

maries above (recall that
n∑

i=1

x2i = s2x + nx2n = 10.16), we get the following posterior. Conditional

on τ , (β0, β1) has a bivariate normal distribution with mean vector (0.1472, 0.4352), correlation
−0.4167, and variances 0.1210/τ and 0.1191/τ . The distribution of τ is a gamma distribution
with parameters 4 and 0.2254.

(b) The interval is centered at 0.4352 with half-width equal to T−1
8 (0.95) times 0.2374/8.3961/2 =

0.0819. So, the interval is [0.2828, 0.5876].
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(c) The posterior distribution of β0 is that U = (β0 − 0.1472)/0.12101/2 has the t distribution with
8 degrees of freedom. So the probability that β0 is between 0 and 2 is the probability that U is
between (0 − 0.1472)/0.3479 = −0.4232 and (2 − 0.1472)/0.3479 = 5.326. The probability that a
t random variable with 8 degrees of freedom is between these two numbers can be found using a
computer program, and it equals 0.6580.

5. The summary data are in the solution to Exercise 4.

(a) According to Theorem 11.4.1, the posterior distribution of β1 is that 2.898(β1 − 0.4352)/0.2374
has the t distribution with eight degrees of freedom.

(b) According to Theorem 11.4.1, the posterior distribution of β0 + β1 is that(
0.1 +

(0.42 − 1)2

2.8982

)−1/2
β0 + β1 − 0.5824

0.2374

has the t distribution with eight degrees of freedom.

6. The summary information from the regression is β̂0 = 1.132, β̂1 = 0.9547, σ′ = 0.2776, xn = 3.206,
n = 14, and s2x = 19.11.

(a) The posterior distribution of β1 is that U = 19.111/2(β1 − 0.9547)/0.2776 has the t distribution
with 12 degrees of freedom.

(b) The probability that β1 ≤ 2 is the same as the probability that U ≤ 19.111/2(2−0.9547)/0.2776 =
16.46, which is essentially 1.

(c) The interval for log-price will be centered at 1.132 + 0.9547 × log(21.4) = 4.057 and have half-
width T−1

12 (0.975) times 0.2776[1+ 1/14+ (3.206− log(21.4))2/19.11]1/2 = 0.2875. So, the interval
for log-price is [3.431, 4.683]. The interval for 1980 price is e to the power of the endpoints,
[30.90, 108.1].

7. The conditional mean of β0 given β1 can be computed using results from Sec. 5.10. In particular,

E(β0|β1) = β̂0 −
nxnsx

(
1

n
+ x2n/s

2
x

)1/2

(
n

n∑
i=1

x2i

)1/2
(β1 − β̂1).

Now, use the fact that
n∑

i=1

x2i = s2x + nx2n. The result is

E(β0|β1) = β̂0 + xn(β1 − β̂1).

11.5 The General Linear Model and Multiple Regression

Commentary

If one is using the software R, the commands to fit multiple linear regression models are the same as those
that fit simple linear regression as described in the Commentaries to Secs. 11.1–11.3. One need only put the
additional predictor variables into additional columns of the x matrix.
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Solutions to Exercises

1. After we have replaced β0, . . . , βp in (11.5.4) by their M.L.E.’s β̂0, . . . , β̂p, the maximization with respect
to σ2 is exactly the same as the maximization carried out in Example 7.5.6 in the text for finding the
M.L.E. of σ2 or the maximization carried out in Exercise 1 of Sec. 11.2.

2. (The statement of the exercise should say that S2/σ2 has a χ2 distribution.) According to Eq. (11.5.8),

σ
′2 =

S2

n− p
.

Since we assume that S2/σ2 has a χ2 distribution with n − p degrees of freedom, the mean of S2 is
σ2(n− p), hence the mean of σ

′2 is σ2, and σ
′2 is unbiased.

3. This problem is a special case of the general linear model with p = 1. The design matrix Z defined by
Eq. (11.5.9) has dimension n× 1 and is specified as follows:

Z =

⎡⎢⎣ x1...
xn

⎤⎥⎦ .

Therefore, Z ′Z =
n∑

i=1

x2i and (Z ′Z)−1 =
1

n∑
i=1

x2i

.

It follows from Eq. (11.5.10) that

β̂ =

n∑
i=1

xiYi

n∑
i=1

x2i

.

4. From Theorem 11.5.3, E(β̂) = β and Var(β̂) = σ2/
n∑

i=1

x2i .

5. It is found that
∑n

i=1 xiyi = 342.4 and
∑n

i=1 x
2
i = 66.8. Therefore, from Exercises 3 and 4, β̂ = 5.126

and Var(β̂) = 0.0150σ2. Also, S2 =
∑n

i=1(yi − β̂xi)
2 = 169.94. Therefore, by Eq. (11.5.7), σ̂2 =

(169.94)/10 = 16.994.

6. By Eq. (11.5.21), the following statistic will have the t distribution with 9 degrees of freedom when H0

is true:

U =

[
9

(0.0150)(169.94)

]1/2
(β̂ − 10) = −9.158.

The corresponding two-sided tail area is smaller than 0.01, the smallest two-sided tail area available
from the table in the back of the book.
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7. The values β̂0, β̂1, and β̂2 were determined in Example 11.1.3.

By Eq. (11.5.7),

σ̂2 =
1

10
S2 =

1

10

10∑
i=1

(yi − β̂0 − β̂1xi − β̂2x
2
i )

2 =
1

10
(9.37) = 0.937.

8. The design matrix Z has the following form:

Z =

⎡⎢⎢⎣
1 x1 x21
1 x2 x22
. . . . . . . . . . . . .
1 xn x2n

⎤⎥⎥⎦
Therefore, Z ′Z is the 3× 3 matrix of coefficients on the left side of the three equations in (11.1.14):

Z ′Z =

⎡⎣ 10 23.3 90.37
23.3 90.37 401
90.37 401 1892.7

⎤⎦ .
It will now be found that

(Z ′Z )−1 =

⎡⎣ 0.400 −0.307 0.046
−0.307 0.421 −0.074
0.046 −0.074 0.014

⎤⎦ .
The elements of (Z ′Z )−1, multiplied by σ2, are the variances and covariances of β̂0, β̂1, and β̂2.

9. By Eq. (11.5.21), the following statistic will have the t distribution with 7 degrees of freedom when H0

is true:

U2 =

[
7

(0.014)(9.37)

]1/2
β̂2 = 0.095.

The corresponding two-sided tail area is greater than 0.90. The null hypothesis would not be rejected
at any reasonable level of significance.

10. By Eq. (11.5.21), the following statistic will have the t distribution with 7 degrees of freedom when H0

is true:

U1 =

[
7

(0.421)(9.37)

]1/2
(β̂1 − 4) = −4.51.

The corresponding two-sided tail area is less than 0.01.

11. It is found that
∑n

i=1(yi − ȳn)
2 = 26.309. Therefore,

R2 = 1− S2

26.309
= 0.644.
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12. The values of β̂0, β̂1 and β̂2 were determined in Example 11.1.5.

By Eq. (11.5.7),

σ̂2 =
1

10
S2 =

1

10

n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2)
2 =

1

10
(8.865) = 0.8865.

13. The design matrix Z has the following form:

Z =

⎡⎢⎢⎣
1 x11 x12
1 x21 x22
. . . . . . . . . . . . . .

1 xn1 xn2

⎤⎥⎥⎦ .

Therefore, Z ′Z is the 3× 3 matrix of coefficients on the left side of the three equations in (11.1.14):

Z ′Z =

⎡⎣ 10 23.3 650
23.3 90.37 1563.6
650 1563.6 42, 334

⎤⎦ .
It will now be found that

(Z ′Z )−1 =

⎡⎣ 222.7 4.832 −3.598
4.832 0.1355 −0.0792
−3.598 −0.0792 0.0582

⎤⎦ .
The elements of (Z ′Z )−1, multiplied by σ2, are the variances and covariances of β̂0, β̂1, and β̂2.

14. By Eq. (11.5.21), the following statistics will have the t distribution with 7 degrees of freedom when
H0 is true:

U1 =

[
7

(0.1355)(8.865)

]1/2
β̂1 = 1.087.

The corresponding two-sided tail area is between 0.30 and 0.40.

15. By Eq. (11.5.21), the following statistic will have the t distribution with 7 degrees of freedom when H0

is true:

U2 =

[
7

(0.0582)(8.865)

]1/2
(β̂2 + 1) = 4.319.

The corresponding two-sided tail area is less than 0.01.

16. Just as in Exercise 11,
n∑

i=1

(yi − ȳn)
2 = 26.309. Therefore,

R2 = 1− S2

26.309
= 0.663.
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17.

Cov(β̂j , Aij) = Cov

(
β̂j , β̂i − ζij

ζjj
β̂j

)

= Cov(β̂j , β̂i)− ζij
ζjj

Cov(β̂j , β̂j)

= Cov(β̂i, β̂j)− ζij
ζjj

Var(β̂j)

= ζijσ
2 − ζij

ζjj
ζjjσ

2 = 0.

Just as in simple linear regression, it can be shown that the joint distribution of two estimators β̂i
and β̂j will be a bivariate normal distribution. Since Aij is a linear function of β̂i and β̂j , the joint

distribution of Aij and β̂j will also be a bivariate normal distribution. Therefore, since Aij and β̂j are
uncorrelated, they are also independent.

18.

Var(Aij) = Var

(
β̂i − ζij

ζjj
β̂j

)

= Var(β̂i) +

(
ζij
ζjj

)2

Var(β̂j)− 2
ζij
ζjj

Cov(β̂i, β̂j)

= ζiiσ
2 +

ζ2ij
ζjj

σ2 − 2
ζ2ij
ζjj

σ2 =

(
ζ2ii −

ζ2ij
ζjj

)
σ2.

Now consider the right side of the equation given in the hint for this exercise.

[Aij − E(Aij)]
2 = [β̂i − βi − ζij

ζjj
(β̂j − βj)]

2

= (β̂i − βi)
2 − 2ζij

ζjj
(β̂i − βi)(β̂j − βj) +

ζ2ij
ζ2jj

(β̂j − βj)
2.

If each of the two terms on the right side of the equation given in the hint is put over the least common
denominator (ζiiζjj − ζ2ij)σ

2, the right side can be reduced to the form given for W 2 in the text of
the exercise. In the equation for W 2 given in the hint, W 2 has been represented as the sum of two
independent random variables, each of which is the square of a variable having a standard normal
distribution. Therefore, W 2 has a χ2 distribution with 2 degrees of freedom.

19. (a) Since W 2 is a function only of β̂i and β̂j , it follows that W
2 and S2 are independent. Also, W 2 has

a χ2 distribution with 2 degrees of freedom and S2/σ2 has a χ2 distribution with n− p degrees of

freedom. Therefore,
W 2/2

S2/[σ2(n− p)]
has the F distribution with 2 and n− p degrees of freedom.

(b) If we replace βi and βj in W 2 by their hypothesized values β∗
i and β∗

j , then the statistic given in
part (a) will have the F distribution with 2 and n− p degrees of freedom when H0 is true and will
tend to be larger when H0 is not true. Therefore, we should reject H0 if that statistic exceeds some
constant C, where C can be chosen to obtain any specified level of significance α0(0 < α0 < 1).
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20. In this problem i = 2, j = 3, β∗
1 = β∗

2 = 0 and, from the values found in Exercises 7 and 8,

W 2 =
(0.014)(0.616)2 + (0.421)(0.013)2 + 2(0.074)(0.616)(0.13)

[(0.421)(0.014) − (0.074)2]σ2
=

16.7

σ2
.

Also, S2 = 9.37, as found in the solution of Exercise 7. Hence, the value of the F statistic with 2 and 7
degrees of freedom is (7/2)(16.7/9.37) = 6.23. The corresponding tail area is between 0.025 and 0.05.

21. In this problem, i = 2, j = 3, β∗
1 = 1, β∗

2 = 0 and from the values found in Exercises 12 and 13,

W 2 =
(0.0582)(0.4503 − 1)2 + (0.1355)(0.1725)2 + 2(0.0792)(0.4503 − 1)(0.1725)

[(0.1355)(0.0582) − (0.0792)2 ]σ2

=
4.091

σ2
.

Also, S2 = 8.865, as found in the solution of Exercise 12. Hence, the value of the F statistic with 2 and
7 degrees of freedom is (7/2)(4.091/8.865) = 1.615. The corresponding tail area is greater than 0.05.

22. S2 =
n∑

i=1

(yi − β̂0 − β̂1xi)
2. Since β̂0 = ȳn − β̂1xn,

S2 =
n∑

i=1

[(yi − ȳn)− β̂1(xi − x̄n)]
2

=
n∑

i=1

(yi − ȳn)
2 − β̂2

1

n∑
i=1

(xi − x̄n)
2 − 2β̂1

n∑
i=1

(xi − x̄n)(yi − ȳn).

Since β̂1 =

n∑
i=1

(xi − x̄n)(yi − ȳn)

n∑
i=1

(yi − ȳn)
2

and R2 = 1− S2

n∑
i=1

(yi − ȳn)
2

, the desired result can now be obtained.

23. We have the following relations:

E(X + Y ) = E

⎡⎢⎣ X1 + Y1
...

Xn + Yn

⎤⎥⎦ =

⎡⎢⎣ E(X1 + Y1)
...

E(Xn + Yn)

⎤⎥⎦ =

⎡⎢⎣ E(X1) + E(Y1)
...

E(Xn) + E(Yn)

⎤⎥⎦

=

⎡⎢⎣E(X1)
...

E(Xn)

⎤⎥⎦+

⎡⎢⎣E(Y1)
...

E(Yn)

⎤⎥⎦ = E(X ) + E(Y ).

24. The element in row i and column j of the n × n matrix Cov(X + Y ) is Cov(Xi + Yi,Xj + Yj) =
Cov(Xi,Xj)+Cov(Xi, Yj)+Cov(Yi,Xj)+Cov(Yi, Yj). SinceX and Y are independent, Cov(Xi, Yj) =
0 and Cov(Yi,Xj) = 0. Therefore, this element reduces to Cov(Xi,Xj)+Cov(Yi, Yj). But Cov(Xi,Xj)
is the element in row i and column j of Cov(X ), and Cov(Yi, Yj) is the corresponding element in
Cov(Y ). Hence, the sum of these two covariances is the element in row i and column j of Cov(X ) +
Cov(Y ). Thus, we have shown that the element in row i and column j of Cov(X +Y ) is equal to the
corresponding element of Cov(X ) + Cov(Y ).
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25. We know that Var(3Y1 + Y2 − 2Y3 + 8) = Var(3Y1 + Y2 − 2Y3). By Theorem 11.5.2, with p = 1,

Var(3Y1 + Y2 − 2Y3) = (3, 1,−2)Cov(Y )

⎛⎜⎝ 3
1

−2

⎞⎟⎠ = 87.

26. (a) We can see that
∑p−1

i=0 cj β̂j is equal to c′β̂, where c is defined in part (b) and β̂ is the least-squares

regression coefficient vector. If Y is the vector in Eq. (11.5.13), then we can write c′β̂ = a′Y ,
where a′ = c′(Z ′Z)−1Z. It follows from Theorem 11.3.1 that a′Y has a normal distribution, and
it follows from Theorem 11.5.2 that the mean of a′Y is c′β and the variance is

σ2a′a = σ2c′(Z ′Z)−1c. (S.11.3)

(b) If H0 is true, then c′β̂ has the normal distribution with mean c∗ and variance given by (S.11.3).
It follows that the following random variable Z has a standard normal distribution:

Z =
c′β̂ − c∗

σ(c′(Z ′Z)−1c)1/2
.

Also, recall that (n−p)σ
′2/σ2 has a χ2 distribution with n−p degrees of freedom and is independent

of Z. So, if we divide Z by σ′/σ, we get a random variable that has a t distribution with n − p
degrees of freedom, which also happens to equal U .

(c) To test H0 at level α0, we can reject H0 if |U | > T−1
n−p(1− α0/2). If H0 is true,

Pr(|U | > T−1
n−p(1− α0/2)) = α0,

so this test will have level α0.

27. In a simple linear regression, Ŷi is the same linear function of Xi for all i. If β̂1 > 0, then every unit
increase in X corresponds to an increase of β̂1 in Ŷ . So, a plot of residuals against Ŷ will look the same
as a plot of residuals against X except that the horizontal axis will be labeled differently. If β̂1 < 0,
then a unit increase in X corresponds to a decrease of −β̂1 in Ŷ , so a plot of residuals against fitted
values is a mirror image of a plot of residuals against X. (The plot is flipped horizontally around a
vertical line.)

28. Since R2 is a decreasing function of the residual sum of squares, we shall show that the residual sum
of squares is at least as large when using Z ′ as when using Z. Let Z have p columns and let Z ′ have
q < p columns. Let β̂∗ be the least-squares coefficients that we get when using design matrix Z ′. For
each column that was deleted from Z to get Z ′, insert an additional coordinate equal to 0 into the
q-dimensional vector β̂∗ to produce the p-dimensional vector β̃. This vector β̃ is one of the possible
vectors in the solution of the minimization problem to find the least-squares estimates with the design
matrix Z. Furthermore, since β̃ has 0’s for all of the extra columns that are in Z but not in Z ′, it
follows that the residual sum of squares when using β̃ with design matrix Z is identical to the residual
sum of squares when using β̂∗ with design matrix Z ′. Hence the minimum residual sum of squares
available with design matrix Z must be no larger than the residual sum of squares using β̂ with design
matrix Z ′.

29. In Example 11.5.5, we are told that σ′ = 352.9, so the residual sum of squares is 2864383. We can

calculate
n∑

i=1

(yi − yn)
2 directly from the data in Table 11.13. It equals, 26844478. It follows that

R2 = 1− 2864383

26844478
= 0.893.
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30. Use the notation in the solution of Exercise 26. Suppose that c′β = d. Then U has a noncentral t
distribution with n−p degrees of freedom and noncentrality parameter (d−c)/[σ(c′(Z ′Z)−1c)1/2]. The
argument is the same as any of those in the book that derived noncentral t distributions.

11.6 Analysis of Variance

Commmentary

If one is using the software R, there is a more direct way to fit an analysis of variance model than to construct
the design matrix. Let y contain the observed responses arranged as in Eq. (11.6.1). Suppose also that x is
a vector of the same dimension as y, each of whose values is the first subscript i of Yij in Eq. (11.6.1) so that
the value of x identifies which of the p sample each observation comes from. Specifically, the first n1 elements
of x would be 1, the next n2 would be 2, etc. Then aovfit=lm(y~factor(x)) will fit the analysis of variance
model. The function factor converts the vector of integers into category identifiers. Then anova(aovfit)

will print the ANOVA table.

Solutions to Exercises

1. By analogy with Eq. (11.6.2),

Z ′Z =

⎡⎢⎢⎢⎢⎣
n1 0 · · · 0
0 n2 · · · 0
...

... · · · ...
0 0 · · · np

⎤⎥⎥⎥⎥⎦ and (Z ′Z)−1 =

⎡⎢⎢⎢⎢⎣
1/n1 0 · · · 0
0 1/n2 · · · 0
...

... · · · ...
0 0 · · · 1/np

⎤⎥⎥⎥⎥⎦
Also,

Z ′Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ n1∑
j=1

Y1j

⎞⎠
...⎛⎝ np∑

j=1

Ypj

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and (Z ′Z)−1Z ′Y =

⎡⎢⎣ Ȳ1+
...

Ȳp+

⎤⎥⎦ .

2. Let A be the orthogonal matrix whose first row is u in the statement of the problem. Define

Y =

⎡⎢⎣ n
1/2
1 Y 1+

· · ·
n
1/2
p Y p+

⎤⎥⎦ .
Let v′ be a vector that is orthogonal to u (like all the other rows of A.) Then v′X = v′Y /σ. Define

U = AX = (U1, . . . , Up)
′,

V = AY = (V1, . . . , Vp)
′.

We just showed that Vi/σ = Ui for i = 2, . . . , n. Now,

X ′X = (AX)′(AX) =
p∑

i=1

U2
i ,

Y ′Y = (AY )′(AY ) =
p∑

i=1

V 2
i .
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Notice that V1 =
p∑

i=1

niY i+/n
1/2 = n1/2Y ++, hence

S2
Betw

σ2
=

1

σ2

p∑
i=1

niY
2
i+ − nY

2
++ =

1

σ2

(
Y ′Y − V 2

1

)
=

p∑
i=2

(
Vi

σ

)2

=
p∑

i=2

U2
i .

Now, the coordinates of X are i.i.d. standard normal random variables, so the coordinates of U are

also i.i.d. standard normal random variables. Hence
p∑

i=2

U2
i = S2

Betw/σ
2 has a χ2 distribution with p−1

degrees of freedom.

3. Use the definitions of Ȳi+ and Ȳ++ in the text to compute

p∑
i=1

ni(Ȳi+ − Ȳ++)
2 =

p∑
i=1

niȲ
2
i+ − nȲ 2

++ − 2Ȳ++

p∑
i=1

niȲi+

=
p∑

i=1

niȲ
2
i+ + nȲ 2

++ − 2nȲ 2
++,

=
p∑

i=1

niȲ
2
i+ − nȲ 2

++.

4. (a) It is found that Ȳ1+ = 6.6, Ȳ2+ = 9.0, and Ȳ3+ = 10.2. Also,

n1∑
j=1

(Y1j − Ȳ1+)
2 = 1.90,

n2∑
j=1

(Y2j − Ȳ2+)
2 = 17.8,

n3∑
j=1

(Y3j − Ȳ3+)
2 = 5.54.

Hence, by Eq. (11.6.4), σ̂2 = (1.90 + 17.8 + 5.54)/13 = 1.942.

(b) It is found that Ȳ++ = 8.538. Hence, by Eq. (11.6.9), U2 = 10(24.591)/[2(25.24)] = 4.871. When
H0 is true, the statistic U2 has the F distribution with 2 and 10 degrees of freedom. Therefore,
the tail area corresponding to the value U2 = 4.871 is between 0.025 and 0.05.

5. In this problem ni = 10 for i = 1, 2, 3, 4, and Ȳ1+ = 105.7, Ȳ2+ = 102.0, Ȳ3+ = 93.5, Ȳ4+ = 110.8, and
Ȳ++ = 103.

10∑
j=1

(Y1j − Ȳ1+)
2 = 303,

10∑
j=1

(Y2j − Ȳ2+)
2 = 544,

10∑
j=1

(Y3j − Ȳ3+)
2 = 250,

10∑
j=1

(Y4j − Ȳ4+)
2 = 364.

Therefore, by Eq. (11.6.9),

U2 =
36(1593.8)

3(1461)
= 13.09.

When H0 is true, the statistic U2 has the F distribution with 3 and 36 degrees of freedom. The tail
area corresponding to the value U2 = 13.09 is found to be less than 0.025.
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6. The random variables Q1, . . . , Qp are independent, because each Qi is a function of a different group
of the observations in the sample. It is known that Qi/σ

2 has a χ2 distribution with ni − 1 degrees of

freedom. Therefore, (Q1 + · · ·+Qp)/σ
2 will have a χ2 distribution with

p∑
i=1

(ni − 1) = n− p degrees of

freedom. Since Q1 and Qp are independent,
Qi/[σ

2(n1 − 1)]

Qp/[σ2(np − 1)]
will have the F distribution with n1 − 1

and np − 1 degrees of freedom. In other words, (np − 1)Q1/[(n1 − 1)Qp] will have that F distribution.

7. If U is defined by Eq. (9.6.3), then

U2 =
(m+ n− 2)(X̄m − Ȳn)

2(
1
m + 1

n

)
(S2

x + S2
y)

.

