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The Book

Probability and Statistics with R is a work born of the love of statistics and the
advancements that have been made in the field as more powerful computers can be used to
perform calculations and simulations that were only dreamed of by those who came before.
The S language and its derivative, R, have made the practice of statistics available to anyone
with the time and inclination to do so.

Teachers will enjoy the real-world examples and the thoroughly worked out derivations.
Those wanting to use this book as a reference work will appreciate the extensive treat-
ments on data analysis using appropriate techniques, both parametric and nonparametric.
Students who are visual learners will appreciate the detailed graphics and clear captions,
while the hands-on learners will be pleased with the abundant problems and solutions.
(A solutions manual should be available from Taylor & Francis.) It is our hope that
practitioners of statistics at every level will welcome the features of this book and that
it will become a valuable addition to their statistics libraries.

The Purpose

Our primary intention when we undertook this project was to introduce R as a teaching
statistical package, rather than just a program for researchers. As much as possible, we
have made a great effort to link the statistical contents with the procedures used by R to
show consistency to undergraduate students. The reader who uses S-PLUS will also find
this text useful, as S-PLUS commands are included with those for R in the vast majority of
the examples.

This book is intended to be practical, readable, and clear. It gives the reader real-world
examples of how S can be used to solve problems in every topic covered including, but
not limited to, general probability in both the univariate and multivariate cases, sampling
distributions and point estimation, confidence intervals, hypothesis testing, experimental
design, and regression. Most of the problems are taken from genuine data sets rather than
created out of thin air. Next, it is unusually thorough in its treatment of virtually every
topic, covering both the traditional methods to solve problems as well as many nonparamet-
ric techniques. Third, the figures used to explain difficult topics are exceptionally detailed.
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Finally, the derivations of difficult equations are worked out thoroughly rather than being
left as exercises. These features, and many others, will make this book beneficial to any
reader interested in applying the S language to the world of statistics.

The Program

The S language includes both R and S-PLUS. “R can be regarded as an implementation of
the S language which was developed at Bell Laboratories by Rick Becker, John Chambers,
and Allan Wilks, and also forms the basis of the S-PLUS systems.”

(http://cran.r-project.org/doc/manuals/R-intro.html#Preface)
The current R is the result of a collaborative effort with contributions from all over

the world. R was initially written by Robert Gentleman and Ross Ihaka of the Statistics
Department of the University of Auckland. Since mid-1997 there has been a core group
with write access to the R source (http://www.r-project.org/—click “Contributors”on the
sidebar).

Not only is R an outstanding statistical package, but it is offered free of charge and can
be downloaded from http://www.r-project.org/. The authors are greatly indebted to the
giants of statistics and programming on whose shoulders we have stood to see what we will
show the readers of this text.

The Content

The core of the material covered in this text has been used in undergraduate courses at
the Public University of Navarre for the last ten years. It has been used to teach engineering
(agricultural, industrial, and telecommunications) and economics majors. Some of the
material in this book has also been used to teach graduate students studying agriculture,
biology, engineering, and medicine.

The book starts with a brief introduction to S that includes syntax, structures, and
functions. It is designed to provide an overview of how to use both R and S-PLUS so that
even a neophyte will be able to solve the problems by the end of the chapter.

Chapter 2, entitled “Exploring Data,”covers important graphical and numerical descrip-
tive methods. This chapter could be used to teach a first course in statistics.

The next three chapters deal with probability and random variables in a generally classical
presentation that includes many examples and an extensive collection of problems to practice
all that has been learned.

Chapter 6 presents some important statistics and their sampling distributions. Solving
the exercises will give any reader confidence that the difficult topics covered in this chapter
are understood.

The next four chapters encompass point estimation, confidence intervals, hypothesis test-
ing, and a wide range of nonparametric methods including goodness-of-fit tests, categorical
data analysis, nonparametric bootstrapping, and permutation tests.

Chapter 11 provides an introduction to experimental design using fixed and random
effects models as well as the randomized block design and the two-factor factorial design.

The book ends with a chapter on simple and multiple regression analysis. The procedures
from this chapter are used to solve three interesting case studies based on real data.

The Fonts

Knowing several typographical conventions will help the reader in understanding the
material presented in this text. R code is displayed in a monospaced font with the > symbol
in front of commands that are entered at the R prompt.
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> x<-0.28354
> round(x,2)
[1] 0.28

The same font is used for data sets and functions, though functions are followed by ().
For example, the PASWR package but the round() function would be shown. Throughout
the text, a is found at the end of solutions to examples. In the index, page numbers
in BOLD are where the primary occurrences of topics are found, while those in ITALICS
indicate the pages where a problem about a topic or using a given data set can be located.

The Web

This text is supported at http://www1.appstate.edu/∼ arnholta/PASWR on the Internet.
The website has up-to-date errata, chapter scripts, and a copy of the PASWR package (which
is also on CRAN) available for download.
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Chapter 1

A Brief Introduction to S

1.1 The Basics of S

S is a system for interactive data analysis that was developed at Bell Laboratories. Two
dialects of the S language exist: R, an open source implementation of S available from
http://www.r-project.org, and S-PLUS, a commercial implementation of S. This book will
refer to both R and S-PLUS as simply S. The S language was designed with interactive use
in mind. In recent years, the number of new statistical methods and applications that have
been developed with this language have caused its dialect R to be considered the “lingua
franca” for computational statistics.

R and S-PLUS both run on a number of operating systems. The current text focuses on
the use of S for Windows-based machines; however, users of other operating systems should
still find the vast majority of the commands valid. Because the Graphical User Interface
(GUI) evolves so quickly, the concentration of this text is the command language that has
remained fairly static in more recent versions of R and S-PLUS. For basic command-line
data analysis, most programs written in R can be translated into S-PLUS, and vice versa.
The examples in the text use R (Version 2.6) and S-PLUS (Version 8), the current versions at
the time of writing. Code referred to as S will generally work in both R and S-PLUS. If no
program is specified, R code is usually present in this text. Comments are often provided to
indicate what changes are needed to R code to allow similar commands to run in S-PLUS.

1.2 Using S

When S is launched, the prompt, >, is displayed in the commands window, indicating
that the software is ready to receive input. The convention used in this text is to show
what is typed after the command prompt (>) followed by the output generated from what
is typed. A single expression or assignment is carried out once the user presses the Enter
key. There is no punctuation required for single expressions and assignments. However,
if the user wants to issue multiple expressions and/or assignments on a single line, each
expression or assignment must be separated with a semicolon (;). To terminate an S session,
either type q() at the command-line in the commands window or choose Exit from the
File menu in a GUI environment. On-line help can be accessed by clicking HELP in a
GUI environment or by typing help(name of command) or ?(name of command) at the
command-line. Another way of learning about a function or data set in R is to use the
function example(). This runs the code in the examples section of the help page. For
instance, to execute the code for the function plot(), enter the following code at the R
prompt:

1
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> par(ask=TRUE)
> example(plot)

The par(ask=TRUE) prompts the user before moving to the next example. The default
is par(ask=FALSE); and with that setting, examples available are shown without a pause,
making reading code and output nearly impossible. S is a case sensitive language! Conse-
quently, X and x refer to different objects. If the user omits a comma or a parenthesis, or
any other type of typographical error occurs when typing at the command-line, a + sign
will appear to indicate that the command is incomplete.

1.3 Data Sets

When using S, one should think of data sets as objects. All of the data sets that are
created or imported during an S-PLUS session are stored as objects in the .Data folder
of the projects directory unless they are intentionally erased with the rm() command.
Data created or imported while using R is stored in memory. The user is prompted at
the end of the R session to save the workspace. Consequently, if the computer crashes
while R is running, the workspace will be lost. Functions, as well as data sets in S, are
considered objects. To obtain a list of objects in the current workspace, type objects()
or ls() at the command-line prompt. The directories S searches when using the functions
objects() and ls() can be displayed by typing search() at the command-line prompt.
To extract all objects following a particular pattern with R, say all objects starting with
E, enter objects(pattern="^E"). Likewise, to remove all objects beginning with E, type
remove(list=objects(pattern="^E")). To extract all objects following a particular pat-
tern with S-PLUS, say all objects starting with E, enter objects(pattern="E*"). Likewise,
to remove all objects beginning with E, type remove(objects(pattern="E*")). These last
commands are Windows specific. If one enters the same commands on a UNIX system, ALL
of the files will be deleted. If, at some point, the entire workspace needs to be cleared, key
in rm(list=ls()).

Numerous data sets and functions exist in an extensive collection of S packages. An S
package is a collection of S functions, data, help files, and other associated files (C, C++,
or FORTRAN code) that have been combined into a single entity that can be distributed
to other S users. R packages can be downloaded and installed within an R session with the
function install.packages(). (The Windows version of R has a menu interface to perform
this task.) Once a package is installed, it can be loaded with the library() function. Data
included in a package is immediately available in S by typing the data set name at the
command prompt. Contributed R packages can be downloaded and installed from the
Comprehensive R Archive Network (CRAN) at http://www.r-project.org. A similar type
of archive for S-PLUS packages, the Comprehensive S Archival Network (CSAN), is hosted
by Insightful at http://csan.insightful.com. Consequently, if one wants to use the data set
quine, which is in the MASS package, first key in

> library(MASS)

after which one would be able to use the data set quine. The data stored in quine can be
seen by typing quine at the command prompt after MASS is loaded. To see all the data sets
in a given package, type data(). If a more complete description of a particular data file,
say Cars93, is desired, enter ?Cars93 at the prompt.
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The functions and data sets used in this book are available in the PASWR package, which
can be downloaded from CRAN at http://www.r-project.org. Scripts for each chapter are
available from http://www1.appstate.edu/∼ arnholta/PASWR which also contains func-
tions and data sets for using this book with S-PLUS as well as the R PASWR package.

The use of an editor is highly encouraged for viewing and executing the on-line scripts.
Tinn-R is a free, Windows-only editor the authors have used extensively that can be
found at http://www.sciviews.org/Tinn-R/. Using an editor will also help when one is
writing and debugging code. For more on editors for a variety of operating systems, see
http://www.sciviews.org/ rgui/projects/Editors.html.

1.4 Data Manipulation

1.4.1 S Structures

Before the examples, it will be useful to have a picture in mind of how S structures are
related to one another. Figure 1.1 graphically displays the fact that

Elements ⊂ Vectors ⊂ Matrices ⊂ Arrays

As the examples progress, it will become clear how S treats these different structures.
Broadly speaking, elements are generally numeric, character, or factor. Factors are categor-
ical data whose categories are called levels. For example, “the cities of North Carolina” is
a categorical variable. A factor with four levels could be cities with populations between 1
and 1000, 1001 and 10,000, and 10,001 and 100,000, and greater than 100,000 inhabitants.
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1.4.2 Mathematical Operations

Arithmetic expressions in S are the usual +, −, ∗, /, and .̂ For instance, to calculate
(7 × 3) + 12/2 − 72 +

√
4, enter

> (7*3)+12/2-7^2+sqrt(4)

and see

[1] -20

as the output.
Note that the answer to the previous computation is -20 printed to the right of [1],

which indicates the answer starts at the first element of a vector. From this point forward,
the command(s) and the output generated will be included in a single section, as both will
appear in the commands window, with the understanding that the entire section can be
duplicated by entering only what follows the command prompt(s) (>). Common functions
such as log(), log10(), exp(), sin(), cos(), tan(), and sqrt() (square root) are all
recognized by S. For a quick reference to commonly used S functions, see Table A.1 on
page 659. When working with numeric data, one may want to reduce the number of decimals
appearing in the final answer. The function round(x,2) rounds the number of decimals to
two for the object x:

> x <- 0.28354
> round(x,2)
[1] 0.28

Assigning values to objects in S can be done in several ways. The standard way to assign
a value to an object is by using the symbol <-. The = sign can only be used with R versions
1.6 or later and S-PLUS versions 6 or later. The user should not assign values or objects
to reserved letters such as c, q, s, t, C, D, F, I, or T, nor should one write functions with
names equal to S functions such as cor, var, mean, or any others. The following commands
all assign the value 7 to the object x:

> x <- 7
> x = 7

If x had already been assigned a value, the previous value would be overwritten with the new
value. Consequently, it is always wise first to ascertain whether an object has an assigned
value. To see if an object, say x, has an assigned value, type x at the command prompt. If
the commands window returns

> x
Error: Object "x" not found

one can assign a value or function to x without fear of erasing a preexisting value or function.

1.4.3 Vectors

One special type of object is the vector. When working with univariate data, one will
often store information in vectors. The S command to create a vector is c(...). To store
the values 1.5, 2, and 3 in a vector named x, type

> x <- c(1.5,2,3)
> x
[1] 1.5 2.0 3.0
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To square each value in x, enter

> x^2
[1] 2.25 4.00 9.00

To find the position of the entry whose value is 4, enter

> which(x^2==4)
[1] 2

The S command c(...) also works with character data:

> y <- c("A","table","book")
> y
[1] "A" "table" "book"

Some of the more useful commands that are used when working with numeric vectors are
included in Table A.1 on page 659.

Two or more vectors can be joined as columns of vectors or rows of vectors. To join two
or more column vectors, use the S command cbind(). To join two or more row vectors,
use the S command rbind(). For example, suppose x = (2, 3, 4, 1) and y = (1, 1, 3, 7). If
column vectors are desired, use cbind():

> x <- c(2,3,4,1)
> y <- c(1,1,3,7)
> cbind(x, y)

x y
[1,] 2 1
[2,] 3 1
[3,] 4 3
[4,] 1 7

If row vectors are desired, use rbind():

> rbind(x, y)
[,1] [,2] [,3] [,4]

x 2 3 4 1
y 1 1 3 7

1.4.4 Sequences

The command seq() creates a sequence of numbers. Sequences of numbers are often
used when creating customized graphs. The three arguments that are typically used with
the command seq() are the starting value, the ending value, and the incremental value.
For example, if a sequence of numbers from 0 to 1 in increments of 0.2 is needed, type
seq(0,1,0.2):

> seq(0,1,0.2)
[1] 0.0 0.2 0.4 0.6 0.8 1.0

When the incremental value is 1, it suffices to use only the starting and ending values of
the sequence:

> seq(0,8)
[1] 0 1 2 3 4 5 6 7 8
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An even shorter way to achieve the same result is 0:8:

> 0:8
[1] 0 1 2 3 4 5 6 7 8

Decreasing sequences are also possible with commands such as 8:0:

> 8:0
[1] 8 7 6 5 4 3 2 1 0

The command rep(a, n) is used to repeat the number or character a, n times. For
example,

> rep(1,5)
[1] 1 1 1 1 1

repeats the value 1 five times. S is extremely flexible and allows several commands to be
combined:

> rep(c(0,"x"), 3)
[1] "0" "x" "0" "x" "0" "x"
> rep(c(1,3,2), length=10)
[1] 1 3 2 1 3 2 1 3 2 1
> c(rep(1,3), rep(2,3), rep(3,3))
[1] 1 1 1 2 2 2 3 3 3
> rep(1:3, rep(3,3))
[1] 1 1 1 2 2 2 3 3 3

Specific values in a vector are referenced using square braces []. It is important to keep
in mind that S uses parentheses () with functions and square braces [] to reference values
in vectors, arrays, and lists. A list is an S object whose elements can be of different types
(character, numeric, factor, etc.). The following values, stored in typos, represent the
number of mistakes made per page in the first draft of a research article:

> typos <- c(2, 2, 2, 3, 3, 0, 3, 4, 6, 4)
> typos
[1] 2 2 2 3 3 0 3 4 6 4

To select the number of mistakes made on the fourth page, type typos[4]:

> typos[4]
[1] 3

To get the number of mistakes made on pages three through six, enter typos[3:6]:

> typos[3:6]
[1] 2 3 3 0

To extract the number of mistakes made on non-continuous pages such as the third, sixth,
and tenth pages, key in typos[c(3,6,10)]:

> typos[c(3,6,10)]
[1] 2 0 4

To extract the number of mistakes on every page except the second and third, input
typos[-c(2,3)]:
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> typos[-c(2,3)]
[1] 2 3 3 0 3 4 6 4

The function names() allows the assignment of names to vectors:

> x <- c(1,2,3)
> names(x) <- c("A","B","C")
> x
A B C
1 2 3

To suppress the names of a vector, type names(x)<-NULL:

> names(x) <- NULL
> x
[1] 1 2 3

1.4.5 Reading Data

S has the ability to read ASCII data stored in external files. S-PLUS can read data stored
in a number of other formats, such as MINITABTM worksheets (*.mtw) and/or SPSS files
saved as *.sav, while R is slightly more limited with respect to reading other formats. For
all but the smallest of data sets, when working with data stored in a format not readable
by S, it will almost always prove easier first to save the original data as a text file, and then
to read the external file using read.table() or scan(), although read.table() is more
user-friendly. For reading data from the console, the function scan() may be used.

1.4.5.1 Using scan()

The function scan() works well to enter a small amount of data by either typing in the
console or using a combination of copying and pasting procedures when the data can be
highlighted and copied. To enter the ages for the subjects in Table 1.1 on page 10, one can
proceed in two fashions. One can enter all of the ages in one row, or one can enter one
age per row. Note that when the values are read into both age1 and age2, the input is
terminated by an empty line:

> age1 <- scan()
1: 23 23 27 27 39 41 45 49 50 53 53 54 56 57 58 58 60 61
19:
Read 18 items

> age2 <-scan()
1: 23
2: 23
3: 27
.
.
.
18: 61
19:
Read 18 items



8 Probability and Statistics with R

1.4.5.2 Using read.table()

The function read.table() reads a file in table format (a rectangular data set where
the column variables can be quantitative and/or qualitative) and creates a data frame
from the external file. When the file contains variable names in the first row, use the
argument header=TRUE. The default setting in read.table() is white space (one or more
blank spaces) for field separation. To use other delimiters (commas, periods, etc.) consult
the read table help file (?read.table). Suppose the data set Bodyfat in Table 1.1 on
page 10 is a tab delimited ASCII data set stored in a folder named DATA under the name
Bodyfat.txt. To read the data into S from the commands window, type

> FAT <- read.table("D:/data/Bodyfat.txt", header=TRUE, sep="\t")
> FAT

age fat sex
1 23 9.5 M
2 23 27.9 F
. . . .
. . . .
. . . .
18 61 34.5 F

Note that forward slashes (/) are used to specify the path names. To see the gender for
subjects 3 through 6, type

> FAT$sex[3:6]
[1] M M F F
Levels: F M

For R only The file argument of the read.table() command may be a complete url,
allowing one to read data into R from the Internet. To read the file BR.txt stored on the
Internet at

http://www1.appstate.edu/∼arnholta/PASWR/CD/data/Baberuth.txt,

type

> site <-"http://www1.appstate.edu/~arnholta/PASWR/CD/data/Baberuth.txt"
> Baberuth <- read.table(file=url(site), header=TRUE)
> Baberuth[1:5,1:9] # First five rows and nine columns
Year Team G AB R H X2B X3B HR

1 1914 Bos-A 5 10 1 2 1 0 0
2 1915 Bos-A 42 92 16 29 10 1 4
3 1916 Bos-A 67 136 18 37 5 3 3
4 1917 Bos-A 52 123 14 40 6 3 2
5 1918 Bos-A 95 317 50 95 26 11 11

1.4.5.3 Using write()

The function write() allows the contents of an S data frame or matrix to be saved to an
external file in ASCII format. However, one should be aware that information must first be
transposed when using the write command. The S command to transpose a matrix or data
frame is t(x), where x is the matrix or data frame of interest. To save the data frame FAT
to a pen drive, type
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> write(t(FAT), file="D:/Bodyfat.txt", ncolumns=3)

One of the pitfalls to storing information using write() is that the file will no longer contain
column headings:

23 9.5 M
23 27.9 F
27 7.8 M
. . .
. . .
. . .
61 34.5 F

The R function write.table() avoids many of the inconveniences associated with the S
function write(). It may be used without transposing the data, it does not lose column
headings, and it generally stores the data as a data frame. To save the data frame FAT to
a pen drive, type write.table(FAT, file="D:/Bodyfat.txt") at the R prompt. To read
the data stored on the pen drive at a later time, use the function read.table().

1.4.5.4 Using dump() and source()

Instead of using write(), one might use dump() to save the contents of an S object, be
it a data frame, function, etc. The S function dump() takes a vector of names of S objects
and produces text representations of the objects in a file. Two of the advantages of using
dump() are that the dumped file may be read in either R or S-PLUS by using the command
source() and that the names of the objects are not lost in the writing. A brief example
follows that shows how the contents of a vector named Age are saved to an external file
using R and subsequently opened using the source() command in S-PLUS:

> dump("Age", file="E:/Age") # R object Age stored on pen drive.
> source("E:/Age") # File Age stored on pen drive,

# now available in S-PLUS or R
# using the same or different
# machine.

The R function save() writes an external representation of R objects to a specified file
that can be read on any platform using R. The objects can be read back from the file at a
later date by using the function load(). If using a point and click interface, the command
is labeled Save Workspace. . . and Load Workspace. . ., respectively, found under the file
drop down menu. S-PLUS allows the user to save data sets in a variety of formats using the
Export Data command found under the file drop down menu.

1.4.6 Logical Operators and Missing Values

The logical operators are <, >, <=, >= (less than, greater than, less than or equal to,
greater than or equal to), == for exact equality, != for exact inequality, & for intersection,
and | for union. The data in Table 1.1 on the following page that are stored in the data
frame Bodyfat come from a study reported in the American Journal of Clinical Nutrition
(Mazess et al., 1984) that investigated a new method for measuring body composition.

One way to access variables in a data frame is to use the function with(). The structure
of with() is with(data frame, expression, ...):
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Table 1.1: Body composition (Bodyfat)
n age % fat sex n age % fat sex
1 23 9.5 M 10 53 34.7 F
2 23 27.9 F 11 53 42.0 F
3 27 7.8 M 12 54 29.1 F
4 27 17.8 M 13 56 32.5 F
5 39 31.4 F 14 57 30.3 F
6 41 25.9 F 15 58 33.0 F
7 45 27.4 M 16 58 33.8 F
8 49 25.2 F 17 60 41.1 F
9 50 31.1 F 18 61 34.5 F

> with(Bodyfat, fat)
[1] 9.5 27.9 7.8 17.8 31.4 25.9 27.4 25.2 31.1 34.7 42.0 29.1
[13] 32.5 30.3 33.0 33.8 41.1 34.5

Suppose one is interested in locating subjects whose fat percentages are less than 25%. This
can be accomplished using the with() command in conjunction with fat<25:

> with(Bodyfat, fat < 25)
[1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

To find subjects whose body fat percentages are less than 25% or greater than 35%, enter

> with(Bodyfat, fat < 25 | fat > 35)
[1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[11] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

To see the fat percentages for subjects with less than 25% fat, type

> low.fat <- with(Bodyfat, fat[fat<25])
> low.fat
[1] 9.5 7.8 17.8

To remove the subject whose body fat is 7.8 from the previous output, the following may
be used:

> with(Bodyfat, fat[fat<25 & fat!=7.8])
[1] 9.5 17.8

R returns the word TRUE or FALSE for a logical condition while S-PLUS returns the letters
T or F, where T represents true and F represents false. From the R output it can be seen
that only the first, third, and fourth subjects have fat percentages less than 25%. To select
subjects whose fat percentage is less than 25% or greater than 35% without using the with()
command, attach the data set Bodyfat and input fat<25|fat>35:

> attach(Bodyfat)
> fat<25|fat>35
[1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[11] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE



A Brief Introduction to S 11

Once the data set has been attached, the data set being used remains on the search path
until it is detached. If one wants to extract the values from a given vector that satisfy a
certain condition, use square braces, []. For example, to store the fat values for all subjects
whose fat measured less than 25% in low.fat, key in low.fat <- fat[fat<25]:

> low.fat <- fat[fat<25]
> low.fat
[1] 9.5 7.8 17.8

It is also possible to extract values satisfying more complicated logical conditions. For
example, to extract all fat percentages that are less than 25% and different from 7.8, enter
fat[fat<25 & fat !=7.8]:

> fat[fat<25 & fat !=7.8]
[1] 9.5 17.8
> detach(Bodyfat)

When working with real data, values are often unavailable (the experiment failed, the
subject did not show up, the value was lost, etc.). S uses NA to denote a missing value or to
denote the result of an operation performed on values that contain NA values. The function
is.na(x) returns a logical vector of the same size as x that takes on the value TRUE if and
only if the corresponding element in x is NA. If x is a vector with NA values, but only the
non-missing values are of interest, the function !is.na(x) can be used as shown next:

> x <- c(1,6,9,2, NA)
> is.na(x)
[1] FALSE FALSE FALSE FALSE TRUE
> y<-x[!is.na(x)]
> y
[1] 1 6 9 2

The following example illustrates how to select the quantitative values of a variable that
fulfill a particular character condition (that of receiving treatment A):

> x <- c(19,14,15,17,20,23,19,19,21)
> treatment <- c(rep("A",3), rep("B",3), rep("C",3))
> x[treatment=="A"]
[1] 19 14 15

To select the value for patients who received treatment=A or treatment=B, the appropriate
command is x[treatment=="A"|treatment=="B"]:

> x[treatment=="A" | treatment=="B"]
[1] 19 14 15 17 20 23

The function split() splits the values of a variable A according to the categories of a
variable B:

> split(x, treatment)
$A
[1] 19 14 15

$B
[1] 17 20 23

$C
[1] 19 19 21
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1.4.7 Matrices

Matrices are used to arrange values in rows and columns in a rectangular table. In the
following example, different types of barley are in the columns, and different provinces in
Spain are in the rows. The entries in the matrix represent the weight in thousands of metric
tons for each type of barley produced in a given province. The barley.data matrix will
be used to illustrate various functions and manipulations that can be applied to a matrix.
Given the matrix ⎛⎝190 8 22.0

191 4 1.7
223 80 2.0

⎞⎠ ,

the values are written to a matrix (reading across the rows with the command byrow=TRUE)
with name barley.data as follows:

> Data <- c(190,8,22,191,4,1.7,223,80,2)
> barley.data <- matrix(Data, nrow=3, byrow=TRUE)
> barley.data

[,1] [,2] [,3]
[1,] 190 8 22.0
[2,] 191 4 1.7
[3,] 223 80 2.0

The matrix’s dimensions are computed by typing dim(barley.data):

> dim(barley.data)
[1] 3 3

The following code creates two objects where the names of the three provinces are assigned
to province, and the three types of barley to type:

> province <- c("Navarra", "Zaragoza", "Madrid")
> type <- c("typeA", "typeB", "typeC")

Assign the names stored in province to the rows of the matrix as follows:

> dimnames(barley.data) <- list(province, NULL)
> barley.data

[,1] [,2] [,3]
Navarra 190 8 22.0
Zaragoza 191 4 1.7
Madrid 223 80 2.0

Next, assign the names stored in type to the columns of the matrix:

> dimnames(barley.data) <- list(NULL, type)
> barley.data

typeA typeB typeC
[1,] 190 8 22.0
[2,] 191 4 1.7
[3,] 223 80 2.0

To assign row and column names simultaneously, the command that should be used is
dimnames(barley.data) <- list(province, type):
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> dimnames(barley.data) <- list(province, type)
> barley.data

typeA typeB typeC
Navarra 190 8 22.0
Zaragoza 191 4 1.7
Madrid 223 80 2.0

One can verify the assigned names with the function dimnames():

> dimnames(barley.data)
[[1]]
[1] "Navarra" "Zaragoza" "Madrid"

[[2]]
[1] "typeA" "typeB" "typeC"

To delete the row and column name assignments, type

> dimnames(barley.data) <- NULL

If one is interested in only the second row of data, one can enter

> barley.data[2,]
typeA typeB typeC

191 4 1.7

or

> barley.data["Zaragoza", ]
typeA typeB typeC

191 4 1.7

To see the third column, key in

> barley.data[,"typeC"]
Navarra Zaragoza Madrid

22 1.7 2

To add an additional column for a fourth type of barley (typeD), use the cbind() command:

> typeD <- c(2,3.5,2.75)
> barley.data <- cbind(barley.data, typeD)
> rm("typeD")

> barley.data
typeA typeB typeC typeD

Navarra 190 8 22.0 2.00
Zaragoza 191 4 1.7 3.50
Madrid 223 80 2.0 2.75

(1.1)

The function apply() allows the user to apply a function to one or more of the dimensions
of an array. To calculate the mean of the columns for the matrix barley.data, type
apply(barley.data, 2, mean):

> apply(barley.data, 2, mean)
typeA typeB typeC typeD

201.333333 30.666667 8.566667 2.750000
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The second argument, a 2 in the previous example, tells the function apply() to work on
the columns. For the function to work on rows, the second argument should be a 1. For
example, to find the average barley weight for each province, type apply(barley.data,1,
mean):

> apply(barley.data, 1, mean)
Navarra Zaragoza Madrid
55.5000 50.0500 76.9375

The function names() allows the assignment of names to vectors:

> x <- c(1,2,3)
> names(x) <- c("A","B","C")
> x
A B C
1 2 3

To suppress the names of a vector, type names(x)<-NULL:

> names(x) <- NULL
> x
[1] 1 2 3

1.4.8 Vector and Matrix Operations

Consider the system of equations:

3 x+ 2 y + 1 z = 10
2 x− 3 y + 1 z =−1
1 x+ 1 y + 1 z = 6

This system can be represented with matrices and vectors as

Ax = b, where A =

⎡⎣ 3 2 1
2 −3 1
1 1 1

⎤⎦ ,x =

⎡⎣x
y
z

⎤⎦ , and b =

⎡⎣ 10
−1

6

⎤⎦
To solve this system of equations, enter A and b into S and type solve(A, b) at the
command prompt:

> A <- matrix(c(3,2,1,2,-3,1,1,1,1), byrow=TRUE, nrow=3)
> A

[,1] [,2] [,3]
[1,] 3 2 1
[2,] 2 -3 1
[3,] 1 1 1
> b <- matrix(c(10,-1,6), byrow=TRUE, nrow=3)
> b

[,1]
[1,] 10
[2,] -1
[3,] 6
> x <- solve(A, b)
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> x
[,1]

[1,] 1
[2,] 2
[3,] 3

The operator %*% is used for matrix multiplication. If x is an (n× 1) column vector, and A
is an (m×n) matrix, then the product of A and x is computed by typing A%*%x. To verify
S’s solution, multiply A× x, and note that this is equal to b:

> A%*%x
[,1]

[1,] 10
[2,] -1
[3,] 6

Other common functions used with vectors and matrices are included in Table A.2 on
page 660.

1.4.9 Arrays

An array generalizes a matrix by extending the number of dimensions to more than
two. Consequently, a two-dimensional array of numbers is simply a matrix. If one were
to place three (3 × 3) matrices each in back of the other, the resulting three-dimensional
array could be visualized as a cube. Consider a three-dimensional array consisting of 27
elements. Specifically, the elements will be the values 1 through 27. Using the indexing
principles illustrated earlier, one can reference an element in the three-dimensional array
by specifying the row, column, and depth. For example,

> cube <- 1:27
> dim(cube) <- c(3,3,3)

assigns the values 1 through 27 into a three-dimensional array. To reference the value in
the middle of the cube, one would specify cube[2,2,2]:

> cube[2,2,2]
[1] 14

If any of the indices are left blank, the entire range is reported for that dimension. For
example, to extract all the values in the second column with depth 2, type cube[ ,2,2]:

> cube[ ,2,2]
[1] 13 14 15

Another way to create the array is to specify its elements and dimensions directly. The
following code also lists the values in the array so one can see how S processes the entries.
Note how a[, , 1] can be visualized as the facing matrix in Figure 1.1 on page 3, a[, ,
2] as the second matrix (slice) in Figure 1.1, and so on:

> a <- array(1:27, dim=(c(3,3,3)))
> a[, , 1]

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
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> a[, , 2]
[,1] [,2] [,3]

[1,] 10 13 16
[2,] 11 14 17
[3,] 12 15 18
> a[, , 3]

[,1] [,2] [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

1.4.10 Lists

A list is an S object whose elements can be of different types (character, numeric, factor,
etc.). Lists are used to unite related data that have different structures. For example, a
student record might be created by

> student <- list(first.name="John", last.name="Smith", major="Biology",
+ semester.hours=15)

The object student is composed of four components. This can be verified by typing
length(student) in the commands window. Note that length() counts the number of
components in a list. Three of the components are character, while the fourth is numeric.
The individual components of any list can be extracted by using the [[ operator or by
specifying the name of the list and the name of the component, separated by a dollar sign
($). For example, to see the number of semester hours, one might type

> student[[4]]
[1] 15

or

> student$semester.hours
[1] 15

Suppose an additional component named schedule (a 3 × 1 array) is added to the
list student. The second entry in schedule can be referenced by typing one of either
student$schedule[2,1] or student[[5]][2,1] since the object schedule is at the fifth
position in the list student.

1.4.11 Data Frames

A data frame is the object most frequently used in S to store data sets. A data frame
can handle different types of variables (numeric, factor, logical, etc.) provided they are all
the same length. To create a list of variables where the variables are not all of the same
type, use the command data.frame(). The command data.frame() treats the column
values in a matrix as the variables and the rows as individual records for each subject in
the given variable. Suppose one wishes to code the weather found in the three provinces of
the matrix barley.data. Unless the user specifies the values in row.names(), sequential
numbers are assigned to row.names() by default. Specifically, one wants to distinguish
between provinces that have “continental” weather and those that do not. To add a variable
containing character information, use the command data.frame() as follows:
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> cont.weather<-c("no","no","yes")
> city <- data.frame(barley.data, cont.weather)
> rm("cont.weather")
> city

typeA typeB typeC typeD cont.weather
Navarra 190 8 22.0 2.00 no
Zaragoza 191 4 1.7 3.50 no
Madrid 223 80 2.0 2.75 yes

If only barley of typeA is desired, type city$typeA:

> city$typeA
[1] 190 191 223

To make the columns of a data frame available by name, use the command attach(). After
attaching the data frame city, one can view barley of typeA by simply typing typeA:

> attach(city)
> typeA
[1] 190 191 223

Note that when finished working with an attached object, one should detach the object
using the detach() command to avoid inadvertently masking a system object:

> detach(city)
> typeC
Error: object "typeC" not found

To sort a data frame according to another variable (typeC in this example), one can
use one of the following: city[sort.list(city[,3]),], city[order(city[,3]),], or
city[order(typeC),], all of which produce the same result. Note that city will need to
be attached again to use the command as given:

> attach(city)
> city[sort.list(city[,3]),]

typeA typeB typeC typeD cont.weather
Zaragoza 191 4 1.7 3.50 no
Madrid 223 80 2.0 2.75 yes

Navarra 190 8 22.0 2.00 no
> detach(city)

The function order() will accept more than one argument to break ties, making it generally
more useful than the function sort.list().

1.4.12 Tables

A common use of table() is its application to cross-classifying factors to create a table
of the counts at each combination of factor levels. In S, factors are simply character vectors.
Consider the data set Cars93, which contains several numeric and factor variables and is
available in the MASS package for both R and S-PLUS. To construct a contingency table of
Origin by AirBags, use the following S commands:

> library(MASS)
> attach(Cars93)
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> table(Origin, AirBags)
Driver & Passenger Driver only None

USA 9 23 16
non-USA 7 20 18

When using three-way contingency tables, ftable() provides more compact output than
table():

> table(Origin, AirBags, DriveTrain)
, , DriveTrain = 4WD

AirBags
Origin Driver & Passenger Driver only None
USA 0 3 2
non-USA 0 2 3

, , DriveTrain = Front

AirBags
Origin Driver & Passenger Driver only None
USA 6 15 13
non-USA 5 13 15

, , DriveTrain = Rear

AirBags
Origin Driver & Passenger Driver only None
USA 3 5 1
non-USA 2 5 0

> ftable(Origin, AirBags, DriveTrain)
DriveTrain 4WD Front Rear

Origin AirBags
USA Driver & Passenger 0 6 3

Driver only 3 15 5
None 2 13 1

non-USA Driver & Passenger 0 5 2
Driver only 2 13 5
None 3 15 0

Also in R, margin.table() and prop.table() allow the calculation of totals and
proportions by rows or columns:

> CT <- table(Origin, AirBags)
> CT

AirBags
Origin Driver & Passenger Driver only None
USA 9 23 16
non-USA 7 20 18

> margin.table(CT) # add all entries in table
[1] 93
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> margin.table(CT,1) # add entries across rows
Origin

USA non-USA
48 45

> margin.table(CT,2) # add entries across columns
AirBags
Driver & Passenger Driver only None

16 43 34
> prop.table(CT) # divide each entry by table total

AirBags
Origin Driver & Passenger Driver only None
USA 0.09677419 0.24731183 0.17204301
non-USA 0.07526882 0.21505376 0.19354839

> prop.table(CT,1) # divide each entry by row total
AirBags

Origin Driver & Passenger Driver only None
USA 0.1875000 0.4791667 0.3333333
non-USA 0.1555556 0.4444444 0.4000000

> prop.table(CT,2) # divide each entry by column total
AirBags

Origin Driver & Passenger Driver only None
USA 0.5625000 0.5348837 0.4705882
non-USA 0.4375000 0.4651163 0.5294118

1.4.13 Functions Operating on Factors and Lists

In this section, the data set Cars93 from the MASS package is used to illustrate various
functions. To find the average Price for the vehicles in the Origin by AirBags table, one
might use the function tapply() or the function aggregate():

> tapply(Price, list(Origin, AirBags), mean)
Driver & Passenger Driver only None

USA 24.57778 19.86957 13.33125
non-USA 33.24286 22.78000 13.03333

tapply(x, y, FUN) applies the function FUN to each value in x that corresponds to one
of the categories in y. In this example, FUN is the mean. However, in general, FUN
can be any S or user-defined function. The categories of y are the factors created from
list(Origin, AirBags), and the x is the vector of car prices, Price. The final output is
a matrix.

The function aggregate() is also used to compute the same quantities; however, the
output is a data frame:

> aggregate(Price, list(Origin, AirBags), mean)
Group.1 Group.2 x

1 USA Driver & Passenger 24.57778
2 non-USA Driver & Passenger 33.24286
3 USA Driver only 19.86957
4 non-USA Driver only 22.78000
5 USA None 13.33125
6 non-USA None 13.03333
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The function apply(A, MARGIN, FUN) is used to apply a function FUN to the rows or
columns of an array. For example, given a matrix A, the function FUN is applied to every
row if MARGIN = 1 and to every column if MARGIN = 2. The function apply() is used
to compute various statistics with the data frame Baberuth as follows:

> attach(Baberuth)
> apply(Baberuth[,3:14],2, mean)

G AB R H X2B
113.7727273 381.7727273 98.8181818 130.5909091 23.0000000

X3B HR RBI SB BB
6.1818182 32.4545455 100.5000000 5.5909091 93.7272727

BA SLG
0.3228636 0.6340000

A summary of the functions covered in this and the previous section can be found in
Table A.3 on page 661.

Example 1.1 Assign the values (19, 14, 15, 17, 20, 23, 19, 19, 21, 18) to a vector x such that
the first five values of x are in treatment A and the next five values are in treatment B.
Compute the means for the two treatment groups using tapply().

Solution: First assign the values to a vector x, where the first five elements are in
treatment A and the next five are in treatment B in one of two ways:

> x <- c(19,14,15,17,20,23,19,19,21,18)
> treatment <- c(rep("A",5), rep("B",5))
> treatment
[1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B"

or

> treatment <- rep(LETTERS[1:2], rep(5,2))
> treatment
[1] "A" "A" "A" "A" "A" "B" "B" "B" "B" "B"

Next, use tapply() to calculate the means for treatments A and B:

> tapply(x, treatment, mean)
A B
17 20

1.5 Probability Functions

S has four classes of functions that perform probability calculations on all of the dis-
tributions covered in this book. These four functions generate random numbers, calculate
cumulative probabilities, compute densities, and return quantiles for the specified distribu-
tions. Each of the functions has a name beginning with a one-letter code indicating the
type of function: rdist , pdist , ddist , and qdist , respectively, where dist is the S
distribution name. Some of the more important probability distributions that work with
the functions rdist , pdist , ddist , and qdist are listed in Table A.4 on page 662. For
example, given vectors q and x containing quantiles (or percentiles), a vector p containing
probabilities, and the sample size n for a N(0, 1) distribution,
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• pnorm(q, mean=0, sd=1) computes P(X ≤ q)

• qnorm(p, mean=0, sd=1) computes x such that P(X ≤ x) = p

• dnorm(x, mean=0, sd=1) computes f(x)

• rnorm(n, mean=0, sd=1) returns a random sample of size n from a N(0, 1) distribu-
tion.

When illustrating pedagogical concepts, the user will often want to generate the same
set of “random” numbers at a later date. To reproduce the same set of “random” numbers,
one uses the set.seed() function. The set.seed() function puts the random number
generator in a reproducible state. Verify for yourself that the following code produces
identical values stored in the vectors set1 and set2:

> set.seed(136)
> set1 <- rbinom(10,10,.3)
> set.seed(136)
> set2 <- rbinom(10,10,.3)

This class of functions will also accept a vector as well as a scalar for the function’s
arguments. For example, dpois(x=0:10, lambda=3).

1.6 Creating Functions

One of the more attractive features of the S language is the flexibility the user has to
modify existing functions and to create new functions. System functions in S are called by
typing the name of the function and specifying the arguments being passed to the function
inside parentheses. The same principle applies when constructing a new function. The basic
structure of a function is

> fname <- function(argument1, argument2,...){expression}

The expression is a mathematical formula that computes its numerical value and/or
creates objects based on the user-specified arguments. The result of the expression is
computed and subsequently printed in the commands window. When one of the arguments
takes a default value in the function definition, there is no need to explicitly type that value
when the function is called. The default values for a function can be found in the function’s
help file.

Suppose a function to sum the first n natural numbers is needed. The formula to find
the sum of the first n natural numbers is n× (n + 1)/2. To create the S function SUM.N(),
type

> SUM.N <- function(n){(n)*(n+1)/2}

Using the function SUM(), one can see that the sum of the first 10 natural numbers is 55:

> SUM.N(10)
[1] 55

The function sum.sq() sums the squares of the values in a vector or matrix x:

> sum.sq<-function(x) {sum(x^2)}
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If one wanted to sum the squared values of each column in the matrix barley.data defined
in (1.1), one could use

> apply(barley.data, 2, sum.sq)
typeA typeB typeC typeD

122310.0000 6480.0000 490.8900 23.8125

1.7 Programming Statements

S, like most programming languages, has the ability to control the execution of code
with programming statements such as for(), while(), repeat(), and break(). As an
example, consider how for() is used in the following code to add the values 10, 20, and 30.

> sum.a <- 0
> for (i in c(10,20,30)){sum.a <- i + sum.a}
> sum.a
[1] 60

In the next section of code, approximate values for converting temperature values from
Farenheit (60 to 90 by 5 degree increments) to Celsius are given:

> for (farenheit in seq(60,90,5))
+ print(c(farenheit,(farenheit-32)*5/9))
[1] 60.00000 15.55556
[1] 65.00000 18.33333
[1] 70.00000 21.11111
[1] 75.00000 23.88889
[1] 80.00000 26.66667
[1] 85.00000 29.44444
[1] 90.00000 32.22222

Another way to compute the sum of the first n natural numbers (50 in the code) is to
use the function while() as follows:

> i <- 0; a <- 0; n <- 50
> while (i<n) {i <- i+1; a <- i+a}
> a
[1] 1275

When one creates new functions, storing them in a single file can be convenient. By
storing all of the functions in a single file, one will be able to read all of them into the S
session by typing

> source("C:/Sfolder/functions.txt")

assuming the functions are all stored in a text file named functions.txt in the Sfolder
of the machine’s C drive.
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1.8 Graphs

One technique used to summarize numerical data is the proper use of graphs. The
S language provides a rich set of commands for creating graphs and altering the default
graphical parameters. Tables A.12 on page 667, A.13 on page 668, and A.14 on page 669
outline some of the basic commands used to create graphs and to customize the graphical
parameters. In addition to typing commands for graph creation, a large collection of two-
and three-dimensional graphs as well as Trellis graphs can be created in S-PLUS from the
menu bar by selecting Graph>2D plot. . . or 3D plot. . . . For further detail on any S
function or parameter, the user should seek help from the extensive system help files by
typing help(function.name), ?function.name, help(par), or ?par.

The S function plot() produces an appropriate graph whose form depends on the
type of data. The axes, labels, scales, and plotting symbols are all default values chosen
automatically, any or all of which may be changed by the user. Changing or adding
background color, line types, titles, text, and plotting symbols is all controlled by specifying
additional arguments inside S functions such as plot() or hist(), or by changing certain
values in the par settings. Table A.14 on page 669 provides a list of some of the more
commonly changed graphical parameters. For users who prefer a point and click approach
for modifying graphical output, S-PLUS has several buttons on the main menu bar such as
Annotation, GraphTools, and Auto Legend.

The following code illustrates the use of various parameters in the S function plot()
and can be used to recreate Figure 1.2 on the next page. At first the last graph in Figure
1.2 may seem worthless; however, it will often prove useful to create an empty plotting area
to which one can later add points, lines, text, and so on. Two of the more frequently used
arguments with par() are mfrow and mfcol, which subdivide the plotting region into an
array of figure regions. For example, par(mfrow=c(3,3)) divides the screen into nine figure
regions (3 columns by 3 rows). The command \n tells R to make a new line in the title.

> par(mfrow=c(3,3), pty="m")
> x <- -4:4
> y <- x^2
> plot(x, y, main="Default values with limits \n for x and y axes altered",
+ xlim=c(-8,8), ylim=c(0,20) )
> plot(x, y, pch="x", main="Default plotting character \n changed to x",
+ xlim=c(-8,8), ylim=c(0,20))
> plot(x, y, type="l", main="Lines connecting the data", xlim=c(-8,8),
+ ylim=c(0,20))
> plot(x, y, type="b", main="Both point and lines \n between data",
+ xlim=c(-8,8), ylim=c(0,20))
> plot(x, y, type="h", main="Vertical bars", xlim=c(-8,8), ylim=c(0,20))
> plot(x, y, type="o", main="Overlaid points \n and connected lines",
+ xlim=c(-8,8), ylim=c(0,20))
> plot(x, y, type="s", main="Stairsteps", xlim=c(-8,8), ylim=c(0,20))
> plot(x, y, xlab="X Axis", ylab="Y Axis", main="Basic plot with axes
+ labeled", xlim=c(-8,8), ylim=c(0,20))
> plot(x, y, type="n", main="Empty Graph", xlab="", ylab="", axes=FALSE)

The following R code illustrates the use of different plotting symbols, different colors,
and different character expansion (cex) values and can be used to create a graph similar
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FIGURE 1.2: Examples of the plot() function using different values for the parameters
main, pch, xlim, ylim, type, xlab, ylab, and axes.

to Figure 1.3. Color names can be used with a col= specification in graphics functions.
Numbers or names of colors can be assigned to col= as vectors.

> plot(1,1, xlim=c(1,16), ylim=c(-1.5,5), type="n", xlab="", ylab="")
> points(seq(1,15,2), rep(4,8), cex=1:8, col=1:8, pch=0:7)
> text(seq(1,15,2), rep(2,8), labels=paste(0:7), cex=1:8, col=1:8)
> points(seq(1,15,2), rep(0,8), pch=(8:15), cex=2)
> text(seq(1,15,2)+.7, rep(0,8), paste(8:15), cex=2)
> points(seq(1,15,2), rep(-1,8), pch=(16:23), cex=2)
> text(seq(1,15,2)+.7, rep(-1,8), paste(16:23), cex=2)
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FIGURE 1.3: The numbers in the second row correspond to the plotting symbol directly
above them in the first row. The different plotting symbols in the first row and their
corresponding numbers in the second row also reflect a character expansion of 1 through 8.
The plotting symbols in rows three and four have their corresponding numbers printed to
the right.
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1.9 Problems

1. Calculate the following numerical results to three decimal places with S:

(a) (7 − 8) + 53 − 5 ÷ 6 +
√

62

(b) ln 3 +
√

2 sin(π) − e3

(c) 2 × (5 + 3) −
√

6 + 92

(d) ln(5) − exp(2) + 23

(e) (9 ÷ 2) × 4 −
√

10 + ln(6) − exp(1)

2. Create a vector named countby5 that is a sequence of 5 to 100 in steps of 5.

3. Create a vector named Treatment with the entries “Treatment One” appearing 20
times, “Treatment Two” appearing 18 times, and “Treatment Three” appearing 22
times.

4. Provide the missing values in rep(seq( , , ), ) to create the sequence 20,
15, 15, 10, 10, 10, 5, 5, 5, 5.

5. Vectors, sequences, and logical operators

(a) Assign the names x and y to the values 5 and 7, respectively. Find xy and assign
the result to z. What is the valued stored in z?

(b) Create the vectors u = (1, 2, 5, 4) and v = (2, 2, 1, 1) using the c() and scan()
functions.

(c) Provide S code to find which component of u is equal to 5.

(d) Provide S code to give the components of v greater than or equal to 2.

(e) Find the product u× v. How does S perform the operation?

(f) Explain what S does when two vectors of unequal length are multiplied together.
Specifically, what is u× c(u, v)?

(g) Provide S code to define a sequence from 1 to 10 called G and subsequently to
select the first three components of G.

(h) Use S to define a sequence from 1 to 30 named J with an increment of 2 and
subsequently to choose the first, third, and eighth values of J.

(i) Calculate the scalar product (dot product) of q = (3, 0, 1, 6) by r = (1, 0, 2, 4).

(j) Define the matrix X whose rows are the u and v vectors from part (b).

(k) Define the matrix Y whose columns are the u and v vectors from part (b).

(l) Find the matrix product of X by Y and name it W.

(m) Provide S code that computes the inverse matrix of W and the transpose of that
inverse.

6. Wheat harvested surface in Spain in 2004: Figure 1.4 on the next page, made
with R, depicts the autonomous communities in Spain. The Wheat Table that follows
gives the wheat harvested surfaces in 2004 by autonomous communities in Spain
measured in hectares. Provide S code to answer all the questions.
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FIGURE 1.4: Autonomous communities in Spain

Wheat Table
community wheat.surface community wheat.surface

Galicia 18817 Castilla y León 619858
Asturias 65 Madrid 13118

Cantabria 440 Castilla-La Mancha 263424
Páıs Vasco 25143 C. Valenciana 6111

Navarra 66326 Región de Murcia 9500
La Rioja 34214 Extremadura 143250
Aragón 311479 Andalućıa 558292

Cataluña 74206 Islas Canarias 100
Islas Baleares 7203

(a) Create the variables community and wheat.surface from the Wheat Table in this
problem. Store both variables in a data.frame named wheatspain.

(b) Find the maximum, the minimum, and the range for the variable wheat.surface.

(c) Which community has the largest harvested wheat surface?

(d) Sort the autonomous communities by harvested surface in ascending order.

(e) Sort the autonomous communities by harvested surfaces in descending order.

(f) Create a new file called wheat.c where Asturias has been removed.

(g) Add Asturias back to the file wheat.c.

(h) Create in wheat.c a new variable called acre indicating the harvested surface in
acres (1 acre = 0.40468564224 hectares).

(i) What is the total harvested surface in hectares and in acres in Spain in 2004?

(j) Define in wheat.c the row.names() using the names of the communities. Remove
the community variable from wheat.c.

(k) What percent of the autonomous communities have a harvested wheat surface
greater than the mean wheat surface area?
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(l) Sort wheat.c by autonomous communities’ names (row.names()).

(m) Determine the communities with less than 40,000 acres of harvested surface and
find their total harvested surface in hectares and acres.

(n) Create a new file called wheat.sum where the autonomous communities that have
less than 40,000 acres of harvested surface have their actual names replaced by
“less than 40,000.”

(o) Use the function dump() on wheat.c, storing the results in a new file named
wheat.txt. Remove wheat.c from your path and check that you can recover it
from wheat.txt.

(p) Create a text file called wheat.dat from the wheat.sum file using the command
write.table(). Explain the differences between wheat.txt and wheat.dat.

(q) Use the command read.table() to read the file wheat.dat.

7. The data frame wheatUSA2004 from the PASWR package has the USA wheat harvested
crop surfaces in 2004 by states. It has two variables, STATE for the state and ACRES
for thousands of acres.

(a) Attach the data frame wheatUSA2004 and use the function row.names() to define
the states as the row names.

(b) Define a new variable called ha for the surface area given in hectares where
1 acre = 0.40468564224 hectares.

(c) Sort the file according to the harvested surface area in acres.

(d) Which states fall in the top 10% of states for harvested surface area?

(e) Save the contents of wheatUSA2004 in a new file called wheatUSA.txt in your
favorite directory. Then, remove wheatUSA2004 from your workspace, and check
that the contents of wheatUSA2004 can be recovered from wheatUSA.txt.

(f) Use the command write.table() to store the contents of wheatUSA2004 in
a file with the name wheatUSA.dat. Explain the differences between storing
wheatUSA2004 using dump() and using write.table().

(g) Find the total harvested surface area in acres for the bottom 10% of the states.

8. Use the data frame vit2005 in the PASWR package, which contains data on the 218 used
flats sold in Vitoria (Spain) in 2005 to answer the following questions. A description
of the variables can be obtained from the help file for this data frame.

(a) Create a table of the number of flats according to the number of garages.

(b) Find the mean of totalprice according to the number of garages.

(c) Create a frequency table of flats using the categories: number of garages and
number of elevators.

(d) Find the mean flat price (total price) for each of the cells of the table created in
part (c).

(e) What command will select only the flats having at least one garage?

(f) Define a new file called data.c with the flats that have category=“3B” and have
an elevator.

(g) Find the mean of totalprice and the mean of area using the information in
data.c.
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Source: Departamento de Economia y Hacienda de la Diputación Foral de Álava and
LKS Tasaciones, 2005.

9. Use the data frame EPIDURALf to answer the following questions:

(a) How many patients have been treated with the Hamstring Stretch?

(b) What proportion of the patients treated with Hamstring Stretch were classified
as each of Easy, Difficult, and Impossible?

(c) What proportion of the patients classified as Easy to palpate were assigned to the
Traditional Sitting position?

(d) What is the mean weight for each cell in a contingency table created with the
variables Ease and Treatment?

(e) What proportion of the patients have a body mass index (BMI = kg/(cm/100)2)
less than 25 and are classified as Easy to palpate?

10. The millions of tourists visiting Spain in 2003, 2004, and 2005 according their nation-
alities are given in the following table:

Nationality 2003 2004 2005
Germany 9.303 9.536 9.918
France 7.959 7.736 8.875
Great Britain 15.224 15.629 16.090
USA 0.905 0.894 0.883
Rest of the world 17.463 18.635 20.148

(a) Store the values in this table in a matrix with the name tourists.

(b) Calculate the totals of the rows.

(c) Calculate the totals of the columns.

11. Use a for loop to convert a sequence of temperatures (18 to 28 by 2) from degrees
centigrade to degrees Fahrenheit.

12. If 1 km = 0.6214 miles, 1 hectare = 2.471 acres, and 1 L = 0.22 gallons, write a
function that converts kilometers, hectares, and liters into miles, acres, and gallons,
respectively. Use the function to convert 10.2 km, 22.4 hectares, and 13.5 L.



Chapter 2

Exploring Data

2.1 What Is Statistics?

You may be wondering “What is statistics?”, “Who uses it?”, and “Why do I need to
study this material?” Statistics is the process of finding out more about a topic by collecting
information and then trying to make sense out of that information. In essence, statistics is
concerned with methods for collecting, organizing, summarizing, presenting, and analyzing
data. Data laden information is present in virtually every sector of society, and the need to
make sense out of our surroundings is a basic human need. More to the point of why you,
the reader, might need to study this material can be answered in one of two ways. First, you
are required to study this material as part of your major because there are certain topics
that are deemed important by your teachers. Second, you desire to have some modicum
of control in decision making and want to learn more about how probability and statistics
help people, corporations, and governmental agencies make decisions/policies. Even if your
reason for reading this material is because it is required, it is a fervent hope that your ability
to make sound decisions is strengthened through the material in this book.

2.2 Data

Data, according to The American Heritage Dictionary, are “Information, especially
information organized for analysis or used as the basis for a decision.” A characteristic that
is being studied in a statistical problem is called a variable. A variable will be either
qualitative or quantitative. When a variable is qualitative, it is essentially defining
groups or categories. When the categories have no ordering the variable is called nominal.
For example, the variable gender can take on the values male and female or the variable
“music preference” could have values such as “classical,” “jazz,” “rock,” or “other.” When
the categories have a distinct ordering, the variable is called ordinal. Such a variable might
be educational level with values elementary school, high school, college graduate, graduate
or professional school. Values on a scale can be either interval or ratio. Interval data have
interpretable distances, while ratio data have a true zero. A variable that is quantitative
(numeric) may be either discrete or continuous. A discrete variable is a numerical variable
that can assume a finite number or at most a countably infinite number of values. Such
variables include the number of people arriving at a bank on Thursday, students in a class,
or dogs in the pound. A continuous variable is a numerical variable that can assume an
infinite number of values associated with the numbers on an interval of the real number
line, for example, the height of a tree, the life of a light bulb, the weight of an apple. An
important distinction between discrete and continuous variables is that discrete variables
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can take on the same value repeatedly while continuous variables have few or no repeated
values. It is important to be able to distinguish between different types of variables since
methods for viewing and summarizing data are dependent on variable type. More to the
point, it will be imperative to distinguish between qualitative (categorical) variables and
quantitative (numerical) variables.

When a data set consists of a single variable, it is called a univariate data set. When
there are two variables in the data set, the data is set is called a bivariate data set; and
when there are two or more variables, the data set is called a multivariate data set. In
the remainder of this section, the discussion will cover univariate variables. Recall that
a qualitative variable defines categories or groups. The membership in these categories is
summarized with tables and graphically illustrated with bar graphs.

2.3 Displaying Qualitative Data

2.3.1 Tables

A table that lists the different groups of categorical data and the corresponding fre-
quencies with which they occur is called a frequency table. Qualitative information is
typically presented in the form of a frequency table. The S function table() can be used
to create various types of tables.

Example 2.1 Suppose the letter grades of an English essay in a small class are A, D, C,
D, C, C, C, C, F, and B. Create both a frequency table showing the numbers and a relative
frequency table showing the proportions of the various grades.

Solution: First, the character data are read into a vector named Grades. Then, the S
function table() is applied to Grades:

> Grades <- c("A","D","C","D","C","C","C","C","F","B")
> Grades
[1] "A" "D" "C" "D" "C" "C" "C" "C" "F" "B"
> table(Grades)
Grades
A B C D F
1 1 5 2 1
> table(Grades)/10 # Relative frequency table
Grades
A B C D F

0.1 0.1 0.5 0.2 0.1

Clearly, there is no need for a computer with such a small data set; however, tables for
much larger data sets can be created with no more work than that required for this small
data set.

Example 2.2 The quine data frame in the MASS package has information on children
from Walgett, New South Wales, Australia, that were classified by Culture, Age, Sex, and
Learner status including the number of Days absent from school in a particular school year.
Use the function table() to create a frequency table for the variable Age.

Solution: To gain access to information stored in MASS, first load the package and attach
the data frame quine:
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> library(MASS)
> attach(quine)
> table(Age)
Age
F0 F1 F2 F3
27 46 40 33

2.3.2 Barplots

One of the better graphical methods to summarize categorical data is with a barplot.
Barplots are also known as bar charts or bar graphs. The S function barplot() is used
to create barplots using a summarized version of the data, often the result of the table()
function. This summarized form of the data can be either frequencies or percentages. Re-
gardless of whether one uses frequencies or percentages, the resulting shape looks identical,
but the scales on the y-axes are different.

Example 2.3 Construct barplots for the variables Grades used in Example 2.1 and Age
in the quine data set from the MASS package in Example 2.2 on the facing page using both
frequencies and proportions.

Solution: Before creating any barplots, the device region is split into four smaller regions
with the command par(mfrow=c(2,2)):

> par(mfrow=c(2,2))
> barplot(table(Grades), col=3, xlab="Grades", ylab="Frequency")
> barplot(table(Grades)/length(Grades), col=3, xlab="Grades", ylab=
+ "Proportion")
> barplot(table(Age), col=7, xlab="Age", ylab="Frequency")
> barplot(table(Age)/length(Age), col=7, xlab="Age", ylab="Proportion")
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FIGURE 2.1: Graphical representation of the data in Grades and Age with the function
barplot()
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2.3.3 Dot Charts

An equally effective way to display qualitative data is by using a dot chart. Dot
charts are also called Cleveland dotplots. A dot chart shows the values of the variables of
interest (levels of the qualitative variable) as dots in a horizontal display over the range
of the data. The S command to create a dot chart is dotchart(data), where data is a
vector containing frequencies for all the different levels of a variable. When working with
un-summarized data, one way to prepare the data for a dotchart() is first to summarize
the data with the command table(). The optional arguments for dotchart() in R and
S-PLUS are different, and the user should consult the respective documentation for further
assistance.

Example 2.4 Construct dot charts for the variables Grades from Example 2.1 and Age
used in the quine data set from the MASS package in Example 2.2 on page 30.

Solution: Before creating any dot charts, the device region is split into two smaller regions
with the command par(mfrow=c(2,1)):

> par(mfrow=c(1,2))
> dotchart(table(Grades))
> dotchart(table(Age))

A
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F2
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30 35 40 45

FIGURE 2.2: Graphical representation of the data in Grades and Age with the function
dotchart()

2.3.4 Pie Charts

Pie charts represent the relative frequencies or percentages of the levels of a categorical
variable with wedges of a pie (circle). While the media often use pie charts to display
qualitative data, the pie chart has fallen out of favor with most statisticians. Pie charts are
most useful when the emphasis is on each category in relation to the total. When such an
emphasis is not the primary point of the graphic, a bar chart or a dot chart should be used.

Example 2.5 Construct pie charts for the variables Grades in Example 2.1 and Age from
the quine data set in the MASS package used in Example 2.2 on page 30.

Solution: Before creating any pie charts, the device region is split into two regions with
the command par(mfrow=c(2,1)):
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> par(mfrow=c(1,2))
> pie(table(Grades))
> title("Grades")
> pie(table(Age))
> title("Age")

The graph depicted in Figure 2.3 was produced in R with the additional arguments
radius=2.5 and col=gray(c(.1,.4,.7,.8,.95)).
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FIGURE 2.3: Graphical representation of the data in Grades and Age with the function
pie()

2.4 Displaying Quantitative Data

When presented with quantitative data, knowing three facts about the data, namely,
its shape, center, and spread, will be a great start in making some sense of the numbers.
Some of the more common distribution shapes are shown in Figure 2.4 on the following
page. Of the nine different shapes in Figure 2.4, all are symmetric with the exception
of the second and the eighth graphs, which are characterized as skewed to the right and
skewed to the left, respectively. Of the nine different shapes in Figure 2.4, all are unimodal
with the exception of the first, the fourth, and the ninth graphs, which are characterized
as bimodal, uniform, and multi-modal, respectively. One final highlight: When presented
with a symmetric unimodal data set, it will be important to classify the distribution as
either short-tailed, long-tailed, or normal. The fourth and the sixth graphs, in addition to
being symmetric, are also short-tailed. What follows are graphical tools that can help in
assessing the shape, center, and spread of a data set. As a general rule, the shape of the
data dictates the most appropriate measures of center and spread for that data set.

2.4.1 Stem-and-Leaf Plots

One way to get a quick impression of the data is to use a stem-and-leaf plot. When a
stem-and-leaf plot is constructed, each observation is split into a stem and a leaf. Regardless
of where the observation is split, the leaf in a stem-and-leaf plot is represented with a single
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1. Bimodal 2. Skew right 3. Short tailed

4. Uniform 5. Normal 6. Triangular

7. Long tailed 8. Skew left 9. Multimodal

FIGURE 2.4: Nine different graphs labeled according to their shape

digit. Although it is possible to use a stem-and-leaf plot with a moderately sized data
set (more than 100 values), the plot becomes increasingly hard to read as the number of
values plotted increases. Consequently, it is recommended that stem-and-leaf plots be used
graphically to illustrate smallish data sets (less than 100 values). The S command to create
a stem-and-leaf plot is stem(x), where x is a numeric vector.

Example 2.6 Use the data frame Baberuth to construct a stem-and-leaf plot for the
number of home runs (HR) Babe Ruth hit while he played for the New York Yankees.

Solution: A quick glance at the data frame Baberuth shows that Babe Ruth played for
the New York Yankees for his seventh through twenty-first seasons. The information in HR
is for Babe Ruth’s entire (22 seasons) professional career. To extract the home runs he hit
while he was a New York Yankee, use HR[Team=="NY-A"] or HR[7:21] (seventh through
twenty-first season home runs):

> attach(Baberuth) # Assumes package PASWR is loaded
> NYYHR <- HR[Team=="NY-A"]
> NYYHR
[1] 54 59 35 41 46 25 47 60 54 46 49 46 41 34 22
> stem(NYYHR)

The decimal point is 1 digit(s) to the right of the |

2 | 25
3 | 45
4 | 1166679
5 | 449
6 | 0

> detach(Baberuth)
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In this example, see how the stems 2–6 represent the values twenty through sixty and
the leaves represent the second digit of the numbers in HR. Reading the first row of the
stem-and-leaf plot notice the values 22 and 25. The stem-and-leaf plot reveals a fairly
symmetric distribution.

2.4.2 Strip Charts (R Only)

An alternative to the stem-and-leaf plot is a strip chart (also referred to as a dotplot
by many authors). A strip chart plots values along a line. The R function stripchart()
will stack the tied observations in a column at each value observed along a line that covers
the range of the data when given the argument method="stack". The function requires
the data to be a vector, a list of vectors, or a formula of the form x∼g, where values are
in a vector x and groups are in a vector g. Strip charts are often useful for comparing the
distribution of a quantitative variable at different qualitative levels (groups).

Example 2.7 Use the data frame Baberuth to

(a) Construct a strip chart of the number of home runs Babe Ruth hit while playing for
the New York Yankees.

(b) Create a strip chart of the number of home runs Babe Ruth hit per season according to
the team for which he was playing. Based on the strip chart, when Babe Ruth played,
for which team did he generally hit more home runs per season?

Solution: (a) Figure 2.5 on the next page is a strip chart of the number of home runs
Babe Ruth hit while playing for the New York Yankees. The code to construct this graph
is

> attach(Baberuth)
> Baberuth[1:5,] # equivalently heads(Baberuth, n=5)
Year Team G AB R H X2B X3B HR RBI SB BB BA SLG

1 1914 Bos-A 5 10 1 2 1 0 0 0 0 0 0.200 0.300
2 1915 Bos-A 42 92 16 29 10 1 4 21 0 9 0.315 0.576
3 1916 Bos-A 67 136 18 37 5 3 3 16 0 10 0.272 0.419
4 1917 Bos-A 52 123 14 40 6 3 2 12 0 12 0.325 0.472
5 1918 Bos-A 95 317 50 95 26 11 11 66 6 58 0.300 0.555
> NYYHR <- HR[7:21] # Extracts the 7th through 21st season HR values.
> stripchart(NYYHR, xlab="Home runs per season", pch=1, method="stack",
+ main="Dotplot of home runs while a New York Yankee")

(b) Figure 2.6 on the following page is a strip chart of the number of home runs Babe Ruth
hit per season according to the team for which he was playing. The code to construct this
graph is

> par(mfrow=c(1,2), pty="s")
> stripchart(HR~Team, pch=1, method="stack",
+ main="Dotplot of home runs \n by team",
+ xlab="Home runs per season")
> par(las=1) # Makes labels horizontal
> stripchart(HR~Team, pch=19, col=c("red","green","blue"),
+ method="stack", main="Color dotplot of home runs \n by team",
+ xlab="Home runs per season")
> par(mfrow=c(1,1), las=0, pty="m")
> detach(Baberuth)
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FIGURE 2.5: Strip chart of the number of home runs Babe Ruth hit while playing for the
New York Yankees
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FIGURE 2.6: Strip chart of the number of home runs Babe Ruth hit per season according
to the team for which he was playing

2.4.3 Histograms

The histogram is a graphical means of illustrating quantitative (numerical) data. Although
the barplot and the histogram look similar, the barplot is used for qualitative data while
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the histogram is used for numerical data. Yet, the bins that either the user specifies or
those that S uses by default are in essence categories. Histograms created in S with the
function hist(x), where x is a numeric vector, are by default frequency histograms. To
create density histograms, use the optional argument prob=TRUE. A density histogram has
a total area of one.

Example 2.8 Construct a histogram that resembles the stem-and leaf plot from Example
2.6 using the Baberuth data.

Solution: The first histogram uses the default arguments for hist(). Since the bins S
uses are of the form (], the default histogram does not resemble the stem-and-leaf plot. To
change the bins to the form [) in R, use the argument right=FALSE:

> attach(Baberuth)
> par(mfrow=c(1,2))
> bin <- seq(20,70,10) # Creating bins 20-70 by 10
> hist(HR[7:21], breaks=bin, xlab="Home Runs")
> hist(HR[7:21], breaks=bin, right=FALSE, xlab="Home Runs") # R
> detach(Baberuth)

The graph depicted in Figure 2.7 was produced in R with commands similar to those given.
One way to produce the second graph in S-PLUS is to use a slight fudge factor when creating
the bins, such as bin <- seq(20,70,10)-0.00001.
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FIGURE 2.7: Histograms created using different bin definitions for the number of home
runs hit by Babe Ruth while playing for the New York Yankees

One of the problems with using histograms to describe the shape of the data is the
arbitrary nature of the bin width. In Example 2.8, it was seen how simply including or
excluding an end point changed the histogram. Consider the differences among the shapes
of the histograms in Figure 2.8 on the next page produced by simply altering the bin width.
The data set used to produce Figure 2.8 on the following page is geyser, available in the
MASS package. A much better choice to get an idea of what the shape of a distribution
looks like is to use a density estimate. The S function density(x), where x is a numeric
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vector, can be used to create a density estimate. Basically, a density estimate uses shapes
with 1

n area added up at each point in the data set to create a graph with area 1. The
resulting shape is a density estimate. The result of the density estimate can be viewed with
either the plot() or lines() function. Recall that plot() is a high-level function while
lines() is a low-level function. That is, plot() will create a graph while lines() will add
to an existing graph.
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FIGURE 2.8: Histograms created using different bin definitions for the eruption duration
of Old Faithful

Example 2.9 Construct a density histogram of the waiting time until the next eruption
using the data frame geyser available in the MASS package. Superimpose a density estimate
over the density histogram. In the same graph, show the estimated density without showing
the histogram.

Solution: Note that to superimpose a density over a histogram, the histogram must be a
density histogram. Recall that density histograms are produced with the optional argument
prob=TRUE:

> library(MASS)
> par(mfrow=c(1,2)) # Make device region 1 by 2
> attach(geyser)
> hist(waiting, prob=TRUE)
> lines(density(waiting)) # Add density to Histogram
> plot(density(waiting)) # Create density by itself
> detach(geyser)

Based on the density estimates, it appears there are two modes for waiting time until the
next eruption. It seems one will usually have to wait close to either 50 or 80 minutes until
the next eruption.
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FIGURE 2.9: Histogram of waiting time between Old Faithful eruptions with superimposed
density estimate as well as a density plot

2.5 Summary Measures of Location

One of the main objectives of statistics is to make inference to a population based
on information obtained from a sample. Since it can be overwhelming to work with the
entire population and/or sample, summary measures are introduced to help characterize
the data at hand. These summary measures may apply to either the population or to the
sample. Numerical summaries of the population are called parameters while numerical
summaries of the sample are called statistics. More formal definitions of both parameters
and statistics will be given later. Measures of central location are introduced first. The
measures covered are generally familiar to the reader from everyday usage. Specifically, the
mean, the trimmed mean, and the median are introduced. Other measures of location
addressed include quartiles, hinges, and quantiles.

2.5.1 The Mean

The most common measure of center is the average, which locates the balance point
of the distribution or data. The mean is an appropriate measure of center for symmetric
distributions; however, it is not appropriate for skewed distributions. In statistics, the
average of a sample is called the sample mean and is denoted by x̄. Given some numeric
data x1, x2, . . . , xn, the sample mean is defined as

x̄ =
x1 + x2 + . . . + xn

n
=

n∑
i=1

xi

n
(2.1)

The S function mean(x) will compute the mean of a data vector x. Additional arguments
to mean(x) include na.rm=TRUE, for removal of missing values, and trim=, to compute a
trimmed mean. The trimmed mean is generally used to estimate the center when working
with long-tailed distributions. When a p% trimmed mean is computed, p% of the sorted data
is deleted from each end of the distribution, and a mean is computed from the remaining
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values. When p×n is not an integer, the integer portion, (	p×n
), should be deleted from
each end of the sorted values and the mean computed from the remaining values.

Example 2.10 Compute the mean number of home runs per season Babe Ruth hit while
playing for the New York Yankees. Compute a 5%, a 10%, a 15%, and a 50% trimmed
mean for the number of home runs per season Babe Ruth hit while playing for the New
York Yankees using the information stored in the data frame Baberuth.

Solution: In Example 2.6 on page 34, the variable NYYHR was created that contained the
number of home runs Babe Ruth made while playing for the New York Yankees. If NYYHR
is no longer available, recreate it with the command NYYHR <- HR[7:21] once the data
frame Baberuth has been attached. Since there are 15 values in NYYHR, to compute 5%,
10%, 15%, and 50% trimmed means, 	0.05 × 15
 = 	0.75
 = 0, 	0.10 × 15
 = 	1.5
 = 1,
	0.15 × 15
 = 	2.25
 = 2, and 	0.50 × 15
 = 	7.5
 = 7 values, respectively, will need to be
deleted from the sorted values of NYYHR before computing means on the remaining values.
A second solution is also presented using the S function mean() using the trim= argument:

> attach(Baberuth)
> NYYHR <- HR[7:21]
> NYYHR
[1] 54 59 35 41 46 25 47 60 54 46 49 46 41 34 22
> SNYYHR <- sort(NYYHR)
> SNYYHR
[1] 22 25 34 35 41 41 46 46 46 47 49 54 54 59 60
> p.05 <- floor(.05*15)
> p.10 <- floor(.10*15)
> p.15 <- floor(.15*15)
> p.50 <- floor(.50*15)
> num.to.delete <-c(p.05, p.10, p.15, p.50)
> num.to.delete
[1] 0 1 2 7
> m.05 <- mean(SNYYHR[(1+p.05):(15-p.05)])
> m.10 <- mean(SNYYHR[(1+p.10):(15-p.10)])
> m.15 <- mean(SNYYHR[(1+p.15):(15-p.15)])
> m.50 <- mean(SNYYHR[(1+p.50):(15-p.50)])
> t.m <- c(m.05, m.10, m.15, m.50)
> names(t.m) <- c("5%tmean","10%tmean","15%tmean","50%tmean")
> t.m
5%tmean 10%tmean 15%tmean 50%tmean
43.93333 44.38462 44.81818 46.00000
> tm.05 <- mean(NYYHR, trim=.05)
> tm.10 <- mean(NYYHR, trim=.10)
> tm.15 <- mean(NYYHR, trim=.15)
> tm.50 <- mean(NYYHR, trim=.50)
> tms <- c(tm.05, tm.10, tm.15, tm.50)
> names(tms) <- c("5%tmean","10%tmean","15%tmean","50%tmean")
> tms
5%tmean 10%tmean 15%tmean 50%tmean
43.93333 44.38462 44.81818 46.00000
> detach(Baberuth)
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The trimmed means are all fairly similar, confirming a rather symmetric distribution. Note
that the 50% trimmed mean is the value in the middle of the sorted observations. This
value is also known as the median.

2.5.2 The Median

While the mean is the most commonly encountered measure of center, it is not always
the best measure of center. The sample median is the middle value of a distribution of
numbers, denoted by the letter m. Since the median ignores the information in surrounding
values, it is more resistant to extreme fluctuations in the data than is the mean. When
working with skewed distributions, the median is the most appropriate measure of center.
The sample median, m, of x1, x2, . . . , xn is the

(
n+1

2

)
st observation of the sorted values.

When n is odd, n+1
2 is an integer, and finding the observation is straightforward. When n is

even, an average of the two middle observations is taken to find the median. When the values
x1, x2, . . . , xn are sorted, they are called order statistics and denoted as x(1), x(2), . . . , x(n).
A more concise definition of the sample median is then

m =

{
x(k+1) n = 2k + 1 (odd),
1
2 (x(k) + x(k+1)) n = 2k (even).

(2.2)

To find the sample median with S use the function median(x), where x is a numeric vector.

Example 2.11 � Means and Medians � The numerical grades achieved by three
students on four exams during the course of a semester are recorded in Table 2.1. Compute
means and medians for the students. Could the three students be characterized?

Table 2.1: Student test scores
Test1 Test2 Test3 Test4

Student1 73 75 74 74
Student2 95 94 12 95
Student3 66 67 63 100

Solution: First the students exam scores are read into individual vectors denoted Student1,
Student2, and Student3. The S function median() is used first to find the median test
score for each student. It is possible to compute the mean test score for each student in
a similar fashion to that used to find the median test score for each student. However,
another solution is provided by using the S functions rbind(), cbind(), and apply():

> Student1 <- c(73,75,74,74)
> Student2 <- c(95,94,12,95)
> Student3 <- c(66,67,63,100)
> median(Student1)
[1] 74
> median(Student2)
[1] 94.5
> median(Student3)
[1] 66.5
> SM <- rbind(Student1, Student2, Student3) # combine rows
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> colnames(SM) <- c("Test1","Test2","Test3", "Test4")
> SM

Test1 Test2 Test3 Test4
Student1 73 75 74 74
Student2 95 94 12 95
Student3 66 67 63 100
> means <- apply(SM,1, mean) # mean of rows
> medians <- apply(SM,1, median) # median of rows
> TOT <- cbind(SM, means, medians) # combine columns
> TOT

Test1 Test2 Test3 Test4 means medians
Student1 73 75 74 74 74 74.0
Student2 95 94 12 95 74 94.5
Student3 66 67 63 100 74 66.5

As seen in the S output, the mean test score for the three students is 74. One possible char-
acterization of the three students might be: Student 1: consistent; Student 2: overconfident;
Student 3: procrastinator. Would the mean or the median be the better representative in
assigning their final grades? There are good reasons one may want to consider using the
median instead of the mean.

2.5.3 Quantiles

The pth quantile, 0 ≤ p ≤ 1, of a distribution is the value xp such that P(X ≤ xp) ≥ p
and P(X ≥ xp) ≥ 1−p. For discrete data, there are often many values of xp that satisfy the
definition of the pth quantile. In this book, the definition used by S to compute quantiles
will be used. S defines the pth quantile of a distribution to be the

(
p(n − 1) + 1

)
st order

statistic. When p(n − 1) + 1 is not an integer, linear interpolation is used between order
statistics to arrive at the pth quantile. Given values x1, x2, . . . , xn, the pth quantile for the
kth order statistic, p(k), is

p(k) =
(k − 1)
(n − 1)

, k ≤ n. (2.3)

By this definition, it is seen that the 50% quantile (50th percentile) is the median since

0.50 =
k − 1
n − 1

⇒ k =
n + 1

2
,

which by definition is the location of the order statistic that is the median. Other definitions
for quantiles exist and are used in other texts and other statistical software packages.
However, the definition used here is consistent with S-PLUS and the default algorithm used
in R for computing quantiles. To read about alternative algorithms for computing quantiles
with R, type ?quantile at the R prompt. To compute the quantiles of a data set stored
in a vector x, use the S function quantile(x). By default, the S function quantile(x)
returns the 0%, 25%, 50%, 75%, and 100% quantiles of the data vector x. The pth quantile
is the same thing as the (p × 100)th percentile. That is, percentiles and quantiles measure
the same thing; however, percentiles use a scale from 0 to 100 instead of the 0 to 1 scale
used by quantiles.

Just as the sample median is the value that divides the sample into equal halves, the
sample quartiles can be thought of as the values that divide the sample into quarters. The
first, second, and third sample quartiles are denoted as Q1, Q2, and Q3, respectively, and
are (by default) computed with the S function quantile(x). To compute other quantiles,
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use the argument probs= to specify either a single value or to pass a vector of values to the
quantile() function.

Example 2.12 Compute Q1, Q2, and Q3 for the values x(1) = 1, x(2) = 4, x(3) = 7,
x(4) = 9, x(5) = 10, x(6) = 14, x(7) = 15, x(8) = 16, x(9) = 20, and x(10) = 21.

Solution: First, the order statistics for the 0.25, 0.50, and 0.75 quantiles are computed
using (2.3):

.25 =
k − 1
10 − 1

.50 =
k − 1
10 − 1

.75 =
k − 1
10 − 1

k = 3.25 k = 5.50 k =7.75

Linear interpolation is then used on the order statistics to find the requested quan-
tiles/quartiles. Specifically, since Q1, Q2, and Q3 occur at the 3.25, 5.50, and 7.75 order
statistics, 0.25 of the distance between the third and fourth order statistics is added to the
third order statistic to arrive at Q1. Likewise, 0.50 of the distance between the fifth and
sixth order statistics is added to the fifth order statistic to compute Q2. Finally, 0.75 of
the distance between the seventh and eighth order statistics is added to the seventh order
statistic to compute Q3:

Q1 =x(3) + .25(x(4) − x(3)) Q2 = x(5) + .50(x(6) − x(5))
=7 + .25(9 − 7) = 10 + .5(14 − 10)
=7.50 = 12.00

Q3 =x(7) + .75(x(8) − x(7))
=15 + .75(16 − 15)
=15.75

Code to compute the requested quartiles according to the quantile definition follows. Sub-
sequently, the S function quantile() is used to compute the same quantiles/quartiles.

> x <- c(1,4,7,9,10,14,15,16,20,21)
> p <- c(.25,.5,.75) # desired quantiles
> n <- length(x) # number of values, n
> order.stat <- p*(n-1)+1 # computing order statistics
> order.stat # order statistics
[1] 3.25 5.50 7.75
> Q1 <- x[3]+.25*(x[4]-x[3]) # linear interpolation
> Q2 <- x[5]+.50*(x[6]-x[5]) # linear interpolation
> Q3 <- x[7]+.75*(x[8]-x[7]) # linear interpolation
> QU <- c(Q1, Q2, Q3)
> names(QU) <- c("Q1","Q2","Q3")
> QU # quartiles

Q1 Q2 Q3
7.50 12.00 15.75
> quantile(x, probs=c(.25,.5,.75)) # the easy way!
25% 50% 75%

7.50 12.00 15.75
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2.5.4 Hinges and Five-Number Summary

An alternative method to calculating quartiles is to compute hinges. The idea behind
both quartiles and hinges is to split the data into fourths. When a computer is not available,
hinges are somewhat easier to compute by hand than are quartiles. The lower and upper
hinges are the x(j) and x(n−j+1) order statistics, where

j =
	n+1

2 
 + 1
2

. (2.4)

In short, the lower hinge is the median of the lower half of the data and the upper hinge
is the median of the upper half of the data. Lower and upper hinges can be different from
quartiles. For example, consider Example 2.12 on the previous page where the locations
of the first, and third quartiles were found to be at the 3.25th and 7.75th order statistics.
However, since

	n+1
2 
 + 1

2
=

	 10+1
2 
 + 1

2
= 3,

the locations for the lower and upper hinges are at the 3rd, x(3), and 8th, x(n−3+1) =
x(10−3+1) = x(8), order statistics.

Hinges are typically returned as part of the five-number summary. A five-number
summary for a data set consists of the smallest value, the lower hinge, the median, the
upper hinge, and the largest value, all of which are computed with R’s function fivenum().

Example 2.13 Compute the 0.25, 0.50, and 0.75 quantiles as well as a five-number
summary for the number of runs batted in (RBIs) by Babe Ruth while he played for the
New York Yankees. The variable RBI in the data frame Baberuth contains the RBIs per
season for Babe Ruth over his professional baseball career.

Solution: The quartiles and hinges are first computed by their definitions. Subsequently,
the S function quantile() and the R function fivenum() are used to obtain the same
results:

> attach(Baberuth) # Assumes package PASWR is loaded
> NYYRBI <- RBI[7:21] # Extract RBIs only while a NYY
> SNYYRBI <- sort(NYYRBI)
> p <- c(.25,.50,.75)
> n <- length(NYYRBI)
> n
[1] 15
> order.stat <- p*(n-1)+1
> order.stat
[1] 4.5 8.0 11.5
> Q1 <- SNYYRBI[4]+.5*(SNYYRBI[5]-SNYYRBI[4])
> Q2 <- SNYYRBI[8]
> Q3 <- SNYYRBI[11]+.5*(SNYYRBI[12]-SNYYRBI[11])
> QU <- c(Q1, Q2, Q3)
> names(QU) <- c("Q1","Q2","Q3")
> QU

Q1 Q2 Q3
112.0 137.0 153.5
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> quantile(NYYRBI, probs=c(.25,.50,.75))
25% 50% 75%

112.0 137.0 153.5
> j <- (floor((n+1)/2)+1)/2 # Number to count in
> j
[1] 4.5
> lower.hinge <- SNYYRBI[4]+.5*(SNYYRBI[5]-SNYYRBI[4])
> upper.hinge <- SNYYRBI[11]+.5*(SNYYRBI[12]-SNYYRBI[11])
> small <- min(NYYRBI)
> large <- max(NYYRBI)
> five.numbers <- c(small, lower.hinge, Q2, upper.hinge, large)
> five.numbers
[1] 66.0 112.0 137.0 153.5 171.0
> fivenum(NYYRBI) # Only works in R
[1] 66.0 112.0 137.0 153.5 171.0
> detach(Baberuth)

In this particular example, the first and third quartile are equal to the lower and upper
hinge, respectively.

2.5.5 Boxplots

A popular method of representing the information in a five-number summary is the
boxplot. To show spread, a box is drawn from the lower hinge (HL) to the upper hinge
(HU ) with a vertical line drawn through the box to indicate the median or second quartile
(Q2). A “whisker” is drawn from HU to the largest data value that does not exceed the
upper fence. This value is called the adjacent value. The upper fence is defined as
FenceU = HU +1.5×Hspread, where Hspread = HU −HL. A whisker is also drawn from HL

to the smallest value that is larger than the lower fence, where the lower fence is defined
as FenceL = HL − 1.5 × Hspread. Any value smaller than the lower fence or larger than
the upper fence is considered an outlier and is generally depicted with a hollow circle.
Figure 2.10 on the following page illustrates a boxplot for the variable fat from the data
frame Bodyfat.

To create a boxplot with S, use the command boxplot(). By default, boxplots in R
have a vertical orientation. To create a horizontal boxplot with R, use the optional argu-
ment horizontal=TRUE. Currently, S-PLUS does not have an option to produce horizontal
boxplots with the boxplot() function. However, S-PLUS does have the function bwplot(),
which produces horizontal boxplots. Common arguments for boxplot() include col= to
set the box color and notch=TRUE to add a notch to the box to highlight the median.

Example 2.14 Use the data frame Cars93 in the MASS package to create a boxplot of the
variable Min.Price. Use the text() function to label the five-number summary values in
the boxplot.

Solution: Two solutions are presented: one for R and one for S-PLUS. The solution
for S-PLUS is slightly more involved because S-PLUS does not have a built-in function to
compute the five-number summary. The final boxplot from R is shown in Figure 2.11 on
page 47. Additionally, the labels in R contain mathematical notation. To learn more about
R’s ability to plot mathematical expressions, type ?mathplot at the R prompt.
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HL HUQ2Min MaxFenceL FenceU

Hspread 1.5Hspread1.5HspreadOutliers

10 20 30 40 50

FIGURE 2.10: Graph depicting the five-number summary in relationship to original data
and the boxplot

Solution for R:

> library(MASS)
> attach(Cars93)
> boxplot(Min.Price, ylab="Minimum Price (in $1000) for basic
+ version", col="gray")
> f <- fivenum(Min.Price)
> text(rep(1.25,5), f, labels=c("Min", expression(H[L]),
+ expression(Q[2]) , expression(H[U]), "Max"), pos=4)
> detach(Cars93) # Clean up

Solution for S-PLUS:

> library(MASS)
> attach(Cars93)
> n <- length(Min.Price)
> smp <- sort(Min.Price)
> count <- (floor((n+1)/2)+1)/2 # Using Equation 2.4
> count
[1] 24
> lower.hinge <- smp[count]
> upper.hinge <- smp[(n-count+1)]
> five.num <- c(min(smp), lower.hinge, median(smp), upper.hinge,
+ max(smp))
> boxplot(Min.Price, ylab="Minimum Price (in $1000) for basic
+ version")
> text(rep(85,5), five.num, labels=c("Minimum", "Lower Hinge",
+ "Median", "Upper Hinge", "Maximum"))
> detach(Cars93) # Clean up
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FIGURE 2.11: Boxplot of car prices with five-number summaries labeled

Boxplots are useful for detecting skewness, finding outliers, and comparing two or more
variables that are all measured on the same scale. However, a boxplot will not detect
multi-modality.

2.6 Summary Measures of Spread

Summary measures of center such as the mean and median are important because they
describe “typical” values in a data set. However, it is possible to have two data sets with the
same means (Example 2.11 on page 41) and/or medians while still having different spreads.
For this reason, it is important to measure not only typical values but also the spread of
the values in a distribution in order to describe the distribution fully. There are many ways
to measure spread, some of which include range, interquartile range, and variance.

2.6.1 Range

The easiest measure of spread to compute is the range. At times, the range refers to
the difference between the smallest value in a data set and the largest value in the data set.
Other times, the range refers to the smallest and largest values of a data set as a pair. The
S function range(x) returns the smallest and largest values in x. If the distance between
the largest and smallest value is desired, one can use diff(range(x)):

> range(1:10)
[1] 1 10
> diff(range(1:10))
[1] 9

2.6.2 Interquartile Range

Instead of looking at the entire range of the data, looking at the middle 50% will
often prove to be a useful measure of spread, especially when the data are skewed. The
interquartile range (IQR) is defined as IQR = Q3−Q1 and can be found with the function
IQR():
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> quantile(1:10)
0% 25% 50% 75% 100%

1.00 3.25 5.50 7.75 10.00
> IQR(1:10)
[1] 4.5

2.6.3 Variance

The sample variance, s2, can be thought of as the average squared distance of the
sample values from the sample mean. It is not quite the average because the quantity is
divided by n − 1 instead of n in the formula

s2 =
n∑

i=1

(xi − x̄)2

n − 1
. (2.5)

When the positive square root of the sample variance is taken, the sample standard
deviation, s, results. It is often preferable to report the sample standard deviation instead
of the variance since the units of measurement for the sample standard deviation are the
same as those of the individual data points in the sample. To compute the variance with S,
use the function var(x). One could compute the standard deviation by taking the square
root of the variance sqrt(var(x)) or use the built-in function to do so. However, be aware
that the function to compute the standard deviation in R is sd(x), while the function to
compute the standard deviation in S-PLUS is stdev(x). The standard deviation is an
appropriate measure of spread for normal distributions:

> x <- 1:5
> x
[1] 1 2 3 4 5
> n <- length(x)
> mean.x <- mean(x)
> mean.x
[1] 3
> x-mean.x
[1] -2 -1 0 1 2
> (x-mean.x)^2
[1] 4 1 0 1 4
> NUM <- sum((x-mean.x)^2) # numerator of s^2 hard way
> NUM
[1] 10
> DEN <- n-1 # denominator of s^2
> DEN
[1] 4
> VAR <- NUM/DEN # variance hard way
> VAR
[1] 2.5
> var(x) # variance easy way
[1] 2.5
> SD <- sqrt(VAR) # standard deviation hard way
> SD
[1] 1.581139
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> sd(x) # standard deviation with R
[1] 1.581139
> stdev(x) # standard deviation with S-PLUS
[1] 1.581139

An interesting function that will return different results depending on the class of the
object to which it is applied is the S function summary(). When the object is a numeric
vector, as is the case with x, six summary statistics are returned: the minimum, the first
quartile, the median, the mean, the third quartile, and the maximum:

> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1 2 3 3 4 5

2.7 Bivariate Data

Methods to summarize and display relationships between two variables (bivariate data)
will be the focus of the next few pages. In Section 2.3, two of the methods used to gain a
deeper understanding of categorical variables were tables and barplots. When two variables
are categorical, tables, called contingency tables, and barcharts will still prove useful. When
presented with quantitative bivariate data, relevant questions will deal with the relationships
between the two variables. For example, is there a relationship between a person’s height and
his weight? Is there a relationship between the amount of time a student spends studying
and her grades? Graphical techniques such as scatterplots can be used to explore bivariate
relationships. When relationships exist between variables, different correlation coefficients
are used to characterize the strengths of the relationships. Finally, a brief introduction to
the simple linear regression model is given before moving into multivariate data.

2.7.1 Two-Way Contingency Tables

The S command table(x) was used for creating frequency tables with univariate,
categorical variables. For bivariate, categorical data, the command table(x, y) is used to
create two-way contingency tables where x and y represent the two categorical variables.

Example 2.15 Consider the data frame EPIDURAL, which contains information from a
study to determine whether the traditional sitting position or the hamstring stretch position
is superior for administering epidural anesthesia to pregnant women in labor as measured
by the number of obstructive (needle to bone) contacts (OC). The variable Doctor specifies
which of the four physicians in the study administered the procedure. Ease is the physician’s
assessment prior to administering the epidural of how well bony landmarks for epidural
placement can be felt. Produce a two-way contingency table for the variables Doctor and
Ease.

Solution: The goal is to produce a two-way table such as the one in Table 2.2 on the next
page with S. The levels of categorical variables by default are alphabetical. Consequently,
the levels of Ease are Difficult, Easy, and Impossible. Pay particular attention to how the
levels of a variable can be rearranged in the code that follows.
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Table 2.2: Two-way table of Doctor by Ease

Easy Difficult Impossible
Dr. A 19 3 1
Dr. B 7 10 4
Dr. C 18 3 0
Dr. D 13 4 3

> head(EPIDURAL, n=5) # Shows first five rows of EPIDURAL
Doctor kg cm Ease Treatment OC Complications

1 Dr. B 116 172 Difficult Traditional Sitting 0 None
2 Dr. C 86 176 Easy Hamstring Stretch 0 None
3 Dr. B 72 157 Difficult Traditional Sitting 0 None
4 Dr. B 63 169 Easy Hamstring Stretch 2 None
5 Dr. B 114 163 Impossible Traditional Sitting 0 None
> attach(EPIDURAL)
> table(Doctor, Ease) # Levels of Ease not in increasing order

Ease
Doctor Difficult Easy Impossible
Dr. A 3 19 1
Dr. B 10 7 4
Dr. C 3 18 0
Dr. D 4 13 3

> Teasy <- factor(Ease, levels=c("Easy","Difficult","Impossible"))
> table(Doctor, Teasy) # Levels of Ease in increasing order

Teasy
Doctor Easy Difficult Impossible
Dr. A 19 3 1
Dr. B 7 10 4
Dr. C 18 3 0
Dr. D 13 4 3

Although the command table(Doctor, Ease) produced a two way contingency table,
reordering the levels of Ease produces a more readable two-way contingency table.

Extensions to muti-way contingency tables can be accomplished by specifying additional
factors to the table() function or by using the R flattened table function ftable(). A
flattened three-way contingency table of the factors Doctor, Treatment, and Teasy follows.
More options for both table and ftable can be found in their respective help files.

> ftable(Doctor, Treatment, Teasy)
Teasy Easy Difficult Impossible

Doctor Treatment
Dr. A Hamstring Stretch 7 1 0

Traditional Sitting 12 2 1
Dr. B Hamstring Stretch 3 3 0

Traditional Sitting 4 7 4
Dr. C Hamstring Stretch 8 3 0

Traditional Sitting 10 0 0
Dr. D Hamstring Stretch 7 1 2

Traditional Sitting 6 3 1
> detach(EPIDURAL)
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2.7.2 Graphical Representations of Two-Way Contingency Tables

Barplots can be used to depict graphically the information from two-way contingency
tables. This is accomplished by picking one of the variables to form the categories of the
barplot. Next, the second variable’s levels are graphed either in a single bar (stacked) or as
several bars (side-by-side).

Example 2.16 Produce stacked and side-by-side barplots of the information contained
in Table 2.2 on the facing page.

Solution: Barplots where the variable of interest is Ease then Doctor are created first.
Subsequently, side-by-side barplots where the variables of interest are Ease then Doctor
are created. The graphs in Figure 2.12 on the next page were created using R. Output
from S-PLUS will look slightly different. The user should consult the on-line documentation
using ?barplots for the differences between R and S-PLUS.

> attach(EPIDURAL)
> Teasy <- factor(Ease, levels=c("Easy","Difficult","Impossible"))
> X <- table(Doctor, Teasy)
> X

Teasy
Doctor Easy Difficult Impossible
Dr. A 19 3 1
Dr. B 7 10 4
Dr. C 18 3 0
Dr. D 13 4 3

> t(X) # Transpose X
Doctor

Teasy Dr. A Dr. B Dr. C Dr. D
Easy 19 7 18 13
Difficult 3 10 3 4
Impossible 1 4 0 3

> par(mfrow=c(2,2))
> barplot(X, main="Barplot where Doctor is Stacked \n within Levels
+ of Palpitation")
> barplot(t(X), main="Barplot where Levels of Palpitation \n is
+ Stacked within Doctor")
> barplot(X, beside=TRUE, main="Barplot where Doctor is Grouped \n
+ within Levels of Palpitation")
> barplot(t(X), beside=TRUE, main="Barplot where Levels of Palpitation
+ \n is Grouped within Doctor")
> par(mfrow=c(1,1))
> detach(EPIDURAL)

From the example, it is seen that the categories for the barplot are the numeric columns in
a two-way contingency table. If the user wants the categories to be reversed, transpose the
table using the command t(table(x, y)), where table(x, y) is the two-way contingency
table.
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FIGURE 2.12: Stacked and side-by-side barplots for levels of palpitation (Teasy) and
physician (Doctor)

Relationships are often better represented with proportions than with counts. R has the
function prop.table(x), which can be used to compute proportions based on the number
of entries in either the entire table, x, which is the default, or by entering prop.table(x,
margin=1) for row totals or prop.table(x, margin=2) for column totals.

Example 2.17 Using the data frame EPIDURAL, create a side-by-side barplot of Treatment
versus OC.

Solution: Since there have been 25 patients treated with the hamstring stretch position
and 49 patients treated with the traditional sitting position, it would not be rational to
compare the frequencies. Instead, one should compare the percentages within the categories
of OC by Treatment:

> attach(EPIDURAL)
> table(Treatment, OC)

OC
Treatment 0 1 2 3 4 5 6 10
Hamstring Stretch 17 6 6 2 1 1 0 2
Traditional Sitting 23 16 3 1 2 2 2 0

> addmargins(table(Treatment, OC)) # addmargins is an R command
OC

Treatment 0 1 2 3 4 5 6 10 Sum
Hamstring Stretch 17 6 6 2 1 1 0 2 35
Traditional Sitting 23 16 3 1 2 2 2 0 49
Sum 40 22 9 3 3 3 2 2 84

> X <-prop.table(table(Treatment, OC),1) # Percents by rows
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> X
OC

Treatment 0 1 2 3
Hamstring Stretch 0.48571429 0.17142857 0.17142857 0.05714286
Traditional Sitting 0.46938776 0.32653061 0.06122449 0.02040816

OC
Treatment 4 5 6 10
Hamstring Stretch 0.02857143 0.02857143 0.00000000 0.05714286
Traditional Sitting 0.04081633 0.04081633 0.04081633 0.00000000

> par(mfrow=c(2,1))
> barplot(X, beside=TRUE, legend=TRUE)
> barplot(t(X), beside=TRUE, legend=TRUE)
> par(mfrow=c(1,1))
> detach(EPIDURAL)
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FIGURE 2.13: Side-by-side barplots showing percentages in obstructive contacts categories
by treatments

Note that the categories for the barplot in the upper graph of Figure 2.13 are the OC
categories in the two-way contingency table. Within each OC category, comparisons are
shown side-by-side based on the treatment. If the user wants the categories to be reversed,
transpose the table using the command t(table(x, y)), where table(x, y) is the two-
way contingency table.

2.7.3 Comparing Samples

The need to compare two samples is quite common. Simple experiments will often
compare a control group to a treatment group in an effort to see if the treatment provides
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some added benefit. For example, the data in the EPIDURAL data frame are from an ongoing
experiment to see which of two positions results in fewer obstructive bone contacts (the times
the needle hits a bone). When comparing two samples, typically some type of inference to
the samples’ populations is desired. That is, are the centers the same? Are the spreads
similar? Are the shapes of the two distributions similar? Graphs such as histograms, density
plots, boxplots, and quantile-quantile plots can help answer these questions. Histograms
and density plots were introduced in Section 2.4, and boxplots were introduced in Section
2.5. A quantile-quantile (Q-Q) plot plots the quantiles of one distribution against the
quantiles of another distribution as (x, y) points. When the two distributions have similar
shapes, the points will fall along a straight line. The S function to make a quantile-quantile
plot is qqplot(x, y). Histograms can be used to compare two distributions. However, it
is rather challenging to put both histograms on the same graph. Example 2.18 shows the
user how histograms can be used to compare distributions. However, a better approach is
to use Trellis/lattice graphics, which are explained in Section 2.8.

Example 2.18 Use histograms to compare the body weight index (BWI) for the two
treatments (traditional sitting and hamstring stretch stored in Treatment) using the data
frame EPIDURAL.

Solution: First, BWI is typically defined as kg/m2. Since the data frame EPIDURAL does
not contain a BWI variable, one is created. Subsequently, the default options for the BWI
histograms of the control and treatment groups are shown in the first column of Figure 2.14
on the next page, while the BWI histograms of the control and treatment groups are shown
in the second column of Figure 2.14 after the axes limits for both the x- and y-axes have
been set to the same values for both histograms:

> attach(EPIDURAL)
> BWI <- kg/(cm/100)^2
> Control <- BWI[Treatment=="Traditional Sitting"]
> Treated <- BWI[Treatment=="Hamstring Stretch"]
> par(mfrow=c(2,2)) # 2*2 plotting region
> hist(Control)
> hist(Control, xlim=c(20,60), ylim=c(0,17))
> hist(Treated)
> hist(Treated, xlim=c(20,60), ylim=c(0,17))
> par(mfrow=c(1,1)) # 1*1 plotting region
> detach(EPIDURAL)

Note that it is misleading to compare histograms where the bin widths and/or units on the
axes of the two histograms are different. Note that both axes are different in the first column
of Figure 2.14 on the facing page. The bins of the two histograms are set with the argument
breaks=, and the x- and y-axes are set with the arguments xlim= and ylim=, respectively.
The general shape of the BWI for the patients administered epidurals in the hamstring
stretch position is unimodal skewed to the right. While the distribution of BWI for patients
administered epidurals in the traditional sitting position is also unimodal skewed to the
right, it is not quite as skewed as the distribution where patients are administered epidurals
from the hamstring stretch position.

Example 2.19 Use side-by-side boxplots and superimposed density plots to compare the
BWI for the two treatments (traditional sitting and hamstring stretch stored in Treatment)
using the data frame EPIDURAL.
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FIGURE 2.14: Side-by-side barplots showing percentages in obstructive contacts’ categories
by treatments

Solution: The argument horizontal=TRUE used in the boxplot() function will only
work in R. One way to create horizontal boxplots with S-PLUS is to use the Trellis function
bwplot(). Specifically, one might enter bwplot(Treatment~BWI) to produce side-by-side
boxplots with S-PLUS. Trellis/lattice graphs will be discussed in more detail in Section 2.8.
Using boxplots, as seen in Figure 2.15 on the next page, one sees that the median for both
treatments is around 30 kg/m2 and both distributions appear to be skewed to the right.

> attach(EPIDURAL)
> par(pty="s") # Make plotting region square
> BWI <- kg/(cm/100)^2 # Define body weight index
> Control <- BWI[Treatment=="Traditional Sitting"]
> Treated <- BWI[Treatment=="Hamstring Stretch"]
> boxplot(Control, Treated, horizontal=TRUE, col=c(13,4),
+ names=c("Traditional Sitting","Hamstring Stretch"), las=1)
> plot(density(Control), xlim=c(20,60), col=13, lwd=2, main="", xlab="")
> lines(density(Treated), lty=2, col=4, lwd=2)
> detach(EPIDURAL)

The density plot in Figure 2.16 on the following page further indicates that the distributions
for the BWI for both the traditional sitting and the hamstring stretch position are skewed
to the right.

Example 2.20 Use a quantile-quantile plot to compare the BWI for the two treat-
ments (traditional sitting and hamstring stretch stored in Treatment) using the data frame
EPIDURAL.

Solution: Commands to recreate the quantile-quantile plot shown in Figure 2.17 on
page 57 follow. Note that both the x- and y-axes have the same limits.
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FIGURE 2.16: Density plots of BWI in the traditional sitting (solid line) and hamstring
stretch positions (dashed line)

> attach(EPIDURAL)
> par(pty="s") # Make plotting region square
> qqplot(Control, Treated, xlim=c(20,60), ylim=c(20,60))
> abline(a=0, b=1) # Line y=0+1*x
> par(pty="m") # Maximize plotting region
> detach(EPIDURAL)

The quantile-quantile plot in Figure 2.17 suggests the distributions are fairly similar since
the points roughly follow the y = x line.

2.7.4 Relationships between Two Numeric Variables

Relationships between two numeric variables can be viewed with scatterplots. A
scatterplot plots the values of one variable against the values of a second variable as points
(xi, yi) in the Cartesian plane. Typical questions researchers seek to answer with numeric
variables include “Is there a relationship between the two variables?”, “How strong is the
relationship between the two variables?”, and “Is the relationship linear?” Questions such as
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FIGURE 2.17: Quantile-quantile plot of BWI in the traditional sitting and hamstring
stretch positions

“Is there a relationship between a person’s height and his weight?” or “Is there a relationship
between a student’s grades and the time spent studying?” are typical. Given two numeric
variables, say x and y, entering the S function plot(x, y) produces a scatterplot.

Example 2.21 Use the data frame Animals from the MASS package to investigate whether
the brain weights of animals are related to their body weights. In other words, is a bigger
brain required to govern a bigger body?

Solution: Because of the large range in body and brain weights, (0.023 kg to 87,000
kg) and (0.4 g to 5712 g), respectively, a scatterplot of the values in body and brain is
too distorted to reveal any clear pattern. Consequently, the data is transformed by taking
natural logarithms of both variables and plotting the resulting values as shown in Figure 2.18
on the following page.

> library(MASS)
> attach(Animals)
> range(body)
[1] 2.3e-02 8.7e+04
> range(brain)
[1] 0.4 5712.0
> range(log(body))
[1] -3.772261 11.373663
> range(log(brain))
[1] -0.9162907 8.6503245
> par(pty="s")
> plot(log(body), log(brain))
> identify(log(body), log(brain), labels=row.names(Animals))
> detach(Animals)

The function identify() was used to label several of the points in Figure 2.18 on the next
page. The function identify() labels the closest point in the scatterplot with each mouse
click (left click with windows) until instructed to stop. How the function is instructed to
stop varies by operating system. Right clicking with windows, middle clicking with Linux,
and using the escape key in Mac OS X will generally stop the identification process. Based
on Figure 2.18, there appears to be linear relationship between the logarithm of the body
weights and the logarithm of the brain weights. The dinosaurs can be classified as bivariate
outliers as they do not fit the overall pattern seen in the rest of the data.
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FIGURE 2.18: Scatterplot of log(brain) versus log(body) for Example 2.21

2.7.5 Correlation

The correlation coefficient, denoted by r, measures the strength and direction of the
linear relationship between two numeric variables X and Y and is defined by

r =
1

n − 1

n∑
i=1

(
xi − x̄

sX

)(
yi − ȳ

sY

)
(2.6)

The value for r will always be between −1 and +1. When r is close to +1, it indicates
a strong positive linear relationship. That is, when x increases so does y, and vice versa.
When the value of r is close to −1, it indicates a strong negative linear relationship. Values
of r close to zero indicate weak linear relationships. To compute the correlation between
two numeric vectors with S, one may use the function cor(x, y).

Example 2.22 Find the correlation coefficient, r, between the logarithms of the body
and brain weights in the data frame Animals from the MASS package using (2.6). Verify the
calculated answer using the S function cor().

Solution: First, the variables logbody, logbrain, Zbody, and Zbrain are created. The
new variables are subsequently column binded to the Animals data frame and stored in a
new data frame named Anim. Note that the output uses the R function sd() to compute
the standard deviation. To compute the standard deviation with S-PLUS, use stdev().

> attach(Animals)
> options(digits=3) # Three digits for output
> logbody <- log(body)
> logbrain <- log(brain)
> Zbody <- (logbody - mean(logbody))/sd(logbody)
> Zbrain <- (logbrain - mean(logbrain))/sd(logbrain)
> Anim <- cbind(Animals, logbody, logbrain, Zbody, Zbrain)
> n <- length(logbody)
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> r <- (1/(n-1))*sum(Zbody*Zbrain) # Definition of r
> r
[1] 0.78
> cor(logbody, logbrain)
[1] 0.78
> Anim[1:6,] # Show first 6 rows of Anim

body brain logbody logbrain Zbody Zbrain
Mountain beaver 1.35e+00 8.1 0.3001 2.092 -0.9206 -0.9726
Cow 4.65e+02 423.0 6.1420 6.047 0.6287 0.6760
Grey wolf 3.63e+01 119.5 3.5926 4.783 -0.0474 0.1492
Goat 2.77e+01 115.0 3.3200 4.745 -0.1197 0.1332
Guinea pig 1.04e+00 5.5 0.0392 1.705 -0.9898 -1.1340
Dipliodocus 1.17e+04 50.0 9.3673 3.912 1.4841 -0.2140

The correlation between logbrain and logbody is 0.78, which indicates a positive linear
relationship between the two variables. An alternative to computing the z-scores directly
is to use the function scale():

> ZBO <- scale(logbody) # Z score of logbody
> ZBR <- scale(logbrain) # Z score of logbrain
> SAME <- cbind(Zbody, ZBO, Zbrain, ZBR)
> SAME[1:5,] # Show first five rows of data frame

Zbody Zbrain
[1,] -0.9206 -0.9206 -0.973 -0.973
[2,] 0.6287 0.6287 0.676 0.676
[3,] -0.0474 -0.0474 0.149 0.149
[4,] -0.1197 -0.1197 0.133 0.133
[5,] -0.9898 -0.9898 -1.134 -1.134
> detach(Animals)

2.7.6 Sorting a Data Frame by One or More of Its Columns

The sort() function can be used to sort a single variable in either increasing or decreas-
ing order. However, if the user wants to sort a variable in a data frame and have the other
variables reflect the new ordering, sort() will not work. The function needed to rearrange
the values in a data frame to reflect the order of a particular variable or variables in the
event of ties is order(). Given three variables x, y, and z in a data frame DF, the command
order(x) returns the indices of the sorted values of x. Consequently, the data frame DF can
be sorted by x with the command DF[order(x),]. In the event of ties, further arguments
to order can be used to specify how the ties should be broken. Consider how ties are broken
with the following numbers. To conserve space, the transpose function t() is used on the
data frame DF.

> x <- c(1,1,1,3,3,3,2,2,2)
> y <- c(3,2,3,6,2,6,10,4,4)
> z <- c(7,4,2,9,6,4,5,3,1)
> DF <- data.frame(x, y, z)
> rm(x, y, z)
> attach(DF)
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> t(DF)
1 2 3 4 5 6 7 8 9

x 1 1 1 3 3 3 2 2 2
y 3 2 3 6 2 6 10 4 4
z 7 4 2 9 6 4 5 3 1
> t(DF[order(x, y, z),])
2 3 1 9 8 7 5 6 4

x 1 1 1 2 2 2 3 3 3
y 2 3 3 4 4 10 2 6 6
z 4 2 7 1 3 5 6 4 9
> detach(DF)

Example 2.23 Find the correlation coefficient, r, between the logarithms of the body
and brain weights in the data frame Animals from the MASS package with and without
dinosaurs.

Solution: To save space, only four rows of the data frames SA and NoDINO are shown in
the output. Note that there are a total of 28 animals in the data frame Animals.

> attach(Animals)
> cor(log(body), log(brain))
[1] 0.7794935
> SA <- Animals[order(body),] # Sorted by body weight
> detach(Animals)
> tail(SA, n=4) # Equivalently SA[25:28,], shows four heaviest animals

body brain
African elephant 6654 5712.0
Triceratops 9400 70.0
Dipliodocus 11700 50.0
Brachiosaurus 87000 154.5
> NoDINO <- SA[-(28:26),] # Remove rows 26-28 of SA
> attach(NoDINO) # NoDINO contains 25 rows
> NoDINO[22:25,] # Show four heaviest animals

body brain
Horse 521 655
Giraffe 529 680
Asian elephant 2547 4603
African elephant 6654 5712
> cor(log(body), log(brain)) # Correlation without dinosaurs
[1] 0.9600516
> detach(NoDINO)

The correlation between log(brain) and log(body) when dinosaurs are included is 0.78
and the correlation between log(brain) and log(body) is 0.96 when the dinosaurs are
removed from the computation.

2.7.7 Fitting Lines to Bivariate Data

When a linear pattern is evident from a scatterplot, the relationship between the two
variables is often modeled with a straight line. When modeling a bivariate relationship, Y is
called the response or dependent variable, and x is called the predictor or independent
variable. There are relationships that are of interest that are not linear. However, before
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addressing more complicated models, this material attempts to provide a foundation for the
simpler models (simple linear regression) from which more complicated models can later be
built. Chapter 12 is devoted to standard regression techniques for both the simple and
multiple linear regression model. The simple linear regression model is written

Yi = β0 + β1xi + εi (2.7)

Model (2.7) is said to be simple, linear in the parameters (β0 and β1), and linear in the
predictor variable (xi). It is simple because there is only one predictor; linear in the
parameters because no parameter appears as an exponent nor is multiplied or divided
by another parameter; and linear in the predictor variable since the predictor variable is
raised only to the first power. When the predictor variable is raised to a power, this power
is called the order of the model. For now, only the simple linear model will be discussed.
The goal is to estimate the coefficients β0 and β1 in (2.7). The most well-known method of
estimating the coefficients β0 and β1 is to use ordinary least squares (OLS). OLS provides
estimates of β0 and β1 by minimizing the sum of the squared deviations of the Yis for all
possible lines. Specifically, the sum of the squared residuals (ε̂i = Yi − Ŷi) is minimized
when the OLS estimators of β0 and β1 are

β̂0 = Y − β̂1x̄ (2.8)

β̂1 =
∑n

i=1 (xi − x̄)
(
Yi − Y

)∑n
i=1 (xi − x̄)2

, (2.9)

respectively. Note that the estimated regression function is written as

Ŷi = β̂0 + β̂1xi.

A graphical representation of the residuals and a line fit to some data using OLS can be
seen in Figure 2.19 on the following page.

The OLS estimators of β0 and β1 are affected by outliers just as the mean and standard
deviation are subject to outliers. Recall that the median and IQR were suggested as
measures of center and spread, respectively, when working with skewed distributions. This
recommendation was made because the median and IQR provide more robust measures of
center and spread in the presence of outliers. In the presence of bivariate outliers, several
robust alternatives exist for computing estimates of β0 and β1. Two alternatives to OLS
implemented in the MASS package will be considered. Specifically, least-trimmed squares
using the function lqs() and robust regression using an M estimator with the function
rlm() are discussed. Just as OLS sought to minimize the squared vertical distance between
all of the Yis over all possible lines, least-trimmed squares minimizes the q smallest residuals
over all possible lines where q = 	(n + p + 1)/2
. Fitting for the function rlm() is done
by iterated re-weighted least squares. Although lqs() and rlm() are computationally
intensive, the interfaces for lm(), lqs(), and rlm() are essentially identical. All three
functions require a model formula of the form y∼ x. The ∼ in this notation is read “is
modeled by.”

Example 2.24 In Exercise 2.23 on the preceding page, the correlation between the loga-
rithms of the body and brain weights in the data frame Animals from the MASS package with
and without dinosaurs was computed. Find the estimates for the least squares regression
lines with and without dinosaurs where the logarithm of brain is modeled by the logarithm
of body using Equations (2.8) and (2.9) as well as the S function lm(). Superimpose both
lines on the scatterplot using the function abline() (see Table A.12 on page 667).
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FIGURE 2.19: Graph depicting residuals. The vertical distances shown with a dotted line
between the Yis, depicted with a solid circle, and the Ŷis, depicted with a clear square, are
the residuals.

Solution: Recall that there are a total of 28 animals in the data frame Animals and
25 animals in the NoDINO data frame. The scatterplot with superimposed regression lines
including the dinosaurs and omitting the dinosaurs is shown in Figure 2.20 on the next
page.

> attach(Animals)
> Y <- log(brain)
> X <- log(body)
> plot(X, Y, xlab="log(body)", ylab="log(brain)")
> b1 <- sum((X-mean(X))*(Y-mean(Y)))/sum((X-mean(X))^2)
> b0 <- mean(Y) - b1*mean(X)
> estimates <- c(b0, b1)
> estimates
[1] 2.5548981 0.4959947
> modDINO <- lm(Y~X)
> modDINO

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept) X

2.555 0.496

> abline(modDINO, col="pink", lwd=2)
> SA <- Animals[order(body),] # Sorted by body weight
> NoDINO <- SA[-(28:26),] # Remove rows 26-28 (dinosuars)
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> detach(Animals)
> attach(NoDINO) # NoDINO contains 25 rows
> Y <- log(brain)
> X <- log(body)
> b1 <- sum((X-mean(X))*(Y-mean(Y)))/sum((X-mean(X))^2)
> b0 <- mean(Y) - b1*mean(X)
> estimates <- c(b0, b1)
> estimates
[1] 2.1504121 0.7522607
> modNODINO <- lm(Y~X)
> modNODINO

Call:
lm(formula = Y ~ X)

Coefficients:
(Intercept) X

2.1504 0.7523

> abline(modNODINO, col="blue", lwd=2, lty=2)
> leglabels <- c("OLS with Dinosaurs", "OLS without Dinosaurs")
> leglty <- c(1,2)
> legcol=c("pink","blue")
> legend("topleft", legend=leglabels, lty=leglty, col=legcol, lwd=2)
> detach(NoDINO)
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FIGURE 2.20: Scatterplot of log(brain) versus log(body) with superimposed regression
lines computed with (solid line) and without (dashed line) dinosaurs

The intercept and slope of the regression line with dinosaurs are 2.555 and 0.496, respec-
tively. Without the dinosaurs, the intercept and slope of the regression line are 2.1504 and
0.7523, respectively.
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Example 2.25 From Figure 2.20 in Exercise 2.24 one notices three bivariate outliers
(dinosaurs). Fit regression lines to the same data used in Exercise 2.20 using ordinary least
squares, least-trimmed squares, and robust regression with an M estimator. Superimpose
the resulting regression lines on a scatterplot and label the lines accordingly.

Solution: The scatterplot with the three superimposed regression lines is shown in Fig-
ure 2.21 on the facing page.

> attach(Animals)
> plot(log(body), log(brain), col="blue")
> f <- log(brain)~log(body)
> modelLM <- lm(f)
> modelLM
Call: lm(formula = f)

Coefficients:
(Intercept) log(body)

2.555 0.496

> abline(modelLM, col="pink", lwd=2)
> modelLQS <- lqs(f)
> modelLQS
Call: lqs.formula(formula = f)

Coefficients:
(Intercept) log(body)

1.816 0.776

Scale estimates 0.4637 0.4633

> abline(modelLQS, lty=2, col="red", lwd=2)
> modelRLM <- rlm(f, method="MM")
> modelRLM
Call: rlm(formula = f, method = "MM") Converged in 5 iterations

Coefficients:
(Intercept) log(body)
2.0486717 0.7512927

Degrees of freedom: 28 total; 26 residual
Scale estimate: 0.633

> abline(modelRLM, lty=3, col="black", lwd=2)
> leglabels <- c("Least Squares Line","Least-Trimmed Squares",
+ "Robust line: M-estimator ")
> leglty <- c(1,2,3)
> legend("topleft", legend=leglabels, lty=leglty,
+ col=c("pink","red","black"), lwd=2, cex=0.85)
> detach(Animals)

The least-trimmed squares (lqs()) procedure and the robust line with M estimator (rlm())
method produce lines that put relatively little importance on outliers (dinosaurs). This is
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FIGURE 2.21: Scatterplot of log(brain) versus log(body) with three superimposed
regression lines. Solid is the OLS line; dashed is the least-trimmed squares line; and dotted
is the robust line.

further highlighted when one considers the estimates β0 and β1 for the OLS estimates
without dinosaurs compared to the estimates of β0 and β1 for the least-trimmed squares
and robust procedures given in Table 2.3.

Table 2.3: Different values for b0 and b1 with various regression methods
Method b0 b1

OLS with dinosuars 2.555 0.496
OLS without dinosaurs 2.150 0.752
least-trimmed squares 1.816 0.776
robust line with M estimator 2.049 0.751

2.8 Multivariate Data (Lattice and Trellis Graphs)

This section examines tools that can be used to understand multivariate data. Specif-
ically, Trellis displays (used in S-PLUS), which were developed by Cleveland (1993), are
introduced. The R version of Cleveland’s Trellis displays is implemented with the package
lattice. Trellis displays are graphs that examine higher dimensional structure in data by
conditioning on one or more variables. Trellis graphs are implemented in a slightly different
fashion from traditional S graphs; however, some readers may find the layout, rendering,
and default coloring of Trellis graphs more appealing than traditional S graphs. Trellis
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graphs are created with a formula syntax. The formula expresses the dependencies between
the variables as follows:

response ∼ predictor | conditioning.variable

The expression y ∼ x | z is read “y is modeled as x given z.” Depending on the type
of graph, all three components may not need to be specified. Table A.11 on page 666 lists
the arguments for some of the more popular Trellis functions. If there is more than one
conditioning variable, they are all listed separated by the multiplication symbol (*).

Example 2.26 Use Trellis histograms to compare the body weight index (BWI) for the
two treatments (traditional sitting and hamstring stretch stored in Treatment) using the
data frame EPIDURAL.

Solution: Recall that BWI is typically defined as kg/m2. Since the data frame EPIDURAL
does not contain a BWI variable, one is created:

> attach(EPIDURAL)
> BWI <- kg/(cm/100)^2
> library(lattice) # only for R
> histogram(~BWI|Treatment, layout=c(1,2))
> detach(EPIDURAL)
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FIGURE 2.22: Comparative histograms of BWI by treament

The histogram() function used the additional argument of layout=c(1,2). The first
value of layout determines the number of columns (1) in the Trellis graph and the second
value determines the number of rows (2) in the Trellis graph. This is in contrast to how
dimensions are specified in a matrix, which is number of rows by number of columns. The
basic shapes of the two histograms shown in Figure 2.22 are quite similar, just as was
observed in Example 2.18 on page 54 when the histograms were created using traditional S
graphs.
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Example 2.27 In Example 2.19 on page 54 side-by-side boxplots were used to compare the
BWI for the two treatments. An additional concern is that not only should the distribution
of BWI be similar for treatments, but it should also be similar for each physician. Use
Trellis graphs to create side-by-side boxplots of BWI by treatments given Doctor using the
data frame EPIDURAL.

Solution: The argument as.table=TRUE used in the bwplot() function orders the graphs
the way one reads a book. The default arrangement of graphs is to start in the lower left
and move to the upper right. This is done so that the graphs appear with the smallest
values in the lower left, analogous to a scatterplot.

> attach(EPIDURAL)
> BWI <- kg/(cm/100)^2
> library(lattice)
> bwplot(Treatment~BWI|Doctor, as.table=TRUE) # Order: as one reads
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FIGURE 2.23: Trellis side-by-side boxplots of BWI in the traditional sitting and hamstring
stretch positions given Doctor

Since the number of observations for each of the treatments is relatively small (range is
from 6 to 15), it might be a better to look at the data with a stripplot. A stripplot of the
treatments conditioning on physician is illustrated in Figure 2.24 on the following page.

> stripplot(Treatment~BWI|Doctor, jitter=TRUE, as.table=TRUE)
> detach(EPIDURAL)

The optional argument jitter=TRUE adds a small amount of noise to the values in the
stripplot so that overlapping values are easier to distinguish. Based on the stripplots shown
in Figure 2.24 on the next page, it seems that Dr. C’s patients have a consistently smaller
BWI for both treatment positions. Further investigation is needed to see why Dr. C’s
patients have consistently smaller BWI measurements versus the other physicians.

2.8.1 Arranging Several Graphs on a Single Page

The arrangement of Trellis graphs on a single page is again different from the arrange-
ment of traditional graphs on a single page. Two different approaches can be taken when
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FIGURE 2.24: Trellis side-by-side stripplots of BWI in the traditional sitting and hamstring
stretch positions given Doctor

arranging several graphs on a single page. The first approach discussed is to arrange the
graphs in equally sized rectangles based on the dimensions of a matrix. In other words, if
one wants to plot six graphs on a single page, it might be accomplished with a 3 by 2 or a
2 by 3 matrix where each position of the matrix represents a graph. To print each graph,
the following structure is used:

print(trellisgraph, split=c(column, row, number of columns,
number of rows), more=TRUE/FALSE)

A second approach to producing multiple graphs on a single page is to literally specify
the lower left and upper right coordinates for each graph. The lower left of the graph is
denoted by the coordinates (0, 0), and the upper right corner is denoted by the coordinates
(1, 1). The form for specifying each graph is (xLL, yLL, xUR, yUR). To print each graph,
the following structure is used:

print(trellisgraph, position=c(x_LL, y_LL, x_UR, y_UR), more=TRUE/FALSE)

Example 2.28 Use Trellis graphs to create boxplots of BWI given Doctor, a scatterplot
of cm versus kg given Doctor, a histogram of BWI, and a density plot of BWI given Treatment
using the data frame EPIDURAL. Show all four graphs on the same page.

Solution: The solution provided is for R. The commands that follow will work in S-PLUS
for graphs 2–4. However, the command bwplot(~BWI|Doctor) (graph 1) will not work in
S-PLUS. The argument as.table=TRUE used in the bwplot() and the xyplot() functions
are not requested in the problem. However, they are used since most people like to read
from left to right and top to bottom. The four graphs are created and stored in variables
named graph1, graph2, graph3, and graph4, respectively. By splitting the graph into a
2 by 2 matrix or by specifying the position for each of the four graphs one can reproduce
Figure 2.25 on the facing page using the commands that follow.

> attach(EPIDURAL)
> library(lattice)
> graph1 <- bwplot(~BWI|Doctor, as.table=TRUE)
> graph2 <- xyplot(cm~kg|Doctor, as.table=TRUE)
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> graph3 <- histogram(~BWI)
> graph4 <- densityplot(~BWI|Treatment)
> print(graph1, split=c(1,2,2,2), more=TRUE) # Lower left
> print(graph2, split=c(2,2,2,2), more=TRUE) # Lower right
> print(graph3, split=c(1,1,2,2), more=TRUE) # Upper left
> print(graph4, split=c(2,1,2,2), more=FALSE) # Upper right

Using the literal position of the graph

> print(graph1, position=c(0,0,.5,.5), more=TRUE) # Lower left
> print(graph2, position=c(.5,0,1,.5), more=TRUE) # Lower right
> print(graph3, position=c(0,.5,.5,1), more=TRUE) # Upper left
> print(graph4, position=c(.5,.5,1,1), more=FALSE) # Upper right
> detach(EPIDURAL)
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FIGURE 2.25: Arrangement of four different Trellis graphs on the same page

2.8.2 Panel Functions

Panel functions can be used to add additional features to a Trellis graph. For example,
given a Trellis x-y plot, one can add a line using the panel function panel.abline(). For a
list of available panel functions in R, type ?panel.functions at the R prompt. For details
with S-PLUS, see the S-PLUS Programmer’s Guide.

Example 2.29 Create a Trellis x-y plot of cm versus kg given Doctor using the data
frame EPIDURAL. Use panel functions to superimpose the ordinary least squares line and a
least-trimmed squares line over the x-y plot.
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Solution: The commands that follow create Figure 2.26.

> library(lattice)
> library(MASS) # Needed for lqs
> attach(EPIDURAL)
> xyplot(cm~kg|Doctor, as.table=TRUE,
+ panel=function(x, y)
+ {
+ panel.xyplot(x, y) # x-y plot
+ panel.abline(lm(y~x)) # Least sq line
+ panel.abline(lqs(y~x), col=3, lty=2, lwd=2) # Least trim sq line
+ }
+ )
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FIGURE 2.26: x-y plot of height (cm) versus weight (kg) given physician (Doctor) with
superimposed least squares and least-trimmed squares lines

Another approach is to create a panel function that will superimpose the least squares
and least-trimmed squares lines on an x-y plot and then to call that function within the
xyplot() as follows:

> panel.scatreg <- function(x, y) # name function
+ {
+ panel.xyplot(x, y) # make x-y plot
+ panel.abline(lm(y~x), lwd=2) # regression line
+ panel.abline(lqs(y~x), col=3, lty=2, lwd=2) # least trim sq line
+ }
> xyplot(cm~kg|Doctor, as.table=TRUE, panel=panel.scatreg)
> detach(EPIDURAL)

Both approaches produce identical output. The dashed lines (lty=2) in Figure 2.26 are the
least-trimmed squares lines.
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2.9 Problems

1. Load the MASS package.

(a) Enter the command help(package="MASS") and read about the functions and data
contained in this package.

(b) What does the description in the help file say about the function lqs()?
Enter help(lqs, package="MASS") to obtain information about the command lqs.

(c) What command shows the loaded packages?

2. Load Cars93 from the MASS package.

(a) Create density histograms for the variables Min.Price, Max.Price, Weight, and
Length variables using a different color for each histogram.

(b) Superimpose estimated density curves over the histograms.

(c) Load the lattice package and do a box and whiskers plot of Price for every type of
vehicle according to the drive train. Do you observe any differences between prices?

3. Load the data frame WheatSpain from the PASWR package.

(a) Find the quantiles, deciles, mean, maximum, minimum, interquartile range, variance,
and standard deviation of the variable hectares. Comment on the results. What
was Spain’s 2004 total harvested wheat area in hectares?

(b) Create a function that calculates the quantiles, the mean, the variance, the standard
deviation, the total, and the range of any variable.

(c) Which communities are below the 10th percentile in hectares? Which communities
are above the 90th percentile? In which percentile is Navarra?

(d) Create and display in the same graphics device a frequency histogram of the variable
acres and a density histogram of the variable acres. Superimpose a density curve
over the second histogram.

(e) Explain why using breaks of 0; 100,000; 250,000; 360,000; and 1,550,000 automati-
cally results in a density histogram.

(f) Create and display in the same graphics device a barplot of acres and a density
histogram of acres using break points of 0; 100,000; 250,000; 360,000; and 1,550,000.

(g) Add vertical lines to the density histogram of acres to indicate the locations of the
mean and the median, respectively.

(h) Create a boxplot of hectares and label the communities that appear as outliers in
the boxplot. (Hint: Use identify().)

(i) Determine the community with the largest harvested wheat surface area using either
acres or hectares. Remove this community from the data frame and compute the
mean, median, and standard deviation of hectares. How do these values compare
to the values for these statistics computed in (a)?

4. Load the wheatUSA2004 data frame from the PASWR package.
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(a) Find the quantiles, deciles, mean, maximum, minimum, interquantile range, vari-
ance, and standard deviation for the variable ACRES. Comment on what the most
appropriate measures of center and spread would be for this variable. What is the
USA’s 2004 total harvested wheat surface are?

(b) Which states are below the 20th percentile? Which states are above the 80th

percentile? In which quantile is WI (Wisconsin)?

(c) Create a frequency and a density histogram in the same graphics device using square
plotting regions of the values in ACRES.

(d) Add vertical lines to the density histogram from (c) to indicate the location of the
mean and the median.

(e) Create a boxplot of the ACRES and locate the outliers’ communities and their values.

(f) Determine the state with the largest harvested wheat surface in acres. Remove this
state from the data frame and compute the mean, median, and standard deviation
of ACRES. How do these values compare to the values for these statistics computed
in (a)?

5. The data frame vit2005 in the PASWR package contains descriptive information and the
appraised total price (in euros) for apartments in Vitoria, Spain.

(a) Create a frequency table, a piechart, and a barplot showing the number of apartments
grouped by the variable out. For you, which method conveys the information best?

(b) Characterize the distribution of the variable totalprice.

(c) Characterize the relationship between totalprice and area.

(d) Create a Trellis plot of totalprice versus area conditioning on toilets. Are there
any outliers? Ignoring any outliers, between what two values of area do apartments
have both one and two bathrooms?

(e) Use the area values reported in (d) to create a subset of apartments that have both
one and two bathrooms. By how much does an additional bathroom increase the
appraised value of an apartment? Would you be willing to pay for an additional
bathroom if you lived in Vitoria, Spain?

6. Access the data from url
http://www.stat.berkeley.edu/users/statlabs/data/babies.data

and store the information in an object named BABIES using the function read.table().
A description of the variables can be found at

http://www.stat.berkeley.edu/users/statlabs/labs.html.

These data are a subset from a much larger study dealing with child health and devel-
opment.

(a) Create a “clean” data set that removes subjects if any observations on the subject
are “unknown.” Note that bwt, gestation, parity, height, weight, and smoke use
values of 999, 999, 9, 99, 999, and 9, respectively, to denote “unknown.” Store the
modified data set in an object named CLEAN.

(b) Use the information in CLEAN to create a density histogram of the birth weights of
babies whose mothers have never smoked (smoke=0) and another histogram placed
directly below the first in the same graphics device for the birth weights of babies
whose mothers currently smoke (smoke=1). Make the range of the x-axis 30 to 180
(ounces) for both histograms. Superimpose a density curve over each histogram.
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(c) Based on the histograms in (b), characterize the distribution of baby birth weight
for both non-smoking and smoking mothers.

(d) What is the mean weight difference between babies of smokers and non-smokers?
Can you think of any reasons not to use the mean as a measure of center to compare
birth weights in this problem?

(e) Create side-by-side boxplots to compare the birth weights of babies whose mother’s
never smoked and those who currently smoke. Use traditional graphics (boxplot())
as well as Trellis/lattice graphs to create the boxplots (bwplot()).

(f) What is the median weight difference between babies who are firstborn and those
who are not?

(g) Create a single graph of the densities for pre-pregnancy weight for mothers who
have never smoked and for mothers who currently smoke. Make sure both densities
appear on the same graphics device and place a color coded legend in the top right
corner of the graph.

(h) Characterize the pre-pregnancy distribution of weight for mothers who have never
smoked and for mothers who currently smoke.

(i) What is the mean pre-pregnancy weight difference between mothers who do not
smoke and those who do? Can you think of any reasons not to use the mean as a
measure of center to compare pre-pregnancy weights in this problem?

(j) Compute the body weight index (BWI) for each mother in CLEAN. Recall that BWI
is defined as kg/m2 (0.0254 m= 1 in., and 0.45359 kg= 1 lb.). Add the variables
weight in kg, height in m, and BWI to CLEAN and store the result in CLEANP.

(k) Characterize the distribution of BWI.

(l) Group pregnant mothers according to their BWI quartile. Find the mean and
standard deviation for baby birth weights in each quartile for mothers who have
never smoked and those who currently smoke. Find the median and IQR for baby
birth weights in each quartile for mothers who have never smoked and those who
currently smoke. Based on your answers, would you characterize birth weight in
each group as relatively symmetric or skewed? Create histograms and densities of
bwt conditioned on BWI quartiles and whether the mother smokes to verify your
previous assertions about the shape.

(m) Create side-by-side boxplots of bwt based on whether the mother smokes conditioned
on BWI quartiles. Does this graph verify your findings in (l)?

(n) Does it appear that BWI is related to the birth weight of a baby? Create a scatterplot
of birth weight (bwt) versus BWI while conditioning on BWI quartiles and whether
the mother smokes to help answer the question.

(o) Replace baby birth weight (bwt) with gestation length (gestation) and answer
questions (l), (m), and (n).

(p) Create a scatterplot of bwt versus gestation conditioned on BWI quartiles and
whether the mother smokes. Fit straight lines to the data using lm(), lqs(), and
rlm(); and display the lines in the scatterplots. What do you find interesting about
the resulting graphs?

(q) Create a table of smoke by parity. Display the numerical results in a graph. What
percent of mothers did not smoke during the pregnancy of their first child?

7. Some claim the final hours aboard the RMS Titanic were marked by class warfare; others
claim it was characterized by male chivalry. The data frame titanic3 from the PASWR
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package contains information pertaining to class status (pclass), survival of passengers
(survived), and gender (sex), to name but a few. Based on the information in titanic3:

(a) Determine the fraction of survivors (survived) according to class (pclass).

(b) Compute the fraction of survivors according to class and gender. Did men in first
class or women in third class have a higher survival rate?

(c) How would you characterize the distribution of age?

(d) Were the median and mean ages for females who survived higher or lower than
for females who did not survive? Report the median and mean ages as well as an
appropriate measure of spread for each statistic.

(e) Were the median and mean ages for males who survived higher or lower than for males
who did not survive? Report the median and mean ages as well as an appropriate
measure of spread for each statistic.

(f) What was the age of the youngest female in first class who survived?

(g) Do the data suggest class warfare, male chivalry, or some combination of both char-
acterized the final hours aboard the Titanic? Feel free to explore other relationships
based on the numbers in titanic3 in answering this question.

8. Use the Cars2004EU data frame from the PASWR package which contains the numbers of
cars per 1000 inhabitants (cars), the total number of known mortal accidents (deaths),
and the country population/1000 (population) for the 25 member countries of the
European Union for the year 2004.

(a) Compute the total number of cars per 1000 inhabitants in each country, and store
the result in an object named total.cars. Determine the total number of known
automobile fatalities in 2004 divided by the total number of cars for each country
and store the result in an object named death.rate.

(b) Create a barplot showing the automobile death rate for each of the European Union
member countries. Make the bars increase in magnitude so that the countries with
the smallest automobile death rates appear first.

(c) Which country has the lowest automobile death rate? Which country has the highest
automobile death rate?

(d) Create a scatterplot of population versus total.cars. How would you characterize
the relationship?

(e) Find the least squares estimates for regressing population on total.cars. Super-
impose the least squares line on the scatterplot from (d). What population does the
least squares model predict for a country with a total.cars value of 19224.630?
Find the difference between the population predicted from the least squares model
and the actual population for the country with a total.cars value of 19224.630.

(f) Create a scatterplot of total.cars versus death.rate. How would you characterize
the relationship between the two variables?

(g) Compute Spearman’s rank correlation coefficient of total.cars and death.rate.
(Hint: Use cor(x, y, method="spearman").) What is this coefficient measuring?

(h) Plot the logarithm of total.cars versus the logarithm of death.rate. How would
you characterize the relationship?

(i) What are the least squares estimates for the regression of log(death.rate) on
log(total.cars). Superimpose the least squares line on the scatterplot from
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(h). What death rate does the least squares model predict for a country with a
log(total.cars) value of 9.863948? Make sure you express your answer in the
same units as those used for death.rate.

9. The data frame SurfaceSpain in the PASWR package contains the surface area (km2) for
seventeen autonomous Spanish communities.

(a) Use the function merge() to combine the data frames WheatSpain (from problem 3)
and SurfaceSpain into a new data frame named DataSpain.

(b) Create a variable named surface.h containing the surface area of each autonomous
community in hectares. (Note: 100 hectares = 1 km2.) Create a variable named
wheat.p containing the percent surface area in each autonomous community ded-
icated to growing wheat. Add the newly created variables to the data frame
DataSpain and store the result as a data frame with the name DataSpain.m.

(c) Assign the names of the autonomous communities as row names for DataSpain.m
and remove the variable community from the data frame.

(d) Create a barplot showing the percent surface area dedicated to growing wheat for
each of the seventeen Spanish autonomous communities. Arrange the communities
by decreasing percentages.

(e) Display the percent surface area dedicated to growing wheat for each of the seventeen
Spanish autonomous communities using the function dotchart(). To read about
dotchart(), type ?dotchart at the command prompt. Do you prefer the barchart
or the dotchart? Explain your answer.

(f) Describe the relationship between the surface area in an autonomous community
dedicated to growing wheat (hectares) and the total surface area of the autonomous
community (surface.h).

(g) Describe the relationship between the surface area in an autonomous community
dedicated to growing wheat (hectares) and the percent of surface area dedicated to
growing wheat out of the communities’ total surface area (wheat.p).

(h) Develop a model to predict the surface area in an autonomous community dedicated
to growing wheat (hectares) based on the total surface area of the autonomous
community (surface.h).





Chapter 3

General Probability and Random Variables

3.1 Introduction

One of the main objectives of statistics is to help make “good” decisions under conditions
of uncertainty. Probability is one way to quantify outcomes that cannot be predicted with
certainty. For example, when throwing two dice, the outcome of the experiment cannot
be known before the dice are thrown. Random variables, as well as counting techniques,
will facilitate the analysis of problems such as the example of throwing two dice. This
chapter provides a brief introduction to counting techniques, axiomatic probability, random
variables, and moment generating functions.

3.2 Counting Rules

One of the fundamental questions surrounding any experiment is how to know the
number of possible ways the experiment may have taken place.

Definition 3.1: Basic principle of counting — Suppose k experiments are to be
performed such that the first can result in any one of n1 outcomes; and if for each of these
n1 outcomes, there are n2 possible outcomes of the second experiment; and if for each of
the possible outcomes of the first two experiments, there are n3 possible outcomes of the
third experiment; and if ..., then there are n1 × n2 × · · · × nk possible outcomes for the k
experiments.

Example 3.1 A computer store sells three brands of laptops. Each laptop is sold with a
carrying case and four different options for upgrading RAM. Suppose the store only carries
two styles of carrying cases. How many different combinations of laptop, carrying case, and
RAM are possible?

Solution: According to the basic principle of counting, there are 3 · 2 · 4 = 24 different
combinations of laptop, carrying case, and RAM.

3.2.1 Sampling With Replacement

When working with finite samples, it is critical to distinguish between sampling with
replacement and sampling without replacement. Sampling with replacement occurs
when an object is selected and subsequently replaced before the next object is selected.
Consequently, when sampling with replacement, the number of possible ordered samples of
size m taken from a set of n objects is nm.
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Example 3.2 How many different license plates can be made from four digits?

Solution: First, note that there is no restriction forbidding repeated digits. That is,
0001, 0002, 0003, . . . , 9999 are all permissible. In essence, this translates to sampling with
replacement. Since there are 10 choices for each of the four license plate digits, there are a
total of 10 × 10 × 10 × 10 = 104 = 10, 000 possible license plates.

3.2.2 Sampling Without Replacement

Sampling without replacement occurs when an object is not replaced after it has been
selected. When sampling without replacement, the number of possible ordered samples of
size m taken from a set of n objects is

Pm,n = n(n − 1)(n − 2) · · · (n − m + 1) =
n!

(n − m)!
.

Any ordered sequence of m objects taken from n distinct objects is called a permutation
and is denoted Pm,n.

Example 3.3 How many different ways can the first three places be decided in a race
with four runners?

Solution: The number of ways the first three places can be decided using the basic
principle of counting is by reasoning as follows:

Any one of the four runners might arrive in first place (four outcomes for the first
experiment). After the first runner crosses the finish line, there are three possible choices
for second place (three outcomes for the second experiment). Then, after second place is
decided, there are only two runners left (two outcomes for the third experiment). Conse-
quently, there are 4 · 3 · 2 = 24 possible ways to award the first three places. The problem
may also be solved by applying the permutation formula:

P3,4 =
4!

(4 − 3)!
=

4!
1!

= 4 · 3 · 2 = 24.

Example 3.4 How many ways can seven students form a line?

Solution: First, note that once a student is selected for a place in line, the number of
students for subsequent orderings is diminished by one. That is, this is a problem where
sampling is done without replacement. A useful strategy for this type of problem is actually
to think through assigning the students to positions before using a formula (permutation
in this case). If seven slots are drawn, then the reasoning is as follows:

There are seven ways a student can be assigned to the first slot. Once the first slot has
been assigned, there are six possible ways to pick a student for the next slot. Continue
with this logic until all of the students have been assigned a slot. Appealing to the basic
principle of counting, it is seen that there are 7× 6× 5× 4× 3× 2× 1 = 7! = 5040 possible
ways to form a line with seven students. This is the same number calculated by considering
a permutation of seven things taken seven at a time P7,7 = 7!

(7−7)! = 7!
0! = 5040. Note that

0! = 1.

When a subset of the n objects is indistinguishable, clearly the number of permutations
is diminished. More to the point, when n objects have n1 that are the same, n2 that are
the same, and so on until there are nk that are the same, there are a total of

n!
n1! · n2! · · ·nk!

permutations of the n objects.
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Example 3.5 How many different letter arrangements can be formed using the letters
DATA?

Solution: Note that there are 4! permutations of the letters D1A1T1A2 when the two A’s
are distinguished from each other. However, since the A’s are indistinguishable, there are
only 4!

2!·1!·1! = 12 possible permutations of the letters DATA.

3.2.3 Combinations

In many problems, selecting m objects from n total objects without regard to order is the
scenario of interest. For example, when selecting a committee, the order of the committee
is rarely important. That is, a committee consisting of John, Mary, and Paul is considered
the same committee if the members are listed Mary, Paul, and John. An arrangement of m
objects taken from n objects without regard to order is called a combination. The number
of combinations of n distinct objects taken m at a time is denoted as Cm,n or

(
n
m

)
and is

calculated as

Cm,n =
(

n

m

)
=

n!
m!(n − m)!

.

Example 3.6 A committee of three people is to be formed from a group of eight people.
How many different committees are possible?

Solution: There are C3,8 =
(
8
3

)
= 8!

3!·(8−3)! = 56 possible committees.

Example 3.7 How many different three-letter sequences can be formed from the letters
A, B, C, and D if

(a) letter repetition is not permissible and order matters?

(b) letter repetition is permissible and order matters?

(c) letter repetition is not permissible and sequences containing the same letters are con-
sidered equal regardless of letter order?

Solution: The answers are as follows:
(a) There are P3,4 = 4 · 3 · 2 = 24 possible sequences.
(b) Since letters may be used more than once, there are 43 = 64 possible sequences.
(c) Since order does not matter, there are C3,4 =

(
4
3

)
= 4 possible sequences.

Example 3.8 If nine people are to be assigned into three committees of sizes two, three,
and four, respectively, how many possible assignments are possible?

Solution: There are
(
9
2

)
ways to pick the first committee. Once that committee is selected,

there are seven members left from which a committee of size three is selected. So, there are(
7
3

)
ways to pick the second committee. Using the same logic, there are finally four members

left from which one committee of size four must be selected. There is only one way to select
the remaining committee, which is to select all of the remaining members to be on the
committee. Using the basic rule of multiplication, there are a total of

(
9
2

)
×

(
7
3

)
×

(
4
4

)
=

1260 ways to form the three committees. To compute the final answer, the S commands
choose(), prod(), or a combination of the two can be used.
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> choose(9,2)*choose(7,3)*choose(4,4)
[1] 1260
> prod(9:1)/(prod(2:1)*prod(3:1)*prod(4:1))
[1] 1260
> choose(9,2)*(prod(7:1)/(prod(3:1)*prod(4:1)))
[1] 1260

3.3 Probability

3.3.1 Sample Space and Events

An experiment is any action or process that generates observations. The sample
space of an experiment, denoted by Ω, is the set of all of the possible outcomes of an
experiment. Although the outcome of an experiment cannot be known before it has taken
place, it is possible to define the sample space for a given experiment. The sample space
may be either finite or infinite. For example, the number of unoccupied seats in a train
corresponds to a finite sample space. The number of passengers arriving at an airport also
produces a finite sample space, assuming a one to one correspondence between arriving
passengers and the natural numbers. The sample space for the lifetime of light bulbs,
however, is infinite, since lifetime may be any positive value.

An event is any subset of the sample space, which is often denoted with the letter E.
Events are said to be simple when they contain only one outcome; otherwise, events are
considered to be compound. Consider an experiment where a single die is thrown. Since
the die might show any one of six numbers, the sample space is written Ω = {1, 2, 3, 4, 5, 6};
and any subset of Ω, such as E1 = {even numbers}, E2 = {2}, E3 = {1, 2, 4}, E4 = Ω, or
E5 = ∅, is considered an event. Specifically, E2 is considered a simple event while all of the
remaining events are considered to be compound events. Event E5 is known as the empty
set or the null set, the event that does not contain any outcomes. In many problems, the
events of interest will be formed through a combination of two or more events by taking
unions, intersections, and complements.

3.3.2 Set Theory

The following definitions review some basic notions from set theory and some basic rules
of probability that are not unlike the rules of algebra. For any two events E and F of a
sample space Ω, define the new event E ∪ F (read E union F ) to consist of all outcomes
that are either in E or in F or in both E and F . In other words, the event E ∪F will occur
if either E or F occurs. In a similar fashion, for any two events E and F of a sample space
Ω, define the new event E ∩ F (read E intersection F ) to consist of all outcomes that are
both in E and in F . Finally, the complement of an event E (written Ec) consists of all
outcomes in Ω that are not contained in E.

Given events E, F, G, E1, E2, . . ., the commutative, associative, distributive, and DeMor-
gan’s laws work as follows with the union and intersection operators:

1. Commutative laws

• for the union E ∪ F = F ∪ E

• for the intersection E ∩ F = F ∩ E



General Probability and Random Variables 81

2. Associative laws

• for the union (E ∪ F ) ∪ G = E ∪ (F ∪ G)

• for the intersection (E ∩ F ) ∩ G = E ∩ (F ∩ G)

3. Distributive laws

• (E ∩ F ) ∪ G = (E ∪ G) ∩ (F ∪ G)

• (E ∪ F ) ∩ G = (E ∩ G) ∪ (F ∩ G)

4. DeMorgan’s laws

•
( ∞⋃

i=1

Ei

)c

=
∞⋂

i=1

Ec
i

•
( ∞⋂

i=1

Ei

)c

=
∞⋃

i=1

Ec
i

3.3.3 Interpreting Probability

3.3.3.1 Relative Frequency Approach to Probability

Suppose an experiment can be performed n times under the same conditions with sample
space Ω. Let n(E) denote the number of times (in n experiments) that the event E occurs.
The relative frequency approach to probability defines the probability of the event E, written
P(E), as

P(E) = lim
n→∞

n(E)
n

.

Although the preceding definition of probability is intuitively appealing, it has a serious
drawback. There is nothing in the definition to guarantee n(E)

n converges to a single value.
Instead of assuming n(E)

n converges, which is a very complex assumption, the simpler and
more self-evident axioms about probability commonly referred to as the three axioms of
probability are used.

3.3.3.2 Axiomatic Approach to Probability

The Three Axioms of Probability
Consider an experiment with sample space Ω. For each event E of the sample space
Ω, assume that a number P(E) is defined that satisfies the following three axioms:

1. 0 ≤ P(E) ≤ 1

2. P(Ω) = 1

3. For any sequence of mutually exclusive events E1, E2, . . . (that is Ei ∩ Ej =
∅) for all i �= j,

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P(Ei).
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The following results are all easily derived using some combination of the three axioms
of probability:

1. P(Ec) = 1 − P(E)

Proof: Note that E and Ec are always mutually exclusive. Since E ∪ Ec = Ω, by
probability axioms 2 and 3, 1 = P(Ω) = P(E ∪ Ec) = P(E) + P(Ec).

2. P(E ∪ F ) = P(E) + P(F ) − P(E ∩ F )

Proof: Note that E ∪ F can be represented as the union of two mutually exclusive
events, E and (Ec∩F ). That is, E∪F = E∪(Ec∩F ). Event F can also be represented
as the union of two mutually exclusive events, (E ∩ F ) and (Ec ∩ F ). By probability
axiom 3, P(E ∪ F ) = P(E) + P(Ec ∩ F ) as well as P(F ) = P(E ∩ F ) + P(Ec ∩ F ).
By solving for P(Ec ∩F ) in the second equation and substituting the answer into the
first equation, the desired result of P(E ∪ F ) = P(E) + P(F ) − P(E ∩ F ) is obtained.

3. P(∅) = 0

Proof: Consider two events, E1 and E2, where E1 = Ω and E2 = ∅. Note that
Ω = E1 ∪ E2 and E1 ∩ E2 = ∅. By probability axioms 2 and 3, 1 = P(Ω) = P(E1) +
P(E2) = 1 + P(∅) =⇒ P(∅) = 0.

4. If E ⊂ F , then P(E) ≤ P(F )

Proof: Since E ⊂ F , it follows that F = E ∪ (Ec ∩F ). Note that E and (Ec ∩F ) are
mutually exclusive events. Consequently, appealing to probability axiom 3, P(F ) =
P(E) + P(Ec ∩ F ). Since P(Ec ∩ F ) ≥ 0 by probability axiom 1, it follows that
P(F ) ≥ P(E).

Example 3.9 � Law of Complement: Birthday Problem � Suppose that a room
contains m students. What is the probability that at least two of them have the same
birthday? This is a famous problem with a counterintuitive answer. Assume that every
day of the year is equally likely to be a birthday, and disregard leap years. That is, assume
there are always n = 365 days to a year.

Solution: Let the event E denote two or more students with the same birthday. In this
problem, it is easier to find Ec, as there are a number of ways that E can take place. There
are a total of 365m possible outcomes in the sample space. Ec can occur in 365 × 364 ×
· · · × (365 − m + 1) ways. Consequently,

P(Ec) =
365 × 364 × · · · × (365 − m + 1)

365m

and

P(E) = 1 − 365 × 364 × · · · × (365 − m + 1)
365m

.

The following S code can be used to create or modify a table such as Table 3.1 on the next
page, which gives P(E) for m = 10, 15, . . . , 50:

> for (m in seq(10,50,5))
print(c(m, 1 - prod(365:(365-m+1))/365^m))
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Another approach that can be used to solve the problem is to enter

> m <- seq(10,50,5)
> P.E <- function(m){c(m,1-prod(365:(365-m+1))/365^m)}
> t(sapply(m, P.E))

Table 3.1: Probability of two or more students having the same birthday
m P(E)
10 0.1169482
15 0.2529013
20 0.4114384
25 0.5686997
30 0.7063162
35 0.8143832
40 0.8912318
45 0.9409759
50 0.9703736

Example 3.10 Given two events E and F , suppose that P(E) = 0.3, P(F ) = 0.5, and
P(E ∪ F ) = 0.6. Find P(E ∩ F ).

Solution: Since P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ), 0.6 = 0.3 + 0.5− P(E ∩ F ). Thus,
P(E ∩ F ) = 0.2.

3.3.4 Conditional Probability

In this section, conditional probability is introduced, which is one of the more important
concepts in probability theory. Quite often, one is interested in calculating probabilities
when only partial information obtained from an experiment is available. In such situations,
the desired probabilities are said to be conditional. Even when partial information is
unavailable, often the desired probabilities can be computed using conditional probabilities.
If E and F are any two events in a sample space Ω and P(E) �= 0, the conditional
probability of F given E is defined as

P(F |E) =
P(E ∩ F )

P(E)
. (3.1)

It is left as an exercise for the reader to verify that P(F |E) satisfies the three axioms of
probability.

Example 3.11 Suppose two fair dice are tossed where each of the 36 possible outcomes
is equally likely to occur. Knowing that the first die shows a 4, what is the probability that
the sum of the two dice equals 8?

Solution: The sample space for this experiment is given as Ω = {(i, j), i = 1, 2, . . . , 6,
j = 1, 2, . . . , 6}, where each pair (i, j) has a probability 1/36 of occurring. Define “the
sum of the dice equals 8” to be event F and “a 4 on the first toss” to be event E. Since
E ∩ F corresponds to the outcome (4, 4) with probability P(E ∩ F ) = 1/36 and there are
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six outcomes with a 4 on the first toss, (4, 1), (4, 2), . . . , (4, 6), the probability of event E,
P(E) = 6/36 = 1/6 and the answer is calculated as

P(F |E) =
P(E ∩ F )

P(E)
=

1/36
1/6

=
1
6
.

Example 3.12 Suppose a box contains 50 defective light bulbs, 100 partially defective
light bulbs (last only 3 hours), and 250 good light bulbs. If one of the bulbs from the box is
used and it does not immediately go out, what is the probability the light bulb is actually
a good light bulb?