The correspondence between the notation of Sec. 9.6 and our present notation is as follows:

Notation of Sec. 9.6 Present notation

m n1

n n2

X̄m Ȳ1+

Ȳn Ȳ2+

S2
X

n1∑
j=1

(Y1j − Ȳ1+)
2

S2
Y

n2∑
j=1

(Y2j − Ȳ2+)
2

Since p = 2, Ȳ++ = n1Ȳ1+/n+ n2Ȳ2+/n. Therefore,

n1(Ȳ1+ − Ȳ++)
2 + n2(Ȳ2+ − Ȳ++)

2

= n1

(
n2

n

)2

(Ȳ1+ − Ȳ2+)
2 + n2

(
n1

n

)2

(Ȳ1+ − Ȳ2+)
2

=
n1n2

n
(Ȳ1+ − Ȳ2+)

2, since n1 + n2 = n.

Also, since m + n in the notation of Sec. 9.6 is simply n in our present notation, we can now rewrite
the expression for U2 as follows:

U2 =

(n− 2)
n

n1n2

2∑
i=1

ni(Ȳi+ − Ȳ++)
2

n

n1n2

2∑
i=1

ni∑
j=1

(Ȳij − Ȳi+)
2

.

This expression reduces to the expression for U2 given in Eq. (11.6.9), with p = 2.

8. E

⎡⎣ 1

n− p

p∑
i=1

ni∑
j=1

(Ȳij − Ȳi+)
2

⎤⎦ =
1

n− p

p∑
i=1

E

⎡⎣ ni∑
j=1

(Ȳij − Ȳi+)
2

⎤⎦
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=
1

n− p

p∑
i=1

(ni − 1)σ2, by the results of Sec. 8.7,

=
1

n− p
(n− p)σ2 = σ2.

9. Each of the three given random variables is a linear function of the independent random variables
Yrs(s = 1, . . . , nr and r = 1, . . . , p).

Let W1 =
∑
r,s

arsYrs, W2 =
∑

r,s brsYrs, and W3 =
∑
r,s

crsYrs. We have aij = 1 − 1

ni
, ais = − 1

ni
for

s �= j, and ars = 0 for r �= i. Also, bi′s =
1

ni′
− 1

n
and brs = − 1

n
for r �= i′. Finally, crs =

1

n
for all

values of r and s.

Now, Cov(W1,W2) = Cov

⎛⎝∑
r,s

arsYrs,
∑
r′,s′

br′s′Yr′s′

⎞⎠ =
∑
r,s

∑
r′,s′

arsbr′s′ Cov(Yrs, Yr′s′).

But Cov(Yrs, Yr′s′) = 0 unless r = r′ and s = s′, since any two distinct Y ’s are independent. Also,
Cov(Yrs, Yrs) = Var(Yrs) = σ2.

Therefore, Cov(W1,W2) = σ2∑
r,s arsbrs. If i = i′,

∑
r,s

arsbrs = aijbij +
∑
s 	=j

aisbis + 0 =

(
1− 1

ni

)(
1

ni
− 1

n

)
+ (ni − 1)

(
− 1

ni

)(
1

ni
− 1

n

)
= 0.

If i �= i′,

∑
r,s

arsbrs =

(
1− 1

ni

)(
− 1

n

)
+ (ni − 1)

(
− 1

ni

)(
− 1

n

)
= 0.

Similarly,

Cov(W1,W3) = σ2
∑
r,s

arscrs = σ2 1

n

⎛⎝aij +∑
s 	=j

aij

⎞⎠ = 0

Finally,

Cov(W2,W3) = σ2
∑
r,s

brscrs = σ2 1

n

∑
r,s

brs = σ2 1

n

[
ni′

(
1

ni′
− 1

n

)
+ (n − ni′)

(
− 1

n

)]
= 0.

10. (a) The three group averages are 825.8, 845.0, and 775.0. The residual sum of squares is 1671. The
ANOVA table is then

Source of Degrees of
variation freedom Sum of squares Mean square

Between samples 2 15703 7851
Residuals 15 1671 111.4

Total 17 17374
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(b) The F statistic is 7851/111.4 = 70.48. Comparing this to the F distribution with 2 and 15 degrees
of freedom, we get a p-value of essentially 0.

11. Write S2
Betw =

∑p
i=1 Y

2
i+−nY

2
++. Recall, that the mean of the square of a normal random variable with

mean μ and variance σ2 is μ2 + σ2. The distribution of Y i+ is the normal distribution with mean μi

and variance σ2/ni, while the distribution of Y ++ is the normal distribution with mean μ and variance
σ2/n. Hence the mean of S2

Betw is

p∑
i=1

ni(μ
2
i + σ2/ni)− n(μ+ σ2/n).

If we collect terms in this sum, we get (p − 1)σ2 +
∑p

i=1 niμ
2
i − nμ2. This simplifies to the expression

stated in the exercise.

12. If the null hypothesis is true, the likelihood is

(2π)−n/2σ−n exp

⎛⎝− 1

2σ2

p∑
i=1

ni∑
j=1

(yij − μ)2

⎞⎠ .

This is maximized by choosing μ = y++ and

σ2 =
1

n

p∑
i=1

(yij − y++)
2 =

1

n
S2
Tot.

The resulting maximum value of the likelihood is

(2π)−n/2 nn/2

(S2
Tot)

n/2
exp

(
−n

2

)
. (S.11.4)

If the null hypothesis is false, the likelihood is

(2π)−n/2σ−n exp

⎛⎝− 1

2σ2

p∑
i=1

ni∑
j=1

(yij − μi)
2

⎞⎠ .

This is maximized by choosing μi = yi+ and

σ2 =
1

n

p∑
i=1

(yij − yi+)
2 =

1

n
S2
Resid.

The resulting maximum value of the likelihood is

(2π)−n/2 nn/2

(S2
Resid)

n/2
exp

(
−n

2

)
. (S.11.5)

The ratio of (S.11.5) to (S.11.4) is(
S2
Tot

S2
Resid

)n/2

=

(
1 +

S2
Betw

S2
Resid

)n/2

.

Rejecting H0 when this ratio is greater than k is equivalent to rejecting when U2 > k′ for some other
constant k′. In order for the test to have level α0, k

′ must equal the 1−α0 quantile of the distribution
of U2 when H0 is true. We saw in the text that this distribution is the F distribution with p − 1 and
n− p degrees of freedom.
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13. We know that S2
Tot = S2

Betw + S2
Resid. We also know that S2

Betw/σ
2 and S2

Resid/σ
2 are independent. If

H0 is true then they both have χ2 distributions, one with p − 1 degrees of freedom (see Exercise 2)
and the other with n − p degrees of freedom as in the text. The sum of two independent χ2 random
variables has χ2 distribution with the sum of the degrees of freedom, in this case n− 1.

14. (a) (The exercise should have asked you to prove that
∑p

i=1 niαi = 0.) We see that
p∑

i=1

niαi =

n∑
i=1

niμi − nμ = 0.

(b) The M.L.E. of μi is Y i+ and the M.L.E. of μ is Y ++, so the M.L.E. of αi is Y i+ − Y ++.

(c) Notice that all of μi equal each other if and only if they all equal μ, if and only if all αi = 0.

(d) This fact was proven in Exercise 11 with slightly different notation.

11.7 The Two-Way Layout

Commmentary

If one is using the software R, one can fit a two-way layout using lm with two factor variables. As in the
Commentary to Sec. 11.6 above, let y contain the observed responses, and let x1 and x2 be two factor

variables giving the levels of the two factors in the layout. Then aovfit=lm(y~x1+x2) will fit the model,
and anova(aovfit) will print the ANOVA table.

Solutions to Exercises

1. Write S2
A = J

I∑
i=1

Y
2
i+ − IJY

2
++. Recall, that the mean of the square of a normal random variable with

mean μ and variance σ2 is μ2 + σ2. The distribution of Y i+ is the normal distribution with mean μi

and variance σ2/J , while the distribution of Y ++ is the normal distribution with mean μ and variance

σ2/IJ . Hence the mean of S2
A is J

I∑
i=1

(μ2
i + σ2/J) − IJ(μ + σ2/[IJ ]). If we collect terms in this sum,

we get

(I − 1)σ2 + J
I∑

i=1

μ2
i − IJμ2 = (I − 1)σ2 + J

I∑
i=1

(μi − μ)2 = (I − 1)σ2 + J
I∑

i=1

α2
i .

2. In each part of this exercise, let μij denote the element in row i and column j of the given matrix.

(a) The effects are not additive because μ21 − μ11 = 5 �= μ22 − μ12 = 7.

(b) The effects are additive because each element in the second row is 1 unit larger than the corre-
sponding element in the first row. Alternatively, we could say that the effects are additive because
each element in the second column is 3 units larger than the corresponding element in the first
column.

(c) The effects are additive because each element in the first row is 5 units smaller than the corre-
sponding element in the second row and is 1 unit smaller than the corresponding element in the
third row.

(d) The effects are not additive because, for example, μ21 − μ11 = 1 �= μ22 − μ12 = 2.
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3. If the effects are additive, then there exist numbers Θi and Ψj such that Eq. (11.7.1) is satisfied for
i = 1, . . . , I and j = 1, . . . , J . Let Θ̄ = 1

I

∑I
i=1Θi and Ψ̄ = 1

J

∑J
j=1Ψj, and define.

μ = Θ̄ + Ψ̄,

αi = Θi − Θ̄ for i = 1, . . . , I,

βj = Ψj − Ψ̄ for j = 1, . . . , J.

Then it follows that Eqs. (11.7.2) and (11.7.3) will be satisfied.

It remains to be shown that no other set of values of μ, αi, and βj will satisfy Eqs. (11.7.2) and (11.7.3).
Suppose that μ′, α′

i, and β′
j are another such set of values. Then μ + αi + βj = μ′ + α′

i + β′
j for all i

and j. By summing both sides of this relation over i and j, we obtain the relation IJμ = IJμ′. Hence,
μ = μ′. It follows, therefore, that αi + βj = α′

i + β′
j for all i and j. By summing both sides of this

relation over j, we obtain the result αi = α′
i for every value of i. Similarly, by summing both sides over

i, we obtain the relation βj = β′
j for every value of j.

4. If the effects are additive, so that Eq. (11.7.1) is satisfied, and we denote the elements of the
matrix by μij = Θi + Ψj, then μ̄++ = Θ̄ + Ψ̄, μ̄i+ = Θi + Ψ̄, and μ̄+j = Θ̄ + Ψj. Therefore,
μij = μ̄++ + (μ̄i+ − μ̄++) + (μ̄+j − μ̄++). Hence, it can be verified that μ = μ̄++, αi = μ̄i+ − μ̄++ and
βj = μ̄+j − μ̄++. In this exercise,

μ̄++ =
1

4
(3 + 6 + 4 + 7) = 5,

μ̄1+ =
1

2
(3 + 6) = 4.5, μ̄2+ =

1

2
(4 + 7) = 5.5,

μ̄+1 =
1

2
(3 + 4) = 3.5, μ̄+2 =

1

2
(6 + 7) = 6.5.

5. In this exercise,

μ̄++ =
1

12

3∑
i=1

4∑
j=1

μij =
1

12
(39) = 3.25,

μ̄1+ =
5

4
= 1.25, μ̄2+ =

25

4
= 6.35, μ̄3+ =

9

4
= 2.25,

μ̄+1 =
15

3
= 5, μ̄+2 =

3

3
= 1, μ̄+3 =

6

3
= 2, μ̄+4 =

15

3
= 5.

It follows that α1 = 1.25 − 3.25 = −2, α2 = 6.25 − 3.25 = 3, and α3 = 2.25 − 3.25 = −1. Also,
β1 = 5− 3.25 = 1.75, β2 = 1− 3.25 = −2.25, β3 = 2− 3.25 = −1.25, and β4 = 5− 3.25 = 1.75.

6.
I∑

i=1

α̂i =
I∑

i=1

Ȳi+ − IȲ++ =
1

J

I∑
i=1

J∑
j=1

Yij − 1

J

I∑
i=1

J∑
j=1

Yij = 0. A similar argument show that
J∑

j=1

β̂j = 0.

Also, since E(Yij) = μ+ αi + βj ,

E(μ̂) = E(Ȳ++) =
1

IJ

I∑
i=1

J∑
j=1

E(Yij) =
1

IJ

I∑
i=1

J∑
j=1

(μ + αi + βj) =
1

IJ
(IJμ+ 0 + 0) = μ,

E(α̂i) = E(Ȳi+ − Ȳ++) = E

⎛⎝ 1

J

J∑
j=1

Yij

⎞⎠− μ =
1

J

J∑
j=1

(μ+ αi + βj)− μ = αi.

A similar argument shows that E(β̂j) = βj
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7. Var(μ̂) = Var

⎛⎝ 1

IJ

I∑
i=1

J∑
j=1

Yij

⎞⎠ =
1

I2J2

I∑
i=1

J∑
j=1

Var(Yij) =
1

I2J2
IJσ2 =

1

IJ
σ2.

The estimator α̂i is a linear function of the IJ independent random variables Yrs (r = 1, . . . , I and

s = 1, . . . , J). If we let α̂i =
I∑

r=1

J∑
s=1

arsYrs, then it can be found that ais =
1

J
− 1

IJ
for s = 1, . . . , J

and ars = − 1

IJ
for r �= i. Therefore,

Var(α̂i) =
I∑

r=1

J∑
s=1

a2rsσ
2 = σ2

[
J

(
1

J
− 1

IJ

)2

+ (I − 1)J

(
1

IJ

)2
]
=

I − 1

IJ
σ2.

The value of Var(β̂j) can be found similarly.

8. If the square on the right of Eq. (11.7.9) is expanded and all the summations are then performed, we
will obtain the right side of Eq. (11.7.8) provided that the summation of each of the cross product
terms is 0. We shall now establish this result. Note that

J∑
j=1

(Yij − Ȳi+ − Ȳ+j + Ȳ++) = JȲi+ − JȲi+ − JȲ++ + JȲ++ = 0.

Similarly,
J∑

j=1

(Yij − Ȳi+ − Ȳ+j + Ȳ++) = 0. Therefore,

I∑
i=1

J∑
j=1

(Yij − Ȳi+ − Ȳ+j + Ȳ++)(Ȳi+ − Ȳ++) =
I∑

i=1

(Ȳi+ − Ȳi+)
J∑

j=1

(Yij − Ȳi+ − Ȳ+j + Ȳ++) = 0,

I∑
i=1

J∑
j=1

(Yij − Ȳi+ − Ȳ+j + Ȳ++)(Ȳ+j − Ȳ++) =
J∑

j=1

(Ȳ+j − Ȳ+j)
I∑

i=1

(Yij − Ȳi+ − Ȳ+j + Ȳ++) = 0.

Finally,

I∑
i=1

J∑
j=1

(Ȳi+ − Ȳ++)(Ȳ+j − Ȳ++) =
I∑

i=1

(Ȳi+ − Ȳ++)
J∑

j=1

(Ȳ+j − Ȳ++) = 0× 0.

9. Each of the four given random variables is a linear function of the independent random variables
Yrs(r = 1, . . . , I and s = 1, . . . , J). Let

W1 =
I∑

r=1

J∑
s=1

arsYrs,

W2 =
I∑

r=1

J∑
s=1

brsYrs,

W3 =
I∑

r=1

J∑
s=1

crsYrs.
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Then

aij = 1− 1

J
− 1

I
+

1

IJ
, arj = −1

I
+

1

IJ
for r �= i,

ais = − 1

J
+

1

IJ
for s �= j, and ars =

1

IJ
for r �= i, and s �= j.

Also,

bi′s =
1

J
− 1

IJ
and brs = − 1

IJ
for r �= i′,

crj′ =
1

I
− 1

IJ
and crs = − 1

IJ
for s �= j′.

As in Exercise 12 of Sec. 11.5, Cov(W1,W2) = σ2
∑
r,s

arsbrs. If i = i′,

∑
r,s

arsbrs =

(
1− 1

J
− 1

I
+

1

IJ

)(
1

J
− 1

IJ

)
+ (J − 1)

(
− 1

J
+

1

IJ

)(
1

J
− 1

IJ

)

+(I − 1)

(
−1

I
+

1

IJ

)(
− 1

IJ

)
+ (I − 1)(J − 1)

(
1

IJ

)(
− 1

IJ

)
= 0.

If i �= i′,

∑
r,s

arsbrs =

(
1− 1

J
− 1

I
+

1

IJ

)(
− 1

IJ

)
(i, j term)

+(J − 1)

(
− 1

J
+

1

IJ

)(
− 1

IJ

)
(i, s terms for s �= j)

+

(
−1

I
+

1

IJ

)(
1

J
− 1

IJ

)
(i′, j term)

+(J − 1)

(
1

IJ

)(
1

J
− 1

IJ

)
(i′, j terms for s �= j)

+(I − 2)

(
−1

I
+

1

IJ

)(
− 1

IJ

)
(r, j terms for r �= i, i′)

+(I − 2)(J − 1)

(
1

IJ

)(
− 1

IJ

)
(r, s terms for r �= i, i′ and s �= j).

= 0.

Similarly, the covariance between any other pair of the four variances can be shown to be 0.

10.
I∑

i=1

(Ȳi+ − Ȳ++)
2 =

I∑
i=1

Ȳ 2
i+ − 2Ȳ++

I∑
i=1

Ȳi+ − IȲ 2
++ =

I∑
i=1

Ȳ 2
i+ − 2IȲ 2

++ + IȲ 2
++ =

I∑
i=1

Ȳ 2
i+ − IȲ 2

++.

The other part of this exercise is proved similarly.

11.
I∑

i=1

J∑
j=1

(Yij − Ȳi+ − Ȳ+j + Ȳ++)
2 =

∑
i

∑
j

Y 2
ij + J

∑
i

Ȳ 2
i+ + I

∑
j

Ȳ 2
+j + IJȲ 2

++

−2
∑
i

∑
j

YijȲi+ − 2
∑
j

∑
i

YijȲ+j + 2Ȳ++

∑
i

∑
j

Yij

+2
∑
i

∑
j

Ȳi+Ȳ+j − 2JȲ++

∑
i

Ȳi+ − 2IȲ++

∑
j

Ȳ+j
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=
∑
i

∑
j

Y 2
ij + J

∑
i

Ȳ 2
i+ + I

∑
i

Ȳ 2
+j + IJȲ 2

++

−2J
∑
i

Ȳ 2
i+ − 2I

∑
j

Ȳ 2
+j + 2IJȲ 2

++

+2 IJȲ 2
++ − 2 IJȲ 2

++ − 2 IJȲ 2
++

=
∑
i

∑
j

Y 2
ij − J

∑
i

Ȳ 2
i+ − I

∑
j

Ȳ 2
+j + IJȲ 2

++.

12. It is found that Ȳ1+=17.4, Ȳ2+ =15.94, Ȳ3+ = 17.08, Ȳ+1 = 15.1, Ȳ+2 = 14.6, Ȳ+3 = 15.5333, Ȳ+4 =
19.5667, Ȳ+5 = 19.2333, Ȳ++ = 16.8097. The values of μ̂, α̂i for i = 1, 2, 3, and β̂j for j = 1, . . . , 5, can
now be obtained from Eq. (11.7.6).

13. The estimate of E(Yij) is μ̂+ α̂i+ β̂j . From the values given in the solution of Exercise 12, we therefore
obtain the following table of estimated expectations:

1 2 3 4 5

1 15.6933 15.1933 16.1267 20.16 19.8267

2 14.2333 13.7333 14.6667 18.7 18.3667

3 15.3733 14.8733 15.8067 19.84 19.5067

Furthermore, Theorem 11.7.1 says that the M.L.E. of σ2 is

σ̂2 =
1

15
(29.470667) = 1.9647.

14. It is found from Eq. (11.7.12) that

U2
A =

20(1.177865)

(29.470667)
= 0.799.

When the null hypothesis is true, U2
A will have the F distribution with I−1 = 2 and (I−1)(J −1) = 8

degrees of freedom. The tail area corresponding to the value just calculated is found to be greater than
0.05.

15. It is found from Eq. (11.7.13) that

U2
B =

6(22.909769)

(29.470667)
= 4.664.

When the null hypothesis is true, U2
B will have the F distribution with J−1 = 4 and (I−1)(J −1) = 8

degrees of freedom. The tail area corresponding to the value just calculated is found to be between
0.025 and 0.05.

16. If the null hypothesis in (11.7.15) is true, then all Yij have the same mean μ. The random variables
S2
A/σ

2, S2
B/σ

2, and S2
Resid/σ

2 are independent, and their distributions are χ2 with I − 1, J − 1, and
(I − 1)(J − 1) degrees of freedom respectively. Hence S2

A + S2
B has the χ2 distribution with I + J − 2

degrees of freedom and is independent of σ′. The conclusion now follows directly from the definition of
the F distribution.
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11.8 The Two-Way Layout with Replications

Commentary

This section is optional. There is reference to some of the material in this section in Chapter 12. In
particular, Example 12.3.4 shows how to use simulation to compute the size of the two-stage test procedure
that is described in Sec. 11.8.

If one is using the software R, and if one has factor variables x1 and x2 (as in the Commentary to
Sec. 11.7) giving the levels of the two factors in a two-way layout with replication, then the following com-
mands will fit the model and print the ANOVA table:
aovfit=lm(y~x1*x2)

anova(aovfit)

Solutions to Exercises

1. Let μ = Θ̄++, αi = Θ̄i+ − Θ̄++, βj = Θ̄+j − Θ̄++, and γij = Θij − Θ̄i+ − Θ̄+j + Θ̄++ for i = 1, . . . , I
and j = 1, . . . , J . Then it can be verified that Eqs. (11.8.4) and (11.8.5) are satisfied. It remains to be
shown that no other set of values of μ, αi, βj , and γij will satisfy Eqs. (11.8.4) and (11.8.5).

Suppose that μ′, α′
i, β

′
j , and γ′ij are another such set of values. Then, for all values of i and j,

μ+ αi + βj + γij = μ′ + α′
i + β′

j + γ′ij

By summing both sides of this equation over i and j, we obtain the relation IJμ = IJμ′. Hence, μ = μ′.
It follows, therefore, that for all values of i and j,

αi + βj + γij = α′
i + βj + γ′ij .

By summing both sides of this equation over j, we obtain the relation Jαi = Jα′
i. By summing both

sides of this equation over i, we obtain the relation Iβj = Iβ′
j . Hence, αi = α′

i and βj = β′
j . It also

follows, therefore, that γij = γ′ij.

2. Since Y ij+ is the M.L.E. of θij for each i and j, it follows from the definitions in Exercise 1 that the
M.L.E.’s of the various linear functions defined in Exercise 1 are the corresponding linear functions of
Y ij+. These are precisely the values in (11.8.6) and (11.8.7).

3. The values of μ, αi, βj , and γij can be determined in each part of this problem from the given values of
Θij by applying the definitions given in the solution of Exercise 1.

4.
I∑

i=1

α̂i =
I∑

i=1

(Ȳi++ − Ȳ+++) = IȲ+++ − IȲ+++ = 0,

I∑
i=1

γ̂ij =
I∑

i=1

(Ȳij+ − Ȳi++ − Ȳ+j+ + Ȳ+++) = IȲ+j+ − IȲ+++ − IȲ+j+ + IȲ+++ = 0.