Solution: The conditional probability the light bulb is good given that the light bulb is
not defective is desired. Using (3.1), write

P(Good|Not Defective) =
P(Good)

P(Not Defective)
=

250/400
350/400

=
5
7
.

3.3.5 The Law of Total Probability and Bayes’ Rule

An important tool for solving probability problems where the sample space can be
considered a union of mutually exclusive events is the Law of Total Probability.

Law of Total Probability — Let F1, F2, . . . , Fn be such that
⋃n

i=1 Fi = Ω and
Fi ∩ Fj = ∅ for all i �= j, with P(Fi) > 0 for all i. Then, for any event E,

P(E) =
n∑

i=1

P(E ∩ Fi) =
n∑

i=1

P(E|Fi)P(Fi). (3.2)

At times, it is much easier to calculate the conditional probabilities P(E|Fi) for an
appropriately selected Fi than it is to compute P(E) directly. When this happens, Bayes’
Rule is used, which is derived using (3.1), to find the answer.

Bayes’ Rule — Let F1, F2, . . . , Fn be such that
⋃n

i=1 Fi = Ω and Fi∩Fj = ∅ for all i �=
j, with P(Fi) > 0 for all i. Then,

P(Fj |E) =
P(E ∩ Fj)

P(E)
=

P(E|Fj)P(Fj)∑n
i=1 P(E|Fi)P(Fi)

. (3.3)

Example 3.13 � Conditional Probability: Car Batteries � A car manufacturer
purchases car batteries from two different suppliers. Supplier A provides 55% of the batteries
and supplier B provides the rest. If 5% of all batteries from supplier A are defective and 4%
of the batteries from supplier B are defective, determine the probability that a randomly
selected battery is not defective. (See Figure 3.1 on the facing page.)

Solution: Let C correspond to the event “the battery does not work properly,” A to the
event “the battery was supplied by A,” and B to the event “the battery was supplied by
B.” The Venn diagram in Figure 3.1 on the next page provides a graphical illustration of
the sample space for this example. Since a working battery might come from either supplier
A or B, A and B are disjoint events. Consequently, P(C) = P(C ∩ A) + P(C ∩ B). Given
that

P(A) = 0.55, P(C|A) = 0.05, P(C ∩ A) = P(C|A)P(A),
P(B) = 0.45, P(C|B) = 0.04, and P(C ∩ B) = P(C|B)P(B),

write P(C) = (0.05)(0.55) + (0.04)(0.45) = 0.0455. Then, the probability that the battery
works properly is 1 − P(C) = 0.9545.
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A

P(A) = 0.55

B

P(B) = 0.45

C

P(C ∩ A) = 0.0275
↗

P(C ∩ B) = 0.018
↙

FIGURE 3.1: Sample space for Example 3.13

Example 3.14 Suppose a student answers all of the questions on a multiple-choice test.
Let p be the probability the student actually knows the answer and 1−p be the probability
the student is guessing for a given question. Assume students that guess have a 1/a proba-
bility of getting the correct answer, where a represents the number of possible responses to
the question. What is the conditional probability a student knew the answer to a question
given that he answered correctly?

Solution: Let the events E, F1, and F2 represent the events “question answered correctly,”
“student knew the correct answer,” and “student guessed,” respectively. Using (3.3), write

P(F1|E) =
P(F1 ∩ E)

P(E)
=

P(F1)
P(E|F1)P(F1) + P(E|F2)P(F2)

=
p

p + (1 − p)/a

As a special case, if a = 4 and p = 1/2, then the probability a student actually knew the
answer given their response was correct is 4/5.

Example 3.15 �Bayes’ Rule: Choose a Door � The television show Let’s Make a
Deal, hosted by Monty Hall, gave contestants the chance to choose, among three doors, the
one that concealed the grand prize. Behind the other two doors were much less valuable
prizes. After the contestant chose one of the doors, say Door 1, Monty opened one of the
other two doors, say Door 3, containing a much less valuable prize. The contestant was
then asked whether he or she wished to stay with the original choice (Door 1) or switch
to the other closed door (Door 2). What should the contestant do? Is it better to stay
with the original choice or to switch to the other closed door? Or does it really matter?
The answer, of course, depends on whether contestants improve their chances of winning by
switching doors. In particular, what is the probability of winning by switching doors when
given the opportunity; and what is the probability of winning by staying with the initial
door selection? First, simulate the problem with S to provide approximate probabilities for
the various strategies. Following the simulation, show how Bayes’ Rule can be used to solve
the problem exactly.

Solution: To simulate the problem, generate a random vector named actual of size 10,000
containing the numbers 1, 2, and 3. In the vector actual, the numbers 1, 2, and 3 represent
the door behind which the grand prize is contained. Then, generate another vector named
guess of size 10,000 containing the numbers 1, 2, and 3 to represent the contestant’s initial
guess. If the ith values of the vectors actual and guess agree, the contestant wins the grand
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prize by staying with his initial guess. On the other hand, if the ith values of the vectors
actual and guess disagree, the contestant wins the grand prize by switching. Consider the
following S code and the results that suggest the contestant is twice as likely to win the
grand prize by switching doors:

> actual <- sample(1:3, 10000, replace = TRUE)
> aguess <- sample(1:3, 10000, replace = TRUE)
> equals <- (actual == aguess)
> PNoSwitch <- sum(equals)/10000
> not.eq <- (actual != aguess)
> PSwitch <- sum(not.eq)/10000
> Probs <- c(PNoSwitch, PSwitch)
> names(Probs) <- c("P(Win no Switch)", "P(Win Switch)")
> Probs

P(Win no Switch) P(Win Switch)
0.3317 0.6683

Next use (3.3) after defining events Di and Oj to find P(D1|O3) and P(D2|O3). Start by
assuming the contestant initially guesses Door 1 and that Monty opens Door 3. Let the
event Di = Door i conceals the prize and Oj = Monty opens door j after the contestant
selects Door 1. When a contestant initially selects a door, P(D1) = P(D2) = P(D3) = 1/3.
Once Monty shows the grand prize is not behind Door 3, the probability of winning the
grand prize is now one of P(D1|O3) or P(D2|O3). Note that P(D1|O3) corresponds to the
strategy of sticking with the initial guess and P(D2|O3) corresponds to the strategy of
switching doors. Based on how the show is designed, the following are known:

• P(O3|D1) = 1/2 since Monty can open one of either Door 3 or Door 2.

• P(O3|D2) = 1 since the only door Monty can open without revealing the grand prize
is Door 3.

• P(O3|D3) = 0 since Monty will not open Door 3 if it contains the grand prize.

P(D1|O3) =
P(O3|D1)P(D1)

P(O3|D1)P(D1) + P(O3|D2)P(D2) + P(O3|D3)P(D3)

=
1/2 × 1/3

1/2 × 1/3 + 1 × 1/3 + 0 × 1/3
=

1
3

P(D2|O3) =
P(O3|D2)P(D2)

P(O3|D1)P(D1) + P(O3|D2)P(D2) + P(O3|D3)P(D3)

=
1 × 1/3

1/2 × 1/3 + 1 × 1/3 + 0 × 1/3
=

2
3

Therefore, it is always to the contestant’s benefit to switch doors.

3.3.6 Independent Events

Conditional probability allows for an alteration in the probability of an event when
additional information is present. That is, P(E|F ) is sometimes different from P(E) when
some knowledge of the event F is available. Note that P(E|F ) is sometimes different from
P(E), not that it is always different. When P(E|F ) = P(E), clearly knowledge of the
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event F does not alter the probability of obtaining E. When this happens, event E is
independent of event F . More formally, two events E and F are independent if and only
if P(E|F ) = P(E) or P(F |E) = P(F ). An equivalent way to define independence between
two events is to use (3.1) and to show that P(E ∩ F ) = P(E)P(F ). Independence between
two events is really a special case of independence among n events. Define events E1, . . . , En

to be independent if, for every k where k = 2, . . . , n and every subset of indices i1, i2, . . . , ik,
P(Ei1 ∩Ei2 ∩· · ·∩Eik

) = P(Ei1)P(Ei2 ) · · ·P(Eik
). It is important to point out that events in

any subset of the original independent events of size r, where r ≤ k, are also independent.
Further, if events E1, . . . , En are independent, then so are Ec

1, . . . , E
c
n.

Example 3.16 � Law of Probability: Components � A system consists of three
components as illustrated in Figure 3.2. The entire system will work if either both com-
ponents 1 and 2 work or if component 3 works. Components 1 and 2 are connected in
series, while component 3 is connected in parallel with components 1 and 2. If all of the
components function independently, and the probability each component works is 0.9, what
is the probability the entire system functions?

��

�

1 2

3

FIGURE 3.2: Circuit system diagram for Example 3.16

Solution: Let Ai (i = 1, 2, 3) be the event the ith component works, and E the event the
entire system works. Consequently, event E = (A1∩A2)∪A3, and P(E) = P[(A1∩A2)∪A3].

P(E) = P[(A1 ∩ A2) ∪ A3]
= P(A1 ∩ A2) + P(A3) − P(A1 ∩ A2 ∩ A3)
= P(A1)P(A2) + P(A3) − P(A1)P(A2)P(A3)
= (0.9)(0.9) + 0.9 − (0.9)(0.9)(0.9)
= 0.981

3.4 Random Variables

In many experiments, it is easier to study some function of the outcomes than it is to
study the original outcomes. For example, suppose 20 students are asked whether they
favor legislation to reduce ozone emissions. Note that there are 220 = 1, 048, 576 possible
outcomes in the sample space. However, it would make more sense to study the number of
students who favor (equivalently, oppose) legislation out of 20 by defining a variable, say
X , that equals the number of students favoring (or opposing) the legislation. Note that the
sample space for X is the set of integers from 0 to 20, which is much easier to deal with
than the original sample space. In general, a random variable is a function from a sample
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space Ω into the real numbers. Random variables will always be denoted with uppercase
letters, for example, X or Y , and the realized values of the random variable will be denoted
with lowercase letters, for example, x or y. Here are some examples of random variables:

1. Toss two dice. X = the sum of the numbers on the dice.

2. A surgeon performs 20 heart transplants. X = the number of successful transplants.

3. Individual 40 kilometer cycling time trial. X = the time to complete the course.

Random variables may be either discrete or continuous. A random variable is said
to be discrete if its set of possible outcomes is finite or at most countable. If the random
variable can take on a continuum of values, it is continuous. Note that the random variables
in examples 1 and 2 are discrete, while the variable in example 3 is continuous. If a
random variable X has a distribution DIST with parameter(s) θ, write X ∼ DIST(θ). If
Y is a random variable that is distributed approximately DIST with parameter(s) θ, write
Y

�∼ DIST(θ).

3.4.1 Discrete Random Variables

A discrete random variable assumes each of its values with a certain probability. When
two dice are tossed, the probability the sum of two dice is 7, written P(X = 7), equals
1/6. The function that assigns probability to the values of the random variable is called
the probability density function, pdf. Many authors also refer to the pdf as the probability
mass function (pmf) when working with discrete random variables. Denote the pdf as
p(x) = P(X = x) for each x. All pdfs must satisfy the following two conditions:

1. p(x) ≥ 0 for all x.

2.
∑
∀x

p(x) = 1.

The cumulative distribution function, cdf, is defined as

F (x) = P(X ≤ x) =
∑
k≤x

p(k).

Discrete cdfs have the following properties:

1. 0 ≤ F (x) ≤ 1.

2. If a < b, then F (a) ≤ F (b) for any real numbers a and b. In other words, F (x) is a
non-decreasing function of x.

3. lim
x→∞F (x) = 1.

4. lim
x→−∞F (x) = 0.

5. F (x) is a step function, and the height of the step at x is equal to f(x) = P(X = x).

Example 3.17 Toss a fair coin three times and let the random variable X represent the
number of heads in the three tosses. Produce graphical representations of both the pdf and
cdf for the random variable X .
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Solution: The sample space for the experiment is

Ω = {HHH, HHT, HTH, THH, TTH, THT,HTT, TTT}

The random variable X can take on the values 0, 1, 2, and 3 with probabilities 1
8 , 3

8 , 3
8 , and

1
8 , respectively. Define the cdf for X , F (x) = P(X ≤ x) as follows:

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if x < 0,

1/8 if 0 ≤ x < 1
4/8 if 1 ≤ x < 2
7/8 if 2 ≤ x < 3
1 if x ≥ 3

The code for producing a graph similar to Figure 3.3 on the next page with placement
of specific values along the axes for both the pdf and cdf using the function axis() is as
follows:

> x <- 0:3
> fx <- c(1/8,3/8,3/8,1/8)
> Fx <- c(1/8,4/8,7/8,1) # or Fx <- cumsum(fx)
> par(mfrow=c(1,2), pty="s")
> plot(x, fx, type="h", xlab="x", ylab="P(X=x)",
+ xlim=c(0,3), ylim=c(0,.4), xaxt="n", yaxt="n")
> axis(1, at=c(0,1,2,3), labels=c(0,1,2,3), las=1)
> axis(2, at=c(1/8,3/8), labels=c("1/8","3/8"), las=1)
> title("PDF")
> plot(x, Fx, type="n", xlab="x", ylab="F(x)",
+ xlim=c(-1,5), ylim=c(0,1), yaxt="n")
> axis(2, at=c(1/8,4/8,7/8,1), labels=c("1/8","4/8","7/8","1"), las=1)
> segments(-1,0,0,0)
> segments(0:4, c(Fx,1),1:5, c(Fx,1))
> lines(x, Fx, type="p", pch=16)
> segments(-1,1,5,1, lty=2)
> title("CDF")

3.4.2 Mode, Median, and Percentiles

The mode of a probability distribution is the x-value most likely to occur. If more than
one such x value exists, the distribution is multimodal. The median of a distribution is
the value m such that P(X ≤ m) ≥ 1/2 and P(X ≥ m) ≥ 1/2. The jth percentile of a
distribution is the value xj such that P(X ≤ xj) ≥ j

100 and P(X ≥ xj) ≥ 1 − j
100 . The

m value that satisfies the definition for the median is not unique. If Example 3.17 on the
facing page is considered, the modes are 1 and 2; and any value m between 1 and 2, not
inclusive, satisfies the definition for the median. The 25th percentile of the distribution of
X is 1 because P(X ≤ 1) = 4

8 ≥ 25
100 and P(X ≥ 1) = 7

8 ≥ 1 − 25
100 .
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P(X = 1) = F (1) − F (0)

PDF for X CDF for X

FIGURE 3.3: The pdf and cdf for the random variable X, the number of heads in three
tosses of a fair coin

3.4.3 Expected Values of Discrete Random Variables

One of the more important ideas about summarizing the information provided in a pdf
is that of expected value. Given a discrete random variable X with pdf p(x), the expected
value of the random variable X , written E[X ], is

E[X ] =
∑

x

x · p(x) (3.4)

Also denote E[X ] as μX , recognizing that E[X ] is the mean of the random variable X . In
this definition, it is assumed the sum exists; otherwise, the expectation is undefined. It can
be helpful to think of E[X ] as the fulcrum on a balance beam as illustrated in Figure 3.4.

FIGURE 3.4: Fulcrum illustration of E[X ]

Example 3.18 A particular game is played where the contestant spins a wheel that can
land on the numbers 1, 5, or 30 with probabilities of 0.50, 0.45, and 0.05, respectively. The
contestant pays $5 to play the game and is awarded the amount of money indicated by the
number where the spinner lands. Is this a fair game?

Solution: By fair, it is meant that the contestant should have an expected return equal
to the price she pays to play the game. To answer the question, the expected (average)
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winnings from playing the game need to be computed. Let the random variable X represent
the player’s winnings:

E[X ] =
∑

x

x · p(x) = (1 × 0.50) + (5 × 0.45) + (30 × 0.05) = 4.25.

Therefore, this game is not fair, as the house makes an average of 75 cents each time the
game is played.

Another interpretation of the expected value of the random variable X is to view it as
a weighted mean. Code to compute the expected value using (3.4) and using the function
weighted.mean() is

> x <- c(1,5,30)
> px <- c(0.5,0.45,0.05)
> EX <- sum(x*px)
> WM <- weighted.mean(x, px)
> c(EX, WM)
[1] 4.25 4.25

Often, a random variable itself is not of interest, but rather some function of it is
important, say g(X), of the random variable X . The expected value of a function g(X) of
the random variable X with pdf p(x) is

E
[
g(X)

]
=

∑
x

g(x) · p(x). (3.5)

Example 3.19 Consider Example 3.18, for which the random variable Y is defined to be
the player’s net return. That is, Y = X − 5 since the player spends $5 to play the game.
What is the expected value of Y ?

Solution: The expected value of Y is

E[Y ] =
∑

x

(x − 5) · p(x) = (−4 × 0.50) + (0 × 0.45) + (25 × 0.05) = −0.75.

To compute the answer with S use

> x <- c(1,5,30)
> px <- c(0.5,0.45,0.05)
> EgX <- sum((x-5)*px)
> WgM <- weighted.mean((x-5), px)
> c(EgX, WgM)
[1] -0.75 -0.75

Rules of Expected Value The function g(X) is often a linear function a + bX , where a
and b are constants. When this occurs, E[g(X)] is easily computed from E[X ]. In Example
3.19, a and b were -5 and 1, respectively, for the linear function g(X). The following rules
for expected value, when working with a random variable X and constants a and b, are
true:

1. E[bX ] = bE[X ].

2. E[a + bX ] = a + bE[X ].

Unfortunately, if g(X) is not a linear function of X , such as g(X) = X2, the E
[
X2

]
�=

(E[X ])2. In general, E
[
g(X)

]
�= g

(
E[X ]

)
.
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3.4.4 Moments

Another way to define the expected value of a random variable is with moments.
However, knowing the mean (expected value) of a distribution does not tell the whole
story. Several distributions may have the same mean. In this case, additional information,
such as the spread of the distribution and the symmetry of the distribution, is helpful in
distinguishing among various distributions.

The rth moment about the origin of a random variable X , denoted αr, is defined as
E [Xr] . Note that α1 = E

[
X1

]
is called the mean of the distribution of X , also denoted

μX or simply μ. The special moments defined next are important in the field of statistics as
they help describe a random variable’s distributional shape. The rth moment about the
mean of a random variable X , denoted μr, is the expected value of (X −μ)r. However, all
moments do not exist. For the rth moment about the origin of a discrete random variable
to be well-defined,

∑∞
i=1 |xr

i |P(X = xi) must be less than ∞.

Moments about 0 and μ

E[Xr] = αr

E[(X − μ)r] = μr

(3.6)

3.4.4.1 Variance

The second moment about the mean is called the variance of the distribution of X , or
simply the variance of X :

Var[X ] = σ2
X = E

[
(X − μ)2

]
= E

[
X2

]
− μ2 (3.7)

The positive square root of the variance is called the standard deviation and is denoted
σX . The units of measurement for standard deviation are always the same as those for the
random variable X . One way to avoid this unit dependency is to use the coefficient of
variation, a unitless measure of variability.

Definition 3.2: Coefficient of variation — When E[X ] �= 0,

CVX =
σX∣∣E[X ]

∣∣ , (3.8)

3.4.4.2 Rules of Variance

If X is a random variable with mean μ and a and b are constants, then

1. Var [b] = 0.

2. Var [aX ] = a2Var [X ].

3. Var [aX + b] = a2Var [X ].

Note that once Var [aX + b] = a2Var [X ] is proved, Var [b] = 0 and Var[aX ] = a2Var [X ]
have been implicitly shown.

Proof:

Var [aX + b] = E[(aX + b − E[aX + b])2] = E[(aX + b − aμ − b)2]
= E[(aX − aμ)2] = a2E

[
(X − μ)2

]
= a2Var [X ].
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3.4.5 Continuous Random Variables

Recall that discrete random variables can only assume a countable number of outcomes.
When a random variable has a set of possible values that is an entire interval of numbers,
X is a continuous random variable. For example, if a 12 ounce can of beer is randomly
selected and its actual fluid contents X is measured, then X is a continuous random variable
because any value for X between 0 and the capacity of the beer can is possible.

Continuous Probability Density Functions’ Properties

The function f(x) is a pdf for the continuous random variable X ,
defined over the set of real numbers R, if

1. f(x) ≥ 0, −∞ < x < ∞,

2.

∞∫
−∞

f(x) dx = 1, and

3. P(a ≤ X ≤ b) =

b∫
a

f(x) dx.

(3.9)

f(x)f(x)f(x)

aa bb

P(X ≤ b) P(X ≤ a)P(a ≤ X ≤ b)

∫ b

−∞ f(x) dx
∫ a

−∞ f(x) dx
∫ b

a
f(x) dx

FIGURE 3.5: Illustration of P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a)

Condition 3 from (3.9) for the definition of a pdf for a continuous random variable is
illustrated in Figure 3.5.

Definition 3.3: Cumulative Density Function — The cdf, F (x), of a continuous
random variable X with pdf f(x) is

F (x) = P(X ≤ x) =

x∫
−∞

f(t) dt, −∞ < x < ∞ (3.10)

According to Definition 3.3, the cdf is derived from an existing pdf. Further, according



94 Probability and Statistics with R

to the fundamental theorem of calculus, the other direction is also true since F ′(x) = f(x)
for all values of x for which the derivative F ′(x) exists.

Continuous Cumulative Distribution Functions’ Properties

Continuous cdfs have the following properties:

1. 0 ≤ F (x) ≤ 1.

2. If a < b, then F (a) ≤ F (b) for any real numbers a and b. In
other words, F (x) is a non-decreasing function of x.

3. lim
x→∞F (x) = 1.

4. lim
x→−∞F (x) = 0.

(3.11)

Example 3.20 � Calculations of pdf and cdf � Suppose X is a continuous random
variable with pdf f(x), where

f(x) =

{
k(1 − x2) if − 1 < x ≤ 1,

0 otherwise.

(a) Find the constant k so that f(x) is a pdf of the random variable X .

(b) Find the cdf for X .

(c) Compute P(−0.5 ≤ X ≤ 1).

(d) Graph the pdf and cdf of X with S.

Solution: The answers are as follows:
(a) Using property 2 from (3.9) for the pdf of a continuous random variable, write

1 =

∞∫
−∞

f(x) dx =

1∫
−1

k(1 − x2) dx

= k

[
x − x3

3

]∣∣∣∣1
−1

= k

[(
1 − 1

3

)
−

(
−1 − −1

3

)]

= k

[
2
3
− −2

3

]
= k

4
3
⇒ k =

3
4
.

(b) Using (3.3) it is known that

F (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if x ≤ −1

x∫
−1

3
4
(1 − t2)dt =

−x3

4
+

3x

4
+

1
2

if − 1 < x ≤ 1

1 if x > 1



General Probability and Random Variables 95

(c) Using property 3 from (3.9) for the pdf of a continuous random variable, write

P(−0.5 ≤ X ≤ 1) = F (1) − F (−0.5)

=
(
−13

4
+

3 · 1
4

+
1
2

)
−

(
−

(−1
2 )3

4
+

3 · − 1
2

4
+

1
2

)
=

(
−1
4

+
3
4

+
1
2

)
−

(
1
32

+
−3
8

+
1
2

)
= 1 − 5

32
=

27
32

= 0.84375.

(d) Figure 3.6 depicts the pdf and cdf of X .
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FIGURE 3.6: Illustration of pdf and cdf for Example 3.20

The following S code is used to create Figure 3.6:

> par(mfrow=c(1,2), pty="s")
> x <- seq(-1,1,0.01)
> y <- 3/4*(1-x^2)
> plot(x, y, xlim=c(-2,2), ylim=c(0,1), type="l", xlab="x",
+ ylab="f(x)")
> segments(-2,0,-1,0)
> segments(1,0,2,0)
> title("PDF for X")
> y <- -x^3/4 +3*x/4+1/2
> plot(x, y, xlim=c(-2,2), ylim=c(0,1), type="l", xlab="x",
+ ylab="F(x)")
> segments(-2,0,-1,0)
> segments(1,1,2,1)
> title("CDF for X")
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3.4.5.1 Numerical Integration with S

The S function integrate() approximates the integral of functions of one variable over
a finite or infinite interval and estimates the absolute error in the approximation. To use
integrate(), the user must specify f(), the function; lower, the lower limit of integration;
and upper, the upper limit of integration. The function f() must be a real-valued S function
of the form f(x), where x is the variable of integration. In addition to using property 3 from
(3.9) for the pdf of a continuous random variable to solve (c) of Example 3.20 on page 94, the
problem could be solved directly by integrating the original probability P(−0.5 ≤ X ≤ 1).
That is,

P(−0.5 ≤ X ≤ 1) =

1∫
−0.5

3
4
(
1 − x2

)
dx =

3x

4
− x3

4

∣∣∣∣1
−0.5

= 0.84375.

The following code computes P(−0.5 ≤ X ≤ 1) using the function integrate() for R and
S-PLUS, respectively:

> fx <- function(x){3/4-3/4*x^2}
> integrate(fx, lower=-0.5, upper=1) # R
0.84375 with absolute error < 9.4e-15

> fx <- function(x){3/4-3/4*x^2}
> integrate(fx, lower=-0.5, upper=1)$integral # S-PLUS
[1] 0.84375

3.4.5.2 Mode, Median, and Percentiles

The mode of a continuous probability distribution, just like the mode of a discrete
probability distribution, is the x-value most likely to occur. If more than one such x value
exists, the distribution is multimodal. The median of a continuous distribution is the value
m such that

m∫
−∞

f(x) dx =

∞∫
m

f(x) dx =
1
2
.

The jth percentile of a continuous distribution is the value xj such that

xj∫
−∞

f(x) dx =
j

100
.

Example 3.21 Given a random variable X with pdf

f(x) =

{
2e−2x if x > 0
0 if x ≤ 0,

(a) Find the median of the distribution.

(b) Find the 25th percentile of the distribution.

(c) Find the 60th percentile of the distribution.
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Solution: The answers are as follows:
(a) The median is the value m such that

m∫
0

2e−2x dx = 0.5, which implies

−e−2x
∣∣m
0

= 0.5

−e−2m + 1 = 0.5

−e−2m = 0.5 − 1

ln(e−2m) = ln(0.5)

m =
ln(0.5)
−2

= 0.3466.

(b) The 25th percentile is the value x25 such that
x25∫
0

2e−2x dx = 0.25, which implies

−e−2x
∣∣x25

0
= 0.25

−e−2x25 + 1 = 0.25

−e−2x25 = 0.25 − 1

ln(e−2x25) = ln(0.75)

x25 =
ln(0.75)

−2
= 0.1438.

(c) The 60th percentile is the value x60 such that
x60∫
0

2e−2x dx = 0.60, which implies

−e−2x
∣∣x60

0
= 0.60

−e−2x60 + 1 = 0.60

−e−2x60 = 0.60 − 1

ln(e−2x60) = ln(0.40)

x60 =
ln(0.40)

−2
= 0.4581.

Example 3.22 Given a random variable X with pdf

f(x) =

{
2 cos(2x) if 0 < x < π/4
0 otherwise,

(a) Find the mode of the distribution.

(b) Find the median of the distribution.

(c) Draw the pdf and add vertical lines to indicate the values found in part (b).

Solution: The answers are as follows:

(a) The function 2 cos 2x does not have a maximum in the open interval (0, π/4) since the
derivative f ′(x) = −4 sin 2x does not equal 0 in the open interval (0, π/4).
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(b) The median is the value m such that
m∫

0

2 cos 2xdx = 0.5

⇓
sin 2x

∣∣m
0

= sin 2m = 0.5

2m = arcsin(0.5)

m =
π

12

(c) The R commands used to create Figure 3.7 are

> curve(2*cos(2*x),0, pi/4)
> abline(v=pi/12, lty=2, lwd=2)
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FIGURE 3.7: Graph of 2 cos(2x) from 0 to π
4 with R

3.4.5.3 Expectation of Continuous Random Variables

For continuous random variables, the definitions associated with the expectation of a
random variable X or a function, say g(X), of X are identical to those for discrete random
variables, except the summations are replaced with integrals and the probability density
functions are represented with f(x) instead of p(x). The expected value of a continuous
random variable X is

E[X ] = μX =

∞∫
−∞

x · f(x) dx. (3.12)

When the integral in (3.12) does not exist, neither does the expectation of the random
variable X . The expected value of a function of X , say g(X), is

E
[
g(X)

]
=

∞∫
−∞

g(x) · f(x) dx. (3.13)
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Using the definitions for moments about 0 and μ given in (3.6), which relied strictly on
expectation in conjunction with (3.13), the variance of a continuous random variable X is
written as

Var [X ] = σ2
X = E

[
(X − μ)2

]
=

∞∫
−∞

(x − μ)2f(x) dx. (3.14)

Example 3.23 Given the function

f(x) = k, −1 < x < 1

of the random variable X ,

(a) Find the value of k to make f(x) a pdf. Use this k for parts (b) and (c).

(b) Find the mean of the distribution using (3.12).

(c) Find the variance of the distribution using (3.14).

Solution: The answers are as follows:

(a) Since
∞∫

−∞
f(x) dx must equal 1 for f(x) to be a pdf, set

1∫
−1

k dx equal to one and solve

for k:

1∫
−1

k dx = 1

kx
∣∣1
−1

= 1

2k = 1 ⇒ k =
1
2
.

(b) The mean of the distribution using (3.12) is

E[X ] = μX =

1∫
−1

1
2
xdx

=
x2

4

∣∣∣∣1
−1

= 0

(c) The variance of the distribution using (3.14) is

Var [X ] = σ2
X = E

[
(X − μ)2

]
=

∞∫
−∞

(x − μ)2f(x) dx

=

1∫
−1

(x − 0)2
1
2

dx

=
x3

6

∣∣∣∣1
−1

=
1
3
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3.4.6 Markov’s Theorem and Chebyshev’s Inequality

Theorem 3.1 Markov’s Theorem If X is a random variable and g(X) is a function of
X such that g(X) ≥ 0, then, for any positive K,

P
(
g(X) ≥ K

)
≤ E[g(X)]

K
. (3.15)

Proof:

Step 1. Let I
(
g(X)

)
be a function such that

I
(
g(X)

)
=

{
1 if g(X) ≥ K,

0 otherwise.

Step 2. Since g(X) ≥ 0 and I
(
g(X)

)
≤ 1, when the first condition of I

(
g(X)

)
is divided by

K,

I
(
g(X)

)
≤ g(X)

K
.

Step 3. Taking the expected value,

E[I(g(X))] ≤ E[g(X)]
K

.

Step 4. Clearly

E
[
I
(
g(X)

)]
=

∑
x

I
(
g(x)

)
· p(x)

=
[
1 · P

(
I
(
g(X)

)
= 1

)]
+

[
0 · P

(
I
(
g(X)

)
= 0

)]
=

[
1 · P

(
g(X) ≥ K

)]
+

[
0 · P

(
g(X) < K

)]
= P

(
g(X) ≥ K

)
.

Step 5. Rewriting,

P
(
g(X) ≥ K

)
≤ E[g(X)]

K
,

which is the inequality from (3.15) to be proven.

If g(X) = (X − μ)2 and K = k2σ2 in (3.15), it follows that

P
(
(X − μ)2 ≥ k2σ2

)
≤

E
[
(X − μ)2

]
k2σ2

=
σ2

k2σ2
=

1
k2

. (3.16)

Working inside the probability on the left side of the inequality in (3.16), note that(
(X − μ)2 ≥ k2σ2

)
⇒

(
X − μ ≥

√
k2σ2

)
or

(
X − μ ≤ −

√
k2σ2

)
⇒

(
|X − μ| ≥

√
k2σ2

)
⇒

(
|X − μ| ≥ kσ

)
.



General Probability and Random Variables 101

Using this, rewrite (3.16) to obtain

P(|X − μ| ≥ kσ) ≤ 1
k2

, (3.17)

which is known as Chebyshev’s Inequality.

Definition 3.4: Chebyshev’s Inequality — Can be stated as any of

(a) P(|X − μ| ≥ k) ≤ σ2

k2
.

(b) P(|X − μ| < k) ≥ 1 − σ2

k2
.

(c) P(|X − μ| ≥ kσ) ≤ 1
k2

.

(d) P(|X − μ| < kσ) ≥ 1 − 1
k2

.

Version (d) of Chebyshev’s Inequality is the complement of (c), the version derived in
(3.17). Version (b) is the complement of (a) both of which can be obtained by setting
g(X) = (X − μ)2 and K = k2 in (3.15). A verbal interpretation of version (c) is that the
probability any random variable X with finite variance, irrespective of the distribution of
X , is k or more standard deviations from its mean is less than or equal to 1/k2. Likewise,
version (d) states that the probability X is within k standard deviations from the mean is at
least 1− 1

k2 . Clearly, Chebyshev’s Inequality can be used as a bound for certain probabilities.
However, in many instances, the bounds provided by the inequality are very conservative.
One reason for this is that there are no restrictions on the underlying distribution.

Example 3.24 Consider Example 3.17 on page 88, where X was defined to be the number
of heads in three tosses of a fair coin. Chebyshev’s Inequality guarantees at least what
fraction of the distribution of X is within k = 2 standard deviations from its mean? What
is the actual fraction of the distribution of X that is within k = 2 standard deviations from
its mean?

Solution: Using version (d) of Chebyshev’s Inequality, P(|X−μ| < kσ) ≥ 1− 1
k2 , compute

the first answer to be 1 − 1
22 = 3

4 . To answer the second question, first find the mean and
variance of X :

E[X ] =
∑

x

x p(x) = 0 × 1
8

+ 1 × 3
8

+ 2 × 3
8

+ 3 × 1
8

=
3
2

= 1.5

E
[
X2

]
=

∑
x

x2 p(x) = 02 × 1
8

+ 12 × 3
8

+ 22 × 3
8

+ 32 × 1
8

=
3
2

= 3

Var [X ] = E
[
X2

]
−

(
E[X ]

)2 = 3 − 1.52 = 0.75

For this example,

P(|X − μ| < kσ) = P(|X − 1.5| < 2
√

0.75)
= P(|X − 1.5| < 1.732)
= P(−0.232 < X < 3.232) = 1.

Chebyshev’s Inequality guaranteed at least 75% of the distribution of X would be within
k = 2 standard deviations from its mean. However, the fact that all of the distribution of
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X is within k = 2 standard deviations from the mean illustrates the conservative nature of
Chebyshev’s Inequality.

To compute the needed quantities with S, use the following code:

> x <- 0:3
> px <- c(1/8,3/8,3/8,1/8)
> EX <- weighted.mean(x, px)
> EX2 <- weighted.mean(x^2, px)
> VX <- EX2 - EX^2
> sigmaX <- sqrt(VX)
> c(EX, EX2, VX, sigmaX)
[1] 1.5000000 3.0000000 0.7500000 0.8660254

3.4.7 Weak Law of Large Numbers

An important application of Chebyshev’s Inequality is proving the Weak Law of
Large Numbers. The Weak Law of Large Numbers provides proof of the notion that
if n independent and identically distributed random variables, X1, X2, . . . , Xn, from a
distribution with finite variance are observed, then the sample mean, X, should be very
close to μ provided n is large. Mathematically, the Weak Law of Large Numbers states that
if n independent and identically distributed random variables, X1, X2, . . . , Xn are observed
from a distribution with finite variance, then, for all ε > 0,

lim
n→∞ P

(∣∣∣∣X1 + · · · + Xn

n
− μ

∣∣∣∣ ≥ ε

)
= 0. (3.18)

Proof: Consider the random variables X1, . . . , Xn such that the mean of each one is μ and
the variance of each one is σ2. Since

E

[∑n
i=1 Xi

n

]
= μ and Var

[∑n
i=1 Xi

n

]
=

σ2

n
,

use version (a) of Chebyshev’s Inequality with k = ε to write

P

(∣∣∣∣X1 + · · · + Xn

n
− μ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2
,

which proves (3.18) since

lim
n→∞ P

(∣∣∣∣X1 + · · · + Xn

n
− μ

∣∣∣∣ ≥ ε

)
≤ lim

n→∞
σ2

nε2
= 0.

3.4.8 Skewness

Earlier it was discussed that the second moment about the mean of a random variable
X is the same thing as the variance of X . Now, the third moment about the mean of a
random variable X is used in the definition of the skewness of X . To facilitate the notation
used with skewness, first define a standardized random variable X∗ to be:

X∗ =
X − μ

σ
,
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where μ is the mean of X and σ is the standard deviation of X . Using the standardized
form of X , it is easily shown that E[X∗] = 0 and Var [X∗] = 1. Define the skewness of a
random variable X , denoted γ1, to be the third moment about the origin of X∗:

γ1 = E
[
(X∗)3

]
=

E
[
(X − μ)3

]
σ3

(3.19)

Positive values for γ1 indicate a distribution that is skewed to the right while negative values
for γ1 indicate a distribution that is skewed to the left. If the distribution of X is symmetric
with respect to its mean, then its skewness is zero. That is, γ1 = 0 for distributions that
are symmetric about their mean. Examples of distributions with various γ1 coefficients are
shown in Figure 3.8.

γ1 = −0.47434 < 0 γ1 = 0 γ1 = 0.47434 > 0

Negative Skew Symmetric Positive Skew

FIGURE 3.8: Distributions with γ1 (skewness) coefficients that are negative, zero, and
positive, respectively.

Example 3.25 Let the pdf of X be defined by p(x) = x/15, x = 1, 2, 3, 4, 5. Compute γ1

for the given distribution.

Solution: The value of γ1 is computed to be

γ1 = E[(X∗)3] =
E[(X − μ)3]

σ3
= −0.5879747

which means the distribution has a negative skew. To compute the answer with S, the
following facts are used:

1. μ = E[X ].

2. σ =
√

E[X2] − E[X ]2.

3. X∗ = X−μ
σ .

4. γ1 = E
[
(X∗)3

]
.

> x <- 1:5
> px <- x/15
> EX <- sum(x*px)
> sigmaX <- sqrt(sum(x^2*px) - EX^2)
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> X.star <- (x-EX)^3/sigmaX^3
> skew <- sum(X.star*px)
> skew
[1] -0.5879747

3.4.9 Moment Generating Functions

Finding the first, second, and higher moments about the origin using the definition
αr = E[Xr] is not always an easy task. However, one may define a function of a real
variable t called the moment generating function, mgf, that can be used to find moments
with relative ease provided the mgf exists. Given a random variable X with pdf p(x), the
mgf of X , written MX(t), is defined as

MX(t) = E
[
etX

]
=

∞∫
−∞

etxf(x) dx, −h < t < h. (3.20)

provided there is a positive number h such that, for −h < t < h, the expectation of etX

exists. If X is discrete, then E
[
etX

]
=

∑
x etxp(x). When the mgf exists, it is unique

and completely determines the distribution of the random variable. Consequently, if two
random variables have the same mgf, they have the same distribution.

Example 3.26 Given the function

f(x) = k, −1 < x < 1

of the random variable X , find the mgf of the distribution using (3.20).

Solution: The reader may verify that a value of k = 1
2 produces a valid pdf. The mgf of

the distribution will then be

MX(t) = E
[
etX

]
=

∞∫
−∞

etxf(x) dx, −h < t < h

=

1∫
−1

etx 1
2

dx =
etx

2t

∣∣∣∣1
−1

=
et − e−t

2t
, t �= 0.

Note that if t = 0, then MX(t) = 1 since MX(t) = E
[
etX

]
= E

[
e0
]

= 1. Therefore, the
mgf is written

MX(t) =

⎧⎨⎩
et − e−t

2t
if t �= 0

1 if t = 0.

Theorem 3.2 If X has mgf MX(t), then the derivatives of MX(t) of all orders exist at
t = 0, and

E[Xr] =
dr

dtr
MX(t)|t=0.
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A proof of the last theorem is beyond the scope of this text. However, assuming the
distribution is discrete and summation and differentiation may be interchanged, note that

E
[
X1

]
=

d1

dt1
MX(t)|t=0 =

d1

dt1

∑
x

etx p(x)|t=0 =
∑

x

d1

dt1
etx p(x)|t=0

=
∑

x

xetx p(x)|t=0 =
∑

x

x p(x) = α1 = E[X1]

E
[
X2

]
=

d2

dt2
MX(t)|t=0 =

d2

dt2

∑
x

etx p(x)|t=0 =
∑

x

d2

dt2
etx p(x)|t=0

=
∑

x

x2etx p(x)|t=0 =
∑

x

x2 p(x) = α2 = E
[
X2

]
E[Xr] =

dr

dtr
MX(t)|t=0 =

dr

dtr

∑
x

etx p(x)|t=0 =
∑

x

dr

dtr
etx p(x)|t=0

=
∑

x

xretx p(x)|t=0 =
∑

x

xr p(x) = αr = E[Xr]

Example 3.27 Let X be a random variable with probability distribution

P (X = x|n, π) =
n!

(n − x)!x!
πx(1 − π)(n−x) x = 0, 1, . . . , n

Using the moment generating function, check that E[X ] = nπ and Var [X ] = nπ(1 − π).
(Hint: (a + b)n =

∑n
x=0

(
n
x

)
bxan−x.)

Solution: First, the moment generating function is calculated:

M(t) = E[etx] =
n∑

x=0

(
n

x

)
etxπx(1 − π)n−x

=
n∑

x=0

(
n

x

)
(πet)x(1 − π)n−x

= [(1 − π) + πet]n

The first and second derivatives of M(t) at t = 0 give E[X ] and E[X2], respectively,
which are used to calculate the mean and variance of X :

M ′(t) = n[(1 − π) + πet]n−1(πet)

and, using the product and chain rules

M ′′(t) = n(n − 1)[(1 − π) + πet]n−2(πet)2 + n[(1 − π) + πet]n−1(πet).

This yields

E[X ] = M ′(0) = nπ and

Var [X ] = E[X2] − E[X ]2 = M ′′(0) − [M ′(0)]2 = n(n − 1)π2 + nπ − (nπ)2 = nπ(1 − π)
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Theorem 3.3 If a and b are real-valued constants, then

(1) MX+a(t) = E
[
e(X+a)t

]
= eat · MX(t).

(2) MbX(t) = E
(
ebXt

)
= MX(bt).

(3) M X+a
b

(t) = E
[
e(

X+a
b )t

]
= e

a
b t · MX

(
t
b

)
.

The proof of Theorem 3.3 is left as an exercise for the reader.
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3.5 Problems

1. Three dice are thrown. What fraction of the time does a a sum of 9 appear on the faces?
What percent of the time does a sum of 10 appear?

2. How many different six-place license plates are possible if the first two places are letters
and the remaining places are numbers?

3. How many different six-place license plates are possible (first two places letters, remaining
places numbers) if repetition among letters and numbers is not permissible?

4. Susie has 25 books she would like to arrange on her desk. Of the 25 books, 7 are
statistics books, 6 are biology books, 5 are English books, 4 are history books, and 3
are psychology books. If Susie arranges her books by subject, how many ways can she
arrange her books?

5. A hat contains 20 consecutive numbers (1 to 20). If four numbers are drawn at random,
how many ways are there for the largest number to be a 16 and the smallest number to
be a 5?

6. A university committee of size 10, consisting of 2 faculty from the college of fine and
applied arts, 2 faculty from the college of business, 3 faculty from the college of arts and
sciences, and 3 administrators, is to be selected from 6 fine and applied arts faculty, 7
college of business faculty, 10 college of arts and sciences faculty, and 5 administrators.
How many committees are possible?

7. How many different letter arrangements can be made from the letters BIOLOGY, PROB-
ABILITY, and STATISTICS, respectively.

8. A doll house must be painted and assembled before it can be given as a gift. If there
are 12 equal-sized rooms in the doll house and there is enough white paint for 4 rooms,
enough pink paint for 3 rooms, and enough blue paint for 5 rooms, in how many ways
can the 12 rooms be painted?

9. A shipment of 50 laptops includes 3 that are defective. If an instructor purchases 4
laptops from the shipment to use in his class, how many ways are there for the instructor
to purchase at least 2 of the defective laptops?

10. A multiple-choice test consists of 10 questions. Each question has 5 answers (only one
is correct). How many different ways can a student fill out the test?

11. How many ways can five politicians stand in line? In how many ways can they stand in
line if two of the politicians refuse to stand next to each other?

12. There are five different colored jerseys worn throughout the Tour de France. The yellow
jersey is worn by the rider with the least accumulated time; the green jersey is worn by
the best sprinter; the red and white polka dot jersey is worn by the best climber. The
white jersey is worn by the best youngest rider, and the red jersey is worn by the rider
with the most accumulated time still in the race. If 150 riders finish the Tour, how many
different ways can the yellow, green, and red and white polka dot jerseys be awarded if
(a) a rider can receive any number of jerseys and (b) each rider can receive at most one
jersey.
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13. A president, treasurer, and secretary, all different, are to be chosen from among the 10
active members of a university club. How many different choices are possible if

(a) There are no restrictions.

(b) A will serve only if she is the treasurer.

(c) B and C will not serve together.

(d) D and E will serve together or not at all.

(e) F must be an officer.

14. On a multiple-choice exam with three possible answers for each of the five questions,
what is the probability that a student would get four or more correct answers just by
guessing?

15. Suppose four balls are chosen at random without replacement from an urn containing
six black balls and four red balls. What is the probability of selecting two balls of each
color?

16. What is the probability that a hand of five cards chosen randomly and without replace-
ment from a standard deck of 52 cards contains the ace of hearts, exactly one other ace,
and exactly two kings?

17. Verify that P(F |E) satisfies the three axioms of probability on page 81.

18. Prove Theorem 3.3 on page 106.

19. In the New York State lottery game, six of the numbers 1 through 54 are chosen by a
customer. Then, in a televised drawing, six of these numbers are selected. If all six of
a customer’s numbers are selected, then that customer wins a share of the first prize. If
five or four of the numbers are selected, the customer wins a share of the second or the
third prize. What is the probability that any customer will win a share of the first prize,
the second prize, and the third prize, respectively?

20. Assume that P(A) = 0.5, P(A ∩ C) = 0.2, P(C) = 0.4, P(B) = 0.4, P(A ∩ B ∩ C) = 0.1,
P(B ∩ C) = 0.2, and P(A ∩ B) = 0.2. Calculate the following probabilities:

(a) P(A ∪ B ∪ C)

(b) P(Ac ∩ (B ∪ C))

(c) P ((B ∩ C)c ∪ (A ∩ B)c)

(d) P(A) − P(A ∩ C)

21. Let the random variable X be the sum of the numbers on two fair dice. Find an upper
bound on P(|X − 7| ≥ 4) using Chebyshev’s Inequality as well as the exact probability
for P(|X − 7| ≥ 4).

22. A new drug test being considered by the International Olympic Committee can detect
the presence of a banned substance when it has been taken by the subject in the last
90 days 98% of the time. However, the test also registers a “false positive” in 2% of the
population that has never taken the banned substance. If 2% of the athletes in question
are taking the banned substance, what is the probability a person that has a positive
drug test is actually taking the banned substance?
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23. The products of an agricultural firm are delivered by four different transportation com-
panies, A, B, C, and D. Company A transports 40% of the products; company B, 30%;
company C, 20%; and, finally, company D, 10%. During transportation, 5%, 4%, 2%,
and 1% of the products spoil with companies A, B, C, and D, respectively. If one product
is randomly selected,

(a) Obtain the probability that it is spoiled.

(b) If the chosen product is spoiled, derive the probability that it has been transported
by company A.

24. Two lots of large glass beads are available (A and B). Lot A has four beads, two of which
are chipped; and lot B has five beads, two of which are chipped. Two beads are chosen
at random from lot A and passed to lot B. Then, one bead is randomly selected from lot
B. Find:

(a) The probability that the selected bead is chipped.

(b) The probability that the two beads selected from lot A were not chipped if the bead
selected from lot B is not chipped.

25. A box contains 5 defective bulbs, 10 partially defective (they start to fail after 10 hours
of use), and 25 perfect bulbs. If a bulb is tested and it does not fail immediately, find
the probability that the bulb is perfect.

26. A salesman in a department store receives household appliances from three suppliers:
I, II, and III. From previous experience, the salesman knows that 2%, 1%, and 3% of
the appliances from supplier I, II, and III, respectively, are defective. The salesman sells
35% of the appliances from supplier I, 25% from supplier II, and 40% from supplier III.
If an appliance randomly selected is defective, find the probability that it comes from
supplier III.

27. A garage has two machines, A and B, to balance the wheels of a car. Suppose that 95%
of the wheels are correctly balanced by machine A, while 85% of the wheels are correctly
balanced by machine B. A machine is randomly selected to balance 20 wheels, and 3
of them are not properly balanced. What is the probability that machine A was used?
What is the probability machine B was used?

28. An urn contains 14 balls; 6 of them are white, and the others are black. Another urn
contains 9 balls; 3 are white, and 6 are black. A ball is drawn at random from the first
urn and is placed in the second urn. Then, a ball is drawn at random from the second
urn. If this ball is white, find the probability that the ball drawn from the first urn was
black.

29. An office supply store is selling packages of 100 CDs at a very affordable price. However,
roughly 10% of all packages are defective. If a package of 100 CDs containing exactly 10
defective CDs is purchased, find the probability that exactly 2 of the first 5 CDs used
are defective.

30. A box contains six marbles, two of which are black. Three are drawn with replacement.
What is the probability two of the three are black?

31. The ASU triathlon club consists of 11 women and 7 men. What is the probability of
selecting a committee of size four with exactly three women?
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32. Four golf balls are to be placed in six different containers. One ball is red; one, green;
one, blue; and one, yellow.

(a) In how many ways can the four golf balls be placed into six different containers?
Assume that any container can contain any number of golf balls (as long as there
are a total of four golf balls).

(b) In how many ways can the golf balls be placed if container one remains empty?

(c) In how many ways can the golf balls be placed if no two golf balls can go into the
same container?

(d) What is the probability that no two golf balls are in the same container, assuming
that the balls are randomly tossed into the containers?

33. Previous to the launching of a new flavor of yogurt, a company has conducted taste
tests with four new flavors: lemon, strawberry, peach, and cherry. It obtained the
following probabilities of a successful launch: P(lemon) = 2/10 , P(strawberry) = 3/10 ,
P(peach) = 4/10 , and P(cherry) = 5/10 . Let X be the random variable “number of
successful flavors launched.” Obtain its probability mass function.

34. A family has three cars, all with electric windows. Car A’s windows always work. Car
B’s windows work 30% of the time, and Car C’s windows work 75% of the time. The
family uses Car A 2/3 of the time; Car B, 2/9 of the time; and Car C, the remaining
fraction.

(a) On a particularly hot day, when the family wants to roll the windows down, compute
the probability the windows will work.

(b) If the electric windows work, find the probability the family is driving Car C.

35. John and Peter play a game with a coin such that P(head) = p. The game consists of
tossing a coin twice. John wins if the same result is obtained in the two tosses, and Peter
wins if the two results are different.

(a) At what value of p is neither of them favored by the game?

(b) If p is different from your answer in (a), who is favored?

36. A bank is going to place a security camera in the ceiling of a circular hall of radius r.
What is the probability that the camera is placed nearer the center than the outside
circumference if the camera is placed at random?

37. Anthony and Mark make a bet at the beginning of the school year. If Anthony passes
one exam, Mark will pay him e10, but if Anthony fails the exam, he will give e10 to
Mark. If Anthony takes 10 exams and the probability of passing an exam is 0.5, find the
probability that

(a) Anthony wins e60.

(b) Anthony wins e30.

38. Louis and Joseph have decided to play a beach volleyball match. Each of them put e
50 into a pot, so the winner will get e100. The first one to reach 21 points wins. When
the score was 19 points for Louis and 18 for Joseph, the match was rained out, and
they decided to share the prize so that each one received winnings proportional to the
probability of winning the match given their current points. How much money did each
receive?
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39. Consider tossing three well-made coins. The eight possible outcomes are

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT.

Define X as the random variable “number of heads showing when three coins are tossed.”
Obtain the mean and the variance of X . Simulate tossing three fair coins 10,000 times.
Compute the simulated mean and variance of X . Are the simulated values within 2% of
the theoretical answers?

40. Every month, a family must decide what to do on Sundays. If they stay at home, they
do one of two things with equal probability: have lunch in a restaurant, which costs e
100, or go to the park, which is free. Assuming four weeks in a month, compute the
probability distribution of expenditures.

41. In a lottery game, one can win e10,000 with probability 0.01 and e1000 with probability
0.05. How much should one pay for a lottery ticket to make the game fair?

42. To play a game, one must bet e100 every time, and the probability of winning e100 is
1/2 . Every day, a person plays uninterruptedly until he loses once. Then, he leaves the
game.

(a) Find the probability that he plays more than four times in one day.

(b) Find the probability that one day he leaves the game having won e600.

(c) Calculate the expected winnings per day.

43. Consider the random variable X , which takes the values 1, 2, 3, and 4 with probabilities
0.2, 0.3, 0.1, and 0.4, respectively. Calculate E[X ], 1/E[X ], E[1/X ], E[X2], and E[X ]2,
and check empirically that E[X ]2 �= E[X2] and E[1/X ] �= 1/E[X ].

44. Show that the following distribution is a probability mass function. Construct a plot of
the probability mass function and obtain the cumulative probability function.

P(X = −2) = 0.2, P(1 < X ≤ 3) = 0.1, P(X = 4) = 0.2,

P(5 < X ≤ 5.5) = 0.2, P(X = 6) = 0.15, P(7 < X ≤ 8) = 0.15

45. Two stockbrokers on the floor of the New York Stock Exchange, Alvin and Bob, are
interested in purchasing shares from a single company. In a given day, Alvin or Bob
buys shares with probability p. Assume that Alvin starts the buying process; when he
finishes, Bob is allowed to buy, and so on.

(a) Find the probability that Alvin buys shares on a given day.

(b) If two lots of shares are purchased, find the probability that they have been purchased
by the same stockbroker.

(Hint:
∑∞

i=0 ri = 1
1−r is |r| < 1.)

46. Given the function
f(x) = k, −1 < x < 1

of the random variable X , find the coefficient of skewness for the distribution using
(3.19).
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47. Consider an experiment where two dice are rolled. Let the random variable X equal the
sum of the two dice and the random variable Y be the difference of the two dice.

(a) Find the mean of X .

(b) Find the variance of X .

(c) Find the skewness of X .

(d) Find the mean of Y .

(e) Find the variance of Y .

(f) Find the skewness of Y .

48. The number of hits on a faculty member’s homework solutions page has an average of
100 hits per day.

(a) Give an upper bound for the probability the faculty member’s homework solutions
page has more than 112 hits per day.

(b) Suppose the variance of the number of hits is known to be 36. Now, give an upper
bound for the probability the faculty member’s homework solutions page has more
than 112 hits per day.

(c) The probability that the number of hits is between 88 and 112 inclusive must be at
least what?

(d) How many days must visits to the site be recorded so that the average number of
hits is within 6 of 100 with a probability of at least 0.9?

49. Find the values of k such that the following functions are probability density functions:

(a) f(x) = kx4/5, 0 < x < 1.

(b) f(x) = kx2, 0 < x < 2.

(c) f(x) = k
√

x/2, 0 < x < 1.

Construct plots of the these functions and their corresponding cumulative density func-
tions.

50. Given the following cumulative density function,

F (x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < 0
x2

4
0 ≤ x ≤ 2

1 2 < x,

derive the probability density function f(x). Calculate the median of the distribution.

51. Consider the following function:

f(x) =
2
25

(x − 5), 5 ≤ x ≤ 10.

(a) Show that f(x) satisfies properties 1 and 2 on page 93 of a continuous probability
density function.

(b) Plot f(x).

(c) Derive and plot f(x)’s cumulative probability function, F (x).
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(d) Calculate P(X ≤ 8), P(X ≥ 6), and P(7 ≤ X ≤ 8) by hand.

(e) Calculate P(X ≤ 8), P(X ≥ 6), and P(7 ≤ X ≤ 8) using the function integrate().

52. The number of bottles of milk that a dairy farm fills per day is a random variable with
mean 5000 and standard deviation 100. Assume the farm always has a sufficient number
of glass bottles to be used to store the milk. However, for a bottle of milk to be sent to a
grocery store, it must be hermetically sealed with a metal cap that is produced on site.
Calculate the minimum number of metal caps that must be produced on a daily basis so
that all filled milk bottles can be shipped to grocery stores with a probability of at least
0.9.

53. Define X as the space occupied by certain device in a 1 m3 container. The probability
density function of X is given by

f(x) =
630
56

x4
(
1 − x4

)
, 0 < x < 1.

(a) Graph the probability density function.

(b) Calculate the mean of X by hand.

(c) Calculate the variance X by hand.

(d) Calculate P(0.20 < X < 0.80) by hand.

(e) Calculate the mean of X using integrate().

(f) Calculate the variance of X using integrate().

(g) Calculate P(0.20 < X < 0.80) using integrate().

54. Consider the probability density function

f(x) =
1
36

xe−x/6, x > 0.

Derive the moment generating function, and calculate the mean and the variance.





Chapter 4

Univariate Probability Distributions

4.1 Introduction

This chapter examines univariate (single variable) probability distributions that are used
frequently to model random phenomena. Discrete probability distributions are introduced
first, followed by continuous probability distributions. Discrete distributions can be used
to model the number of failures until a successful rocket launch, the number of passing
students in a class, or the number of taxis that pass a street corner, as well as many other
phenomena with countable outcomes. Continuous distributions are used to model measure-
ment variables such as weight, height, and time. Joint distributions will be introduced in
Chapter 5.

4.2 Discrete Univariate Distributions

4.2.1 Discrete Uniform Distribution

The random variable X is said to follow a discrete uniform distribution with parameter
n (where n ∈ N) if the probability X takes on the value x is the same for all x, where
x = x1, x2, . . . , xn:

Discrete Uniform Distribution

P(X = xi|n) =
1
n

, i = 1, 2, . . . , n.

E[X ] =
1
n

n∑
i=1

xi

Var [X ] =
1
n

n∑
i=1

(xi − E[X ])2

MX(t) =
1
n

n∑
i=1

etxi

(4.1)

When xi = i for i = 1, . . . , n, it can be shown that E[X ] = n+1
2 and that Var [X ] = n2−1

12 ,
respectively.
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Example 4.1 One light bulb is randomly selected from a box that contains a 40 watt
light bulb, a 60 watt light bulb, a 75 watt light bulb, a 100 watt light bulb, and a 120
watt light bulb. Write the probability function for the random variable that represents the
wattage of the randomly selected light bulb, and determine the mean and variance of that
random variable.

Solution: The random variable X can assume the set of values Ω = {40, 60, 75, 100, 120}.
The probability density function for the random variable X is

P(X = x|5) = 1/5 for x = 40, 60, 75, 100, 120.

The expected value of X , E[X ] = 79, and the variance of X , Var [X ] = 804. S can be used
to alleviate the arithmetic:

> Watts <- c(40,60,75,100,120)
> meanWatts <- (1/5)*sum(Watts)
> varWatts<- (1/5)*sum((Watts-meanWatts)^2)
> ans <- c(meanWatts, varWatts)
> ans
[1] 79 804

4.2.2 Bernoulli and Binomial Distributions

When the same coin is tossed n times by the same person under the same experimental
conditions, it stands to reason that each toss of the coin will result in one of two outcomes
(heads or tails), that the outcome on any given trial will not influence the outcome of any
other trial, and that the probability of getting a head assuming a fair coin on any trial is
a constant 1

2 . Tossing a coin a single time is an example of a Bernoulli trial. A Bernoulli
trial is a random experiment with only two possible outcomes. The outcomes are mutually
exclusive and exhaustive, for example, success or failure, true or false, alive or dead, male or
female, etc. A Bernoulli random variable, X , can take on two values, where X(success) = 1
and X(failure) = 0. The probability that X is a success is π, and the probability that X is
a failure is � = 1− π. The pdf, mean, variance, and mgf of a Bernoulli random variable are
in (4.2).

Bernoulli Distribution
X ∼ Bernoulli(π)

P(X = x|π) = πx(1 − π)1−x, x = 0, 1
E[X ] = π

Var [X ] = π(1 − π)

MX(t) = πet + �

(4.2)

When a sequence of Bernoulli trials conforms to the following list of requirements it is
called a binomial experiment:

1. The experiment consists of a fixed number (n) of Bernoulli trials.

2. The probability of success for each trial, denoted by π, is constant from trial to trial.
The probability of failure is � = (1 − π).
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3. The trials are independent.

4. The random variable of interest, X , is the number of observed successes during the n
trials.

The probability that X is equal to x can be found in the following fashion. Any particular
sequence of x successes occurs with probability πx(1 − π)(n−x) since there are x successes
and (n − x) failures. However, there are

(
n
x

)
= n!

x!(n−x)! possible sequences of x successes.
Write X ∼ Bin(n, π) to indicate the random variable X follows a binomial distribution
with parameters n and π. The probability X is equal to x, the mean, the variance, and the
moment generating function of a binomial random variable are in (4.3).

Binomial Distribution
X ∼ Bin(n, π)

P(X = x|n, π) =
(

n

x

)
πx(1 − π)n−x, x = 0, 1, 2, . . . , n.

E[X ] = nπ

Var [X ] = nπ(1 − π)

MX(t) = (πet + �)n

(4.3)

It is left as an exercise for the student to verify that E[X ] = nπ, Var [X ] = nπ(1 − π), and
that the moment generating function of a binomial random variable is MX(t) = (πet + �)n.
(See Problem 40 on page 167.)

Code to create graphs that represent the probability density function and the cumulative
distribution function for a Bin(8, 0.3) random variable follows. The graphs that are created
are similar to those in Figure 4.1 on the next page.

> par(mfrow=c(1,2), pty="s")
> plot(0:8, dbinom(0:8,8,0.3), type="h", xlab="x", ylab="P(X=x)",
+ xlim=c(-1,9))
> title("PDF for X~Bin(8, 0.3)")
> plot(0:8, pbinom(0:8,8,0.3), type="n", xlab="x", ylab="F(x)",
+ xlim=c(-1,9), ylim=c(0,1))
> segments(-1,0,0,0)
> segments(0:8, pbinom(0:8,8,.3), 1:9, pbinom(0:8,8,.3))
> lines(0:7, pbinom(0:7,8,.3), type="p", pch=16)
> segments(-1,1,9,1, lty=2)
> title("CDF for X~Bin(8, 0.3)")

Example 4.2 � Simulating Bernoulli � Write a function that will generate m
repeated samples of n Bernoulli trials each with probability of success π. Use the function
to generate 1000 samples of size n = 5 with π = 0.5 to simulate the binomial distribution.
Have the function create frequency tables for both the simulated and the theoretical random
variable so that comparisons can be made between the two. Finally, produce a histogram of
the simulated successes with the theoretical probability for the random variable X that has
a binomial distribution with n = 5 and π = 0.5 superimposed over the simulated values.
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FIGURE 4.1: Left graph is the probability density function (pdf ) of a binomial random
variable with n = 8 and π = 0.3. Right graph is the cumulative distribution function (cdf )
of a binomial random variable with n = 8 and π = 0.3.

Solution: The function bino.gen() is written to solve Example 4.2 in general:

bino.gen <- function(samples, n, pi) {
values <- sample(c(0,1), samples*n, replace=TRUE, prob=c(pi,1-pi))
value.mat <- matrix(values, ncol=n)
Successes <- apply(value.mat, 1, sum)
a1 <- round((table(Successes)/samples), 3)
b1 <- round(dbinom(0:n, n, 1-pi), 3)
names(b1) <- 0:n
hist(Successes, breaks=c((-.5+0):(n+.5)), probability=TRUE,
ylab="", main=" Theoretical Values Superimposed
Over Histogram of Simulated Values", col=13)

x <- 0:n
fx <- dbinom(x, n, 1-pi)
lines(x, fx, type="h")
lines(x, fx, type="p", pch=16)
list(simulated.distribution=a1, theoretical.distribution=b1)}

Then, the results from using the function to generate 1000 samples where n = 5 and π = 0.5
answer Example 4.2 in particular:

> bino.gen(1000, 5, 0.5)
$simulated.distribution
Successes

0 1 2 3 4 5
0.023 0.174 0.311 0.308 0.153 0.031

$theoretical.distribution
0 1 2 3 4 5

0.031 0.156 0.312 0.312 0.156 0.031
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FIGURE 4.2: Histogram of 1000 simulated samples where n = 5 and π = 0.5 superimposed
on the theoretical distribution for a random variable following a Bin(5, 0.5) distribution.

Using the function rbinom(), one can generate 1000 samples of a Bin(n = 5, π = 0.5)
distribution by entering

> x <- rbinom(1000, 5, .5)
> table(x)/1000 # Empirical distribution
x

0 1 2 3 4 5
0.042 0.145 0.302 0.313 0.163 0.035

If one wants to generate the same numbers at a later date, the command set.seed() can
be used. The graph in Figure 4.2 was created with set.seed(31).

Example 4.3 � Binomial Calculation � Consider the problem of calculating the
probability of obtaining 6 or more heads in 10 tosses of a weighted coin, where the probability
of obtaining a head in any given trial is 0.33.

Solution: Let the random variable X equal the number of trials that result in a head.
Consequently, X ∼ Bin(10, 0.33), and the sum of the individual probabilities of obtaining
6, 7, 8, 9, and 10 heads needs to be found. Mathematically, this is written P(X ≥ 6) =
P(X = 6) + P(X = 7) + · · · + P(X = 10), where

P(X = 6) =
10!

6!(10 − 6)!
× 0.336 × (1 − .0.33)(10−6) = 0.0546515

P(X = 7) =
10!

7!(10 − 7)!
× 0.337 × (1 − .0.33)(10−7) = 0.0153817

P(X = 8) =
10!

8!(10 − 8)!
× 0.338 × (1 − .0.33)(10−8) = 0.0028410

P(X = 9) =
10!

9!(10 − 9)!
× 0.339 × (1 − .0.33)(10−9) = 0.0003110

P(X = 10) =
10!

10!(10 − 10)!
× 0.3310 × (1 − .0.33)(10−10) = 0.0000153



120 Probability and Statistics with R

Thus,

P(X ≥ 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)
= 0.0546515 + 0.0153817 + 0.0028410 + 0.0003110 + 0.0000153
= 0.0732005

There are several approaches one might take to solve the problem with S. One should realize
that the following are all equivalent statements:

P(X ≥ 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)
= 1 − P(X ≤ 5)
= 1 − [P(X = 5) + P(X = 4) + · · · + P(X = 0)].

To find P(X ≥ 6) with S, compute the individual probabilities with dbinom(6:10,10,.33)
and then sum them with the command sum() by typing sum(dbinom(6:10,10,.33)).
Another solution is to find 1−P(X ≤ 5), which is accomplished with 1-pbinom(5,10,.33)
or 1-sum(dbinom(5:0,10,.33)). Note that dbinom() computes P(X = x), the pdf, while
pbinom() gives P(X ≤ x), the cdf.

> sum(dbinom(6:10,10,0.33))
[1] 0.07320046
> 1 - pbinom(5,10,0.33)
[1] 0.07320046
> 1 - sum(dbinom(5:0,10,0.33))
[1] 0.07320046

4.2.3 Poisson Distribution

The Poisson distribution is very popular for modeling the number of times particular
events occur in given times or on defined spaces. For example, one might count the number
of phone calls to 911 between 1 A.M. and 2 A.M., the number of accidents at a busy street
corner during a 24 hour period, or the number of typographical errors on a single page of
this book. Unfortunately, the derivation of the Poisson distribution is not straightforward.
Instead of deriving the Poisson distribution directly, it is shown that the limiting distribution
of the binomial distribution is the Poisson distribution. Actual derivation of the Poisson
distribution function is beyond the scope of the current text.

When the number of outcomes in a given continuous interval are counted, an approxi-
mate Poisson process with parameter λ > 0 results if the following conditions are satisfied:

(1) The number of outcomes in non-overlapping intervals are independent. In other words,
the number of outcomes in the interval of time (0, t] are independent from the number
of outcomes in the interval of time (t, t + h] for any h > 0.

(2) The probability of two or more outcomes in a sufficiently short interval is virtually zero.
In other words, provided h is sufficiently small, the probability of obtaining two or more
outcomes in the interval (t, t + h] is negligible compared to the probability of obtaining
one or zero outcomes in the same interval of time.

(3) The probability of exactly one outcome in a sufficiently short interval or small region
is proportional to the length of the interval or region. In other words, the probability
of one outcome in an interval of length h is λh.
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When an experiment satisfies the conditions for the Poisson process, the resulting
random variable, X , the number of outcomes, is called a Poisson random variable. The
probability distribution of the Poisson random variable X , representing the number of
outcomes in a given time interval or space region denoted by t, is

P(X = x|λt) =
e−λ(λt)x

x!
x = 0, 1, . . . , λ > 0. (4.4)

Although the Poisson distribution is typically used for problems involving time or space,
it can be viewed as the limiting form of the binomial distribution. Suppose there is an
experiment that satisfies the three criteria for an approximate Poisson process. Let X
represent the number of outcomes in an interval of length 1 (t = 1). To find P(X = x),
divide the interval of length 1 into n subintervals of equal length. Provided n is much larger
than x, the probability of one outcome in any given interval of length 1/n is approximately
λ/n by criterion (3) of the Poisson process on the preceding page. Substituting π = λ/n
into the binomial probability distribution gives(

n

x

)(
λ

n

)x(
1 − λ

n

)n−x

=
n(n − 1) · · · (n − x + 1)

x!
λx

nx

(
1 − λ

n

)n (
1 − λ

n

)−x

=
λx

x!

[
n

n

(n − 1)
n

· · · (n − x + 1)
n

](
1 − λ

n

)n (
1 − λ

n

)−x

.

Now, if x is fixed and n → +∞ and π → 0, so that λ = nπ remains constant, the
expression between the braces goes to 1 and

(
1 − λ

n

)−x
is also 1. Using the fact that

lim
n→∞ (1 − λ/n)n = e−λ, obtain λxe−λ

x! . The Poisson distribution can be used to approximate
binomial probabilities with λ = nπ provided π ≤ 0.1 and nπ ≤ 5. See Example 4.8
on page 126 for an example of how the Poisson distribution is used to approximate the
probabilities of a binomial distribution.

Poisson Distribution
X ∼ Pois(λ)

P(X = x|λ) =
λxe−λ

x!
, x = 0, 1, 2, . . .

E[X ] = λ

Var [X ] = λ

MX(t) = eλ(et−1)

(4.5)

Note that the parameter λ, referred to as the intensity parameter, represents the mean
number of outcomes in either a fixed time interval or a fixed spatial region. The Poisson
distribution is particularly appropriate for modeling “rare” phenomena or outcomes where
the probability of success is small. However, whether or not data can be viewed as
Poisson data depends on whether the proportions of 0’s, 1’s, 2’s, and so on, are similar
to those predicted by the Poisson pdf given in (4.5). Given n independent Poisson random
variables X1, X2, . . . , Xn with parameters λ1, λ2, . . . , λn, respectively, Y =

∑n
i=1 Xi ∼

Pois
(∑n

i=1 λi = λ
)
.
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Example 4.4 � Poisson: World Cup Soccer � The World Cup is played once
every four years. National teams from all over the world compete. In 2002 and in 1998,
36 teams were invited; whereas, in 1994 and in 1990, only 24 teams participated. The
data frame Soccer contains three columns: CGT, Game, and Goals. All of the information
contained in Soccer is indirectly available from the FIFA World Cup website, located at
http://fifaworldcup.yahoo.com/. The numbers of goals scored in the regulation 90 minute
periods of World Cup soccer matches from 1990 to 2002 are listed in column Goals. There
were a total of 575 goals scored during regulation time. The game in which the goals were
scored is in column Game. There were 232 World Cup soccer games played from 1990 to
2002. There were 64 games played in each of 2002 and 1998 and 54 games played in each
of 1994 and 1990. The cumulative goal time is provided in column CGT. For example, the
first goal was scored at the 67th minute of the first game and the second goal was scored at
the 42nd minute of the second game. Consequently, the times listed in CGT for the first two
goals are 67, and 132 = 90 + 42. For consistency, all goals scored during injury time are
recorded in either the 45th or 90th minute, depending on the half when the injury occurred.
Analyze the number of goals scored during regulation play (90 minutes) of World Cup soccer
matches to verify that the scores follow an approximate Poisson distribution (Chu, 2003).

Solution: To investigate whether criterion (1) of the Poisson process on page 120 is
reasonable, examine the one, two, three, four, and five game lagged correlation coefficients:

> attach(Soccer)
> L1 <- Goals[1:228]
> L2 <- Goals[2:229]
> L3 <- Goals[3:230]
> L4 <- Goals[4:231]
> L5 <- Goals[5:232]
> LAG <- cbind(L1, L2, L3, L4, L5)
> # or more succinctly
> LAG <- sapply( 1:5, function(x){Goals[x:(x+227)]} )
> round(cor(LAG),3)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 -0.049 0.055 -0.138 -0.008
[2,] -0.049 1.000 -0.046 0.044 -0.138
[3,] 0.055 -0.046 1.000 -0.054 0.045
[4,] -0.138 0.044 -0.054 1.000 -0.057
[5,] -0.008 -0.138 0.045 -0.057 1.000

Independence seems reasonable due to the small correlation coefficients (near zero) but
should also be computed with time periods smaller than 90 minutes. Criterion (2) of the
Poisson process on page 120, appears satisfied since two goals are never registered during the
same one minute period. One way to investigate this is to create a table of the interarrival
goal times and note that 0 is not in the table. Whether criterion (3) of the Poisson process
on page 120 is satisfied is addressed in Problem 45 on page 169 at the end of the chapter.
Next, examine the data to see how well they conform to the Poisson distribution. To
calculate the observed number of goals scored during regulation time for the 232 World
Cup soccer matches, use table():

> table(Goals)
0 1 2 3 4 5 6 7 8

19 49 60 47 32 18 3 3 1
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Since there are NA values in the Goals column, use the na.rm=TRUE and na.method="omit"
options for the S functions mean() and var(), respectively. To verify that the mean and
the variance of Goals are approximately equal, type

> mean(Goals, na.rm=TRUE)
[1] 2.478448
> var(Goals, na.rm=TRUE) # na.method="omit" for S-PLUS
[1] 2.458408

Because the mean and variance of Goals are approximately equal, it is reasonable to proceed
in analyzing the frequencies of Goals in comparison to those of a Poisson distribution
with λ = 2.478448. Create a table to facilitate comparing the observed values (OBS) to
the expected values (EXP) as well as the empirical proportions (Empir) to the theoretical
proportions (TheoP) for a Poisson distribution with λ = 2.478448, the mean number of
goals per game. The empirical proportions are merely the number of goals in each category
divided by the total number of goals.

> OBS <- table(Goals)
> Empir <- round(OBS/sum(OBS), 3)
> TheoP <- round(dpois(0:(length(OBS)-1), mean(Goals, na.rm=TRUE)), 3)
> EXP <- round(TheoP*232, 0)
> ANS <- cbind(OBS, EXP, Empir, TheoP)
> ANS
OBS EXP Empir TheoP

0 19 19 0.082 0.084
1 49 48 0.211 0.208
2 60 60 0.259 0.258
3 47 49 0.203 0.213
4 32 31 0.138 0.132
5 18 15 0.078 0.065
6 3 6 0.013 0.027
7 3 2 0.013 0.010
8 1 1 0.004 0.003
> detach(Soccer)

Since the observed values are close to the expected values, the empirical proportions will
be close to the theoretical probabilities. This, in conjunction with the fact that the sample
mean (2.478448) is roughly equal to the sample variance (2.458408), implies that modeling
the number of goals scored during World Cup soccer games with a Poisson distribution is
reasonable.

Code to represent a probability density function and cumulative distribution function
for a Pois(λ = 1) random variable similar to the one shown in Figure 4.3 on the next page
is

> par(mfrow=c(1,2), pty="s")
> plot(0:8, dpois(0:8,1), type="h", xlab="x", ylab="P", xlim=c(-1,9),
+ main="PDF")
> plot(0:8, ppois(0:8,1), type="n", xlab="x", ylab="F", xlim=c(-1,9),
+ ylim=c(0,1), main="CDF")
> segments(-1,0,0,0)
> segments(0:8, ppois(0:8,1), 1:9, ppois(0:8,1))
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> lines(0:7, ppois(0:7,1), type="p", pch=16)
> segments(-1,1,9,1, lty=2)
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FIGURE 4.3: Left graph is the probability density function (pdf) of a Poisson random
variable with λ = 1. Right graph is the cumulative distribution function (cdf) of a Poisson
random variable with λ = 1.

Example 4.5 Given a random variable X that follows a Poisson distribution with pa-
rameter λ, find the mean and variance of X . Use the fact that

eλ =
∞∑

r=0

λr

r!
= 1 +

λ

1!
+

λ2

2!
+ · · · .

Solution:

E[X ] =
∞∑

r=0

r
λr

r!
e−λ = λe−λ

∞∑
r=1

λr−1

(r − 1)!
= λ

Var [X ] =
∞∑

r=0

(r − λ)2
λr

r!
e−λ

Rearranging terms,

Var [X ] = e−λ

{ ∞∑
r=0

r2 λr

r!
+

∞∑
r=0

λ2 λr

r!
− 2λ

∞∑
r=0

r
λr

r!

}

= e−λ

{ ∞∑
r=1

r
λr

(r − 1)!
+ λ2eλ − 2λ · λ

∞∑
r=1

λr−1

(r − 1)!

}

= e−λ

{ ∞∑
r=1

(r − 1 + 1)
λr

(r − 1)!
+ λ2eλ − 2λ2eλ

}

= e−λ

{ ∞∑
r=1

(r − 1)
λr

(r − 1)!
+

∞∑
r=1

λr

(r − 1)!
+ λ2eλ − 2λ2eλ

}
= e−λ

{
λ2 + λ + λ2 − 2λ2

}
eλ = λ.
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Example 4.6 More accidents are registered in auto body repair shops during the months
of May and June than in the rest of the year. Suppose a particular auto body repair shop
has an average of four accidents per month. What is the probability there will be more than
seven accidents in this auto body shop during the month of May? What is the probability
no more than three accidents will occur during the months of May and June?

Solution: Assuming accidents in the auto body shop follow an approximate Poisson
process, the probability of x accidents in one month is

P(X = x) =
4xe−4

x!
for x = 0, 1, 2, . . .

The probability more than seven accidents occur during the month of May is

P(X > 7) = 1 − P(X ≤ 7) = 1 −
7∑

i=0

4ie−4

i!
= 0.051.

Since the expected number of accidents during May and June is λ′ = 2·4 = 8, the probability
no more than three accidents occur for the two months in question is calculated as

P(X ≤ 3) =
3∑

i=0

8ie−8

i!
= 0.042.

The S command to find 1−P(X ≤ 7) is 1-ppois(7,4), while P(X ≤ 3) is found by entering
ppois(3,8):

> 1 - ppois(7,4)
[1] 0.05113362
> ppois(3,8)
[1] 0.04238011

Example 4.7 Telephone calls to a local 911 number are known to follow a Poisson
distribution with an average of two calls per minute. Compute the probability that

(a) There will be zero calls during a one minute period.

(b) There will be less than five calls in a one minute period.

(c) There will be less than six calls in one hour.

Solution: The answers are as follows:
(a) P(X = 0; λ = 2) = λ0e−λ

0! = 20

0! e
−2 = 0.135.

(b) P(X ≤ 4; λ = 2) =
∑4

r=0
λre−λ

r! = e−2
(
1 + 2 + 22

2! + 23

3! + 24

4!

)
= 0.947.

(c) Note that the time period changes from one minute to one hour (60 minutes). Conse-
quently, the average number of calls in one hour is λ′ = 2 × (60) = 120.

P(X ≤ 5; λ′ = 120) =
5∑

r=0

λ′re−λ′

r!

= e−120

(
1 + 120 +

1202

2!
+

1203

3!
+

1204

4!
+

1205

5!

)
= 0.

The S commands to find P(X = 0; λ = 2), P(X ≤ 4; λ = 2), and P(X ≤ 5; λ = 120) are
dpois(0,2), ppois(4,2), and ppois(5,120), respectively:
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> dpois(0,2)
[1] 0.1353353
> ppois(4,2)
[1] 0.947347
> ppois(5,120)
[1] 1.658476e-44

Example 4.8 Numerically show the results from approximating a Bin(n = 100, π = 0.04)
distribution with a Pois(λ = 4).

Solution: The probability distribution function for a Bin(100, 0.04) random variable is

PBin(X = x) =
(

100
x

)
(0.04)x(0.96)100−x, x = 0, 1, 2, . . .

Since π < 0.1 and λ = nπ = 100(0.04) = 4 < 5, the Poisson distribution can be used to
obtain reasonable approximations to the binomial distribution. The probability distribution
for a Pois(4) is

PPois(X = x) =
e−44x

x!
, x = 0, 1, 2, . . .

The first eight values of x for PBin(X = x) and PPois (X = x) are given in Table 4.1.

Table 4.1: Comparison of binomial and Poisson probabilities
x 0 1 2 3 4 5 6 7 8

PBin(X = x) 0.017 0.070 0.145 0.197 0.199 0.160 0.105 0.059 0.029
PPois (X = x) 0.018 0.073 0.147 0.195 0.195 0.156 0.104 0.060 0.030

Note that the results between PBin(X = x) and PPois (X = x) are virtually identical out to
two decimal places. The values in Table 4.1 were generated using S commands as follows:

> r <- seq(0,8,1)
> round(dbinom(r,100,0.04), 3)
[1] 0.017 0.070 0.145 0.197 0.199 0.160 0.105 0.059 0.029
> round(dpois(r,4), 3)
[1] 0.018 0.073 0.147 0.195 0.195 0.156 0.104 0.060 0.030

4.2.4 Geometric Distribution

The geometric distribution, like the binomial distribution, is based on Bernoulli trials.
However, the geometric distribution does not fix the number of trials prior to the experiment.
The geometric distribution computes the probability the first success occurs after r failures
instead of computing the probability of observing x successes in n trials. A random variable
X that counts the number of Bernoulli trials that result in failure before the first success is
called a geometric random variable. Clearly, the probability of a success after r failures is
π× (1−π)r, which leads to the geometric probability distribution function where � = 1−π
is the probability of failure as it was for the Bernoulli and binomial distributions. The pdf,
mean, variance, and mgf for a geometric random variable are in (4.6).
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Geometric Distribution
X ∼ Geo(π)

P(X = x; π) = π�x, x = 0, 1, . . .

E[X ] =
�

π

Var [X ] =
�

π2

MX(t) =
π

1 − �et

(4.6)

Example 4.9 � Geometric Distribution: Hiring a CPA � It is known that 20%
of all applicants for an overseas position with an international accounting firm speak a
foreign language and have passed the CPA (certified public accountant) exam. If applicants
are selected at random and interviewed one at a time for the position,

(a) Compute the probability that the first applicant who speaks a foreign language and has
passed the CPA exam is the fourth applicant interviewed.

(b) Suppose the first applicant that speaks a foreign language who has passed the CPA
exam is offered the position and that the applicant accepts the offer. If the accounting
firm spends 200 dollars for each interview, what are the expected value and standard
deviation of the firm’s cost for filling the position.

Solution: The answers are as follows:
(a) Let the random variable X represent the number of applicants interviewed who neither
speak a foreign language nor have passed the CPA exam before the first applicant who
both speaks a foreign language and has passed the CPA exam is interviewed. The random
variable X ∼ Geo(π = 0.2) and the P(X = 3) is computed using the pdf from (4.6) as

P(X = 3) = π�3 = 0.2(0.8)3 = 0.1024.

When X ∼ Geo(π = 0.2), the P(X = 3) can be found with S using the command
dgeom(3,0.2):

> dgeom(3,0.2)
[1] 0.1024

(b) Be careful with this problem! The expected value and standard deviation of the cost
for filling the position are not the same as the expected value and standard deviation of the
random variable X as defined in the solution for part (a). Since the question asks for the
expected value and standard deviation of the cost for filling the position (r failures and one
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success),

E[200(X + 1)] = 200E[(X + 1)]
= 200(E[X ] + 1)

= 200
(

0.8
0.2

+ 1
)

= 1000 dollars.

Var[200(X + 1)] = 40, 000Var[(X + 1)]
= 40, 000Var[X ]

= 40, 000
(

0.8
0.22

)
= 800, 000 dollars2

⇒ σ200(X+1) =
√

Var [200(X + 1)] = 894.43 dollars

4.2.5 Negative Binomial Distribution

The geometric random variable counted the number of failures prior to the first success.
Quite often, the number of Bernoulli trials required to achieve some fixed number (r)
of successes is the problem of interest. When the random variable X is defined as the
number of failures prior to the rth success, X has a negative binomial distribution written
X ∼ NB(r, π). To find the P(X = x), first find the probability of r − 1 successes in the
first x + r − 1 trials, and then multiply by the probability of success on the (x + r)th trial,(
x+r−1

r−1

)
πr−1(1−π)x ×π. Combining like terms leads to the probability distribution for the

negative binomial given in (4.7). The mean, variance, and mgf are also in (4.7):

Negative Binomial Distribution
X ∼ NB(r, π)

P(X = x|r, π) =
(

x + r − 1
r − 1

)
πr�x, x = 0, 1, 2, . . .

E[X ] = r
�

π

Var[X ] = r
�

π2

MX(t) = πr(1 − �et)−r

(4.7)

Useful Relationships

1. If n independent random variables X1, . . . , Xn have a geometric distribution with
parameter π, then the sum of the n independent random variables follows a negative
binomial distribution with parameters (n, π).

2. If n independent random variables X1, . . . , Xn have a negative binomial distribution
with parameters ri and π, then the sum of the n random variables is NB (

∑n
i=1 ri, π) .

3. When X ∼ NB(r, π) and r = 1, a negative binomial random variable is the same as
a geometric random variable with parameter π.

Example 4.10 In a particular lot of white wall tires, 10% are missing their white wall.
What is the probability one will have to examine six tires before finding four tires with
white walls?
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Solution: Let the random variable X represent the number of tires without white walls
examined before obtaining four tires with white walls. In other words, X ∼ NB(4, 0.90)
and it follows that

P(X = 2|4, 0.9) =
(

2 + 4 − 1
4 − 1

)
(0.9)4(0.1)2

=
5!

3!(2!)
(0.9)4(0.1)2 = 0.066.

To compute the answer in S use the command dnbinom(x, r,π):

> dnbinom(2, 4, 0.9)
[1] 0.06561

4.2.6 Hypergeometric Distribution

When working with finite populations, the binomial model often becomes untenable.
Specifically, when sampling without replacement, the assumption of constant probability
from trial to trial is no longer satisfied. However, deriving the exact distribution for a finite
sample of dichotomous objects is not difficult. Given a dichotomous population of objects
such that m are good and n are bad, the probability of selecting exactly x good items and
k − x bad items from a sample of size k is

(
m
x

)(
n

k−x

)
/
(
m+n

k

)
. Consequently, the random

variable X that represents the number of good items selected from a total of m good items
in a sample of size k is a hypergeometric random variable.

Hypergeometric Distribution
X ∼ Hyper(m, n, k)

P(X = x|m, n, k) =

(
m

x

)(
n

k − x

)
(

N

k

) ,

for x = max{0, k − n}, . . . ,min{m, k}, where N = m + n

E[X ] =
m × k

N

Var [X ] =
m × n × k × (N − k)

N2 × (N − 1)

(4.8)

One should note that when k
N is small (≤ 0.10), the distribution of a hypergeometric

random variable does not differ greatly from the distribution of a binomial random variable
with parameters n = k and π = m

N .

Example 4.11 A computer manufacturer decides to purchase monitors from a new start-
up company claiming strict quality control standards. The manufacturer orders 150 moni-
tors and decides to accept the lot provided a random sample of size 25 reveals no defective
monitors. If the lot of 150 monitors contains three defective monitors, what is the probability
the lot will be accepted?
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Solution: Let the random variable X represent the number of non-defective monitors
in the sample. Since X ∼ Hyper (147, 3, 25), the P(X = 25|m = 147, n = 3, k = 25) is
computed as

P(X = 25|m = 147, n = 3, k = 25) =

(
147
25

)(
3
0

)
(

150
25

) = 0.5764.

To compute the answer in S use the command dhyper(x, m, n, k):

> dhyper(25,147,3,25)
[1] 0.576365

4.3 Continuous Univariate Distributions

4.3.1 Uniform Distribution (Continuous)

X is a uniform random variable defined on the interval [a, b] if its pdf is given by

f(x|a, b) =
1

b − a
, a ≤ x ≤ b.

Some common uses of the uniform distribution include random number generation and
modeling waiting times. The pdf, mean, variance, and mgf for a uniform random variable
are found in (4.9).

Uniform Distribution
X ∼ Unif (a, b)

f(x|a, b) =
1

b − a
, a ≤ x ≤ b

E[X ] =
b + a

2

Var [X ] =
(b − a)2

12

MX(t) =

⎧⎨⎩
etb − eta

t(b − a)
if t �= 0

1 if t = 0

(4.9)

Figure 4.4 on the facing page displays both the pdf and cdf for a Unif (a, b) random variable.

Note that the area beneath the pdf is clearly one since the pdf forms a rectangle whose area
is height × length, 1

(b−a) × (b − a) = 1.

Example 4.12 Given a continuous random variable X defined over [a, b] with pdf
f(x|a, b) = 1

b−a , a ≤ x ≤ b, find the expected value and the variance of X .
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FIGURE 4.4: The pdf and cdf for the random variable X ∼ Unif (a, b)

Solution: Using the definition for a continuous random variable from (3.12), write

E[X ] =

b∫
a

x · f(x) dx =

b∫
a

x

b − a
dx =

1
b − a

· x2

2

∣∣∣∣b
a

=
b2 − a2

2(b − a)
=

(b + a)(b − a)
2(b − a)

=
b + a

2
.

Next find E
[
X2

]
to use in computing the variance since Var [X ] = E

[
(X − μ)2

]
= E

[
X2

]
−(

E[X ]
)2:

E
[
X2

]
=

b∫
a

x2 · 1
b − a

dx =
1

b − a
· x3

3

∣∣∣∣b
a

=
b3 − a3

3(b − a)

Var [X ] = E
[
X2

]
−

(
E[X ]

)2 =
b3 − a3

3(b − a)
− (b + a)2

4

=
(b − a)(b2 + ab + a2)

3(b − a)
− (b + a)2

4
=

4(b2 + ab + a2)
12

− 3(b + a)2

12

=
4b2 + 4ab + 4a2 − (3b2 + 6ab + 3a2)

12
=

b2 − 2ab + a2

12

=
(b − a)2

12
.

Example 4.13 If aerosol particles produced over forested areas have uniformly distributed
diameters between 3 and 5 nanometers, compute the average volume of aerosol particles
found over forested areas.
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Solution: Recall that the volume of a sphere is 4
3πr3, or expressed in terms of the

diameter, 1
6πd3. Consequently,

E

[
1
6
πd3

]
=

1
6
πE

[
d3

]
(4.10)

needs to be found. Let d represent the diameter of aerosol particles produced over forested
areas. Since d ∼ Unif (3, 5),

E
[
d3

]
=

5∫
3

1
5 − 3

· x3 dx =
1
2
· x4

4

∣∣∣∣5
3

=
(5)4

8
− (3)4

8
= 68.

Using the right side of (4.10), compute the average volume of aerosol particles to be

π

6
· 68 = 35.60472 nanometers3.

Estimate E
[
d3

]
, denoted by Ê [d3], by cubing a large number of values drawn at random

from a Unif (3, 5) distribution and subsequently computing the mean of the cubed values.
Then, the estimated mean volume of aerosol particles is computed by substituting Ê [d3]
for E

[
d3

]
in the right-hand side of (4.10). The following S code estimates the mean volume

of aerosol particles by simulating a sample of size 1000 from a Unif (3, 5) distribution:

> (pi/6)*mean(runif(1000,3,5)^3)
[1] 35.61885

The simulated solution is within 0.02 of the theoretical solution.

Generating Pseudo-Random Numbers The generation of pseudo-random numbers
is fundamental to any simulation study. The term “pseudo-random” is used because once
one value in such a simulation is known, the next values can be determined without fail,
since they are generated by an algorithm. Most major statistical software systems have
reputable pseudo-random number generators. When using R, the user can specify one
of several different random number generators, including a user-supplied random number
generator. For more details, type ?RNG at the R prompt. Generation of random values
from named distributions is accomplished with the S command rdist , where dist is
the distribution name; however, it is helpful to understand some of the basic ideas of
random number generation in the event a simulation does not involve a named distribution.
When the user wants to generate a sample from a continuous random variable X with cdf
F , one approach is to use the Inverse Transformation Method. This method simply sets
FX(X) = U ∼ Unif (0, 1) and solves for X , assuming F−1

X (U) actually exists.

Example 4.14 Generate a sample of 1000 random values from a continuous distribution
with pdf f(x) = 4

3x(2 − x2), 0 ≤ x ≤ 1. Verify that the mean and variance of the 1000
random values are approximately equal to the mean and variance of the given pdf.

Solution: First, the cdf is found. Then, FX(x) is set equal to u and solved.

FX(x) =
∫ x

0

4
3
t
(
2 − t2

)
dt =

4
3

(
x2 − x4

4

)
=

1
3
x2

(
4 − x2

)
, 0 ≤ x ≤ 1
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Solving for x in terms of u by setting u = FX(x):

u = 1
3x2

(
4 − x2

)
3u = 4x2 − x4 multiply by 3 and distribute x2

−3u + 4 = x4 − 4x2 + 4 multiply by − 1 and add 4 to complete the square
−3u + 4 = (x2 − 2)2 factor

±
√
−3u + 4 = x2 − 2 take the square root of both sides

2 ±
√
−3u + 4 = x2 add 2

±
√

2 ±
√
−3u + 4 = x take the square root of both sides,

which gives four solutions for x. The only one that is viable is x =
√

2 −
√

4 − 3u because
0 ≤ x ≤ 1. Provided U ∼ Unif (0, 1), F−1

X (U) =
√

2 −
√

4 − 3U .

The theoretical mean and variance of X are calculated as

μX = E(X) =
∫ 1

0

x · 4
3
x(2 − x2)dx =

84
135

= 0.6222222

E(X2) =
∫ 1

0

x2 · 4
3
x(2 − x2)dx =

4
9

= 0.4444444

σ2
X = E(X2) − E(X)2 =

4
9
−

(
84
135

)2

=
116
2025

= 0.05728395

The mean and variance of the 1000 simulated random values using set.seed(33) are
0.6152578 and 0.05809062, respectively, which are both within 2% of their theoretical values.

> set.seed(33)
> U <- runif(1000)
> X <- sqrt((2-sqrt(4-3*U)))
> mean(X)
[1] 0.6152578
> var(X)
[1] 0.05809062

Using numerical integration:

> f <- function(x){(4/3)*x*(2-x^2)}
> ex <- function(x){x*f(x)}
> ex2 <- function(x){x^2*f(x)}
> EX <- integrate(ex,0,1)
> EX2 <- integrate(ex2,0,1)
> VX <- EX2$value - EX$value^2
> c(EX$value, EX2$value, VX)
[1] 0.62222222 0.44444444 0.05728395

4.3.2 Exponential Distribution

When observing a Poisson process such as that in Example 4.4 on page 122, where
the number of outcomes in a fixed interval such as the number of goals scored during 90
minutes of World Cup soccer is counted, the random variable X , which measures the number
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of outcomes (number of goals), is modeled with the Poisson distribution. However, not only
is X , the number of outcomes in a fixed interval, a random variable, but also is the waiting
time between successive outcomes. If W is the waiting time until the first outcome of a
Poisson process with mean λ > 0, then the pdf for W is

f(w) =

{
λe−λw if w ≥ 0
0 if w < 0

Proof: Since waiting time is non-negative, F (w) = 0 for w < 0. When w ≥ 0,

F (w) = P(W ≤ w) = 1 − P(W > w)
= 1 − P(no outcomes in [0, w])

= 1 − (λw)0e−λw

0!
= 1 − e−λw

Consequently, when w > 0, the pdf of W is F ′(w) = f(w) = λe−λw.

The exponential distribution is characterized by a lack of memory property and is
often used to model lifetimes of electronic components as well as waiting times for Poisson
processes. A random variable is said to be memoryless if

P(X > t2 + t1|X > t1) = P(X > t2) for all t1, t2 ≥ 0. (4.11)

The pdf, mean, variance, and mgf for an exponential random variable are in (4.12), while
the pdf and cdf for an exponential random variable are illustrated in Figure 4.5 on the facing
page. The cdf, F (x), for the exponential distribution is written

F (x) = P(X ≤ x) =
∫ x

0

λe−λtdt = −e−λt
∣∣∣x
0
= 1 − e−λx, x ≥ 0.

Exponential Distribution
X ∼ Exp(λ)

f(x) =

{
λe−λx if x ≥ 0
0 if x < 0

E[X ] =
1
λ

Var [X ] =
1
λ2

MX(t) = (1 − λ−1t)−1 for t < λ

(4.12)

Example 4.15 Show that the function f(x) in (4.12) satisfies condition 2 on page 93 from
the properties of all pdfs.



Univariate Probability Distributions 135

-2 0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

-2 0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

xx

f
(x

)

F
(x

)

PDF for X ∼ Exp(3/4) CDF for X ∼ Exp(3/4)

FIGURE 4.5: The pdf and cdf for the random variable X ∼ Exp(λ = 0.75)

Solution: To satisfy condition 2 on page 93, it must be shown that the integral from −∞
to +∞ of the function f(x) given in (4.12) is 1:

∞∫
−∞

λe−λx dx =

0∫
−∞

0 dx +

∞∫
0

λe−λx dx

=

∞∫
0

λe−λx dx = −e−λx
∣∣∣∞
0

= 0 − (−1) = 1.

Example 4.16 Given X ∼ Exp(λ), find the mean and variance of X .

Solution: Using (3.12), write

E[X ] =

∞∫
0

xλe−λx dx.

Integrating by parts where u = x and dv = λe−λx dx, obtain

E[X ] = −xe−λx
∣∣∣∞
0

−
∞∫
0

−e−λx dx

= 0 − 1
λeλx

∣∣∣∞
0

=
1
λ

.

Before finding the variance of X , find E
[
X2

]
using (3.13) as follows:

E
[
X2

]
=

∞∫
0

x2λe−λx dx (4.13)
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Note that E[X ] =
∞∫
0

xλe−λx dx ⇒ E[X]
λ =

∞∫
0

xe−λx dx and integrate (4.13) by parts where

u = x2 and dv = λe−λx dx:

E
[
X2

]
= −x2e−λx

∣∣∣∞
0

−
∞∫
0

−2xe−λx dx

= 0 + 2
E[X ]

λ
=

2
λ2

.

Using the fact that Var [X ] = E
[
X2

]
− (E[X ])2, obtain Var [X ] = 2

λ2 −
(

1
λ

)2 = 1
λ2 .

Based on the results from Example 4.16, note that the mean and standard deviation of
the exponential random variable are identical. Quite often, the pdf for the exponential is
expressed as

f(x) =
1
θ
e−x/θ, x ≥ 0, θ > 0,

where θ = 1
λ . Of course, the mgf is then written as MX(t) = (1 − θt)−1 and the reparam-

eterized mean and variance are θ and θ2, respectively. Note the relationship between the
Poisson mean and the exponential mean. Given a Poisson process with mean λ, the waiting
time until the first outcome has an exponential distribution with mean 1

λ . That is, if λ
represents the number of outcomes in a unit interval, 1

λ is the mean waiting time for the
first change. If X denotes the lifetime of an electronic component following an exponential
distribution with mean 1

λ , (4.11) implies that the probability the component will work for
t2 + t1 hours given that it has worked for t1 hours is the same as the probability that
the component will function for at least t2 hours. In other words, the component has no
memory of having functioned for t1 hours. Note that (4.11) is equivalent to

P(X > t2 + t1, X > t1)
P(X > t1)

= P(X > t2),

which is equivalent to

P(X > t2 + t1) = P(X > t2)P(X > t1). (4.14)

Since P(X > t2 + t1) = e−λ(t2+t1) = e−λt2e−λt1 = P(X > t2)P(X > t1) for any exponential
random variable, exponential random variables are memoryless according to (4.14).

Example 4.17 � Exponential Distribution: Light Bulbs � If the life of a certain
type of light bulb has an exponential distribution with a mean of 8 months, find

(a) The probability that a randomly selected light bulb lasts between 3 and 12 months.

(b) The 95th percentile of the distribution.

(c) The probability that a light bulb that has lasted for 10 months will last more than 25
months.

Solution: The answers are as follows:
(a) Since X ∼ Exp

(
λ = 1

8

)
, the probability that a randomly selected light bulb lasts between

3 and 12 months is

P(3 < X < 12) =

12∫
3

1
8
e−x/8 dx = −e−x/8

∣∣∣12
3

= −0.2231 + 0.6873 = 0.4642.
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The following code solves the problem with S:

> round(pexp(12,1/8) - pexp(3,1/8),4)
[1] 0.4642

The function integrate() can also be used to solve this problem using numerical integra-
tion:

> f1 <- function(x){(1/8)*exp(-x/8)}
> integrate(f1,3,12) # For R
0.4641591 with absolute error < 5.2e-15

> f1 <- function(x){(1/8)*exp(-x/8)}
> round(integrate(f1,3,12)$integral,4) # For S-PLUS
[1] 0.4642

(b) The 95th percentile is the value x95 such that

x95∫
−∞

f(x) dx =

x95∫
0

1
8
e−x/8 dx =

95
100

−e−x/8
∣∣∣x95

0
= 1 − e−

x95
8 =

95
100

e−
x95
8 =

5
100

x95 = −8 ln(0.05) = 23.96586

To find the answer with S, type

> qexp(0.95,1/8)
[1] 23.96586

(c) The probability that a light bulb that has lasted for 10 months will last more than 25
months mathematically is written P(X > 25|X > 10). Because an exponential distribution
is present, (4.11) can be used to say that this is equal to P(X > 15) = e−15/8 = 0.153355.

Solve the problem with S as follows:

> 1-pexp(15,1/8)
[1] 0.1533550

Example 4.18 � Exponential Distribution: Intergoal Times � Example 4.4 on
page 122 illustrated how the number of goals scored during World Cup games could be
modeled with the Poisson distribution. Now, look at the distribution of T , the time between
goals. In Example 4.4 on page 122, λ was estimated to be 575

232 . Since one soccer match lasts
90 minutes, the average time (in minutes) before a goal is scored is 90

λ = 36.31304 minutes
assuming λ is 575

232 . To find the intergoal times from the cumulative goal times stored in
column CGT of the Soccer data frame, compute CGTi+1 − CGTi.

(a) Compute the mean and standard deviation for the time between goals.

(b) Is it reasonable to model the time between goals with the exponential distribution?

(c) In particular, is the lack of memory property evident in the data?
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Solution: The answers are as follows:
(a) First, attach Soccer so that columns can be referenced by their names. Then, use S to
calculate both the mean and standard deviation for the time between goals:

> attach(Soccer)
> inter.times <- CGT[2:575] - CGT[1:574]
> mean(inter.times)
[1] 36.24042
> sd(inter.times)
[1] 36.67138

Note that both the mean and standard deviation for time between goals are close to the
theoretical time of 36.31 minutes under the assumption that λ is 575

232 .

(b) To assess the fit of the data to an exponential distribution with a mean of 36.31 minutes,
first split the data into discrete categories. If the underlying distribution is exponential,
then a good bin width is approximately

(
12
n

)1/3 · μX (Scott, 1992). In our case, the bin

width is
(

12
574

)1/3 · 36.31 ≈ 10.

> rate <- 1/(90/(575/232))
> ntot <- length(inter.times)
> OBS <- table(cut(inter.times, breaks=c(seq(0,130,10), 330)))
> EmpiP <- round(OBS/ntot,3)
> TheoP <- round(c((pexp(seq(10,130,10),rate) - pexp(seq(0,120,10),rate)),
+ (1 - pexp(130, rate))), 3)
> EXP <-round(TheoP*ntot, 0)
> ANS <-cbind(OBS, EXP, EmpiP, TheoP)
> ANS

OBS EXP EmpiP TheoP
(0,10] 144 138 0.251 0.241
(10,20] 106 105 0.185 0.183
(20,30] 86 80 0.150 0.139
(30,40] 53 60 0.092 0.105
(40,50] 45 46 0.078 0.080
(50,60] 27 35 0.047 0.061
(60,70] 35 26 0.061 0.046
(70,80] 16 20 0.028 0.035
(80,90] 22 15 0.038 0.027
(90,100] 12 11 0.021 0.020
(100,110] 3 9 0.005 0.015
(110,120] 3 7 0.005 0.012
(120,130] 6 5 0.010 0.009
(130,330] 16 16 0.028 0.028

The observed and expected values as well as the empirical and theoretical probabilities are
similar.

(c) The lack of memory property is also evident from the data. Empirically, P(T > 10) =
1 − P(T ≤ 10) = 1 − 144

574 = 430
574 = 0.749, and P(T > 20 |T > 10) = 574−144−106

574−144 = 0.754,
which are both roughly the same and similar to the theoretical P(T > 10), which is 0.759
under the assumption that the mean is 36.31 minutes. Since the observed data appear to
lack memory, the same probability statements could be used to justify independence among
the times between goals using (4.14). Finally, produce a histogram of the observed data
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similar to Figure 4.6, and superimpose over this the density for an exponential with a mean
of 36.31 minutes. Based on the analysis and Figure 4.6, it seems reasonable to model the
time between goals scored in World Cup competition for the years 1990 to 2002 with an
exponential distribution:

> hist(inter.times, breaks=seq(0,310,10), col=13, xlim=c(0,125), prob=TRUE,
+ xlab="Time Between Goals")
> xt <- seq(0,140,0.01)
> ft <- dexp(xt, rate)
> lines(xt, ft, type="l")
> detach(Soccer)
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FIGURE 4.6: Histogram of time between goals with superimposed exponential density
curve with mean of 36.31 minutes

4.3.3 Gamma Distribution

Some random variables are always non-negative and yield distributions of data that tend
to be skewed. The waiting time until a certain number of malfunctions in jet engines,
the waiting time until a certain number of accidents at a given intersection, and similar
scenarios where the random variable of interest is the waiting time until a certain number
of events takes place yield skewed distributions. The gamma distribution is often used to
model the waiting time until the αth event in a Poisson process. Before defining the gamma
distribution, review the definition of the gamma function from mathematics. The gamma
function, Γ(α), is defined by:

Γ(α) =

∞∫
0

xα−1e−x dx, α > 0 (4.15)
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Some of the more important properties of the gamma function include:

1. For α > 0, Γ(α + 1) = αΓ(α).

2. For any positive integer, n, Γ(n) = (n − 1)!

3. Γ
(

1
2

)
=

√
π.

In Section 4.3.2 on page 133, it was proved that the waiting time until the first outcome in
a Poisson process follows an exponential distribution. Now, let W denote the waiting time
until the αth outcome and derive the distribution of W in a similar fashion. Since waiting
time is non-negative, F (w) = 0 for w < 0. When w ≥ 0,

F (w) = P(W ≤ w) = 1 − P(W > w)
= 1 − P(fewer than α outcomes in [0, w])

= 1 −
α−1∑
k=0

(λw)ke−λw

k!

Consequently, when w > 0, the pdf of W is F ′(w) = f(w) whenever this derivative exists.
It follows then that

f(w) = F ′(w) = −
α−1∑
k=0

(λw)ke−λw(−λ) + e−λwk(λw)k−1λ

k!

= −e−λw
α−1∑
k=0

kλ(λw)k−1 − λ(λw)k

k!

= λe−λw − e−λw
α−1∑
k=1

kλ(λw)k−1 − λ(λw)k

k!

= λe−λw − e−λw
α−1∑
k=1

[
λ(λw)k−1

(k − 1)!
− λ(λw)k

k!

]
= λe−λw − e−λw

[
λ(λw)0

0!
− λ(λw)1

1!
+

λ(λw)1

1!
− λ(λw)2

2!
+

· · · − λ(λw)α−1

(α − 1)!

]
= λe−λw − e−λw

[
λ − λ(λw)α−1

(α − 1)!

]
=

λ(λw)α−1e−λw

(α − 1)!
=

λαwα−1e−λw

Γ(α)

From the previous derivation, note that the gamma is a generalization of the exponential
distribution. The pdf, mean, variance, and mgf for a gamma random variable are listed in
(4.16). The pdfs for λ = 2 and λ = 1 with α = 1, 2, and 3, respectively, are illustrated in
Figure 4.7 on the facing page. Notice that different shapes are produced in Figure 4.7 for
different values of α. For this reason, α is often called the shape parameter associated with
the gamma distribution. The parameter λ is referred to as the scale parameter. Varying λ
changes the units of measurement (say, from seconds to minutes) and does not affect the
shape of the density.
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Gamma Distribution
X ∼ Γ(α, λ)

f(x) =

{
λα

Γ(α)x
α−1e−λx if x ≥ 0

0 if x < 0

E[X ] =
α

λ

Var [X ] =
α

λ2

MX(t) = (1 − λ−1t)−α for t < λ

(4.16)
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FIGURE 4.7: Graphical illustration of the pdfs of a Γ(α, 2) and a Γ(α, 1) random variable
for α = 1, 2, and 4, respectively.

Useful Relationships

1. Given X ∼ Γ(α, λ). When α = 1, the resulting random variable is X ∼ Exp(λ). That
is, the exponential distribution is a special case of the gamma distribution.

2. Given X ∼ Γ(α, λ). When α = n/2 and λ = 1/2 , the resulting random variable has a
chi-square distribution with n degrees of freedom. (The chi-square is discussed in Section
6.6.1.)

3. Given X ∼ Γ(α, λ). Provided α is a positive integer, the resulting distribution is known
as the Erlang. In this case, the Erlang distribution gives the waiting time until the αth

occurrence when the number of outcomes in an interval of length t follows a Poisson
distribution with parameter λt.
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Example 4.19 Given X ∼ Γ(α, λ), find the mean and variance of X .

Solution: Using the mgf from (4.16), it is known that the first and second derivatives of
the mgf evaluated at zero, respectively, yield the E[X ] and the E[X2]. Consequently,

E[X ] = M ′
X(t)

∣∣
t=0

= (−α)
(
1 − λ−1t

)−α−1 (−λ−1
) ∣∣

t=0
=

α

λ

E
[
X2

]
= M ′′

X(t)
∣∣
t=0

= αλ−1(−α − 1)
(
1 − λ−1t

)−α−2(−λ−1
)∣∣

t=0
=

α(α + 1)
λ2

Var [X ] = E
[
X2

]
− (E[X ])2

=
α(α + 1)

λ2
−

(α

λ

)2

=
α

λ2

So the mean of X is α
λ and the variance of X is α

λ2 .

Example 4.20 Suppose that the average arrival rate at a local fast food drive-through
window is three cars per minute (λ = 3). Find

(a) The probability that at least five cars arrive in 120 seconds.

(b) The probability that more than one minute elapses before the second car arrives.

(c) If one car has already gone through the drive-through, what is the average waiting time
before the third car arrives?

Solution: The answers are as follows:
(a) If the average number of car arrivals follows a Poisson distribution with a rate of three
cars per minute, then the average rate of arrival for 2 minutes is six cars. Given that
X ∼ Pois(λ = 6),

P(X ≥ 5) = 1 − P(X ≤ 4) = 1 −
4∑

x=0

e−66x

x!
= 1 − 0.2850565 = 0.7149435.

To solve the problem with S, use the command ppois():

> 1 - ppois(4,6)
[1] 0.7149435

(b) Let W represent the waiting time until the αth outcome. It follows that W ∼ Γ(α =
2, λ = 3). Consequently,

P(W > 1) = 1 − P(W ≤ 1) = 1 − P(Γ(2, 3) ≤ 1) = 1 −
1∫

0

32

Γ(2)
x2−1e−3x dx

= 1 −
1∫

0

3x e−3x3 dx
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Using integration by parts where u = 3x and dv = 3e−3xdx,

1∫
0

3x e−3x3 dx = −3xe−3x
∣∣1
0

+

1∫
0

3e−3x dx

= −3e−3 +
[
−e−3x

∣∣1
0

]
= −3e−3 +

[
−e−3 + 1

]
= 1 − 4e−3 = 0.8008517.

In other words, P(W > 1) = 1 − 0.8008517 = 0.1991483. To solve the problem with S, use
the command pgamma() or integrate():

> 1 - pgamma(1,2,3)
[1] 0.1991483

> gam23<-function(x){9*x*exp(-3*x)}
> integrate(gam23,1, Inf) # R
0.1991483 with absolute error < 2.5e-05

> gam23<-function(x){9*x*exp(-3*x)}
> integrate(gam23,1, Inf)$integral # S-PLUS
[1] 0.1991483

(c) This problem is really asking for the mean of a Γ(α = 2, λ = 3) random variable. Note:
α = 2 since one car has already arrived and the problem requests the average waiting time
until the third car arrives. Therefore, E[X ] = α

λ = 2
3 . In other words, there is an average

wait of 2
3 of a minute before the arrival of the third vehicle given one vehicle has already

arrived.

4.3.4 Hazard Function, Reliability Function, and Failure Rate

In addition to studying the pdf of continuous random variables, at times it is helpful to
study other functions related to the pdf such as the reliability function or the hazard
function which is also often called the failure rate or force of mortality, especially
when dealing with lifetime data. Suppose the random variable T represents the useful life
of some component with pdf and cdf given by f(t) and F (t), respectively. The reliability
function R(t) is defined as

R(t) = P(T > t) = 1 − F (t), t > 0 (4.17)

and represents the probability that the lifetime of the component exceeds t. The hazard
function, h(t), is defined as

h(t) =
f(t)

1 − F (t)
=

f(t)
R(t)

, t > 0, F (t) < 1. (4.18)

Note that the hazard function is often called the conditional failure rate.
The functions h(t), f(t), and F (t) provide mathematically equivalent specifications of

the distribution of T . In fact, it can be shown that

f(t) = h(t)e−
∫

t
0 h(x) dx. (4.19)

To gain an intuitive understanding of what h(t) is measuring, let dt represent a small unit of
measurement. Then, the quantity h(t)dt can be thought of as the approximate probability
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that T takes on a value in (t, t + dt). Keeping in mind that 1 − F (t) = P(T > t), write

h(t)dt =
f(t)dt

1 − F (t)
≈ P[T ∈ (t, t + dt)|T > t].

In other words, h(t)dt represents the approximate probability of having a breakdown during
the interval (t, t + dt) given that a component has lasted up to time t. In mathematical
terms,

lim
dt→0

P(t ≤ T ≤ t + dt |T > t)
dt

(4.20)

may be written, which represents the instantaneous rate of death or failure at time t, given
the individual or component has survived to time t. It may then be noted that the hazard
function is a rate rather than a probability. The failure rate for an exponential random
variable is a constant λ:

h(t) =
f(t)

1 − F (t)
=

λeλx

1 −
[
1 − e−λx

] = λ.

Not many components have a constant failure rate. As a matter of fact, it stands to
reason that the failure rate should increase as the life of a component ages. For most
manufactured items as well as human populations, this is the case after some initial time
period. However, there are some instances such as breakdowns when equipment is on a
preventative maintenance schedule where it is still reasonable to assume a constant failure
rate. A very flexible hazard function is h(t) = αtα−1

βα , for all α and β greater than 0, since
the function is monotone increasing for α > 1, monotone decreasing for α < 1, and constant
for α = 1, as illustrated in Figure 4.8. This hazard function corresponds to the Weibull
distribution that is discussed in Section 4.3.5
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FIGURE 4.8: Illustration of the hazard function h(t) = αtα−1

βα for α = 0.5, α = 1.0, and
α = 1.2 with β = 1 and the corresponding pdfs
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Example 4.21 � Hazard Rate � In an effort to attract more business, a local com-
puter outlet has agreed to replace its laser printers with a brand new laser printer in the
event any of its laser printers malfunction within one year of the date of their purchase.
According to the manufacturer of the printer, the useful life (in years) of the printer is a
random variable T with pdf f(t) = K(2000 − 0.1e−2t) for 0 < t < 5.

(a) Find K so that f(t) is a pdf.

(b) Compute the probability a randomly selected laser printer will have to be replaced due
to a malfunction.

(c) What are the mean and standard deviation for laser printer life?

(d) If a small business purchases five laser printers from the computer outlet, what is the
probability there are no malfunctions during the first year?

(e) What should the length of guarantee time be for a laser printer if the outlet store wants
to replace no more than 5% of the laser printers?

(f) Compute, graphically represent, and interpret the hazard function.

Solution: The answers are as follows:

(a) To find K such that f(t) is a pdf, the integral over all possible values of t must be one:

∫ 5

0

K(2000− 0.1e−2t) dt
set= 1

K
[(

2000t + 0.05e−2t
)∣∣5

0

]
= 1

K
[
10000 + 0.05e−10 − 0.05

]
= 1

K =
1

9999.95 + 0.05e−10

Let the denominator of K be equal to k1 = 9999.95 + 0.05e−10 for the remainder of the
problem. The solution given is for R. To obtain similar answers with S-PLUS, replace $value
with $integral throughout. To calculate the denominator of K numerically with R, enter

> g <- function(x){(2000 - 0.1*exp(-2*x))}
> k1a <- integrate(g,0,5)$value
> k1a
[1] 9999.95
> # OR
> k1 <- (10000 +0.05*exp(-10) -0.05)
> k1
[1] 9999.95
> f <- function(x){1/k1*(2000 - 0.1*exp(-2*x))}
> integrate(f,0,5)
1 with absolute error < 1.1e-14



146 Probability and Statistics with R

(b) P (T < 1) =
∫ 1

0
1
k1 (2000− 0.1e−2t) dt = 0.1999967

With S using the f from part (a):

> integrate(f,0,1)
0.1999967 with absolute error < 2.2e-15

(c) E(T ) =
∫ 5

0
1
k1 t(2000 − 0.1e−2t) dt = 2.50001

> et <- function(x){x*f(x)}
> ET <- integrate(et,0,5)$value
> ET
[1] 2.50001

σT =
√

σ2
T =

√
E(T 2) − E(T )2 = 1.443372

> et2 <- function(x){x^2*f(x)}
> ET2 <- integrate(et2,0,5)$value
> VX <- ET2 - ET^2
> SX <- sqrt(VX)
> SX
[1] 1.443372

(d) Assuming the useful lives of laser printers are independent, the probability none of the
five printers have to be replaced is

P (T1 > 1) × P (T2 > 1) × · · · × P (T5 > 1) = (1 − 0.1999967)5 = 0.3276868

If the random variable X is defined to be the number of printers that need to be replaced
during the first year of operation, then X ∼ Bin(n = 5, π = 0.1999967) and the problem is
solved by computing P (X = 0) =

(
5
0

)
(0.1999967)0(1 − 0.1999967)5 = 0.3276868:

> dbinom(0,5,0.1999967)
[1] 0.3276868

(e) The length of guarantee time for a laser printer if the outlet store wants to replace no
more than 5% of the laser printers will be the roots of the equation

P(T < t) =
∫ t

0

1
k1

(2000 − 0.1e−2x) dx = 0.05.

∫ t

0

1
k1

(2000 − 0.1e−2x) dx = 0.05(
2000x + 0.05e−2x

)∣∣t
0

= 0.05k1

2000t + 0.05e−2t − 0.05 = 0.05k1

Find roots of 2000t + 0.05e−2t − 0.05 − 0.05k1 = 0

Use the function uniroot() to solve for t numerically:

> fr <- function(x){2000*x+0.05*exp(-2*x)-0.05*k1 -0.05}
> uniroot(fr, c(0,5))$root
[1] 0.25
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Since t is given in years, multiplying 0.25×365 = 91.25 days. In other words, the computer
outlet will have to replace less than 5% of their laser printers if they use a guarantee period
of 91 days.

(f) Note that the reliability (survival) function is

P (T > t) = 1 − F (t) = 1 − 1
k1

(
2000t + 0.05e−2t − 0.05

)
, 0 < t < 5.

Using the reliability function, the hazard function can be written as

h(t) =
f(t)

1 − F (t)
=

1
k1

(
2000 − 0.1e−2t

)
1 − 1

k1
(2000t + 0.05e−2t − 0.05)

, 0 < t < 5.

This particular hazard function (Figure 4.9) represents the instantaneous rate of failure
given that a printer has lasted until time t. The R commands used to create Figure 4.9
follow. Note that f() (used for f(year)) was defined in part (a).

> year <- seq(0,5, length=500)
> CDF <- function(x){1/k1*(2000*x + 0.05*exp(-2*x)-0.05)}
> plot(year, f(year)/(1-CDF(year)), type="l", ylab="h(year)")
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FIGURE 4.9: Hazard function for printer failure

4.3.5 Weibull Distribution

The gamma distribution provides an adequate model for some systems’ lifetime distri-
butions. However, since the hazard function for the gamma does not have a closed form
expression, and its failure rate approaches λ from both above (when α < 1) and below
(when α > 1) as t gets large, distributions with closed form expressions for the hazard
function such as the Weibull tend to be favored by practitioners who deal with lifetime
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distributions. In particular, the hazard function for the Weibull distribution has a failure
rate that varies with time. The hazard rate for the Weibull distribution is h(t) = αtα−1

βα ,
for all α and β greater than 0. Using (4.19), derive the pdf for the Weibull distribution as
follows:

f(t) = h(t)e−
∫ t
0 h(x) dx =

αtα−1

βα
e−

∫
t
0

αxα−1
βα dx =

αtα−1

βα
e−(t/β)α

The pdf, mean, variance, and hazard function for a Weibull random variable (α > 0 and
β > 0) are in (4.21), while the pdfs for Weib(α, 1) and a Weib(α, 2) random variable
for α = 1, 2, and 5, respectively, are illustrated in Figure 4.10. As with the gamma
distribution, the first parameter in the Weibull distribution, α, is the shape parameter;
and the second parameter, β, is the scale parameter. If X ∼ Weib(α, β) and α = 1, then
X ∼ Exp(λ = 1/β ).

Weibull Distribution
X ∼ Weib(α, β)

f(x) =

{
αβ−αxα−1e−(x/β)α

if x ≥ 0
0 if x < 0

E[X ] = βΓ
(
1 + α−1

)
Var [X ] = β2

{
Γ
(
1 + 2α−1

)
−

[
Γ
(
1 + α−1

)]2}
h(x) = αβ−αxα−1 for x ≥ 0

(4.21)
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FIGURE 4.10: Illustration of the pdfs of a Weib(α, 1) and a Weib(α, 2) random variable
for α = 1, 2, and 5, respectively
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Example 4.22 The useful life (in thousands of hours) of a certain type of transistor
follows a Weibull distribution with α = 2 and β = 8. Find the probability that a randomly
selected transistor lasts more than 8000 hours. What is the average life for this type of
transistor?

Solution: First, find the cdf for X ∼ Weib(α, β):

F (x) =

x∫
0

αβ−αtα−1e−(t/β)α

dt = −e−(t/β)α
∣∣∣x
0
= 1 − e−(x/β)α

Using the cdf for the Weibull, the probability a randomly selected transistor lasts more than
8000 hours is

P(X > 8) = 1 − F (8) = 1 −
[
1 − e−(8/8)2

]
= e−1 = 0.3678794.

The expected value of X (in thousands of hours) is

E[X ] = βΓ
(
1 + α−1

)
= 8Γ

(
1 +

1
2

)
= 8

1
2
Γ
(

1
2

)
= 4

√
π = 7.089815.

To solve the first question and to compute Γ
(

3
2

)
with S, use the functions pweibull() and

gamma(), respectively:

> 1 - pweibull(8,2,8)
[1] 0.3678794
> 8*gamma(3/2)
[1] 7.089815

4.3.6 Beta Distribution

The continuous distributions discussed up to this point, with the exception of the
continuous uniform, have positive densities over unbounded intervals. To model phenomena
restricted to a finite interval, another type of distribution is needed, such as the beta (β)
distribution, whose density function is positive only over the interval (A, B). The standard
beta distribution, (A = 0, B = 1), is often used to model proportions, especially in Bayesian
analysis, where parameters are treated as random variables. For example, π from the
binomial distribution can be modeled with the standard β distribution as it takes on only
non-zero values in the interval (0, 1). The distribution can take on a wide variety of shapes,
as depicted in Figure 4.11 on the following page. The pdf, mean, and variance for a general
beta random variable (α > 0 and β > 0) are in (4.22). When working with the standard
β distribution, that is, A = 0 and B = 1, a β random variable X is denoted simply
X ∼ β(α, β). The β distribution available in S is the standard β distribution rather than
the general β distribution.
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Beta Distribution
X ∼ β(α, β, A, B)

f(x) =

⎧⎨⎩ 1
B−A

Γ(α+β)
Γ(α)Γ(β)

(
x−A
B−A

)α−1(
B−x
B−A

)β−1

if A ≤ x ≤ B

0 otherwise

E[X ] = A + (B − A)
α

α + β

Var [X ] =
(B − A)2αβ

(α + β)2(α + β + 1)

(4.22)
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FIGURE 4.11: Illustration of standard β(A = 0, B = 1) pdfs for several combinations of α
and β

Example 4.23 � Beta Distribution: Selling Computers � A wholesale computer
distributor has a fixed amount of storage space in his warehouse. The warehouse is re-
stocked with computers every 15 days. The distributor would like more information on
the proportion of computers in the warehouse that are sold every 15 days. The warehouse
manager claims that the proportion of computers sold can be modeled with a standard beta
distribution where α = 4 and β = 2. Compute the expected value for the proportion of
computers sold every 15 days. How likely is it that at least 80% of the computers in stock
will be sold during a 15 day period?

Solution: Let the random variable X represent the proportion of computers sold in a 15
day period. Since X ∼ β(4, 2), the expected value from (4.22) yields

E[X ] =
α

α + β
=

2
3
.
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The probability that at least 80% of the computers in the warehouse are sold is

P(X ≥ 0.8) =
∫ 1

0.8

Γ(4 + 2)
Γ(4)Γ(2)

x3(1 − x) dx = 20
∫ 1

0.8

(x3 − x4) dx = 0.26272.

To compute the last answer with S, use the command pbeta() or integrate():

> 1 - pbeta(0.8,4,2)
[1] 0.26272

> b42 <- function(x){(gamma(6)/(gamma(4)*gamma(2)))*x^3*(1-x)}
> integrate(b42,0.8,1) # R
0.26272 with absolute error < 2.9e-15

> b42 <- function(x){(gamma(6)/(gamma(4)*gamma(2)))*x^3*(1-x)}
> integrate(b42,0.8,1)$integral # S-PLUS
[1] 0.26272

Example 4.24 � Beta Distribution: Roof My House � Project managers often
use a Program Evaluation and Review Technique (PERT) to manage large scale projects.
PERT was actually developed by the consulting firm of Booz, Allen, & Hamilton in con-
junction with the United States Navy as a tool for coordinating the activities of several
thousands of contractors working on the Polaris missile project. A standard assumption
in PERT analysis is that the time to complete any given activity follows a general beta
distribution, where A is the optimistic time to complete an activity and B is the pessimistic
time to complete the activity. Suppose the time X (in hours) it takes a three man crew to
re-roof a single-family house has a beta distribution with A = 8, B = 16, α = 2, and β = 3.
The crew will complete the re-roofing in a single day provided the total time to complete
the job is no more than 10 hours. If this crew is contracted to re-roof a single-family house,
what is the chance that they will finish the job in the same day?

Solution: To answer the question, find P(X ≤ 10):

P(X ≤ 10) =

10∫
8

1
8
· Γ(5)
Γ(2)Γ(3)

(
x − 8

8

)(
16 − x

8

)2

dx

=
Γ(5)

84Γ(2)Γ(3)

10∫
8

(x − 8)(16 − x)2 dx

=
24

4096 · 1 · 2

10∫
8

(512x − 40x2 + x3 − 2048) dx

=
3

1024
·
(

256x2 − 40
3

x3 +
x4

4
− 2048x

) ∣∣∣∣10
8

=
3

1024
· 268

3
= 0.2617
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To compute the last answer with S, use the command integrate():

> GB <- function(x)
{(1/8)*(gamma(5)/(gamma(2)*gamma(3)))*((x-8)/8)*((16-x)/8)^2}
> integrate(GB, 8, 10) # R
0.2617188 with absolute error < 2.9e-15

> GB <- function(x)
{(1/8)*(gamma(5)/(gamma(2)*gamma(3)))*((x-8)/8)*((16-x)/8)^2}
> integrate(GB, 8, 10)$integral # S-PLUS
[1] 0.2617188

To solve the problem with pbeta(), enter

> A <- 8
> B <- 16
> x <- 10
> pbeta((x-A)/(B-A),2,3)
[1] 0.2617188

4.3.7 Normal (Gaussian) Distribution

The normal or Gaussian distribution is more than likely the most important distri-
bution in statistical applications. This is due to the fact that many numerical populations
have distributions that can be approximated with the normal distribution. Examples of
distributions following an approximate normal distribution include physical characteristics
such as the height and weight of a particular species. Further, certain statistics, such as the
mean, follow an approximate normal distribution when certain conditions are satisfied. The
pdf, mean, variance, and mgf for a normal random variable X with mean μ and variance
σ2 are provided in (4.23). The pdf for a normal random variable has an infinite number of
centers and spreads, depending on both μ and σ, respectively. Although there are an infinite
number of possible normal distributions, all normal distributions have a bell shape that is
symmetric around the distribution’s mean. Figure 4.12 on the next page illustrates three
normal distributions with identical means, μ, and increasing variances as the distributions
are viewed from left to right. The standard deviation in a normal distribution is the
horizontal distance from the center of the distribution to the point on the density curve
where the curve changes from concave down to concave up (point of inflection). Small
values of σ produce distributions that are relatively close to the distribution’s mean. On
the other hand, values of σ that are large produce distributions that are quite spread out
around the distribution’s mean.

Normal Distribution
X ∼ N(μ, σ)

f(x) =
1√

2πσ2
e−

(x−μ)2

2σ2 , −∞ < x < ∞,

where −∞ < μ < ∞ and 0 < σ < ∞.

E[X ] = μ

Var [X ] = σ2

MX(t) = eμt+ σ2t2
2

(4.23)
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μμμ

σ

FIGURE 4.12: Three normal distributions, each with an increasing σ value as read from
left to right

The cdf for a normal random variable, X , with mean, μ, and standard deviation, σ, is

F (x) = P(X ≤ x) =
1√

2πσ2

x∫
−∞

e−
(t−μ)2

2σ2 dt. (4.24)

A normal random variable with μ = 0 and σ = 1, often denoted Z, is called a standard
normal random variable. The cdf for the standard normal distribution, given in (4.26),
is computed by first standardizing the random variable X , where X ∼ N(μ, σ), using the
change of variable formula,

Z =
X − μ

σ
∼ N(0, 1). (4.25)

F (x) = P(X ≤ x) = P

(
Z ≤ x − μ

σ

)
=

1√
2π

∫ (x−μ)
σ

−∞
e−

z2
2 dz (4.26)

Neither the integral for (4.26) nor the integral for (4.24) can be computed with standard
techniques of integration. However, (4.26) has been numerically evaluated and tabled.
Further, any normal random variable can be converted to a standard normal random
variable using (4.25). The process of computing P(a ≤ X ≤ b), where X ∼ N(μ, σ), is
graphically illustrated in Figure 4.13 on the following page.

Throughout the text, the convention zα is used to represent the value of the standard
normal random variable Z that has α of its area to the left of said value. In other words,
P(Z < zα) = α. Another notation that is also used in the text is Φ(zα) = α. Basically,
the Φ(value) is the same as P(Z < value). That is, Φ is the cdf of the standard normal
distribution. Likewise, Φ−1(α) = zα. The Φ notation for the cdf and inverse cdf is used
more in Chapter 10.

To find the numerical value of Xα, where X ∼ N(μ, σ) and α is the area (or probability)
to the left of the value Xα, use the S command qnorm(p, mean=MValue, sd=SValue),
where p is the area or probability (this is equivalent to α) to the left of Xα, MValue is the
value of the mean, and SValue is the value of the standard deviation. Note that if one is
dealing with the standard normal distribution, the mean=MValue or sd=SValue arguments
are not needed.
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X ∼ N(μ, σ)

f(x)f(x)f(x)

f(z)f(z)f(z)

aa bb

a−μ
σ

a−μ
σ

b−μ
σ

b−μ
σ

P(X ≤ b) P(X ≤ a)P(a ≤ X ≤ b)

b∫
−∞

f(x)dx
a∫

−∞
f(x)dx

b∫
a

f(x)dx

���
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σ ) P(Z ≤ a−μ

σ )P(a−μ
σ ≤ Z ≤ b−μ
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σ
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FIGURE 4.13: Graphical representation for computing P(a ≤ X ≤ b)

Example 4.25 Scores on a particular standardized test follow a normal distribution with
a mean of 100 and standard deviation of 10.

(a) What is the probability that a randomly selected individual will score between 90 and
115?

(b) What score does one need to be in the top 10%?

(c) Find the constant c such that P(105 ≤ X ≤ c) = 0.10.

Solution: Historically, normal distributions had to be standardized and the values of
probabilities looked up in tables. Though this is no longer the case, this example shows
how to standardize X and to use the S command pnorm() with a standard normal random
variable to “look up” probabilities to the left of given values. Understanding the standard
normal, Z ∼ N(0, 1), and the probabilities associated with different values from this
distribution gives the student an intuition about other normal distributions whose mean
and standard deviation are something other than 0 and 1.

(a) To find P(90 ≤ X ≤ 115), first draw a picture representing the desired area such as the
one in Figure 4.14 on page 156. Note that finding the area between 90 and 115 is equivalent
to finding the area to the left of 115 and from that area, subtracting the area to the left of
90. In other words,

P(90 ≤ X ≤ 115) = P(X ≤ 115) − P(X ≤ 90).
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To find P(X ≤ 115) and P(X ≤ 90), one can standardize using (4.25). That is,

P(X ≤ 115) = P

(
Z ≤ 115 − 100

10

)
= P(Z ≤ 1.5),

and

P(X ≤ 90) = P

(
Z ≤ 90 − 100

10

)
= P(Z ≤ −1.0).

Using the S commands pnorm(1.5) and pnorm(-1), find the areas to the left of 1.5 and
−1.0 to be 0.9332 and 0.1586, respectively. Consequently,

P(90 ≤ X ≤ 115) = P(−1.0 ≤ Z ≤ 1.5)
= P(Z ≤ 1.5) − P(Z ≤ −1.0)
= 0.9332− 0.1587 = 0.7745.

(b) Finding the value c such that 90% of the area is to its left is equivalent to finding the
value c such that 10% of its area is to the right. That is, finding the value c that satisfies
P(X ≤ c) = 0.90 is equivalent to finding the value c such that P(X ≥ c) = 0.10. Since the
qnorm() function refers to areas to the left of a given value by default, solve

P(X ≤ c) = P

(
Z =

X − 100
10

≤ c − 100
10

)
= 0.90 for c.

Using qnorm(.9), find the Z value (1.2816) such that 90% of the area in the distribution
is to the left of that value. Consequently, to be in the top 10%, one needs to be more than
1.2816 standard deviations above the mean:

c − 100
10

set= 1.2816

and solve for c ⇒ c = 112.816.

To be in the top 10%, one needs to score 112.816 or higher.

(c) P(105 ≤ X ≤ c) = 0.10 is the same as

P(X ≤ c) = 0.10 + P(X ≤ 105) = 0.10 + P

(
Z ≤ 105 − 100

10

)
.

Using pnorm(.5),

P

(
Z ≤ 105 − 100

10

)
= P(Z ≤ 0.5) = 0.6915.

It follows then that P(X ≤ c) = 0.7915. Using qnorm(.7915) gives 0.8116:

P(X ≤ c) = P

(
Z =

X − 100
10

≤ c − 100
10

)
= 0.7915

is found by solving
c − 100

10
= 0.8116 ⇒ c = 108.116

Note that a Z value of 0.8116 has 79.15% of its area to the left of that value.
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The following S commands can be used to solve (a),(b), and (c), respectively:

(a) P(90 ≤ X ≤ 115)

> pnorm(115,100,10) - pnorm(90,100,10)
[1] 0.7745375

(b) P(X ≤ c) = 0.90

> qnorm(.90,100,10)
[1] 112.8155

(c) P(105 ≤ X ≤ c) = 0.10

> qnorm(.10 + pnorm(105,100,10),100,10)
[1] 108.1151

X ∼ N(100, 10)

f(x)f(x)f(x)

f(z)f(z)f(z)

9090 115115

−1−1 1.51.5

P(X ≤ 115) P(X ≤ 90)P(90 ≤ X ≤ 115)

115∫
−∞
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90∫

−∞
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���
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10 ) P(Z ≤ 90−100

10 )P(90−100
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1.5∫
−∞
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−1∫

−∞
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1.5∫
−1

f(z)dz

FIGURE 4.14: Graphical representation for finding P(90 ≤ X ≤ 115) given X ∼ N(100, 10)

Example 4.26 �Normal Distribution: Cell Phone Components � Most mobile
appliances today allow the consumer to switch from the built-in speaker and microphone
to an external source. A manufacturer of cell phones wants to package an external speaker
and microphone for hands-free operation. A new company has patented a component that
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allows the on-resistance flatness for both the microphone and speaker to be lower than ever
before. The cell phone company requires that the on-resistance flatness be less than 0.7
ohms (Ω). If it is known that 50% of the components from the new company have an ohm
rating of 0.5 Ω or less, 10% have an ohm rating of 0.628 Ω or greater, and the distribution
of the ohm ratings is normal, then:

(a) Find the mean and standard deviation for the distribution of the ohm rating of the
components.

(b) If a component is selected at random, what is the probability that its on-resistance
flatness will be less than 0.7 Ω?

(c) If 20 components are selected at random, what is the probability that at least 19
components will have on-resistance flatness values less than 0.7 Ω?

Solution: Let X = the ohm rating of the patented components.
(a) Because a normal distribution is symmetric, the mean equals the median. It is known
that 50% of the components have an ohm rating of 0.5 Ω or less, so μX = 0.5. To calculate
the standard deviation of the components’ ohm ratings, use the fact that “10% have an
ohm rating of 0.628 Ω or greater.”

This means that P(X ≤ 0.628) = 0.9,

which implies P

(
Z =

X − 0.5
σ

≤ .628 − .5
σ

)
= 0.9.

Because P(Z ≤ 1.28) = 0.9, set
0.628− 0.5

σ
= 1.28

and solve for σ.
0.628− 0.5

1.28
= σ

Therefore σ = 0.1.

(b) Calculate that the probability a component has an on-resistance flatness less than 0.7
Ω:

P(X ≤ 0.7) = P

(
Z =

X − 0.5
.1

≤ 0.7 − 0.5
0.1

)
= P(Z ≤ 2)
= 0.97725

The answer computed with S is

> p <- pnorm(0.7,0.5,0.1)
> p
[1] 0.9772499

(c) Calculate the probability that at least 19 of the 20 components will have an on-resistance
flatness value less than 0.7 Ω. Let Y ∼ Bin(20, 0.97725).

P(Y ≥ 19) =
20∑

i=19

(
20
i

)
(0.97725)i(1 − 0.97725)20−i = 0.9250
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To compute the answer with S, type

> sum(dbinom(19:20,20, p))
[1] 0.9249673

Quantile-Quantile Plots for Normal Distributions Many of the techniques pre-
sented later in the book assume the underlying distribution is normal. One of the more
useful graphical procedures for assessing distributions is the quantile-quantile plot. (Recall
from Section 2.7.3 that this graph is also called a Q-Q plot.) To help determine whether
the underlying distribution is normal, use the S function qqnorm().

To understand the qqnorm() function, one needs to have some understanding of S’s
quantile() function. Recall that the cumulative distribution function (cdf) is F (x) =
P (X ≤ x). The quantile() function is the inverse of the cdf, where this exists; that is,
Q(u) = F−1(u). The qqnorm() function works by first computing the quantiles of the
points (i − 1/2)/n for the standard normal distribution. The ordered sample values are
then plotted against the quantiles. When the resulting plot is linear, it indicates the sample
values have a normal distribution. To help assess the linearity of the qqnorm() plot, it is
often quite helpful to plot a straight line through the 25th and 75th percentiles, also referred
to as the first and third quartiles, using the S function qqline(), which connects the pair
of points (First Quartile Standard Normal, First Quartile Data), (Third Quartile Standard
Normal, Third Quartile Data).

For example, consider the values stored in the variable scores of the data frame Score
and reported in Table 4.2 which are the scores a random sample of 20 college freshmen
received on a standardized test. The points (i − 1/2)/n are calculated as

(1 − 1/2)/20 = 0.025, (2− 1/2)/20 = 0.075, ..., (20− 1/2)/20 = 0.975,

while the corresponding standard normal quantiles of {0.025, 0.075, ..., 0.975} are computed
with qnorm() to be {−1.96,−1.44, ..., 1.96}, respectively. The S function qqnorm() plots the
quantiles {−1.96,−1.44, ..., 1.96} versus the ordered values in the sample, {87, 90, ..., 119}
as shown in Figure 4.15 on the next page. The pair of points (First Quartile Standard
Normal, First Quartile Data), (Third Quartile Standard Normal, Third Quartile Data) is
(-0.637, 96.75) and (0.637, 106.25), respectively. Note how the line in Figure 4.15 on the
facing page created using the S function qqline() goes through the points (-0.637, 96.75)
and (0.637, 106.25).

Table 4.2: Standardized scores (data frame Score)
119 107 96 107 97 103 94 106 87 112
99 99 90 106 110 99 105 100 100 94

To compute the pairs of values plotted in an S quantile-quantile plot, issue the following
commands:

> attach(Score)
> par(pty="s")
> X <- (1:20-1/2)/20
> Xs <- qnorm(X)
> Ys <- sort(scores)
> plot(Xs, Ys)
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FIGURE 4.15: Quantile-quantile plot of the standardized test scores of 20 randomly selected
college freshmen

> quantile(Xs, c(0.25, 0.75))
25% 75%

-0.6371739 0.6371739
> quantile(Ys, c(0.25, 0.75))

25% 75%
96.75 106.25
> detach(Score)

Generally, the command qqnorm() is used to generate the pairs of values that are plotted
for a normal quantile-quantile plot, while the command qqline() adds a line to a normal
quantile-quantile plot that passes through the first and third quartiles. The commands
qqnorm(scores) and qqline(scores) were used to create Figure 4.15.

It is possible to tell from a quantile-quantile plot whether the distribution has shorter
or longer tails than a normal distribution. In addition, the quantile-quantile plot will show
whether a distribution is skewed and in which direction the distribution is skewed. The
right quantile-quantile plots in Figure 4.16 on the following page illustrate how distributions
that have a positive skew will appear as upward opening U shapes in the quantile-quantile
plot, while distributions with a negative skew have downward facing U shapes. The left
quantile-quantile plots in Figure 4.16 on the next page illustrate how distributions that have
short tails relative to the normal distribution will have an S shape while distributions with
tails longer than the normal distribution will have an inverted S shape.

The graphs in Figure 4.16 can be slightly misleading in the sense that they were
constructed from large data sets (n = 500). When n is smaller, reading a quantile-quantile
plot is slightly more challenging. However, the plotted values still need to fall close to a
straight line. One way to train the eye with the quantile-quantile plot is to use simulation to
generate data from a normal distribution for various values of n and observe the resulting
quantile-quantile plots. When this is done, what one realizes is that for small values of
n, even when sampling from a normal distribution, the resulting quantile-quantile plot is
not always linear. The function ntester(), available in the PASWR package, demonstrates
how samples (n < 5000) from a normal distribution that have the same sample size as the
actual data can appear in quantile-quantile plots. One is strongly encouraged to run this
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FIGURE 4.16: Superimposed quantile-quantile plots for simulated data from a skew left,
skew right, and normal distribution (on the right) and from a short-tailed, long-tailed, and
normal distribution (on the left)

function before finalizing the assessment about the normality of a smaller sized sample. The
results from using ntester() on the standardized test scores from Table 4.2 on page 158
are shown in Figure 4.17 on the next page. Note that the actual data are the center normal
quantile-quantile plot and all of the surrounding quantile-quantile plots are for simulated
normal data having the same sample size as the center plot. One should pay close attention
to how variable the eight surrounding graphs can be even when the data are coming from a
normal distribution. If the data are no more variable than the surrounding plots, it should
be safe to assume they are normal.

It is often helpful to look at several graphs at once when assessing the general shape of a
distribution. The function EDA() in the PASWR package displays a histogram, a density
plot, a boxplot, and a normal quantile-quantile plot of a numeric variable as well as
computing various numerical summaries that are returned in the console. In order to allow
the user to focus strictly on the resulting shapes, no measurement scales are given in the
graphical output. Figure 4.18 on the facing page shows the graphical results from using
EDA(scores). All four graphs in Figure 4.18 confirm normality as a reasonable assumption
for the distribution of the variable scores.
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SimNorm p-val =  0.739 SimNorm p-val =  0.608 SimNorm p-val =  0.928

SimNorm p-val =  0.558 YourData p-val =  0.975 SimNorm p-val =  0.81

SimNorm p-val =  0.516 SimNorm p-val =  0.209 SimNorm p-val =  0.171

Simulated Normal Data on Perimeter - Actual Data in Center

FIGURE 4.17: Resulting quantile-quantile plots using the function ntester() on the
standardized test scores from Table 4.2 on page 158

Histogram of scores Density of scores

Boxplot of scores Q−Q Plot of scores

EXPLORATORY  DATA  ANALYSIS

FIGURE 4.18: Graphical results from EDA(scores)
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4.4 Problems

1. Derive the mean and variance for the discrete uniform distribution.

(Hints:
∑n

i=1 xi =
n(n + 1)

2
;
∑n

i=1 x2
i =

n(n + 1)(2n + 1)
6

, when xi = 1, 2, . . . , n.)

2. Construct a plot for the probability mass function and the cumulative probability dis-
tribution of a binomial random variable Bin(n = 8, π = 0.3). Find the smallest value
of k such that P(X ≤ k) ≥ 0.44 when X ∼ Bin(n = 8, π = 0.7). Calculate P(Y ≥ 3) if
Y ∼ Bin(20, 0.2).

3. Let X be a Poisson random variable with mean equal to 2. Find P(X = 0), P(X ≥ 3),
and P(X ≤ k) ≥ 0.70.

4. Let X be an exponential random variable Exp(λ = 3). Find P(2 < X < 6).

5. Fix the seed value at 500, and generate a random sample of size n = 10000 from a
Unif (0,1) distribution. Calculate the sample mean and the sample variance. Are your
answers within 2% of the theoretical values for the mean and variance of a Unif (0,1)
distribution?

6. Fix the seed value at 50, and generate a random sample of size n = 10000 from an
exponential distribution with λ = 2. Create a density histogram and superimpose the
histogram with a theoretical Exp(λ = 2) distribution. Calculate the sample mean and
the sample variance of the randomly generated values. Are your answers within 2% of
the theoretical values for the mean and variance of an Exp(λ = 2) distribution?

7. The Laplace distribution, also known as a double exponential, has a pdf given by

f(x) =
λ

2
· e−λ |x−μ| , where −∞ < x < ∞, −∞ < μ < ∞, λ > 0.

(a) Find the theoretical mean and variance of a Laplace distribution. (Hint: Integrals
of absolute values should be done as a positive and negative part, in this case, with
limits from −∞ to μ and from μ to ∞.)

(b) Let X1 and X2 be independent exponential random variables, each with parameter
λ. The distribution of Y = X1 − X2 is a Laplace distribution with a mean of zero
and a standard deviation of

√
2/λ. Set the seed equal to 3, and generate 25,000

X1 values from an Exp
(
λ = 1

2

)
and 25,000 X2 values from another Exp

(
λ = 1

2

)
distribution. Use these values to create the simulated distribution of Y = X1 − X2.

(i) Superimpose a Laplace distribution over a density histogram of the Y values.
(Hint: The R function curve() can be used to superimpose the Laplace distri-
bution over the density histogram.)

(ii) Is the mean of Y within 0.02 of the theoretical mean?
(iii) Is the variance of Y within 2% of the theoretical variance?

8. Let X be a normal random variable N(μ = 7, σ = 3). Calculate P(X > 7.1). Find the
value of k such that P(X < k) = 0.8.

9. Let X be a normal random variable N
(
μ = 3, σ =

√
0.5

)
. Calculate P(X > 3.5).

10. Let X be a gamma random variable Γ(α = 2, λ = 6). Find the value a such that
P(X < a) = 0.95.
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11. If X is the number of 3’s that appear when 60 dice are tossed, what is the E
(
X2

)
?

12. An importing company knows that 80% of its imported Chinese socks are suitable for
sale. If a sample of 60 pairs is drawn at random, find the probability that a percentage
between 70% and 90% (inclusive) of the sample is suitable for sale.

13. It is known that 3% of the seeds of a certain variety of tomato do not germinate. The
seeds are sold in individual boxes that contain 20 seeds per box with the guarantee that
at least 18 seeds will germinate. Find the probability that a randomly selected box does
not fulfill the aforementioned requirement.

14. Traffic volume is an important factor for determining the most cost effective method to
surface a road. Suppose that the average number of vehicles passing a certain point on
a road is 2 every 30 seconds.

(a) Find the probability that more than 3 cars will pass the point in 30 seconds.

(b) What is the probability that more than 10 cars pass the point in 3 minutes?

15. The retaining wall of a dam will break if it is subjected to the pressure of two floods. If
the average number of floods in a century is two, find the probability that the retaining
wall lasts more than 20 years.

16. A particular competition shooter hits his targets 70% of the time with any pistol. To
prepare for shooting competitions, this individual practices with a pistol that holds 5
bullets on Tuesday, Thursday, and Saturday, and a pistol that holds 7 bullets the other
days. If he fires at targets until the pistol is empty, find the probability that he hits only
one target out of the bullets shot in the first round of bullets in the pistol he is carrying
that day. In this case, what is the probability that he used the pistol with 7 bullets?

17. A binomial, Bin(n, π), distribution can be approximated by a normal distribution,
N
(
nπ,

√
nπ(1 − π)

)
, when nπ > 10 and n(1 − π) > 10. The Poisson distribution

can also be approximated by a normal distribution N
(
λ,

√
λ
)

if λ > 10. Consider a
sequence from 7 to 25 of a variable X (binomial or Poisson) and show that for n = 80,
π = 0.2, and λ = 16 the aforementioned approximations are appropriate. The normal
approximation to a discrete distribution can be improved by adding 0.5 to the normal
random variable when finding the area to the left of said random variable. Specifically,
create a table showing P(X ≤ x) for the range of X for the three distributions and a
graph showing the density of the normal distribution with vertical lines at X − .1 and
X + .1 showing P(X = x) for the binomial and Poisson distributions, respectively.

18. Verify that if k/N is small (≤ 0.1) and N = m+n is large, a hypergeometric distribution,
Hyper(m, n, k), can be adequately approximated by a Bin(n = k, π = m/N) distribution.
Compute the probabilities for each distribution using the values n = 20, m = 300, k = 10.
Show the numerical results to three decimal places as well as a graph depicting the
probabilities of the hypergeometric distribution with a vertical line and the probabilities
of the binomial distribution in the same plot with an open circle.

19. In 1935, Fisher described the following experiment in his book, Design of Experiments :
A friend of Fisher’s said that when she drank tea with milk, she was able to determine
if the tea was poured first or if the milk was poured first. Find the probability that
Fisher’s colleague guesses 3 cups in which milk has been added before tea, given that in
4 out of 8 cups, milk has been added before tea.
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20. Consider the function g(x) = (x − a)2, where a is a constant and E
[
(X − a)2

]
is finite.

Find a so that E
[
(X − a)2

]
is minimized.

21. Suppose the percentage of drinks sold from a vending machine are 80% and 20% for soft
drinks and bottled water, respectively.

(a) What is the probability that on a randomly selected day, the first soft drink is the
fourth drink sold?

(b) Find the probability that exactly 1 out of 10 drinks sold is a soft drink.

(c) Find the probability that the fifth soft drink is the seventh drink sold.

(d) Verify empirically that P
(
Bin(n, π) ≤ r − 1

)
= 1 − P

(
NB(r, π) ≤ (n − r)

)
, with

n = 10, π = 0.8, and r = 4.

22. The hardness of a particular type of sheet metal sold by a local manufacturer has a
normal distribution with a mean of 60 micra and a standard deviation of 2 micra.

(a) This type of sheet metal is said to conform to specification provided its hardness
measure is between 57 and 65 micra. What percent of the manufacturer’s sheet
metal can be expected to fall within the specification?

(b) A building contractor agrees to purchase metal from the local metal manufacturer
at a premium price provided four out of four randomly selected pieces of metal
test between 57 and 65 micra. What is the probability the building contractor will
purchase metal from the local manufacturer and pay a premium price?

(c) If an acceptable sheet of metal is one whose hardness is not more than c units away
from the mean, find c such that 97% of the sheets are acceptable.

(d) Find the probability that at least 10 out of 20 sheets have a hardness greater than
60.

23. The weekly production of a banana plantation can be modeled with a normal random
variable that has a mean of 5 tons and a standard deviation of 2 tons.

(a) Calculate the mean number of weeks in which the production is greater than the
third quartile.

(b) Find the probability that, in at most 1 out of the 8 randomly chosen weeks, the
production has been less than 3 tons.

(c) Find the probability that at least 3 weeks are needed to obtain a production greater
than 10 tons.

24. The lifetime of a certain engine follows a normal distribution with mean and standard
deviation of 10 and 3.5 years, respectively. The manufacturer replaces all catastrophic
engine failures within the guarantee period free of charge. If the manufacturer is willing
to replace no more than 4% of the defective engines, what is the largest guarantee period
the manufacturer should advertise?

25. A bank has 50 deposit accounts with e25,000 each. The probability of having to close
a deposit account and then refund the money in a given day is 0.01. If account closings
are independent events, how much money must the bank have available to guarantee it
can refund all closed accounts in a given day with probability greater than 0.95?
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26. The vendor in charge of servicing coffee dispensers is adjusting the one located in the
department of statistics. To maximize profit, adjustments are made so that the average
quantity of liquid dispensed per serving is 200 milliliters per cup. Suppose the amount
of liquid per cup follows a normal distribution and 5.5% of the cups contain more than
224 milliliters.

(a) Find the probability that a given cup contains between 176 and 224 milliliters.

(b) If the machine can hold 20 liters of liquid, find the probability that the machine must
be replenished before dispensing 99 cups.

(c) If 6 random samples of 5 cups are drawn, what is the probability that the sample
mean is greater than 210 milliliters in at least 2 of them?

27. The mean number of calls a tow truck company receives during a day is 5 per hour. Find
the probability that a tow truck is requested more than 4 times per hour in a given hour.
What is the probability the company waits for less than 1 hour before the tow truck is
requested 3 times?

28. The pill weight for a particular type of vitamin follows a normal distribution with a mean
of 0.6 grams and a standard deviation of 0.015 grams. It is known that a particular
therapy consisting of a box of vitamins with 125 pills is not effective if more than 20%
of the pills are under 0.58 grams.

(a) Find the probability that the therapy with a box of vitamins is not effective.

(b) A supplement manufacturer sells vitamin bottles containing 125 vitamins per bottle
with 50 bottles per box with a guarantee that at least 47 bottles per box weigh more
than 74.7 grams. Find the probability that a randomly chosen box does does not
meet the guaranteed weight.

29. A canning industry uses tins with weight equal to 20 grams. The tin is placed on a scale
and filled with red peppers until the scale shows the weight μ. Then, the tin contains Y
grams of peppers. If the scale is subject to a random error X ∼ N(0, σ = 10),

(a) How is Y related to X and μ?

(b) What is the probability distribution of the random variable Y ?

(c) Calculate the value μ such that 98% of the tins contain at least 400 grams of peppers.

(d) Repeat the exercise assuming the weight of the tins to be a normal random variable
W ∼ N(20, σ = 5).

30. In the printing section of a plastics company, a machine receives on average 6 buckets
per minute to be painted. The machine has been out of service for 90 seconds due to a
power failure.

(a) Find the probability that more than 8 buckets remain unpainted.

(b) Find the probability that the first bucket, after the electricity is restored, arrives
before 10 seconds have passed.

31. Give a general expression to calculate the quantiles of a Weibull random variable.

32. A used-car salesman offers a guarantee period of one year for his cars. He knows that
the distribution of the elapsed time until the first breakdown occurs follows a Weibull
distribution, Weib(3, 25). If the salesman expects to sell 50 cars per year, and the repair
cost per car is on average 800 dollars, what is the mean cost of the guarantee?
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33. Let X be a random variable with probability density function

f(x) = 3
(

1
x

)4

, x ≥ 1.

(a) Fix the seed at 98 (set.seed(98)), and generate a random sample of size n = 10000
from X ’s distribution. Compute the mean, variance, and coefficient of skewness for
the random sample.

(b) Obtain the theoretical mean, variance, and coefficient of skewness of X .

(c) How close are the estimates in (a) to the theoretical values in (b)?

34. Let X be a random variable with probability density function

f(x) = θ

(
1
x

)θ+1

, x ≥ 1, θ > 1.

(a) Verify that the area under f(x) is 1.

(b) Fix the seed at 42 (set.seed(42)), and generate 10000 realizations of X with θ = 2.
What are the mean and variance of the random sample?

(c) Calculate the theoretical mean and variance of X .

(d) How close are the estimates in (b) to the theoretical values in (c)?

(e) Find the cumulative density function.

(f) What is P(X ≤ 3)?

35. Let X be a random variable with probability density function

f(x) =
4
3
x(2 − x2), 0 ≤ x ≤ 1.

(a) Verify that the area under f(x) is 1.

(b) Fix the seed at 13 (set.seed(13)), and generate 10000 realizations of X . What are
the mean and variance of the random sample?

(c) Calculate the theoretical mean and variance of X .

(d) How close are the estimates in (b) to the theoretical values in (c)?

(e) Find the cumulative density function.

(f) What is P(X > .75)?

36. Let X be a random variable with probability density function

f(x) = (θ + 1)(1 − x)θ, 0 ≤ x ≤ 1, θ > 0.

(a) Verify that the area under f(x) is 1.

(b) Fix the seed at 80 (set.seed(80)), and generate 10000 realizations of X with θ = 2.
What are the mean and variance of the random sample?

(c) Calculate the theoretical mean and variance of X .

(d) How close are the estimates in (b) to the theoretical values in (c)?

(e) Find the cumulative density function.
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(f) What is P(X ≤ .25)?

37. Let X be a random variable with probability density function

f(x) = 3πθx2e−θπx3
, x ≥ 0.

(a) Verify that the area under f(x) is 1.

(b) Fix the seed at 201 (set.seed(201)), and generate 10000 realizations of X with
θ = 5. What are the mean and variance of the random sample?

(c) Calculate the theoretical mean and variance of X .

(d) How close are the estimates in (b) to the theoretical values in (c)?

(e) Find the cumulative density function.

(f) What is P(X > 1)?

38. A copper wire manufacturer produces conductor cables. These cables are of practical
use if their resistance lies between 0.10 and 0.13 ohms per meter. The resistance of the
cables follows a normal distribution, where 50% of the cables have resistance under 0.11
ohms and 10% have resistance over 0.13 ohms.

(a) Determine the mean and the standard deviation for cable resistance.

(b) Find the probability that a randomly chosen cable can be used.

(c) Find the probability that at least 3 out of 5 randomly chosen cables can be used.

39. Consider the random variable X ∼ Weib(α, β).

(a) Find the cdf for X .

(b) Use (4.18) and verify that for X ∼ Weib(α, β), the hazard function is given by

h(t) =
αtα−1

βα
.

40. If X ∼ Bin(n, π), derive the moment generating function of X and use it to derive the
mean and variance of X . The binomial pdf can be found on page 117.

41. If X ∼ Bin(n, π), use the binomial expansion to find the mean and variance of X . To
find the variance, use the second factorial moment E[X(X−1)] and note that x

x! = 1
(x−1)!

when x > 1.

42. The speed of a randomly chosen gas molecule in a certain volume of gas is a random
variable, V , with probability density function

f(v) =

√
2
π

(
M

RT

)3
2

v2e−
Mv2
2RT for v ≥ 0

where R is the gas constant (= 8.3145 J/mol · K ), M is the molecular weight of the gas,
and T is the absolute temperature measured in degrees Kelvin.

(Hints: ∫ ∞

0

xke−x2
dx =

1
2
Γ
(

k + 1
2

)
Γ (α + 1) = αΓ (α) Γ

(
1
2

)
=

√
π )

(a) Derive a general expression for the average speed of a gas molecule.
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(b) If 1 J = 1kg · m2
/s2 , what are the units for the answer in part (a)?

(c) Kinetic energy for a molecule is Ek = Mv2

2 . Derive a general expression for the
average kinetic energy of a molecule.

(d) The weight of hydrogen is 1.008 g/mol . Note that there are 6.0221415×1023 molecules
in 1 mole. Find the average speed of a hydrogen molecule at 300◦K using the result
from part (a).

(e) Use numerical integration to verify the result from part (d).

(f) Show the probability density functions for the speeds of hydrogen, helium, and
oxygen on a single graph. The molecular weights for these elements are 1.008 g/mol ,
4.003 g/mol , and 16.00 g/mol , respectively.

43. Consider the equilateral triangle ABC with side l. Given a randomly chosen point R
in the triangle, calculate the cumulative and the probability density functions for the
distance from R to the side BC. Construct a graph of the cumulative density function
for different values of l. (Hint: The equation of the line CA is y =

√
3x.)

x

A

BC

NM

ll

R

44. In Pamplona, Spain, a tombola organizes different raffles during the festivals. In each
raffle, only 2 tickets out of n win a prize. The tickets are sold consecutively, and the
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prize is immediately announced when one person wins. Two friends have decided to take
part in one of the raffles in the following way: One of them buys the first ticket on sale,
and the other one buys the first ticket after the first prize has been announced. Derive
the probability that each of them wins a prize. If there are m raffles during the night in
which the two friends participate, what is the probability that each of them wins more
than one prize?

45. Example 4.4 on page 122 introduced the World Cup Soccer data stored in the data
frame Soccer. The observed and expected number of goals for a 90 minute game were
computed. To verify that the Poisson rate λ is constant, compute the observed and
expected number of goals with the time intervals 45, 15, 10, 5, and 1 minute(s). Compute
the means and variances for both the observed and expected counts in each time interval.
Based on the results, is criterion (3) of the Poisson process on page 120 satisfied? (Note:
See the code at the end of the Chapter 4 script for ideas on how to do this.)





Chapter 5

Multivariate Probability Distributions

5.1 Joint Distribution of Two Random Variables

In Sections 3.4.1 and 3.4.5, respectively, both discrete and continuous random variables
were defined. However, it stands to reason that many random variables might be defined
over the same sample space. In random variable example 1 on page 88, the random variable
X was defined as the sum of the numbers from two dice. However, one might also wish to
consider “the product of the numbers rolled with the two dice” or “the absolute value of the
difference between the numbers rolled with the two dice” as additional random variables
that are defined on the same sample space. Another example might be the verbal (X)
and quantitative (Y ) scores for incoming freshmen at a private college. In this section, a
brief overview for both discrete and continuous pdfs and cdfs of jointly distributed random
variables is provided as well as some important properties associated with jointly distributed
random variables.

5.1.1 Joint pdf for Two Discrete Random Variables

If X and Y are discrete random variables, the function given by

pX,Y (x, y) = P(X = x, Y = y) (5.1)

for each pair of values (x, y) within the domain of X and Y is called the joint pdf of X and
Y . Any function pX,Y (x, y) can be used as a joint pdf provided the following properties are
satisfied:

(i) pX,Y (x, y) ≥ 0 for all x and y.

(ii)
∑
x

∑
y

pX,Y (x, y) = 1.

(iii) P [(X, Y ) ∈ A] =
∑ ∑
(x,y)∈A

pX,Y (x, y).

Property (iii) states that when A is composed of pairs of (x, y) values, the probability
P [(X, Y ) ∈ A] is obtained by summing the joint pdf over pairs in A.

Example 5.1 � Joint Distribution: Mathematics Grades � To graduate with
a bachelor of science (B.S.) degree in mathematics, all majors must pass Calculus III and
Linear Algebra with a grade of B or better. The population of B.S. graduates in mathematics
earned grades as given in Table 5.1 on the next page.

(a) What is the probability of getting a B or better in Linear Algebra?

(b) What is the probability of getting a B or better in Calculus III?

(c) What is the probability of getting a B or better in both Calculus III and Linear Algebra?

171
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Table 5.1: B.S. graduate grades in Linear Algebra and Calculus III
Linear Algebra

A B C
A 2 13 6

Calculus III B 5 85 40
C 7 33 9

Solution: The answers are as follows:
(a) Let the random variables X and Y represent the grades in Calculus III and Linear
Algebra, respectively. If A represents the pairs of Calculus III and Linear Algebra values
such that the grade in Linear Algebra is a B or better, then the probability of getting a B
or better in Linear Algebra is written

P [(X, Y ) ∈ A] =
∑ ∑
(x,y)∈A

pX,Y (x, y) =
2 + 5 + 7 + 13 + 85 + 33

200
=

145
200

.

(b) Let the random variables X and Y represent the grades in Calculus III and Linear
Algebra, respectively. If A represents the pairs of Calculus III and Linear Algebra values
such that the grade in Calculus III is a B or better, then the probability of getting a B or
better in Calculus III is written

P [(X, Y ) ∈ A] =
∑ ∑
(x,y)∈A

pX,Y (x, y) =
2 + 13 + 6 + 5 + 85 + 40

200
=

151
200

.

(c) Let the random variables X and Y represent the grades in Calculus III and Linear
Algebra, respectively. If A represents the pairs of Calculus III and Linear Algebra values
such that the grade in both Calculus III and Linear Algebra is a B or better, then the
probability of getting a B or better in both Calculus III and Linear Algebra is written

P [(X, Y ) ∈ A] =
∑ ∑
(x,y)∈A

pX,Y (x, y) =
2 + 5 + 13 + 85

200
=

105
200

.

For any random variables X and Y , the joint cdf is defined in (5.2), while the marginal
pdfs of X and Y , denoted pX(x) and pY (y), respectively, are defined in Equations (5.3) and
(5.4):

FX,Y (x, y) = P(X ≤ x, Y ≤ y), −∞ < x < ∞, −∞ < y < ∞ (5.2)

pX(x) =
∑

y

pX,Y (x, y) (5.3)

pY (y) =
∑

x

pX,Y (x, y) (5.4)

In (a) of Example 5.1 on the preceding page, the problem requests the probability of
getting a B or better in Linear Algebra. Another way to compute the answer is by adding
the two marginals pY (A) + pY (B) = 14

200 + 131
200 = 145

200 . Likewise, (b) of Example 5.1 on the
previous page can also be solved with the marginal distribution for X : pX(A) + pX(B) =
21
200 + 130

200 = 151
200 .
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5.1.2 Joint pdf for Two Continuous Random Variables

In Section 3.4.5 on page 93, property (3) for continuous pdfs states that the probability
the observed value for the random variable X falls in the interval (a, b) is the integral of
the pdf f(x) over the interval (a, b). In a similar fashion, the probability that the pair of
random variables (X, Y ) falls in a two-dimensional region (say A) is obtained by integrating
the joint pdf over the region A. The joint pdf of two continuous random variables is any
integrable function fX,Y (x, y) with the following properties:

(1) fX,Y (x, y) ≥ 0 for all x and y.

(2)
∞∫

−∞

∞∫
−∞

fX,Y (x, y) dx dy = 1.

(3) P [(X, Y ) ∈ A] =
∫∫

(x,y)∈A

fX,Y (x, y) dx dy.

Property (3) implies that P [(X, Y ) ∈ A] is the volume of a solid over the region A bounded
by the surface fX,Y (x, y).

For any random variables X and Y , the joint cdf is defined in (5.5), while the marginal
pdfs of X and Y , denoted fX(x) and fY (y), respectively, are defined in Equations (5.6) and
(5.7):

FX,Y (x, y) =

x∫
−∞

y∫
−∞

fX,Y (r, s) ds dr, −∞ < x < ∞, −∞ < y < ∞ (5.5)

fX(x) =

∞∫
−∞

fX,Y (x, y) dy, −∞ < x < ∞ (5.6)

fY (y) =

∞∫
−∞

fX,Y (x, y) dx, −∞ < y < ∞ (5.7)

Example 5.2 Given the joint continuous pdf

fX,Y (x, y) =

{
1 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise

(a) Find FX,Y (x = 0.6, y = 0.8).

(b) Find P(0.25 ≤ X ≤ 0.75, 0.1 ≤ Y ≤ 0.9).

(c) Find fX(x).

Solution: The answers are as follows:
(a)

FX,Y (x = 0.6, y = 0.8) =

0.6∫
0

0.8∫
0

fX,Y (r, s) ds dr =

0.6∫
0

0.8∫
0

1 ds dr =

0.6∫
0

0.8 dr = 0.48

(b)

P(0.25 ≤ x ≤ 0.75, 0.1 ≤ y ≤ 0.9)

=

0.75∫
0.25

0.9∫
0.1

fX,Y (r, s) ds dr =

0.75∫
0.25

0.9∫
0.1

1 ds dr =

0.75∫
0.25

0.8 dr = 0.40
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(c)

fX(x) =

1∫
0

fX,Y (x, y) dy = 1, 0 ≤ x ≤ 1

Example 5.3 � Joint PDF � Find the value c to make fX,Y (x, y) = cx a valid joint
pdf for x > 0, y > 0, and 2 < x + y < 3.

Solution: The domain of interest is lightly shaded in Figure 5.1. To solve the problem,
first compute the volume bounded by x = 0, y = 0, and y = 3 − x beneath the surface
fX,Y (x, y) = cx, which is denoted V 1. Next, find the volume bounded by x = 0, y = 0, and
y = 2 − x beneath the surface fX,Y (x, y) = cx, which is denoted V 2. For fX,Y (x, y) to be
a valid pdf, c must be found such that the difference between V 1 and V 2 is one.

V 1 =

3∫
0

3−x∫
0

cx dy dx = c

3∫
0

(3x − x2) dx = c

[
3x2

2
− x3

3

∣∣∣∣3
0

]
=

27c

6

V 2 =

2∫
0

2−x∫
0

cx dy dx = c

2∫
0

(2x − x2) dx = c

[
x2 − x3

3

∣∣∣∣2
0

]
=

8c

6

V 1 − V 2 =
27c

6
− 8c

6
set= 1 ⇒ c =

6
19

x

y

2

2

3

3

y = 3 − x

y = 2 − x

FIGURE 5.1: Graphical representation of the domain of interest for Example 5.3

5.2 Independent Random Variables

In Section 3.3.6 on page 86, it was shown that two events, E and F , are independent if
P(E ∩ F ) = P(E) · P(F ). In a similar fashion, two random variables are independent if for
every pair of x and y values, pX,Y (x, y) = pX(x) · pY (y), when X and Y are discrete, or
fX,Y (x, y) = fX(x) · fY (y) when X and Y are continuous.
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Example 5.4 Use Table 5.1 on page 172 to decide if the random variables X , grade in
Calculus III, and Y , grade in Linear Algebra, are dependent.

Solution: The random variables X and Y are dependent if pX,Y (x, y) �= pX(x) · pY (y)
for any (x, y). Consider the pair (x, y) =(A, A), that is, an A in both Calculus III and in
Linear Algebra.

pX,Y (A, A) ?= pX(A) · pY (A)
2

200
?=

21
200

· 14
200

2
200

�= 21 × 14
40, 000

0.01 �= 0.00735

Since 0.01 �= 0.00735, the random variables X and Y , the grades in Calculus III and
Linear Algebra, respectively, are dependent. It is important to note that the definition
of independence requires all the joint probabilities to be equal to the product of the
corresponding row and column marginal probabilities. Consequently, if the joint probability
of a single entry is not equal to the product of the corresponding row and column marginal
probabilities, the random variables in question are said to be dependent.

Example 5.5 Are the random variables X and Y in Example 5.2 on page 173 indepen-
dent? Recall that the pdf for Example 5.2 was defined as

fX,Y (x, y) =

{
1 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise

Solution: Since the marginal pdf for X , fX(x) = 1, and the marginal pdf for Y , fY (y) = 1,
it follows that X and Y are independent since fX,Y (x, y) = fX(x)·fY (y) for all x and y.

5.3 Several Random Variables

This section examines the joint pdf of several random variables by extending the material
presented for the joint pdf of two discrete random variables and two continuous random
variables covered in Section 5.1.1. The joint pdf of X1, X2, . . . , Xn discrete random variables
is any function pX1,X2,...,Xn(x1, x2, . . . , xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn) provided
the following properties are satisfied:

(a) pX1,X2,...,Xn(x1, x2, . . . , xn) ≥ 0 for all x1, x2, . . . , xn.

(b)
∑
x1

∑
x2

· · ·
∑
xn

pX1,X2,...,Xn(x1, x2, . . . , xn) = 1.

(c) P [(X1, X2, . . . , Xn) ∈ A] =
∑ ∑

· · ·
∑

(x1,x2,...,xn)∈A

pX1,X2,...,Xn(x1, x2, . . . , xn).
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The joint pdf of X1, X2, . . . , Xn continuous random variables is any integrable function
fX1,X2,...,Xn(x1, x2, . . . , xn) such that following properties are satisfied:

(a) fX1,X2,...,Xn(x1, x2, . . . , xn) ≥ 0 for all x1, x2, . . . , xn.

(b)
∞∫

−∞

∞∫
−∞

· · ·
∞∫

−∞
fX1,X2,...,Xn(x1, x2, . . . , xn)dx1 dx2 · · · dxn = 1

(c)

P [(X1, X2, . . . , Xn) ∈ A] =
∫∫

· · ·
∫

(x1,x2,...,xn)∈A

fX1,X2,...,Xn(x1, x2, . . . , xn)dx1 dx2 · · · dxn

Independence for several random variables is simply a generalization of the notion for the
independence between two random variables. X1, X2, . . . , Xn are independent if, for every
subset of the random variables, the joint pdf of the subset is equal to the product of the
marginal pdfs. Further, if X1, X2, . . . , Xn are independent random variables with respective
moment generating functions MX1(t), MX2(t), . . . , MXn(t), then the moment generating
function of Y =

∑n
i=1 ciXi is

MY (t) = MX1(c1t) × MX2(c2t) × · · · × MXn(cnt). (5.8)

In the case where X1, X2, . . . , Xn are independent normal random variables, a theorem for
the distribution of Y = a1X1 + · · · + anXn, where a1, a2, . . . , an are constants, is stated.

Theorem 5.1 If X1, X2, . . . , Xn are independent normal random variables, with means
μi and standard deviations σi for i = 1, 2, . . . , n, the distribution of Y = a1X1 + a2X2 +
· · ·+ anXn, where a1, a2, . . . , an are constants, is normal with mean E[Y ] = a1μ1 + a2μ2 +
· · · + anμn and variance Var [Y ] = a2

1σ
2
1 + a2

2σ
2
2 + · · · + a2

nσ2
n. In other words,

Y ∼ N

⎛⎝ n∑
i=1

aiμi,

√√√√ n∑
i=1

a2
i σ

2
i

⎞⎠
Proof: Since Xi ∼ N(μi, σi), the mgf for Xi is MXi(t) = eμit+

σ2
i t2

2 using the mgf from
(4.23). Further, since the X1, X2, . . . , Xn are independent,

MY (t) = MX1(ta1) × MX2(ta2) × · · · × MXn(tan)

= e
t

n∑
i=1

aiμi+t2
n∑

i=1

a2
i σ2

i
2

,

which is the moment generating function for a normal random variable with mean
n∑

i=1

aiμi

and variance
n∑

i=1

a2
i σ

2
i .

Example 5.6 Use moment generating functions to show that the sum of two independent
Poisson random variables is a Poisson random variable.

Solution: First recall that the mgf of a Poisson random variable is MX(t) = eλ(et−1). If
X is a Poisson random variable with mean λ and Y is a Poisson random variable with mean
μ, then Z = X + Y is also a Poisson random variable with mean λ + μ since

MZ(t) = MX(t) × MY (t) = eλ(et−1) × eμ(et−1) = e(λ+μ)(et−1).
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5.4 Conditional Distributions

Suppose X and Y represent the respective lifetimes (in years) for the male and the
female in married couples. If X = 72, what is the probability that Y ≥ 75? In other words,
if the male partner of a marriage dies at age 72, how likely is it that the surviving female
will live to an age of 75 or more? Questions of this type are answered with conditional
distributions. Given two discrete random variables, X and Y , define the conditional pdf of
X given that Y = y provided that pY (y) > 0 as

pX|Y (x|y) = P(X = x|Y = y) =
pX,Y (x, y)

pY (y)
. (5.9)

If the random variables are continuous, the conditional pdf of X given that Y = y provided
that fY (y) > 0 is defined as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
. (5.10)

In addition, if X and Y are jointly continuous over an interval A,

P(X ∈ A|Y = y) =
∫
A

fX|Y (x|y) dx.

Example 5.7 Let the random variables X and Y have a joint pdf:

fX,Y (x, y) =

{
12
5 x(2 − x − y) for 0 < x < 1, 0 < y < 1
0 otherwise

Find the pdf of X given Y = y, for 0 < y < 1.

Solution: Using the definition for the conditional pdf of X given Y = y from (5.10), write

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

fX,Y (x, y)∫ ∞

−∞
fX,Y (x, y) dx

=
x(2 − x − y)∫ 1

0

x(2 − x − y) dx

=
x(2 − x − y)
2/3 − y/2

=
6x(2 − x − y)

4 − 3y
for 0 < x < 1, 0 < y < 1.

Example 5.8 � Joint Distribution: Radiators � A local radiator manufacturer
subjects his radiators to two tests. The function that describes the percentage of radiators
that pass the two tests is

fX,Y (x, y) = 8xy, 0 ≤ y ≤ x ≤ 1 (5.11)

The random variable X represents the percentage of radiators that pass test A, and Y
represents the percentage of radiators that pass test B.
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(a) Is the function given in (5.11) a pdf?

(b) Determine the marginal and conditional pdfs for X and Y .

(c) Are X and Y independent?

(d) Compute the probability that less than 1
8 of the radiators will pass test B given that 1

2
have passed test A.

(e) Compute the quantities: E[X ], E
[
X2

]
, Var (X), E[Y ], E

[
Y 2

]
, and Var (Y ).

(f) Use S to represent graphically (5.11).

Solution: The answers are as follows:

(a) The function (5.11) is a pdf since fX,Y (x, y) is non-negative and

1∫
0

x∫
0

8xy dy dx = 8

1∫
0

⎡⎣x

x∫
0

y dy

⎤⎦ dx = 8

1∫
0

x3

2
dx = 1

(b) The marginal and conditional pdfs are

fX(x) =
∫

f(x, y)dy =
∫ x

0

8xy dy = 4x3, 0 ≤ x ≤ 1

fY (y) =
∫

f(x, y)dx =
∫ 1

y

8xy dx = 4y(1 − y2), 0 ≤ y ≤ 1

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

8xy

4y(1 − y2)
=

2x

1 − y2
, y ≤ x ≤ 1

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

8xy

4x3
=

2y

x2
, 0 ≤ y ≤ x

(c) The random variables X and Y are dependent since fX,Y (x, y) = 8xy �= fX(x) ·fY (y) =
16x3y − 16x3y3.

(d) The probability that P (Y < 1/8 |X = 1/2 ) is computed as

P (Y < 1/8 |X = 1/2 ) =

1
8∫

0

fX,Y (y|1/2 ) dy =

1
8∫

0

2y
1
4

dy = 4y2|
1
8
0 =

1
16
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(e) The quantities E[X ], E
[
X2

]
, Var (X), E[Y ], E

[
Y 2

]
, and Var (Y ) are

E[X ] =

1∫
0

x · 4x3 dx = 4

1∫
0

x4 dx =
4
5

E
[
X2

]
=

1∫
0

x2 · 4x3 dx = 4

1∫
0

x5 dx =
2
3

Var(X) = E
[
X2

]
− [E[X ]]2 =

2
3
− 16

25
=

2
75

E[Y ] =

1∫
0

y · 4y(1 − y2) dy = 4

1∫
0

(y2 − y4) dy =
8
15

E
[
Y 2

]
=

1∫
0

y2 · 4y(1 − y2) dy = 4

1∫
0

(y3 − y5) dy =
1
3

Var(Y ) = E
[
Y 2

]
− [E[Y ]]2 =

1
3
− 64

225
=

11
225

(f) The following code can be used to create a graph similar to Figure 5.2:

> function.draw <- function(f, low=-1, hi=1, n=30){
+ r <- seq(low, hi, length=n)
+ z <- outer (r, r, f)
+ persp(r, r, z, xlab="X", ylab="Y", zlab="Z")}
> f3 <- function(x, y) {ifelse(x >= y, 8*x*y, 0)}
> function.draw(f3,0,1,25)
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FIGURE 5.2: Graphical representation of fX,Y (x, y) = 8xy, 0 ≤ y ≤ x ≤ 1
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Be careful not to assume the variance of the sum of two random variables is the sum
of the variances of each random variable. Only if X and Y are independent is it true that
Var [X + Y ] = Var [X ] + Var [Y ]. A simple example to show why this is not true in general
is computing Var [X + X ] �= Var [X ] + Var [X ] since Var [X + X ] = Var [2X ] = 4Var [X ].
However, if X1, X2, . . . Xn are n independent random variables with means μ1, μ2, . . . , μn,
and variances σ2

1 , σ2
2 , . . . , σ

2
n, respectively, then the mean and variance of Y =

∑n
i=1 ciXi

where the cis are real-valued constants are μY =
∑n

i=1 ciμi and σ2
Y =

∑n
i=1 c2

i σ
2
i . The

proofs of the last two statements are left as exercises for the reader. (See problem 36 on
page 196.)

Example 5.9 Let X1, X2, . . . , Xn be a random sample from a distribution with mean μ
and standard deviation σ. Find the mean and variance of Y = X1+X2+···+Xn

n .

Solution: In the expression Y = X1+X2+···+Xn

n , the ci values are all 1
n . Consequently,

μY =
∑n

i=1
1
n · μ = μ and σ2

Y =
∑n

i=1

(
1
n

)2 · σ2 = σ2

n .

5.5 Expected Values, Covariance, and Correlation

5.5.1 Expected Values

In Sections 3.4.3 on page 90 and 3.4.5.3 on page 98, the expected value for a single
random variable for the discrete and continuous cases, respectively, was discussed. Also
discussed was the expected value of a function of a random variable. In this section, the
expected value of a function of two random variables is examined. When X and Y are jointly
distributed random variables with pdfs pX,Y (x, y) or fX,Y (x, y), depending on whether the
random variables are discrete or continuous, respectively, the expected value of g(X, Y ) is

E [g(X, Y )] =

⎧⎪⎨⎪⎩
∑
x

∑
y

g(x, y) · pX,Y (x, y) if X and Y are discrete
∞∫

−∞

∞∫
−∞

g(x, y) · fX,Y (x, y) dx dy if X and Y are continuous
(5.12)

The conditional expectation of X given a value y of Y is written

E [X |Y ] =

⎧⎪⎨⎪⎩
∑
x

x · pX|Y (x|y) if X and Y are discrete
∞∫

−∞
x · fX|Y (x|y) dx if X and Y are continuous

(5.13)

Example 5.10 Let the random variables X and Y have a joint pdf:

fX,Y (x, y) =
e−y/xe−x

x
x > 0, y > 0

Compute E [Y |X = x].

Solution: First, compute the conditional pdf fY |X(y|x):

fY |X(y|x) =
f(x, y)
fX(x)

=
e−y/xe−x

x
∞∫
0

e−y/xe−x

x dy

=
e−y/x

x
∞∫
0

e−y/x

x dy

=
e−y/x

x
, x > 0, y > 0
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Using (5.13) for continuous random variables, write

E[Y |X = x] =

∞∫
0

y · e−y/x

x
dy

Integrating by parts with u = y and dv = e−y/x

x , obtain

E[Y |X = x] = −ye−y/x
∣∣∣∞
0

+

∞∫
0

e−y/xdy = 0 + −xe−y/x
∣∣∣∞
0

= x, x > 0

When two random variables, say X and Y , are independent, recall that f(x, y) = fX(x)·
fY (y) for the continuous case and pX,Y (x, y) = pX(x) · pY (y) for the discrete case. Further,
E[XY ] = E[X ] · E[Y ]. The last statement is true for both continuous and discrete X and
Y . A proof for the discrete case is provided. Note that the proof in the continuous case
would simply consist of exchanging the summation signs for integral signs.

Proof:

E[XY ] =
∑

x

∑
y

xy pX,Y (x, y) =
∑

x

∑
y

xy pX(x) pY (y)

=
∑

y

y pY (y)
∑

x

x pX(x) = E[Y ]E[X ]

Example 5.11 Use the joint pdf provided in Example 5.8 on page 177 and compute
E[XY ].

Solution:

E[XY ] =

1∫
0

x∫
0

xy · 8xy dy dx = 8

1∫
0

⎡⎣x2

x∫
0

y2 dy

⎤⎦ dx = 8

1∫
0

x5

3
dx =

4
9

Since the random variables X and Y were found to be dependent in part (c) of Example 5.8
on page 177, note that

E[XY ] =
4
9
�= E[X ] · E[Y ] =

4
5
· 8
15

=
32
75

5.5.2 Covariance

When two variables, X and Y , are not independent or when it is noted that E[XY ] �=
E[X ]·E[Y ], one is naturally interested in some measure of their dependency. The covariance
of X and Y , written Cov [X, Y ], provides one measure of the degree to which X and Y tend
to move linearly in either the same or opposite directions. The covariance of two random
variables X and Y is defined as

Cov [X, Y ] = E
[
(X − μX)(Y − μY )

]
=

⎧⎪⎨⎪⎩
∑
x

∑
y

(x − μX)(y − μY )pX,Y (x, y) X , Y discrete
∞∫

−∞

∞∫
−∞

(x − μX)(y − μY )f(x, y) dx dy X , Y continuous

(5.14)
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A Cov [X, Y ] > 0 indicates that, generally, as X increases, so does Y (that is, X and Y
move in the same direction); whereas, a Cov [X, Y ] < 0 indicates that, generally, as X
increases Y decreases (that is, X and Y move in opposite directions). To gain an intuitive
understanding of covariance, see Figure 5.3, which has both horizontal and vertical dotted
lines to indicate μXi and μYi in each of the three plots. The first plot in Figure 5.3 exhibits
a strong positive relationship. By this it is meant that large values of X tend to occur with
large values of Y and small values of X tend to occur with small values of Y . Consequently,
(x − μX) will tend to have the same sign as (y − μY ), so their product will be positive. In
the center plot of Figure 5.3, the relationship between the two variables is negative, and
note that (x − μX2) and (y − μY2) tend to have opposite signs, which makes most of their
products negative.
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Cov [X1, Y1] = 280 Cov [X2, Y2] = −2800 Cov [X3, Y3] = 0

FIGURE 5.3: Scatterplots showing positive, negative, and zero covariance between two
random variables where pX,Y (x, y) = 1

10 for each of the ten pairs of plotted points.

Example 5.12 Compute the covariance between X1 and Y1 for the values provided in
Table 5.2 given that pX,Y (x, y) = 1/10 for each (x, y) pair.

Table 5.2: Values used to compute covariance for Figure 5.3
X1 Y1 X2 Y2 X3 Y3

58 80 58 1200 25.5 30.0
72 80 72 1200 27.0 33.0
72 90 72 1100 30.0 34.5
86 90 86 1100 33.0 33.0
86 100 86 1000 34.5 30.0

100 100 100 1000 33.0 27.0
100 110 100 900 30.0 25.5
114 110 114 900 27.0 27.0
114 120 114 800 28.8 30.0
128 120 128 800 31.2 30.0
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Solution:

pX1(x) =
∑

y

pX1,Y1(x, y)

μX1 =
∑

x

x · pX1(x) =
58 + 72 + · · · + 128

10
= 93

μY1 =
∑

y

y · pY1(y) =
80 + 80 + · · · + 120

10
= 100

Cov [X1, Y1] =
∑

x

∑
y

(x − μX1)(y − μY1)pX1,Y1(x, y)

= (58 − 93) · (80 − 100) · 1
10

+ (72 − 93) · (80 − 100) · 1
10

+ · · ·

+ (128 − 120) · (120 − 100) · 1
10

= 280

To reduce the arithmetic drudgery, one can solve the problem with S:

> X1 <- c(58,72,72,86,86,100,100,114,114,128)
> Y1 <- c(80,80,90,90,100,100,110,110,120,120)
> covar <- function(x, y, f){sum((x-mean(x))*(y-mean(y))*f)}
> covar(X1, Y1,1/10)
[1] 280

There is a covariance function in R, however, it uses an unbiased estimator (n − 1) in
the denominator instead of n. The covariance can be obtained directly with S-PLUS using
the command var(X, Y, unbiased=F). The S-PLUS command var(X, Y, unbiased=T)
returns the same value as the R command cov(X, Y).

At times, it will be easier to work with the shortcut formula Cov [X, Y ] = E[XY ]−μX ·μY

instead of using the definition in (5.14).

Example 5.13 Compute the covariance between X and Y for Example 5.8 on page 177.
In part (e) of Example 5.8, E[X ] and E[Y ] were computed to be 4

5 and 8
15 , respectively,

and in Example 5.11 on page 181, it was found that E[XY ] = 4
9 .

Solution: Using the shortcut formula,

Cov [X, Y ] = E[XY ] − μXμY =
4
9
− 4

5
· 8
15

=
4

225
.

When one examines the first two plots in Figure 5.3 on the preceding page, the de-
pendency in the left plot seems to be about as strong as the dependency in the center
plot, just in the opposite direction. However, the Cov [X, Y ] = 280 in the left plot and
Cov [X, Y ] = −2800 in the center plot. It turns out that the dependencies are the same
(just in opposite directions), but the units of measurement for the Y variable in the center
plot are a factor of 10 times larger than those in the left plot. So, it turns out that covariance
is unit dependent. To eliminate this unit dependency, scale the covariance.

5.5.3 Correlation

The correlation coefficient between X and Y , denoted ρX,Y , or simply ρ, is a scale in-
dependent measure of linear dependency between two random variables. The independence
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in scale is achieved by dividing the covariance by σXσY . Specifically, define the correlation
between X and Y as

ρX,Y =
Cov [X, Y ]

σXσY
(5.15)

The correlation coefficient measures the degree of linear dependency between two random
variables and is bounded by −1 and +1. The values ρ = −1 and ρ = +1 indicate perfect
negative and positive relationships between two random variables. When ρ = 0, there is an
absence of linear dependency between X and Y . If X and Y are independent, it is also true
that ρ = 0; however, ρ = 0 does not imply independence. A similar statement is true for the
Cov [X, Y ]. That is, if X and Y are independent, Cov [X, Y ] = 0; however, Cov [X, Y ] = 0
does not imply independence.

Example 5.14 Compute ρX,Y for Example 5.8 on page 177. Recall that Cov [X, Y ] = 4
225

was computed in Example 5.13 on the previous page, and Var [X ] = 2
75 and Var [Y ] = 11

225
in part (e) of Example 5.8 on page 177.

Solution:

ρX,Y =
Cov [X, Y ]

σXσY
=

4
225√
2
75 · 11

225

= 0.4924

Example 5.15 Given the random variables X and Y with their joint probability distri-
bution provided in Table 5.3, verify that although Cov [X, Y ] = 0, X and Y are dependent.

Table 5.3: Joint probability distribution for X and Y

Y

-1 0 1

-1 1
8

1
8

1
8

X 0 1
8 0 1

8

1 1
8

1
8

1
8

Solution: Start by computing the quantities E[XY ], E[X ], and E[Y ] to use in the
shortcut formula for the covariance:

E[X ] = (−1) · 3
8

+ (0) · 2
8

+ (1) · 3
8

= 0

E[Y ] = (−1) · 3
8

+ (0) · 2
8

+ (1) · 3
8

= 0

E[XY ] = (−1 · −1) · 1
8

+ · · · + (1 · 1) · 1
8

= 0

Cov [X, Y ] = E[XY ] − E[X ] · E[Y ] = 0

The covariance for this problem is 0. However, the random variables are dependent since

P(X = −1, Y = −1) =
1
8
�= P(X = −1) · P(Y = −1) =

3
8
· 3
8

=
9
64

.

This example reinforces the idea that a covariance or correlation coefficient of 0 does not
imply independence.
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Example 5.16 Compute ρX1,Y1 for Example 5.12 on page 182. Recall that μX1 = 93,
μY1 = 100, and Cov [X1, Y1] = 280.

Solution: Start by computing the quantities E
[
X2

1

]
, E

[
Y 2

1

]
, σX1 , and σX2 :

E
[
X2

1

]
=

∑
x

x2 pX1(x)

= 582 · 1
10

+ 722 · 1
10

+ · · · + 1282 · 1
10

= 9090

E
[
Y 2

1

]
=

∑
y

y2 pY1(y)

= 802 · 1
10

+ 802 · 1
10

+ · · · + 1202 · 1
10

= 10200

Var [X1] = E
[
X2

1

]
−

(
E[X1]

)2
= 9090 − 932 = 441

σX1 =
√

Var [X1] =
√

441 = 21

Var[Y1] = E
[
Y 2

1

]
−

(
E[Y1]

)2 = 10200− 1002 = 200

σY1 =
√

Var [Y1] =
√

200 = 14.14214

ρX1,Y1 =
Cov [X1, Y1]

σX1σY1

=
280

21 × 14.14214
= 0.9428087

It is also possible to get the answer directly from S by entering

> cor(X1, Y1)
[1] 0.942809

It is worthwhile to note that ρX1,Y1 = 0.9428087 and ρX2,Y2 = −0.9428087 for the left
and center plots, respectively, in Figure 5.3 on page 182. In other words, the correlations
have the same absolute magnitude for both plots, even though the absolute values of the
covariances differ by a factor of ten.

5.6 Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution. Recall
that each trial in a binomial experiment results in only one of two mutually exclusive
outcomes. Experiments where each trial can result in any one of k possible mutually
exclusive outcomes A1, . . . , Ak with probabilities P(Ai) = πi, 0 < πi < 1, for i = 1, . . . , k

such that
∑k

i=1 πi = 1 can be modeled with the multinomial distribution. Specifically,
the multinomial distribution computes the probability that A1 occurs x1 times, A2 occurs
x2 times, . . . , Ak occurs xk times in n independent trials, where x1 + x2 + · · · + xk = n.
To derive the probability distribution function, reason in a fashion similar to that done
with the binomial. Since the trials are independent, any specified ordering yielding x1

outcomes for A1, x2 outcomes for A2, . . . , and xk outcomes for Ak will occur with probability
πx1

1 πx2
2 · · ·πxk

k . The total number of orderings yielding x1 outcomes for A1, x2 outcomes for
A2, . . . , and xk outcomes for Ak is n!

x1!x2!···xk! . With these two facts in mind, the probability
distribution, mean, variance, and mgf of a multinomial distribution can be derived. All are
found in (5.16).
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Multinomial Distribution
X ∼ MN (n, π1, . . . , πk)

P(X = (x1, . . . , xk)|n, π1, . . . , πk) =
n!

x1!x2! · · ·xk!
πx1

1 πx2
2 · · ·πxk

k

E [Xi] = nπi

Var [Xi] = nπi(1 − πi)
given that each Xi ∼ Bin(n, πi)

MX(t) = (π1e
t1 + π2e

t2 + · · · + πk−1e
tk−1 + πketk)n

(5.16)

Example 5.17 The probability a particular type of light bulb lasts less than 500 hours
is 0.5 and the probability the same type of light bulb lasts more than 800 hours is 0.2. In
a random sample of ten light bulbs, what is the probability of obtaining exactly four light
bulbs that last less than 500 hours and two light bulbs that last more than 800 hours?

Solution: Let the random variables X1, X2, and X3 denote the number of light bulbs that
last less than 500 hours, the number of light bulbs that last between 500 and 800 hours, and
the number of light bulbs that last more than 800 hours, respectively. Since π1 = 0.5, π2 =
0.3, and π3 = 0.2, use the first equation in (5.16) and compute P(X1 = 4, X2 = 4, X3 = 2)
as

P(X1 = 4, X2 = 4, X3 = 2|10, 0.5, 0.3, 0.2) =
10!

4!4!2!
(0.5)4(0.3)4(0.2)2 = 0.0638.

5.7 Bivariate Normal Distribution

The joint distribution of the random variables X and Y is said to have a bivariate
normal distribution when its joint density takes the form

fX,Y (x, y) =
1

2πσXσY

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)

[(
x − μX

σX

)2

− 2ρ

(
x − μX

σX

)(
y − μY

σY

)
+

(
y − μY

σY

)2
]}

, (5.17)

for −∞ < x, y < +∞, where μX = E[X ], μY = E[Y ], σ2
X = Var [X ], σ2

Y = Var [Y ], and
ρ is the correlation coefficient between X and Y . An equivalent representation of (5.17) is
given in (5.18), where X = (X, Y )T is a vector of random variables where T represents the
transpose, μ = (μX , μY )T , is a vector of constants, and Σ is a 2 × 2 non-singular matrix
such that its inverse Σ−1 exists and the determinant |Σ| �= 0, where

Σ =

⎛⎝ Var [X ] Cov [X, Y ]

Cov [Y, X ] Var [Y ]

⎞⎠ .
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f(x) =
1

(
√

2π)2
|Σ|−1/2 exp

{
−1

2
(X − μ)TΣ−1(X − μ)

}
. (5.18)

The shorthand notation used to denote a multivariate (bivariate being a subset) normal
distribution is X ∼ N(μ,Σ). In general, Σ represents what is called the variance covariance
matrix. When X = (X1, X2, . . . , Xn)T and μ = (μ1, μ2, . . . , μn)T it is defined as

Σ = E[(X − μ)(X − μ)T ] = E

⎡⎢⎣
⎛⎜⎝ X1 − μ1

...
Xn − μn

⎞⎟⎠ (X1 − μ1, . . . , Xn − μn)

⎤⎥⎦
=

⎛⎜⎝ σ2
X1

. . . Cov (X1, Xn)
...

. . .
...

Cov (Xn, X1) . . . σ2
Xn

⎞⎟⎠ .

Different representations of four bivariate normal distributions, all with parameters μX =
μY = 0, σX = σY = 1, and ρ values of 0, 0.30, 0.60, and 0.95, respectively, are provided in
Figure 5.4 on the following page. The following code produces a perspective plot, contour
plot, and image plot of a bivariate normal density with parameters μX = μY = 0, σX =
σY = 1, and ρ = 0.5 similar to those in Figure 5.4 on the next page:

> function1.draw <- function(f, low = -1, hi = 1, n = 50){
+ r <- seq(low, hi, length = n)
+ z <- outer(r, r, f)
+ persp(r, r, z, axes=FALSE, box=TRUE)}
> par(mfrow=c(1,3), pty="s")
> f1 <- function(x, y){
+ exp( (x^2-2*0.5*x*y+y^2) / (-2*(1-0.5^2)) )/
+ (2*pi*sqrt(1-0.5^2))}
> x <- seq(-3,3, length=100)
> y <- x
> function1.draw(f1,-3,3,20)
> contour(x, y, outer(x, y, f1), nlevels=10)
> image(x, y, outer(x, y, f1), zlim=range(outer(x, y, f1)), add = FALSE)

The following facts about the bivariate normal distribution are listed without proof:

(a) The marginal distribution of X is N(μX , σX).

(b) The marginal distribution of Y is N(μY , σY ).

(c) If X and Y have a bivariate normal distribution, the conditional density of Y given
X = x is a normal distribution with mean μY |x = E(Y |x) = μY + ρ

σY

σX
(x − μX) and

variance σ2
Y |x = σ2

Y (1 − ρ2).

(d) Given any two constants a and b, the distribution of aX + bY is

N

(
aμX + bμY ,

√
a2σ2

X + b2σ2
Y + 2abρσXσY

)
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FIGURE 5.4: The first row uses the function perspective to represent bivariate normal
densities with parameters μX = μY = 0, σX = σY = 1, and ρ values of 0, 0.30, 0.60,
and 0.95, respectively. The second row represents the same bivariate densities with contour
plots, while the third row represents the densities with image plots.

Example 5.18 � Bivariate Normal Grades � Let us assume that the distribution
of grades for a particular group of students where X and Y represent the grade point
averages in high school and the first year of college, respectively, follow a bivariate normal
distribution with parameters μX = 3.2, μY = 2.4, σX = 0.4, σY = 0.6, and ρ = 0.6. Find
the following:

(a) P(Y < 1.8)

(b) P(Y < 1.8 |X = 2.5)

(c) P(Y > 3.0)

(d) P(Y > 3.0 |X = 2.5)

Solution: The answers are computed first manually, and then with S.

(a) Using the parameters given in the problem,

P(Y < 1.8) = P

(
Y − 2.4

0.6
<

1.8 − 2.4
0.6

)
= P(Z < −1) = 0.1586



Multivariate Probability Distributions 189

> pnorm(1.8,2.4,.6)
[1] 0.1586553

(b) First, find the quantities μY |x=2.5 and σY |x=2.5:

μY |x=2.5 = E(Y |x = 2.5) = μY + ρ
σY

σX
(x − μX) = 2.4 + 0.6 · 0.6

0.4
· (2.5 − 3.2) = 1.77

σ2
Y |x=2.5 = σ2

Y (1 − ρ2) = 0.62 ·
(
1 − 0.62

)
= 0.2304 ⇒ σY |x=2.5 = 0.48

P(Y < 1.8|X = 2.5) = P
(

Y −1.77
0.48 < 1.8−1.77

0.48

)
= P(Z < 0.0625) = 0.5249.

> pnorm(1.8,1.77,.48)
[1] 0.5249177

(c) Using the parameters given in the problem,

P(Y > 3.0) = 1 − P(Y ≤ 3.0) = 1 − P

(
Y − 2.4

0.6
≤ 3.0 − 2.4

0.6

)
= 1 − P(Z ≤ 1) = 0.1586

> 1-pnorm(3,2.4,.6)
[1] 0.1586553

(d) Using the quantities μY |x and σY |x from (b),

P(Y > 3.0|X = 2.5) = 1 − P(Y ≤ 3.0 |X = 2.5)

= 1 − P

(
Y − 1.77

0.48
≤ 3.0 − 1.77

0.48

)
= 1 − P(Z ≤ 2.5625)

= 0.0052.

> 1-pnorm(3,1.77,.48)
[1] 0.005196079
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5.8 Problems

1. Let X and Y have the following joint distribution:

Joint Probability Distribution of X and Y

Y

−1 0 1

X

−1 1/6 0 1/6
0 1/3 0 0
1 1/6 0 1/6

(a) Find the covariance between X and Y .

(b) Show that X and Y are dependent.

2. Given the random variables X and Y and their joint probability pX,Y (X, Y ):

Y

1 2 3

X

1 0.05 0.05 0.1
2 0.05 0.1 0.35
3 0 0.2 0.1

(a) Show that pX,Y (X, Y ) satisfies properties (i) and (ii) given on page 171 for the joint
pdf of two discrete random variables.

(b) Find the mean of X and the mean of Y .

(c) Are X and Y independent?

(d) Find the variances of X and of Y .

(e) Find the covariance of X and Y .

3. A particular unfair coin is constructed so that the probability of obtaining a head is 1/3 .
The unfair coin is flipped twice. Define two random variables: Z = the number of heads
in the first flip and W = the number of heads in two flips.

(a) Construct a table showing the joint probability distribution of both random variables
Z and W including the marginal probabilities.

(b) Find the covariance between Z and W . Are they independent?

(c) Suppose the covariance between Z and W were 0. Would this imply that Z and W
are independent?

4. An international travel agency translates its promotional fliers each season. Translators
are hired to translate the fliers into several languages. The translators are paid either e
60 or e90 per page, depending on word density. The fliers are all either 5, 7, or 10 pages
in length. The joint density function for X and Y , where X = number of pages and Y =
price per page, is
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Y

60 90

X

5 0.05 0.4
7 0.05 0.1

10 0.35 0.05

(a) Find the mean and variance of X and Y .
(b) Find Cov (X, Y ), and explain its meaning.

(c) Find the probability function of Z (the total translation cost).
(d) Find the mean of Z.

5. A student uses a free dialup service to access the Internet. Depending on the server to
which the Internet service provider connects the student, there are three transmission
rates: 1800, 2700, and 3600 bytes per second. Let X be the number of transmitted bytes
and Y the transmission rate in bytes per second. The joint probability for X and Y is
given by the following table:

Y

1800 2700 3600

X

64800 0.3 0.05 0.025
324000 0.025 0.15 0.15
972000 0 0.2 0.1

(a) Let Z be the random variable indicating the time necessary for transmission. Write
down the probability function of Z.

(b) Find the expected time spent in transmission.
(c) Find the mean and variance of X and Y and Cov(X, Y ).

6. At the local movie theater, drinks and popcorn come in three sizes: small, medium, and
large. The prices for both drinks and popcorn are $1.50, $2.50, and $3.50 for the small,
medium, and large sizes, respectively. For a given customer, define the random variables
X = amount spent for popcorn and Y = amount spent for drinks. Suppose the joint
distribution for X and Y is

X

1.5 2.5 3.5

Y

1.5 0.03 0.07 0.05
2.5 0.08 0.08 0.30
3.5 0.00 0.30 0.09

(a) Find the probability a given customer spends no more than $2.50 on popcorn. What
is the probability a given customer spends at least $2.50 on popcorn?

(b) What is the average amount of money spent at the movies for a customer buying
both popcorn and a drink, if the cost of the movie ticket is $5.20?

7. The interior diameter of a particular type of test tube is a random variable with a mean
of 5 cm and a standard deviation of 0.03 cm. If the test tube thickness is a random
variable with a mean of 0.5 cm and a standard deviation of 0.001 cm and both variables
are independent, find the mean and standard deviation of the exterior diameter.
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8. The flow of water arriving at an irrigation canal is measured in cubic meters and follows
a N(100, 20) distribution. The canal has a flow capacity that follows a N(120, 30)
distribution. The sluice gate is opened when the water flow exceeds the canal’s capacity.
What is the probability that the flood gate will be opened?

9. Given the joint density function

f(x, y) = 6x, 0 < x < y < 1,

find the E[Y |X ] that is the regression line resulting from regressing Y on X .

10. The time, in minutes, that a car is parked in a mall has the following density function:

f(x) =

⎧⎨⎩ 1
50e−x/50 x > 0

0 x ≤ 0.

Using S,

(a) Find the probability that a car stays more than 1 hour.

(b) Let Y = 0.5+0.03X be the cost in dollars that the mall has to pay a security service
per parked car. Find the mean parking cost for 1000 cars.

(c) Find the variance and skewness coefficient of Y .

11. A poker hand (5 cards) is dealt from a single deck of well shuffled cards. If the random
variables X and Y represent the number of aces and the number of kings in a hand,
respectively,

(a) Write the joint distribution fX,Y (x, y).

(b) What is the marginal distribution of X , fX(x)?

(c) What is the marginal distribution of Y , fY (y)?(
Hint:

∞∑
y=0

(
a
x

)(
b

n−x

)
=

(
a+b
n

)
.

)

12. If fX,Y (x, y) = 5x − y2 in the region bounded by y = 0, x = 0, and y = 2 − 2x, find the
density function for the marginal distribution of X , for 0 < x < 1.

13. If f(x, y) = e−(x+y), x > 0, and y > 0, find P
(
X + 3 > Y

∣∣X > 1
3

)
.

14. If f(x, y) = 1, 0 < x < 1, 0 < y < 1, what is P
(
Y − X > 1

2

∣∣X + Y > 1
2

)
?

15. If f(x, y) = k(y − 2x) is a joint density function over 0 < x < 1, 0 < y < 1, and y > x2,
then what is the value of the constant k?

16. Let X and Y have the joint density function

f(x, y) =

⎧⎨⎩ 4
3x + 2

3y for 0 < x < 1 and 0 < y < 1

0 otherwise

Find P (2X < 1 |X + Y < 1).
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17. Let X and Y have the joint density function

f(x, y) =

⎧⎨⎩6(x − y)2 for 0 < x < 1 and 0 < y < 1

0 otherwise

(a) Find P
(
X < 1

2

∣∣Y < 1
4

)
.

(b) Find P
(
X < 1

2

∣∣Y = 1
4

)
.

18. Let X and Y denote the weight (in kilograms) and height (in centimeters), respectively, of
20-year-old American males. Assume that X and Y have a bivariate normal distribution
with parameters μX = 82, σX = 9, μY = 190, σY = 10, and ρ = 0.8. Find

(a) E [ Y |X = 75],

(b) E [ Y |X = 90],

(c) Var [ Y |X = 75],

(d) Var [ Y |X = 90],

(e) P (Y ≥ 190 |X = 75), and

(f) P (185 ≤ Y ≤ 195 |X = 90).

19. Let X and Y denote the heart rate (in beats per minute) and average power output (in
watts) for a 10 minute cycling time trial performed by a professional cyclist. Assume
that X and Y have a bivariate normal distribution with parameters μX = 180, σX = 10,
μY = 400, σY = 50, and ρ = 0.9. Find

(a) E [ Y |X = 170],

(b) E [ Y |X = 200],

(c) Var [ Y |X = 170],

(d) Var [ Y |X = 200],

(e) P (Y ≤ 380 |X = 170), and

(f) P (Y ≥ 450 |X = 200).

20. A certain group of college students takes both the Scholastic Aptitude Test (SAT) and
an intelligence quotient (IQ) test. Let X and Y denote the students’ scores on the SAT
and IQ tests, respectively. Assume that X and Y have a bivariate normal distribution
with parameters μX = 980, σX = 126, μY = 117, σY = 7.2, and ρ = 0.58. Find

(a) E [ Y |X = 1350],

(b) E [ Y |X = 700],

(c) Var [ Y |X = 700],

(d) P (Y ≤ 120 |X = 1350), and

(e) P (Y ≥ 100 |X = 700).

21. A pepper canning company uses tins weighing 20 grams. The full tin of peppers is placed
on a balance. Customer good will is maximized when the balance shows a quantity μ
and the peppers weight is Y grams. If the balance has a random error X ∼ N(0, σ = 10),

(a) Find the relationship between Y , X , and μ.

(b) What is the distribution of Y ?
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(c) Find μ so that 98% of the tins have at least 400 grams of peppers.

(d) Repeat the exercise assuming that the tin weight is a random variable W ∼
N(20, σ = 5).

22. Given the joint density function fXY (x, y) = x + y, x ≥ 0, y ≤ 1,

(a) Show that properties (1) and (2) on page 173 for the joint pdf of two continuous
random variables are satisfied.

(b) Find the cumulative distribution function.

(c) Find the marginal means of X and Y .

(d) Find the marginal variances of X and Y .

23. The lifetime of two electronic components are two random variables, X and Y . Their
joint density function is given by

fXY (x, y) =
1 + x + y + cxy

(c + 3)
exp(−(x + y)) x ≥ 0 and y ≥ 0

(a) Verify that
∫∞
−∞

∫∞
−∞ fXY (x, y) dx dy = 1.

(b) Find fX(x).

(c) What value of c makes X and Y independent?

24. A high technology company manufactures circular mirrors used in certain satellites. The
radius of any mirror in inches is a random variable R with density function

f(r) =

⎧⎨⎩ 24
11 (2r − r2) 1 ≤ r ≤ 3

2

0 otherwise.

To place the mirrors in the satellites without any problems, the mirror area, given by
πR2, cannot be greater than 6.5 inches. Using S,

(a) Verify that
∫∞
−∞ f(r) dr = 1.

(b) Find the mean area of the mirrors.

(c) Find the probability that a mirror’s diameter does not surpass 6.5 inches.

25. Use the package adapt from R to solve Example 5.2 on page 173.

26. Let X and Y have the joint density function

fXY (x, y) =

⎧⎨⎩Kxy 2 ≤ x ≤ 4 and 4 ≤ y ≤ 6

0 otherwise

(a) Find K so that the given function is a valid pdf.

(b) Find the marginal densities of X and Y .

(c) Are X and Y independent? Justify.
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27. Given the joint density function of X and Y

fXY (x, y) =

⎧⎨⎩1/2 x + y ≤ 2, x ≥ 0, y ≥ 0

0 otherwise

(a) Find the marginal densities of X and Y .

(b) Find E[X ], E[ Y ], Cov [X, Y ], and ρX,Y .

(c) Find P
(
X + Y < 1

∣∣X > 1
2

)
.

28. Let X and Y have the joint density function

fXY (x, y) =

⎧⎨⎩Ky −2 ≤ x ≤ 2, 1 ≤ y ≤ x2

0 otherwise.

(a) Find K so that fXY (x, y) is a valid pdf.

(b) Find the marginal densities of X and Y .

(c) Find P
(
Y > 3

2

∣∣X < 1
2

)
.

29. An engineer has designed a new diesel motor that is used in a prototype vehicle. The
prototype’s diesel consumption in gallons per mile C follows the equation C = 3+ 2X +
3
2Y , where X is a speed coefficient and Y is the quality diesel coefficient. Suppose the
joint density for X and Y is fXY (x, y) = ky, 0 ≤ x ≤ 2, 0 ≤ y ≤ x.

(a) Find k so that fXY (x, y) is a valid density function.

(b) Are X and Y independent?

(c) Find the mean and variance for the prototype vehicle’s diesel consumption.

30. To make porcelain, kaolin X and feldspar Y are needed to create a soft mixture that
later becomes hard. The proportion of these components for every tone of porcelain has
the density function fXY (x, y) = Kx2y, 0 ≤ x ≤ y ≤ 1, x + y ≤ 1.

(a) Find the value of K so that fXY (x, y) is a valid pdf.

(b) Find the marginal densities of X and Y .

(c) Find the kaolin mean and the feldspar mean by tone.

(d) Find the probability that the proportion of feldspar will be higher than 1/3 , if the
kaolin is more than half of the porcelain.

31. A device can fail in four different ways with probabilities π1 = 0.2, π2 = 0.1, π3 = 0.4,
and π4 = 0.3. Suppose there are 12 devices that fail independently of one another. What
is the probability of 3 failures of the first kind, 4 of the second, 3 of the third, and 2 of
the fourth?

32. The wait time in minutes a shopper spends in a local supermarket’s checkout line has
distribution f(x) = exp(−x/2)/2 , x > 0. On weekends, however, the wait is longer, and
the distribution then is given by g(x) = exp(−x/3)/3 , x > 0. Find

(a) The probability that the waiting time for a customer will be less than 1 minute.

(b) The probability that, given a waiting time of 2 minutes, it will be a weekend.
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(c) The probability that the customer waits less than 2 minutes.

33. An engineering team has designed a lamp with two light bulbs. Let X be the lifetime
for bulb 1 and Y the lifetime for bulb 2, both in thousands of hours. Suppose that X
and Y are independent and they follow an exp(λ = 1) distribution.

(a) Find the joint density function of X and Y . What is the probability neither bulb
lasts longer than 1000 hours?

(b) If the lamp works when at least one bulb is lit, what is the probability that the lamp
works no more than 2000 hours?

(c) What is the probability that the lamp works between 1000 and 2000 hours?

34. The national weather service has issued a severe weather advisory for a particular county
that indicates that severe thunderstorms will occur between 9 p.m. and 10 p.m. When
the rain starts, the county places a call to the maintenance supervisor who opens the
sluice gate to avoid flooding. Assuming the rain’s start time is uniformly distributed
between 9 p.m. and 10 p.m.

(a) At what time, on the average, will the county maintenance supervisor open the sluice
gate?

(b) What is the probability that the sluice gate will be opened before 9:30 p.m.?

Note: Solve this problem both by hand and using S.

35. Example 5.18 on page 188 assumes the distribution of grades for a particular group of
students, where X and Y represent the grade point averages in high school and the first
year of college, respectively, and have a bivariate normal distribution with parameters
μX = 3.2, μY = 2.4, σX = 0.4, σY = 0.6, and ρ = 0.6.

(a) Set the seed equal to 194 (set.seet(194)), and use the function mvrnorm() from
the MASS package to simulate the population, assuming the population of interest
consists of 200 students. (Hint: Use empirical=TRUE.)

(b) Compute the means of X and Y . Are they equal to 3.2 and 2.4, respectively?

(c) Compute the variance of X and Y as well as the covariance between X and Y . Are
the values 0.16, 0.36, and 0.144, respectively?

(d) Create a scatterplot of Y versus X . If a different seed value is used, how do the
simulated numbers differ?

36. Show that if X1, X2, . . . , Xn are independent random variables with means μ1, μ2, . . . , μn

and variances σ2
1 , σ

2
2 , . . . , σ2

n, respectively, then the mean and variance of Y =
∑n

i=1 ciμi,
where the cis are real-valued constants, are μY =

∑n
i=1 ciμi and σ2

Y =
∑n

i=1 c2
i σ

2
i as

stated on page 180 of the text. (Hint: Use moment generating functions.)



Chapter 6

Sampling and Sampling Distributions

6.1 Sampling

The objective of statistical analysis is to gain knowledge about certain properties in a
population that are of interest to the researcher. When the population is small, the best
way to study the population of interest is to study all of the elements in the population
one by one. This process of collecting information on the entire population of interest is
called a census. However, it is usually quite challenging to collect information on an entire
population of interest. Not only do monetary and time constraints prevent a census from
being taken easily, but also the challenges of finding all the members of a population can
make gathering an accurate census all but impossible. Under certain conditions, a random
selection of certain elements actually returns more reliable information than can be obtained
by using a census. Standard methods used to learn about the characteristics of a population
of interest include simulation, designed experiments, and sampling.

Simulation studies typically generate numbers according to a researcher-specified
model. For a simulation study to be successful, the chosen simulation model must closely
follow the real life process the researcher is attempting to simulate. For example, the effects
of natural disasters, such as earthquakes, on buildings and highways are often modeled with
simulation.

When the researcher has the ability to control the research environment, or at least
certain variables of interest in the study, designed experiments are typically employed.
The objective of designed experiments is to gain an understanding about the influence that
various levels of a factor have on the response of a given experiment. For example, an
agricultural researcher may be interested in determining the optimal level of nitrogen when
his company’s fertilizer is used to grow wheat in a particular type of soil. The designed
experiment might consist of applying the company’s fertilizer to similar plots using three
different concentrations of nitrogen in the fertilizer.

Sampling is the most frequently used form of collecting information about a population
of interest. Many forms of sampling exist, such as random sampling, simple random
sampling, systematic sampling, and cluster sampling. It will be assumed that the population
from which one is sampling has size N and that the sample is of size n < N .

Random sampling is the process of selecting n elements from a population where each
of the n elements has the same probability of being selected, namely, 1

N . More precisely,
the random variables X1, X2, . . . , Xn form a random sample of size n from a population
with a pdf f(x) if X1, X2, . . . , Xn are mutually independent random variables such that
the marginal pdf of each Xi is f(x). The statement “X1, X2, . . . , Xn are independent and
identically distributed, i.i.d., random variables with pdf f(x)” is often used to denote a
random sample. The objective of random sampling is to obtain a representative sample of
the population that can be used to make generalizations about the population.

This process of making generalizations about the population from sampled information
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is called inferential statistics. For the generalizations to be valid, the sample must meet
certain requirements. The key requirement for a random sample is that it be representative
of the parent population from which it was taken.

The typical method of obtaining a random sample starts with using either a calculator or
a computer random number generator to decide which elements of a population to sample.
The numbers returned from random number generating functions are not, in the strictest
sense, random. That is, because an algorithm is used to generate the numbers, they are
not completely random. Depending on the quality or lack thereof for a given random
number generator, the same numbers may begin to cycle after a number of iterations. This
problem is encountered much less with the random number generating functions written
for computers than it is with those for calculators. In general, random number generators
return pseudo-random numbers from a Unif (0,1) distribution. Since people tend to favor
certain numbers, it is best not to allow humans to pick random numbers unless the process
is one of selecting numbers from an urn or another similar process. To avoid possible biases,
it is best to let a function written to generate random numbers pick a sample.

When the population is finite, it is possible to list all of the possible combinations
of samples of size n using the S command expand.grid(). For example, suppose all
of the combinations of size n = 3 from a population consisting of N = 4 items are to
be listed. Clearly, there are 4 × 4 × 4 = 64 possible combinations. To enumerate the
possible combinations with S, type expand.grid(1:4,1:4,1:4). In a similar fashion, if
all of the possible combinations from rolling two fair dice or all possible combinations of
size n = 2 from the population X1 = 2, X2 = 5, and X3 = 8 are to be enumerated, type
expand.grid(1:6,1:6) or expand.grid(c(2,5,8), c(2,5,8)), respectively.

6.1.1 Simple Random Sampling

Simple random sampling is the most elementary form of sampling. In a simple
random sample, each particular sample of size n has the same probability of occurring.
In finite populations, each of the

(
N
n

)
samples of size n is taken without replacement and

has the same probability of occurring. If the population being sampled is infinite, the
distinction between sampling with replacement and sampling without replacement becomes
moot. That is, in an infinite population, the probability of selecting a given element is the
same whether sampling is done with or without replacement. Conceptually, the population
can be thought of as balls in an urn, a fixed number of which are randomly selected without
replacement for the sample. Most sampling is done without replacement due to its ease and
increased efficiency in terms of variability compared to sampling with replacement.

To list all of the possible combinations of size n when sampling without replacement from
a finite population of size N , that is, the

(
N
n

)
combinations, the function Combinations()

written by Tim Hesterberg at Insightful can be used. Make sure the PASWR package is
loaded, as it contains the function Combinations().

Example 6.1 Given a population of size N = 5, use S to list all of the possible samples
of size n = 3. That is, list the

(
5
3

)
= 10 possible combinations.

Solution: Use the command Combinations() as follows:

> Combinations(5,3)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

1 1 1 2 1 1 2 1 2 3
N 2 2 3 3 2 3 3 4 4 4
N 3 4 4 4 5 5 5 5 5 5
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The 10 possible combinations are (1, 2, 3), (1, 2, 4), . . . , (3, 4, 5), listed vertically in the out-
put.

Example 6.1 on the facing page assumed all of the values in the population of interest are
sequential starting with the number one. It is not unusual to have non-sequential values for
the population where the user desires to enumerate all possible combinations when sampling
without replacement. To that end, code is provided (SRS()) that works in conjunction with
Combinations() to list all of the possible combinations when using simple random sampling
from a finite population:

> SRS <- function(POPvalues, n)
{ # SRS generates all possible SRS’s of size n
# from the population in vector POPvalues
# by calling the function Combinations.
N <- length(POPvalues)
store <- t(Combinations(N, n))
matrix(POPvalues[t(store)], nrow = nrow(store), byrow = TRUE) }

Example 6.2 Given a population of size N = 5, where X1 = 2, X2 = 5, X3 = 8, X4 = 12,
and X5 = 13, use S to list all of the possible samples of size n = 3. That is, list the

(
5
3

)
= 10

possible combinations.

Solution: First, make sure both the functions Combinations() and SRS() are stored on
your computer by loading the PASWR package. Then, use the command SRS() as follows:

> t(SRS(c(2,5,8,12,13), 3))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 2 2 2 5 2 2 5 2 5 8
[2,] 5 5 8 8 5 8 8 12 12 12
[3,] 8 12 12 12 13 13 13 13 13 13

The 10 possible combinations are (2, 5, 8), (2, 5, 12), . . . , (8, 12, 13), listed vertically in the
output. The S command t() was used to transpose the data to conserve space. It is not
obligatory to transpose the output; it is just as valid to type SRS(c(2,5,8,12,13),3) so
that the samples are listed across the rows instead of down the columns.

Example 6.3 A teacher wants an algorithm that will randomly select 5 students from a
large lecture section of 180 students to present their work at the board.

Solution: Assume the students in the class are numbered from 1 to 180 according to
the class roll and that the students know their numbers. Then, an unbiased procedure for
selecting 5 students starts with using the following S code to determine which students
should be in the sample:

> sample(1:180, 5, replace=FALSE)
[1] 138 52 135 58 160

Example 6.4 Randomly select 5 people from a group of 20 where the individuals are
labeled from 1 to 20 and the individuals labeled 19 and 20 are four times more likely to be
selected than the individuals labeled 1 through 18.

Solution: An unbiased procedure to select 5 people starts with using the following S code
to determine which people will be in the sample:
> sample(x=(1:20), size=5, prob=c(rep(1/26,18), rep(4/26,2)), replace=FALSE)

[1] 20 19 1 17 16
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6.1.2 Stratified Sampling

Simple random sampling gives samples that closely follow the population of interest
provided the individual elements of the population of interest are relatively homogeneous
with respect to the characteristics of interest in the study. When the population of interest
is not homogeneous with respect to the characteristics under study, a possible solution
might be to use stratified sampling.

Stratified sampling is most commonly used when the population of interest can be easily
partitioned into subpopulations or strata. The strata are chosen to divide the population
into non-overlapping, homogeneous regions. Then, the researcher takes simple random
samples from each region or group. When using stratified sampling, it is crucial to select
strata that are as homogeneous as possible within strata and as heterogeneous as possible
between strata. For example, when agricultural researchers study crop yields, they tend to
classify regions as arid and watered. It stands to reason that crop yields within arid regions
will be poor and quite different from the yields from watered regions. Additional examples
where stratified sampling can be used include:

1. In a study of the eating habits of a certain species, geographical areas often form
natural strata.

2. In a study of political affiliation, gender often forms natural strata.

3. The Internal Revenue Service (IRS) might audit tax returns based on the reported
taxable income by creating three groups: returns with reported taxable income less
than $ 50,000; returns with reported income less than $75,000 but more than $ 50,000;
and returns with reported taxable income of more than $ 75,000.

In addition to taking random samples within the strata, stratified samples are typically
proportional to the size of their strata or proportional to the variability of the strata.

Example 6.5 A botanist wants to study the characteristics of a common weed and its
adaptation to various geographical regions on a remote island. The island has well-defined
strata that can be classified as dessert, forest, mountains, and swamp. If 5000 acres of the
island are desert, 1000 acres are forest, 500 acres are mountains, and 3500 acres are swamp,
and the botanist wants to sample 5% of the population using a stratified sampling scheme
that is proportional to the strata, how many acres of each of the four regions will he have
to sample?

Solution: Since the size of the island is 10,000 acres, the botanist will need to sample a
total of 10000×0.05 = 500 acres. The breakdown of the 500 acres is as follows: 500× 5000

10000 =
250 desert acres; 500 × 1000

10000 = 50 forest acres; 500 × 500
10000 = 25 mountain acres; and

500 × 3500
10000 = 175 swamp acres.

6.1.3 Systematic Sampling

Systematic sampling is used when the researcher is in possession of a list that contains
all N members of a given population and desires to select every kth value in the master list.
This type of sampling is often used to reduce costs since one only needs to select the initial
starting point at random. That is, after the starting point is selected, the remaining values
to be sampled are automatically specified.

To obtain a systematic sample, choose a sample size n and let k be the closest integer
to N

n . Next, find a random integer i between 1 and k to be the starting point for sampling.
Then, the sample is composed of the units numbered i, i + k, i + 2k, . . . , i + (n − 1)k. For
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example, suppose a systematic sample is desired where 1 in k = 100 members is chosen from
a list containing 1000 members. That is, every 100th member of the list is to be sampled.
To pick the initial starting point, select a number at random between 1 and 100. If the
random number generated is 53, then the researcher simply samples the values numbered
53, 153, 253, . . . , 953 from the master list. The following S code generates the locations to
be sampled using a 1 in 100 systematic sampling strategy:

> seq(sample(1:100,1), 1000, 100)
[1] 53 153 253 353 453 553 653 753 853 953

Example 6.6 Produce a list of locations to sample for a systematic sample if N = 1000
and n = 20.

Solution: To take a systematic sample, every k = 1000
20 = 50th item will be observed.

To start the process, select a random number between 1 and 50 using a random number
generator. The following S code can be used to select a 1 in 50 systematic sample when
N = 1000 and k = 50:

> seq(sample(1:50,1), 1000, 50)
[1] 27 77 127 ... 977

6.1.4 Cluster Sampling

Cluster sampling does not require a list of all of the units in the population like
systematic sampling does. Rather, it takes units and groups them together to form clusters
of several units. In contrast to stratified sampling, clusters should be as heterogeneous
as possible within clusters and as homogeneous as possible between clusters. The main
difference between cluster sampling and stratified sampling is that in cluster sampling, the
cluster is treated as the sampling unit and analysis is done on a population of clusters.
In one-step cluster sampling, all elements are selected in the chosen clusters. In stratified
sampling, the analysis is done on elements within each strata. The main objective of cluster
sampling is to reduce costs by increasing sampling efficiency. Examples of cluster sampling
include:

1. Houses on a block

2. Students in school

3. Farmers in counties

6.2 Parameters

Once a sample is taken, the primary objective becomes to extract the maximum and
most precise information as possible about the population from the sample. Specifically, the
researcher is interested in learning as much as possible about the population’s parameters.
A parameter, θ, is a function of the probability distribution, F . That is, θ = t(F ), where
t(·) denotes the function applied to F . Each θ is obtained by applying some numerical
procedure t(·) to the probability distribution function F . Although F has been used to
denote the cdf exclusively until now, a more general definition of F is any description of
X’s probabilities. Note that the cdf, P(X ≤ x), is included in this more general definition.
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Parameters are what characterize probability distributions. More to the point, parameters
are inherent in all probability models, and it is impossible to compute a probability without
prior knowledge of the distribution’s parameters. Parameters are treated as constants in
classical statistics and as random variables in Bayesian statistics. In everything that follows,
parameters are treated as constants.

Example 6.7 Suppose F is the exponential distribution, F = Exp(λ), and t(F ) =
EF (X) = θ. Express θ in terms of λ.

Solution: Here, t(·) is the expected value of X, so θ = 1/λ .

6.2.1 Infinite Populations’ Parameters

The most commonly estimated parameters are the mean (μ), the variance (σ2), and the
proportion (π). What follows is a brief review of their definitions.

Population mean — The mean is defined as the expected value of the random variable
X .

• If X is a discrete random variable,

μX = E[X ] =
∞∑

i=1

xiP(X = xi), where P(X = xi) is the pdf of X.

• If X is a continuous random variable,

μX = E[X ] =

∞∫
−∞

xf(x) dx, where f(x) is the pdf of X.

Population variance — The population variance is defined as Var [X ] = E
[
(X − μ)2

]
.

• For the discrete case,

σ2
X = Var [X ] =

∞∑
i=1

(xi − μ)2 · P(X = xi) =
∞∑

i=1

x2
i · P(X = xi) − μ2.

• For the continuous case,

σ2
X = Var [X ] =

∞∫
−∞

(x − μ)2f(x) dx =
∫ ∞

−∞
x2f(x) dx − μ2.

Population proportion — The population proportion π is the ratio

π =
N1

N
,

where N1 is the number of values that fulfill a particular condition and N is the size
of the population.

6.2.2 Finite Populations’ Parameters

Suppose a finite population that consists of N elements, X1, . . . , XN , is defined. The
most commonly defined parameters are in Table 6.1 on the next page.
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Table 6.1: Finite populations’ parameters
Population
Parameter Formula Explanation

Mean μf =
∑N

i=1 Xi

N

Total τ =
∑N

i=1 Xi = Nμf

Where Y is the number of elements
Proportion πf =

Y

N
of the population that fulfill a certain
characteristic.
The Yis take on a value of 1 if they

Proportion
(alternate) πf =

∑
i Yi

N

represent a certain characteristic
and 0 if they do not possess the
characteristic

Variance(N)
σ2

f ;N =
∑N

i=1 (Xi − μf )2

N

=
1
N

N∑
i=1

X2
i − (μf )2

Variance (N − 1) σ2
f ;N−1 =

∑N
i=1 (Xi − μf )2

N − 1

Variance
(dichotomous)

σ2
f = πf (1 − πf )

πf represents the proportion of
elements in the population with a
common characteristic

Standard
Deviation σf =

√∑N
i=1 (Xi − μf )2

N

6.3 Estimators

Population parameters are generally unknown. Consequently, one of the first tasks is to
estimate the unknown parameters using sample data. Estimates of the unknown parameters
are computed with estimators or statistics. An estimator is a function of the sample,
while an estimate (a number) is the realized value of an estimator that is obtained when a
sample is actually taken. Given a random sample, {X1, X2, . . . , Xn} = X, from a probability
distribution F , a statistic, any function of the sample is denoted as T = t(X). Note that
the estimator T of θ will at times also be denoted θ̂. Since a statistic is a function of the
random variables X, it follows that statistics are also random variables. The specific value
of a statistic can only be known after a sample has been taken. The resulting number,
computed from a statistic, is called an estimate. For example, the arithmetic mean of a
sample

T = t(X) = X =
∑n

i=1 Xi

n
, (6.1)

is a statistic (estimator) constructed from a random sample {X1, . . . , Xn}.
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Until a sample is taken, the value of the statistic (the estimate) is unknown. Suppose a
random sample has been taken that contains the following values: x = {3, 5, 6, 1, 2, 7}. It
follows that the value of the statistic T = t(X), where t(X) is defined in (6.1) as t = t(x) =
3+5+6+1+2+7

6 = 4. The quantity t(X) = X1×X2
6 is also a statistic; however, it does not have

the same properties as the arithmetic mean defined in (6.1).
The essential distinction between parameters and estimators is that a parameter is

a constant in classical statistics while an estimator is a random variable, since its value
changes from sample to sample. Parameters are typically designated with lowercase Greek
letters, while estimators are typically denoted with lowercase Latin letters. However, when
working with finite populations, it is standard notation to use different capital Latin letters
to denote both parameters and estimators. At times, it is also common to denote an
estimator by placing a hat over a parameter such as β̂1. Some common parameters and
their corresponding estimators are provided in Table 6.2.

Table 6.2: Parameters and their corresponding estimators
Estimator Estimator

Parameter Name (Latin notation) (Hat notation)
μ population mean X sample mean μ̂
σ2 population variance S2 sample variance σ̂2

Some of the statistics used to estimate parameters when sampling from a finite popu-
lation are given in Table 6.3 while the more common statistics used when working with a
random sample of size n are given in Table 6.4 on the facing page.

Table 6.3: Finite population parameter estimators and their standard errors

Parameter Estimator σ̂estimator

Population Mean Xf =

n∑
i=1

Xi

n

S√
n

√
N − n

N

Population Total Tf = NXf
S√
n
· N ·

√
N − n

N

Population Proportion P =
Y

n

√
P (1 − P )

n − 1

(
N − n

N

)

6.3.1 Empirical Probability Distribution Function

The empirical probability distribution function, epdf = F̂ , is defined as the discrete
distribution that puts probability 1

n on each value in x, where x is a sample of size n
extracted from F . The empirical cumulative distribution function, ecdf, is defined as

F̂n(t) =
n∑

i=1

I {xi ≤ t}/n. (6.2)

Here, I {xi ≤ t} is the indicator function that returns a value of 1 when xi ≤ t and 0 when
xi > t.
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Table 6.4: Statistics for samples of size n

Statistic Formula Explanation

Mean X =
∑n

i=1 Xi

n

Total T = nX

Proportion P =
Y

n

Where Y is the number of elements
with a certain characteristic

Variance
(uncorrected)

S2
u =

∑n
i=1

(
Xi − X

)2

n

=
∑n

i=1 X2
i

n
− X

2

Variance S2
ud = P (1 − P ) Uncorrected and dichotomous

Variance
S2 =

∑n
i=1

(
Xi − X

)2

n − 1

=
n

n − 1
S2

u

Variance
(dichotomous) S2

d =
nP (1 − P )

n − 1
If n ≥ 20, S2 can be approximated
with the quantity P (1 − P ).

Standard
Deviation S =

√∑n
i=1

(
Xi − X

)2

n − 1

Example 6.8 Simulate rolling a die 100 times and compute the epdf. Graph the ecdf.

Solution: The R code to solve the problem is

> rolls <- sample(1:6,100, replace=TRUE)
> table(rolls)
rolls
1 2 3 4 5 6
22 18 12 16 15 17

> table(rolls)/100 # epdf
rolls

1 2 3 4 5 6
0.22 0.18 0.12 0.16 0.15 0.17
> plot(ecdf(rolls))

where the output following table(rolls)/100 is the empirical distribution function. The
graph of the realized ecdf is found in Figure 6.1 on the next page.
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FIGURE 6.1: Empirical cumulative distribution function of rolling a die 100 times

6.3.2 Plug-In Principle

The plug-in principle is an intuitive method of estimating parameters from samples.
The plug-in estimator of a parameter θ = t(F ) is defined to be θ̂ = t(F̂ ). Simply put, the
estimate is the result of applying the function t(·) to the empirical probability distribution
F̂ .

Example 6.9 What are the plug-in estimators of (a) the expected value and (b) the
variance of a discrete distribution F?

Solution: The answers are as follows:

(a) When the expected value is θ = EF (X), the plug-in estimator of the expected value is
θ̂ = EF̂ (X) =

∑n
i=1 Xi · 1

n = X.

(b) When the variance is θ = VarF (X) = EF (X−μ)2, the plug-in estimator of the variance
of X is θ̂ = EF̂ (X − X )2 =

∑n
i=1(Xi − X )2 · 1

n .

6.4 Sampling Distribution of X

Suppose 10 college students are randomly selected from the population of college stu-
dents in the state of Colorado and compute the mean age of the sampled students. If this
process were repeated three times, it is unlikely any of the computed sample means would
be identical. Likewise, it is not likely that any of the three computed sample means would
be exactly equal to the population mean. However, these sample means are typically used
to estimate the unknown population mean. So, how can the accuracy of the sampled value
be assessed?

To assess the accuracy of a value (estimate) returned from a statistic, the probability
distribution of the statistic of interest is used to place probabilistic bounds on the sampling
error. The probability distribution associated with all of the possible values a statistic can
assume is called the sampling distribution of the statistic. This section presents the
sampling distribution of the sample mean. Before discussing the sampling distribution of
X, the mean and variance of X for any random variable X are highlighted.
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If X is a random variable with mean μ and variance σ2, and if a random sample
X1, . . . , Xn is taken, the expected value and variance of X are written

E
[
X

]
= μX = μ, (6.3)

Var
[
X

]
= σ2

X =
σ2

n
. (6.4)

The computations of the answers for (6.3) and (6.4) are the same as those for Example 5.9
on page 180, which are reproduced for the reader’s benefit:

E
[
X

]
=

n∑
i=1

E[Xi]
n

=
n∑

i=1

1
n

μ = μ,

Var
[
X

]
= Var

[
n∑

i=1

Xi

n

]
=

1
n2

n∑
i=1

Var [Xi] =
nσ2

n2
=

σ2

n
.

Clearly, as the sample size increases, the variance of the sampling distribution of X de-
creases.

Example 6.10 �Sampling: Balls in an Urn � Consider an experiment where two
balls are randomly selected from an urn containing six numbered balls. First, the sampling
is done with replacement (Case 1), and then the sampling is done without replacement
(Case 2). List the exact sampling distributions of X and S2 for both cases. Finally, create
graphs that compare these four distributions.

Solution: Case 1 When the sampling is performed with replacement, the outcomes can
be viewed as a random sample of size 2 drawn from a discrete uniform distribution. The
mean and variance of the uniform distribution are

μ =
1 + 2 + · · · + 6

6
= 3.5

and

σ2 = E
(
X2

)
− μ2 =

12 + 22 + · · · + 62

6
− (3.5)2 = 2.9166.

Note that these values could also be computed using the formulas μ = (N + 1)/2 and
σ2 = (N2 − 1)/12 given in (4.9).

There are 36 possible samples of size 2 from this distribution listed in Table 6.5 on the
next page. Using the fact that each of samples listed in Table 6.5 is equally likely (1/36),
construct both the sampling distribution of X given in Table 6.6 on the following page and
the sampling distribution of S2 given in Table 6.7 on the next page.

The mean of the sampling distribution, μX = E
[
X

]
, and the variance of the sampling

distribution, σ2
X

= E[X − μX]2, are

μX = E
[
X

]
= 1 × 1

36
+ 1.5 × 2

36
+ · · · + 6 × 1

36
= 3.5

and

σ2
X = E

[
(X − μX)2

]
= (1 − 3.5)2 × 1

36
+ (1.5 − 3.5)2 × 2

36
+

· · · + (6 − 3.5)2 × 1
36

= 1.4583.
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Table 6.5: Possible samples of size 2 with x̄ and s2 for each sample – random sampling

(x1,x2) x̄ s2 (x1,x2) x̄ s2

( 1 , 1 ) 1.0 0.0 ( 4 , 1 ) 2.5 4.5

( 1 , 2 ) 1.5 0.5 ( 4 , 2 ) 3.0 2.0

( 1 , 3 ) 2.0 2.0 ( 4 , 3 ) 3.5 0.5

( 1 , 4 ) 2.5 4.5 ( 4 , 4 ) 4.0 0.0

( 1 , 5 ) 3.0 8.0 ( 4 , 5 ) 4.5 0.5

( 1 , 6 ) 3.5 12.5 ( 4 , 6 ) 5.0 2.0

( 2 , 1 ) 1.5 0.5 ( 5 , 1 ) 3.0 8.0

( 2 , 2 ) 2.0 0.0 ( 5 , 2 ) 3.5 4.5

( 2 , 3 ) 2.5 0.5 ( 5 , 3 ) 4.0 2.0

( 2 , 4 ) 3.0 2.0 ( 5 , 4 ) 4.5 0.5

( 2 , 5 ) 3.5 4.5 ( 5 , 5 ) 5.0 0.0

( 2 , 6 ) 4.0 8.0 ( 5 , 6 ) 5.5 0.5

( 3 , 1 ) 2.0 2.0 ( 6 , 1 ) 3.5 12.5

( 3 , 2 ) 2.5 0.5 ( 6 , 2 ) 4.0 8.0

( 3 , 3 ) 3.0 0.0 ( 6 , 3 ) 4.5 4.5

( 3 , 4 ) 3.5 0.5 ( 6 , 4 ) 5.0 2.0

( 3 , 5 ) 4.0 2.0 ( 6 , 5 ) 5.5 0.5

( 3 , 6 ) 4.5 4.5 ( 6 , 6 ) 6.0 0.0

Table 6.6: Sampling distribution of X – random sampling

x̄ 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

f (x̄) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Table 6.7: Sampling distribution of S2 – random sampling

s2 0 0.5 2 4.5 8 12.5

f
(
s2
)

6/36 10/36 8/36 6/36 4/36 2/36

Note that the computed values of E
[
X

]
and σ2

X
are in agreement with the formulas

E
[
X

]
= μ and σ2

X
= σ2

n given in (6.3) and (6.4). Also note that E
[
S2

]
= σ2. Specifically,

E
[
S2

]
= 0 × 6

36
+ 0.5 × 10

36
+ · · · + 12.5 × 2

36
= 2.9166.

Case 2 When the sampling is performed without replacement, the outcomes can be viewed
as a simple random sample of size 2 drawn from a discrete uniform distribution. Note
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that fewer samples exist when sampling without replacement
((

6
2

)
= 15

)
, but that each

sample is equally likely to be drawn. The 15 possible samples of size 2 from this distribution
are listed in Table 6.8. Using the fact that each of the samples listed in Table 6.8 is equally
likely (1/15), construct the sampling distribution of X given in Table 6.9, and the sampling
distribution of S2 given in Table 6.10 both on on the current page.

Table 6.8: Possible samples of size 2 with x̄ and s2 – simple random sampling

(x1,x2) x̄ s2

( 1 , 2 ) 1.5 0.5

( 1 , 3 ) 2 2.0

( 1 , 4 ) 2.5 4.5

( 1 , 5 ) 3 8.0

( 1 , 6 ) 3.5 12.5

( 2 , 3 ) 2.5 0.5

( 2 , 4 ) 3 2.0

( 2 , 5 ) 3.5 4.5

( 2 , 6 ) 4 8.0

( 3 , 4 ) 3.5 0.5

( 3 , 5 ) 4 2.0

( 3 , 6 ) 4.5 4.5

( 4 , 5 ) 4.5 0.5

( 4 , 6 ) 5 2.0

( 5 , 6 ) 5.5 0.5

Table 6.9: Sampling distribution of X – simple random sampling

x̄ 1.5 2 2.5 3 3.5 4 4.5 5 5.5

f (x̄) 1/15 1/15 2/15 2/15 3/15 2/15 2/15 1/15 1/15

Table 6.10: Sampling distribution of S2 – simple random sampling

s2 0.5 2 4.5 8 12.5

f
(
s2
)

5/15 4/15 3/15 2/15 1/15
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The mean of the sampling distribution, μX = E
[
X

]
, the variance of the sampling distri-

bution, σ2
X

= E[X − μX]2, and the expected value of S2, E
[
S2

]
, are

μX = E
[
X

]
= 1.5 × 1

15
+ 2 × 1

15
+ · · · + 5.5 × 1

15
= 3.5,

σ2
X = E

[
(X − μX)2

]
= (1.5 − 3.5)2 × 1

15
+ (2 − 3.5)2 × 1

15
+

· · · + (5.5 − 3.5)2 × 1
15

= 1.16666,

and E
[
S2

]
= 0.5 × 5

15
+ 2 × 4

15
+ · · · + 12.5 × 1

15
= 3.5.

Remarkably, the sample mean is identical when sampling with and without replacement.
In fact, the expected value of the sample mean is μ whether sampling with or without
replacement. The variance of the sample mean and the expected value of the sample
variance have changed, however. These changes are due to the fact that sampling is from a
finite population without replacement. A summary of the formulas used to compute these
results is found in Table 6.11.

Table 6.11: Summary results for sampling without replacement (finite population)

μX = μf

σ2
X

=
σ2

n
· N − n

N − 1

E
[
S2

]
=

N

N − 1
· σ2

E
[
S2

u

]
=

N

N − 1
· n − 1

n
· σ2

Note that the computed values of E
[
X

]
= μf = 3.5, σ2

X
= σ2

n · N−n
N−1 = 2.9166

2 · 6−2
6−1 = 1.1666,

and E
[
S2

]
= N

N−1σ2 = 6
5 (2.9166) = 3.5 for this example are in agreement with the formulas

for sampling without replacement given in Table 6.11. A comparison of the results from
Case 1 and Case 2 can be found in Table 6.12.

Table 6.12: Computed values for random sampling (Case 1) and simple random sampling
(Case 2)

μ E
[
X
]

σ2 E
[
S2

]
σ2

X

Case 1 3.5 3.5 2.9166 2.9166 1.4583

Case 2 3.5 3.5 2.9166 3.5 1.1666
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Graphical comparisons for the sampling distributions of X and S2 when sampling with
replacement (random sampling) and when sampling without replacement (simple random
sampling) are depicted in Figure 6.2 on the next page. The following S code can be used
to verify all the results in this solution:

> N <- 6
> n <- 2
> pop <- 1:N
> rs <- expand.grid(Draw1=pop, Draw2=pop) # Possible random samples
> xbarN <- apply(rs, 1, mean) # Means of all rs values
> s2N <- apply(rs, 1, var) # Variance of all rs values
> TOT1<- cbind(rs, xbarN=xbarN, s2N=s2N)

> TOT1 # Numerical values for Table 6.5

> table(xbarN) # Numerators for Table 6.6

> table(s2N) # Numerators for Table 6.7

> MU <- mean(pop) # Population mean
> VAR <- sum((pop-mean(pop))^2)*(1/N) # Population variance
> MU.xbarN <- mean(xbarN) # Expected value of xbarN
> E.s2N <- mean(s2N) # Expected value of s2N
> VAR.xbarN <- sum((xbarN-mean(xbarN))^2)*(1/(N*N))
> reN <- c(MU, MU.xbarN, VAR, E.s2N, VAR.xbarN)
> names(reN)<-c("MU", "MU.xbarN", "VAR", "E.s2N", "V.xbarN")

> reN # Numerical values for Case 1 in Table 6.12

> srs <- SRS(1:N, n) # Possible simple random samples
> xbari <- apply(srs, 1, mean) # Means of simple random samples
> s2i <- apply(srs, 1, var) # Variances of simple random samples
> TOT <- cbind(srs, xbari, s2i)
> dimnames(TOT)[[2]] <-c("Draw1", "Draw2", "xbari", "s2i")

> TOT # Numerical values for Table 6.8

> table(xbari) # Numerators for Table 6.9

> table(s2i) # Numerators for Table 6.10

> MU <- mean(pop) # Population mean
> VAR <- sum((pop-mean(pop))^2)*(1/N) # Population variance
> MU.xbar <- mean(xbari) # Expected value of xbari
> E.s2 <- mean(s2i) # Expected value of s2i
> VAR.xbar <- sum((xbari-mean(xbari))^2)*(1/choose(N, n))
> results <- c(MU, MU.xbar, VAR, E.s2, VAR.xbar)
> names(results)<-c("MU", "MU.xbari", "VAR", "E.s2i", "V.xbari")

> print(results) # Numerical values for Case 2 in Table 6.12
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FIGURE 6.2: Sampling distributions of X and S2 under random sampling (RS) and simple
random sampling (SRS) for Example 6.10 on page 207 are given. Note that the dispersion
for the sampling distribution of X is smaller under Case 2 than it is with Case 1.

6.5 Sampling Distribution for a Statistic from an Infinite Popula-
tion

Consider a population from which k random samples, each of size n, are taken. In
general, if given k samples, k different values for the sample mean will result. If k is very
large, theoretically infinite, the values of the means from each of the samples, denoted Xi

for each sample i, will be random variables with a resulting distribution referred to as the
sampling distribution of the sample mean. The sampling distribution of a statistic, t(X),
is the resulting probability distribution for t(X) calculated by taking an infinite number of
random samples of size n. The resulting sampling distribution will typically not coincide
with the distribution of the parent population.

6.5.1 Sampling Distribution for the Sample Mean

6.5.1.1 First Case: Sampling Distribution of X when Sampling from a Normal
Distribution

When sampling from a normal distribution, the resulting sampling distribution for the
sample mean is also a normal distribution. This is an immediate result of Theorem 5.1 on
page 176. That is, X is a linear combination of the Xis where ai = 1

n . As observed earlier,
the mean and the variance of the sampling distribution of X are μ and σ2/n regardless of
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the underlying population. So, the mean and variance of the sampling distribution of X
are always known. However, it is not always true that the resulting sampling distribution
of X is known. If X ∼ N(μ, σ), then X ∼ N(μ, σ√

n
).

Example 6.11 If X ∼ N(μ, 12), find the required sample size to guarantee |X − μ| < 3
with a probability of 0.95.

Solution: Changing the prose into a mathematical statement,

P
( ∣∣X − μ

∣∣ < 3
)

= 0.95

needs to be solved.
Since X ∼ N(μ, σ = 12), it follows that

X ∼ N

(
μ, σX =

σ√
n

=
12√
n

)
.

Consequently,

P

(∣∣X − μ
∣∣

σ/
√

n
< 1.96

)
= 0.95.

Multiplying both sides by σ√
n

and substituting 12 for σ gives

P

(∣∣X − μ
∣∣ < (1.96)

12√
n

)
= 0.95.

Multiplying both sides by
√

n, dividing both sides by 3, and finally squaring both sides, gives
n = 61.47. Consequently, a sample size of at least 62 is needed to guarantee

∣∣X − μ
∣∣ < 3

with a probability of 0.95.

Example 6.12 A small town in the Pyrenean mountains wants to reduce the bear pop-
ulation because several sheep have recently been killed by bears. Three autonomous com-
munities (Cataluña, Aragón, and Navarra) have made bids to remove 10 bears. The three
autonomous communities indicated in their bids that they are willing to spend 5, 7.5, and
10 thousand dollars per bear to capture the bears. Decide which autonomous communities
can capture 10 bears with a probability of at least 0.999 knowing that the cost to capture
a bear follows a normal distribution with a mean of 5 thousand dollars and a standard
deviation of 0.6 thousand dollars.

Solution: Assuming that the costs to capture the bears act as independent random
variables, such that if Xi is the cost to capture one bear, the total cost to capture 10 bears
is also a random variable, given by Y = X1 + · · · + X10. Since Xi ∼ N(5, 0.6), it follows
using Theorem 5.1 on page 176 that the mean of Y will be 5 · 10 = 50 and the standard
deviation of Y will be

√
10 · (0.6)2 = 1.897367. Mathematically, write Y ∼ N(50, 1.897367).

Cataluña will be able to capture 10 bears provided Y ≤ 50, Aragón will be able to capture
10 bears provided Y ≤ 75, and Navarra will be able to capture 10 bears provided Y ≤ 100.
The probabilities of these events are

P(Y ≤ 50) = P

(
Z ≤ 50 − 50

1.897367

)
= P(Z ≤ 0) = 0.5,

P(Y ≤ 75) = P

(
Z ≤ 75 − 50

1.897367

)
= P(Z ≤ 13.17616) = 1,

and P(Y ≤ 100) = P

(
Z ≤ 100 − 50

1.897367

)
= P(Z ≤ 26.35231) = 1.
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The following S code computes the answers directly:

> pnorm(50,50,1.897367)
[1] 0.5
> pnorm(75,50,1.897367)
[1] 1
> pnorm(100,50,1.897367)
[1] 1

There is only a 50% chance that the Catalan bid would provide sufficient funds to catch
10 bears. On the other hand, the bids from Navarra and Aragón would both have a 100%
chance of catching all 10 bears.

Example 6.13 It is well-known that the measurement errors committed by employees
when they measure the length of a zipper in a particular assembly process follow a normal
distribution with a mean of 0 and standard deviation of 2 millimeters. Find

(a) The maximum error for measuring a zipper a single time with 0.95 probability.

(b) The maximum error of the mean measurement of the zipper with 0.95 probability if it
is measured 10 times.

(c) The number of times one needs to measure a zipper to ensure the maximum measure-
ment error of the mean is less than 1 millimeter with 0.95 probability.

Solution: The solutions are as follows:
(a) Let the random variable X represent the measurement error committed by employees
when measuring zippers. Since X ∼ N(0, 2), Z = X

2 ∼ N(0, 1). Since

P(−1.96 < Z < 1.96) = 0.95,

and since Z = X
2 ,

P(−1.96 <
X

2
< 1.96) = 0.95.

Basic algebra then gives
|X | < 2(1.96) = 3.92.

(b) In this question, the distribution of X is no longer the focus, but rather the distribution
of X is. Since X ∼ N

(
0, 2/

√
10

)
, it follows that the maximum error committed when

measuring a zipper 10 times is ∣∣X∣∣ =
2√
10

(1.96) = 1.24.

(c) Since X ∼ N(0, 2/
√

n ), it follows that

∣∣X∣∣ =
2√
n

(1.96) ≤ 1

must be solved for n. The solution is n ≥ (3.92)2 = 15.36. In other words, at least 16
zippers must be measured to ensure the maximum measurement error of the mean is no
more than 1 millimeter with 0.95 probability.
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6.5.1.2 Second Case: Sampling Distribution of X when X Is not a Normal
Random Variable

When the underlying population of X is not normal, provided the sample size is suffi-
ciently large, the sampling distribution of X is still normal. Specifically, the Central Limit
Theorem states that if X ∼ (μ, σ), then the limiting distribution of

Z =
X − μ

σ√
n

as n → ∞ is the standard normal distribution. Expressed in lay terms, the sampling
distribution of X, regardless of the underlying population, is approximately N (μ, σ/

√
n )

provided n is sufficiently large. Populations that are asymmetric require larger values of n
compared to symmetric populations before the sampling distribution of X appears normal.

Consider the left graph of Figure 6.3, which depicts a Unif (0, 10) population, while the
center graph of Figure 6.3 depicts the theoretical sampling distribution of X for samples
of size n = 2 when sampling is from a Unif (0, 10) population. Finally, the far right graph
of Figure 6.3 superimposes the theoretical sampling distribution of X for samples of size
n = 2 when sampling is from a Unif (0, 10) population over a normal distribution with a
mean and standard deviation corresponding to the mean and standard deviation of the
sampling distribution of X for samples of size n = 2 when sampling from the Unif (0, 10)
population. It is interesting to note in the far right graph in Figure 6.3, how closely the
triangular distribution resembles the normal distribution.

The sampling distributions of X associated with infinite populations are obviously
impossible to enumerate. However, simulation can be used to gain insight into the sampling
distribution of X when sampling from known populations. That is, a large number of
samples from a known population can be drawn and the distribution of X can be studied.
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FIGURE 6.3: The far left graph depicts a Unif (0, 10) distribution. The middle graph
depicts the theoretical sampling distribution of X for samples of size n = 2 when the
samples are drawn from a Unif (0, 10) distribution. The far left graph depicts a N(5, 2.0412)
distribution overlayed with the theoretical distribution of X for samples of size n = 2 when
the samples are drawn from a Unif (0, 10) distribution.

In what follows, the various graphs depicted in Figure 6.4 on the next page and Figure 6.5
on page 217 are examined to gain insight into how large the sample size, n, needs to be when
working with both symmetric distributions and skewed distributions such as the uniform
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distribution and the exponential distribution, respectively. S is used to simulate m = 50, 000
samples of sizes n = 2, 16, 36, and 100 from a Unif (−3.66025, 13.66025) distribution and
an Exp(5) distribution. Note that both the means and standard deviations are 5 and 5 for
these distributions.

Figure 6.4 depicts the simulated sampling distribution of X for samples of sizes n = 2 and
16 when one samples from a Unif (−3.66025, 13.66025) distribution and an Exp(5) distribu-
tion, respectively. Figure 6.5 on the facing page depicts the simulated sampling distribution
of X for samples of sizes n = 36 and 100 when sampling from a Unif (−3.66025, 13.66025)
distribution and an Exp(5) distribution, respectively. What should become evident from
looking at Figures 6.4 and 6.5 is that the sampling distribution of X when sampling from a
uniform distribution becomes approximately normal much sooner than does the sampling
distribution of X when sampling from an exponential distribution.

In addition to assessing the simulated sampling distributions of X graphically by su-
perimposing a normal density with mean and standard deviation equal to the mean and
standard deviation of the sampling distribution of X as shown in Figures 6.4 and 6.5,
Table 6.13 on the next page is provided which contains the percent of the simulated sampling
distribution of X that falls within (−∞, μX − 2σX], (μX − 2σX, μX − σX], (μX − σX, μX],
(μX, μX + σX], (μX + σX, μX + 2σX], and (μX + 2σX,∞] for sample sizes n = 2, 16,
36, and 100 when sampling from a Unif (−3.66025, 13.66025) distribution and an Exp(5)
distribution. By studying the percentages from the simulations in Table 6.13 on the facing
page, one can see that the simulated sampling distribution of X when sampling from an
exponential distribution is still slightly skewed even for sample sizes as large as n = 100.
To verify the numbers presented in Table 6.13 on the next page and to create graphs
similar to those in Figures 6.4 and 6.5, the user can use the code n2UNIFsim provided at
http://www1.appstate.edu/∼ arnholta/PASWR in the Chapter 6 script.
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FIGURE 6.4: Simulation 1 depicts the simulated sampling distribution of X for samples
of size n = 2 that are selected from a Unif (−3.66025, 13.66025) distribution. Simulation 2
depicts the simulated sampling distribution of X for samples of size n = 2 that are selected
from an Exp(5) distribution. Simulation 3 depicts the simulated sampling distribution of X
for samples of size n = 16 that are selected from a Unif (−3.66025, 13.66025) distribution.
Simulation 4 depicts the simulated sampling distribution of X for samples of size n = 16
that are selected from an Exp(5).
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FIGURE 6.5: Simulation 5 depicts the simulated sampling distribution of X for samples of
size n = 36 that are selected from a Unif (−3.66025, 13.66025) distribution. Simulation 6
depicts the simulated sampling distribution of X for samples of size n = 36 that are selected
from an Exp(5) distribution. Simulation 7 depicts the simulated sampling distribution of X
for samples of size n = 100 that are selected from a Unif (−3.66025, 13.66025) distribution.
Simulation 8 depicts the simulated sampling distribution of X for samples of size n = 100
that are selected from an Exp(5).

Table 6.13: Comparison of simulated uniform and exponential distributions to the normal
distribution, Int1 = (−∞, μX − 2σX], Int2 = (μX − 2σX, μX − σX], Int3 = (μX − σX, μX],
Int4 = (μX, μX + σX], Int5 = (μX + σX, μX + 2σX], Int6 = (μX + 2σX,∞]

Int1 Int2 Int3 Int4 Int5 Int6

N(0, 1) 0.0228 0.1359 0.3413 0.3413 0.1359 0.0228

Unif 0.01648 0.15822 0.32610 0.32558 0.15716 0.01646
n = 2

Exp 0.00000 0.11656 0.47684 0.26162 0.09878 0.04620

Unif 0.02340 0.13678 0.34134 0.33680 0.13926 0.02242
n = 16

Exp 0.00808 0.14872 0.37438 0.31216 0.12328 0.03338

Unif 0.02322 0.13578 0.34104 0.34108 0.13584 0.02304
n = 36

Exp 0.01348 0.14330 0.36422 0.32142 0.12668 0.03090

Unif 0.02194 0.13686 0.34072 0.34068 0.13694 0.02286
n = 100

Exp 0.01696 0.14242 0.35276 0.32958 0.13036 0.02792
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Example 6.14 Suppose that the shelf life, the number of days a product is on a store’s
shelf, for 1-gallon cartons of milk is a random variable with a Unif [1, 7] distribution. If a
store puts out 100 cartons of 1-gallon of milk for sale, find the probability that the average
number of days the cartons remain on the shelf exceeds 4.5 days.

Solution: Let the random variable X represent the number of days a 1 gallon carton of
milk is on a store’s shelf. Since X ∼ Unif [1, 7], using the equations from (4.9), the pdf of
X can be written as

f(x) =
1
6

if x ∈ [1, 7],

and the mean and variance of X as

E[X ] =
a + b

2
=

1 + 7
2

= 4, and Var [X ] =
(b − a)2

12
=

(7 − 1)2

12
= 3.

Let Xi, i = 1, . . . , 100, represent the actual times cartons of milk remain on the store’s shelf.
Since

E[Xi] = 4 and Var [Xi] = 3,

the average time is computed as

X =
1

100
(X1 + · · · + X100).

Consequently, the mean and variance of this sample mean are

E
[
X

]
= 4, Var

[
X

]
=

σ2

n
=

3
100

= 0.03.

Appealing to the Central Limit Theorem, write

X − E
[
X

]√
Var

[
X

] =
X − 4√

0.03
∼ N(0, 1),

which is equivalent to writing X ∼ N(4,
√

0.03). Consequently,

P
(
X > 4.5

)
= P

(
Z >

4.5 − 4√
0.03

)
= P(Z > 2.89) = 0.002.

The following code computes the answer with S:

> round(1 - pnorm(4.5,4, sqrt(.03)), 3)
[1] 0.002

Example 6.15 A building contractor provides a detailed estimate of his charges by listing
the price of all of his material and labor charges to the nearest dollar. Suppose the rounding
charge errors can be treated as independent random variables following Unif [−10, 10]
distributions. If a recent estimate from the building contractor listed 100 charges, find
the maximum error for the contractor’s estimate with probability of 0.95.

Solution: Using the equations from (4.9), if ei, i = 1, . . . , 100 are the estimate errors, then
E[ei] = b+a

2 = 0 and Var [ei] = (b−a)2

12 = 400
12 . It follows then that μē = 0 and σ2

ē =
400
12
100 = 1

3 .
Because of the relatively large (n = 100) sample size, the Central Limit Theorem tells us

that the distribution of ē is approximately normal with mean 0 and standard deviation
√

1
3 .
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Since the absolute error of the sum of the 100 charges is the sum of each one of the rounded
errors, e = e1 + · · · + e100, e = ē · n. Written mathematically,

P

⎛⎝−1.96 <
ē − 0√

1
3

< 1.96

⎞⎠ = 0.95.

Multiplying by n = 100 and
√

1
3 gives a probability expression for e:

P

(√
1
3
· 100 · (−1.96) < e <

√
1
3
· 100 · (1.96)

)
= 0.95

From the last expression, note that the maximum error for the estimate eMax, is
√

1
3 · 100 ·

(1.96) = 113.1607. In other words, the final job will not deviate more than 113 dollars from
the original estimate with 95% confidence.

6.5.2 Sampling Distribution for X̄ − Ȳ when Sampling from Two Inde-
pendent Normal Populations

The sampling distribution for X−Y is normal with mean μX−μY and standard deviation√
σ2

X

nX
+ σ2

Y

nY
, where nX and nY are the respective sample sizes. That is,

X − Y ∼ N

⎛⎝μX − μY ,

√
σ2

X

nX
+

σ2
Y

nY

⎞⎠
provided X and Y are independent random variables where X ∼ N(μX , σX) and Y ∼
N(μY , σY ). Since X and Y are independent normal random variables, the distributions of
their means are known. Specifically,

X ∼ N

(
μX ,

σX√
nX

)
and Y ∼ N

(
μY ,

σY√
nY

)
.

Proof: Using the results from Theorem 5.1 on page 176 and letting X1 = X, X2 = Y ,
a1 = 1, and a2 = −1, obtain

X − Y ∼ N

⎛⎝μX − μY ,

√
σ2

X

nX
+

σ2
Y

nY

⎞⎠ . (6.5)

Example 6.16 � Simulating X − Y � Use simulation to verify empirically that
if X ∼ N(μX , σX) and Y ∼ N(μY , σY ), the resulting sampling distribution of X −
Y is as given in (6.5). Specifically, generate and store in a vector named meansX the
means of 1000 samples of size nX = 100 from a normal distribution with μX = 100 and
σX = 10. Generate and store in a vector named meansY the means of 1000 samples
of size nY = 81 from a normal distribution with μY = 50 and σY = 9. Produce a
probability histogram of the differences between meansX and meansY, and superimpose the
probability histogram with a normal density having mean and standard deviation equal
to the theoretical mean and standard deviation for

(
X − Y

)
in this problem. Compute

the mean and standard deviation for the difference between meansX and meansY. Finally,
compute the empirical probability P

(
X − Y < 52

)
based on the simulated data as well as

the theoretical probability P
(
X − Y < 52

)
.
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Solution: In the S code that follows, m represents the number of samples, and nx, mux,
sigx, ny, muy, sigy, muxy, meansX, meansY, and XY represent nX , μX , σX , nY , μY , σY ,
μX − μY , X, Y , and X − Y , respectively. The set.seed() command is used so the same
values can be generated at a later date. Before running the simulation, note that the
theoretical distribution

(
X − Y

)
∼ N

(
100 − 50 = 50,

√
102/100 + 92/81 =

√
2
)
. The

probability histogram for the empirical distribution of
(
X − Y

)
is shown in Figure 6.6 on

the next page. Note that the empirical mean and standard deviation for
(
X − Y

)
are 50.01

and 1.44, respectively, which are very close to the theoretical values of 50 and
√

2 ≈ 1.41.
The empirical probability P

(
X − Y < 52

)
is computed by determining the proportion of(

X − Y
)

values that are less than 52. Note that the empirical answer for P
(
X − Y < 52

)
is 0.918, which is in agreement with the theoretical answer to two decimal places.

> set.seed(4)
> m <- 1000
> nx <- 100
> ny <- 81
> mux <- 100
> sigx <- 10
> muy <- 50
> sigy <- 9
> muxy <- mux - muy
> sigxy <- sqrt((sigx^2/nx) + (sigy^2/ny))
> meansX <- array(0, m) # Array of m zeros
> meansY <- array(0, m) # Array of m zeros
> for(i in 1:m) {meansX[i] <- mean(rnorm(nx, mux, sigx))}
> for(i in 1:m) {meansY[i] <- mean(rnorm(ny, muy, sigy))}
> XY <- meansX - meansY
> ll <- muxy - 3.4 * sigxy
> ul <- muxy + 3.4 * sigxy
> hist(XY, prob = TRUE, xlab = "xbar-ybar", nclass = "scott", col = 13,
+ xlim = c(ll, ul), ylim = c(0, 0.3), main="", ylab="")
> lines(seq(ll, ul, 0.05), dnorm(seq(ll, ul, 0.05), muxy, sigxy), lwd = 3)
> print(round(c(mean(XY), sqrt(var(XY))), 2))
[1] 50.01 1.44
> sum(XY < 52)/1000
[1] 0.918
> round(pnorm(52, 50, sqrt(2)), 2)
[1] 0.92

6.5.3 Sampling Distribution for the Sample Proportion

When Y is a binomial random variable, Y ∼ Bin(n, π), that represents the number of
successes obtained in n trials where the probability of success is π, the sample proportion
of successes is typically computed as

P =
Y

n
. (6.6)

The mean and variance, respectively, of the sample proportion of successes are

E[P ] = μP = π (6.7)
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FIGURE 6.6: Probability histogram for simulated distribution of
(
X − Y

)
with

superimposed normal density with μ = 50 and σ =
√

2.

and

Var [P ] = σ2
P =

π(1 − π)
n

. (6.8)

Equations (6.7) and (6.8) are easily derivable using the mean and variance of Y . Since

E[Y ] = nπ and Var [Y ] = nπ(1 − π),

it follows that

E[P ] = E

[
Y

n

]
=

1
n

E[Y ] = π,

and

σ2
P = Var [P ] = Var

[
Y

n

]
=

1
n2

Var [Y ] =
π(1 − π)

n
.

The Central Limit Theorem tells us that the proportion of successes is asymptotically
normal for sufficiently large values of n. So that the distribution of P is not overly skewed,
both nπ and n(1 − π) must be greater than or equal to 5. The larger nπ and n(1 − π) are,
the closer the distribution of P comes to resembling a normal distribution. The rationale
for applying the Central Limit Theorem to the proportion of successes rests on the fact that
the sample proportion can also be thought of as a sample mean. Specifically,

P =
Y1 + · · · + Yn

n
,

where each Yi value takes on a value of 1 if the element possesses the particular attribute
being studied and a 0 if it does not. That is, P is the sample mean for the Bernoulli random
variable Yi. Viewed in this fashion, write

Z =
P − π√

π(1−π)
n

�∼ N(0, 1). (6.9)

It is also fairly common to approximate the sampling distribution of Y with a normal
distribution using the relationship

Z =
Y − nπ√
nπ(1 − π)

�∼ N(0, 1). (6.10)
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Example 6.17 In plain variety M&M candies, the percentage of green candies is 10%.
Suppose a large bag of M&M candies contains 500 candies. What is the probability there
will be

(a) at least 11% green M&Ms?

(b) no more than 12% green M&Ms?

Solution: First, note that the population proportion of green M&Ms is π = 0.10. Since
neither n× π = 400× 0.10 = 40 nor n× (1 − π) = 400× 0.90 = 360 is less than 5, it seems
reasonable to appeal to the Central Limit Theorem for the approximate distribution of P .
Consequently,

P
�∼ N

(
π,

√
π(1 − π)

n

)
,

which, when using the numbers from the problem, becomes

P
�∼ N

(
0.10,

√
(0.10)(0.90)

500
= 0.01341641

)
.

If the random variable Y is equal to the number of green M&Ms, then the distribution of
Y can be approximated by

Y
�∼ N

(
nπ,

√
nπ(1 − π)

)
,

which, when using the numbers from the problem, becomes

Y
�∼ N

(
50,

√
500 · 0.10 · (1 − 0.10) = 6.708204

)
.

It is also possible to give the exact distribution of Y , which is Y ∼ Bin(n = 500, π = 0.10).

(a) The probabilities that at least 11% of the candies will be green M&Ms using the
approximate distribution of P , the approximate distribution of Y , and finally using the
exact distribution of Y are as follows:

P(P ≥ 0.11) = P

(
P − π

σP
≥ 0.11 − π

σP

)
≈ P

(
Z ≥ 0.11 − 0.10

0.01341641

)
= P(Z ≥ 0.745356) = 0.2280283

P(Y ≥ 55) = P

(
Y − nπ√
nπ(1 − π)

>
55 − nπ√
nπ(1 − π)

)
≈ P

(
Z ≥ 55 − 50

6.708204

)
= P(Z ≥ 0.745356) = 0.2280283

P(Y ≥ 55) =
500∑

i=55

(
500
i

)
(0.10)i(0.90)500−i = 0.2476933

(b) The probability that no more than 12% of the candies will be green M&Ms is
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P(P ≤ 0.12) = P

(
P − π

σP
≤ 0.12 − π

σP

)
≈ P

(
Z ≤ 0.12 − 0.10

0.01341641

)
= P(Z ≤ 1.490712) = 0.9319814

P(Y ≤ 60) = P

(
Y − nπ√
nπ(1 − π)

>
60 − nπ√
nπ(1 − π)

)
≈ P

(
Z ≤ 60 − 50

6.708204

)
= P(Z ≤ 1.490712) = 0.9319814

P(Y ≤ 60) =
60∑

i=0

(
500
i

)
(0.10)i(0.90)500−i = 0.9381745.

The following S commands compute the answers for (a) and (b):

> 1 - pnorm(0.11,0.10, sqrt(0.1*0.9/500))
[1] 0.2280283
> 1 - pnorm(55,500*0.1, sqrt(500*0.1*0.9))
[1] 0.2280283
> 1 - pbinom(54,500,0.10)
[1] 0.2476933

> pnorm(0.12,0.10, sqrt(0.1*0.9/500))
[1] 0.9319814
> pnorm(60,500*.10, sqrt(500*0.1*0.9))
[1] 0.9319814
> pbinom(60,500,0.1)
[1] 0.9381745

The astute observer will notice that the approximations are not equal to the exact answers.
This is due to the fact that a continuous distribution has been used to approximate a
discrete distribution. The accuracy of the answers can be improved by applying what is
called a continuity correction. Using the continuity correction, (6.9) and (6.10) become

Z =
P ± 0.5

n − π√
π(1−π)

n

�∼ N(0, 1) (6.11)

and

Z =
Y ± 0.5 − nπ√

nπ(1 − π)
�∼ N(0, 1). (6.12)

When solving less than or equal type inequalities, add the continuity correction; and
when solving greater than or equal type inequalities, subtract the continuity correction.
Notice how much closer the approximations are to the exact answers when the appropriate
continuity corrections are applied:
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P(P ≥ 0.11) = P

(
P − 0.5

500 − π

σP
≥

0.11 − 0.5
500 − π

σP

)
≈ P

(
Z ≥

0.11 − 0.5
500 − 0.10

0.01341641

)
= P(Z ≥ 0.6708204) = 0.2511675

P(Y ≥ 55) = P

(
Y − 0.5 − nπ√

nπ(1 − π)
>

55 − 0.5 − nπ√
nπ(1 − π)

)

≈ P

(
Z ≥ 55 − 0.5 − 50

6.708204

)
= P(Z ≥ 0.6708204) = 0.2511675

P(Y ≥ 55) =
500∑

i=55

(
500
i

)
(0.10)i(0.90)500−i = 0.2476933

P(P ≤ 0.12) = P

(
P + 0.5

500 − π

σP
≤

0.12 + 0.5
500 − π

σP

)
≈ P

(
Z ≤

0.12 + 0.5
500 − 0.10

0.01341641

)
= P(Z ≤ 1.565248) = 0.9412376

P(Y ≤ 60) = P

(
Y + 0.5 − nπ√

nπ(1 − π)
>

60 + 0.5 − nπ√
nπ(1 − π)

)

≈ P

(
Z ≤ 60 + 0.5 − 50

6.708204

)
= P(Z ≤ 1.565248) = 0.9412376

P(Y ≤ 60) =
60∑

i=0

(
500
i

)
(0.10)i(0.90)500−i = 0.9381745

Example 6.18 The 1999 North Carolina Department of Public Instruction, NC Youth
Tobacco Use Survey, reported that 38.3% of all North Carolina high school students used
tobacco products. If a random sample of 250 North Carolina high school students is taken,
find the probability that the sample proportion that use tobacco products will be between
0.36 and 0.40 inclusive.

Solution: Since neither n×π = 250×0.383 = 95.75 nor n×(1−π) = 250×0.617 = 154.25 is
less than 5, it seems reasonable to appeal to the Central Limit Theorem for the approximate
distribution of P . Consequently,

P
�∼ N

(
π,

√
π(1 − π)

n

)
,

which, when using the numbers from the problem, becomes

P
�∼ N

(
0.383,

√
(0.383)(0.617)

250
= 0.03074482

)
.
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Due to the discrete nature of the problem, appropriate continuity corrections should be
used:

P

(
.36 − 0.5

250
≤ P ≤ .40 +

0.5
250

)
= P(.358 ≤ P ≤ .402) = 0.5236417

To calculate P(0.358 ≤ P ≤ 0.402) with S, use pnorm():

> sig <- sqrt((0.383*0.617)/250)
> pnorm(0.402,0.383, sig) - pnorm(0.358,0.383, sig)
[1] 0.5236417

The exact answer to the problem can be solved using the binomial distribution as follows:

> pbinom(100,250,.383) - pbinom(89,250,.383)
[1] 0.5241166

6.5.4 Expected Value and Variance of the Uncorrected Sample Vari-
ance and the Sample Variance

Given a random sample X1, X2, . . . , Xn taken from a population with mean μ and
variance σ2, the expected value of the uncorrected variance, S2

u, is

E
[
S2

u

]
=

1
n

n∑
i=1

E
[(

Xi − X
)2
]
. (6.13)

Expanding the right-hand side of (6.13) gives
n∑

i=1

(
Xi − X

)2 =
n∑

i=1

[
(Xi − μ) +

(
μ − X

)]2
=

n∑
i=1

[
(Xi − μ)2 + 2

(
μ − X

)
(Xi − μ) +

(
μ − X

)2
]

=
n∑

i=1

(Xi − μ)2 + 2
(
μ − X

) n∑
i=1

(Xi − μ) + n
(
μ − X

)2

=
n∑

i=1

(Xi − μ)2 + 2
(
μ − X

) (
nX − nμ

)
+ n

(
μ − X

)2

=
n∑

i=1

(Xi − μ)2 − 2n
(
μ − X

)2
+ n

(
μ − X

)2

=
n∑

i=1

(Xi − μ)2 − n
(
μ − X

)2
.

(6.14)

Substituting the expression
∑n

i=1(Xi−μ)2−n
(
μ − X

)2
for

∑n
i=1

(
Xi − X

)2
in (6.13) gives

E
[
S2

u

]
=

1
n

E

[
n∑

i=1

(Xi − μ)2 − n
(
μ − X

)2

]

E
[
S2

u

]
=

1
n

(
nσ2 − n

σ2

n

)
E

[
S2

u

]
= σ2 − σ2

n

= σ2

(
n − 1

n

)
.

(6.15)
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As (6.15) shows, the expected value of S2
u, σ2

(
n−1

n

)
, is less than σ2. However, as n increases,

this difference diminishes. The variance for the uncorrected variance S2
u, is given by

Var
[
S2

u

]
=

μ4 − μ2
2

n
− 2(μ4 − 2μ2

2)
n2

+
μ4 − 3μ2

2

n3
, (6.16)

where μk = E
[
(X − μ)k

]
is the kth central moment. Using the definition for the sample

variance from (6.4), the expected value of S2 is readily verified to be σ2.
The probability distributions for S2

u and S2 are typically skewed to the right. The
skewness diminishes as n increases. Of course, the Central Limit Theorem indicates that
the distributions of both are asymptotically normal. However, the convergence to a normal
distribution is very slow and requires a very large n. The distributions of S2

u and S2 are
extremely important in statistical inference. Two special cases, examined next, are the
sampling distributions of S2

u and S2 when sampling from normal populations.

6.6 Sampling Distributions Associated with the Normal Distribu-
tion

6.6.1 Chi-Square Distribution (χ2)

The chi-square distribution is a special case of the gamma distribution covered in
Section 4.3.3 on page 139. In a paper published in 1900, Karl Pearson popularized the
use of the chi-square distribution to measure goodness-of-fit. The pdf, E(X), Var(X), and
the mgf for a chi-square random variable are given in (6.17), where Γ

(
n
2

)
is defined in (4.15).

Chi-Square Distribution
X ∼ χ2

n

f(x) =

⎧⎪⎨⎪⎩
1

Γ
(

n
2

)
2

n
2
· xn

2 −1e−
x
2 if x ≥ 0

0 if x < 0

E[X ] = n

Var [X ] = 2n

MX(t) = (1 − 2t)−
n
2 for t <

1
2

(6.17)

The chi-square distribution is strictly dependent on the parameter n, called the degrees
of freedom. In general, the chi-square distribution is unimodal and skewed to the right.
Three different chi-square distributions are represented in Figure 6.7 on the next page. The
notation used with the chi-square distribution to indicate α of the distribution is in the left
tail when the distribution has n degrees of freedom is χ2

α;n. For example, χ2
0.95;10 denotes

the value such that 95% of the area is to the left of said value in a χ2
10 distribution.

To find the value corresponding to χ2
0.95;10, use the S command qchisq(p, df), where

p is the area to the left (probability) and df is the degrees of freedom. The command gives
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> qchisq(.95, 10)
[1] 18.30704

which says that P(χ2
10 < 18.31) = 0.95.

n = 3

n = 6

n = 16

0 5 10 15 20 25 30 35

FIGURE 6.7: Illustrations of the pdfs of χ2
3, χ2

6, and χ2
16 random variables

Asymptotic properties. For large values of n (n > 100), the distribution of
√

2χ2
n

has an approximate normal distribution with a mean of
√

2n − 1 and a standard deviation
of 1. In other words, because

√
2χ2

n
�∼ N(

√
2n − 1, 1), Y =

√
2χ2

n −
√

2n − 1 �∼ N(0, 1).
For very large values of n, the approximation

Y =
χ2

n − n√
2n

�∼ N(0, 1)

may also be used.

Example 6.19 Compute the indicated quantities:

(a) P(χ2
150 ≥ 126)

(b) P(40 ≤ χ2
65 ≤ 50)

(c) P(χ2
220 ≥ 260)

(d) The value a such that P(χ2
100 ≤ a) = 0.6

Solution: The answers are computed first by hand using the approximation
√

2χ2
n

�∼
N(

√
2n − 1, 1). Then, the exact probabilities are calculated with S.

(a) P(χ2
150 ≥ 126) = P(

√
2χ2

150 −
√

299 ≥
√

2(126)−
√

299) ≈ P(Z ≥ −1.42) = 0.922.

> 1 - pchisq(126,150)
[1] 0.923393
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(b)

P(40 ≤ χ2
65 ≤ 50) = P(

√
2(40) ≤

√
2χ2

65 ≤
√

2(50))

= P(
√

80 −
√

129 ≤
√

2χ2
65 −

√
129 ≤

√
100 −

√
129)

≈ P(−2.41 ≤ Z ≤ −1.36) = 0.079.

> pchisq(50,65) - pchisq(40,65)
[1] 0.07861696

(c)

P(χ2
220 ≥ 260) = P(

√
2χ2

220 ≥
√

2 · 260)

= P(
√

2χ2
220 −

√
2(220)− 1 ≥

√
2 · 260 −

√
2(220)− 1)

≈ P(Z ≥ 1.85) = 0.032.

> 1 - pchisq(260,220)
[1] 0.03335803

(d)

P(χ2
100 ≤ a) = 0.6

P

(√
2χ2

100 −
√

2(100)− 1 ≤
√

2a −
√

2(100)− 1
)

= 0.6

P

(
Z ≤

√
2a −

√
2(100)− 1

)
= 0.6

0.2533 =
√

2a −
√

199
⇒ a = 103.106.

> qchisq(.6,100)
[1] 102.9459

Note that the approximations are close to the answers from S, but they are not exactly
equal.

6.6.1.1 The Relationship between the χ2 Distribution and the Normal Distri-
bution

In addition to describing the χ2 distribution as a special case of the gamma distribution,
the χ2 distribution can be defined as the sum of independent, squared, standard normal
random variables. If n is the number of summed independent, squared, standard normal
random variables, then the resulting distribution is a χ2 distribution with n degrees of
freedom, written χ2

n. That is,

χ2
n =

n∑
i=1

Z2
i , Zi ∼ N(0, 1). (6.18)
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To complete the proof of Theorem 6.1, recall that the derivative inside the integral when
certain characteristics are satisfied is

d

dθ

b(θ)∫
a(θ)

f(x, θ)dx = f(b(θ), θ)
d

dθ
b(θ) − f(a(θ), θ)

d

dθ
a(θ) +

b(θ)∫
a(θ)

∂f(x, θ)
∂θ

dx.

For the proof, the integral needed is

d

dθ

b(θ)∫
a(θ)

f(x; θ)dx =
d

dy

√
y∫

0

e−x2/2dx

= f(
√

y)
d

dy
(
√

y) − f(0)
d

dy
(0) +

√
y∫

0

∂e−x2/2

∂y
dx

= e−y/2 1
2
√

y
.

Theorem 6.1 If Z ∼ N(0, 1), then the random variable Y = Z2 ∼ χ2
1.

Proof: In this proof, it is shown that the distribution of Y is a χ2
1:

FY (y) = P(Z2 ≤ y) = P(−√
y ≤ Z ≤ √

y)

= 2P(0 ≤ Z ≤ √
y) =

2√
2π

∫ √
y

0

e−x2/2dx

Taking the derivative of FY (y) yields

f(y) =
dFY (y)

dy
=

2√
2π

1
2
√

y
e−y/2 =

1√
2Γ(1/2)

y(1/2)−1e−y/2, 0 ≤ y < ∞,

which is the pdf for a χ2
1.

Corollary 6.1 If X ∼ N(μ, σ), then Z = X−μ
σ ∼ N(0, 1), and Z2 ∼ χ2

1.

Theorem 6.2 If X1, . . . , Xr are independent random variables with chi-square distribu-
tions χ2

n1
, . . . , χ2

nr
, respectively, then

Y =
r∑

i=1

Xi ∼ χ2
s, where s =

r∑
i=1

ni.

Proof:

MY (t) = E[etY ] =
r∏

i=1

E[etXi ] =
r∏

i=1

MXi(t)

=
r∏

i=1

(1 − 2t)−
ni
2 = (1 − 2t)

− 1
2

r∑
i=1

ni

which is the mgf for a χ2
s distribution.
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One of the properties of χ2 distributions is that of reproducibility. In other words, the
sum of independent χ2 random variables is also a χ2 distribution with degrees of freedom
equal to the sum of the degrees of freedom of each of the independent χ2 random variables.

Corollaries 6.2 and 6.3 are direct consequences of Theorem 6.2 on the preceding page.

Corollary 6.2 If X1, . . . , Xn are independent random variables following a N(0, 1) dis-
tribution, then

Y =
n∑

i=1

X2
i ∼ χ2

n.

Corollary 6.3 If X1, . . . , Xn are independent random variables with N(μi, σi) distribu-
tions, respectively, then

Y =
n∑

i=1

(Xi − μi)2

σ2
i

∼ χ2
n.

Example 6.20 Given 10 independent and identically distributed (i.i.d.) random variables
Yi, where Yi ∼ N(0, σ = 5) for i = 1, . . . , 10, compute

(a) P

(
10∑

i=1

Y 2
i ≤ 600

)

(b) P

(
1
10

10∑
i=1

Y 2
i ≥ 12.175

)

(c) The number a such that P

⎛⎝
√√√√ 1

10

10∑
i=1

Y 2
i ≥ a

⎞⎠ = 0.5

Solution: The answers are computed using S. Be sure to note that Z = Yi−0
5 = Yi

5 .
(a)

P

(
10∑

i=1

Y 2
i ≤ 600

)
= P

(
10∑

i=1

(
Yi

5

)2

≤ 600
25

)
= P(χ2

10 ≤ 24) > 0.99.

Using the S command pchisq(24,10) gives P
(
χ2

10 ≤ 24
)

= 0.9923996:

> pchisq(24,10)
[1] 0.9923996

(b)

P

(
1
10

10∑
i=1

Y 2
i ≥ 12.175

)
= P

(
10∑

i=1

(
Yi

5

)2

≥ 12.175(10)
25

)
= P(χ2

10 ≥ 4.87) = 0.90.

> 1 - pchisq(4.87,10)
[1] 0.8996911



Sampling and Sampling Distributions 231

(c)

P

(
1
10

10∑
i=1

Y 2
i ≥ a2

)
= P

(
10∑

i=1

(
Yi

5

)2

≥ 10a2

25

)

= P

(
χ2

10 ≥ 10a2

25

)
= 0.5

Using the S command qchisq(), the value χ2
10,0.50 = 9.34 is calculated:

> qchisq(0.50,10)
[1] 9.341818

Consequently, 10a2

25 = 9.34, which yields a = 4.83.

6.6.1.2 Sampling Distribution for S2
u and S2 when Sampling from Normal

Populations

In this section, the resulting sampling distributions for S2
u and S2 given in Table 6.4 on

page 205 when sampling from a normal distribution are considered. Note that
∑n

i=1(Xi −
X)2 = nS2

u = (n − 1)S2 and that dividing this by σ2 yields

n∑
i=1

(
Xi − X

)2

σ2
=

nS2
u

σ2
=

(n − 1)S2

σ2
(6.19)

The first term in (6.19) appears to be some type of standardized normal random variable.
However, it is not, since the sample mean of a random variable is itself a random variable
and not a constant. So, what is the distribution then of nS2

u/σ2? Theorem 6.3 tells us that
the distribution of nS2

u/σ2 is χ2
n−1.

Theorem 6.3 Let X1, . . . , Xn be a random sample from a N(μ, σ) distribution. Then,

(1) X and S2 are independent random variables. Likewise, X and S2
u are independent

random variables.

(2) The random variable

nS2
u

σ2
=

(n − 1)S2

σ2
=

n∑
i=1

(
Xi − X

)2

σ2
∼ χ2

n−1

Proof: A detailed proof of part (1) in Theorem 6.3 is beyond the scope of the text, and
the statement will simply be assumed to be true. The independence between X and S2 is
a result of normal distributions. Almost without exception, the estimators X and S2 are
dependent in all other distributions.

To prove part (2) of Theorem 6.3, use Corollary 6.3 to say that
∑n

i=1
(Xi−μ)2

σ2 ∼ χ2
n.

Then, rearrange the terms to find an expression for
∑n

i=1
(Xi−X )2

σ2 for which the distribution
is recognizable. Start by rearranging the numerator of the χ2

n distribution:

n∑
i=1

(Xi − μ)2 =
n∑

i=1

[(
Xi − X

)
+

(
X − μ

)]2
=

n∑
i=1

(
Xi − X

)2
+

n∑
i=1

(
X − μ

)2
+ 2

n∑
i=1

(
Xi − X

) (
X − μ

)
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Since
n∑

i=1

(
Xi − X

) (
X − μ

)
=

(
X − μ

) n∑
i=1

(
Xi − X

)
= 0,

it follows that
n∑

i=1

(Xi − μ)2 =
n∑

i=1

(
Xi − X

)2 + n(X − μ)2. (6.20)

Dividing (6.20) by σ2 gives∑n
i=1(Xi − μ)2

σ2
=

∑n
i=1

(
Xi − X

)2

σ2
+

n
(
X − μ

)2

σ2
,

which is the same as ∑n
i=1(Xi − μ)2

σ2
=

(n − 1)S2

σ2
+

n(X − μ)2

σ2
. (6.21)

Since X ∼ N(μ, σ√
n
), it follows that n(X̄−μ)2

σ2 ∼ χ2
1 by Corollary 6.1 on page 229. To

simplify notation, let Y , Y1, and Y2 represent
∑n

i=1(Xi−μ)2

σ2 , (n−1)S2

σ2 , and n(X̄−μ)2

σ2 in (6.21),
respectively. By part (1) of Theorem 6.3 on the preceding page, Y1 and Y2 are independent.
Therefore,

E
[
etY

]
= E

[
et(Y1+Y2)

]
= E

[
etY1

]
· E

[
etY2

]
(1 − 2t)−

n
2 = E

[
etY1

]
· (1 − 2t)−

1
2

(1 − 2t)−
(n−1)

2 = E
[
etY1

]
= MY1(t) ⇒ Y1 ∼ χ2

n−1.

Note that Y1 =
∑n

i=1(Xi−X̄)2

σ2 ∼ χ2
n−1 is based on the n quantities X1 − X, X2 −

X, . . . , Xn − X, which sum to zero. Consequently, specifying the values of any n − 1 of
the quantities determines the remaining value. That is, only n− 1 of the quantities are free
to vary. In contrast, Y =

∑n
i=1(Xi−μ)2

σ2 ∼ χ2
n has n degrees of freedom since there are no

restrictions on the quantities X1 − μ, X2 − μ, . . . , Xn − μ. In general, when statistics are
used to estimate parameters, one degree of freedom is lost for each estimated parameter.

Example 6.21 Show that E(S2
u), E(S2), Var(S2

u), and Var(S2) are equal to (n−1)σ2

n , σ2,
2(n−1)σ4

n2 , and 2σ4

n−1 , respectively, when sampling from a normal distribution.

Solution: It is known that nS2
u

σ2 = (n−1)S2

σ2 ∼ χ2
n−1 according to Theorem 6.3 on the

previous page. Therefore,

(a)

E

[
nS2

u

σ2

]
= E

[
χ2

n−1

]
= n − 1 , so

n

σ2
E

[
S2

u

]
= n − 1 ⇒ E

[
S2

u

]
=

(n − 1)σ2

n

(b)

E

[
(n − 1)S2

σ2

]
= E

[
χ2

n−1

]
= n − 1

(n − 1)
σ2

E
[
S2

]
= n − 1 ⇒ E

[
S2

]
= σ2
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(c)

Var
[
nS2

u

σ2

]
= Var

[
χ2

n−1

]
= 2(n − 1)

n2

σ4
Var

[
S2

u

]
= 2(n − 1) ⇒ Var

[
S2

u

]
=

2(n − 1)σ4

n2

(d)

Var
[
(n − 1)S2

σ2

]
= Var

[
χ2

n−1

]
= 2(n − 1)

(n − 1)2

σ4
Var

[
S2

]
= 2(n − 1) ⇒ Var

[
S2

]
=

2σ4

(n − 1)

Example 6.22 A random sample of size 11 is taken from a N(μ, σ) distribution where
both the mean and the standard deviation are unknown and the sample variance S2 is
computed. Compute the P(0.487 < S2

σ2 < 1.599).

Solution: According to Theorem 6.3 on page 231, (n−1)S2

σ2 ∼ χ2
n−1, which implies 10S2

σ2 ∼
χ2

10:

P

(
0.487 <

S2

σ2
< 1.599

)
= P

(
0.487(10) <

10S2

σ2
< 1.599(10)

)
= P(4.87 < χ2

10 < 15.99)

= P(χ2
10 < 15.99)− P(χ2

10 < 4.87)
= 0.90 − 0.10 = 0.80

To find P(χ2
10 < 15.99) and P(χ2

10 < 4.87), one can use the S command pchisq():

> pchisq(15.99,10) - pchisq(4.87,10)
[1] 0.7997721

Example 6.23 A custom door manufacturer knows that the measurement error in the
height of his final products (the door height minus the order height) follows a normal
distribution with a variance of σ2 = 225 mm2. A local contractor building custom bungalows
orders 31 doors. What is the P(S > 18.12 mm) for the 31 doors, and what is the expected
value of S2?

Solution:

P(S > 18.12) = P

(
n − 1
σ2

S2 >
30
225

18.122

)
= P(χ2

30 > 43.78) ≈ 0.05

The following computes P(χ2
30 > 43.78) with S:

> 1 - pchisq(43.78,30)
[1] 0.04992715

Since the expected value of S2 is the population variance, E
[
S2

]
= 225.



234 Probability and Statistics with R

Example 6.24 � Probability Distribution of (n − 1)S2/σ2 � Use simulation to
generate m = 1000 samples of size n = 15 from both a N(0, 1) distribution and an Exp(1)
distribution. Compute the statistic (n − 1)S2/σ2 for both the normally and exponen-
tially generated values, labeling the first NC14 and the second EC14. Produce probability
histograms for NC14 and EC14 and superimpose the theoretical distribution for a χ2

14 dis-
tribution on both. Repeat the entire process with samples of size n = 100. That is, use
simulation to generate m = 1000 samples of size n = 100 from both a N(0, 1) distribution
and an Exp(1) distribution. Compute the statistic (n − 1)S2/σ2 for both the normally
and exponentially generated values, labeling the first NC99 and the later EC99. Produce
probability histograms for NC99 and EC99, and superimpose the theoretical distribution
for a χ2

99 distribution on both. What can be concluded about the probability distribution
of (n − 1)S2/σ2 when sampling from a normal distribution and when sampling from an
exponential distribution based on the probability histograms?

Solution: The S code that follows generates the required values. To obtain reproducible
values, use set.seed(). In this solution, set.seed(302) is used.

> set.seed(302)
> par(mfrow=c(2,2))
> m <- 1000; n <- 15
> varNC14 <- array(0, m) # Array with m zeros
> for (i in 1:m) {varNC14[i] <- var(rnorm(n))}
> NC14 <- (n-1)*varNC14/1
> hist(NC14, prob=TRUE, ylim=c(0,0.09), xlab="NC14", col=2, xlim=c(0,60),
+ nclass="scott", main="", ylab="")
> lines(seq(0,60,.1), dchisq(seq(0,60,.1), n-1), lwd=3)
> varEC14 <- array(0, m)
> for (i in 1:m) {varEC14[i] <- var(rexp(n))}
> EC14 <- (n-1)*varEC14/1
> hist(EC14, prob=TRUE, ylim=c(0,0.09), xlab="EC14", col=4, xlim=c(0,60),
+ nclass="scott", main="", ylab="")
> lines(seq(0,60,.1), dchisq(seq(0,60,.1), n-1), lwd=3)
> n <- 100
> varNC99 <- array(0, m)
> for (i in 1:m) {varNC99[i] <- var(rnorm(n))}
> NC99 <- (n-1)*varNC99/1
> hist(NC99, prob=TRUE, ylim=c(0,0.03), xlab="NC99", col=2, xlim=c(0,210),
+ nclass="scott", main="", ylab="")
> lines(seq(0,210,.1), dchisq(seq(0,210,.1), n-1), lwd=3)
> varEC99 <- array(0, m)
> for (i in 1:m) {varEC99[i] <- var(rexp(n))}
> EC99 <- (n-1)*varEC99/1
> hist(EC99, prob=TRUE, ylim=c(0,0.03), xlab="EC99", col=4, xlim=c(0,210),
+ nclass="scott", main="", ylab="")
> lines(seq(0,210,.1), dchisq(seq(0,210,.1), n-1), lwd=3)
> NC14 <- c(mean(varNC14), var(varNC14), mean(NC14), var(NC14))
> EC14 <- c(mean(varEC14), var(varEC14), mean(EC14), var(EC14))
> NC99 <- c(mean(varNC99), var(varNC99), mean(NC99), var(NC99))
> EC99 <-c (mean(varEC99), var(varEC99), mean(EC99), var(EC99))
> MAT <- round(rbind(NC14, EC14, NC99, EC99), 4)
> colNAM <- c("E(S^2)", "Var(S^2)", "E(X^2)", "Var(X^2)")
> rowNAM <- c("NC14", "EC14" ,"NC99", "EC99")
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> dimnames(MAT) <- list(rowNAM , colNAM)

> print(MAT) # Numerical values for Table 6.14

Table 6.14: Output for Example 6.24

E
[
S2

]
Var

[
S2

]
E

[
(n−1)S2

σ2

]
Var

[
(n−1)S2

σ2

]
NC14 1.0003 0.1458 14.0039 28.5763

EC14 1.0119 0.5470 14.1666 107.2084

NC99 0.9995 0.0193 98.9491 189.1410

EC99 1.0092 0.0879 99.9125 861.1833

Examine Table 6.14, and note that the means for the simulated S2 values
(
E(S2)

)
for

NC14, EC14, NC99, and EC99 are all close to the theoretical variance (σ2 = 1). However,
only when sampling from a normal distribution does the variance of S2 equal 2σ4/(n − 1).
That is, the simulated Var(S2) values for NC14 and NC99 are 0.1458 and 0.0193, which are
close to the theoretical values of 2/14 = 0.1428571 and 2/99 = 0.02020202. The means and
variances for the simulated (n − 1)S2/σ2 values are approximately (n − 1) and 2(n − 1),
respectively, for NC14 and NC99. However, the variances of (n − 1)S2/σ2 when sampling
from an exponential are not close to the values returned with NC14 and NC99, nor is the
simulated sampling distribution for (n − 1)S2/σ2 approximated very well with a χ2

n−1

distribution when sampling from an exponential distribution, as evidenced by the graphs
on the right-hand side of Figure 6.8 on the following page. In other words, the sampling
distribution for (n − 1)S2/σ2 can only be guaranteed to follow a χ2

n−1 distribution when
sampling is from a normal distribution.

6.6.2 t-Distribution

Given a random sample X1, . . . , Xn that is drawn from a N(μ, σ) distribution, X ∼
N(μ, σ/

√
n), which implies

X − μ

σ/
√

n
∼ N(0, 1). (6.22)

The quantity (6.22) is used primarily for inference regarding μ. However, this inference
assumes σ is known. The assumption of a known σ is generally not reasonable. That is,
if μ is unknown, it almost certainly follows that σ will be unknown as well. Fortunately,
inference regarding μ can still be performed if σ is replaced by S in (6.22). Specifically, the
quantity

X − μ

S/
√

n
(6.23)

follows a well-known distribution, described next.

Definition 6.1: Given two independent random variables Z and U , where Z ∼ N(0, 1)
and U ∼ χ2

ν , we define the t-distribution with ν degrees of freedom as the ratio of Z divided
by the square root of U divided by its degrees of freedom. That is,

T =
Z√
Uν

ν

∼ tν . (6.24)
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FIGURE 6.8: Probability histograms for simulated distributions of (n−1)S2

σ2 when sampling
from normal and exponential distributions. NC14 designates the simulated sampling
distributions of (n−1)S2

σ2 when taking samples of sizes n = 15 from a normal distribution. In
a similar fashion, NC99 denotes the simulated sampling distribution when taking samples
of size n = 100 from a normal distribution. EC14 and EC99 are analogous to NC14 and
NC99 with the exception that the sampling is done from an exponential distribution. The
superimposed density on all curves is a χ2

n−1.

Using definition 6.1, one can readily see why (6.23) follows a t-distribution with n − 1
degrees of freedom since

X − μ

S/
√

n
=

X − μ

σ√
n

√
(n−1)S2

(n−1)σ2

=
X−μ
σ/

√
n√

χ2
n−1

n−1

=
Z√
Un−1
n−1

∼ tn−1.

The t-distribution, also called Student’s t-distribution, was first described in a paper pub-
lished by William Sealy Gosset under the pseudonym “Student.” Gosset was employed by
Guiness Breweries when his research relating to the t-distribution was published. Since Gui-
ness Breweries had a policy preventing research publications by its staff, Gosset published
his findings under the pseudonym “Student.” Consequently, the t-distribution is often called
Student’s t-distribution in his honor. The pdf, expectation, and variance of a t-distribution
with ν degrees of freedom are given in (6.25).

t-Distribution
X ∼ tν

f(x) =
Γ
(

ν+1
2

)
√

πνΓ
(

ν
2

) (
1 +

x2

ν

)− ν+1
2

for −∞ < x < ∞

E[X ] = 0

Var [X ] =
ν

ν − 2
for ν > 2

(6.25)
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The shape of the t-distribution is similar to that of the normal distribution; but for small
sample sizes, it has heavier tails than the N(0, 1). Figure 6.9 illustrates the densities for
t-distributions with 1, 3, and ∞ degrees of freedom, respectively. Note that tα;∞ = zα. To
find the quantity tα;ν , the S command pt(α, ν) can be used. In particular, suppose t0.80;1,
depicted in Figure 6.9, is desired. Using the S command pt(0.80,1) gives 1.376382 for the
answer.

t1

t3

t∞

t0.80;1−6 −4 −2 0 4 6

FIGURE 6.9: Illustrations of the pdfs of t1 (dashed line), t3 (dotted line), and t∞ (solid
line) random variables.

Example 6.25 The tensile strength for a type of wire is normally distributed with an
unknown mean μ and an unknown variance σ2. Five pieces of wire are randomly selected
from a large roll, and the strength of each segment of wire is measured. Find the probability
that Y will be within 2S√

n
of the true population mean, μ.

Solution: The solution is

P

(
μ − 2S√

n
≤ Y ≤ μ +

2S√
n

)
= P

(
− 2S√

n
≤ Y − μ ≤ 2S√

n

)
= P

(
−2 ≤ Y − μ

S/
√

n
≤ 2

)
= P (−2 ≤ t4 ≤ 2) = 0.8838835.

Note that if σ were known, P (−2 ≤ Z ≤ 2) = 0.9544.

The Sampling Distribution for X − Y when σX and σY Are Unknown but
Assumed Equal

Theorem 6.4 Given two random samples X1, . . . , XnX and Y1, . . . , YnY that are taken
from independent normal populations where X ∼ N(μX , σX), Y ∼ N(μY , σY ), and σX =
σY , the random variable [(

X − Y
)
− (μX − μY )

]√
(nX−1)S2

X+(nY −1)S2
Y

nX+nY −2

(
1

nX
+ 1

nY

) ∼ tnX+nY −2. (6.26)
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Proof: Since X −Y ∼ N

(
μX − μY ,

√
σ2

X

nX
+ σ2

Y

nY

)
, according to Theorem 5.1 on page 176,

Z =

(
X − Y

)
− (μX − μY )√

σ2
X

nX
+ σ2

Y

nY

∼ N(0, 1).

By Theorem 6.3 on page 231, (nX−1)S2
X

σ2
X

∼ χ2
nX−1 and (nY −1)S2

Y

σ2
Y

∼ χ2
nY −1. Since X and Y

are independent, it follows that

W =
(nX − 1)S2

X

σ2
X

+
(nY − 1)S2

Y

σ2
Y

∼ χ2
nX+nY −2

from Theorem 6.2 on page 229. Using the definition of the t-distribution, given in defi-
nition 6.1 on page 235, Z√

W
ν

∼ tν . In this particular case, ν = nX + nY − 2 and, since

σX = σY = σ is assumed,

Z√
W

ν

=

(
X − Y

)
− (μX − μY )√

σ2
X

nX
+

σ2
Y

nY√√√√√ (nX − 1)S2
X

σ2
X

+
(nY − 1)S2

Y

σ2
Y

nX + nY − 2

=

(
X − Y

)
− (μX − μY )

σ

√
1

nX
+

1
nY

· 1

1
σ

√
(nX − 1)S2

X + (nY − 1)S2
Y

nX − nY − 2

=

[(
X − Y

)
− (μX − μY )

]√
(nX − 1)S2

X + (nY − 1)S2
Y

nX + nY − 2

(
1

nX
+

1
nY

) ∼ tnX+nY −2.

6.6.3 The F Distribution

In Section 6.6.2, it was seen how the t-distribution can be used to make statements about
an unknown mean μ when σ is also unknown. Another common problem statisticians face is
that of comparing unknown variances, for example, in manufacturing processes, in mixtures,
or in quality from different suppliers of goods. The distribution that allows us to make these
comparisons is the F distribution.

Definition 6.2: If U and V are independent random variables, each with a χ2 distribution
with ν1 and ν2 degrees of freedom, respectively, then

U
ν1

V
ν2

∼ Fν1,ν2 .

The pdf, expected value, and variance of an F distribution are given in (6.27).
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F Distribution
X ∼ Fν1,ν2

f(x) =
Γ
(

ν1+ν2
2

)
Γ
(

ν1
2

)
Γ
(

ν2
2

) (
ν1

ν2

) ν1
2

x
ν1
2 −1

(
1 +

ν1

ν2
x

)− 1
2 (ν1+ν2)

E[X ] =
ν2

ν2 − 2

Var [X ] =
2ν2

2(ν1 + ν2 − 2)
ν1(ν2 − 2)2(ν2 − 4)

provided ν2 > 4

(6.27)

The F distribution depends on its degrees of freedom and is characterized by a positive
skew. Figure 6.10 illustrates three different F density curves.

f0.025;19,19 f0.975;19,190 6

F2,4

F4,9

F19,19

FIGURE 6.10: Illustrations of the pdfs of F2,4 (solid line), F4,9 (dotted line), and F19,19

(dashed line) random variables

Theorem 6.5 If there are two random samples X1, . . . , XnX and Y1, . . . , YnY that are
taken from independent normal populations where X ∼ N(μX , σX) and Y ∼ N(μY , σY ),
then the random variable

S2
X

σ2
X

S2
Y

σ2
Y

∼ FnX−1,nY −1. (6.28)
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Proof: Since S2
X

σ2
X

∼ χ2
nX−1

nX−1 and S2
Y

σ2
Y

∼ χ2
nY −1

nY −1 , by Theorem 6.3 on page 231, it follows that

S2
X

σ2
X

S2
Y

σ2
Y

∼ FnX−1,nY −1.

To find the value fα; ν1, ν2 , where P(Fν1, ν2 < fα; ν1, ν2) = α, with S, use the command qf(p,
df1, df2), where p is the area to the left (probability) in an F distribution with ν1 =df1
and ν2 =2.

Example 6.26 Find the constants c and d such that P(F5,10 < c) = 0.95 and P(F5,10 <
d) = 0.05.

Solution: Using the S commands qf(0.95,5,10) and qf(0.05,5,10) returns the values
3.325835 and 0.2111904, respectively.

Example 6.27 Use S to find the values associated with the points f0.025;19,19 and
f0.975;19,19 depicted in Figure 6.10 on the previous page.

Solution: The answers using S are

> qf(.975,19,19)
[1] 2.526451
> qf(.025,19,19)
[1] 0.3958122

Note that a relationship exists between the t- and F distributions. Namely, t2ν = F1,ν ,
and the relationship between the values in both distributions is

t21−α/2; ν = f1−α; 1,ν . (6.29)

For example, t20.975; 5 = 2.5712 = 6.61 = F0.95; 1,5.
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6.7 Problems

1. How many ways can a host randomly choose 8 people out of 90 in the audience to
participate in a TV game show?

2. Let X be a t5.

(a) Find P(X < 3).

(b) Calculate P(2 < X < 3).

(c) Find a so that P(X < a) = 0.05.

3. If (1 − 2t)−5, t < 1
2 , is the mgf of a random variable X , find P(X < 15.99).

4. If X ∼ χ2
10, find the constants a and b so that P(a < X < b) = 0.90 and P(X < a) = 0.05.

5. Let X be a χ2
10. Calculate P(X < 8) and P(X > 6). Calculate a so that P(X < a) = .05.

What are the population mean and population variance of X?

6. Let X be distributed as an F2,5. Calculate P(X < 1) and the median of X . Calculate a
so that P(X < a) = 0.10. What are the population mean and population variance of X?

7. Assume a population with 5 elements:

X1 = 0, X2 = 1, X3 = 2, X4 = 3, X5 = 4.

(a) Calculate X and σ2.

(b) Calculate the sampling distribution of the mean for random samples of size 3 taken
without replacement. Verify that the mean of X is 2 and that the variance of X is
σ2

/6 .

(c) Calculate the sampling distribution of X for random samples of size 3 taken with
replacement. Verify that the mean of X is 2 and that the variance of X is σ2

/n .

8. A population has the following elements: 2, 5, 8, 12, 13.

(a) Enumerate all the samples of size 2 that can be drawn with and without replacement.

(b) Calculate the mean of the population.

(c) Calculate the variance of the population.

(d) Calculate the standard deviation of the population.

(e) Calculate the mean of the sample mean, E[X ].

(f) Calculate the variance of the sampled mean, Var
(
X

)
.

(g) Calculate the standard deviation of the sample mean.

(h) Calculate the mean of the sample variance, E
[
S2

]
.

(i) Is the variance of X larger when sampling with or without replacement? Explain
your answer.

9. Determine whether the following expressions are statistics or not:

(a)
∑n

i=1 Xi
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(b)
∑n

i=1 Xi − X

(c) X − σ

(d) X1 + X2/6

10. Use the data frame wheatUSA2004 from the PASWR package; draw all samples of sizes 2, 3,
and 4; and calculate the mean of the means. What size provides the best approximation
to the population mean? What is the variance of these means?

11. Given a random sample of size 6 from N(0, σ), calculate

(a) P

(
X
S > 2

)
and

(b) P

(∣∣ X
Su

∣∣ ≤ 4
)

.

12. Constant velocity joints (CV joints) allow a rotating shaft to transmit power through a
variable angle, at constant rotational speed, without an appreciable increase in friction
or play. An after-market company produces CV joints. To optimize energy transfer, the
drive shaft must be very precise. The company has two different branches that produce
CV joints where the variability of the drive shaft is known to be 2 mm. A sample of
n1 = 10 is drawn from the first branch, and a sample of n2 = 15 is drawn from the
second branch. Suppose that the diameter follows a normal distribution. What is the
probability that the drive shafts coming from the first branch will have greater variability
than those of the second branch?