The proofs that
J∑

j=1

β̂j = 0 and
J∑

j=1

γ̂ij = 0 are similar.
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5. E(μ̂) =
1

IJK

∑
i,j,k

E(Yijk) =
1

IJK

∑
i,j,k

Θij =
1

IJ

∑
i,j

Θij = Θ̄++ = μ, by Exercise 1;

E(α̂i) =
1

JK

∑
j,k

E(Yijk)− E(Ȳ+++)

=
1

JK

∑
j,k

Θij − Θ̄++, by the first part of this exercise

=
1

J

∑
j

Θij − Θ̄++ = Θ̄i+ − Θ̄++ = αi, by Exercise 1;

E(β̂j) = βj , by a similar argument;

E(γ̂ij) =
1

K

∑
k

E(Yijk)− E(μ̂ + α̂i + β̂j), by Eq. (11.8.7)

= Θij − Θ̄i+ − Θ̄+J + Θ̄++, by the previous parts of this exercise,

= γij , by Exercise 1.

6. The IJK random variables Yijk are independent and each has variance σ2. Hence,

Var(μ̂) = Var

⎛⎝ 1

IJK

∑
i,j,k

Yijk

⎞⎠ =
1

(IJK)2

∑
i,j,k

Var(Yijk) =
1

(IJK)2
IJKσ2 =

σ2

IJK
.

he estimator α̂i is a linear function of the observations Yijk of the form α̂i =
∑

r,s,t arstYrst, where

aist =
1

JK
− 1

IJK
=

I − 1

IJK
, and arst = − 1

IJK
,

for r �= i. Hence,

Var(α̂i) =
∑
r,s,t

a2rstσ
2 =

[
JK

(
I − 1

IJK

)2

+ (I − 1)JK

(
− 1

IJK

)2
]
σ2 =

I − 1

IJK
σ2.

Var(β̂j) can be determined similarly. Finally, if we represent γ̂ij in the form γ̂ij =
∑

r,s,t crstYrst, then
it follows from Eq. (11.8.7) that

cijt =
1

K
− 1

JK
− 1

IK
+

1

IJK
for t = 1, . . . ,K,

crjt = − 1

IK
+

1

IJK
for r �= i and t = 1, . . . ,K,

cist = − 1

JK
+

1

IJK
for s �= j and t = 1, . . . ,K,

crst =
1

IJK
for r �= i, s �= j, and t = 1, . . . ,K.

Therefore,

Var(γ̂ij) =
∑
r,s,t

c2rstσ
2

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 11.8. The Two-Way Layout with Replications 385

=

[
K

(
1

K
− 1

JK
− 1

IK
+

1

IJK

)2

+ (I − 1)K

(
− 1

IK
+

1

IJK

)2

+(J − 1)K

(
− 1

JK
+

1

IJK

)2

+ (I − 1)(J − 1)K

(
1

IJK

)2
]
σ2

=
(I − 1)(J − 1)

IJK
σ2.

7. First, write S2
Tot as∑

i,j,k

[(Yijk − Ȳij+) + (Ȳij+ − Ȳi++ − Ȳ+j+ + Ȳ+++) + (Ȳi++ − Ȳ+++) + (Ȳ+j+ − Ȳ+++)]
2. (S.11.6)

The sums of squares of the grouped terms in the summation in (S.11.6) are S2
Resid, S

2
Int, S

2
A, and S2

B .
Hence, to verify Eq. (11.8.9), it must be shown that the sum of each of the pairs of cross-products
of the grouped terms is 0. This is verified in a manner similar to what was done in the solution to
Exercise 8 in Sec. 11.7. Each of the sums of (Yijk − Ȳij+) times one of the other terms is 0 by summing
over k first. The sum of the product of the last two grouped terms is 0 because the sum factors into
sums of i and j that are each 0. The other two sums are similar, and we shall illustrate this one:∑

i,j,k

(Ȳij+ − Ȳi++ − Ȳ+j+ + Ȳ+++)(Ȳi++ − Ȳ+++).

Summing over j first produces 0 in this sum. For the other one, sum over i first.

8. Each of the five given random variables is a linear function of the IJK independent observations Yrst.
Let

α̂i1 =
∑
r,s,t

arstYrst,

β̂j1 =
∑
r,s,t

brstYrst,

γ̂i2j2 =
∑
r,s,t

crstYrst

Yijk − Ȳij+ =
∑
r,s,t

drstYrst.

Of course, μ̂ =
∑
r,s,t

Yrst/[IJK]. The value of arst, brst,and crst were given in the solution of Exercise 6,

and

dijk = 1− 1

K
,

dijt = − 1

K
for t �= k,

drst = 0 otherwise.

To show that α̂i1 and β̂j1 are uncorrelated, for example, it must be shown, as in Exercise 9 of Sec. 11.7,
that

∑
r,s,t arstbrst = 0. We have

∑
r,s,t

arstbrst = K

(
I − 1

IJK

)(
J − 1

IJK

)
+ (J − 1)K

(
I − 1

IJK

)(
− 1

IJK

)
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+(I − 1)K

(
− 1

IJK

)(
J − 1

IJK

)
+ (I − 1)(J − 1)K

(
− 1

IJK

)(
− 1

IJK

)
= 0.

Similarly, to show that Yijk − Ȳij+ and γ̂i2j2 are uncorrelated, it must be shown that
∑

r,s,t crstdrst = 0.
Suppose first that i = i2 and j = j2. Then

∑
r,s,t

crstdrst =

(
1

K
− 1

JK
− 1

IK
+

1

IJK

)(
1− 1

K

)

+(K − 1)

(
1

K
− 1

JK
− 1

IK
+

1

IJK

)(
− 1

K

)
= 0.

Suppose next that i = i2 and j �= j2. Then

∑
r,s,t

crstdrst =

(
− 1

JK
+

1

IJK

)(
1− 1

K

)
+ (K − 1)

(
− 1

JK
+

1

IJK

)(
− 1

K

)
= 0.

The other cases can be treated similarly, and it can be shown that the five given random variables are
uncorrelated with one another regardless of whether any of the values j, j1 and j2 are equal.

9. We shall first show that the numerators are equal:

∑
i,j

(Ȳij+ − Ȳi++ − Ȳ+j+ + Ȳ+++)
2 =

∑
i,j

(Ȳ 2
ij+ + Ȳ 2

i++ + Ȳ 2
+j+ + Ȳ 2

+++ − 2Ȳij+Ȳi++

−2Ȳij+Ȳ+j+ + 2Ȳij+Ȳ+++ + 2Ȳi++Ȳ+j+

−2Ȳi++Ȳ+++ − 2Ȳ+j+Ȳ+++)

=
∑
i,j

Ȳ 2
ij+ + J

∑
i

Ȳ 2
i++ + I

∑
j

Ȳ 2
+j+ + IJȲ 2

+++

−2J
∑
i

Ȳi++ − 2I
∑
j

Ȳ 2
+j+ + 2IJȲ 2

+++

+2IJȲ 2
+++ − 2IJȲ 2

+++ − 2IJȲ 2
+++

=
∑
i,j

Ȳ 2
ij+ − J

∑
i

Ȳ 2
i++ − I

∑
j

Ȳ 2
+j+ + IJȲ 2

+++.

Next, we shall show that the denominators are equal:

∑
i,j,k

(Ȳijk − Ȳij+)
2 =

∑
i,j,k

(Y 2
ijk − 2YijkȲij+ + Ȳ 2

ij+)

=
∑
i,j

(∑
k

Y 2
ijk − 2KȲ 2

ij+ +KȲ 2
ij+

)

=
∑
i,j,k

Y 2
ijk −K

∑
i,j

Ȳ 2
ij+.

10. In this problem, I = 3, J = 4, and K = 2. The values of the estimates can be calculated directly from
Eqs. (11.8.6), (11.8.7), and (11.8.3).
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11. It is found from Eq. (11.8.12) that U2
AB = 0.7047. When the hypothesis is true, U2

AB has the F
distribution with (I−1)(J−1) = 6 and IJ(K−1) = 12 degrees of freedom. The tail area corresponding
to the value just calculated is found to be greater than 0.05.

12. Since the hypothesis in Exercise 11 was not rejected, we proceed to test the hypotheses (11.8.13). It is
found from Eq. (11.8.14) that U2

A = 7.5245. When the hypothesis is true, U2
A has the F distribution

with (I − 1)J = 8 and 12 degrees of freedom. The tail area corresponding to the value just calculated
is found to be less than 0.025.

13. It is found from Eq. (11.8.18) that U2
B = 9.0657. When the hypothesis is true, U2

B has the F distribution
with I(J − 1) = 9 and 12 degrees of freedom. The tail area corresponding to the value just calculated
is found to be less than 0.025.

14. The estimator μ̂ has the normal distribution with mean μ and, by Exercise 6, variance σ2/24. Also,∑
i,j,k

(Yijk − Ȳij+)
2/σ2 has a χ2 distribution with 12 degrees of freedom, and these two random variables

are independent. Therefore, when H0 is true, the following statistic V will have the t distribution with
12 degrees of freedom:

V =

√
24(μ̂ − 8)⎡⎣ 1

12

∑
i,j,k

(Yijk − Ȳij+)
2

⎤⎦1/2
.

We could test the given hypotheses by carrying out a two-sided t test using the statistic V . Equivalently,
as described in Sec. 9.7, V 2 will have the F distribution with 1 and 12 degrees of freedom. It is found
that

V 2 =
24(0.7708)2

1

12
(10.295)

= 16.6221.

The corresponding tail area is less than 0.025.

15. The estimator α̂2 has the normal distribution with mean α2 and, by Exercise 6, variance σ2/12. Hence,
as in the solution of Exercise 14, when α2 = 1, the following statistic V will have the t distribution
with 12 degrees of freedom:

V =

√
12(α̂2 − 1)⎡⎣ 1

12

∑
i,j,k

(Yijk − Ȳij+)
2

⎤⎦1/2

The null hypothesis H0 should be rejected if V ≥ c, where c is an appropriate constant. It is found
that

V =

√
12(0.7667)[

1

12
(10.295)

]1/2 = 2.8673

The corresponding tail area is between 0.005 and 0.01.
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16. Since E(Yijk) = μ + αi + βj + γij , then E(Ȳij+) = μ + αi + βj + γij . The desired results can now be
obtained from Eq. (11.8.19) and Eq. (11.8.5).

17.
I∑

i=1

α̂i =
1

J

I∑
i=1

J∑
j=1

Ȳij+ − Iμ̂ = Iμ̂− Iμ̂ = 0 and

I∑
i=1

γ̂ij =

(
I∑

i=1

Ȳij+ − Iμ̂

)
−

I∑
i=1

α̂i − Iβ̂j = Iβ̂j − 0− Iβ̂j = 0.

It can be shown similarly that

J∑
j=1

β̂j = 0 and
J∑

j=1

γ̂ij = 0.

18. Both μ̂ and α̂i are linear functions of the
I∑

i=1

J∑
j=1

Kij independent random variables Yijk. Let μ̂ =∑
r,s,t

mrstYrst and α̂i =
∑
r,s,t

arstYrst. Then it is found from Eq. (11.8.19) that

Mrst =
1

IJKrs
for all values of r, s, and t,

and

aist =
1

JKis
− 1

IJKis
,

arst = − 1

IJKrs
for r �= i.

As in the solution of Exercise 8,

Cov(μ̂, α̂i) = σ2
∑
r,s,t

mrstarst

= σ2

⎡⎣ J∑
s=1

Kis∑
t=1

1

IJKis

(
1

JKis
− 1

IJKis

)
+
∑
r 	=i

J∑
s=1

Krs∑
t=1

(
1

IJKrs

)(
− 1

IJKrs

)⎤⎦
= σ2

⎡⎣I − 1

I2J2

J∑
s=1

1

Kis
− 1

I2J2

∑
r 	=i

J∑
s=1

1

Krs

⎤⎦
=

σ2

I2J2

[
(I − 1)

J∑
s=1

1

Kis
−
(

I∑
r=1

J∑
s=1

1

Krs
−

J∑
s=1

1

Kis

)]

=
σ2

I2J2

[
I

J∑
s=1

1

Kis
−

I∑
r=1

J∑
s=1

1

Krs

]
.

19. Notice that we cannot reject the second null hypothesis unless we accept the first null hypothesis, since
we don’t even test the second hypothesis if we reject the first one. The probability that the two-stage
procedure rejects at least one of the two hypotheses is then

Pr(reject first null hypothesis)

+Pr(reject second null hypothesis and accept first null hypothesis).
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The first term above is α0, and the second term can be rewritten as

Pr(reject second null hypothesis|accept first null hypothesis)
×Pr(accept first null hypothesis).

This product equals β0(1− α0), hence the overall probability is α0 + β0(1− α0).

20. (a) The three additional cell averages are 822.5, 821.7, and 770. The ANOVA table for the combined
samples is

Source of Degrees of Sum of
variation freedom squares Mean square

Main effects of filter 1 1003 1003
Main effects of size 2 25817 12908
Interactions 2 739 369.4
Residuals 30 1992 66.39
Total 35 29551

(b) The F statistic for the test of no interaction is 369.4/66.39 = 5.56. Comparing this to the F
distribution with 2 and 30 degrees of freedom, we get a p-value of 0.009.

(c) If we use the one-stage test procedure in which both the main effects and interactions are hypoth-
esized to be 0 together, we get an F statistic equal to [(25817 + 739)/4]/66.39 = 100 with 3 and
30 degrees of freedom. The p-value is essentially 0.

(d) If we use the one-stage test procedure in which both the main effects and interactions are hypoth-
esized to be 0 together, we get an F statistic equal to [(1003 + 739)/3]/66.39 = 8.75 with 3 and
30 degrees of freedom. The p-value is 0.0003.

11.9 Supplementary Exercises

Solutions to Exercises

1. The necessary calculations were done in Example 11.3.6. The least-squares coefficients are β̂0 = −0.9709
and β̂1 = 0.0206, with σ′ = 8.730×10−3 , and n = 17. We also can compute s2x = 530.8 and xn = 203.0.

(a) A 90% confidence interval for β1 is β̂1 ± T−1
n−2(0.95)σ

′/sx. This becomes (0.01996, 0.02129).

(b) Since 0 is not in the 90% interval in part (a), we would reject H0 at level α0 = 0.1.

(c) A 90% prediction interval for log-pressure at boiling-point equal to x is

β̂0 + xβ̂1 ± T−1
n−2(0.95)σ

′
(
1 +

1

n
+

(x− xn)
2

s2x

)1/2

.

With the data we have, this gives [3.233, 3, 264]. Converting this to pressure gives (25.35, 26.16).

2. This result follows directly from the expressions for ρ̂, σ̂1, and σ̂2 given in Exercise 24 of Sec. 7.6 and
the expression for β̂1 given in Exercise 2a of Sec. 11.1.

3. The conditional distribution of Yi given Xi = xi has mean β0 + β1xi, where

β0 = μ2 − ρσ2
σ1

μ1 and β1 =
ρσ2
σ1

,
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and variance (1−ρ2)σ2
2 . Since T = β̂1, as given in Exercise 2b of Sec. 11.1, it follows that E(T ) = β1 =

ρσ2/σ1 and

Var(T ) =
(1− ρ2)σ2

2
n∑

i=1

(xi − x̄n)
2

.

4. The least squares estimates will be the values of θ1, θ2, and θ3 that minimize Q =
3∑

i=1

(yi − θi)
2, where

θ3 = 180− θ1 − θ2. If we solve the equations ∂Q/∂θ1 = 0 and ∂Q/∂θ2 = 0, we obtain the relations

y1 − θ1 = y2 − θ2 = y3 − θ3.

Since
3∑

i=1

yi = 186 and
3∑

i=1

θi = 180, it follows that θ̂i = yi − 2 for i = 1, 2, 3. Hence θ̂1 = 81, θ̂2 = 45,

and θ̂3 = 54.

5. This result can be established from the formulas for the least squares line given in Sec. 11.1 or directly
from the following reasoning: Let x1 = a and x2 = b. The data contain one observation (a, y1) at
x = a and n − 1 observations (b, y2), . . . , (b, yn) at x = b. Let u denote the average of the n− 1 values
y2, . . . , yn, and let ha and hb denote the height of the least square line at x = a and x = b, respectively.
Then the value of Q, as given by Eq. (11.1.2), is

Q = (y1 − ha)
2 +

n∑
j=2

(yi − hb)
2.

The first term is minimized by taking ha = y1 and the summation is minimized by taking hb = u.
Hence, Q is minimized by passing the straight line through the two points (a, y1) and (b, u). But (a, y1)
is the point (x1, y1).

6. The first line is the usual least squares line y = β̂0 + β̂1x, where β̂1 is given in Exercise 2a of Sec. 11.1.
In the second line, the roles of x and y are interchanged, so it is x = α̂1 + α̂2y, where

α̂2 =

n∑
i=1

(xi − x̄n)(yi − ȳn)

n∑
i=1

(yi − ȳn)
2

.

Both lines pass through the point (x̄n, ȳn), so they will coincide if and only if they have the same slope;
i.e., if and only if β̂1 = 1/α̂2. This condition reduces to the condition that ρ̂2 = 1, where ρ̂ is given in
Exercise 24 of Sec. 7.6 and is the sample correlation coefficient. But ρ̂2 = 1 if and only if the n points
lie exactly on a straight line. Hence, the two least squares lines will coincide if and only if all n points
lie exactly on a straight line.

7. It is found from standard calculus texts that the sum of the squared distances from the points to the
line is

Q =

n∑
i=1

(yi − β1 − β2xi)
2

1 + β2
2

.
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The equation ∂Q/∂β1 = 0 reduces to the relation β1 = ȳn − β2x̄n. If we replace β1 in the equation
∂Q/∂β2 = 0 by this quantity, we obtain the relation:

(1 + β2
2) =

n∑
i=1

[(yi − ȳn)− β2(xi − x̄n)]xi + β2

n∑
i=1

[(yi − ȳn)− β2(xi − x̄n)]
2 = 0.

Note that we can replace the factor xi in the first summation by xi − x̄n without changing the value
of the summation. If we then let x′i = xi − x̄n and y′i = yi − ȳn, and expand the final squared term, we
obtain the following relation after some algebra:

(β2
2 − 1)

n∑
i=1

x′iy
′
i + β2

n∑
i=1

(x′2i − y′2i ) = 0.

Hence

β2 =

n∑
i=1

(
y′2i − x′2i

)
±
⎡⎣( n∑

i=1

(
y′2i − x′2i

))2

+ 4

(
n∑

i=1

x′iy
′
i

)2
⎤⎦1/2

2
n∑

i=1

x′iy
′
i

.

Either the plus sign or the minus sign should be used, depending on whether the optimal line has
positive or negative slope.

8. This phenomenon was discussed in Exercise 19 of Sec. 11.2. The conditional expectation E(X2|X1) of
the sister’s score X2 given the first twin’s score X1 can be derived from Eq. (5.10.6) with μ1 = μ2 = μ
and σ1 = σ2 = σ. Hence,

E(X2|X1) = μ+ ρ(X1 − μ) = (1− ρ)μ+ ρX1,

which is between μ and X1. The same holds with subscripts 1 and 2 switched.

9.

v2 =
1

n

k∑
i=1

ni∑
j=1

(xij − x̄i+ + x̄i+ − x̄++)
2

=
1

n

k∑
i=1

ni∑
j=1

(xij − x̄i+)
2 +

1

n

k∑
i=1

ni(x̄i+ − x̄++)
2

=
1

n

k∑
i=1

ni[v
2
i + (x̄i+ − x̄++)

2].

10. In the notation of Sec. 11.5, the design matrix is

Z =

⎡⎢⎣ w1 x1
...

...
wn xn

⎤⎥⎦ .
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For t = w, x, Y and u = w, x, Y , let Stu =
∑n

i=1 tiui. Then

Z ′Z =

[
Sww Swx

Swx Sxx

]
,

(Z ′Z )−1 =
1

SwwSxx − S2
wx

[
Sxx −Swx

−Swx Sww

]
,

Z ′Y =

[
SwY

SxY

]
.

Hence,

(Z ′Z)−1Z ′Y =
1

SwwSxx − S2
wx

[
SxxSwY − SwxSxY

SwwSxY − SwxSwY

]
.

The first component on the right side of this equation is β̂0 and the second is β̂1.

11. It was shown in Sec. 11.8 that the quantity S2
Resid/σ

2 given in Eq. (11.8.10) has a χ2 distribution with
IJ(K − 1) degrees of freedom. Hence, the random variable S2

Resid/[IJ(K − 1)] is an unbiased estimator
of σ2.

12. It follows from Table 11.23 that if αi = βj = 0 for i = 1, . . . , I and j = 1, . . . , J , and Q = S2
A+S2

B then
Q/σ2 will have a χ2 distribution with (I − 1) + (J − 1) = I + J − 2 degrees of freedom. Furthermore,
regardless of the values of αi and βj , R = S2

Resid/σ
2 will have a χ2 distribution with (I − 1)(J − 1)

degrees of freedom, and Q and R will be independent. Hence, under H0, the statistic

U =
(I − 1)(J − 1)Q

(I + J − 2)R

will have the F distribution with I + J − 2 and (I − 1)(J − 1) degrees of freedom. The null hypothesis
H0 should be rejected if U ≥ c.

13. Suppose that αi = βj = γij = 0 for all values of i and j. Then it follows from Table 11.28 that
(S2

A+S2
B +S2

Int)/σ
2 will have a χ2 distribution with (I − 1)+ (J − 1)+ (I − 1)(J − 1) = IJ − 1 degrees

of freedom. Furthermore, regardless of the values of αi, βj and γij , S
2
Resid/σ

2 will have a χ2 distribution
with IJ(K − 1) degrees of freedom, and S2

A + S2
B + S2

Int and S2
Resid will be independent. Hence, under

H0, the statistic

U =
IJ(K − 1)(S2

A + S2
B + S2

Int)

(IJ − 1)S2
Resid

will have the F distribution with IJ − 1 and IJ(K − 1) degrees of freedom. The null hypothesis H0

should be rejected if U ≥ c.

14. The design in this exercise is a two-way layout with two levels of each factor and K observations in
each cell. The hypothesis H0 is precisely the hypothesis H0 given in (11.8.11) that the effects of the
two factors are additive and all interactions are 0. Hence, H0 should be rejected if U2

AB > c, where
U2
AB is given by (11.8.12) with I = J = 2, and U2

AB has an F distribution with 1 and 4(K − 1) degrees
of freedom when H0 is true.
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15. Let Y1 = W1, Y2 = W2 − 5, and Y3 =
1
2W3. Then the random vector

Y =

⎡⎣Y1

Y2

Y3

⎤⎦
satisfies the conditions of the general linear model as described in Sec. 11.5 with

Z =

⎡⎣ 1 1
1 1
1 −1

⎤⎦ , β =

[
θ1
θ2

]
.

Thus,

Z ′Z =

[
3 1
1 3

]
, (Z ′Z )−1 =

[
3/8 −1/8
−1/8 3/8

]
,

and

β̂ =

[
θ̂1
θ̂2

]
= (Z ′Z )−1Z ′Y =

⎡⎢⎣
1

4
Y1 +

1

4
Y2 +

1

2
Y3

1

4
Y1 +

1

4
Y2 − 1

2
Y3

⎤⎥⎦ .
Also,

σ̂2 =
1

3
(Y −Z β̂ )′(Y −Z β̂ )

=
1

3

[
(Y1 − θ̂1 − θ̂2)

2 + (Y2 − θ̂1 − θ̂2)
2 + (Y3 − θ̂1 + θ̂2)

2
]
.

The following distributional properties of these M.L.E.’s are known from Sec. 11.5: (θ̂1, θ̂2) and σ̂2

are independent; (θ̂1, θ̂2) has a bivariate normal distribution with mean vector (θ1, θ2) and covariance
matrix

σ2(Z ′Z )−1 =

[
3/8 −1/8
−1/8 3/8

]
σ2;

3σ̂2/σ2 has a χ2 distribution with one degree of freedom.