13. Given a population N(μ, σ) with unknown mean and variance, a sample of size 11 is
drawn and the sample variance S2 is calculated. Calculate the probability P(0.5 <
S2

/σ2 < 1.2).

14. Simulate 20,000 random samples of sizes 30, 100, 300, and 500 from an exponential
distribution with a mean of 1/5 . Estimate the density of the sampling distribution with
the function density(). Superimpose a theoretical normal density with appropriate
mean and standard deviation. What sample size is needed to get an estimated density
close to a normal density?

15. The plastic tubes produced by company X for the irrigation system used in golf courses
have a length of 1.5 meters and a standard deviation of 0.1 meter. The plastic tubes
produced by company Y have a length of 1 meter and a standard deviation of 0.09 meter.
Suppose that both tube lengths follow normal distributions.

(a) Calculate the probability that a random sample of 15 tubes from company X has a
mean length at least 0.45 meter greater than the mean length of a random sample
of size 20 from company Y .

(b) Suppose that the population variances are unknown but equal, Sx = 0.1, and
Sy = 0.09. Calculate the probability that a random sample of 15 plastic tubes from
company X has a mean length at least 0.45 meter greater than the mean length of
a random sample of 20 plastic tubes from company Y .

16. Plot the density function of an F4,6 random variable. Find the area to the left of x = 3
and shade this region in the original plot.

17. Let X1, X2, X3, X4 be a random sample from a N(0, σ). Calculate the distribution of
(X1−X2)

2

(X3+X4)2
.
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18. Let X1, X2, X3, X4, X5, X6 be a random sample drawn from a N(0, σ2) population. Find
the values of c so that the statistic cX1+X2+X3√

X2
4+X2

5+X2
6

follows a t3-distribution.

19. Consider a random sample of size n from an exponential distribution with parameter
λ. Use moment generating functions to show that the sample mean follows a Γ(n, λn).
Graph the theoretical sampling distribution of X when sampling from an Exp(λ = 1) for
n = 30, 100, 300, and 500. Superimpose an appropriate normal density for each Γ(n, λn).
At what sample size do the sampling distribution and superimposed density virtually
coincide?

20. Set the seed equal to 10, and simulate 20,000 random samples of size nx = 65 from a
N(4, σx =

√
2 ), 20,000 random samples of size ny = 90 from a N(5, σy =

√
3 ) and verify

that the simulated statistic S2
x/σ2

x

S2
y/σ2

y

follows an F64,89 distribution.

21. Set the seed equal to 95, and simulate m = 20, 000 random samples of size n = 1000
from a Bernoulli(π = 0.4). Verify that the sample proportion follows an approximate
normal distribution with a mean approximately equal to 0.4 and a standard deviation
approximately equal to 0.01549.

22. A communication system consists of n components, where the probability that each
component works is π. The system will work if at least half of its components work. For
what values of π will a system consisting of 5 components have a greater probability of
working than a system consisting of 3 components? Plot the probability each system
(n = 5 and n = 3) works for values of π from 0 to 1 in increments of 0.01.

23. Given X ∼ N(0, σ = 1), Y ∼ N(2, σ = 2), and Z ∼ N(4, σ = 3), what is the distribution
of W = X + Y + Z? Set the seed equal to 368 and simulate 1000 samples, each of
size 1 for X , Y , and Z. Add the values in the three vectors to obtain W ’s empirical
distribution. Create a density histogram of the simulated values of W and superimpose
the theoretical density of W .

24. Set the seed equal to 48, and simulate a χ2
3 distribution by summing the squares of

three simulated standard normal random variables, each having length 20,000. Create a
density histogram of the simulated χ2

3 random variable. Superimpose the theoretical χ2
3

density over the histogram.

25. Verify empirically that
N(0, 1)(
1
5χ2

5

) 1
2
∼ t5

by setting the seed equal to 36 and generating a sample of size 1000 from a N(0, 1)
distribution. Generate another sample of size 1000 from a χ2

5 distribution. Perform the
appropriate arithmetic to arrive at the simulated sampling distribution. Create a density
histogram of the results and superimpose a theoretical t5 density.

26. A farmer is interested in knowing the mean weight of his chickens when they leave the
farm. Suppose that the standard deviation of the chickens’ weight is 500 grams.

(a) What is the minimum number of chickens needed to ensure the a standard deviation
of the mean is no more than 100 grams with a confidence level of 0.95?

(b) If the farm has three coops and the mean chicken weight in each coop is 1.8, 1.9,
and 2 kg, respectively, calculate the probability that a random sample of 50 chickens
with an average weight larger than 1.975 kg comes from the first coop. Assume the
weight of the chickens follows a normal distribution.
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27. Find the required sample size (n) to estimate the proportion of students spending more
than e10 a week on entertainment with a 95% confidence interval so that the margin of
error is no more than 0.02.

28. 15.3% of the Spanish Internet domain names are “.org.” If a sample of 2000 Spanish
domain names is taken,

(a) Calculate the exact probability that at least 200 domain names will be “.org.”.

(b) Compute an approximate answer that at least 200 domain names will be “.org.” with
a normal approximation.

29. Set the seed equal to 86, and simulate m1 = 20, 000 samples of size n1 = 1000 from a
Bin(n1, π = 0.3) and m2 = 20, 000 samples of size n2 = 1100 from a Bin(n2, π = 0.7).
Verify that the difference of sampling proportions follows a normal distribution.

30. Given a random sample of size n from an exponential distribution with parameter λ,
prove that the sample mean follows a Γ(n, λn). Set the seed equal to 679, and simulate
m = 1000 random samples of size n = 100 from an Exp(λ = 1), and check that the
normal approximation of the mean is appropriate. Repeat this exercise with random
samples of size n = 3, and verify that, in this case, Γ(3, 3) is more appropriate to use
than the normal distribution.



Chapter 7

Point Estimation

7.1 Introduction

Throughout this chapter, random samples drawn from a known distribution where
the parameters that characterize the distribution are unknown will be of interest. To
specify completely a probability distribution, whether it be discrete or continuous, the
distribution’s parameters must be specified. For example, a random variable may follow a
normal distribution; however, if both the mean and the standard deviation of the normal
distribution are not known, the distribution at hand cannot be completely specified. In a
similar fashion, a Poisson random variable requires knowledge of the parameter λ to specify
completely that distribution. In general, the pdf of a random variable X is f(x |θ ), where θ
is the vector of parameters that characterize the pdf. The vector of parameters θ is defined
in a parameter space denoted Θ. For each value of θ ∈ Θ, there is a different pdf. To
obtain possible values for the vector of parameters, a random sample from the population
of interest is taken and statistics called estimators are constructed. The values of the
estimators are called point estimates. For example, X may be used as a point estimator
for μ, in which case x̄ is a point estimate of μ.

Since estimators are statistics or functions of random variables, they themselves are
random variables. Studying the sampling distributions of estimators as well as their sta-
tistical properties such as mean square error, bias or unbiasedness, efficiency, consistency,
and robustness, all of which will be defined in this chapter, will give guidelines about which
estimators to employ.

7.2 Properties of Point Estimators

7.2.1 Mean Square Error

The goodness of an estimator is related to how close its estimates are to the true
parameter. The difference between an estimator T for an unknown parameter θ and the
parameter θ itself is called the error. Since this quantity can be either positive or negative, it
is common to square the error so that various estimators T1, T2, . . . , can be compared using
a non-negative measure of error. To that end, the mean square error of an estimator,
denoted MSE [T ], is defined as MSE [T ] = E

[
(T − θ)2

]
. Estimators with small MSE s

will have a distribution such that the values in the distribution will be close to the true
parameter. In fact, the MSE consists of two non-negative components, the variance of the

245
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estimator T and the squared bias of the estimator T , where bias is defined as E[T ]−θ since

MSE [T ] = E
[
(T − E[T ] + E[T ]− θ)2

]
= E

[
T − E[T ]

]2 + E
[
(E[T ] − θ)2

]
+ 2E

[
(T − E[T ])(E[T ]− θ)

]
= Var [T ] + (E[T ] − θ)2 + 2(E[T ] − E[T ])(E[T ]− θ)
= Var [T ] + (E[T ] − θ)2

= Var [T ] + (Bias [T ])2. (7.1)

The concepts of variance and bias are illustrated in Figure 7.1, which depicts the shot
patterns for four marksmen on their respective targets. When the marksman’s weapon is
properly sighted, the center of the target represents θ.

Low Variance, Low Bias Low Variance, High Bias

High Variance, Low Bias High Variance, High Bias

FIGURE 7.1: Visual representations of variance and bias

It seems logical to think that the most desirable estimators are those that minimize the
MSE . However, estimators that minimize the MSE for all possible values of θ do not always
exist. In other words, an estimator may have the minimum MSE for some values of θ and
not others.
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7.2.2 Unbiased Estimators

Since estimators are random variables, the point estimates they return will vary from
sample to sample. However, one would like some assurance that the chosen estimator is
returning a value close to the unknown parameter. Estimators whose expected values are
equal to the parameters they are estimating are unbiased. That is, when E[T ] = θ, T is an
unbiased estimator of θ. When an estimator is unbiased, its MSE is equal to its variance,
that is, MSE [T ] = Var [T ]. On the other hand, when E[T ] �= θ, the estimator is biased.

Example 7.1 Show that the sample mean and the sample variance are unbiased estima-
tors of the population mean and the population variance, respectively.

Solution: To show that S2 is an unbiased estimator of σ2, use the fact that

n∑
i=1

(
Xi − X

)2 =
n∑

i=1

(Xi − μ)2 − n
(
μ − X

)2

from (6.14) on page 225:

E
[
X

]
= E

[
n∑

i=1

Xi

n

]
=

nμ

n
= μ

E
[
S2

]
= E

[∑n
i=1

(
Xi − X

)2

n − 1

]
= E

[∑n
i=1(Xi − μ)2 − n

(
μ − X

)2

n − 1

]

=
1

n − 1

[
n∑

i=1

E [(Xi − μ)]2 − nE
[(

X − μ
)2
]]

=
1

n − 1

[
nσ2 − n

σ2

n

]
= σ2

Example 7.2 Suppose X ∼ Pois(λ), where λ is unknown. Show

(a) X is an unbiased estimator of λ.

(b) 2X is an unbiased estimator of 2λ.

(c) X
2

is a biased estimator of λ2.

Solution: To solve the problems, keep in mind that if X ∼ Pois(λ), E[X ] = λ and
Var [X ] = λ.

(a) Since E
[
X

]
= E

[∑n
i=1

Xi

n

]
=

∑n
i=1

E[Xi]
n = nλ

n = λ, it follows that X is an unbiased
estimator of λ.

(b) Since E
[
2X

]
= 2E

[
X

]
= 2λ, it follows that 2X is an unbiased estimator of 2λ.

(c) Since E
[
X

2
]

= Var
[
X

]
+ μ2

X
= λ

n + λ2, it follows that X
2

is a biased estimator of λ2.

However, X
2

is an asymptotically unbiased estimator of λ2. That is, as n tends to infinity,
the estimator becomes unbiased.

Example 7.3 Suppose {X1, X2, . . . , Xn} is a random sample from a N(μ, σ) distribution.
Show that S is a biased estimator of σ.
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Solution: Recall that (n−1)S2

σ2 ∼ χ2
n−1. Let X = (n−1)S2

σ2 and take the square root and
the expected value of both sides:

E
[√

X
]

= E

[√
n − 1
σ

· S
]

.

Since X ∼ χ2
n−1, the expected value of

√
X is

∞∫
−∞

√
xf(x)dx, where f(x) is the pdf of a

chi-square random variable:

E
[√

X
]

=
∫ ∞

0

√
x

1

Γ
(

n−1
2

)
2

n−1
2

x
n−1

2 −1e−
x
2 dx

=
1

Γ
(

n−1
2

)
2

n−1
2

∫ ∞

0

x
n−1

2 −1+ 1
2 e−

x
2 dx

=
1

Γ
(

n−1
2

)
2

n−1
2

∫ ∞

0

x
n
2 −1e−

x
2 dx (7.2)

Next, use the change of variable x/2 = t where dx = 2dt in an attempt to force the
right-hand side of (7.2) to look like a gamma function. Specifically, recall that Γ(α) =
∞∫
0

xα−1e−xdx for α > 0 :

E
[√

X
]

=
1

Γ
(

n−1
2

)
2

n−1
2

∫ ∞

0

(2t)
n
2 −1 e−t 2 dt

=
2

n
2

Γ
(

n−1
2

)
2

n−1
2

∫ ∞

0

t
n
2 −1 e−t dt =

√
2Γ

(
n
2

)
Γ
(

n−1
2

)
Since

E
[√

X
]

= E

[√
n − 1
σ

S

]
=

√
2Γ(n

2 )
Γ(n−1

2 )
,

it follows that

E[S] = σ

√
2Γ

(
n
2

)
√

n − 1Γ
(

n−1
2

) �= σ (7.3)

Therefore, S is a biased estimator of σ.

Example 7.4 Numerically evaluate and graph the coefficient
√

2Γ( n
2 )√

n−1Γ(n−1
2 ) that multiplies

σ on the right-hand side of (7.3) for values of n from 2 to 50.

Solution: The following S code creates a graph similar to the one depicted to the left of

the code. Note that the coefficient
√

2Γ(n
2 )√

n−1Γ(n−1
2 ) is virtually 1 for values of n ≥ 20, so that S

is a reasonable, though biased, estimator of σ for n ≥ 20. Note that in the following code,
no true coeff value is assigned to coeff[1] because n − 1 would then be zero. Therefore,
when coeff is plotted, coeff[1] is removed with coeff[-1].
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0 10 20 30 40 50
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00

n

√
2
Γ
(n 2

)
√

n
−

1
Γ
(n

−
1

2
)

> m <- 50
> coeff <- array(0, m)
> for (n in 2:m)
+ { coeff[n] <- (sqrt(2/(n-1))
+ *gamma(n/2))/gamma((n-1)/2)}
> plot(coeff[-1], type="l",
+ xlab="n", ylab="coef", lwd=2)
> abline(h=1, lty=2)
> coeff[20]
[1] 0.9869343

A more compact solution using R is

> curve(sqrt(2/(x-1))*gamma(x/2)/gamma((x-1)/2),2,50)
> abline(h=1, lty=2)

7.2.3 Efficiency

A desirable property of a good estimator is not only to be unbiased, but also to have
a small variance, which translates into a small MSE for estimators, regardless of whether
they are biased or unbiased. One way to compare the MSEs of two estimators is by using
relative efficiency. Given two estimators T1 and T2, the efficiency of T1 relative to T2,
written eff (T1, T2), is

eff (T1, T2) =
MSE [T2]
MSE [T1]

. (7.4)

When the estimators in (7.4) are unbiased, the efficiency of T1 relative to T2 is simply the
ratio of estimators variances, written

eff (T1, T2) =
Var [T2]
Var [T1]

.

The estimator T1 is more efficient than the estimator T2 if, for any sample size, MSE [T1] ≤
MSE [T2], which then implies that eff (T1, T2) ≥ 1. When the estimators are unbiased,
the estimator T1 is more efficient than the estimator T2 if, for any sample size, Var [T1] ≤
Var [T2], which also implies that eff (T1, T2) ≥ 1. If a choice is to be made among a
small number of unbiased estimators, simply compute the variance of all of the estimators
and select the estimator with minimum variance. However, if the estimator that has the
smallest variance among all possible unbiased estimators must be chosen, an infinite number
of variances would need to be calculated. Clearly, this is not a viable solution.

Thankfully, it can be shown that if T = θ̂ is an unbiased estimator of θ and a random
sample of size n, X1, X2, . . . , Xn, has pdf f(x|θ), then the variance of the unbiased estimator,
θ̂, must satisfy the inequality

Var
[
θ̂
]
≥ 1

n · E
[(

∂ ln f(X|θ)
∂θ

)2
] , (7.5)

where f(X |θ) is the density function of the distribution of interest evaluated at the random
variable X . In the discrete case, p(X |θ) is used instead of f(X |θ). In general, the probability
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distributions of both discrete and continuous distributions are referred to using the notation
f(x). The inequality in (7.5) is known as the Cramér-Rao inequality, and the quantity
on the right-hand side of the equation is known as the Cramér-Rao lower bound (CRLB).

Definition 7.1: If θ̂ is an unbiased estimator of θ and

Var
[
θ̂
]

=
1

n · E
[(

∂ ln f(X|θ)
∂θ

)2
] (7.6)

then θ̂ is a minimum variance unbiased estimator of θ.

Not all parameters have unbiased estimators whose variance equals the CRLB. However,
when the variance of an unbiased estimator equals the CRLB, the estimator is efficient or
minimum variance. The quantity in the denominator of (7.6) is known as the Fisher
information about θ that is supplied by the sample. That is, the smaller the variance of
the estimator, the greater the information.

Example 7.5 Show that X is a minimum variance unbiased estimator of the mean λ of
a Poisson population.

Solution: If X ∼ Pois(λ), then, according to (4.5), E[X ] = λ, Var [X ] = λ, and the pdf
of X is

P(X = x|λ) =
λxe−λ

x!
. (7.7)

Since E
[
X

]
=

∑n
i=1

E[Xi]
n = nλ

n = λ, it follows that X is an unbiased estimator of λ,
with variance λ

n because the Var
[
X

]
= Var

[∑n
i=1

Xi

n

]
= 1

n2

∑n
i=1 Var [Xi] = nλ

n2 = λ
n .

Consequently, if the CRLB equals λ
n , X is a minimum variance unbiased estimator of λ

according to Definition 7.1. By taking the natural logarithm of (7.7),

ln P(x|λ) = x ln(λ) − λ − ln(x!). (7.8)

Taking the derivative of (7.8) with respect to λ gives

∂ ln P(x|λ)
∂λ

=
x

λ
− 1 =

x − λ

λ
.

Hence

E

[(
∂ ln P(X |λ)

∂λ

)2
]

= E

[(
X − λ

λ

)2
]

=
E[(X − λ)2]

λ2
=

Var [X ]
λ2

.

Therefore,

E

[(
∂ ln P(X |λ)

∂λ

)2
]

=
Var [X ]

λ2
=

λ

λ2
=

1
λ

,

and the CRLB is
1

n · E
[(

∂ ln f(X|λ)
∂λ

)2
] =

λ

n
.

Consequently, since X is unbiased and Var
[
X

]
= λ

n , it follows that X is a minimum
variance unbiased estimator of λ.

Example 7.6 Show that X is a minimum variance unbiased estimator of the mean θ of
an exponential population.
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Solution: If X ∼ Exp
(

1
θ

)
, then, according to (4.12), when using the substitution θ = 1

λ ,
E[X ] = θ, Var [X ] = θ2, and the pdf of X is

f(x) =

⎧⎪⎨⎪⎩
1
θ
e−x/θ if x ≥ 0

0 if x < 0
. (7.9)

Since E
[
X

]
=

∑n
i=1

E[Xi]
n = nθ

n = θ, it follows that X is an unbiased estimator of
θ, with variance θ2

n since Var
[
X

]
= Var

[∑n
i=1

Xi

n

]
= 1

n2

∑n
i=1 Var [Xi] = nθ2

n2 = θ2

n .
Consequently, if the CRLB equals θ2

n , X is a minimum variance unbiased estimator of θ
according to Definition 7.1 on the facing page. By taking the natural logarithm of (7.9),

ln f(x|θ) = − ln(θ) − x

θ
. (7.10)

Taking the derivative of (7.10) with respect to θ gives

∂ ln f(x|θ)
∂θ

= −1
θ

+
x

θ2
=

x − θ

θ2
.

Hence

E

[(
∂ ln f(X |θ)

∂θ

)2
]

= E

[(
X − θ

θ2

)2
]

=
E[(X − θ)2]

θ4
=

Var [X ]
θ4

.

Therefore,

E

[(
∂ ln f(X |λ)

∂θ

)2
]

=
Var [X ]

θ4
=

θ2

θ4
=

1
θ2

,

and the CRLB is
1

n · E
[(

∂ ln f(X|θ)
∂θ

)2
] =

θ2

n
.

Consequently, since X is unbiased and Var
[
X

]
= θ2

n , it follows that X is a minimum
variance unbiased estimator of θ.

Example 7.7 � Comparing Estimators: Blue Jean Length � Suppose the true
manufactured length of new 32L blue jeans follows a normal distribution with unknown μ
and σ = 0.5 inch. It is known that 32L blue jeans sold in stores have a length of at least
31 inches. If a random sample of size n = 3 of 32L blue jeans is taken to estimate μ, which
of the estimators μ̂1 or μ̂2 is better in terms of bias, variance, and relative efficiency where
μ̂1 = 0.33 · (X1 + X2 + X3) and μ̂2 = 0.50 · (X1 + X2)?

Solution: Since

E [μ̂1] = 0.33 · E [X1 + X2 + X3] = 0.33 · (E [X1] + E [X2] + E [X3])
= 0.33(μ + μ + μ) = 0.99μ,

it follows that μ̂1 is a biased estimator of μ with bias 0.99μ − μ = −0.01μ. On the other
hand,

E[μ̂2] = 0.50 · E [X1 + X2] = 0.50 ·
(
E
[
X1

]
+ E

[
X2

])
= 0.50 · (μ + μ) = μ,
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which makes μ̂2 an unbiased estimator of μ. The variances of μ̂1 and μ̂2 are

Var [μ̂1] = Var
[
0.33 ·

(
X1 + X2 + X3

)]
= 0.332 · (Var [X1] + Var [X2] + Var [X3])

= 0.332 · (0.25 + 0.25 + 0.25) = 0.081675, and

Var [μ̂2] = Var
[
0.50 ·

(
X1 + X2

)]
= 0.502 · (Var [X1] + Var [X2])

= 0.25 · (0.25 + 0.25) = 0.125, respectively.

Before looking at the relative efficiency of μ̂1 to μ̂2, compute the MSE for each estimator
using the fact that MSE = Variance + Bias2:

MSE [μ̂1] = 0.081675 + (0.01μ)2 = 0.081675 + 0.0001μ2

MSE [μ̂2] = 0.125 + 02 = 0.125

Since

eff (μ̂1, μ̂2) =
MSE (μ̂2)
MSE (μ̂1)

=
0.125

0.081675 + 0.0001μ2
< 1 for all |μ| > 20.82,

conclude that μ̂2 is both more efficient and has a smaller MSE than does μ̂1, since it is known
that μ ≥ 31 inches according to the problem. See Figure 7.2 for a graphical representation
of the distributions of μ̂1 and μ̂2.

Bias

Distribution of μ̂1

Distribution of μ̂2

μ0.99μ

FIGURE 7.2: Graphical representations for the sampling distributions of μ̂1 and μ̂2

7.2.4 Consistent Estimators

The next property of estimators that is considered is consistency. Consistency is a
property of a sequence of estimators rather than a single estimator. However, it is rather
common to refer to an estimator as being consistent. A sequence of estimators means that
the same estimation procedure is carried out for each sample of size n. If T is an estimator
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of θ and X1, X2, . . . are observed according to a distribution f(x|θ), a sequence of estimators
T1, T2, . . . , Tn can be constructed by performing the same estimation procedure for samples
of sizes 1, 2, . . . , n, respectively. In other words, the sequence is

T1 = t(X1), T2 = t(X1, X2), . . . , Tn = t(X1, X2, . . . , Xn).

A sequence of estimators Tn (defined for all n) is a consistent estimator of the parameter
θ for every θ ∈ Θ if

lim
n→∞ P(|Tn − θ| ≥ ε) = 0, for all ε > 0. (7.11)

An equivalent statement of (7.11) is that a sequence of estimators Tn (defined for all n) is
a consistent estimator of the parameter θ for every θ ∈ Θ if

lim
n→∞ P(|Tn − θ| < ε) = 1, for all ε > 0. (7.12)

Both definitions (7.11) and (7.12) state that a consistent sequence of estimators converges
in probability to the parameter θ, where θ is the parameter the consistent sequence of
estimators is estimating. In practical terms, this implies that the variance of a consistent
estimator decreases as n increases and that the expected value of Tn tends to θ as n increases.
Further, given a consistent sequence of estimators, say Tn, Chebyshev’s inequality (3.17)
guarantees that

P(|Tn − θ| ≥ ε) = P(|Tn − θ|2 ≥ ε2) ≤ E[(Tn − θ)2]
ε2

,

for every θ ∈ Θ. Since Eθ

[
(Tn − θ)2

]
can be expressed as

Eθ

[
(Tn − θ)2

]
= Var [Tn] + (Bias [Tn])2 ,

if
lim

n→∞Var [Tn] = 0 and lim
n→∞ (Bias [Tn])2 = 0, (7.13)

then Tn is a consistent sequence of estimators of θ. Whenever the conditions in (7.13) are
true, Tn converges in MSE to the true value of θ. The conditions in (7.13) are sufficient
but not necessary conditions for a sequence of estimators to be consistent.

Example 7.8 Let {X1, X2, . . . , Xn} be a random sample of size n from a distribution
with mean μ and variance σ2. Show that Xn is a consistent estimator of μ.

Solution: For Xn to be a consistent estimator of μ, it must be shown that

lim
n→∞ P(|Xn − μ| ≥ ε) = 0 for all ε > 0.

Using version (c) of Chebyshev’s inequality and the fact that E
[
Xn

]
= μ and Var

[
Xn

]
=

σ2/n,

P(|Xn − μ| ≥ kσ/
√

n) ≤ 1
k2

.

By setting ε = kσ/
√

n, k =
√

nε/σ, so that

1
k2

=
σ2

nε2
,

from which it follows that

P(|Xn − μ| ≥ ε) ≤ σ2

nε2
. (7.14)
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Given that σ2 < ∞ (finite), taking the limit as n → ∞ on both sides of the ≤ sign of (7.14)
gives

lim
n→∞ P(|Xn − μ| ≥ ε) = 0 for all ε.

Consequently, Xn is a consistent estimator of μ. This is essentially the weak law of large
numbers given in (3.18) of Section 3.4.7.

7.2.5 Robust Estimators

The idea of statistical robustness has received considerable attention in recent years.
However, there is not a consensus on what defines a robust estimator. The essence of a
robust estimator is an estimator whose sampling distribution is not seriously affected by
violations of underlying assumptions. For example, when estimating the average useful life
of an electronic component, one may think that an exponential distribution is being sampled
when in fact a gamma or Weibull distribution is being sampled. If the estimation of the
unknown parameter is not seriously affected by the fact that an incorrect distribution is
being assumed, the estimator is robust. The concept of robustness has also been used to
refer to the ability of a particular estimator to provide reasonable estimates when atypical
observations are encountered in the sample. For example, if the largest value in a sample is
made 1000 times larger, the sample median remains the same in both the sample with the
original value and in the sample where the value is 1000 times larger than the largest value
in the original sample. In this sense, the median is a robust estimator.

In particular, the median provides a robust measure of center whenever the underlying
distribution is skewed. In a similar fashion, a robust measure of variability is the median
absolute deviation (MAD). The MAD is defined as

MAD = median|xi − sample median|. (7.15)

When working with normal distributions, a robust estimator of σ is MAD1, where MAD1 =
1

0.6745MAD . The value 0.6745 corresponds to the 75th percentile of a N(0, 1) distribution
(z0.75 = 0.6745). When working with S, the default value returned when working with the
function mad() corresponds to the definition of MAD1. To compute the MAD as defined
in (7.15), use the S option constant=1 inside the mad() function.

Example 7.9 A botanist interested in studying the effects of a new herbicide on trifolium
repens (white clover) measures and records the stem lengths in centimeters of ten specimens
as 5.3, 2.8, 3.4, 7.2, 8.3, 1.7, 6.2, 9.3, 3.2, and 5.9. Compute the mean, median, standard
deviation, and MAD . Suppose the botanist makes a field error and records an 83 instead
of an 8.3. What effect will the recording error have on the computed quantities?

Solution: The stem measurements are entered without the recording error in the vector
stem1 (in increasing order) and the stem measurements with the recording error in the
vector stem2. That is, stem2 has an 83 rather than an 8.3.

> stem1 <- c(1.7, 2.8, 3.2, 3.4, 5.3, 5.9, 6.2, 7.2, 8.3, 9.3)
> stem2 <- c(1.7, 2.8, 3.2, 3.4, 5.3, 5.9, 6.2, 7.2, 83, 9.3)
> c(mean(stem1), sqrt(var(stem1)))
[1] 5.330000 2.516634
> c(mean(stem2), sqrt(var(stem2)))
[1] 12.80000 24.77185
> c(median(stem1), mad(stem1, constant = 1))
[1] 5.6 2.3
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> c(median(stem2), mad(stem2, constant = 1))
[1] 5.6 2.3
> median(abs(stem1 - median(stem1)))
[1] 2.3
> median(abs(stem2 - median(stem2)))
[1] 2.3

Note that the mean and standard deviation of stem1 (5.33, 2.52) are dramatically different
from the mean and standard deviation of stem2 (12.8, 24.77). However, the median and
MAD (5.6, 2.3) are the same for the values in both stem1 and stem2. What has been
demonstrated is the robustness of the median and the MAD to outliers.

7.3 Point Estimation Techniques

Section 7.2 discussed several ways to measure the “goodness” of an estimator. In what
follows, the framework for deriving estimators is provided. In general, these topics are
intertwined. Specifically two methods are considered: the method of moments and the
method of maximum likelihood. Before proceeding further, some notation is emphasized.
Recall that capital letters are used to denote random variables. Specifically, the information
in a random sample X1, X2, . . . , Xn is used to make inferences about the unknown θ. The
observed values of the random sample are denoted x1, x2, . . . , xn. Further, a random sample
X1, X2, . . . , Xn is referred to with the boldface X and the observed values in a random
sample x1, x2, . . . , xn with the boldface x. The joint pdf of X1, X2, . . . , Xn is given by

f(x|θ) = f(x1, x2, . . . , xn|θ)

= f(x1|θ) × f(x2|θ) × · · · × f(x3|θ) =
n∏

i=1

f(xi|θ).
(7.16)

7.3.1 Method of Moments Estimators

The idea behind the method of moments is to equate population moments about the
origin to their corresponding sample moments, where the rth sample moment about the
origin, denoted mr, is defined as

mr =
1
n

n∑
i=1

Xr
i , (7.17)

and subsequently to solve for estimators of the unknown parameters. Recall that the rth

population moment about the origin of a random variable X , denoted αr, was defined in
(3.6) as E [Xr]. It follows that αr = E [Xr] =

∑∞
i=1 xr

i P(X = xi) for discrete X , and that
αr = E [Xr] =

∫∞
−∞ xrf(x) dx for continuous X . Specifically, given a random sample

X1, X2, . . . , Xn from a population with pdf f(x|θ1, θ2, . . . , θk), the method of moments
estimators, denoted θ̃i for i = 1, . . . , k, are found by equating the first k population moments
about the origin to their corresponding sample moments and solving the resulting system
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of simultaneous equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1(θ1, . . . , θk) = m1

α2(θ1, . . . , θk) = m2

...
...

αk(θ1, . . . , θk) = mk

(7.18)

The method of moments is an appealing technique for deriving estimators due to its
simplicity and to the fact that method of moments estimators are consistent. In fact, the
theoretical justification for equating the sample moments to the population moments is that,
under certain conditions, it can be shown that the sample moments converge in probability
to the population moments and that the sample moments about the origin are unbiased
estimators of their corresponding population moments.

Example 7.10 Given a random sample of size n from a Bin(1, π) population, find the
method of moments estimator of π.

Solution: The first sample moment m1 is X, and the first population moment about zero
for the binomial random variable is α1 = E

[
X1

]
= 1 · π. By equating the first population

moment to the first sample moment,

α1(π) = π
set= X = m1,

which implies that the method of moments estimator for π is π̃ = X.

Example 7.11 Given a random sample of size m from a Bin(n, π) population, find the
method of moments estimator of π.

Solution: The first sample moment m1 is X, and the first population moment about zero
for the binomial random variable is α1 = E

[
X1

]
= n · π. By equating the first population

moment to the first sample moment,

α1(π) = nπ
set= X = m1,

which implies that the method of moments estimator for π is π̃ = X
n .

Example 7.12 Given a random sample of size n from a Pois(λ) population, find the
method of moments estimator of λ.

Solution: The first sample moment m1 is X, and the first population moment about
zero for a Poisson random variable is α1 = E

[
X1

]
= λ. By equating the first population

moment to the first sample moment,

α1(π) = λ
set= X = m1,

which implies that the method of moments estimator for λ is λ̃ = X.

Example 7.13 Given a random sample of size n from a N(μ, σ) population, find the
method of moments estimators of μ and σ2.
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Solution: The first and second sample moments m1 and m2 are X and 1
n

∑n
i=1 X2

i ,
respectively. The first and second population moments about zero for a normal random
variable are α1 = E

[
X1

]
= μ and α2 = E

[
X2

]
= σ2 + μ2. By equating the first two

population moments to the first two sample moments,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α1(μ, σ2) = μ

set= X = m1

α2(μ, σ2) = σ2 + μ2 set=
1
n

n∑
i=1

X2
i = m2.

(7.19)

Solving the system of equations in (7.19) yields μ̃ = X and σ̃2 = 1
n

∑n
i=1 X2

i − X
2

= S2
u as

the method of moments estimators for μ and σ2, respectively.

Example 7.14 Given a random sample of size n from a Gamma(α, λ) population, find
the method of moments estimators of α and λ.

Solution: According to (4.16), E [X ] = α
λ , and Var [X ] = α

λ2 for a random variable X
that follows a gamma distribution. The first and second sample moments m1 and m2 are
X and 1

n

∑n
i=1 X2

i , respectively. The first and second population moments for a gamma
random variable are

α1 = E
[
X1

]
=

α

λ
,

and

α2 = E
[
X2

]
= σ2 + E [X ]2 =

α

λ2
+

α2

λ2
=

α(1 + α)
λ2

,

respectively. By equating the first two population moments to the first two sample moments,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α1(α, λ) =

α

λ

set= X = m1

α2(α, λ) =
α(1 + α)

λ2

set=
1
n

n∑
i=1

X2
i = m2.

(7.20)

When it is recalled that S2
u =

∑n
i (Xi−X )2

n , the system of equations in (7.20) can be solved to
obtain α̃ = X2

S2
u

and λ̃ = X
S2

u
as the method of moments estimators for α and λ, respectively.

7.3.2 Likelihood and Maximum Likelihood Estimators

When sampling from a population described by a pdf f(x|θ), knowledge of θ provides
knowledge of the entire population. The idea behind maximum likelihood is to select the
value for θ that makes the observed data most likely under the assumed probability model.
When x1, x2, . . . , xn are the observed values of a random variable X from a population with
parameter θ, the notation L(θ|x) = f(x|θ) will be used to indicate that the distribution
depends on the parameter θ, and x to indicate the distribution is dependent on the observed
values from the sample. Once the sample values are observed, L(θ|x) can still be evaluated
in a formal sense, although it no longer has a probability interpretation (in the discrete
case) as does (7.16). L(θ|x) is the likelihood function of θ for x and is denoted by

L(θ|x) = f(x|θ) =
n∏

i=1

f(xi|θ) = f(x1|θ) × f(x2|θ) × · · · × f(xn|θ). (7.21)
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The key difference between (7.16) and (7.21) is that the joint pdf given in (7.16) is a function
of x for a given θ and the likelihood function given in (7.21) is a function of θ for given x.

The value of θ that maximizes L(θ|x) is called the maximum likelihood estimate
(mle) of θ. Another way to think of the mle is the mode of the likelihood function. The
maximum likelihood estimate is denoted as θ̂(x), and the maximum likelihood estimator
(MLE), a statistic, as θ̂(X). In general, the likelihood function may be difficult to manipu-
late, and it is usually more convenient to work with the natural logarithm of L(θ|x), called
the log-likelihood function, since it converts products into sums. Finding the value θ
that maximizes the log-likelihood function

(
ln L(θ|x)

)
is equivalent to finding the value of θ

that maximizes L(θ|x) since the natural logarithm is a monotonically increasing function.
If L(θ|x) is differentiable with respect to θ, a possible mle is the solution to

∂
(
ln L(θ|x)

)
∂θ

= 0. (7.22)

Note that a possible mle is the solution to (7.22). A possible solution is used since a solution
to (7.22) is a necessary but not sufficient condition for the solution to be a maximum, since
the solution to (7.22) could be a local or global minimum, a local or global maximum, or a
point of inflection. Recall that stationary points where,

∂2
(
ln L(θ|x)

)
∂θ2

∣∣∣
θ=θ̂(x)

< 0, (7.23)

indicate some type of maximum, either local or global. Further, the solution to (7.22) does
not include points on the boundaries of the parameter space. Consequently, when evaluating
the maximum of L(θ|x), the boundaries of the parameter space Θ as well as solutions to
(7.22) must be evaluated.

Example 7.15 Given a random sample of size n taken from a Bernoulli(π) distribu-
tion, compute the maximum likelihood estimate and maximum likelihood estimator of the
parameter π.

Solution: According to (4.2), the pdf for X ∼ Bernoulli(π) is

P (X = x|π) = πx(1 − π)1−x,

where x takes on the value 1 with probability π and 0 with probability 1−π. The likelihood
function for the n observed values is

L(π|x) =
n∏

i=1

πxi(1 − π)1−xi .

Taking the natural logarithm of the likelihood function gives

ln L(π|x) = ln

[
n∏

i=1

πxi(1 − π)1−xi

]
=

n∑
i=1

ln
[
πxi(1 − π)1−xi

]
=

n∑
i=1

[xi ln π + (1 − xi) ln(1 − π)] . (7.24)

To find the value that maximizes (7.24), take the first-order partial derivative of ln L(π|x)
with respect to π and set the answer equal to zero:

∂ ln L(π|x)
∂π

=
∑n

i=1 xi

π
− n −

∑n
i=1 xi

1 − π

set= 0. (7.25)
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The solution to (7.25) is π =
∑n

i=1 xi

n = x̄. For π = x̄ to be a maximum, the second-order
partial derivative of the log-likelihood function must be negative at π = x̄. The second-order
partial derivative is

∂2 ln L(π|x)
∂π2

=
−

∑n
i=1 xi

π2
− n −

∑n
i=1 xi

(1 − π)2
.

Evaluating the second-order partial derivative at π = x̄ yields

∂2 ln L(π|x)
∂π2

=
−nx̄

x̄2
− (n − nx̄)

(1 − x̄)2
= −n

x̄
− n

1 − x̄
,

which is less than zero since 0 ≤ x̄ ≤ 1 and n > 0. Finally, since the values of the likelihood
function at the boundaries of the parameter space, π = 0 and π = 1, are 0, it follows
that π = x̄ is the value that maximizes the likelihood function. The maximum likelihood
estimate π̂(x) = x̄ and the maximum likelihood estimator π̂(X) = X.

Example 7.16 �MLEs with S: Oriental Cockroaches� A laboratory is interested
in testing a new child-friendly pesticide on Blatta orientalis (oriental cockroaches). The
scientists from the lab apply the new pesticide to 81 randomly selected Blatta orientalis
oothecae (eggs). The results from the experiment are stored in the data frame Roacheggs
in the variable eggs. A zero in the variable eggs indicates that nothing hatched from the
egg while a 1 indicates the birth of a cockroach. Assuming the selected Blatta orientalis
eggs are representative of the population of Blatta orientalis eggs, estimate the proportion
of Blatta orientalis eggs that result in a birth after being sprayed with the child-friendly
pesticide. Use either nlm() in R or nlmin() in S-PLUS to solve the problem iteratively and
to produce a graph of the log-likelihood function.

Solution: Note that whether or not a Blatta orientalis egg hatches is a Bernoulli trial
with unknown parameter π. Using the maximum likelihood estimate from Example 7.15 on
the facing page, π̂(x) = x̄ = 0.21.

> attach(Roacheggs)
> str(Roacheggs) # Note: str(object) only works in R
‘data.frame’: 81 obs. of 1 variable:
$ eggs: num 0 0 1 0 0 0 0 0 0 1 ...
> mean(eggs)
[1] 0.2098765

Both R and S-PLUS have iterative procedures that will minimize a given function. The
minimization function in R is nlm(), while the minimization function in S-PLUS is nlmin().
The required arguments for both functions are f() and p, where f() is the function to
be minimized and p is a vector of initial values for the parameter(s). Since both nlm()
and nlmin() are minimization procedures and finding a maximum likelihood estimate is
a maximization procedure, the functions nlm() and nlmin() on the negative of the log-
likelihood function are used.

> p <- seq(0.1, 0.9, 0.001)
> negloglike <- function(p){-(sum(eggs)*log(p) + sum(1-eggs)*log(1-p))}
> nlm(negloglike, 0.2)
$minimum
[1] 41.61724

$estimate
[1] 0.2098760
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$gradient
[1] 1.421085e-08

$code
[1] 1

$iterations
[1] 4

Warning messages:
1: In log(1 - p) : NaNs produced
2: In nlm(negloglike, 0.2) : NA/Inf replaced by maximum positive value

The following generic S code can be used to represent graphically the log-likelihood function
in a fashion similar to Figure 7.3:

> par(pty = "s")
> p <- seq(0.1, 0.9, 0.001)
> plot(p, - negloglike(p), type = "n", ylab = "L")
> abline(v = mean(eggs), col = 13, lwd = 3)
> lines(p, - negloglike(p), col = 6, lwd = 3)
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FIGURE 7.3: Illustration of the lnL(π|x) function for Example 7.16

The function optimize(), available in both R and S-PLUS, approximates a local opti-
mum of a continuous univariate function (f) within a given interval. The function searches
the user-provided interval for either a minimum (default) or maximum of the function f.
To solve Example 7.16 with optimize(), enter

> loglike <- function(p){(sum(eggs)*log(p) + sum(1-eggs) * log(1-p))}
> optimize(f=loglike, interval=c(0,1), maximum=TRUE)
$maximum
[1] 0.2098906

$objective
[1] -41.61724



Point Estimation 261

Example 7.17 Let X1, X2, . . . , Xm be a random sample from a Bin(n, π) population.
Compute the maximum likelihood estimator and the maximum likelihood estimate for the
parameter π. Verify your answer with simulation by generating 1000 random values from a
Bin(n = 3, π = 0.5) population.

Solution: The likelihood function is

L(π|x) =
m∏

i=1

(
n

xi

)
πxi(1 − π)n−xi

=
(

n

x1

)
πx1(1 − π)n−x1 × · · · ×

(
n

xm

)
πxm(1 − π)n−xm , (7.26)

and the log-likelihood function is

ln L(π|x) = ln

[
m∏

i=1

(
n

xi

)
πxi(1 − π)n−xi

]
=

m∑
i=1

ln
[(

n

xi

)
πxi(1 − π)n−xi

]

=
m∑

i=1

[
ln

(
n

xi

)
+ xi ln π + (n − xi) ln(1 − π)

]
. (7.27)

Next, look for the value that maximizes the log-likelihood function by taking the first-order
partial derivative of (7.27) and setting the answer to zero:

∂ ln L(π|x)
∂π

=
∑m

i=1 xi

π
− mn −

∑m
i=1 xi

1 − π

set= 0. (7.28)

The solution to (7.28) is π =
∑m

i=1 xi

mn = x̄
n . For π = x̄

n to be a maximum, the second-order
partial derivative of the log-likelihood function must be negative at π = x̄

n . The second-order
partial derivative is

∂2 ln L(π|x)
∂π2

=
−

∑m
i=1 xi

π2
− mn −

∑m
i=1 xi

(1 − π)2
.

Evaluating the second-order partial derivative at π = x̄
n and using the substitution∑m

i=1 xi = mx̄ yields

∂2 ln L(π|x)
∂π2

= − mx̄(
x̄
n

)2 − mn − mx̄(
1 − x̄

n

)
= −mn2

x̄
− m(n − x̄)

(n−x̄)2

n2

= −mn2

x̄
− mn2

n − x̄
< 0.

Finally, since the values of the likelihood function at the boundaries of the parameter
space, π = 0 and π = 1, are 0, it follows that π = x̄

n is the value that maximizes
the likelihood function. The maximum likelihood estimate π̂(x) = x̄

n and the maximum
likelihood estimator π̂(X) = X

n .

To simulate π =
∑m

i=1 xi

mn = x̄
n , generate 1000 random values from a Bin(n = 3, π = 0.5)

population. Pay particular attention to the fact that n = 3 and m = 1000.
Calculation of π =

∑m
i=1 xi

mn

> set.seed(23)
> sum(rbinom(1000, 3, 0.5))/(1000 * 3)
[1] 0.5063333
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Calculation of π = x̄
n

> set.seed(23)
> mean(rbinom(1000, 3, 0.5))/3
[1] 0.5063333

Example 7.18 Let X1, X2, . . . , Xm be a random sample from a Pois(λ) population.
Compute the maximum likelihood estimator and the maximum likelihood estimate for the
parameter λ. Verify your answer with simulation by generating 1000 random values from a
Pois(λ = 5) population.

Solution: The likelihood function is

L(λ|x) =
n∏

i=1

e−λλxi

xi!
= e−nλ

n∏
i=1

λxi

xi!
, (7.29)

and the log-likelihood function is

ln L(λ|x) = ln

[
e−nλ

n∏
i=1

λxi

xi!

]
= −nλ +

n∑
i=1

xi ln λ −
n∑

i=1

ln(xi!). (7.30)

Next, look for the value that maximizes the log-likelihood function by taking the first-order
partial derivative of (7.30) and setting the answer to zero:

∂ ln L(λ|x)
∂λ

= −n +
∑n

i=1 xi

λ

set= 0. (7.31)

The solution to (7.31) is λ =
∑n

i=1 xi

n = x̄. For λ = x̄ to be a maximum, the second-order
partial derivative of the log-likelihood function must be negative at λ = x̄. The second-order
partial derivative is

∂2 ln L(λ|x)
∂λ2

= −
∑n

i=1 xi

λ2
.

Evaluating the second-order partial derivative at λ = x̄ yields

∂2 ln L(λ|x)
∂λ2

= −nx̄

x̄2
= −n

x̄
< 0.

Finally, since the values of the likelihood function at the boundaries of the parameter
space, λ = 0 and λ = ∞, are 0, it follows that λ = x̄ is the value that maximizes
the likelihood function. The maximum likelihood estimate λ̂(x) = x̄ and the maximum
likelihood estimator λ̂(X) = X.

To simulate λ̂(x) = x̄, generate 1000 random values from a Pois(λ = 5) population:

> set.seed(99)
> mean(rpois(1000, 5))
[1] 4.986

Example 7.19 A box contains five pieces of candy. Some of the candies are alcoholic,
and some are not. In an attempt to estimate the proportion of alcoholic candies, a sample
of size n = 3 is taken with replacement that results in (a, a, n) (two alcoholic candies and
one non-alcoholic candy). Write out the maximum likelihood function and use it to select
the maximum likelihood estimate of π, the true proportion of alcoholic candies.
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Solution: The possible values for π are 0
5 , 1

5 , 2
5 , 3

5 , 4
5 , and 5

5 . Since there is at least one
alcoholic candy and there is at least one non-alcoholic candy, the values π = 0 and π = 1
must be ruled out. In this case, the observed sample values are x=(a, a, n). The likelihood
function is

L(π|x) = f(x|π)
= f(a|π) × f(a|π) × f(n|π).

Box π L(π|a, a, n)

aaaan 4
5

4
5 · 4

5 · 1
5 = 6

125

aaann 3
5

3
5 · 3

5 · 2
5 = 18

125

aannn 2
5

2
5 · 2

5 · 3
5 = 12

125

annnn 1
5

1
5 · 1

5 · 4
5 = 4

125

Since the value π = 3
5 maximizes the likelihood function, consider π̂(x) = 3

5 to be the
maximum likelihood estimate for the proportion of candies that are alcoholic.

Example 7.20 � General MLE � The random variable X can take on the values 0,
1, 2, and 3 with probabilities P(X = 0) = p3, P(X = 1) = (1 − p)p2, P(X = 2) = (1 − p)2,
and P(X = 3) = 2p(1 − p), where 0 < p < 1.

(a) Do the given probabilities for the random variable X satisfy the conditions for a
probability distribution of X?

(b) Find the maximum likelihood estimate for p if a random sample of size n = 150 resulted
in a 0 twenty-four times, a 1 fifty-four times, a 2 thirty-two times, and a 3 forty times.

(c) Graph the log-likelihood function and determine its maximum using either the function
nlm() or the function nlmin().

Solution: The answers are as follows:

(a) For the distribution of X to be a valid pdf, it must satisfy the following two conditions:

(1) p(x) ≥ 0 for all x.

(2)
∑

x p(x) = 1.

Condition (1) is satisfied since 0 < p < 1. Condition (2) is also satisfied since∑
x

p(x) = p3 + (1 − p)p2 + (1 − p)2 + 2p(1 − p)

= p3 + p2 − p3 + 1 + p2 − 2p + 2p − 2p2 = 1.

(b) The likelihood function is

L(p|x) =
[
(p3)

]24 [
(1 − p)p2

]54 [
(1 − p)2

]32
[2p(1 − p)]40

= 240p220(1 − p)158,

and the log-likelihood function is

ln [L(p|x)] = 40 ln 2 + 220 lnp + 158 ln(1 − p). (7.32)
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Next, look for the value that maximizes the log-likelihood function by taking the first-order
partial derivative of (7.32) with respect to p and setting the answer equal to zero:

∂ ln [L(p|x)]
∂p

=
220
p

− 158
1 − p

set= 0. (7.33)

The solution to (7.33) is p = 0.58. In order for p = 0.58 to be a maximum, the second-order
partial derivative of (7.32) with respect to p must be negative. Since

∂2 ln [L(π|x)]
∂p2

= −220
p2

− 158
(1 − p)2

< 0 for all p,

this value is a global maximum. Therefore, the maximum likelihood estimate of p, p̂(x) =
0.58.

(c) Generic S code to graph the log-likelihood function depicted in Figure 7.4 is

> par(pty = "s")
> p <- seq(0.01, 0.99, 0.001)
> loglike <- function(p)
+ {40 * log(2) - 220 * log(p) - 158 * log(1 - p)}
> plot(p, - loglike(p), type = "n")
> lines(p, - loglike(p), col = 6, lwd = 3)
> abline(v = 0.58, col = 13, lwd = 3)
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FIGURE 7.4: Illustration of the lnL(p|x) function for Example 7.20

To compute the maximum of the log-likelihood function, use the command nlm(loglike,
0.001) with R and the command nlmin(loglike, 0.001) with S-PLUS:

> nlm(loglike, 0.001)$estimate # R
[1] 0.58201
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Warning messages:
1: In log(1 - p) : NaNs produced
2: In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value
3: In log(1 - p) : NaNs produced
4: In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value
5: In log(1 - p) : NaNs produced
6: In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value
7: In log(1 - p) : NaNs produced
8: In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value

Example 7.21 A farmer cans and sells mild and hot peppers at the local market. The
farmer recently hired an assistant to label his products. The assistant is new to working
with peppers and has mislabeled some of the hot peppers as mild peppers. The farmer
performs a random check of 100 of the mild pepper cans labeled by the assistant to assess
his work. Out of the 100 cans labeled mild peppers, it turns out that 8 are actually hot
peppers.

(a) Which of the following proportions, 0.05, 0.08, or 0.10, maximizes the likelihood func-
tion?

(b) What is the maximum likelihood estimate for the proportion of cans the assistant has
mislabeled?

Solution: The answers are as follows:

(a) First define the random variable X as the number of mislabeled cans. In this definition
of the random variable X , it follows that n = 100 and m = 1 since X ∼ Bin(100, θ).
The likelihood function for a random sample of size m from a Bin(n, π) population was
computed in (7.26) as

L(π|x) =
m∏

i=1

(
n

xi

)
πxi(1 − π)n−xi .

Since m = 1 here, it follows that the likelihood function is

L(π|x) =
(

n

x

)
πx(1 − π)n−x.

Consequently, the value for π that maximizes

P(X = 8|π) =
(

100
8

)
π8 · (1 − π)92

is the solution to the problem. The likelihoods for the three values of π are

P(X = 8|0.05) =
(

100
8

)
0.058 · (1 − 0.05)92 = 0.0648709,

P(X = 8|0.08) =
(

100
8

)
0.088 · (1 − 0.08)92 = 0.1455185,

and

P(X = 8|0.10) =
(

100
8

)
0.108 · (1 − 0.10)92 = 0.1148230.

Conclude that the value π = 0.08 is the value that maximizes the likelihood function among
the three values of π provided.
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(b) Recall that the maximum likelihood estimator for a binomial distribution was computed
in Example 7.17 on page 261 as π̂(X) =

∑m
i=1 xi

mn . Therefore, the maximum likelihood
estimate for the proportion of mislabeled cans is π̂(x) = 8

1·100 = 0.08.

Example 7.22 � I.I.D. Uniform Random Variables� Suppose {X1, X2, . . . , Xn}
is a random sample from a Unif (0, θ) distribution. Find the maximum likelihood estimator
of θ. Find the maximum likelihood estimate for a randomly generated sample of 1000
Unif (0, 3) random variables.

Solution: According to (4.9), the pdf of a random variable X ∼ Unif (0, θ) is

f(x|θ) =
1
θ
, 0 ≤ x ≤ θ.

The likelihood function is

L(θ|x) =

⎧⎨⎩ 1
θn for 0 ≤ x1 ≤ θ, 0 ≤ x2 ≤ θ, . . . , 0 ≤ xn ≤ θ

0 otherwise.

In this problem, the standard calculus approach fails since the maximum of the likelihood
function occurs at a point of discontinuity. Consider the graph in Figure 7.5. Clearly 1

θn

is maximized for small values of θ. However, the likelihood function is only defined for
θ ≥ max(xi). Specifically, if θ < max(xi), L(θ|x) = 0. It follows then that the maximum
likelihood estimator is θ̂(X) = max(Xi). The following code finds the maximum likelihood
estimate of 1000 randomly generated Unif (0, 3) random variables:

> set.seed(2)
> max(runif(1000, 0, 3))
[1] 2.99781

Thus, even though a standard calculus approach could not be used, the mle 2.998667 is
quite good for θ = 3.

max(xi)

L
(θ
|x

)

θ

FIGURE 7.5: Illustration of the likelihood function in Example 7.22
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Example 7.23 Suppose {X1, X2, . . . , Xn} is a random sample from a N(μ, σ) distribu-
tion, where σ is assumed known. Find the maximum likelihood estimator of μ.

Solution: According to (4.23), the pdf of a random variable X ∼ N(μ, σ) is

f(x) =
1√

2πσ2
e−

(x−μ)2

2σ2 , −∞ < x < ∞.

The likelihood function is

L(μ|x) =
n∏

i=1

f(xi) =
n∏

i=1

1√
2πσ2

e−
(xi−μ)2

2σ2 , (7.34)

and the log-likelihood function is

ln L(μ|x) = −n

2
ln(2π) − n

2
ln(σ2) −

∑n
i=1(xi − μ)2

2σ2
. (7.35)

To find the value of μ that maximizes ln L(μ|x), take the first-order partial derivative of
(7.35) with respect to μ, set the answer equal to zero, and solve. The first-order partial
derivative of lnL(μ|x) with respect to μ is

∂ ln L(μ, σ2|x)
∂μ

=
∑n

i=1(xi − μ)
σ2

set= 0. (7.36)

The solution to (7.36) is μ =
∑n

i=1 xi

n = x̄. For μ = x̄ to be a maximum, the second-order
partial derivative of the log-likelihood function with respect to μ must be negative at μ = x̄.
The second-order partial derivative of (7.35) is

∂2 ln L(μ|x)
∂μ2

= − n

σ2
< 0. (7.37)

Since (7.34) goes to zero at ±∞, the boundary values, it follows that μ = x̄ is a global
maximum. Consequently, the maximum likelihood estimator of μ is μ̂(X) = X, and the
maximum likelihood estimate of μ is μ̂(x) = x̄.

Example 7.24 Suppose {X1, X2, . . . , Xn} is a random sample from a N(μ, σ) distribu-
tion, where μ is assumed known. Find the maximum likelihood estimator of σ2.

Solution: According to (4.23), the pdf of a random variable X ∼ N(μ, σ) is

f(x) =
1√

2πσ2
e−

(x−μ)2

2σ2 , −∞ < x < ∞.

The likelihood function is

L(σ2|x) =
n∏

i=1

f(xi) =
n∏

i=1

1√
2πσ2

e−
(xi−μ)2

2σ2 , (7.38)

and the log-likelihood function is

ln L(σ2|x) = −n

2
ln(2π) − n

2
ln(σ2) −

∑n
i=1(xi − μ)2

2σ2
. (7.39)
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To find the value of σ2 that maximizes ln L(σ2|x), take the first-order partial derivative of
(7.39) with respect to σ2, set the answer equal to zero, and solve. The first-order partial
derivative of lnL(σ2|x) with respect to σ2 is

∂ ln L(μ, σ2|x)
∂σ2

= − n

2σ2
+

∑n
i=1(xi − μ)2

2σ4

set= 0. (7.40)

The solution to (7.40) is σ2 =
∑n

i=1(xi−μ)2

n . For σ2 =
∑n

i=1(xi−μ)2

n to be a maximum, the
second-order partial derivative of the log-likelihood function with respect to σ2 must be
negative at σ2 = s2

u. For notational ease, let r = σ2 in (7.39) so that

ln L(r|x) = lnL(σ2|x) = −n

2
ln(2π) − n

2
ln(r) −

∑n
i=1(xi − μ)2

2r
. (7.41)

The second-order partial derivative of (7.41) is

∂2 ln L(r|x)
∂r2

=
n

2
r−2 −

n∑
i=1

(xi − μ)2r−3 ?
< 0. (7.42)

Multiplying the left-hand side of (7.42) by r3 gives

n

2
r −

n∑
i=1

(xi − μ)2
?
< 0. (7.43)

By substituting the value for the mle, r =
∑n

i=1(xi−μ)2

n , the ? above the < can be removed
since

r

2
<

∑n
i=1(xi − μ)2

n
= σ2 = r.

Since (7.38) goes to zero at ±∞, the boundary values, it follows that σ2 =
∑n

i=1(xi−μ)2

n

is a global maximum. Consequently, the maximum likelihood estimator of σ2 is σ̂2(X) =∑n
i=1(Xi−μ)2

n , and the maximum likelihood estimate of σ2 is σ̂2(x) =
∑n

i=1(xi−μ)2

n .

Example 7.25 Use random.seed(33) to generate 1000 N(4, 1) random variables. Write
log-likelihood functions for the simulated random variables and verify that the simulated
maximum likelihood estimates for μ and σ2 are reasonably close to the true parameters.
Produce side-by-side graphs of lnL(μ|x) and lnL(σ2|x) indicating where the simulated
maximum occurs in each graph.

Solution: The code provided is for R. For the given code to function in S-PLUS, replace
the function nlm() with nlmin().

> par(pty = "s")
> par(mfrow = c(1, 2))
> n <- 1000
> sigma <- 1
> set.seed(33)
> x <- rnorm(n, 4, sigma)
> mu <- seq(2, 6, length = n)
> negloglikemu <- function(mu)
+ { n/2 * log(2 * pi) + n/2 * log(sigma^2) + (sum(x^2)
+ - 2 * mu * sum(x) + n * mu^2)/(2 * sigma^2)}
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> EM <- nlm(negloglikemu, 2)$estimate
> EM
[1] 4.019708
> mu1 <- 4
> negloglike <- function(sigma2)
+ {n/2 * log(2 * pi) + n/2 * log(sigma2) +
+ (sum((x - mu1)^2))/(2 * sigma2)}
> ES <- nlm(negloglike, 0.5)$estimate
Warning messages:
1: In log(sigma2) : NaNs produced
2: In nlm(negloglike, 0.5) : NA/Inf replaced by maximum positive value
> ES
[1] 1.000426

Note that the maximum likelihood estimates for μ and σ2 from the simulation are 4.019708
and 1.000426, respectively, which are reasonably close to the parameters μ = 4 and σ2 = 1.

Code for the graph of lnL(μ|x) versus μ is

> plot(mu, -negloglikemu(mu), type="n")
> lines(mu, -negloglikemu(mu), lwd=2)
> abline(v = EM, lty = 2)

Code for the graph of lnL(σ2|x) versus σ2 is

> sigma2 <- seq(0.5, 1.5, length = 1000)
> plot(sigma2, -negloglike(sigma2), type="n")
> lines(sigma2, -negloglike(sigma2), lwd=2)
> abline(v = ES, lty=2)
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FIGURE 7.6: Illustration of lnL(μ|x) and lnL(σ2|x)
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7.3.2.1 Fisher Information

Now that proficiency has been gained at calculating point estimates and estimators with
maximum likelihood procedures, some measure of the variance of these estimators is desired.
Investigating a quantity known as the Fisher information or simply the information
number will give this measure. The Fisher information is the amount of information that
an observable random variable X carries about an unknown parameter θ, upon which the
likelihood function of X , L(θ |x), depends. This is the quantity

E

[(
∂ ln f(X|θ)

∂θ

)2
]

. (7.44)

This expression was briefly mentioned as the denominator of (7.6), the CRLB. However,
the denominator of (7.6) used the form

n · E
[(

∂ ln f(X |θ)
∂θ

)2
]

, (7.45)

which is equivalent to (7.44) for random samples. Assume that X is a continuous random
variable with pdf f(x|θ) (discrete random variables are handled in a similar fashion by
exchanging integration for summation), where the following regularity conditions for f(x|θ)
are satisfied:

1. The limits of support of f(x|θ) do not depend on θ.

2. The first two derivatives of f(x|θ) exist.

3. The order of integration and differentiation can be exchanged.

The inverse of the information number provides a bound for the variance of the best unbiased
estimator of θ. Consequently, it makes sense to say the information number for a random
sample of size n denoted In(θ) is the variance of the first-order partial derivative of the
log-likelihood function. That is,

In(θ) = Var
[(

∂ ln f(X|θ)
∂θ

)]
. (7.46)

When a random sample X1, X2, . . . , Xn is taken from a pdf f(x|θ), recall that f(x|θ) =∏n
i=1 f(xi|θ) so that ln f(x|θ) =

∑n
i=1 ln f(xi|θ). When the random sample is of size n = 1,

the Fisher information is denoted as simply I(θ), which is defined as

I(θ) = Var
[(

∂ ln f(X |θ)
∂θ

)]
. (7.47)

Since the random variables are independent, it should be clear that In(θ) = nI(θ). The two
common forms of expressing the information number for a random sample of size n are

In(θ) = E

[(
∂ ln f(X|θ)

∂θ

)2
]

= nI(θ) = nE

[(
∂ ln f(X |θ)

∂θ

)2
]

, (7.48)

and

In(θ) = −E

[(
∂2 ln f(X|θ)

∂θ2

)]
= nI(θ) = −nE

[(
∂2 ln f(X |θ)

∂θ2

)]
. (7.49)

The form of the problem will often dictate which expression is easier to compute, as will
be seen in the examples. The astute reader will have noticed that the equivalence of (7.48)
and (7.49) was not shown, nor was the equivalence of (7.46) to (7.48) and (7.49).
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Example 7.26 Given the pdf of a normal distribution with unknown mean μ and known
variance σ2, find the Fisher information for μ using both (7.48) and (7.49) given a random
sample of size n from said normal distribution.

Solution: According to (4.23), the pdf of a random variable X ∼ N(μ, σ) is

f(x) =
1√

2πσ2
e−

(x−μ)2

2σ2 , −∞ < x < ∞.

The likelihood function is

L(μ|x) =
n∏

i=1

f(xi) =
n∏

i=1

1√
2πσ2

e−
(xi−μ)2

2σ2 ,

and the log-likelihood function is

ln L(μ|x) = −n

2
ln(2π) − n

2
ln(σ2) −

∑n
i=1(xi − μ)2

2σ2
.

Note that

∂ ln f(x|μ)
∂μ

=
(x − μ)

σ2
,

and
∂2 ln f(x|μ)

∂μ2
= − 1

σ2
.

Using (7.48), write

In(μ) = nE

[(
∂ ln f(X |μ)

∂μ

)2
]

= nE

[(
X − μ

σ2

)2
]

= n
E

[
(X − μ)2

]
σ4

=
nσ2

σ4
=

n

σ2
.

Using (7.49), write

In(μ) = −nE

[(
∂2 ln f(X |θ)

∂θ2

)]
= −nE

[
− 1

σ2

]
=

n

σ2
.

Consequently, the smaller the variance σ2, the more information there is in a random
sample of size n about μ.

7.3.2.2 Fisher Information for Several Parameters

Given a random variable X with pdf f(x|θ), where θ = (θ1, θ2, . . . , θk) is a k-dimensional
vector of parameters, denote the information matrix of θ as I (θ). The (i, j)th element of
the information matrix is is defined as

Ii,j(θ) = E

[(
∂ ln f(X |θ)

∂θi

)(
∂ ln f(X |θ)

∂θj

)]
= E

[(
∂2 ln f(X |θ)

∂θi∂θj

)]
, (7.50)

which is a generalization of (7.47). Likewise, when working with random samples,

In(θ) = E

[(
∂ ln f(X|θ)

∂θi

)(
∂ ln f(X|θ)

∂θj

)]
= nIi,j(θ), (7.51)
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and

In(θ) = −E

[
∂2 ln f(X|θ)

∂θi∂θj

]
= nIi,j(θ), (7.52)

are the generalizations of (7.48) and (7.49), respectively.

Example 7.27 Given a random sample of size n from a N(μ, σ) population, where θ =
(μ, σ2), find In(θ).

Solution: According to (4.23), the pdf of a random variable X ∼ N(μ, σ) is

f(x) =
1√

2πσ2
e−

(x−μ)2

2σ2 , −∞ < x < ∞.

It follows then that

f(x|θ) =
n∏

i=1

f(xi|θ) =
n∏

i=1

1√
2πσ2

e−
(xi−μ)2

2σ2 ,

and that

ln f(x|θ) = −n

2
ln(2π) − n

2
ln(σ2) −

∑n
i=1(xi − μ)2

2σ2
.

Taking partial derivatives of ln f(x|θ) with respect to θ1 = μ, and θ2 = σ2 gives

∂ ln f(x|θ)
∂θ1

=
∑n

i=1(x − μ)
σ2

,

∂2 ln f(x|θ)
∂θ1∂θ1

= − n

σ2
,

∂ ln f(x|θ)
∂θ2

= − n

2σ2
+

∑n
i=1(xi − μ)2

2(σ2)2

∂2 ln f(x|θ)
∂θ2∂θ2

=
n

2(σ2)2
−

∑n
i=1(xi − μ)2

(σ2)3
, and

∂2 ln f(x|θ)
∂θ1∂θ2

=
∂2 ln f(x|θ)

∂θ2∂θ1
= −

∑n
i=1(xi − μ)

(σ2)2
.

Using (7.52) gives

In(θ) = −E

[
∂2 ln f(X|θ)

∂θi∂θj

]
=

⎛⎜⎜⎜⎝
−E

[
∂2 ln f(X|θ)

∂θ1∂θ1

]
−E

[
∂2 ln f(X|θ)

∂θ1∂θ2

]
−E

[
∂2 ln f(X|θ)

∂θ2∂θ1

]
−E

[
∂2 ln f(X|θ)

∂θ2∂θ2

]
⎞⎟⎟⎟⎠ ,

or

In(θ) =

⎛⎜⎜⎜⎝
−E

[
− n

σ2

]
−E

[
−

∑n
i=1(Xi−μ)

(σ2)2

]
−E

[
−

∑n
i=1(Xi−μ)

(σ2)2

]
−E

[
n

2(σ2)2 −
∑n

i=1(Xi−μ)2

(σ2)3

]
⎞⎟⎟⎟⎠ ,

which, upon taking expected values, becomes

In(θ) =

⎛⎜⎜⎝
n
σ2 0

0 n
2σ4

⎞⎟⎟⎠ .
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7.3.2.3 Properties of Maximum Likelihood Estimators

Now that the Fisher information has been examined and several problems have been
worked with maximum likelihood estimation, the properties of maximum likelihood estima-
tors are formally enumerated:

1. MLEs are not necessarily unbiased. For example, when sampling from a N(μ, σ)
population, the MLE of σ2 is σ̂2(X) =

∑n
i=1

(Xi−μ)2

n , which is a biased estimator of σ2.
However, although some MLEs may be biased, all MLEs are consistent, which makes
them asymptotically unbiased. Symbolically, MLEs �⇒ unbiased estimators; however,
MLEs ⇒ asymptotically unbiased estimators since MLEs ⇒ consistent estimators.

2. If T is a MLE of θ and g is any function, then g(T ) is the MLE of g(θ). This is known
as the invariance property of MLEs. For example, if X is the MLE of θ, then X

2
is

the MLE of θ2.

3. When certain regularity conditions on f(x|θ) are satisfied, and an efficient estimator
exists for the estimated parameter, the efficient estimator is the MLE of the estimated
parameter. Be careful, not all MLEs are efficient! However, if an efficient estimator
exists, the efficient estimator is also the MLE. That is, efficiency ⇒ MLE, but MLE �⇒
efficiency necessarily.

4. Under certain regularity conditions on f(x|θ), the MLE θ̂(X) of θ based on a sample
of size n from f(x|θ) is asymptotically normally distributed with mean θ and variance
In(θ)−1. That is, as n → ∞,

θ̂(X) ∼ N
(
θ,
√

In(θ)−1
)

. (7.53)

The statement in (7.53) is the basis for large sample hypothesis tests (covered in
Chapter 9) and confidence intervals (covered in Chapter 8).

Note that the asymptotic variance of MLEs equals the Cramér-Rao lower bound
since they are asymptotically efficient. That is, MLEs ⇒ asymptotic efficiency.
Consequently, a reasonable approximation to the distribution of θ̂(X) for large sample
sizes can be obtained. However, a normal distribution for θ̂(X) cannot be guaranteed
when the sample size is small.

Example 7.28 In Example 7.17 on page 261, it was found that the sample proportion of
successes for a random sample of size m from a Bin(n, π) distribution had π̂ =

∑m
i=1 xi

mn for
its mle. That is, the MLE for the binomial proportion π is π̂(X) =

∑m
i=1 Xi

mn . What is the
MLE for the variance of the sample proportion of successes where the random variable π̂ is
defined as

∑m
i=1 Xi

mn ?

Solution: Given that X ∼ Bin(n, π), the variance of X is nπ(1 − π). Therefore,

Var [π̂] = Var
[∑m

i=1 Xi

mn

]
=

∑m
i=1 Var [Xi]

m2n2
=

mnπ(1 − π)
m2n2

=
π(1 − π)

mn
.

Since Var [π̂] is a function of the MLE π̂(X), it follows using the invariance property of
MLEs that the MLE of the variance of π̂ is

V̂ar
[
π̂(X)

]
=

π̂(1 − π̂)
mn

.

Note: Many texts will list the MLE of the variance of the sample proportion of successes
in a binomial distribution as π̂(1−π̂)

n because they use m = 1 in their definition of π̂.
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Example 7.29 �MOM and MLE for a Gamma � Given a random sample of size
n from a population with pdf

f(x|θ) =
x

θ2
e−

x
θ , x ≥ 0, θ > 0,

(a) Find an estimator of θ using the method of moments.

(b) Find an estimator of θ using the method of maximum likelihood.

(c) Are the method of moments and maximum likelihood estimators of θ unbiased?

(d) Compute the variance of the MLE of θ.

(e) Is the MLE of θ efficient?

Solution: Since X ∼ Gamma
(
α = 2, λ = 1

θ

)
, according to (4.16), E [X ] = α

λ = 2θ and
Var [X ] = α

λ2 = 2θ2.

(a) Equating the first population moment about the origin to the first sample moment about
the origin gives

α1(θ) = 2θ
set= X = m1,

which implies that the method of moments estimator for θ is θ̃ = X
2 .

(b) The likelihood equation is given as

L(θ|x) =
n∏

i=1

f(xi) =
∏n

i=1 xi

θ2n
e

−∑n
i=1 xi
θ , (7.54)

and the log-likelihood function is

ln L(θ|x) = −2n ln(θ) +
n∑

i=1

ln (xi) −
∑n

i=1 xi

θ
. (7.55)

To find the value of θ that maximizes ln L(θ|x), take the first-order partial derivative of
(7.55) with respect to θ, set the answer equal to zero, and solve. The first-order partial
derivative of lnL(θ|x) with respect to θ is

∂ ln L(θ|x)
∂θ

= −2n

θ
+

∑n
i=1 xi

θ2

set= 0. (7.56)

The solution to (7.56) is θ = X
2 , which agrees with the method of moments estimator.

However, to ensure that θ = X
2 is a maximum, the second-order partial derivative with

respect to θ must be negative. The second-order partial derivative of (7.55) is

∂2 ln L(θ|x)
∂θ2

=
2n

θ2
− 2

∑n
i=1 xi

θ3

?
< 0. (7.57)

By using θ = X
2 in (7.57), arrive at the expression

− 12n

X2

?
< 0. (7.58)

The ? above the < in (7.58) can be removed since
∫ 0

0
f(x) dx = 0 ⇒ X > 0. Finally,

since (7.54) goes to zero as θ → ∞, it can be concluded that θ = X
2 is a global maximum.

Consequently, the maximum likelihood estimator of θ is θ̂ (X) = X
2 .
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(c) Since both the method of moments and the method of maximum likelihood returned
the same estimator for θ, that is, θ̂ (X) = θ̃ = X

2 , the question is

E
[
θ̂(X)

]
= E

[
θ̃
] ?= θ.

Both θ̃ and θ̂ (X) are therefore unbiased estimators since

E
[
θ̂(X)

]
= E

[
θ̃
]

= E

[
X

2

]
=

∑n
i=1 E [Xi]

2n
=

n · 2θ

2n
= θ.

(d) The variance of the MLE of θ is

Var
[
θ̂ (X)

]
= Var

[
X

2

]
= Var

[∑n
i=1 Xi

2n

]
=

nVar [X ]
4n2

=
n2θ2

4n2
=

θ2

2n
.

(e) For θ̂ (X) = X
2 to be considered an efficient or minimum variance estimator of θ, the

variance of X
2 must equal the CRLB. That is, does

Var
[
θ̂ (X)

]
=

θ2

2n

?=
1

n · E
[(

∂ ln f(X|θ)
∂θ

)2
] ?

Since f(x|θ) = x
θ2 e−

x
θ for x ≥ 0, and θ > 0, it follows that ln f(x|θ) = lnx− 2 ln θ − x

θ , and
that ∂ ln f(x|θ)

∂θ = x−2θ
θ2 . Consequently,

1

n · E
[(

∂ ln f(X|θ)
∂θ

)2
] =

1

n · E
[(

X−2θ
θ2

)2
] =

1

n·Var [X]
θ4

=
1

n·2θ2

θ4

=
θ2

2n
,

and conclude that X
2 is an efficient estimator of θ.

Example 7.30 � MLEs for Exponentials � Given a random sample of size n from
an exponential distribution with pdf

f(x) =
1
θ
e−

x
θ x ≥ 0, θ > 0, (7.59)

(a) Find the MLE of θ2.

(b) Show that the MLE of θ2 is a biased estimator of θ2.

(c) Provide an unbiased estimator of θ2.

(d) Find the variance of your MLE of θ2.

(e) Find the variance of your unbiased estimator of θ2.

(f) Show that the variance for the MLE of θ2 converges to In(θ)−1 as n → ∞ according to
property 4 of the Properties of MLEs on page 273.

Solution: To find the MLE of θ2, there are two possibilities. First, the MLE of θ could
be found and the invariance property could be used to say that this estimate squared is the
MLE of θ2. (See problem 37 of this chapter.) Second, and this is the current approach, the
MLE of θ2 can be found directly.
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(a) For notational ease, use the change of variable θ2 = p and θ =
√

p in (7.59). The
resulting pdf using the change of variable is

f(x) =
1
√

p
e
− x√

p x ≥ 0, p > 0.

The likelihood function is

L(p|x) =
n∏

i=1

f(xi) =
n∏

i=1

1
√

p
e
− xi√

p =
1

(
√

p)n
e
−

∑n
i=1 xi√

p , (7.60)

and the log-likelihood function is

ln L(p|x) = −n

2
ln p −

∑n
i=1 xi√

p
. (7.61)

To find the value of p that maximizes ln L(p|x), take the first-order partial derivative of
(7.61) with respect to p, set the answer equal to zero, and solve. The first-order partial
derivative of lnL(p|x) with respect to p is

∂ ln L(p|x)
∂p

= − n

2p
+

∑n
i=1 xi

2p
3
2

set= 0. (7.62)

The solution to (7.62) is p = x̄2. For p = x̄2 to be a maximum, the second-order partial
derivative of the log-likelihood function with respect to p must be negative at p = x̄2. The
second-order partial derivative of (7.61) is

∂2 ln L(p|x)
∂p2

=
n

2p2
− 3

∑n
i=1 xi

4p
5
2

?
< 0. (7.63)

By substituting p = x̄2 in the right-hand side of (7.63), the ? above the < can be removed
since x̄ < 3x̄

2 because x̄ > 0 for any sample due to the fact that P(X = 0) = 0 for any
continuous distribution. Finally, since as p → ∞, L(p|x) → 0, it can be concluded that the
MLE of p = θ2 is p̂(X) = θ̂2(X) = X

2
.

(b) Next, show that X
2 is a biased estimator of θ2. The easiest way to determine the

mean and variance of X
2

is with moment generating functions. It is known that the
moment generating function of an exponential random variable, X , is MX(t) = (1 − θt)−1.
Furthermore, if Y =

∑n
i=1 ciXi and each Xi has a moment generating function MXi(t),

then the moment generating function of Y is MY (t) =
∏n

i=1 MXi(cit). In the case where
Y = X =

∑n
i=1 Xi

n , each ci = 1
n . For the special case of the exponential, the moment

generating function for X is

MX(t) = MY (t) =
n∏

i=1

(
1 − θ · t

n

)−1

=
(

1 − θt

n

)−n

.

Thus, to calculate the mean and variance of X
2, take the first through fourth derivatives

of MX(t) and evaluate them when t = 0 to find E
[
X

i
]

for i = 1, 2, 3, and 4. The first,
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second, third, and fourth derivatives of MX(t), respectively, are

M
′
X(t) = −n

(
1 − θ

n
t

)−n−1 (
− θ

n

)
M

′′
X(t) = θ(−n − 1)

(
1 − θ

n
t

)−n−2 (
− θ

n

)
M

′′′
X (t) =

θ2(n + 1)
n

(−n − 2)
(

1 − θ

n
t

)−n−3 (
− θ

n

)
M

(4)

X
(t) =

θ3(n + 1)(n + 2)
n2

(−n − 3)
(

1 − θ

n
t

)−n−4 (
− θ

n

)

Evaluating these derivatives at t = 0 gives the expected values of X to the first, second,
third, and fourth powers:

M
′
X(0) = θ = E

[
X

]
M

′′
X(0) =

θ2(n + 1)
n

= E
[
X

2
]

M
′′′
X (0) =

θ3(n + 1)(n + 2)
n2

= E
[
X

3
]

M
(4)

X
(0) =

θ4(n + 1)(n + 2)(n + 3)
n3

= E
[
X

4
]

Since E
[
X

2
]

=
θ2(n + 1)

n
�= θ2, X

2
is a biased estimator of θ2.

(c) An unbiased estimator of θ2 would be to use the quantity nX2

n+1 .

(d) The variance of X
2 can be computed as E

[
X

4
]
−

(
E
[
X

2
])2

:

Var
[
X

2
]

=
θ4(n + 1)(n + 2)(n + 3)

n3
−

(
θ2(n + 1)

n

)2

=
2θ4(2n2 + 5n + 3)

n3

=
2θ4

(
(2n + 3)(n + 1)

)
n3

(7.64)

(e) The variance of the unbiased estimator of θ2 is

Var

[
nX

2

n + 1

]
=

n2

(n + 1)2
Var

[
X

2
]

=
n2

(n + 1)2
·
2θ4

(
(2n + 3)(n + 1)

)
n3

=
2θ4(2n + 3)

n(n + 1)
.
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(f) The Fisher information is computed as

In(p) = −E

[(
∂2 ln f(X|p)

∂p2

)]
= −E

[
n

2p2
− 3

∑n
i=1 xi

4p
5
2

]
= −

[
n

2p2
−

3n
√

p

4p
5
2

]
=

n

2p2

[
−1 +

3
2

]
=

n

4p2
.

Since p = θ2, it follows that In(p) = In(θ2) = n
4θ4 , and that In(θ2)−1 = 4θ4

n . Note that
the variance of the MLE estimator X

2
given in (7.64) converges to In(θ2)−1 = 4θ4

n as
n → ∞.

7.3.2.4 Finding Maximum Likelihood Estimators for Multiple Parameters

When the pdf contains more than one parameter, the procedure for finding the MLEs for
several parameters proceeds in a fashion analogous to the one-parameter case. Given a
vector θ = {θ1, θ2, . . . , θk}, the likelihood function is represented as

L (θ|x) = L (θ1, . . . , θk|x1, . . . , xn)
= f (x1|θ1, . . . , θk) × · · · × f (xn|θ1, . . . , θk) .

(7.65)

The value of θ that maximizes L (θ|x) is the mle of θ. In the multiple parameter case, denote
the mle of θ as θ̂(x) and the MLE of θ as θ̂(X). As with the univariate case, typically work
with the log-likelihood function

(
ln L(θ|x)

)
instead of the likelihood function. If L (θ|x) is

differentiable with respect to θ, a possible mle for θ are the θis, i = 1, . . . , k, that solve

∂ ln L (θ|x)
∂θ

set= 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ln L (θ|x)
∂θ1

=
n∑

i=1

∂ ln f(xi|θ)
∂θ1

set= 0

...
...

∂ ln L (θ|x)
∂θk

=
n∑

i=1

∂ ln f(xi|θ)
∂θk

set= 0.

(7.66)

Just as with the univariate case, possible mles for θ are the solutions to (7.66). Solutions to
the k equations in (7.66) are a necessary but not sufficient condition for the solutions to be
maximums. However, a sufficient condition to guarantee the solutions to (7.66) are maxima
is for the Hessian matrix (matrix whose elements are the second-order partial derivatives
with respect to the parameters being estimated) to be negative definite when evaluated at
the maximum likelihood estimators. Any symmetric p×p matrix is negative definite pro-
vided the leading principal minors (the determinants of the upper left square submatrices)
have alternating signs where the top left element in the matrix is negative. These principal
minors are denoted by Di for i = 1, . . . , p and satisfy the following conditions: D1 < 0,
D2 > 0, . . . , ending with Dp > 0 if p is even and Dp < 0 if p is odd (Casella and Berger,
1990). Furthermore, the solutions to (7.66) will yield minima when the determinants of the
leading principal minors are all positive.

Example 7.31 Given a random sample of size n from a normal distribution with unknown
mean μ and variance σ2, find the MLEs for μ and σ2.
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Solution: The pdf for a random variable X ∼ N(μ, σ) according to (4.23) is

f(x|μ, σ2) =
1√

2πσ2
e−

(x−μ)2

2σ2 .

The likelihood function is

L(μ, σ2|x) =
n∏

i=1

f(xi) =
1

(2π)
n
2 (σ2)

n
2

e−
1

2σ2
∑n

i=1(xi−μ)2 ,

and the log-likelihood function is

ln L(μ, σ2|x) = −n

2
ln(2π) − n

2
ln σ2 − 1

2σ2

n∑
i=1

(xi − μ)2. (7.67)

To find the θ that maximizes (7.67), take the first-order partial derivatives with respect to
θ = (μ, σ2), set those first-order partial derivatives equal to zero, and solve the simultaneous
equations:

∂ ln L (θ|x)
∂θ

set= 0 ⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ ln L

(
μ, σ2|x

)
∂μ

=
∑n

i=1(xi − μ)
σ2

set= 0

∂ ln L
(
μ, σ2|x

)
∂σ2

= − n

2σ2
+

∑n
i=1(xi − μ)2

2σ4

set= 0.

The solution to the system of equations is

μ = x̄ and σ2 =
∑n

i=1(xi − x̄)2

n
.

A sufficient condition for the values in θ to be maximums is for the Hessian matrix to be
negative definite. In this case, the Hessian matrix is

H =

⎛⎜⎜⎝
∂2 ln L(μ,σ2|x)

∂μ2

∂2 ln L(μ,σ2|x)
∂μ∂σ2

∂2 ln L(μ,σ2|x)
∂σ2∂μ

∂2 ln L(μ,σ2|x)
∂(σ2)2

⎞⎟⎟⎠ .

Specifically, the second-order partial derivatives are

∂2 ln L
(
μ, σ2|x

)
∂μ2

= − n

σ2
,

∂2 ln L
(
μ, σ2|x

)
∂(σ2)2

=
n

2σ4
− 1

σ6

n∑
i=1

(xi − μ)2, and

∂2 ln L
(
μ, σ2|x

)
∂μ∂σ2

= − 1
σ4

n∑
i=1

(xi − μ).

By substituting the values μ = x̄ and σ2 =
∑n

i=1(xi−x̄)2

n = s2
u in the second-order partial

derivatives, the Hessian matrix is expressed as

H =

⎛⎜⎜⎝
− n

s2
u

0

0 − n
2s4

u

⎞⎟⎟⎠ .
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Note that H is negative definite since D1 = − n
s2

u
< 0 and D2 = n2

2s6
u

> 0, implying that

the solutions, μ = x̄ and σ2 =
∑n

i=1(xi−x̄)2

n , are maximums. Finally, the solutions μ = x̄

and σ2 =
∑n

i=1(xi−x̄)2

n can be considered global maximums since the likelihood function
goes to zero for both μ = ±∞ and σ2 = ∞. Consequently, the MLE of θ is written as
θ̂(X) =

(
X, S2

u

)
, and the mle of θ as θ̂(x) =

(
x̄, s2

u

)
.

Example 7.32 Use set.seed(11) to generate 500 values from a N(2, 1) population, and
treat the generated values as a random sample of size n = 500 from a normal distribution
with unknown parameters. Find the maximum likelihood estimates for μ and σ2 based on
the generated sample.

Solution: According to the results of Example 7.31 on page 278, the MLE of θ when
sampling from a normal distribution with unknown mean and variance is θ̂(X) =

(
X, S2

u

)
.

The following S code performs the simulation:

> set.seed(11)
> n <- 500
> x <- rnorm(n, 2, 1)
> mean(x)
[1] 1.997360
> S2u <- sum((x - mean(x))^2/n)
> S2u
[1] 0.9764792

From this simulation, θ̂(x) = (1.997360, 0.9764792). Another approach is to allow S to
find the values that maximize the log-likelihood function analytically using either nlm() or
nlmin(). The code that follows is for R. To compute the answer with S-PLUS, replace the
command nlm(negloglike, c(3,2))$estimate with nlmin(negloglike, c(3,2)).

> negloglike <- function(p)
+ { (n/2)*log(2*pi) + (n/2)*log(2*p[2]) + (1/(2*p[2]))*sum((x - p[1])^2) }
> nlm(negloglike, c(3, 2))$estimate
[1] 1.9973587 0.9764787
Warning messages:
1: In log(2 * p[2]) : NaNs produced
2: In nlm(negloglike, c(3, 2)) : NA/Inf replaced by maximum positive value

7.3.2.5 Multi-Parameter Properties of MLEs

The four properties for a MLE θ̂(X) of θ given in Section 7.3.2.3 on page 273 also apply
to a k-dimensional vector θ = (θ1, θ2, . . . , θk) of parameters. Of particular importance is the
generalization of property 4 on page 273. Specifically, property 4 on page 273 states that,
under certain regularity conditions on f(x|θ), the MLE of θ̂(X) of θ based on a sample of
size n is asymptotically normally distributed with mean θ and variance-covariance matrix
In(θ)−1. That is,

θ̂ ∼ N(θ, In(θ)−1),

and the variance-covariance MLEs are

̂In(θ)
−1

= In(θ)−1|θ=θ̂(X).
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Example 7.33 Given a random sample of size n from a N(μ, σ) population, find the MLE
of the variance of X and the variance of S2

u.

Solution: In Example 7.31 on page 278, the MLE of θ was θ̂(X) =
(
X, S2

u

)
, and in

Example 7.27 on page 272, the Fisher information matrix was

In(θ) =

⎛⎜⎜⎝
n
σ2 0

0 n
2σ4

⎞⎟⎟⎠ .

Consequently,

̂In(θ)
−1

= In(θ)−1|θ=θ̂(X) =

⎛⎜⎜⎝
n
σ2 0

0 n
2σ4

⎞⎟⎟⎠
−1∣∣∣∣∣∣∣∣

θ=θ̂(X)

=

⎛⎜⎜⎝
n

S2
u

0

0 n
2S4

u

⎞⎟⎟⎠
−1

=

⎛⎜⎜⎝
S2

u

n 0

0 2S4
u

n

⎞⎟⎟⎠ ,

from which it can be concluded that

̂I11(θ)
−1

= ̂Var
(
X

)
=

S2
u

n
,

and ̂I22(θ)
−1

= ̂Var (S2
u) =

2S4
u

n
.
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7.4 Problems

1. Use the data from the data frame WheatSpain to answer the questions.

(a) Find the mean, median, standard deviation, and MAD of the wheat.surface.

(b) Remove the Castilla-Leon community and find again the mean, median, standard
deviation, and MAD of the same variable. Which statistics are preferred as measures
for these data? Comment on the results.

2. Given the estimators of the mean T1 = (X1 + 2X2 + X3)/4 and T2 = (X1 + X2 + X3)/3,
where X1, X2, X3 is a random sample from a N(μ, σ) distribution, prove that T2 is more
efficient than T1.

3. Given a random sample of size n + 1 from a N(μ, σ) distribution, show that the median,
m, is roughly 64% less efficient than the sample mean for estimating the population
mean. (Hint: In large samples Var(m) = πσ2/4n.)

4. Let X be a Bin(n, π) random variable.

(a) Find the mean squared error of the π parameter estimators T1 = X/n and T2 =
(X + 1)/(n + 2).

(b) When n = 100 and π = 0.4, which estimator, T1 or T2, has the smaller MSE?

(c) Plot the efficiency of T1 relative to T2 versus π values in (0, 1) for n values from 1 to
10.

5. Given a random sample of size n from a Γ(2, λ) distribution, consider the following
estimators for 1/λ:

T1 =
X

2
and T2 =

∑n
i=1 Xi

2(n + 1)

(a) Graph the relative efficiency of T2 with regard to T1 for values of λ from 0.01 to 100
with a sample size of 50.

(b) Interpret the graph in (a).

(c) Plot the relative efficiency of both estimators versus sample sizes from 1 to 100.

(d) Interpret the graph in (c).

(e) Generalize your findings.

(Hint: X ∼ Γ(α, λ), E[X ] = α/λ, Var [X ] = α/λ2.)

6. Consider a random variable X ∼ Exp(λ) and two estimators of 1/λ , the expected value
of X :

T1 = X and T2 =
∑n

i=1 Xi + 1
n + 2

.

(a) Derive an expression for the relative efficiency of T2 with respect to T1.

(b) Plot eff(T2, T1) versus n values of 1, 2, 3, 4, 20, 25, 30.

(c) Generalize your findings.

7. A baseball pitching machine launches fast balls whose speed follows a N(μ, σ = 5 km/h)
distribution. Given the independent random samples X and Y, where nX = nY = 6,
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(a) Show that the estimators T1 = X and T2 =
∑ 6

i=2 Yi

5 are unbiased estimators of μ.

(b) Given the estimator T3 = θT1 + (1 − θ)T2, find the value of θ so that the MSE is a
minimum.

8. Verify that Var
[

∂ ln f(X|θ)
∂θ

]
= E

[(
∂ ln f(X|θ)

∂θ

)2
]
. (Hint: show that E

[(
∂ ln f(X|θ)

∂θ

)]
=

0.)

9. Verify that E

[(
∂ ln f(X|θ)

∂θ

)2
]

= −E
[(

∂2 ln f(X|θ)
∂θ2

)]
. (Hint: differentiate with respect to

θ the equation
∞∫

−∞
∂ ln f(x|θ)

∂θ f(x|θ)dx = 0.)

10. The probability of obtaining a tail when flipping a coin can be π = 1/2 , π = 1/3 , or
π = 2/3 . To estimate π, the coin is flipped three times and one head is obtained on the
first flip and tails on the second and third flips. Find the maximum likelihood estimator
of π.

11. A manufacturer produces needles for a sewing machine in 5 units per parcel. The parcels
are in boxes of 120 units. The manufacturer guarantees that only one out of 100 parcels
is defective; however, the owner of a store thinks that at least 4 parcels out of 100 are
defective. To solve the controversy, the manufacturer randomly chooses 18 boxes and
checks the number of defective parcels. The results follow:

Number of defective parcels: 3, 1, 1, 2, 4, 2, 0, 1, 4, 1, 6, 2, 2, 3, 1, 4, 4, 2

Who is more likely to be right, the manufacturer or the store owner?

12. Given a random sample of size n from a geometric distribution,

(a) Find the method of moments estimator of π.

(b) Find the maximum likelihood estimator of π.

(c) Use the results from (a) and (b) to compute the method of moments and maximum
likelihood estimates from the sample {8, 1, 2, 0, 0, 0, 2, 1, 3, 3}, which represents the
number of Bernoulli trials that resulted in failure before the first success in 10
experiments.

13. The following random samples X=(x1, . . . , x7) and Y=(y1, . . . , y10) are drawn from
Pois(λ) and Pois(2λ), respectively:

X ∼ Pois(λ) 4 2 5 7 3 4 3
Y ∼ Pois(2λ) 6 10 1 6 3 5 5 4 7 5

(a) Derive the maximum likelihood estimator of λ and calculate its variance.

(b) Compute the maximum likelihood estimate of λ and its variance using the two
random samples given.

14. Find the maximum likelihood estimator for μ if samples of size n are taken from a
N(μ, σ =

√
μ) distribution.
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(a) Use the maximum likelihood estimator to calculate the maximum likelihood estimate
that results from the sample

4.37, 9.30, 1.67, 1.25, 4.30, 6.97, 2.68, 5.49, 4.36, 4.46.

(b) Plot the log-likelihood function versus μ for values between 4 and 5.

15. Given a random sample of size n from a distribution with a density function given by

f(x) = θ

(
1
x

)θ+1

, x ≥ 1, θ > 1,

(a) Find the method of moments and the maximum likelihood estimators of θ.

(b) Find the method of moments and maximum likelihood estimates of θ for the sample
{3, 4, 2, 1.5, 4, 2, 3, 2, 4, 2}.

(c) Set the seed equal to 42, and generate 1000 values from f(x) using θ = 3. Compute
the method of moments and maximum likelihood estimates of θ using the generated
values.

16. Given the density function

f(x) = (θ + 1)(1 − x)θ, 0 ≤ x ≤ 1, θ > 0,

(a) Find the maximum likelihood estimator of θ for a random sample of size n.

(b) Set the seed equal to 88, and generate 1000 values from f(x) when θ = 2. Calculate
the maximum likelihood estimate of θ from the generated values.

(c) How close is the maximum likelihood estimate in (b) to θ = 2?

17. Given the density function

f(x) =
3
λ

x2e−x3/λ, x > 0, λ > 0,

(a) Find the maximum likelihood estimator of λ for a random sample of size n.

(b) Verify that the maximum likelihood estimator is unbiased, consistent, and efficient.

(c) Find the method of moments estimator of λ for a random sample of size n.

18. Given an exponential distribution with mean θ and the following estimators of θ:

θ̂1 = X1, θ̂2 =
X1 + X2

2
, θ̂3 = X, θ̂4 = min{X1, X2, X3},

(a) Find the mean and variance of each estimator.

(b) Are any of the estimators efficient?

(c) Which estimator is the MLE?

(d) Let X be an exponential random variable with mean θ + 2. Which estimator is an
unbiased estimator of θ?

19. Given a random sample of size n from a population of size N , where the items in the
population are sequentially numbered from 1 to N ,

(a) Derive the method of moments estimator of N .
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(b) Derive the maximum likelihood estimator of N .

(c) What are the method of moments and maximum likelihood estimates of N for this
sample of size 7: {2, 5, 13, 6, 15, 9, 21}?

20. The lifetime of a particular resistor follows an exponential distribution with parameter
λ. The manufacturer claims the mean life of the resistor is 6 years. A distributor of the
resistor is suing the manufacturer for excess warranty claims, saying that the mean life
of the resistor is a mere 4 years. To resolve the issue, an accelerated test of the predicted
lifetimes of 20 resistors is undertaken, yielding the following values:

3.70 1.76 3.63 15.73 5.85 0.20 9.87 14.55 0.43 2.46
0.45 5.09 10.53 12.41 3.19 3.41 3.80 1.66 0.40 1.10

(a) The judge calls you as an expert witness to determine the validity of the suit. What
do you tell the judge?

(b) What value of λ maximizes the probability for values reported from the experiment.

(c) Graph the log-likelihood function versus λ values ranging from 0 to 0.5.

21. Data frame birthwt from the MASS package has 10 variables recorded for each of 189
babies born at a U.S. hospital. The variable low takes the value 1 when the baby weighs
less than 2.5 kg and 0 otherwise.

(a) What distribution would be appropriate to model the values in low?

(b) How many babies had birth weights less than 2.5 kg?

(c) Find the maximum likelihood estimate for the parameter of the distribution selected
in (a).

(d) Interpret the MLE found in part (c).

22. In 1876, Charles Darwin had his book The Effect of Cross- and Self-Fertilization in
the Vegetable Kingdom published. Darwin planted two seeds, one obtained by cross-
fertilization and the other by auto-fertilization, in two opposite but separate locations of
a pot. Self-fertilization, also called autogamy or selfing, is the fertilization of a plant with
its own pollen. Cross-fertilization, or allogamy, is the fertilization with pollen of another
plant, usually of the same species. Darwin recorded the plants’ heights in inches. The
data frame Fertilize from the PASWR package contains the data from this experiment.

Cross-fert 23.5 12.0 21.0 22.0 19.1 21.5 22.1 20.4
18.3 21.6 23.3 21.0 22.1 23.0 12.0

Self-fert 17.4 20.4 20.0 20.0 18.4 18.6 18.6 15.3
16.5 18.0 16.3 18.0 12.8 15.5 18.0

(a) Create a variable DD defined as the difference between the variables Cross-fert and
Self-fert.

(b) Perform an exploratory analysis of DD to see if DD might follow a normal distribution.

(c) Use the function fitdistr() found in the MASS package to obtain the maximum
likelihood estimates of μ and σ if DD did follow a normal distribution.

(d) Verify that the results from (c) are the sample mean and the uncorrected sample
standard deviation of DD.



286 Probability and Statistics with R

23. The lognormal distribution has the following density function:

g(w) =
1

wσ
√

2π
e
− 1

2σ2
(lnw − μ)2

, w ≥ 0, −∞ < μ < ∞, σ > 0

where ln(w) ∼ N(μ, σ). The mean and variance of W are, respectively,

E[W ] = eμ+ σ2
2 and Var [W ] = e2μ+σ2

(eσ2 − 1).

Find the maximum likelihood estimators for E[W ] and Var [W ].

24. Consider the variable brain from the Animals data frame in the MASS package.

(a) Estimate with maximum likelihood techniques the mean and variance of brain.
Specifically, use the R function fitdistr() with a lognormal distribution.

(b) Suppose that brain is a lognormal variable; then the log of this variable is normal.
To check this assertion, plot the cumulative distribution function of brain versus
a lognormal cumulative distribution function. In another plot, represent the cumu-
lative distribution function of log-brain versus a normal cumulative distribution
function. Is it reasonable to assume that brain follows a lognormal distribution?

(c) Find the mean and standard deviation of brain assuming a lognormal distribution.

(d) Repeat this exercise without the dinosaurs. Comment on the changes in the mean
and variance estimates.

25. The data in GD available in the PASWR package are the times until failure in hours for a
particular electronic component subjected to an accelerated stress test.

(a) Find the method of moments estimates of α and λ if the data come from a Γ(α, λ)
distribution.

(b) Create a density histogram of times until failure. Superimpose a gamma distribution
using the estimates from part (a) over the density histogram.

(c) Find the maximum likelihood estimates of α and λ if the data come from a Γ(α, λ)
distribution by using the function fitdistr() from the MASS package.

(d) Create a density histogram of times until failure. Superimpose a gamma distribution
using the estimates from part (c) over the density histogram.

(e) Plot the cumulative distribution for time until failure using the ecdf() function.
Superimpose the theoretical cumulative gamma distribution using both the method
of moments and the maximum likelihood estimates of α and λ. Which estimates
appear to model the data better?

26. The time a client waits to be served by the mortgage specialist at a bank has density
function

f(x) =
1

2θ3
x2e−x/θ x > 0, θ > 0.

(a) Derive the maximum likelihood estimator of θ for a random sample of size n.

(b) Show that the estimator derived in (a) is unbiased and efficient.

(c) Derive the method of moments estimator of θ.

(d) If the waiting times of 15 clients are 6, 12, 15, 14, 12, 10, 8, 9, 10, 9, 8, 7, 10, 7, and
3 minutes, compute the maximum likelihood estimate of θ.
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27. If the function
f(x; θ) = kx3e−

1
θ x x ≥ 0, θ > 0

is a density function,

(a) Find k.

(b) Derive the maximum likelihood estimator of θ for a random sample of size n.

(c) Derive the method of moments estimator of θ for a random sample of size n.

(d) Show that the estimators from parts (b) and (c) are both unbiased and efficient.

28. Given the function
f(x) =

θ

x2
, x ≥ θ, θ > 0,

(a) Verify that it is a density function.

(b) Find the maximum likelihood estimators of θ and 1/θ for random samples of size n.

(c) Is the maximum likelihood estimator of θ unbiased?

(d) Find the method of moments estimators of θ and 1/θ .

29. The lifetime (in days) of a new 100 watt fluorescent light bulb follows an exponential
distribution with mean λ. The following data are the lifetimes of 109 light bulbs:

Time bubbles

[0, 50) 25

[50, 100) 19

[100, 150) 11

[150, 200) 8

[200, 250) 9

[250, 300) 7

[300, 450) 22

[450, 1050) 8

(a) Find the maximum likelihood estimator of λ.

(b) Graph the logarithm of the likelihood function versus the parameter λ and indicate
the value of λ where the lifetime is maximized.

30. Given the density function

f(x) =
1
θ

x
1−θ

θ , 0 < x < 1, 0 < θ < ∞

(a) Derive the maximum likelihood estimator of θ for a random sample of size n.

(b) Derive the method of moments estimator of θ for a random sample of size n.

(c) Show that the maximum likelihood estimator is unbiased.

31. Given the density function

f(x) = θxθ−1 0 ≤ x ≤ 1, θ > 0
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(a) What distribution has this density function? Be sure to specify the parameter.

(b) Find the maximum likelihood estimator of θ for random samples of size n.

(c) Find the asymptotic variance of the maximum likelihood estimator.

(d) Find the method of moments estimator of θ for a random sample of size n.

(e) Calculate the maximum likelihood and method of moments estimates of θ for the
sample {0.1, 0.7, 0.5, 0.85, 0.9}.

32. Given the density function

f(x) = θ

(
1
x

)θ+1

, x ≥ 1, θ > 1

(a) Find the maximum likelihood estimator of θ for a random sample of size n.

(b) Find the method of moments estimator of θ for a random sample of size n.

(c) Calculate the maximum likelihood and method of moments estimates of θ using the
sample values {2, 3, 2, 2.5, 1, 2, 2, 3, 1, 4, 6, 3, 4.4}.

(d) Find the mean of the distribution.

(e) Estimate the mean of the distribution using the maximum likelihood estimate of θ.

33. Given the density function

f(x) =

⎧⎨⎩1 − θ for − 1
2 ≤ x ≤ 0

1 + θ for 0 < x ≤ 1
2

(a) Find the maximum likelihood estimator of θ for a random sample of size n.

(b) Show that the maximum likelihood estimator is unbiased and efficient.

(Hint: Denote the number of observations as n1 in the sample so that 0 < xi ≤ 1/2.)

34. Given the density function

f(x) = 3πθx2e−θπx3
, x ≥ 0.

(a) Set the seed equal to 201, and generate a random sample of size n = 500 with θ = 5.

(b) Find the sample mean and the sample variance of the random values generated in
(a).

(c) Graph the density function.

(d) Find the maximum likelihood estimate of θ.

(e) Plot the logarithm of the likelihood function versus θ.

35. Given the density function

f(x) = e−(x−α), −∞ < α ≤ x.

(a) Find the maximum likelihood and method of moments estimators of α.

(b) Are both estimators found in (a) asymptotically unbiased?
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36. Set the seed equal to 384, and generate 100 values from a β(α = 3, β = 2, A = 0, B =
1) distribution. Assume that these values are a random sample of size 100 from a β
distribution with unknown parameters. Use maximum likelihood techniques to obtain
estimates of α and β from this sample.

37. Given a random sample of size n from an exponential distribution with pdf

f(x) =
1
θ
e−

x
θ x ≥ 0, θ > 0, (7.68)

(a) Find the MLE of θ.

(b) Given the answer in part (a), what is the MLE of θ2.





Chapter 8

Confidence Intervals

8.1 Introduction

In Chapter 7, techniques to find point estimators, such as the method of moments and
maximum likelihood, were introduced as well as were criteria to evaluate the “goodness” of
an estimator. However, even the most efficient unbiased estimator is not likely to estimate
the population parameter exactly. Further, a point estimate provides no information about
the precision or reliability of the estimate. Consequently, the construction of an interval
estimate or confidence interval (CI ), where the user can control the precision (width)
of the interval as well as the reliability (confidence) that the true parameter will be found
in the confidence interval, is desirable.

A (1 − α) confidence interval for a parameter θ, denoted CI 1−α(θ), is constructed by
first selecting a confidence level, denoted by (1−α) and typically expressed as a percentage,
(1 − α) · 100%. The confidence level is simply a measure of the degree of reliability in the
procedure used to construct the confidence interval. Typical confidence levels are 90%, 95%,
or 99%. A confidence level of 99% implies that 99% of all samples would provide confidence
intervals that would contain θ. Clearly, it is desirable to have a high degree of reliability.
However, with increased reliability, the width of the confidence interval increases. So, the
goal is to construct a confidence interval with a width the practitioner finds useful while
maintaining a degree of reliability that is as high as possible. The relationship between the
width and confidence level in a confidence interval will become clearer once some actual
confidence interval formulas are examined. The confidence interval has two limits, a lower
limit denoted by L(X) and an upper limit denoted by U(X). The confidence level is
defined as P

(
θ ∈

[
L(X), U(X)

])
. That is, an interval should be constructed such that

P
(
L(X) ≤ θ ≤ U(X)

)
= 1 − α. (8.1)

It is important to note that the interval
[
L(X), U(X)

]
is a random interval since it de-

pends on the random variables of X. However, after a sample is obtained and values for[
L(X), U(X)

]
are calculated, the probability that the parameter θ will be included in the

interval
[
L(x), U(x)

]
is either 0 or 1, depending, of course, on whether θ is between the

lower limit L(x) and the upper limit U(x). Note that X changes to an x once there are
values, xi, for the random variables, Xi. The probability the parameter θ is contained in
the random interval

[
L(X), U(X)

]
from (8.1) is (1 − α). However, once the values for the

random variables are observed, (8.1) is written as

CI 1−α(θ) =
[
L(x), U(x)

]
, (8.2)

which is called a (1−α) confidence interval. Consequently, it makes no sense to talk about
a (1−α) probability interval. Frequently, the confidence level is expressed as a percentage,
and the interval is often called a (1 − α) · 100% confidence interval. A (1 − α) · 100%
confidence interval is typically interpreted as “One is (1−α) ·100% confident θ is contained

291
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in the interval
[
L(x), U(x)

]
.” However, the word confidence in such statements applies to

the procedure used to construct the interval, not the interval itself. That is, if there were
an infinite number of samples, (1 − α) · 100% of them would contain θ.

Confidence intervals of the form
[
L(x), U(x)

]
are referred to as two-sided confidence

intervals. However, some applications will only require a single bound. For example, only
a lower confidence bound on the mean shear strength of an aluminum tube is required to
ensure the minimum design specification for a top tube of a bicycle is met. Likewise, only
an upper confidence bound on the mean level of NO3 in potable water is required to ensure
the maximum allowable limit is not exceeded. One-sided confidence intervals take the form

P
(
L(X) ≤ θ

)
= 1 − α or P

(
θ ≤ U(X)

)
= 1 − α,

depending on whether the confidence interval is a lower confidence interval, [L(x),∞), or an
upper confidence interval, (−∞, L(x)], respectively. Unless otherwise specified, a confidence
interval will refer to a two-sided confidence interval.

There are several techniques used to obtain both one-sided and two-sided confidence
intervals. One of the more popular methods for constructing confidence intervals uses pivotal
quantities. A random variable Q(X; θ) is a pivotal quantity or pivot if the distribution of
Q is independent of the parameter θ. A method of constructing confidence intervals using
pivots is introduced in Section 8.2.1 and is used to derived most of the confidence interval
formulas in this chapter.

8.2 Confidence Intervals for Population Means

8.2.1 Confidence Interval for the Population Mean when Sampling from
a Normal Distribution with Known Population Variance

A random sample of size n is taken from a normal distribution with mean μ and variance
σ2. To obtain a confidence interval for μ, recall that the sampling distribution for the sample
mean is X ∼ N

(
μ, σ/

√
n
)
. Using the sampling distribution of X, create the pivotal quantity

Q(X; μ) =
X − μ

σ/
√

n
∼ N(0, 1). (8.3)

To obtain a confidence interval with a (1 − α) confidence level, construct a region such
that the area between zα/2 and z1−α/2 is (1− α), as shown in Figure 8.1 on the next page.
In other words,

P

(
zα/2 ≤ X − μ

σ/
√

n
≤ z1−α/2

)
= 1 − α. (8.4)

Multiply both sides of (8.4) by σ/
√

n, to obtain

P

(
zα/2

σ√
n
≤ X − μ ≤ z1−α/2

σ√
n

)
= 1 − α.

Subtract X from both sides, multiply both sides by −1, and rearrange the inequalities, to
get

P

(
X − z1−α/2

σ√
n
≤ μ ≤ X − zα/2

σ√
n

)
= 1 − α.
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α/2 α/2

zα/2 z1−α/2

1 − α

FIGURE 8.1: Standard normal distribution with an area of α/2 in each tail

Consequently, the (1−α) confidence interval for μ, when sampling from a normal distribution
with known variance, is given by[

x̄ − z1−α/2
σ√
n

, x̄ − zα/2
σ√
n

]
,

or, equivalently, by recognizing that zα/2 = −z1−α/2, write the standard form as

CI 1−α(μ) =
[
x̄ − z1−α/2

σ√
n

, x̄ + z1−α/2
σ√
n

]
. (8.5)

Note that X in the probability statement changes to x̄ in the confidence interval formula.
To obtain a one-sided (either upper or lower) confidence interval in a symmetric distri-

bution, proceed in a similar fashion. That is, write

P

(
−z1−α ≤ X − μ

σ/
√

n

)
= 1 − α or P

(
X − μ

σ/
√

n
≤ z1−α

)
= 1 − α

and rearrange the quantities inside the probability statements to obtain

P

(
μ ≤ X + z1−α

σ√
n

)
= 1 − α or P

(
X − z1−α

σ√
n
≤ μ

)
= 1 − α

Thus,

UCI 1−α(μ) =
(
−∞, x̄ + z1−α

σ√
n

]
or LCI 1−α =

[
x̄ − z1−α

σ√
n

, ∞
)

Note that a one-sided confidence interval can be obtained from a two-sided confidence
interval by simply changing the z1−α/2 value to a z1−α value and replacing the lower or
upper limit with −∞ or ∞, respectively, depending on whether an upper or lower confidence
interval is desired.

Example 8.1 Generate 100 samples, each of size 500, from a N(0, 1) distribution. For
each of the 100 samples of size 500, calculate a 95% confidence interval for the population
mean. Finally, determine how many of the 100 intervals contain the population mean,
μ = 0. This number is the simulated confidence level.
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Solution: The function interval.plot() graphically depicts the confidence intervals
that are simulated:

> interval.plot<- function(ll, ul){
+ y1 <- ll ; y2<-ul; n <- length(y1)
+ plot(y1, type = "n", ylim=c(-.3,.3), xlab = " ", ylab = " ")
+ condition <- (ll <= 0 & ul >= 0)
+ segments((1:n)[y1<0&y2>0], y1[y1<0&y2>0],(1:n)[y1<0&y2>0],
+ y2[y1<0&y2>0])
+ segments((1:n)[y1>0], y1[y1>0],(1:n)[y1>0], y2[y1>0], col=17,
+ lwd=8)
+ segments((1:n)[y2<0], y1[y2<0],(1:n)[y2<0], y2[y2<0], col=17,
+ lwd=8)
+ SUM<-sum(condition)
+ abline(h=0)
+ cat("Number of intervals that contain 0 =", SUM,"\n" )}

Next, write a script that calculates the lower and upper limits of the confidence intervals.
The lower limit is indicated by ll and the upper limit is indicated by ul in the following
script:

> set.seed(402)
> m<-100 # Number of samples
> n<-500 # Sample size
> a<-array(0, m)
> ll<-array(0, m)
> ul<-array(0, m)
> i<-0
> while (i<m) {i<-i+1
+ a[i] <-mean(rnorm(n))
+ ll[i] <-a[i]+qnorm(0.025)*sqrt(1/n)
+ ul[i] <-a[i]+qnorm(0.975)*sqrt(1/n)}
> interval.plot(ll, ul)
Number of intervals that contain 0 = 95

Note that this is a random simulation and consequently the number of confidence intervals
that contain zero will vary and will not always equal the expected 95. A graphical represen-
tation of confidence intervals using a different seed value with the function interval.plot()
is found in Figure 8.2 on the facing page. A more general function that can be used
to generate random data and subsequently to create confidence intervals is the function
CIsim() from the PASWR package.

Example 8.2 A random sample of size 30 is taken from a normal distribution with
unknown mean μ and standard deviation σ = 2.5. Given that

∑30
i=1 xi = 77, calculate

a 95% confidence interval for the population mean.

Solution: First, determine x̄ :

x̄ =
∑n

i=1 xi

n
=

77
30

= 2.57

Since the sample was taken from a normal distribution with known variance, it is permissible
to write

P

(
X − z0.975

σ√
n
≤ μ ≤ X + z0.975

σ√
n

)
= 0.95.
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FIGURE 8.2: Simulated confidence intervals for the population mean when sampling from
a normal distribution with known variance

A 95% confidence interval for the mean using (8.5) is written as

CI 0.95(μ) =
[
2.57 − (1.96)

2.5√
30

, 2.57 + (1.96)
2.5√
30

]
.

In other words, one can be 95% confident that the mean, μ, will be found in the interval
CI 0.95(μ) = [1.68, 3.46]. It is important to note that the sample mean (x̄ = 2.57) is the center
point of this interval; however, this will only be the case in symmetric distributions.

Example 8.3 � Confidence Interval for μ: Grocery Spending � The consumer
expenditure survey, created by the U.S. Department of Labor, was administered to 30
households in Watauga County, North Carolina, to see how the cost of living in Watauga
County with respect to total dollars spent on groceries compares with other counties. The
amount of money each household spent per week on groceries is given in Table 8.1 and
stored in the data frame Grocery.

(a) Construct a 97% confidence interval for the true mean weekly grocery expenditure for
Watauga County households. Historical records indicate that the variance for grocery
expenditure per household in Watauga County is 900 dollars2.

(b) A grocery chain is considering building a new grocery story in Watauga County. How-
ever, it will only do so if it is 99% confident the average amount spent on groceries each
week is at least $105. Does a LCI 0.99(μ) include $105? I f so, what does that imply?

Table 8.1: Weekly spending in dollars (Grocery)

90.74 104.02 85.64 134.71 108.85 142.19 162.87 138.2 98.73 98.18

139.84 159.69 147.03 151.16 105.68 116.93 97.46 146.64 90.92 134.54

110.82 109.90 106.74 122.10 152.28 136.01 126.00 108.69 135.06 57.38
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Solution: The answers are as follows:

(a) Before using (8.5), the confidence interval formula for μ with known σ on page 293, it
is necessary to verify that the assumption of normality is satisfied. To do this, create a
normal quantile-quantile plot using the qqnorm() function as follows:

> attach(Grocery)
> qqnorm(groceries)
> qqline(groceries)
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FIGURE 8.3: Quantile-quantile (normal distribution) plot of weekly monies spent on
groceries for 30 randomly selected Watauga households

The resulting normal quantile-quantile plot is shown in Figure 8.3. Note that the plotted
values fall relatively close to the plotted line, indicating the assumption of normality is
reasonable. Consequently, one decides the assumption for using (8.5) on page 293 is satisfied
and continues by finding the sample mean:

x̄ =
∑n

i=1 xi

n
=

3619
30

= 120.63

Using the historical value of 900 for σ2, the 97% confidence interval is given by

CI 0.97(μ) =
[
x̄ − z0.985

σ√
n

, x̄ + z0.985
σ√
n

]
=

[
120.63− (2.17)

√
900√
30

, 120.63 + (2.17)
√

900√
30

]
.

In other words, one can be 97% confident that the mean grocery spending will be found in
the interval [108.75, 132.52] dollars.
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To do this calculation with S, enter

> mean(groceries)
[1] 120.6333
> qnorm(0.03/2)
[1] -2.17009
> round(c(mean(groceries)-qnorm(1-0.03/2)*sqrt(900/30),
+ mean(groceries)+qnorm(1-0.03/2)*sqrt(900/30)),2)
[1] 108.75 132.52 #97% CI

(b) Part (a) already verified that the data follow a normal distribution, so one calculates
the one-sided 99% confidence interval as

LCI 0.99(μ) =
[
x̄ − z0.99

σ√
n

, ∞
)

=
[
120.63− 2.33

30√
30

, ∞
)

= [107.87, ∞)

This interval does not include $105; however, its lower limit is above $105, so the grocery
chain can be more than 99% confident the mean grocery spending is greater than $105.

8.2.1.1 Determining Required Sample Size

Larger sample sizes generally result in narrower confidence intervals. Researchers will
often desire a confidence interval not to exceed a specific width at some predetermined level
of significance (one that usually has some practical significance to their research). The
problem addressed in this section is how to determine the minimum required sample size to
be within a given distance of μ when estimating the population mean with known variance,
σ2. To start, recall the probability statement about μ for normal distributions with known
variance in (8.6). Use this equation when working with normal populations

(
N(μ, σ)

)
, as

well as with various other distributions, provided the sample size is sufficiently large:

P

(
X − z1−α/2

σ√
n
≤ μ ≤ X + z1−α/2

σ√
n

)
= 1 − α, (8.6)

which implies

P

(∣∣X − μ
∣∣ ≤ z1−α/2

σ√
n

)
= 1 − α,

where
∣∣X − μ

∣∣ is the error of estimation. In general, the error of estimation is a measure
of the goodness of the estimate. Many texts refer to the error of estimation as the margin
of error or the bound on the error. Denote this quantity by B. If one assumes the
maximum error is

B = |x̄ − μ| = z1−α/2
σ√
n

,

one can solve for n as shown in (8.7):

n =
(z1−α/2)2σ2

(x̄ − μ)2
=

(z1−α/2σ

B

)2

(8.7)

Consequently, any time a confidence level is specified and the value of σ is known, one
can determine the required sample size, n, to be within the maximum error, B, that is
acceptable.



298 Probability and Statistics with R

Example 8.4 Determine the required sample size to estimate the true value of μ within
±0.02 with a confidence level of 95% when sampling from a normal distribution with σ = 0.1.

Solution: To determine the required sample size, use (8.7) as follows:

n =
(z1−α/2)2σ2

(x̄ − μ)2
=

(1.96)2(0.1)2

(0.02)2
= 96.04.

In order to have a confidence of at least 1−α, one always takes the ceiling of n. Therefore,
the required sample size n to estimate the population mean with a 0.95 confidence level so
that the margin of error is no more than 0.02 is n = 97.

Example 8.5 Suppose a random sample of size n from a normal distribution with un-
known mean μ and standard deviation σ = 5 is taken. Calculate the minimum sample size
so that one can be 95% confident the interval [x̄ − 1, x̄ + 1] contains the true value of μ.

Solution: Given that the sample was taken from a normal distribution with known
variance, one can write

P

(
X − (1.96)

σ√
n
≤ μ ≤ X + (1.96)

σ√
n

)
= 0.95.

Since one needs to be 95% confident the interval [x̄ − 1, x̄ + 1] contains μ, write

P
(
X − 1 ≤ μ ≤ X + 1

)
= 0.95,

set 1.96
σ√
n

= 1, and solve for n given that σ = 5:

n = (1.96)2(5)2 = 96.04

Since a sample of 96.04 is impossible, take the ceiling of n to make sure the confidence is
at or above the specified level. Consequently, the minimum sample size to be at least 95%
confident the interval [x̄ − 1, x̄ + 1] contains μ is n = 97 when σ = 5.

Example 8.6 �Sample Size: Defective Containers� In a company that produces
glass containers, the probability of producing a defective container is π = 0.03, and the
probability of obtaining a functional container is (1 − π) = 0.97. Determine how many
containers need to be manufactured to guarantee that at least 100 containers are defective
with a probability of at least 0.95.

Solution: Three solutions are presented for this problem. The first is the exact answer
based on a negative binomial distribution and requires the use of a computer. The second
is an approximation that can be used in the absence of a computer. The third is the exact
answer from a

(
Bin(n, 0.03)

)
, the distribution approximated in (b).

(a) Let X be the number of failures prior to the r = 100th success (defective container).
The distribution of X is NB(100, 0.03). The problem requests P(X = x|100, 0.03) ≥
0.95. That is, one must find the number x of non-defective containers to guarantee the
probability is at least 0.95 upon obtaining the 100th defective container. The following
S code indicates the total number of containers that must be manufactured to guarantee
100 are defective with a probability over 0.95 is 3891:

> f <- 0 # f= number of failures
> p <- 0 # p = probability
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> s <- 100 # s = number of successes
> while(p < 0.95){
+ f <- f + 1
+ p <- pnbinom(f, s, 0.03)}
> ans <- c(f + s, p) # f+s= Containers
> names(ans) <- c("Containers", "Probability")
> ans
Containers Probability

3891 0.9500444

(b) Let the random variable X represent the number of defective containers. The distribu-
tion of X is Bin(n, 0.03). Consequently,

E [X ] = nπ = 0.03n and Var [X ] = nπ(1 − π) = 0.0291n.

If it is assumed n is sufficiently large and the production of each container is indepen-
dent, one can approximate the distribution of X using a normal distribution where

P(X ≥ 100) = 0.95.

Equivalently,

P

(
X − nπ√
nπ(1 − π)

≥ 100 − nπ√
nπ(1 − π)

)
= P

(
Z ≥ 100 − 0.03n√

0.0291n

)
= 0.95.

Note that P(Z ≥ −z1−α) = 0.95 ⇒ −z1−α = −z0.95 = −1.64, and solve the equation

100 − 0.03n√
0.0291n

= 1.64, (8.8)

which is equivalent to solving

0.0009n2 − 6.07826n + 1002 = 0. (8.9)

The solutions to (8.9) are n ≈ 3924 or 2832. However, the value 2832 is not acceptable
since it does not satisfy (8.8). Consequently, the number of containers the factory needs
to manufacture to be 95% confident of getting at least 100 defective containers is 3924.

(c) Let the random variable X again represent the number of defective containers. The
distribution of X is Bin(n, 0.03). To solve P(X ≥ 100) ≥ 0.95 with S, use code similar
to what follows and keep in mind that P(X ≥ 100) = 1 − P(X ≤ 99). The following S
code indicates the total number of containers that must be manufactured to guarantee
100 are defective with a probability over 0.95 is 3891 when using the binomial random
variable. This agrees with the answer that was found when modeling the number of
defective containers obtained with a negative binomial random variable.

> n <- 0 # Number of containers
> p <- 0 # Probability
> while(p < 0.95) {
+ n <- n + 1
+ p <- 1 - pbinom(99, n, 0.03)}
> ans <- c(n, p)
> names(ans) <- c("Containers", "Probability")
> ans
Containers Probability

3891 0.9500444
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The confidence intervals discussed in the remainder of this chapter are commonly used
confidence intervals based, for the most part, on the normal distribution. When constructing
confidence intervals, if historical evidence does not support normality or the text narrative
does not explicitly specify the sample information was collected from a normal distribution,
one should not blindly use techniques that require the normality assumption! Checking
normality assumptions graphically with normal quantile-quantile plots as discussed in Sec-
tion 4.3.7 on page 158 should become a habit.

8.2.2 Confidence Interval for the Population Mean when Sampling from
a Normal Distribution with Unknown Population Variance

Suppose a random sample of size n is taken from a normal distribution with unknown
mean μ and unknown variance σ2. To construct a confidence interval for μ, use the pivotal
quantity

Q(X; μ) =
√

n
(
X − μ

)
S

∼ tn−1.

Operating in a similar fashion to the derivation of the confidence interval for μ, using (8.3)
from Section 8.2.1, one obtains the interval

CI 1−α(μ) =
[
x̄ − t1−α/2;n−1

s√
n

, x̄ + t1−α/2;n−1
s√
n

]
. (8.10)

Example 8.7 A random sample of size 12 is taken from a population that follows a
N(μ, σ) distribution where the value for σ is unknown. Given:

12∑
i=1

xi = 61.9, and
12∑

i=1

x2
i = 450,

determine a 90% confidence interval for the population mean.

Solution: First find the sample mean and the sample variance.

x̄ =
∑n

i=1 xi

n
=

61.9
12

= 5.16, and

s2 =
∑n

i=1 x2
i − nx̄2

n − 1
=

450 − (12)(5.16)2

12 − 1
= 11.86.

The sample standard deviation is s = 3.44 and t0.95;11 = 1.8. Using (8.10),

CI 0.9(μ) =
[
5.16 − (1.8)

3.44√
12

, 5.16 + (1.8)
3.44√

12

]
= [3.37, 6.95].

One is 90% confident the population mean lies in [3.37, 6.95]. The value t0.95;11 can be
found by using the S command qt(0.95,11).

Example 8.8 � Confidence Interval for μ: House Prices � Estimate the mean
house price for three-bedroom/two-bath houses in Watauga County, North Carolina. A
random sample of 14 three-bedroom/two-bath houses was taken from the Watauga County
Multiple Listing Service real estate listings (2003), and the results are reported in Table 8.2
on the next page and stored in the data frame House. Calculate a 95% confidence interval
for the average price of a three bedroom/two bath house in this county.
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Table 8.2: House prices (in thousands of dollars) for three-bedroom/two-bath houses in
Watauga County, NC (House)

Neighborhood Price Neighborhood Price

Valley Crucis 184.9 Blowing Rock 279.5

Valley Crucis 160.0 Valley Crucis 294.9

Valley Crucis 298.0 Blowing Rock 324.5

Blowing Rock 269.9 Blowing Rock 226.0

Parkway 189.9 Valley Crucis 329.9

Blowing Rock 229.9 Green Valley 199.9

Cove Creek 175.0 Park Valley 133.9

Solution: Before using the confidence interval formula in (8.10), one needs to verify the
assumption of normality is satisfied. Consequently, a normal quantile-quantile plot for the
values reported in Table 8.2 was constructed with the S functions qqnorm() and qqline()
and is shown in Figure 8.4 on the next page. Since the points in Figure 8.4 fall relatively
close to the straight line, it is decided that the normality assumption for using (8.10) is
satisfied. Thus, continue by calculating the sample mean as

x̄ =
∑n

i=1 xi

n
=

3296.2
14

= 235.44

and the sample variance as

s2 =
∑n

i=1(xi − x̄)2

n − 1
=

∑14
i=1(xi − 235.44)2

13
= 4084.4.

The sample standard deviation is s = 63.91, and a 95% confidence interval using (8.10) is
calculated as

CI 0.95(μ) =
[
x̄ − t0.975;n−1

s√
n

, x̄ + t0.975;n−1
s√
n

]
=

[
235.44− (2.16)

63.91√
14

, 235.44 + (2.16)
63.91√

14

]
= [198.54, 272.34].

Thus, one is 95% confident the mean house price falls in [198.54, 272.34] thousands of
dollars.

To construct a confidence interval for the mean with S, type

> attach(House)
> MEAN<-mean(Price)
> CT<-qt(.975,13)
> ST<-sd(price) #stdev(Price) in S-PLUS
> round(c(MEAN-CT*ST/sqrt(14), MEAN+CT*ST/sqrt(14)),2)
[1] 198.54 272.34

Direct construction of the confidence interval is also possible using the internal function
t.test() as shown next.
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FIGURE 8.4: Quantile-quantile plot of the asking price for 14 randomly selected three-
bedroom/two-bath houses in Watauga County, North Carolina

> t.test(Price)$conf
[1] 198.5424 272.3433
attr(,"conf.level")
[1] 0.95

Note that the function sd(object) finds the standard deviation in R but will not work
with S-PLUS. The function to find the standard deviation with S-PLUS is stdev(object).
The default confidence level is 95% for both R and S-PLUS. To change the confidence level,
say to 90%, the argument conf.level=.90 is specified inside the t.test() command as
t.test(object, conf.level=.90)$conf.

8.2.3 Confidence Interval for the Difference in Population Means when
Sampling from Independent Normal Distributions with Known
Equal Variances

Consider two normal and independent populations N(μX , σX) and N(μY , σY ), where
σX = σY = σ is known. If one takes random samples of sizes nX and nY , respectively, a
confidence interval for μX − μY is easily derived using the sampling distribution of

X − Y ∼ N

(
μX − μY , σ

√(
1

nX
+

1
nY

) )
,

which provides a pivotal quantity,

Q(X,Y; μX − μY ) =

(
X − Y

)
− (μX − μY )

σ

√(
1

nX
+

1
nY

) ,

which has a standard normal distribution independent of the value of μX − μY . The
(1−α) · 100% confidence interval for the difference in population means, μX − μY , is given
by
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CI 1−α(μX − μY |σX = σY is known) =⎡⎣(x̄ − ȳ) − z1−α/2σ

√
1

nX
+

1
nY

, (x̄ − ȳ) + z1−α/2σ

√
1

nX
+

1
nY

⎤⎦ .
(8.11)

Example 8.9 Suppose independent random samples are taken from two normal distri-
butions N(μX , σ = 3) and N(μY , σ = 3), respectively, such that nX = 15,

∑nX

i=1 xi = 60,
nY = 22, and

∑nY

i=1 yi = 97. Calculate a 95% confidence interval for the difference in
population means (μX − μY ).

Solution: Since

x̄ =
∑nX

i=1 xi

nX
=

60
15

= 4 and ȳ =
∑nY

i=1 yi

nY
=

97
22

= 4.41,

the 95% confidence interval for the difference in population means (μX − μY ) is calculated
using (8.11) as

CI 0.95 (μX − μY ) =

⎡⎣(4 − 4.41)− (1.96)(3)

√
1
15

+
1
22

, (4 − 4.41) + (1.96)(3)

√
1
15

+
1
22

⎤⎦
=[−2.38, 1.56].

To calculate the confidence interval with S, key in

> round(qnorm(0.975), 2)
[1] 1.96
> round(c((4-4.41) + qnorm(0.025)*3*sqrt(1/15 + 1/22),
+ (4-4.41) + qnorm(0.975)*3*sqrt(1/15 + 1/22)), 2)
[1] -2.38 1.56

So, one is 95% confident μX − μY lies in [−2.38, 1.56].

Example 8.10 The hardness of a piece of fruit is a good indicator of the fruit’s ripeness.
An experiment was undertaken where 17 recently picked (fresh) apples were randomly
selected and measured for hardness. Seventeen apples were also randomly selected from
a warehouse where the apples had been stored for one week. Construct a 95% confidence
interval for the mean difference between the hardness of fresh apples and the hardness
for apples that were picked one week ago. Assume the distributions for both recently
picked apples and for apples picked one week ago have known and equal variances of 2.25(
kg/meter2

)2. The data are provided in Table 8.3 on the following page and can be found
in the data frame Apple.

Solution: Before the confidence interval formula in (8.11) can be used, one needs to make
sure the assumption of normality is satisfied. Consequently, a normal quantile-quantile plot
for the values reported in Table 8.3 on the next page was constructed and is shown in Figure
8.5.

(Note that title and axis labels in Figure 8.5 are the R defaults and that a “Q-Q Normal
Plot” is equivalent to a normal quantile-quantile plot as discussed earlier.) Since the points
in Figure 8.5 fall relatively close to the straight lines, it is decided that the normality
assumptions for using (8.11) are satisfied.
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Table 8.3: Apple hardness measurements (Apple)

Fresh Warehouse

7.27 8.38 9.20 7.79 9.17 10.05

6.65 5.83 7.89 7.11 6.31 8.58

5.76 7.70 7.77 6.27 8.39 8.42

6.53 5.86 6.48 7.22 6.19 7.07

8.09 5.53 8.28 8.83 6.31 8.83

9.56 6.54 10.5 7.17
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FIGURE 8.5: Superimposed normal quantile-quantile plots of the hardness values for fresh
and warehoused apples

The R code used to produce Figure 8.5 is

> attach(Apple)
> par(pty = "s")
> Altblue <- "#A9E2FF"
> Adkblue <- "#0080FF"
> fresh <- qqnorm(Fresh)
> old <- qqnorm(Warehouse)
> plot(fresh,type="n",ylab="Sample Quantiles",xlab="Theoretical Quantiles")
> qqline(Fresh, col = Altblue)
> qqline(Warehouse, col = Adkblue)
> points(fresh, col = Altblue, pch = 16, cex = 1.2)
> points(old, col = Adkblue, pch = 17)
> legend(-1.75, 9.45, c("Fresh", "Warehouse"), col = c(Altblue, Adkblue),
+ text.col=c("black","black"),pch=c(16,17),lty=c(1,1),bg="gray95",cex=0.75)
> title("Q-Q Normal Plots")
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Thus, continue solving the problem by calculating the sample mean hardness for both the
fresh and warehoused apples as

x̄ =
∑nX

i=1 xi

nX
=

123.25
17

= 7.25 and ȳ =
∑nY

i=1 yi

nY
=

134.13
17

= 7.89.

Using (8.11), the 95% confidence interval for μX − μY is

CI 0.95 (μX − μY ) =

[
(7.25 − 7.89)− (1.96)(1.5)

√
1
17

+
1
17

,

(7.25 − 7.89) + (1.96)(1.5)

√
1
17

+
1
17

]
= [−1.65, 0.37].

To calculate the confidence interval with S, enter

> attach(Apple)
> str(Apple) # Only works in R
‘data.frame’: 17 obs. of 2 variables:
$ Fresh : num 7.27 6.65 5.76 6.53 8.09 9.56 8.38 ...
$ Warehouse: num 7.79 7.11 6.27 7.22 8.83 10.5 9.17 ...
> mean.fresh <- mean(Fresh)
> mean.fresh
[1] 7.254118
> mean.old <- mean(Warehouse)
> mean.old
[1] 7.894706
> round(c(mean.fresh - mean.old - qnorm(0.975)*1.5*sqrt(2/17),
+ mean.fresh - mean.old + qnorm(0.975)*1.5*sqrt(2/17)),2)
[1] -1.65 0.37

Thus, one is 95% confident that the difference in mean hardness for fresh and warehoused
apples falls in the interval [−1.65, 0.37] kg/meter2. Since this interval contains zero, one can
say that there is essentially no difference between the hardnesses for fresh and warehoused
apples.

Note that no internal S functions such as t.test that assume unknown variances to construct
the confidence interval reported in Example 8.10 were used.

8.2.4 Confidence Interval for the Difference in Population Means when
Sampling from Independent Normal Distributions with Known
but Unequal Variances

Consider two independent normal populations, N(μX , σX) and N(μY , σY ), with known
but unequal variances σ2

X and σ2
Y , respectively. If one takes random samples of size nX and

nY , respectively, the confidence interval for μX −μY can be constructed from knowledge of
the sampling distribution of the statistic X − Y . Since

X − Y ∼ N

⎛⎝μX − μY ,

√
σ2

X

nX
+

σ2
Y

nY

⎞⎠ ,

the (1 − α) · 100% confidence interval for (μX − μY ) is
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CI 1−α(μX − μY |σX �= σY but known) =⎡⎣(x̄ − ȳ) − z1−α/2

√
σ2

X

nX
+

σ2
Y

nY
, (x̄ − ȳ) + z1−α/2

√
σ2

X

nX
+

σ2
Y

nY

⎤⎦ .
(8.12)

Example 8.11 Suppose random samples of sizes nX = 50 and nY = 46 are drawn from
normal populations with standard deviations of 4.5 and 6, respectively, such that

nX∑
i=1

xi = 420 and
nY∑
i=1

yi = 405.

Construct a 97% confidence interval for μX − μY .

Solution: Given that

x̄ =
∑50

i=1 xi

50
=

420
50

= 8.4 and ȳ =
∑46

i=1 yi

46
=

405
46

= 8.8,

the 97% confidence interval for μX − μY is constructed using (8.12) as

CI 0.97(μX − μY ) =

⎡⎣(8.4 − 8.8) − 2.17

√
(4.5)2

50
+

62

46
, (8.4 − 8.8) + 2.17

√
(4.5)2

50
+

62

46

⎤⎦
= [−2.76, 1.96].

Note that since zero is contained in the interval, one concludes μX is not significantly
different from μY . To construct the confidence interval with S, key in

> round(qnorm(0.985), 2)
[1] 2.17
> round(c((8.4 - 8.8) - qnorm(0.985)*sqrt((4.5)^2/50 + (6)^2/46),
+ (8.4 - 8.8) + qnorm(0.985)*sqrt((4.5)^2/50 + (6)^2/46)),2)
[1] -2.76 1.96

So, one is 97% confident that μX − μY lies in [−2.76, 1.96].

Example 8.12 � Confidence Interval for μX − μY : Calculus � Table 8.4 on
the next page and data frame Calculus provide the mathematical assessment scores for
36 students enrolled in a biostatistics course according to whether or not the students
had successfully completed a calculus course prior to enrolling in the biostatistics course.
Construct a 95% confidence interval for the difference in the means of the mathematical
assessment scores for students who had successfully completed a calculus course (X) and
of those who had not (Y ). Assume the distributions for X and Y have variances of 25
and 144, respectively. Determine if it is advantageous to take calculus prior to taking the
biostatistics course.

Solution: Before using the confidence interval formula in (8.12), one needs to make sure
the assumption of normality is satisfied. Consequently, a normal quantile-quantile plot
for the values reported in Table 8.4 on the facing page was constructed and is shown in
Figure 8.6 on the next page.
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Table 8.4: Mathematical assessment scores for students enrolled in a biostatistics course
(Calculus)

Y X

No Calculus Calculus

73 39 55 72 88 64 82 90 85 87 86 79

57 58 75 44 76 68 85 92 89 82 92 82

64 55 62 61 76 40 85 87 92 85 95 90
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FIGURE 8.6: Superimposed normal quantile-quantile plots of the mathematical assessment
scores for students enrolled in a biostatistics course who had successfully completed calculus
and the mathematical assessment scores for students who had not successfully completed
calculus

Since the points in Figure 8.6 fall relatively close to the straight lines, one decides the
normality assumptions for using (8.12) are satisfied and continues by calculating the sam-
ple means for students who successfully completed calculus and those who have not yet
successfully completed calculus as

x̄ =
∑18

i=1 xi

18
=

1565
18

= 86.94 and ȳ =
∑18

i=1 yi

18
=

1127
18

= 62.61.

The 95% confidence interval for (μX − μY ) is constructed using (8.12) as

CI 0.95(μX − μY ) =⎡⎣(86.94− 62.61) −(1.96)

√
25
18

+
144
18

, (86.94− 62.61) + (1.96)

√
25
18

+
144
18

⎤⎦
= [18.33, 30.34].
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To construct the confidence interval with S, type

> attach(Calculus)
> str(Calculus) # str ONLY works in R
‘data.frame’: 18 obs. of 2 variables:
$ Yes.Calculus: num 82 90 85 87 86 79 85 92 89 82 ...
$ No.Calculus : num 73 39 55 72 88 64 57 58 75 44 ...
> mean(Yes.Calculus)
[1] 86.94444
> mean(No.Calculus)
[1] 62.61111
> round(c(mean(Yes.Calculus) - mean(No.Calculus)
+ - qnorm(0.975)*sqrt(25/18+144/18),
+ mean(Yes.Calculus) - mean(No.Calculus)
+ + qnorm(0.975)*sqrt(25/18+144/18)),2)
[1] 18.33 30.34

Therefore, one is 95% confident that the difference in mean assessment scores for students
who have successfully completed calculus prior to enrolling in biostatistics and those stu-
dents who have not successfully completed calculus prior to enrolling in biostatistics lies in
[18.33, 30.34]. It is advantageous to take calculus prior to taking biostatistics.

Note, once again, that the internal S function t.test was not used to construct the confidence
interval since t.test assumes one is working with unknown variances; and in Example 8.12,
the variances are known. If σ is unknown, use (8.16) on page 310.

8.2.5 Confidence Interval for the Difference in Means when Sampling
from Independent Normal Distributions with Variances That Are
Unknown but Assumed Equal

Suppose random samples of size nX and nY , respectively, are taken from two normal
distributions N(μX , σ) and N(μY , σ), where σ is unknown. To obtain a confidence interval
for μX −μY , take advantage of Theorem 6.4 on page 237, which allows the use of the pivot

Q(X,Y; μX − μY ) =

[(
X − Y

)
− (μX − μY )

]√
S2

p

(
1

nX
+

1
nY

) ∼ tnX+nY −2. (8.13)

The denominator of the pivotal quantity in (8.13) is an estimator for the variance of X−Y ,
where

S2
p =

(nX − 1)S2
X + (nY − 1)S2

Y

nX + nY − 2
. (8.14)

Note that S2
p is a pooled estimator of the variance that weights the contributions of S2

X

and S2
Y in proportion to the respective sample sizes nX and nY . The degrees of freedom

nX + nY − 2 are denoted νp in the (1 − α) · 100% confidence interval for μX − μY given in
(8.15).

CI 1−α(μX − μY |Assuming σX = σY but unknown) =⎡⎣(x̄ − ȳ) − t1−α/2;νp
sp

√
1

nX
+

1
nY

, (x̄ − ȳ) + t1−α/2;νp
sp

√
1

nX
+

1
nY

⎤⎦ (8.15)
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Example 8.13 A random sample from a N (μX , σ) population is taken where

nX = 15,

15∑
i=1

xi = 53, and
15∑

i=1

x2
i = 222.

Another random sample is taken from a N(μY , σ) population independent of the first sample
such that

nY = 11,

11∑
i=1

yi = 77, and
11∑

i=1

y2
i = 560.

Obtain a 95% confidence interval for μX −μY by assuming the true but unknown variances
are equal.

Solution: The sample means and sample variances are calculated as

x̄ =
∑nX

i=1 xi

nX
=

53
15

= 3.53, s2
X =

∑nX

i=1 x2
i − nX x̄2

nX − 1
=

222 − (15)(3.53)2

15 − 1
= 2.51,

ȳ =
∑nY

i=1 yi

nY
=

77
11

= 7, and s2
Y =

∑nY

i=1 y2
i − nY ȳ2

nY − 1
=

560 − (11)(7)2

11 − 1
= 2.1.

The pooled variance is given by

s2
p =

(15 − 1)(2.51) + (11 − 1)(2.1)
24

= 2.34,

where sp = 1.53. Keeping in mind that t0.975;24 = 2.06, the 95% confidence interval for
μX − μY is constructed using (8.15) as

CI 0.95(μX − μY ) =

[
(3.53 − 7) − (2.06)(1.53)

√
1
15

+
1
11

,

(3.53 − 7) + (2.06)(1.53)

√
1
15

+
1
11

]
= [−4.72, −2.22].

To construct this confidence interval with S, type

> round(qt(0.975,24), 2)
[1] 2.06
> sp <- round(sqrt((14*2.51+10*2.1)/24),2)
> sp
[1] 1.53
> round(c((3.53 - 7) - qt(0.975,24)*sp*sqrt(1/15 + 1/11),
+ (3.53 - 7) + qt(0.975,24)*sp*sqrt(1/15 + 1/11)),2)
[1] -4.72 -2.22

That is, one is 95% confident that the difference of means lies in [−4.72, −2.22].

Example 8.14 Given the information from Example 8.10 on page 303, construct a 95%
confidence interval for the difference in hardness between fresh and warehoused apples.
Assume the samples come from normal and independent distributions with unknown but
equal variances.
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Solution: According to the solution for Example 8.10, the sample means for fresh and
warehoused apples are x̄ = 7.25 and ȳ = 7.89, respectively. Next, calculate the respective
sample variances as

s2
X =

∑nX

i=1(xi − x̄)2

nX − 1
=

∑17
i=1(xi − 7.25)2

16
= 1.51 and

s2
Y =

∑nY

i=1(yi − ȳ)2

nY − 1
=

∑17
i=1(yi − 7.89)2

16
= 1.79.

Note that the t-distribution has nX + nY − 2 = 17 + 17− 2 = 32 degrees of freedom and sp

is calculated as

sp =

√
16(1.51) + 16(1.79)

32
= 1.28.

Finally, the 95% confidence interval for μX − μY is calculated as

CI 0.95 (μX − μY ) =

[
(7.25 − 7.89)− (2.04)(1.28)

√
1
17

+
1
17

,

(7.25 − 7.89) + (2.04)(1.28)

√
1
17

+
1
17

⎤⎦ = [−1.54, 0.26].

Assuming the data frame Apple is attached, this confidence interval can be constructed
with S by keying in

> t.test(Fresh, Warehouse, var.equal=TRUE)$conf
[1] -1.5382253 0.2570488
attr(, "conf.level"):
[1] 0.95

So, one is 95% confident the difference in means for fresh and warehoused apple hardness
falls in [−1.54, 0.26] kg/meter2.

8.2.6 Confidence Interval for a Difference in Means when Sampling
from Independent Normal Distributions with Variances That Are
Unknown and Unequal

If random samples of size nX and nY are drawn from two independent normal distri-
butions, say N (μX , σX) and N (μY , σY ), where σX and σY are unknown and unequal, a
(1 − α) · 100% confidence interval for μX − μY is given by

CI 1−α(μX − μY |Unknown σX �= σY ) =⎡⎣(x̄ − ȳ) − t1−α/2;ν

√
s2

X

nX
+

s2
Y

nY
, (x̄ − ȳ) + t1−α/2;ν

√
s2

X

nX
+

s2
Y

nY

⎤⎦ (8.16)

The degrees of freedom, ν, for (8.16) are determined by (8.17). When ν does not give an
integer value, it is truncated to give a conservative approximation. “Conservative” means
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that the resulting confidence interval will have a confidence level of at least 1 − α.

ν =

(
s2

X

nX
+

s2
Y

nY

)2

(s2
X/nX)2

nX − 1
+

(s2
Y /nY )2

nY − 1

(8.17)

The standardized test statistic in (8.18) is used to construct a confidence interval for μX −
μY . The sampling distribution of (8.18) is very complicated, but Welch’s approximation of
a tν-distribution provides adequate results and will be used in this text:

(
X − Y

)
− (μX − μY )√

S2
X

nX
+

S2
Y

nY

�∼ tν (8.18)

Example 8.15 Suppose a random sample is taken from a N(μX , σX) population where

nX = 15,

15∑
i=1

xi = 63, and
15∑

i=1

x2
i = 338.

A second random sample is taken from a N(μY , σY ) population independent from the first
sample such that

nY = 11,

11∑
i=1

yi = 66.4, and
11∑

i=1

y2
i = 486.

Construct a 95% confidence interval for μX − μY assuming the variances for the two
populations are unknown and unequal.

Solution: Start by calculating the sample means and sample variances for the respective
samples as well as ν, the value for the degrees of freedom:

x̄ =
63
15

= 4.2 s2
X =

∑nX

i=1 x2
i − nX x̄2

nX − 1
=

338 − (15)(4.2)2

15 − 1
= 5.24

ȳ =
66.4
11

= 6.04 s2
Y =

∑nY

i=1 y2
i − nY ȳ2

nY − 1
=

486 − (11)(6.04)2

11 − 1
= 8.47

Next, (8.17) is used with the sample variances and respective sample sizes to determine ν:

ν =

(
5.24
15

+
8.47
11

)2

(5.24/15)2

14
+

(8.47/11)2

10

= 18.43 ≈ 18

The 95% confidence interval for μX − μY is constructed using (8.16) as

CI 0.95 (μX − μY ) =

[
(4.2 − 6.04) − t0.975;18

√
5.24
15

+
8.47
11

,

(4.2 − 6.04) + t0.975;18

√
5.24
15

+
8.47
11

]
=[−1.84 − (2.01)(1.06), −1.84 + (2.01)(1.06)]
=[−4.06, 0.38].
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To find this confidence interval with S, enter

> round(qt(0.975,18), 2)
[1] 2.01
> round(c((4.2 - 6.04) + qt(0.025,18)*sqrt(5.24/15 + 8.47/11),
+ (4.2 - 6.04) + qt(0.975,18)*sqrt(5.24/15 + 8.47/11)), 2)
[1] -4.06 0.38

One is 95% confident the difference of means lies in [−4.06, 0.38].

Example 8.16 Using the information from Example 8.12, which provided the mathemat-
ical assessment scores for students enrolled in a biostatistics course according to whether
they had completed a calculus course prior to enrolling in the biostatistics course, construct
a 95% confidence interval for μX − μY assuming the samples are taken from distributions
where the variances are unknown and unequal (σ2

X �= σ2
Y ).

Solution: Recall from Example 8.12 that x̄ = 86.94 and ȳ = 62.61. Also recall that
the assumption of normality for these data seemed plausible based on the normal quantile-
quantile plot provided in Figure 8.6 on page 307. The respective sample variances are

s2
X =

∑n
i=1(xi − x̄)2

n − 1
=

∑18
i=1(xi − 86.94)2

17
= 18.64 and

s2
Y =

∑n
i=1(yi − ȳ)2

n − 1
=

∑18
i=1(yi − 62.61)2

17
= 174.84.

Next, (8.17) on the previous page is used with the sample variances and respective sample
sizes to determine ν:

ν =

(
18.64
18

+
174.84

18

)2

(18.64/18)2

17
+

(174.84/18)2

17

= 20.58 ≈ 20

The 95% confidence interval for μX − μY is constructed using (8.16) as

CI 0.95 (μX − μY ) =

[
(86.94 − 62.61)− t0.975;20

√
18.64
18

+
174.84

18
,

(86.94 − 62.61) + t0.975;20

√
18.64
18

+
174.84

18

]
=[24.33 − (2.09)(3.28), 24.33 + (2.09)(3.28)]
=[17.48, 31.19].

Assuming the data frame Calculus is attached, the confidence interval can be constructed
directly with

> t.test(Yes.Calculus, No.Calculus, var.equal=FALSE)$conf
[1] 17.50677 31.15990
attr(,"conf.level")
[1] 0.95

One is 95% confident that the difference of means lies in [17.48, 31.19]. Note that S can
compute quantiles in the t-distribution with non- integer degrees of freedom. In particular,
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S uses the exact value for ν from (8.17) to find the critical value t1−α/2;ν in its confidence
interval computation rather than truncating the value of ν. Consequently, the confidence
interval computed with 20 degrees of freedom is slightly wider than the confidence interval
S computes.

When working with normal distributions that have unknown variances, not pooling
the variances and using (8.16) is generally the better method when the sample sizes are
the same. It is also better when the sample sizes are unequal and the larger variance is
associated with the larger sample size. Pooling the variances and using (8.15) should only
be done if one is relatively confident that the variances are equal or if the larger variance is
associated with the smaller sample size. For a summary of these methods, see Table 8.5.

Table 8.5: Methods for analyzing normal data

Condition Method Equation

Same Sample Sizes Do Not Pool Variances (8.16)

Larger Variance with Larger Sample Do Not Pool Variances (8.16)

Variances Equal Pool Variances (8.15)

Larger Variance with Smaller Sample Pool Variances (8.15)

8.2.7 Confidence Interval for the Mean Difference when the Differences
Have a Normal Distribution

Information from two dependent distributions is often called paired or dependent
data. Paired samples have some common intrinsic features such as members of the same
family, animals from the same litter, etc. Data are also considered to be paired when
the same sample is observed at different times. For example, suppose one is interested in
evaluating the time undergraduate economic majors spend studying the first month of the
semester and how much time they spend studying the last month of the semester. To help
in the analysis, record the total time students spend studying the first and last months of
the semester. This information is considered paired data since there are two measurements
on each student. Scores recorded from a pre-test and post-test on the same group of people
are also considered to be a paired or a dependent sample. In general, when the researcher is
presented with paired samples, the standard approach is to analyze the differences between
the paired data. In other words, if the population of pairs is

(
(X1, Y1), (X2, Y2), . . .

)
, analyze

the paired differences D = (X1−Y1, X2−Y2, . . .). When there is a paired sample of size nD,
denote the sample differences as d = (x1 − y1, . . . , xnD − ynD ). Provided the distribution of
population differences is

D ∼ N (μD = μX − μY , σD) , (8.19)

a confidence interval formula for μD when σD is unknown can be constructed using the
pivotal quantity

Q(X; μD) =
D − μD

SD/
√

nD
∼ tn−1, (8.20)

where nD represents the number of pairs in the sample and SD is the standard deviation of
the differences. Using (8.20) as a pivot, a (1−α) ·100% confidence interval for the difference
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in two dependent population means, μX − μY , is given as

CI 1−α(μX − μY ) = CI 1−α(μD) =[
d̄ − t1−α/2;nD−1

sD√
nD

, d̄ + t1−α/2;nD−1
sD√
nD

]
(8.21)

Example 8.17 To compare the speed differences between two different brands of work-
stations (Sun and Digital), the times each brand took to complete complex simulations
were recorded. Five complex simulations were selected, and the five selected simulations
were run on both workstations. The resulting times in minutes for the five simulations are
given in Table 8.6 and stored in data frame Sundig. Construct a 95% confidence interval
for μD, the average time difference between SUN and DIGITAL workstations. Is one of the
workstations faster than the other?

Table 8.6: Time to complete a complex simulation in minutes (Sundig)
Simulation SUN DIGITAL Difference

1 110 102 8
2 125 120 5
3 141 135 6
4 113 114 −1
5 182 175 7

Solution: Since each one of the five selected complex simulations was run on both work-
stations, these samples are dependent. The differences between the dependent samples are
d = (8, 5, 6,−1, 7), d̄ = 5 minutes, and sD = 3.53 minutes. Before using (8.21), one needs
to verify the distribution of differences is normal. To check the normality assumption, use
the functions qqnorm() and qqline() on the sample differences, d. The resulting normal
quantile-quantile plot is shown in Figure 8.7 on the next page. Based on Figure 8.7, it is
not immediately clear that the distribution of differences is normal due to the outlier in the
lower left of the plot. At this point, one should look at several normal quantile-quantile
plots for samples of size five using the ntester() function. The results of using the function
ntester() on the sample differences are shown in Figure 8.8 on the facing page. After using
the ntester() function on the differences and viewing the output in Figure 8.8, one can
conclude that it is not unreasonable to assume the distribution of differences between Sun
and Digital workstations follow a normal distribution and can use (8.21) to construct the
95% confidence interval for μD = μSUN − μDIG as follows:

CI 0.95(μSUN − μDIG) =
[
d̄ − t0.975;nD−1

sD√
nD

, d̄ + t0.975;nD−1
sD√
nD

]
=

[
5 − (2.78)

3.53√
5

, 5 + (2.78)
3.53√

5

]
= [0.61, 9.39].