16. Direct application of the theory of least squares would require choosing α and β to minimize

Q1 =
n∑

i=1

(yi − αxβi )
2.

This minimization must be carried out numerically since the solution cannot be found in closed form.
However, if we express the required curve in the form log y = log α+β log x, and then apply the method
of least squares, we must choose β0 and β1 to minimize

Q2 =
n∑

i=1

(log yi − β0 − β1 log xi)
2,
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where β0 = logα and β1 = β. The least squares estimates β̂0 and β̂1 can now be found as in Sec. 11.1,
based on the values of log yi and log xi. Estimates of α and β can then be obtained from the relations
log α̂ = β̂0 and β̂ = β̂1. It should be emphasized that these values will not be the same as the least
squares estimates found by minimizing Q1 directly.

The appropriateness of each of these methods depends on the appropriateness of minimizing Q1 and Q2.
The first method is appropriate if Yi = αxβi + εi, where εi has a normal distribution with mean 0 and

variance σ2. The second method is appropriate if Yi = αxβi εi, where log εi has the normal distribution
just described.

17. It follows from the expressions for β̂0 and β̂1 given by Eqs. (11.1.1) and (11.2.7) that

ei = Yi − (Ȳn − x̄nβ̂1)− β̂1xi

= Yi − Ȳn +

(x̄n − xi)
n∑

j=1

(xj − x̄n)Yj

s2x

= Yi

[
1− 1

n
− (xi − x̄n)

2

s2x

]

−
∑
j 	=i

Yj

[
1

n
+

(xi − x̄n)(xj − x̄n)

s2x

]

where s2x =
∑n

j=1(xj − x̄n)
2. Since Y1, . . . , Yn are independent and each has variance σ2, it follows that

Var(ei) = σ2

[
1− 1

n
− (xi − x̄n)

2

s2x

]2
+ σ2

∑
j 	=i

[
1

n
+

(xi − x̄n)(xj − x̄n)

s2x

]2
.

Let Qi =
1
n + (xi−x̄n)2

s2x
. Then

Var(ei) = σ2(1−Qi)
2 + σ2

n∑
j=1

[
1

n
+

(xi − x̄n)(xj − x̄n)

s2x

]2
− σ2Q2

i

= σ2[(1−Qi)
2 +Qi −Q2

i ]

= σ2(1−Qi).

(This result could also have been obtained from the more general result to be obtained next in Exer-
cise 18.) Since Qi is an increasing function of (xi− x̄n)

2, it follows that Var(ei) is a decreasing function
of (xi − x̄n)

2 and, hence, of the distance between xi and x̄n.

18. (a) Since β̂ has the form given in Eq. (11.5.10), it follows directly that Y − Z β̂ has the specified
form.

(b) Let A = Z (Z ′Z )−1Z ′. It can be verified directly that A is idempotent, i.e., AA = A. Since
D = I −A, it now follows that

DD = (I −A)(I −A) = II −AI − IA+AA = I −A−A+A = I −A = D.

(c) As stated in Eq. (11.5.15), Cov(Y ) = σ2 I. Hence, by Theorem 11.5.2, Cov(W ) = Cov(DY ) =
D Cov(Y )D ′ = D (σ2I)D = σ2(DD ) = σ2D.
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19. Let θ̄ =
∑I

i=1 viθi/v+ and ψ̄ =
∑J

j=1wjψj/w+, and define μ = θ̄ + ψ̄, αi = θi − θ̄, and βj = ψj − ψ̄.

Then E(Yij) = θi+ψj = μ+αi+βj and
∑I

i=1 viαi =
∑J

j=1wjβj = 0. To establish uniqueness, suppose
that μ′, α′

i, and β′
j are another set of values satisfying the required conditions. Then

μ+ αi + βj = μ′ + α′
i + β′

j for all i and j.

If we multiply both sides by viwj and sum over i and j, we find that μ = μ′. Hence, αi + βj = α′
i + β′

j .
If we now multiply both sides by vi and sum over i, we find that βj = β′

j . Similarly, if we multiply both
sides by wj and sum over j, we find that αi = α′

i.

20. The value of μ, αi, and βj must be chosen to minimize

Q =
I∑

i=1

J∑
j=1

Kij∑
k=1

(Yijk − μ− αi − βj)
2.

The equation ∂Q/∂μ = 0 reduces to

Y+++ − nμ−
I∑

i=1

Ki+αi −
J∑

j=1

K+jβj = 0,

where n = K++ is the total number of observations in the two-way layout. Next we shall calculate ∂Q
∂αi

for i = 1, . . . , I − 1, keeping in mind that
∑I

i=1 Ki+αi = 0. Hence, ∂αI/∂αi = −Ki+/KI+. It can be
found that the equation ∂Q/∂αi = 0 reduces to the following equation for i = 1, . . . , I − 1:

Yi++ −Ki+μ−Ki+αi −
∑
j

Kijβj =
Ki+

KI+
(YI++ −KI+μ−KI+αI −

∑
j

KIJβj).

In other words, the following quantity must have the same value for i = 1, . . . , I:

1

Ki+

⎛⎝Yi++ −Ki+μ−Ki+αi −
∑
j

Kijβj

⎞⎠ .

Similarly, the set of equations ∂Q/∂βj = 0 for j = 1, . . . , J − 1 reduces to the requirement that the
following quantity have the same value for j = 1, . . . , J :

1

K+j

(
Y+j+ −K+jμ−

∑
i

Kijαi −K+jβj

)
.

It can be verified by direct substitution that the values of μ̂, α̂i, and β̂j given in the exercise satisfy all
these requirements and, hence, are the least squares estimators.

21. As in the solution of Exercise 18 of Sec. 11.8, let

μ̂ =
∑
r,s,t

mrstYrst,

α̂i =
∑
r,s,t

arstYrst,

β̂j =
∑
r,s,t

brstYrst.
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To show that Cov(μ̂, α̂i) = 0, we must show that
∑

r,s,tmrstarst = 0. But mrst =
1
n for all r, s, t, and

arst =

⎧⎪⎪⎨⎪⎪⎩
1

Ki+
− 1

n
for r = i,

− 1

n
for r �= i.

Hence, it is found that
∑

mrstarst = 0. Similarly,

brst =

⎧⎪⎪⎨⎪⎪⎩
1

K+j
− 1

n
for s = j,

− 1

n
for s �= j.

and
∑

mrstbrst = 0, so Cov(μ̂, β̂j) = 0.

22. We must show that
∑

arstbrst = 0, where arst and brst are given in the solution of Exercise 21:

∑
r,s,t

arstbrst =

Kij∑
k=1

(
1

Ki+
− 1

n

)(
1

K+j
− 1

n

)
− 1

n

∑
s 	=j

Kis∑
k=1

(
1

Ki+
− 1

n

)
− 1

n

∑
r 	=i

Krj∑
k=1

(
1

K+j
− 1

n

)

+
1

n2

∑
r 	=i

∑
s 	=j

Krs.

Since nKij = Ki+K+j , it can be verified that this sum is 0.

23. Consider the expression for θijk given in this exercise. If we sum both sides of this expression over i,
j, and k, then it follows from the constraints on the α′s, β′s, and γ′s, that μ = θ̄+++. If we substitute
this value for μ and sum both sides of the expression over j and k, we can solve the result for αA

i .
Similarly, αB

j can be found by summing over i and k, and αC
k by summing over i and j. After these

values have been found, we can determine βAB
ij by summing both sides over k, and determine βAC

ik and

βBC
jk similarly. Finally, γijk is determined by taking its value to be whatever is necessary to satisfy the

required expression for θijk. In this way, we obtain the following values:

μ = θ̄+++,

αA
i = θ̄i++ − θ̄+++,

αB
j = θ̄+j+ − θ̄+++,

αC
k = θ̄++k − θ̄+++,

βAB
ij = θ̄ij+ − θ̄i++ − θ̄+j+ + θ̄+++,

βAC
ik = θ̄i+k − θ̄i++ − θ̄++k + θ̄+++,

βBC
jk = θ̄+jk − θ̄+j+ − θ̄++k + θ̄+++,

γijk = θijk − θ̄ij+ − θ̄i+k − θ̄+jk + θ̄i++ + θ̄+j+ + θ̄++k − θ̄+++.

It can be verified that these quantities satisfy all the specified constraints. They are unique by the
method of their construction, since they were derived as the only values that could possibly satisfy the
constraints.

24. (a) The plot of Buchanan vote against total county vote is in Fig. S.11.3. Palm Beach county is
plotted with the symbol P.
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Figure S.11.3: Figure for Exercise 24a in Sec. 11.9.

(b) The summary of the fitted regression is β̂0 = 83.69, β̂1 = 0.00153, xn = 8.254 × 104, s2x =
1.035 × 1012, n = 67, and σ′ = 120.1.

(c) The plot of residuals is in Fig. S.11.4. Notice that the residuals are much more spread out at the
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Figure S.11.4: Figure for Exercise 24c in Sec. 11.9.

right side of the plot than at the left. There also appears to be a bit of a curve to the plot.

(d) The summary of the fitted regression is β̂0 = −2.746, β̂1 = 0.7263, xn = 10.32, s2x = 151.5, n = 67,
and σ′ = 0.4647.

(e) The new residual plot is in Fig. S.11.5. The spread is much more uniform from right to left and
the curve is no longer evident.

(f) The quantile we need is T−1
65 (0.995) = 2.654. The logarithm of total vote for Palm Beach county

is 12.98. prediction interval for logarithm of Buchanan vote when X = 12.98 is

−2.746 + 12.98 × 0.7263 ± 2.654 × 0.4647

(
1 +

1

67
+

(12.98 − 10.32)2

151.5

)1/2

= [5.419, 7.942].
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Figure S.11.5: Figure for Exercise 24e in Sec. 11.9.

Converting to Buchanan vote, we take e to the power of each endpoint and get the interval
[225.6, 2812].

(g) The official Gore total was 2912253, while the official Bush total was 2912790. Suppose that 2812
people in Palm Beach county had actually voted for Buchanan and the other 3411 − 2812 = 599
had voted for Gore. Then the Gore total would have been 2912852, enough to make him the
winner.
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Chapter 12

Simulation

All exercises that involve simulation will produce different answers when run with repeatedly. Hence, one
cannot expect numerical results to match perfectly with any answers given here.

For all exercises that require simulation, students will need access to software that will do some of the
work for them. At a minimum they will need software to simulate uniform pseudo-random numbers on the
interval [0, 1]. Some of the exercises require software to simulate all of the famous distributions and compute
the c.d.f.’s and quantile functions of the famous distributions.

Some of the simulations require a nonnegligible programming effort. In particular, Markov chain Monte
Carlo (MCMC) requires looping through all of the coordinates inside of the iteration loop. Assessing conver-
gence and simulation standard error for a MCMC result requires running several chains in parallel. Students
who do not have a lot of programming experience might need some help with these exercises.

If one is using the software R, the function runif will return uniform pseudo-random numbers, the
argument is how many you want. For other named distributions, as mentioned earlier in this manual, one
can use the functions rbinom, rhyper, rpois, rnbinom, rgeom, rnorm, rlnorm, rgamma, rexp, rbeta, and
rmultinom.

Most simulations require calculation of averages and sample variances. The functions mean, median, and
var compute the average, sample median, and sample variance respectively of their first argument. Each of
these has an optional argument na.rm, which can be set either to TRUE or to FALSE (the default). If true,
na.rm causes missing values to be ignored in the calculation. Missing values in simulations should be rare if
calculations are being done correctly. Other useful functions for simulations are sort and sort.list. They
both take a vector argument. The first returns its argument sorted algebraically from smallest to largest (or
largest to smallest with optional argument decreasing=TRUE.) The second returns a list of integers giving the
locations (in the vector) of the ordered values of its argument. The functions min and max give the smallest
and largest values of their argument.

For looping, one can use
for(i in 1:n){ ... }

to perform all of the functions between { and } once for each value of i from 1 to n. For an indeterminate
number of iterations, one can use
while(expression){ ... }

where expression stands for a logical expression that changes value from TRUE to FALSE at some point during
the iterations.

A long series of examples appears at the end.
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12.1 What is Simulation?

Solutions to Exercises

1. Simulate a large number of exponential random variables with paremeter 1, and take their average.

2. We would expect that every so often one of the simulated random variables would be much larger than
the others and the sample average would go up significantly when that random variable got included
in the average. The more simulations we do, the more such large observations we would expect, and
the average should keep getting larger.

3. We would expect to get a lot of very large positive observations and a lot of very large negative
observations. Each time we got one, the average would either jump up (when we get a positive one)
or jump down (when we get a negative one). As we sampled more and more observations, the average
should bounce up and down quite a bit and never settle anywhere.

4. We could count how many Bernoulli’s we had to sample to get a success (1) and call that the first
observation of a geometric random variable. Starting with the next Bernoulli, start counting again
until the next 1, and call that the second geometric, etc. Average all the observed geometrics to
approximate the mean.

5. (a) Simulate three exponentials at a time. Call the sum of the first two X and call the third one Y .
For each triple, record whether X < Y or not. The proportion of times that X < Y in a large
sample of triples approximates Pr(X < Y ).

(b) Let Z1, Z2, Z3 be i.i.d. having the exponential distribution with parameter β, and let W1,W2,W3

be i.i.d. having the exponential distribution with parameter 1. Then Z1 + Z2 < Z3 if and only if
βZ1 +βZ2 < βZ3. But (βZ1, βZ2, βZ3) has precisely the same joint distribution as (W1,W2,W3).
So, the probability that Z1 + Z2 < Z3 is the same as the probability that W1 + W2 < W3, and
it doesn’t matter which parameter we use for the exponential distribution. All simulations will
approximate the same quantity as we would approximate using parameter 1.

(c) We know that X and Y are independent and that X has the gamma distribution with parameters
2 and 0.4. The joint p.d.f. is

f(x, y) = 0.42x exp(−0.4x)0.4 exp(−0.4y), for x, y > 0.

The integral to compute the probability is

Pr(X < Y ) =

∫ ∞

0

∫ ∞

x
0.43x exp(−0.4[x + y])dydx.

There is also a version with the x integral on the inside.

Pr(X < Y ) =

∫ ∞

0

∫ y

0
0.43x exp(−0.4[x+ y])dxdy.

12.2 Why Is Simulation Useful?

Commentary

This section introduces the fundamental concepts of simulation and illustrates the basic calculations that
underlie almost all simulations. Instructors should stress the need for assessing the variability in a simulation
result. For complicated simulations, it can be difficult to assess variability, but students need to be aware
that a highly variable simulation may be no better than an educated guess.
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The lengthy examples (12.2.13 and 12.2.14) at the end of the section and the exercises (15 and 16) that
go with them are mainly illustrative of the power of simulation. These would only be covered in course that
devoted a lot of time to simulation.

Solutions to Exercises

1. Since E(Z) = μ, the Cheybshev inequality says that Pr(|Z − μ| ≤ ε) ≥ ε2/Var(Z). Since Z is the
average of v independent random variables with variance σ2, Var(Z) = σ2/v. It follows that

Pr(|Z − μ| ≤ ε) ≥ ε2v

σ2
.

Now, suppose that v ≥ σ2/[ε2(1− γ), then

ε2v

σ2
≥ 1− γ.

2. In Example 12.2.11, we are approximating σ by 0.3892. According to Eq. (12.2.6), we need

v ≥ 0.38922

0.012 × .01
= 151476.64

So, v must be at least 151477.

3. We could simulate a lot (say v0) standard normal random variables W1, . . . ,Wv0 and let Xi = 7Wi +2.
Then each Xi has the distribution of X. Let Wi = log(|Xi| + 1). We could then compute Z equal to
the average of the Wi’s as an estimate of E(log(|X| + 1)). If we needed our estimate to be close to
E(log(|X|+1)) with high probability, we could estimate the variance of Wi by the sample variance and
then use (12.2.5) to choose a possibly larger simulation size.

4. Simulate 15 random variables U1, . . . , U15 with uniform distribution on the interval [0, 1]. For i =
1, . . . , 13, let Xi = 2(Ui − 0.5) and for i = 14, 15, let Xi = 20(Ui − 0.5). Then X1, . . . ,X15 have the
desired distribution. In most of my simulations, the median or the sample average was the closest to
0. The first simulation led to the following six values:

Trimmed mean
Estimator Average k = 1 k = 2 k = 3 k = 4 Median

Estimate 0.5634 0.3641 0.2205 0.2235 0.2359 0.1836

5. (a) In my ten samples, the sample median was closest to 0 nine times, and the k = 3 trimmed mean
was closet to 0 one time.

(b) Although the k = 2 trimmed mean was never closest to 0, it was also never very far from 0, and it
had the smallest average squared distance from 0. The k = 3 trimmed mean was a close second.
Here are the six values for my first 10 simulations:

Trimmed mean
Estimator Average k = 1 k = 2 k = 3 k = 4 Median

M.S.E. 0.4425 0.1354 0.0425 0.0450 0.0509 0.0508

These rankings were also reflected in a much larger simulation.
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6. (a) Simulate lots (say v0) of random variables X1, . . . ,Xv0 and Y1, . . . , Yv0 with Xi have the beta
distribution with parameters 3.5 and 2.7 while Yi have the beta distribution with parameters 1.8
and 4.2. Let Zi = Xi/(Xi + Yi). The sample average of Z1, . . . , Zv0 should be close to the mean
of X/(X + Y ) if v0 is large enough.

(b) We could calculate the sample variance of Z1, . . . , Zv0 and use this as an estimate of σ2 in
Eq. (12.2.5) with γ = 0.98 and ε = 0.01 to obtain a new simulation size.

7. (a) The distribution of X is the contaminated normal distribution with p.d.f. given in Eq. (10.7.2)
with σ = 1, μ = 0.

(b) To calculate a number in Table 10.40, we should simulate lots of samples of size 20 from the
distribution in part (a) with the desired ε (0.05 in this case). For each sample, compute the
desired estimator (the sample median in this case). Then compute the average of the squares
of the estimators (since μ = 0 in our samples) and multiply by 20. As an example, we did two
simulations of size 10000 each and got 1.617 and 1.621.

8. (a) The description is the same as in Exercise 7(b) with “sample median” replaced by “trimmed mean
for k = 2” and 0.05 replaced by 0.1.

(b) We did two simulations of size 10000 each and got 2.041 and 2.088. It would appear that this
simulation is slightly more variable than the one in Exercise 7.

9. The marginal p.d.f. of X is

∫ ∞

0

μ3

2
exp(−μ(x+ 1))dμ =

3

(x+ 1)4
,

for x > 0. The c.d.f. of X is then

F (x) =

∫ x

0

3

(t+ 1)4
dx = 1−

(
1

x+ 1

)3

,

for x > 0, and F (x) = 0 for x ≤ 0. The median is that x such that F (x) = 1/2, which is easily seen to
be 21/3 − 1 = 0.2599.

10. (a) The c.d.f. of each Xi is F (x) = 1− exp(−λx), for x > 0. The median is log(2)/λ.

(b) Let Yi = Xiλ, and let M ′ be the sample median of Y1, . . . , Y21. Then the Yi’s have the exponential
distribution with parameter 1, the median of Yi is log(2), and M ′ = Mλ. The M.S.E. of M is then

E

[(
M − log(2)

λ

)2
]

=
1

λ2
E[(Mλ − log(2))2]

=
1

λ2
E[(M ′ − log(2))2]

=
θ

λ2
.

(c) Simulate a lot (say 21v0) of random variables X1, . . . ,X21v0 having the exponential distribution
with parameter 1. For i = 1, . . . , v0, let Mi be the sample median of X21(i−1)+1, . . . ,X21i. Let

Yi = (Mi − log(2))2, and compute the sample average Z =
1

v0

v0∑
i=1

Yi as an estimate of θ. If you

want to see how good an estimate it is, compute the simulation standard error.
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11. In Example 12.2.4, μx and μy are independent with (μx−μx1)/(βx1/[αx1λx1])
1/2 having the t distribution

with 2αx1 degrees of freedom and (μy − μy1)/(βy1/[αy1λy1])
1/2 having the t distribution with 2αy1

degrees of freedom. We should simulate lots (say v) of t random variables T
(1)
x , . . . , T

(v)
x with 2αx1

degrees of freedom and just as many t random variables T
(1)
y , . . . , T

(v)
y with 2αy1 degrees of freedom.

Then let

μ(i)
x = μx1 + T (i)

x

(
βx1

αx1λx1

)1/2

,

μ(i)
y = μy1 + T (i)

y

(
βy1

αy1λy1

)1/2

,

for i = 1, . . . , v. Then the values μ
(i)
x − μ

(i)
y form a sample from the posterior distribution of μx − μy.

12. To the level of approximation in Eq. (12.2.7), we have

Z = g(E(Y ), E(W )) + g1(E(Y ), E(W ))[Y − E(Y )] + g2(E(Y ), E(W ))[W − E(W )].

The variance of Z would then be

g1(E(Y ), E(W ))2 Var(Y ) + g2(E(Y ), E(W ))2 Var(W ) (S.12.1)

+2g1(E(Y ), E(W ))g2(E(Y ), E(W ))Cov(Y,W ).

Now substitute the entries of Σ for the variances and covariance.

13. The function g in this exercise is g(y,w) = w − y2 with partial derivatives

g1(y,w) = 2y,

g2(y,w) = 1.

In the formula for Var(Z) given in Exercise 12, make the following substitutions:

Exercise 12 This exercise

E(Y ) Ȳ
E(W ) W̄
σyy Z/v
σww V/v
σyw C/v,

where Z, V , and C are defined in Example 12.2.10. The result is [(2Ȳ )2Z+V +4Ȳ C]/v, which simplifies
to (12.2.3).

14. Let Y1, . . . , Yv be a large sample from the distribution of Y . Let Ȳ be the sample average, and let V
be the sample variance. For each i, define Wi = (Yi − Y )3/V . Estimate the skewness by the sample
average of the Wi’s. Use the sample variance to compute a simulation standard error to see if the
simulation size is large enough.

15. (a) Since Su = S0 exp(αu+Wu), we have that

E(Su) = S0 exp(αu)E (exp(Wu)) = S0 exp(αu)ψ(1).

In order for this mean to be S0 exp(ru), it is necessary and sufficient that ψ(1) = exp(u[r − α]),
or equivalently, α = r − log(ψ(1))/u.
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(b) First, simulate lots (say v) of random variables W (1), . . . ,W (v) with the distribution of Wu. Define
the function h(s) as in Example 12.2.13. Define Y (i) = exp(−ru)h(S0 exp[αu+W (i)]), where r is
the risk free interest rate and α is the number found in part (a). The sample average of the Y (i)’s
would estimate the appropriate price for the option. One should compute a simulation standard
error to see if the simulation size is large enough.

16. We can model our solution on Example 12.2.14. We should simulate a large number of operations of
the queue up to time t. For each simulated operation of the queue, count how many customers are
in the queue (including any being served). In order to simulation one instance of the queue operation
up to time t, we can proceed as follows. Simulate interarrival times X1,X2, . . . as exponential random

variables with parameter λ. Define Tj =
j∑

i=1

Ti for j = 1, 2, . . .. Stop simulating at the first k such that

Tk > t. Start the queue with W0 = 0, where Wj stands for the time that customer j leaves the queue.
In what follows, Sj ∈ {1, 2} will stand for which server serves customer j, and Zj will stand for the
time at which customer j begins being served.

For j = 1, . . . , k − 1 and each i < j, define

Ui,j =

{
1 if Wi ≥ Tj ,
0 otherwise.

The number of customers in the queue when customer j arrives is r =
j−1∑
i=0

Ui,j.