One is 95% confident μD lies in [0.61, 9.39] minutes. Since the confidence interval does not
contain zero, one can be 95% confident that μD = μSUN − μDIG > 0. This implies that
μSUN > μDIG, which means that the Digital workstation is faster than the Sun workstation.
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FIGURE 8.7: Normal quantile-quantile plot of the time differences between Sun and Digital
workstations to complete complex simulations

SimNorm p-val =  0.847 SimNorm p-val =  0.432 SimNorm p-val =  0.07

SimNorm p-val =  0.254 YourData p-val =  0.154 SimNorm p-val =  0.691
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Simulated Normal Data on Perimeter - Actual Data in Center

FIGURE 8.8: Quantile-quantile plot of the time differences between Sun and Digital
workstations to complete complex simulations shown in the middle with normal
quantile-quantile plots of random normal data depicted on the outside plots

To verify the value t0.975;4 and to calculate a 95% confidence interval for μD with S, enter

> round(qt(0.025,4), 2)
[1] -2.78
> attach(Sundig)
> t.test(SUN, DIGITAL, paired=TRUE)$conf
[1] 0.6100548 9.3899452
attr(,"conf.level")
[1] 0.95
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8.3 Confidence Intervals for Population Variances

8.3.1 Confidence Interval for the Population Variance of a Normal
Population

This section considers a normal population N(μ, σ) from which a random sample of size
n is taken. The confidence interval for σ2 is based on the pivot

Q(X; σ2) =
(n − 1)S2

σ2
∼ χ2

n−1 (8.22)

χ2
α/2;6 χ2

1−α/2;6

1 − α

FIGURE 8.9: Chi-square distribution with six degrees of freedom depicting the points χ2
α/2;6

and χ2
1−α/2;6

The pivotal quantity (8.22) is not very robust with respect to the normality assumption.
Consequently, before constructing a confidence interval for σ2, one should always check the
sample for normality using a graphical procedure such as a normal quantile-quantile plot
(qqnorm()). Although Pearson’s χ2 distribution is not symmetric (see Figure 8.9), one can
use the sampling distribution of the statistic (n− 1)S2/σ2 and the definition of percentiles
to obtain

P

(
χ2

α/2;n−1 ≤ (n − 1)S2

σ2
≤ χ2

1−α/2;n−1

)
= 1 − α. (8.23)

To arrive at the standard confidence interval form for the variance, first take the recipro-
cal inside the probability statement of (8.23) as shown in (8.24). Then, multiply everything
inside the probability statement of (8.24) by (n− 1)S2 to obtain the probability statement
shown in (8.25):

P

(
1

χ2
α/2;n−1

≥ σ2

(n − 1)S2
≥ 1

χ2
1−α/2;n−1

)
= 1 − α, (8.24)

P

(
(n − 1)S2

χ2
1−α/2;n−1

≤ σ2 ≤ (n − 1)S2

χ2
α/2;n−1

)
= 1 − α. (8.25)
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Using the probability statement (8.25) at a fixed confidence level of (1 − α), the standard
form for the confidence interval for σ2 is illustrated in (8.26). Note that the confidence
interval for the variance is not centered around the point estimate (the sample variance,
s2).

CI 1−α

(
σ2

)
=

[
(n − 1)s2

χ2
1−α/2;n−1

,
(n − 1)s2

χ2
α/2;n−1

]
. (8.26)

Example 8.18 Construct an 80% confidence interval for σ2
X using the information from

Example 8.15.

Solution: Recall that the underlying distribution in Example 8.15 was assumed to be
N (μX , σX) and the sample information provided revealed that nX = 15, x̄ = 4.2, and
s2

X = 5.24. Using (8.26), the 80% confidence interval for σ2
X is calculated as

CI 0.8(σ2
X) =

[
(nX − 1)s2

X

χ2
0.9;n−1

,
(nX − 1)s2

X

χ2
0.1;n−1

]
=

[
14(5.24)
χ2

0.9;14

,
14(5.24)
χ2

0.1;14

]

=
[
73.36
21.06

,
73.36
7.79

]
= [3.48, 9.42].

To construct this confidence interval with S, type

> round(qchisq(0.1,14), 2)
[1] 7.79
> qchisq(0.9,14)
[1] 21.06
> round(c(14*5.24/qchisq(0.9,14), 14*5.24/qchisq(0.1,14)), 2)
[1] 3.48 9.42

Therefore, one is 80% confident the variance falls in [3.48, 9.42].

Example 8.19 The data frame barley is in the lattice package and contains yield,
variety, year, and site, giving barley yields (bushels/acre) in 1931 and 1932 for 10 varieties
of barley grown at six sites. The S-PLUS data frame barley is identical.

(a) Construct a 95% confidence interval for μ, the mean barley yield in 1932.

(b) Construct a 95% confidence interval for σ2, the variance of barley yield in 1932.

Solution: Start by looking at the distribution of 1932 barley yield using the functions
qqnorm() and qqline() to create the normal quantile-quantile plot shown in Figure 8.10
on the following page. Since the values in Figure 8.10 on the next page are fairly linear, it
is decided the assumptions to use both (8.10) and (8.26) are satisfied.

(a) To construct a 95% confidence interval for μ, use (8.10) as follows:

CI 1−0.05(μ) =
[
x̄ − t1−0.05/2;n−1

s√
n

, x̄ + t1−0.05/2;n−1
s√
n

]
=

[
31, 76− (2.00)

9.38√
60

, 31.76 + (2.00)
9.38√

60

]
= [29.34, 34.19] (8.27)
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FIGURE 8.10: Quantile-quantile plot of 1932 barley yield in bushels/acre

> library(lattice) # Not needed for S-PLUS
> attach(barley)
> n <- length(yield[year==1932])
> n
[1] 60
> mean(yield[year==1932])
[1] 31.76333
> var(yield[year==1932])
[1] 88.06803
> sd(yield[year==1932]) #S-PLUS: stdev(yield[year==1932]
[1] 9.384457
> qt(.975, n-1)
[1] 2.000995

To construct the confidence interval directly with S, key in

> t.test(yield[year==1932])$conf
[1] 29.33907 34.18759
attr(, "conf.level"):
[1] 0.95

So, one is 95% confident that the mean barley yield (bushels/acre) lies in [29.34, 34.19].

(b) To construct a 95% confidence interval for σ2, use (8.26):

CI 0.95(σ2) =

[
(n − 1)s2

χ2
0.975;n−1

,
(n − 1)s2

χ2
0.025;n−1

]
=

[
59(88.07)

82.12
,

59(88.07)
39.66

]
= [63.28, 131.01].
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To verify the previous values and construct this confidence interval with S, enter

> s2<- var(yield[year==1932])
> s2
[1] 88.06803
> ChiL <- qchisq(.025,59)
> ChiL
[1] 39.66186
> ChiU <- qchisq(.975,59)
> ChiU
[1] 82.1174
> n <- length(yield[year==1932])
> n
[1] 60
> round(c((n-1)*s2/ChiU, (n-1)*s2/ChiL),2)
[1] 63.28 131.01

One is 95% confident that the variance of barley yield lies in [63.28, 131.01] (bushels/acre)2.

8.3.2 Confidence Interval for the Ratio of Population Variances when
Sampling from Independent Normal Distributions

Now consider the construction of confidence intervals for σ2
X/σ2

Y when there are two
normal and independent populations, N(μX , σX) and N(μY , σY ), from which one takes
random samples of sizes nX and nY , respectively. The goal is to construct a confidence
interval for the ratio of the variances, σ2

X/σ2
Y . Generally, one is looking for 1 to be in

the interval, indicating that the variances are equal. To construct a confidence interval for
σ2

X/σ2
Y , use Theorem 6.5 on page 239, which states that if one has two random samples

X1, . . . , XnX and Y1, . . . , YnY that are taken from independent normal populations where
X ∼ N(μX , σX) and Y ∼ N(μY , σY ), then the random variable

S2
Y /σ2

Y

S2
X/σ2

X

∼ FnY −1,nX−1. (8.28)

By using (8.28), construct the (1−α) probability statement shown in (8.29) and graphically
illustrated in Figure 8.11 on the next page for an F distribution with 10 and 10 degrees of
freedom:

P

(
fα/2;nY −1,nX−1 ≤ S2

Y /σ2
Y

S2
X/σ2

X

≤ f1−α/2;nY −1,nX−1

)
= 1 − α (8.29)

After multiplying everything inside the probability statement given in (8.29) by S2
X

S2
Y

, (8.30)

is used to derive the final confidence interval statement given in (8.31):

P

(
fα/2;nY −1,nX−1

S2
X

S2
Y

≤ σ2
X

σ2
Y

≤ f1−α/2;nY −1,nX−1
S2

X

S2
Y

)
= 1 − α (8.30)

CI 1−α

(
σ2

X

σ2
Y

)
=

[
fα/2;nY −1,nX−1

s2
X

s2
Y

, f1−α/2;nY −1,nX−1
s2

X

s2
Y

]
(8.31)
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fα/2;10,10 f1−α/2;10,10

1 − α

FIGURE 8.11: F distribution with ten and ten degrees of freedom depicting the points
fα/2;10,10 and f1−α/2;10,10

For sheer convenience, denote the larger sample variance as s2
X when constructing a

confidence interval for the ratio of two population variances. Consequently, the numerator
for the ratio of the sample variances will always contain the larger of the two sample
variances. Many tables involving the F distribution only provide values for percentiles
in the right tail. However, this does not present a problem provided one remembers that
values in the left tail of the F distribution can be found from the values in the right tail of
an F distribution by using (8.32). Note that the order of the degrees of freedom changes in
the reciprocal.

fα/2;nY −1,nX−1 =
1

f1−α/2;nX−1,nY −1
. (8.32)

Example 8.20 Using the information from Example 8.13 on page 309, construct a 90%
confidence interval for the ratio of variances.

Solution: In Example 8.13, the larger sample variance, s2
X , was 2.51, nX = 15, and

the smaller sample variance, s2
Y , was 2.1, nY = 11. Consequently, the 90% confidence

interval for the ratio of variances is constructed using (8.31) as shown in the following
where f0.05;10,14 = 0.35 and f0.95;10,14 = 2.60:

CI 0.9

(
σ2

X

σ2
Y

)
=

[
f0.05;10,14

s2
X

s2
Y

, f0.95;10,14
s2

X

s2
Y

]
=

[
(0.35)

2.51
2.1

, (2.60)
2.51
2.1

]
= [0.42, 3.11]

(8.33)

To find f0.05;10,14, f0.95;10,14 and a 95% confidence interval for σ2
X

σ2
Y

with S, type

> round(qf(0.05,10,14), 2)
[1] 0.35
> round(qf(0.95,10,14), 2)
[1] 2.60
> round(c(qf(0.05,10,14)*(2.51/2.1), qf(0.95,10,14)*(2.51/2.1)),2)
[1] 0.42 3.11

So, one is 90% confident the ratio of the variance lies in [0.42, 3.11]. Note that this interval
includes 1, which indicates there is not evidence to suggest the variances are different.
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Example 8.21 Given the information in Table 8.3 on page 304, construct a 95% confi-
dence interval for the ratio of the variances.

Solution: According to Example 8.14, s2
X = 1.51 and s2

Y = 1.79. Also recall that in
the solution to Example 8.10, a normal quantile-quantile plot was created and illustrated in
Figure 8.5 on page 304 that justified the assumptions that both fresh and warehoused apples
follow a normal distribution. Consequently, the appropriate confidence interval formula for
the ratio of the variances is given in (8.31). However, since s2

Y = 1.79 and s2
X = 1.51,

reverse s2
X for s2

Y in the confidence interval formula provided in (8.31) to construct a 95%
confidence interval for the ratio of population variances:

CI 0.95

(
σ2

Y

σ2
X

)
=

[
f0.025;16,16

s2
Y

s2
X

, f0.975;16,16
s2

Y

s2
X

]
= [(0.36)(1.19), (2.76)(1.19)] = [0.43, 3.27].

(8.34)

To verify the previous values and to construct a 95% confidence interval for the ratio of
variances with S, attach Apple and key in

> var(Warehouse)
[1] 1.790951
> var(Fresh)
[1] 1.510438
> round(var(Warehouse)/var(Fresh),2)
[1] 1.19
> round(qf(0.025,16,16), 2)
[1] 0.36
> round(qf(0.975,16,16), 2)
[1] 2.76
> var.test(Warehouse, Fresh)$conf
[1] 0.429396 3.274189
attr(, "conf.level"):
[1] 0.95

One is 95% confident that the ratio of variances falls in [0.43, 3.27], which indicates that a
pooled variance could be justified for confidence interval calculations regarding the means.

8.4 Confidence Intervals Based on Large Samples

Provided the sample size, n, is sufficiently large, one can take advantage of the asymp-
totic properties of maximum likelihood estimators to construct confidence intervals since,
as n → ∞,

θ̂ (X) ∼ N
(
θ,
√

In(θ)−1
)

. (8.35)

Using (8.35), one can construct asymptotic confidence intervals of the type given in (8.36).
Note that σθ̂(X) is the standard deviation of the estimator θ̂ (X). Specifically, in the multi-
parameter case, σθ̂(X) is the square root of the corresponding diagonal element of the inverse
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of the information matrix. When σθ̂(X) is unknown, the estimate σ̂θ̂(x) is used in place of
σθ̂(X). Be sure to see that σ̂θ̂(x) is calculated from the data x.

CI 1−α(θ) =
[
θ̂(x) − z1−α/2 · σθ̂(X), θ̂(x) + z1−α/2 · σθ̂(X)

]
(8.36)

Example 8.22 Given a random sample of size 200 from an exponential distribution, find
a 90% confidence interval for θ if it is true that

200∑
i=1

xi = 400.

As a reminder, the exponential distribution is

f(x, θ) =
1
θ
e−

1
θ x, x ≥ 0, θ > 0 (8.37)

Solution: The reader should verify that the maximum likelihood estimator of θ is θ̂(X) =
X and the variance of X is θ2

n . (Hint: See Example 7.6 on page 250.) Because X is the
maximum likelihood estimator of θ, it follows that the maximum likelihood estimator of θ2

n

is X
2

n due to the invariance property of MLEs (property 2 on page 273). From the sample
information, calculate

θ̂ (x) = x̄ = 2 and σ̂2
θ̂(x)

=
x̄2

n
= 0.02.

Given that the confidence level is 0.9, z1−α/2 = z0.95 = 1.64, the 90% confidence interval
for θ is constructed using (8.36):

CI 0.90(θ) =
[
2 − 1.64

√
0.02, 2 + 1.64

√
0.02

]
= [1.77, 2.23]. (8.38)

So, one is 90% confident the exponential parameter θ falls in [1.77, 2.23].

8.4.1 Confidence Interval for the Population Proportion

The maximum likelihood estimator of the population proportion π is P , the sample
proportion. See Example 7.15 on page 258 for the derivation of the maximum likelihood
estimator of π. To calculate the Fisher information In(π), use (7.49) on page 270. Since

∂2 ln L(π|X)
∂π2

=
−

∑n
i=1 xi

π2
− n −

∑n
i=1 xi

(1 − π)2
(8.39)

from Example 7.15 on page 258, by multiplying (8.39) by −1 and taking the expected value
of the result, gives

−E

[
∂2lnL(π|X)

∂π2

]
= E

[∑n
i=1 xi

π2

]
+ E

[
n −

∑n
i=1 xi

(1 − π)2

]
=

nπ

π2
+

n − nπ

(1 − π)2

=
n

π
+

n

1 − π
=

n

π(1 − π)
(8.40)
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Consequently, the Fisher information, In(π)−1, is given in (8.41).

In(π)−1 =
π(1 − π)

n
(8.41)

Taking advantage of the asymptotic properties of MLE estimators allows one to write

π̂ (X) = P ∼ N

(
π,

√
π(1 − π)

n

)
as n → ∞;

and using (8.36), one can construct a (1 − α) · 100% asymptotic confidence interval for π

as shown in (8.42) where σ̂π̂(x) =
√

p(1−p)
n . The confidence interval in (8.42) can also be

derived using the approximate sampling distribution of P from Section 6.5.3:

CI 1−α(π) =

⎡⎣p − z1−α/2

√
p(1 − p)

n
, p + z1−α/2

√
p(1 − p)

n

⎤⎦ (8.42)

A more accurate confidence interval for π can be obtained by solving for the values that
satisfy (8.43) instead of replacing σπ̂(X) with its MLE σ̂π̂(x). Solving for the values that
satisfy (8.43) is slightly more involved but produces the confidence interval given in (8.44).
Recent research (Agresti and Coull, 1998) shows that the confidence interval in (8.44) can
be used for a wide range of parameters and sample sizes. Therefore, when working with
smaller sample sizes, the confidence interval formula in (8.44) is preferred over the confidence
interval formula (8.42) as it returns confidence intervals whose nominal confidence level is
closer to the user specified 1 − α level. If the sample size is large, z2

1−α/2/2n is negligible
compared to p, z2

1−α/2/4n2 under the square root is negligible compared to p(1− p)/n, and
z2
1−α/2/n is negligible compared to 1. If the negligible terms are ignored, the confidence

interval formula in (8.42) emerges.

P

(
P − z1−α/2

√
π(1 − π)

n
≤ π ≤ P − z1+α/2

√
π(1 − π)

n

)
= 1 − α (8.43)

CI 1−α(π) =

⎡⎢⎢⎣p +
z2
1−α/2

2n − z1−α/2

√
p(1−p)

n +
z2
1−α/2

4n2(
1 +

z2
1−α/2

n

) ,

p +
z2
1−α/2

2n + z1−α/2

√
p(1−p)

n +
z2
1−α/2

4n2(
1 +

z2
1−α/2

n

)
⎤⎥⎥⎦

(8.44)

When S uses (8.44) to construct confidence intervals, under certain conditions, it also
applies a Yates’ continuity correction to p so that the p used in the lower limit is pL = p− 1

2n
and the p used in the upper limit is pU = p + 1

2n .
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Example 8.23 A professor is interested in what percent of students pass an introductory
statistics class. He takes a random sample of 40 introductory statistics students and finds
that 26 passed. Help the professor construct 95% confidence intervals for the true percent
of students who pass using

(a) The asymptotic confidence interval for π based on the MLE of σ̂π̂(x) given in (8.42).

(b) The preferred confidence interval for smaller sample sizes given in (8.44).

(c) The preferred confidence interval for smaller sample sizes with continuity corrections
applied to the ps (use pL and pU ).

Solution: Because all of the confidence intervals are to have 95% confidence, z1−α/2 =
z1−0.05/2 = z0.975 = 1.96. The sample proportion is p = 26

40 = 0.65.
(a) The asymptotic confidence interval for π is

CI 0.95(π) =

⎡⎣p − z0.975

√
p(1 − p)

n
, p + z0.975

√
p(1 − p)

n

⎤⎦
=

⎡⎣0.65 − 1.96

√
(0.65)(1 − 0.65)

40
, 0.65 + 1.96

√
(0.65)(1 − 0.65)

40

⎤⎦
= [0.502, 0.798]

To compute this interval with S, enter

> p <- 26/40
> z <- qnorm(.975)
> n <- 40
> round(z,2) # z_(0.975)
[1] 1.96
> round(c(p - z*sqrt(p*(1 - p)/n), p + z*sqrt(p*(1 - p)/n)),3)
[1] 0.502 0.798

(b) The preferred confidence interval for smaller sample sizes is

CI 0.95(π) =

⎡⎢⎢⎣p +
z2
1−α/2

2n − z1−α/2

√
p(1−p)

n +
z2
1−α/2

4n2(
1 +

z2
1−α/2

n

) ,

p +
z2
1−α/2

2n + z1−α/2

√
p(1−p)

n +
z2
1−α/2

4n2(
1 +

z2
1−α/2

n

)
⎤⎥⎥⎦

=

⎡⎣0.65 + 1.962

(2)(40) − 1.96
√

0.65(1−0.65)
40 + 1.962

(4)(402)(
1 + 1.962

40

) ,

0.65 + 1.962

(2)(40) + 1.96
√

0.65(1−0.65)
40 + 1.962

(4)(402)(
1 + 1.962

40

)
⎤⎦ = [0.495, 0.779]
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To compute this interval with S, key in

> round(prop.test(26,40, correct=FALSE)$conf,3)
[1] 0.495 0.779
attr(,"conf.level")
[1] 0.95

(c) Using the values pL = p− 1
2n = 0.65− 1

(2)(40) = 0.6375 and pU = p+ 1
2n = 0.65+ 1

(2)(40) =
0.6625, the confidence interval is

CI 0.95(π) =

⎡⎢⎢⎣pL +
z2
1−α/2

2n − z1−α/2

√
pL(1−pL)

n +
z2
1−α/2

4n2(
1 +

z2
1−α/2

n

) ,

pU +
z2
1−α/2

2n + z1−α/2

√
pU (1−pU )

n +
z2
1−α/2

4n2(
1 +

z2
1−α/2

n

)
⎤⎥⎥⎦

=

⎡⎣0.6375 + 1.962

(2)(40) − 1.96
√

0.6375(1−0.6375)
40 + 1.962

(4)(402)(
1 + 1.962

40

) ,

0.6625 + 1.962

(2)(40) + 1.96
√

0.6625(1−0.6625)
40 + 1.962

(4)(402)(
1 + 1.962

40

)
⎤⎦ = [0.483, 0.789]

The interval with continuity correction is computed with S by typing

> round(prop.test(26,40, correct=TRUE)$conf,3)
[1] 0.483 0.789
attr(,"conf.level")
[1] 0.95

So, depending on which confidence interval the professor prefers, he can be 95% con-
fident that the proportion of students who pass lies in [0.502, 0.798], [0.495, 0.779], or
[0.483, 0.789].

Example 8.24 A computer firm would like to construct three confidence intervals for
the proportion of supermarkets that use a computerized database to manage their ware-
houses. Suppose 200 supermarkets are surveyed and 157 of the 200 supermarkets have
computerized inventories. Construct 90%, 95%, and 99% confidence intervals for the true
proportion of supermarkets that use a computerized database to manage the inventory of
their warehouses.

Solution: Since p = 157
200 = 0.785, a (1 − α) · 100% confidence interval for π can be

constructed using (8.42) as follows:

CI 1−α(π) =⎡⎣0.785− z1−α/2

√
(0.785)(0.215)

200
, 0.785 + z1−α/2

√
(0.785)(0.215)

200

⎤⎦ . (8.45)
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Making appropriate substitutions for z1−α/2 in (8.45) yields

CI 0.90(π) = [0.785 − 1.645(0.03), 0.785 + 1.645(0.03)] = [0.74, 0.83]
CI 0.95(π) = [0.785 − 1.960(0.03), 0.785 + 1.960(0.03)] = [0.73, 0.84]
CI 0.99(π) = [0.785 − 2.576(0.03), 0.785 + 2.576(0.03)] = [0.71, 0.86]

The computer firm is 90% confident the population proportion of supermarkets that use a
computerized database to manage their warehouses lies in [0.74, 0.83], 95% confident this
population proportion lies in [0.73, 0.84], and 99% confident this population proportion lies
in [0.71, 0.86]. Take special note that the widths of the confidence intervals increase as the
confidence level increases. To find these confidence intervals using the confidence interval
formula in (8.44) with S, enter

> round(prop.test(157, 200, conf.level=0.90, correct=FALSE)$conf,2)
[1] 0.73 0.83
> round(prop.test(157, 200, conf.level=0.95, correct=FALSE)$conf,2)
[1] 0.72 0.84
> round(prop.test(157, 200, conf.level=0.99, correct=FALSE)$conf,2)
[1] 0.70 0.85

Example 8.25 �Confidence Interval and Sample Size for π � The Department
of Agriculture wants to estimate the proportion of rural farm owners that are under 40 years
of age. They take a random sample of 2000 farms and find that 400 of the 2000 owners are
under the age of 40.

(a) Construct a 95% confidence interval for π using the asymptotic confidence interval for
π based on the MLE of σ̂π̂(x) given in (8.42).

(b) Determine the required sample size so that the maximum margin of error is within 0.015
of the true value of π for a 95% confidence level.

Solution: Note that p = 400
2000 = 0.20.

(a) A 95% confidence interval for π using (8.42) is

CI 0.95(π) =

⎡⎣p − z1−0.05/2

√
p(1 − p)

n
, p + z1−0.05/2

√
p(1 − p)

n

⎤⎦
=

⎡⎣0.2 − (1.96)

√
0.2(1 − 0.2)

2000
, 0.2 + (1.96)

√
0.2(1 − 0.2)

2000

⎤⎦
= [0.182, 0.218].

To verify the confidence interval with S, type

> p <- 400/2000
> n <- 2000
> z <- qnorm(.975)
> round(z,2)
[1] 1.96
> round(c(p-z*sqrt(p*(1-p)/n), p+z*sqrt(p*(1-p)/n)),3)
[1] 0.182 0.218
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(b) In order to construct a confidence interval such that the maximum margin of error does
not exceed 0.015, one needs to ensure that

(1.96)

√
p(1 − p)

n
< 0.015. (8.46)

To maximize the margin of error, use p = 1
2 regardless of any prior information concerning

p. Using a value for p of 1
2 will ensure the margin of error is maximized at a given confidence

level. To see why this is true, consider plotting p × (1 − p) versus p. This can be done by
typing

> p <- seq(0, 1, 0.001)
> plot(p, p*(1-p), type="l")

Consequently, solving (8.46) for n yields 4268.4. To guarantee the maximum margin of
error is within 0.015 at a 95% confidence level, always take the ceiling of n (use the next
largest integer). In this case, a sample of size 4269 will guarantee the maximum margin of
error will be less than 0.015 at a 95% confidence level. That is,

(1.96)

√(
1
2

) (
1
2

)
4269

= 0.01499902 < 0.015.

8.4.2 Confidence Interval for a Difference in Population Proportions

In this section, the focus is on two populations, X and Y , from which random samples
of sizes nX and nY , respectively, are taken. If πX and πY are the population proportions
of successes and PX and PY are the respective sample proportions of successes, then the
resulting sampling distributions of PX and PY , provided nX and nY are sufficiently large,
are approximately normal. That is,

PX
�∼ N

⎛⎝πX ,

√
πX(1 − πX)

nX

⎞⎠ and PY
�∼ N

⎛⎝πY ,

√
πY (1 − πY )

nY

⎞⎠ .

Since the sampling distributions of both PX and PY are approximately normal, the sampling
distribution for the difference between PX and PY will also be approximately normal.
Specifically,

PX − PY
�∼ N

⎛⎝πX − πY ,

√
πX(1 − πX)

nX
+

πY (1 − πY )
nY

⎞⎠ (8.47)

according to Theorem 5.1 on page 176.
Using a similar approach to the one presented for the construction of a confidence interval

for the difference between two means, construct a (1 − α) · 100% asymptotic confidence
interval for πX − πY as shown in (8.48). The rationale for replacing πX and πY with

pX and pY in
√

πX(1−πX)
nX

+ πY (1−πY )
nY

is the invariance property of maximum likelihood
estimators (property 2 on page 273), where π̂X = PX and π̂Y = PY .
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CI 1−α(πX − πY ) =

⎡⎣(pX − pY ) − z1−α/2

√
pX(1 − pX)

nX
+

pY (1 − pY )
nY

,

(pX − pY ) + z1−α/2

√
pX(1 − pX)

nX
+

pY (1 − pY )
nY

⎤⎦
(8.48)

It is generally advisable to use the continuity correction 1
2

(
1

nX
+ 1

nY

)
with (8.48)

anytime

|pX − pY | >
1
2

(
1

nX
+

1
nY

)
. (8.49)

The continuity correction is subtracted and added to the lower and upper confidence
limits of (8.48), respectively. The S function prop.test() automatically applies the con-
tinuity correction when (8.49) is satisfied provided the user does not issue the argument
correct=FALSE.

Example 8.26 A company wants to see if a certain change in the process for manufac-
turing component parts is beneficial. Samples are taken using both the existing and the
new procedure to determine if the new process results in an improvement. The first sample
is taken before the change has been implemented, and the second sample is taken once the
change has been implemented. If 70 of 1400 elements are found to be defective in the first
sample and 90 of 2000 elements are found to be defective from the second sample, find a
95% confidence interval for the true difference in the proportion of defective components
between the existing and the new processes.

Solution: The sample proportions of successes are pX = 70
1400 = 0.05 and pY = 90

2000 =
0.045. Using (8.48), the 95% confidence interval for the true difference in the proportion
of defective components between the existing and the new processes is given in (8.50).
Since the confidence interval contains 0, there is no reason to suspect the new procedure
significantly reduces the proportion of defective items.

CI 0.95(πX − πY ) =⎡⎣(0.05 − 0.045)− 1.96

√
(0.05)(1 − 0.05)

1400
+

(0.045)(1 − 0.045)
2000

,

(0.05 − 0.045) + 1.96

√
(0.05)(1 − 0.05)

1400
+

(0.045)(1 − 0.045)
2000

⎤⎦
= [−0.0096, 0.0196] (8.50)

To construct a 95% confidence interval for πX − πY using (8.48), key in

> round(prop.test(c(70,90), c(1400,2000), correct=FALSE)$conf,4)
[1] -0.0096 0.0196
attr(,"conf.level")
[1] 0.95
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Since |pX − pY | = |0.05 − 0.045| = 0.005 > 1
2

(
1

1400 + 1
2000

)
= 0.0006, 0.0006 should be

subtracted from and added to the smaller and larger values reported in (8.50), respectively.
Consequently, a continuity corrected 95% confidence interval for the true difference in the
proportion of defective components between the existing and the new process is

CI 0.95(πX − πY ) = [−0.0096− 0.0006, 0.0196 + 0.0006] = [−0.0102, 0.0202].

To produce the continuity corrected interval with S, enter

> round(prop.test(c(70,90), c(1400,2000), correct=TRUE)$conf,4)
[1] -0.0102 0.0202
attr(,"conf.level")
[1] 0.95

8.4.3 Confidence Interval for the Mean of a Poisson Random Variable

Recall that a Poisson random variable counts the number of occurrences over some
period of time or region of space where the occurrences are relatively rare. When collecting
occurrences from a Poisson distribution, it follows that the sample values will have a positive
skew, since the Poisson distribution itself is skewed to the right. This will often rule out
confidence interval formulas that require normality assumptions. However, for sufficiently
large samples, one can use (8.36) on page 322 to construct confidence limits for the mean
of a Poisson distribution. When using (8.36) for confidence interval construction for the
mean of a Poisson random variable, first find the maximum likelihood estimator of λ. In
Example 7.18 on page 262, the maximum likelihood estimator of λ for a Poisson distribution
was found to be X. That is, λ̂(X) = X. To calculate the Fisher information In(λ) using
(7.49) on page 270 requires knowledge of the second-order partial derivative of the log-
likelihood function with respect to λ. This second-order partial derivative was computed in
Example 7.18 and is reproduced here for the reader’s benefit:

∂2 ln L(λ|X)
∂λ2

=
−

∑n
i=1 xi

λ2
(8.51)

Taking the expected value of (8.51) yields the following, from which the Fisher information,
In(λ)−1 = λ

n , is obtained:

− E

[
∂2 ln L(λ|X)

∂λ2

]
=

nλ

λ2
=

n

λ
. (8.52)

Taking advantage of the asymptotic properties of MLE estimators allows one to write

λ̂ (X) = X ∼ N

(
λ,

√
λ

n

)
as n → ∞.

One may then use (8.36), the confidence interval formula for MLEs, to construct a (1−α) ·
100% asymptotic confidence interval for λ as shown here where σ̂λ̂(x) =

√
x̄
n :

CI 1−α(λ) =

[
x̄ − z1−α/2

√
x̄

n
, x̄ + z1−α/2

√
x̄

n

]
(8.53)
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One could obtain a similar confidence interval by recognizing that X has a normal
distribution with parameters μ and σ√

n
for large sample sizes according to the Central

Limit Theorem. Since the mean for a Poisson is λ and the standard deviation of a Poisson
random variable is

√
λ, it follows that

XPois
�∼ N

(
λ,

√
λ√
n

)
.

Example 8.27 Example 4.4 on page 122 provided evidence to suggest the number of
goals scored in the regulation 90 minute periods of World Cup soccer matches from 1990
to 2002 have a Poisson distribution. Use the information in column Goals of the data set
Soccer to construct a 90% confidence interval for the mean number of goals scored during
a 90 minute regulation period.

Solution: The 90% confidence interval for λ is constructed using (8.53):

CI 0.90(λ) =

⎡⎣x̄ − z1−0.10/2

√
x̄

n
, x̄ + z1−0.10/2

√
x̄

n

⎤⎦
=

⎡⎣2.48 − 1.645

√
2.48
232

, 2.48 + 1.645

√
2.48
232

⎤⎦
= [2.31, 2.65]

(8.54)

To compute the values in (8.54) with S, attach Soccer and key in

> M<-mean(Goals, na.rm=TRUE)
> M
[1] 2.478448
> z<-qnorm(.95)
> z
[1] 1.644854
> round(c(M-z*sqrt(M/232), M+z*sqrt(M/232)),2)
[1] 2.31 2.65

So, one is 90% confident the mean number of goals scored in a World Cup soccer match lies
in [2.31, 2.65].
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8.5 Problems

1. Is [x̄ − 3, x̄ + 3] a confidence interval for the population mean of a normal distribution?
Why or why not?

2. Explain how to construct a confidence interval for the population mean of a normal
distribution with a 95% confidence level.

3. Given a random sample {X1, X2, . . . , Xn} from a normal population N(μ, σ), where σ is
known:

(a) What is the confidence level for the interval x̄ ± 1.881 σ√
n

?

(b) What is the confidence level for the interval x̄ ± 1.175 σ√
n

?

(c) What is the value of the percentile zα/2 for a 92% confidence interval?

4. Given a random sample {X1, X2, . . . , Xn} from a normal population N(μ, σ), where σ is
known, consider the confidence interval x̄ ± z1−α/2

σ√
n

for μ.

(a) Given a fixed sample size n, explain the relationship between the confidence level
and the precision of the confidence interval.

(b) Given a confidence level (1−α)%, explain how the precision of the confidence interval
changes with the sample size.

5. Given a normal population with known variance σ2, by what factor must the sample size
be increased to reduce the length of a confidence interval for the mean by a factor of k?

6. A historic data set studied by R.A. Fisher is the measurements in centimeters of four
flower parts (sepal length, sepal width, petal length, and petal width) on 50 specimens
for each of three species of irises (Setosa, Versicolor, and Virginica). The data are named
iris in S-PLUS, and the same data can be found in R under the name iris3 (Fisher, 1936).

(a) Analyze the sepal lengths for Setosa, Versicolor, and Virginica irises, and comment
on the characteristics of their distributions. (Hint: Since the data in iris and iris3
are stored as arrays, type iris3[,1,1] if using R or iris[,1,1] if using S-PLUS to
isolate the sepal lengths for the Setosa irises.)

(b) Based on the analysis from part (a), construct an appropriate 95% confidence interval
for the mean sepal length of Setosa irises.

7. Surface-water salinity measurements were taken in a bottom-sampling project in White-
water Bay, Florida. These data are stored in the data frame Salinity in the PASWR
package. Geographic considerations lead geologists to believe that the salinity variation
should be normally distributed. If this is true, it means there is free mixing and
interchange between open marine water and fresh water entering the bay (Davis, 1986).

(a) Construct a quantile-quantile plot of the data. Does this plot rule out normality?

(b) Construct a 90% confidence interval for the mean salinity variation.
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8. The survival times in weeks for 20 male rats that were exposed to a high level of radiation
are

152 152 115 109 137 88 94 77 160 165

125 40 128 123 136 101 62 153 83 69

Data are from Lawless (1982) and are stored in the data frame Rat.

(a) Construct a quantile-quantile plot of the survival times. Based on the quantile-
quantile plot, can normality be ruled out?

(b) Construct a 97% confidence interval for the average survival time for male rats
exposed to high levels of radiation.

9. A school psychologist administered the Stanford-Binet intelligence quotient (IQ) test in
two counties. Forty randomly selected gifted and talented students were selected from
each county. The Stanford-Binet IQ test is said to follow a normal distribution with a
mean of 100 and standard deviation of 16. The data collected are stored in the data
frame SBIQ.

County1 County2

130 126 139 126 124 149 124 127 125 127 132 139 132 125

138 138 140 127 140 124 124 130 131 140 130 132 134 128

121 125 134 121 125 126 122 137 121 121 141 141 137 126

137 146 127 124 142 122 126 124 124 128 145 123 126 132

124 126 121 138 124 126 137 135 126 128 144 121 135 125

122 131 128 122 144 125 136 122 130 130

(a) Although the standard deviation for the Stanford-Binet IQ test is known, should it
be used? Justify.

(b) Be careful, the confidence interval formula that should be used in this situation has
not been explicitly covered yet. Construct a 90% confidence interval for the true
average IQ difference for gifted and talented students between the two counties.

10. A large company wants to estimate the proportion of its accounts that are paid on time.

(a) How large a sample is needed to estimate the true proportion within 2% with a 95%
confidence level?

(b) Suppose 650 out of 800 accounts are paid on time. Construct a 99% confidence
interval for the true proportion of accounts that paid on time.

11. In a study conducted at Appalachian State University, students used digital oral ther-
mometers to record their temperatures each day they came to class. A randomly selected
day of student temperatures is provided in the following table and in the data frame
StatTemps. Information is also provided with regard to subject gender and the hour of
the day when the students’ temperatures were measured.
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8 a.m. Class 9 a.m. Class

Males 92.7 94.1 96.5 94.1 96.0 98.2

93.2 97.1 93.7 96.5 94.4

Females 96.9 94.0 93.7 96.5 94.3 93.9

93.9 93.5 97.0 96.5 95.6 98.2

97.2 92.0 96.6 96.4 96.3 95.1

94.9 92.1 97.1 96.6 96.8

(a) Construct a 95% confidence interval for the true average temperature difference
between males and females. Does the interval contain the value zero? What does
this suggest about gender temperature differences?

(b) Construct a 95% confidence interval for the true average temperature difference
between students taking their temperatures at 8 a.m. and students taking their
temperatures at 9 a.m. Give a reason why one group appears to have a higher
temperature reading.

12. The Cosmed K4b2 is a portable metabolic system. A study at Appalachian State
University compared the metabolic values obtained from the Cosmed K4b2 to those
of a reference unit (Amatek) over a range of workloads from easy to maximal to test
the validity and reliability of the Cosmed K4b2. A small portion of the results for
VO2 (ml/kg/min) measurements taken at a 150 watt workload are stored in data frame
CosAma and in the following table:

Subject Cosmed Amatek Subject Cosmed Amatek

1 31.71 31.20 8 30.33 27.95

2 33.96 29.15 9 30.78 29.08

3 30.03 27.88 10 30.78 28.74

4 24.42 22.79 11 31.84 28.75

5 29.07 27.00 12 22.80 20.20

6 28.42 28.09 13 28.99 29.25

7 31.90 32.66 14 30.80 29.13

(a) Construct a quantile-quantile plot for the between system differences.
(b) Are the VO2 values reported for Cosmed and Amatek independent?
(c) Construct a 95% confidence interval for the average VO2 system difference.

13. Let {X1, . . . , X9} and {Y1, . . . , Y15} be two random samples from a N(μX , σ) and a
N(μY , σ), respectively. Suppose that x̄ = 57.3, s2

X = 8.3, ȳ = 65.6, and s2
Y = 9.7. Find

a 96% confidence interval for μX , μY , and μX − μY .

14. The water consumption in liters per family per day in a given city is a normally dis-
tributed random variable with unknown variance. Consider the following confidence
intervals for the population mean obtained from a random sample of size n:

[374.209, 545.791], [340.926, 579.074], [389.548, 530.452].
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(a) Find the value of the sample mean.

(b) If the intervals are obtained from the same random sample, match the confidence
levels 90%, 95% and 99% with the corresponding confidence intervals.

15. The best-paid 20 tennis players in the world have earned millions of dollars during their
careers and are famous for having won some of the four “Grand Slam” tournaments.
Somewhat less famous players who are in positions 20 through 100 in the earnings’
rankings have also garnered large sums. The following data (in millions of dollars)
correspond to the earnings of 15 randomly selected players classified somewhere in
positions 20 through 100. They are also stored in the data frame Top20.

10.10 8.80 8.64 7.67 6.34 6.03 5.90 5.68

5.51 5.38 5.31 4.92 4.54 4.02 3.86

Compute a 94% confidence interval for the average earnings of players classified between
positions 20 and 100 of the ranking. (Source: http://www.atptennis.com/en/)

16. The following data is the amount of nuclear energy (in TOE, tons of oil equivalent)
produced in 12 randomly selected European countries during 2003. The values are also
stored in the data frame TOE.

12222 6674 15961 3994 2841 1036

1343 4608 5864 17390 22877 4457

Compute a 95% confidence interval for the 2003 mean European TOE assuming the
amount of nuclear energy is normally distributed.

17. A group of engineers working with physicians in a research hospital is developing a new
device to measure blood glucose levels. Based on measurements taken from patients in
a previous study, the physicians assert that the new device provides blood glucose levels
slightly higher than those provided by the old device. To corroborate their suspicion, 15
diabetic patients were randomly selected, and their blood glucose levels were measured
with both the new and the old devices. The measurements, in mg/100 ml, appear in the
following table and are stored in the data frame glucose:

Blood glucose levels

Patient Old New Patient Old New

Patient 1 182.47 195.64 Patient 9 179.04 195.25

Patient 2 175.53 196.31 Patient 10 180.50 194.48

Patient 3 181.71 190.33 Patient 11 182.15 197.33

Patient 4 179.03 192.90 Patient 12 183.55 193.81

Patient 5 177.28 193.24 Patient 13 180.86 198.03

Patient 6 177.49 193.05 Patient 14 180.82 193.31

Patient 7 179.54 193.87 Patient 15 178.88 198.43

Patient 8 185.12 196.39

(a) Are the samples independent? Why or why not?
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(b) If the blood glucose level is a normally distributed random variable, compute a 95%
confidence interval for the difference of the population means.

(c) Use the results in (b) to decide whether or not the two devices give the same results.

18. The European Union is developing new policies to promote research and development
investment. A random sample of 15 countries’ investments for the years 2002 and 2003 is
taken and the results (in millions of euros) are stored in the data frame EURD and shown
in the following table:

Country 2002 2003

Belgium 5200.737 5177.444

Czech Republic 959.362 1012.579

Estonia 55.699 66.864

France 34527.000 34569.095

Cyprus 33.791 40.969

Latvia 41.532 37.724

Lithuania 99.642 110.580

Hungary 705.754 693.057

Malta 11.861 11.453

Portugal 1029.010 1019.580

Slovenia 360.419 377.435

Slovakia 148.335 169.105

Bulgaria 81.228 88.769

Croatia 270.606 291.856

Romania 183.686 202.941

(a) Compute a 95% confidence interval for the difference between 2002 and 2003 invest-
ment means.

(b) Use (a) to decide if the new policies are increasing investments.

19. The “Wisconsin Card Sorting Test” is widely used by psychiatrists, neurologists, and
neuropsychologists with patients who have a brain injury, neurodegenerative disease,
or a mental illness such as schizophrenia. Patients with any sort of frontal lobe lesion
generally do poorly on the test. The data frame WCST and the following table contain the
test scores from a group of 50 patients from the Virgen del Camino Hospital (Pamplona,
Spain).

23 12 31 8 19 11 36 94 6 10 22 7 18 26 35 78 11

7 28 25 17 8 20 47 5 13 28 19 7 19 38 8 15 40

19 42 17 6 8 6 11 10 19 65 13 17 5 26 15 4

(a) Use the function EDA() from the PASWR package to explore the data and decide if
normality can be assumed.
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(b) What assumption(s) must be made to compute a 95% confidence interval for the
population mean?

(c) Compute the confidence interval from (b).

20. The following data were taken to measure the unknown pH values μ of a solution in a
chemical experiment:

8.01, 8.05, 7.96, 8.04, 8.03, 8.03, 8.02, 7.98, 8.05, 8.03.

If the pH meter has a systematic error, Δ, and a normally distributed random error,
ε ∼ N(0, σ2), then it can be assumed that the observations come from a normal random
variable, X ∼ N(μ + Δ, σ2).

(a) Compute a 95% confidence interval for μ when Δ = 0 and σ = 0.05. Compute the
interval assuming that the variance is unknown.

(b) Repeat part (a) with Δ = 0.2.

21. When sampling from a normal distribution, what sample size will ensure that the interval
x̄ ± s attains at least a 95% confidence level?

22. Let {X1, . . . , Xn} be a simple random sample from a normal distribution N(μ, σ), and
consider the following random variables:

X = min
1≤i≤n

{xi}, Y = max
1≤i≤n

{xi}.

(a) Set the seed value at 69, and generate m = 100 samples of size n = 5 from a normal
population N(μ = 5, σ = 2). Compute the number of intervals of the types [X, Y ]
containing the real value μ = 5. If the theoretical coverage of these intervals is
94% for a sample of size n = 5, do the empirical results agree with the theoretical
coverage?

(b) Set the seed value at 18, and generate m = 100 samples of size n = 5 from a normal
population N(μ = 5, σ = 2). Compute the confidence intervals of the type [X, Y ]
and

[
X + z0.03

σ√
n
, X + z0.97

σ√
n

]
. Construct a plot with the length of both types of

intervals. Repeat the exercise with samples of size n = 50. Which type of confidence
interval is preferred? Why?

23. Given the following data

25.3 23.8 27.5 23.2 24.5 25.3 24.6 26.8 25.9 29.2,

(a) State the assumption(s) needed to construct a confidence interval for the population
variance.

(b) Assuming your assumption(s) in (a) are satisfied, construct a 95% confidence interval
for σ.

(c) Assuming that μ = 25, construct a 95% confidence interval for σ.

24. Schizophrenia is believed to cause changes in dopamine levels. Twenty-five patients with
schizophrenia were classified as psychotic or non-psychotic after being treated with an
antipsychotic drug. Samples of cerebral fluid were taken from each patient and assayed
for dopamine b-hydroxylase (DBH) activity. The dopamine measurements for the two
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groups are in nmol/(ml)(h)/(mg) of protein and are stored in the data frame Schizo as
well as in the following table (Sternberg et al., 1982).

Judged Non-Psychotic Judged Psychotic

0.0104 0.0105 0.0112 0.0150 0.0204

0.0116 0.0130 0.0145 0.0208 0.0222

0.0154 0.0156 0.0170 0.0226 0.0245

0.0180 0.0200 0.0200 0.0270 0.0275

0.0210 0.0230 0.0252 0.0306 0.0320

(a) Construct side-by-side boxplots of the two groups. Based on the boxplots, comment
on the relative shapes of the two distributions.

(b) Construct quantile-quantile plots for the two groups, and comment on whether or
not the plots support the analysis in part (a).

(c) Construct a 95% confidence interval for the true ratio of psychotic to non-psychotic
variances.

(d) Based on the confidence interval for the ratio of variances, should the variances be
pooled to construct a 95% confidence interval for the true dopamine level difference
between psychotic and non-psychotic patients?

(e) Construct a 95% confidence interval for the true dopamine level difference between
psychotic and non-psychotic patients.

(f) Does the confidence interval contain zero? What does this say about the effectiveness
of the antipsychotic drug?

25. Assuming two independent random samples of sizes 22 and 45 with variance estimates
of s2

1 = 38.7 and s2
2 = 45.6, respectively, have been taken, construct a 95% confidence

interval for σ.

26. Those teams who win Formula 1 championships have pit crews who change tires as fast
as possible. The data frame Formula1 and the following table contain the times (in
seconds) that the pit crews of two different teams spent changing tires in 10 randomly
selected races.

Race 1 2 3 4 5 6 7 8 9 10

Team 1 5.613 6.130 5.422 5.947 5.514 5.322 5.690 5.243 5.920 5.859

Team 2 5.934 5.335 5.826 4.821 5.664 5.292 5.257 6.245 5.981 5.197

(a) Assuming that the times are normally distributed, compute a 95% confidence interval
for the variance ratio σ2

1/σ2
2 . Are the population variances equal?

(b) Use the results in part (a) to compute a 95% confidence interval for the difference of
the population means μ2 − μ1. What does the result mean?

27. Let {X1, X2, . . . , Xn} be a random sample from a normal population N(μ, σ), where μ
and σ are unknown. Find the value of the sample size n if (0.59s2, 2s2) is to be at least
a 94% confidence interval for σ2.
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28. Use a seed equal to 55, and simulate m = 100 samples of size n = 800 from a N(15, σ =√
6 ). Calculate the confidence intervals for σ2 at the 1 − α = 0.96 confidence level.

Plot the confidence intervals, and calculate the number of times the parameter is not
contained in the simulated confidence intervals.

29. Use a seed equal to 224, and simulate mx = 100 samples of size nx = 1500 from a
N(3, σ =

√
5 ) and my = 100 samples of size ny = 1500 from a N(6, σ =

√
7 ). Calculate

the confidence intervals for σ2
x/σ2

y with a 1−α = 0.94 confidence level. Plot the intervals
and calculate the number of times the parameter ratio is not in the simulated confidence
interval.

30. The drug Sulfinpyrazone was studied for its efficacy in preventing death after myocardial
infarction. Construct a 90% confidence interval for the true proportion of deaths between
patients who have suffered a myocardial infarction who were administered Sulphinpyra-
zole and patients who were administered a placebo after myocardial infarctions. Based on
the confidence interval, does Sulphinpyrazole appear to reduce the proportion of deaths
among patients who have suffered a myocardial infarction?

Death (all causes) Survivors

Sulphinpyrazole 41 692

Placebo 60 682

31. From a random sample of 2000 Internet domains registered in a country during the
last few years, 300 were “.org” domains. Compute a 98% confidence interval for the
proportion of “.org” domains registered in that country during the last few years.

32. Use a seed equal to 10, and simulate 300 samples of size nx = 65 from a N(4, σx =
√

2 )

distribution and 300 samples of size ny = 90 from a N(5, σy =
√

3 ). Check that
s2

x/σ2
x

s2
y/σ2

y

follows an F64,89 distribution.

33. Use a seed equal to 95, and simulate m = 500 samples of size n = 1000 from a B(1, π =
0.4) distribution. Show that the sampling proportion is normally distributed.

34. How large a sample is needed to ensure the bound on the error of estimation for the
population proportion is no more than 2 percentage points for a 95% confidence interval?

35. A large company wants to estimate the proportion of its accounts that are paid on time.

(a) How large a sample is needed to estimate the true proportion within 5% with a 90%
confidence interval?

(b) Suppose 650 out of 800 accounts are paid on time. Construct a 99% confidence
interval for the true proportion of accounts that are paid on time.

36. A sociology research center conducts a survey to discern whether the proportion of
vegetarians is larger in urban or rural areas. Of the 180 people from urban areas, 32
were vegetarians. Of the 75 from rural areas, 17 were vegetarians. Construct a 98%
confidence interval for the difference between urban and rural vegetarian proportions.

37. Schizophrenia and other psychoses are complex and debilitating diseases, which affect
about 2% of the population. Two of the approaches used, as well as in other medical
diseases, to reduce clinical heterogeneity among psychoses are categorical and dimen-
sional. The first one assumes that there exist different subgroups within psychosis and
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the second one assumes that schizophrenia dimensions fall on a dimensional continuum
within psychosis. A sample of 660 consecutively admitted patients in Hospital Virgen del
Camino (Pamplona, Spain) is available with the following diagnoses: 358 schizophrenic
patients, 61 with schizophreniform disorder, 37 with schizoaffective disorder, 64 with
bipolar disorder, 24 with delusional disorder, 54 with brief psychotic disorder, and 32
with atypical psychosis. Compute a 95% confidence interval for the proportion of the
different types of patients (Cuesta et al., 2007).





Chapter 9

Hypothesis Testing

9.1 Introduction

A hypothesis test in the Neyman-Pearson paradigm is a decision criterion that allows
practitioners of statistics to select between two complementary hypotheses. Before conduct-
ing the hypothesis test, define the null hypothesis, H0, which is assumed to be true prior
to conducting the hypothesis test. The null hypothesis is compared to another hypothesis,
called the alternative hypothesis, and denoted H1. The alternative hypothesis is often
called the research hypothesis since the theory or what is believed to be true about the
parameter is specified in the alternative hypothesis. Both hypotheses define complementary
subsets of the parameter space Θ where the parameter θ is defined. The null hypothesis
defines the region [θ ∈ Θ0] and the alternative hypothesis defines the region [θ ∈ Θ1]. The
subsets Θ0 and Θ1 are mutually exclusive by definition, and they are complementary since
Θ0∪Θ1 = Θ. When a hypothesis uniquely specifies the distribution of the population from
which the sample is taken, the hypothesis is said to be simple. For a simple hypothesis,
Θ0 is composed of a single element. Any hypothesis that is not a simple hypothesis is
called a composite hypothesis. A composite hypothesis does not completely specify the
population distribution. Of the various combinations of hypotheses that could be examined,
the case where the null hypothesis is simple and the alternative hypothesis is composite will
be the focus of this text. Hypothesis tests will generally take a form similar to those in
Table 9.1, where θ0 is a single numerical value. For alternative hypotheses (A) and (B),
which are lower one-sided and upper one-sided, respectively, the hypothesis test is called
a one-tailed test. For the alternative hypothesis in (C), a two-sided alternative, the
hypothesis test is called a two-tailed test.

Table 9.1: Form of hypothesis tests

Null Hypothesis Alternative Hypothesis Type of Alternative

H0 : θ = θ0

(A) H1 : θ < θ0

(B) H1 : θ > θ0

(C) H1 : θ �= θ0

lower one-sided

upper one-sided

two-sided

Example 9.1 If H0 : π = 0.4 in a Bernoulli(π) distribution, the null hypothesis is simple
since the hypothesis H0 : π = 0.4 uniquely specifies the distribution as Bernoulli(0.4). If
H1 : π < 0.4, the hypothesis is composite since π can take any value in the interval [0, 0.4).

The goal in hypothesis testing is to decide which one of the two hypotheses (null and
alternative) is true. To this end, split the sample space into two mutually exclusive subsets
R and Rc. R is the rejection region and Rc is referred to as the acceptance region. The
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critical value is the number that splits Θ into R and Rc. To help decide between the two
hypotheses, calculate a test statistic based on the sample information from the experiment.
If the test statistic falls in the acceptance region, accept the null hypothesis. If the value
of the test statistic falls in the rejection region, reject the null hypothesis and accept the
alternative hypothesis.

There are two basic ways to think of a hypothesis test. First, one can think of it
as a two-decision problem where the researcher will choose one of two hypotheses to be
true. This is the historical approach due to Jerzy Neyman and Egon Pearson. The second
method, due to Ronald Fisher, determines how much evidence exists in the data against
the null hypothesis. The null hypothesis is never accepted but is merely a hypothesis of
“no difference.” The test will determine if the data that have been collected could be due
to chance alone if the null hypothesis were true; and if this is not likely, the researcher has
statistically significant evidence that the alternative hypothesis is true. A hypothesis test
where the null hypothesis is never accepted but merely “not rejected” is called a significance
test.

Example 9.2 The weight of a ball-bearing fluctuates between 1.5 g and 4.5 g. One wants
to test whether the distribution of the weight for the ball-bearing has a mean of either 2 g
(H0 : μ = 2) or 2.5 g (H1 : μ = 2.5). A random sample of size one is taken. If the weight
of the ball-bearing is greater than 2.3 g, the null hypothesis that the mean weight of the
ball-bearings is 2 g is rejected, and the alternative hypothesis that the mean weight of the
ball-bearings is 2.5 g is accepted. Specify the sample space, the rejection region, and the
acceptance region for this experiment.

Solution: The sample space is given by the interval [1.5, 4.5]. The rejection region is the
subinterval R = (2.3, 4.5], and the acceptance region is the subinterval Rc = [1.5, 2.3]. Note
that Rc ∪ R = [1.5, 2.3]∪ (2.3, 4.5] = [1.5, 4.5].

9.2 Type I and Type II Errors

The decision one reaches using a hypothesis test is always subject to error. That is, when
a decision is reached to reject the null hypothesis and accept the alternative hypothesis,
this may be the correct decision or a mistake (error). Likewise, if the null hypothesis is not
rejected but rather accepted, an error could also be made. Simply put, one can never be
sure of the truth since the decision in a hypothesis test to reject or not to reject a hypothesis
is based on sample information. To get a better grasp on the errors one might make with
a hypothesis test, consider the following hypothetical legal situation.

An individual is on trial for a capital offense. In the United States’ judicial system,
an individual is considered innocent until proven guilty of an offense. Consequently, the
null hypothesis in this case is that the individual is innocent and the alternative hypothesis
is that the person is guilty. After the prosecuting and defending attorneys present their
evidence, the jury makes a decision either to convict or not to convict the individual of
the capital offense. If the prosecuting attorney presents a strong case, the jury is likely
to convict the defendant. However, just because the jury convicts the defendant, it does
not mean that the defendant is actually guilty of the capital offense. Likewise, if the jury
does not convict the defendant of the capital offense, this does not imply the individual
is innocent. To better see the possible consequences of the decisions the jury may reach,
consider Table 9.2 on the facing page.
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Table 9.2: Possible outcomes and their consequences for a trial by jury

True State of the Defendant

(Reality)

H0 True H0 False

Jury’s Decision (innocent) (guilty)

Accept H0 (not guilty) A. correct B. error

Reject H0 (guilty) C. error D. correct

A. If the null hypothesis is true and the null hypothesis is accepted, the decision is correct.
In the legal example, if the defendant is innocent and the jury decides the defendant is
not guilty of the charge, the jury’s decision is correct.

B. If the null hypothesis is false and it is not rejected, the decision is incorrect. By failing
to reject a false null hypothesis, an error has been made. In statistics, this error is
called a type II error. The probability of committing a type II error is β. In the
legal scenario, a type II error is made when a guilty person is not convicted.

C. If the null hypothesis is true and it is rejected, the decision is incorrect. In other words,
by rejecting a true null hypothesis, an error has been made. In statistics, this type of
error is called a type I error. The probability of committing a type I error is α. In
the legal example, a type I error would be to convict an innocent defendant.

D. If the null hypothesis is false and it is rejected, the decision is correct. In the legal arena,
this translates into a jury convicting a guilty defendant.

The probability of committing a type I error (rejecting H0 when it is true) is called the
level of significance for a hypothesis test. The level of significance is also known as the
size of the test and is denoted by α, where

α = P(type I error) = P(reject H0|H0 is true) = P(accept H1|H0 is true).

The probability of committing a type II error is β, where

β = P(type II error) = P(fail to reject H0|H0 is false)
= P(accept H0|H1 is true).

The relationship between type I and type II errors is shown in Table 9.3 on the next page.
If the researcher fails to reject the null hypothesis when the null hypothesis is true, note

that no error is committed. Specifically, the correct decision should be reached in roughly
(1−α)×100% of all trials. Using the same logic, approximately (1−β)×100% of the times
sample data are evaluated in a test of hypothesis, a false null hypothesis will be rejected.

Since a type I error is frequently considered to be more serious than a type II error and
the probability of a type I error is easier to control than the probability of a type II error, it
is common practice for researchers to specify a priori the largest probability of a type I error
they are willing to accept and subsequently to use this value as their level of significance to
make a decision when they conduct their hypothesis testing. The North American judicial
system certainly considers convicting an innocent person to be a worse error than allowing
a guilty person to walk free. However, a type I error is not always more critical than a
type II error. Suppose one is going to go sky diving. In this scenario, the null hypothesis
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Table 9.3: Relationship between type I and type II errors

Decision

Reject H0 Fail To Reject H0

Type I Error Correct Decision

True P(Type I Error) = α P(Accept H0|H0)= 1 − α

Null (Level of Significance)

Hypothesis Correct Decision Type II Error

False P(Accept H1|H1)= 1 − β P(Type II Error) = β

(Power of the Test)

is that the parachute will open and the alternative hypothesis is that the parachute will
not open. Certainly a type II error (concluding the parachute will open when it will not) is
more critical than a type I error (concluding the parachute will not open when it will).

Example 9.3 Given a normal distribution with unknown mean μ and known standard
deviation σ = 2, one wishes to test the null hypothesis H0 : μ = 1 versus the alternative
hypothesis H1 : μ = 4. A sample of size one is taken where the rejection region is considered
to be the interval (2,∞). In other words, if the sample value is greater than 2, the null
hypothesis is rejected. On the other hand, if the sample value is less than or equal to two,
one fails to reject the null hypothesis. Determine α and β for this experiment.

Solution: Although there is no way to know if the decision made with regard to the null
hypothesis is correct, there is a reasonable criterion that allows the determination of the
probability of making type I and type II errors.

Determine α — The probability of committing a type I error, the level of significance, is
the probability that the sample value falls in the rejection region (2,∞) when H0 : μ = 1
is true. To find α, it is necessary to find P

(
X1 > 2|N(1, 2)

)
. See Figure 9.1 for a graphical

representation of the type I error. Note that

α = P
(
X1 > 2|N(1, 2)

)
= P

(
X1 − 1

2
>

2 − 1
2

)
= P(Z > 0.5) = 0.31.

To find α with S, key in

> ALPHA <- round(1 - pnorm(2, 1, 2), 2)
> ALPHA
[1] 0.31

Note: S-PLUS returns the area to the left of a given value when using the function pnorm.
By default, R also returns the area to the left of a given value when using the function pnorm.
However, R also allows the user to find the area to the right of a given value by using the
argument lower.tail=FALSE. Consequently, one might have used the lower.tail=FALSE
argument with R’s pnorm function to find the answer.

> ALPHA <- round(pnorm(2, 1, 2, lower.tail=FALSE), 2) # Only with R
> ALPHA
[1] 0.31
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Determine β — The probability of making a type II error is the probability of failing
to reject H0 : μ = 1 when in actuality H1 : μ = 4. In other words, although μ = 4, the
null hypothesis is not rejected because the test statistic does not fall in the rejection region
but does lie in the region (−∞, 2]. For a graphical representation of the type II error, see
Figure 9.1. Mathematically this is written

β = P
(
X1 ≤ 2|N(4, 2)

)
= P(Z ≤ −1) = 0.16.

To find β with S, enter

> BETA <- round(pnorm(2,4,2), 2)
> BETA
[1] 0.16

P(Type II error) = 0.16 P(Type I error) = 0.31

-5 -2 1 2 4 7 10

FIGURE 9.1: Graphical representation of type I and type II errors when H0 : μ = 1 versus
H1 : μ = 4.

Since the probabilities of committing type I and type II errors for a fixed sample size
are dependent, it is usually impossible to make both type I and type II errors arbitrarily
small. However, out of convenience, the tests considered are restricted to only those tests
that control the type I error at a given significance level and subsequently select from these
tests the test with the most power. Researchers typically fix the probability of committing
a type I error at the 0.01, 0.05, or 0.1 significance level; however, these are merely values
that were tabled early in the history of statistics and have been used mainly for convenience
rather than through any actual merit. Since there are as many tests as there are partitions
of the sample space, the number of tests one may have to evaluate to decide between two
competing hypotheses might be huge. For this very reason, certain partitions will produce
results that are more appealing in the sense of supporting a specific hypothesis.

9.3 Power Function

Given a composite alternative hypothesis H1 : θ ∈ Θ1, the power of the test, Power (θ),
is

Power (θ) = P(reject H0|H0 is false) = P(accept H1|H1)
= 1 − β(θ),

(9.1)

where β(θ) is the probability of a type II error at a given θ. Loosely speaking, the power
of a test is the probability the test detects differences when differences exist. Note that
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Power (θ) is a function of the parameter θ, which has for each value of θ in the alternative
hypothesis, θ ∈ Θ1, the power that a simple alternative hypothesis would have for that
value of θ. When the null hypothesis is simple, θ = θ0, the power of the test at θ0 is the
same as the significance level, that is, Power (θ0) = α.

Example 9.4 Given the density function

f(x; θ) = θe−θx, x ≥ 0, θ > 0,

(a) Consider a test of hypothesis where H0 : θ = 2 versus H1 : θ > 2. Using a random
sample of size one, find k such that the test is conducted at the α = 0.05 level.

(b) Further, determine the power function of this test.

Solution: The solutions are as follows:

(a) First, set up the integral to find the value of k that yields a significance level of 0.05:

α = P(X1 < k|H0) =

k∫
0

2e−2x1dx1 = 1 − e−2k = 0.05

The solution for k is k = 0.02564665.

> qexp(0.05, 2)
[1] 0.02564665

(b) The power of the test is

Power (θ) = 1 − β(θ) = P(acceptH1 when it is true) = P(X1 < 0.0256|H1)

=

0.0256∫
0

θe−θx1dx1 = 1 − e−0.0256θ.

Note that the answer clearly illustrates that it is not possible to obtain a single value for
the power of a composite alternative hypothesis since the answer itself is a function of θ. In
other words, for each value of the parameter θ compatible with the alternative hypothesis
(in this case θ > 2), a value for the power function is obtained that corresponds to that
simple hypothesis. As the parameter θ takes on values greater than two, the power function
approaches one.

Example 9.5 � Achievement Test � Test the null hypothesis that for a certain age
group the mean score on an achievement test (scores follow a normal distribution with
σ = 6) is equal to 40 against the alternative that it is not equal to 40.

(a) Find the probability of type I error for n = 9 if the null hypothesis is rejected when the
sample mean is less than 36 or greater than 44.

(b) Find the probability of type I error for n = 36 if the null hypothesis is rejected when
the sample mean is less than 38 or greater than 42.

(c) Plot the power functions for n = 9 and n = 36 for values of μ between 30 and 50.
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Solution: The solutions are as follows:

(a) The probability of a type I error for n = 9 if the null hypothesis is rejected when the
sample mean is less than 36 or greater than 44 is

P(Type I error) = P

(
X < 36

∣∣∣N(
40,

6√
9

))
+ P

(
X > 44

∣∣∣N(
40,

6√
9

))

= P

(
Z <

36 − 40
2

)
+ P

(
Z >

44 − 40
2

)
= P(Z < −2) + P(Z > 2) = 0.02275 + 0.02275 = 0.04550.

To compute the answer with S, key in

> pnorm(36,40,6/sqrt(9)) + 1 - pnorm(44,40,6/sqrt(9))
[1] 0.04550026

(b) The probability of type I error for n = 36 if the null hypothesis is rejected when the
sample mean is less than 38 or greater than 42 is

P(Type I error) = P

(
X < 38

∣∣∣N(
40,

6√
36

))
+ P

(
X > 42

∣∣∣N(
40,

6√
36

))

= P

(
Z <

38 − 40
1

)
+ P

(
Z >

42 − 40
1

)
= P(Z < −2) + P(Z > 2) = 0.02275 + 0.02275 = 0.04550.

To compute the answer with S, enter

> pnorm(38,40,6/sqrt(36)) + 1 - pnorm(42,40,6/sqrt(36))
[1] 0.04550026

(c) The power function for n = 9 is

Power (μ) = P

(
X < 36

∣∣∣N(
μ,

6√
9

))
+ P

(
X > 44

∣∣∣N(
μ,

6√
9

))
The power function for n = 36 is

Power (μ) = P

(
X < 38

∣∣∣∣N(
μ,

6√
36

))
+ P

(
X > 42

∣∣∣∣N(
μ,

6√
36

))
To produce a plot similar to the one in Figure 9.2 on the next page with R, use the following
code:

> mu <- seq(30,50,.01)
> power9 <- 1-pnorm(44, mu,6/sqrt(9)) + pnorm(36, mu,6/sqrt(9))
> power36 <- 1-pnorm(42, mu,6/sqrt(36)) + pnorm(38, mu,6/sqrt(36))
> plot(mu,power9,type="l", ylab=expression(Power(mu)), xlab=expression(mu),
+ ylim=c(0,1))
> lines(mu, power36, type="l")
> arrows(32, 0.6 , 34.2, .78, lwd=2, length=0.05)
> arrows(32, 0.35 , 37, .78, lwd=2, length=0.05)
> arrows(40, 0.4 , 40, 0.06, lwd=2, length=0.05)
> text(32,0.58, expression(n==9))
> text(32.3,0.33, expression(n==36))
> text(40,0.45, expression(alpha==0.045))
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FIGURE 9.2: Graphical representation of the power function, Power (μ), for both scenarios
in Example 9.5 on page 346.

Note that Power (μ0) = α for both power functions depicted in Figure 9.2. In general,
as the true μ is farther from the hypothesized μ in H0, the power of a test will increase.
Additionally, the power function approaches 1 faster for larger n as the true μ moves farther
from the hypothesized μ in H0.

9.4 Uniformly Most Powerful Test

First, note that tests with identical α values do not necessarily have identical power for
a fixed sample size as in Example 9.6.

Example 9.6 Given a N(μ, 1) population from which one takes a simple random sample
of size 1, test the null hypothesis H0 : μ = 1 versus the alternative hypothesis H1 : μ = 2.
Determine the significance level and the power of the test for the following rejection regions:

(a) (2.036,∞)

(b) (1.100, 1.300) ∪ (2.461,∞).

Solution: The answers are as follows:

(a) Since R = (2.036,∞),

α = P
(
X > 2.036|N(1, 1)

)
= P

(
X − 1

1
>

2.036− 1
1

)
= P(Z > 1.036) = 0.150,

β = P
(
X ≤ 2.036|N(2, 1)

)
= P

(
X − 2

1
≤ 2.036− 2

1

)
= P(Z ≤ 0.036) = 0.514,

and the power of the test is 1 − β = 1 − 0.514 = 0.486. See Figure 9.3 on the facing page
for a graphical representation of the type I and type II errors.
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P(Type I error) = 0.150P(Type II error) = 0.514

-2 -1 0 1 2.036 3 4 5

FIGURE 9.3: Graphical representation of type I and type II errors when H0 : μ = 1 versus
H1 : μ = 2 with rejection region (2.036,∞).

(b) Since the rejection region is (1.100, 1.300) ∪ (2.461,∞), the probability of committing
a type I error is

α = P
(
1.100 < X < 1.300|N(1, 1)

)
+ P

(
X > 2.461|N(1, 1)

)
= P

(
1.100 − 1

1
< Z <

1.300 − 1
1

)
+ P

(
X − 1

1
>

2.461 − 1
1

)
= P(0.100 < Z < 0.300) + P(Z > 1.461)
= P(Z < 0.300)− P(Z < 0.100) + P(Z > 1.461) = 0.618 − 0.540 + 0.072 = 0.150,

and the probability of committing a type II error is

β = P
(
X ≤ 1.100|N(2, 1)

)
+ P

(
1.300 ≤ X ≤ 2.461|N(2, 1)

)
= P

(
X − 2

1
≤ 1.100 − 2

1

)
+ P

(
1.300− 2

1
≤ X − 2

1
≤ 2.461 − 2

1

)
= P(Z ≤ −0.900) + P(−0.700 ≤ Z ≤ 0.461)
= P(Z ≤ −0.900) + P(Z ≤ 0.461)− P(Z ≤ −0.700)
= 0.184 + 0.678 − 0.242 = 0.620.

It follows that the power of the test is 1−β = 1−0.620 = 0.380. A graphical representation
of the type I and type II errors is provided in Figure 9.4 on the next page. To find α and
β with S, type

> ALPHA <- pnorm(1.300,1,1) - pnorm(1.100,1,1) + (1-pnorm(2.461,1,1))
> round(ALPHA, 3)
[1] 0.15
> BETA <- pnorm(1.100,2,1) + pnorm(2.461,2,1) - pnorm(1.300,2,1)
> round(BETA, 3)
[1] 0.62

It is clear to see from the previous example that, with the same level of significance
(0.150), the power obtained for the test with a rejection region of (1.100, 1.300) ∪ (2.461,∞)
has less power than the test that uses a rejection region of (2.036,∞). The probabilities of
committing type I and type II errors for the rejection regions (2.036,∞) and (1.100, 1.300)∪
(2.461,∞) are shown in Figures 9.3 and 9.4, respectively. In general, it is possible to have a
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P(Type I error) = 0.15P(Type II error) = 0.62
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FIGURE 9.4: Graphical representation of type I and type II errors when H0 : μ = 1 versus
H1 : μ = 2 with rejection region (1.100, 1.300) ∪ (2.461,∞)

test that is “better” in the sense of having more power than another test even though both
tests have the same significance level. So, the researcher wants to find a uniformly most
powerful test that has more power than all other tests that have the correct significance
level, α, if such a test exists. To be complete, it is important to note that uniformly most
powerful tests do not always exist. A generalization that can be made from Example 9.6
is that one-sided tests with the same sample size as two-sided tests will always have more
power for the same α level.

9.5 ℘-Value or Critical Level

Fisher’s advocates object to establishing a priori the level of significance when testing
a hypothesis. Instead, they prefer to make their decisions to reject or fail to reject the null
hypothesis based on ℘-values. The critical level or ℘-value is defined as the probability of
observing a difference as extreme or more extreme than the difference observed under the
assumption that the null hypothesis is true. Virtually all statistical software packages will
return a ℘-value when testing a hypothesis. The values of the statistic t(x) observed from
the sample and ℘-value calculations are summarized in Table 9.4.

Table 9.4: Calculation of ℘-values for continuous distributions

℘-Value

H1 : θ < θ0 P(T ≤ tobs|H0)

H1 : θ > θ0 P(T ≥ tobs|H0)

H1 : θ �= θ0 2 min
{

P
(
T ≤ tobs|H0

)
, P

(
T ≥ tobs|H0

)}

It is important to note that the ℘-value is not fixed a priori, but rather is determined
after the sample is taken. A small ℘-value indicates that observing differences as large or
larger than the one found in the sample is rare, and thus do not occur by chance alone. A
small ℘-value lends support to H1; so, given a fixed significance level α, reject H0 whenever
the ℘-value < α. In Fisher’s paradigm, hypothesis tests are tests of significance, where
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a ℘-value is calculated without regard to a fixed rejection region. The Neyman-Pearson
paradigm uses a specified α level to calculate a rejection region that is used in conjunction
with a standardized test statistic to reach a statistical conclusion.

9.6 Tests of Significance

Using the following steps incorporates ideas from both Fisher and Neyman and Pearson
for solving test of hypothesis-type problems. The steps allow others to follow the
reasoning one uses to reach a statistical decision.

Step 1: Hypotheses — State the null and alternative hypotheses.

First, establish the null hypothesis, H0 : θ = θ0. Next, determine the form of
the alternative hypothesis, H1. The forms H1 can take are found in Table 9.1 on
page 341, where evidence is to be found that θ is less than, greater than, or not
equal to the θ0 specified in H0. If one wishes to specify a value for which H1 is
true, that value is denoted with either θ1 or θ1(X, Y, . . .).

Step 2: Test Statistic — Select an appropriate test statistic and determine the sampling
distribution of the test statistic or the standardized test statistic under the assump-
tion that the null hypothesis is true.

Choose a test statistic, θ̂, generally one such that the expected value of the test
statistic is equal to the parameter in H0. For example, if testing μ, θ̂ = X; or, if
testing π, θ̂ = P .

A common standardized test statistic will take the form

T = t(X) =
θ̂(X) − θ0√
Var

[
θ̂(X)

] .

Other test statistics will present themselves when testing hypotheses regarding
variances.

Step 3: Rejection Region Calculations — If the computations are to be done by hand,
use the specified α level to compute the critical value and to determine the rejection
region for the standardized test statistic. If the computations are to be done by a
computer, do not do this.

Then, calculate the value of t(X), assuming H0 is true. The value of the statistic
t(X) observed from the sample is denoted t(x) = tobs.

Step 4: Statistical Conclusion — If a rejection region was not computed in step 3, calcu-
late the ℘-value. The procedure for calculating the ℘-value is found in Section 9.5
on the facing page.

Use the rejection region or the ℘-value to determine if the evidence warrants
rejecting the null hypothesis. If tobs falls into the rejection region, reject H0; if
not, fail to reject H0. If the ℘-value is less than α, reject H0; if not, fail to reject
H0.
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Step 5: English Conclusion — State in plain English what the conclusion reached in
step 4 means. This statement will always be about the alternative hypothesis.
That is, the evidence will either warrant concluding the alternative hypothesis or
the evidence will not be sufficient to conclude the alternative hypothesis is true.

There are two distributions that occur frequently in hypothesis testing involving means:
a standard normal distribution and a t-distribution. When the standardized test statistic
follows a standard normal distribution, the hypothesis test will typically be called a one-
sample z -test or a two-sample z -test, depending on whether there are one or two
samples. Likewise, if the standardized test statistic follows a t-distribution, the test will be
a one-sample t-test, a two-sample t-test, or a paired t-test. The general form for a
z-test statistic is

statistic − μstatistic

σstatistic
(9.2)

while the general form of a t-test statistic is

statistic − μstatistic

σ̂statistic
. (9.3)

Duality of Confidence Intervals and Tests of Significance When confidence in-
tervals were constructed in Chapter 8, there was often a statistic θ̂(X) that had a known
distribution, where θ was the mean of θ̂(X) and σθ̂(X) was the square root of the variance of

θ̂(X). From this statistic’s distribution, a pivot was constructed that took the form θ̂(X)−θ
σθ̂(X)

with a known distribution (denoted, in general, as T ). One would use this pivot to construct
a (1 − α) · 100% confidence interval:

CI 1−α(θ) =
[
θ̂(x) + tα/2 · σθ̂(X), θ̂(x) + t1−α/2 · σθ̂(X)

]
.

In testing hypotheses, when the standardized test statistic has the same form as the pivot
used to construct a confidence interval, namely tobs = θ̂(x)−θ0

σθ̂(X)
, and the confidence intervals

and the acceptance region for the null hypothesis are based on the same distribution, there
exists a duality between (1−α)·100% confidence intervals and α-level hypothesis tests. That
is, when θ0 is in the confidence interval, H0 : θ = θ0 is not rejected. This is summarized in
general in Table 9.5.

Table 9.5: Duality of (1 − α) · 100% confidence intervals and α-level tests of significance

Alternative Fail to Reject (1 − α) · 100%
Hypothesis H0 Region Confidence Interval

H1 : θ < θ0 tobs ≥ tα

(
−∞, θ̂(x) − tα · σθ̂(X)

]
H1 : θ > θ0 tobs ≤ t1−α

[
θ̂(x) − t1−α · σθ̂(X), ∞

)
H1 : θ �= θ0 tα/2 ≤ tobs ≤ t1−α/2

[
θ̂(x) + tα/2 · σθ̂(X),

θ̂(x) + t1−α/2 · σθ̂(X)

]
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9.7 Hypothesis Tests for Population Means

9.7.1 Test for the Population Mean when Sampling from a Normal
Distribution with Known Population Variance

The null hypothesis for testing the mean when sampling from a normal distribution with
known variance is H0 : μ = μ0, where μ0 is a particular value. It is important to emphasize
that a normal distribution as well as a known variance are being assumed. Seldom, if ever,
will the distribution and its variance be known with certainty. However, a firm foundation
in how significance tests are conducted with these assumptions will provide a foundation
on which more hypothesis testing procedures can be built.

The basic idea behind a test of significance for the mean when working with a random
sample of size n is to determine how likely the values observed in the sample are to occur.
Typically, the sampling distribution of X, which is N(μ0, σ/

√
n ), is used to construct

a standardized test statistic since one is sampling from a normal distribution under the
assumption that the null hypothesis is true. Further, the Central Limit Theorem states
that the sampling distribution of X approaches a normal distribution even if the original
population is not normal, provided the sample size n is sufficiently large. The standardized
test statistic under the assumption that H0 is true is

Z =
X − μ0

σ/
√

n
∼ N(0, 1).

The formula to calculate its observed value as well as the three possible alternative hy-
potheses and their rejection regions are described in Table 9.6.

Table 9.6: Summary for testing the mean when sampling from a normal distribution with
known variance (one-sample z-test)

Null Hypothesis — H0 : μ = μ0

Standardized
Test Statistic’s
Value

— zobs = x̄−μ0
σ/

√
n

Alternative Hypothesis H1 : μ < μ0 H1 : μ > μ0 H1 : μ �= μ0

Rejection Region zobs < zα zobs > z1−α |zobs| > z1−α/2

Graphical
Representation of
Rejection Region zα z1−α zα/2 z1−α/2

Example 9.7 A random sample of size n = 30 is taken from a distribution known to be
N(μ, σ = 2). If the

∑30
i=1 xi = 56,

(a) Test the null hypothesis H0 : μ = 1.8 versus the alternative hypothesis H1 : μ > 1.8 at
the α = 0.05 significance level.
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(b) Find β(3) and Power (3).

Solution: The answers are as follows:

(a) Use the five-step procedure.

Step 1: Hypotheses — H0 : μ = 1.8 versus H1 : μ > 1.8.

Step 2: Test Statistic — The test statistic chosen is X because E
[
X

]
= μ. The value of

this test statistic is x̄ =
∑n

i=1 xi

n = 56
30 = 1.867. The standardized test statistic and

its distribution under the assumption H0 is true are Z = X−μ0
σ/

√
n
∼ N(0, 1).

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed N(0, 1), and H1 is an upper one-sided hypothesis, the rejection region
is zobs > z1−α = z0.95 = 1.64. The value of the standardized test statistic is
zobs = 1.867−1.8

2/
√

30
= 0.183.

Step 4: Statistical Conclusion — The ℘-value is P(Z ≥ 0.183) = 0.427.

I. From the rejection region, fail to reject H0 because 0.183 is not greater than
1.64.

II. From the ℘-value, fail to reject H0 because the ℘-value = 0.427 is greater than
0.05.

Fail to reject H0.

Step 5: English Conclusion — There is not evidence to suggest that the mean is greater
than 1.8.

To use S to find z0.95, the ℘-value for a zobs value of 0.183 for a right tail alternative
hypothesis, key in

> qnorm(0.95) # Critical Value
[1] 1.644854
> 1 - pnorm(.183) # P-value
[1] 0.427399
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(b) β(3) and Power (3) are

β(3) = P(Type II error) = P

(
Fail to reject H0

∣∣∣N(
3,

2√
30

))

= P

(
X − μ

σ/
√

n
≤ z1−α

∣∣∣N(
3,

2√
30

))

= P

(
X ≤ z0.95

σ√
n

+ μ
∣∣∣N(

3,
2√
30

))

= P

⎛⎝X − 3
2√
30

≤
(1.645)(2)√

30
+ 1.8 − 3
2√
30

⎞⎠
= P(Z ≤ −1.645) = 0.05

Power (3) = 1 − β(3) = 1 − 0.05 = 0.95

To use S to find β(3) and Power (3), enter

> beta3 <- round(pnorm(qnorm(.95,1.8,2/sqrt(30)),3,2/sqrt(30)), 2)
> power3 <- 1 - beta3
> beta3
[1] 0.05
> power3
[1] 0.95

9.7.2 Test for the Population Mean when Sampling from a Normal
Distribution with Unknown Population Variance

The null hypothesis is still H0 : μ = μ0 when working with data from a normal
distribution with unknown variance. However, the standardized test statistic under the
assumption that H0 is true is now

T =
X − μ0

S/
√

n
∼ tn−1.

The formula to calculate its observed value as well as the three possible alternative hypothe-
ses and their rejection regions are described in Table 9.7 on the next page. The computation
of β and Power with the t-test is not nearly as easy as with the standard normal distribution.
This is due to the fact that when the null hypothesis is false, the random variable X−μ0

S/
√

n

has what is known as a non-central t-distribution with non-centrality parameter

γ =
μ1 − μ0

σ√
n

,

denoted t�n−1;γ , where μ1 is the true value of μ. Currently, S-PLUS does not have a non-
central t-distribution. However, S-PLUS does have a non-central F distribution that can
be used to compute the power for a two-tailed alternative hypothesis involving the t-test
using the relationship in (9.4). R has both a non-central t-distribution and a non-central F
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distribution. To compute the power for a t-test, one must provide some estimate of σ for
the non-centrality parameter:

P
(
(t�n−1;γ < tα/2;n−1) ∪ (t�n−1;γ > t1−α/2;n−1)

)
= P

(
F1,n−1;γ2 > (t1−α/2;n−1)2

)
(9.4)

Table 9.7: Summary for testing the mean when sampling from a normal distribution with
unknown variance (one-sample t-test)

Null Hypothesis — H0 : μ = μ0

Standardized
Test Statistic’s
Value

— tobs = x̄−μ0
s/

√
n

Alternative
Hypothesis H1 : μ < μ0 H1 : μ > μ0 H1 : μ �= μ0

Rejection Region tobs < tα;n−1 tobs > t1−α;n−1 |tobs| > t1−α/2;n−1

Graphical
Representation of
Rejection Region

tα t1−α tα/2 t1−α/2

Note that the degrees of freedom for the t values

in all the graphical representations are n − 1.

Example 9.8 A random sample of size n = 25 is taken from a distribution known to be
N(μ, σ). If the

∑n
i=1 xi = 100 and the

∑n
i=1 x2

i = 600,

(a) Test the null hypothesis H0 : μ = 2.5 versus the alternative hypothesis H1 : μ �= 2.5 at
the α = 0.05 significance level.

(b) Find Power (μ1 = 4) if it is assumed σ = 2.5.

(c) Use S to simulate a t�24;γ=3 distribution, and use it to compute the simulated power of
the test in (b).

Solution: The answers are as follows:

(a) To solve this part, use the five-step procedure.

Step 1: Hypotheses — These are given in the problem as

H0 : μ = 2.5 versus H1 : μ �= 2.5

Step 2: Test Statistic — The test statistic chosen is X because E
[
X

]
= μ. The value of

this test statistic is x̄ =
∑n

i=1 xi

n = 100
25 = 4. The standardized test statistic and its

distribution under the assumption H0 is true are X−μ
S/

√
n
∼ t25−1.
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Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed t24, and H1 is a two-tailed hypothesis, the rejection region is |tobs| >
t1−0.05/2;24 = t0.975;24 = 2.06. The value of the standardized test statistic is tobs =
x̄−μ0
s/

√
n

= 4−2.5
2.89/

√
25

= 2.595156.
(
The value for s is calculated

√∑
n
i=1 x2

i−nx̄2

n−1 =√
600−(25)(42)

25−1 = 2.89.
)

Step 4: Statistical Conclusion — The ℘-value is 2 · P(t24 ≥ 2.595) = 0.016.

I. From the rejection region, reject H0 because tobs = 2.595 is greater than 2.06.

II. From the ℘-value, reject H0 because the ℘-value = 0.016 is less than 0.05.

Reject H0.

Step 5: English Conclusion — There is evidence to suggest that the mean is not equal
to 2.5.

To use S to find t0.975,24 and the ℘-value for a tobs value of 2.595 for a two-tailed alternative
hypothesis, type

> qt(0.975,24) # Critical Value
[1] 2.063899
> round(2*(1 - pt(2.595156,24)), 3) # P-value
[1] 0.016

(b) Before computing Power (μ1 = 4), first determine the non-centrality parameter:

γ =
μ1 − μ0

σ√
n

=
4.0 − 2.5

2.5√
25

= 3.0.

Let T = t(X) = X−μ0
S/

√
n

. Then

Power (μ1 = 4) = P (Reject H0|H1)

= P

((
T < tα/2; n−1

)
∪
(
T > t1−α/2; n−1

)∣∣∣T ∼ t�n−1; γ

)
= P

(
(t�24; 3 < t0.025; 24) ∪ (t�24; 3 > t0.975,24)

)
= P

(
(t�24; 3 < −2.06) ∪ (t�24; 3 > 2.06)

)
= P

(
(t�24; 3 < −2.06) + (t�24; 3 > 2.06)

)
= 0.82

A graphical representation of the Power (μ1 = 4) is depicted in Figure 9.5 on the following
page. Find the Power (μ1 = 4) using the non-central t-distribution and the non-central F
distribution in R. Note that if one is using S-PLUS, one can only solve the problem using
the non-central F distribution. Further, the non-central F distribution cannot be used to
find power for directional hypotheses. To find P

(
(t�24;3 < t0.025;24) ∪ (t�24;3 > t0.975,24)

)
with

R, enter

> pt(qt(0.025,24),24,3)+(1-pt(qt(0.975,24),24,3))
[1] 0.8207219
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Using the relationship between t-distributions and F distributions given in (9.4), write

P
(
(t�24;3 < t0.025;24) ∪ (t�24;3 > t0.975;24)

)
= P

(
F1,24;γ=32 > (t1−α/2;n−1)2

)
= P

(
F1,24;γ=32 > (t0.975;24)2

)
= P

(
F1,24;γ=32 > (2.06)2 = 4.26

)
= 0.82.

To find P (F1,24;9 > 4.26) = 1 − P (F1,24;9 < 4.26) with S, key in

> 1-pf(qt(.975,24)^2,1,24,9)
[1] 0.8207219

Power (μ1 = 4)

t24 t�24;γ=3

−4 −2 0 2 4 6 8

Critical Values

FIGURE 9.5: Central t-distribution and non-central t-distribution with γ = 3

One can also use the R function power.t.test()to compute the answer as follows:

> power.t.test(n=25, delta=1.5, sd=2.5, type="one.sample")

One-sample t test power calculation

n = 25
delta = 1.5

sd = 2.5
sig.level = 0.05

power = 0.8207213
alternative = two.sided

(c) The following S code computes the simulated power and produces the graph in Figure 9.6
on the next page:

> set.seed(13)
> nvar <- rnorm(25 * 20000, 4, 2.5)
> nvarmat <- matrix(nvar, 20000, 25) # 20000 by 25 Matrix
> xbar <- apply(nvarmat, 1, mean)
> S <- apply(nvarmat, 1, sd) # Change sd to stdev for S-PLUS
> tstar <- (xbar - 2.5)/(S/5)
> hist(tstar, xlim = c(-4, 8), nclass = "Scott", col = 13,
+ xlab = "", probability = T, ylim = c(0, 0.4),
+ main = "Central and Simulated Non-Central t-Distributions")
> crit.tu <- qt(0.975, 24)
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> crit.tl <- qt(0.025, 24)
> x <- seq(-4, 8, 0.05)
> y <- dt(x, 24)
> lines(x, y, lwd = 2)
> lines(c(-4, 8), c(0, 0), lwd = 3)
> lines(c(crit.tl, crit.tl), c(0, dt(crit.tl, 24)), lwd = 2)
> lines(c(crit.tu, crit.tu), c(0, dt(crit.tu, 24)), lwd = 2)
> SPU <- length(tstar[tstar > crit.tu])/length(tstar)
> SPL <- length(tstar[tstar < crit.tl])/length(tstar)
> Power <- SPU + SPL
> Power
[1] 0.82035

-4 -2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Central and Simulated Non-Central t-Distributions

FIGURE 9.6: Central t-distribution and simulated non-central t-distribution with γ =
3

Example 9.9 � One-Sample t-Test: Fertilizers � A farmer wants to test if a new
brand of fertilizer increases his wheat yields per plot. He puts the new fertilizer on 15
equal plots and records the subsequent yields for the 15 plots. If his traditional yield is two
bushels per plot, conduct a test of significance for μ at the α = 0.05 significance level after
verifying the data follow a normal distribution. The yields for the 15 fields are

2.5 3.0 3.1 4.0 1.2 5.0 4.1 3.9 3.2 3.3 2.8 4.1 2.7 2.9 3.7

Solution: To solve this problem, start by verifying the normality assumption of the data
using exploratory data analysis (EDA()). The results from applying the function EDA() to
the wheat yields per plot are provided in Figure 9.7 on the following page. Based on the
graphical output from the function EDA(), it is not unreasonable to assume that wheat yield
follows a normal distribution. Now, proceed with the five-step procedure.

Step 1: Hypotheses — To test if wheat yield is increased, the hypotheses are

H0 : μ = 2 versus H1 : μ > 2
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Histogram of Yield Density of Yield

Boxplot of Yield Q-Q Plot of Yield

EXPLORATORY  DATA  ANALYSIS

FIGURE 9.7: Exploratory data analysis of the wheat yield per plot values

Step 2: Test Statistic — The test statistic chosen is X because E
[
X

]
= μ. The value of

this test statistic is x̄ =
∑n

i=1 xi

n = 49.5
15 = 3.3. The standardized test statistic under

the assumption that H0 is true and its distribution are X−μ0
S/

√
n
∼ t15−1.

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed t14, and H1 is an upper one-sided hypothesis, the rejection region is
tobs > t1−0.05;14 = t0.95;14 = 1.76. The value of the standardized test statistic is
tobs = x̄−μ0

s/
√

n
= 3.3−2

0.892/
√

15
= 5.64.

Step 4: Statistical Conclusion — The ℘-value is P(t14 ≥ 5.64) ≈ 0.

I. From the rejection region, reject H0 because tobs = 5.64 is greater than 1.76.

II. From the ℘-value, reject H0 because the ℘-value ≈ 0 is less than 0.05.

Reject H0.

Step 5: English Conclusion — There is evidence to suggest that the mean yield with the
new fertilizer is greater than two bushels per plot.

To perform calculations with S, enter

> qt(.95,14) # Critical Value
[1] 1.76131
> x<-c(2.5,3,3.1,4,1.2,5,4.1,3.9,3.2,3.3,2.8,4.1,2.7,2.9,3.7)
> mean(x)
[1] 3.3
> sd(x) # for S-PLUS use stdev(x)
[1] 0.8920282
> round(1 - pt(5.64,14),4) # P-value
[1] 0
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To compute the value of the standardized test statistic and its corresponding ℘-value with
S, type

> t.test(x, alternative="greater", mu=2)

One Sample t-test

data: x
t = 5.6443, df = 14, p-value = 3.026e-05
alternative hypothesis: true mean is greater than 2
95 percent confidence interval:
2.894334 Inf
sample estimates:
mean of x

3.3

Note that the upper limit of the confidence interval in the R output is Inf (S-PLUS uses
NA instead of Inf), indicating that the limit on the right side of the confidence interval is
∞. Also, the calculation of the lower limit uses (8.10) on page 300 modified for a one-sided
confidence interval.

9.7.3 Test for the Difference in Population Means when Sampling from
Independent Normal Distributions with Known Variances

When sampling from two normal distributions with known variances, the null hypothesis
for testing the difference between two means is H0 : μX − μY = δ0, and the standardized
test statistic under the assumption that H0 is true is

Z =
X − Y − δ0√

σ2
X

nX
+

σ2
Y

nY

∼ N(0, 1).

The formulas to calculate its observed value as well as the three possible alternative hy-
potheses and their rejection regions are described in Table 9.8 on the following page. Note
that testing the equality of two means (H0 : μX = μY ) is the same as specifying δ0 = 0 in
the null hypothesis H0 : μX − μY = δ0.

Example 9.10 A researcher wishes to see if it is reasonable to believe that engineering
majors have higher math SAT scores than English majors. She takes two random samples.
The first sample consists of 64 engineering majors’ SAT math scores (X). Typically, these
scores follow a normal distribution with a known standard deviation of σX = 100 but with
an unknown mean. The second sample consists of 144 observations of English majors’ SAT
scores (Y ). These also follow a normal distribution with a standard deviation of σY = 108
with an unknown mean as well.

(a) Test the null hypothesis of equality of means at the 10% significance level (α = 0.1)
knowing the difference in sample means is 20.

(b) Find the power of the test in part (a) if μ1(X, Y ) = μX − μY = 40. (Note that
μ0(X, Y ) = 0 from H0.)
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Table 9.8: Summary for test for differences in means when taking independent samples from
normal distributions with known variances (two-sample z-test)

Null Hypothesis — H0 : μX − μY = δ0

Standardized
Test Statistic’s
Value

— zobs =
x̄ − ȳ − δ0√

σ2
X

nX
+ σ2

Y

nY

Alternative Hypothesis Rejection Region

H1 : μX − μY < δ0 zobs < zα

H1 : μX − μY > δ0 zobs > z1−α

H1 : μX − μY �= δ0 |zobs| > z1−α/2

Solution: The answers are as follows:

(a) Use the five-step procedure.

Step 1: Hypotheses — To test if engineering majors have a higher average math SAT
score than English majors, the hypotheses are

H0 : μX − μY = 0 versus H1 : μX − μY > 0

Step 2: Test Statistic — The test statistic chosen is X−Y because E
[
X − Y

]
= μX−μY .

The value of this test statistic is 20 according to the problem. The standardized
test statistic under the assumption that H0 is true and its distribution are

X − Y − δ0√
σ2

X

nX
+ σ2

Y

nY

∼ N(0, 1).

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed N(0, 1), and H1 is an upper one-sided hypothesis, the rejection region
is zobs > z1−0.1 = z0.9 = 1.28. The value of the standardized test statistic is

zobs =
x̄ − ȳ − δ0√

σ2
X

nX
+ σ2

Y

nY

=
20 − 0√

1002

64 + 1082

144

=
20

15.403
= 1.2985

Step 4: Statistical Conclusion — The ℘-value is P(Z ≥ 1.2985) = 0.0971.

I. From the rejection region, reject H0 because zobs = 1.2985 is greater than
1.28.

II. From the ℘-value, reject H0 because the ℘-value = 0.097 is less than 0.1.

Reject H0.

Step 5: English Conclusion — There is evidence to suggest that the difference between
the average math SAT score for engineering majors and that of the average math
SAT score for English majors is greater than zero; therefore, the evidence suggests
engineering majors have a higher average math SAT score.
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(b) Find the power of the test in part (a) if

H1 : X − Y ∼ N
(
μ1(X, Y ) = 40, σX−Y

)
.

Recall that μ0(X, Y ) = 0 in H0 and σX−Y =
√

σ2
X

nX
+ σ2

Y

nY
= 15.403.

β
(
μ1(X, Y )

)
= P(Fail to Reject H0|H1)

= P

(
X − Y − μ0(X, Y )

σX−Y

≤ z0.9

∣∣H1

)
= P

(
X − Y − 0

σX−Y

≤ z0.9

∣∣H1

)
= P

(
X − Y ≤ z0.9σX−Y

∣∣H1

)
= P

(
X − Y − μ1(X, Y )

σX−Y

≤
z0.9σX−Y − μ1(X, Y )

σX−Y

∣∣∣H1

)
= P

(
Z ≤ (1.282)(15.403)− 40

15.403

)
= P(Z ≤ −1.315) = 0.094

So, the power is

Power
(
μ1(X, Y )

)
= 1 − β

(
μ1(X, Y )

)
= 1 − 0.094 = 0.906.

To find the power with S, enter

> sig <- sqrt(100^2/64 + 108^2/144)
> sig
[1] 15.40292
> CV <- qnorm(0.90,0, sig) # Critical value for xbar - ybar
> CV
[1] 19.73589
> BETA <- pnorm(CV,40, sig)
> BETA
[1] 0.09411202
> POWER <- 1 - BETA
> POWER
[1] 0.905888

9.7.4 Test for the Difference in Means when Sampling from Indepen-
dent Normal Distributions with Variances That Are Unknown
but Assumed Equal

Recall that when random samples of size nX and nY , respectively, are taken from two
normal distributions N(μX , σ) and N(μY , σ), where σ is unknown, the random variable

T =

[(
X − Y

)
− (μX − μY )

]√
S2

p

(
1

nX
+ 1

nY

) ∼ tnX+nY −2
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by Theorem 6.4 on page 237, where S2
p = (nX−1)S2

X+(nY −1)S2
Y

nX+nY −2 . The null hypothesis used
to test for a difference of means between two normal distributions where the variances are
assumed to be unknown but equal is H0 : μX − μY = δ0. When H0 is false, the random
variable T has a non-central t-distribution with non-centrality parameter

γ =
μ1(X, Y ) − μ0(X, Y )

σX−Y

where μ1(X, Y ) is the value of μX − μY under H1 and μ0(X, Y ) = δ0.
This distribution is denoted t�nX+nY −2; γ . The value of the standardized test statistic is

written
tobs =

x̄ − ȳ − δ0√
(nX−1)s2

X+(nY −1)s2
Y

nX+nY −2

√
1

nX
+ 1

nY

=
x̄ − ȳ − δ0

sp

√
1

nX
+ 1

nY

.

The three possible alternative hypotheses and the corresponding rejection regions are in
Table 9.9.

Table 9.9: Summary for test for differences in means when taking independent samples
from normal distributions with unknown but assumed equal variances (two-sample pooled
t-test)

Null Hypothesis — H0 : μX − μY = δ0

Standardized Test
Statistic’s Value

— tobs = x̄−ȳ−δ0

sp

√
1

nX
+ 1

nY

Alternative Hypothesis Rejection Region

H1 : μX − μY < δ0 tobs < tα;nX+nY −2

H1 : μX − μY > δ0 tobs > t1−α;nX+nY −2

H1 : μX − μY �= δ0 |tobs| > t1−α/2;nX+nY −2

Use of the pooled t-test should only be undertaken when the variances of X and Y are
almost certainly equal.

Example 9.11 � t-Test, σX = σY Assumed: School Satisfaction � A question-
naire is devised by the Board of Governors to measure the level of satisfaction for graduates
from two competing state schools. Past history indicates the variance in satisfaction levels
for both schools is equal. The questionnaire is randomly administered to 11 students from
State School X and 15 students from State School Y (the results have been ordered and
stored in data frame Stschool).

School X: 69 75 76 80 81 82 86 89 91 92 97

School Y: 59 62 66 70 70 75 75 77 78 79 81 84 84 86 94

(a) Test to see if there are significant differences between the mean satisfaction levels for
graduates of the two competing state schools using a significance level of 5%.

(b) Find the power for μ1(X, Y ) = μX − μY = 10 for the test in (a) if it is assumed
σX = σY = 9.
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Solution: The answers are as follows:

(a) To solve this part, start by verifying the reasonableness of the normality assumption.
The side-by-side boxplots and normal quantile-quantile plots depicted in Figure 9.8 suggest
it is reasonable to assume the satisfaction levels for graduates from both state schools follow
normal distributions.

60
70
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90

State School X State School Y
-2 -1 0 1 2

Normal Distribution

50

60

70

80

90

100
State School X
State School Y

FIGURE 9.8: Side-by-side boxplots and normal quantile-quantile plots of the satisfaction
level for graduates from State School X and State School Y .

Five-Step Procedure:

Step 1: Hypotheses — Since the problem gives no reason to suspect graduates from School
X are any more satisfied than graduates from School Y, use a two-tailed alternative
hypothesis:

H0 : μX − μY = 0 versus H1 : μX − μY �= 0

Step 2: Test Statistic — The test statistic chosen is X−Y because E
[
X − Y

]
= μX−μY .

The value of this test statistic is 83.45− 76 = 7.45. The standardized test statistic
under the assumption that H0 is true and its distribution are[(

X − Y
)
− δ0

]
√

S2
p

(
1

nX
+ 1

nY

) ∼ tnX+nY −2.

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed tnX+nY −2, and H1 is a two-sided hypothesis, the rejection region is
|tobs| > t1−0.05/2;11+15−2 = t0.975;24 = 2.06. Note that sX = 8.41, sY = 9.45, and
the pooled standard deviation is sp = 9.03. The value of the standardized test
statistic is

tobs =
x̄ − ȳ − δ0

sp

√
1

nX
+ 1

nY

=
83.45− 76 − 0

9.03
√

1
11 + 1

15

= 2.08.

Step 4: Statistical Conclusion — The ℘-value is 2 × P(t24 ≥ 2.08) = 2 × 0.024 = 0.048.

I. From the rejection region, reject H0 because |tobs| = 2.08 is greater than 2.06.

II. From the ℘-value, reject H0 because the ℘-value = 0.048 is less than 0.05.

Reject H0.
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Step 5: English Conclusion — There is evidence to suggest the average satisfaction levels
between State School X and State School Y are different.

To perform the calculations with S, attach Stschool and enter

> round(qt(0.975,24), 2) # Critical Value
[1] 2.06
> mX <- mean(X, na.rm=TRUE)
> mY <- mean(Y, na.rm=TRUE)
> sX <- sd(X, na.rm=TRUE) # stdev(X, na.rm=T) for S-PLUS
> sY <- sd(Y, na.rm=TRUE) # stdev(Y, na.rm=T) for S-PLUS
> sp <- sqrt((10*sX^2 + 14*sY^2)/24) # Pooled stdev
> tobs <- (mX - mY)/(sp*sqrt(1/11 + 1/15)) # t obs
> round(c(mX, mY, sX, sY, sp, tobs), 2)
[1] 83.45 76.00 8.41 9.45 9.03 2.08
> 2*(1 - pt(tobs,24)) # P-value
[1] 0.04839673

To compute the value of the standardized test statistic and its corresponding ℘-value with
S, key in

> t.test(X, Y, var.equal=TRUE)

Standard Two-Sample t-Test

data: X and Y
t = 2.0798, df = 24, p-value = 0.0484
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.05691592 14.85217499

sample estimates:
mean of x mean of y
83.45455 76

The confidence interval is calculated by S using (8.15) on page 308 and does not include 0.
Thus, a conclusion based on this interval would be identical to that in step 5 of the five-step
procedure used to solve this problem.

(b) Before computing Power (μ1(X, Y ) = 10), first determine the non-centrality parameter:

γ =
μ1(X, Y ) − μ0(X, Y )

σX−Y

=
10 − 0√
σ2

X

nX
+ σ2

Y

nY

=
10√

92

11 + 92

15

=
10

3.573
= 2.80.

Let T = t(X,Y) =
X − Y − μ1(X, Y )

Sp

√
1

nX
+ 1

nY

. Then
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Power (μ1(X, Y ) = 10) = P (Reject H0|H1)

=P

((
T < tα/2;nX+nY −2

)∣∣∣T ∼ t�nX+nY −2;γ

)
+

P

((
T > t1−α/2;nX+nY −2

)∣∣∣T ∼ t�nX+nY −2;γ

)
=P

(
(t�24;2.8 < t0.025;24)

)
+ P

(
(t�24;2.8 > t0.975,24)

)
=P

(
(t�24;2.8 < −2.06)

)
+ P

(
(t�24;2.8 > 2.06)

)
= 0.766

Find the Power (μ1(X, Y ) = 10) using the non-central t-distribution and the non-central F
distribution in R. Note that if one is using S-PLUS, one can only solve the problem using
the non-central F distribution. To calculate the quantity P

(
(t�24;3 < t0.025;24)

)
+ P

(
(t�24;3 >

t0.975,24)
)

with R, enter

> pt(qt(0.025,24),24,2.8)+(1-pt(qt(0.975,24),24,2.8))
[1] 0.7662468

Using the relationship between t-distributions and F distributions given in (9.4), write

P
(
(t�24;2.8 < t0.025;24) ∪ (t�24;2.8 > t0.975;24)

)
= P

(
F1,24;γ=2.82 > (t1−α/2;n−1)2

)
= P

(
F1,24;γ=2.82 > (t0.975;24)2

)
= P

(
F1,24;γ=2.82 > (2.06)2 = 4.26

)
= 0.766.

To find P (F1,24;9 > 4.26) = 1 − P (F1,24;7.84 < 4.26) with S, key in

> 1-pf(qt(.975,24)^2,1,24,7.84)
[1] 0.7662468

9.7.5 Test for a Difference in Means when Sampling from Independent
Normal Distributions with Variances That Are Unknown and
Unequal

Recall that when random samples of size nX and nY , respectively, are taken from two
normal distributions N(μX , σ), and N(μY , σ), where σ is known, the random variable

Z =

[(
X − Y

)
− (μX − μY )

]√(
σ2

X

nX
+ σ2

Y

nY

) ∼ N(0, 1).

In real problems, the values of the population variances are seldom known. Further, the
random variable [(

X − Y
)
− (μX − μY )

]√(
S2

X

nX
+ S2

Y

nY

) , (9.5)

does not have a known distribution. However, the random variable in (9.5) can be approx-
imated with a t-distribution with ν degrees of freedom, where

ν =

(
s2

X

nX
+

s2
Y

nY

)2

(s2
X/nX)2

nX − 1
+

(s2
Y /nY )2

nY − 1

. (9.6)
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The approximation of the random variable (9.5) with a tν is known as the Welch-
Satterthwaite method. Output from S using this technique is simply labeled Welch.

The null hypothesis used to test for a difference of means between two independent
normal distributions where the variances are unknown and unequal is H0 : μX − μY = δ0.
The value of the standardized test statistic using the Welch-Satterthwaite method is written

tobs =
x̄ − ȳ − δ0√

s2
X

nX
+ s2

Y

nY

.

The three possible alternative hypothesis and the corresponding rejection regions are in
Table 9.10.

Table 9.10: Summary for test for differences in mean when taking independent samples
from normal distributions with unknown and unequal variances (Welch test)

Null Hypothesis — H0 : μX − μY = δ0

Standardized Test
Statistic’s Value

— tobs =
x̄ − ȳ − δ0√

s2
X

nX
+

s2
Y

nY

Alternative Hypothesis Rejection Region

H1 : μX − μY < δ0 tobs < tα;ν

H1 : μX − μY > δ0 tobs > t1−α;ν

H1 : μX − μY �= δ0 |tobs| > t1−α/2;ν

Example 9.12 A bottled water company acquires its water from two independent sources,
X and Y. The company suspects that the sodium content in the water from source X is
less than the sodium content for water from source Y. An independent agency measures the
sodium content in 20 samples from source X and 10 samples from source Y and stores them
in data frame Water. Is there statistical evidence to suggest the average sodium content in
the water from source X is less than the average sodium content in the water from source
Y? The measurements for the sodium values are mg/L. Use an α level of 0.05 to test the
appropriate hypotheses.

Source X: 84 73 92 84 95 74 80 86 80 77

86 72 62 54 77 63 85 59 66 79

Source Y: 78 79 84 82 80 85 81 83 79 81

Solution: To solve this problem, start by verifying the reasonableness of the normality
assumption. The side-by-side boxplots and normal quantile-quantile plots depicted in
Figure 9.9 on the facing page suggest it is reasonable to assume the sodium values for
both sources follow normal distributions; however, it is clear from the boxplot that the
variances are very different. Now, proceed with the five-step procedure.
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FIGURE 9.9: Side-by-side boxplots and normal quantile-quantile plots of the sodium
content for source X and source Y.

Step 1: Hypotheses — Since the problem wants to test to see if the mean sodium content
from source X is less than the mean sodium content from source Y, use a lower
one-sided alternative hypothesis.

H0 : μX − μY = 0 versus H1 : μX − μY < 0

Step 2: Test Statistic — The test statistic chosen is X−Y because E
[
X − Y

]
= μX−μY .

The value of this test statistic is 76.4−81.2 = −4.8. The standardized test statistic
under the assumption that H0 is true and its approximate distribution are[(

X − Y
)
− δ0

]
√(

S2
X

nX
+ S2

Y

nY

) �∼ tν .

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed approximately tν , and H1 is a lower one-sided hypothesis, the rejection
region is tobs < t0.05;22 = −1.72. The degrees of freedom are

ν =

(
s2

X

nX
+ s2

Y

nY

)2

(s2
X/nX)2

nX−1 + (s2
Y /nY )2

nY −1

=

(
122.78

20 + 5.29
10

)2

(122.78/20)2

20−1 + (5.29/10)2

10−1

= 22.07,

and the value of the standardized test statistic is

tobs =
x̄ − ȳ − δ0√

s2
X

nX
+ s2

Y

nY

=
76.4 − 81.2 − 0√

122.78
20 + 5.29

10

= −1.86.

Step 4: Statistical Conclusion — The ℘-value is P(t22 ≤ −1.86) = 0.038.

I. From the rejection region, reject H0 because tobs = −1.86 is less than −1.72.

II. From the ℘-value, reject H0 because the ℘-value = 0.038 is less than 0.05.

Reject H0.

Step 5: English Conclusion — There is evidence to suggest the average sodium content
for source X is less than the average sodium content for source Y.
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To perform the calculations with S, attach Water and enter

> X <- X[!is.na(X)]
> Y <- Y[!is.na(Y)]
> nX <- length(X); nY <- length(Y); mX <- mean(X)
> mY <- mean(Y); sX2 <- var(X); sY2 <- var(Y)
> nu <- (sX2/nX + sY2/nY)^2/((sX2/nX)^2/(nX-1) + (sY2/nY)^2/(nY-1))
> round(qt(0.05, nu), 2) # Critical Value
[1] -1.72
> tobs <- (mX - mY)/sqrt(sX2/nX + sY2/nY) # t observed
> round(c(mX, mY, sX2, sY2, nu, tobs), 2)
[1] 76.40 81.20 122.78 5.29 22.07 -1.86
> pt(tobs, nu) # P-value
[1] 0.03821647

To compute the value of the standardized test statistic and its corresponding ℘-value with
S, type

> t.test(X, Y, var.equal=FALSE, alternative="less")

Welch Modified Two-Sample t-Test

data: X and Y
t = -1.8589, df = 22.069, p-value = 0.0382
alternative hypothesis: true difference in means is less than 0
95 percent confidence interval:

NA -0.3665724
sample estimates:
mean of x mean of y

76.4 81.2

The confidence interval S calculates agrees with the one from (8.16) on page 310 modified
for a one-sided confidence interval. Note that the values included in the confidence interval
are all less than zero, which would give a conclusion identical to that found in step 5 of the
five-step procedure.

9.7.6 Test for the Mean Difference when the Differences Have a Normal
Distribution

If one wants to test whether there has been some change in a single group of subjects
or if there exists some difference between two dependent samples, one can compute the net
change from one condition to the next and do a paired t-test provided certain normality
assumptions are satisfied. Recall from Section 8.2.7 on page 313 that when a researcher is
presented with paired samples, the standard approach is to analyze the differences between
the paired data. Provided the distribution of population differences is

D ∼ N (μD = μX − μY , σD) ,

the random variable

T =
D − μD

SD/
√

nD
∼ tn−1.
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The null hypothesis for testing a difference of means with dependent samples is H0 : μD =
μX − μY = δ0, and the value of the standardized test statistic is written

tobs =
d̄ − δ0

sD/
√

nD
.

The three alternative hypotheses and the rejection regions for H0 are in Table 9.11. The
paired t-test has a smaller variance than does an independent two-sample t-test when the
data are dependent and is a special case of the experimental design known as the randomized
block design. The matched differences are known as blocks. Blocks should be used any
time the differences within a block are relatively homogeneous compared to the differences
within the particular treatment. When blocks are used appropriately, differences noted in
the paired observations can subsequently be attributed to differences in treatments.

Table 9.11: Summary for testing the mean of the differences between two dependent samples
when the differences follow a normal distribution with unknown variance (paired t-test)

Null Hypothesis — H0 : μD = μX − μY = δ0

Standardized
Test Statistic’s
Value

— tobs =
d̄ − δ0

sD/
√

nD

Alternative Hypothesis Rejection Region

H1 : μD < δ0 tobs < tα;n−1

H1 : μD > δ0 tobs > t1−α;n−1

H1 : μD �= δ0 |tobs| > t1−α/2;n−1

Example 9.13 The data frame barley in S-PLUS or in the lattice package lists barley
yield in bushels per acre for the years 1931 and 1932 for ten varieties of barley grown at
six sites. Is there evidence to suggest the average barley yield in 1932 for the Morris site
is greater than the average barley yield in 1932 for the Crookston site? Use the five-step
procedure to test the appropriate hypotheses using an α = 0.05 significance level.

Solution: Note that the same ten varieties are grown at both the Morris and the Crook-
ston site. Consequently, the yields at the two sites are dependent on the varieties. That is,
variety acts as a block. It stands to reason that one can expect less variability between two
similar plots growing the same variety than the variability within each of the plots growing
different varieties. Start the analysis by verifying the normality assumption required to use
a paired t-test. The results from applying the function EDA() to the differences between
the 1932 barley yields from the Morris and Crookston sites are provided in Figure 9.10
on the following page. Based on the graphical output from the function EDA(), it is not
unreasonable to assume the differences between the 1932 barley yields from the Morris and
Crookston sites follow a normal distribution. Now, proceed with the five-step procedure.

Step 1: Hypotheses — To test if the average 1932 barley yield from Morris is greater
than the average 1932 barley yield from Crookston, the hypotheses are

H0 : μD = 0 versus H1 : μD > 0
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FIGURE 9.10: Exploratory data analysis of the differences between 1932 barley yields from
the Morris and Crookston sites.

Step 2: Test Statistic — The test statistic chosen is D because E
[
D

]
= μD. The value of

this test statistic is d̄ = 10.33. The standardized test statistic under the assumption
that H0 is true and its distribution are D−δ0

SD/
√

nD
∼ t10−1.

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed t9, and H1 is an upper one-sided hypothesis, the rejection region is
tobs > t1−0.05;9 = t0.95;9 = 1.83. The value of the standardized test statistic is
tobs = d̄−δ0

sD/
√

nD
= 10.33−0

5.19/
√

10
= 6.29.

Step 4: Statistical Conclusion — The ℘-value is P(t9 ≥ 6.29) ≈ 0.

I. From the rejection region, reject H0 because tobs = 6.29 is greater than 1.83.

II. From the ℘-value, reject H0 because the ℘-value ≈ 0 is less than 0.05.

Reject H0.

Step 5: English Conclusion — There is evidence to suggest that the 1932 mean barley
yield for Morris is greater than the 1932 mean barley yield for Crookston.

To compute the rejection region, value of the standardized test statistic, and its correspond-
ing ℘-value with S, enter

> qt(.95,9) # Critical Value
[1] 1.833113
> library(lattice) # Not needed for S-PLUS
> attach(barley)
> yieldMor32 <- yield[year == "1932" & site == "Morris"]
> yieldCro32 <- yield[year == "1932" & site == "Crookston"]
> d <- yieldMor32 - yieldCro32
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> t.test(d, alternative = "greater")

One-sample t-Test

data: d
t = 6.2924, df = 9, p-value = 0.0001
alternative hypothesis: true mean is greater than 0
95 percent confidence interval:
7.323012 NA
sample estimates:
mean of x
10.33333

An alternative method that yields identical results is to use the command

t.test(yieldMor32, yieldCro32, paired=TRUE, alternative="greater").

Note that the confidence interval calculated by S is using (8.21) on page 314 modified for
one-sided confidence intervals. The interval calculated agrees with our conclusion from step
5 because it contains values that are exclusively greater than zero.

9.8 Hypothesis Tests for Population Variances

9.8.1 Test for the Population Variance when Sampling from a Normal
Distribution

The tests for population means presented up to this point have assumed the sampling
distributions for their corresponding statistics follow a normal distribution. However, the
tests for means are fairly robust to violations in normality assumptions. In contrast, the
normality assumption for testing a hypothesis about variance is not robust to departures
from normality. Consequently, one should proceed with caution when testing a hypothesis
about the variance especially since non-normality is difficult to detect when working with
small to moderate size samples. As a minimum, one should look at a normal quantile-
quantile plot to make sure normality is plausible before testing a hypothesis concerning the
population variance.

Provided X1, X2, . . . , Xn is a random sample from a N(μ, σ) distribution, the random
variable

(n − 1)S2

σ2
∼ χ2

n−1.

The null hypothesis for testing the population variance is H0 : σ2 = σ2
0 , and the value for

the test statistic is

χ2
obs =

(n − 1)s2

σ2
0

.

The three alternative hypotheses and the rejection regions for H0 are in Table 9.12 on the
following page.
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Table 9.12: Summary for testing the population variance when sampling from a normal
distribution

Null Hypothesis — H0 : σ2 = σ2
0

Standardized Test
Statistic’s Value

— χ2
obs = (n−1)s2

σ2
0

Alternative
Hypothesis H1 : σ2 < σ2

0 H1 : σ2 > σ2
0 H1 : σ2 �= σ2

0

Rejection
Region

χ2
obs < χ2

α;n−1 χ2
obs > χ2

1−α;n−1

χ2
obs < χ2

α/2;n−1 ∪
χ2

obs > χ2
1−α/2;n−1

Graphical
Representation
of Rejection
Region χ2

α χ2
1−α χ2

α/2 χ2
1−α/2

Note that the degrees of freedom for all the χ2 values are n − 1.

Example 9.14 The quality control office of a large hardware manufacturer received
more than twice the number of complaints it usually receives in reference to the diameter
variability of its 4 cm washers. In light of the complaints, the quality control manager
wants to ascertain whether or not there has been an increase in the diameter variability of
the company’s washers manufactured this month versus last month, where the variance was
0.004 cm2. The manager takes a random sample of 20 washers manufactured this month.
The results are recorded in Table 9.13 and stored in the data frame Washer. Conduct an
appropriate hypothesis test using a significance level of α = 0.05.

Table 9.13: Diameters for 20 randomly selected washers (Washer)
4.06 4.02 4.04 4.04 3.97 3.87 4.03 3.85 3.91 3.98
3.96 3.90 3.95 4.11 4.00 4.12 4.00 3.98 3.92 4.02

Solution: Prior to using a test that is very sensitive to departures in normality, as a
minimum, create a quantile-quantile plot to verify the assumption of normality. The results
from applying EDA(), shown in Figure 9.11 on the facing page, suggest the diameters of the
washers follow a normal distribution. Now, continue with the five-step procedure.

Step 1: Hypotheses — The null and alternative hypotheses to test whether the diameter
variability of the companies washers manufactured this month is greater than the
variability last month, where the variance was 0.004 cm2, are

H0 : σ2 = 0.004 versus H1 : σ2 > 0.004.

Step 2: Test Statistic — The test statistic chosen is S2 because E
[
S2

]
= σ2. The value

of this test statistic is s2 = 0.005318684. The standardized test statistic under the
assumption that H0 is true and its distribution are (n−1)S2

σ2
0

∼ χ2
n−1.
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Histogram of diameters Density of diameters

Boxplot of diameters Q-Q Plot of diameters

EXPLORATORY  DATA  ANALYSIS

FIGURE 9.11: Graphs from using EDA() on the washers’ diameters

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed χ2

19, and H1 is an upper one-sided hypothesis, the rejection region is
χ2

obs > χ2
0.95;19 = 30.14. The value of the standardized test statistic is χ2

obs =
(20−1)(0.005318684)

0.004 = 25.26.

Step 4: Statistical Conclusion — The ℘-value is P(χ2
19 ≥ 25.27) = 0.15.

I. From the rejection region, fail to reject H0 because χ2
obs = 25.27 is less than

30.14.

II. From the ℘-value, fail to reject H0 because the ℘-value = 0.15 is greater than
0.05.

Fail to reject H0.

Step 5: English Conclusion — There is insufficient evidence to suggest the variance for
washers manufactured this month increased from the variance of washers manufac-
tured last month.

To compute the critical value, the standardized test statistic’s value, and the corresponding
℘-value with S, use the variable washers, which contains the variance of last month’s
washers’ diameters.

> qchisq(0.95,19) # Critical Value
[1] 30.14351
> attach(Washer)
> s2 <- var(diameters)
> s2
[1] 0.005318684
> ChiObs <- 19*s2/0.004 # Standardized Test Statistic’s Value
> ChiObs
[1] 25.26375
> 1-pchisq(ChiObs,19) # P-value
[1] 0.1520425
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9.8.2 Test for Equality of Variances when Sampling from Independent
Normal Distributions

This section addresses the issue of comparing the variances of two distributions. This
problem is encountered when comparing instrument precisions or uniformity of products.
Another application is to check the assumption of equal variances for the pooled t-test.
However, as mentioned earlier, the pooled t-test should only be used when equality of
variance is beyond doubt. Consequently, this text will not place as large an emphasis on
this use of the test as some other texts do. Provided X1, X2, . . . , XnX and Y1, Y2, . . . , YnY are
independent random samples from N(μX , σX) and N(μY , σY ) distributions, respectively,
the random variable

F =
S2

X/σ2
X

S2
Y /σ2

Y

∼ FnX−1,nY −1.

The null hypothesis for testing the equality of two population variances is H0 : σ2
X = σ2

Y ,
which is equivalent to testing H0 : σ2

X/σ2
Y = 1. The value for the test statistic when the

variances are assumed equal is

fobs =
s2

X

s2
Y

.

The three alternative hypotheses and the rejection regions for H0 are in Table 9.14.

Table 9.14: Summary for test for equality of variances when sampling from independent
normal distributions

Null Hypothesis — H0 : σ2
X = σ2

Y
Standardized Test
Statistic’s Value

— fobs =
s2

X

s2
Y

Note that all f values in this table have degrees of freedom nX − 1, nY − 1.
Alternative
Hypothesis H1 : σ2

X < σ2
Y H1 : σ2

X > σ2
Y H1 : σ2

X �= σ2
Y

Rejection
Region

fobs < fα fobs > f1−α
fobs < fα/2 or
fobs > f1−α/2

Graphical
Representation
of Rejection
Region

fα f1−α fα/2 f1−α/2

Example 9.15 �F -Test: Breathalyzers� In an effort to reduce the number of drunk
drivers associated with fraternal organizations, the fraternity council wants to distribute
portable breathalyzers to all the fraternities on campus. There are two companies that are
bidding to provide these breathalyzers. The fraternity council has decided to purchase all of
its breathalyzers from the company whose breathalyzers have the smaller variance. Based
on advertisement, the fraternity council suspects breathalyzer X to have a smaller variance
than breathalyzers from company Y. Each company provides ten portable breathalyzers to
the fraternity council. Two volunteers each consumed a 12-ounce beer every 15 minutes for
one hour. One hour after the fourth beer was consumed, each volunteer’s blood alcohol was
measured with a different breathalyzer from the same company. The numbers recorded in
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data frame Bac are the sorted blood alcohol content values reported with breathalyzers from
company X and company Y. Test the appropriate hypotheses using a 5% significance level.
(Note: The units of measurement for blood alcohol content, BAC, are grams of alcohol per
liter of blood, g/L .)

Company X: 0.08 0.09 0.09 0.10 0.10 0.10 0.10 0.11 0.11 0.12

Company Y: 0.00 0.03 0.04 0.04 0.05 0.05 0.06 0.07 0.08 0.08

Solution: Prior to using a test that is very sensitive to departures in normality, the func-
tion EDA() is applied to the ten blood alcohol readings using breathalyzers from company
X and the ten blood alcohol readings recorded using breathalyzers from company Y. Based
on the results displayed in Figure 9.12, it seems reasonable to assume the blood alcohol
values breathalyzers report from both companies X and Y follow normal distributions.
Although the blood alcohol values reported with company Y analyzers are slightly skewed
to the left, one must remember that only ten values were used in the construction of the
graphs, and that graphs constructed with small numbers even when sampling from normal
distributions will often appear skewed. When working with small sample sizes, one may
want to test formally the hypothesis of normality with a function like shapiro.test(),
which is explained more fully in Section 10.7.3 of Chapter 10. The Shapiro-Wilk Normality
Test also indicates normality is plausible based on the relatively large ℘-value (0.5489).
Therefore, proceed with the five-step procedure.

> attach(Bac)
> shapiro.test(Y)

Shapiro-Wilk Normality Test

data: Y
W = 0.9396, p-value = 0.5489

Histogram of X Density of X

Boxplot of X Q-Q Plot of X

EXPLORATORY  DATA  ANALYSIS
Histogram of Y Density of Y

Boxplot of Y Q-Q Plot of Y

EXPLORATORY  DATA  ANALYSIS

FIGURE 9.12: Exploratory data analysis for the blood alcohol values using the
breathalyzers from company X and company Y on two volunteers after drinking four beers.

Step 1: Hypotheses — The null and alternative hypotheses to test whether the variability
in blood alcohol values using company X’s breathalyzers is less than the variability
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in blood alcohol values using company Y’s breathalyzers are

H0 : σ2
X = σ2

Y versus H1 : σ2
X < σ2

Y .

Step 2: Test Statistic — The test statistics chosen are S2
X and S2

Y since E
[
S2

X

]
= σ2

X

and E
[
S2

Y

]
= σ2

Y . The values of these test statistics are s2
X = 0.0001333333 and

s2
Y = 0.0006. The standardized test statistic under the assumption that H0 is true

and its distribution are S2
X/S2

Y ∼ F10−1,10−1.

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed F9,9, and H1 is a lower one-sided hypothesis, the rejection region is
fobs < F0.05;9,9 = 0.31. The value of the standardized test statistic is fobs =
(0.0001333333)/(0.0006) = 0.2222.

Step 4: Statistical Conclusion — The ℘-value is P(F9,9 ≤ 0.2222) = 0.0176.

I. From the rejection region, reject H0 because fobs = 0.2222 is less than 0.31.
II. From the ℘-value, reject H0 because the ℘-value = 0.0176 is less than 0.05.

Reject H0.

Step 5: English Conclusion — The evidence suggests the variability of blood alcohol
values using breathalyzers from company X is less than the variance for blood
alcohol values using breathalyzers from company Y.

To compute the critical value, the standardized test statistic’s value, and the corresponding
℘-value with S, enter

> qf(.05,9,9) # Critical Value
[1] 0.3145749
> var(X)
[1] 0.0001333333
> var(Y)
[1] 0.0006
> var(X)/var(Y)
[1] 0.2222222 # Standardized Test Statistic’s Value
> pf(var(X)/var(Y),9,9) # P-value
[1] 0.01764349

To test the appropriate hypothesis using the S function var.test(), key in

> var.test(X, Y, alternative="less")

F test to compare two variances

data: X and Y
F = 0.2222, num df = 9, denom df = 9, p-value = 0.01764
alternative hypothesis: true ratio of variances is less than 1
95 percent confidence interval:
0.0000000 0.7064207
sample estimates:
ratio of variances

0.2222222
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The confidence interval is calculated with (8.31) on page 319, modified for a one-sided
confidence interval. Note that the interval agrees with our step 5 conclusion as it contains
values that are exclusively less than 1, implying σ2

X

σ2
Y

< 1.

9.9 Hypothesis Tests for Population Proportions

9.9.1 Testing the Proportion of Successes in a Binomial Experiment
(Exact Test)

Tests of hypotheses concerning proportions are encountered in many areas. Two exam-
ples are manufacturing firms often test the percent of defective items in their products and
politicians test that their support base will garner them a certain proportion of votes in an
election. Many other examples exist. In this section, the problem of testing a hypothesis
where the proportion of successes in a binomial experiment (π) is equal to some value (π0)
is considered. Specifically, given a random variable Y ∼ Bin(n, π), an exact test for the null
hypothesis H0 : π = π0, is constructed. The three possible alternative hypotheses and the
℘-value formulas associated with each alternative hypothesis are given in Table 9.15. Note
the use of the indicator function in the computation of the two-sided ℘-value. Although it
is possible to calculate rejection regions for this exact test, due to the discrete nature of Y ,
it is unlikely a critical region can be established whose size is exactly equal to the prescribed
α. Therefore, ℘-values are generally computed when working with exact problems instead
of defining rejection regions.

Table 9.15: Summary for testing the proportion of successes in a binomial experiment(
number of successes is Y ∼ Bin(n, π)

)
Null Hypothesis — H0 : π = π0

Test Statistic’s Value — yobs = number of observed successes

Alternative Hypothesis ℘-Value Formula

H1 : π < π0 P (Y ≤ yobs|H0) =
yobs∑
i=0

(
n
i

)
πi

0 (1 − π0)
n−i

H1 : π > π0 P (Y ≥ yobs|H0) =
n∑

i=yobs

(
n
i

)
πi

0 (1 − π0)
n−i

H1 : π �= π0

n∑
i=0

I
(
P(Y = i) ≤ P(Y = yobs)

)
·
(
n
i

)
πi

0 (1 − π0)
n−i

It is also possible to compute an exact confidence interval for π. However, due to the
discrete nature of Y , the actual confidence level (coverage probability) of the interval is often
considerably higher than the stated confidence level. An exact (1 − α) · 100% confidence
interval for π requires each one-sided ℘-value in an exact binomial test to exceed α/2.
Except when y = 0 and the lower bound is zero, and when y = n and the upper bound is
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1, the lower and upper endpoints for an exact (1 − α) · 100% confidence interval for π are
the solutions in π0 to the equations

y∑
k=0

(
n

k

)
πk

0 (1 − π0)n−k ≥ α

2
and

n∑
k=y

(
n

k

)
πk

0 (1 − π0)n−k ≥ α

2
. (9.7)

For values of y = 1, 2, . . . , n − 1, it can be shown that the solutions to (9.7) yield the
lower and upper endpoint expressions for the confidence interval given in

CI 1−α(π) =⎡⎣(1 +
n − yobs + 1

yobsFα/2;2yobs,2(n−yobs+1)

)−1

,

(
1 +

n − yobs

(yobs + 1)F1−α/2;2(yobs+1),2(n−yobs)

)−1
⎤⎦

(9.8)

Both S-PLUS and R perform an exact binomial test using the function binom.test().
However, at the time of writing, the S-PLUS binom.test() did not provide a corresponding
confidence interval and uses a different criterion to compute its ℘-value for two-sided
alternatives than the one presented in Table 9.15 on the previous page. The R binom.test()
uses the criterion in Table 9.15 on the preceding page, called the likelihood method,
to compute its ℘-values for two-sided alternatives, while the S-PLUS binom.test() uses
a tail-balancing criterion; see Blaker (2000). Using the tail-balancing approach, the
℘-value is the minimum of the two-tailed probabilities P (Y ≥ yobs) and P (Y ≤ yobs) plus
an attainable probability in the other tail that is as close as possible to, but not greater
than, that one-tailed probability. The criteria both S-PLUS and R use to compute ℘-values
with binom.test() for two-sided alternatives differ from the general criterion of

2 min
[
P (Y ≤ yobs|H0) , P (Y ≥ yobs|H0)

]
,

used up to now with two-sided alternatives and continuous distributions. It is of interest to
note that the general criterion can be used with the binom.test() for two-sided tests and
that the ℘-values for the likelihood method, the tail-balancing method, and the criterion in
Table 9.15 on the previous page will all agree when the distribution is symmetric, that is,
when π = 0.5.

Example 9.16 � Exact Binomial Test: Graduates’ Jobs � A recent report
claimed that 20% of all college graduates find a job in their chosen field of study. A random
sample of 500 graduates found that 90 obtained work in their field.

(a) Is there statistical evidence to refute the claim at the α = 0.05 level?

(b) Compute an exact 95% confidence interval for the true proportion of college graduates
that find work in their chosen field of study.

Solution: The answers are as follows:

(a) Use the five-step procedure.
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Step 1: Hypotheses — The null and alternative hypotheses to test whether or not 20%
of college graduates find work in their chosen field are

H0 : π = 0.20 versus H1 : π �= 0.20.

Step 2: Test Statistic — The test statistic chosen is Y , where Y is the number of college
graduates finding work in their chosen field. Provided H0 is true, Y ∼ Bin(n, π0).
The value of the test statistic is yobs = 90.

Step 3: Rejection Region Calculations — Rejection is based on the ℘-value, so none
are required.

Step 4: Statistical Conclusion — Likelihood Method:

℘-value =
n∑

i=0

I
(
P(Y = i) ≤ P(Y = yobs)

)
·
(

n

i

)
πi

0 (1 − π0)
n−i

=
500∑
i=0

I
(
P(Y = i) ≤ P(Y = 90)

)
·
(

500
i

)
0.20i (1 − 0.20)500−i

= 0.2880566 Computed with S

Thus, one fails to reject H0 because 0.2880566 is greater than 0.05.

The S code to compute this ℘-value and the R output from using binom.test()
are

> probs <- dbinom(0:500,500,.2)
> pvalue <- sum(probs[probs <= dbinom(90,500,.2)])
> pvalue
[1] 0.2880566
> binom.test(x=90, n=500, p=0.2) # R

Exact binomial test

data: 90 and 500
number of successes = 90, number of trials = 500, p-value = 0.2881

alternative hypothesis: true probability of success is not equal to 0.2

95 percent confidence interval:
0.1473006 0.2165364

sample estimates:
probability of success

0.18
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Tail-Balancing Method: To compute the ℘-value, first find P (Y ≤ yobs|H0) and
P (Y ≥ yobs|H0) :

P (Y ≤ yobs|H0) =
yobs∑
i=0

(
n

i

)
πi

0 (1 − π0)
n−i

=
90∑

i=0

(
500
i

)
0.20i (1 − 0.20)500−i

=0.1437028

P (Y ≥ yobs|H0) =
n∑

i=yobs

(
n

i

)
πi

0 (1 − π0)
n−i

=
500∑

i=90

(
500
i

)
0.20i (1 − 0.20)500−i

=0.8807233

Since the ℘-value is computed as min{0.1437028, 0.8807233} + “attainable prob-
ability in the other tail,” it follows that the ℘-value is 0.1437028 + 0.1209751 =
0.2646779. Thus, one fails to reject H0 because 0.2646779 is greater than 0.05.

The S code to compute these ℘-values is as follows:

> p <- pbinom(0:500,500,.2)
> pl <- pbinom(90,500,.2)
> pr <- (1-min(p[p > 1- pl]))
> pval <- pl + pr
> ps <- c(pl, pr, pval)
> ps
[1] 0.1437028 0.1209751 0.2646779

The S-PLUS output from using binom.test() is

> binom.test(90,500,.2) #S-PLUS

Exact binomial test

data: 90 out of 500
number of successes = 90, n = 500, p-value = 0.2647
alternative hypothesis: true p is not equal to 0.2

Fail to reject H0.

Step 5: English Conclusion — There is not sufficient evidence to suggest the proportion
of college graduates finding work in their chosen fields of study is something other
than 20%.
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(b) An exact 95% confidence interval is constructed using (9.8):

CI 1−0.05(π) =

[(
1 +

500 − 90 + 1
(90)F0.05/2;2(90),2(500−90+1)

)−1

,

(
1 +

500 − 90
(90 + 1)F1−0.05/2;2(90+1),2(500−90)

)−1
⎤⎦

=

⎡⎣(1 +
411

(90)(0.7888743)

)−1

,

(
1 +

410
(91)(1.245244)

)−1
⎤⎦

= [0.1473006, 0.2165364]

One is 95% confident that the true proportion of college graduates finding work in their
chosen fields of study lies in [0.147, 0.216]. Note that this confidence interval, calculated in
step 4 by R, contains the hypothesized value of 0.20, corroborating the decision to fail to
reject the null hypothesis.

9.9.2 Testing the Proportion of Successes in a Binomial Experiment
(Normal Approximation)

In Section 9.9.1, an exact test and confidence interval were presented for the proportion of
successes in a binomial experiment where the random variable Y ∼ Bin(n, π). Specifically,
Y =

∑n
i=1 Xi, where Xi ∼ Bernoulli(π). A discussion of the properties of Y can be found

in Section 6.5.3, starting on page 220. The numerical computations required by exact
methods make a computer essentially indispensable, especially when presented with a large
sample. Fortunately, for those who do not have access to a computer, approximations to
exact distributions are possible for large samples. This is the focus of the current section.

Recall that the asymptotic properties of MLE estimators allow one to write

P =
Y

n
∼ N

(
π,

√
π(1 − π)

n

)
as n → ∞.

Provided nπ and n(1 − π) are both greater than or equal to 10,

P
�∼ N

(
π,

√
π(1 − π)

n

)
(9.9)

provides a reasonable approximation to the sampling distribution of P . Using (9.9), the
standardized test statistic under the assumption that H0 : π = π0 is true is

Z =
P − π0√
π0(1−π0)

n

�∼ N(0, 1).

The formula to calculate the test statistic’s observed value as well as the three possible
alternative hypotheses and their rejection regions are described in Table 9.16 on the next
page.

When |p − π0| > 1
2n , many statisticians advocate using a continuity correction when

calculating confidence intervals and standardized test statistics’ values. A continuity cor-
rection of ± 1

2n is automatically applied when using the S function prop.test(); however,



384 Probability and Statistics with R

Table 9.16: Summary for testing the proportion of successes in a binomial experiment
(normal approximation)

Null Hypothesis — H0 : π = π0

Standardized Test
Statistic’s Value

— zobs = p−π0√
π0(1−π0)

n

Alternative Hypothesis Rejection Region

H1 : π < π0 zobs < zα

H1 : π > π0 zobs > z1−α

H1 : π �= π0 |zobs| > z1−α/2

When |p − π0| > 1
2n , use a correction factor as in Table 9.17.

not all statisticians recommend the use of a continuity correction with this test, and using
one does lead to a more conservative test. The continuity corrections that are applied, as
well as the standardized test statistic calculations, can be found in Table 9.17.

Table 9.17: Correction factors when |p − π0| > 1
2n

Condition Correction Factor Standardized Test Statistic

p − π0 > 0 − 1
2n

zobs =
p − π0 − 1

2n√
π0(1−π0)

n

p − π0 < 0 +
1
2n

zobs =
p − π0 + 1

2n√
π0(1−π0)

n

Example 9.17 � Normal Approximation: Graduates’ Jobs � A recent report
claimed that 20% of all college graduates find a job in their chosen field of study. A
random sample of 500 graduates found that 90 obtained work in their field. Using a normal
approximation to the distribution of P ,

(a) Is there statistical evidence to refute the claim at the α = 0.05 level?

(b) Compute a 95% confidence interval for the true proportion of college graduates that
find work in their chosen field of study using (8.44) on page 323.

Solution: The answers are as follows:

(a) Use the five-step procedure.

Step 1: Hypotheses — The null and alternative hypotheses to test whether or not 20%
of college graduates find work in their chosen field are

H0 : π = 0.20 versus H1 : π �= 0.20.



Hypothesis Testing 385

Step 2: Test Statistic — The test statistic chosen is P , where P is the proportion of
college graduates finding work in their chosen field. Provided H0 is true,

P
�∼ N

(
π0,

√
π0(1 − π0)

n

)

and the standardized test statistic is

Z =
P − π0√
π0(1−π0)

n

�∼ N(0, 1).

Step 3: Rejection Region Calculations — Because the standardized test statistic has
an approximate N(0, 1) distribution, and H1 is a two-sided hypothesis, the rejection
region is |zobs| > z0.975 = 1.96. The value of the standardized test statistic is

Without Continuity Correction With Continuity Correction

zobs =
p − π0√
π0(1−π0)

n

=
90
500 − 0.2√
(0.2)(1−0.2)

500

= −1.1180

OR

zobs =
p − π0 + 1

2n√
π0(1−π0)

n

=
90
500 − 0.2 + 1

1000√
(0.2)(1−0.2)

500

= −1.0621

Step 4: Statistical Conclusion — The ℘-value is 2 ·P(Z ≤ −1.118) = 0.2636 or 2 ·P(Z ≤
−1.0621) = 0.2882 for continuity corrections not used and used, respectively.

I. From the rejection region, do not reject H0 because |zobs| = | − 1.1180| (no
continuity correction) is not greater than 1.96, nor is |zobs| = | − 1.0621|
(continuity correction) greater than 1.96.

II. From the ℘-value, do not reject H0 because the ℘-value = 0.2636 (without
continuity correction) or = 0.2882 (with continuity correction) is greater than
0.05.

Fail to reject H0.

The S code to calculate standardized test statistics and ℘ values is

> Y <- 90
> n <- 500
> p <- Y/n
> PI <- 0.2
> zobs <- (p - PI)/sqrt((PI * (1 - PI))/n)
> pval <- 2 * pnorm(zobs)
> zobsC <- (p - PI + 1/(2 * n))/sqrt((PI * (1 - PI))/n)
> pvalC <- 2 * pnorm(zobsC)
> round(c(zobs, pval, zobsC, pvalC), 4)
[1] -1.1180 0.2636 -1.0621 0.2882



386 Probability and Statistics with R

Step 5: English Conclusion — There is not sufficient evidence to suggest the proportion
of college graduates finding work in their chosen fields of study is something other
than 20%.

(b) An approximate 95% confidence interval is [0.1488049, 0.2160747] without a continuity
correction and [0.1478847, 0.2171388] with a continuity correction. One is 95% confident
that the true proportion of college graduates finding work in their chosen fields of study
lies in [0.1488049, 0.2160747]. Note that this confidence interval contains the hypothesized
value of 0.20, corroborating the decision to fail to reject the null hypothesis.

The calculation of 95% confidence intervals as well as verifications of the calculated ℘-values
from step 4 are computed with prop.test() both without and with continuity corrections
being used:

> prop.test(x=90, n=500, p=.2, correct=FALSE)

1-sample proportions test without continuity correction

data: 90 out of 500, null probability 0.2
X-squared = 1.25, df = 1, p-value = 0.2636
alternative hypothesis: true p is not equal to 0.2
95 percent confidence interval:
0.1488049 0.2160747
sample estimates:

p
0.18

> prop.test(x=90, n=500, p=.2, correct=TRUE)

1-sample proportions test with continuity correction

data: 90 out of 500, null probability 0.2
X-squared = 1.1281, df = 1, p-value = 0.2882
alternative hypothesis: true p is not equal to 0.2
95 percent confidence interval:
0.1478847 0.2171388
sample estimates:

p
0.18

Note that the output for prop.test() does not give a zobs-value; rather it reports a
χ2

obs-value, denoted X-squared in the S output, with one degree of freedom. Provided one
uses the relationship Z2 = χ2

1, it is possible to see that the zobs-values reported in step 3
correspond to the X-squared values given in the S output from using prop.test() without
and with continuity correction. That is, −1.1180342 = 1.25 and −1.0621322 = 1.1281.

Although the approximation procedures presented in this section lead to the same
conclusion as the exact test in the previous section when applied to Example 9.16 on
page 380, the approximation procedures of this section are only valid when applied to large
samples. In contrast, the exact test presented in the last section will work for both large
and small samples and is generally preferred over large sample approximation procedures
when the user has access to a computer.
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9.9.3 Testing Equality of Proportions with Fisher’s Exact Test

One of the most common ways to present numerical data is in a table. When presented
with a 2×2 table, where 2×2 refers to the dimensions of the number of internal cells, if the
sample size is small, equality of proportions should be tested with Fisher’s exact test.
That is, H0 : πX = πY , where X ∼ Bin(m, πX) and Y ∼ Bin(n, πY ) are the numbers of
successes observed from two independent binomial random variables. To compute Fisher’s
exact test, let N = m + n be the total sample size and k = x + y be the total number of
observed successes. Table 9.18 shows the general form of such a table.

Table 9.18: General form of a 2 × 2 table
Success Failure Total

X Sample x m − x m

Y Sample y n − y n

k N − k N

Fisher’s exact test uses the number of successes from the X sample as its test statistic,
namely X . The observed value of X is denoted x. In performing the exact test, the total
number of successes is considered fixed. That is, x + y = k is a fixed quantity in the
derivation of the test. Specifically,

P(X = i |X + Y = k) =

(
m
i

)(
n

k−i

)(
N
k

) , where i = max{0, k − n}, . . . ,min{m, k}. (9.10)

Note that (9.10) is a hypergeometric distribution, Hyper (m, n, k), where the parameters
are m, n, and k. As in Section 9.9.1, the three possible alternative hypotheses and the
respective ℘-value calculation formulas are presented in Table 9.19 on the following page.
Since the distribution of the statistic is obtained by constructing all possible 2 × 2 tables,
the test has historically been used with small samples. With the advent of inexpensive
computing power, it is now feasible to use Fisher’s exact test on relatively large samples
with fixed marginals.

A statistic that measures how associated X and Y are is the odds ratio. It is frequently
used in biomedical and sociological studies to measure the association between two variables.
The odds ratio is defined as

θ =
πX/(1 − πX)
πY /(1 − πY )

. (9.11)

An odds ratio other than 1 indicates there is a relationship between X and Y , while an
odds ratio of exactly 1 indicates that X and Y are independent. If the odds ratio is larger
than 1, πX is greater than πY ; and if smaller, πX is less than πY .

Only R computes a (1 − α) · 100% confidence interval for the odds ratio. R’s procedure
uses maximum likelihood techniques with the non-central hypergeometric distribution to
compute the confidence interval. The procedure is beyond the scope of this text. When
R’s (1 − α) · 100% confidence interval for the odds ratio upper bound is less than 1, one
can be (1 − α) · 100% confident that πX is less than πY . Likewise, when the lower bound
of a (1 − α) · 100% confidence interval for the odds ratio is greater than 1, one can be
(1 − α) · 100% confident that πX is greater than πY . R is capable of performing this
test for one-sided alternative hypotheses; however, at the time of writing, S-PLUS was
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Table 9.19: Summary for testing the proportion of successes with Fisher’s exact test

Null Hypothesis — H0 : πX = πY

Test Statistic’s
Value

— x = number of observed successes from X sample

Alternative Hypothesis ℘-Value Formula

H1 : πX < πY P (X ≤ x|H0) =
x∑

i=max{0,k−n}

(
m
i

)(
n

k−i

)(
N
k

)
H1 : πX > πY P (X ≥ x|H0) =

min{m,k}∑
i=x

(
m
i

)(
n

k−i

)(
N
k

)
H1 : πX �= πY

min{m,k}∑
i=max{0,k−n}

I
(
P(X = i) ≤ P(X = x)

)(m
i

)(
n

k−i

)(
N
k

)

not. Additionally, the current version of S-PLUS does not compute a confidence interval
associated with fisher.test().

Example 9.18 � Fisher’s Exact Test: Delinquents in Glasses � A researcher
wants to discover if the proportion of non-delinquent juveniles who wear glasses is different
from that of juvenile delinquents. He collects the information found in Table 9.20 from
juveniles who failed a vision test. Test whether the proportion of non-delinquents who wear
glasses is different from the proportion of juvenile delinquents who wear glasses at an α
level of 0.05.

Table 9.20: Juveniles who failed a vision test classified by delinquency and glasses wearing
(Weindling et al., 1986)

Wear Do Not Wear
Glasses Glasses Totals

Juvenile Delinquents 1 8 9
Non-delinquents 5 2 7

Totals 6 10 16

Solution: To solve this problem, use Fisher’s exact test and the five-step procedure.

Step 1: Hypotheses — The null and alternative hypotheses to test whether the proportion
of non-delinquents who wear glasses is different from the proportion of juvenile
delinquents who wear glasses are

H0 : πX = πY versus H1 : πX �= πY .

In this case, the random variable X will represent the number of juvenile delinquents
who wear glasses, and the random variable Y will represent the number of non-
delinquents who wear glasses.
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Step 2: Test Statistic — The test statistic chosen is X , where X is the number of
juvenile delinquents who wear glasses. The observed value of the test statistic
is x = 1. Provided H0 is true, and conditioning on the fact that X + Y = k,
X ∼ Hyper(m, n, k).

Step 3: Rejection Region Calculations — Rejection is based on the ℘-value, so none
are required.

Step 4: Statistical Conclusion — To compute the ℘-value, compute

min{m,k}∑
i=max{0,k−n}

I
(
P(X = i) ≤ P(X = x)

)(m
i

)(
n

k−i

)(
N
k

) =

min{9,6}∑
i=max{0,6−7}

I
(
P(X = i) ≤ P(X = 1)

)(9
i

)(
7

6−i

)(
16
6

) = 0.035

For such a small sample, the seven possible 2 × 2 tables that can be constructed
where k = 6, m = 9, and n = 7 and their respective ℘-values are shown in
Table 9.21. Since the ℘-value is 0.035, one rejects H0 because 0.035 is less than
0.05.
Reject H0.

Table 9.21: Seven possible 2 × 2 tables that can be constructed where k = 6, m = 9, and
n = 7, with their associated probabilities

Table Probability Table Probability Table Probability Table Probability

0 9

6 1
0.00087

1 8

5 2
0.0236

2 7

4 3
0.15734

3 6

3 4
0.36713

4 5

2 5
0.33042

5 4

1 6
0.11014

6 3

0 7
0.0104

Step 5: English Conclusion — There is sufficient evidence to suggest the proportion
of non-delinquents who wear glasses is different from the proportion of juvenile
delinquents who wear glasses.

The S code to enter the information from Table 9.20 on the preceding page and to perform
Fisher’s exact test is

> JD <- matrix(c(1,5,8,2), nrow=2,
+ dimnames=list(Youth=c("Delinquent","Non-delinquent"),
+ Glasses=c("Yes","No")))
> JD # Output is for R, S-PLUS is slightly different.

Glasses
Youth Yes No
Delinquent 1 8
Non-delinquent 5 2
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> p <- dhyper(0:6,9,7,6) # Probabilities for the 7 possible 2X2 tables

> round(p,5)
[1] 0.00087 0.02360 0.15734 0.36713 0.33042 0.11014 0.01049
> pobs <- dhyper(1,9,7,6)
> pval <- sum(p[p<=pobs])

> pval
[1] 0.03496503
> fisher.test(JD) # Output is for R, S-PLUS is slightly different.

Fisher’s Exact Test for Count Data

data: JD
p-value = 0.03497
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.0009525702 0.9912282442
sample estimates:
odds ratio
0.06464255

Note that values of θ farther from 1.0 in a given direction represent stronger levels of
association (0 < θ < ∞). In this case, θ = 0.06 means that the odds ratio for non-
delinquents wearing glasses is 1/0.06 = 15.5 times the odds ratio for delinquents wearing
glasses. This is a very strong association.

Example 9.19 � Fisher’s exact test of πX = πY : Heart Attacks � Physicians
want to know if taking aspirin will help them avoid heart attacks. A group collects the
information found in Table 9.22. Help them test to see if taking aspirin is beneficial in the
prevention of heart attacks at an α level of 0.05.

Table 9.22: Observed heart attacks for those physicians taking aspirin and a placebo
(Hennekens, 1988)

Heart No Heart
Attack Attack Totals

Aspirin 104 10,933 11,037 = m

Placebo 189 10,845 11,034 = n

Totals 293 = k 21,778 22,071 = N

Solution: To solve this problem, use Fisher’s exact test and the five-step procedure.

Step 1: Hypotheses — The null and alternative hypotheses to test whether the proportion
of physicians who suffer heart attacks while taking aspirin is less than the proportion
of physicians who suffer heart attacks while taking a placebo are

H0 : πX = πY versus H1 : πX < πY .
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In this case, let the random variable X represent the number of physicians who had
a heart attack while taking aspirin, and let the random variable Y represent the
number of physicians who had a heart attack while taking a placebo.

Step 2: Test Statistic — The test statistic chosen is X , where X is the number of
physicians who had a heart attack while taking aspirin. Provided H0 is true, and
conditioning on the fact that X + Y = k, X ∼ Hyper(m, n, k). The observed value
of the test statistic is x = 104. To enter the data from Table 9.22 on the preceding
page into S, type the following code:

> HA <- matrix(c(104,189,10933,10845), nrow=2,
+ dimnames=list(Treatment=c("Aspirin","Placebo"),
+ Outcome=c("Heart attack","No heart attack")))
> HA # Output is for R, S-PLUS is slightly different

Outcome
Treatment Heart attack No heart attack
Aspirin 104 10933
Placebo 189 10845

Step 3: Rejection Region Calculations — Rejection is based on the ℘-value, so none
are required.

Step 4: Statistical Conclusion — To calculate the ℘-value, compute

P(X ≤ xobs = 104) =
104∑
i=0

(
104+10933

i

)(
189+10845

293−i

)(
22071
293

)
Note that the limits on the sum are typically the max{0, x−n} and x. In this case
x − n = 104 − 11, 034 = −10, 930, so the lower limit of the sum will be zero. This
calculation should be done with a computer, so the S code to do so follows. Note
that the data from the table must have been entered as shown in step 2.

> pval <- phyper(104,104+10933,189+10845,104+189) # x, m, n, k
> pval
[1] 3.252711e-07
> fisher.test(HA, alternative="less") # Only in R

Fisher’s Exact Test for Count Data

data: HA
p-value = 3.253e-07
alternative hypothesis: true odds ratio is less than 1
95 percent confidence interval:
0.0000000 0.6721508

sample estimates:
odds ratio
0.5458537

Because the ℘-value is approximately 0, which is less than 0.05, reject H0.

Reject H0.
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Step 5: English Conclusion — There is sufficient evidence to suggest taking aspirin is
beneficial in the prevention of heart attacks for physicians at an α level of 0.05.

Note that the odds ratio for physicians having a heart attack taking a placebo is 1/0.546 =
1.83 times the odds ratio for physicians who take aspirin.