• If r = 0, simulate U with a uniform distribution on the interval [0, 1]. Set Sj = 1 if U < 1/2 and
Sj = 2 if U ≥ 1/2. Set Zj = Tj .

• If r = 1, find the value i such that Wi ≥ Tj and set Sj = 2 − Si so that customer j goes to the
other server. Set Zj = Tj .

• If r ≥ 2, simulate U with a uniform distribution on the interval [0, 1], and let customer j leave if
U < pr. If customer j leaves, set Wj = Tj. If customer j does not leave, find the second highest
value Wi′ out of W1, . . . ,Wj−1 and set Sj = Si′ and Zj = Wi′ .

For each customer that does not leave, simulate a service time Yj having an exponential distribution
with parameter μSj , and set Wj = Zj + Yj. The number of customers in the queue at time t is the
number of j ∈ {1, . . . , k − 1} such that Wj ≥ t.

12.3 Simulating Specific Distributions

Commentary

This section is primarily of mathematical interest. Most distributions with which students are familiar can be
simulated directly with existing statistical software. Instructors who wish to steer away from the theoretical
side of simulation should look over the examples before skipping this section in case they contain some points
that they would like to make. For example, a method is given for computing simulation standard error when
the simulation result is an entire sample c.d.f. (see page 811). This relies on results from Sec. 10.6.

Solutions to Exercises

1. (a) Here we are being asked to perform the simulation outlined in the solution to Exercise 10 in
Sec. 12.2 with v0 = 2000 simulations. Each Yi (in the notation of that solution) can be simulated
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by taking a random variable Ui having uniform distribution on the interval [0, 1] and setting
Yi = − log(1 − Ui). In addition to the run whose answers are in the back of the text, here are
the results of two additional simulations: Approximation = 0.0536, sim. std. err. = 0.0023 and
Approximation = 0.0492, sim. std. err. = 0.0019.

(b) For the two additional simulations in part (a), the value of v to achieve the desired goal are 706
and 459.

2. Let Vi = a+ (b− a)Ui. Then the p.d.f. of Vi is easily seen to be 1/(b − a) for a ≤ v ≤ b, so Vi has the
desired uniform distribution.

3. The c.d.f. corresponding to g1 is

G1(x) =

∫ x

0

1

2t1/2
dt = x1/2, for 0 ≤ x ≤ 1.

The quantile function is then G−1
1 (p) = p2 for 0 < p < 1. To simulate a random variable with the

p.d.f. g1, simulate U with a uniform distribution on the interval [0, 1] and let X = U2. The c.d.f.
corresponding to g2 is

G2(x) =

∫ x

0

1

2(1 − t)1/2
dt = 1− (1− x)1/2, for 0 ≤ x ≤ 1.

The quantile function is then G−1
2 (p) = 1− (1− p)2 for 0 < p < 1. To simulate a random variable with

the p.d.f. g2, simulate U with a uniform distribution on the interval [0, 1] and let X = 1− (1− U)2.

4. The c.d.f. of a Cauchy random variable is

F (x) =

∫ x

−∞
dt

π(1 + t2)
=

1

π

[
arctan(x) +

π

2

]
.

The quantile function is F−1(p) = tan(π[p − 1/2]). So, if U has a uniform distribution on the interval
[0, 1], then tan(π[U − 1/2]) has a Cauchy distribution.

5. The probability of acceptance on each attempt is 1/k. Since the attempts (trials) are independent, the
number of failures X until the first acceptance is a geometric random variable with parameter 1/k. The
number of iterations until the first acceptance is X + 1. The mean of X is (1− 1/k)/(1/k) = k − 1, so
the mean of X + 1 is k.

6. (a) The c.d.f. of the Laplace distribution is

F (x) =

∫ x

−∞
1

2
exp(−|t|)dt =

⎧⎪⎪⎨⎪⎪⎩
1

2
exp(x) if x < 0,

1− 1

2
exp(−x) if x ≥ 0.

The quantile function is then

F−1(p) =

{
log(2p) if 0 < p < 1/2,
− log(2[1 − p]) if 1/2 ≤ p < 1.

Simulate a uniform random variable U on the interval [0, 1] and let X = F−1(U).
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(b) Define

f(x) =
1

(2π)1/2
exp(−x2/2),

g(x) =
1

2
exp(−|x|).

We need to find a constant k such that kg(x) ≥ f(x) for all x. Equivalently, we need a constant c
such that

c ≥ exp(−x2/2)

exp(−|x|) , (S.12.2)

for all x. Then we can set k = c(2/π)1/2. The smallest c that satisfies (S.12.2) is the supremum
of exp(|x| − x2/2). This function is symmetric around 0, so we can look for sup

x≥0
exp(x− x2/2). To

maximize this, we can maximize x− x2/2 instead. The maximum of x− x2/2 occurs at x = 1, so
c = exp(1/2). Now, use acceptance/rejection with k = exp(1/2)(2/π)1/2 = 1.315.

7. Simulate a random sample X1, . . . ,X11 from the standard normal distribution. Then
4∑

i=1

X2
i has the

χ2 distribution with 4 degrees of freedom and is independent of
11∑
i=5

X2
i , which has the χ2 distribution

with 7 degrees of freedom. It follows that

7
4∑

i=1

X2
i

4
11∑
i=5

X2
i

the F distribution with 4 and 7 degrees of freedom.

8. (a) I did five simulations of the type requested and got the estimates 1.325, 1.385, 1.369, 1.306, and
1.329. There seems to be quite a bit of variability if we want three significant digits.

(b) The five variance estimates were 1.333, 1.260, 1.217, 1.366, and 1.200.

(c) The required sample sizes varied from 81000 to 91000, suggesting that we do not yet have a very
precise estimate.

9. The simplest acceptance/rejection algorithm would use a uniform distribution on the interval [0, 2].
That is, let g(x) = 0.5 for 0 < x < 2. Then (4/3)g(x) ≥ f(x) for all x, i.e. k = 4/3. We could simulate
U and V both having a uniform distribution on the interval [0, 1]. Then let X = 2V if 2f(2V ) ≥ (4/3)U
and reject otherwise.

10. Using the prior distribution stated in the exercise, the posterior distributions for the probabilities of no
relapse in the four treatment groups are

Beta with parameters
Group α β

Imipramine 23 19
Lithium 26 15
Combination 17 22
Placebo 11 25
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We then simulate 5000 vectors of four beta random variables with the above parameters. Then we
see what proportion of those 5000 vectors have the imipramine parameter the largest. We did five
such simulations and got the proportions 0.1598, 0.1626, 0.1668, 0.1650, and 0.1650. The sample sizes
required to achieve the desired accuracy are all around 5300.

11. The χ2 distribution with m degrees of freedom is the same as the gamma distribution with parameters
m/2 and 1/2. So, we should simulate Y (i) having the χ2 distribution with n − p degrees of freedom
and set τ (i) = Y (i)/S2

Resid.

12. We did a simulation of size v = 2000.

(a) The plot of the sample c.d.f. of the |μ(i)
x − μ

(i)
y | values is in Fig. S.12.1.
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Figure S.12.1: Sample c.d.f. of |μ(i)
x − μ

(i)
y | values for Exercise 12a in Sec. 12.3.

(b) The histogram of the ratios of calcium supplement precision to placebo precision is given in

Fig. S.12.2. Only 12% of the simulated log(τ
(i)
x /τ

(i)
y ) were positive and 37% were less than −1.
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Figure S.12.2: Histogram of log(τ
(i)
x /τ

(i)
y ) values for Exercise 12b in Sec. 12.3.

There seems to be a sizeable probability that the two precisions (hence the variances) are unequal.
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13. Let X = F−1(U), where F−1 is defined in Eq. (12.3.7) and U has a uniform distribution on the interval
[0, 1]. Let G be the c.d.f. of X. We need to show that G = F , where F is defined in Eq. (12.3.6). Since
F−1 only takes the values t1, . . . , tn, it follows that G has jumps at those values and if flat everywhere
else. Since F also has jumps at t1, . . . , tn and is flat everywhere else, we only need to show that
F (x) = G(x) for x ∈ {t1, . . . , tn}. Let qn = 1. Then X ≤ ti if and only if U ≤ qi for i = 1, . . . , n. Since
Pr(U ≤ qi) = qi, it follows that G(ti) = qi for i = 1, . . . , n. That is, G(x) = F (x) for x ∈ {t1, . . . , tn}.

14. First, establish the Bonferroni inequality. Let A1, . . . , Ak be events. Then

Pr

(
k⋂

i=1

Ai

)
= 1− Pr

(
k⋃

i=1

Ac
i

)
≥ 1−

k∑
i=1

Pr(Ac
i ) = 1−

k∑
i=1

[1− Pr(Ai)].

Now, let k = 3 and

Ai = {|Gv,i(x)−Gi(x)| ≤ 0.0082, for all x},

for i = 1, 2, 3. The event stated in the exercise is ∩3
i=1Ai. According to the arguments in Sec. 10.6,

Pr
(
600001/2|Gv,i(x)−G(x)| ≤ 2, for all x

)
≈ 0.9993.

Since 2/600001/2 = 0.0082, we have Pr(Ai) ≈ 0.9993 for i = 1, 2, 3. The Bonferroni inequality then
says that Pr(∩3

i=1Ai) ≈ 0.9979 or more.

15. The proof is exactly what the hint says. All joint p.d.f.’s should be considered joint p.f./p.d.f.’s and
the p.d.f.’s of X and Y should be considered p.f.’s instead. The only integral over x in the proof is in
the second displayed equation in the proof. The outer integral in that equation should be replaced by
a sum over all possible x values. The rest of the proof is identical to the proof of Theorem 12.3.1.

16. Let pi = exp(−θ)θi/(i!) for i = 0, 1, . . . and let qk =
k∑

i=1

pi. Let U have a uniform distribution on the

interval [0, 1]. Let Y be the smallest k such that U ≤ qk. Then Y has a Poisson distribution with mean
θ.

17. Let {x1, . . . , xm} be the set of values that have positive probability under at least one of g1, . . . , gn.
That is, for each j = 1, . . . ,m there is at least one i such that gi(xj) > 0 and for each i = 1, . . . , n,
m∑
j=1

gi(xj) = 1. Then, the law of total probability says that

Pr(X = xj) =
n∑

i=1

Pr(X = xj|I = i) Pr(I = i).

Since Pr(I = i) = 1/n for i = 1, . . . , n and Pr(X = xj|I = i) = gi(xj), it follows that

Pr(X = xj) =
n∑

i=1

1

n
gi(xj). (S.12.3)

Since x1, . . . , xm are the only values that X can take, Eq. (S.12.3) specifies the entire p.f. of X and we
see that Eq. (S.12.3) is the same as Eq. (12.3.8).
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18. The Poisson probabilities with mean 5 from the table in the text are

x 0 1 2 3 4 5 6 7 8

Pr(X = x) .0067 .0337 .0842 .1404 .1755 .1755 .1462 .1044 .0653

x 9 10 11 12 13 14 15 16

Pr(X = x) .0363 .0181 .0082 .0034 .0013 .0005 .0002 .0001

where we have put the remainder probability under x = 16. In this case we have n = 17 different possible
values. Since 1/17 = .0588, we can use x1 = 0 and y1 = 2. Then g1(0) = .1139 and g1(2) = .8861.
Then f∗

1 (2) = .8042 − (1 − .1139)/17 = .0321. Next, take x2 = 1 and y2 = 3. Then g2(1) = .5729
and g2(3) = .4271. This makes f∗

2 (3) = .1153. Next, take x3 = 2 and y3 = 3 so that g3(2) = .5453,
g3(3) = .4547, and f∗

3 (3) = .0885. Next, take x4 = 9 and y4 = 3, etc. The result of 16 such iterations
is summarized in Table S.12.1.

Table S.12.1: Result of alias method in Exercise 18 of Sec. 12.3

i xi gi(xi) yi gi(yi) i xi gi(xi) yi gi(yi)

1 0 .1139 2 .8861 10 13 .0221 5 .9779
2 1 .5729 3 .4271 11 14 .0085 5 .9915
3 2 .5453 3 .4547 12 5 .6246 6 .3754
4 9 .6171 3 .3829 13 15 .0034 6 .9966
5 10 .3077 3 .6923 14 16 .0017 6 .9983
6 3 .4298 4 .5702 15 6 .1151 7 .8849
7 11 .1394 4 .8606 16 7 .8899 8 .1101
8 12 .0578 4 .9422 17 8 1
9 4 .6105 5 .3895

The alias method is not unique. For example, we could have started with x1 = 1 and y1 = 3 or many
other possible combinations. Each choice would lead to a different version of Table S.12.1.

19. For k = 1, . . . , n, I = k if and only if k ≤ nY + 1 < k + 1. Hence

Pr(I = k) = Pr

(
k − 1

n
≤ Y ≤ k

n

)
=

1

n
.

The conditional c.d.f. of U given I = k is

Pr(U ≤ t|I = k) = Pr(nY + 1− I ≤ t|I = k)

=
Pr(nY + 1− k ≤ t, I = k)

Pr(I = k)

=
Pr

(
Y ≤ t+ k − 1

n
,
k − 1

n
≤ Y ≤ k

n

)
1/n

= nPr

(
k − 1

n
≤ Y <

t+ k − 1

n

)
= t,

for 0 < t < 1. So, the conditional distribution of U given I = k is uniform on the interval [0, 1] for all
k. Since the conditional distribution is the same for all k, U and I are independent and the marginal
distribution of U is uniform on the interval [0, 1].
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12.4 Importance Sampling

Commentary

Users of importance sampling might forget to check whether the importance function leads to a finite variance
estimator. If the ratio of the function being integrated to the importance function is not bounded, one might
have an infinite variance estimator. This doesn’t happen in the examples in the text, but students should
be made aware of the possibility. This section ends with an introduction to stratified importance sampling.
This is an advanced topic that is quite useful, but might be skipped in a first pass. The last five exercises in
this section introduce two additional variance reduction techniques, control variates and antithetic variates.
These can be useful in many types of simulation problems, but those problems can be difficult to identify.

Solutions to Exercises

1. We want to approximate the integral

∫ b

a
g(x)dx. Suppose that we use importance sampling with f

being the p.d.f. of the uniform distribution on the interval [a, b]. Then g(x)/f(x) = (b − a)g(x) for
a < x < b. Now, (12.4.1) is the same as (12.4.2).

2. First, we shall describe the second method in the exercise. We wish to approximate the integral∫
g(x)f(x)dx using importance sampling with importance function f . We should then simulate values

X(i) with p.d.f. f and compute

Y (i) =
g(X(i))f(X(i))

f(X(i))
= g(X(i)).

The importance sampling estimate is the average of the Y (i) values. Notice that this is precisely the
same as the first method in the exercise.

3. (a) This is a distribution for which the quantile function is easy to compute. The c.d.f. is F (x) =
1− (c/x)n/2 for x > c, so the quantile function is F−1(p) = c/(1− p)2/n. So, simulate U having a
uniform distribution on the interval [0, 1] and let X = c/(1 − U)2/n. Then X has the p.d.f. f .

(b) Let

a =
Γ

[
1

2
(m+ n)

]
mm/2nn/2

Γ

(
1

2
m

)
Γ

(
1

2
n

) .

Then the p.d.f. of Y is g(x) = ax(m/2)−1/(mx+ n)(m+n)/2, for x > 0. Hence,

Pr(Y > c) =

∫ ∞

c
a

x(m/2)−1

(mx+ n)(m+n)/2
dx.

We could approximate this by sampling lots of values X(i) with the p.d.f. f from part (a) and
then averaging the values g(X(i))/f(X(i)).

(c) The ratio g(x)/f(x) is, for x > c,

g(x)

f(x)
=

ax(m+n)/2

cn/2(n/2)(mx + n)(m+n)/2
=

a

cn/2(n/2)(m+ n/x)(m+n)/2
.

This function is fairly flat for large x. Since we are only interested in x > c in this exercise,
importance sampling will have us averaging random variables g(X(i))/f(X(i)) that are nearly
constant, hence the average should have small variance.
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4. (a) If our 10000 exponentials areX(1), . . . ,X(10000), then our approximation is the average of the values
log(1 + X(i)). In two example simulations, I got averages of 0.5960 and 0.5952 with simulation
standard errors of 0.0042 both times.

(b) Using importance sampling with the importance function being the gamma p.d.f. with parameters
1.5 and 1, I got estimates of 0.5965 and 0.5971 with simulation standard errors of 0.0012 both
times.

(c) The reason that the simulations in part (b) have smaller simulation standard error is that gamma
importance function is a constant times x1/2 exp(−x). The ratio of the integrand to the importance
function is a constant times log(1 + x)x−1/2, which is nearly constant itself.

5. Let U have a uniform distribution on the interval [0, 1], and let W be defined by Eq. (12.4.6). The
inverse transformation is

u =
Φ

(
w − μ2

σ2

)
Φ

(
c2 − μ2

σ2

) .
The derivative of the inverse transformation is

1

(2π)1/2σ2Φ

(
c2 − μ2

σ2

) exp

(
− 1

2σ2
2

(w − μ2)
2
)
. (S.12.4)

Since the p.d.f. of U is constant, the p.d.f. of W is (S.12.4), which is the same as (12.4.5).

6. (a) We can simulate truncated normals as follows. If U has a uniform distribution on the interval
[0, 1], then X = Φ−1(Φ(1) +U [1−Φ(1)]) has the truncated normal distribution in the exercise. If
X(1), . . . ,X(1000) are our simulated values, then the estimate is the average of the (1−Φ(1))X(i)2

values. Three simulations of size 1000 each produced the estimates 0.4095, 0.3878, and 0.4060.

(b) If Y has an exponential distribution with parameter 0.5, and X = (1 + Y )1/2, then we can find
the p.d.f. of X. The inverse transformation is y = x2 − 1 with derivative 2x. The p.d.f. of X is
then 2x0.5 exp(−0.5x2 + 0.5). If X(1), . . . ,X(1000) are our simulated values, then the estimate is
the average of the X(i) exp(−0.5)/(2π)1/2 values. Three simulations of size 1000 each produced
the estimates 0.3967, 0.3980, and 0.4016.

(c) The simulation standard errors of the simulations in part (a) were close to 0.008, while those from
part (b) were about 0.004, half as larger. The reason is that the random variables averaged in
part (b) are closer to constant than those in part (a) since x is closer to constant than x2.

7. (a) We can simulate bivariate normals by simulating one of the marginals first and then simulating the

second coordinate conditional on the first one. For example, if we simulateX
(i)
1 U (i) as independent

normal random variables with mean 0 and variance 1, we can simulate X
(i)
2 = 0.5X

(i)
1 +U (i).751/2.

Three simulations of size 10000 each produced estimates of 0.8285, 0.8308, and 0.8316 with simu-
lation standard errors of 0.0037 each time.

(b) Using the method of Example 12.4.3, we did three simulations of size 10000 each and got estimates
of 0.8386, 0.8387, and 0.8386 with simulation standard errors of about 3.4 × 10−5, about 0.01 as
large as those from part (a). Also, notice how much closer the three simulations are in part (b)
compared to the three in part (a).

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



412 Chapter 12. Simulation

8. The random variables that are averaged to compute the importance sampling estimator are Y (i) =
g(X(i))/f(X(i) where the X(i)’s have the p.d.f. f . Since g/f is bounded, Y (i) has finite variance.

9. The inverse transformation is v = F (x) with derivative f(x). So, the p.d.f. of X is f(x)/(b − a) for
those x that can arise as values of F−1(V ), namely F−1(a) < x < F−1(b).

10. For part (a), the stratified importance samples can be found by replacing U in the formula used in
Exercise 6(a) by a + U(b − a) where (a, b) is one of the pairs (0, .2), (.2, .4), (.4, .6), (.6, .8), or (.8, 1).
For part (b), replace Y by − log(1− [a+U(b− a)]) in the formula X = (1 + Y )1/2 using the same five
(a, b) pairs. Three simulations using five intervals with 200 samples each produced estimates of 0.4018,
0.4029, and 0.2963 in part (a) and 0.4022, 0.4016, and 0.4012 in part (b). The simulation standard
errors were about 0.0016 in part (a) and 0.0006 in part (b). Both parts have simulation standard errors
about 1/5 or 1/6 the size of those in Exercise 6.

11. Since the conditional p.d.f. of X∗ given J = j is fj, the marginal p.d.f. of X∗ is

f∗(x) =
k∑

j=1

fj(x) Pr(J = j) =
1

k

k∑
j=1

fj(x).

Since fj(x) = kf(x) for qj−1 ≤ x < qj, for each x there is one and only one fj(x) > 0. Hence,
f∗(x) = f(x) for all x.

12. (a) The m.g.f. of a Laplace distribution with parameters 0 and σ is

ψ(t) =

∫ ∞

−∞
exp(tx)

1

2σ
exp(−|x|/σ)dx.

The integral from −∞ to 0 is finite if and only if t > −1/σ. The integral from 0 to ∞ is finite
if and only if t < 1/σ. So the integral is finite if and only if −1/σ < t < 1/σ. The value of the
integral is

1

2σ

[
1

t+ 1/σ
+

1

−t+ 1/σ

]
=

1

1− t2σ2
.

Plugging σ2 = u/100 into this gives the expression in the exercise.

(b) With u = 1, ψ(1) = 1/0.99. With r = 0.06, we get α = 0.06 + log(0.99) = 0.04995. We ran
three simulations of size 100000 each using the method described in the solution to Exercise 15 in
Sec. 12.2. The estimated prices were S0 times 0.0844, 0.0838, and 0.0843. The simulation standard
errors were all about 3.6S0 × 10−4.

(c) Su > S0 if and only if Wu > −αu, in this case αu = 0.04995. The conditional c.d.f. of Wu given
that Wn > −0.04995 is

F (w) = 1.4356

{
0.5[exp(10w) − 0.6068] if −0.04995 < w ≤ 0,
1− 0.5[exp(−10w) + 0.6068] if w > 0.

The quantile function is then

F−1(p) =

{
0.1 log(1.3931p + 0.6068)) if 0 < p < 0.2822,
−0.1 log(2[1 − 0.6966p] − 0.6068) if 0.2822 ≤ p < 1.

When we use samples from this conditional distribution, we need to divide the average by 1.4356,
which is the ratio of the conditional p.d.f. to the unconditional p.d.f. We ran three more simulations
of size 100000 each and got estimates of S0 times 0.0845, 0.0846, and 0.0840 with simulation
standard errors of about 2.66S0×10−4. The simulation standard error is only a little smaller than
it was in part (b).
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13. (a) E(Z) = E(Y (i)) + kc = E(W (i)) − kE(V (i)) + kc. By the usual importance sampling argument,

E(W (i)) =

∫
g(x)dx and E(V (i)) = c, so E(Z) =

∫
g(x)dx.

(b) Var(Z) = [σ2
W +k2σ2

V −2kρσWσV ]. This is a quadratic in k that is minimized when k = ρσW/σV .

14. (a) We know that

∫ 1

0
(1+ x2)−1dx = π/4. We shall use f(x) = exp(−x)/(1− exp(−1)) for 0 < x < 1.

We shall simulate X(1), . . . ,X(10000) with this p.d.f. and compute

W (i) =
1− exp(−1)

1 +X(i)2
,

V (i) =
exp[X(i)](1 − exp(−1))

1 +X(i)2
.

We ran three simulations of 10000 each and got estimates of the integral equal to 0.5248, 0.5262,
and 0.5244 with simulation standard errors around 0.00135. This compares to 0.00097 in Exam-
ple 12.4.1. We shall see what went wrong in part (b).

(b) We use the samples in our simulation to estimate σW at 0.0964, σZ at 0.0710, and ρ at −0.8683.
Since the correlation appears to be negative, we should have used a negative value of k to multiply
our control variate. Based on our estimates, we might use k = −1.1789. Additional simulations
using this value of k produce simulation standard errors around 4.8× 10−4.

15. (a) Since U (i) and 1 − U (i) both have uniform distributions on the interval [0, 1], X(i) = F−1(U (i))
and T (i) = F−1(1− U (i)) have the same distribution.

(b) Since X(i) and T (i) have the same distribution, so do W (i) and V (i), so the means of W (i) and V (i)

are both the same and they are both

∫
g(x)dx, according to the importance sampling argument.

(c) Since F−1 is a monotone increasing function, we know that X(i) and T (i) are decreasing functions
of each other. If g(x)/f(x) is monotone, then W (i) and V (i) will also be decreasing functions of
each other. As such they ought to be negatively correlated since one is small when the other is
large.

(d) Var(Z) = Var(Y (i))/v, and

Var(Y (i)) = 0.25[Var(W (i)) + Var(V (i)) + 2Cov(W (i), V (i))] = 0.5(1 + ρ)Var(W (i)).

Without antithetic variates, we get a variance of Var(W (i))/[2v]. If ρ < 0, then 0.5(1 + ρ) < 0.5
and Var(Z) is smaller than we get without antithetic variates.

16. Using the method outlined in Exercise 15, we did three simulations of size 5000 each and got estimates
of 0.5250, 0.5247, and 0.5251 with estimates of Var(Y (i))1/2 of about 0.0238, approximately 1/4 of σ̂3
from Example 12.4.1.

17. In Exercise 3(c), g(x)/f(x) is a monotone function of x, so antithetic variates should help. In Exercise4(b),
we could use control variates with h(x) = exp(−x). In Exercises 6(a) and 6(b) the ratios g(x)/f(x)
are monotone, so antithetic variates should help. Control variates with h(x) = x exp(−x2/2) could also
help in Exercise 6(a). Exercise 10 involves the same function, so the same methods could also be used
in the stratified versions.
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12.5 Markov Chain Monte Carlo

Commentary

Markov chain Monte Carlo (MCMC) is primarily used to simulate parameters in a Bayesian analysis. Im-
plementing Gibbs sampling in all but the simplest problems is generally a nontrivial programming task.
Instructors should keep this in mind when assigning exercises. The less experience students have had with
programming, the more help they will need in implementing Gibbs sampling. The theoretical justification
given in the text relies on the material on Markov chains from Sec. 3.10, which might have been skipped
earlier in the course. This material is not necessary for actually performing MCMC.

If one is using the software R, there is no substitute for old-fashioned programming. (There is a package
called BUGS:
http://www.mrc-bsu.cam.ac.uk/bugs/ but I will not describe it here.) After the solutions, there is R code
to do the calculations in Examples 12.5.6 and 12.5.7 in the text.

Solutions to Exercises

1. The conditional p.d.f. of X2 given X2 = x2 is

g1(x1|x2) = f(x1, x2)

f2(x2)
=

cg(x1, x2)

f2(x2)
=

c

f2(x2)
h2(x1).

Let c2 = c/f2(x2), which does not depend on x1.

2. Let f2(x2) =

∫
f(x1, x2)dx1 stand for the marginal p.d.f. of X2, and let g1(x1|x2) = f(x1, x2)/f2(x2)

stand for the conditional p.d.f. of X
(i)
1 given X

(i)
2 = x2. We are supposing that X

(i)
2 has the marginal

distribution with p.d.f. f2. In step 2 of the Gibbs sampling algorithm, after X
(i)
2 = x2 is observed,

X
(i+1)
1 is sampled from the distribution with p.d.f. ga(x1|x2). Hence, the joint p.d.f. of (X

(i+1)
1 ,X

(i)
2 )

is f2(x2)g1(x1, x2) = f(x1, x2). In particular X
(i+1)
1 has the same marginal distribution as X1, and the

same argument we just gave (with subscripts 1 and 2 switched and applying step 3 instead of 2 in the

Gibbs sampling algorithm) shows that (X
(i+1)
1 ,X

(i+1)
2 ) has the same joint distribution as (X

(i)
1 ,X

(i)
2 ).

3. Let h(z) stand for the p.f. or p.d.f. of the stationary distribution and let g(z|z′) stand for the conditional
p.d.f. or p.f. of Zi+1 given Zi = z′, which is assumed to be the same for all i. Suppose that Zi has
the stationary distribution for some i, then (Zi, Zi+1) has the joint p.f. or p.d.f. h(zi)g(zi+1|zi). Since
Z1 does have the stationary distribution, (Z1, Z2) has the joint p.f. or p.d.f. h(z1)g(z2|z1). Hence,
(Z1, Z2) has the same distribution as (Zi, Zi+1) whenever Zi has the stationary distribution. The proof
is complete if we can show that Zi has the stationary distribution for every i. We shall show this by
induction. We know that it is true for i = 1 (that is, Z1 has the stationary distribution). Assume that
each of Z1, . . . , Zk has the stationary distribution, and prove that Zk+1 has the stationary distribution.
Since h is the p.d.f. or p.f. of the stationary distribution, it follows that the marginal p.d.f. or p.f. of

Zk+1 is

∫
h(zk)g(zk+1|zk)dzk or

∑
All zk

h(zk)g(zk+1|zk), either of which is h(zk+1) by the definition of

stationary distribution. Hence Zk+1 also has the stationary distribution, and the induction proof is
complete.

4. Var(X) = σ2/n and

Var(Y ) =
σ2

n
+

1

n2

∑∑
i 	=j

Cov(Yi, Yj).
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Since Cov(Yi, Yj) > 0, Var(Y ) > σ2/n = Var(X).

5. The sample average of all 30 observations is 1.442, and the value of s2n is 2.671. The posterior hyper-
parameters are then

α1 = 15.5, λ1 = 31, μ1 = 1.4277, and β1 = 1.930.

The method described in Example 12.5.1 says to simulate values of μ having the normal distribution
with mean 1.4277 and variance (31τ)−1 and to simulate values of τ having the gamma distribution with
parameters 16 and 1.930+0.5(μ−1.4277)2 . In my particular simulation, I used five Markov chains with
the following starting values for μ: 0.4, 1.0, 1.4, 1.8, and 2.2. The convergence criterion was met very
quickly, but we did 100 burn-in anyway. The estimated mean of (

√
τμ)−1 was 0.2542 with simulation

standard error 4.71 × 10−4.

6. The data summaries that we need to follow the pattern of Example 12.5.4 are the following:

x1 = 12.5 x2 = 47.89 y = 2341.4

s11 = 5525 s12 = 16737 s22 = 61990.47

s1y = 927865 s2y = 3132934 syy = 169378608,

and n = 26.

(a) The histogram of |β(�)
1 | values is in Fig. S.12.3.
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Figure S.12.3: Sample c.d.f. of |β(�)
1 | values for Exercise 6a in Sec. 12.5.

(b) i. The histogram of β
(�)
0 + 26β

(�)
1 + 67.2β

(�)
2 values is in Fig. S.12.4.

ii. Let z′ = (1, 26, 67.2) as in Example 11.5.7 of the text. To create the predictions, we take
each of the values in the histogram in Fig. S.12.4 and add a pseudo-random normal variable
to each with mean 0 and variance[

1 + z′(Z ′Z)−1z
]1/2

τ (�)−1/2.

We then use the sample 0.05 and 0.95 quantiles as the endpoints of our interval. In three
separate simulations, I got the following intervals (3652, 5107), (3650, 5103), and (3666, 5131).
These are all slightly wider than the interval in Example 11.5.7.
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Figure S.12.4: Histogram of β
(�)
0 + 26β
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1 + 67.2β

(�)
2 values for Exercise6(b)i in Sec. 12.5.
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Figure S.12.5: Histogram of predicted values for 1986 sales in Exercise 6(b)iii in Sec. 12.5.

iii. The histogram of the sales figures used in Exercise 6(b)ii is in Fig. S.12.5. This histogram
has more spread in it than the one in Fig. S.12.4 because the 1986 predictions equal the 1986
parameters plus independent random variables (as described in part (b)ii). The addition of
the independent random variables increases the variance.

7. There are ni = 6 observations in each of p = 3 groups. The sample averages are 825.83, 845.0, and
775.0. The wi values are 570.83, 200.0, and 900.0. In three separate simulations of size 10000 each, I
got the following three vectors of posterior mean estimates: (826.8, 843.2, 783.3), (826.8, 843.2, 783.1),
and (826.8, 843.2, 783.2).

8. (a) To prove that the two models are the same, we need to prove that we get Model 1 when we
integrate τ1, . . . , τn out of Model 2. Since the τi’s are independent, the Yi’s remain independent

after integrating out the τi’s. In Model 2, [Yi−(β0+β1xi)]τ
1/2
i has the standard normal distribution

given τi, and is therefore independent of τi. Also, τiaσ
2 has the χ2 distribution with a degrees of
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freedom, so

[Yi − (β0 + β1xi)]τ
1/2
i

τ
1/2
i σ

has the t distribution with a degrees of freedom, which is the same as Model 1.

(b) The prior p.d.f. is a constant times

ηb/2−1 exp(−fη/2)
n∏

i=1

[
τ
a/2−1
i ηa/2 exp(−aητi/2)

]
,

while the likelihood is
n∏

i=1

[
τ
1/2
i exp(−[yi − β0 − β1xi]

2τi/2)
]
.

The product of these two produces Eq. (12.5.4).

(c) As a function of η, we have η to the power (na + b)/2 − 1 times e to the power of −η/2 times
f + a

∑n
i=1 τi. This is, aside from a constant factor, the p.d.f. of the gamma distribution with

parameters (na+b)/2 and (f+a
∑n

i=1 τi)/2. As a function of τi, we have τi to the power (a+1)/2−1
times e to the power −τi[aη + (yi − β0 − β1xi)

2]/2, which is (aside from a constant factor) the
p.d.f. of the gamma distribution with parameters (a + 1)/2 and [aη + (yi − β0 − β1xi)

2]/2. As a
function of β0, we have a constant times e to the power

−
n∑

i=1

τi(β0 − [yi − β1xi])
2/2 = −1

2

n∑
i=1

τi

(
β0 −

∑n
i=1 τi(yi − β1xi)∑n

i=1 τi

)2

+ c,

where c does not depend on β0. (Use the method of completing the square.) This is a constant
times the p.d.f. of the normal distribution stated in the exercise. Completing the square as a
function of β1 produces the result stated for β1 in the exercise.

9. In three separate simulations of size 10000 each I got posterior mean estimates for (β0, β1, η) of
(−0.9526, 0.02052, 1.124×10−5), (−0.9593, 0.02056, 1.143×10−5), and (−0.9491, 0.02050, 1.138×10−5).
It appears we need more than 10000 samples to get a good estimate of the posterior mean of β0. The esti-
mated posterior standard deviations from the three simulations were (1.503×10−2 , 7.412×10−5 , 7.899×
10−6), (2.388 × 10−2, 1.178 × 10−4, 5.799 × 10−6), and (2.287 × 10−2, 1.274 × 10−4, 6.858 × 10−6).

10. Let the proper prior have hyperparameters μ0, λ0, α0, and β0. Conditional on the Yi’s, those Xi’s that
have Yi = 1 are an i.i.d. sample of size

∑n
i=1 Yi from the normal distribution with mean μ and precision

τ .

(a) The conditional distribution of μ given all else is the normal distribution with mean equal to

μ0 +
n∑

i=1

YiXi

λ0 +
n∑

i=1

Yi

, and precision equal to τ
n∑

i=1

Yi.

(b) The conditional distribution of τ given all else is the gamma distribution with parameters α0 +∑n
i=1 Yi/2 + 1/2 and

β0 +
1

2

[
λ0(μ− μ0)

2 +
n∑

i=1

Yi(Xi − μ)2
]
.
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(c) Given everything except Yi,

Pr(Yi = 1) =
τ1/2 exp

(
−τ

2
[Xi − μ]2

)
τ1/2 exp

(
−τ

2
[Xi − μ]2

)
+ exp

(
−1

2
X2

i

) .
(d) To use Gibbs sampling, we need starting values for all but one of the unknowns. For example,

we could randomly assign the data values to the two distributions with probabilities 1/2 each or
randomly split the data into two equal-sized subsets. Given starting values for the Yi’s, we could
start μ and τ at their posterior means given the observations that came from the distribution
with unknown parameters. We would then cycle through simulating random variables with the
distributions in parts (a)–(c). After burn-in and a large simulation run, estimate the the posterior
means by the averages of the sample parameters in the large simulation run.

(e) The posterior mean of Yi is the posterior probability that Yi = 1. Since Yi = 1 is the same as the
event that Xi came from the distribution with unknown mean and variance, the posterior mean
of Yi is the posterior probability that Xi came from the distribution with unknown mean and
variance.

11. For this exercise, I ran five Markov chains for 10000 iterations each. For each iteration, I obtain a
vector of 10 Yi values. Our estimated probability that Xi came from the distribution with unknown
mean and variance equals the average of the 50000 Yi values for each i = 1, . . . , 10. The ten estimated
probabilities for each of my three runs are listed below:

Run Estimated Probabilities

1 0.291 0.292 0.302 0.339 0.370 0.281 0.651 0.374 0.943 0.816
2 0.285 0.286 0.302 0.339 0.375 0.280 0.656 0.371 0.945 0.819
3 0.283 0.286 0.301 0.340 0.373 0.280 0.651 0.370 0.945 0.820

12. Note that γ0 should be the precision rather than the variance of the prior distribution of μ.

(a) The prior p.d.f. times the likelihood equals a constant times

τn/2 exp

(
−τ

2

{
n[xn − μ]2 + s2n

})
exp

(
−γ0

2
[μ− μ0]

2
)
τα0−1 exp

(
−τβ0

2

)
,

where s2n =
∑n

i=1(xi −xn)
2. As a function of τ this looks like the p.d.f. of the gamma distribution

with parameters α0 + n/2 and [n(xn − μ)2 + s2n + β0]/2. As a function of μ, (by completing the
square) it looks like the p.d.f. of the normal distribution with mean (nτxn + μ0γ0)/(nτ + γ0) and
variance 1/(nτ + γ0).

(b) The data summaries are n = 18, xn = 182.17, and s2n = 88678.5. I ran five chains of length 10000
each for three separate simulations. For each simulation, I obtained 50000 parameter pairs. To
obtain the interval, I sorted the 50000 μ values and chose the 1250th and 48750th values. For the
three simulations, I got the intervals (154.2, 216.2), (154.6, 216.5), and (154.7, 216.2).

13. In part (a), the exponent in the displayed formula should have been −1/2.

(a) The conditional distribution of (μ − μ0)γ
1/2 given γ is standard normal, hence it is independent

of γ. Also, the distribution of 2b0γ is the χ2 distribution with 2a0 degrees of freedom. It follows
that (μ − μ0)/(b0/a0)

1/2 has the t distribution with 2a0 degrees of freedom.
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(b) The marginal prior distributions of τ are in the same form with the same hyperparameters in
Exercise 12 and in Sec. 8.6. The marginal prior distributions of μ are in the same form also, but
the hyperparameters are not identical. We need a0 = α0 to make the degrees of freedom match,
and we need b0 = β0/λ0 in order to make the scale factor match.

(c) The prior p.d.f. times the likelihood equals a constant times

τα0+n/2−1γa0+1/2−1 exp

(
−τ

2

{
n[xn − μ]2 + s2n + β0

}
− γ

2
[μ − μ0]

2 + γb0

)
.

As a function of τ this is the same as in Exercise 12. As a function of μ, it is also the same
as Exercise 12 if we replace γ0 by γ. As a function of γ, it looks like the p.d.f. of the gamma
distribution with parameters a0 + 1/2 and b0 + (μ − μ0)/2.

(d) This time, I ran 10 chains of length 10000 each for three different simulations. The three intervals
are found by sorting the μ values and using the 2500th and 97500th values. The interval are
(154.4, 216.3), (154.6, 215.8), and (154.4, 215.9).

14. The exercise should have included that the prior hyperparameters are α0 = 0.5, μ0 = 0, λ0 = 1, and
β0 = 0.5.

(a) I used 10 chains of length 10000 each.

(b) The histogram of predicted values is in Fig. S.12.6. There are two main differences between this
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Figure S.12.6: Histogram of Log-arsenic predictions for Exercise 14b in Sec. 12.5.

histogram and the one in Fig. 12.10 in the text. First, the distribution of log-arsenic is centered
at slightly higher values in this histogram. Second, the distribution is much less spread out in this
histogram. (Notice the difference in horizontal scales between the two figures.)

(c) The median of predicted arsenic concentration is 1.525 in my simulation, compared to the smaller
value 1.231 in Example 12.5.8, about 24% higher.

15. (a) For each censored observation Xn+i, we observe only that Xn+i ≤ c. The probability of Xn+i ≤ c
given θ is 1− exp(−cθ). The likelihood times prior is a constant times

θn+α−1[1− exp(−cθ)]m exp

(
−θ

n∑
i=1

xi

)
. (S.12.5)
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We can treat the unobserved values Xn+1, . . . ,Xn+m as parameters. The conditional distribution
of Xn+i given θ and given that Xn+i ≤ c has the p.d.f.

g(x|θ) = θ exp(−θx)

1− exp(−θc)
, for 0 < x < c. (S.12.6)

If we multiply the conditional p.d.f. of (Xn+1, . . . ,Xn+m) given θ times Eq. (S.12.5), we get

θn+m+α−1 exp

(
−θ

n+m∑
i=1

xi

)
,

for θ > 0 and 0 < xi < c for i = n+ 1, . . . , n +m. As a function of θ, this looks like the p.d.f. of

the gamma distribution with parameters n +m + α and
n+m∑
i=1

xi. As a function of Xn+i, it looks

like the p.d.f. in Eq. (S.12.6). So, Gibbs sampling can work as follows. Pick a starting value for θ,
such as one over the average of the uncensored values. Then simulate the censored observations
with p.d.f. (S.12.6). This can be done using the quantile function

G−1(p) = − log(1− p[1− exp(−cθ)])

θ
.

Then, simulate a new θ from the gamma distribution mentioned above to complete one iteration.

(b) For each censored observation Xn+i, we observe only that Xn+i ≥ c. The probability of Xn+i ≥ c
given θ is exp(−cθ). The likelihood times prior is a constant times

θn+α−1 exp

(
−θ

[
mc+

n∑
i=1

xi

])
. (S.12.7)

We could treat the unobserved values Xn+1, . . . ,Xn+m as parameters. The conditional distribution
of Xn+i given θ and given that Xn+i ≥ c has the p.d.f.

g(x|θ) = θ exp(−θ[x− c]), for x > c. (S.12.8)

If we multiply the conditional p.d.f. of (Xn+1, . . . ,Xn+m) given θ times Eq. (S.12.7), we get

θn+m+α−1 exp

(
−θ

n+m∑
i=1

xi

)
,

for θ > 0 and xi > c for i = n + 1, . . . , n + m. As a function of θ, this looks like the p.d.f. of

the gamma distribution with parameters n +m + α and
n+m∑
i=1

xi. As a function of Xn+i, it looks

like the p.d.f. in Eq. (S.12.8). So, Gibbs sampling can work as follows. Pick a starting value for

θ, such as the M.L.E.,
n+m

mc+
n∑

i=1

xi

. Then simulate the censored observations with p.d.f. (S.12.8).

This can be done using the quantile function

G−1(p) = c− log(1− p)

θ
.

Then, simulate a new θ from the gamma distribution mentioned above to complete one interaction.
In this part of the exercise, Gibbs sampling is not really needed because the posterior distribution
of θ is available in closed form. Notice that (S.12.7) is a constant times the p.d.f. of the gamma

distribution with parameters n+ α and mc+
n∑

i=1

xi, which is then the posterior distribution of θ.
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16. (a) The joint p.d.f. of (Xi, Zi) can be found from the joint p.d.f. of (Xi, Yi) and the transformation
h(x, y) = (x, x + y). The joint p.d.f. of (Xi, Yi) is f(x, y) = λμ exp(−xλ − yμ) for x, y > 0. The
inverse transformation is h−1(x, z) = (x, z − x), with Jacobian equal to 1. So, the joint p.d.f. of
(XiZi) is

g(x, z) = f(x, z − x) = λμ exp(−x[λ− μ]− zμ), for 0 < x < z, z > 0.

The marginal p.d.f. of Zi is the integral of this over x, namely

g2(z) =
λμ

λ− μ
[1− exp(−z[λ− μ])] exp(−zμ),

for z > 0. The conditional p.d.f. of Xi given Zi = z is the ratio

g(x, z)

g2(z)
=

λ− μ

1− exp(−z[λ− μ])
exp(−x[λ− μ]), for 0 < x < z. (S.12.9)

The conditional c.d.f. of Xi given Zi = z is the integral of this, which is the formula in the text.

(b) The likelihood times prior is

λn+a−1μn+b−1

(λ− μ)n−k
exp

(
−λ

k∑
i=1

xi − μ
k∑

i=1

yi

)
n∏

i=k+1

[1− exp (−[λ− μ]zi)] . (S.12.10)

We can treat the unobserved pairs (Xi, Yi) for i = k + 1, . . . , n as parameters. Since we observe
Xi + Yi = Zi, we shall just treat Xi as a parameter. The conditional p.d.f. of Xi given the other
parameters and Zi is in (S.12.9). Multiplying the product of those p.d.f.’s for i = k + 1, . . . , n
times (S.12.10) gives

λn+a−1μn+b−1 exp

⎛⎝−λ
n∑

i=1

xi − μ

⎡⎣ k∑
i=1

yi +
n∑

i=k+1

(zi − xi)

⎤⎦⎞⎠ , (S.12.11)

where 0 < xi < zi for i = k + 1, . . . , n. As a function of λ, (S.12.11) looks like the p.d.f. of the

gamma distribution with parameters n+ a and
n∑

i=1

xi. As a function of μ it looks like the p.d.f. of

the gamma distribution with parameters n+ b and
n∑

i=1

yi. As a function of xi (i = k+1, . . . , n), it

looks like the p.d.f. in (S.12.9). So, Gibbs sampling can work as follows. Pick starting values for μ
and λ, such as one over the averages of the observed values of the Xi’s and Yi’s. Then simulate the
unobserved Xi values for i = k+ 1, . . . , n using the probability integral transform. Then simulate
new λ and μ values using the gamma distributions mentioned above to complete one iteration.

12.6 The Bootstrap

Commentary

The bootstrap has become a very popular technique for solving non-Bayesian problems that are not amenable
to analysis. The nonparametric bootstrap can be implemented without much of the earlier material in this
chapter. Indeed, one need only know how to simulate from a discrete uniform distribution (Example 12.3.11)
and compute simulation standard errors (Sec. 12.2).

The software R has a function boot that is available after issuing the command library(boot). The
first three arguments to boot are a vector data containing the original sample, a function f to compute the
statistic whose distribution is being bootstrapped, and the number of bootstrap samples to create. For the
nonparametric bootstrap, the function f must have at least two arguments. The first will always be data, and
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the second will be a vector inds of integers of the same dimension as data. This vector inds will choose the
bootstrap sample. The function should return the desired statistic computed from the sample data[inds].
Any additional arguments to f can be passed to boot by setting them explicitly at the end of the argument
list. For the parametric bootstrap, boot needs the optional arguments sim="parametric" and ran.gen.
The function ran.gen tells how to generate the bootstrap samples, and it takes two arguments. The first
argument will be data. The second argument is anything else that you need to generate the samples, for
example, estimates of parameters based on the orginal data. Also, f needs at least one argument which will
be a simulated data set. Any additional arguments can be passed explicitly to boot.