9.9.4 Large Sample Approximation for Testing the Difference of Two
Proportions

In Section 9.9.3, Fisher’s exact test was presented for testing the equality of proportions
for two independent random samples taken from Bernoulli populations of sizes m and n,
respectively. Once the sample sizes become large for Fisher’s exact test, even computers
begin to have difficulties. Thus, there exists a procedure for approximating the distribution
of PX−PY that will lead to a test that does not have nearly the computational requirements
of Fisher’s exact test. In Section 8.4.2, it was argued that

PX − PY
�∼ N

(
πX − πY ,

√
πX(1 − πX)

m
+

πY (1 − πY )
n

)
(9.12)

when taking independent random samples of sizes m and n from Bernoulli(πX) and
Bernoulli(πY ) populations, respectively. Using (9.12),

Z =
(PX − PY ) − (πX − πY )√

πX(1−πX )
m + πY (1−πY )

n

�∼ N(0, 1). (9.13)

Unfortunately, the values of πX and πY are unknown. In Section 8.4.2, πX and πY were
replaced with their maximum likelihood estimators, π̂X = PX and π̂Y = PY , respectively,
to create the asymptotic confidence interval in (8.48). To create a standardized test statistic
with an approximate normal distribution, the same approach will be used. That is,

Z =
(PX − PY ) − δ0√

PX(1−PX )
m + PY (1−PY )

n

�∼ N(0, 1) (9.14)

can be used to test the null hypothesis H0 : πX − πY = δ0. It is often the case that δ0

is zero. In this case, it is standard practice to create a pooled estimate of the population
proportions such that πX = πY = π. The pooled estimate of π, denoted P , is

P =
X + Y

m + n
(9.15)

which is simply an estimate of the total proportion of successes. When this estimate is
used, the standardized test statistic becomes

Z =
(PX − PY )√

P (1 − P )
(

1
m + 1

n

) �∼ N(0, 1). (9.16)

There are advantages and disadvantages to both (9.14) and (9.16) as test statistics. The
S function prop.test() bases its confidence interval construction on (9.14) and uses (9.16)
for testing hypotheses. Table 9.23 on the facing page uses the standardized test statistic in
(9.16) and provides the rejection regions for the three possible alternative hypotheses.
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Table 9.23: Summary for testing the differences of the proportions of successes in two
binomial experiments (large sample approximation)

Null Hypothesis — H0 : πX = πY

Standardized Test
Statistic’s Value

— zobs = pX−pY√
p(1−p)( 1

m + 1
n)

Alternative Hypothesis Rejection Region

H1 : πX < πY zobs < zα

H1 : πX > πY zobs > z1−α

H1 : πX �= πY |zobs| > z1−α/2

When |pX − pY | > 1
2

(
1
m + 1

n

)
, use a correction factor

as in Table 9.24.

When |pX − pY | > 1
2

(
1
m + 1

n

)
, some statisticians advocate using a continuity correction

when calculating confidence intervals and standardized test statistics’ values. A continuity
correction of ± 1

2

(
1
m + 1

n

)
is automatically applied when using the S function prop.test()

on two samples. The continuity corrections that are applied, as well as the standardized test
statistic calculations, can be found in Table 9.24. When applying the continuity correction
to (8.48) on page 328, recall that the continuity correction is subtracted and added to the
lower and upper confidence limits, respectively.

Table 9.24: Correction factors when |pX − pY | > 1
2

(
1
m + 1

n

)
Condition Correction Factor Standardized Test Statistic

pX − pY > 0 −1
2

(
1
m

+
1
n

)
zobs =

pX − pY − 1
2

(
1
m + 1

n

)√
p(1 − p)

(
1
m + 1

n

)
pX − pY < 0 +

1
2

(
1
m

+
1
n

)
zobs =

pX − pY + 1
2

(
1
m + 1

n

)√
p(1 − p)

(
1
m + 1

n

)

Example 9.20 � Large Sample Test of πX = πY : Heart Attacks � Use the data
from Table 9.22 on page 390 to test whether physicians who take aspirin are less likely to
suffer heart attacks than those who take a placebo at an α level of 0.05. Base the test on
the large sample approximation procedures found in Table 9.23.

Solution: To solve this problem, use the five-step procedure.

Step 1: Hypotheses — The null and alternative hypotheses to test whether the proportion
of physicians who suffer heart attacks while taking aspirin is less than the proportion
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of physicians who suffer heart attacks while taking a placebo are

H0 : πX = πY versus H1 : πX < πY .

In this case, let the random variable X represent the number of physicians who had
a heart attack while taking aspirin, and let the random variable Y represent the
number of physicians who had a heart attack while taking a placebo.

Step 2: Test Statistic — The test statistic chosen is PX−PY since E[PX−PY ] = πX−πY .
The standardized test statistic under the assumption that H0 is true is

Z =
PX − PY√

P (1 − P )
(

1
m + 1

n

)
Step 3: Rejection Region Calculations — Because the standardized test statistic has

an approximate N(0, 1) distribution and H1 is a lower one-sided hypothesis, the
rejection region is zobs < z0.05 = −1.645. The pooled estimate of π is p = x+y

m+n =
293

22071 . The value of the standardized test statistic is

Without Continuity Correction

zobs =
pX − pY√

p(1 − p)
(

1
m + 1

n

)
=

104
11037 − 189

11034√
293

22071

(
1 − 293

22071

) (
1

11037 + 1
11034

)
= −5.01139

OR

With Continuity Correction

zobs =
pX − pY + 1

2

(
1
m + 1

n

)√
p(1 − p)

(
1
m + 1

n

)
=

104
11037 − 189

11034 + 1
2

(
1

11037 + 1
11034

)√
293

22071

(
1 − 293

22071

) (
1

11037 + 1
11034

)
= −4.94258

Step 4: Statistical Conclusion — The ℘-value is P(Z ≤ zobs) and is approximately 0 for
both cases. This is less than 0.05, so reject H0.

Reject H0.

Step 5: English Conclusion — There is sufficient evidence to suggest taking aspirin is
beneficial in the prevention of heart attacks for physicians at an α level of 0.05.
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To perform this test with S, enter

> prop.test(c(104,189), c(11037,11034), correct=FALSE)

2-sample test for equality of proportions without continuity
correction

data: c(104, 189) out of c(11037, 11034)
X-squared = 25.0139, df = 1, p-value = 5.692e-07
alternative hypothesis: two.sided
95 percent confidence interval:
-0.010724297 -0.004687751
sample estimates:

prop 1 prop 2
0.00942285 0.01712887

> prop.test(c(104,189), c(11037,11034), correct=TRUE)

2-sample test for equality of proportions with continuity
correction

data: c(104, 189) out of c(11037, 11034)
X-squared = 24.4291, df = 1, p-value = 7.71e-07
alternative hypothesis: two.sided
95 percent confidence interval:
-0.010814914 -0.004597134
sample estimates:

prop 1 prop 2
0.00942285 0.01712887

Notice that if zobs is squared, it will be equal to the values of X-squared in the S output.
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9.10 Problems

1. Define α and β for a test of hypothesis. What is the quantity 1 − β called?

2. How can β be made small in a given hypothesis test with fixed α?

3. Using a 5% significance level, what is the power of the test H0 : μ = 100 versus H1 : μ �=
100 if the true standard deviation is σ = 50 grams?

4. An experiment was conducted to investigate how the resistance of rubber to abrasion
is affected by the hardness of the rubber and its tensile strength. The data come from
Hand et al. (1994, Data Set #6 Abrasion Loss) and are stored in the data frame Rubber
of the MASS package. The abrasion loss is measured in grams/hour; the hardness, in
degrees shore; and the tensile strength, in kg/cm2. Use the five-step procedure to test
whether H0 : μ = 170 versus H1 : μ < 170 for abrasion loss (loss).

5. An apartment appraiser in Vitoria, Spain, feels confident in his appraisals of 90m2 or
larger pisos (apartments) provided his variability is less than 60,000e 2. Due to constant
movement in the housing market, the regional housing authority suspects the appraiser’s
variability may be greater than 60,000e 2. Is there evidence to support the suspicions of
the regional housing authority? Test the appropriate hypothesis at the 5% significance
level using the five-step procedure. The appraised values of apartments in Vitoria are
stored in the variable totalprice of the vit2005 data frame.

6. The Hubble Space Telescope was put into orbit on April 25, 1990. Unfortunately, on
June 25, 1990, a spherical aberration was discovered in Hubble’s primary mirror. To
correct this, astronauts had to work in space. To prepare for the mission, two teams
of astronauts practiced making repairs under simulated space conditions. Each team of
astronauts went through 15 identical scenarios. The times to complete each scenario were
recorded in days. Is one team better than the other? If not, can both teams complete
the mission in less than 3 days? Use a 5% significance level for all tests. The data are
stored in the data frame Hubble.

7. The research and development department of an appliance company suspects the energy
consumption required of their 18 cubic foot refrigerator can be reduced by a slight
modification to the current motor. Thirty 18 cubic foot refrigerators were randomly
selected from the company’s warehouse. The first 15 had their motors modified while
the last 15 were left intact. The energy consumption (kilowatts) for a 24 hour period
for each refrigerator was recorded and stored in the data frame Refrigerator. The
refrigerators with the design modification are stored in the variable modelA and those
without the design modification are stored in the variable modelB. Is there evidence that
the design modification reduces the refrigerators’ average energy consumption?

8. The Yonalasee tennis club has two systems to measure the speed of a tennis ball. The
local tennis pros suspects one system (Speed1) consistently records faster speeds. To
test her suspicions, she sets up both systems and records the speeds of 12 serves (three
serves from each side of the court). The values are stored in the data frame Tennis in
the variables Speed1 and Speed2. The recorded speeds are in kilometers per hour. Does
the evidence support the tennis pro’s suspicion? Use α = 0.10.

9. An advertising agency is interested in targeting the appropriate gender for a new “low-
fat” yogurt. In a national survey of 1200 women, 825 picked the “low-fat” yogurt over
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a regular yogurt. Meanwhile, 525 out of 1150 men picked the “low-fat” yogurt over the
regular yogurt. Given these results, should the advertisements be targeted at a specific
gender? Test the appropriate hypothesis at the α = 0.01 level.

10. A plastics manufacturer makes two sizes of milk containers: half-gallon and gallon
sizes. The time required for each size to dry is recorded in seconds in the data frame
MilkCarton. Test to see if there are differences in average drying times between the
container sizes.

11. A multinational conglomerate has two textile centers in two different cities. In order to
make a profit, each location must produce more than 1000 kilograms of refined wool per
day. A random sample of the wool production in kilograms on five different days over the
last year for the two locations was taken. The results are stored in the data frame Wool.
Based on the collected data, does the evidence suggest the locations are profitable? Is
one location superior to the other?

12. Use the data frame Fertilize, which contains the height in inches for self-fertilized
plants in the variable self to

(a) Test if the data suggest that the average height of self-fertilized plants is more than
17 inches. (Use α = 0.05.)

(b) Compute a one-sided 95% confidence interval for the average height of self-fertilized
plants (H1 : μ > 17).

(c) Compute the required sample size to obtain a power of 0.90 if μ1 = 18 inches
assuming that σ = s.

(d) What is the power of the test in part (a) if σ = s and μ1 = 18.

13. A manufacturer of lithium batteries has two production facilities. One facility manu-
factures a battery with an advertised life of 180 hours (facilityA), while the second
facility manufactures a battery with an advertised life of 200 hours (facilityB). Both
facilities are trying to reduce the variance in their products’ lifetimes. Is the variability
in battery life equivalent, or does the evidence suggest the facility producing 180 hour
batteries has smaller variability than the facility producing 200 hour batteries? Use the
data frame Battery with α = 0.05 to test the appropriate hypothesis.

14. In the construction of a safety strobe, a particular manufacturer can purchase LED
diodes from one of two suppliers. It is critical that the purchased diodes conform to
their stated specifications with respect to diameter since they must be mated with a
fixed width cable. The diameter in millimeters for a random sample of 15 diodes from
each of the two suppliers is stored in the data frame Leddiode. Based on the data, is
there evidence to suggest a difference in variabilities between the two suppliers? Use an
α level of 0.01.

15. The technology at a certain computer manufacturing plant allows silicon sheets to be
split into chips using two different techniques. In an effort to decide which technique is
superior, 28 silicon sheets are randomly selected from the warehouse. The two techniques
of splitting the chips are randomly assigned to the 28 sheets so that each technique is
applied to 14 sheets. The results from the experiment are stored in the data frame Chips.
Use α = 0.05, and test the appropriate hypothesis to see if there are differences between
the two techniques. The values recorded in Chips are the number of usable chips from
each silicon sheet.
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16. Phenylketonuria (PKU) is a genetic disorder that is characterized by an inability of the
body to utilize the essential amino acid, phenylalanine. Research suggests patients with
phenylketonuria have deficiencies in coenzyme Q10. The data frame Phenyl records the
level of Q10 at four different times for 46 patients diagnosed with PKU. The variable
Q10.1 contains the level of Q10 measured in μM for the 46 patients. Q10.2, Q10.3,
and Q10.4 record the values recorded at later times, respectively, for the 46 patients
(Artuch et al., 2004).

(a) Normal patients have a Q10 reading of 0.69 μM. Using the variable Q10.2, is there
evidence that the mean value of Q10 in patients diagnosed with PKU is less than
0.69 μM? (Use α = 0.01.)

(b) Patients diagnosed with PKU are placed on strict vegetarian diets. Some have
speculated that patients diagnosed with PKU have low Q10 readings because meats
are rich in Q10. Is there evidence that the patients’ Q10 level decreases over time?
Construct a 99% confidence interval for the means of the Q10 levels using Q10.1 and
Q10.4

17. According to the Pamplona, Spain, registration, 0.4% of immigrants in 2002 were from
Bolivia. In June of 2005, a sample of 3740 registered foreigners was randomly selected.
Of these, 87 were Bolivians. Is there evidence to suggest immigration from Bolivia has
increased? (Use α = 0.05.)

18. Find the power for the hypothesis H0 : μ = 65 versus H1 : μ > 65 if μ1 = 70 at the
α = 0.01 level assuming σ = s for the variable hard in the data frame Rubber of the
MASS package.

19. The director of urban housing in Vitoria, Spain, claims that at least 50% of all apartments
have more than one bathroom and that at least 75% of all apartments have an elevator.

(a) Can the director’s claim about bathrooms be contradicted? Test the appropriate
hypothesis using α = 0.10. Note that the number of bathrooms is stored in the
variable toilets in the data frame vit2005.

(b) Can the director’s claim about elevators be substantiated using an α level of 0.10?
Use both an approximate method as well as an exact method to reach a conclusion.
Are the methods in agreement?

(c) Test whether the proportion of apartments built prior to 1980 without garages have
a higher proportion with elevators than without elevators.

20. A rule of thumb used by realtors in Vitoria, Spain, is that each square meter will cost
roughly e3000. However, there is some suspicion that this figure is high for apartments
in the 55 to 66 m2 range. Use a 5 m2 bracket, that is, [55, 60) and [60, 65), to see if
evidence exists that the average difference between the larger and smaller apartment
sizes is less than e15,000.

(a) Use the data frame vit2005 and the variables totalprice and area to test the
appropriate hypothesis at a 5% significance level.

(b) Are the assumptions for using a t-test satisfied? Explain.

(c) Does the answer for (b) differ if the variances are assumed to be equal? Can the
hypothesis of equal variances be rejected?
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21. A survey was administered during the first trimester of 2005 in the Spanish province of
Navarra. The numbers of unemployed people according to urban and rural areas and
gender follow.

Unemployment in Navarra, Spain, in 2005
Male Female Totals

Urban 4734 6161 10895
Rural 3259 4033 7292
Totals 4933 10194 18127

(a) Test to see if there is evidence to suggest that πurban.male < πurban.female at α = 0.05.

(b) Use an exact test to see if the evidence suggests πurban.female > 0.55.

(c) Is there evidence to suggest the unemployment rate for rural females is greater than
50%? Use α = 0.05 with an exact test to reach a conclusion.

(d) Does evidence suggest that πurban.female > πrural.female?

22. The owner of a transportation fleet is evaluating insurance policies for transporting
hazardous waste. The owner has narrowed his possibility of insurers to two companies
(A and B). Insurance company A claims to have the least expensive policies on the
market while insurer B disputes the claim. To evaluate company A’s claim, the owner
requests the last 100 policies issued by each insurer. The means and standard deviations
are e325 and e85 for company A and e340 and e75 for company B. Based on these
summary statistics, the owner was not convinced that company A actually had less
expensive rates. Consequently, a representative from company A was sent to speak to
the owner. The representative from company A convinced the owner to take another
look at the numbers. This time, insurance quotes were sought from both insurers for
the next 15 transportation of hazardous waste jobs. Results are given in the data frame
InsurQuotes. Analyze these data. How is it possible the owner changed his mind with
a sample of size 15 versus the results based on a sample of size 100?

23. The data frame vit2005 contains housing information for the Spanish city Vitoria
collected in 2005. Use the variables age and garage to see if the proportion of abodes
with garages has increased since 1980. Use α = 0.05 to reach a conclusion.

(a) Use Fisher’s exact test to test the appropriate hypothesis.

(b) Use a normal approximation to test the same hypothesis as was tested in (a).

(c) Compute the ℘-value for (a) using the hypergeometric distribution.

(d) Compute an exact and an approximate 95% confidence interval for the proportion
of abodes with garages built after 1980.

24. Environmental monitoring is done in many fashions, including tracking levels of different
chemicals in the air, underground water, soil, fish, milk, and so on. It is believed that
milk cows eating in pastures where gamma radiation from iodine exceeds 0.3 μGy/h in
turn leads to milk with iodine concentrations in excess of 3.7 MBq/m3. Assuming the
distribution of iodine in pastures follows a normal distribution with a standard deviation
of 0.015 μGy/h, determine the required sample size to detect a 2% increase in baseline
gamma radiation (0.3μGy/h) using an α = 0.05 significance level with probability 0.99
or more.
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25. A local farmer packages and freezes his spinach. He claims that the packages weigh 340
grams and have a standard deviation of no more than σ = 15 grams. The manager of
a local organic supermarket is somewhat skeptical of the farmer’s claim and decides to
test the claim using a random sample of 10 frozen spinach packages.

(a) Find the critical region of the test if α = 0.05.

(b) Find the power of the test if σ = 10.

26. A cell phone provider has estimated that it needs revenues of e2 million per day in
order to make a profit and remain in the market. If revenues are less than e2 million
per day, the company will go bankrupt. Likewise, revenues greater than e2 million per
day cannot be handled without increasing staff. Assume that revenues follow a normal
distribution with σ =e0.5 million and a mean of μ.

(a) Graphically depict the power function for testing H0 : μ = 2 versus H1 : μ �= 2 if
n = 150 and α = 0.05 for values of μ ranging from 1.8 to 2.2.

(b) Graphically depict the power for testing H0 : μ = 2 versus H1 : μ �= 2 when μ1 = 2.1
and n = 150 for values of α ranging from 0.01 to 0.5.

(c) Graphically depict the power for testing H0 : μ = 2 versus H1 : μ �= 2 when μ1 = 2.1
and α = 0.05 for values of n ranging from 1 to 365.

(d) Generalize what is seen in the graphs for (a), (b), and (c).

27. Use simulation to compute the empirical significance level by generating 10,000 samples
of size n from a N(100, 28) population using α = 0.05 to test the alternative hypothesis
H1 : μ �= 100. Use the command set.seed(33) so the answers can be reproduced.

(a) Use samples of size n = 49.

(b) Use samples of size n = 196.

(c) Use samples of size n = 1936.

(d) Does increasing the sample size affect the significance level?

28. Use simulation to compute the empirical power for testing H0 : μ = 100 versus H1 : μ >
100 when μ = 108 and sampling from a N(100, 28) distribution. Use 10,000 samples with
n = 49 in the simulation and set.seed(14) so that the results will be reproducible.

(a) Use a significance level of α = 0.05.

(b) Use a significance level of α = 0.20.

(c) Compute the theoretical power for scenarios (a) and (b). How do these values
compare to those from the simulations.

(d) What happens to the empirical power as α increases?

29. Test the null hypothesis that the mean life for a certain brand of 19 mm tubular tires
is 1000 miles against the alternative hypothesis that it is less than 1000 miles. Assume
that tubular tire life follows a normal distribution with σ = 100 miles.

(a) Find the probability of a type I error for n = 16 if the null hypothesis is rejected
when the sample mean is less than or equal to 960 miles.

(b) Plot the power function for n = 16 for values of μ between 900 and 1000 miles.

30. Given a normal population with unknown mean and a known variance of σ2 = 4, test
the hypothesis H0 : μ = 10 versus H1 : μ < 10 at the α = 0.05 significance level.
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(a) Use the command set.seed(28) to generate 10,000 samples of size n = 16 from a
N(10, 2) population. Is the empirical significance level close to 5%?

(b) Compute a 95% confidence interval for α when simulating 10,000 samples of size
n = 16 from a N(10, 2) population.

(c) What is the theoretical power if μ1 = 9.5 for the given hypothesis test?

(d) Graphically represent the power for testing H0 : μ = 10 versus H1 : μ < 10 for
samples of size n = 16 from a N(10, 2) population when α = 0.05 for values of μ
from 8 to 10.

(e) Graphically represent the power for testing H0 : μ = 10 versus H1 : μ < 10 for
samples of size n = 16 when μ1 = 9.5 for values of α ranging from 0.01 to 0.3.

31. Generate 10,000 samples of size nx = 20 from X ∼ N(8, 2) and 10,000 samples of size
ny = 20 from Y ∼ N(6, 2). Use set.seed(59) so that the answers are reproducible.
Assuming X and Y are independent and a 5% significance level,

(a) What type of distribution does the statistic s2
x/s2

y follow?

(b) Create a density histogram of the 10,000 values of s2
x/s2

y. Superimpose the theoretical
sampling distribution of s2

x/s2
y on the density histogram.

(c) Compute the empirical significance level for testing H0 : σ2
x/σ2

y = 1 versus H1 :
σ2

x/σ2
y �= 1.

(d) Plot the power function for testing H0 : σ2
x/σ2

y = 1 versus H1 : σ2
x/σ2

y �= 1 for ratios
of σ2

x/σ2
y from 0.25 to 4.

(e) Repeat (d) for nx = ny = 100.

(f) Repeat (d) for nx = ny = 200.

(g) Put the graphs from (d), (e), and (f) on the same graph.

(h) Plot the power function for testing H0 : σ2
x/σ2

y = 1 versus H1 : σ2
x/σ2

y �= 1 for α
values between 0.01 and 0.5 if σ2

x/σ2
y = 2 and

(1) nx = ny = 20,
(2) nx = ny = 100, and
(3) nx = ny = 200.

(i) Simulate the power for testing H0 : σ2
x/σ2

y = 1 versus H1 : σ2
x/σ2

y �= 1 at the α = 0.5
level when σ2

x/σ2
y = 2 and

(1) nx = ny = 20,
(2) nx = ny = 100, and
(3) nx = ny = 200.
(4) Compute the theoretical power for the three previous scenarios.





Chapter 10

Nonparametric Methods

10.1 Introduction

The statistical inference techniques presented in Chapter 8 and Chapter 9 are based on
complete satisfaction of all of the assumptions made in the derivations of their sampling
distributions. Indeed, many of the techniques in Chapters 8 and 9 are commonly referred to
as parametric techniques since not only was the form of the underlying population (generally
normal) stated, but so was one or more of the underlying distribution’s parameters. This
chapter introduces both distribution free tests as well as nonparametric tests. The collection
of inferential techniques known as distribution free are based on functions of the sample
observations whose corresponding random variable has a distribution that is independent
of the specific distribution function from which the sample was drawn. Consequently,
assumptions with respect to the underlying population are not required. Nonparametric
tests involve tests of a hypothesis where there is no statement about the distribution’s
parameters. However, it is common practice to refer collectively to both distribution free
tests and nonparametric tests simply as nonparametric methods.

When there are analogous parametric and nonparametric tests, comparisons between
tests can be made based on power. The power efficiency of a test A relative to a test
B is the ratio of nb/na, where na is the number of observations required by test A for
the power of test A to equal the power of test B when nb observations are used. Since the
power value is conditional on the type of alternative hypothesis and on the significance level,
power efficiency can be difficult to interpret. One way to avoid this problem is to use the
asymptotic relative efficiency (ARE ) (a limiting power efficiency) of consistent tests.
A test is consistent for a specified alternative if the power of the test when that alternative
is true approaches 1 as the sample size approaches infinity (Gibbons, 1997). Provided that
A and B are consistent tests of a null hypothesis H0 and alternative hypothesis H1 at
significance level α, the asymptotic relative efficiency of test A to test B is the limiting
ratio nb/na, where na is the number of observations required by test A for the power of
test A to equal the power of test B based on nb observations while simultaneously nb → ∞
and H1 → H0. Although the ARE considers infinite (hence not obtainable) sample sizes,
the ARE provides a good approximation to the relative efficiency for many situations of
practical interest. When a nonparametric technique has a parametric analog, the ARE will
be used to compare the two techniques.

10.2 Sign Test

When the parent distribution is skewed or has long tails, the median is generally a
better measure of the distribution’s center than is the mean. In this section, a procedure
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for testing hypotheses concerning the population median is introduced. This procedure is
known as the sign test. A corresponding confidence interval formula for the median will
also be derived.

To use the sign test, assume X1, X2, . . . , Xn is a random sample of n observations drawn
from a continuous population with unknown median ψ. The sign test statistic, S, is defined
as the number of positive differences among the X1 − ψ0, X2 − ψ0, . . . , Xn − ψ0, where ψ0

is the median from the null hypothesis H0 : ψ = ψ0. The distribution of S when H0 is true
is S ∼ Bin(n, π = 0.5).

The sign test may also be used for testing whether the median difference (ψD) between
two dependent populations (X and Y ) is equal to some value, H0 : ψD = ψ0. It is important
to point out that ψD is not usually equal to ψX−ψY . The only instance where ψD is equal to
ψX −ψY is when X and Y are symmetric populations. For dependent samples, S is defined
as the number of positive differences among the X1−Y1−ψ0, X2−Y2−ψ0, . . . , Xn−Yn−ψ0.

Since the assumption of a continuous population is a requirement for using the sign test,
theoretically, there should not be any values that are exactly equal to the parameter being
tested in the sample. However, due to rounding or crude measurements, it is not uncommon
to observe sample values equal to ψ0, the value of ψ or ψD under the null hypothesis. There
are several strategies one can pursue in dealing with values that are equal to the parameter
being tested. Some of these include randomization, midranks, average statistic, average
probability, least favorable statistic, range of probability, and omission of tied observations.
The book by Pratt and Gibbons (1981) gives a more complete discussion of these various
techniques. The final approach, omission of tied observations, consists of eliminating
the value(s) in the sample that are equal to the parameter being tested. This is the approach
that will be used in this text. This method leads to some loss of information; however, if
the number of observations to be omitted is small compared to the sample size, this loss is
usually acceptable. Generally, omission of tied observations decreases the power of the test.

Due to the discrete nature of S, it is generally not possible to define a rejection region
that results in a test whose size is exactly equal to a prescribed α. Consequently, the
approach presented for this test relies on ℘-values rather than on defining rejection regions
for the statistical conclusion. The three possible alternative hypotheses and their associated
℘-value calculation formulas are presented in Table 10.1 on the facing page. If one assumes
a normal population, the asymptotic relative efficiency (ARE ) of the sign test relative to
the t-test is 2

π ≈ 0.637. The ARE of the sign test relative to the t-test is also quite poor
(1/3) for the uniform distribution (short tails). However, for the Laplace distribution (long
tails), the ARE of the sign test in relation to the t-test is 2.

10.2.1 Confidence Interval Based on the Sign Test

A corresponding confidence interval for the median is also based on the binomial dis-
tribution by using the same assumptions as those for the one-sample sign test; however,
the full sample is always used in the calculations. Assume X1, X2, . . . , Xn is a random
sample of n observations drawn from a continuous population with an unknown median ψ.
A confidence interval with a confidence level of at least (1 − α) · 100% can be constructed
by using the kth and (n − k + 1)st order statistics of the sample, where k is the largest
value such that P(S < k) ≤ α/2. For a one-sided confidence interval, k is the largest
value such that P(S < k) ≤ α. Order statistics are the random variables X1, X2, . . . , Xn

rearranged in order of relative magnitude and are denoted X(1), X(2), . . . , X(n). That is,
X(1) < X(2) < · · · < X(n). The actual confidence level is given by

1 − 2 × P(S < k) where P(S = x) =
(

n

x

)(
1
2

)n

. (10.1)
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Table 10.1: Summary for testing the median — sign test

Null Hypothesis — H0 : ψ = ψ0

Test Statistic’s Value — s = number of observed positive differences

Alternative Hypothesis ℘-Value Formula

H1 : ψ < ψ0 P (S ≤ s|H0) =
s∑

i=0

(
n
i

) (
1
2

)n

H1 : ψ > ψ0 P (S ≥ s|H0) =
n∑

i=s

(
n
i

) (
1
2

)n

H1 : ψ �= ψ0

n∑
i=0

I
(
P(S = i) ≤ P(S = s)

)
·
(
n
i

) (
1
2

)n

Recall that I(condition) = 1 if condition is true and 0 if condition is false.

Clearly, k must be a positive integer since it is the subscript of an order statistic. Using
(10.1) will seldom produce typical confidence levels such as 90%, 95%, or 99% exactly. Many
texts provide charts to find k for the construction of confidence intervals at these typical
confidence levels that are based either on always attaining a level of at least (1−α)× 100%
confidence or by providing the value of k such that the achieved confidence level is as close
to (1 − α) × 100% as possible. The first approach will always return confidence intervals
with a confidence level of (1−α)× 100% or more. Roughly 50% of the confidence intervals
computed with the second approach will return confidence intervals of less than the reported
confidence.

The function SIGN.test() provided in the PASWR package returns two confidence in-
tervals with exact confidence levels closest to the (1 − α) × 100% level specified by the
user. One of these intervals has a confidence level lower than the specified level and the
other has a higher confidence level than the specified level. Finally, the function uses linear
interpolation between these first two intervals to give a confidence interval with the level
specified by the user.

10.2.2 Normal Approximation to the Sign Test

For moderately sized samples (n > 20), the binomial distribution with π = 0.5 can be
reasonably approximated with the normal distribution. Since S ∼ Bin(n, 0.5), it follows
that μS = n(0.5) and σS =

√
n(0.5)2. That is, S

�∼ N(μS , σS). The standardized test
statistic under the assumption that H0 : ψ = ψ0 is true is

Z =
S − n(0.5)√

n(0.5)2
�∼ N(0, 1), (10.2)

where S is defined as the number of positive differences among the X1−ψ0, X2−ψ0, . . . , Xn−
ψ0. See Figure 10.1 on the next page for a graph of a Bin(20, 0.5) superimposed with a
normal distribution with μS = 20(0.5) = 10 and σS =

√
20(0.5)2 = 3.16.

The formula for calculating the observed value of the standardized test statistic as well
as the three possible alternative hypotheses and their rejection regions are described in
Table 10.2 on the following page.
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FIGURE 10.1: Graphical representation of a Bin(20, 0.5) distribution and a superimposed
normal distribution with μS = 20(0.5) = 10 and σS =

√
20(0.5)2 = 3.16

Table 10.2: Summary for testing the median — approximation to the sign test

Null Hypothesis — H0 : ψ = ψ0

Standardized Test
Statistic’s Value

— zobs = s±0.5−n(0.5)√
n(0.5)2

Alternative Hypothesis Rejection Region

H1 : ψ < ψ0 zobs < zα

H1 : ψ > ψ0 zobs > z1−α

H1 : ψ �= ψ0 |zobs| > z1−α/2

Note: The quantity ±0.5 in the numerator of zobs is the continuity correction.

When H1 : ψ < ψ0, the quantity +0.5 is used. When H1 : ψ > ψ0, the quantity

−0.5 is used. When H1 : ψ �= ψ0, use +0.5 if s < n(0.5) and −0.5 if s > n(0.5).

A corresponding confidence interval for the median based on (10.2) is formed with the
kth and (n − k + 1)st order statistics of the sample, where

k =
n + 1 + zα/2 ×

√
n

2
. (10.3)

For a one-sided confidence interval, replace zα/2 with zα and solve for k. Since k is generally
not an integer, it can be either rounded or truncated. To obtain a conservative estimate,
one should truncate.
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Example 10.1 � Sign Test: Telephone Call Times � Table 10.3 and the variable
call.time in the data frame Phone contain the times in minutes of long distance telephone
calls during a one month period for a small business.

Table 10.3: Long distance telephone call times in minutes (Phone)
i X(i) i X(i) i X(i) i X(i) i X(i) i X(i)

1 0.2 5 0.7 9 1.3 13 2.7 17 5.6 21 9.7
2 0.2 6 0.7 10 1.7 14 4.0 18 6.1 22 9.7
3 0.2 7 0.7 11 2.1 15 4.3 19 6.7 23 12.9
4 0.2 8 0.8 12 2.1 16 5.2 20 7.0

(a) Use an exact test with α = 0.05 to see if 2.1 minutes is a representative measure of
center for the telephone call lengths.

(b) Construct a 95% confidence interval for the population median.

(c) Use a normal approximation for the test used in part (a) to test if 2.1 minutes is a
representative measure of center for the telephone call lengths.

(d) Construct a 95% confidence interval for the population median using (10.3).

Solution: First, use the function EDA() to assess the general shape of telephone call times.
The four graphs in Figure 10.2 on the following page all lead one to the conclusion that the
distribution of the long distance telephone call times is positively skewed (skewed right).
Consequently, the median is a more representative measure of center than is the mean for
these data.
(a) Use the five-step procedure to test if 2.1 minutes is a representative measure of center.

Step 1: Hypotheses — The null and alternative hypotheses to test whether or not 2.1
minutes is a representative measure of the center of telephone call times are

H0 : ψ = 2.1 versus H1 : ψ �= 2.1.

Step 2: Test Statistic — The test statistic chosen is S, where S is the number of positive
differences among X1 − 2.1, X2 − 2.1, . . . , Xn − 2.1. Here, s = 11. Also note that
since there are two instances where xi = ψ0, n is reduced from 23 to 21.

Step 3: Rejection Region Calculations — Rejection is based on the ℘-value, so none
are required.

Step 4: Statistical Conclusion — The ℘-value is
n∑

i=0

I
(
P(S = i) ≤ P(S = s)

)
·
(

n

i

)(
1
2

)n

= 1.

> p.value <- sum( dbinom(0:21,21,0.5)[dbinom(0:21,21,0.5)
+ <=dbinom(11,21,0.5)] )
> p.value
[1] 1
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Histogram of call.time Density of call.time

Boxplot of call.time Q-Q Plot of call.time

EXPLORATORY  DATA  ANALYSIS

FIGURE 10.2: Graphical representation of the data in call.time with the function EDA()

Fail to reject H0.

Step 5: English Conclusion — There is not sufficient evidence to suggest the median
length of long distance telephone calls is not 2.1 minutes.

(b) To construct a 95% confidence interval for the population median, start by finding the
largest and smallest values of k such that 1−2×P(S < k) > 0.95 and 1−2×P(S < k) < 0.95,
respectively. To find these values, use S, and type 1 - 2 * pbinom(0:23,23,0.5):

> round(1-2*pbinom(5:8,23,0.5),3)
[1] 0.989 0.965 0.907 0.790

From the S output, it is seen that

1 − 2 × P(S ≤ 6) = 1 − 2 × P(S < 7) = 0.965

and
1 − 2 × P(S ≤ 7) = 1 − 2 × P(S < 8) = 0.907.

So, use the k = 7th with the n−k+1 = 23− 7+1 = 17th order statistics to form the 96.5%
confidence interval, CI 0.965(ψ) = [0.7, 5.6], and the k = 8th with the n−k+1 = 23−8+1 =
16th order statistics to form the 90.7% confidence interval, CI 0.907(ψ) = [0.8, 5.2]. Thus,
the 95% interpolated confidence interval, [L, U ] is calculated such that

0.965− 0.907
0.965 − 0.95

=
0.7 − 0.8
0.7 − L

⇒ L = 0.73

0.965− 0.907
0.965 − 0.95

=
5.6 − 5.2
5.6 − U

⇒ U = 5.49

So, CI 0.95(ψ) = [0.73, 5.49].
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Using the function SIGN.test() on the variable (call.time) gives the following output:

> attach(Phone)
> SIGN.test(call.time, md=2.1)

One-sample Sign-Test

data: call.time
s = 11, p-value = 1
alternative hypothesis: true median is not equal to 2.1
95 percent confidence interval:
0.7261939 5.4952244
sample estimates:
median of x

2.1

Conf.Level L.E.pt U.E.pt
Lower Achieved CI 0.9069 0.8000 5.2000
Interpolated CI 0.9500 0.7262 5.4952
Upper Achieved CI 0.9653 0.7000 5.6000

(c) Use the five-step procedure using the normal approximation to the sign test to test if
2.1 minutes is a representative measure of center.

Step 1: Hypotheses — The null and alternative hypotheses to test whether or not 2.1
minutes is a representative measure of the center of telephone call times are

H0 : ψ = 2.1 versus H1 : ψ �= 2.1.

Step 2: Test Statistic — The test statistic chosen is S, where S is the number of positive
differences among X1 − 2.1, X2 − 2.1, . . . , Xn − 2.1. Here, s = 11. Also note that
since there are two instances where xi = ψ0, n is reduced from 23 to 21.

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed approximately N(0, 1) and H1 is a two-sided hypothesis, the rejection
region is |zobs| ≥ z1−0.05/2 = 1.96. The value of the standardized test statistic is

zobs =
s ± 0.5 − n(0.5)√

n(0.5)2
=

11 − 0.5 − 21(0.5)√
21(0.5)2

= 0

Step 4: Statistical Conclusion — The ℘-value is 2 × P(Z ≥ 0) = 1.

I. From the rejection region, do not reject H0 because |zobs| = 0 is not larger
than 1.96.

II. From the ℘-value, do not reject H0 because the ℘-value = 1 is larger than
0.05.

Fail to reject H0.

Step 5: English Conclusion — There is not sufficient evidence to suggest the median
length of long distance telephone calls is not 2.1 minutes.
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(d) To construct a confidence interval for the population median using (10.3), solve

k =
n + 1 + zα/2 ×

√
n

2

=
23 + 1 − 1.96 ×

√
23

2
= 7.3.

By truncating k, k = 7. The approximate 95% confidence interval for ψ is then

[x(k), x(n−k+1)] = [x(7), x(23−7+1)] = [0.7, 5.6].

10.3 Wilcoxon Signed-Rank Test

In Section 10.2, the sign test was used to test hypotheses concerning the median. The
only requirements placed on the data when using the sign test are, first, that the population
from which one is sampling be continuous, and, second, that the population has a median.
Since the sign test only uses the signs of the differences between each observation and the
hypothesized median ψ0, a test that incorporates not only the signs of the differences but
also their magnitudes might yield a better performance in terms of power. In fact, the test
presented in this section uses both the signs of the differences between each observation and
the hypothesized median as well as the magnitudes of the differences. However, in order
to use this test, the Wilcoxon signed-rank test, one must also assume a symmetric
population in addition to the assumptions for the sign test. Consequently, although the
Wilcoxon signed-rank test can be used to test hypotheses concerning the median, it can be
used equally well to test hypotheses regarding the mean as the assumption of symmetry in
the distribution is equivalent to assuming that the mean and median are equal.

The assumption of symmetry is a rather restrictive assumption compared to those for the
sign test. Nevertheless, it is certainly less restrictive than its normal analog, the t-test, which
requires the data not only to come from a population that is symmetric about its median
but also to come from a normal distribution. However, the Wilcoxon signed-rank test does
not always perform better than the sign test. For the Laplace distribution (long-tailed),
for example, the ARE of the sign test relative to the Wilcoxon signed-rank test is 4/3.
Table 10.4 lists the ARE of the sign test relative to the t-test

(
ARE (S, t)

)
, the ARE of the

Wilcoxon signed-rank test relative to the t-test
(
ARE (T+, t)

)
, and the ARE of the sign

test relative to the Wilcoxon signed-rank test
(
ARE (S, T +)

)
for the uniform distribution

(short tails), normal distribution, and the Laplace distribution (long tails).

Table 10.4: Asymptotic relative efficiency comparisons

Distribution ARE (S, t) ARE (T +, t) ARE (S, T +)

Uniform 1/3 1 1/3

Normal 2/π ≈ 0.64 3/π ≈ 0.955 2/3

Laplace 2 1.5 4/3
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In summary, for large n, when testing location for symmetric populations, it is generally
better to use the sign test with Laplace populations and the Wilcoxon signed-rank test
for all other non-normal symmetric distributions. It can be shown that the ARE of the
Wilcoxon signed-rank test relative to the t-test is never less than 0.864 for any continuous
distribution and is ∞ for some distributions. For small n, it is not so clear which test will
be better.

Given a random sample X1, X2, . . . , Xn taken from a continuous population that is
symmetric with respect to its median ψ, under the null hypothesis H0 : ψ = ψ0, the
differences, Di = Xi − ψ0, are symmetrically distributed about zero. Further, positive and
negative differences of the same magnitude have the same probability of occurring. As with
the sign test, if any of the dis are zero, they are removed from the sample before the ranks
are computed, and the value of n is reduced accordingly.

To compute the Wilcoxon signed-rank statistic,

Step A: Take the absolute value of the n dis.

Step B: Assign the ranks to the n values from step A. If there are ties, use the midranks.
The midrank is defined as the average rank of the tied observations.

Step C: Multiply the values in step B by the sign of the original dis.

Step D: Sum the positive quantities in step C. The result is denoted t+. The random
variable (test statistic) T+ is defined as the sum of the positive signed ranks and
the random variable T− is defined as the sum of negative signed ranks.

Provided the null hypothesis is true, E(T +) = E(T−). When T+ is either sufficiently
small or sufficiently large, the null hypothesis is rejected. The test statistic T + takes
on values between 0 and n(n + 1)/2, and has a mean and variance of n(n + 1)/4 and
n(n + 1)(2n + 1)/24, respectively. The distribution of T + is known as the Wilcoxon
signed-rank distribution. Although conceptually easy to understand, one needs access
to extensive tables or statistical software to compute exact ℘-values. Further, tabled values
for T + are generally published only when there are no ties in the absolute values of the dis,
|di| for i = 1, . . . , n. When there are ties in the |di|s, the S function wilcox.test() uses
a normal approximation to compute the ℘-values. It is possible to calculate exact ℘-values
when testing hypotheses about the median as well as to construct exact confidence intervals
for the median even in the presence of ties using the function wilcoxE.test() from the
PASWR package. The function is rather primitive and should only be used for problems with
fewer than 19 observations as the memory requirements are rather large.

Example 10.2 � Trivial T + Distribution � What is the sampling distribution of
T + for the trivial case where n = 3 and X1 �= X2 �= X3?

Solution: Since there are three values (n = 3) that must be ranked and each di may have
either a positive or negative sign, there are a total of 2n = 23 = 8 possible sets of signs
associated with the three possible ranks (1, 2, 3). Under the null hypothesis, each of the
sets of signs is equally likely to occur, and thus each has a probability of 1/8 of occurring.
Table 10.5 on the following page lists the eight possible sets of signs and Table 10.6 on the
next page provides the probability distribution (pdf) for T+.
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Table 10.5: Possible sign and rank combinations for Example 10.2 on the preceding page

−1 +1 −1 +1 −1 +1 −1 +1

−2 −2 +2 +2 −2 −2 +2 +2

−3 −3 −3 −3 +3 +3 +3 +3

t+ 0 1 2 3 3 4 5 6

Table 10.6: PDF of T + for Example 10.2

t+ P(T + = t+)

0 1/8

1 1/8

2 1/8

3 2/8

4 1/8

5 1/8

6 1/8

R can compute quantiles (qsignrank()), the density function (dsignrank()), the dis-
tribution function (psignrank()), and random numbers (rsignrank()) from the Wilcoxon
signed-rank distribution. For example, the probabilities in Table 10.6 can be generated with
dsignrank(0:6,3). To obtain further help, type ?dsignrank at the R prompt. S-PLUS
has the function psignrank(), but it was not documented at the time of writing. Also,
S-PLUS did not have the functions dsignrank(), qsignrank(), nor rsignrank().

Due to the discrete nature of T+, it is generally not possible to define a rejection region
that results in a test whose size is exactly equal to the prescribed α. Consequently, the
approach presented for this test relies on ℘-values rather than on defining rejection regions
for the statistical conclusion. The three possible alternative hypotheses and their associated
℘-value calculation formulas are presented in Table 10.7 on page 415. The ℘-value formulas
given in Table 10.7 can be used to calculate exact ℘-values with S’s psignrank() function
when there are no ties among the non-zero |di|s. In the presence of ties, the S function
wilcox.test() uses Table 10.9 on page 419 with a correction factor. The formulas in
Table 10.7 on page 415 are still valid when there are ties in the non-zero |di|s; however,
the exact conditional distribution of T + when ties are present is not a base function of S.
Example 10.3 shows how S can be used to compute the exact ℘-value for the conditional
distribution of T + (the distribution of T+ with ties in the non-zero |di|s).

Example 10.3 � Wilcoxon Signed-Rank Test: Pool pH � A lifeguard is told to
maintain the pH of a 50 m pool at 7.25. He takes pH measurements at each of the four
corners of the pool and gets 7.2, 7.3, 7.3, and 7.4. Calculate the ℘-value for testing the
hypothesis that the median pH is greater than 7.25 using the exact conditional distribution
for T +.

Solution: If the data are symmetric, a Wilcoxon signed-rank test may be appropriate.
A visual inspection of the pH measurements reveals they are symmetric around 7.3. The
creation of a density plot to verify this assumption is left to the reader. The steps for
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carrying out the Wilcoxon signed-rank test are to, first, create the di values that equal
xi − ψ0 for i = 1, . . . , n. Next, take the absolute value of the n dis and assign the ranks to
the n values. If there are ties, use the midranks. Then, multiply the values of the ranks
of the |di|s by the sign of the original dis. Finally, sum the resulting positive quantities to
obtain t+.

> PH <- c(7.2,7.3,7.3,7.4) # Enter data
> DIFF <- PH-7.25 # Create differences (DIFF)
> absD <- abs(DIFF) # Absolute value of DIFF (absD)
> rankabsD <- rank(absD) # Rank the absD values
> signD <- sign(DIFF) # Store the signs of DIFF
> signrank <- rankabsD*signD # Create a vector of signed ranks
> tp <- sum(signrank[signrank>0]) # Calculate t+
> tp
[1] 8

After t+ is calculated, the distribution of T+ must be enumerated to find the ℘-value.

> n <- length(DIFF)
> signs <- as.matrix(expand.grid(rep(list(0:1), n)))
> signs # 1s represent positive ranks

Var1 Var2 Var3 Var4
[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 0 1 0 0
[4,] 1 1 0 0
[5,] 0 0 1 0
[6,] 1 0 1 0
[7,] 0 1 1 0
[8,] 1 1 1 0
[9,] 0 0 0 1
[10,] 1 0 0 1
[11,] 0 1 0 1
[12,] 1 1 0 1
[13,] 0 0 1 1
[14,] 1 0 1 1
[15,] 0 1 1 1
[16,] 1 1 1 1

> mat <- matrix(rankabsD) # Put rankabsD in matrix form
> mat

[,1]
[1,] 2
[2,] 2
[3,] 2
[4,] 4

After the matrix listing the locations of the positive ranks with 1s and the locations of
negative ranks with 0s is created (signs), matrix multiplication is used to sum the positive
ranks to get the distribution of T +, where mat contains the ranks of the absolute values of
the dis:
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> Tp <- signs%*%mat # (16X4)*(4X1) = 16X1 vector of T+
> Tp <- sort(Tp) # Sort the distribution of T+
> SampDist <- table(Tp)/2^n
> SampDist # Sampling distribution of T+
Tp

0 2 4 6 8 10
0.0625 0.1875 0.2500 0.2500 0.1875 0.0625

Since H1 is an upper one-sided hypothesis, the ℘-value is the sum of the values of the
distribution of T + that are greater than or equal to the value of our test statistic t+. In
this case, the t+ was 8, so the ℘-value is

℘-value = P(T + = 8) + P(T + = 10) = 0.1875 + 0.0625 = 0.25.

> p.value <- sum(Tp>=tp)/2^n # Calculate p-value
> p.value
[1] 0.25

This ℘-value can also be found using the function wilcoxE.test() from the PASWR package.
Note that the function wilcox.test() cannot be used because it cannot compute exact
℘-values when there are ties in the data.

> wilcoxE.test(PH, mu=7.25, alternative="greater")

Wilcoxon Signed Rank Test

data: PH
t+ = 8, p-value = 0.25
alternative hypothesis: true median is greater than 7.25
93.75 percent confidence interval:
7.25 Inf
sample estimates:
(pseudo)median

7.3

The Wilcoxon signed-rank test may also be used for testing whether the median differ-
ence (ψ0) between two dependent populations (X and Y ) is equal to some value, H0 : ψD =
ψ0. For dependent samples, Di = Xi − Yi − ψ0 instead of Di = Xi − ψ0. The computation
of T + for dependent samples follows the same steps as those for a single sample.

10.3.1 Confidence Interval for ψ Based on the Wilcoxon Signed-Rank
Test

Since {X1, X2, . . . , Xn} are random variables from a symmetric distribution with median
ψ, the pairwise averages x̄ij = xi+xj

2 , where 1 ≤ i ≤ j ≤ n, are also symmetrically
distributed about the median ψ. There are a total of n(n + 1)/2 of these x̄ijs, frequently
called the Walsh averages. The n(n + 1)/2 Walsh averages can be split into

(
n
2

)
means,

x̄ij , where i �= j and n means, x̄ii for i = 1, . . . , n. When the Walsh averages are ordered
from smallest to largest, the kth and

(n(n+1)
2 − k + 1

)st order statistics are the lower and
upper endpoints of a confidence interval with a confidence level of at least (1 − α) · 100%,
where k is the largest value such that P(T + < k) ≤ α/2. For a one-sided confidence interval,
k is the largest value such that P(T + < k) ≤ α. Again, k is a positive integer since it is the
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Table 10.7: Summary for testing the median — Wilcoxon signed-rank test

Null Hypothesis — H0 : ψ = ψ0

Test Statistic’s
Value

— t+ = sum of the positive ranked differences

Alternative Hypothesis ℘-Value Formula

H1 : ψ < ψ0 P (T + ≤ t+|H0)

H1 : ψ > ψ0 P (T+ ≥ t+|H0) = 1 − P (T + ≤ t+ − 1|H0)

H1 : ψ �= ψ0 2 × min {P (T+ ≤ t+) , 1 − P (T+ ≤ t+ − 1) , 0.5}

subscript of an order statistic. The exact confidence level is 1− 2P(T + < k) for a two-sided
confidence interval and 1 − P(T+ < k) for a one-sided confidence interval.

When there are no dis (xi−ψ0) that equal zero, as well as no xis that equal zero, testing
H0 : ψ = ψ0 with the procedures described in Section 10.3 yields an equivalent acceptance
region to that produced by the confidence interval based on the Walsh averages. If this is
not the case, the regions are no longer equivalent.

For the dependent case, use the n(n + 1)/2 dependent Walsh averages x − yij =
[
(xi −

yi) + (xj − yj)
]
/2. In this case, di = xi − yi − ψ0. Here the equivalence between the

acceptance region of the hypothesis test and the confidence interval created based on the
Walsh averages exists only when di �= 0 and xi − yi �= 0, i = 1, . . . , n.

Example 10.4 � Wilcoxon Signed-Rank Test: Waiting Times � A statistician
records how long he must wait for his bus each morning. This information is recorded in
Table 10.8 on the following page and in the data frame Wait.

(a) Test to see if his median waiting time is less than 6 minutes.

(b) Compute an upper 95% confidence interval for the median, ψ.

Solution: Before using the Wilcoxon signed-rank test, a quick check on the assumption
of symmetry is made with a boxplot in Figure 10.3 on the next page. Since the boxplot
does appear symmetric, it is legitimate to proceed with a Wilcoxon signed-rank test.

(a) Use the five-step procedure to test if the median waiting time is less than 6 minutes.

Step 1: Hypotheses — The null and alternative hypotheses to test if the median waiting
time is less than 6 minutes are

H0 : ψ = 6 versus H1 : ψ < 6.

Step 2: Test Statistic — The test statistic chosen is T+, where T + is the Wilcoxon
signed-rank statistic. Here, the observed value of T+ is t+ = 28.

Step 3: Rejection Region Calculations — Rejection is based on the ℘-value, so none
are required.
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Table 10.8: Waiting times in minutes (Wait)

xi di = xi − 6 |di| sign(di) rank |di| signed ranks

8.0 2.0 2.0 + 6 6

2.1 −3.9 3.9 − 12 −12

3.8 −2.2 2.2 − 7 −7

8.6 2.6 2.6 + 8 8

7.3 1.3 1.3 + 4 4

6.1 0.1 0.1 + 1 1

1.4 −4.6 4.6 − 13 −13

2.9 −3.1 3.1 − 10 −10

5.5 −0.5 0.5 − 2 −2

2.7 −3.3 3.3 − 11 −11

4.8 −1.2 1.2 − 3 −3

4.6 −1.4 1.4 − 5 −5

1.0 −5.0 5.0 − 14 −14

8.7 2.7 2.7 + 9 9

0.8 −5.2 5.2 − 15 −15

t+ = 28

2 4 6 8

FIGURE 10.3: Horizontal boxplot of bus waiting times in minutes

Step 4: Statistical Conclusion — The ℘-value is P(T + ≤ 28) = 0.03649902, which can
be obtained by typing psignrank(28,15).

Reject H0.

Step 5: English Conclusion — There is sufficient evidence to suggest the median waiting
time is less than 6 minutes.
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S performs this test with the function wilcox.test():

> attach(Wait)
> wilcox.test(wt, mu=6, alternative="less")

Wilcoxon signed rank test

data: wt
V = 28, p-value = 0.0365
alternative hypothesis: true location is less than 6

Note that S denotes the statistic t+ with a V .

(b) To compute an upper 95% confidence interval for ψ, first determine the n(n + 1)/2 =
15(15+ 1)/2 = 120 Walsh averages. To ease the drudgery of 120 calculations of means, use
S:

> n2means <- apply(SRS(wt,2),1, mean) #Computing the n choose 2 means
> WalshAverages <- c(wt, n2means)

Next, find the largest value k such that P(T+ < k) ≤ 0.05. This can be accomplished in
two ways:

(1) Type qsignrank(α, n) into R:

> qsignrank(0.05,15)
[1] 31

(2) Visually inspect psignrank(0:n*(n+1)/2, n) for the largest value k such that P(T + <
k) ≤ α. Note that the first pair (k − 1, P(T+ < k)) of the output shown is (28, 0.036),
and the pair that gives the answer is (30, 0.047), which implies k − 1 = 30 or k = 31.

> psi <- round(psignrank(28:33,15),3)
> names(psi) <- 28:33
> psi

28 29 30 31 32 33
0.036 0.042 0.047 0.053 0.060 0.068

Either (1) or (2) can be used with R while (2) must be used with S-PLUS. Note that if
method (1) is used, that the exact confidence level will be 1 - psignrank(30,15) for an
upper one-sided confidence interval. The 95.27% confidence interval where k = 31 is then(

−∞, x̄(n(n+1)
2 −k+1)

]
=

(
−∞, x̄(90)

]
= (−∞, 5.8].

> SWA <- sort(WalshAverages)
> SWA[90]
[1] 5.8

This may be done directly with the argument conf.int=TRUE in the wilcox.test() func-
tion if one is using R:
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> wilcox.test(wt, mu=6, alternative="less", conf.int=TRUE)

Wilcoxon signed rank test

data: wt
V = 28, p-value = 0.0365
alternative hypothesis: true location is less than 6
95 percent confidence interval:
-Inf 5.8
sample estimates:
(pseudo)median

4.625

The answer can also be computed with the function wilcoxE.test from the PASWR package:

> wilcoxE.test(wt, mu=6, alternative="less")

Wilcoxon Signed Rank Test

data: wt
t+ = 28, p-value = 0.0365
alternative hypothesis: true median is less than 6
95.26978 percent confidence interval:
-Inf 5.8
sample estimates:
(pseudo)median

4.625

10.3.2 Normal Approximation to the Wilcoxon Signed-Rank Test

For moderately sized samples (n > 15), the sampling distribution of T + can be rea-
sonably approximated with the normal distribution that has a mean and standard de-
viation n(n + 1)/4 and

√
n(n + 1)(2n + 1)/24, respectively. That is, T + �∼ N

(
n(n +

1)/4,
√

n(n + 1)(2n + 1)/24
)
. The standardized test statistic under the assumption that

H0 : ψ = ψ0 is true is

Z =
T + − n(n+1)

4√
n(n+1)(2n+1)

24

�∼ N(0, 1). (10.4)

See Figure 10.4 on the facing page for a graph of the Wilcoxon signed-rank distribution
for n = 15 superimposed by a normal distribution with μ = n(n + 1)/4 = 60 and σ =√

n(n + 1)(2n + 1)/24 = 17.61.
The formula for calculating the observed value of the standardized test statistic as well

as the three possible alternative hypotheses and their rejection regions are described in
Table 10.9 on the next page. If there are ties in the |di|s, the variance of T + is reduced to

n(n + 1)(2n + 1)
24

−
∑g

j=1 tj(tj − 1)(tj + 1)
48

(10.5)

where g denotes the number of tied groups of non-zero |di|s and tj is the size of tied group
j. In (10.5), an untied observation is considered to be a tied group of size one. In the event
that no ties exist, g = n and tj = 1 for j = 1, . . . , n, which produces a correction factor of
zero.
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FIGURE 10.4: Graphical representation of the Wilcoxon signed-rank distribution for
n = 15 superimposed by a normal distribution with μ = n(n + 1)/4 = 60 and σ =√

n(n + 1)(2n + 1)/24 = 17.61

Table 10.9: Summary for testing the median — normal approximation to the Wilcoxon
signed-rank test

Null Hypothesis — H0 : ψ = ψ0

Standardized Test
Statistic’s Value

— zobs = t+±0.5−n(n+1)/4√
n(n+1)(2n+1)/24−CF

Correction Factor — CF =
g∑

j=1

tj(tj − 1)(tj + 1)/48

Alternative Hypothesis Rejection Region

H1 : ψ < ψ0 zobs < zα

H1 : ψ > ψ0 zobs > z1−α

H1 : ψ �= ψ0 |zobs| > z1−α/2

Note: The quantity ±0.5 in the numerator of zobs is the continuity

correction. When H1 : ψ < ψ0, the quantity +0.5 is used. When

H1 : ψ > ψ0, the quantity −0.5 is used. When H1 : ψ �= ψ0, use +0.5

if t+ < n(n + 1)/4 and −0.5 if t+ > n(n + 1)/4.

A corresponding two-sided confidence interval for the median based on (10.4) are the
kth and (n(n + 1)/2 − k + 1)st ordered Walsh averages, where

k = 0.5 +
n(n + 1)

4
+ zα/2

√
n(n + 1)(2n + 1)

24
. (10.6)

For a one-sided confidence interval, replace zα/2 with zα. Since k is generally not an
integer, it can be either rounded or truncated. To obtain a conservative estimate, one
should truncate.
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Example 10.5 � Wilcoxon Signed-Rank Test: TV Effects � Gibbons (1997)
provides the following data regarding aggressive behavior in relation to exposure to violent
television programs with the following exposition:

. . . a group of children are matched as well as possible as regards home envi-
ronment, genetic factors, intelligence, parental attitudes, and so forth, in an
effort to minimize factors other than TV that might influence a tendency for
aggressive behavior. In each of the resulting 16 pairs, one child is randomly
selected to view the most violent shows on TV, while the other watches cartoons,
situation comedies, and the like. The children are then subjected to a series of
tests designed to produce an ordinal measure of their aggression factors. (pages
143–144)

The data that were collected are presented in Table 10.10 on the facing page and stored
in data frame Aggression, where xi represents aggression test scores for the children who
watched violent programming (violence) and yi represents aggression test scores for the
children who watched non-violent television programs (noviolence).

(a) Confirm that the distribution is symmetric.

(b) Test whether the median difference for aggression test scores for pairs of children is
greater than zero using a significance level of α = 0.05 with the normal approximation
to the Wilcoxon signed-rank test.

(c) Use the function wilcoxE.test() to report the exact ℘-value and the lower one-sided
confidence interval for the hypothesis in (b).

(d) Construct a lower one-sided confidence interval with confidence level of at least 95%
using the normal approximation to find k.

Solution: The answers are as follows:

(a) Before using the Wilcoxon signed-rank test, a quick check on the assumption of sym-
metry is made with a boxplot in Figure 10.5. Since the boxplot does appear symmetric, it
is legitimate to proceed with a Wilcoxon signed-rank test.

0 5 10 15

FIGURE 10.5: Horizontal boxplot of differences of aggression scores

(b) Use the five-step procedure to test if the median difference for aggression scores for pairs
of children is greater than zero.
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Table 10.10: Aggression test scores (Aggression)

Pair xi yi di = xi − yi |di| sign(di) rank|di| signed ranks

1 35 26 9 9 + 12.5 12.5

2 30 28 2 2 + 4.5 4.5

3 15 16 −1 1 − 1.5 −1.5

4 20 16 4 4 + 8 8

5 25 16 9 9 + 12.5 12.5

6 14 16 −2 2 − 4.5 −4.5

7 37 32 5 5 + 9 9

8 26 24 2 2 + 4.5 4.5

9 36 30 6 6 + 10 10

10 40 33 7 7 + 11 11

11 35 20 15 15 + 16 16

12 20 19 1 1 + 1.5 1.5

13 16 19 −3 3 − 7 −7

14 21 10 11 11 + 15 15

15 17 7 10 10 + 14 14

16 15 17 −2 2 − 4.5 −4.5

t+ = 118.5

Step 1: Hypotheses — The null and alternative hypotheses to test if the median difference
for aggression scores for pairs of children is greater than zero are

H0 : ψD = 0 versus H1 : ψD > 0.

Step 2: Test Statistic — The test statistic chosen is T+, where T + is the Wilcoxon
signed-rank statistic. Here, the observed value of T+ is t+ = 118.5.

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed approximately N(0, 1) and H1 is an upper one-sided hypothesis, the
rejection region is zobs > z1−0.05 = 1.645. Because there are three groups of ties
(g = 3) where the sizes of the tied groups are 2, 4, and 2, the correction factor is

CF =
3∑

j=1

tj(tj − 1)(tj + 1)/48

= [2(2 − 1)(2 + 1) + 4(4 − 1)(4 + 1) + 2(2 − 1)(2 + 1)] /48
= [6 + 60 + 6]/48
= 72/48 = 3/2
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The value of the standardized test statistic is

zobs =
t+ ± 0.5 − n(n + 1)/4√

n(n + 1)(2n + 1)/24 − CF

=
118.5 − 0.5 − 16(16 + 1)/4√

16(16 + 1)(2(16) + 1)/24 − 3/2

= 2.591

Step 4: Statistical Conclusion — The ℘-value is P(Z ≥ 2.591) = 0.0048

I. From the rejection region, reject H0 because zobs = 2.591 is more than 1.645.

II. From the ℘-value, reject H0 because the ℘-value = 0.0048 is less than 0.05.

Reject H0.

Step 5: English Conclusion — There is sufficient evidence to suggest that children who
view violent television programs have higher aggression test scores than children
who view non-violent television programs.

S commands to compute the test follow. Note that S automatically uses a normal approx-
imation to the distribution of T + when there are ties in the |di|s as well as a correction
factor for the variance of T +.

> attach(Aggression)
> wilcox.test(violence, noviolence, paired=TRUE, alternative="greater")

Wilcoxon signed rank test with continuity correction

data: violence and noviolence
V = 118.5, p-value = 0.00479
alternative hypothesis: true location shift is greater than 0

Warning message:
In wilcox.test.default(violence, noviolence, paired = TRUE,
alternative = "greater") : cannot compute exact p-value with ties

(c) From the output of wilcoxE.exact(), the ℘-value is 0.003265 and the lower 95.21%
confidence interval is [2,∞):

> wilcoxE.test(violence, noviolence, paired=TRUE, alternative="greater")

Wilcoxon Signed Rank Test (Dependent Samples)

data: violence and noviolence
t+ = 118.5, p-value = 0.003265
alternative hypothesis: true median difference is greater than 0
95.20569 percent confidence interval:

2 Inf
sample estimates:
(pseudo)median

4.5
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(d) The paired differences are stored in PD and the sorted Walsh averages are in SWA. Using
(10.6), k is calculated to be 36, and the kth Walsh average is determined to be 2. Therefore,
the 95% confidence interval for ψD is [2,∞).

> PD <- violence-noviolence
> n2means <- apply(SRS(PD,2),1, mean) # Computing the n choose 2 means
> SWA <- sort(c(PD, n2means)) # Sorted Walsh averages
> n <- length(PD)
> k <- 0.5 + n*(n+1)/4 + qnorm(.05)*sqrt(n*(n+1)*(2*n+1)/24)
> k <- floor(k)
> k
[1] 36
> SWA[k] # Walsh average k
[1] 2

Another way to achieve the same result is with the function outer(), which applies the
third argument ("+") to the first two vectors in an element-wise manner to create an array,
and !lower.tri, which returns the values of the upper triangular matrix containing double
the Walsh averages. Finally, the upper triangular matrix is divided by two, and then sorted
to calculate the values for the sorted Walsh averages.

> ADD <- outer(PD, PD, "+")
> SWA2 <- sort(ADD[!lower.tri(ADD)])/2
> SWA2[k] # Walsh average k
[1] 2

10.4 The Wilcoxon Rank-Sum or the Mann-Whitney U-Test

The Wilcoxon rank-sum test is due to Wilcoxon (1945). Its widespread use is due
in large part to Mann and Whitney, who proposed another test, the Mann-Whitney
U -test, which is equivalent to the Wilcoxon rank-sum test. However, be aware that many
combinations of names with either some or all of Mann, Whitney, and Wilcoxon are all
typically referring to some variation of the same test. The two-sample Wilcoxon rank-
sum test assumes that data come from two independent random samples X1, X2, . . . , Xn

and Y1, Y2, . . . , Ym of sizes n and m, respectively, where the underlying distributions of
X1, X2, . . . , Xn and Y1, Y2, . . . , Ym have the same shape. Note that the assumption of
identical underlying shapes implies that the variances are also equal. No further assumptions
other than continuous data, which is at least on an ordinal scale, are made with the
two-sample Wilcoxon rank-sum test. Because the underlying distributions of X and Y
are assumed to be identical in the null hypothesis, this test can apply to means, medians,
or any other quantile.

If two random samples of size n and m are drawn from two identical populations,
all N = n + m observations can be regarded as a single sample from some common
population. Further, if the N observations are ordered in a single sequence according
to relative magnitude, one expects the Xs and Y s to be well mixed in the ordered sequence
that represents the sample data. That is, an arrangement of the data where most of the
Xs are smaller than the Y s, or vice versa, would suggest two distinct populations and not
one common population. The Wilcoxon rank-sum statistic, W , is computed by
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1. Forming a single sample of all n + m observations.

2. Assigning ranks to the combined sample.

3. Summing the X ranks in the combined sample.

Provided the null hypothesis of identical populations is true, typically denoted H0 :
FX(x) = FY (x) for all x, all

(
N
n

)
assignments of the X ranks are equally likely, each having

probability 1/
(
N
n

)
. Consequently, W values that are either too small or too large will cause

the null hypothesis to be rejected. W takes on integer values ranging from n(n + 1)/2
to n(2N − n + 1)/2 when no ties are present in the ranks. The sampling distribution of
W , known as the Wilcoxon rank-sum distribution, is symmetric about its mean value
n(N + 1)/2 and has a variance of nm(N + 1)/12.

Due to the discrete nature of W , it is generally not possible to define a rejection region
that results in a test whose size is exactly equal to the prescribed α. Consequently, the
approach presented for this test relies on ℘-values rather than on defining rejection regions
for the statistical conclusion. The three possible alternative hypotheses and their associated
℘-value calculation formulas are presented in Table 10.11.

Table 10.11: Summary for testing equality of medians — Wilcoxon rank-sum test

Null Hypothesis — H0 : ψX − ψY = δ0

Test Statistic’s Value — w = sum of the ranked xs in the combined sample

Alternative Hypothesis ℘-Value Formula

H1 : ψX − ψY = δ0 P (W ≤ w|H0)

H1 : ψX − ψY > δ0 P (W ≥ w|H0) = 1 − P (W ≤ w − 1|H0)

H1 : ψX − ψY �= δ0 2 × min {P (W ≤ w) , 1 − P (W ≤ w − 1) , 0.5}

A closely related statistic to W proposed by Mann and Whitney, typically denoted by
U , is defined as the total number of times the pair (xi, yj) contains an x value greater
than the y value for all (i, j). The relationship between W and U can be expressed as
U = W − n(n + 1)/2, and generalized to include tied ranks by assigning 1/2 to all ties.

The ℘-value formulas given in Table 10.11 can be used to calculate exact ℘-values with
S’s pwilcox() function when there are no ties among the ranks. However, care needs to
be taken as R and S-PLUS use different definitions for the Wilcoxon rank-sum distribution.
The S-PLUS definition of the Wilcoxon rank-sum distribution corresponds to the distribu-
tion of W , while the R definition of the Wilcoxon rank-sum distribution corresponds to
the distribution of U . In the presence of ties, the S-PLUS function wilcox.test() uses
Table 10.13 on page 431 with a correction factor, while the R function wilcox.test() uses
Table 10.14 on page 431 with the same correction factor. The formulas in Table 10.11 are
still valid when there are ties in the ranks; however, the exact conditional distribution of
W when ties are present is not readily available in S. Example 10.7 on page 426 shows
how S can be used to compute the exact ℘-value for the conditional distribution of W (the
distribution of W with ties in the ranks).
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Table 10.12: Summary for testing equality of medians — Mann-Whitney U -test

Null Hypothesis — H0 : ψX − ψY = δ0

Test Statistic’s Value — u = number of times x precedes y
in the pairs (xi, yj) for all (i, j)

Alternative Hypothesis ℘-Value Formula

H1 : ψX − ψY = δ0 P (U ≤ u|H0)

H1 : ψX − ψY > δ0 P (U ≥ u|H0) = 1 − P (U ≤ u − 1|H0)

H1 : ψX − ψY �= δ0 2 × min {P (U ≤ u) , 1 − P (U ≤ u − 1) , 0.5}

Example 10.6 �W and U Sampling Distributions� Assume the values x = {2, 5}
and y = {9, 12, 14} are two independent random samples from independent distributions
that are assumed to be equal in shape. Enumerate the sampling distributions of W and U .

Solution: Start by reading the values of x and y into vectors labeled x and y, respectively:

> x <- c(2,5)
> y <- c(9,12,14)
> n <- length(x)
> m <- length(y)
> N <- n + m
> r <- rank(c(x, y))
> u <- sum(r[seq(along = x)])- n*(n + 1)/2 # observed u value
> w <- sum(r[seq(along = x)]) # observed w value
> val <- SRS(r, n) # possible rankings for X
> W <- apply(val,1, sum) # W values
> U <- W - n*(n + 1)/2 # U values
> display <- cbind(val, W, U) # X rankings with W and U
> display

W U
[1,] 1 2 3 0
[2,] 1 3 4 1
[3,] 2 3 5 2
[4,] 1 4 5 2
[5,] 2 4 6 3
[6,] 3 4 7 4
[7,] 1 5 6 3
[8,] 2 5 7 4
[9,] 3 5 8 5
[10,] 4 5 9 6

Note that the values of W are between n(n+1)/2 = 2(2+1)/2 = 3 and n(2N −n+1)/2 =
2[(2)(5) − 2 + 1]/2 = 9.
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> table(W)/choose(5,2) # Sampling distribution of W
W
3 4 5 6 7 8 9

0.1 0.1 0.2 0.2 0.2 0.1 0.1

> dwilcox(3:9,2,3) # Produces distribution of W in S-PLUS
[1] 0.1 0.1 0.2 0.2 0.2 0.1 0.1

Note that the values of U are between 0 and n · m = 6.

> table(U)/choose(5,2) # Sampling distribution of U
U
0 1 2 3 4 5 6

0.1 0.1 0.2 0.2 0.2 0.1 0.1

> dwilcox(0:6,2,3) # Produces distribution of U in R
[1] 0.1 0.1 0.2 0.2 0.2 0.1 0.1

Example 10.7 �Wilcoxon Rank-Sum ℘-Value: Pool pH� Lifeguards are told to
maintain the pH of a 50 m pool at 7.25. The pool manager takes pH measurements at each
of the four corners of the pool before the pool opens on two consecutive days. Calculate the
℘-value for testing the hypothesis that the difference in median pH readings is zero using
the exact conditional distribution of W . (The same underlying distribution assumption can
be verified graphically.) The pH readings are Day 1 (x): {7.2, 7.2, 7.3, 7.3} and Day 2 (y):
{7.3, 7.3, 7.4, 7.4}.
Solution: Use S to calculate the ℘-values:

> x <- c(7.2,7.2,7.3,7.3)
> y <- c(7.3,7.3,7.4,7.4)
> n <- length(x)
> m <- length(y)
> N <- n + m
> r <- rank(c(x, y))
> w <- sum(r[seq(along = x)]) # observed w value
> w
[1] 12
> val <- SRS(r, n) # possible rankings
> W <- apply(SRS(r, n),1, sum) # W values

> table(W)/choose(8,4)
W

12 15 18 21 24
0.08571429 0.22857143 0.37142857 0.22857143 0.08571429

Since H1 is a two-sided hypothesis, the ℘-value is

2 × min{P(W ≤ w), 1 − P(W ≤ w − 1), 0.5}.

In this case, w was 12, so P(W ≤ 12) = 0.0857 and 1 − P(W ≤ 11) = 1. It follows that the
℘-value is 2 × 0.0857 = 0.1714.

> p.value <- 2*(sum(W <= w)/choose(N, n))
> p.value
[1] 0.1714286
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The output from the wilcoxE.test() function is

> wilcoxE.test(x, y)

Wilcoxon Rank Sum Test

data: x and y
w = 12, p-value = 0.1714
alternative hypothesis: true median is not equal to 0
82.85714 percent confidence interval:
-0.2 0.0
sample estimates:
difference in location

-0.1

10.4.1 Confidence Interval Based on the Mann-Whitney U-Test

A confidence interval with a confidence level of at least (1 − α) · 100% for the shift
Δ from population X , from which a sample xi, i = 1, . . . , n is taken, to population Y ,
from which a sample yj , j = 1, . . . , m is taken, can be constructed by using the kth and
(nm − k + 1)st order statistics from the nm differences xi − yj where k is the largest value
such that P(U < k) ≤ α/2. For a one-sided confidence interval, k is the largest value such
that P(U < k) ≤ α. The exact confidence level is given by 1− 2×P(U < k) for a two-sided
confidence interval and 1 − P(U < k) for a one-sided confidence interval. Clearly, k must
be a positive integer since it is the subscript of an order statistic.

Example 10.8 �Confidence Interval for Difference in Medians � Eight spring
piglets are randomly assigned to two different groups and are fed two different diets (A
and B). After four weeks, the weight gains in pounds for the piglets eating each diet
are recorded. Find a 90% confidence interval for the median difference in weight gains
for the piglets eating each diet. Be sure to verify the assumption of identical underlying
distributions except for a shift that is required for constructing the confidence interval.

A: 1.2 1.5 2.3 4.3

B: 4.5 5.7 6.1 8.6

Solution: To verify that the distributions of the piglet weights follow the same distribution
other than a shift, side-by-side boxplots as well as comparative dotplots (due to the small
sample size) are constructed. The S code that follows can be used to produce graphs similar
to those shown in Figure 10.6 on the next page. Based on the graphs in Figure 10.6, it
seems reasonable to assume that the underlying distributions are similar in shape.

> library(lattice) # Use to get "Trellis" graphs in R
> A <- c(1.2, 1.5, 2.3, 4.3)
> B <- c(4.5, 5.7, 6.1, 8.6)
> n <- length(A)
> m <- length(B)
> r <- c(A, B)
> f <- factor(c(rep("A", n), rep("B", m)))
> graph1 <- bwplot(f~r, xlab="", ylab="Diets", main="Weight Gain")
> graph2 <- dotplot(f~r, xlab="", ylab="Diets", main="Weight Gain")
> print(graph1, split=c(1,1,2,1), more=TRUE)
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> print(graph2, split=c(2,1,2,1), more=FALSE)
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FIGURE 10.6: Side-by-side boxplots as well as comparative dotplots for pig weights for
diets A and B

To find the largest k such that P(U < k) ≤ α/2, use the command pwilcox(). Since R and
S-PLUS use different definitions for pwilcox, pay close attention to the code that follows and
recall the relationship U = W − n(n + 1)/2.

> pwilcox(1:(n*m), n, m) # R only
> pwilcox( (1+n*(n+1)/2):(n*m+n*(n+1)/2), n, m) # S-PLUS only
[1] 0.02857143 0.05714286 0.10000000 0.17142857 0.24285714
[6] 0.34285714 0.44285714 0.55714286 0.65714286 0.75714286
[11] 0.82857143 0.90000000 0.94285714 0.97142857 0.98571429
[16] 1.00000000

By visual inspection, one realizes the largest value k such that P(U < k) ≤ 0.05 is k =
2. That is, the pair (2, 0.05714286) implies a confidence level of 1 − (2)(0.02857143) =
0.9428571. As an alternative to visual inspection, the appropriate value of k can be found
as

> pwil <- pwilcox(1:(n*m), n, m) # For R
> which(pwil >= 0.05)[1]
[1] 2

Next, the nm differences are generated using the S command outer() and the kth and
(nm−k+1)st order statistics from the nm differences are identified. Consequently, a 94.28%
confidence interval for the difference in medians is CI 0.9428(ψA − ψB) = [−7.1,−1.4].

> k <- 2
> diffs <- matrix(sort(outer(A, B,"-")), byrow=FALSE, nrow=4)
> diffs

[,1] [,2] [,3] [,4]
[1,] -7.4 -4.6 -3.8 -2.2
[2,] -7.1 -4.5 -3.4 -1.8
[3,] -6.3 -4.3 -3.3 -1.4
[4,] -4.9 -4.2 -3.0 -0.2
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> CL <- 1-2*pwilcox((k-1), n, m)
> CL
[1] 0.9428571
> CI <- c(diffs[k], diffs[n*m-k+1])
> CI
[1] -7.1 -1.4

This can be done directly with the argument conf.int=TRUE in the wilcox.test() function
if one is using R:

> wilcox.test(A, B, conf.int=TRUE, conf.level=.90) # conf.int=TRUE: only R

Wilcoxon rank sum test

data: A and B
W = 0, p-value = 0.02857
alternative hypothesis: true location shift is not equal to 0
90 percent confidence interval:
-7.1 -1.4
sample estimates:
difference in location

-4

Recall that the achieved confidence level is actually 94.28%. The achieved confidence level
is reflected in the output for the function wilcoxE.test(). Also note that the statistic w
in wilcoxE.test() is the observed Wilcoxon rank-sum statistic not the Mann-Whitney U
statistic reported by R’s wilcox.test(). The S-PLUS function wilcox.test() displays a
U statistic that is the Wilcoxon rank-sum statistic.

> wilcoxE.test(A, B)

Wilcoxon Rank Sum Test

data: A and B
w = 10, p-value = 0.02857
alternative hypothesis: true median is not equal to 0
94.28571 percent confidence interval:
-7.1 -1.4
sample estimates:
difference in location

-4

10.4.2 Normal Approximation to the Wilcoxon Rank-Sum and Mann-
Whitney U-Tests

For moderately sized samples (n ≥ 10 and m ≥ 10), the sampling distribution of W
can be reasonably approximated with the normal distribution that has mean and stan-
dard deviation n(N + 1)/2 and

√
nm(N + 1)/12, respectively. That is, W

�∼ N
(
n(N +

1)/2,
√

nm(N + 1)/12
)
. The standardized test statistic under the assumption that H0 :

ψX − ψY = δ0 is true is

Z =
W − n(N+1)

2 − δ0√
nm(N+1)

12

�∼ N(0, 1). (10.7)
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See Figure 10.7 for a graph of the Wilcoxon rank-sum distribution for n = m = 10 super-
imposed by a normal distribution with μ = n(N + 1)/2 = 105 and σ =

√
nm(N + 1)/12 =

13.22876.
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FIGURE 10.7: Graphical representation of the Wilcoxon rank-sum distribution for n =
m = 10 superimposed by a normal distribution with μ = n(N + 1)/2 = 105 and σ =√

nm(N + 1)/12 = 13.22876

The formula for calculating the observed value of the standardized test statistic as well
as the three possible alternative hypotheses and their rejection regions are described in
Table 10.13 on the next page. If there are tied ranks, the variance of W is reduced to

nm(N + 1)
12

− nm

12N(N − 1)

g∑
j=1

tj(tj − 1)(tj + 1) (10.8)

where g denotes the number of tied groups and tj is the size of tied group j. In (10.8), an
untied observation is considered to be a tied group of size one. In the event that no ties
exist, g = N and tj = 1 for j = 1, . . . , N , which produces a correction factor of zero.

The sampling distribution of U can likewise be reasonably approximated with a normal
distribution that has a mean of nm/2 and a standard deviation of

√
nm(N + 1)/12. The

standardized test statistic under the assumption that H0 : ψX − ψY = δ0 is true is

Z =
U − nm

2 − δ0√
nm(N+1)

12

�∼ N(0, 1). (10.9)

The formula for calculating the observed value of the standardized test statistic as well
as the three possible alternative hypotheses and their rejection regions are described in
Table 10.14 on the facing page.

A corresponding two-sided confidence interval for the shift in distribution based on (10.9)
are the kth and (nm − k + 1)st ordered differences, where

k = 0.5 +
nm

2
+ zα/2

√
nm(N + 1)

12
. (10.10)

For a one-sided confidence interval, replace zα/2 with zα. Since k is generally not an
integer, it can be either rounded or truncated. To obtain a conservative estimate, one
should truncate.
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Table 10.13: Summary for testing the difference in two medians — normal approximation
to the Wilcoxon rank-sum test

Null Hypothesis — H0 : ψX − ψY = δ0

Standardized Test
Statistic’s Value

— zobs = w±0.5−n(N+1)/2−δ0√
nm(N+1)/12−CF

Correction Factor — CF = nm
12N(N−1)

g∑
j=1

tj(tj − 1)(tj + 1)

Alternative Hypothesis Rejection Region

H1 : ψX − ψY < δ0 zobs < zα

H1 : ψX − ψY > δ0 zobs > z1−α

H1 : ψx − ψY �= δ0 |zobs| > z1−α/2

Note: The quantity ±0.5 in the numerator of zobs is the continuity

correction. When H1 : ψX − ψY < δ0, the quantity +0.5 is used. When

H1 : ψX − ψY > δ0, the quantity −0.5 is used. When H1 : ψx − ψY �= δ0,

use +0.5 if w < n(N + 1)/2 and −0.5 if w > n(N + 1)/2.

Table 10.14: Summary for testing the difference in two medians — normal approximation
to the Mann-Whitney U -Test

Null Hypothesis — H0 : ψX − ψY = δ0

Standardized Test
Statistic’s Value

— zobs = u±0.5−nm/2−δ0√
nm(N+1)/12−CF

Correction Factor — CF = nm
12N(N−1)

g∑
j=1

tj(tj − 1)(tj + 1)

Alternative Hypothesis Rejection Region

H1 : ψX − ψY < δ0 zobs < zα

H1 : ψX − ψY > δ0 zobs > z1−α

H1 : ψx − ψY �= δ0 |zobs| > z1−α/2

Note: The quantity ±0.5 in the numerator of zobs is the continuity

correction. When H1 : ψX − ψY < δ0, the quantity +0.5 is used. When

H1 : ψX − ψY > δ0, the quantity −0.5 is used. When H1 : ψx − ψY �= δ0,

use +0.5 if u < nm/2 and −0.5 if u > nm/2.
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Example 10.9 � Wilcoxon Rank-Sum Test: Swim Times � Thirty-two division
I swimmers from the same swim team agree to participate in a year-long study to determine
whether high (30%) fat diets produce greater improvements in swim times than the standard
low (10%) fat diets. Times for the 32 swimmers for the 200 yard individual medley were
taken right after the swimmers’ conference meet. The swimmers were randomly assigned
to follow one of the diets. The group on diet 1 followed a low-fat diet the entire year but
lost two swimmers along the way. The group on diet 2 followed the high fat diet the entire
year and also lost two swimmers. Times for the 200 yard individual medley were taken
one year later for the remaining 28 swimmers. The swimmers’ improvements in seconds
for both diets are presented in Table 10.15 on the next page and stored in data frame
Swimtimes, where xi represents the time improvement in seconds for swimmers on high fat
diet (highfat) and yi represents the time improvement in seconds for swimmers on low-fat
diet (lowfat).

(a) Verify that the time improvement distributions are similar in shape.

(b) Test whether the median difference for improvements in swim times is different from zero
using a significance level of α = 0.10 with the normal approximation to the Wilcoxon
rank-sum test and the normal approximation to the Mann-Whitney U -test.

(c) Use the function wilcox test() from the coin package, which can be downloaded
from your nearest CRAN mirror at http://cran.r-project.org/mirrors.html to report
the exact ℘-value and the 90% confidence interval for the hypothesis in (b). According
to the documentation, this function computes exact conditional (on the data) ℘-values
and quantiles using the shift-algorithm by Streitberg and Röhmel for both tied and
untied samples.

(d) Construct a confidence interval with confidence level of at least 90% using the normal
approximation to find k.

Solution: The answers are as follows:

(a) To use the Wilcoxon rank-sum test, the time improvement distributions must be similar
in shape. A comparative boxplot of time improvements for low-fat and high fat diets is found
in Figure 10.8 on the facing page. Since the comparative boxplot does appear to show the
same underlying distribution for time improvements for swimmers eating both diets, it is
legitimate to proceed with a Wilcoxon rank-sum test or the Mann-Whitney U -test.

(b) Use the five-step procedure to test if the median difference for improvements in swim
times for high and low-fat diets is different from zero.

Step 1: Hypotheses — The null and alternative hypotheses to test if the median difference
for improvements in swim times for high and low-fat diets is different from zero are

H0 : ψX − ψY = 0 versus H1 : ψX − ψY �= 0.

Step 2: Test Statistic —
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Wilcoxon Rank-Sum Test
The test statistic chosen is W , where
the observed value is

w = 248.

Mann-Whitney Test
The test statistic chosen is U , where
the observed value is

u = w − n(n + 1)/2
= 248 − 14(15)/2 = 143.

Table 10.15: Sorted improvements in swim times in seconds for high (x) and low (y) fat
diets, where rank refers to the rank of the data point in the combined sample of x and y
data points (Swimtimes)

yi rank(yi) xi rank(xi)

Tied Rank 0.18 8.5 0.18 8.5

−0.79 2.0 0.38 10.0

−0.49 3.0 0.56 11.0

−0.37 4.0 0.65 12.0

−0.20 5.0 0.84 13.0

−0.15 6.0 1.58 20.0

0.02 7.0 0.89 16.0

−0.87 1.0 1.18 18.0

Tied Rank 0.87 14.5 0.87 14.5

0.98 17.0 2.03 22.0

1.42 19.0 3.53 27.0

1.71 21.0 4.33 28.0

3.52 26.0

Tied Ranks 2.66 24.0 2.66 24.0

2.66 24.0

w = 248
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FIGURE 10.8: Comparative boxplot for improvements in swim times for high and low-fat
diets



434 Probability and Statistics with R

Step 3: Rejection Region Calculations —Because both standardized test statistics are
distributed approximately N(0, 1) and H1 is a two-sided hypothesis, the rejection
region is |zobs| > z1−0.10/2 = 1.645.

Because there are three groups of ties (g = 3), where the sizes of the tied groups
are 2, 2, and 3, the correction factor is

CF =
nm

12N(N − 1)

3∑
j=1

tj(tj − 1)(tj + 1)

=
(14)(14)

12(28)(28 − 1)
×

[
2(2 − 1)(2 + 1)

+ 2(2 − 1)(2 + 1) + 3(3 − 1)(3 + 1)
]

=
7

324
[6 + 6 + 24]

= 7/9

Wilcoxon Rank-Sum Test
The value of the standardized test
statistic is

zobs =
w ± 0.5 − n(N + 1)/2 − δ0√

nm(N + 1)/12− CF

=
248 − 0.5 − 14(28 + 1)/2 − 0√

(14)(14)(28 + 1)/12− 7/9

= 2.046353

Mann-Whitney Test
The value of the standardized test
statistic is

zobs =
u ± 0.5 − nm/2 − δ0√
nm(N + 1)/12 − CF

=
143 − 0.5 − (14)(14)/2 − 0√
(14)(14)(28 + 1)/12 − 7/9

= 2.046353

Step 4: Statistical Conclusion — The ℘-value is 2P(Z ≥ 2.046353) = 0.04072.

I. From the rejection region, reject H0 because zobs = 2.046353 is more than
1.645.

II. From the ℘-value, reject H0 because the ℘-value = 0.04072 is less than 0.10.

Reject H0.

Step 5: English Conclusion — There is sufficient evidence to suggest that the median
time improvements are different for swimmers eating high fat and low-fat diets.

The ℘-value can be computed with the S command wilcox.test(highfat, lowfat).
In the presence of ties, the S function wilcox.test() automatically uses the normal
approximation to the distribution of U (R) and W (S-PLUS), as well as applying a correction
factor for the variances of U and W and an appropriate continuity correction factor to
agree with the formula for the standardized test statistic given in Tables 10.13 and 10.14
on page 431. Output for both R and S-PLUS is provided. R does not report the value of
the standardized test statistic but does use the value of the standardized test statistic to
compute the ℘-value. S-PLUS does report the value of the standardized test statistic (see
the output that follows). The ℘-value from the output is 0.04072, the exact value found for
a zobs value of 2.046353 in step 4.
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Output for R:

> attach(Swimtimes)
> wilcox.test(highfat, lowfat)

Wilcoxon rank sum test with continuity correction

data: highfat and lowfat
W = 143, p-value = 0.04072
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(highfat, lowfat) :
cannot compute exact p-value with ties

Output for S-PLUS:

> wilcox.test(highfat, lowfat)
Warning messages:
cannot compute exact p-value with ties in:
wil.rank.sum(x, y, alternative, exact, correct)

Wilcoxon rank-sum test

data: highfat and lowfat
rank-sum normal statistic with correction Z = 2.0464, p-value = 0.0407
alternative hypothesis: mu is not equal to 0

(c) From the output of wilcox test(), the ℘-value is 0.03818 and the 90% confidence
interval for the difference in medians is CI 0.90(ψX − ψY ) = [0.31, 1.68].

> library(coin) # needed for wilcox_test()
> GR <- factor(c(rep("lowfat",14), rep("highfat",14)))
> wilcox_test(c(lowfat, highfat)~GR, distribution="exact",
+ conf.int=TRUE, conf.level=.90) # Only R

Exact Wilcoxon Mann-Whitney Rank Sum Test

data: c(lowfat, highfat) by GR (highfat, lowfat)
Z = 2.0693, p-value = 0.03818
alternative hypothesis: true mu is not equal to 0
90 percent confidence interval:
0.31 1.68
sample estimates:
difference in location

1.02

Note that the reported standardized test statistic computed with wilcox test() does not
use a continuity correction.

(d) The xi − yj differences are stored in diffs. Using (10.10) on page 430, k is calculated
to be 62. The kth difference is determined to be 0.31 and the nm−k+1st difference is 1.68.
Therefore, the 90% confidence interval, CI 0.90(ψX − ψY ), is [0.31, 1.68].
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> n <- length(highfat)
> m <- length(lowfat)
> N <- n + m
> diffs <-sort(outer(highfat, lowfat,"-"))
> k <- 0.5 + n*m/2 + qnorm(.05)*sqrt(n*m*(N+1)/12) # k for 90% CI
> k <- floor(k)
> k
[1] 62
> CI <- c(diffs[k], diffs[n*m-k+1]) #90% CI
> CI
[1] 0.31 1.68

10.5 The Kruskal-Wallis Test

The Kruskal-Wallis test is an extension of the Wilcoxon rank-sum/Mann-Whitney U -test
for two independent samples (covered in Section 10.4) to the situation with a mutually
independent samples. As with most statistical procedures, independence is preserved by
using random samples. The design structure of this problem is often called a completely
randomized design. The null hypothesis is that the a populations are identical. Like the
Wilcoxon rank-sum/Mann-Whitney U -test, the only assumption the Kruskal-Wallis test
requires is that the a populations be continuous. The null and alternative hypotheses are
written

H0 : F1(x) = F2(x) = · · · = Fa(x) for all x versus
H1 : Fi(x) �= Fj(x) for at least one pair (i, j) and some x.

(10.11)

Because the underlying distributions of the a populations are assumed to be identical in
the null hypothesis, this test can apply to means, medians, or any other quantile and the
null and alternative hypotheses are often expressed in terms of the population medians as

H0 : ψ1 = ψ2 = · · · = ψa versus H1 : ψi �= ψj for at least one pair (i, j) (10.12)

To test the null hypothesis, all n1, n2, . . . , na observations are pooled into a single column
and ranked from 1 to N =

∑a
i=1 ni. The standardized test statistic that both R and S-PLUS

use with the Kruskal-Wallis test via the function kruskal.test() is

H =
12

∑a
i=1 ni

(
R i − R•

)2

N(N + 1)
(10.13)

where ni is the number of observations in the ith treatment/group, R i is the average of
the ranks in the ith treatment/group, and R• is the average of all of the ranks. When ties
are present, an adjusted standardized test statistic denoted as H ′ is also calculated and
reported. The adjusted statistic H ′ is defined as

H ′ =
H

fc
=

H

1 −
∑r

j=1

(
t3j − tj

)
N3 − N

(10.14)

where tj is the number of times a given rank was tied in the combined sample of size N and
r is the number of ranks in the combined sample of size N that were tied. Provided each
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ni ≥ 5, the sampling distributions of Hobs and H ′ are both approximately chi-square random
variables with a − 1 degrees of freedom (χ2

a−1). More specifically, when H0 is true, the
statistic H has, as min(n1, . . . , na) tends to infinity, an asymptotic χ2

a−1 distribution. The
arguments for kruskal.test() differ for R and S-PLUS, yet the test statistic is computed
according to (10.13) and (10.14) when ties are present in the data.

Example 10.10 �Kruskal-Wallis Test: Free Throws� An elementary school gym
teacher is interested in evaluating the effectiveness of four free throw teaching techniques.
The gym teacher randomly assigns the 80 students to one of four groups with 20 students
per group. After two months, every member of the groups shoots 10 free throws, and the
gym teacher records the results. The number of successful free throws each student shoots
in each of the four groups is presented in Table 10.16. Use the free throw results to decide
if differences exist among teaching methods at the α = 0.05 level.

Table 10.16: Number of successful free throws
Method Data
Method1 6 1 2 0 0 1 1 3 1 2 1 2 4 2 1 1 1 3 7 1
Method2 3 2 1 2 1 6 2 1 1 2 1 1 2 3 2 2 3 2 5 2
Method3 2 1 2 3 2 2 4 3 2 3 2 5 1 1 3 7 6 2 2 2
Method4 2 1 1 3 1 2 1 6 1 1 0 1 1 1 1 2 2 1 5 4

Solution: The five-step procedure is used and explained to determine if differences exist
among teaching methods. Before proceeding, first examine side-by-side boxplots for free
throws made grouped by teaching method. Based on the boxplots and the density plots in
Figure 10.9, it seems reasonable to assume that all a populations are similar in shape.
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FIGURE 10.9: Boxplots and density plots of free throw teaching results
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> library(lattice) # Only for R
> Method1 <- c(6,1,2,0,0,1,1,3,1,2,1,2,4,2,1,1,1,3,7,1)
> Method2 <- c(3,2,1,2,1,6,2,1,1,2,1,1,2,3,2,2,3,2,5,2)
> Method3 <- c(2,1,2,3,2,2,4,3,2,3,2,5,1,1,3,7,6,2,2,2)
> Method4 <- c(2,1,1,3,1,2,1,6,1,1,0,1,1,1,1,2,2,1,5,4)
> n1 <- length(Method1); n2 <- length(Method2)
> n3 <- length(Method3); n4 <- length(Method4)
> NumberFT <- c(Method1, Method2, Method3, Method4)
> g <- as.factor(c(rep("Method1", n1), rep("Method2", n2),
+ rep("Method3", n3), rep("Method4", n4))) # Methods
> # Equivalently, g could be created using
> g <- factor(rep(c("Method1","Method2","Method3","Method4"), rep(20,4)))
> A <- bwplot(g~NumberFT, xlab="Free Throws", xlim=c(-1,9))
> B <- densityplot(~NumberFT|g, layout=c(1,4),
+ xlab="Free Throws", xlim=c(-1,9))
> print(A, split=c(1,1,2,1), more=TRUE)
> print(B, split=c(2,1,2,1), more=FALSE)

Step 1: Hypotheses — The hypotheses to test equality of the Fi for i = 1, . . . , a distri-
butions are H0 : F1(x) = F2(x) = F3(x) = F4(x) for all x versus H1 : Fi(x) �=
Fj(x) for at least one pair (i, j) and some x

Step 2: Test Statistic — The test statistic Ri is used to evaluate the null hypothesis.
Under the assumption that H0 is true, the standardized test statistic

H =
12

∑a
i=1 ni

(
R i − R•

)2

N (N + 1)
�∼ χ2

a−1

Step 3: Rejection Region Calculations — The rejection region is Hobs > χ2
.95;3 = 7.815.

The number of free throws completed in each of the methods is combined into a
single population and ranked among the 80 observations. Table 10.17 on the next
page shows the actual free throws with their ranks among the 80 observations. The
value of Hobs is calculated as

Hobs =
12

∑a
i=1 ni

(
R i − R•

)2

N (N + 1)

=
12

(80 × 81)
×

{(
20 × (35.05 − 40.50)

)2
+

(
20 × (42.875− 40.50)

)2
+(

20 × (50.825− 40.50)
)2 +

(
20 × (33.250 − 40.50)

)2

}
= 7.20412
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Table 10.17: Actual free throws with ranks among all free throws
Meth1 RankM1 Meth2 RankM2 Meth3 RankM3 Meth4 RankM4 Total

6 76.5 3 63.5 2 45.5 2 45.5
1 18.0 2 45.5 1 18.0 1 18.0
2 45.5 1 18.0 2 45.5 1 18.0
0 2.0 2 45.5 3 63.5 3 63.5
0 2.0 1 18.0 2 45.5 1 18.0
1 18.0 6 76.5 2 45.5 2 45.5
1 18.0 2 45.5 4 70.0 1 18.0
3 63.5 1 18.0 3 63.5 6 76.5
1 18.0 1 18.0 2 45.5 1 18.0
2 45.5 2 45.5 3 63.5 1 18.0
1 18.0 1 18.0 2 45.5 0 2.0
2 45.5 1 18.0 5 73.0 1 18.0
4 70.0 2 45.5 1 18.0 1 18.0
2 45.5 3 63.5 1 18.0 1 18.0
1 18.0 2 45.5 3 63.5 1 18.0
1 18.0 2 45.5 7 79.5 2 45.5
1 18.0 3 63.5 6 76.5 2 45.5
3 63.5 2 45.5 2 45.5 1 18.0
7 79.5 5 73.0 2 45.5 5 73.0
1 18.0 2 45.5 2 45.5 4 70.0

Means: 35.050 42.875 50.825 33.250 40.500

The adjusted test statistic H ′
obs is calculated as

H ′
obs =

Hobs

fc
=

Hobs

1 −
∑r

j=1

(
t3j − tj

)
N3 − N

=
7.20412

1 −
{

(33−3)+(293−29)+(263−26)+(103−10)+(33−3)+(33−3)+(43−4)+(23−2)
803−80

}
=

7.204120
0.9159283

= 7.865376

Step 4: Statistical Conclusion — The ℘-value for the standardized test statistic without
adjustment for ties (H) and the standardized test statistic adjusted for ties (H ′ )
are calculated as P

(
χ2

3 ≥ 7.204
)

= 0.0656 and P
(
χ2

3 ≥ 7.86
)

= 0.0488, respectively.
℘-values such as 0.065 and 0.0488 indicate that observing values as extreme or more
than 7.20 or 7.86 when the null hypothesis is true are fairly unlikely.

I. From the rejection region, reject H0 since H ′
obs = 7.86 > χ2

.95;3 = 7.81.

II. From the ℘-value, reject H0 because the ℘-value = 0.0488 is less than 0.05.

Reject H0.

Step 5: English Conclusion — There is statistical evidence to suggest differences exist
among the distributions for the four free throw teaching methods.
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To compute the rejection region, the value of the standardized test statistic (Hobs), and the
value of the standardized test statistic corrected for ties (Hc) with S, enter

> RR <- qchisq(.95,3) # Rejection region
> RR
[1] 7.814728
> RKs <- rank(NumberFT) # Ranks for all
> MRKs <- unstack(RKs, RKs~g) # Only R not S-PLUS
> MRKs[1:5,] # Show first five rows
Method1 Method2 Method3 Method4

1 76.5 63.5 45.5 45.5
2 18.0 45.5 18.0 18.0
3 45.5 18.0 45.5 18.0
4 2.0 45.5 63.5 63.5
5 2.0 18.0 45.5 18.0
> RK <- apply(MRKs,2, mean) # Treatment ranks
> names(RK) <- c("MRKT1","MRKT2","MRKT3","MRKT4")
> RK
MRKT1 MRKT2 MRKT3 MRKT4
35.050 42.875 50.825 33.250
> MRK <- mean(RK) # Overall mean rank
> MRK
[1] 40.5
> N <- length(RKs)
> Hobs <- 12*(n1*(RK[1] - MRK)^2 + n2*(RK[2] - MRK)^2
+ + n3*(RK[3] - MRK)^2 + n4*(RK[4] - MRK)^2)/(N*(N+1))
> names(Hobs) <- "statistic"
> Hobs
statistic
7.20412

> tj <- table(RKs)
> tj
RKs

2 18 45.5 63.5 70 73 76.5 79.5
3 29 26 10 3 3 4 2

> CF <- 1-(sum(tj^3 - tj)/(N^3-N)) # correction factor
> Hc <- Hobs/CF # corrected statistic
> hs <- c(Hobs, Hc)
> hs
statistic statistic
7.204120 7.865376
> pval <- 1-pchisq(hs,3)
> names(pval) <- c("p.value","p.value")
> pval

p.value p.value
0.06566864 0.04887747

To find the standardized test statistic corrected for ties and its corresponding ℘-value with
the function kruskal.test(), enter
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> kruskal.test(NumberFT~g) # For S-PLUS change ~ to ,

Kruskal-Wallis rank sum test

data: NumberFT by g
Kruskal-Wallis chi-squared = 7.8654, df = 3,
p-value = 0.04888

Distribution of H The exact distribution of H can be obtained using the fact that
under H0, all possible (

∑a
i=1 ni)!/ (

∏a
i=1 ni!) assignments of n1 ranks to the treatment 1

observations, n2 ranks to the treatment 2 observations, . . . , na ranks to the treatment a
observations are equally likely; however, there are practical and computational limits on
the range of tables that can be constructed. Consider that Example 10.10 on page 437 has
80!/(20!·20!·20!·20!) = 4.895203×1046 possible rank assignments. Consequently, the distri-
bution of H is generally approximated with a χ2

a−1 distribution. Under the null hypothesis,
the ni ranks in sample i are randomly selected from the set {1, 2, . . . ,

∑a
i=1 ni = N}. That

is, the ranks in sample i are drawn without replacement from the finite populations of N
ranks.

For a finite population, it can be shown that

E
[
R i

]
=

N + 1
2

and Var
[
R i

]
=

(N + 1)(N − ni)
12ni

.

Provided the min(ni) is sufficiently large,

Zi =
R i − N+1

2√
(N+1)(N−ni)

12ni

�∼ N(0, 1) (10.15)

by the Central Limit Theorem. It then follows that Z2
i

�∼ χ2
1. Although the Zis are not

independent, when H0 is true, the statistic

H =
a∑

i=1

N − ni

N
Z2

i =
a∑

i=1

12ni

[
R i − N+1

2

]2
N(N + 1)

(10.16)

has, as min{n1, n2, . . . , na} tends to infinity, an asymptotic χ2
a−1 distribution. When the

null hypothesis is rejected, one can compare any two groups by calculating

Zijobs =

∣∣R i − R j

∣∣√(
N(N+1)

12

)(
1
ni

+ 1
nj

) (10.17)

and declaring treatments i and j significantly different when Zijobs > Z1−α/[a(a−1)]. By
dividing α/2 by a(a − 1)/2, the number of pairwise comparisons, the overall significance
level is appropriately adjusted.

Example 10.10 on page 437 rejected the null hypothesis of equal distributions and
concluded that at least two of the four methods have different distributions. The next
step is to decide which one of the four methods the gym instructor should use in teaching
students to shoot free throws. Using (10.17) with an α = 0.20, methods 1 and 4 are declared
to be significantly different from method 3 since Z13obs = 2.15 > Z1−α/(a(a−1)) = 2.13 and
Z34obs = 2.39 > Z1−α/(a(a−1)) = 2.13. In this case, the probability that all the statements
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are correct is 1 − α = 0.8. The gym instructor should stop using methods 1 and 4. If the
instructor had to pick only one method to use, and all other factors were the same, he/she
should use method 3 since it is statistically better than method 1 and method 4. Although
there is no statistical difference between methods 2 and 3, method 2 is not statistically
better than method 1 or method 4. Code to compute the multiple comparisons according
to (10.17) is

> a <- 4 # Four methods
> Method1 <- c(6,1,2,0,0,1,1,3,1,2,1,2,4,2,1,1,1,3,7,1)
> Method2 <- c(3,2,1,2,1,6,2,1,1,2,1,1,2,3,2,2,3,2,5,2)
> Method3 <- c(2,1,2,3,2,2,4,3,2,3,2,5,1,1,3,7,6,2,2,2)
> Method4 <- c(2,1,1,3,1,2,1,6,1,1,0,1,1,1,1,2,2,1,5,4)
> n1 <- length(Method1); n2 <- length(Method2)
> n3 <- length(Method3); n4 <- length(Method4)
> NumberFT <- c(Method1, Method2, Method3, Method4)
> N <- length(NumberFT)
> RKs <- rank(NumberFT) # Ranks for all
> MRKs <- unstack(RKs, RKs~g) # Only R not S-PLUS
> RK <- apply(MRKs,2, mean) # Treatment ranks
> names(RK) <- c("MRKT1","MRKT2","MRKT3","MRKT4")
> alpha <- 0.20
> Z12 <- abs(RK[1]-RK[2])/sqrt((N*(N+1)/12)*(1/n1 + 1/n2))
> Z13 <- abs(RK[1]-RK[3])/sqrt((N*(N+1)/12)*(1/n1 + 1/n3))
> Z14 <- abs(RK[1]-RK[4])/sqrt((N*(N+1)/12)*(1/n1 + 1/n4))
> Z23 <- abs(RK[2]-RK[3])/sqrt((N*(N+1)/12)*(1/n2 + 1/n3))
> Z24 <- abs(RK[2]-RK[4])/sqrt((N*(N+1)/12)*(1/n2 + 1/n4))
> Z34 <- abs(RK[3]-RK[4])/sqrt((N*(N+1)/12)*(1/n3 + 1/n4))
> Zij <- round(c(Z12, Z13, Z14, Z23, Z24, Z34),2)
> names(Zij) <- c("Z12","Z13","Z14","Z23","Z24","Z34")
> CV <- round(qnorm(1- alpha/(a*(a-1))),2)
> Zij
Z12 Z13 Z14 Z23 Z24 Z34
1.06 2.15 0.24 1.08 1.31 2.39
> CV
[1] 2.13
> which(Zij > CV)
Z13 Z34
2 6

10.6 Friedman Test for Randomized Block Designs

In Section 10.5, the Kruskal-Wallis rank test for several independent samples was intro-
duced as an extension of the Wilcoxon rank-sum/Mann-Whitney U -test for two independent
samples introduced in Section 10.4. In this section, the problem of analyzing related samples
is examined. The design structure of the problems addressed in this section is often referred
to as a randomized complete block design. In this type of design, there are b blocks and
k ≥ 2 treatments, and the test is designed to detect differences among the k treatments. In
this type of scenario, observations are arranged in blocks, which are groups of k experimental
units similar to each other in some important characteristic. The rationale behind using
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a block is to reduce the error of the experiment as much as possible by grouping similar
units so that the remaining differences will be largely due to the treatments. The use of
“blocks” comes from some of the earliest experimental designs in agriculture where fields
where divided in “blocks.”

In a randomized complete block design (RCBD), experimental units are assigned to
blocks, and then treatments are randomly assigned to the units within the blocks. To
analyze a RCBD with Friedman’s test, ranks are assigned to the observations within each
block. The ranked observations are denoted Rij , i = 1, . . . , b, j = 1, . . . , k. A representation
of the ranked data from a RCBD is shown in Table 10.18.

Table 10.18: A representation of the ranked data from a randomized complete block design

1 2 k Row Totals

1 R11 R12 · · · R1k k(k + 1)/2

2 R21 R22 · · · R2k k(k + 1)/2
Blocks ...

...
...

...

b Rb1 Rb2 · · · Rbk k(k + 1)/2

Column Totals: R1 R2 · · · Rk bk(k + 1)/2

The assumptions required to apply Friedman’s test are the same as those required for the
Kruskal-Wallis test; namely, all populations sampled are continuous and identical, except
possibly for location. The null hypothesis is that the populations all have the same location.
Typically, the null hypothesis of no difference among the k treatments is written in terms
of the medians as H0 : ψ1 = ψ2 = · · · = ψk. Although the distribution under the null
hypothesis could be enumerated, it is not practical to do so as there are a total of (k!)b

distinguishable sets of entries in a b × k table. The Friedman statistic S is

S =

⎡⎣ 12
bk(k + 1)

k∑
j=1

R2
j

⎤⎦− 3b(k + 1), (10.18)

where Rj is the sum of ranks for each treatment, where ranks were assigned within each
block. The statistic S has an asymptotic χ2

k−1 distribution as b tends to infinity. For
b > 7, numerical comparisons have shown χ2

k−1 to be a reasonable approximation to the
distribution of S (Gibbons and Chakraborti, 2003). When ties are present in the ranks, S
is replaced with the quantity S′:

S′ =
12

∑k
j=1 R2

j − 3b2k(k + 1)2

bk(k + 1) − 1
k−1

∑b
i=1

{(∑gi

j=1 t3ij
)
− k

} (10.19)

where gi denotes the number of tied groups in the ith block and tij is the size of the jth

tied group in the ith block. Note that when there are no ties in the blocks, the quantity
1

k−1

∑b
i=1

{(∑gi

j=1 t3ij
)
− k

}
= 0 and S′ reduces to S. The null hypothesis is rejected at

the α level of significance whenever S′
obs > χ2

1−α;k−1. When the null hypothesis is rejected,
one can declare treatments i and j significantly different when ZRijobs > Zα/[k(k−1)], where
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ZRijobs is defined as

ZRijobs =
|Ri − Rj |√(

bk(k+1)
6

) . (10.20)

Typical values of α when performing multiple comparisons are often as large as 0.20 due to
the large number of comparisons.

Example 10.11 � Friedman Test: Body Fat � The body fat of 78 high school
wrestlers was measured using three separate techniques and the results are stored in the
data frame HSwrestler. The techniques used were hydrostatic weighing (HWFAT), skin fold
measurements (SKFAT), and the Tanita body fat scale (TANFAT). Do the three methods of
recording body fat have equal medians? Use a significance level of α = 0.05 to reach your
conclusion. If the null hypothesis of equal medians is rejected, determine which treatments
are significantly different using an overall experiment-wise error rate of α = 0.20.

Solution: Each wrestler in this scenario acts as a block. This particular design structure
is also known as a repeated measures design. Before testing the null hypothesis of equal
medians, a few graphs are created to verify the assumption of equal shaped populations.

> attach(HSwrestler)
> HSwrestler[1:5,]
AGE HT WT ABS TRICEPS SUBSCAP HWFAT TANFAT SKFAT

1 18 65.75 133.6 8 6 10.5 10.71 11.9 9.80
2 15 65.50 129.0 10 8 9.0 8.53 10.0 10.56
3 17 64.00 120.8 6 6 8.0 6.78 8.3 8.43
4 17 72.00 145.0 11 10 10.0 9.32 8.2 11.77
5 17 69.50 299.2 54 42 37.0 41.89 41.6 41.09
> FAT <- c(HWFAT, TANFAT, SKFAT)
> GROUP <- factor(rep(c("HWFAT","TANFAT","SKFAT"), rep(78,3)))
> BLOCK <- factor(rep(1:78,3)) # used later
> library(lattice)
> A <- bwplot(GROUP~FAT, xlab="% Fat")
> B <- densityplot(~FAT|GROUP, layout=c(1,3), xlab="% Fat")
> print(A, split=c(1,1,2,1), more=TRUE)
> print(B, split=c(2,1,2,1), more=FALSE)

Based on the boxplots and the density plots in Figure 10.10 on the next page, it seems
reasonable to assume that the distributions of body fat for the three treatment groups are
similar in shape.

Step 1: Hypotheses — The hypotheses to test no difference among the k treatments are
H0 : ψ1 = ψ2 = · · · = ψk versus H1 : ψi �= ψj for at least one pair (i, j).

Step 2: Test Statistic — The test statistic S is used to evaluate the null hypothesis.
Under the assumption that H0 is true, the standardized test statistic

S =

⎡⎣ 12
bk(k + 1)

k∑
j=1

R2
j

⎤⎦− 3b(k + 1) �∼ χ2
b−1
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FIGURE 10.10: Comparative boxplots and density plots for hydrostatic weighing (HWFAT),
skin fold measurements (SKFAT), and the Tanita body fat scale (TANFAT)

Step 3: Rejection Region Calculations — The rejection region is Sobs > χ2
.95;2 = 5.99.

The first six wrestlers’ body fat as measured by the three techniques and their
corresponding ranks are shown in Table 10.19.

Table 10.19: The first six wrestlers’ body fat as measured by the three techniques and their
corresponding ranks

Measurement Rank
Wrestler HWFAT TANFAT SKFAT HWFAT TANFAT SKFAT

1 10.71 11.9 9.80 2 3 1
2 8.53 10.0 10.56 1 2 3
3 6.78 8.3 8.43 1 2 3
4 9.32 8.2 11.77 2 1 3
5 41.89 41.6 41.09 3 2 1
6 34.03 29.9 29.45 3 2 1
...

...
...

...
...

...
...

R1 = 128 R2 = 187 R3 = 153

The value of Sobs is calculated as

Sobs =

⎡⎣ 12
bk(k + 1)

k∑
j=1

R2
j

⎤⎦− 3b(k + 1)

=
[

12
78 · 3(3 + 1)

(
1282 + 1872 + 1532

)]
− 3 · 78(3 + 1)

= 22.48718
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Step 4: Statistical Conclusion — The ℘-value for the standardized test statistic (Sobs)
is calculated as P

(
χ2

2 ≥ 22.48718
)

= 1.309095 × 10−5, indicating that observing
values as extreme or more than 22.48718 when the null hypothesis is true is very
unlikely.

I. From the rejection region, reject H0 since Sobs = 22.48718 > χ2
.95;2 = 5.99.

II. From the ℘-value, reject H0 because the ℘-value = 1.309095 × 10−5 is less
than 0.05.

Reject H0.

Step 5: English Conclusion — There is statistical evidence to suggest differences exist
among the three methods used to measure body fat.

To compute the rejection region, the value of the standardized test statistic, and its corre-
sponding value with S, enter

> cfat <- cbind(HWFAT, TANFAT, SKFAT)
> RK <- t(apply(cfat,1, rank))
> OBSandRK <- cbind(cfat, RK)
> OBSandRK[1:5,]

HWFAT TANFAT SKFAT HWFAT TANFAT SKFAT
[1,] 10.71 11.9 9.80 2 3 1
[2,] 8.53 10.0 10.56 1 2 3
[3,] 6.78 8.3 8.43 1 2 3
[4,] 9.32 8.2 11.77 2 1 3
[5,] 41.89 41.6 41.09 3 2 1
> Rj <- apply(RK,2, sum)
> b <- length(HWFAT)
> k <- dim(cfat)[2]
> S <- (12/(b*k*(k+1)))*sum(Rj^2)-3*b*(k+1)
> S
[1] 22.48718
> pval <- 1-pchisq(S, k-1)
> pval
[1] 1.309095e-05

To find the standardized test statistic and its corresponding ℘-value with the function
friedman.test(), enter

> friedman.test(FAT~GROUP|BLOCK) # R syntax

Friedman rank sum test

data: FAT and GROUP and BLOCK
Friedman chi-squared = 22.4872, df = 2, p-value = 1.309e-05

Since the null hypothesis of equal medians is soundly rejected, at least two of the three body
fat measuring techniques have different medians. Using (10.20) with an α = 0.20, all three of
the body fat measuring techniques are declared to be significantly different from each other
since ZR12obs = 4.72 > Z1−α/(k(k−1)) = 1.83, ZR13obs = 2.00 > Z1−α/(k(k−1)) = 1.83, and
ZR23obs = 2.72 > Z1−α/(k(k−1)) = 1.83. In this case, the probability that all the statements
are correct is 1 − α = 0.8. Since HWFAT is the accepted standard for measuring body fat,
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neither of the other two methods is an acceptable substitute for measuring body fat for
high school wrestlers.

Code to compute the multiple comparisons according to (10.20) is

> alpha <- 0.20
> ZR12 <- abs(Rj[1]-Rj[2])/sqrt(b*k*(k+1)/6)
> ZR13 <- abs(Rj[1]-Rj[3])/sqrt(b*k*(k+1)/6)
> ZR23 <- abs(Rj[2]-Rj[3])/sqrt(b*k*(k+1)/6)
> CV <- round(qnorm(1- alpha/(k*(k-1))),2)
> ZRij <- round(c(ZR12, ZR13, ZR23),2)
> names(ZRij) <- c("ZR12","ZR13","ZR23")
> ZRij
ZR12 ZR13 ZR23
4.72 2.00 2.72
> CV
[1] 1.83
> which(ZRij > CV)
ZR12 ZR13 ZR23

1 2 3

10.7 Goodness-of-Fit Tests

Many statistical procedures require knowledge of the population from which the sample
is taken. For example, using Student’s t-distribution for testing a hypothesis or constructing
a confidence interval for μ assumes that the parent population is normal. In this section,
goodness-of-fit (GOF) procedures are presented that will help to identify the distribution
of the population from which the sample is drawn. The null hypothesis in a goodness-of-fit
test is a statement about the form of the cumulative distribution. When all the parameters
in the null hypothesis are specified, the hypothesis is called simple. Recall that in the event
the null hypothesis does not completely specify all of the parameters of the distribution,
the hypothesis is said to be composite. Goodness-of-fit tests are typically used when the
form of the population is in question. In contrast to most of the statistical procedures
discussed so far, where the goal has been to reject the null hypothesis, in a GOF test one
hopes to retain the null hypothesis. Two general approaches, one designed primarily for
discrete distributions (chi-square goodness-of-fit) and one designed primarily for continuous
distributions (Kolmogorov-Smirnov), are presented.

10.7.1 The Chi-Square Goodness-of-Fit Test

Given a single random sample of size n from an unknown population FX , one may
wish to test the hypothesis that FX has some known distribution F0(x) for all x. For
example, using the data frame Soccer from Example 4.4 on page 122, is it reasonable to
assume the number of goals scored during regulation time for the 232 soccer matches has a
Poisson distribution with λ = 2.5? Although the problem was previously analyzed, it will be
considered again shortly in the context of the chi-square goodness-of-fit test. The chi-square
goodness-of-fit test is based on a normalized statistic that examines the vertical deviations
between what is observed and what is expected when H0 is true in k mutually exclusive
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categories. At times, such as in surveys of brand preferences, where the categories/groups
would be the brand names, the sample will lend itself to being divided into k mutually
exclusive categories. Other times, the categories/groupings will be more arbitrary. Before
applying the chi-square goodness-of-fit test, the data must be grouped according to some
scheme to form k mutually exclusive categories. When the null hypothesis completely
specifies the population, the probability that a random observation will fall into each of
the chosen or fixed categories can be computed. Once the probabilities for a data point to
fall into each of the chosen or fixed categories is computed, multiplying the probabilities
by n produces the expected counts for each category under the null distribution. If the
null hypothesis is true, the differences between the counts observed in the k categories and
the counts expected in the k categories should be small. The test criterion for testing
H0 : FX(x) = F0(x) for all x against the alternative H1 : FX(x) �= F0(x) for some x when
the null hypothesis is completely specified is

χ2
obs =

k∑
i=1

(Ok − Ek)2

Ek
, (10.21)

where χ2
obs is the sum of the squared deviations between what is observed (Ok) and what

is expected (Ek) in each of the k categories divided by what is expected in each of the k
categories. Large values of χ2

obs occur when the observed data are inconsistent with the
null hypothesis and thus lead to rejection of the null hypothesis. The exact distribution
of χ2

obs is very complicated; however, for large n, provided all expected categories are at
least 5, χ2

obs is distributed approximately χ2 with k − 1 degrees of freedom. When the
null hypothesis is composite, that is, not all of the parameters are specified, the degrees of
freedom for the random variable χ2

obs are reduced by one for each parameter that must be
estimated.

Example 10.12 � Soccer Goodness-of-Fit � Test the hypothesis that the number
of goals scored during regulation time for the 232 soccer matches stored in the data frame
Soccer has a Poisson cdf with λ = 2.5 with the chi-square goodness-of-fit test and an α
level of 0.05. Produce a histogram showing the number of observed goals scored during
regulation time and superimpose on the histogram the number of goals that are expected
to be made when the distribution of goals follows a Poisson distribution with λ = 2.5.

Solution: Since the number of categories for a Poisson distribution is theoretically infinite,
a table is first constructed of the observed number of goals to get an idea of reasonable
categories.

> attach(Soccer)
> table(Goals)
Goals
0 1 2 3 4 5 6 7 8
19 49 60 47 32 18 3 3 1

Based on the table, a decision is made to create categories for 0, 1, 2, 3, 4, 5, and 6 or
more goals. Under the null hypothesis that F0(x) is a Poison distribution with λ = 2.5, the
probabilities of scoring 0, 1, 2, 3, 4, 5, and 6 or more goals are computed with S as follows:

> PX <- c(dpois(0:5,2.5),1-ppois(5,2.5))
> PX
[1] 0.08208500 0.20521250 0.25651562 0.21376302 0.13360189 0.06680094
[7] 0.04202104
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Since there were a total of n = 232 soccer games, the expected number of goals for the six
categories is simply 232 × PX:

> EX <- 232*PX
> OB <- c(19,49,60,47,32,18,7)
> ans <- cbind(PX, EX, OB)
> row.names(ans) <- c(" X=0", " X=1", " X=2", " X=3", " X=4", " X=5",
+ "X>=6")
> ans

PX EX OB
X=0 0.08208500 19.04372 19
X=1 0.20521250 47.60930 49
X=2 0.25651562 59.51162 60
X=3 0.21376302 49.59302 47
X=4 0.13360189 30.99564 32
X=5 0.06680094 15.49782 18
X>=6 0.04202104 9.74888 7

Step 1: Hypotheses — The null and alternative hypotheses for using the chi-square
goodness-of-fit test to test the hypothesis that the number of goals scored during
regulation time for the 232 soccer matches stored in the data frame Soccer has a
Poisson cdf with λ = 2.5 are

H0 : FX(x) = F0(x) ∼ Pois(λ = 2.5) for all x versus
H1 : FX(x) �= F0(x) for some x.

Step 2: Test Statistic — The test statistic chosen is χ2
obs.

Step 3: Rejection Region Calculations — Reject if χ2
obs > χ2

1−α;k−1. χ2
obs is computed

with (10.21):

> chi.obs <- sum((OB-EX)^2/EX)
> chi.obs
[1] 1.391940

1.391940 = χ2
obs

?
> χ2

.95;6 = 12.59.

Step 4: Statistical Conclusion — The ℘-value is 0.9663469.

> p.val <- 1-pchisq(chi.obs,7-1)
> p.val
[1] 0.9663469

I. Since χ2
obs = 1.391940 is not greater than χ2

.95;6 = 12.59, fail to reject H0.

II. Since the ℘-value = 0.9663469 is greater than 0.05, fail to reject H0.

Fail to reject H0.

Step 5: English Conclusion — There is no evidence to suggest that the true cdf does not
equal the Poisson distribution with λ = 2.5 for at least one x.
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R and S-PLUS use different functions to perform a chi-square goodness-of-fit test. The R
function to implement a chi-square goodness-of-fit test is chisq.test(), and the S-PLUS
function is chisq.gof(). Although S-PLUS has the function chisq.test(), it will not
accept all of the arguments that the R function chisq.test() does. The reader should
refer to Table A.6 on page 663 or the respective help files for more information on each
function.
Code and output for R:

> chisq.test(x=OB, p=PX)

Chi-squared test for given probabilities

data: OB
X-squared = 1.3919, df = 6, p-value = 0.9663

Code and output for S-PLUS follow. The argument cut.points specifies the categories
with an open left interval and closed right interval, that is, (lower, upper]. By specifying
right=TRUE, the categories become left closed and right open.

> X2obs <- chisq.gof(Goals, cut.points=c(-1,0,1,2,3,4,5, Inf),
+ distribution="poisson", lambda=2.5)
> X2obs

Chi-square Goodness of Fit Test

data: Goals
Chi-square = 1.3919, df = 6, p-value = 0.9663
alternative hypothesis:
True cdf does not equal the poisson Distn. for at least
one sample point.

> ans <- as.matrix(cbind(X2obs$counts, X2obs$expected))
> rows <- c(" X=0"," X=1"," X=2"," X=3"," X=4"," X=5","X>=6")
> cols <- c("Observed","Expected")
> dimnames(ans) <- list(rows, cols)
> ans

Observed Expected
X=0 19 19.0437
X=1 49 47.6093
X=2 60 59.5116
X=3 47 49.5930
X=4 32 30.9956
X=5 18 15.4978
X>=6 7 9.7489

The S code used to create a histogram with superimposed expected goals is

> hist(Goals,breaks=c((-.5+0):(8+.5)), col=13, ylab="", freq=TRUE, main="")
> x <- 0:8
> fx <- (dpois(0:8, lambda=2.5))*232
> lines(x, fx, type="h")
> lines(x, fx, type="p", pch=16)
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Note that the histogram does not reflect the category ≥ 6, but rather depicts the observed
categories of 6, 7, and 8.

Goals
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FIGURE 10.11: Histogram of observed goals for Soccer with a superimposed Poisson
distribution with λ = 2.5 (vertical lines)

Although the chi-square goodness-of-fit test is primarily designed for discrete distri-
butions, it can also be used with a continuous distribution if appropriate categories are
defined.

Example 10.13 �Goodness-of-Fit for SAT Scores� Use the chi-square goodness-
of-fit test with α = 0.05 to test the hypothesis that the SAT scores stored in the data frame
Grades have a normal cdf. Use categories, (−∞, μ−2σ], (μ−2σ, μ−σ], (μ−σ, μ], (μ, μ+σ],
(μ + σ, μ + 2σ], and (μ + 2σ,∞]. Produce a histogram using the categories specified and
superimpose on the histogram the expected number of SAT scores in each category when
F0(x) ∼ N(μ = x̄, σ = s).

Solution: The test follows:

Step 1: Hypotheses — The null and alternative hypotheses for using the chi-square
goodness-of-fit test to test the hypothesis that the SAT scores stored in the data
frame Grades have a Normal cdf are

H0 : FX(x) = F0(x) ∼ N(μ = x̄, σ = s) for all x versus
H1 : FX(x) �= F0(x) for some x.

Step 2: Test Statistic — Since the mean and standard deviation are unknown, the first
step is to estimate the unknown parameters μ and σ using x̄ = 11334.65 and
s = 145.61:

> attach(grades)
> mu <- mean(sat)
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> sig <- sd(sat) # stdev(sat) for S-PLUS
> c(mu, sig)
[1] 1134.6500 145.6087

Because a normal distribution is continuous, it is necessary to create categories that
include all the data. The categories μ − 3σ to μ − 2σ, . . . , μ + 2σ to μ + 3σ are
697.82 to 843.43, 843.43 to 989.04, 989.04 to 1134.65, 1123.65 to 1280.26, 1280.26
to 1425.87, and 1425.87 to 1571.48. These particular categories include all of the
observed SAT scores; however, the probabilities actually computed for the largest
and smallest categories will be all of the area to the right and left, respectively,
of x̄ ± 2s. This is done so that the total area under the distribution in the null
hypothesis is one.

> bin <- seq(mu-3*sig, mu+3*sig, sig)
> bin
[1] 697.8240 843.4326 989.0413 1134.6500 1280.2587 1425.8674
[7] 1571.4760
> table(cut(sat, breaks=bin))

(698,843] (843,989] (989,1.13e+03]
4 27 65

(1.13e+03,1.28e+03] (1.28e+03,1.43e+03] (1.43e+03,1.57e+03]
80 21 3

> OB <- hist(sat, breaks=bin, plot=F)$counts
> PR <- c(pnorm(-2), pnorm(-1:2)- pnorm(-2:1),1-pnorm(2))
> EX <- 200*PR
> ans <- cbind(PR, EX, OB)
> ans

PR EX OB
[1,] 0.02275013 4.550026 4
[2,] 0.13590512 27.181024 27
[3,] 0.34134475 68.268949 65
[4,] 0.34134475 68.268949 80
[5,] 0.13590512 27.181024 21
[6,] 0.02275013 4.550026 3

Step 3: Rejection Region Calculations —Reject if χ2
obs > χ2

1−α;k−p−1.

Now that the expected and observed counts for each of the categories are computed,
the χ2

obs value can be computed according to (10.21) as 4.173654:

> chi.obs <- sum((OB-EX)^2/EX)
> chi.obs
[1] 4.173654

Step 4: Statistical Conclusion — In this problem, two parameters were estimated, and
as a consequence, the degrees of freedom are computed as 6−2−1 = 3. The ℘-value
is 0.2433129.

> p.val <- 1-pchisq(chi.obs,6-2-1)
> p.val
[1] 0.2433129
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I. Since χ2
obs = 4.173654 is not greater than χ2

.95;3 = 7.81, fail to reject H0.

II. Since the ℘-value = 0.2433129 is greater than 0.05, fail to reject H0.

Fail to reject H0.

Step 5: English Conclusion — There is no evidence to suggest that the true cdf of SAT
scores is not a normal distribution.

If one uses the R function chisq.test(), the degrees of freedom and the subsequent ℘-value
will be incorrect, as illustrated next:

> chisq.test(x=OB, p=PR)

Chi-squared test for given probabilities

data: OB X-squared = 4.1737, df = 5, p-value = 0.5247

The S-PLUS function chisq.gof() computes the degrees of freedom and the corresponding
℘-value correctly, provided the argument n.param.est= is correctly specified:

> chisq.gof(sat, cut.points=c(-Inf, bin[2:6], Inf),
+ distribution="normal", mean=mu, sd=sig, n.param.est=2)
Warning messages:
Expected counts < 5. Chi-squared approximation may not
be appropriate. in: chisq.gof(sat, cut.points = c( -
Inf, bin[2:6], Inf), ....

Chi-square Goodness of Fit Test

data: sat Chi-square = 4.1737, df = 3,
p-value = 0.2433
alternative hypothesis:
True cdf does not equal the normal Distn. for at least
one sample point.

Since it is not feasible to produce a histogram that extends from −∞ to ∞, a histogram is
created where the categories will simply cover the range of observed values. In this problem,
the range of the SAT scores is 720 to 1550. The histogram with categories (μ− 3σ, μ− 2σ],
(μ − 2σ, μ − σ], (μ − σ, μ], (μ+, μ + σ], (μ + σ, μ + 2σ], and (μ + 2σ, μ + 3σ], superimposed
with the expected number of SAT scores for the categories (−∞, μ − 2σ], (μ − 2σ, μ − σ],
(μ− σ, μ], (μ, μ + σ], (μ + σ, μ + 2σ], and (μ + 2σ,∞] is computed with the code given next
and depicted in Figure 10.12 on the next page.

> hist(sat, breaks=bin, col=13, ylab="", freq=TRUE, main="")
> x <- bin[2:7]-sig/2
> fx <- PR*200
> lines(x, fx, type="h")
> lines(x, fx, type="p", pch=16)
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FIGURE 10.12: Histogram of SAT scores in Grades superimposed with the expected
number of SAT scores for the categories (−∞, μ− 2σ], (μ− 2σ, μ− σ], (μ− σ, μ], (μ, μ + σ],
(μ + σ, μ + 2σ], and (μ + 2σ,∞] (vertical lines)

10.7.2 Kolmogorov-Smirnov Goodness-of-Fit Test

In Section 10.7.1, the chi-square goodness-of-fit test worked by measuring the vertical
distance between what was observed in a particular category and what was expected in
that same category under the null hypothesis for each of the k categories. In contrast to
the chi-square goodness-of-fit test, the Kolmogorov-Smirnov goodness-of-fit test uses all n
observations and measures vertical deviations between the cumulative distribution function
(cdf), F0(x) (where all parameters are specified), and the empirical cumulative distribution
function (ecdf), F̂n(x), for all x. For large n, the deviations between F0(x) and F̂n(x) should
be small for all values of x. The statistic Dn, called the Kolmogorov-Smirnov one-sample
statistic, is defined as

Dn = sup
x

∣∣∣F̂n(x) − F0(x)
∣∣∣ (10.22)

The statistic Dn does not depend on F0(x) as long as F (x) is continuous. The deriva-
tion of the sampling distribution of Dn is beyond the scope of this text. The curious
reader can refer to Gibbons and Chakraborti (2003), page 114, for the derivation of the
sampling distribution of Dn. The statistic and sampling distribution of Dn should only
be used with simple hypotheses. When the null hypothesis is composite, the critical
values for the Kolmogorov-Smirnov test (based on the sampling distribution of Dn) are
extremely conservative. The Kolmogorov-Smirnov test can be used to assess normality
provided the distribution is completely specified. In a test of normality where the null
hypothesis is not completely specified, the statistic Dn can still be used by estimating
the unknown parameters of F0(x) using maximum likelihood

(
F̂0(x)

)
and substituting

F̂0(x) for F0(x) in (10.22). However, this further complicates the sampling distribution
of Dn. When testing a composite normal hypothesis with unknown μ and σ, the test that
uses Dn = supx

∣∣F̂n(x) − F̂0(x)
∣∣ is called Lilliefors’s normality test (explained more fully

starting on page 458). Lilliefors used simulation to study the sampling distribution of Dn

for composite hypotheses and subsequently to publish critical values for using Dn with
composite hypotheses. Simulation will be used to show the differences in the distribution
of Dn for a simple null hypothesis versus the distribution of Dn with a composite null
hypothesis.
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Recall that the ecdf was defined in (6.2) to be:

F̂n(t) =
n∑

i=1

I {xi ≤ t}/n

An equivalent expression for the ecdf is

F̂n(x) =

⎧⎪⎨⎪⎩
0 x < X(1)
i
n X(i) ≤ x ≤ X(i+1)

1 x > X(n)

(10.23)

which will prove useful in computing Dn. When all n observations are distinct, Dn can be
computed as

Dn = max
i=1,...,n

Mi (10.24)

where

Mi = max
{∣∣F̂n

(
X(i)

)
− F0

(
X(i)

)∣∣, ∣∣F0

(
X(i)

)
− F̂n

(
X(i−1)

)∣∣} (10.25)

Since F̂n

(
X(i)

)
= i

n and F̂n

(
X(i−1)

)
= i−1

n , (10.25) can be expressed as

Mi = max
{∣∣∣∣ i

n
− F0

(
X(i)

)∣∣∣∣ = D+
i ,

∣∣∣∣F0

(
X(i)

)
− i − 1

n

∣∣∣∣ = D−
i

}
(10.26)

Stated formally, the null and alternative hypotheses for the Kolmogorov-Smirnov test
for goodness-of-fit are

H0 : F (x) = F0(x) for all x versus H1 : F (x) �= F0(x) for some x. (10.27)

The null hypothesis is rejected when Dn > Dn;1−α or when the test’s ℘-value is less than the
largest acceptable α value. Since S will compute the ℘-value for the Kolmogorov-Smirnov
test, critical values for various n and α are not presented. R uses the function ks.test(x,
y, ...), where x is a numeric vector of observations and y is either a numeric vector of
data values or a character string naming a distribution function. S-PLUS uses the function
ks.gof(x, distribution = "normal", ...), where x is a numeric vector of observations.
The examples will illustrate the use of both functions.

Example 10.14 � Kolmogorov-Smirnov GOF Test � Test whether the observa-
tions 5, 6, 7, 8, and 9 are from a normal distribution with μ = 6.5 and σ =

√
2. That is,

the hypothesized distribution is F0(x) ∼ N
(
6.5,

√
2
)
.

Solution: Since F0(x) ∼ N
(
6.5,

√
2
)
, it follows that

F0

(
X(i)

)
= P

(
Y ≤ X(i)

)
= P

(
Y − 6.5√

2
≤

X(i) − 6.5
√

2

)
= P

(
Z ≤

X(i) − 6.5
√

2

)
.

To compute F0

(
X(i)

)
with S, key in

> x <- 5:9
> mu <- 6.5
> sig <- sqrt(2)
> x <- sort(x)
> n <- length(x)
> FoX <- pnorm(x, mean=mu, sd=sig)
> FoX
[1] 0.14442 0.36184 0.63816 0.85558 0.96145
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The quantities F̂n(X(i)) = i
n , F̂n(X(i−1)) = i−1

n , D+
i , D−

i , and Mi are computed and stored
in the S variables FnX, Fn1X, Dp, Dm, and Mi, respectively. The Komolgorov-Smirnov statistic
Dn = maxi=1,...,n Mi is 0.25558.

> FnX <- seq(1:n)/n
> Fn1X <- (seq(1:n)-1)/n
> DP <- (FnX - FoX)
> DM <- FoX - Fn1X
> Dp <- abs(DP)
> Dm <- abs(DM)
> EXP <- cbind(x, FnX, Fn1X, FoX, Dp, Dm)
> Mi <-apply(EXP[, c(5,6)],1, max)
> TOT <- cbind(EXP, Mi)
> TOT

x FnX Fn1X FoX Dp Dm Mi
[1,] 5 0.2 0.0 0.14442 0.055578 0.14442 0.14442
[2,] 6 0.4 0.2 0.36184 0.038163 0.16184 0.16184
[3,] 7 0.6 0.4 0.63816 0.038163 0.23816 0.23816
[4,] 8 0.8 0.6 0.85558 0.055578 0.25558 0.25558
[5,] 9 1.0 0.8 0.96145 0.038550 0.16145 0.16145
> Dn <- max(Mi)
> Dn
[1] 0.25558

Table 10.20: Calculating Dn

i X(i)
i
n−F0

(
X(i)

)
F0

(
X(i)

)
− i−1

n D+ D− Mi

1 5 1
5− 0.14442 0.14442 − 0 0.055578 0.14442 0.14442

2 6 2
5− 0.36184 0.36184 − 1

5 0.038163 0.16184 0.16184

3 7 3
5− 0.63816 0.63816 − 2

5 0.038163 0.23816 0.23816

4 8 4
5− 0.85558 0.85558 − 3

5 0.055578 0.25558 0.25558

5 9 5
5− 0.96145 0.96145 − 4

5 0.038550 0.16145 0.16145

Dn = 0.25558

The computation of the Komolgorov-Smirnov statistic Dn and its ℘-value with R and S-
PLUS (given that the previous S code has been entered) follow.

R code:

> ks.test(x, y="pnorm", mean=mu, sd=sig)

One-sample Kolmogorov-Smirnov test

data: x
D = 0.2556, p-value = 0.827
alternative hypothesis: two.sided
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S-PLUS code:

> ks.gof(x, dist="normal", mean=mu, sd=sig)

One-sample Kolmogorov-Smirnov Test
Hypothesized distribution = normal

data: x
ks = 0.2556, p-value = 0.8269
alternative hypothesis:
True cdf is not the normal distn. with the specified parameters

The Komolgorov-Smirnov statistic is labeled D in R and ks in S-PLUS. Both R and S-PLUS
return the value Dn = 0.2556 with a corresponding ℘-value of 0.827, which provides no
evidence to reject the null hypothesis that F0(x) ∼ N

(
6.5,

√
2
)
. Figure 10.13 provides a

graphical illustration of the vertical deviations used to compute the statistic Dn for this
problem.
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FIGURE 10.13: Graphical illustration of the vertical deviations used to compute the
statistic Dn for Example 10.14 on page 455

In Example 10.14 on page 455, the statistic Dn = 0.2556 was computed, and both R
and S-PLUS returned a ℘-value of 0.827. To visualize the sampling distribution of Dn and
to find simulated critical values, one can use R code similar to the following:

ksdist <- function (n = 10, sims = 10000, alpha = 0.05){
Dn <- replicate(sims, ks.test(rnorm(n), pnorm)$statistic)
cv <- quantile(Dn, 1 - alpha)
plot(density(Dn), col = "blue", lwd = 2, main = "",
xlab = paste("Simulated critical value =", round(cv,3),
"for n =", n, "when the alpha value =", alpha))
title(main=list(expression(paste("Simulated Sampling Distribution of ",
D[n]))))

}
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The graph from running ksdist(n=5, sims=10000, alpha=0.05) is shown in Fig-
ure 10.14. This simulation indicates a value of 0.567 or greater would be required to reject
the null hypothesis in Example 10.14 on page 455 at the α = 0.05 level. The simulated
℘-value for the value Dn = 0.257 in Figure 10.14 is 0.827, the same value as reported by
both R and S-PLUS using ks.test() and ks.gof(), respectively.
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FIGURE 10.14: Graphical illustration of ksdist(n=5, sims=10000, alpha=0.05)

Lilliefors’s Test of Normality

Expanding on the simulation for the sampling distribution for Dn (only works for R),
consider what happens when the null hypothesis changes from simple to composite using the
code for the function ksLdist(). Note that the Dn values stored in D_n[i] are for a simple
null hypothesis of normality while the Dn values stored in DnL[i] are for a composite
hypothesis of normality. The critical values reported by Lilliefors (1967) were based on
simulations using 1000 or more samples using logic similar to the R code for ksLdist():

ksLdist <- function (n = 10, sims = 1000, alpha = 0.05)
{

Dn <- c()
DnL <- c()
for (i in 1:sims) {

x <- rnorm(n)
mu <- mean(x)
sig <- sd(x)
Dn[i] <- ks.test(x, pnorm)$statistic
DnL[i] <- ks.test(x, pnorm, mean = mu, sd = sig)$statistic

}
ys <- range(density(DnL)$y)
xs <- range(density(Dn)$x)



Nonparametric Methods 459

cv <- quantile(Dn, 1 - alpha)
cvp <- quantile(DnL, 1 - alpha)
plot(density(Dn, bw=0.02), col="blue", lwd=2, ylim=ys, xlim=xs,

main = "", , xlab="", sub = paste("Simulated critical value =",
round(cv, 3), "(simple hypothesis) and ", round(cvp, 3),

"(composite hypothesis)\n for n=", n,"when the alpha value =",
alpha))

title(main=list(expression(paste("Simulated Sampling Distribution of ",
D[n]))))
lines(density(DnL, bw = 0.02), col = "red", lwd = 2, lty = 2)
legend(mean(xs), max(ys), legend = c("Simple Hypothesis",

"Composite Hypothesis"), col = c("blue", "red"), xjust = 0,
text.col = c("black", "black"), lty = c(1, 2), bg = "gray95",
cex = 1, lwd = 2)

box()
abline(h = 0)

}

The function ksLdist() allows the user to choose the number of samples with the argu-
ment sims= and easily to verify the results given by Lilliefors (1967). Dallal and Wilkinson
(1986) duplicated the work by Lilliefors (1967) using much larger samples as well as deriving
an analytic approximation for the upper tail ℘-values for Dn = supx

∣∣F̂n(x) − F̂0(x)
∣∣. For

℘-values less than 0.100 and sample sizes ranging from 5 to 100, the Dallal-Wilkinson
approximation is

̂℘-value = exp(−7.01256 · D2
n · (n + 2.78019)

+ 2.99587 · Dn ·
√

n + 2.78019− 0.122119 + 0.974598/
√

n + 1.67997/n) (10.28)

The estimated densities from running ksLdist(sims=10000, n=10) are shown in Fig-
ure 10.15 on the following page, which highlights how much less variability is present in
the sampling distribution of Dn when the null hypothesis is composite. To correctly test a
composite hypothesis of normality, one should use the R function lillie.test() available
in the R package nortest. That is, one should not use the R function ks.test(). However,
both simple and composite hypotheses of normality can be tested using the S-PLUS function
ks.gof(). The R function lillie.test() from the nortest package produces virtually
the same result as the S-PLUS function ks.gof(), with the exception that the ℘-value is
not set to 0.5 when the Dallal-Wilkinson approximation yields a ℘-value greater than 0.1
when testing a composite hypothesis of normality.

Example 10.15 � Long Distance Phone Calls � Calculate the ℘-value and state
the English conclusion for testing whether the times spent on long distance phone calls
(call.time) in the data frame Phone have a normal distribution using the R function
lillie.test from the nortest package as well as using the S-PLUS function ks.gof().
Verify the reported ℘-values using (10.28).

Solution: The results after attaching the data frame Phone are presented first for R, and
then for S-PLUS. Note that R labels the statistic Dn with D and S-PLUS with ks. Both
functions return Dn = 0.1910237 with a ℘-value = 0.0291.
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FIGURE 10.15: Estimated densities for simple and composite hypotheses from running
ksLdist(sims=10000, n=10)

For R:

> attach(Phone)
> library(nortest)
> lillie.test(call.time)

Lilliefors (Kolmogorov-Smirnov) normality test

data: call.time
D = 0.191, p-value = 0.0291

For S-PLUS:

> attach(Phone)
> ks.gof(call.time, distribution="normal")

One sample Kolmogorov-Smirnov Test of Composite Normality

data: call.time
ks = 0.191, p-value = 0.0291
alternative hypothesis:
True cdf is not the normal distn. with estimated parameters

sample estimates:
mean of x standard deviation of x
3.686957 3.623698

To compute the ℘-value using (10.28), a small function DWA is written that returns an
estimated ℘-value of 0.0291:
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> DWA <- function(Dn = .3, n =10)
+ {
+ p.value<- exp(-7.01256*Dn^2*(n + 2.78019)
+ + 2.99587*Dn*(n + 2.78019)^.5-0.122119
+ + .974598/n^.5+1.67997/n)
+ round(p.value,4)
+ }
> DWA(Dn=0.1910237, n=23)
[1] 0.0291

With a ℘-value of 0.0291, the null hypothesis is rejected. There is evidence that phone call
length is not normally distributed.

10.7.3 Shapiro-Wilk Normality Test

The Shapiro-Wilk test is appropriate for testing normality. More specifically, the test
allows for a composite hypothesis of normality. That is, the parameters of the normal
distribution do not need to be specified in the null hypothesis of the test (as they must
be for the Lilliefors test). Although the test is known to be conservative, it is useful
for testing normality with small samples. The test statistic measures how closely the
empirical quantiles of the sample follow the corresponding theoretical quantiles of a normal
distribution. This means that small values of the test statistic lead to the rejection of the
null hypothesis (that the distribution is normal).

To calculate the test statistic for a random sample of size n, x1, x2, . . . , xn, the sample
must be sorted: x(1) ≤ x(2) ≤ · · · ≤ x(n) . The Shapiro-Wilk test statistic takes the form

W =
b2

nS2
u

, (10.29)

where S2
u is the uncorrected sample variance, b =

∑	n
2 


i=1 an−i+1(x(n−i+1) − x(i)), and
⌊

n
2

⌋
is the integer part of n

2 . The coefficients an−i+1 that are calculated automatically by S are
tabulated in Table 6 of Shapiro and Wilk (1965).

The critical region of the test is given by

P(W ≤ K|H0) = α,

where α is the significance level. The critical values K can be found in Shapiro and Wilk
(1965, Table 5), but they are not displayed in the S output for this test. The vector of
weights a′ = (a1, . . . , an), where ai = −an−i+1, is calculated as

a =
w′V−1

w′V−1V−1w
, (10.30)

where the elements of the vector w are wi = E
[
x(i)

]
and V is the covariance matrix of the

order statistics x(1), x(2) · · · , x(n).

Example 10.16 �Shapiro-Wilk Normality Test � Use the Shapiro-Wilk test with
the random sample {47, 50, 57, 54, 52, 54, 53, 65, 62, 67, 69, 74, 51, 57, 57, 59} to test for nor-
mality using α = 0.05.
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Solution: First, order the data:

47 ≤ 50 ≤ 51 ≤ 52 ≤ 53 ≤ 54 = 54 ≤ 57 = 57 = 57 ≤ 59 ≤ 62 ≤ 65 ≤ 67 ≤ 69 ≤ 74.

Next, calculate the differences x(n−i+1) − x(i) for i = 1, 2, . . . ,
⌊

n
2

⌋
= 8:

x(16) − x(1) = 74 − 47 = 27 x(13) − x(4) = 65 − 52 = 13 x(10) − x(7) = 57 − 54 = 3
x(15) − x(2) = 69 − 50 = 19 x(12) − x(5) = 62 − 53 = 9 x(9) − x(8) = 57 − 57 = 0
x(14) − x(3) = 67 − 51 = 16 x(11) − x(6) = 59 − 54 = 5

Looking at Table 6 from Shapiro and Wilk (1965) (n = 16 and i = 1, . . . , 8), one obtains

a16 = 0.5056 a14 = 0.2521 a12 = 0.1447 a10 = 0.0593
a15 = 0.3290 a13 = 0.1939 a11 = 0.1005 a9 = 0.0196

which means b =
∑8

i=1 an−i+1(x(n−i+1) − x(i)) = 28.4392 and nS2
u = 854.

The Shapiro-Wilk test statistic value is then

W =
b2

nS2
u

=
808.7881

854
= 0.9471.

The critical value K with α = 0.05 and n = 16 is 0.887. As Wobs = 0.9471 > 0.887, one
fails to reject the null hypothesis of normality.
In S:

> x <- c(47,50,57,54,52,54,53,65,62,67,69,74,51,57,57,59)
> shapiro.test(x)

Shapiro-Wilk normality test

data: x W = 0.9471, p-value = 0.4445

10.8 Categorical Data Analysis

This section provides an overview of two common scenarios where categorical data are
generated and explains how each scenario is analyzed. The basic 2 × 2 contingency table
with fixed row totals was introduced in Section 9.9.3, Testing Equality of Proportions with
Fisher’s exact test. The 2 × 2 contingency table can be generalized for I rows and J
columns and is referred to as an I × J contingency table. The sampling scheme employed
to acquire the information in the table will determine the type of hypothesis that can be
tested. Consider the following two scenarios:

SCENARIO ONE: Is there an association between gender and a person’s happiness?
To investigate whether happiness depends on gender, one might use information collected
from the General Social Survey (GSS) (http://sda.berkeley.edu/GSS). In each survey, the
GSS asks, “Taken all together, how would you say things are these days—would you say
that you are very happy, pretty happy, or not too happy?” Respondents to each survey are
coded as either male or female. The information in Table 10.21 on the next page shows how
a subset of respondents (26-year-olds) were classified with respect to the variables HAPPY
and SEX.

SCENARIO TWO: In a double blind randomized drug trial (neither the patient nor
the physician evaluating the patient knows the treatment, drug or placebo, the patient
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Table 10.21: Twenty-six-year-olds’ happiness
HAPPY

SEX Very happy Pretty happy Not too happy
Male 110 277 50
Female 163 302 63

receives), 400 male patients with mild dementia were randomly divided into two groups of
200. One group was given a placebo over three months while the second group received
an experimental drug for three months. At the end of the three months, the physicians
(all psychiatrists) classified the 400 patients into one of three categories: improved, no
change, or worse. Are the proportions in the three status categories the same for the two
treatments?

Table 10.22: Mild dementia treatment results
Status

Treatment Improve No Change Worse
Drug 67 76 57
Placebo 48 73 79

The two scenarios illustrate two different sampling schemes that both result in I × J
contingency tables. In the first scenario, there is a single population (Americans) and
individuals are sampled from this single population and classified into one of the IJ cells
of the I × J contingency table based on the I = 2 SEX categories and the J = 3 HAPPY
categories. The format of an I×J contingency table when sampling from a single population
is shown in Table 10.23. The number of observations from the ith row classified into the
jth column is denoted by nij . It follows that the number of observations in the jth column
(1 ≤ j ≤ J) is n•j = n1j + n2j + · · · + nIj , while the number of observations in the ith row
(1 ≤ i ≤ I) is ni• = ni1 + ni2 + · · · + niJ .

The true population proportion of individuals in cell (i, j) will be denoted πij . Under
the assumption of independence between row and column variables (SEX and HAPPY
in this example), πij = πi• × π•j , where πi• =

∑J
j=1 πij and π•j =

∑I
i=1 πij . That is,

πi• is the proportion of observations in the population classified in category i of the row
variable and π•j is the proportion of observations in the population classified in category j
of the column variable. Since πi• and π•j are marginal population proportions, it follows
that π̂i• = pi• = ni•

n and π̂•j = p•j = n•j

n , where n is the sample size. Under the
assumption of independence the expected count for cell (i, j) is μij = nπij = nπi•π•j and
μ̂ij = nπ̂ij = nπ̂i•π̂•j = nni•

n
n•j

n = ni•n•j

n .

Table 10.23: Contingency table when sampling from a single population
Col 1 Col 2 · · · Col J Totals

Row 1 n11 n12 · · · n1J n1•
Row 2 n21 n22 · · · n2J n2•
...

...
...

...
...

Row I nI1 nI2 · · · nIJ nI•
Totals n•1 n•2 · · · n•J n
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In the second scenario, there are two distinct populations from which samples are taken.
The first population is the group of all patients receiving the experimental drug while the
second population is the group of all patients receiving a placebo. In this scenario, there
are I = 2 separate populations and J = 3 categories for the I = 2 populations. Individuals
sampled from the I = 2 distinct populations are classified into one of the J = 3 status
categories. This scenario has fixed row totals whereas the first scenario does not. In the
first scenario, only the total sample size, n, is fixed. That is, neither the row nor the column
totals are fixed. This is in contrast to scenario two, where the number of patients in each
treatment group (row) was fixed. The notation used for an I × J contingency table when
I samples from I distinct populations differs slightly from the notation used in Table 10.23
on the previous page with a contingency table from a single sample.

Since the sample sizes of the I distinct populations are denoted ni•, the total for all I
samples is denoted by n•• rather than the notation n used for a single sample in Table 10.23
on the preceding page. Table 10.24 shows the general form and notation used for an I × J
contingency table when sampling from I distinct populations. Each observation in each
sample is classified into one of J categories. If ni• denotes the number of observations in
the ith sample (1 ≤ i ≤ I) and nij denotes the number of observations from the ith sample
classified into the jth category (1 ≤ j ≤ J), it follows that the number of observations in
the jth column is n•j = n1j + n2j + · · · + nIj , while the number of observations in the ith

row is ni• = ni1 + ni2 + · · · + niJ .

Table 10.24: General form and notation used for an I ×J contingency table when sampling
from I distinct populations

Category 1 Category 2 · · · Category J Totals

Population 1 n11 n12 · · · n1J n1•
Population 2 n21 n22 · · · n2J n2•

...
...

...
...

...

Population I nI1 nI2 . . . nIJ nI•
Totals n•1 n•2 . . . n•J n••

10.8.1 Test of Independence

Scenario one asks if there is an association between gender and a person’s happiness. In
Section 3.3.6 on page 86, two events, A and B, were defined as independent when P(A∩B) =
P(A) × P(B) or, equivalently, when P(A|B) = P(A). If, instead of having a random sample
from a single population, an I×J contingency table consisted of entries from the population,
association could be mathematically verified by showing that P(nij) �= P(ni•) × P(n•j) for
some i and j. If by chance P(nij) = P(ni•)×P(n•j) for all i and j, then one would conclude
there is no association between gender and a person’s happiness. That is, the variables
gender and happiness would be considered mathematically independent. Since the entire
population is not given but rather a sample from a population, the values in the I × J
contingency table can be expected to change from sample to sample. The question is, “By
how much can the variables deviate from the mathematical definition of independence and
still be considered statistically independent?”
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The null and alternative hypotheses to test for independence between row and column
variables is written H0 : πij = πi•π•j versus H1 : πij �= πi•π•j . The test statistic is

χ2
obs =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij
. (10.31)

It compares the observed frequencies in the table with the expected frequencies when H0

is true. Under the assumption of independence, and when the observations in the cells
are sufficiently large (usually greater than 5), χ2

obs =
∑I

i=1

∑J
j=1

(nij−μ̂ij)
2

μ̂ij

�∼ χ2
(I−1)(J−1),

where μ̂ij = ni•n•j

n = Eij and nij = Oij . The null hypothesis of independence is rejected
when χ2

obs > χ2
1−α;(I−1)(J−1).