Solutions to Exercises

1. We could start by estimating θ by the M.L.E., 1/X . Then we would use the exponential distribution
with parameter 1/X for the distribution F̂ in the bootstrap. The bootstrap estimate of the variance
of X is the variance of a sample average X

∗
of a sample of size n from the distribution F̂ , i.e., the

exponential distribution with parameter 1/X . The variance of X
∗
is 1/n times the variance of a single

observation from F̂ , which equals X
2
. So, the bootstrap estimate is X

2
/n.

2. The numbers x1, . . . , xn are known when we sample from Fn. Let i1, . . . , in ∈ {1, . . . , n}. Since Xj = xij
if and only if Jj = ij , we can compute

Pr(X∗
1 = xi1 , . . . ,X

∗
n = xin) = Pr(J1 = i1, . . . , Jn = in) =

n∏
j=1

Pr(Jj = ij) =
n∏

j=1

Pr(X∗
j = xij).

The second equality follows from the fact that J1, . . . , Jn are a random sample with replacement from
the set {1, . . . , n}.

3. Let n = 2k + 1. The sample median of a nonparametric bootstrap sample is the k + 1st smallest
observation in the bootstrap sample. Let x denote the smallest observation in the original sample.
Assume that there are � observations from the original sample that equal x. (Usually � = 1, but it
is not necessary.) The sample median from the bootstrap sample equals x from the original data set
if and only if at least k + 1 observations in the bootstrap sample equal x. Since each observation
in the bootstrap equals x with probability �/n and the bootstrap observations are independent, the
probability that at least k + 1 of them equal x is

n∑
i=k+1

(
n

i

)(
�

n

)i (
1− �

n

)n−i

.

4. For each bootstrap sample, compute the sample median. The bias estimate is the average of all of these
sample medians minus the original sample median, 201.3. I started with a pilot sample of size 2000
and estimated the bias as 0.545. The sample variance of the 2000 sample medians was 3.435. This led
me to estimate the necessary simulation size as

[
Φ−1

(
1 + 0.9

2

)
3.4351/2

0.02

]2
= 23234.

So, I did 30000 bootstrap samples. The new estimate of bias was 0.5564, with a simulation standard
error of 0.011.

5. This exercise is performed in a manner similar to Exercise 4.
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(a) In this case, I did three simulations of size 50000 each. The three estimates of bias were −1.684,
−1.688, and −1.608.

(b) Each time, the estimated sample size needed to achieve the desired accuracy was between 48000
and 49000.

6. (a) For each bootstrap sample, compute the sample median. The estimate we want is the sample
variance of these values. I did a pilot simulation of size 2000 and got a sample variance of 18.15.
I did another simulation of size 10000 and got a sample variance of 18.87.

(b) To achieve the desired accuracy, we would need a simulation of size[
Φ−1

(
1 + 0.95

2

)
18.871/2

0.005

]2
= 2899533.

That is, we would need about three million bootstrap samples.

7. (a) Each bootstrap sample consists of X
∗(i)

having a normal distribution with mean 0 and variance

31.65/11, Y
∗(i)

having the normal distribution with mean 0 and variance 68.8/10, S
2∗(i)
X being 31.65

times a χ2 random variable with 10 degrees of freedom, and S
2∗(i)
Y being 68.8 times a χ2 random

variable with 9 degrees of freedom. For each sample, we compute the statistic U (i) displayed in
Example 12.6.10 in the text. We then compute what proportion of the absolute values of the
10000 statistics exceed the 0.95 quantile of the t distribution with 19 degrees of freedom, 1.729.
In three separate simulations, I got proportions of 0.1101, 0.1078, and 0.1115.

(b) To correct the level of the test, we need the 0.9 quantile of the distribution of |U |. For each
simulation, we sort the 10000 |U (i)| values and select the 9000th value. In my three simulations,
this value was 1.773, 1.777, and 1.788.

(c) To compute the simulation standard error of the sample quantile, I chose to split the 10000 samples
into eight sets of size 1250. For each set, I sort the |U (i)| values and choose the 1125th one. The
simulation standard error is then the the square-root of one-eighth of the the sample variance of
these eight values. In my three simulations, I got the values 0.0112, 0.0136, and 0.0147.

8. The correlation is the ratio of the covariance to the square-root of the product of the variances. The

mean of X∗ is E(X∗) = X, and the mean of Y ∗ is E(Y ∗) = Y . The variance of X∗ is
n∑

i=1

(Xi −X)2/n,

and the variance of Y ∗ is
n∑

i=1

(Yi − Y )2/n. The covariance is

E[(X∗ −X)(Y ∗ − Y )] =
1

n

n∑
i=1

(Xi −X)(Yi − Y ).

Dividing this by the square-root of the product of the variances yields (12.6.2).

9. (a) For each bootstrap sample, compute the sample correlation R(i). Then compute the sample
variance of R(1), . . . , R(1000). This is the approximation to the bootstrap estimate of the variance
of the sample correlation. I did three separate simulations and got sample variances of 4.781×10−4,
4.741 × 10−4, and 4.986 × 10−4.

(b) The approximation to the bootstrap bias estimate is the sample average of R(1), . . . , R(1000) minus
the original sample correlation, 0.9670. In my three simulations, I got the values −0.0030, −0.0022,
and −0.0026. It looks like 1000 is not enough bootstrap samples to get a good estimate of this
bias.
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(c) For the simulation standard error of the variance estimate, we use the square-root of Eq. (12.2.3)
where each Y (i) in (12.2.3) is R(i) in this exercise. In my three simulations, I got the values
2.231 × 10−5, 2.734 × 10−5, and 3.228 × 10−5. For the simulation standard error of the bias
estimate, we just note that the bias estimate is an average, so we need only calculate the square-
root of 1/1000 times the sample variance of R(1), . . . , R(1000). In my simulations, I got 6.915×10−4 ,
6.886 × 10−4, and 7.061 × 10−4.

10. For both parts (a) and (b), we need 10000 bootstrap samples. From each bootstrap sample, we compute
the sample median. Call these values M∗(i), for i = 1, . . . , 10000. The median of the original data is
M = 152.5.

(a) Sort the M∗(i) values from smallest to largest. The percentile interval just runs from the 500th
sorted value to the 9500th sorted value. I ran three simulations and got the following three
intervals: [148, 175], [148, 175], and [146.5, 175].

(b) Choose a measure of spread and compute it from the original sample. Call the value Y . For
each bootstrap sample, compute the same measure of spread Y ∗(i). I choose the median absolute
deviation, which is Y = 19 for this data set. Then sort the values (M∗(i) −M)/Y ∗(i). Find the
500th and 9500th sorted values Z500 and Z9500. The percentile-t confidence interval runs from
M − ZY to M + ZY . In my three simulations, I got the intervals [143, 181], [142.6, 181], and
[141.9, 181].

(c) The sample average of the beef hot dog values is 156.9, and the value of σ′ is 22.64. The confidence
interval based on the normal distribution use the t distribution quantile T−1

19 (0.95) = 1.729 and
equals 156.9 ± 1.729 × 22.64/201/2 , or [148.1, 165.6]. This interval is considerably shorter than
either of the bootstrap intervals.

11. (a) If X∗ has the distribution Fn, then μ = E(X∗) = X,

σ2 = Var(X∗) =
1

n

n∑
i=1

(Xi −X)2, and

E([X − μ]3) =
1

n

n∑
i=1

(Xi −X)3.

Plugging these values into the formula for skewness (see Definition 4.4.1) yields the formula for
M3 given in this exercise.

(b) The summary statistics of the 1970 fish price data are X = 41.1,
n∑

i=1

(Xi −X)2/n = 1316.5, and

n∑
i=1

(Xi − X)3/n = 58176, so the sample skewness is M3 = 1.218. For each bootstrap sample,

we also compute the sample skewness M
∗(i)
3 for i = 1, . . . , 1000. The bias of M3 is estimated by

the sample average of the M
∗(i)
3 ’s minus M3. I did three simulations and got the values −0.2537,

−0.2936, and −0.2888. To estimate the standard deviation of M3, compute the sample standard

deviation of the M
∗(i)
3 ’s. In my three simulations, I got 0.5480, 0.5590, and 0.5411.

12. We want to show that the distribution of R is the same for all parameter vectors (μx, μy, σ
2
x, σ

2
y , ρ)

that share the same value of ρ. Let θ1 = (μx1, μy1, σ
2
x1, σ

2
y1, ρ) and θ2 = (μx2, μy2, σ

2
x2, σ

2
y2, ρ) be two

parameter vectors that share the same value of ρ. Let ax = σx2/σx1, ay = σy2/σy1, bx = μx2 − μx1,
and by − μy2 − μy1. For i = 1, 2, let W i be a sample of size n from a bivariate normal distribution
with parameter vector θi, and let Ri be the sample correlation. We want to show that R1 and R2 have

Copyright © 2012 Pearson Education, Inc.  Publishing as Addison-Wesley.



Section 12.7. Supplementary Exercises 425

the same distribution. Write W i = [(Xi1, Yi1), . . . , (Xin, Yin)] for i = 1, 2. Define X ′
ij = ax(Xij + bx),

Y ′
ij = ay(Yij + by) for j = 1, . . . , n. Then it is trivial to see that W ′

2 = [(X ′
21, Y

′
21), . . . , (X

′
2n, Y

′
2n)] has

the same distribution as W 2. Let R
′
2 be the sample correlation computed from W ′

2. Then R′
2 and R2

have the same distribution. We complete the proof by showing that R′
2 = R1. Hence R′

2 and R1 and

R2 all have the same distribution. To see that R′
2 = R1, let X1 =

n∑
j=1

X1j and similarly Y 1, X
′
2 and

Y
′
2. Then X

′
2 = ax(X1 + bx) and Y

′
2 = ay(Y 1 + by). So, for each j, X ′

2j − X
′
2 = ax(X1j − X1) and

Y ′
2j − Y

′
2 = ay(Y1j − Y 1). Since ax, ay > 0, it follows that

R′
2 =

n∑
j=1

(X ′
2j −X

′
2)(Y

′
2j − Y

′
2)⎛⎝⎡⎣ n∑

j1

(X ′
2j −X

′
2)

2

⎤⎦⎡⎣ n∑
j1

(Y ′
2j − Y

′
2)

2

⎤⎦⎞⎠1/2

=

axay

n∑
j=1

(X1j −X1)(Y 11j − Y 11)

⎛⎝⎡⎣a2x n∑
j1

(X1j −X1)
2

⎤⎦⎡⎣a2y n∑
j1

(Y1j − Y 1)
2

⎤⎦⎞⎠1/2

= R1.

12.7 Supplementary Exercises

Solutions to Exercises

1. For the random number generator that I have been using for these solutions, Fig. S.12.7 contains
one such normal quantile plot. It looks fairly straight. On the horizontal axis I plotted the sorted
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Figure S.12.7: Normal quantile plot for Exercise 1 in Sec. 12.7. A straight line has been added for reference.

pseudo-normal values and on the vertical axis, I plotted the values Φ−1(i/10001) for i = 1, . . . , 10000.

2. The plots for this exercise are formed the same way as that in Exercise 1 except we replace the normal
pseudo-random values by the appropriate gamma pseudo-random values and we replace Φ−1 by the
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quantile function of the appropriate gamma distribution. Two of the plots are in Fig. S.12.8. The plots
are pretty straight except in the extreme upper tail, where things are expected to be highly variable.
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Figure S.12.8: Gamma quantile plots for Exercise 2 in Sec. 12.7. The left plot has parameters 0.5 and 1 and
the right plot has parameters 10 and 1. Straight lines have been added for reference.

3. Once again, the plots are drawn in a fashion similar to Exercise 1. This time, we notice that the plot
with one degree of freedom has some really serious non-linearity. This is the Cauchy distribution which
has very long tails. The extreme observations from a Cauchy sample are very variable. Two of the
plots are in Fig. S.12.9.

.

.
. . ..............................

............................................................
...

. .
.

.

.

t quantiles with 1 degree of freedom

S
im

ul
at

ed
 v

al
ue

s

-3000 -1000 0 1000 3000

-1
00

00
-5

00
0

0
50

00
10

00
0

.

.
.
...
......
..........
..............
..............
.......................................
.......................................
..............................................
...............................................
.....................................................
..........................................................
..........................................................
..........................................................
...........................................................
.........................................................
..........................................................
...........................................................
............................................................
...........................................................
...........................................................
............................................................
..........................................................
.........................................................
............................................................
.........................................................
.........................................................
..................................................
............................................
..........................................
.........................................
...................................
..................
.........
.......
.........

...
..

.
.

t quantiles with 20 degrees of freedom

S
im

ul
at

ed
 v

al
ue

s

-4 -2 0 2 4

-4
-2

0
2

4

Figure S.12.9: Two t quantile plots for Exercise 3 in Sec. 12.7. The left plot has 1 degree of freedom, and
the right plot has 20 degrees of freedom. Straight lines have been added for reference.

4. (a) I simulated 1000 pairs three times and got the following average values: 1.478, 1.462, 1.608. It
looks like 1000 is not enough to be very confident of getting the average within 0.01.

(b) Using the same three sets of 1000, I computed the sample variance each time and got 1.8521,
1.6857, and 2.5373.

(c) Using (12.2.5), it appears that we need from 120000 to 170000 simulations.
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5. (a) To simulate a noncentral t random variable, we can simulate independent Z and W with Z having
the normal distribution with mean 1.936 and variance 1, and W having the χ2 distribution with
14 degrees of freedom. Then set T = Z/(W/14)1/2.

(b) I did three separate simulations of size 1000 each and got the following three proportions with
T > 1.761: 0.571, 0.608, 0.577. The simulation standard errors were 0.01565, 0.01544, and 0.01562.

(c) Using (12.2.5), we find that we need a bit more than 16000 simulated values.

6. (a) For each sample, we compute the numbers of observations in each of the four intervals (−∞, 3.575),
[3.575, 3.912), [3.912, 4.249), and [4.249,∞). Then we compute the Q statistic as we did in Exam-
ple 10.1.6. We then compare each Q statistic to the three critical values 7.779, 9.488, and 13.277.
We compute what proportion of the 10000 Q’s is above each of these three critical values. I did
three separate simulations of size 10000 each and got the proportions: 0.0495, 0.0536, and 0.0514
for the 0.9 critical value (7.779). I got 0.0222, 0.0247, and 0.0242 for the 0.95 critical value (9.488).
I got 0.0025, 0.0021, and 0.0029 for the 0.99 critical value (13.277). It looks like the test whose
nominal level is 0.1 has size closer to 0.05, while the test whose nominal level is 0.05 has level
closer to 0.025.

(b) For the power calculation, we perform exactly the same calculations with samples from the different
normal distribution. I performed three simulations of size 1000 each for this exercise also. I got
the proportions: 0.5653, 0.5767, and 0.5796 for the 0.9 critical value (7.779). I got 0.4560, 0.4667,
and 0.4675 for the 0.95 critical value (9.488). I got 0.2224, 0.2280, and 0.2333 for the 0.99 critical
value (13.277).

7. (a) We need to compute the same Q statistics as in Exercise 6(b) using samples from ten different
normal distributions. For each of the ten distributions, we also compute the 0.9, 0.95 and 0.99
sample quantiles of the 10000 Q statistics. Here is a table of the simulated quantiles:

Quantile
μ σ2 0.9 0.95 0.99

3.8 0.25 3.891 4.976 7.405
3.8 0.80 4.295 5.333 8.788
3.9 0.25 3.653 4.764 6.405
3.9 0.80 4.142 5.133 7.149
4.0 0.25 3.825 5.104 7.405
4.0 0.80 4.554 5.541 8.635
4.1 0.25 3.861 5.255 8.305
4.1 0.80 4.505 5.658 8.637
4.2 0.25 4.193 5.352 8.260
4.2 0.80 4.087 4.981 7.677

(b) The quantiles change a bit as the distributions change, but they are remarkably stable.

(c) Instead of starting with normal samples, we start with samples having a t distribution as described
in the exercise. We compute the Q statistic for each sample and see what proportion of our 10000
Q statistics is greater than 5.2. In three simulations of this sort I got proportions of 0.12 0.118,
and 01.24.

8. (a) The product of likelihood times prior is

exp

(
−u0(ψ − ψ0)

2

2
−

p∑
i=1

τi

[
β0 +

ni(μi − yi)
2 +wi + λ(μi − ψ)2

2

])
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× λp/2+γ0−1 exp(−λδ0)
p∏

i=1

τ
α0+[ni+1]/2−1
i ,

where wi =
ni∑
j=1

(yij − yi)
2 for i = 1, . . . , p.

(b) As a function of μi, τi, or ψ this looks the same as it did in Example 12.5.6 except that λ0 needs
to be replaced by λ wherever it occurs. As a function of λ, it looks like the p.d.f. of the gamma

distribution with parameters p/2 + γ0 and δ0 +
p∑

i=1

τi(μi − ψ)2/2.

(c) I ran six Markov chains for 10000 iterations each, producing 60000 parameter vectors. The re-
quested posterior means and simulation standard errors were

Parameter μ1 μ2 μ3 μ4 1/τ1 1/τ2 1/τ3 1/τ4
Posterior mean 156.9 158.7 118.8 160.6 486.7 598.8 479.2 548.4
Sim. std. err. 0.009583 0.01969 0.02096 0.01322 0.8332 0.8286 0.5481 0.9372

The code at the end of this manual was modified following the suggestions in the exercise in order
to produce the above output. The same was done in Exercise 9.

9. (a) The product of likelihood times prior is

exp

(
−u0(ψ − ψ0)

2

2
−

p∑
i=1

τi

[
β +

ni(μi − yi)
2 + wi + λ0(μi − ψ)2

2

])

× βpα0+ε0−1 exp(−βφ0)
p∏

i=1

τ
α0+[ni+1]/2−1
i ,

where wi =
ni∑
j=1

(yij − yi)
2 for i = 1, . . . , p.

(b) As a function of μi, τi, or ψ this looks the same as it did in Example 12.5.6 except that β0 needs
to be replaced by β wherever it occurs. As a function of β, it looks like the p.d.f. of the gamma

distribution with parameters pα0 + ε0 and φ0 +
p∑

i=1

τi.

(c) I ran six Markov chains for 10000 iterations each, producing 60000 parameter vectors. The re-
quested posterior means and simulation standard errors were

Parameter μ1 μ2 μ3 μ4 1/τ1 1/τ2 1/τ3 1/τ4
Posterior mean 156.6 158.3 120.6 159.7 495.1 609.2 545.3 570.4
Sim. std. err. 0.01576 0.01836 0.02140 0.03844 0.4176 1.194 0.8968 0.7629

10. (a) The numerator of the likelihood ratio statistic is the maximum of the likelihood function over
all parameter values in the alternative hypothesis, while the denominator is the maximum of the
likelihood over all values in the null hypothesis. Both the numerator and denominator have a factor

of
k∏

i=1

(
ni

Xi

)
that will divide out in the ratio, so we shall ignore these factors. In this example, the

maximum over the alternative hypothesis will be the maximum over all parameter values, so we
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would set pi = Xi/ni in the likelihood to get

k∏
i=1

(
Xi

ni

)Xi
(
1− Xi

ni

)ni−Xi

=

k∏
i=1

XXi
i (ni −Xi)

ni−Xi

k∏
i=1

nni
i

.

For the denominator, all of the pi are equal, hence the likelihood to be maximized is pX1+···+Xk(1−
p)n1+···+nk−X1−···−Xk . This is maximized at p =

k∑
j=1

Xj/
k∑

j=1

nj, to yield

⎛⎜⎜⎜⎜⎜⎝
k∑

j=1

Xj

k∑
j=1

nj

⎞⎟⎟⎟⎟⎟⎠

∑k

j=1
Xj ⎛⎜⎜⎜⎜⎜⎝1−

k∑
j=1

Xj

k∑
j=1

nj

⎞⎟⎟⎟⎟⎟⎠

∑k

j=1
(nj−Xj)

=

⎛⎝ k∑
j=1

Xj

⎞⎠
∑k

j=1
Xj
⎛⎝ k∑

j=1

(nj −Xj)

⎞⎠
∑k

j=1
(nj−Xj)

⎛⎝ k∑
j=1

nj

⎞⎠
∑k

j=1
nj

.

The ratio of these two maxima is a positive constant times the statistic stated in the exercise. The
likelihood ratio test rejects the null hypothesis when the statistic is greater than a constant.

(b) Call the likelihood ratio test statistic T . The distribution of T , under the assumption that H0 is
true, that is p1 = · · · = pk still depends on the common value of the pi’s, call it p. If the sample
sizes are large, the distribution should not depend very much on p, but it will still depend on
p. Let Fp(·) denote the c.d.f. of T when p is the common value of all pi’s. If we reject the null
hypothesis when T ≥ c, the test will be of level α0 so long as

1− Fp(c) ≤ α0, for all p. (S.12.12)

If c satisfies (S.12.12) then all larger c satisfy (S.12.12), so we want the smallest c that satisfies
(S.12.12). Eq. (S.12.12) is equivalent to Fp(c) ≥ 1 − α0 for all p, which, in turn, is equivalent to
c ≥ F−1

p (1−α0) for all p. The smallest c that satisfies this last inequality is c = supp F
−1
p (1−α0).

To approximate c by simulation, proceed as follows. Pick a collection of reasonable values of p and
a large number v of simulations to perform. For each value of p, perform v simulations as follows.
Simulate k independent binomial random variables with parameters ni and p, and compute the
value of T . Sort the v values of T and approximate F−1

p (1− α0) by the (1− α0)vth sorted value.
Let c be the largest of these values over the different chosen values of p. It should be clear that
the distribution of T is the same for p as it is for 1− p, so one need only check values of p between
0 and 1/2.

(c) To compute the p-value, we first find the observed value t of T , and then find supp Pr(T ≥ t) under
the assumption that the each pi = p for i = 1, . . . , k. In Table 2.1, the Xi values are X1 = 22,
X2 = 25, X3 = 16, X4 = 10, while the sample sizes are n1 = 40, n2 = 38, n3 = 38, n4 = 34. The
observed value of T is

t =
22221818252513131616222210102424

73737777
= exp(−202.17).

A pilot simulation showed that the maximum over p of 1 − Fp(t) occurs at p = 0.5, so a larger
simulation was performed with p = 0.5. The estimated p-value is 0.01255 with a simulation
standard error of 0.0039.

11. (a) We shall use the same approach as in Exercise 12 of Sec. 12.6. Let the parameter be θ = (μ, σ1, σ2)
(where μ is the common value of μ1 = μ2). Each pair of parameter values θ and θ′ that have the
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same value of σ2/σ1 can be obtained from each other by multiplying μ, σ1 and σ2 by the same
positive constant and adding some other constant to the resulting μ. That is, there exist a > 0 and
b such that θ′ = (aμ+ b, aσ1, aσ2). If X1, . . . ,Xm and Y1, . . . , Yn have the distribution determined
by θ, then X ′

i = aXi + b for i = 1, . . . ,m and Y ′
j = aYj + b for j = 1, . . . , n have the distribution

determined by θ′. We need only show that the statistic V in (9.6.13) has the same value when it
is computed using the Xi’s and Yj’s as when it is computed using the X ′

i’s and Y ′
j ’s. It is easy to

see that the numerator of V computed with the X ′
i’s and Y ′

j equals a times the numerator of V
computed using the Xi’s and Yj’s. The same is true of the denominator, hence V has the same
value either way and it must have the same distribution when the parameter is θ as when the
parameter is θ′.