The chi-squared approximation is generally satisfactory if the Eijs (μ̂ijs) in the test
statistic are not too small. Various rules of thumb exist for what might be considered
too small. A very conservative rule is to require all Eijs to be 5 or more. This can
be accomplished by combining cells with small Eijs and reducing the overall degrees of
freedom. At times, it may be permissible to let the Eij of a cell be as low as 0.5.

Test for SCENARIO ONE:

Step 1: Hypotheses — H0 : πij = πi•π•j (Row and column variables are independent.)
versus H1 : πij �= πi•π•j for at least one i, j (Row and column variables are
dependent.)

Step 2: Test Statistic — The test statistic is

χ2
obs =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij

�∼ χ2
(I−1)(J−1) = χ2

(2−1)(3−1) = χ2
2

under the assumption of independence. The χ2
obs value is 4.32.

Step 3: Rejection Region Calculations — The rejection region is

χ2
obs > χ2

1−α;(I−1)(J−1) = χ2
0.95;2 = 5.99.

Before the statistic χ2
obs =

∑I
i=1

∑J
j=1

(Oij−Eij)
2

Eij
can be computed, the expected

counts for each of the ij cells must be calculated. Note that Oij = nij and Eij =
ni•n•j

n :

> HA <- c(110,277,50,163,302,63)
> HAT <- matrix(data=HA, nrow=2, byrow=TRUE)
> dimnames(HAT) <- list(Gender=c("Male","Female"),
+ Category=c("Very Happy","Pretty Happy", "Not To Happy"))
> HAT

Category
Gender Very Happy Pretty Happy Not To Happy
Male 110 277 50
Female 163 302 63

> E <- outer(rowSums(HAT), colSums(HAT), "*")/sum(HAT)
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> E
Very Happy Pretty Happy Not To Happy

Male 123.6280 262.2 51.17202
Female 149.3720 316.8 61.82798

χ2
obs =

(110 − 123.6280)2

123.6280
+

(277 − 262.2)2

262.2
+ · · · + (63 − 61.83)2

61.83
= 4.32

The value of the test statistic is χ2
obs = 4.32. This can be done with code by entering

> chi.obs <- sum((HAT-E)^2/E )
> chi.obs
[1] 4.321482

4.32 = χ2
obs

?
> χ2

.95,2 = 5.99.

Step 4: Statistical Conclusion — The ℘-value is 0.115.

> p.val <- 1-pchisq(chi.obs,2)
> p.val
[1] 0.1152397

I. From the rejection region, since χ2
obs = 4.32 < χ0.95;2 = 5.99, fail to reject the

null hypothesis of independence.

II. Since the ℘-value = .115 is greater than 0.05, fail to reject the null hypothesis
of independence.

Fail to reject H0.

Step 5: English Conclusion — There is not sufficient evidence to suggest the variables
gender and happiness are statistically dependent.

Both R and S-PLUS have the function chisq.test(), which can be used to test the null
hypothesis of independence by computing the observed test statistic and its corresponding
℘-value:

> chisq.test(HAT)

Pearson’s Chi-squared test

data: HAT
X-squared = 4.3215, df = 2, p-value = 0.1152

10.8.2 Test of Homogeneity

The question of interest in scenario two is whether the proportions in each of the j = 3
categories for the i = 2 populations are equivalent. Specifically, is π1j = π2j for all j? This
question is answered with a test of homogeneity. In general, the null hypothesis for a test
of homogeneity with i = I populations is written

H0 : π1j = π2j = · · · = πIj for all j versus H1 : πij �= πi+1,j for some (i, j). (10.32)
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Expressed in words, the null hypothesis is that the I populations are homogeneous with
respect to the J categories versus the I populations are not homogeneous with respect to the
J categories. An equivalent interpretation is that for each population j = 1, 2, . . . , J , the
proportion of people in the jth category is the same. When H0 is true, π1j = π2j = · · · = πIj

for all j. Under the null hypothesis, μij = ni•πij , π̂ij = pij = n•j

n••
, and μ̂ij = ni•n•j

n••
= Eij .

When H0 is true, all the probabilities in the jth column are equal, and a pooled estimate of
πij is obtained by adding all the frequencies in the jth column (n•j) and dividing the total
by n••. The statistic used in this type of problem has the same form as the one used for
the test of independence in (10.31). Substituting the homogeneity expressions for Oij and
Eij , the statistic is expressed as

χ2
obs =

I∑
i=1

J∑
j=1

(nij − ni•n•j/n••)2

ni•n•j/n••
�∼ χ2

(I−1)(J−1).

The null hypothesis of homogeneity is rejected when χ2
obs > χ2

1−α;(I−1)(J−1).
When row and column totals are not fixed, the numbers in the i, j cells can be used to

estimate their corresponding population proportions without assuming the null hypothesis
is true. With fixed row or column totals, this estimation cannot be accomplished. That is,
π̂ij = pij �= nij

n••
when H0 is false.

Test for SCENARIO TWO:

Step 1: Hypotheses — H0 : π1j = π2j for all j versus H1 : πi, j �= πi+1, j for some (i, j).
That is, all the probabilities in the same column are equal to each other versus at
least two of the probabilities in the same column are not equal to each other.

Step 2: Test Statistic — The test statistic is

χ2
obs =

I∑
i=1

J∑
j=1

(Oij − Eij)2

Eij
∼ χ2

(I−1)(J−1) = χ2
(2−1)(3−1) = χ2

2

under the null hypothesis. The χ2
obs value is 6.7584.

Step 3: Rejection Region Calculations — The rejection region is

χ2
obs > χ2

1−α;(I−1)·(J−1) = χ2
0.95;2 = 5.991465.

Before the statistic χ2
obs =

∑I
i=1

∑J
j=1

(Oij−Eij)
2

Eij
can be computed, the expected

counts for each of the ij cells must be determined. Recall that Oij = nij and
Eij = ni•n•j

n•• .

> DT <- c(67,76,57,48,73,79)
> DTT <- matrix(data=DT, nrow=2, byrow=TRUE)
> dimnames(DTT) <- list(Treatment=c("Drug","Placebo"),
+ Category=c("Improve","No Change", "Worse"))
> DTT

Category
Treatment Improve No Change Worse
Drug 67 76 57
Placebo 48 73 79
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> E <- outer(rowSums(DTT), colSums(DTT), "*")/sum(DTT)
> E

Improve No Change Worse
Drug 57.5 74.5 68
Placebo 57.5 74.5 68

χ2
obs =

(67 − 57.5)2

57.5
+

(76 − 74.5)2

74.5
+ · · · + (79 − 68)2

68
= 6.76

The value of the test statistic is χ2
obs = 6.7584. This can be done with code by

entering

> chi.obs <- sum((DTT-E)^2/E )
> chi.obs
[1] 6.758357

6.76 = χ2
obs

?
> χ2

.95,2 = 5.99.

Step 4: Statistical Conclusion — The ℘-value is 0.03407544.

> p.val <- 1-pchisq(chi.obs,2)
> p.val
[1] 0.03407544

I. From the rejection region, since χ2
obs = 6.76 > χ.95;2 = 5.99, reject the null

hypothesis of homogeneity.

II. Since the ℘-value = .034 is less than 0.05, reject the null hypothesis of
homogeneity.

Reject H0.

Step 5: English Conclusion — There is sufficient evidence to suggest that not all of the
probabilities for the i = 2 populations with respect to each of the J categories are
equal.

Both R and S-PLUS have the function chisq.test(), which can be used to test the null
hypothesis of homogeneity by computing the observed test statistic and its corresponding
℘-value:

> chisq.test(DTT)

Pearson’s Chi-squared test

data: DTT
X-squared = 6.7584, df = 2, p-value = 0.03408
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10.9 Nonparametric Bootstrapping

The term “bootstrapping” is due to Efron (1979), and is an allusion to a German legend
about a Baron Münchhausen, who was able to lift himself out of a swamp by pulling himself
up by his own hair. In later versions he was using his own boot straps to pull himself out
of the sea, which gave rise to the term bootstrapping. As improbable as it may seem,
taking samples from the original data and using these resamples to calculate statistics can
actually give more accurate answers than using the single original sample to calculate an
estimate of a parameter. In fact, resampling methods require fewer assumptions than the
traditional methods found in Chapters 7 and 8 and sometimes give more accurate answers.
One of the more common methods of resampling is the bootstrap. The fundamental concept
in bootstrapping is the building of a sampling distribution for a particular statistic by re-
sampling from the data that are at hand. Although bootstrap methods are both parametric
and nonparametric, attention in this section is focused exclusively on the nonparametric
bootstrap. These methods offer the practitioner valuable tools for dealing with complex
problems with computationally intensive techniques that rely on today’s computers, which
are many times faster than those of a generation ago. Even though resampling procedures
rely on the “new” power of the computer to perform simulations, they are based on the
“old” statistical principles such as populations, parameters, samples, sampling variation,
pivotal quantities, and confidence intervals.

For most students, the idea of a sampling distribution for a particular statistic is com-
pletely abstract; however, once work begins with the bootstrap distribution, the bootstrap
analog to the sampling distribution, the concreteness of the bootstrap distribution promotes
a conceptual understanding of the more abstract sampling distribution. In fact, bootstrap
procedures promote statistical thinking by providing concrete analogies to theoretical con-
cepts.

S-PLUS has very extensive built-in resampling capabilities. Two S packages for boot-
strapping are bootstrap by Efron and Tibshirani (1993) (ported to R from S-PLUS by
Friedrich Leisch) and boot by Angelo Canty (ported to R from S-PLUS by B. D. Ripley).
Angelo Canty’s package provides functions and data sets from the book Bootstrap Methods
and Their Applications by Davison and Hinkley (1997). The package boot is used for the
remainder of this chapter. For R, boot can be obtained from CRAN; and for S-PLUS, from
http://statwww.epfl.ch/davison/BMA/library.html.

10.9.1 Bootstrap Paradigm

Suppose a random sample X = {X1, X2, . . . , Xn} is taken from an unknown probability
distribution, F , and the values x = {x1, x2, . . . , xn} are observed. Using x, the parameter
θ = t(F ) is to be estimated. The traditional approach of estimating θ is to make some
assumptions about the population structure and to derive the sampling distribution of
θ̂ based on these assumptions. This, of course, assumes the derivation of the sampling
distribution of the statistic of interest has either been done or that the individual who
needs to do the deriving has the mathematical acumen to do so. Often, the use of the
bootstrap will be preferable to extensive mathematical calculations.

In the bootstrap paradigm, the original sample, x, takes the place the population holds
in the traditional approach. Subsequently, a random sample of size n is drawn from x
with replacement. The resampled values are called a bootstrap sample and are denoted x∗.
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These values are used to calculate an estimate of the statistic of interest, s(x) = θ̂. This s(x)
is not necessarily the plug-in estimate of θ, θ̂ = t(F̂ ), where F̂ is the empirical probability
distribution function. It is, however, the function applied to the bootstrap sample x∗ that
creates a bootstrap estimate of θ denoted θ̂∗ or t∗. That is,

s(x∗) = t∗ = θ̂∗. (10.33)

The star notation indicates that x∗ is not the original data set x, but rather, it is a random
sample of size n drawn with replacement from x. That is, given x = {x1, x2, . . . , xn}, one
possible bootstrap sample x∗ might be {x∗

1 = x5, x
∗
2 = x3, x

∗
3 = x5, . . . , x

∗
n = x7}. Some

values from the original sample x may appear once, more than once, or not at all in the
bootstrap sample x∗.

The fundamental bootstrap assumption is that the sampling distribution of the statistic
under the unknown probability distribution F may be approximated by the sampling
distribution of θ̂∗ under the empirical probability distribution F̂ . That is,

VarF (θ̂) ≈ Var F̂ (θ̂∗)
GF (a) ≈ GF̂ (a)

G−1
F (0.95) ≈ G−1

F̂
(0.95)

(10.34)

where G is the cumulative distribution function of the distribution of θ̂. Generally, the
bootstrap estimate of the parameter of interest is not computed directly, but it is instead
estimated from B bootstrap samples.

The process of creating a bootstrap sample x∗ and a bootstrap estimate θ̂∗ of the
parameter of interest is repeated B times (typically 999 or more). The B bootstrap estimates
of θ, the θ̂∗s, are subsequently used to estimate specific properties of the bootstrap sampling
distribution of θ̂∗. Note that B values of θ̂∗ are used to estimate specific properties of
the bootstrap sampling distribution of θ̂∗. There are a total of

(
2n−1

n

)
distinct bootstrap

samples. Yet, a reasonable estimate of the standard error of θ̂∗, σ̂θ̂∗ ≡ ŜEB, can be achieved
with only B = 200 bootstrap replications in most problems. For confidence intervals and
quantile estimation, B generally should be at least 999.

The general procedure for estimating the standard error of θ̂∗ is

(1) Generate B independent bootstrap samples {x∗
1,x

∗
2, . . . ,x

∗
B}, each consisting of n values

drawn with replacement from x.

(2) Compute the statistic of interest for each bootstrap sample:

θ̂∗b ≡ t∗b = s(x∗
b ) b = 1, 2, . . . , B

(3) Estimate the standard error of θ̂
(
SEF (θ̂) ≡ σθ̂

)
by computing the sample standard

deviation of the bootstrap replications of θ̂∗b , b = 1, 2, . . . , B:

σθ̂ ≈ ŜEB ≡ σ̂θ̂∗ =

⎡⎢⎣ B∑
b=1

(
θ̂∗b − θ̂∗

)2

B − 1

⎤⎥⎦
1
2

, where θ̂∗=
B∑

b=1

θ̂∗b
B

. (10.35)

The bootstrap algorithm for estimating the standard error of a statistic θ̂ = s(x) is
graphically depicted in Figure 10.16.
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�ŜEB =

⎡⎢⎣ B∑
b=1

(
θ̂∗b − θ̂∗

)2

B − 1

⎤⎥⎦
1
2

Bootstrap
Replications
of θ̂

FIGURE 10.16: Graphical representation of the bootstrap based on Efron and Tibshirani
(1993, Figure 6.1)

For most statistics, bootstrap distributions approximate the shape, spread, and bias of
the actual sampling distribution; however, bootstrap distributions differ from the actual
sampling distribution in the locations of their centers. The bootstrap distribution having a
similar shape is clear. A similar spread means

Var
[
s(X)|F

]
≈ Var

[
s(X)|F̂

]
.

That is, the variance of the estimator s(X) under the unknown distribution F is approx-
imately the same as the variance of s(X) under the bootstrap distribution obtained by
replacing F with F̂ . The variance of s(X) under F̂ is not computed, but rather estimated
from the B bootstrap samples and is

Var
[
s(X)|F̂

]
≈ V̂arB

[
s(X)|F̂

]
=

B∑
b=1

(
θ̂∗b − θ̂∗

)2

B − 1
.

The sampling distribution of a statistic s(X) used to estimate the parameter θ = t(F ) is
centered at the parameter θ plus any bias, while the bootstrap distribution is centered at
θ̂ plus any bias. Recall that the bias of a statistic θ̂ is E(θ̂) − θ. Consequently, the bias of
s(X) = θ̂ is expressed as

Bias
[
s(X)|F

]
= EF

[
s(X)

]
− t(F ),

while the bias of the bootstrap distribution of θ̂ is

Bias
[
s(X)|F̂

]
= EF̂

[
s(X∗)

]
− t(F̂ ).

Generally, the bootstrap bias of s(X) is not computed directly but is instead estimated from
B bootstrap samples. That is, EF̂ [s(X∗)] is not computed directly but is estimated by

ÊF̂ [s(X∗)] =
B∑

b=1

θ̂∗b
B

= θ̂∗.



472 Probability and Statistics with R

The result is an estimated bootstrap bias of s(X) based on B bootstrap samples denoted

B̂iasB[s(X)] = θ̂∗− θ̂. (10.36)

10.9.2 Confidence Intervals

With estimates of the standard error (standard deviation) and bias of some statistic
of interest, various types of confidence intervals for the parameter θ can be constructed.
Although exact confidence intervals for specific problems can be computed, most confidence
intervals are approximate. The most common confidence interval for a parameter θ when θ̂
follows either a normal or approximately normal distribution is

θ̂ ± z1−α/2σ̂θ̂. (10.37)

The function boot.ci() in the package boot creates several types of confidence intervals,
four of which are covered here.

The normal confidence interval in boot.ci() is a slight modification to (10.37) that
incorporates both a bootstrap adjustment for bias and a bootstrap estimate of the standard
error. The normal confidence interval is calculated as

CI 1−α(θ) =
[
θ̂ − B̂iasB(θ̂) − z1−α/2 · ŜEB, θ̂ − B̂iasB(θ̂) + z1−α/2 · ŜEB

]
(10.38)

The basic bootstrap confidence interval is based on the idea that the quantity θ̂∗ − θ̂

has roughly the same distribution as θ̂ − θ. Since (10.39) has
(
θ̂∗ − θ̂

) �∼
(
θ̂ − θ

)
, (10.40)

follows. To get (10.41) from (10.40), subtract θ̂ inside the probability statement and divide
by −1:

P

[
θ̂∗((B+1)·α/2) − θ̂ ≤ θ̂∗ − θ̂ ≤ θ̂∗((B+1)·(1−α/2)) − θ̂

]
≈ 1 − α, (10.39)

P

[
θ̂∗((B+1)·α/2) − θ̂ ≤ θ̂ − θ ≤ θ̂∗((B+1)·(1−α/2)) − θ̂

]
≈ 1 − α (10.40)

P

[
2θ̂ − θ̂∗((B+1)·(1−α/2)) ≤ θ ≤ 2θ̂ − θ̂∗((B+1)·α/2)

]
≈ 1 − α (10.41)

Equations (10.39) to (10.41) lead to the basic bootstrap confidence interval given in (10.42):

CI 1−α(θ) =
[
2θ̂ − θ̂∗((B+1)·(1−α/2)), 2θ̂ − θ̂∗((B+1)·α/2)

]
(10.42)

The percentile confidence interval is based on the quantiles of the B bootstrap replica-
tions of s(X). Specifically, the (1 − α) percentile confidence interval of θ uses the α/2 and
the 1 − α/2 quantiles of the θ̂∗ values to create a (1 − α) · 100% confidence interval for θ:

CI 1−α(θ) =
[
θ̂∗((B+1)·α/2), θ̂

∗
((B+1)·(1−α/2))

]
(10.43)

The notation θ̂∗(Integer) is used to denote the (Integer)th θ̂∗ of the B sorted θ̂∗ values. The
values of B and α are generally chosen so that (B + 1) · α/2 is an integer. In cases where
(B +1) ·α/2 is not an integer, interpolation can be used. (Note that different programs use
different interpolation techniques.)
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One may have noticed that the percentile confidence interval uses θ̂∗((B+1)·α/2) to con-
struct the lower endpoint of the confidence interval while the basic bootstrap interval uses
θ̂∗((B+1)·α/2) in the construction of the upper endpoint of its confidence interval. Is one of
the methods backwards? If not, does one method work better than the other? In fact,
neither method is backward and neither method is uniformly superior to the other. At
this point, a reasonable question might be which confidence interval is recommended for
general usage since the normal confidence interval is based on large sample properties and
the percentile and basic bootstrap confidence interval formulas give different answers when
the distribution of θ̂∗ is skewed. In fact, the answer is to use none of the confidence intervals
discussed thus far. The bootstrap confidence interval procedure recommended for general
usage is the BCa method, which stands for bias-corrected and accelerated. The first three
methods discussed (normal, percentile, and basic bootstrap) have first-order accuracy, while
the BCa method is second-order accurate. Accuracy in this context simply refers to the
coverage errors. The bottom line is that there are theoretical reasons to prefer the BCa

confidence interval over the normal, percentile, and basic bootstrap confidence intervals.
To compute a BCa interval for θ, CI 1−α(θ) =

[
θ̂∗lower, θ̂

∗
upper

]
, first compute the bias

factor, z, where

z = Φ−1

⎡⎣∑B
b=1 I

{
θ̂∗b < θ̂

}
B

⎤⎦ . (10.44)

Recall the definition of Φ−1 on page 153. Provided the estimated bootstrap distribution,

s(x∗) = θ̂∗, is symmetric with respect to θ̂, and if θ̂ is unbiased, then
∑B

b=1 I{θ̂∗
b <θ̂}

B will be
close to 0.5, and the bias correction factor z will be close to zero since Φ−1(0.5) = 0, with
S, qnorm(.5)=0. Next, compute the skewness correction factor:

a =

∑n
i=1

(
θ̂ (−i) − θ̂(−i)

)3

6
[∑n

i=1

(
θ̂ (−i) − θ̂(−i)

)2
] 3

2
(10.45)

where θ̂(−i) is the value of θ̂ = s(X) when the ith value is deleted from the sample of n

values and θ̂ (−i) =
∑n

i=1
θ̂(−i)

n . Using z and a, compute

a1 = Φ
[
z +

z + zα/2

1 − a(z + zα/2)

]
and a2 = Φ

[
z +

z + z1−α/2

1 − a(z + z1−α/2)

]
(10.46)

Now, lower = (B + 1) · a1 and upper = (B + 1) · a2. When either lower or upper is not
an integer, interpolation can be used to obtain the lower and upper endpoints of the BCa

confidence interval:
CI 1−α(θ) =

[
θ̂∗lower, θ̂

∗
upper

]
. (10.47)

Let k = 	(B + 1) · ai
 for i = 1, 2. Then the appropriate interpolation is

θ̂∗((B+1)·ai)
= θ̂∗(k) +

Φ−1(ai) − Φ−1
(

k
B+1

)
Φ−1

(
k+1
B+1

)
− Φ−1

(
k

B+1

) ·
(
θ̂∗(k+1) − θ̂∗(k)

)
for i = 1, 2. (10.48)

Example 10.17 � Bootstrap CIs with M1 Motorspeedway Times � The times
recorded are those for 41 successive vehicles traveling northwards along the M1 motorway
in England when passing a fixed point near Junction 13 in Bedfordshire on Saturday, March
23, 1985. After subtracting the times, the following 40 interarrival times, reported to the
nearest second, are stored in SDS4 under the variable Times.
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(a) Determine the distribution of the interarrival times.

(b) Calculate bootstrap confidence intervals for the mean and standard deviation of those
times using the function boot.ci() from the boot package. Specifically, use the
arguments norm, basic, perc, and bca with the function boot.ci() to create normal
approximation, basic, percentile, and BCa confidence intervals.

(c) Verify the resulting confidence intervals for the mean using the appropriate equations.

Solution: The answers are as follows:

(a) It appears that the conditions for an approximate Poisson process are satisfied. The esti-
mated parameter, λ, for the Poisson process, λ̂, is 0.1282051 cars per second. Consequently,
the waiting time until the next car follows an exponential distribution with mean 1/λ . In this
case, the estimated mean of the exponential distribution (waiting time) is 7.8 seconds/car.
A density histogram of the interarrival times with a superimposed Exp(λ = 0.1282051)
suggests this distribution is reasonable. In addition, both the mean and the standard
deviation of Times are roughly equal, as they should be with an exponential distribution.

> attach(SDS4)
> TT <- max(cumsum(Times)) # Time period (seconds)
> n <- length(lag(Times)) # Number of Cars
> Elamb <- n/TT # Cars/Time period
> EMeanExp <- 1/Elamb # Time period/Cars
> ans <- c(TT, n, Elamb, EMeanExp)
> names(ans) <- c("Total Time", "# of Cars", "Est. lambda", "Est. Mean")
> ans
Total Time # of Cars Est. lambda Est. Mean
312.0000000 40.0000000 0.1282051 7.8000000
> hist(Times, prob=TRUE)
> curve(dexp(x, Elamb), 0, 35, add=TRUE) # Only R
> c(mean(Times), sd(Times)) # Distribution Check
[1] 7.800000 7.871402
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FIGURE 10.17: Histogram of interarrival times at the M1 motorspeedway
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(b) The four bootstrap confidence intervals are now constructed for the mean using both the
function boot() and the formulas. Use the function Times.mean() with the boot package
to compute the mean:

> library(boot)
> Times.mean <- function(data, i)
+ {
+ d <- data[i]
+ M <- mean(d)
+ M
+ }

Set the number of bootstrap replications B to 9999 and generate the bootstrapped distri-
bution of X denoted by t∗ when using the boot package. Store the results in b.obj. Note
that R in boot is the number of bootstrap replications, which is denoted B in this text, so
R is set equal to B. A random seed value of 10 (in R) is used so the reader can reproduce
the results in the text:

> set.seed(10)
> B <- 9999
> b.obj <- boot(Times, Times.mean, R=B)
> b.obj

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = Times, statistic = Times.mean, R = B)

Bootstrap Statistics :
original bias std. error

t1* 7.8 -0.012494 1.215

Examine the graph (Figure 10.18) of t∗. Note that the histogram and normal quantile-
quantile plot of t∗ indicate the distribution is slightly skewed to the right. Hence, there are
small differences between the confidence intervals created with the percentile method and
the basic bootstrap.

> plot(b.obj) # Histogram and Q-Q plot of t* values

Next, use the function boot.ci() on the object b.obj to create the four types of boot-
strapped confidence intervals:

> boot.ci(b.obj, type=c("norm","basic","perc","bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL :
boot.ci(boot.out = b.obj, type = c("norm", "basic", "perc", "bca"))

Intervals :
Level Normal Basic
95% ( 5.431, 10.194 ) ( 5.275, 10.050 )
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FIGURE 10.18: Histogram and quantile-quantile plot of the bootstrapped mean of
interarrival times at the M1 motorspeedway

Level Percentile BCa
95% ( 5.550, 10.325 ) ( 5.800, 10.700 )
Calculations and Intervals on Original Scale

(c) To verify that these confidence intervals match the appropriate equations, start by setting
TO = tobs, Tstar = t∗ values, and BIAS = estimated bootstrapped bias from (10.36). A
95% confidence level matches the default confidence level for the function boot.ci().

> T0 <- b.obj$t0
> Tstar <- b.obj$t
> BIAS <- mean(Tstar)-T0
> BIAS
[1] -0.012494
> conf.level <- .95
> alpha <- 1-conf.level

The normal confidence interval is calculated with (10.38). Note that the command sd()
should be replaced with stdev() if using S-PLUS.

> c( (T0-BIAS)-qnorm(1-alpha/2)*sd(Tstar),
+ (T0-BIAS)+qnorm(1-alpha/2)*sd(Tstar) )
[1] 5.4312 10.1938

The basic confidence interval is calculated with (10.42).

> bt <- sort(Tstar)
> c(2*T0 - bt[(B+1)*(1-alpha/2)], 2*T0 - bt[(B+1)*(alpha/2)])
[1] 5.275 10.050

The percentile confidence interval is calculated using (10.43).

> c(bt[(B+1)*(alpha/2)], bt[(B+1)*(1-alpha/2)])
[1] 5.550 10.325
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The BCa confidence interval is figured with (10.47), including the bias factor z from (10.44),
the a value in (10.45), and the a1 and a2 values in (10.46):

> z <- qnorm(sum(Tstar < T0)/B) # Using (10.44)
> z
[1] 0.045014
> n <- length(Times)
> u <- rep(0, n)
> for (i in 1:n)
+ {
+ u[i] <- mean(Times[-i])
+ }
> ubar <- mean(u)
> numa <- sum((ubar-u)^3)
> dena <- 6*sum((ubar-u)^2)^(3/2)
> a <- numa/dena
> a
[1] 0.043082
> a1 <- pnorm( z + (z-qnorm(1-alpha/2))/(1-a*(z-qnorm(1-alpha/2))) )
> a2 <- pnorm( z + (z+qnorm(1-alpha/2))/(1-a*(z+qnorm(1-alpha/2))) )

Since (B + 1) · a1 and (B + 1) · a2 are not integers, θ̂∗lower and θ̂∗upper are calculated with the
interpolation (10.48):

> kl <- floor((B+1)*a1)
> ll <- bt[kl] + (qnorm(a1)-qnorm(kl/(B+1)))/(qnorm((kl+1)/(B+1))
+ -qnorm(kl/(B+1)))*(bt[kl+1]-bt[kl])
> ku <- floor((B+1)*a2)
> ul <- bt[ku] + (qnorm(a2)-qnorm(ku/(B+1)))/(qnorm((ku+1)/(B+1))
+ -qnorm(ku/(B+1)))*(bt[ku+1]-bt[ku])
> c(ll, ul)
[1] 5.8 10.7

Thus, all four intervals are verified to match the confidence intervals computed with
boot.ci() by using their respective equations.

For the confidence intervals for the standard deviation, simply use boot.ci(). First
write the function Times.sd() to compute standard deviation. Then, proceed with the
calculation as before.

> Times.sd <- function(data, i)
+ {
+ d <- data[i]
+ SD <- sqrt(var(d))
+ SD
+ }
>
> set.seed(13)
> B <- 9999
> b.obj <- boot(Times, Times.sd, R=B)
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> b.obj

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:
boot(data = Times, statistic = Times.sd, R = B)

Bootstrap Statistics :
original bias std. error

t1* 7.8714 -0.22009 1.2813

Construct a histogram and quantile-quantile plot of the t∗ values. Note the slight negative
skew in the distribution of t∗ in Figure 10.19. This slight skewness will make the BCa

interval preferred over the other three types.

> plot(b.obj) # Histogram and Q-Q plot of t* values
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FIGURE 10.19: Histogram and quantile-quantile plot of the bootstrapped standard
deviation of interarrival times at the M1 motorspeedway

Next, construct the four confidence intervals with boot.ci():

> boot.ci(b.obj, type=c("norm","basic","perc","bca"))
BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 9999 bootstrap replicates

CALL :
boot.ci(boot.out = b.obj, type = c("norm", "basic", "perc", "bca"))

Intervals :
Level Normal Basic
95% ( 5.580, 10.603 ) ( 5.702, 10.659 )
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Level Percentile BCa
95% ( 5.084, 10.041 ) ( 5.805, 10.891 )
Calculations and Intervals on Original Scale

10.10 Permutation Tests

Permutation tests are computationally intensive techniques that actually predate com-
puters. Until recently, permutation tests were more of a theoretical ideal than a useful
technique. With the advent of high-powered computers, permutation tests have moved out
of the abstract into the world of the practical. The permutation test is examined in only
one context here—the two-sample problem. The fundamental idea behind the permutation
test is that if there are no differences between two treatments, all data sets obtained by
randomly assigning the data to the two treatments have an equal chance of being observed.
Permutation tests are especially advantageous when working with small samples where
verification of assumptions required for tests such as the pooled t-test are difficult.

To test a hypothesis with a permutation test:

Step 1: Choose a test statistic θ̂ that measures the effect under study. Note that certain
statistics will have more power to detect the effect of interest than others.

Step 2: Create the sampling distribution that the test statistic in step 1 would have if the
effect is not present in the population.

Step 3: Find the “observed test statistic” in the sampling distribution from step 2. Ob-
served values in the extremes of the sampling distribution suggest that the effect
under study is “real.” In contrast, observed values in the main body of the sampling
distribution imply that the effect is likely to have occurred by chance.

Step 4: Calculate the ℘-value based on the observed test statistic. This may be

P(|θ̂| ≥ |θ̂obs|)
P(θ̂ ≥ θ̂obs)

P(θ̂ ≤ θ̂obs)

for the inequality in HA being �=, >, or <, respectively.

The Two-Sample Problem

Suppose two independent random samples z = {z1, z2, . . . , zn} and y = {y1, y2, . . . , ym}
are drawn from possibly different probability distributions F and G. The question of interest
is whether F = G. Assuming H0 : F = G is true, it is possible to create the permutation
sampling distribution for some statistic, θ̂, of interest. Let N equal the combined sample
size n + m, let v = {v1, v2, . . . , vN} be the combined and ordered vector of values, and let
g = {g1, g2, . . . , gN} be a vector indicating the group membership for v. Since there are n
zis and m yjs in g, there are

(
N
n

)
possible ways of partitioning N elements into two subsets

of sizes n and m. Consequently, under the null hypothesis that F = G, the vector g has
probability 1/

(
N
n

)
of equalling any one of its possible values. That is, all combinations of

zis and yjs are equally likely if F = G.
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Suppose HA : F > G and θ̂ = z̄ − ȳ. Then the exact ℘-value is found by finding
#
{
θ̂ ≥ θ̂obs

}/(
N
n

)
. For all but relatively trivial sized samples n and m, the number

(
N
n

)
will be huge, making the enumeration of all possible samples of the statistic of interest a
monumental task. Consider that, if n = 10 and m = 10, complete enumeration would
require listing

(
20
10

)
= 184, 756 possible outcomes.

Consequently, an approximation to the exact ℘-value is often obtained by resampling
without replacement the original data some “large” number of times, B, which is usually
at least 999, and approximating the ℘-value with

℘-value ≈

[
1 + #

{
θ̂∗b ≥ θ̂obs

}]
(B + 1)

=

[
1 +

∑B
i=1 I

{
θ̂∗b ≥ θ̂obs

}]
(B + 1)

(10.49)

The resampling is done without replacement to approximate the ℘-value from a permutation
test. When the sampling is done with replacement, a bootstrap test is performed. Bootstrap
tests are somewhat more general than permutation tests since they apply to a wider class
of problems; however, they do not return “exact” ℘-values.

Example 10.18 � Permutation Test � The data set used in this problem (Ratbp)
is originally from Ott and Mendenhall (1985, problem 8.17). Researchers wanted to know
whether a drug was able to reduce the blood pressure of rats. Twelve rats were chosen and
the drug was administered to six rats, the treatment group, chosen at random. The other
six rats, the control group, received a placebo. The drops in blood pressure (mmHg) for the
treatment group (with probability distribution F ) and the control group (with probability
distribution G) are stored in the variables Treat(z) and Cont(y), respectively. Note that
positive numbers indicate blood pressure decreased while negative numbers indicate that it
rose. Under the null hypothesis, H0 : F = G, the data come from a single population. The
question of interest is, “How likely are differences as extreme as those observed between the
treatment and control groups to be seen if the null hypothesis is correct?” Use θ̂ = z̄ − ȳ as
the statistic of interest and compute:

(a) The exact permutation ℘-value,

(b) An estimated permutation ℘-value based on 499 permutation replications, and

(c) An estimated bootstrap ℘-value based on 499 bootstrap replications.

Solution: The test statistic of interest (step 1) has been specified to be θ̂ = z̄− ȳ. Finding
the ℘-values requires the creation of sampling distributions with different methods. First,
load the boot package and attach Ratbp. Combine the treatment and control data in a
single variable called Blood.

> library(boot)
> B <- 999
> attach(Ratbp)
> Ratbp
Treat Cont

1 69.0 9.0
2 24.0 12.0
3 63.0 36.0
4 87.5 77.5
5 77.5 -7.5
6 40.0 32.5
> Blood <- c(Treat, Cont)
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(a) Exact Permutation Method The variable pdT6 contains all of the possible combi-
nations,

(
12
6

)
= 924 of them, of the indices of Blood. Comb is a 924 × 12 matrix with each

row containing the data in Blood. Theta will contain all possible values of the statistic
θ̂ = z̄ − ȳ. Note that an array of 924 zeros is Theta’s initial value before the for loop. The
assignment following Theta[i], mean(Comb[i, pdT6[i,]])-mean(Comb[i,-pdT6[i,]]),
takes each row of the Comb matrix and finds the value of θ̂ for the appropriate permutation
using the indices in pdT6. For example, when i = 751, pdT6[751,] is (1, 2, 4, 8, 11,
12), and for

Comb[751,]=Blood= (69.0, 24.0, 63.0, 87.5, 77.5, 40.0,

9.0, 12.0, 36.0, 77.5, -7.5, 32.5),

Comb[i, pdT6[i,]] is Comb[751, c(1,2,4,8,11,12)], which extracts

(69, 24, 87.5, 12, -7.5, 32.5)

and Comb[i,-pdT6[i,]] is Comb[751, c(3,5,6,7,9,10)], which extracts

(63, 77.5, 40, 9, 36, 77.5).

This puts the mean of (69, 24, 87.5, 12, -7.5, 32.5) = 36.25 minus the mean of (63,
77.5, 40, 9, 36, 77.5) = 50.5, which is −14.25 in Theta[751]. The for loop calculates
all

(
12
6

)
= 924 values of θ̂ in a similar manner. Theta.obs is the actual observed value of

θ̂ = 60.167− 26.583 = 33.583, the mean blood pressure drop of the treatment group minus
the mean blood pressure drop of the control group. The exact ℘-value is the number of
values in Theta greater than or equal to 33.583 divided by 924. This value is 0.031385, the
exact permutation ℘-value.

> pdT6 <- SRS(1:12,6) # OR t(Combinations(12,6))
> Comb <- matrix(rep(c(Treat, Cont),924), ncol=12, byrow=TRUE)
> Theta <- array(0,924)
> for(i in 1:924)
+ {
+ Theta[i] <- mean(Comb[i, pdT6[i,]])-mean(Comb[i,-pdT6[i,]])
+ }
> Theta.obs <- mean(Treat) - mean(Cont)
> pval <- sum(Theta >= Theta.obs)/choose(12,6)
> pval
[1] 0.031385

Figure 10.20 shows a histogram of the sampling distribution of θ̂ = z̄ − ȳ with a vertical
line marking θ̂obs. The R function oneway test() from the coin package can also be used
to get an exact answer:

> library(coin)
> GR <- as.factor(c(rep("Treat",6), rep("Cont",6)))
> oneway_test(Blood~GR, distribution="exact", alternative="less")

Exact 2-Sample Permutation Test

data: Blood by groups Cont, Treat
Z = -1.871, p-value = 0.03139
alternative hypothesis: true mu is less than 0
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FIGURE 10.20: Histogram of the sampling distribution of θ̂ = z̄ − ȳ

(b) Estimated Permutation Method based on B=499 resamples of Blood without re-
placement. After assigning 499 to B, the function blood.boot() is created to compute
the mean difference between the first six values and the last six values in a vector of
length twelve. Note that the object data is what will be resampled. To resample without
replacement, the argument sim="permutation" is used with boot(). The ℘-value is
computed according to (10.49) and the estimated permutation ℘-value based on B=499

permutation replications is 0.03. A histogram and a quantile-quantile plot of θ̂∗ = z̄∗ − ȳ∗

when sampling without replacement are shown in Figure 10.21 on the facing page.

> blood.fun <- function(data, i)
+ {
+ d <- data[i]
+ MD <-mean(d[1:6]) - mean(d[7:12])
+ MD
+ }
> set.seed(13)
> B <- 499
> boot.blood <- boot(Blood, blood.fun, R=B, sim="permutation")
> plot(boot.blood)
> pval.boot <- (sum(boot.blood$t >= boot.blood$t0)+1)/(B+1)
> pval.boot
[1] 0.03

(c) Estimated Bootstrap Method based on B=499 resamples of Blood with replacement.
After assigning 499 to B, the function blood.boot() is used with boot() to create an
estimated bootstrap distribution based on B=499 resamples. Note that the argument
sim="ordinary" is used with boot() to sample with replacement. The ℘-value is computed
according to (10.49) and the estimated bootstrap ℘-value based on B=499 replications is
0.038. A histogram and a quantile-quantile plot of θ̂∗ = z̄∗ − ȳ∗ when sampling with
replacement are shown in Figure 10.22 on the next page.
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FIGURE 10.21: Histogram and quantile-quantile plot of θ̂∗ = z̄∗−ȳ∗ when sampling without
replacement (permutation)

> set.seed(13)
> B <- 499
> boot.blood.b <- boot(Blood, blood.fun, R=B, sim="ordinary")
> plot(boot.blood.b)
> pval.boot.b <- (sum(boot.blood.b$t >= boot.blood.b$t0)+1)/(B+1)
> pval.boot.b
[1] 0.038
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FIGURE 10.22: Histogram and quantile-quantile plot of θ̂∗ = z̄∗ − ȳ∗ when sampling with
replacement (bootstrap)
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10.11 Problems

1. Provide a brief explanation of the pros and cons of using a nonparametric test.

2. What are the assumptions made with respect to the distribution from which the data
come when

(a) using a sign test?

(b) using the Wilcoxon signed-rank test?

3. When testing the median difference (ψD) of two dependent samples, does the sign test
or the Wilcoxon signed-rank test have more power? For the recommended test, what
assumption(s) must be made?

4. Explain when it might be appropriate to use

(a) a Kruskal-Wallis test.

(b) a Friedman Test.

5. Explain the concept “goodness-of-fit” as used for tests in this chapter.

6. The service department of an automobile dealer is being evaluated on the quality of
their service. The parent company has randomly chosen 11 clients who have had their
vehicles serviced in the last six months. These clients have been asked to evaluate their
satisfaction level with the service they received. The following satisfaction scores were
obtained:

Scores: 6 10 8 3 6 2 8 9 10 10 2

Service departments where the company has evidence that the median rating is more
than 7 will receive a bonus. Perform the appropriate hypothesis test to determine if this
service department should be awarded a bonus.

7. A Mendebaldea real estate agent claims Mendebaldea, Spain, has larger apartments than
those in San Jorge, Spain. A San Jorge real estate agent disputes this claim. To resolve
the issue, two random samples of the total area of several apartments (given in m2) are
taken from each community in 2002 and stored in the data frame AptSize.

Mendebaldea 90 92 90 83 85 105 136
San Jorge 75 75 53 78 52 90 78 75

(a) Is there evidence to support the Mendebaldea agent’s claim?

(i) Use an exact procedure.
(ii) Use an approximate procedure.

(b) Find a confidence interval for the median difference (Mendebaldea−San Jorge) with
a confidence level of at least 0.90.

8. To study the retained carbon of trees, a sample of 41 plots has been drawn in different
mountainous regions of Navarra (Spain). In these plots, the carbon retained by leaves
has been measured in kg/ha, depending on the forest classification: Areas with 90%
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or more beech trees (Fagus Sylvatica) are labeled monospecific, while areas with many
species of trees are labeled multispecific. The data are stored in the data frame fagus.
Is there evidence that leaves from different forest classifications retain the same amount
of carbon?

SOURCE: Data come from Gobierno de Navarra and Gestión Ambiental de Viveros y
Repoblaciones de Navarra, 2006. The data were obtained within the European Project
FORSEE.

9. The R data set USJudgeRatings provides 43 lawyers’ ratings of state judges serving in
the U.S. Superior Court. Use help(USJudgeRatings) to obtain a detailed view of the
file. Suppose the variables integrity (INTG) and demeanor (DMNR) are chosen.

(a) Test whether lawyers are more likely to give a judge high integrity ratings rather
than high demeanor ratings.

(b) Find a confidence interval for the median difference (integrity−demeanor) with a
confidence level of at least 0.90.

10. A company manager is studying the possibility of giving 20 minutes of rest to her
employees in a resting room. To check the viability of this proposal, she analyzed 12
days of productivity where employees took 20 minutes of rest and 12 days where they
did not. The employee productivity scores are given in the following table where higher
scores represent greater productivity.

With Rest 9 8 8 7 6 7 8 9 7 7 7 6
Without Rest 7 9 5 6 7 3 9 9 4 5 6 4

Is there evidence to suggest that taking a rest produces an increase in median employee
productivity?

11. A Japanese company and an American company each claims that it has developed new
technology to increase network transmission speeds. The marketing managers of both
companies simultaneously announce that they can transmit 1 terabyte per second. To
substantiate their claims, each company submits trial data (in seconds) to transmit one
terabyte with the new technologies:

Japanese company 0.98 0.85 0.9 1
American company 0.95 0.94 0.8 1 0.99

Is there evidence to suggest the transmission speed using the technology developed
by the American company is superior to the transmission speed using the technology
developed by the Japanese company? Compute the ℘-value to answer the question with
the following techniques:

(a) Enumerate all possible combinations with the function SRS() to find the ℘-value for
a permutation test.

(b) Use the function oneway test() from the coin package to calculate an appropriate
℘-value. Does this ℘-value match the one in part (a)?

(c) Obtain an estimated permutation ℘-value using the boot() function from the boot
package.

(d) What conclusion do the ℘-values support?
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12. The R data frame sleep shows the increase or decrease in hours of sleep for two groups
of patients when compared with a control group. Both groups were provided with a
different soporific drug. Is there evidence to suggest that one drug is superior (induces
more sleep) than the other drug?

13. In 1876, Charles Darwin had his book, The Effect of Cross and Self-Fertilization in
the Vegetable Kingdom, published. Darwin planted two seeds, one obtained by cross-
fertilization and the other by auto-fertilization in two opposite but separate locations of
a pot. Self-fertilization, also called autogamy or selfing, is the fertilization of a plant with
its own pollen. Cross-fertilization, or allogamy, is the fertilization with pollen of another
plant, usually of the same species. Darwin recorded the plants’ heights in inches. The
data frame Fertilize from the PASWR package contains the data from this experiment.

(a) Are the samples independent or paired?

(b) Should normality be assumed?

(c) Do the more appropriate test to decide if significance differences exist between the
median heights of the plants with regard to fertilization methods.

14. Salaries for graduates of three engineering universities ten years after graduation are
provided in the data frame Engineer of the PASWR package. Seventeen graduates were
randomly selected from each university, and their salaries in thousands of dollars were
recorded. Is there any evidence to suggest graduates earn different salaries based on the
university from which they graduated?

15. An engineering team is studying four different circuits that regulate the light intensity
of a conference room. An accelerated life test was used to estimate the lifetime of
each circuit. The results (lifetimes in thousands of hours) are stored in the data frame
CircuitDesigns and are

Design 1 3.07 1.20 0.95 1.38 5.48 1.19
Design 2 0.33 0.60 0.39 2.05 0.25 1.71 1.93
Design 3 1.75 2.41 2.02 2.24 1.69 1.24
Design 4 2.03 3.50 1.95 3.09 2.90 2.37 3.20

(a) Do an exploratory analysis of the data and decide if normality can be assumed.

(b) Choose an appropriate test to decide if there exist significant differences among the
circuit designs. Use α = 0.05.

16. The R data frame airquality shows daily air quality measurements in New York City,
NY, from May to September 1973.

(a) Attach the airquality data, and read the definition of the variables with the
command help(airquality). What does the symbol NA mean?

(b) Create a boxplot and a density plot of Month versus ozone as in Example 10.10 on
page 437. Do the graphs for each month exhibit similar shapes?

(c) Is it reasonable to assume that each month has a normally distributed ozone level?

(d) Is there evidence that differences exist in the ozone levels during the year?

17. The R data frame warpbreaks gives the number of warp breaks per loom, where a loom
corresponds to a fixed length of yarn.
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(a) Attach the warpbreaks data and use the function xtabs() to create a contingency
table containing the number of warp breaks classified by wool and tension.

(b) Is there an association between wool type and tension level?

18. The music industry wants to know if the musical style on a CD influences how many
illegal copies of it are sold. To achieve this purpose, the company chooses six cities
randomly and writes down the number of illegal CDs available on the street categorized
by music type: classic music, flamenco, heavy-metal, and pop-rock. The data are shown
in the following table.

Musical Style
City Classical Flamenco Heavy-Metal Pop-Rock
City 1 4 1 6 9
City 2 3 4 5 10
City 3 2 1 8 14
City 4 5 3 2 7
City 5 2 3 6 14
City 6 9 1 2 6

(a) Use lattice/Trellis functions to create a box and whiskers plot and a density plot of
the number of illegal CDs available for each music style.

(b) Are the distribution shapes similar?

(c) Are there significant differences in the numbers of CDs available according to musical
style?

19. A regulatory commission is investigating whether an association exists between the
number of branches of certain banks and the regions where they are located. The
branches belong to the following banks: Bilbao-Vizcaya (BBVA), Caja Madrid (CM),
La Caixa (LC), and Banco Santander (BS). The regions are Navarra, Álava, Guipuzcoa,
and Vizcaya. The number of branches classified by banks and regions follow.

Bank
Province BBVA CM LC BS
Navarra 47 8 54 43
Álava 31 5 21 17
Guipuzcoa 64 4 43 43
Vizcaya 134 11 104 66

Is there evidence that an association exists between region and number of branches?

20. The data frame Depend from the PASWR package shows the number of dependent children
(number) for 50 families (count). Use a goodness-of-fit test to see if a Poisson distribution
with λ = 2 can reasonably be used to model the number of dependent children.

21. Is it reasonable to assume that the time variable from the data frame Phone in the PASWR
package follows an exponential distribution?

22. The data frame TestScores in the PASWR package gives the test grades of 29 students
taking a basic statistics course.

(a) Use the function EDA() on the data. Can normality be assumed?
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(b) Use a Kolmogorov-Smirnov test to assess normality.

23. A government grant is funding a study to calculate how long it takes for the average
consumer to establish an Internet connection. A random sample of 20 Internet users’
connection times is collected. The connections times in seconds are 0.03, 0.48, 0.49, 0.52,
0.66, 0.69, 0.70, 0.76, 0.82, 1.20, 1.22, 1.39, 1.62, 1.85, 1.97, 2.25, 2.84, 3.44, 3.48, and
4.02.

(a) Use a Kolmogorov-Smirnov test to see if it is reasonable to assume that Internet
connection time follows an exponential distribution with a mean of 1.5 seconds.

(b) Use a chi-square test to see if it is reasonable to assume that Internet connection
time follows an exponential distribution with a mean of 1.5 seconds.

(c) Is there evidence to suggest that the median connection time is greater than 1 second?

24. Perform a simulation study to determine the power of both Kolmogorov-Smirnov’s and
Shapiro-Wilk’s normality tests.

(a) Set the seed equal to 897, and simulate m = 10, 000 samples of size n = 10, 20, 30,
and 40 from a χ2

1 distribution. Compute the simulated power for both tests using
α = 0.05.

(b) Set the seed equal to 897, and simulate m = 10, 000 samples of size n = 10, 20, 30,
and 40 from a Unif (0, 1) distribution. Compute the simulated power for both tests
using α = 0.05.

(c) Set the seed equal to 897, and simulate m = 10, 000 samples of size n = 10, 20, 30,
and 40 from a β(8, 3) distribution. Compute the simulated power for both tests
using α = 0.05.

(d) Set the seed equal to 897, and simulate m = 10, 000 samples of size n = 10, 20, 30,
and 40 from a N(0, 1) distribution. Compute the simulated power for both tests
using α = 0.05.

(e) Generalize your findings from (a) through (d).

25. The R data frame HairEyeColor contains classifications of 592 students by gender, hair
color, and eye color.

(a) Is hair color independent of eye color for men?

(b) Is hair color independent of eye color for women?

26. The sinking of the Titanic occurred on the 15th of April in 1912. The data frame
titanic3 contains information regarding class, gender, and survival as well as several
other variables.

(a) Create contingency tables of

(i) passenger class versus survival,
(ii) male passengers’ class versus survival, and
(iii) female passengers’ class versus survival.

(b) Is there an association between class and survival for all passengers, men, and/or
women?
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27. Mental inpatients in the Virgen del Camino Hospital (Pamplona, Spain) are interviewed
by expert psychiatrists to diagnose their illnesses. An important aspect in diagnosis
is determining the severity of any delusions a patient might suffer. A new questioning
technique has been developed to detect the presence of delusions. The technique assigns
a score from 0 to 5, where 5 indicates the presence of strong delusions and a 0 indicates
no delusions. The psychiatrists wish to know if the new technique actually results in high
scores for patients who have previously been diagnosed as suffering from severe delusions.
The scores that follow were obtained from randomly selected patients who were known
to suffer from delusions and those who were known not to suffer with delusions:

Score
Delusions Present 5 5 4 5 4 5 5
Delusions Absent 1 0 5 0 4 4 0

Do the data provide evidence that the new test yields higher scores for those patients
who are known to suffer from delusions than for those who do not suffer from delusions?

28. It is believed by conservative psychiatrists that the use of illegal drugs can produce
persistent hallucinations, even after drug use stops. Some more liberal psychiatrists
dispute this assertion. The following data rate the severity of hallucinations suffered by
randomly selected mental inpatients from the Virgen del Camino Hospital (Pamplona,
Spain), where a 5 indicates severe hallucinations and a 0 indicates no hallucinations.
The patients are divided by whether or not they consumed illegal drugs before being
admitted to the hospital.

Score
Illegal Drugs Not Consumed 2 0 0 5 5 2 4 0

Illegal Drugs Consumed 0 4 5 5 4 5 5 2

Is there evidence that the severity of hallucinations in patients who have consumed illegal
drugs is greater than the severity of hallucinations in patients who have not consumed
illegal drugs?

29. Generate 10 values from a N(0, 1) distribution with the seed set at 10. Calculate a
bootstrap estimation of the standard error of X using B = 200 replications. Repeat the
experiment generating a sample of size 100 from the standard normal. What conclusions
can be drawn?





Chapter 11

Experimental Design

11.1 Introduction

This chapter deals with designed experiments where the experimenter follows a specific
protocol established before the experiment starts. This protocol should dictate how ran-
domization is performed and how measurements are taken. As a consequence of adhering
to an established protocol, designed experiments allow the user to make strong inferences
about the nature of observed differences.

Experiments are generally conducted to compare groups in terms of some response of
interest. The methods considered in this chapter assume the response variable is continuous.
The factors, independent variables whose levels are set by the experimenter, are categories
or continuous variables that have been categorized into a fixed number of discrete levels.
The treatments of an experiment are applied to experimental units, and measurements
on the response variable are taken where the objective of the experiment is to compare the
observed responses. When the combinations of the levels of two or more factors form the
treatments of interest, the experiment is known as a factorial design.

For example, an agricultural researcher may be interested in determining which of three
different fertilizers produces the greatest soybean yield. In this example, the three fertilizers
correspond to three treatments the experimenter wants to compare, and the three fertilizers
collectively constitute a factor. In the event a second factor, such as two different methods
of watering the soybeans, is of interest, the experiment will consists of 3 × 2 = 6 different
treatment combinations and is called a factorial design.

Suppose an agronomist is interested in determining which of three types of wheat
(Triticum aestivum, Triticum durum, or Triticum spelta) produces the greatest yield for
a particular geographical location. Available to the agronomist are six plots of equal size,
all in the same geographical area. In this setting, the factor of interest is wheat, and the
treatments are the three types of wheat. When the plots are homogeneous in their physical
characteristics, distinguishing differences in treatments becomes easier if differences exist.
Since there are likely to be some differences in the plots, the researcher will want to assign
the wheat types to the six plots randomly in order to minimize any possible bias due to plots.
By randomizing the assignment of treatments, the possibility of confounding differences due
to types with differences due to plots is minimized. When the assignment of treatments
is done in a completely random fashion, the design is known as a completely randomized
design (CRD). When experimental units are similar (homogeneous) with respect to some
characteristic, they can be grouped together into blocks. In the wheat study, some of the
plots may be exposed to more sun than other plots, or some plots may receive more water
than other plots. When the experimental units are more homogeneous within a block than
they are between blocks, treatments are assigned to experimental units within each block to
reduce variability. Such a design is known as a randomized complete block design (RCBD).
See Figures 11.1 and 11.2 on the next page for possible assignments of treatments for a
CRD and RCBD, respectively.
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FIGURE 11.1: Representation of a completely randomized design where treatments A, B,
and C are assigned at random to six experimental units.
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CBlock 1
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FIGURE 11.2: Representation of a randomized complete block design where treatments A,
B, and C are assigned at random to three experimental units in each block.

Before proceeding further, some of the more important experimental design concepts
are defined:

• Treatments are levels of a factor or combinations of factor levels the experimenter
wants to compare.

• Experimental units are anything to which treatments are applied, for example,
animals, plots, plants, or people.

• Responses are outcomes observed after the application of a treatment to an experi-
mental unit.

• Experimental error is random variation present in the experiment not under the
control of the experimenter. Experimental error may be due to many things, including
but not limited to: measurement error, different responses from measuring the same
quantity in different trials, and different responses from experimental units given the
same treatment.

• Treatment structure specifies the set of factors the experimenter has selected to
study or compare.

• Design structure defines how experimental units are assigned to treatment groups.

• Randomization is the use of some well-defined probabilistic mechanism to assign
treatments to experimental units. Randomization reduces the possibility of bias and
confounding. Randomization should also be used, if possible, with any variable not
under the direct control of the experimenter that may influence the measured response.
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• Replication is the independent assignment of several experimental units to each
treatment (factor combination) resulting in independent observations. Replication
shows the results are reproducible and allows the experimenter to estimate the exper-
imental error. When the number of experimental units is the same for all treatments,
the design is referred to as a balanced design. Unbalanced designs do not have an
equal number of experimental units for all treatments.

Understanding both the treatment structure and the design structure is essential for
conducting proper data analysis. Different statistical models will be introduced throughout
the chapter, and analysis of variance (ANOVA) will be used. ANOVA measures the
differences in means due to the factors that are fixed effects. When the effects are random,
variance components are used to determine the variability due to the factors. All of the
fixed effects models assume:

1. The measured responses are independent of one another.

2. The model errors are independent of one another and follow a normal distribution.

3. The variance is homogeneous across treatments.

When using statistical models, it is important to keep in mind that a model is simply
a mathematical expression of how the researcher believes the response is explained using
the independent variables of the experiment (predictors). Models are expressed in S with
the syntax response∼ predictors, where ∼ means that the response is modeled by the
predictors. There may be several plausible models for a particular experiment. Finding
an adequate model is an iterative process that starts by:

1. Identifying an appropriate model based on the treatment and design structure of the
experiment.

2. Validating the model’s assumptions using diagnostic plots.

3. Selecting a different model or transforming the response variable when the model’s
assumptions are not satisfied until a plausible model is found.

Once a model has been validated, formal inference to test for no treatment effects (equality
of treatment means) and estimation of the model’s parameters can be undertaken. In the
event formal inference suggests differences in treatments, multiple comparisons are used to
determine which treatments are significantly different from one another.

Motivational Example: Tires A tire manufacturer is interested in investigating the
handling properties for different tread patterns. The data frame Tire has the stopping
distances measured to the nearest foot for a standard sized car to come to a complete stop
from a speed of 60 miles per hour. There are six measurements of the stopping distance for
four different tread patterns labeled A, B, C, and D. The same driver and car were used for
all 24 measurements. While the numbers in Tire do not reveal the randomization scheme
used for the experiment, the order of treatments was assigned at random.

One way to ensure treatments are randomly assigned to the 24 runs is to use a random
number generator. This can be accomplished with S by typing

> population <- rep(LETTERS[1:4], 6)
> Treatment <- sample(population)
> datf <- data.frame(Run=1:24, Treatment)
> datf[1:5,]
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Run Treatment
1 1 A
2 2 D
3 3 B
4 4 C
5 5 B

In particular, this randomization would assign tire tread A to the first run, D to the second
run, and so on.

It is always a good idea to examine experimental data graphically before initiating any
formal inferential procedure. Side-by-side boxplots are often a good starting point when
comparing several treatments. When the number of observations in each treatment group
is relatively small, dotplots will often prove more helpful than boxplots. The function
oneway.plots() from the PASWR package is used to create Figure 11.3.

A

B

C

D

360 380 400 420 440

StopDist
A B C D

36
0

38
0

40
0

42
0

44
0

fac1

S
to

pD
is

t

36
0

38
0

40
0

42
0

44
0

Factors

S
to

pD
is

t

A

B

C

D

fac1

FIGURE 11.3: Output from the function oneway.plots(StopDist, tire) including
dotplot, boxplots, and design plot (means) using the data frame Tire

From the boxplots and dotplots shown in Figure 11.3, it appears that there are differences
in stopping distances based on different tire treads. At this point, it would be nice to
formalize the last sentence with an inferential procedure. It is tempting to many to perform
pairwise t-tests on all six

((
4
2

)
= 6

)
of the pairwise differences; however, this should not be

done! If the probability of correctly accepting the null hypothesis is 1 − α = 0.90, then
the probability of correctly accepting the null hypothesis for all six pairwise tests assuming
independence among tests would be (.90)6 = 0.7350919. The type I error rate is not 10%
but 26.5% in this case. Of course, the more treatments that are compared, the more likely
one is to make a type I error. What would the type I error rate be if the individual error rate
for a single comparison is 5% and seven treatments were compared? (Answer: 0.66) The
appropriate procedure for testing the equality of several means is the analysis of variance,
which is introduced in the context of a completely randomized design.

Completely Randomized Desgin The simplest randomized design for comparing sev-
eral treatments is the completely randomized design (CRD). CRDs have a ≥ 2 treatments
to compare and N experimental units. Each treatment is applied to ni (i = 1, 2, . . . , a)
experimental units, where n1 + n2 + · · · + na = N . In order to conduct the experiment,
the researcher randomly assigns treatments to the experimental units (design structure).
Although the sizes of the a samples need not be identical, the power of the test is maximized
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when n1 = n2 = · · · = na for the a treatments. On each experimental unit, a response
variable Y is measured. In Example 11.1 on page 493, Y represents the distance to the
nearest foot required to stop a particular model of car traveling at 60 miles per hour using
four different brands of tires. The CRD, when there is one factor with a levels (treatments)
and no assumed relationships among the a levels, is called a one-way treatment structure.
The layout for such a design is shown in Table 11.1.

Table 11.1: One-way design
Treatment Totals Means

1 Y11 Y12 · · · Y1n1 Y1• Y 1• =
∑

Y1j/n1

2 Y21 Y22 · · · Y2n2 Y2• Y 2• =
∑

Y2j/n2

...
...

...
...

...
...

a Ya1 Ya2 · · · Yana Ya• Y a• =
∑

Yaj/na

Y•• Y ••

Notation is critical, and the following conventions are used throughout the chapter. The
sum of the observations in the ith treatment group is Yi• =

∑ni

j=1 Yij , and the mean of the
observations in the ith treatment group is Y i• = 1

ni

∑ni

j=1 Yij = Yi•
ni

. The bar indicates a
mean while the dot (•) indicates that values have been added over the indicated subscript.
The sum of all observations is Y•• =

∑a
i=1

∑ni

j=1 Yij . The grand mean of all observations is
denoted Y •• = 1

N

∑a
i=1

∑ni

j=1 Yij = Y••
N .

To describe the observations, the linear statistical model

Yij = μ + τi + εij for i = 1, 2, . . . , a and j = 1, 2, . . . , na (11.1)

is used, where Yij is the jth observation of the ith treatment, μ is a parameter common to
all treatments called the overall mean, τi is a parameter unique to the ith treatment called
the ith treatment effect, and εij is a random error component. For hypothesis testing, the
model errors are assumed to be normally and independently distributed with mean zero and
constant standard deviation

(
NID(0, σ)

)
. The careful reader will realize that this implies

the variance is assumed to be constant for all a treatments.
The model given in (11.1) can be used for two different scenarios with respect to the

treatment effects. When the treatments are specifically chosen by the experimenter and
there is no desire to extend the results to other treatments, the model is referred to as a
fixed effects model. On the other hand, when the treatments are selected at random
from a larger population of possible treatments and the experimenter would like to extend
the conclusions of the experiment of all treatments in the population, the model is called a
random effects model. What follows deals with the fixed effects model.

11.2 Fixed Effects Model

Although there are a means μi, one for each of the a treatments, model (11.1) uses
a + 1 parameters (μ and the a τis) to describe the a means. This implies that μ and
τi are not uniquely determined. A frequently used solution is to impose the constraint
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i=1 niτi = 0. When the nis are equal, the constraint can be written as

∑a
i=1 τi = 0.

Although other solutions to the overparameterized model exist, estimators for model (11.1)
in this text will only consider the sum to zero constraint on the τis as a solution for the
overparameterized model. Different software packages often impose differing constraints on
the overparameterized model, and the user should pay close attention to how the software
computes estimates for the model. The natural and unbiased estimator for μi is Y i•, the
average of the observations in that treatment group. Likewise, the natural and unbiased
estimator of μ is Y ••, the grand mean of all of the responses. Using either least squares
or maximum likelihood to derive estimators of μ and τi for model (11.1) results in the
aforementioned quantities. Verifying the least squares estimators of the parameters of model
(11.1) (using the sum to zero constraint) as well as the maximum likelihood estimators of
model (11.1) (using the sum to zero constraint) is left as an exercise for the reader.

Using maximum likelihood techniques, an estimator of σ2, σ̃2, is found to be
a∑

i=1

ni∑
j=1

(Yij − Y i•)2

N
.

Unfortunately, the expected value of σ̃2 is (N−a)σ2

N , which is a biased estimator of σ2. Since,
E(aX) = a · E(x),

N

N − a
·

a∑
i=1

ni∑
j=1

(Yij − Y i•)2

N

will yield an unbiased estimator of σ2:

σ̂2 =
a∑

i=1

ni∑
j=1

(Yij − Y i•)2

N − a
.

These facts are summarized in Table 11.2.

Table 11.2: Model, parameters, and estimators for fixed effects, one-way CRD
Model Parameter Estimator

Yij = μ + τi + εij μ Y ••
μi Y i•
τi Y i• − Y ••
εij Yij − Y i•

σ2

a∑
i=1

ni∑
j=1

(Yij − Y i•)2

N − a

Although estimating the parameters for model (11.1) is important, the goal of the
experimenter is generally to discern whether or not the a treatment means are equal, and
if they are not equal, which treatments are better (for example, have a higher mean).
Specifically, the null hypotheses of interest are

H0 : μ1 = μ2 = · · · = μa versus H1 : μi �= μj for some (i, j).

When the null hypothesis is true, all treatments have a common mean μ and an equivalent
statement of the null hypothesis can be written in terms of the treatment effects as

H0 : τ1 = τ2 = · · · = τa = 0 versus H1 : τi �= 0 for some i.
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Consequently, testing the equality of treatment means is equivalent to testing that the
treatment effects are all zero. As mentioned earlier, the appropriate procedure for testing
the null hypothesis of equal treatment means is the analysis of variance, which is simply a
decomposition of the total variability into its component parts, which is shown next.

11.3 Analysis of Variance (ANOVA) for the One-Way Fixed Effects
Model

Consider the identity

Yij − Y •• = (Y i• − Y ••) + (Yij − Y i•) (11.2)

which partitions the deviation of any observation from the grand mean into two parts. The
first part, (Y i• − Y ••), is the deviation of the ith treatment mean from the grand mean.
The second part is the deviation of the observation from the ith treatment mean. Squaring
and summing both sides of (11.2) produces

a∑
i=1

ni∑
j=1

(Yij − Y ••)2 =
a∑

i=1

ni∑
j=1

[
(Y i• − Y ••) + (Yij − Y i•)

]2
=

a∑
i=1

ni(Y i• − Y ••)2 +
a∑

i=1

ni∑
j=1

(Yij − Y i•)2

+ 2
a∑

i=1

ni∑
j=1

(Y i• − Y ••)(Yij − Y i•) (11.3)

However, the cross product in (11.3) is zero since

ni∑
j=1

(Yij − Y i•) = Yi• − niY i• = Yi• − ni ·
Yi•
ni

= 0.

Consequently,

a∑
i=1

ni∑
j=1

(Yij − Y ••)2 =
a∑

i=1

ni(Y i• − Y ••)2 +
a∑

i=1

ni∑
j=1

(Yij − Y i•)2 (11.4)

which says the total variability in the data can be partitioned into two parts. The quantity∑a
i=1 ni(Y i•−Y ••)2 measures the difference between the observed treatment means and the

grand mean. Specifically, it is a measure of variability due to the treatments and is denoted
SSTreatment (sum of squares due to treatments). The quantity

∑a
i=1

∑ni

j=1(Yij − Y i•)2

measures the differences of observations within a treatment from the treatment mean, which
must be due to error and is referred to as SSError (sum of squares due to error). The quantity
on the left-hand side of the equals sign in (11.4) is called the total sum of squares corrected
for the mean and is denoted SSTotal. The symbolic representation of (11.4) is

SSTotal = SSTreatment + SSError (11.5)

Since there are a total of
∑a

i=1 ni = N observations, SSTotal has N − 1 degrees of freedom.
One degree of freedom is lost for estimating μ with the grand mean, Y ••. SSTreatment
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has a − 1 degrees of freedom since there are a treatment means and SSError has N − a
degrees of freedom. To adjust for the number of treatments, SSTreatment is divided by its
degrees of freedom, a−1. The resulting quantity is known as the mean square treatment
MSTreatment = SSTreatment

dfTreatment
and is also called the between treatments error variance. In order

to know whether the MSTreatment value is large, it is compared to an estimate of σ2, namely,
MSError, where MSError = SSError

dfError
, which is also called the within treatments error variance.

Note that MSError can be expressed as

σ̂2 = MSError =
SSError

dfError
=

∑a
i=1

[∑ni

j=1(Yij − Y i•)2
]

dfError
(11.6)

If the term within the square braces is divided by its degrees of freedom (ni − 1), it is easy
to recognize that quantity as the sample variance for the ith treatment:

S2
i =

ni∑
j=1

(Yij − Y i•)2

ni − 1
, i = 1, 2, . . . , a (11.7)

Combining the sample variances, a single estimate of the population variance emerges as

(n1 − 1)S2
1 + (n2 − 1)S2

2 + · · · + (na − 1)S2
a

(n1 − 1) + (n2 − 1) + · · · + (na − 1)
=

∑a
i=1

[∑ni

j=1(Yij − Y i•)2
]

∑a
i=1(ni − 1)

=
SSError

N − a
= MSError

The pooled estimate of the variance from the two-sample t-test in Section 9.7.4 has now
been generalized for a different samples.

If there are no differences among the a treatment means, MSTreatment is an unbiased
estimate of σ2, and the ratio of MSTreatment/MSError will be close to 1. If differences
actually exist among the a treatment means, then the ratio, MSTreatment/MSError should
be larger than 1. In fact, it can be shown that

E(MSError) = σ2 and E(MSTreatment) = σ2 +
a∑

i=1

niτ
2
i

a − 1

implying that when H0 is false, E(MSTreatment) > E(MSError) since some τi �= 0. When
H0 is true, τi = 0 for all i and E(MSTreatment) = E(MSError) = σ2. With a little effort, it
can be shown that

MSError

σ2
∼

χ2
dfError

dfError
=

χ2
N−a

N − a

regardless of whether H0 is true or not, and that

MSTreatment

σ2
∼

χ2
dfTreatment

dfTreatment
=

χ2
a−1

a − 1

when H0 is true independently of MSError. Consequently, using Definition 6.2 on page 238,
when H0 is true, the ratio MSTreatment/MSError ∼ Fa−1; N−a. Thus, H0 is rejected in an
α-level test if Fobs > f1−α; a−1, N−a, where Fobs = MSTreatment/MSError. The S function
aov() used with summary() returns a table similar to Table 11.3 on the facing page.

Example 11.1 � Tire ANOVA Table � Use the data frame Tire and compute the
values for the ANOVA table using both the formulas and the S function summary(aov())
to test the null hypothesis that all the tire treads have identical mean stopping distances
versus the alternative hypothesis that there is at least one mean that is different.
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Table 11.3: ANOVA table for one-way completely randomized design
Source of Degrees of
Variation Freedom Sum of Squares Mean Square
(Source) (df) (SS) (MS ) F

Treatments a − 1
SSTreatment =

a∑
i=1

ni(Y i• − Y ••)2

MSTreatment =
SSTreatment

a − 1

MSTreatment

MSError

Error N − a

SSError =
a∑

i=1

ni∑
j=1

(Yij − Y i•)2

MSError =
SSError

N − a

Total N − 1
SSTotal =

a∑
i=1

ni∑
j=1

(Yij − Y ••)2

Solution: The hypotheses being tested are

H0 : τi = 0 for all i versus H1 : τi �= 0 for some i

SSTreatment =
a∑

i=1

ni(Y i• − Y ••)2

= 6 · (379.6667− 404.2083)2 + 6 · (405.1667− 404.2083)2

+ 6 · (421.6667− 404.2083)2 + 6 · (410.3333− 404.2083)2 = 5673.12

SSTotal =
a∑

i=1

ni∑
j=1

(Yij − Y ••)2

= (391 − 404.2083)2 + (374 − 404.2083)2 + (416 − 404.2083)2

+ · · · + (389 − 404.2083)2 = 12771.96
SSError = SSTotal − SSTreatment = 12771.96− 5673.12 = 7098.83

MSTreatment = SSTreatment/dfTreatment = 5673.12/3 = 1891.04
MSError = SSError/dfError = 7098.83/20 = 354.94

F = MSTreatment/MSError = 1891.04/354.94 = 5.33

The ℘-value for the test is P(F3, 30 ≥ 5.33) = 0.007. Based on the small ℘-value, the null
hypothesis of no tire tread effect (τi = 0 for all i) is rejected. This suggests at least one
tire tread effect is not zero. Thus, the question then becomes, “Which tire tread has the
shortest mean stopping distance?” The statistical conclusion as well as the validity of any
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Table 11.4: Tire ANOVA table
Source of Degrees of
Variation Freedom Sum of Squares Mean Square
(Source) (df) (SS) (MS ) F

Treatments 4 − 1 = 3 5673.12 5673.12
3 = 1891.04 1891.04

354.94 = 5.33

Error 24 − 4 = 20 7098.83 7098.83
20 = 354.94

Total 24 − 1 = 23 12771.96

multiple comparison procedures used to detect individual differences between tire treads
assume the one-way model (11.1) is sound. Checking model assumptions for the one-way
CRD is discussed in Section 11.5, followed by multiple comparison procedures in Section
11.7.

The values for the ANOVA Table can be computed with S by entering

> attach(Tire)
> TreatmentMean <- tapply(StopDist, tire, mean)
> TreatmentMean

A B C D
379.6667 405.1667 421.6667 410.3333
> a <- length(TreatmentMean)
> N <- length(StopDist)
> dft <- a - 1
> dfe <- N - a
> GrandMean <- mean(StopDist)
> GrandMean
[1] 404.2083
> SStreat <- 6*sum((TreatmentMean - GrandMean)^2)
> SStreat
[1] 5673.125
> SStotal <- sum((StopDist - GrandMean)^2)
> SStotal
[1] 12771.96
> SSerror <- SStotal - SStreat
> SSerror
[1] 7098.833
> MStreat <- SStreat/dft
> MStreat
[1] 1891.042
> MSerror <- SSerror/dfe
> MSerror
[1] 354.9417
> Fobs <- MStreat/MSerror
> Fobs
[1] 5.327753
> pvalue <- 1-pf(Fobs, 3, 20)
> pvalue
[1] 0.007315521
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Or using the two functions summary() and aov() together returns

> summary(aov(StopDist~tire))
Df Sum Sq Mean Sq F value Pr(>F)

tire 3 5673.1 1891.0 5.3278 0.007316 **
Residuals 20 7098.8 354.9
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The treatment means and the grand mean can also be computed using the function
model.tables():

> model.tables(aov(StopDist~tire), type="means")
Tables of means
Grand mean

404.2083

tire
tire

A B C D
379.7 405.2 421.7 410.3
> detach(Tire)

11.4 Power and the Non-Central F Distribution

The concept of power and the non-central t-distribution for one-sample and two-sample
problems was discussed in Section 9.7. In this section, computing power is extended to
the a ≥ 2 samples problem. Specifically, the problem of determining the required sample
size to detect a given difference is addressed. Consider a slightly different but equivalent
expression for the MSTreatment and MSError given in Table 11.3 on page 499 when a = 2.

F =
MSTreatment

MSError
=

∑2
i=1

∑ni

j=1(Y i• − Y ••)2

dfTreatment∑2
i=1

∑ni

j=1(Yij − Y i•)2

dfError

≡
(Y 1• − Y 2•)2

(
1

n1
+ 1

n2

)−1

S2
p

(11.8)

The reader should verify that the right-hand side of (11.8) is the same as the expression
on the left of the ≡. Two facts that should be kept in mind during the verification are∑ni

j=1 Yij = Y i•ni for i = 1, 2 and (n1 + n2)Y •• =
∑2

i=1

∑ni

j=1 Yij . Rewriting the right side
of (11.8) gives

F =
(Y 1• − Y 2•)2

S2
p

(
1

n1
+ 1

n2

) =

⎡⎣ (Y 1• − Y 2•)

Sp

√
1

n1
+ 1

n2

⎤⎦2

= [t]2. (11.9)

One verifies that the pooled t-test from Section 9.7 is simply a special case of the F -test used
in ANOVA when a = 2. It is important to emphasize that the equivalence of the pooled
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t-test and the F -test used in ANOVA for a = 2 groups applies only to the non-directional
hypothesis H1 : μ1 �= μ2 because[

t1−α/2;dfError

]2 = f1−α; 1, dfError , but (11.10)

[t1−α;dfError ]
2 �= f1−α; 1, dfError , as would be required for a directional hypothesis. In Section

9.7, the non-centrality parameter γ for the pooled t-test was defined as

γ =
μ1(X, Y ) − μ0(X, Y )

σX−Y

.

An equivalent expression for defining the non-centrality parameter is

γ =
(μ1 − μ2)

(
1

n1
+ 1

n2

)−1/2

σ
. (11.11)

One should take note of the similarities between

t =
(Y 1• − Y 2•)

(
1

n1
+ 1

n2

)−1/2

Sp
(11.12)

and (11.11). Specifically, the quantity in (11.12) is used to measure the statistical differences
between the sample means. In a similar fashion, (11.11) is used to measure the statistical
differences between the population means. Rewriting (11.12) and (11.11), one notes

F = t2 =
(Y 1• − Y 2•)2

(
1

n1
+ 1

n2

)−1

S2
p

=
MSTreatment

MSError

and

λ = γ2 =
(μ1 − μ2)2

(
1

n1
+ 1

n2

)−1

σ2
=

SSHypothesis(population)
σ2

where SSHypothesis(population) is the sum of squares for treatments obtained by replacing
Y 1• with μ1, Y 2• with μ2, and Y •• with n1μ1+n2μ2

n1+n2
. By defining the non-centrality parameter

λ as the ratio of SSHypothesis(population) to σ2, it becomes easy to calculate λ using
statistical software. The SSHypothesis(population) will always be the sum of squares formula
for the H0 being tested, thus this method of computing λ extends to whatever hypothesis
the user would like to test. It is not limited merely to the equality of treatment means.
For any completely randomized design, SSHypothesis(population) =

∑a
i=1 ni(μi• − μ̄••)2,

where μ̄•• = (
∑a

i=1 niμi•) / (
∑a

i=1 ni). Recall that power is the probability that the null
hypothesis will be rejected when it is false. In this case,

Power (λ) = P [Fa−1; N−a, λ > f1−α; a−1; N−a; λ=0] . (11.13)

Power (λ) is maximized when all a groups have an equal number of observations; how-
ever, using SSHypothesis to compute the non-centrality parameter adjusts for experiments
with different sample sizes. R has the function power.anova.test(), which can be used
to determine the sample size for the a samples when resources are allocated such that each
group has the same size.
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Example 11.2 � Tires’ Stopping Distance � Suppose the tire manufacturer be-
lieves the true mean stopping distance for tread patterns A, B, C, and D to be 390, 405,
415, and 410 feet, respectively, with a common standard deviation that could be as high as
20 feet or as small as 10 feet. Assume sets of tires are put on the car (a single car is used
for all tests to reduce variability) in random order.

(a) Suppose the manufacturer wants to test H0 : μB − μA = 0 versus H1 : μB − μA > 0
using α = 0.05, assuming σ = 10. Determine the power of the test if six sets of tires
with each tread are available.

(b) Determine the probability that differences among the means will be detected using
α = 0.05 assuming σ = 20 feet if six sets of tires with each tread are available. Simulate
the non-central F distribution and compute the power by simulation. How does the
simulation compare to the theoretical answer?

(c) Determine the probability that differences among the means will be detected using
α = 0.05 if six sets of tires with each tread are available and assuming σ = 10 feet.

(d) Assuming the stopping distance standard deviation for all tire sets is σ = 20 feet, what
is the minimum number of tire sets that need to be used to ensure the probability of
detecting tire tread differences is at least 80%?

(e) Given 6 sets of tires with tread A, 6 sets of tires with tread B, 12 sets of tires with
tread C, and 12 sets of tires with tread D, what is the probability of detecting tire tread
differences if the true stopping standard deviation for all tire tread sets is σ = 14 feet?

Solution: The answers are as follows:

(a)

λ =
SSHypothesis

σ2
=

∑a
i=1 ni(μi• − μ̄••)2

σ2
=

6 · (405 − 397.5)2 + 6 · (390 − 397.5)2

102
= 6.75

Power (γ =
√

λ = 2.598) = P(t10; γ=2.598 > t0.95; 10 = 1.81) = 0.78. This can be computed
with R using the following code:

> MEANS <- c(405, 390)
> a <- length(MEANS)
> n <- 6
> N <- a*n
> dfe <- N - a
> SD <- 10
> alpha <- .05
> Y <- rep(MEANS, rep(n, a))
> treat <- factor(rep(1:a, rep(n, a)))
> SStreat <- summary(aov(Y~treat))[[1]][1, 2]
> lambda <- SStreat/SD^2
> Gamma <- sqrt(lambda)
> Gamma
[1] 2.598076
> cv <- qt(1 - alpha, dfe)
> Power <- 1 - pt(cv, dfe, ncp=Gamma)
> Power
[1] 0.7798662
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Using the function power.t.test() gives

> power.t.test(n=6, delta=15, sd=10, alternative="one.sided")

Two-sample t test power calculation

n = 6
delta = 15

sd = 10
sig.level = 0.05

power = 0.7798662
alternative = one.sided

NOTE: n is number in *each* group

Note that the alternative hypothesis is directional and the F distribution cannot be used to
answer the question. The answer is obtained with a non-central t-distribution. A graphical
representation of the power is given in Figure 11.4.

Power (γ = 2.6)

t0.95; 10

t10;γ=2.6

0 2 4 6 8−2−4

t10

FIGURE 11.4: Power for the directional alternative hypothesis H1 : μB − μA > 0 when
γ = 2.6 at the α = 0.05 level

(b) The following R code is used to simulate the non-central F distribution:

> ### Sampling Distribution of MST/MSE
> set.seed(10)
> sims <- 10000 # number of simulations
> n1 <- 6; n2 <- 6; n3 <- 6; n4 <- 6
> a <- 4 # number of treatments
> N <- n1+n2+n3+n4
> df.treat <- a - 1 # dof treatment
> df.error <- N - a # dof error
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> alpha <- 0.05 # alpha level
> ### Normal Distribution
> mu1 <- 390; sig1 <- 20 # pop1 mean and sigma
> mu2 <- 405; sig2 <- 20 # pop2 mean and sigma
> mu3 <- 415; sig3 <- 20 # pop3 mean and sigma
> mu4 <- 410; sig4 <- 20 # pop4 mean and sigma
> t1 <- matrix(rnorm(sims*n1, mu1, sig1), nrow=sims, byrow=TRUE)
> t2 <- matrix(rnorm(sims*n2, mu2, sig2), nrow=sims, byrow=TRUE)
> t3 <- matrix(rnorm(sims*n3, mu3, sig3), nrow=sims, byrow=TRUE)
> t4 <- matrix(rnorm(sims*n4, mu4, sig4), nrow=sims, byrow=TRUE)
> MUS <- c(mu1, mu2, mu3, mu4)
> MUB <- mean(MUS)
> lambda <-(n1*(mu1-MUB)^2 + n2*(mu2-MUB)^2 + n3*(mu3-MUB)^2 +
+ n4*(mu4-MUB)^2)/(sig1^2)
> mt1 <- apply(t1, 1, mean)
> mt2 <- apply(t2, 1, mean)
> mt3 <- apply(t3, 1, mean)
> mt4 <- apply(t4, 1, mean)
> #####################################################################
> mmean <- cbind(mt1, mt2, mt3, mt4)
> TT <- cbind(t1, t2, t3, t4)
> gm <- apply(TT, 1, mean)
> SStreat <- n1*((mt1 - gm)^2) + n2*((mt2 - gm)^2) + n3*((mt3 - gm)^2) +
+ n4*((mt4-gm)^2)
> JU2 <- (TT - gm)^2
> SStotal <- apply(JU2, 1, sum)
> SSerror <- SStotal - SStreat
> Fobs <- (SStreat/df.treat)/(SSerror/df.error)
> q995 <- quantile(Fobs, .995)
> #####################################################################
> hist(Fobs, col="pink", prob=TRUE, breaks="Scott", main="",
+ xlim=c(0, q995))
> title(main="Simulated Sampling Distribution")
> curve(df(x, df.treat, df.error, lambda), 0, q995, col="red",
+ add=TRUE, lwd=3) # only R
> val <- c(.80, .85, .90, .95, .99)
> Theoretical <- qf(val, df.treat, df.error, lambda)
> Simulated <- quantile(Fobs, val)
> SimSigLev <- c( sum(Fobs>Theoretical[1])/sims,
+ sum(Fobs>Theoretical[2])/sims,
+ sum(Fobs>Theoretical[3])/sims,
+ sum(Fobs>Theoretical[4])/sims,
+ sum(Fobs>Theoretical[5])/sims )
> TheSigLev <- 1 - val
> ANS <- rbind(Theoretical, Simulated, TheSigLev, SimSigLev)
> round(ANS, 4)

80% 85% 90% 95% 99%
Theoretical 4.5080 5.1095 5.9577 7.4323 11.0979
Simulated 4.6006 5.1574 6.0031 7.4895 10.7363
TheSigLev 0.2000 0.1500 0.1000 0.0500 0.0100
SimSigLev 0.2094 0.1527 0.1024 0.0508 0.0090
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> #####################################################################
> Simulated.Power <- sum(Fobs > qf(1 - alpha, df.treat, df.error))/sims
> Simulated.Power
[1] 0.3984

The histogram of the simulated non-central F distribution is found in Figure 11.5.
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FIGURE 11.5: Histogram of simulated F3, 20; λ=5.25 superimposed by the theoretical
distribution

λ =
SSHypothesis

σ2
=

∑a
i=1 ni(μi• − μ̄••)2

σ2

=
6 · (390 − 405)2 + 6 · (405 − 405)2 + 6 · (415 − 405)2 + 6 · (410 − 405)2

202
=

2100
202

= 5.25

Power (λ = 5.25) = P(F3, 20; λ=5.25 > f0.95; 3, 20 = 3.098) = 0.386.

A graphical representation of the central and non-central F distributions along with a
shaded region for the power at λ = 5.25 is shown in Figure 11.6 on the facing page.

Using S:

> MEANS <- c(390, 405, 415, 410)
> a <- length(MEANS)
> n <- 6
> N <- a*n
> SD <- 20
> alpha <- .05
> Y <- rep(MEANS, rep(n, a))
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Power (λ = 5.25)

f0.95; 3, 20

F3, 20; λ=5.25

0 2 4 6 8 10 12

F3, 20

FIGURE 11.6: Power for detecting treatment differences when λ = 5.25 at the α = 0.05
level

> treat <- factor(rep(1:a, rep(n, a)))
> SStreat <- summary(aov(Y~treat))[[1]][1, 2] # For R
> # SStreat <- summary(aov(Y~treat))[1, 2] # For S-PLUS
> lambda <- SStreat/SD^2
> lambda
[1] 5.25
> cv <- qf(1-alpha, a - 1, N - a)
> Power <- 1-pf(cv, a - 1, N - a, ncp=lambda)
> Power
[1] 0.3862415

Since sample sizes are equal in the a groups, the R function power.anova.test() can be
used to solve the problem:

> power.anova.test(groups=a, n=n, between.var=var(MEANS), within.var=SD^2)

Balanced one-way analysis of variance power calculation

groups = 4
n = 6

between.var = 116.6667
within.var = 400
sig.level = 0.05

power = 0.3862415

NOTE: n is number in each group



508 Probability and Statistics with R

(c)

λ =
SSHypothesis

σ2

=
∑a

i=1 ni(μi• − μ̄••)2

σ2

=
6 · (390 − 405)2 + 6 · (405 − 405)2 + 6 · (415 − 405)2 + 6 · (410 − 405)2

20

=
2100
102

= 21

Power (λ = 21) = P(F3, 20; λ=21 > f0.95; 3, 20 = 3.098) = 0.95.

Using S:

> MEANS <- c(390, 405, 415, 410)
> a <- length(MEANS)
> n <- 6
> N <- a*n
> SD <- 10
> alpha <- .05
> Y <- rep(MEANS, rep(n, a))
> treat <- factor(rep(1:a, rep(n, a)))
> SStreat <- summary(aov(Y~treat))[[1]][1, 2] # For R
> # SStreat <- summary(aov(Y~treat))[1, 2] # For S-Plus
> lambda <- SStreat/SD^2
> lambda
[1] 21
> cv <- qf(1-alpha, a - 1, N - a)
> Power <- 1-pf(cv, a - 1, N - a, ncp=lambda)
> Power
[1] 0.9501649

Again, because treatment groups have equal ns, an answer is possible using R’s function
power.anova.test():

> SD <- 10
> power.anova.test(groups=a, n=n, between.var=var(MEANS), within.var=SD^2)

Balanced one-way analysis of variance power calculation

groups = 4
n = 6

between.var = 116.6667
within.var = 100
sig.level = 0.05

power = 0.9501649

NOTE: n is number in each group

(d) Since λ is a function of sample size, one solution is to find n such that P(Fa−1, a·n−a,λ >
f0.95, a−1, a·n−a) ≥ 0.80. The following code uses a loop to find the value of n such that
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the power is at least 80%. Power is maximized with a total of N sets when each of the a
treatments receives n sets of tires such that N = a · n. That is, power is maximized with
equal treatment sizes.

> SD <- 20
> Powerr <- 0
> nr <- 1
> MEANS <- c(390, 405, 415, 410)
> a <- length(MEANS)
> while(Powerr < .80)
+ {
+ nr <- nr + 1
+ Nr <- a*nr
+ alpha <- .05
+ Yr <- rep(MEANS, rep(nr, a))
+ treatr <- factor(rep(1:a, rep(nr, a)))
+ SStreatr <- summary(aov(Yr~treatr))[[1]][1, 2] # R
+ # SStreatr <- summary(aov(Yr~treatr))[1, 2] # S-PLUS
+ lambdar <- SStreatr/SD^2
+ cvr <- qf(1 - alpha, a - 1, Nr - a)
+ Powerr <- 1 - pf(cvr, a - 1, Nr - a, ncp=lambdar)
+ }
> c(nr, lambdar, Powerr)
[1] 14.0000000 12.2500000 0.8176811

From the output, note that when n = 14, λ = 12.25, which returns a power of 81.7%. Since
the problem permits equal n per treatment group, the R function power.anova.test() can
also be used:

> power.anova.test(groups=4, power=.80,
+ between.var=var(MEANS), within.var=20^2)

Balanced one-way analysis of variance power calculation

groups = 4
n = 13.47806

between.var = 116.6667
within.var = 400
sig.level = 0.05

power = 0.8

NOTE: n is number in each group

> nrf <- ceiling(power.anova.test(groups=4, power=.80,
+ between.var=var(MEANS), within.var=20^2)$n)
> nrf
[1] 14

(e) Using the following code, the power is computed as 0.83:

> MEANS <- c(390, 405, 415, 410)
> SD <- 14
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> a <- length(MEANS)
> n1=6; n2=6; n3=12; n4=12;
> N <- n1 + n2 + n3 + n4
> alpha <- .05
> Y <- rep(MEANS, c(n1, n2, n3, n4))
> treat <- factor(rep(1:a, c(n1, n2, n3, n4)))
> SStreat <- summary(aov(Y~treat))[[1]][1, 2] # R
> # SStreat <- summary(aov(Y~treat))[1, 2] # S-PLUS
> lambda <- SStreat/SD^2
> lambda
[1] 13.39286
> cv <- qf(1 - alpha, a - 1, N - a)
> Power <- 1 - pf(cv, a - 1, N - a, ncp=lambda)
> Power
[1] 0.8349338

11.5 Checking Assumptions

The values in the ANOVA table and the subsequent inferences made from those values
are based on the assumption that the data follow the model

Yij = μ + τi + εij (11.14)

where the τis are fixed but unknown numbers and the εijs are independent normals with a
mean of zero and constant variance. Consequently, the three basic assumptions concerning
the errors:

1) independence,

2) normal distribution, and

3) constant variance

should be investigated. Since the actual errors are unknown quantities, they will never be
observed; however, it is possible to use estimates (or predictors) of the errors, the residuals.
Recall from Chapter 2 that a residual is the difference between what is observed and what
is predicted (ε̂ij = Yij − Ŷij). For model (11.14), Ŷij = Y •• + Y i• − Y •• = Y i•. While
(11.14) may be a reasonable approximation to some real-life phenomena, real-life data are
never exactly normal. The real question is whether the assumptions have been violated
to such an extent that the inferences based on the particular model in question would be
invalidated. Although a few formal tests are presented, most of the material that follows
deals with visual diagnostics for the three basic assumptions concerning errors.

11.5.1 Checking for Independence of Errors

The most important assumption for (11.14) to be valid and the most challenging as-
sumption to correct if it fails is the assumption of independence. The material in this text
will not address how to deal with dependent data, which is the topic of a more advanced
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course. One of the easier dependencies to detect is a dependence in time. When values are
either very similar (positive dependence) or very different (negative dependence) to each
other in time, the assumption of independence becomes untenable. An easy way visually
to inspect data for dependence is to plot the residuals on the vertical axis versus a time
sequence on the horizontal axis. Naturally, if there is no time component to the data, this
graph will not reveal any useful information not found in other residual plots.

It is often helpful to standardize the residuals so they have unit variance. Many books
define standardized residuals as

rij =
ε̂ij√

MSError

,

however, the standard deviation of the ijth residual is actually σ ·
√

1 − hii, where the
hiis are the diagonal elements of the hat matrix (discussed in more detail in Chapter 12:
Regression). For model (11.14), the hii values are simply 1/ni. By estimating σ with the√

MSError, the standardized residuals (rij) are computed as

rij =
ε̂ij√

V̂ar(ε̂ij)
=

ε̂ij√
MSError ·

√
1 − hii

(11.15)

The function stdres() in the MASS package computes standardized residuals according to
(11.15).

Modifications to the following code used with the Tire data set from the motivational
problem (Example 11.1) at the beginning of the chapter can be used to help the user assess
the assumption of independence among the errors. Based on Figure 11.7 on the next page,
no discernible pattern is seen that might threaten the assumption of independent errors.

> attach(Tire)
> par(pty="s")
> mod.aov <- aov(StopDist~tire)
> library(MASS)
> r <- stdres(mod.aov)
> n <- length(StopDist)
> plot(1:n, r, ylab="Standardized Residual", xlab="Ordered Value")
> detach(Tire)

11.5.2 Checking for Normality of Errors

The quantile-quantile plot is a graphical procedure for assessing normality. The quantile-
quantile plot can be performed on either the residuals or the standardized residuals. If
standardized residuals are used, the plotted observations should follow a straight line with
an intercept of zero and a slope of one. Reading quantile-quantile plots, especially when
the total number of residuals (N =

∑a
i=1 ni) is small, requires a high degree of skill. A

formal test of normality can be obtained with the function shapiro.test(). Modifications
to the following code used with the Tire data set from the motivational problem (Example
11.1) can be used to help the user assess the normality of errors assumption. Figure 11.8 on
page 513 shows a quantile-quantile plot of the standardized residuals with a superimposed
line with a zero intercept and a slope of one indicating the assumption of normal errors
is reasonable. The ℘-value (0.7584) from the Shapiro-Wilk normality test provides further
corroboration that the normality assumption of the errors is reasonable.
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FIGURE 11.7: Standardized residuals versus order for mod.aov using the Tire data set

> attach(Tire)
> mod.aov <- aov(StopDist~tire)
> library(MASS)
> r <- stdres(mod.aov)
> par(pty="s")
> qqnorm(r)
> abline(a=0, b=1)
> shapiro.test(r)

Shapiro-Wilk normality test

data: r
W = 0.9737, p-value = 0.7584

> detach(Tire)

11.5.3 Checking for Constant Variance

Many formal tests for equality of variance exist. Most of these tests are very sensitive
to normality assumptions and will not give reliable results if normality is violated. As with
independence and normality of errors assumptions, the constant variance assumption should
be checked with graphical procedures. Specifically, to assess constant variance, a plot of the
residuals (ε̂ij) or the standardized residuals rij on the vertical axis should be plotted against
the fitted values

(
Ŷij

)
on the horizontal axis. Recall that for (11.14), the fitted values are

simply Y i•. This plot will look like several vertical stripes of points, one for each treatment
group. If the variance is constant, the vertical lengths of the stripes for each of the i groups
will be similar. If one insists on testing equality of variance, a modified version of Levene’s
test is recommended. Specifically, compute the quantity Zij =

∣∣Yij − Ỹi•
∣∣, the absolute

deviations from the group medians. Treat the Zij values as the data, and use the standard
ANOVA formulas presented in Table 11.2 on page 496 on the Zij values. A significant
finding with the standard F -test on the Zij values indicates non-constant variance. This
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FIGURE 11.8: Quantile-quantile plot of the standardized residuals with a superimposed
line with a zero intercept and a slope of one for the model mod.aov using the Tire data
frame

particular modification to Levene’s test, which uses the absolute deviations from the group
medians, is relatively insensitive to non-normality and is easily implemented with S. It is
also a preprogrammed function levene.test() in the car package. Modifications to the
following code used with the Tire data set from Example 11.1 can be used to help the
user assess the homogeneity of variance with respect to the errors assumption. Figure 11.9
on the following page shows a plot of the standardized residuals versus the fitted values of
(11.14), indicating that there are no serious departures in homogeneity of variance. The
fitted values

(
Ŷij

)
of an aov object can be obtained by using the fitted() on an aov

object. The ℘-value (0.4224) from the modified Levene test provides further corroboration
that the homogeneity of variance assumption of the errors is reasonable.

> attach(Tire)
> mod.aov <- aov(StopDist~tire)
> library(MASS)
> r <- stdres(mod.aov)
> tm <- fitted(mod.aov)
> plot(tm, r, xlab="Fitted Value", ylab="Standardized Residual")
> med <- tapply(StopDist, tire, median)
> ZIJ <- abs(StopDist - med[tire])
> summary(aov(ZIJ~tire))

Df Sum Sq Mean Sq F value Pr(>F)
tire 3 388.79 129.60 0.9789 0.4224
Residuals 20 2647.83 132.39
> checking.plots(mod.aov)
> detach(Tire)

The function checking.plots() from the PASWR package creates the three graphs dis-
cussed in Sections 11.5.1, 11.5.2, and 11.5.3 that assess independence, normality, and
constant variance, respectively. The graphs from using checking.plots() with mod.aov
are shown in Figure 11.10 on the next page.
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FIGURE 11.9: Plot of the standardized residuals versus the fitted values for mod.aov using
the Tire data set
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FIGURE 11.10: Graphs to assess independence, normality, and constant variance,
respectively, created with checking.plots(mod.aov) using the data frame Tire

11.6 Fixing Problems

When diagnostics indicate that the assumptions for a particular model are not satisfied,
either the data must be modified or the method of analysis must be changed to be less
sensitive to the assumptions. The three assumptions for error terms of (11.14) are that they
are 1) independent, 2) have a normal distribution, and 3) have homogeneity of variance.
Working with dependent errors is quite challenging and will not be discussed other than
to say that proper randomization should always be used in the collection of data to reduce
the possibility of dependence among errors. In the event an analysis indicates dependent
errors, the original design should be re-evaluated. The normal errors assumption can often
be violated without affecting the estimation and inferences associated with the chosen model
provided the errors’ departures from normality are not severe. Non-constant variance in
contrast to the normality assumption will impact estimation and inferences associated with
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the chosen model and needs to be evaluated closely. The balance of fixing problems will
center on how to deal with 1) non-normal errors and 2) non-constant variance.

11.6.1 Non-Normality

When a quantile-quantile plot of the residuals indicates skewness (typically to the right)
a transformation on the response variable will often alleviate the problem of non-normal
errors. Finding a meaningful and appropriate transformation is often challenging. One
technique that searches computationally for an appropriate transformation of the response
variable that directly addresses normality is the Box-Cox method. The Box-Cox method
estimates the parameter λ for the transformation Y ′ = Y λ, where

Y ′ =

⎧⎨⎩
Y λ − 1

λ
for λ �= 0,

ln Y for λ = 0,
(11.16)

by the method of maximum likelihood. Figure 11.11 shows transformations in common use.
The function boxcox() of the MASS package produces a plot of the log-likelihood against the
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FIGURE 11.11: Transformations in common use with the Box-Cox method: The long
dashed line shows data transformed by squaring; the solid, by doing nothing; the dot-dashed,
by taking the square root; the dotted, by taking the natural log; and the dashed, by taking
the reciprocal

transformation parameter λ for a particular model. By default, the range of λ is from −2
to 2. However, once the value of λ that maximizes the log-likelihood is known, the range of
the plot in boxcox() can be tightened to highlight the area where the function is maximized
with the argument lambda=. For more details, see the boxcox() help file. The boxcox()
function is generally used to approximate an appropriate transformation. The value of λ
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that maximizes the log-likelihood function may turn out to be 0.53; but if there is a possible
explanation for taking the square root of the response, the transformation applied should
be λ = 0.5 and not the value that maximizes the log-likelihood function.

Observations that do not fit the pattern of the rest of the data in the quantile-quantile
plot (outliers) can distort an analysis, and one should consider removing the outlier(s)
and performing the analysis without the offending point(s). Oftentimes, outliers are simply
poorly transcribed experimental results such as an incorrectly placed decimal or a misplaced
label. However, just because a value is an outlier does not mean it should be eliminated
from the data; rather, outliers imply that the model being used is incorrect. Does this
suggest that if the values in a quantile-quantile plot are not exactly linear, then there are
problems? Fortunately not! With equal treatment sizes, the F -test used with ANOVA is
quite robust to non-normal errors when the homogeneity of variance assumption is satisfied.
The reader should perform their own simulations to verify that sampling distribution for
MSTreatment/MSError when sampling from non-normal distributions is quite close to the
F distribution. Unfortunately, subsequent inference on individual parameters using one-
sided confidence intervals is sensitive to the normality assumption and can result in poor
conclusions when the errors do not follow a normal distribution.

11.6.2 Non-Constant Variance

Non-constant variance is typically fixed by transforming the response variable. The
Box-Cox method discussed to fix the problem of non-normal errors will oftentimes alleviate
both the problem of unequal variances as well as non-normal errors. The implications for
the F -test when the variances among the a groups are different depends to a large extent
on whether the groups have equal sample sizes. When the a groups have equal sample sizes,
unequal variance only slightly alters the ℘-value for an F -test. The situation is very different,
however, when sample sizes among the a groups are unequal. When larger variances are
associated with the smaller sample sizes, the F -test will be conservative, and when the
larger variances are associated with smaller sample sizes, the F -test is liberal. Welch (1951)
derived a method of testing several means that does not require the assumption of equal
variance and is implemented in R using the function oneway.test(). Welch’s statistic (W )
for testing several means is defined as

W =
∑a

i=1 wi

(
Y i − Ỹ

)2
/(a − 1)[

1 + 2
3 (a − 2)Λ

] �∼ Fa−1; 1/Λ (11.17)

where

wi =
ni

s2
i

, Ỹ =
∑a

i=1 wiY i∑a
i=1 wi

, and Λ =
3
∑a

i=1

{[
1 −

(
wi/∑a

i=1 wi

)]2

/(ni − 1)
}

a2 − 1
.

Example 11.3 � Fat Cats � In a weight loss study on obese cats, overweight cats
were randomly assigned to one of three groups and boarded in a kennel. In each of the three
groups, the cats’ total caloric intake was strictly controlled (1 cup of generic cat food) and
monitored for 10 days. The difference between the groups was that group A was given 1/4

of a cup of cat food every 6 hours, group B was given 1/3 a cup of cat food every 8 hours,
and group C was given 1/2 a cup of cat food every 12 hours. The weights of the cats at
the beginning and end of the study were recorded and the differences in weights (grams)
are stored in the variable Weight of the data frame FCD. Are there mean weight differences
among the three treatments?
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Solution: The hypothesis of interest is H0 : τi = 0 for all i versus H1 : τi �= 0 for some i
given the model Yij = μ + τi + εij , where εij ∼ N(0, σ). To see if the assumption
of NID errors is reasonable, the function checking.plots() is applied to the model
FCD.aov <- aov(Weight~Diet) and the graphical output is displayed in Figure 11.12.
The assumption of equal variance seems tenuous. The increasing variance as the mean
increases is seen in the standardized residuals versus fitted graph (third graph). By using
the function boxcox() from the MASS package applied to FCD.aov, a log transformation
is suggested (see Figure 11.13 on the following page). However, the log transformation
does not fix the unequal variance assumption (see Figure 11.14 on the next page). It is
interesting to point out in this particular case that, despite the logarithmic transformation,
variance is still increasing, yet the modified Levene test returns a ℘-value of 0.23, indicating
no evidence of unequal variance. Since the transformation does not remedy the increasing
variance problem and there were no normality problems with the original data, Welch’s
test for equal means with unequal variance is used on the original measurements. The large
℘-value of 0.26 from Welch’s test indicates there is no reason to believe the three methods
of feeding obese cats result in different weight losses. S code to compute Welch’s test and
its ℘-value follow.
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FIGURE 11.12: checking.plots() applied to the model FCD.aov (aov(Weight∼ Diet))
with the FCD data frame

> attach(FCD)
> ni <- tapply(Weight, Diet, length)
> a <- length(ni)
> si2 <- tapply(Weight, Diet, var)
> wi <- ni/si2
> yb <- tapply(Weight, Diet, mean)
> ytild <- sum(wi*yb)/sum(wi)
> wlamb <- 3*sum((1 - (wi/sum(wi)))^2 / (ni - 1) )/(a^2 - 1)
> dfn <- (a - 1)
> dfd <- 1/wlamb
> W <- sum(wi*(yb - ytild)^2/(3 - 1)) / (1 + 2/3*(3 - 2)*wlamb)
> W
[1] 1.451544
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FIGURE 11.13: Box-Cox transformation graph for the model FCD.aov (aov(Weight∼
Diet)) with the FCD data frame
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FIGURE 11.14: checking.plots() applied to the model FCDlog.aov (aov(log(Weight)∼
Diet)) using the FCD data frame

> pvalue <- 1 - pf(W, dfn, dfd)
> pvalue
[1] 0.2561727
> oneway.test(Weight~Diet)

One-way analysis of means (not assuming equal variances)

data: Weight and Diet
F = 1.4515, num df = 2.00, denom df = 21.59, p-value = 0.2562

> detach(FCD)

11.7 Multiple Comparisons of Means

When the null hypothesis for the completely randomized design, H0 : μ1 = μ2 = · · · =
μa, is rejected with an F -test, the test does not indicate which means are different or
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how they differ. To do this, several tests are required; however, as noted earlier, repeated
application of a test drastically increases type I errors.

Suppose a set of K null hypotheses H01 , H02 , . . . , H0K are to be tested where the overall
hypothesis H0 is true if all of the H0is for i = 1, 2, . . . , K are true:

H0 : H01 ∩ H02 ∩ · · · ∩ H0K (11.18)

Note that H0 is rejected if any of the H0is is rejected. The comparison-wise error rate is
the probability of rejecting a particular H0i in a single test when H0i is true. Controlling the
comparison-wise error rate at the αc level means that the expected proportion of individual
tests that reject H0i when H0i is true is αc. This is the only error rate considered thus far
and has previously been denoted as merely α. It is simply the risk one is willing to take of
making a type I error in a single test. In contrast to the comparison-wise error rate, the
experiment-wise error rate is the probability of rejecting at least one of the H0is in a
series of tests when all of the H0is are true, and is denoted αe. It is the risk of making
at least one type I error among the family of comparisons in (11.18). The experiment-wise
error rate, αe, can be evaluated for a family of independent tests. Although a set of tests
that might be of interest, such as all pairwise differences of a means, are not independent
tests, an upper limit on αe can be established by assuming the tests are independent. There
are a total of ma =

(
a
2

)
= a(a − 1)/2 tests needed to evaluate all pairwise differences among

a means.
The probability of a type I error for any single test is αc and the probability of a correct

decision is 1 − αc. If it is assumed that the ma tests are independent, then the random
variable X = number of type I errors has a binomial distribution:

X ∼ Bin(n = ma, π = αc).

Since αe is the probability of making at least one type I error in the family of tests (ma),

αe = P(X ≥ 1) = 1 − P(X = 0) = 1 −
(

ma

0

)
α0

c(1 − αc)ma = 1 − (1 − αc)ma

Table 11.5: αe values for given αc and various numbers of comparisons
K =number of independent comparisons

2 5 10 20 50
0.01 0.0199 0.0490 0.0956 0.1821 0.3950

αc 0.05 0.0975 0.2262 0.4013 0.6415 0.9231
0.10 0.1900 0.4095 0.6513 0.8784 0.9948

Glancing at Table 11.5, one sees very clearly that for fixed αc, as K increases, αe tends
to 1. In other words, the probability of making at least one type I error in a series of tests
approaches 1 as the number of tests increases. Consequently, multiple comparisons will
generally attempt to control αe, the experiment-wise error rate. To obtain a rough idea
of the value of αe, one can use the Bonferroni inequality αe ≤ K · αc. Likewise, a rough
estimate of αc is αe/K .

11.7.1 Fisher’s Least Significant Difference

Fisher’s least significant difference (protected LSD) requires an overall F -test of H0. If
H0 is rejected, t-tests are used with a common variance estimator (MSError) for comparisons
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of interest. This procedure, despite its appearance, controls neither αc nor αe and is not
a recommended testing procedure. It is included here for pedagogical reasons only. For
pairwise comparisons, group means are considered different if

∣∣Y i• − Y j•
∣∣ > t1−αc

2 ; dfError ·
√

MSError ·
√

1
ni

+
1
nj︸ ︷︷ ︸

LSD

(11.19)

The (1 − αc) · 100% confidence interval on the difference of means based on the LSD is

CI 1−αc(μi − μj) =

[
(Y i• − Y j•) − t1−αc/2; dfError

√
MSError

√
1
ni

+
1
nj

,

(Y i• − Y j•) + t1−αc/2; dfError

√
MSError

√
1
ni

+
1
nj

⎤⎦ (11.20)

When the number of comparisons is small (K ≤ 5), the problem of an increasing αe for
using Fisher’s LSD can be addressed with the Bonferroni method.

The Bonferroni method divides αc by the total number (K) of comparisons. Means are
considered different if the difference of sample means is greater than Bonferroni’s significant
difference (BSD):

∣∣Y i• − Y j•
∣∣ > t1− αc

2·K ; dfError ·
√

MSError ·
√

1
ni

+
1
nj︸ ︷︷ ︸

BSD

(11.21)

The (1 − αe) · 100% confidence interval on the difference of means based on the BSD is

CI 1−αe(μi − μj) =

[
(Y i• − Y j•) − t1− αc

2K ; dfError

√
MSError

√
1
ni

+
1
nj

,

(Y i• − Y j•) + t1− αc
2K ; dfError

√
MSError

√
1
ni

+
1
nj

⎤⎦ (11.22)

The experiment-wise error rate using αc/K can be much less than αe, thus this method is
very conservative and has correspondingly low power.

11.7.2 The Tukey’s Honestly Significant Difference

The Tukey’s honestly significant difference (HSD) was designed to control αe. As such,
it does a much better job of keeping αe close to its nominal level than does the Bonferroni
procedure. The HSD procedure is based on the studentized range statistic. The studentized
range statistic, Q, for a set of treatment means is

Q =
Y max − Y min

σ̂/
√

n
(11.23)
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The distribution of Q depends on the number of treatments (a) and the degrees of freedom
for σ̂ (MSError), denoted by ν. In the one-way CRD, dfError = N−a. The notation q1−α; a, ν

denotes the studentized range value with 1 − α area to the left with a and ν degrees of
freedom, respectively. The S function qtukey() returns values from the studentized range
distribution. For example, q0.95; 4, 20 = 3.958 is obtained by entering qtukey(0.95, 4,
20).

The HSD method rejects any pairwise null hypothesis H0 : μi = μj at the αe level if

∣∣Y i• − Y j•
∣∣ > q1−αe; a, ν ·

√
MSError√

n︸ ︷︷ ︸
HSD

(11.24)

Note that ∣∣Y i• − Y j•
∣∣

√
MSError

√
1
n + 1

n

= |t| >
q1−αe; a, ν√

2

which implies a confidence interval for μi − μj at the 1 − αe level using the studentized
range statistic is written as

CI 1−αe(μi − μj) =

[
(Y i• − Y j•) −

q1−αe; a, ν√
2

√
MSError

√
1
n

+
1
n

,

(Y i• − Y j•) +
q1−αe; a, ν√

2

√
MSError

√
1
n

+
1
n

⎤⎦ (11.25)

Strictly speaking, HSD is only applicable to the equal sample size problem. For unequal
sample sizes, HSD can be approximated as

HSD ≈ q1−αe; a, ν√
2

·
√

MSError ·
√

1
ni

+
1
nj

which is typically conservative compared to the case of equal ni and nj .
Note that the critical values used by the LSD, HSD, and BSD procedures for detecting

pairwise differences are
t1−α

2 ; ν ≤ q1−α; a, ν√
2

≤ t1− α
2K ; ν .

This inequality implies that LSD has the most power for detecting differences, followed by
HSD and then BSD. Unfortunately, LSD does not control αe, while HSD and BSD both
do. Consequently, of the three methods used to compare pairwise means, HSD is the one
recommended because it controls αe with equal n and is only slightly conservative when ni

and nj are unequal.

11.7.3 Displaying Pairwise Comparisons

Pairwise comparisons for K means generate
(
K
2

)
= K(K − 1)/2 tests. A compact method

for displaying the results is to

1. Sort the K means in increasing order.

2. Place the labels of those sorted means on a horizontal axis.

3. Draw lines under groups that are not significantly different.
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If consecutive groups are not significantly different, use a single line segment under all of
such groups. Suppose there are four treatments being studied, which are labeled A, B, C,
and D. The diagram

A D C B

indicates that A and D are not distinguishable from each other, nor are D, C, and B
distinguishable from each other. Only A can be distinguished from C and B.

11.8 Other Comparisons among the Means

At times, comparisons other than pairwise are of interest. For example, suppose tires
with tread A and tread B are made in South Carolina and tires with tread C and tread D
are made in Florida. In this scenario, assuming the stopping distance for a car traveling 60
miles per hour were being measured, one may want to know if there are differences due to
tire manufacturing location and would want to test

H0 :
μA + μB

2
=

μC + μD

2
.

Any linear combination of means C =
∑a

i=1 ciμi, where
∑a

i=1 ci = 0, is called a contrast.
An estimate of the contrast C =

∑a
i=1 ciμi can be obtained from the observed data and

expressed as Ĉ =
∑a

i=1 ciY i•. A contrast of observed means is an unbiased estimate of the
corresponding true treatment means:

E
(
Ĉ =

a∑
i=1

ciY i•
)

=
a∑

i=1

ciμi (11.26)

Since the treatment means are independent, the variance of the observed contrast is

Var
(
Ĉ =

a∑
i=1

ciY i•
)

= σ2
a∑

i=1

c2
i

ni
. (11.27)

Using the standard form of a t-statistic,

unbiased estimator − hypothesized value
standard error of estimator

,

a test statistic for testing H0 :
∑a

i=1 ciμi = δ is written as

t =
∑a

i=1 ciY i• − δ
√

MSError ·
√∑a

i=1
c2

i

ni

(11.28)
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which is distributed as a t-distribution with N − a degrees of freedom when H0 is true. A
confidence interval for any contrast is then

CI 1−α

(
a∑

i=1

ciμi

)
=

⎡⎣ a∑
i=1

ciY i• − t1−α
2 ; N−a ·

√
MSError ·

√√√√ a∑
i=1

c2
i

ni
,

a∑
i=1

ciY i• + t1−α
2 ; N−a ·

√
MSError ·

√√√√ a∑
i=1

c2
i

ni

⎤⎦ (11.29)

The sum of squares can also be computed for a contrast. In particular, the sum of squares
for

∑a
i=1 ciY i• is

SS Ĉ =

(∑a
i=1 ciY i•

)2

∑a
i=1

c2
i

ni

(11.30)

which has 1 degree of freedom. To test if the contrast C =
∑a

i=1 ciμi is zero the ratio
SS Ĉ/MSError

is formed, which follows an F1, dfError when H0 is true.

11.8.1 Orthogonal Contrasts

The contrasts C and D are said to be orthogonal if

a∑
i=1

cidi

ni
= 0.

Orthogonal contrasts are independent of one another and partition the treatment sum of
squares. That is, if one computes the sum of squares for a full set of orthogonal contrasts
(a − 1 contrasts for a treatments), adding up the a − 1 orthogonal contrasts will equal the
treatment sum of squares (SSTreatment). Unfortunately, the construction of a complete set
of meaningful contrasts is not an easy proposition. Contrasts should be used to answer
scientific questions of interest rather than because a complete set of orthogonal contrasts
can be computed.

Example 11.4 �Drosophila� The data set Drosophila contains per diem fecundity
(number of eggs laid per female per day for the first 14 days of life) for 25 females from
each of three lines of Drosophila melanogaster. The three lines are Nonselected (control),
Resistant, and Susceptible. The original measurements are from an experiment conducted
by R. R. Sokal (Sokal and Rohlf, 1994, p. 237). Test if there are

(a) Differences between the three genetic lines,

(b) Differences in fecundity between the Resistant and the Susceptible lines versus the
Nonselected line, and

(c) Fecundity differences between the Resistant and the Susceptible lines.

Solution: The first question (a) seeks to answer if there are differences in the treatment
means. In this case, the hypothesis of interest is H0 : μNonselected = μResistant = μSusceptible.
The second question is typical of experiments with two new treatments and a control. The
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null hypothesis for question (b) is equality between the Nonselected line (control) and the
Resistant and the Susceptible lines (the two new treatments), written

H0 : μNonselected =
μResistant + μSusceptible

2
.

The hypothesis needed to answer question (c) of whether the two treatments (Resistant and
Susceptible) are different is written

H0 : μResistant = μSusceptible.

(a) To test H0 : μNonselected = μResistant = μSusceptible versus H1 : μi �= μj for some i �= j,
an F -test is formed from the ratio of MSTreatment/MSError = 8.67 that yields a ℘-value of
0.0004. Based on the small ℘-value, the null hypothesis of equal means is rejected. The
evidence suggests mean fecundity between lines is different. The values for the ANOVA
table needed to test the null hypothesis are provided Table 11.6. S commands to compute
the ANOVA table are

> attach(Drosophila)
> summary(aov(Fecundity~Line))

Df Sum Sq Mean Sq F value Pr(>F)
Line 2 1362.2 681.1 8.6657 0.0004244 ***
Residuals 72 5659.0 78.6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 11.6: ANOVA table for model Fecundity∼ Line using Drosophila data
Source df SS MS F ℘-value

Treatments 3 − 1 = 2 1362.2 1362.2
2 = 681.1 681.1

78.6 = 8.6657 0.0004

Error 75 − 3 = 72 5659.0 5659.0
72 = 78.6

Total 74 7021.2

Before answering (b) and (c), the residuals are examined (not shown) for the model
Fecundity∼ Line with the function checking.plots(). No problems are noted, so the
second and third questions can be answered using the orthogonal contrasts

C1 = μNonselected −
μResistant + μSusceptible

2

which has coefficients ci = (1,−0.5,−0.5), and

C2 = μResistant − μSusceptible

which has coefficients di = (0, 1,−1). Contrasts C1 and C2 are orthogonal because

a∑
i=1

ci · di

ni
=

1 × 0
25

+
−0.5 × 1

25
+

−0.5 ×−1
25

= 0.
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Since there are a = 3 treatments, there are two degrees of freedom for a set of orthogonal
contrasts. The sum of squares for the first contrast is 1329.0817 and the sum of squares
for the second contrast is 33.1298. The sum of squares for treatments is 1362.2115, which
equals the sum of the sum of squares for the two orthogonal contrasts: 1329.0817+33.1298.
The ℘-value for the first contrast (℘-value = 0.0001) provides strong evidence to suggest
μNonselected �= μResistant+μSusceptible

2 . The ℘-value for the second contrast (℘-value = 0.518)
provides insufficient evidence to reject the null hypothesis μResistant = μSusceptible.

The sums of squares for Ĉ1 and Ĉ2 using (11.30) are computed as

SS Ĉ1
=

[
(1 × 33.372) + (−0.5 × 25.256) + (−0.5 × 23.628)

]2
12

25 + (−.5)2

25 + (−.5)2

25

= 1329.08

and

SS Ĉ2
=

[
(0 × 33.372) + (1 × 25.256) + (−1 × 23.628)

]2
02

25 + 12

25 + (−1)2

25

= 33.13

Table 11.7: ANOVA table for orthogonal contrasts with Drosophila

Source df SS MS F ℘-value
Ĉ1 1 1329.08 1329.08 16.91 0.0001
Ĉ2 1 33.13 33.13 0.42 0.5182

Treatments 2 1362.21 681.11 8.67 0.0004
Error 72 5659.00 78.60
Total 74 7021.21

Note the ℘-values in Table 11.7 are individual ℘-values. That is, they are not simultaneously
correct ℘-values. To obtain ℘-values adjusted for simultaneous inference or simultaneous
confidence intervals, one should use the R package multcomp.

The S commands to calculate the values used in the ANOVA table for the contrasts are

> MSE <- summary(aov(Fecundity~Line))[[1]][2, 3] #Remove [[1]] for S-PLUS
> SSTreat <- summary(aov(Fecundity~Line))[[1]][1, 2] # [[1]] for R
> ybari <- tapply(Fecundity, Line, mean)
> dfe <- 75 - 3
> ni <- c(25, 25, 25)
> ci <- c(1, -.5, -.5)
> di <- c(0, 1, -1)
> ORTHO <- sum(ci*di/ni) # verify orthogonality
> ORTHO
[1] 0
> SSC1 <- (sum(ci*ybari))^2/sum((ci^2/ni))
> SSC2 <- (sum(di*ybari))^2/sum((di^2/ni))
> OSSC <- c(SSC1, SSC2)
> c(SSC1, SSC2, SSC1+SSC2, SSTreat)
[1] 1329.0817 33.1298 1362.2115 1362.2115
> FC1 <- SSC1/MSE
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> FC2 <- SSC2/MSE
> Fs <-c(FC1, FC2)
> pval <- 1 - pf(Fs, 1, dfe)
> cbind(OSSC, Fs, pval)

OSSC Fs pval
[1,] 1329.0817 16.9099666 0.0001027371
[2,] 33.1298 0.4215120 0.5182493283
> contrasts(Line)[,1] <- ci
> contrasts(Line)[,2] <- di
> CO <- contrasts(Line)
> colnames(CO) <- c("C1", "C2")
> CO

C1 C2
Nonselected 1.0 0
Resistant -0.5 1
Susceptible -0.5 -1
> summary(aov(Fecundity~C(Line, CO, 1)+C(Line, CO, 2)))

Df Sum Sq Mean Sq F value Pr(>F)
C(Line, CO, 1) 1 1329.1 1329.1 16.9100 0.0001027 ***
C(Line, CO, 2) 1 33.1 33.1 0.4215 0.5182493
Residuals 72 5659.0 78.6
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

There are several ways to obtain contrasts with S by changing the type of contrasts S
uses. Contrasts settings for S include contr.helmert, contr.poly, contr.sum, and
contr.treatment. R also has the contrast contr.SAS, which is not directly available
in S-PLUS. The interested reader should refer to the help documentation by typing
?contr.helmert for more explanation. R uses contr.treatment for unordered factors
which is not strictly a contrast in its default options. S-PLUS, on the other hand, uses
contr.helmert as its default contrast. The option contr.helmert produces Helmert
contrasts, which are orthogonal contrasts when there are an equal number of observations
at each of the factor levels. For example, R default contrasts for Line are

> contrasts(Line) <- contr.treatment(levels(Line)) # R defaults
> contrasts(Line)

Resistant Susceptible
Nonselected 0 0
Resistant 1 0
Susceptible 0 1

To compute Helmert contrasts, type

> contrasts(Line) <- contr.helmert(levels(Line))
> contrasts(Line)

[,1] [,2]
Nonselected -1 -1
Resistant 1 -1
Susceptible 0 2
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To compute the sum of squares for the contrasts used in parts (b) and (c), key in

> contrasts(Line) <- contr.helmert(levels(Line))[3:1, 2:1]
> contrasts(Line)

[,1] [,2]
Nonselected 2 0
Resistant -1 1
Susceptible -1 -1

Note that using coefficients (2,−1,−1) is equivalent to using (1,−0.5,−0.5), since the first
set of coefficients is simply a linear combination of the second set of coefficients:

> CO <- contrasts(Line)
> colnames(CO) <- c("Contrast 1", "Contrast 2")
> CO

Contrast 1 Contrast 2
Nonselected 2 0
Resistant -1 1
Susceptible -1 -1
> summary(aov(Fecundity~C(Line, CO, 1)+C(Line, CO, 2)))

Df Sum Sq Mean Sq F value Pr(>F)
C(Line, CO, 1) 1 1329.1 1329.1 16.9100 0.0001027 ***
C(Line, CO, 2) 1 33.1 33.1 0.4215 0.5182493
Residuals 72 5659.0 78.6
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

To obtain simultaneous ℘-values and confidence intervals, the following R code should be
used:

> library(multcomp)
> summary(glht(aov(Fecundity~Line), linfct = mcp(Line = t(CO))))

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = Fecundity ~ Line)

Linear Hypotheses:
Estimate Std. Error t value p value

Contrast 1 == 0 17.860 4.343 4.112 0.000205 ***
Contrast 2 == 0 1.628 2.508 0.649 0.766699
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Adjusted p values reported)

> CI <- confint(glht(aov(Fecundity~Line), linfct = mcp(Line = t(CO))))
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> CI

Simultaneous Confidence Intervals for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Fit: aov(formula = Fecundity ~ Line)

Estimated Quantile = 2.2827

Linear Hypotheses:
Estimate lwr upr

Contrast 1 == 0 17.8600 7.9456 27.7744
Contrast 2 == 0 1.6280 -4.0961 7.3521

95% family-wise confidence level

Using the R function barplot2() from the gregmisc package, barplots for the mean of the
various lines and contrasts are created with superimposed 95% confidence intervals as well
as a graph of the 95% simultaneous confidence intervals from the multcomp package with
the command plot(CI) and shown in Figure 11.15.
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FIGURE 11.15: These graphs give barplots showing the mean fecundity by line, by contrast
1, and by contrast 2 with individual 95% confidence intervals. The bottom right graph
displays the simultaneous 95% confidence intervals for contrast 1 and contrast 2.
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11.8.2 The Scheffé Method for All Constrasts

The Scheffé method controls the experiment-wise error rate αe for all possible com-
parisons, including contrasts, suggested by the data. Consequently, it is the appropriate
technique for examining a large number of unplanned comparisons. Its relatively low power
limits its legitimate use to data snooping or to investigating contrasts that cannot be handled
by other techniques. The Scheffé method is equivalent to the F -test in that the Scheffé
method will not find differences in means if the F -test does not reject H0. Also, if the
F -test does reject H0, then there exists at least one comparison that the Scheffé method
will declare significant. Unfortunately, finding the comparison(s) that the Scheffé method
will declare significant is a process composed entirely of trial and error.

To test the null hypothesis H0 :
∑a

i=1 ciμi = 0 with the Scheffé test statistic S, the
ratio Sobs = SS Ĉ/(a−1)

MSError
is formed, where SS Ĉ is as given in (11.30). The null hypothesis is

rejected at the αe level for Sobs > f1−αe; a−1, ν , where ν = dfError. For the one-way CRD,
ν = N − a. For other models, ν will be different. A confidence interval for an arbitrary
contrast,

∑a
i=1 ciμi, at the 1 − αe confidence level is

CI 1−αe

(
a∑

i=1

ciμi

)
=

⎡⎣ a∑
i=1

ciY i• −
√

(a − 1)f1−αe; a−1, ν ·

√√√√MSError

a∑
i=1

c2
i

ni
,

a∑
i=1

ciY i• +
√

(a − 1)f1−αe; a−1, ν ·

√√√√MSError

a∑
i=1

c2
i

ni

⎤⎦
(11.31)

The Scheffé confidence intervals have simultaneous 1−αe coverage over any set of contrasts.

11.9 Summary of Comparisons of Means

Let the questions to be answered determine the type of contrast that is tested. If the
researcher is only interested in determining differences among the means, Tukey’s HSD
should be used. Sheffé’s method provides a constant αe protection for any contrast, which
makes it ideal for “data snooping.”Pairwise mean comparisons using any of the methods
LSD, BSD, HSD, or Scheffé can be accomplished with the S-PLUS function multicomp().
See the S-PLUS help file for specific questions. Tukey’s HSD intervals can be obtained
in R using the command TukeyHSD(). The R package MultcompView renders a graphical
representation of the results from TukeyHSD(). For simultaneous inference, the R package
multcomp should be consulted.

Example 11.5 � Pairwise Mean Comparisons � Compare all treatment means
from Example 11.1 to determine which tire treads have the shortest stopping distance. Use
α = 0.05 with

(a) Fisher’s least significant difference

(b) Bonferroni’s significant difference

(c) Tukey’s honestly significant difference

(d) Scheffé’s method
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Solution: Each of the methods provides a cutoff value for considering a difference of
means significant. The estimated means are μ̂A = 379.67, μ̂B = 405.16, μ̂C = 421.67, and
μ̂D = 410.33. The estimated mean differences with which these values will be compared are

I. μ̂B − μ̂A = Y 2• − Y 1• = 25.50

II. μ̂C − μ̂A = Y 3• − Y 1• = 42.00

III. μ̂D − μ̂A = Y 4• − Y 1• = 30.67

IV. μ̂C − μ̂B = Y 3• − Y 2• = 16.50

V. μ̂D − μ̂B = Y 4• − Y 2• = 5.16

VI. μ̂D − μ̂C = Y 4• − Y 3• = −11.33

(a) Fisher’s LSD considers group means significantly different if

∣∣Y i• − Y j•
∣∣ > t1−αc

2 ; dfError ·
√

MSError ·
√

1
ni

+
1
nj︸ ︷︷ ︸

LSD

LSD = 2.085 ·
√

354.94 ·
√

1
6

+
1
6

= 22.68

Comparing this value with the statistics from I–VI indicates that μA is significantly different
from μB, μD, and μC :

A B D C

The S-PLUS command to generate Fisher’s LSD pairwise confidence intervals is
multicomp(aov(StopDist~tire), method="lsd", error.type="cwe").

(b) Bonferroni’s significant difference considers group means significantly different if

∣∣Y i• − Y j•
∣∣ > t1− αc

2·K ; dfError ·
√

MSError ·
√

1
ni

+
1
nj︸ ︷︷ ︸

BSD

BSD = 2.927 ·
√

354.94 ·
√

1
6

+
1
6

= 31.839

Comparing this value with the statistics from I–VI indicates that μA is significantly different
from μC . The reader may note that treatment A is not significantly different from treatment
B; and, at the same time, treatment B is not significantly different from treatment C.
However, treatments A and C are significantly different from each other. When comparing
pairwise means, the transitive property does not hold. For orthogonal contrasts, on the
other hand, the transitive property will hold.

A B D C

The S-PLUS command to generate Bonferroni’s significant difference pairwise confidence
intervals is multicomp(aov(StopDist~tire), method="bon").
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(c) Tukey’s honestly significant difference considers group means significantly different if

∣∣Y i• − Y j•
∣∣ > q1−αe; a, ν ·

√
MSError√

n︸ ︷︷ ︸
HSD

HSD = 2.799 ·
√

354.94 ·
√

1
6

+
1
6

= 30.445

Comparing this value with the statistics from I–VI indicates that μA is significantly different
from μD and μC :

A B D C

The R code for computing Tukey’s HSD’s pairwise confidence intervals is

> attach(Tire)
> CI <- TukeyHSD(aov(StopDist~tire), which="tire")
> CI
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = StopDist ~ tire)

$tire
diff lwr upr p adj

B-A 25.500000 -4.9446409 55.94464 0.1213153
C-A 42.000000 11.5553591 72.44464 0.0049515
D-A 30.666667 0.2220258 61.11131 0.0479540
C-B 16.500000 -13.9446409 46.94464 0.4464584
D-B 5.166667 -25.2779742 35.61131 0.9637307
D-C -11.333333 -41.7779742 19.11131 0.7273681

> plot(CI, las=1)

Figure 11.16 on the following page shows a graphical representation of the Tukey’s HSD
confidence intervals calculated above. A slightly different graphical representation of signif-
icant differences between group means using Tukey’s HSD can be created with the following
R code:

> library(multcompView)
> multcompBoxplot(StopDist~tire, data=Tire)

Figure 11.17 on the next page contains an example of

a matrix of class multcompTs, describing the undifferentiated classes that iden-
tify the other factor levels or items that are not distinct or not significantly
different from the base of the T ; if two or more levels have the same pattern
of significant differences, the two are combined into one T with two bases. The
resulting T s are similar to the undifferentiated classes discussed by Donaghue
(2004)

as described in the help file for multcompTs() in the R package multcompView.
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FIGURE 11.16: Graphical representation of confidence intervals based on Tukey’s HSD for
the model StopDist∼ tire using the data frame Tire
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FIGURE 11.17: Multiple comparison boxplot with multcompTs differentiating means based
on Tukey’s HSD for the model StopDist∼ tire using the data frame Tire

The S-PLUS command to generate Tukey’s HSD pairwise confidence intervals is
multicomp(aov(StopDist~tire), method="tukey").

(d) If
∑a

i=1 ciY i• is greater than

√
(a − 1)f1−αe; a−1, ν ·

√√√√MSError

a∑
i=1

c2
i

ni

Scheffé’s method will consider the group means significantly different.

In this case,

√
(a − 1)f1−αe; a−1, ν ·

√√√√MSError

a∑
i=1

c2
i

ni
=

√
(4 − 1) · 3.098 ·

√
354.94 · 2

6
= 33.162.
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Comparing this value with the statistics from I–VI indicates that μA is significantly different
from μC :

A B D C

The S-PLUS command to generate Scheffé’s significant difference pairwise confidence inter-
vals is multicomp(aov(StopDist~tire), method="scheffe").

S code that can be used to calculate the LSD, BSD, HSD, and Scheffé statistics as well as
the pairwise mean differences is

> tire.aov <- aov(StopDist~tire)
> alpha.c <- 0.05
> summary(tire.aov)

Df Sum Sq Mean Sq F value Pr(>F)
tire 3 5673.1 1891.0 5.3278 0.007316 **
Residuals 20 7098.8 354.9
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> MSE <- summary(aov(tire.aov))[[1]][2, 3] # For R
> ybari <- tapply(StopDist, tire, mean)
> a <- length(ybari)
> N <- length(StopDist)
> dfe <- N - a
> sort(ybari)

A B D C
379.6667 405.1667 410.3333 421.6667
> TcritLSD <- qt(1 - alpha.c/2, dfe)
> LSD <- TcritLSD*sqrt(MSE)*sqrt(2/6)
> TcritBON <- qt(1 - alpha.c/(choose(a, 2)*2), dfe)
> BON <- TcritBON*sqrt(MSE)*sqrt(2/6)
> TcritTUK <- qtukey(1 - alpha.c, a, dfe)/sqrt(2)
> HSD <- TcritTUK*sqrt(MSE)*sqrt(2/6)
> CSF <- sqrt((a - 1)*qf(1 - alpha.c, a - 1, dfe))
> SCH <- CSF*sqrt(MSE*2/6)
> c(LSD, BON, HSD, SCH)
[1] 22.68948 31.83892 30.44464 33.16245
> outer(sort(ybari), sort(ybari), "-")

A B D C
A 0.00000 -25.500000 -30.666667 -42.00000
B 25.50000 0.000000 -5.166667 -16.50000
D 30.66667 5.166667 0.000000 -11.33333
C 42.00000 16.500000 11.333333 0.00000

The following R code can be used to duplicate Figure 11.18 on the following page:

> library(gregmisc)
> NS <- tapply(StopDist, tire, length)
> SE <- sqrt(MSE)/sqrt(NS)
> t.v <- qt(.975, dfe)
> ci.l <- ybari - t.v*SE
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> ci.u <- ybari + t.v*SE
> barplot2(ybari, plot.ci=TRUE, ci.l=ci.l, ci.u=ci.u, col="skyblue",
+ ylim=c(0, 450), ci.lwd=2)
> title(main="Mean Stoppping Distance by Tire \n with Individual 95% CIs")
> detach(Tire)
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FIGURE 11.18: Barplot of mean stopping distance by tire type with superimposed
individual 95% confidence intervals for the Tire data frame

11.10 Random Effects Model (Variance Components Model)

In the motivational problem Example 11.1, the levels of the factor (tread type) were
considered fixed, since only four tread types were available and a decision was sought for
the effect of stopping distance for these four types of treads. If, however, the experimenter
is interested in a factor that has a large number of possible values and randomly selects
a of the possible levels from the population of factor levels, the experiment is modeled as
a random effects model. This model is different from the fixed effects model because the
levels of the factor are chosen at random. Consequently, inference will apply to the entire
population of factor levels, not merely to the a levels in the model. For example, consider
a clothing manufacturer that produces work clothes. The strength of the material used
in the clothes varies depending on the wool supplier. The manufacturer contracts with
a few out of many hundreds of wool suppliers (usually on the basis of price). Since the
number of suppliers is very large, by randomly selecting a few suppliers, one can estimate
the variability in clothing strength due to suppliers. That is, one is not interested in the
particular randomly selected supplier per se. Rather, the goal is to learn something about
the suppliers’ variability as a whole relative to clothing strength. The statistical model for
the one-way random effects remains

Yij = μ + τi + εij .

In contrast, τi is now considered a random variable; whereas in the fixed effect model, it was
a parameter. That is, in the random effects model, both τi and εij are random variables.
Consequently the constraint

∑a
i=1 τi = 0 from the fixed effects model does not apply to the

random effects model. The assumptions, then, for the one-way random effects model are

(1) εij ∼ NID(0, σ).
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(2) τi ∼ NID(0, στ ).

(3) τi and εij are independent.

Because of assumption number (3), the variance of any observation is σ2
Yij

= σ2
τi

+ σ2.
In the random effects model, one is interested in estimating variance components, not in
testing treatment means. The reason for this is that the means will vary due to the random
nature of selecting the a treatments from the entire population of possible treatments. The
partitioning of the sum of squares employed with the fixed effects model is still valid with
the random effects model; however, the hypotheses of interest are now

H0 : σ2
τ = 0 versus H1 : σ2

τ > 0

which are tested using the ANOVA procedure outlined for the fixed effects model. If the
null hypothesis cannot be rejected, σ2

τ = 0, it is concluded that there are no treatment
differences. On the other hand, if the alternative hypothesis is supported, σ2

τ > 0, the
conclusion is that variability exists among treatments.

The test statistic for testing σ2
τ = 0 is MSTreatment/MSError, which follows an Fa−1,N−a

distribution when the null hypothesis is true. Although the same ANOVA table is used for
fixed effects and random effects models, the interpretations are different. The conclusions
from a random effects model are not limited to the a treatments used in the computation
of the test statistic but rather apply to the entire population of treatments. Estimators for
the two variance components when the a treatments have equal sample size n are

σ̂2 = MSError and σ̂2
τ =

MSTreatment − MSError

n
(11.32)

When treatment sample sizes are unequal, the n in (11.32) is replaced with n′, where

n′ =
1

a − 1

a∑
i=1

ni −
∑a

i=1 n2
i∑a

i=1 ni
(11.33)

Example 11.6 � Frozen Carrots � A food processing company that uses many
hundreds of freezers is studying the variability of its freezers on the texture of frozen carrots.
The shear measured in kN on frozen carrots from four randomly selected freezers is shown in
Table 11.8 and available in the food data frame. The company would like all of its freezers
to be homogeneous in order to control the taste of the frozen carrots.

(a) Test the null hypothesis H0 : σ2
τ = 0 for freezers.

(b) Estimate the component of variance for freezers.

Table 11.8: Shear on frozen carrots by freezer
1 2 3 4

A 1.96 1.94 1.98 1.92
B 1.82 1.80 1.86 1.84
C 1.92 1.90 1.94 1.90
D 1.90 1.92 1.98 1.96
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Solution: The answers are as follows:

(a) The company in this problem is ultimately interested in reducing freezer variability
and wants to know if there is more variability in their frozen carrots due to the carrots
themselves or due to the numerous freezers used in freezing the carrots.

The hypotheses to be tested are

H0 : σ2
τ = 0 versus H1 : σ2

τ > 0

Table 11.9: Frozen carrots ANOVA table
Source of Degrees of
Variation Freedom Sum of Squares Mean Square
(Source) (df) (SS ) (MS ) F ℘-value

Treatments 3 0.035675 0.011892 15.681 0.0001878
Error 12 0.009100 0.000758
Total 15 0.044775

From Table 11.9, one can see that there is strong evidence to suggest σ2
τ > 0 (℘-value <

0.0002). In other words, there is more variability due to the freezers than variability due to
the carrots.

(b) σ̂2 = MSError = 0.000758

σ̂2
τ =

MSTreatment − MSError

n
=

0.011892− 0.000758
4

= 0.00278.

S Commands:

> attach(food)
> summary(aov(shear~freezer))

Df Sum Sq Mean Sq F value Pr(>F)
freezer 3 0.035675 0.011892 15.681 0.0001878 ***
Residuals 12 0.009100 0.000758
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> MSC <- summary(aov(shear~freezer))[[1]][1, 3] # omit [[1]] for S-PLUS
> MSE <- summary(aov(shear~freezer))[[1]][2, 3] # omit [[1]] for S-PLUS
> sig2tau <- (MSC - MSE)/4
> sig2tau
[1] 0.002783333
> detach(food)
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11.11 Randomized Complete Block Design

The t-tests from Sections 9.7.4 and 9.7.6 were used to compare two treatments. Com-
parisons between the two treatments used the paired t-test when the measurements being
compared were related, and consequently more homogeneous. The main idea behind using
the paired t-test was to reduce the overall variability of the experiment by pairing observa-
tions. When comparing two treatments, whenever the variability within the pairs is smaller
than the between pairs variability, detection of the treatment effect is improved by using
a paired design. When observations that are homogeneous in some respect are grouped
together, the result is referred to as a block. Blocks are used in many settings to reduce
variability. Some of these include agricultural studies with different strips of land, different
litters of animals, and batches of chemical materials. In this section, the paired t-test is
generalized to a ≥ 2 treatments and the resulting design is referred to as a randomized
complete block design. (Thus, pairing is a special case of blocking where each block is
of size two.) The design is called complete because each treatment is used in every block.
Instead of treatments being assigned to experimental units, as was the case in the completely
randomized design, the randomized complete block design assigns treatments to an equal
number of experimental units (usually one) at random within each block. The statistical
model used to represent a randomized complete block design (RCBD) is

Yij = μ + τi + βj + εij for i = 1, 2, . . . , a and j = 1, 2, . . . , b (11.34)

where μ is the grand mean; τi is the ith treatment effect, which is the difference between
the mean response of the ith treatment over all blocks and the grand mean; βj is the jth

block effect, which is the difference between the mean response of the jth block over all
treatments and the grand mean; and εij are the NID(0, σ) error terms. Treatment and
block effects are considered fixed effects, defined as deviations from the grand mean so that∑a

i=1 τi = 0 and
∑b

j=1 βj = 0 . Note that model (11.34) is a completely additive model,
which assumes blocks and treatments do not interact. That is, if treatment one causes
the expected response to increase by 3 units (τ1 = 3), and if the first block decreases the
expected response by 1 unit (β1 = −1), then the expected response for both treatment and
block one is E(Y11) = μ + τ1 + β1 = μ + 3− 1 = μ + 2. A RCBD is really a design with two
factors, where only one factor (the one measuring the treatment effect) is of interest. The
other factor (called a block) is used to reduce the experiment’s variability and to enhance its
ability to detect treatment differences for the factor of interest. Analysis of the RCBD differs
from a two-factor design because the blocking factor is not randomized. This dependence in
the blocking factor means there is no theoretical justification for a test of blocks. However,
one will often look at the ratio MSBlocks/MSError

to get an idea if blocking was beneficial.
Just keep in mind that the ratio MSBlocks/MSError

does not truly follow an F distribution,
as does the ratio MSTreatment/MSError

. One must remember that blocks should only be used
when doing so reduces the overall design variability. To do otherwise reduces the power of
the test.

The least squares estimators for the parameters in (11.34) are

μ̂ = Y •• (11.35)

τ̂i = Y i• − Y •• (11.36)

β̂j = Y •j − Y •• (11.37)
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and the residuals are

ε̂ij = Yij − Ŷij = Yij − Ȳi• − Ȳ•j + Ȳ••. (11.38)

Each Yij from (11.34) can be decomposed into four parts by substituting the least squares
estimates of μ, τi, βj , and εij for the parameters’ values:

Yij = μ̂ + τ̂i + β̂j + ε̂ij (11.39)

Yij = Y •• + (Y i• − Y ••) + (Y •j − Y ••) + (Yij − Y i• − Y •j + Y ••)

(Yij − Y ••) = (Y i• − Y ••) + (Y •j − Y ••) + (Yij − Y i• − Y •j + Y ••)

Squaring and summing over i = 1, 2, . . . , a and j = 1, 2, . . . , b gives

a∑
i=1

b∑
j=1

(Yij − Y ••)2 =
a∑

i=1

b∑
j=1

[
(Y i• − Y ••) + (Y •j − Y ••) + (Yij − Y i• − Y •j + Y ••)

]2
(11.40)

When the right side of (11.40) is expanded, all three cross products sum to zero (which is
left to the reader to verify), giving

a∑
i=1

b∑
j=1

(Yij − Y ••)2︸ ︷︷ ︸
SSTotal

=
a∑

i=1

b∑
j=1

(Y i• − Y ••)2︸ ︷︷ ︸
SSTreatment

+
a∑

i=1

b∑
j=1

(Y •j − Y ••)2︸ ︷︷ ︸
SSBlock

+
a∑

i=1

b∑
j=1

(Yij − Y i• − Y •j + Y ••)2︸ ︷︷ ︸
SSError

(11.41)

The symbolic representation of (11.41) is

SSTotal = SSTreatment + SSBlock + SSError.

The corresponding degrees of freedom are

a · b − 1︸ ︷︷ ︸
total df

= a − 1︸ ︷︷ ︸
treatment df

+ b − 1︸ ︷︷ ︸
block df

+ (a − 1)(b − 1)︸ ︷︷ ︸
error df

.

The mean squares are computed as with the completely randomized design model by
dividing each sum of squares by its corresponding degrees of freedom. The expected value
of the mean squares, if treatments and blocks are fixed, can be shown to be

E
(
MSTreatments

)
= σ2 +

b ·
∑a

i=1 τ2
i

a − 1

E
(
MSBlocks

)
= σ2 +

a ·
∑b

i=1 β2
j

b − 1
E
(
MSError

)
= σ2

Consequently, to test for no treatment effect, one uses the ratio MSTreatment/MSError
, which

has an F distribution with (a − 1) and (a − 1)(b − 1) degrees of freedom when H0 is
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true. There is no formal test for blocks; however, examining the ratio MSBlocks/MSError
,

and comparing it to an F distribution with (b − 1) and (a − 1)(b − 1) degrees of freedom
will give an indication of whether blocking is appropriate. If blocking is not appropriate,
then it should be eliminated in future experiments. The ANOVA table for the randomized
complete block design is given in Table 11.10.

Table 11.10: ANOVA table for the randomized complete block design
Source of Degrees of
Variation Freedom Sum of Squares Mean Square
(Source) (df) (SS) (MS) F

Treatments a − 1

SSTreatment = b ·
a∑

i=1

τ̂ 2
i ≡

a∑
i=1

b∑
j=1

(Y i• − Y ••)
2

MSTreatment =

SSTreatment

a − 1

MSTreatment
MSError

Blocks b − 1

SSBlocks = a ·
b∑

j=1

β̂2
j ≡

a∑
i=1

b∑
j=1

(Y •j − Y ••)
2

MSBlock =

SSBlock

b − 1

Error (a − 1)(b − 1)

SSError =
a∑

i=1

b∑
j=1

ε̂2
ij ≡

a∑
i=1

b∑
j=1

(Yij−Y i•−Y •j+Y ••)
2

MSError =

SSError

(a − 1)(b − 1)

Total a · b − 1

SSTotal =

a∑
i=1

b∑
j=1

(Yij − Y ••)
2

Possible CRBD Treatment Assignments: Tire Wear Suppose a tire manufacturer
is interested in determining tire tread loss after 10,000 miles of driving for the company’s
best selling four tire models. Four cars and four tires of each tire model are available for
the experiment. Let the tire models be denoted with the letters A, B, C, and D and the
four cars be denoted as Car1, Car2, Car3, and Car4. One possible design is to assign the
four tires of model A, B, C, and D to cars Car1, Car2, Car3, and Car4, respectively. This
particular design confounds tire model with car, however. That is, it would not be known
whether the differences in tire wear are due to cars or tire model. Another solution might
be to use a completely randomized design, but not all tire models will necessarily be used on
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all cars. Consider the completely random assignment of tire models to cars given in the S
output stored in the variable tireCRD. Note that tire model D is never used with Car1, tire
model C is never used with Car2, and tire model A is never used with Car3. Further, any
variation in model A may simply be due to Car1, Car2, and Car4. Although the completely
randomized design averaged out the car effects, it did not eliminate the variance among
cars. The randomized complete block design does remove the variability due to cars. One
possible assignment of tire models within cars is given under the variable tireCRBD:

> car <- rep(c("Car1", "Car2", "Car3", "Car4"), c(4, 4, 4, 4))
> tire <- rep(LETTERS[1:4], c(4, 4, 4, 4))
> tireCRD <- sample(tire)
> tireCRBD <- c(sample(LETTERS[1:4]), sample(LETTERS[1:4]),
+ sample(LETTERS[1:4]), sample(LETTERS[1:4]))
> Designs <- cbind(car, tire, tireCRD, tireCRBD)
> Designs

car tire tireCRD tireCRBD
[1,] "Car1" "A" "C" "B"
[2,] "Car1" "A" "A" "D"
[3,] "Car1" "A" "B" "C"
[4,] "Car1" "A" "A" "A"
[5,] "Car2" "B" "D" "A"
[6,] "Car2" "B" "A" "B"
[7,] "Car2" "B" "D" "C"
[8,] "Car2" "B" "B" "D"
[9,] "Car3" "C" "C" "A"
[10,] "Car3" "C" "C" "B"
[11,] "Car3" "C" "D" "D"
[12,] "Car3" "C" "B" "C"
[13,] "Car4" "D" "C" "B"
[14,] "Car4" "D" "D" "D"
[15,] "Car4" "D" "A" "A"
[16,] "Car4" "D" "B" "C"

Example 11.7 � Tire Wear � The data frame TireWear contains measurements for
the amount of tread loss after 10,000 miles of driving in thousandths of an inch. The tread
loss from the TireWear data frame is presented in tabular form in Table 11.11 on the next
page along with the order the tires were assigned to the car in parentheses. Use the values
in Table 11.11 to test for treatment (tire model) effects using an additive RCBD.

(a) Verify that an additive model is appropriate.

(b) Compute the ANOVA table to test H0 : τi = 0 for all i versus H1 : τi �= 0 for some i.

(c) Represent the Yij values using (11.39).

(d) Verify graphically that εij ∼ N(0, σ).

(e) Determine which tires are different (have the least tread loss) using Tukey’s HSD at
αe = 0.05.

Solution: The answers are as follows:

(a) The RCBD is completely additive, and the function interaction.plot() is used to
verify the reasonableness of the additivity assumption before computing any sums of squares.
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Table 11.11: The tread loss from the TireWear data frame
Car1 Car2 Car3 Car4

A 10 (4) 8 (1) 7 (1) 7 (3)
B 9 (1) 8 (2) 7 (2) 5 (1)
C 8 (3) 7 (3) 5 (4) 3 (4)
D 6 (2) 5(4) 3 (3) 3 (2)

Table 11.12: Sums and estimates for Example 11.7
Blocks τ̂i =

Car1 Car2 Car3 Car4 Y i• Y i• − Y ••
A 10 8 7 7 8.00 1.6875

Tire B 9 8 7 5 7.25 0.9375
Tread C 8 7 5 3 5.75 −0.5625

D 6 5 3 3 4.25 −2.0625
Y •j 8.25 7.00 5.50 4.50 Y •• = 6.3125

β̂j = Y •j − Y •• 1.9375 0.6875 −0.8125 −1.8125

Interaction plots show the relative size of main effects and interaction. The pairs (i, Y ij)
for all j are plotted, and points in the same block are connected. The roles of blocks and
treatments can be reversed, and it is often informative to do so with interaction plots.
Parallel lines are indicative of additive designs. Lines that cross should be investigated
further. Figure 11.19 on the following page does not suggest any problems with the RCBD’s
assumption of additivity; however, since graphs are often misleading and their interpretation
is subjective, other means of analyzing and evaluating interaction should also be explored.

> attach(TireWear)
> par(mfrow=c(1, 2), cex=.8)
> interaction.plot(Treat, Block, Wear, type="b", legend=FALSE)
> interaction.plot(Block, Treat, Wear, type="b", legend=FALSE)
> par(mfrow=c(1, 1), cex=1)

The interaction plots suggest both a treatment and a block effect. Another graph that
is helpful when there is only one observation per treatment/block combination is the strip
plot. Results from using the lattice/Trellis function stripplot() are shown in Figure 11.20
on the next page. One can see that tire wear increases with tire models in the order D, C,
B, and then A. In a similar fashion, one notes that tire wear in cars increases in the order
Car4, Car3, Car2, and then Car1. The graph showing tire wear means due to treatments
and blocks using the function plot.design() is shown in Figure 11.21 on page 543.

> library(lattice) # R
> A <- stripplot(Treat~Wear|Block, layout=c(4, 1))
> B <- stripplot(Block~Wear|Treat, layout=c(4, 1))
> print(A, split=c(1, 1, 1, 2), more=TRUE)
> print(B, split=c(1, 2, 1, 2), more=FALSE)
> plot.design(Wear~Treat+Block)

(b) Using the values from Table 11.12 on the previous page, the values for the ANOVA
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FIGURE 11.19: Left graph shows an interaction plot of blocks and treatments for the
response Wear where the four blocks, Car1, Car2, Car3, and Car4, are denoted with the
numbers 1, 2, 3, and 4, respectively, and the treatments shown along the x-axis are A, B, C,
and D, respectively. The right graph shows an interaction plot of treatments and blocks for
the response Wear where the four treatments, A, B, C, and D, are denoted with the numbers
1, 2, 3, and 4, respectively, and the blocks shown along the x-axis are Car1, Car2, Car3,
and Car4, respectively.
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FIGURE 11.20: The graph resulting from the lattice/Trellis function stripplot() for
Example 11.7

table are

SSTreatment = b ·
a∑

i=1

τ̂2
i = 4

(
1.68752 + 0.93752 + (−0.5625)2 + (−2.06252)

)
= 33.1875

SSBlock = a

b∑
j=1

β̂2
j = 4

(
1.93752 + 0.68752 + (−0.8125)2 + (−1.8125)2

)
= 32.6875
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FIGURE 11.21: Tire wear means due to treatments and blocks using the function
plot.design() for Example 11.7

SSTotal =
a∑

i=1

b∑
j=1

(
Yij − Y ••

)2

= (10 − 6.3125)2 + (9 − 6.3125)2 + (8 − 6.3125)2 + · · · + (3 − 6.3125)2

= 69.4375
SSError = SSTotal − SSTreatment − SSBlock

= 69.4375− 33.1875− 32.6875
= 3.5625

Table 11.13: Tire wear ANOVA table
Source df SS MS F ℘-value

Treatments 3 33.1875 11.062 27.947 0.000068
Blocks 3 32.6875 10.896
Error 9 3.5625 0.396
Total 15 69.4375

To produce the ANOVA table with S, enter

> mod.aov <- aov(Wear~Treat+Block)
> summary(mod.aov)

Df Sum Sq Mean Sq F value Pr(>F)
Treat 3 33.187 11.062 27.947 6.824e-05 ***
Block 3 32.688 10.896 27.526 7.254e-05 ***
Residuals 9 3.562 0.396
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that the computer treats the blocking factor as if it were assigned at random and
computes a ℘-value for the blocking factor. The small ℘-value suggests that blocking is
appropriate. Since the ℘-value = 0.000068, the null hypothesis (H0 : τi = 0) of no treatment
effect is rejected.