(b) By the same reasoning as in part (a), the value of ν is the same whether it is calculated with
the Xi’s and Yj’s or with the X ′

i’s and Y ′
j ’s. Hence the distribution of ν (thought of as a random

variable before observing the data) depends on the parameter only through σ2/σ1.

(c) For each simulation with ratio r, we can simulate Xm having the standard normal distribution and
S2
X having the χ2 distribution with 9 degrees of freedom. Then simulate Y n having the normal

distribution with mean 0 and variance r2 and S2
Y equal to r2 times a χ2 random variable with 10

degrees of freedom. Make the four random variables independent when simulating. Then compute
V and ν. Compute the three quantiles T−1

ν (0.9), T−1
ν (0.95) and T−1

ν (0.99) and check whether V
is greater than each quantile. Our estimates are the proportions of the 10000 simulations in which
the value of V are greater than each quantile. Here are the results from one of my simulations:

Probability
r 0.9 0.95 0.99

1.0 0.1013 0.0474 0.0079
1.5 0.0976 0.0472 0.0088
2.0 0.0979 0.0506 0.0093
3.0 0.0973 0.0463 0.0110
5.0 0.0962 0.0476 0.0117
10.0 0.1007 0.0504 0.0113

The upper tail probabilities are very close to their nominal values.

12. I used the same simulations as in Exercise 11 but computed the statistic U from (9.6.3) instead of V
and compared U to the quantiles of the t distribution with 19 degrees of freedom. The proportions are
below:

Probability
r 0.9 0.95 0.99

1.0 0.1016 0.0478 0.0086
1.5 0.0946 0.0461 0.0090
2.0 0.0957 0.0483 0.0089
3.0 0.0929 0.0447 0.0112
5.0 0.0926 0.0463 0.0124
10.0 0.0964 0.0496 0.0121

These values are also very close to the nominal values.

13. (a) The fact that E(β̂1) = β1 depends only on the fact that each Yi has mean β0 + xiβ1. It does not
depend on the distribution of Yi (as long as the distribution has finite mean). Since β̂1 is a linear
function of Y1, . . . , Yn, its variance depends only on the variances of the Yi’s (and the fact that
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they are independent). It doesn’t depend on any other feature of the distribution. Indeed, we can
write

β̂1 =

n∑
i=1

(xi − xn)Yi

n∑
j=1

(xj − xn)
2

=
n∑

i=1

aiYi,

where ai = (xi − xn)/
n∑

j=1

(xj − xn)
2. Then Var(β̂1) =

∑n
i=1 a

2
i Var(Yi). This depends only on the

variances of the Yi’s, which do not depend on β0 or β1.

(b) Let T have the t distribution with k degrees of freedom. Then Yi has the same distribution as
β0 + β1xi + σT , whose variance is σ2 Var(T ). Hence, Var(Yi) = σ2 Var(T ). It follows that

Var(β̂1) = σ2 Var(T )
n∑

i=1

a2i .

Let v = Var(T )
∑n

i=1 a
2
i .

(c) There are several possible simulation schemes to estimate v. The simplest might be to notice that

n∑
i=1

a2i =
1∑n

j=1(xi − xn)2
,

so that we only need to estimate Var(T ). This could be done by simulating lots of t random
variables with k degrees of freedom and computing the sample variance. In fact, we can actually
calculate v in closed form if we wish. According to Exercise 1 in Sec. 8.4, Var(T ) = k/(k − 2).

14. As we noted in Exercise 13(c), the value of v is

5/3
n∑

i=1

(xi − xn)
2

= 3.14 × 10−3.

15. (a) We are trying to approximate the value a that makes �(a) = E[L(θ, a)|x] the smallest. We
have a sample θ(1), . . . , θ(v) from the posterior distribution of θ, so we can approximate �(a) by

�̂(a) =
v∑

i=1

L(θ(i), a)/v. We could then do a search through many values of a to find the value that

minimizes �̂(a). We could use either brute force or mathematical software for minimization. Of
course, we would only have the value of a that minimizes �̂(a) rather than �(a).

(b) To compute a simulation standard error, we could draw several (say k) samples from the posterior
(or split one large sample into k smaller ones) and let Zi be the value of a that minimizes the ith
version of �̂. Then compute S in Eq. (12.2.2) and let the simulation standard error be S/k1/2.

16. (In the displayed formula, on the right side of the = sign, all θ’s should have been μ’s.) The posterior
hyperparameters are all given in Example 12.5.2, so we can simulate as many μ values as we want to
estimate the posterior mean of L(θ, a). We simulated 100000 t random variables with 22 degrees of
freedom and multiplied each one by 15.214 and added 183.95 to get a sample of μ values. For each
value of a near 183.95, we computed �̂(a) and found that a = 182.644 gave the smallest value. We then
repeated the entire exercise for a total of five times. The other four a values were 182.641, 182.548,
182.57 and 182.645. The simulation standard error is then 0.0187
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R Code For Two Text Examples

If you are not using R or if you are an expert, you should not bother reading this section.

The code below (with comments that start #) is used to perform the calculations in Examples 12.5.6
and 12.5.7 in the text. The reason that the code appears to be so elaborate is that I realized that Exercises 8
and 9 in Sec. 12.7 asked to perform essentially the same analysis, each with one additional parameter.
Modifying the code below to handle those exercises is relatively straightforward. Significantly less coding
would be needed if one were going to perform the analysis only once. For example, one would need the three
functions that simulate each parameter given the others, plus the function called hierchain that could be
used both for burn-in and the later runs. The remaining calculations could be done by typing some additional
commands at the R prompt or in a text file to be sourced.

In the first printing, there was an error in these examples. For some reason (my mistake, obviously) the
wi values were recorded in reverse order when the simulations were performed. That is, w4 was used as if
it were w1, w3 was used as if it were w2, etc. The yi and ni values were in the correct order, otherwise the
error could have been fixed by reordering the hot dog type names, but no such luck. Because the wi were
such different numbers, the effect on the numerical output was substantial. Most notably, the means of the
1/τi are not nearly so different as stated in the first printing.

The data file hotdogs.csv contains four columns separated by commas with the data in Table 11.15
along with a header row:

Beef,Meat,Poultry,Specialty

186,173,129,155

181,191,132,170

176,182,102,114

149,190,106,191

184,172,94,162

190,147,102,146

158,146,87,140

139,139,99,187

175,175,107,180

148,136,113,,

152,179,135,,

111,153,142,,

141,107,86,,

153,195,143,,

190,135,152,,

157,140,146,,

131,138,144,,

149,,,

135,,,

132,,,

The commas with nothing after them indicate that the data in the next column has run out already, and
NA (not available) values will be produced in R. Most R functions have sensible ways to deal with NA values,
generally by including the optional argument na.rm=T or something similar. By default, R uses all values
(including NA’s) to compute things like mean or var. Hence, the the result will be NA if one does not change
the default.

First, we list some code that sets up the data, summary statistics, and prior hyperparameters. The lines
that appear below were part of a file hotdogmcmc-example.r. They were executed by typing
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source("hotdogmcmc-example.r")

at the R prompt in a command window. The source function reads a file of text and treats each line as if
it had been typed at the R prompt.

# Read the data from a comma-separated file with a header row.

hotdogs=read.table("hotdogs.csv",header=T,sep=",")

# Compute the summary statistics

# First, the sample sizes: how many are not NA?

n=apply(hotdogs,2,function(x){sum(!is.na(x))})

# Next, the sample means: remember to remove the NA values

ybar=apply(hotdogs,2,mean,na.rm=T)

# Next, the wi values (sum of squared deviations from sample mean)

w=apply(hotdogs,2,var,na.rm=T)*(n-1)

# Set the prior hyperparameters:

hyp=list(lambda0=1, alpha0=1, beta0=0.1, u0=0.001, psi0=170)

# Set the initial values of parameters. These will be perturbed to be

# used as starting values for independent Markov chains.

tau=(n-1)/w

psi=(hyp$psi0*hyp$u0+hyp$lambda0*sum(tau*ybar))/(hyp$u0+hyp$lambda0*sum(tau))

mu=(n*ybar+hyp$lambda0*psi)/(n+hyp$lambda0)

Next, we list a series of functions that perform major parts of the calculation. The programs are written
specifically for these examples, using variable names like ybar, n, w, mu, tau, and psi so that the reader can
easily match what the programs are doing to the example. If one had wished to have a general hierarchical
model program, one could have made the programs more generic at the cost of needing special routines to
deal with the particular structure of the examples. Each of these functions is stored in a text file, and the
source function is used to read the lines which in turn define the function for use by R. That is, after each
file has been “sourceed,” the function whose name appears to the left of the = sign becomes available for
use. It’s arguments appear in parentheses after the word function on the first line.

First, we have the functions that simulate the next values of the parameters in each Markov chain:

mugen=function(i,tau,psi,n,ybar,w,hyp){

#

# Simulate a new mu[i] value

#

(n[i]*ybar[i]+hyp$lambda0*psi)/(n[i]+hyp$lambda0)+rnorm(1,0,1)/sqrt(tau[i]*

(n[i]+hyp$lambda0))

}

taugen=function(i,mu,psi,n,ybar,w,hyp){

#

# Simulate a new tau[i] value

#

rgamma(1,hyp$alpha0+0.5*(n[i]+1))/(hyp$beta0+0.5*(w[i]+n[i]*(mu[i]-ybar[i])^2+

hyp$lambda0*(mu[i]-psi)^2))

}

psigen=function(mu,tau,n,ybar,w,hyp){

#

# Simulate a new psi value

#

(hyp$psi0*hyp$u0+hyp$lambda0*sum(tau*mu))/(hyp$u0+hyp$lambda0*sum(tau))+
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rnorm(1,0,1)/sqrt(hyp$u0+hyp$lambda0*sum(tau))

}

Next is the function that does burn-in and computes the F statistics described in the text. If the F
statistics are too large, this function would have to be run again from the start with more burn-in. One could
rewrite the function to allow it to start over from the end of the previous burn-in if one wished. (One would
have to preserve the accumulated means and sums of squared deviations.)

burnchain=function(nburn,start,nchain,mu,tau,psi,n,ybar,w,hyp,stand){

#

# Perform "nburn" burn-in for "nchain" Markov chains and check the F statistics

# starting after "start". The initial values are "mu", "tau", "psi"

# and are perturbed by "stand" times random variables. The data are

# "n", "ybar", "w". The prior hyperparameters are "hyp".

#

# ngroup is the number of groups

ngroup=length(ybar)

# Set up the perturbed starting values for the different chains.

# First, store 0 in all values

muval=matrix(0,nchain,ngroup)

tauval=muval

psival=rep(0,nchain)

# Next, for each chain, perturb the starting values using random

# normals or lognormals

for(l in 1:nchain){

muval[l,]=mu+stand*rnorm(ngroup)/sqrt(tau)

tauval[l,]=tau*exp(rnorm(ngroup)*stand)

psival[l]=psi+stand*rnorm(1)/sqrt(hyp$u0)

# Save the starting vectors for all chains just so we can see what

# they were.

startvec=cbind(muval,tauval,psival)

}

# The next matrices/vectors will store the accumulated means "...a" and sums

# of squared deviations "...v" so that we don’t need to store all of the

# burn-in simulations when computing the F statistics.

# See Exercise 23(b) in Sec. 7.10 of the text.

muacca=matrix(0,nchain,ngroup)

tauacca=muacca

psiacca=rep(0,nchain)

muaccv=muacca

tauaccv=muacca

psiaccv=psiacca

# The next matrix will store the burn-in F statistics so that we can

# see if we need more burn-in.

fs=matrix(0,nburn-start+1,2*ngroup+1)

# Loop through the burn-in

for(i in 1:nburn){

# Loop throught the chains

for(l in 1:nchain){
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# Loop through the coordinates

for(j in 1:ngroup){

# Generate the next mu

muval[l,j]=mugen(j,tauval[l,],psival[l],n,ybar,w,hyp)

# Accumulate the average mu (muacca) and the sum of squared deviations (muaccv)

muaccv[l,j]=muaccv[l,j]+(i-1)*(muval[l,j]-muacca[l,j])^2/i

muacca[l,j]=muacca[l,j]+(muval[l,j]-muacca[l,j])/i

# Do the same for tau

tauval[l,j]=taugen(j,muval[l,],psival[l],n,ybar,w,hyp)

tauaccv[l,j]=tauaccv[l,j]+(i-1)*(tauval[l,j]-tauacca[l,j])^2/i

tauacca[l,j]=tauacca[l,j]+(tauval[l,j]-tauacca[l,j])/i

}

# Do the same for psi

psival[l]=psigen(muval[l,],tauval[l,],n,ybar,w,hyp)

psiaccv[l]=psiaccv[l]+(i-1)*(psival[l]-psiacca[l])^2/i

psiacca[l]=psiacca[l]+(psival[l]-psiacca[l])/i

}

# Once we have enough burn-in, start computing the F statistics (see

# p. 826 in the text)

if(i>=start){

mub=i*apply(muacca,2,var)

muw=apply(muaccv,2,mean)/(i-1)

taub=i*apply(tauacca,2,var)

tauw=apply(tauaccv,2,mean)/(i-1)

psib=i*var(psiacca)

psiw=mean(psiaccv)/(i-1)

fs[i-start+1,]=c(mub/muw,taub/tauw,psib/psiw)

}

}

# Return a list with useful information: the last value of each

# parameter for all chains, the F statistics, the input information,

# and the starting vectors. The return value will contain enough

# information to allow us to start all the Markov chains and

# simulate them as long as we wish.

list(mu=muval,tau=tauval,psi=psival,fstat=fs,nburn=nburn,start=start,

n=n,ybar=ybar,w=w,hyp=hyp,nchain=nchain,startvec=startvec)

}

A similar, but simpler, function will simulate a single chain after we have finished burn-in:

hierchain=function(nsim,mu,tau,psi,n,ybar,w,hyp){

#

# Run a Markov chain for "nsim" simulations from initial values "mu",

# "tau", "psi"; the data are "n", "ybar", "w"; the prior

# hyperparameters are "hyp".

#

# ngroup is the number of groups

ngroup=length(ybar)

# Set up matrices to hold the simulated parameter values
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psiex=rep(0,nsim)

muex=matrix(0,nsim,ngroup)

tauex=muex

# Loop through the simulations

for(i in 1:nsim){

# Loop through the coordinates

for(j in 1:ngroup){

# Generate the next value of mu

temp=mugen(j,tau,psi,n,ybar,w,hyp)

mu[j]=temp

# Store the value of mu

muex[i,j]=temp

# Do the same for tau

temp=taugen(j,mu,psi,n,ybar,w,hyp)

tau[j]=temp

tauex[i,j]=temp

}

# Do the same for psi

temp=psigen(mu,tau,n,ybar,w,hyp)

psi=temp

psiex[i]=temp

}

# Return a list with useful information: The simulated values

list(mu=muex,tau=tauex,psi=psiex)

}

Next, we have a function that will run several independent chains and put the results together. It calls
the previous function once for each chain.

stackchains=function(burn,nsim){

#

# Starting from the information in "burn", obtained from "burnchain",

# run "nsim" additional simulations for each chain and stack the

# results on top of each other. The

# results from chain i can be extracted by using rows

# (i-1)*nsim to i*nsim of each parameter matrix

#

# Set up storage for parameter values

muex=NULL

tauex=NULL

psiex=NULL

# Loop through the chains

for(l in 1:burn$nchain){

# Extract the last burn-in parameter value for chain l

mu=burn$mu[l,]

tau=burn$tau[l,]

psi=burn$psi[l]

# Run the chain nsim times

temp=hierchain(nsim,mu,tau,psi,burn$n,burn$ybar,burn$w,burn$hyp)
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# Extract the simulated values from each chain and stack them.

muex=rbind(muex,temp$mu)

tauex=rbind(tauex,temp$tau)

psiex=c(psiex,temp$psi)

}

# Return a list with useful information: the simulated values, the

# number of simulations per chain, and the number of chains.

list(mu=muex,tau=tauex,psi=psiex,nsim=nsim,nchain=burn$nchain)

}

The calculations done in Example 12.5.6 begin by applying the above functions and then manipulating
the output. The following commands were typed at the R command prompt >. Notice that some of them
produce output that appears in the same window in which the typing is done. The summary statistics appear
in Table 12.4 in the text (after correcting the errors).

> # Do the burn-in

> hotdog.burn=burnchain(100,100,6,mu,tau,psi,n,ybar,w,hyp,2)

> # Note that the F statistics are all less than 1+0.44m=45.

> hotdog.burn$fstat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.799452 0.7756733 1.464278 1.831631 0.9673807 0.4030658 1.161147 2.727503

[,9]

[1,] 0.548359

> # Now run each chain 10000 more times.

> hotdog.mcmc=stackchains(hotdog.burn,10000)

> # Obtain the data for the summary table in the text

> apply(hotdog.mcmc$mu,2,mean)

[1] 156.5894 158.2559 120.5360 159.5841

> sqrt(apply(hotdog.mcmc$mu,2,var))

[1] 4.893067 5.825234 5.552140 7.615332

> apply(1/hotdog.mcmc$tau,2,mean)

[1] 495.6348 608.4955 542.8819 568.2482

> sqrt(apply(1/hotdog.mcmc$tau,2,var))

[1] 166.0203 221.1775 201.6250 307.3618

> mean(hotdog.mcmc$psi)

[1] 151.0273

> sqrt(var(hotdog.mcmc$psi))

[1] 11.16116

Next, we source a file that computes values that we can use to assess how similar/different the four groups
of hot dogs are.

# Compute the six ratios of precisions (or variances)

hotdog.ratio=cbind(hotdog.mcmc$tau[,1]/hotdog.mcmc$tau[,2],

hotdog.mcmc$tau[,1]/hotdog.mcmc$tau[,3],hotdog.mcmc$tau[,1]/hotdog.mcmc$tau[,4],

hotdog.mcmc$tau[,2]/hotdog.mcmc$tau[,3],hotdog.mcmc$tau[,2]/hotdog.mcmc$tau[,4],

hotdog.mcmc$tau[,3]/hotdog.mcmc$tau[,4])

# For each simulation, find the maximum ratio. We need to include one over

# each ratio also.

hotdog.rmax=apply(cbind(hotdog.ratio,1/hotdog.ratio),1,max)
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# Compute the six differences between means.

hotdog.diff=cbind(hotdog.mcmc$mu[,1]-hotdog.mcmc$mu[,2],

hotdog.mcmc$mu[,2]-hotdog.mcmc$mu[,3],hotdog.mcmc$mu[,3]-hotdog.mcmc$mu[,4],

hotdog.mcmc$mu[,4]-hotdog.mcmc$mu[,1],hotdog.mcmc$mu[,1]-hotdog.mcmc$mu[,3],

hotdog.mcmc$mu[,2]-hotdog.mcmc$mu[,4])

# For each simulation, find the minimum, maximum and average absolute

# differences.

hotdog.min=apply(abs(hotdog.diff),1,min)

hotdog.max=apply(abs(hotdog.diff),1,max)

hotdog.ave=apply(abs(hotdog.diff),1,mean)

Using the results of the above calculations, we now type commands at the prompt that answer various
questions. First, what proportion of the time is one of the ratios of standard deviations at least 1.5 (ratio
of variances at least 2.25)? In this calculation the vector hotdog.max>2.25 has coordinates that are either
TRUE (1) or FALSE (0) depending on whether the maximum ratio is greater than 2.25 or not. The mean is
then the proportion of TRUEs.

mean(hotdog.rmax>2.25)

[1] 0.3982667

Next, compute the 0.01 quantile of the maximum absolute difference between between the means, the
median of the minimum difference, and the 0.01 quantile of the average difference. In 99% of the simulations,
the difference was greater than the 0.01 quantile.

> quantile(hotdog.max,0.01)

1%

26.3452

> median(hotdog.min)

[1] 2.224152

> quantile(hotdog.ave,0.01)

1%

13.77761

In Example 12.5.7, we needed to simulate a pair of observations (Y1, Y3) from each parameter vector and
then approximate the 0.05 and 0.95 quantiles of the distribution of Y1 − Y3 for a prediction interval. The
next function allows one to compute a general function of the parameters and find simulation standard errors
using Eq. (12.5.1), that is S/k1/2.

mcmcse=function(simobj,func,entire=FALSE){

#

# Start with the result of a simulation "simobj", compute a vector function

# "func" from each chain, and then compute formula (12.5.1) for each

# coordinate as well as the covariance matrix. If "entire" is TRUE,

# it also computes the function value on the entire parameter

# matrix. This may differ from the average over the chains if "func"

# is not and average and/or if it does additional simulation.

# Also computes the avearge of the "func"

# values. The function "func" must take as arguments matrices of mu,

# tau, and psi values with each row from a single simulation. It

# must return a real vector. For example, if you want two

# quantiles of the distribution of f(Yi,Yj) where Yi comes from group
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# i and Yj comes from group j, func should loop through the rows of

# its input and simulate a pair (Yi,Yj) for each parameter. Then it

# should return the appropriate sample quantiles of the simulated

# values of f(Yj,Yj).

#

# k is the number of chains, nsim the number of simulations

k=simobj$nchain

nsim=simobj$nsim

# Loop through the chains

for(i in 1:k){

# Extract the parameters for chain i

mu=simobj$mu[((i-1)*nsim):(i*nsim),]

tau=simobj$tau[((i-1)*nsim):(i*nsim),]

psi=simobj$psi[((i-1)*nsim):(i*nsim)]

# Compute the function value based on the parameters of chain i

if(i==1){

valf=func(mu,tau,psi)

}else{

valf=rbind(valf,func(mu,tau,psi))

}

}

# p is how many functions were computed

p=ncol(valf)

# compute the average of each function

ave=apply(valf,2,mean)

# compute formula (12.5.1) for each function

se=sqrt(apply(valf,2,var)*(k-1))/k

#

# Return the average function value, formula (12.5.1), and covariance

# matrix. The covariance matrix can be useful if you want to

# compute a further function of the output and then compute a

# simulation standard error for that further function. Also computes

# the function on the entire parameter set if "entire=TRUE".

if(entire){

list(ave=ave,se=se,covmat=cov(valf)*(k-1)/k^2,

entire=func(simobj$mu,simobj$tau,simobj$psi))

}else{

list(ave=ave,se=se,covmat=cov(valf)*(k-1)/k^2)

}

}

The specific function func used in Example 12.5.7 is:

hotdog13=function(mu,tau,psi){

#

# Compute the 0.05 and 0.95 quantiles of predictive distribution of Y1-Y3

#

n=nrow(mu)

# Make a place to store the differences.
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440 Chapter 12. Simulation

vals=rep(0,n)

# Loop through the parameter vectors.

for(i in 1:n){

# Simulate a difference.

vals[i]=rnorm(1)/sqrt(tau[i,1])+mu[i,1]-(rnorm(1)/

sqrt(tau[i,3])+mu[i,3])

}

# Return the desired quantiles

quantile(vals,c(0.05,0.95))

}

Finally, we use the above functions to compute the prediction interval in Example 12.5.7 along with the
simulation standard errors.

> hotdog.pred=mcmcse(hotdog.mcmc,hotdog13,T)

> hotdog.pred

$ave

5% 95%

-18.57540 90.20092

$se

5% 95%

0.2228034 0.4345629

$covmat

5% 95%

5% 0.04964136 0.07727458

95% 0.07727458 0.18884493

$entire

5% 95%

-18.49283 90.62661

The final line hotdog.pred$entire gives the prediction interval based on the entire collection of 60,000 sim-
ulations. The one listed as hotdog.pred$ave is the average of the six intervals based on the six independent
Markov chains. There is not much difference between them. The simulation standard errors show up as
hotdog.pred$se. Remember that the numbers in the first printing don’t match these because of the error
mentioned earlier.
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