544 Probability and Statistics with R

(c) The Yij values can be decomposed as follows:

Yij = μ̂ + τ̂i + β̂j + ε̂ij⎡⎢⎢⎣
10 8 7 7
9 8 7 5
8 7 5 3
6 5 3 3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
6.3125 6.3125 6.3125 6.3125
6.3125 6.3125 6.3125 6.3125
6.3125 6.3125 6.3125 6.3125
6.3125 6.3125 6.3125 6.3125

⎤⎥⎥⎦

+

⎡⎢⎢⎣
1.6875 1.6875 1.6875 1.6875
0.9375 0.9375 0.9375 0.9375

−0.5625 −0.5625 −0.5625 −0.5625
−2.0625 −2.0625 −2.0625 −2.0625

⎤⎥⎥⎦

+

⎡⎢⎢⎣
1.9375 0.6875 −0.8125 −1.8125
1.9375 0.6875 −0.8125 −1.8125
1.9375 0.6875 −0.8125 −1.8125
1.9375 0.6875 −0.8125 −1.8125

⎤⎥⎥⎦

+

⎡⎢⎢⎣
0.0625 −0.6875 −0.1875 0.8125

−0.1875 0.0625 0.5625 −0.4375
0.3125 0.5625 0.0625 −0.9375

−0.1875 0.0625 −0.4375 0.5625

⎤⎥⎥⎦
S code to create the four parts of each Yij is

> yidotbar <- tapply(Wear, Treat, mean)
> ydotjbar <- tapply(Wear, Block, mean)
> gm <- mean(Wear)
> taui <- yidotbar - gm
> blockj <- ydotjbar - gm
> GM <- matrix(rep(gm, 16), nrow=4)
> GM

[,1] [,2] [,3] [,4]
[1,] 6.3125 6.3125 6.3125 6.3125
[2,] 6.3125 6.3125 6.3125 6.3125
[3,] 6.3125 6.3125 6.3125 6.3125
[4,] 6.3125 6.3125 6.3125 6.3125
> treatm <- matrix(rep(taui, 4), nrow=4, byrow=FALSE)
> treatm

[,1] [,2] [,3] [,4]
[1,] 1.6875 1.6875 1.6875 1.6875
[2,] 0.9375 0.9375 0.9375 0.9375
[3,] -0.5625 -0.5625 -0.5625 -0.5625
[4,] -2.0625 -2.0625 -2.0625 -2.0625
> blockm <- matrix(rep(blockj, 4), nrow=4, byrow=TRUE)
> blockm

[,1] [,2] [,3] [,4]
[1,] 1.9375 0.6875 -0.8125 -1.8125
[2,] 1.9375 0.6875 -0.8125 -1.8125
[3,] 1.9375 0.6875 -0.8125 -1.8125
[4,] 1.9375 0.6875 -0.8125 -1.8125
> residm <- matrix(resid(aov(Wear~Treat+Block)),
+ nrow=4, byrow=FALSE)
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> residm
[,1] [,2] [,3] [,4]

[1,] 0.0625 -0.6875 -0.1875 0.8125
[2,] -0.1875 0.0625 0.5625 -0.4375
[3,] 0.3125 0.5625 0.0625 -0.9375
[4,] -0.1875 0.0625 -0.4375 0.5625

> GM+treatm+blockm+residm
[,1] [,2] [,3] [,4]

[1,] 10 8 7 7
[2,] 9 8 7 5
[3,] 8 7 5 3
[4,] 6 5 3 3

The values used in the matrices can also be obtained from using the S function proj()
(proj(mod.aov)).

(d) The residuals from the model mod.aov are graphed in Figure 11.22 with the function
checking.plots() from the PASWR package. The first graph in Figure 11.22 suggests that
there is no problem with the independence of errors assumption. The middle graph in
Figure 11.22 suggests the errors follow a normal distribution, while the last graph suggests
homogeneity of variance is reasonable.
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FIGURE 11.22: checking.plots() applied to mod.aov from Example 11.7

(e) The following R code was used to create simultaneous 95% mean pairwise confidence
intervals using Tukey’s HSD. The confidence intervals are depicted in Figure 11.23 on the
next page.

> CI <- TukeyHSD(mod.aov, which="Treat")
> CI
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Wear ~ Treat + Block)
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FIGURE 11.23: Simultaneous 95% mean pairwise confidence intervals using Tukey’s HSD
from Example 11.7

$Treat
diff lwr upr p adj

B-A -0.75 -2.138820 0.6388204 0.3838264
C-A -2.25 -3.638820 -0.8611796 0.0031175
D-A -3.75 -5.138820 -2.3611796 0.0000699
C-B -1.50 -2.888820 -0.1111796 0.0343452
D-B -3.00 -4.388820 -1.6111796 0.0003981
D-C -1.50 -2.888820 -0.1111796 0.0343452

> plot(CI, las=1)
> detach(TireWear)

D C B A

Tire D is significantly better (less wear) than tires C, B, and A. Tire C is significantly better
than tires B and A, and tires B and A are not significantly different from one another.
Figure 11.24 shows a barplot of the mean wear by tire with superimposed individual 95%
confidence intervals.
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FIGURE 11.24: Barplot of the mean wear by tire with superimposed individual 95%
confidence intervals from Example 11.7
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11.12 Two-Factor Factorial Design

The one-way analysis of variance evaluated a single factor that had a levels. When a
study involves more than one factor, say two fixed factors A and B, with a and b levels,
respectively, there are a total of a×b = ab treatment combinations that need to be analyzed.
An efficient method to analyze the ab treatments is with a factorial design. Such a design
supplies information about all of the factors in a more efficient fashion than one factor at
a time experiments and avoids potentially misleading conclusions that are possible from
single-factor designs when interactions are present.

A factorial design with two fixed factors A and B, each with a and b levels, respectively,
will typically have n experimental units for each of the ab treatment combinations. The
ab treatments are randomly assigned to the N = abn experimental units resulting in a
completely randomized design. A general layout for observations from a two-factor factorial
design is presented in Table 11.14.

Table 11.14: Layout for observations in a two-factor factorial design

Factor B

1 2 · · · b

1 Y111, Y112, . . . , Y11n Y121, Y122, . . . , Y12n · · · Y1b1, Y1b2, . . . , Y1bn Y 1••
2 Y211, Y212, . . . , Y21n Y221, Y222, . . . , Y22n · · · Y2b1, Y2b2, . . . , Y2bn Y 2••

Factor A ...
...

...
...

...
a Ya11, Ya12, . . . , Ya1n Ya21, Ya22, . . . , Ya2n · · · Yab1, Yab2, . . . , Yabn Y a••

Y •1• Y •2• · · · Y •b• Y •••

The observations from a two-factor factorial design are described by the linear model

Yijk = μ + αi + βj + αβij + εijk for i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , n (11.42)

where μ is the overall mean effect, αi is the effect of the ith row factor A, βj is the effect
of the jth column factor B, αβij is the effect of the interaction between αi and βj , and εijk

is a random error. Note that αβ is not α · β but rather a single term. Both αi and βj are
assumed to be fixed with the constraints

a∑
i=1

αi = 0;
b∑

j=1

βj = 0;
a∑

i=1

αβij =
b∑

j=1

αβij = 0. (11.43)

That is, the treatment effects are defined as deviations from the overall mean. Given these
assumptions, the least squares estimators for the parameters in the two-factor factorial
design are

α̂i = Y i•• − Y ••• β̂j = Y •j• − Y •••

α̂βij = Y ij• − Y i•• − Y •j• + Y ••• ε̂ijk = Yijk − Y ij•
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Sums of Squares Each Yijk from (11.42) can be decomposed into five parts by substi-
tuting the least squares estimates of μ, αi, βj , αβij , and εijk for the parameters’ values:

Yijk = μ̂ +α̂i +β̂j +α̂βij +ε̂ijk

Yijk = Y ••• +(Y i•• − Y •••) +(Y •j• − Y •••) +(Y ij• − Y i•• − Y •j• + Y •••) +(Yijk − Y ij•)

which implies that

(Yijk −Y •••) = (Y i••−Y •••)+ (Y •j• −Y •••)+ (Y ij• −Y i•• −Y •j• +Y •••)+ (Yijk −Y ij•).
(11.44)

Squaring (11.44) and summing over i = 1, . . . , a; j = 1, . . . , b; and k = 1, . . . , n gives

a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Y •••)2 =
a∑

i=1

b∑
j=1

n∑
k=1

[
(Y i•• − Y •••)

+ (Y •j• − Y •••) + (Y ij• − Y i•• − Y •j• + Y •••) + (Yijk − Y ij•)
]2

(11.45)

When the right side of (11.45) is expanded, all four cross products sum to zero (which is
left to the reader to verify), giving

a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Y •••)2︸ ︷︷ ︸
SSTotal

= bn
a∑

i=1

(Y i•• − Y •••)2︸ ︷︷ ︸
SSA

+ an
b∑

j=1

(Y •j• − Y •••)2︸ ︷︷ ︸
SSB

+ n

a∑
i=1

b∑
j=1

(Y ij• − Y i•• − Y •j• + Y •••)2︸ ︷︷ ︸
SSAB

+
a∑

i=1

b∑
j=1

n∑
k=1

(Yijk − Y ij•)2︸ ︷︷ ︸
SSError

(11.46)

That is,
SSTotal = SSA + SSB + SSAB + SSError (11.47)

The corresponding degrees of freedom are

abn − 1︸ ︷︷ ︸
total df

= a − 1︸ ︷︷ ︸
A df

+ b − 1︸ ︷︷ ︸
B df

+ (a − 1)(b − 1)︸ ︷︷ ︸
AB interaction df

+ ab(n − 1)︸ ︷︷ ︸
Error df

. (11.48)

The mean squares are computed by dividing each sum of squares by its degrees of
freedom. The expected value of the mean squares, with fixed factors A and B, can be
shown to be

E(MSA) = σ2 +
bn

∑a
i=1 α2

i

a − 1
E(MSB) = σ2 +

an
∑b

j=1 β2
j

b − 1

E(MSAB) = σ2 +
n
∑a

i=1

∑b
j=1 αβ2

ij

(a − 1)(b − 1)
E(MSError) = σ2

Consequently, to test for A and B main effects as well as the interaction between A and
B, the corresponding mean square is divided by the MSError. The ANOVA table for a
two-factor design is given in Table 11.15 on the facing page. The formal hypotheses for
testing for factor A treatment effects, factor B treatment effects, and the interaction between
factor A and factor B are written, respectively, as

Factor A Factor B Interaction
H0 : αi = 0 for all i H0 : βj = 0 for all j H0 : αβij = 0 for all (i, j)
H1 : αi �= 0 for some i H1 : βj �= 0 for some j H1 : αβij �= 0 for some (i, j)
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Table 11.15: ANOVA table for two-factor factorial design
Source df SS MS F

A a − 1 SSA = bn

a∑
i=1

(Y i•• − Y •••)2 MSA = SSA

a−1

MSA

MSError

B b − 1 SSB = an

b∑
j=1

(Y •j• − Y •••)2 MSB = SSB

b−1

MSB

MSError

AB (a − 1)(b − 1) SSAB = n

a∑
i=1

b∑
j=1

(Y ij• − Y i•• MSAB = SSAB

(a−1)(b−1)

MSAB

MSError

−Y •j• + Y •••)2

Error ab(n − 1) SSError =
a∑

i=1

b∑
j=1

n∑
k=1

(Yijk − Y ij•)2 MSError = SSError
ab(n−1)

Total abn− 1 SSTotal =
a∑

i=1

b∑
j=1

n∑
k=1

(Yijk − Y •••)2

Example 11.8 � Television Tube Screen Brightness � The data in Table 11.16
are taken from Hicks (1956) where an experiment was designed to study the effect of glass
type and phosphor type on the brightness of a television tube screen. The measured variable
was the current in microamperes (μA) necessary to produce a certain level of brightness.
The higher the μA required to produce a given brightness, the poorer are the tube screen
characteristics. That is, optimal characteristics are obtained when the response (μA) is
small. Analyze the data using a two-factor factorial design.

Table 11.16: Data from Hicks (1956) used in Example 11.8

Phosphor
A B C

I 280, 290, 285 300, 310, 295 270, 285, 290
Glass

II 230, 235, 240 260, 240, 235 220, 225, 230

(a) Read the data into S.

(b) Graphically examine the data.

(c) Fill in the missing values to complete Table 11.17 on the following page.

(d) Create a two-way ANOVA table using the information from Table 11.17 on the next
page and verify your answers using the function anova().

(e) Analyze the residuals and comment on whether the model from (11.42) fits the data.

(f) Is there significant interaction between glass type and phosphor type?
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Table 11.17: Two-factor factorial design table to complete for (c) of Example 11.8

α̂i =

Phosphor A Phosphor B Phosphor C Y i•• Y i•• − Y •••

Glass I
Y 11• = Y 12• = Y 13• = Y 1•• = α̂1 =

α̂β11 = α̂β12 = α̂β13 =

Glass II
Y 21• = Y 22• = Y 23• = Y 2•• = α̂2 =

α̂β21 = α̂β22 = α̂β23 =

Y •j• Y •1• = Y •2• = Y •3• =

β̂j = Y •j• β̂1 = β̂2 = β̂3 = Y ••• =

− Y •••

(g) Using αe = 0.05, compute Tukey’s HSD 95% confidence intervals to determine which
combination of glass type and phosphor type require the least μA. Create a graph of
the resulting confidence intervals as well as a barplot of the individual means for the
six treatment combinations with superimposed 95% individual confidence intervals.

Solution: The answers are as follows:

(a) The numbers from Table 11.16 on the preceding page are read into the variable
Microamps and the factors Glass and Phosphor are created as follows:

> Microamps <- c(280, 290, 285, 300, 310, 295, 270, 285, 290, 230,
+ 235, 240, 260, 240, 235, 220, 225, 230)
> Glass <- factor(c(rep("Glass I", 9), rep("Glass II", 9)))
> Phosphor <- factor(rep(rep(c(rep("Phosphor A", 3),
+ rep("Phosphor B", 3), rep("Phosphor C", 3)), 2)))

(b) The function twoway.plots(Microamps, Glass, Phosphor) is used to examine the
data, and the results are shown in Figure 11.25 on the next page. From Figure 11.25, glass
type appears important, and the lines in the interaction plot are nearly parallel, suggesting
interaction between the two factors is not significant.

(c) The values to fill in Table 11.17 are computed using the S function model.tables() as
follows:

> mod.TVB <- aov(Microamps ~ Glass + Phosphor + Glass:Phosphor)
> model.tables(mod.TVB, type="means")
Tables of means
Grand mean

262.2222
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Glass
Glass I Glass II
289.44 235.00

Phosphor
Phosphor A Phosphor B Phosphor C

260.00 273.33 253.33

Glass:Phosphor
Phosphor

Glass Phosphor A Phosphor B Phosphor C
Glass I 285.00 301.67 281.67
Glass II 235.00 245.00 225.00

> model.tables(mod.TVB, type="effects")
Tables of effects

Glass
Glass I Glass II
27.222 -27.222

Phosphor
Phosphor A Phosphor B Phosphor C

-2.222 11.111 -8.889

Glass:Phosphor
Phosphor

Glass Phosphor A Phosphor B Phosphor C
Glass I -2.2222 1.1111 1.1111
Glass II 2.2222 -1.1111 -1.1111
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FIGURE 11.25: Graphs resulting from using twoway.plots(Microamps, Glass,
Phosphor) for Example 11.8
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Table 11.18: Two-factor factorial design table COMPLETED for (c) of Example 11.8

Phosphor A Phosphor B Phosphor C Y i•• α̂i = Y i•• − Y •••

Glass I
Y 11• = 285 Y 12• = 301.67 Y 13• = 281.67 Y 1•• = α̂1 = 27.222

α̂β11 = −2.2222 α̂β12 = 1.1111 α̂β13 = 1.1111 289.44

Glass II
Y 21• = 235 Y 22• = 245 Y 23• = 225 Y 2•• = α̂2 = −27.222

α̂β21 = 2.2222 α̂β22 = −1.1111 α̂β23 = −1.1111 235

Y •j• Y •1• = 260 Y •2• = 273.33 Y •3• = 253.33

β̂j = Y •j• β̂1 = −2.2222 β̂2 = 11.1111 β̂3 = −8.889 Y ••• = 262.22

− Y •••

(d) Using the results from (c), the sums of squares for the ANOVA table are computed and
displayed in Table 11.19 on the next page.

SSA = bn

a∑
i=1

(Y i•• − Y •••)2 = bn

a∑
i=1

α̂2
i

= 3 · 3 ·
[
27.2222 + (−27.222)2

]
= 13338.9

SSB = an

b∑
j=1

(Y •j• − Y •••)2 = an

b∑
j=1

β̂2
j

= 2 · 3 ·
[
(−2.2222)2 + (11.1111)2 + (−8.889)2

]
= 1244.4

SSAB = n

a∑
i=1

b∑
j=1

(Y ij• − Y i•• − Y •j• + Y •••)2 = n

a∑
i=1

b∑
j=1

αβ2
ij

= 3 ·
[
(−2.2222)2 + (1.1111)2 + · · · + (−1.1111)2

]
= 44.4

SSError =
a∑

i=1

b∑
j=1

n∑
k=1

(Yijk − Y ij•)2

=
[
(280 − 285)2 + (290 − 285)2 + · · · + (230 − 225)2

]
= 833.3

SSTotal =
a∑

i=1

b∑
j=1

n∑
k=1

(Yijk − Y •••)2

=
[
(280 − 262.2222)2 + (290 − 262.2222)2 + · · · + (230 − 262.2222)2

]
= 15461.11

The values for Table 11.19 on the facing page are verified with the S function anova():
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Table 11.19: ANOVA table for two-factor factorial design for Example 11.8
Source df SS MS F

Glass 1 13338.9 13338.9 192.08
Phosphor 2 1244.4 622.2 8.96
Glass:Phosphor 2 44.4 22.2 0.32
Residuals 12 833.3 69.4

Total 17 15461.0

> anova(mod.TVB)
Analysis of Variance Table

Response: Microamps
Df Sum Sq Mean Sq F value Pr(>F)

Glass 1 13338.9 13338.9 192.08 9.568e-09 ***
Phosphor 2 1244.4 622.2 8.96 0.004162 **
Glass:Phosphor 2 44.4 22.2 0.32 0.732158
Residuals 12 833.3 69.4
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(e) The residuals from fitting the data to model (11.42) are analyzed using the function
checking.plots() and shown in Figure 11.26. The first graph in Figure 11.26 is not
relevant because no time component is present in the data, the second graph suggests
normality is reasonable and the third graph indicates homogeneity of variance is plausible.
Consequently, a two-factor factorial model seems to be a reasonable model for the data on
hand.
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FIGURE 11.26: Graphs resulting from using checking.plots() on the model mod.TVB
from Example 11.8

(f) To assess possible interaction between the factors glass and phosphor, two interaction
plots of the same data are created with the following R code and shown in Figure 11.27 on
the following page. Since the lines in Figure 11.27 are roughly parallel in both plots, it is
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reasonable to assume the two factors, glass and phosphor, do not interact.

> par(mfrow=c(1, 2), pty="s")
> interaction.plot(Glass, Phosphor, Microamps, type="b", legend=FALSE)
> interaction.plot(Phosphor, Glass, Microamps, type="b", legend=FALSE)
> par(mfrow=c(1, 1), pty="m")

1

124
0

26
0

28
0

30
0

Glass

m
ea

n 
of

  M
ic

ro
am

ps

2

2

3

3

Glass I Glass II

1

1

1

24
0

26
0

28
0

30
0

Phosphor

m
ea

n 
of

  M
ic

ro
am

ps

2

2

2

Phosphor A Phosphor B Phosphor C

FIGURE 11.27: Left graph shows an interaction plot of glass and phosphor for the response
μA where the three types of phosphor, Phosphor A, Phosphor B, and Phosphor C, are
denoted with the numbers 1, 2, and 3, respectively, and the glasses depicted along the
x-axis are Glass I and Glass II, respectively. The right graph shows an interaction plot
of phosphor and glass for the response μA where the two types of glass, Glass I, and Glass
II, are denoted with the numbers 1 and 2, respectively, and the phosphors depicted along
the x-axis are Phosphor A, Phosphor B, and Phosphor C, respectively.

(g) Tukey 95% confidence intervals are computed for the
(
6
2

)
= 15 pairwise differences

in mean treatment combinations of glass type and phosphor type using the R function
TukeyHSD(). The code and output follow with a graph of the confidence intervals shown in
Figure 11.28 on the next page. Based on the Tukey HSD confidence intervals, Glass II with
either Phosphor A or Phosphor C should be used in the construction of television picture
tubes since these combinations require the least μA. Note that the mean for Glass II
with Phosphor C is less than the mean for Glass II with Phosphor A but not statistically
different.

> par(mar=c(5.1, 10.1, 4.1, 2.1), cex.axis=.5)
> CI <- TukeyHSD(mod.TVB)
> plot(CI, las=1)
> par(mar=c(5.1, 4.1, 4.1, 2.1), cex.axis=1)

The function barplot2() from the gregmisc package is used to create a barplot showing the
six treatment combination means with individual superimposed 95% confidence intervals
using the following R code, with the results displayed in Figure 11.29 on the facing page:
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FIGURE 11.28: Tukey HSD 95% family-wise confidence intervals for the model mod.TVB

> library(gregmisc)
> meanM <- tapply(Microamps, list(Glass, Phosphor), mean)
> nsM <- tapply(Microamps, list(Glass, Phosphor), length)
> MSE <- anova(mod.TVB)[4, 3]
> t.c <- qt(.975, 12)
> lci <- meanM - t.c*sqrt(MSE/nsM)
> uci <- meanM + t.c*sqrt(MSE/nsM)
> barplot2(meanM, beside=TRUE, legend=TRUE, ylim=c(0, 400),
+ plot.ci=TRUE, ci.l=lci, ci.u=uci, ci.lwd=2, col=c("#A9E2FF", "#0080FF"))
> title(main="Treatment Means with Individual 95% CIs")
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Treatment Means with Individual 95% CIs

FIGURE 11.29: Barplot of the means for the six treatment combinations of factors Glass
and Phosphor with individual superimposed 95% confidence intervals
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11.13 Problems

1. Develop a randomization scheme to assign three treatments A, B, and C to 15 exper-
imental units, numbered from 1 to 15. Use the command sample to assign them.

2. Develop a randomization scheme for a complete block design that has 4 blocks, 3
treatments, and 12 experimental units.

3. Provide a randomized assignment for a two-factor factorial design with 36 experimen-
tal units, 4 levels for the first factor, 3 levels for the second factor, and 3 experimental
units for every combination of factor levels.

4. An economic study in a particular city desires to discover the monthly expenses of
consumers, based on their level of education. The survey has drawn data in three
different boroughs: I, II, and III. The educational levels corresponds to low, medium
low, medium high, and high. The expenses have been recorded in thousands of dollars,
and the analysis of variance provides the following information:

Df Sum of Sq Mean Sq F Value Pr(F)
Ed. level - 0.32 --- --- ---
Boroughs - 26.69 --- --- ---
Residuals - 3.64 ---

(a) Fill in the table, and write the model corresponding to the ANOVA output.
(b) Calculate the percentage of the total variability explained by the educational level.
(c) What is the percentage of the total variability explained by the boroughs?
(d) What is the value for the residual variance of this model?
(e) Is the factor educational level significant?

5. Given the following partial ANOVA information from a randomized complete block
design:

Df Sum Sq Mean Sq F value Pr(>F)
block 4 0.00073 -- -- --
factor 3 -- 0.35431 -- --
Residuals -- 0.01703 0.00142

(a) Fill in the missing values, and give the corresponding model.
(b) How many levels does the factor have?
(c) How many blocks are there in the design?
(d) Explain the meaning of the model’s parameters.
(e) Describe a scenario that could be described by this particular table.

6. An agricultural engineer wants to know what type of barley produces the greatest
yield: A (ASPEN), B (ERIKA), or C (SULTANE). The results obtained from 12
experimental plots, given in tons per hectare, are displayed in the following table:

A (ASPEN) 3 2 4 3
B (ERIKA) 2 3 4 4
C (SULTANE) 7 6 5 6

Assume the treatments (types of barley) were assigned at random to the 12 plots.
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(a) Write the statistical model.

(b) Conduct an analysis of variance and explain the results based on the model for
part (a).

(c) Write the fitted model and provide an estimate of the error variance.

(d) Are the assumptions satisfied for the model in part (a)?

(e) Construct 95% confidence intervals for the pairwise mean differences using a
technique that controls experiment-wise error.

(f) Use orthogonal contrasts to assess whether differences exist between SULTANE
and the other two varieties ASPEN and ERIKA.

7. Car and Driver (July 1995) conducted tests of five cars from five different countries:
Japan’s Acura NSXT, Italy’s Ferrari F355, Great Britain’s Lotus Esprit S4S, Ger-
many’s Porche 911 Turbo, and the United States’ Dodge Viper RT/10. The maximum
speeds the cars obtained in miles per hour using as much distance as necessary without
exceeding the engine’s redline are given:

Acura Ferrari Lotus Porsche Viper
159.7 179.6 167.4 173.5 172.3
161.5 173.9 163.0 182.4 168.9
163.7 180.2 160.3 171.3 169.5
166.0 183.9 164.9 175.7 174.6
157.7 176.7 160.5 179.1 161.1
161.7 178.4 158.3 175.0 164.2

Data from Kitchens (2003).

(a) What statistical model should be used to analyze this experiment?

(b) Conduct an analysis of variance to investigate if differences exist among the
maximum speeds of the cars.

(c) Use appropriate diagnostic measures to check the adequacy of the model from
part (a).

(d) What is the mean squared error value for the model from part (a)?

(e) Use Tukey’s multiple comparison test to determine which of the cars are different
according to speed. Plot the confidence intervals for the mean differences.

8. The data frame barley from the lattice package lists barley yield in bushels per
acre for the years 1931 and 1932 for ten varieties of barley grown at six sites. Is there
evidence to suggest the average barley yield in 1931 for the Waseca site is different
from the average barley yield in 1931 for the Duluth site?

(a) Use the five-step procedure to test the appropriate hypotheses using an α = 0.05
significance level.

(b) Solve the same problem using a RCBD.

(c) Generalize your findings about the relationship between (a) and (b).

9. The following data were obtained from an experiment that investigated the effects
of four bleaching chemicals (randomly selected from a large population of potential
bleaching agents) on pulp brightness. The brightness of pulp is measured as the ability
of a pulp sheet to reflect light directed at it. Brightness is affected by both the light
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absorption and light scattering of the pulp. It is usually a measure of reflectivity,
and its value is expressed as a percent of some scale (a standard measurement is the
General Electric Brightness (GEB), which is a measurement of directional reflectance
and is expressed as a percentage of a maximum GEB value and can be obtained by
following TAPPI Standard Method T-452).

Chemical 1 77.20 74.47 72.75 76.21 72.88
Chemical 2 80.52 79.31 81.91 80.35 77.39
Chemical 3 79.42 78.02 81.60 80.80 80.63
Chemical 4 78.00 78.36 77.54 77.36 77.39

(a) Create side-by-side boxplots of the four chemicals. Interpret the resulting graph.

(b) Specify an appropriate model to test if the chemicals have an influence on pulp
brightness. Conduct an analysis on the specified model using α = 0.05.

(c) Estimate the component of variance for the chemicals.

(d) Estimate the total variability in the data.

(e) Construct a confidence interval for the ratio of the variability due to chemicals with
respect to the total variability given that MSTreatment/(5σ2

τ +σ2)
MSError/σ2 ∼ F3,21. Interpret

your interval.

10. The household appliances section of a well-known store does research to satisfy the
clients’ demands for information about its products. In particular, clients are increas-
ingly asking if the average washing times of the different brands of washing machines
are the same. To discover this, the household appliances section has done the following
experiment: They measured the washing time of five machines of different brands in
four types of cycles (prewash, short, medium, long). The results, in minutes, are
displayed in the following table:

Washing Cycle
Machines Prewash Short Medium Long
Machine 1 15.45 19.95 23.10 25.35
Machine 2 3.15 6.30 13.80 17.70
Machine 3 20.10 22.05 32.10 33.30
Machine 4 25.20 27.15 33.15 38.55
Machine 5 13.65 16.35 19.80 21.75

(a) What is the design structure used in this experiment?

(b) Propose a statistical model for analyzing these data.

(c) Use a graph to check for interaction among machines and washing cycles.

(d) Use diagnostic measures to check the adequacy of the model from part (b).

(e) If the model from part (b) is appropriate, use it to test if the average washing
time is the same for the five washing machines.

(f) What is an estimate of the model’s error variance?

(g) What are the estimates of the model’s parameters?

(h) Write the model in matrix form and check that the model’s constraints are
satisfied.

(i) Use Tukey’s HSD to determine which washing machines have significantly different
washing times.



Experimental Design 559

(j) Is the mean washing time of machines 2, 3, and 4 significantly different from the
mean washing time of machine 5?

(k) Use a barplot to show the mean washing times by machine. Superimpose 95%
confidence intervals over the appropriate bars.

11. An insurance company wants to know how its resources are being used with respect
to time spent issuing travel insurance policies. The company randomly selects three
moments during a day and records the time required to issue a travel insurance policy
to three randomly selected clients who take out a travel policy over the phone, over
the Internet, and in person. The data obtained (in minutes) are

1 2 3
telephone 3.49 2.38 2.09
Internet 4.38 6.68 5.37
in person 7.91 8.70 8.54

(a) What type of design structure did the company use?

(b) Propose a statistical model to analyze the data.

(c) Comment on any assumptions that need to be made with the model selected in
part (b). Check these assumptions.

(d) Test to see if differences exist among the methods used to issue insurance policies.

(e) Estimate the model’s parameters.

(f) How is the standard deviation of the errors estimated?

(g) Write the estimated model in matrix form.

(h) Calculate the sum of residuals by rows. What can be concluded?

(i) Use Tukey’s HSD to determine if significant differences exist among methods.

(j) Create a barplot of the mean times, and display the standard errors over their
respective means.

12. The Environmental Protection Agency (EPA) is interested in the fuel consumption
of older vehicles. An experiment is designed where the gallons of gasoline consumed
by vehicles over six years old are measured when the same driver travels 162.78 miles
from Boone, NC, to Durham, NC, in 35 different vehicles. Seven vehicles are randomly
selected from each category to be tested. The categories are compact, station wagon,
minivan, van, and full size pickup truck. The data obtained (gallons consumed) are
given in the following table:

Compact 4.35 4.96 4.82 4.62 4.32 4.70 4.82
Station Wagon 5.47 6.35 5.33 6.25 5.44 5.73 5.64
Minivan 9.37 7.43 8.40 6.76 8.62 7.53 7.54
Van 8.61 8.66 10.12 8.06 9.31 6.75 8.14
Pickup Truck 20.09 14.93 13.38 16.53 13.79 12.44 14.73

(a) Based on the described randomization, what type of design structure did the EPA
use?

(b) Propose a statistical model to analyze these data.

(c) Are the model’s assumptions specified in part (b) satisfied?
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(d) Are there significant differences between the fuel consumption for the five types
of vehicles?

(e) Estimate the model’s error variance.

(f) What conclusions can be drawn from the data?

13. A health conscious pizza parlor is attempting to specify the added calories for each
ingredient of its medium size pizza. Specifically, the pizza parlor wants to know if
there is more variability in an olive topping due to olive suppliers or due to the olives
themselves. From numerous suppliers, four are selected randomly and the calories
for a pizza topping of olives are recorded for five randomly selected pizzas. The data
obtained are given in the following table:

1 2 3 4 5
Supplier 1 133 136 142 135 134
Supplier 2 124 137 125 132 131
Supplier 3 127 126 130 120 123
Supplier 4 150 141 155 150 157

(a) What is the design structure used in this experiment?

(b) Specify a statistical model to analyze these data.

(c) Conduct an ANOVA.

(d) Estimate the variance components and the total variability of the data.

(e) Interpret the results.

14. A turpentine manufacturer is interested in the most effective combination of acid
treatment and tap hole shape for its upcoming pine resin collection. The company
asks a local statistician to design an experiment to compare four tap hole shapes and
to determine whether acid should be used to treat the holes. Twenty-four pine trees
are selected at random from the forest where the sap will be harvested, and assigned at
random to the eight combinations of acid treatment (yes or no) and hole shape (circle,
diagonal slash, check, rectangle). The response is total grams of resin collected from
the hole.

Circle Diagonal Slash Check Rectangle
9 43 60 77

No Acid 13 48 65 70
12 57 70 91
15 66 75 97

Yes Acid 13 58 78 108
20 73 90 99

Data in this table comes from problem 8.5, page 201
of Oehlert (2000)

(a) Analyze these data using a two-factor factorial design (model (11.42)).

(b) Looking at the results of the two-way ANOVA table, is there significant interaction
between acid treatment and hole shape? Use α = 0.05.

(c) Create a graphical display of the interactions. Does this display corroborate the
numerical results?

(d) Analyze the residuals and comment on whether model (11.42) fits the data.
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(e) If the interaction term is not significant, reanalyze a model where the interaction
term is pooled with the model’s error.

(f) Provide estimates of the parameters αi, i = 1, 2 and βj , j = 1, . . . , 4. of the new
model.

(g) Analyze the residuals.

(h) Use Levene’s test to check if the homogeneity of variances for acid treatment levels
and for hole shape levels are reasonable assumptions.

(i) Are the effects of acid treatment and hole shape statistically significant?

(j) Using an experiment-wise error rate of αe = 0.05, what shape has the highest
quantity of resin collected?

15. The data stored in Cows were extracted from a Canadian record book of purebred diary
cattle. Random samples of 10 mature (five-year-old and older) and 10 two-year-old
cows were taken from each of five breeds. The average butterfat percentage of these
100 cows is stored in the variable butterfat, with the type of cow stored in the
variable breed and the age of the cow stored in the variable age.

(a) Create a two-way ANOVA table.

(b) Analyze the residuals and comment on whether the two-factorial model with
interaction fits the data.

(c) If there are problems that might be remedied with a transformation, suggest an
appropriate transformation and reanalyze the new model.

(d) Create a graphical display of the interactions for the model selected in (b). Is
there significant interaction between breed and age?

(e) Based on the model selected in (b), compute group means and parameter estimates
to fill in a table similar to Table 11.18.

(f) Using αe = 0.05, which breed has the highest average butterfat percentage?

Case Study: Sunflower Defoliation
Ideas and data for this case study come from Muro et al. (2001).

16. Quantifying the effect of the loss of leaf area (defoliation) on sunflower (Helianthus
annuus L.) yield caused by hail, pests, and diseases is important in the management
of this crop both from a technical and economic point of view. The effect of defoliation
depends, however, on the foliar surface eliminated and on the growth stage at which
this takes place. The aim of this case study is to determine the response of sunflower
cultivation to several levels of defoliation (defoli) that took place at different growth
stages. An overall of 72 field trials were conducted by applying four defoliation
treatments (non-defoliated control, 33%, 66% and 100%) at different growth stages
(stage) ranging from pre-flowering (1) to physiological maturity (5) in four different
locations (location) of Navarra, Spain: Carcastillo (1), Mélida (2), Murillo (3), and
Unciti (4). There are two response variables: yield in kg/ha of the sunflower and
numseed, the number of seeds per sunflower head. Data are stored in the data frame
sunflower.

(a) To explore the contents of the data frame sunflower,

(i) Construct a table with the total of the variable yield for every level of
stage and defoli.
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(ii) Construct a table to display yield for every level of defoli, location, and
stage. (Hint: Use the functions xtabs() and ftable().)

Note that the function ftable() places 0s where there are no observations in a
level combination.

(b) How many observations are there for every combination of stage and defoli?

(c) Is the design complete or incomplete?

(d) Is the design balanced or unbalanced?

(e) Use side-by-side boxplots to display the variable yield for every level of stage.

(f) Use side-by-side boxplots to display the variable yield for every level of defoli.

(g) Construct an interaction plot for stage and defoli on yield. Comment on the
results.

Model (A) Conduct an analysis of variance for yield∼stage+defoli+stage:defoli.

(i) Is the interaction between stage and defoli statistically significant?
(ii) Use diagnostic graphics and appropriate tests to validate this model.
(iii) Are the assumptions for this model satisfied?

Model (B) A rogue pest infestation was found in several plots. Observations from
these plots were not under experimental control. Remove any observation
whose residual absolute value is greater than 2 and refit a new model.

(i) Is the interaction term statistically significant?
(ii) Are the assumptions of this model satisfied?

Model (C) Define a model that pools the interaction term of Model (B) with the full
model’s error.

(i) Check this model’s assumptions.
(ii) Estimate the model’s effects on this model and calculate the stan-

dardized residuals. To interpret the model’s effects, derive the matrix
decomposition of the model as in Example 11.7.

(iii) Construct Tukey’s HSD pairwise confidence intervals for yield dif-
ferences by levels of defoli from this model. Plot the intervals and
interpret the results.

(iv) Construct Tukey’s HSD pairwise confidence intervals for yield dif-
ferences by levels of stage from this model. Plot the intervals and
interpret the results.

(h) If an insurance company compensates the yield loss only when there is a 100%
defoliation, can statistical differences between this level and the rest of the defo-
liation levels be found? (Hint: Use orthogonal contrasts.)

(i) To illustrate the final results, provide two graphs: a boxplot and a barplot of
yield by levels of stage. Calculate the numerical values of the yield means and
the standard errors.

(j) To illustrate the final results, redefine two levels for defoli: The first level
combines the original levels 100 and 66 and the second new level groups the
original levels 0 and 33 into a single level. Construct a boxplot and a barplot of
yield for these two new levels. Provide a table for the corresponding means and
standard errors.



Chapter 12

Regression

12.1 Introduction

The central theme of this chapter is modeling associations among variables. Under-
standing these associations can be important for many reasons, including:

Reason 1. Prediction of future observations

Reason 2. Variable screening

Reason 3. System explanation

Reason 4. Parameter estimation

The primary tool used to model associations among variables in this chapter is regression.
Regression analysis is used for modeling the relationship between a single variable Y , called
the response or dependent variable, and one or more predictor(s) or independent
variable(s), x1, x2, . . . , xp−1. The response variable must be a continuous variable, but the
predictor variables can be either continuous, discrete, or categorical. The word “regression”
is due to Sir Francis Galton, who demonstrated that offspring do not tend toward the size of
the parents; rather, offspring size tends toward the mean of the population. That is, there
is a “regression toward mediocrity.” The following examples illustrate scenarios where it is
important to understand the associations among response and predictor variables.

Example 12.1 � Prediction of Future Observations � A department chair is
preparing a budget for the next fiscal year and must include enough money to replace
personal computers in two laboratories. The chair wants to predict the price of personal
computers for next year. He decides that good predictor variables for next year’s personal
computer price Y are the price x1 of a similar personal computer this year and x2, the rate
of inflation.

Example 12.2 � Variable Screening � A chemist conducts a taste-testing exper-
iment with randomly selected individuals from a particular geographical region. The
dependent variable Y is the individual’s ratings of several formulations of a soft drink. The
predictor variables are the various ingredients put into the soft drink. The sole purpose of
the study is to decide which ingredients influence taste.

Example 12.3 � System Explanation � A sociologist has historical information on
an isolated people group including voting records, media infiltration, numbers of roads
accessing the area, and religious preferences. The sociologist is interested in understanding
the rationale for why the isolated people group vote as they do.

563



564 Probability and Statistics with R

Example 12.4 � Parameter Estimation � An economist has data on the GDP
(gross domestic product) per capita (Y ) and two independent variables: the median house-
hold income and the median household expenses for food in all European countries. The 27
points are fit to a linear model where prediction of gross domestic product is unimportant;
however, the estimated signs and magnitudes of the model’s parameters are important in
supporting or refuting a particular economic theory.

Models of the form
Y = β0 + β1x + ε (12.1)

where β0 and β1 are the intercept and slope, respectively, and ε is the model error, can be
used to model linear relationships between two variables. However, the population model
in (12.1) is typically seen in a data setting where observations (x1, Y1), (x2, Y2), . . . , (xn, Yn)
are taken on experimental units, and estimates of the parameters β0 and β1 are sought. In
a data setting, the model is expressed as

Yi = β0 + β1xi + εi for i = 1, . . . , n (12.2)

Model (12.2) is said to be simple, linear in the parameters (β0 and β1), and linear in the
predictor variables (xi). It is simple because there is only one predictor; it is linear in the
parameters because no parameter appears as an exponent nor is multiplied or divided by
another parameter; and it is linear in the predictor variable since the predictor variable is
raised only to the first power. When the predictor variable is raised to a power, this power
is called the order of the model.

The models

Yi = β0 + β1 ln(xi) + εi

Yi = β0 + β1x1ix2i + εi

are statistical linear models; however,

Yi = β0 exp(β1xi) + εi

Yi =
β0

1 + eβ1xi
+ εi

are not statistical linear models since the Yis are not linearly related to the parameters
β0 and β1. Thus, a “linear model” is characterized by a linear relationship between
the dependent variable and the parameters, not necessarily by a linear relationship with
the independent variables. The random error term represents the absence of an exact
relationship between Y and x. When the variance for all error terms is constant, the errors
are said to be homoscedastic. Typically, Var(εi) = σ2. Furthermore, the random variability
is independent of x. The expected value of Y given x is written

E[Y |x] = β0 + β1x. (12.3)

The distribution of Y given x when εi follows a normal distribution with a mean of zero
and a standard deviation of σ is depicted in Figure 12.1 on page 566. Since the random
variable Y is a linear combination of the xs, it follows that σ2 is not truly the variance of Y
but rather the variance of Y given x. As seen in Figure 12.1, σ2 = Var(ε) = Var(Y |x). Up
to this point, normally distributed random variables have been denoted as N(μ, σ), where
σ is the standard deviation. To simplify matrix expressions, the variance will take the place
of the standard deviation in normal distributions from this point forward. For example,
the distribution of the error terms in a simple linear regression model will be expressed
N(0, σ2I) rather than saying each of the n errors has a N(0, σ) distribution.



Regression 565

The slope, β1, represents the expected change in Y when a one-unit change is present
in x. If β1 = 0, Y does not depend linearly on x. When β1 < 0, x and Y have a negative
linear relationship, which means that as x increases, Y decreases. Likewise, when β1 > 0,
x and Y have a positive linear relationship, where, as x increases, so does Y .

12.2 Simple Linear Regression

The simple linear regression model when the error terms are distributed normally is

Yi = β0 + β1xi + εi (12.4)

where

Yi is the value of the response variable for the ith trial

β0 and β1 are parameters

xi is a known constant for the ith trial and

εi is a random error term that is assumed to have a N(0, σ2) distribution, where σ2 (the
variance) is typically unknown.

The idea that drives regression is the estimation of parameters based on n measurements.
The simple linear model for n bivariate measurements is

Y1 = β0 + β1x1 + ε1

Y2 = β0 + β1x2 + ε2

... =
... +

... +
...

Yn = β0 + β1xn + εn

which can also be expressed with matrix notation as

Y
n×1

= X
n×2

β
2×1

+ ε
n×1

(12.5)

where Y =

⎡⎢⎢⎢⎣
Y1

Y2

...
Yn

⎤⎥⎥⎥⎦, X =

⎡⎢⎢⎢⎣
1 x1

1 x2

...
...

1 xn

⎤⎥⎥⎥⎦, β =
[

β0

β1

]
, and ε =

⎡⎢⎢⎢⎣
ε1

ε2

...
εn

⎤⎥⎥⎥⎦.

Note that ε ∼ N(0, σ2I), where σ2I is the variance-covariance matrix of the vector of errors.

12.3 Multiple Linear Regression

Multiple linear regression is similar to simple linear regression in several ways. The
dependent variable is still Y . The intercept is still β0. The primary change is that instead
of having only β1 as a coefficient of a single xi variable, there now exists an entire vector
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x1 x2 x3

E(Y |x1) = β0 + β1x1

E(Y |x2) = β0 + β1x2

E(Y |x3) = β0 + β1x3

E(Y |x) = β0 + β1x

FIGURE 12.1: Graphical representation of simple linear regression model depicting the
distribution of Y given x

of βj values to multiply by a matrix of xij values. The multiple linear regression model is
written

Yi = β0 + β1xi1 + β2xi2 + · · · + βp−1xi(p−1) + εi for i = 1, 2, . . . , n. (12.6)

This will typically be expressed more compactly in matrix form as

Y
n×1

= X
n×p

β
p×1

+ ε
n×1

(12.7)

where Y =

⎡⎢⎢⎢⎣
Y1

Y2

...
Yn

⎤⎥⎥⎥⎦, X =

⎡⎢⎢⎢⎣
1 x11 . . . x1(p−1)

1 x21 . . . x2(p−1)

...
...

...
1 xn1 . . . xn(p−1)

⎤⎥⎥⎥⎦, β =

⎡⎢⎢⎢⎣
β0

β1

...
βp−1

⎤⎥⎥⎥⎦, and ε =

⎡⎢⎢⎢⎣
ε1

ε2

...
εn

⎤⎥⎥⎥⎦.

Each column of X contains the values for a particular independent variable. The values of
X are assumed to be known constants. The vectors Y and ε are random vectors whose
elements are random variables. The vector β is a vector of unknown constants that are
estimated from the data. Each βj for j = 0, 1, . . . , p − 1 indicates the change E[Y |xij ] for
a fixed i when xij is increased by one unit and all the other predictors are held constant.

When ε is assumed N(0, σ2I), model (12.7) is referred to as the normal error model.
In the normal error model, X and β are assumed to be constants. Consequently, Y is a
random vector that is the sum of a constant vector Xβ and the random vector ε. Since ε
is assumed N(0, σ2I), it follows that Y ∼ N(Xβ, σ2I). The tests and confidence intervals
developed in later sections are based on the assumption that ε ∼ N(0, σ2I).

Assuming that there is no error in the measurement of the xij values, one can proceed
with either of the two most widely used techniques used to estimate parameters (βjs) in a
regression model: ordinary least squares or the method of maximum likelihood.
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12.4 Ordinary Least Squares

The ordinary least squares method of estimating parameters minimizes the sum of the
squared deviations of the Yis from their expected values such that

εi = Yi − E(Yi)

is the ith deviation (error). For the simple linear regression model, εi = Yi − (β0 + β1xi).
The estimates β̂0 of β0 and β̂1 of β1 are calculated by minimizing the quantity Q (the sum
of the squared residuals) found in (12.8):

Q =
n∑

i=1

ε2
i =

n∑
i=1

(
Yi − (β0 + β1xi)

)2
, (12.8)

which is equivalent to the matrix form

Q = ε′ε = (Y − Xβ)′(Y − Xβ). (12.9)

The values of β0 and β1 that minimize Q are found by differentiating Q with respect to β0

and β1 and setting the partial derivatives equal to zero. The resulting equations are known
as the normal equations:

δQ
δβ0

= 2
n∑

i=1

(Yi − β0 − β1xi)(−1)

= −2
n∑

i=1

(Yi − β0 − β1xi) (12.10)

δQ
δβ1

= 2
n∑

i=1

(Yi − β0 − β1xi)(−xi)

= −2
n∑

i=1

(Yi − β0 − β1xi)(xi) (12.11)

After setting each of these partial derivatives equal to zero, the normal equations for the
simple linear regression model simplify to

n∑
i=1

Yi = nβ̂0 + β̂1

n∑
i=1

xi (12.12)

n∑
i=1

Yixi = β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i (12.13)

Note that the βjs are replaced with β̂js as their values are estimates once the partial
derivatives are set equal to zero. These equations are now solved for β̂0 and β̂1.
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Solving for β̂0 is relatively simple using (12.12):

n∑
i=1

Yi = nβ̂0 + β̂1

n∑
i=1

xi

n∑
i=1

Yi − β̂1

n∑
i=1

xi = nβ̂0∑n
i=1 Yi

n
− β̂1

∑n
i=1 xi

n
= β̂0

β̂0 = Y − β̂1x̄. (12.14)

In solving for β̂1, two quantities appear that require simplification. The first quantity is

n∑
i=1

Yixi −
∑n

i=1 Yi

∑n
i=1 xi

n
. (12.15)

n∑
i=1

Yixi −
∑n

i=1 Yi

∑n
i=1 xi

n
=

n∑
i=1

Yixi − Y

n∑
i=1

xi

=
n∑

i=1

Yixi − Y

n∑
i=1

xi − Y

n∑
i=1

xi +
n

n
Y

n∑
i=1

xi

=
n∑

i=1

Yixi − Y

n∑
i=1

xi −
∑n

i=1 Yi

n

n∑
i=1

xi + nY x̄

=
n∑

i=1

Yixi − Y

n∑
i=1

xi − x̄

n∑
i=1

Yi + nY x̄

=
n∑

i=1

(xi − x̄)(Yi − Y )

The second quantity that will need to be simplified is

n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n
. (12.16)

n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n
=

n∑
i=1

x2
i − n

(∑n
i=1 xi

n

)2

=
n∑

i=1

x2
i − nx̄2

=
n∑

i=1

x2
i − nx̄2 − nx̄2 + nx̄2

=
n∑

i=1

(xi − x̄)2 (12.17)
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Knowing these two simplifications, β̂1 can be solved using (12.13):

n∑
i=1

Yixi = β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i

n∑
i=1

Yixi = (Y − β̂1x̄)
n∑

i=1

xi + β̂1

n∑
i=1

x2
i

n∑
i=1

Yixi =

(∑n
i=1 Yi

n
− β̂1

∑n
i=1 xi

n

)
n∑

i=1

xi + β̂1

n∑
i=1

x2
i

n∑
i=1

Yixi =
∑n

i=1 Yi

∑n
i=1 xi

n
− β̂1

(
∑n

i=1 xi)
2

n
+ β̂1

n∑
i=1

x2
i

n∑
i=1

Yixi −
∑n

i=1 Yi

∑n
i=1 xi

n
= β̂1

n∑
i=1

x2
i − β̂1

(
∑n

i=1 xi)
2

n

n∑
i=1

Yixi −
∑n

i=1 Yi

∑n
i=1 xi

n
= β̂1

(
n∑

i=1

x2
i −

(
∑n

i=1 xi)
2

n

)

β̂1 =
∑n

i=1(xi − x̄)(Yi − Y )∑n
i=1(xi − x̄)2

(12.18)

After β̂0 and β̂1 have been found, it must be shown that these values will give a minimum
value for the sum of squared errors.

Proof (
∑n

i=1 ε̂2
i is a Minimum): If the matrix of partial derivatives of Q as found in (12.8)

is positive definite, then our β̂ values do give the minimum value for Q. Recall from (12.10)
that δQ

δβ0
= −2

∑n
i=1(Yi−β0−β1xi) and from (12.11) that δQ

δβ1
= −2

∑n
i=1(Yi−β0−β1xi)(xi).

This implies that the second-order partials are

δ2Q
δβ2

0

= −2
n∑

i=1

(−1) = 2n

δ2Q
δβ2

1

= −2
n∑

i=1

(−xi)(xi) = 2
n∑

i=1

x2
i

δ2Q
δβ0δβ1

= −2
n∑

i=1

(−xi) = 2
n∑

i=1

xi

The matrix of partials is then

δ2Q
δβ2

=

⎡⎣ 2n 2
∑n

i=1 xi

2
∑n

i=1 xi 2
∑n

i=1 x2
i

⎤⎦ (12.19)

The determinant of this matrix is 4n
∑n

i=1 x2
i − 4 (

∑n
i=1 xi)

2
. It must be shown that this

quantity is always positive to prove that β̂0 and β̂1 as given provide a minimum value for
Q. Note that n is assumed to be greater than zero:
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4n

n∑
i=1

x2
i − 4

(
n∑

i=1

xi

)2
?
> 0

n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

?
> 0

n∑
i=1

(xi − x̄)2 > 0 from (12.17)

Therefore, the β̂0 and β̂1 calculated do give the minimum value for Q.

Now that the β values that will minimize Q are computed, the fitted regression line is
written

Ŷi = β̂0 + β̂1xi (12.20)

where estimated (predicted) errors, also called residuals, are defined to be

ε̂i = Yi − Ŷi. (12.21)

12.5 Properties of the Fitted Regression Line

Several properties of the fitted regression line will be helpful in understanding the
relationships between X, β, ε, and Y:

1.
∑n

i=1 ε̂i = 0.

2.
∑n

i=1 Yi =
∑n

i=1 Ŷi.

3.
∑n

i=1 xiε̂i = 0.

4.
∑n

i=1 Ŷiε̂i = 0.

5. The regression line always goes through the point (x̄, Y ).

Note that all five of these properties follow from the least squares normal (12.12) and (12.13).

Proof (Property 1):

ε̂i = Yi − Ŷi

ε̂i = Yi − (β̂0 + β̂1xi)
n∑

i=1

ε̂i =
n∑

i=1

(Yi − β̂0 − β̂1xi)

n∑
i=1

ε̂i =
n∑

i=1

Yi − nβ̂0 − β̂1

n∑
i=1

xi = 0 by (12.12)
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Proof (Property 2):

ε̂i = Yi − Ŷi

n∑
i=1

ε̂i =
n∑

i=1

Yi −
n∑

i=1

Ŷi

0 =
n∑

i=1

Yi −
n∑

i=1

Ŷi

n∑
i=1

Yi =
n∑

i=1

Ŷi

Proof (Property 3):
n∑

i=1

Yixi = β̂0

n∑
i=1

xi + β̂1

n∑
i=1

x2
i by (12.13)

n∑
i=1

Yixi − β̂0

n∑
i=1

xi − β̂1

n∑
i=1

x2
i = 0

n∑
i=1

xi(Yi − β̂0 − β̂1xi) = 0

n∑
i=1

xi(Yi − Ŷi) = 0

n∑
i=1

xiε̂i = 0

Proof (Property 4):
n∑

i=1

Ŷiε̂i =
n∑

i=1

(β̂0 + β̂1xi)ε̂i

= β̂0

n∑
i=1

ε̂i + β̂1

n∑
i=1

xiε̂i

= 0 by Properties 1 and 3

Proof (Property 5): Given the regression line Ŷi = β̂0 + β̂1xi, if xi = x̄, then

Ŷi = β̂0 + β̂1x̄

Ŷi = Y − β̂1x̄ + β̂1x̄ using (12.14)

⇒ Ŷi = Y

12.6 Using Matrix Notation with Ordinary Least Squares

The solutions, β, to (12.5) are generally easier to express in matrix notation than in
summation notation. The normal equations are now presented in matrix form. Recall that

Q = (Y − Xβ)′(Y − Xβ).
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This is simplified first and then differentiated with respect to β. Then, the result is set
equal to 0 to solve for β̂:

Q = Y′Y − β′X′Y − Y′Xβ + β′X′Xβ

Since β′X′Y is a scalar (1 × 1), (β′X′Y)′ = Y′Xβ, so Q simplifies to

Q = Y′Y − 2Y′Xβ + β′X′Xβ.

The expression for δQ
δβ can now be calculated:

δQ
δβ

=
δ

δβ
(Y′Y) − δ

δβ
(2(X′Y)′β) − δ

δβ
(β′X′Xβ)

= 0 − 2X′Y − [X′Xβ + (X′X)′β]
by Rules for Differentiation 1 and 3 on page 671

= −2X′Y − 2X′Xβ (12.22)

Setting (12.22) equal to zero and solving for β yields

β̂ = (X′X)−1X′Y, (12.23)

the normal equations expressed in matrix notation. The worked out solutions for the matrix
form of the simple linear regression model are presented next.

Recall that, for the simple linear regression model, X =

⎡⎢⎢⎢⎣
1 x1

1 x2

...
...

1 xn

⎤⎥⎥⎥⎦, so

X′X =

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x2

i

]
. (12.24)

Also recall that the inverse of a matrix A =
[

a b
c d

]
is A−1 = 1

detA

[
d −b

−c a

]
, where detA =

ad − bc. Then

det(X′X) = n

n∑
i=1

x2
i −

( n∑
i=1

xi

)2

= n

n∑
i=1

(xi − x̄)2. (12.25)

So,

(X′X)−1 =
1

n
∑n

i=1(xi − x̄ )2

[ ∑n
i=1 x2

i −
∑n

i=1 xi

−
∑n

i=1 xi n

]
. (12.26)

Likewise,

X′Y =

[ ∑n
i=1 Yi∑n

i=1 xiYi

]
. (12.27)
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This means that

β̂ = (X′X)−1X′Y

=
1

n
∑n

i=1(xi − x̄ )2

[ ∑n
i=1 x2

i −
∑n

i=1 xi

−
∑n

i=1 xi n

][ ∑n
i=1 Yi∑n

i=1 xiYi

]

=

⎡⎢⎢⎢⎢⎣
∑n

i=1 x2
i

∑n
i=1 Yi −

∑n
i=1 xi

∑n
i=1 xiYi

n
∑n

i=1(xi − x̄ )2

−
∑n

i=1 xi

∑n
i=1 Yi + n

∑n
i=1 xiYi

n
∑n

i=1(xi − x̄ )2

⎤⎥⎥⎥⎥⎦ (12.28)

=

[
β̂0

β̂1

]

Next, it should be shown that the matrix solutions for β̂0 and β̂1 are identical to the
summation solutions shown in (12.14) and (12.18). Converting the second entry in β̂ from
(12.28) to (12.18) is more obvious, so it will be done first:

−
∑n

i=1 xi

∑n
i=1 Yi + n

∑n
i=1 xiYi

n
∑n

i=1(xi − x̄ )2
?= β̂1

1
n
1
n

· n
∑n

i=1 xiYi −
∑n

i=1 xi

∑n
i=1 Yi

n
∑n

i=1(xi − x̄ )2
?= β̂1∑n

i=1 xiYi −
∑n

i=1 xi
∑n

i=1 Yi

n∑n
i=1(xi − x̄ )2

?= β̂1∑n
i=1(xi − x̄)(Yi − Y )∑n

i=1(xi − x̄ )2
= β̂1 by simplification (12.15)

Next, show β̂0 from (12.14) is equal to the first entry of β̂:∑n
i=1 x2

i

∑n
i=1 Yi −

∑n
i=1 xi

∑n
i=1 xiYi

n
∑n

i=1(xi − x̄ )2
?= β̂0

n∑
i=1

x2
i

n∑
i=1

Yi −

(
n∑

i=1
xi

)2 n∑
i=1

Yi

n +

(
n∑

i=1
xi

)2 n∑
i=1

Yi

n −
n∑

i=1

xi

n∑
i=1

xiYi

n
∑n

i=1(xi − x̄ )2
?= β̂0

n∑
i=1

Yi

[
n∑

i=1

x2
i − (∑n

i=1 xi)2

n

]
−

[(
n∑

i=1

xiYi − Y
n∑

i=1

xi

)
n∑

i=1

xi

]
n
∑n

i=1(xi − x̄ )2
?= β̂0

n∑
i=1

Yi

[∑n
i=1(xi − x̄ )2

]
−

[∑n
i=1(xi − x̄)(Yi − Y )

∑n
i=1 xi

]
n
∑n

i=1(xi − x̄ )2
?= β̂0

by Simplifications (12.16) and (12.15)∑n
i=1 Yi

[∑n
i=1(xi − x̄ )2

]
n
∑n

i=1(xi − x̄ )2
−

∑n
i=1 xi

∑n
i=1(xi − x̄)(Yi − Y )

n
∑n

i=1(xi − x̄ )2
?= β̂0

Y − β̂1x̄ = β̂0

Therefore, the matrix solution is identical to the summation solution, so β̂ =
[

β̂0

β̂1

]
.
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Example 12.5 Find the variance-covariance matrix of β̂ = (X′X)−1X′Y when X is an
n × p matrix.

Solution: Let (X′X)−1X′ = A. Then β̂ = AY and σ2
β̂

= Aσ2
YA′ by property 3 on

page 673. Note that σ2
Y = σ2In×n. So,

σ2
β̂

= (X′X)−1X′σ2In×nX(X′X)−1

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1

Example 12.6 � Linear Relationship between GPA and SAT Scores � The
admissions committee of a comprehensive state university selected at random the records
of 200 second-semester freshmen. The results, first-semester college GPA and SAT scores,
are stored in the data frame Grades. The admissions committee wants to study the linear
relationship between first-semester college grade point average (gpa) and scholastic aptitude
test (sat) scores. Assume that the requirements for model (12.4) are satisfied.

(a) Create a scatterplot of the data to investigate the relationship between gpa and sat
scores.

(b) Obtain the least squares estimates for β0 and β1, and state the estimated regression
function using

(i) Summation notation with (12.14) and (12.18).

(ii) Matrix notation with (12.23).

(iii) Use the S function lm() to verify the answers in (i) and (ii).

(c) What is the point estimate of the change in the mean gpa when the sat score increases
by 50 points?

Solution: The data frame Grades is in the PASWR package.

(a) The scatterplot in Figure 12.2 on the next page suggests a linear relationship exists
between gpa and sat.

> attach(Grades)
> plot(sat, gpa)

(b)

(i) Assign gpa to Y and sat to x:

> Y <- gpa
> x <- sat

Solving using summation notation as in (12.18) (b1) and (12.14) (b0):
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FIGURE 12.2: Scatterplot of gpa versus sat using Grades

> b1 <- sum((x-mean(x))*(Y-mean(Y))) / sum((x-mean(x))^2)
> b0 <- mean(Y)-b1*mean(x)
> c(b0, b1)
[1] -1.192063812 0.003094270

The estimated regression function is Ŷi = −1.192063812 + 0.003094270xi.

(ii) Solving using matrix notation as in (12.23):

> X <- cbind(rep(1,200), x)
> Y <- matrix(Y, nrow=200)
> betahat <- solve(t(X)%*%X)%*%t(X)%*%Y
> beta0hat <- betahat[1,1]
> beta1hat <- betahat[2,1]
> c(beta0hat, beta1hat)
[1] -1.192063812 0.003094270

The estimated regression function is Ŷi = −1.192063812 + 0.003094270xi.

(iii) Solving use lm():

> model <- lm(Y~x)
> model$coefficients
(Intercept) x
-1.192063812 0.003094270

The estimated regression function is Ŷi = −1.192063812 + 0.003094270xi.

(c) The point estimate of the change in the mean gpa when the SAT score increases by 50
points is β̂1 · 50 = 0.1547135:

> b1*50
[1] 0.1547135
> detach(Grades)
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12.7 The Method of Maximum Likelihood

The method of least squares is not the only one that can be used to construct an estimate
of β. Another common method for constructing estimators is that of maximum likelihood.
To construct the maximum likelihood estimator (MLE) of β when ε ∼ N(0, σ2I), first
construct the likelihood function. Next, take the natural log. Finally, take appropriate
partial derivatives and set them equal to zero to solve for the MLE of β, β̃.

The likelihood function for β and σ2 when X is given is

L(β, σ2|X) =
n∏

i=1

1√
2πσ2

exp
[
−(Yi − (β0 + β1xi1 + · · · + βp−1xi,p−1))2

2σ2

]
(12.29)

In matrix form, this is

L(β, σ2|X) =
n∏

i=1

1√
2πσ2

exp
[
−(Y − Xβ)′(Y − Xβ)

2σ2

]
(12.30)

The natural log of the matrix form of the likelihood function (log-likelihood function) is

lnL(β, σ2|X) = −n

2
ln(2π) − n

2
ln(σ2) − (Y − Xβ)′(Y − Xβ)

2σ2

Simplifying the partial derivative of the log-likelihood function with respect to β gives

δ lnL(β, σ2|X)
δβ

=
δ

δβ

[
− (Y − Xβ)′(Y − Xβ)

2σ2

]
=

δ

δβ

[
−Y′Y + β′X′Y + Y′Xβ − β′X′Xβ

2σ2

]
Recall that β′X′Y is 1 × 1

=
δ

δβ

[
−Y′Y + 2(X′Y)′β − β′X′Xβ

2σ2

]
By Rules of Differentiation 1 and 3 on page 671

=
2X′Y
2σ2

−
[
X′Xβ + (X′X)′β

2σ2

]
=

X′Y − X′Xβ

σ2

Setting this equal to zero and solving for β yields

β̃ = (X′X)−1X′Y.

Note that the MLE is equivalent to the ordinary least squares estimator for β given in
(12.23). It is also of interest to find the MLE for σ2. Taking the partial derivative of the
log-likelihood function in terms of σ2 gives

δ lnL(β, σ2|X)
δσ2

= − n

2σ2
+

1
2(σ2)2

· (Y − Xβ)′(Y − Xβ)

When this quantity is set equal to zero and solved for σ2, the MLE is

σ̃2 =

(
Y − Xβ̂

)′(
Y − Xβ̂

)
n

=
ε̂′ε̂
n

Unfortunately, σ̃2 is a biased estimator of σ2. The bias is easily fixed and the unbiased
estimator ε̂′ε̂

n−p is typically used to estimate σ2.
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12.8 The Sampling Distribution of β̂

The matrix form of β̂ was described in (12.23) to be (X′X)−1X′Y. If model (12.7)
assumes that ε ∼ N(0, σ2I), then Y ∼ N(Xβ, σ2I) because X and β are assumed to be
constants. Since β̂ can be expressed as constants multiplied by Y, it follows that β̂ also
has a normal distribution. It will be shown that

β̂ ∼ N
(
β, σ2(X′X)−1

)
.

In Example 12.5 on page 574, the variance of β̂ was shown to equal σ2(X′X)−1. Next, β̂
is shown to be an unbiased estimator of β. Specifically,

If β̂ = (X′X)−1X′Y

Then E
[
β̂
]

= E
[
(X′X)−1X′Y

]
= E

[
(X′X)−1X′(Xβ + ε)

]
= E

[
(X′X)−1X′Xβ + (X′X)−1X′ε

]
= E

[
Iβ + (X′X)−1X′ε

]
= β since I and (X′X)−1X′ are constants and E(ε) = 0.

under the normal error regression model. However, unbiasedness does not guarantee unique-
ness. Fortunately, the Gauss-Markov theorem guarantees that among the class of linear
unbiased estimators for β, β̂ is the best in the sense that the variances of β̂0, β̂1, . . . , β̂p are
minimized. Consequently, β̂ is called a best linear unbiased estimator, or a BLUE. Note
that the error variance σ2 is unknown, but its unbiased estimate is given by

σ̂2 = s2 = MSE =
SSE
n − p

=
∑n

i=1 ε̂2
i

n − p
(12.31)

If the matrix V is defined to be (X′X)−1, then σ2
β̂k

= σ2 ·vk+1,k+1, where vk+1,k+1 is the
(k + 1)st diagonal entry (k = 0, 1, . . . , p − 1) of V. It is preferable to calculate V with the
command summary(lm.object)$cov.unscaled, where lm.object is a linear model object,
rather than with the matrix computations t(X)%*%X, where X is the design matrix. Since
β̂ ∼ N

(
β, σ2

β̂

)
, where σ2

β̂
= σ2(X′X)−1, an estimate of σ2

β̂
is

σ̂2(X′X)−1 = MSE(X′X)−1 =

⎡⎢⎢⎢⎢⎣
s2

β̂0
sβ̂0,β̂1

· · · sβ̂0,β̂p−1

sβ̂1,β̂0
s2

β̂1
· · · sβ̂1,β̂p−1

...
...

...
sβ̂p−1,β̂0

sβ̂p−1,β̂1
· · · s2

β̂p−1

⎤⎥⎥⎥⎥⎦ = s2
β̂
. (12.32)

The R function vcov() will compute s2
β̂

when applied to a linear model object. A test
statistic for testing H0 : βk = βk0 versus H0 : βk �= βk0 can be justified using the standard
form of a t-statistic:

unbiased estimator − hypothesized value
standard error of estimator

.

Specifically, the test statistic is

β̂k − βk0

sβ̂k

∼ tn−p for k = 0, 1, . . . , p − 1 (12.33)
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In the event that the hypothesis of interest is H0 : βk = 0 versus H1 : βk �= 0, the function
summary() applied to a linear model object will provide the tobs = β̂k/sβ̂k

value and the
corresponding ℘-value. That is, the ℘-value = 2 × P(tn−p ≥ |tobs|).

Using (12.33) as a pivotal quantity, in a similar fashion to the derivation of a confidence
interval for μ in Section 8.2.2, a 100 · (1 − α)% confidence interval for βk, where k =
0, 1, . . . , p − 1, is

CI 1−α(βk) =
[
β̂k − t1−α/2;n−p · sβ̂k

, β̂k + t1−α/2;n−p · sβ̂k

]
. (12.34)

Note that the degrees of freedom for the t-distribution are n − p because σ2 is estimated
with MSE = SSE

n−p .

Example 12.7 Consider Example 12.6 on page 574, where the admissions committee of a
comprehensive state university wants to study the linear relationship between first-semester
college grade point averages (gpa) and scholastic aptitude test (sat) scores. These are stored
in the data frame Grades. Assume that the requirements for model (12.4) are satisfied.

(a) Find the variance-covariance matrix for β̂ using (12.32).

(b) Test whether there is a linear relationship at the α = 0.10 significance level.

(c) Construct 90% confidence intervals for β0 and β1.

Solution: (a) Recall that ε̂i = Yi − Ŷi, σ̂2 =
∑n

i=1
ε̂2

i

n−p , and the variance-covariance
matrix is s2

β̂
= σ̂2(X′X)−1:

> attach(Grades)
> Y <- gpa
> x <- sat
> simple.model <- lm(Y~x)
> X <- cbind(rep(1,200), x)
> XTX <- t(X)%*%X
> solve(XTX)

x
0.3101379642 -2.689270e-04

x -0.0002689270 2.370131e-07

The preferred way to compute (X′X)−1 with S is

> XTXI <- summary(simple.model)$cov.unscaled
> XTXI

(Intercept) x
(Intercept) 0.3101379642 -2.689270e-04
x -0.0002689270 2.370131e-07
> MSE <- sum(resid(simple.model)^2)/(200-2)
> MSE
[1] 0.1595551

A more direct method of obtaining the MSE is summary(simple.model)$sigma^2:
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> var.cov.b <- MSE*XTXI
> var.cov.b

(Intercept) x
(Intercept) 4.948408e-02 -4.290866e-05
x -4.290866e-05 3.781665e-08

s2
β̂

=
[

4.948408× 10−2 −4.290866× 10−5

−4.290866× 10−5 3.781665× 10−8

]
To compute s2

β̂
with R directly, type

> vcov(simple.model)
(Intercept) x

(Intercept) 4.948408e-02 -4.290866e-05
x -4.290866e-05 3.781665e-08

(b)

Step 1: Hypotheses — H0 : β1 = 0 versus H1 : β1 �= 0.

Step 2: Test Statistic — β̂1 = 0.0030943 is the test statistic. Assuming the assumptions
of Model (12.4) are satistfied,

β̂1 ∼ N(β1, σ
2
β̂1

)

The standardized test statistic under the assumption that H0 is true and its distri-
bution are

β̂1 − β1

sβ̂1

∼ t200−2

Step 3: Rejection Region Calculations — Because the standardized test statistic is
distributed t198 and H1 is a two-sided hypothesis, the rejection region is |tobs| >
t0.95;198 = 1.6526. The value of the standardized test statistic is tobs = 0.0031−0

.00019 =
15.912.

Step 4: Statistical Conclusion — The ℘-value is 2 × P(t198 ≥ 15.912) = 2 × 0 = 0.

I. From the rejection region, reject H0 because |15.912| is greater than 1.6526.
II. From the ℘-value, reject H0 because the ℘-value = 0 is less than 0.10.

Step 5: English Conclusion — There is evidence to suggest a linear relationship between
sat and gpa.

To see the test statistics and their ℘-values for the simple.model, enter

> summary(simple.model)$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.192063812 0.2224501802 -5.35879 2.316666e-07
x 0.003094270 0.0001944650 15.91171 2.922995e-37
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(c) 90% Confidence intervals for β0 and β1 are

CI 0.90(β0) =
[
β̂0 − t.95; n−p · sβ̂0

, β̂0 + t.95; n−p · sβ̂0

]
CI 0.90(β0) = [−1.19− 1.65(0.22), −1.19 + 1.65(0.22)]
CI 0.90(β0) = [−1.56,−0.82]

and

CI 0.90(β1) =
[
β̂1 − t.95; n−p · sβ̂1

, β̂1 + t.95; n−p · sβ̂1

]
CI 0.90(β1) = [0.003− 1.65(0.00019), 0.003 + 1.65(0.00019)]
CI 0.90(β1) = [0.0028, 0.0034] .

> b0 <- summary(simple.model)$coef[1,1]
> b1 <- summary(simple.model)$coef[2,1]
> s.b0 <- summary(simple.model)$coef[1,2]
> s.b1 <- summary(simple.model)$coef[2,2]
> ct <- qt(1-.10/2,198) # alpha = 0.10
> ct
[1] 1.652586
> CI.B0 <- c(b0 - ct*s.b0, b0 + ct*s.b0)
> CI.B0
[1] -1.5596818 -0.8244458
> CI.B1 <- c(b1 - ct*s.b1, b1 + ct*s.b1)
> CI.B1
[1] 0.002772900 0.003415640

Or, if working in R only, a method requiring less typing is

> confint(lm(Y~x), level=.90)
5 % 95 %

(Intercept) -1.5596818 -0.824445807
x 0.0027729 0.003415640
> detach(Grades)

12.9 ANOVA Approach to Regression

The basic normal error term regression model (12.4) has now been developed extensively.
This same model can also be considered in an analysis of variance framework. This new
paradigm will prove useful when working with multiple regression models. The analysis of
variance approach is based on partitioning the sums of squares and the degrees of freedom
associated with the response variable Y . The total deviation, Yi − Y , can be decomposed
into two components:

1. The deviation of the fitted value Ŷi around the mean Y and
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2. The deviation of the observation Yi around the regression line.

Yi − Y︸ ︷︷ ︸
Total Deviation

= Ŷi − Y︸ ︷︷ ︸
Deviation of Fitted
Regression Value
around the Mean

+ Yi − Ŷi︸ ︷︷ ︸
Deviation around the
Fitted Regression Line

(12.35)

Note that the total deviation is used to measure the variation of the Yis without taking the
predictor variable(s) into account. Recall that since ε̂i = Yi − Ŷi,

2
n∑

i=1

(Ŷi − Y )(Yi − Ŷi) = 2
n∑

i=1

(Ŷi − Y )ε̂i

= 2
n∑

i=1

Ŷiε̂i − 2Y
n∑

i=1

ε̂i

= 2 × 0︸ ︷︷ ︸
by Property (4)

− 2 × 0︸ ︷︷ ︸
by Property (1)

= 0,

(12.36)

so that squaring both sides and summing from i = 1 to n of (12.35) yields

n∑
i=1

(Yi − Y )2 =
n∑

i=1

[
(Ŷi − Y ) + (Yi − Ŷi)

]2

=
n∑

i=1

(Ŷi − Y )2 +
n∑

i=1

(Yi − Ŷi)2 + 2
n∑

i=1

(Ŷi − Y )(Yi − Ŷi)︸ ︷︷ ︸
=0 by (12.36)

n∑
i=1

(Yi − Y )2 =
n∑

i=1

(Ŷi − Y )2 +
n∑

i=1

(Yi − Ŷi)2 (12.37)

The expression in (12.37) is commonly expressed as SST = SSR+SSE , where SST denotes
total sum of squares, SSR stands for regression sum of squares, and SSE represents error
(residual) sum of squares.

12.9.1 ANOVA with Simple Linear Regression

The degrees of freedom for SST are partitioned into degrees of freedom for SSR and
degrees of freedom for SSE , just as the total sum of squares (SST ) itself was partitioned
into SSR and SSE . There are n − 1 degrees of freedom associated with SST . One degree
of freedom is lost since the deviations Yi − Y are subject to one constraint, specifically,∑n

i=1(Yi − Y ) must equal zero, as it always does. Another explanation is that one degree
of freedom is lost since Y is used to estimate the population mean, μ.

SSE has n−2 degrees of freedom. Two degrees of freedom are lost since two parameters,
β0 and β1, are estimated while obtaining the fitted values of Ŷi. There are two degrees of
freedom associated with the estimated regression line, that is, one for the slope and one for
the intercept. However, one of the degrees of freedom is lost since

∑n
i=1(Ŷi−Y ) must equal

zero by property 2. Consequently, SSR in a simple linear regression model has one degree
of freedom.

When a sum of squares is divided by its associated degrees of freedom, the result is
called a mean square and is denoted with MS. Specifically,

SSR
1

= MSR and
SSE
n − 2

= MSE
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Mean squares, unlike sums of squares, are not additive. That is,

MST �= MSR + MSE .

For the normal error regression model in (12.4), SSE
σ2 ∼ χ2

n−2. Consequently,

E

[
SSE
σ2

]
= n − 2 =⇒ E

[
SSE
n − 2

]
= σ2 =⇒ E[MSE ] = σ2

In other words, the MSE is an unbiased estimator of σ2.
To find the expected value of MSR, recall from property 5 that Y = β̂0 + β̂1x̄ and

that the SSR for the simple linear model has one degree of freedom. This implies that
SSR = SSR/1 = MSR. Also, note that the definition of the variance of β̂1 is σ2

β̂1
=

E
[
β̂2

1

]
−

(
E
[
β̂1

])2 ⇒ E
[
β̂2

1

]
= σ2

β̂1
+

(
E
[
β̂1

])2.

SSR =
n∑

i=1

(
Ŷi − Y

)2

SSR =
n∑

i=1

(
(β̂0 + β̂1xi) − (β̂0 + β̂1x̄)

)2

SSR = β̂2
1

n∑
i=1

(xi − x̄)2

Then, E[SSR] = E
[
β̂2

1

]∑n
i=1(xi − x̄)2, since the x values are not random:

E[SSR] =
{

σ2
β̂1

+
(
E
[
β̂1

])2
}
·

n∑
i=1

(xi − x̄)2

=

{
σ2∑n

i=1(xi − x̄)2︸ ︷︷ ︸
by Example 12.5 and (12.26)

+ β2
1

}
·

n∑
i=1

(xi − x̄)2

E[SSR] = σ2 + β2
1 ·

n∑
i=1

(xi − x̄)2 = E[SSR/1] =

E[MSR] = σ2 + β2
1 ·

n∑
i=1

(xi − x̄)2

Note that the mean of the sampling distribution of MSE is σ2 whether a linear relation-
ship exists between Y and x or not. The mean of the sampling distribution of MSR is also
σ2 when β1 = 0. Consequently, MSR and MSE will be similar in magnitude when β1 = 0.
Likewise, when β1 �= 0, the center of the sampling distribution of MSR will be larger than
the center of the sampling distribution of MSE by approximately β2

1 ·
∑n

i=1(xi − x̄)2.
In particular, the test statistic for testing H0 : β1 = 0 versus H1 : β1 �= 0 for model

(12.4) is

Fobs =
MSR
MSE

. (12.38)

When the null hypothesis is true, H0 : β1 = 0, then

MSR
MSE

∼ F1,n−2.
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Although it is beyond the scope of this text, it is noted that the quantities SSR
σ2 and SSE

σ2

are independent χ2 random variables with 1 and n − 2 degrees of freedom, respectively. It
then follows, using Definition 6.2, that

MSR
MSE

=
SSR/σ2

1
SSE/σ2

n−2

=
χ2

1/1
χ2

n−2/(n − 2)
∼ F1,n−2.

Finally, values of Fobs close to 1 tend to support the null hypothesis, while large values of
Fobs tend to support the alternative hypothesis. Specifically, the null hypothesis is rejected
if Fobs > f1−α;1,n−2. S generates an ANOVA table on linear model objects with the function
anova(lm.object).

Table 12.1: ANOVA table for simple linear regression
Source Degrees Sum Mean

of of of Squares Fobs

Variation Freedom Squares

Regression 1 SSR =
n∑

i=1

(Ŷi − Y )2 MSR = SSR
1

MSR
MSE

Error n − 2 SSE =
n∑

i=1

(Yi − Ŷi)2 MSE = SSE
n−2

Total n − 1 SST =
n∑

i=1

(Yi − Y )2

Example 12.8 Construct an ANOVA table using the data in Grades. Then, test if a linear
relationship exists between first-semester college grade point average (gpa) and scholastic
aptitude score (sat) using the information in the ANOVA table at the α = 0.05 level.

Solution: The following code is used to create Table 12.2:

> attach(Grades)
> model.lm <- lm(gpa~sat)
> anova(model.lm)
> detach(Grades)

Table 12.2: ANOVA table for model.lm <- lm(gpa∼sat)

anova Df Sum Sq Mean Sq F value Pr(>F)
sat 1 40.397 40.397 253.18 < 2.2e− 16
Residuals 198 31.592 0.160

Step 1: Hypotheses — H0 : β1 = 0 versus H1 : β1 �= 0.
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Step 2: Test Statistic — Fobs since MSR/MSE under the assumption that β1 = 0 has an
F1,198 distribution.

Step 3: Rejection Region Calculations — Because Fobs ∼ F1,198 and this is a one-tailed
test, the rejection region is Fobs > f0.95;1,198 = 3.888. The value of the standardized
test statistic is Fobs = 40.40

0.16 = 253.18.

Step 4: Statistical Conclusion — The ℘-value is P(F1,198 ≥ 253.18) = 0.

I. From the rejection region, reject H0 because 253.18 is greater than 3.888.
II. From the ℘-value, reject H0 because the ℘-value = 0 is less than 0.05.

Step 5: English Conclusion — There is strong evidence to suggest a linear relationship
exists between first-semester gpa and sat scores.

12.9.2 ANOVA with Multiple Linear Regression

The ANOVA approach to linear regression analysis can be generalized to test hypotheses
of the form

H0 : β1 = β2 = · · · = βp−1 = 0 versus
H1 : at least one βi �= 0 for i = 1, 2, . . . , p − 1

The ANOVA table for a multiple linear regression model with p parameters expressed in
matrix notation is given in Table 12.3. Note that J is an n × n matrix of 1s.

Table 12.3: ANOVA table for multiple linear regression
Source Degrees Sum Mean

of Variation of Freedom of Squares Squares Fobs

Regression p − 1 SSR = β̂X′Y − 1
nY′JY MSR = SSR

p−1
MSR
MSE

Error n − p SSE = Y′Y − β̂′X′Y MSE = SSE
n−p

Total n − 1 SST = Y′Y − 1
nY′JY

An important matrix in the theory of linear models is the H or “hat” matrix, defined
as

H = X(X′X)−1X′ (12.39)

The H matrix is a symmetric, idempotent (H2 = H), n× n matrix that transforms the
Yis into Ŷis. Specifically,

Ŷ = Xβ̂

Ŷ = X(X′X)−1X′Y

Ŷ = HY

The values for the sums of squares found in Table 12.3 can also be expressed in terms
of the hat matrix as well as identity and J matrices. Recall that β̂′X′Y is a 1 × 1 vector
and is thus equal to its transpose:
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SSE = Y′Y − β̂′X′Y

= Y′Y − Y′Xβ̂

= Y′Y − Y′X(X′X)−1X′Y
= Y′Y − Y′HY

= Y′(I − H)Y (12.40)

SST = Y′Y − 1
nY′JY

= Y′(I − 1
nJ)Y (12.41)

SSR = β̂′X′Y − 1
nY′JY

= Y′Xβ̂ − 1
nY′JY

= Y′X(X′X)−1X′Y − 1
nY′JY

= Y′HY − 1
nY′JY

= Y′(H− 1
nJ)Y (12.42)

Thus it can be seen that each of the
three sums of squares can be expressed as
a quadratic form (Y′AY), where the A
matrices are (I−H), (H− 1

nJ), and (I− 1
nJ).

Knowing that the sums of squares are quadratic forms allows the statistician to prove
various important results. Figure 12.3 provides a graphical representation of decomposition
of the total deviation (as in (12.35)) found in ANOVA.
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FIGURE 12.3: Graphical representation of the sum of squares partition
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12.9.3 Coefficient of Determination

Figure 12.4 shows three different scatterplots of bivariate data. The points in the first
scatterplot fall exactly on a straight line. Consequently, 100% of the variability in the y
values can be attributed to the linear relationship between y and x. The points in the second
scatterplot do not fall exactly along a line; however, the deviations from the least squares
line (Yi − Ŷi) compared to the total deviations (Yi − Y ) are relatively small. This makes it
reasonable to conclude that a large proportion of the variability in y can be attributed to
the linear relationship between y and x. The third scatterplot shows both large deviations
from the least squares line as well as large total deviations. In this case, a linear relationship
between y and x is not overly helpful in explaining the variability of the yis exhibited in
the scatterplot.
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FIGURE 12.4: Scatterplots to illustrate values of R2

The sum of squares due to error (SSE) can be interpreted as the amount of variability
in Y that is unexplained by a linear model. Since SSE

(∑n
i=1(Yi − Ŷi)2

)
is smaller than the

sum of squared deviations of any other line, SSE ≤ SST . Note that only in the case of a
horizontal line would SSE = SST . Consequently, the ratio SSE

SST represents the proportion
of variability that cannot be explained by the linear regression model. In an analogous
fashion, R2, the coefficient of determination, represents the proportion of variability in
the Yis that can be explained by the simple linear regression model where

R2 = 1 − SSE
SST

=
SSR
SST

(12.43)

When working with linear regression models with p − 1 explanatory variables, R2 is
interpreted as the proportion of variability in the Yis that can be explained with a linear
model containing the variables x1, x2, . . . , xp−1. Since adding more x-variables to the
regression model can only increase R2 (as SSE never increases as more variables are added
to a model and SST is constant for any set of Yi values), a measure is needed that takes into
account how many variables are in a model to determine the most appropriate variables
to include. Such a measure is the adjusted coefficient of determination, R2

a. R2
a is
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computed by dividing each sum of squares by its associated degrees of freedom. That is,

R2
a = 1 −

SSE
n−p

SST
n−1

= 1 − MSE
MST

(12.44)

Although R2 and R2
a provide a certain measure of “goodness-of-fit” for the fitted model,

they should be used with caution and never as the sole criterion for determining which
among several models is best.

12.9.4 Extra Sum of Squares

An extra sum of squares measures the marginal increase in the regression sum of squares
when one or more variables are added to a regression model. The marginal increase when
adding x2 to a model that already contains x1 will be denoted as

SSR(x2|x1) = SSR(x2, x1) − SSR(x1) (12.45)

which is equivalent to

SSR(x2|x1) = SSE (x1) − SSE (x1, x2).

When the regression model contains r x-variables, there are r! possible decompositions of
the x-variables.

Example 12.9 Consider the case where r = 3. What are the six decompositions of
SSR(x1, x2, x3)?

Solution:

SSR(x1, x2, x3) = SSR(x1) + SSR(x2|x1) + SSR(x3|x1, x2) (12.46)
SSR(x1, x3, x2) = SSR(x1) + SSR(x3|x1) + SSR(x2|x1, x3)
SSR(x2, x1, x3) = SSR(x2) + SSR(x1|x2) + SSR(x3|x1, x2)
SSR(x2, x3, x1) = SSR(x2) + SSR(x3|x2) + SSR(x1|x2, x3)
SSR(x3, x1, x2) = SSR(x3) + SSR(x1|x3) + SSR(x2|x1, x3)
SSR(x3, x2, x1) = SSR(x3) + SSR(x2|x3) + SSR(x1|x2, x3) (12.47)

Example 12.10 The data frame HSwrestler contains information on nine variables for
a group of 78 high school wrestlers that was collected by the human performance lab at
Appalachian State University. The variables are AGE (in years), HT (height in inches), WT
(weight in pounds), ABS (abdominal skinfold measure), TRICEPS (tricep skinfold measure),
SUBSCAP (subscapular skinfold measure), HWFAT (hydrostatic determination of fat), TANFAT
(Tanita determination of fat), and SKFAT (skinfold dtermination of fat). Use S to obtain
the ANOVA results when hydrostatic fat (Y ) is regressed on ABS (x1), TRICEPS (x2), and
SUBSCAP (x3) to verify empirically the results from (12.46) and (12.47).

Solution: The order variables specified in S impact the ANOVA table since the sums of
squares reported are conditional sums of squares. First, the SSR(x1, x2, x3) is computed
using the formula from Table 12.3 on page 584:

> attach(HSwrestler)
> Y <- HWFAT
> x1 <- ABS
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> x2 <- TRICEPS
> x3 <- SUBSCAP
> n <- 78
> X <- cbind(rep(1, n), x1, x2, x3)
> Y <- matrix(HWFAT, nrow=n)
> J <- matrix(rep(1, n*n), nrow=n)
> H <- X%*%solve(t(X)%*%X)%*%t(X)
> b <- solve(t(X)%*%X)%*%t(X)%*%Y
> SSR <- t(b)%*%t(X)%*%Y-(1/n)*t(Y)%*%J%*%Y
> SSE <- t(Y)%*%Y - t(b)%*%t(X)%*%Y
> SSTO <- t(Y)%*%Y -(1/n)*t(Y)%*%J%*%Y
> SS <- rbind(SSR, SSE, SSTO)
> r.names <- c("SSR","SSE","SSTO")
> c.names <- c("Sum of Squares")
> dimnames(SS) <- list(r.names, c.names)
> SS

Sum of Squares
SSR 5317.252
SSE 700.540
SSTO 6017.792

Computing SSR, SSE , and SST with (12.42), (12.40), and (12.41), respectively, yields

> ID <- diag(nrow=n) # n*n Identity matrix
> SSRa <- t(Y)%*%(H-(1/n)*J)%*%Y
> SSEa <- t(Y)%*%(ID-H)%*%Y
> SSTOa <- t(Y)%*%(ID-(1/n)*J)%*%Y
> SSa <- rbind(SSRa, SSEa, SSTOa)
> r.names <- c("SSR","SSE","SSTO")
> c.names <- c("Sum of Squares")
> dimnames(SSa) <- list(r.names, c.names)
> SSa

Sum of Squares
SSR 5317.252
SSE 700.540
SSTO 6017.792

Note that the order of the xis does not impact the computation of SSR:

> mod123 <- lm(Y~x1+x2+x3)
> anova(mod123)

Table 12.4: ANOVA table for mod123 <- lm(Y∼x1+x2+x3)
anova Df Sum Sq Mean Sq F value Pr(>F)
x1 1 5072.8 5072.8 535.858 < 2.2e− 16
x2 1 242.2 242.2 25.581 2.984e− 06
x3 1 2.2 2.2 0.237 0.6278
Residuals 74 700.5 9.5
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SSR(x1, x2, x3) = SSR(x1) + SSR(x2|x1) + SSR(x3|x1, x2)

5317.2 ?= 5072.8 + 242.2 + 2.2
5317.2 = 5317.2

> mod321 <- lm(Y~x3+x2+x1)
> anova(mod321)
> detach(HSwrestler)

Table 12.5: ANOVA table for mod321 <- lm(Y∼x3+x2+x1)
anova Df Sum Sq Mean Sq F value Pr(>F)
x3 1 4939.0 4939.0 521.720 < 2.2e− 16
x2 1 204.6 204.6 21.616 1.422e− 05
x1 1 173.6 173.6 18.341 5.473e− 05
Residuals 74 700.5 9.5

SSR(x3, x2, x1) = SSR(x3) + SSR(x2|x3) + SSR(x1|x2, x3)

5317.2 ?= 4939.0 + 204.6 + 173.6
5317.2 = 5317.2

12.9.4.1 Tests on a Single Parameter

To test whether the term βkxk can be dropped from a multiple regression model, the
hypotheses of interest are

H0 : βk = 0 versus H1 : βk �= 0

It was shown earlier in (12.33) that tobs = β̂k/sβ̂k
could be used as an appropriate test

statistic. It is also possible to test βk = 0 using a general linear test statistic that involves
extra sum of squares. Consider a regression model with three predictor variables (which
represent the full model). To test the hypothesis

H0 : β2 = 0 versus H1 : β2 �= 0,

a reduced model where β2x2 has been eliminated from the full model is computed. The
general linear test statistic is

Fobs =
SSR(F )−SSR(R)

dfF −dfR

SSE
df

(12.48)

where F stands for the full model and R stands for the reduced model. SSE is the sum
of squares error for the full model and df is the degrees of freedom for error for the full
model. This Fobs follows an F distribution with (dfF − dfR, df) degrees of freedom, under
the assumptions that H0 is true and the normal error linear model assumptions are satisfied.
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Example 12.11 Use the data frame HSwrestler to show the equivalence between the
tobs and Fobs values when testing the hypothesis H0 : β2 = 0 versus H1 : β2 �= 0 when
regressing HWFAT (Y ) on ABS (x1), TRICEPS (x2), and SUBSCAP (x3).

Solution: The important concept to remember is that both tests assume x1 and x3 are
in the model. Consequently, x2 must be entered into the model last.

> attach(HSwrestler)
> Y <- HWFAT
> x1 <- ABS
> x2 <- TRICEPS
> x3 <- SUBSCAP
> mod132 <- lm(Y~x1+x3+x2)
> anova(mod132)
Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

x1 1 5072.8 5072.8 535.858 < 2.2e-16 ***
x3 1 132.6 132.6 14.005 0.0003577 ***
x2 1 111.8 111.8 11.814 0.0009682 ***
Residuals 74 700.5 9.5
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> anova(mod132)[3,4] # Fobs value
[1] 11.81363

(12.49)

> summary(mod132)

Call:
lm(formula = Y ~ x1 + x3 + x2)

Residuals:
Min 1Q Median 3Q Max

-6.4316 -2.4258 -0.4800 2.2797 9.5509

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.06997 0.65592 3.156 0.002315 **
x1 0.31894 0.07447 4.283 5.47e-05 ***
x3 0.06632 0.13622 0.487 0.627819
x2 0.46069 0.13404 3.437 0.000968 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.077 on 74 degrees of freedom
Multiple R-Squared: 0.8836, Adjusted R-squared: 0.8789
F-statistic: 187.2 on 3 and 74 DF, p-value: < 2.2e-16

> summary(mod132)$coefficients[4,3]^2 # tobs value squared
[1] 11.81363
> detach(HSwrestler)
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The value of Fobs may also be found with drop1(mod132, test="F").

From the anova output (12.49), calculate

SSR(F ) = 5072.8 + 132.6 + 111.8 = 5317.2
SSR(R) = 5072.8 + 132.6 = 5025.4

which gives an Fobs value of

Fobs =
SSR(F )−SSR(R)

dfF −dfR

SSE
df

=
5317.2−5205.4

3−2
700.5
74

= 11.81.

The tobs value is

tobs =
β̂2

sβ̂2

=
.46069
.13404

= 3.437.

Recall from (6.29) that t21−α/2;ν = f1−α;1,ν . So, the equivalence between the tobs and
Fobs values is equivalent to showing that (3.437)2 = 11.81, which it does to two decimal
places.

12.9.4.2 Tests on Subsets of the Regression Parameters

Traditional tests of hypotheses on individual regression coefficients generated with the
S command anova(lm.object) are partitions of the regression sum of squares. Frequently,
the user may want to test hypotheses containing a subset of the regression parameters. To
test whether a subset of the regression parameters are equal to zero requires the general
linear statistic in (12.48). Consider a full model with three predictors, x1, x2, and x3. To
see if β1xi1 and β2xi2 can be dropped from the model, the test of hypothesis is

H0 : β1 = β2 = 0 versus H1 : at least one βi �= 0 for i = 1, 2

The full model is Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi while the reduced model is Yi =
β0 + β3xi3 + εi. Consequently, the general linear test statistic will be

Fobs =

SSR(F ) − SSR(R)
dfF − dfR

SSE
df

=

SSR(x1, x2, x3) − SSR(x3)
3 − 1
SSE
n − p

=

SSR(x1, x2|x3)
2

MSE
=

MSR(x1, x2|x3)
MSE

Example 12.12 Use the data frame HSwrestler and test whether β1xi1 and β2xi2 can
be dropped from the full model Yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi, where x1 =ABS,
x2 =TRICEPS, and x3 =SUBSCAP using the general linear test approach with a 0.01 signifi-
cance level.

Solution: To test H0 : β1 = β2 = 0 versus H1 : at least one βi �= 0 for i = 1, 2, one must
ensure x3 is the first variable specified in the model to facilitate the solution:

> attach(HSwrestler)
> Y <- HWFAT
> x1 <- ABS
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> x2 <- TRICEPS
> x3 <- SUBSCAP
> mod312 <- lm(Y~x3+x1+x2)
> anova(mod312)

Table 12.6: ANOVA table for Example 12.12 on the preceding page
anova Df Sum Sq Mean Sq F value Pr(>F)
x3 1 4939.0 4939.0 521.720 < 2.2e− 16
x1 1 266.4 266.4 28.143 1.129e− 06
x2 1 111.8 111.8 11.814 0.0009682
Residuals 74 700.5 9.5

Fobs =

SSR(F ) − SSR(R)
dfF − dfR

SSE
df

=

(4939 + 266.4 + 111.8)− (4939)
3 − 1
700.5
74

= 19.98

> pf(19.98, 2, 74, lower.tail=FALSE) # Only in R
[1] 1.152745e-07

Since ℘-value = P(F2,74 ≥ 19.98) = 1.15 × 10−7 < 0.01, reject H0 and declare the results
statistically significant. The evidence suggests that ABS and TRICEPS should not be dropped
from a model that already contains SUBSCAP.

Another approach to test H0 : β1 = β2 = 0 is to use anova() on the reduced and full
models:

> mod3 <- lm(Y~x3)
> anova(mod3, mod312)
Analysis of Variance Table

Model 1: Y ~ x3
Model 2: Y ~ x3 + x1 + x2
Res.Df RSS Df Sum of Sq F Pr(>F)

1 76 1078.80
2 74 700.54 2 378.26 19.978 1.154e-07 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> detach(HSwrestler)
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12.10 General Linear Hypothesis

Tests on individual parameters and on subsets of parameters can be expressed in a
much more general fashion that provides fantastic flexibility in testing. The general linear
hypotheses are

H0 : Kβ = m versus H1 : Kβ �= m (12.50)

where K is a q × p matrix of rank q ≤ p with each row corresponding to one partial
hypothesis and m is a numerical vector. When working with the normal error model,
where ε ∼ N(0, σ2I) and β̂ ∼ N(β, σ2(X′X)−1), the parameter vector Kβ is estimated by
Kβ̂, which is a linear combination of normally distributed random variables. This implies
Kβ̂ ∼ N

(
Kβ, σ2K(X′X)−1K′). When K is a vector (q = 1), the null hypothesis Kβ = m0

is tested with a t-statistic since

t =
Kβ̂ − m0√

σ̂2K(X′X)−1K′ ∼ tn−p,γ (12.51)

where
γ =

Kβ − m0√
σ2K(X′X)−1K′ (12.52)

Under the null hypothesis, γ = 0 and (12.51) is a central t-distribution with n − p degrees
of freedom. In the general linear hypothesis, only a two-sided alternative is given; however,
when q = 1, the one-sided alternative, H1 : Kβ > m or H1 : Kβ < m, may be specified
and tested using (12.51).

When the rank of K is greater than one (q > 1), the quantity

(Kβ̂ − m)′(K(X′X)−1K′)−1(Kβ̂ − m)
qσ̂2

∼ Fq, n−p, λ (12.53)

where
λ =

1
σ2

(Kβ − m)′(K(X′X)−1K′)−1(Kβ − m) (12.54)

is used to test the null hypothesis H0 : Kβ = m. For details, see Graybill (1976). Note
that Graybill does offer a slightly different definition of λ (his λ is that of (12.54) divided by
2), but this does not complicate the exposition. This text will use the definition used by S
and Rao (1973). By using (12.54), the relationship between γ and λ is λ = γ2. The square
of the non-central t-statistic with non-centrality parameter γ is distributed as a non-central
F -statistic with non-centrality parameter λ = γ2. In other words, t2ν, γ = f1, ν, γ2 . The
power of the test H0 : Kβ = m as a function of λ for a given α is Power (λ) = P(Fν1, ν2, λ >
f1−α; ν1, ν2).

When H0 : Kβ = m is true,

(Kβ̂ − m)′(K(X′X)−1K′)−1(Kβ̂ − m)
σ2

∼ χ2
q (12.55)

and

Fobs =
(Kβ̂ − m)′(K(X′X)−1K′)−1(Kβ̂ − m)

qσ̂2
∼ Fq, n−p (12.56)

To test H0 : Kβ = m at the α significance level, reject H0 and conclude H1 when
P(Fq, n−p ≥ Fobs) < α. The function glht() in the R package multcomp can greatly ease the
computation of general linear hypotheses, especially when testing for linear relationships
among the βjs.
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Example 12.13 � General Linear Model � Use a general linear hypothesis with
α = 0.05 to

(a) Test whether β2xi2 and β3xi3 can be dropped from the model Yi = β0 +β1xi1 +β2xi2 +
β3xi3 + εi, where x1 = ABS, x2 = TRICEPS, and x3 = SUBSCAP, using information from
the data frame HSwrestler.

(b) Test the two linear relationships

2β1 + β2 = β3

−5β1 + β3 = 0.20

(c) Test whether β2 = β3.

Solution: The answers are as follows:

(a)

Step 1: Hypotheses —

H0 : Kβ = m versus H1 : Kβ �= m

where K =
[

0 0 1 0
0 0 0 1

]
and m =

[
0
0

]
.

Step 2: Test Statistic — Under the assumption H0 is true,

Fobs =
(Kβ̂ − m)′(K(X′X)−1K′)−1(Kβ̂ − m)

qσ̂2
∼ Fq, n−p.

Step 3: Rejection Region Calculations — Because Fobs ∼ F2, 74 and this is a one-tailed
test, the rejection region is Fobs > f0.95; 2, 74 = 3.12. The value of the standardized
test statistic is Fobs = 19.98 :

Fobs =
[0.319 0.461]

[
1819.5992 251.6221
251.6221 561.7319

] [
0.319
0.461

]
2(9.47)

= 19.98

Step 4: Statistical Conclusion — The ℘-value is P(F2, 74 ≥ 19.98) = 0+, where 0+
means that the ℘-value is zero to more than six decimal places without being equal
to zero.

I. From the rejection region, reject H0 because 19.98 is greater than 3.12.

II. From the ℘-value, reject H0 because the ℘-value = 0+ is less than 0.05.

Step 5: English Conclusion — There is strong evidence to suggest a linear relationship
exists between ABS, TRICEPS, and HWFAT, suggesting neither variable should be
dropped from a model that currently contains SUBSCAP.

> attach(HSwrestler)
> Y <- HWFAT
> x1 <- ABS
> x2 <- TRICEPS
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> x3 <- SUBSCAP
> mod312 <- lm(Y~x3+x1+x2)
> K <- matrix(c(0,0,1,0,0,0,0,1), byrow=TRUE, nrow=2)
> Q <- qr(K)$rank
> b <- matrix(coef(mod312), ncol=1)
> m <- matrix(c(0,0), byrow=TRUE, nrow=2)
> XTXI <- summary(mod312)$cov.unscaled
> NUM <- t(K%*%b-m)%*%solve(K%*%XTXI%*%t(K))%*%(K%*%b-m)
> MSE <- anova(mod312)[4,3]
> Fobs <- NUM/(Q*MSE)
> c(Fobs,1-pf(Fobs, Q,74))
[1] 1.997828e+01 1.154032e-07

Using glht() from the multcomp package,

> library(multcomp)
Loading required package: mvtnorm
> summary(glht(mod312, linfct=K, rhs=c(0,0)), test=Ftest())

General Linear Hypotheses

Linear Hypotheses:
Estimate

1 == 0 0.3189
2 == 0 0.4607

Global Test:
F DF1 DF2 Pr(>F)

1 19.98 2 74 1.154e-07

(b)

Step 1: Hypotheses —

H0 : Kβ = m versus H1 : Kβ �= m

where K =
[

0 2 1 −1
0 −5 0 1

]
and m =

[
0
.2

]
.

Step 2: Test Statistic — Under the assumption H0 is true,

Fobs =
(Kβ̂ − m)′(K(X′X)−1K′)−1(Kβ̂ − m)

qσ̂2
∼ Fq, n−p.

Step 3: Rejection Region Calculations — Because Fobs ∼ F2, 74 and this is a one-tailed
test, the rejection region is Fobs > f0.95; 2, 74 = 3.12. The value of the standardized
test statistic is Fobs = 0.062 :

Fobs =
[−0.0091 − 0.0709]

[
676.0834 297.8446
297.8446 146.8894

] [
−0.0091
−0.0709

]
2(9.47)

= 0.0623
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Step 4: Statistical Conclusion — The ℘-value is P(F2, 74 ≥ 0.0623) = 0.94.

I. From the rejection region, fail to reject H0 because 0.062 is less than 3.12.

II. From the ℘-value, fail to reject H0 because the ℘-value = 0.94 is greater than
0.05.

Step 5: English Conclusion — There is no evidence to suggest the postulated relation-
ships Kβ �= m.

> K <- matrix(c(0,2,1,-1,0,-5,0,1), byrow=TRUE, nrow=2)
> summary(glht(mod312, linfct=K, rhs=c(0,0.2)), test=Ftest())

General Linear Hypotheses

Linear Hypotheses:
Estimate

1 == 0 -0.00912
2 == 0.2 0.12911

Global Test:
F DF1 DF2 Pr(>F)

1 0.0623 2 74 0.9396

(c)

Step 1: Hypotheses —

H0 : Kβ = m versus H1 : Kβ �= m

where K =
[

0 0 1 −1
]

and m =
[

0
]
.

Step 2: Test Statistic — Under the assumption H0 is true,

Fobs =
(Kβ̂ − m)′(K(X′X)−1K′)−1(Kβ̂ − m)

qσ̂2
∼ Fq, n−p.

Step 3: Rejection Region Calculations — Because Fobs ∼ F1, 74 and this is a one-tailed
test, the rejection region is Fobs > f0.95; 1, 74 = 3.97. The value of the standardized
test statistic is Fobs = 0.062 :

Fobs =
[−0.1418][332.3932][−0.1418]

2(9.47)
= 0.7056.

Step 4: Statistical Conclusion — The ℘-value is P(F1, 74 ≥ 0.7056) = 0.40.

I. From the rejection region, fail to reject H0 because 0.7056 is less than 3.97.

II. From the ℘-value, fail to reject H0 because the ℘-value = 0.40 is greater than
0.05.

Step 5: English Conclusion — There is no evidence to suggest β2 �= β3.
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> K <- matrix(c(0,0,1,-1), byrow=TRUE, nrow=1)
> summary(glht(mod312, linfct=K, rhs=0), test=Ftest())

General Linear Hypotheses

Linear Hypotheses:
Estimate

== 0 -0.1418

Global Test:
F DF1 DF2 Pr(>F)

1 0.7056 1 74 0.4036
> detach(HSwrestler)

12.11 Model Selection and Validation

The process of selecting a model either for predictive or explanatory purposes involves
several procedures, where the order of the procedures is not always the same. One needs
always to bear in mind that regression analysis is simply a tool to understand the structure
of data. In what follows, general methods to select models, to verify assumptions, and
to perform transformations on both the response and predictor variables are discussed.
Although an order is presented for building a model, the analyst should always be alert for
an unexpected structure in the data and be flexible in his assessment of the model.

12.11.1 Testing-Based Procedures

When building a model, it is desirable to select the “best” subset of predictors that
explains the data in the simplest fashion. Adding too many variables wastes degrees of
freedom and adds unwanted noise to the problem, increases the risk of adding variables
that measure the same quantity, as well as increases the effort needed to measure the
redundant predictors. There are two basic approaches one can take to select variables: 1) a
stepwise testing strategy that compares successive models and 2) a criterion approach that
attempts to maximize some measure of goodness-of-fit.

12.11.1.1 Backward Elimination

Backward elimination begins with a model containing all potential x-variables and
identifies the one with the largest ℘-value. This can be done by looking at the ℘-values for
the t-values of the β̂i, i = 1, . . . , p−1 using the function summary() or using the ℘-values from
the R function drop1(). If the variable with the largest ℘-value is above a predetermined
value, αcrit, that x-variable is dropped. A model with the remaining x-variables is then fit
and the procedure continues until all the ℘-values for the remaining variables in the model
are below the predetermined αcrit. The αcrit is sometimes referred to as the “℘-to-remove”
and is typically set to 15 or 20%.

12.11.1.2 Forward Selection

Forward selection starts with no variables in the model and then adds the x-variable
that produces the smallest ℘-value below αcrit when included in the model. This procedure
is continued until no new predictors can be added. The user can determine the variable
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that produces the smallest ℘-value by regressing the response variable on the xis one at a
time using lm() and summary() or by using the function add1().

12.11.1.3 Stepwise Regression

This is a combination of backward elimination and forward selection. This technique
allows variables that were either removed or added early in the procedure to reenter or exit
the model later in the process. At each stage, a variable may be added or removed.

Testing-based procedures are relatively straightforward to implement; however, they do
have some drawbacks. One of the chief weaknesses of testing-based procedures is ending
up with a model that is overly parsimonious. When the analyst has a firm grasp of the
subject matter, the analyst may want to include predictors that appear to have no statistical
significance. Although predictors can be added to a model developed from a testing-based
perspective, the idea of adding predictors that are not necessarily significant conforms more
to a criterion-based procedure.

12.11.1.4 Criterion-Based Procedures

There are several well-defined optimality criteria used in model building including R2
a

(R2 adjusted), Mallows’s Cp, Bayes Information Criterion (BIC), and Akaike Information
Criterion (AIC). R2

a is used instead of R2 since R2 will always increase with the addition
of more variables to the model. Recall that R2

a = 1 −
(
(n − 1)/(n− p)

)
· (SSE/SST ).

The Cp statistic is defined as Cp = SSE/σ̂2 + 2p − n, where σ̂2 is from the model with
all predictors and SSE is for the model with p parameters. When all p parameters are
used in the model, Cp = p. A model with a bad fit will produce a Cp much bigger than p.
Desirable models have small p and Cp less than or equal to p. It is common practice to plot
Cp against p.

Recall that lnL(β, σ2|X) is called the log-likelihood function. The BIC for linear
regression models is defined as −2 max(lnL(β, σ2|X))+p · ln(n) = n ln(SSE/n)+p · ln(n)+
constant, while the AIC for linear regression models is defined as −2 max(lnL(β, σ2|X)) +
2p = n ln(SSE/n) + 2p + constant. Since the constant is the same for a given data set and
error distribution, it can be ignored when comparing models based on the same data. This
is what the function stepAIC() does.

There are various S functions including step() to perform criterion-based searches.
Unfortunately, the function step() in R is not equivalent to the function step() in S-PLUS.
Fortunately, the function stepAIC() in the MASS package is an equivalent function in both
R and S-PLUS. The goal when using BIC or AIC is to create a model that minimizes either
BIC or AIC. Both AIC and BIC search for models that have small SSE . However, BIC
penalizes larger models more so than does AIC (assuming n > e2 = 7.39). Consequently,
BIC will favor smaller models than will AIC. When building a model to be used for predictive
purposes, AIC will generally be favored over BIC. For those using R, the package leaps
contains the function regsubsets(), which is very useful for computing R2

a and Mallows’s
Cp.

Example 12.14 � Model Selection with HSwrestler� Create a model for predict-
ing wrestlers’ hydrostatic fat (HWFAT) for the data frame HSwrestler.

(a) Use backward elimination with the predictors AGE, HT, WT, ABS, TRICEPS, and SUBSCAP
and an αcrit of 0.20.

(b) Use forward selection with an αcrit of 0.20.
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(c) Use the function regsubsets in the R package leaps to select a model using R2
a as the

criterion.

(d) Use the function regsubsets in the R package leaps to select a model using Mallows’s
Cp as the criterion.

(e) Use AIC as the criterion for selecting a model.

(f) Use BIC as the criterion for selecting a model.

Solution: All output is from R.

(a) Backward elimination starts with all the variables in the model and eliminates variables
with the largest (least significant) ℘-values:

> attach(HSwrestler)
> # Backward elimination showing all steps
> reg.all <- lm(HWFAT ~ AGE + HT + WT + ABS + TRICEPS + SUBSCAP)
> summary(reg.all)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.29369860 9.63026704 1.3804081 1.717917e-01
AGE -0.32893403 0.32157778 -1.0228755 3.098393e-01
HT -0.06730905 0.16050751 -0.4193514 6.762255e-01
WT -0.01365183 0.02590783 -0.5269385 5.998789e-01
ABS 0.37141976 0.08836595 4.2032001 7.548985e-05
TRICEPS 0.38742647 0.13761017 2.8153912 6.301113e-03
SUBSCAP 0.11405213 0.14192779 0.8035927 4.243145e-01

Note that HT has the largest ℘-value of 6.762255e-01, so it is eliminated from the model:

> reg.m1 <- lm(HWFAT ~ AGE + WT + ABS + TRICEPS + SUBSCAP)
> summary(reg.m1)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.69230054 4.33250597 2.2371119 2.837559e-02
AGE -0.33352357 0.31954680 -1.0437393 3.000978e-01
WT -0.02084061 0.01931391 -1.0790465 2.841686e-01
ABS 0.38259027 0.08377184 4.5670510 1.996022e-05
TRICEPS 0.39737898 0.13477014 2.9485685 4.302189e-03
SUBSCAP 0.11175170 0.14100772 0.7925218 4.306601e-01

Note that SUBSCAP has the largest ℘-value of 4.306601e-01, so it is eliminated from the
model:

> reg.m2 <- lm(HWFAT ~ AGE + WT + ABS + TRICEPS)
> summary(reg.m2)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.94025577 4.31017288 2.3062313 2.393916e-02
AGE -0.38382444 0.31238134 -1.2287048 2.231289e-01
WT -0.01585418 0.01821376 -0.8704507 3.869075e-01
ABS 0.39968360 0.08074124 4.9501789 4.621329e-06
TRICEPS 0.46942072 0.09924414 4.7299591 1.068468e-05
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Note that WT has the largest ℘-value of 3.869075e-01, so it is eliminated from the model:

> reg.m3 <- lm(HWFAT ~ AGE + ABS + TRICEPS)
> summary(reg.m3)

Call:
lm(formula = HWFAT ~ AGE + ABS + TRICEPS)

Residuals:
Min 1Q Median 3Q Max

-5.8374 -2.0468 -0.4215 2.3076 7.9850

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.61606 4.23272 2.508 0.0143 *
AGE -0.53309 0.26067 -2.045 0.0444 *
ABS 0.35643 0.06354 5.610 3.32e-07 ***
TRICEPS 0.46561 0.09898 4.704 1.16e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.998 on 74 degrees of freedom
Multiple R-Squared: 0.8895, Adjusted R-squared: 0.885
F-statistic: 198.5 on 3 and 74 DF, p-value: < 2.2e-16

The remaining ℘-values for AGE, ABS, and TRICEPS are all less than 0.20, so the model is
composed of these three variables based on backward elimination.

Alternately, the function drop1() can be used in R:

> drop1(lm(HWFAT ~ AGE + HT +WT + ABS +TRICEPS +SUBSCAP), test="F")
Single term deletions

Model:
HWFAT ~ AGE + HT + WT + ABS + TRICEPS + SUBSCAP

Df Sum of Sq RSS AIC F value Pr(F)
<none> 651.05 179.51
AGE 1 9.59 660.64 178.65 1.0463 0.309839
HT 1 1.61 652.66 177.70 0.1759 0.676225
WT 1 2.55 653.60 177.81 0.2777 0.599879
ABS 1 162.00 813.05 194.84 17.6669 7.549e-05 ***
TRICEPS 1 72.68 723.73 185.76 7.9264 0.006301 **
SUBSCAP 1 5.92 656.97 178.21 0.6458 0.424315
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that HT has the largest ℘-value of 0.676225, so it is eliminated from the model:

> drop1(lm(HWFAT ~ AGE + WT + ABS +TRICEPS +SUBSCAP), test="F")
Single term deletions

Model:
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HWFAT ~ AGE + WT + ABS + TRICEPS + SUBSCAP
Df Sum of Sq RSS AIC F value Pr(F)

<none> 652.66 177.70
AGE 1 9.88 662.54 176.87 1.0894 0.300098
WT 1 10.55 663.22 176.95 1.1643 0.284169
ABS 1 189.07 841.73 195.54 20.8580 1.996e-05 ***
TRICEPS 1 78.81 731.47 184.59 8.6941 0.004302 **
SUBSCAP 1 5.69 658.36 176.38 0.6281 0.430660
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that SUBSCAP has the largest ℘-value of 0.430660, so it is eliminated from the model:

> drop1(lm(HWFAT ~ AGE + WT + ABS +TRICEPS), test="F")
Single term deletions

Model:
HWFAT ~ AGE + WT + ABS + TRICEPS

Df Sum of Sq RSS AIC F value Pr(F)
<none> 658.36 176.38
AGE 1 13.62 671.97 175.97 1.5097 0.2231
WT 1 6.83 665.19 175.18 0.7577 0.3869
ABS 1 220.99 879.35 196.95 24.5043 4.621e-06 ***
TRICEPS 1 201.77 860.12 195.23 22.3725 1.068e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that WT has the largest ℘-value of 0.3869, so it is eliminated from the model:

> drop1(lm(HWFAT ~ AGE + ABS +TRICEPS), test="F")
Single term deletions

Model:
HWFAT ~ AGE + ABS + TRICEPS

Df Sum of Sq RSS AIC F value Pr(F)
<none> 665.19 175.18
AGE 1 37.59 702.78 177.47 4.1823 0.04441 *
ABS 1 282.90 948.08 200.82 31.4712 3.323e-07 ***
TRICEPS 1 198.89 864.08 193.59 22.1259 1.159e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The resulting model uses AGE, ABS, and TRICEPS to predict HWFAT.

(b) Forward selection assumes a model with an intercept only and adds the most significant
(smallest ℘-values) variables one at a time. The function add1() in R is used as the ℘-values
at each step are shown:

> add1(lm(HWFAT~1), scope=(~.+ AGE + HT + WT + ABS + TRICEPS + SUBSCAP),
+ test="F")
Single term additions



602 Probability and Statistics with R

Model:
HWFAT ~ 1

Df Sum of Sq RSS AIC F value Pr(F)
<none> 6017.8 341.0
AGE 1 175.0 5842.8 340.7 2.2765 0.1355
HT 1 117.8 5900.0 341.4 1.5175 0.2218
WT 1 3237.6 2780.2 282.7 88.5045 2.219e-14 ***
ABS 1 5072.8 945.0 198.6 407.9929 < 2.2e-16 ***
TRICEPS 1 5056.3 961.5 199.9 399.6462 < 2.2e-16 ***
SUBSCAP 1 4939.0 1078.8 208.9 347.9456 < 2.2e-16 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The variable ABS has the most significant (smallest) ℘-value = 2.2e− 16 with the largest F
value= 407.9929, so it is added to the model:

> add1(lm(HWFAT~ABS), scope=(~.+AGE +HT +WT +TRICEPS +SUBSCAP), test="F")

Single term additions

Model:
HWFAT ~ ABS

Df Sum of Sq RSS AIC F value Pr(F)
<none> 944.96 198.57
AGE 1 80.88 864.08 193.59 7.0199 0.0098255 **
HT 1 61.60 883.36 195.31 5.2298 0.0250250 *
WT 1 43.73 901.22 196.87 3.6396 0.0602498 .
TRICEPS 1 242.17 702.78 177.47 25.8443 2.639e-06 ***
SUBSCAP 1 132.58 812.38 188.77 12.2400 0.0007904 ***
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The variable TRICEPS has the most significant (smallest) ℘-value = 2.639e − 06 with the
largest F value= 25.8443, so it is added to the model:

> add1(lm(HWFAT~ABS+TRICEPS),scope=(~.+ AGE + HT + WT + SUBSCAP), test="F")

Single term additions

Model:
HWFAT ~ ABS + TRICEPS

Df Sum of Sq RSS AIC F value Pr(F)
<none> 702.78 177.47
AGE 1 37.59 665.19 175.18 4.1823 0.04441 *
HT 1 25.25 677.54 176.62 2.7574 0.10104
WT 1 30.81 671.97 175.97 3.3932 0.06947 .
SUBSCAP 1 2.24 700.54 179.22 0.2370 0.62782
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The variable AGE has the most significant (smallest) ℘-value = 0.04441 with the largest F
value= 4.1823, so it is added to the model:
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> add1(lm(HWFAT~ABS+TRICEPS+AGE), scope=(~.+ HT + WT + SUBSCAP), test="F")

Single term additions

Model:
HWFAT ~ ABS + TRICEPS + AGE

Df Sum of Sq RSS AIC F value Pr(F)
<none> 665.19 175.18
HT 1 7.03 658.16 176.35 0.7796 0.3802
WT 1 6.83 658.36 176.38 0.7577 0.3869
SUBSCAP 1 1.97 663.22 176.95 0.2171 0.6427

None of the ℘-values now meet the αcrit level of 0.20, so the model is complete with
ABS, TRICEPS, and AGE being used to predict HWFAT. If a summary is done for the models
where ABS, TRICEPS, and AGE are already in the model and HT, WT, or SUBSCAP were added
individually, the ℘-values would match the last column of the last add1() output:

> summary(lm(HWFAT~ABS+TRICEPS+AGE+HT))$coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 15.6108355 7.06886737 2.2083928 3.035723e-02
ABS 0.3701823 0.06550886 5.6508735 2.902965e-07
TRICEPS 0.4554293 0.09980055 4.5633949 1.990682e-05
AGE -0.4236659 0.28898736 -1.4660361 1.469329e-01
HT -0.1020099 0.11553071 -0.8829675 3.801523e-01

The ℘-value for HT is 3.801523e-01= 0.3802 from the add1() output:

> summary(lm(HWFAT~ABS+TRICEPS+AGE+WT))$coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.94025577 4.31017288 2.3062313 2.393916e-02
ABS 0.39968360 0.08074124 4.9501789 4.621329e-06
TRICEPS 0.46942072 0.09924414 4.7299591 1.068468e-05
AGE -0.38382444 0.31238134 -1.2287048 2.231289e-01
WT -0.01585418 0.01821376 -0.8704507 3.869075e-01

The ℘-value for WT is 3.869075e-01= 0.3869 from the add1() output:

> summary(lm(HWFAT~ABS+TRICEPS+AGE+SUBSCAP))$coefficients
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.59636278 4.25550451 2.490037 1.504963e-02
ABS 0.33934952 0.07364815 4.607713 1.688668e-05
TRICEPS 0.42485168 0.13249227 3.206615 1.994247e-03
AGE -0.53122920 0.26209533 -2.026855 4.633009e-02
SUBSCAP 0.06218487 0.13346571 0.465924 6.426572e-01

The ℘-value for SUBSCAP is 6.426572e-01= 0.6427 from the add1() output.

Note that in both the forward and backward selection procedures, the same model results:
(HWFAT ~ ABS + TRICEPS + AGE). This is not always the case.

(c) R2
a is used with R. The R package leaps is needed for the function regsubsets(). The

arguments have predictors as a matrix first, then the response as a vector. The first six
variables of HSwrestler are the predictors, while the response, HWFAT, is in column 7.
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> library(leaps)
> a <- regsubsets(as.matrix(HSwrestler[,-c(7,8,9)]), HSwrestler[,7])
> summary(a)
Subset selection object
6 Variables (and intercept)

Forced in Forced out
AGE FALSE FALSE
HT FALSE FALSE
WT FALSE FALSE
ABS FALSE FALSE
TRICEPS FALSE FALSE
SUBSCAP FALSE FALSE
1 subsets of each size up to 6
Selection Algorithm: exhaustive

AGE HT WT ABS TRICEPS SUBSCAP
1 ( 1 ) " " " " " " "*" " " " "
2 ( 1 ) " " " " " " "*" "*" " "
3 ( 1 ) "*" " " " " "*" "*" " "
4 ( 1 ) "*" "*" " " "*" "*" " "
5 ( 1 ) "*" " " "*" "*" "*" "*"
6 ( 1 ) "*" "*" "*" "*" "*" "*"
> summary(a)$adjr2
[1] 0.8409068 0.8801014 0.8849817 0.8846381 0.8840129 0.8826699

The largest R2
a value is 0.8849817, which corresponds to the model with three predictors.

The row beside the 3 shows "*" symbols for AGE, ABS, and TRICEPS, so these are the
appropriate predictor variables.

(d) When using Mallows’s Cp, the idea is to select the smallest Cp value less than or equal to
p. In this case, the R package leaps and the output from regsubsets() gives the optimal
value C4 = 2.541953, so the three-predictor (plus an intercept) model using AGE, ABS, and
TRICEPS is again selected:

> summary(a)$cp
[1] 29.051861 4.641808 2.541953 3.775400 5.175856 7.000000
> par(pty="s")
> plot(2:7, summary(a)$cp, ylim=c(2,7), xlab="p", ylab="Cp")
> abline(a=0, b=1)

(e) The function stepAIC() in the MASS package will compute models based on both AIC
and BIC statistics. The argument k of this function will be set equal to 2 for the AIC
statistic and ln(n) for the BIC statistic. The user needs to specify the scope of the model
with the argument scope=. In this case, the scope of the model includes any of the six
predictors AGE, HT, WT, ABS, TRICEPS, and SUBSCAP. For further details, see the stepAIC()
help file. Initial and final output is shown from using stepAIC(). The starting AIC value
is 179.51. The stepAIC() function adds or removes variables until it finds the smallest AIC
value. The - before a variable indicates that the variable will be removed to produce the
given AIC, while a + indicates the variable will be added to produce the given AIC.

> library(MASS) # For function stepAIC()
> reg.all <- lm(HWFAT ~ AGE + HT + WT + ABS + TRICEPS + SUBSCAP)
> mod.aic <- stepAIC(reg.all, direction="both",
+ scope=(~.+SUBSCAP+TRICEPS+ABS+WT+HT+AGE), k=2)
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Start: AIC= 179.51
HWFAT ~ AGE + HT + WT + ABS + TRICEPS + SUBSCAP

Df Sum of Sq RSS AIC
- HT 1 1.61 652.66 177.70
- WT 1 2.55 653.60 177.81
- SUBSCAP 1 5.92 656.97 178.21
- AGE 1 9.59 660.64 178.65
<none> 651.05 179.51
- TRICEPS 1 72.68 723.73 185.76
- ABS 1 162.00 813.05 194.84

The final solution (with intermediate steps not printed here) is

Step: AIC= 175.18
HWFAT ~ AGE + ABS + TRICEPS

Df Sum of Sq RSS AIC
<none> 665.19 175.18
+ HT 1 7.03 658.16 176.35
+ WT 1 6.83 658.36 176.38
+ SUBSCAP 1 1.97 663.22 176.95
- AGE 1 37.59 702.78 177.47
- TRICEPS 1 198.89 864.08 193.59
- ABS 1 282.90 948.08 200.82
> mod.aic

Call:
lm(formula = HWFAT ~ AGE + ABS + TRICEPS)

Coefficients:
(Intercept) AGE ABS TRICEPS

10.6161 -0.5331 0.3564 0.4656

The final model uses AGE, ABS, and TRICEPS as predictors.
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FIGURE 12.5: Plot of Cp versus p
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(f) When BIC is the criterion, the model selected is HWFAT ~ ABS + TRICEPS. Only initial
and final output are shown.

> mod.bic <- stepAIC(reg.all, direction="both",
+ scope=(~.+SUBSCAP+TRICEPS+ABS+WT+HT+AGE), k=log(length(HWFAT)))
Start: AIC= 196
HWFAT ~ AGE + HT + WT + ABS + TRICEPS + SUBSCAP

Df Sum of Sq RSS AIC
- HT 1 1.61 652.66 191.84
- WT 1 2.55 653.60 191.95
- SUBSCAP 1 5.92 656.97 192.35
- AGE 1 9.59 660.64 192.79
<none> 651.05 196.00
- TRICEPS 1 72.68 723.73 199.90
- ABS 1 162.00 813.05 208.98

The final model is

Step: AIC=184.54
HWFAT ~ ABS + TRICEPS

Df Sum of Sq RSS AIC
<none> 702.78 184.54
+ AGE 1 37.59 665.19 184.61
+ WT 1 30.81 671.97 185.40
+ HT 1 25.25 677.54 186.04
+ SUBSCAP 1 2.24 700.54 188.65
- TRICEPS 1 242.17 944.96 203.28
- ABS 1 258.75 961.54 204.64
> mod.bic

Call:
lm(formula = HWFAT ~ ABS + TRICEPS)

Coefficients:
(Intercept) ABS TRICEPS

2.0590 0.3371 0.5043

> detach(HSwrestler)

12.11.1.5 Summary

Variable selection is simply a means to select variables for inclusion or exclusion in a
model that can be used for explanatory or predictive purposes. That is, the goal is not
variable selection per se, rather, the goal is to create a model that adequately explains or
predicts from the data. Stepwise selection procedures do not always guarantee a model will
be selected that meets the user’s need to explain or predict from the data. Criterion-based
methods typically involve a wider search than do stepwise procedures, and many argue that
they return models that are better than those from stepwise procedures. Regardless of
the methods one uses to select a model, additional factors such as the cost to measure the
variables and model diagnostics should be considered in developing a model.
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12.11.2 Diagnostics

While fitting a model using the principle of least squares regression requires no dis-
tributional assumptions, using the model for inferential purposes does depend on specific
assumptions. If (12.7) assumes ε ∼ N(0, σ2I), that is, the errors in the model are assumed
to be independent and to follow a normal distribution with a mean of zero and a constant
variance, then (12.7) is called the normal error model. Regression diagnostics play a critical
role in the verification of these assumptions. Regression diagnostics are also used to learn
about unusual observations. The diagnostics will often dictate changes in the model selected
initially. These changes emphasize the fact that model building is an iterative process.

12.11.2.1 Checking Error Assumptions

The assumption in the normal error model deals with an unobservable quantity ε.
However, the residuals ε̂i can be computed and analyzed. While the residuals do not have
the same properties as the errors (ε), the differences between residuals and errors are slight,
and examining the residuals is a reasonable approach to use in checking the assumptions
about the models’ errors.

First, the errors from model (12.7) are assumed to follow a normal distribution. Simple
techniques such as a histogram or a density plot of the residuals can be used to study the
distribution of the residuals. However, care needs to be exercised when interpreting such
graphs since histograms and density plots of data that come from a normal distribution
when the sample size is small will not always look normal. Furthermore, the residuals do
not have a constant variance. In fact, the variance-covariance matrix for ε̂ is

Var(ε̂) = σ2[I− H], where H = X(X′X)−1X′. (12.57)

Proof:

ε̂ = Y − Ŷ

= Y − Xβ̂

= Y − X(X′X)−1X′Y
= Y − HY
= (I − H)Y

which implies that

Var(ε̂) = (I − H)Var(Y)(I − H)′ by property 3 on page 673

= (I − H)σ2I(I − H)′

= σ2(I − H)(I − H)′

Var(ε̂) = σ2(I − H) because (I− H) is symmetric and idempotent

The diagonal entry of H is denoted as hii, which is referred to as the leverage. Note that
the trace of H is p, the number of parameters (β0, β1, . . . , βp−1) in the linear model. (See
Problem 10 on page 650.)

Example 12.15 Find the H matrix and display the first five hii values for the model
selected with the AIC statistic from part (e) of Example 12.14 on page 598. Verify that
the sum of the hii values equals p. Recall that the variables selected were AGE, ABS, and
TRICEPS.
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Solution: The code to produce the answer is

> attach(HSwrestler)
> mod.3 <- lm(HWFAT~AGE+ABS+TRICEPS)
> # Getting the values manually...
> X <- model.matrix(mod.3)
> n <- nrow(X)
> p <- ncol(X)
> H <- X%*%solve(t(X)%*%X)%*%t(X)
> hii <- diag(H)
> hii[1:5]

1 2 3 4 5
0.05555037 0.02273942 0.03266124 0.02786396 0.20830418
> # Extracts hatvalues in R and S-PLUS
> influence(mod.3)$hat[1:5]

1 2 3 4 5
0.05555037 0.02273942 0.03266124 0.02786396 0.20830418
> # Verifying that sum(h_ii)=p
> sum(hii)
[1] 4
> detach(HSwrestler)

12.11.2.1.1 Assessing Normality and Constant Variance Although formal hy-
pothesis tests for normality, such as the Shapiro-Wilk test, can be applied to the residuals,
they lack power to detect non-normal distributions. Recall that the null hypothesis in
the Shapiro-Wilk test is that the distribution is normal and the alternative is that the
distribution is not normal. Consider Figure 12.6 on page 610, where models 2, 3, 5, and 6
show residuals that suggest problems with either the constant variance or the normality of
the errors assumption. The second residual plot on the top row (mod2) shows a pattern of
decreasing variability. However, when a Shapiro-Wilk test is run on the residuals to test for
normality, the ℘-value is only mildly significant (0.08014). The increasing variance model
(mod5) gives a conclusive rejection of normality with a ℘-value of 0.006809; however, when
a Shapiro-Wilk test is run on the residuals of the two far right residual plots (non-linear
relationship, mod3 and mod6), the test for normality on the upper right plot is only mildly
significant (0.06713) while the test for normality on the bottom right residuals plot returns
a highly significant ℘-value (0.01138). That is, normality cannot be conclusively ruled out
based on a Shapiro-Wilk test for the residuals in the top right plot (mod3). Consequently,
it is wiser to use a combination of graphical tests as well as hypothesis tests when studying
the properties of the residuals from a particular model. Using qqnorm() on the residuals
is a good starting point for assessing normality graphically. Other graphs one might use
include, but are not limited to, histograms, boxplots, and density plots. As noted earlier,
care needs to be taken when interpreting such graphs.

The assumption of constant variance is typically checked by plotting the ε̂is versus
the Ŷis. Constant variance is a reasonable assumption when the residuals are scattered
in a band of constant width. When the band falls around the line y = 0, the regression
model is appropriate. Examples of constant variance are provided in the top and bottom
left (mod1 and mod4) residual plots of Figure 12.6 on page 610. For models 1 and 4, the
℘-values from the Shapiro-Wilk test of normality are expectedly large, 0.615 and 0.6985,
respectively. Models 2 and 5 have decreasing and increasing variance, respectively. One
formal large sample test for constant variance is the Breusch-Pagan test, which can be
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performed with the function bptest() from the R package lmtest; however, the test has
no power asymptotically (Zaman, 2000).

12.11.2.1.2 Testing Autocorrelation Whenever data are obtained in a time se-
quence, it is possible to have correlation (called autocorrelation) among the errors. A
frequently used test for detecting autocorrelation is the Durbin-Watson test. The hypotheses
of the test are specified in terms of the autocorrelation coefficient ρ, H0 : ρ = 0 versus
H1 : ρ �= 0, and are tested with the statistic

DW =
∑n

i=2(ε̂i − ε̂i−1)2∑n
i=1 ε̂2

i

. (12.58)

Small values of DW lead to the conclusion that ρ �= 0 because adjacent error terms ε̂i −
ε̂i−1 tend to be similar when the data are correlated. The package car has a function
durbin.watson() that can be used to test for autocorrelation. Only the far right residual
plots (mod3 and mod6) of Figure 12.6 on the following page have small DW values leading
to ℘-values of 0. The ℘-values of the Durbin-Watson test for models 1, 2, 4, and 5 are 0.626,
0.24, 0.716, and 0.324, respectively.

The commands to obtain the Durbin-Watson and Shapiro-Wilk test results for the
residuals in mod1 of Figure 12.6 on the next page follow. Test results for models 2–6
stored in objects mod2 through mod6 can be obtained similarly.

> durbin.watson(mod1)
lag Autocorrelation D-W Statistic p-value

1 0.01009468 1.923398 0.626
Alternative hypothesis: rho != 0
> shapiro.test(resid(mod1))

Shapiro-Wilk normality test

data: resid(mod1) W = 0.9894, p-value = 0.615

Scatterplots of residuals versus a time, sequence, or order variable can often detect
non-independence of error terms. When a linear model is created and stored in an object
with S, the function plot() can be applied to the linear model object and several diagnostic
plots will appear on the screen. The diagnostic plots drawn for R and S-PLUS are not the
same. Figure 12.7 on the following page shows the four default graphs produced with R
using the function plot() for mod1. The plot in the upper left panel shows residuals plotted
against fitted values. This plot can be used to detect lack of fit. If the residuals show some
curvilinear trend, the current model is not appropriate; however, transforming one or more
of the variables can often remedy this problem. In this graph, such a problem does not
exist. The same plot can be used to assess the constant variance assumption on the errors.
In this case, the variance appears constant as the fitted values vary. The second default
graph is a normal quantile-quantile plot of the residuals (upper right corner of Figure 12.7).
In this case, there is not a clear deviation from normality. The lower left graph plots the
square root of the residuals versus the fitted values. Assuming symmetry of the errors, this
graph helps assess the constant variance of the errors, which in this case seems to be a
reasonable assumption. The lower right panel shows standardized residuals (as defined in
(12.59)) versus leverage points. Contours for Cook’s distance (as defined in (12.64)) of 0.5
and 1 facilitate an understanding of the relationship among the residuals, leverage values,
and Cooks’s distance. R will actually produce six diagnostic graphs, but they must be
specified using the argument which=1:6, where the 1:6 is a vector with any or all of the
values 1 through 6.
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FIGURE 12.7: Diagnostic plots for mod1 in Figure 12.6

12.11.2.2 Identifying Unusual Observations

Quite often in regression models, certain observations do not seem to fit the overall
pattern of the data. These cases may have a large residual and have the potential to alter
dramatically the fitted regression model. An observation may be an outlier with respect to
its Y values, its x values, or both, yet not all outlying observations will have a dramatic
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impact on the fitted regression model. One of the ways used to measure outlying Y values
is to evaluate standardized residuals. This is done because residuals may have substantially
different variances. Consequently, it makes sense to consider ε̂i relative to its estimated
standard deviation. When the residuals are rescaled to have unit variance, the resulting
residuals (ri) are known as internally studentized residuals or standardized residuals,
where

ri =
ε̂i√

V̂ar (ε̂i)
=

ε̂i

σ̂ ·
√

1 − hii

. (12.59)

The R function rstandard() computes standardized residuals according to (12.59). The
function stdres() in the MASS package (which can be used with either S-PLUS or R) also
computes standardized residuals according to (12.59). Standardized residuals are sometimes
preferred in residual plots since they have been standardized to have unit variance; however,
in many cases, no appreciable difference will be seen between the raw residuals and the
standardized residuals. Only when there is an unusually large leverage (large is generally
taken to be 2 or 3 times p/n) will differences be noticeable. When standardized residuals
are displayed in a quantile-quantile plot, because the residuals are standardized, the points
should fall along the line y = x if the normality assumption is reasonable. Figure 12.8 shows
a quantile-quantile plot of the standardized residuals from the model shown in the upper
left (mod1) of Figure 12.6 on the facing page.
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FIGURE 12.8: Quantile-quantile plot for mod1 in Figure 12.6 on the preceding page

Another refinement to make the residuals more effective in detecting outlying observa-
tions is to use deleted residuals. Specifically, when a regression model is computed where
the ith case is excluded, the ith prediction is denoted Ŷi(i), and the deleted residual (ε̂(i)) is
then defined as

ε̂(i) = Yi − Ŷi(i). (12.60)

Fortunately, an algebraic equivalent expression for ε̂(i) exists that does not require the
computation of Ŷi(i) for each omitted case. Specifically, it can be shown that ε̂(i) = Yi −
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Ŷi(i) = ε̂i

1−hii
. The estimated variance of the ε̂(i) is

V̂ar [ε̂(i)] =
σ̂2

(i)

1 − hii
=

MSE (i)

1 − hii
(12.61)

Ordinarily, one prefers to study the studentized deleted residuals (r∗i ) rather than
the ordinary deleted residuals. The ith studentized deleted residual is defined as

r∗i =
ε̂(i)√

V̂ar (ε̂(i))
=

ε̂i

1−hii√
σ̂2
(i)

1−hii

=
ε̂i

σ̂(i) ·
√

1 − hii

(12.62)

Again, there is an algebraic equivalent to (12.62) that avoids doing n regressions. The
algebraic equivalent definition of r∗i is

r∗i = ri ·
( n − p − 1

n − p − r2
i

) 1
2 ∼ tn−p−1 (12.63)

When the model is correct, each studentized deleted residual follows a t-distribution
with n − p − 1 degrees of freedom. Even though it is very likely only a few “large” r∗i s
will be of interest, by identifying them as large, all cases have implicitly been tested. To
control the overall significance level, a Bonferroni approach is often used where r∗i values are
declared significant if their absolute value exceeds t1−α/2n;n−p−1. However, this approach
does tend to be conservative, especially for large n. The R function rstudent() computes
the studentized deleted residuals according to (12.63). The function studres() in the
MASS package (which can be used with R or S-PLUS) also computes the studentized deleted
residuals according to (12.63).

Example 12.16 Compute and plot the residuals, standardized residuals, and studentized
residuals for the model HWFAT ~ ABS + TRICEPS versus the fitted values using the data
frame HSwrestler. What HWFAT values do the residuals indicate are unusual? Can any of
the studentized residuals be considered an outlier according to the Bonferroni approach if
the significance level is 0.20?

Solution: The commands to calculate the solution are

> attach(HSwrestler)
> library(MASS)
> mod.2 <- lm(HWFAT~ABS+TRICEPS)
> par(mfrow=c(2,2))
> plot(fitted(mod.2), resid(mod.2), ylim=c(-10,10), main="")
> title(main="Residuals vs Fitted")
> abline(h=0, lty=2)
> plot(fitted(mod.2), stdres(mod.2), ylim=c(-3.5,3.5), main="")
> title(main="Standardized Residuals vs Fitted")
> abline(h=0, lty=2)
> plot(fitted(mod.2), studres(mod.2), ylim=c(-3.5,3.5), main="")
> title(main="Studentized Residuals vs Fitted")
> abline(h=0, lty=2)
> plot(mod.2, which=1, main="Default Graph 1")
> par(mfrow=c(1,1))



Regression 613

> sort(abs(resid(mod.2)))[76:78] # Extract three largest values
42 22 35

6.555825 7.449100 9.495697
> sort(abs(stdres(mod.2)))[76:78] # Extract three largest values

42 22 35
2.163508 2.458597 3.129513
> sort(abs(studres(mod.2)))[76:78] # Extract three largest values

42 22 35
2.219409 2.546944 3.333868
> qt(1-.2/(2*78),78-3-1) # Critical value
[1] 3.121816
> detach(HSwrestler)
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FIGURE 12.9: Residuals versus fitted values for the model HWFAT ∼ ABS + TRICEPS

Cases 42, 22, and 35 have the largest absolute values of their plain residuals, standard-
ized residuals, and studentized residuals. Case 35 could be considered an outlier using a
significance level of α = 0.20 since the critical value is 3.121816.

12.11.2.3 High Leverage Observations

While residuals were used to identify outlying Y values, the hat matrix provides an
analog for the x values. The diagonal entry hii of the hat matrix H provides a measure of
the distance of the ith case from the centroid of the x observations. That is, hii can be used
to assess whether an observation is outlying from the other xs by examining its hii value.
The limits on hii are 1/n ≤ hii ≤ 1/c, where c is the number of rows of X that have the
same values as the ith row. Note that the upper limit is never greater than 1. In general, a
leverage value, hii, is considered large if it is more than twice as large as the mean leverage
value (2p/n). Observations with large hii are called high leverage points, and each case
should be investigated to see if the point estimates in the model under consideration change
when the ith case is included versus excluded from the analysis. It is important to note that
not all points with high leverage will dramatically alter the estimation of parameters in the
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model. When the estimated parameters are substantially different with and without the
ith case, the ith case is said to be influential. That is, not all high leverage observations
are influential. Clearly, which cases are influential (if any) may change when the model is
changed.

Influential Observations Some influence measures examined next, all of which measure
the effect of deleting the ith observation, include: Cook’s distance, Di, which measures
the effect on the β̂ or, equivalently, on the predicted values (see (12.64)); DFFITSi, which
measures the effect on the predicted Ŷis; and DFBETASk(i), which measures the effect on
the β̂js. Fortunately, all of the influence measures considered can be computed from the
results of a single regression using all of the data.

Cook’s Distance Cook’s distance evaluates the influence of the ith case on all of the n
fitted values. It is a combined measure of the standardized residual (ri) and the leverage
value (hii) that produces a number used to assess the impact of removing the ith observation
on the all regression coefficients (β). Cook’s Di is defined as(

Ŷ(i) − Ŷ
)′(

Ŷ(i) − Ŷ
)

pσ̂2
=

(
β̂(i) − β̂

)′(
X′X

)(
β̂(i) − β̂

)
pσ̂2

(12.64)

An algebraically equivalent expression for Di is

Di =
ε̂2

i

pσ̂2

[
hii

(1 − hii)2

]
=

r2
i

p

(
hii

1 − hii

)
. (12.65)

Di values are generally flagged for further scrutiny when they exceed f0.50;p,n−p; however,
the exact distribution of Di is unknown, and the use of f0.50;p,n−p is only a suggestion.
Oftentimes, a simple graph of the Dis will indicate values that require further scrutiny. One
can always program a function according to (12.65) to compute the Dis; however, a better
approach is to use built-in functions on linear model objects. In R, cooks.distance()
will compute the Dis. The package car also has the function cookd() which will work
in both R and S-PLUS. The function lm.influence() computes basic quantities used in
many diagnostics, including hii values and coefficients used to compute DFBETAS. In R,
lm.influence() returns β̂k(i) − β̂k, while in S-PLUS, β̂k(i) is returned. The user should
consult the documentation for further details.

DFFITS A measure related to Di is DFFITS, which is an abbreviation for “difference
in fits.” DFFITS is a standardized measure of the amount by which the predicted value Ŷi

changes when the ith case is deleted from the data. The definition of DFFITS is

DFFITSi =
Ŷi − Ŷi(i)

σ̂(i)

√
hii

, (12.66)

while a computationally equivalent definition of DFFITS is

DFFITSi = r∗i
( hii

1 − hii

)1
2
, (12.67)

where r∗i is the studentized deleted residual. DFFITS values whose absolute value exceeds
2·
√

p/n generally require further scrutiny. To compute DFFITS with R, use dffits(linear
model).

It bears pointing out that there are n Di values and n DFFITS values. The next
influence measure considered is DFBETAS, which measures the influence of the ith case on
each regression coefficient. That is, there will be np DFBETAS values.
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DFBETAS A standardized measure of the amount by which the kth regression coefficient
changes when the ith observation is omitted from the data set is DFBETAS. A case is
considered to have a large DFBETAS value if its absolute value exceeds 2/

√
n. The

DFBETAS measure is defined as

DFBETASk(i) =
β̂k − β̂k(i)√

σ̂2
(i) · vk+1, k+1

(12.68)

If the matrix V is defined to be (X′X)−1, then σ2
β̂k

= σ2 · vk+1,k+1, where vk+1,k+1 is the
(k + 1)st diagonal entry (k = 0, 1, . . . , p − 1) of V. To compute DFBETAS with R, use
dfbetas(linear model). The function dfbetas(linear model) in the package car will
work for both R and S-PLUS.

Table 12.7: Summary of measures of influential observations

Influence Measure Formula Case i May Be Influential if:

Cook’s Di
r2
i

p

(
hii

1 − hii

)
Di > f0.5;p,n−p

DFFITS r∗i
( hii

1 − hii

)1
2 |DFFITS| > 2

√
p

n

DFBETASk(i)

β̂k − β̂k(i)√
σ̂2

(i) · vk+1,k+1

|DFBETASk(i)| >
2√
n

Example 12.17 � Kinder� The data frame Kinder contains the height in inches and
weight in pounds of 20 children from a kindergarten class. Use all 20 observations and
construct a regression model where the results are stored in the object mod by regressing
height on weight.

(a) Create a scatterplot of height versus weight to verify a possible linear relationship
between the two variables.

(b) Compute and display the hat values for mod in a graph. Use the graph to identify the
two largest hat values. Superimpose a horizontal line at 2p/n. Remove the values that
exceed 2p/n and regress height on weight, storing the results in an object named modk.

(c) Remove case 19 from the original data frame Kinder and regress height on weight,
storing the results in modk19. Is the child with the largest hat value an influential
observation if one considers the 19 observations without case 19 from the original data
frame? Compute and consider Cook’s Di, DFFITSi, and DFBETASk(i), in reaching
a conclusion. Specifically, produce a graph showing hii, the differences in β̂1(i) −
β̂1, DFBETASk(i), studentized residuals, DFFITSi, and Cook’s Di along with the
corresponding values that flag observations for further scrutiny assuming α = 0.10.

(d) Remove case 20 from the data frame Kinder and regress height on weight, storing the
results in modk20. Is the child with the largest hat value an influential observation if
one considers the 19 observations without case 20 from the original data frame? Com-
pute and consider Cook’s Di, DFFITSi, and DFBETASk(i) in reaching a conclusion.
Specifically, produce a graph showing hii, the differences in β̂1(i) − β̂1, DFBETASk(i),
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studentized residuals, DFFITSi, and Cook’s Di along with the corresponding values
that flag observations for further scrutiny assuming α = 0.10.

(e) Create a scatterplot showing all 20 children. Use a solid circle to identify case 19 and a
solid triangle to identify case 20. Superimpose the lines for models mod (type=1), modk
(type=2), mod19 (type=3), and mod20 (type=4).

Solution: The code given is for R.

(a) Based on Figure 12.10 created by entering

> attach(Kinder)
> plot(wt, ht)

assuming a linear relationship between height and weight appears reasonable; however, two
points will bear further scrutiny.
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FIGURE 12.10: Scatterplot of height (ht) versus weight (wt) for the data set Kinder

(b) Note that the largest hii values are for observations 19 and 20. Child 19, although taller
and heavier than the other children, seems to follow the linear trend of increased height
with increased weight. Child 20 appears to be right around the 50% percentile in height
but has the largest weight (obese child).

> mod <- lm(ht~wt)
> hii <- lm.influence(mod)$hat
> hii

1 2 3 4 5 6
0.06738101 0.08955925 0.12575694 0.08161811 0.05184540 0.06981955

7 8 9 10 11 12
0.05268211 0.06474060 0.06038889 0.06100160 0.05773825 0.05030394

13 14 15 16 17 18
0.05499910 0.05573322 0.05093256 0.05688131 0.10054318 0.08821112

19 20
0.37485962 0.38500423

The following code creates the H matrix and extracts the diagonal values (leverage values).
It is better to use internal functions rather than matrix multiplications.
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> X <- model.matrix(mod)
> n <- nrow(X)
> p <- ncol(X)
> H <- X%*%solve(t(X)%*%X)%*%t(X)
> hi <- diag(H)
> plot(hi, type="h", ylab="leverage")
> abline(h=2*p/n)

Note that observations 19 and 20 have leverage values that exceed 2p/n = 0.20. Observations
19 and 20 are removed from consideration and ht is regressed on wt with the results stored
in modk.

> modk <- lm(ht[-c(19,20)]~wt[-c(19,20)])
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FIGURE 12.11: Graph of leverage values versus order for regressing height on weight for
the data set Kinder

(c) The 19th observation now corresponds to the “obese” child. From the diagnos-
tics below, the obese child is flagged in each graph for further scrutiny. Note that
lm.influence(linear model)$coefficients returns β̂k(i) − β̂k in R, while the same
command in S-PLUS returns β̂k(i). The “obese” child is an observation with high leverage
that is also influential.

> library(MASS) # Need for function studres()
> library(car) # Need for function cookd
> modk19 <- lm(ht[-19]~wt[-19])
> n <- 19
> p <- 2
> par(mfrow=c(2,3))
> hiik19 <- lm.influence(modk19)$hat # extracting hii values
> plot(hiik19, ylab="Leverage")
> cv <- 2*p/n
> abline(h=cv, lty=2)
> plot(lm.influence(modk19)$coefficients[,2],
+ ylab="Difference in Coefficients")
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> plot(dfbetas(modk19)[,2], ylab="DFBETAS")
> cv <- 2/sqrt(n) # Critical value for DFBETAS
> abline(h=c(-cv, cv), lty=2)
> plot(studres(modk19), ylab="Studentized Residuals")
> cv <- qt(1-.10/(2*n), n-p-1) # Critical value
> abline(h=c(-cv, cv), lty=2)
> DFFITS <- studres(modk19)*(hiik19/(1-hiik19))^.5 #See *
> plot(DFFITS, ylab="DFFITS")
> cv <- 2*sqrt(p/n) # Critical value for DFITS
> abline(h=c(-cv, cv), lty=2)
> cd <- cookd(modk19) # Cook’s distance
> plot(cd, ylab="Cook’s Distance")
> CF <- qf(.50, p, n-p) # Critical value for Cook’s Distance
> abline(h=CF, lty=2)
> par(mfrow=c(1,1))

* DFFITS is obtained with (12.67).
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FIGURE 12.12: Diagnostic graphs for modk19 requested in part (c) of Example 12.17

(d) The 19th observation now corresponds to the “tall but normal weight” child. From the
diagnostics below, this child is flagged in the leverage, DFBETAS, and DFFITS graphs
for further scrutiny. Interestingly, it is not flagged with Cook’s Di. The “tall but normal
weight” child only marginally alters the regression line. Consequently, the 19th observation
has high leverage but is not that influential. See the graph for part (e) for a visual
explanation.

> modk20 <- lm(ht[-20]~wt[-20])
> n <- 19
> p <- 2
> par(mfrow=c(2,3))
> hiik20 <- lm.influence(modk20)$hat
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> plot(hiik20, ylab="Leverage")
> cv <- 2*p/n
> abline(h=cv, lty=2)
> plot(lm.influence(modk20)$coefficients[,2], ylab="Difference in
+ Coefficients")
> plot(dfbetas(modk20)[,2], ylab="DFBETAS")
> cv <- 2/sqrt(n) # Critical value for DFBETAS
> abline(h=c(-cv, cv), lty=2)
> plot(studres(modk20), ylab="Studentized Residuals")
> cv <- qt(1-.10/(2*n), n-p-1) # Critical value
> abline(h=c(-cv, cv), lty=2)
> DFFITS <- studres(modk20)*(hiik20/(1-hiik20))^.5
> plot(DFFITS, ylab="DFFITS")
> cv <- 2*sqrt(p/n) # Critical value for DFITS
> abline(h=c(-cv, cv), lty=2)
> cd <- cookd(modk20) # Cook’s distance
> plot(cd, ylab="Cook’s Distance")
> CF <- qf(.50, p, n-p) # Critical value for Cook’s Distance
> abline(h=CF, lty=2)
> par(mfrow=c(1,1))
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FIGURE 12.13: Diagnostic graphs for modk20 requested in part (d) of Example 12.17

(e) In Figure 12.14 on the next page, when all 20 cases are included in the regression, cases
19 (solid circle) and 20 (solid triangle) both have large leverage values; however, if case 20
is omitted, case 19 still has a large leverage value, yet it is not very influential. Consider
the differences between the lines modk20 (dot-dash, case 20 omitted) and modk (dash, where
cases 19 and 20 are omitted). There is very little difference between the lines modk20 and
modk. On the other hand, if case 19 (solid circle) is omitted, the resulting regression modk19
(dotted) is substantially different from modk. In other words, case 20 has high leverage and
is influential when case 19 is omitted.
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> plot(wt[-c(19,20)], ht[-c(19,20)], cex=2, xlim=c(28,62), ylim=c(36,52),
+ xlab="Weight in Pounds", ylab="Height in Inches")
> abline(mod, lty=1, lwd=2)
> abline(modk, lty=2, lwd=2)
> abline(modk19, col="red", lty=3, lwd=2)
> abline(modk20, col="blue", lty=4, lwd=2)
> abline(mod, lty=4, lwd=2)
> points(wt[19], ht[19], pch=16, cex=2, col="red")
> points(wt[20], ht[20], pch=17, cex=2, col="blue")
> detach(Kinder)
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FIGURE 12.14: Scatterplot of height versus weight for data from Kinder with four
superimposed regression lines: The solid line is for model mod (all observations); the dot-dash
line is for model modk20 (case 20 omitted); the dashed line is for model modk (case 19 and
20 omitted); and the dotted line is for model modk19 (case 19 omitted).

12.11.3 Transformations

When residual analysis reveals serious problems, or when the relationships between the
response and predictors are clearly non-linear, regression may still yield a reasonable model
with either a transformation of the response variable, the predictors, or both response and
predictors. When a scatterplot between the response and a predictor shows a non-linear
relationship where the residuals are reasonably normal in distribution, appropriate trans-
formations on the predictor may linearize the relationship between the variables without
drastically altering the distribution of the residuals. After the transformation of the predic-
tor(s), the residuals produced with the transformed variable(s) in the new model will need
to be reanalyzed to assure normality assumptions are still satisfied.

Example 12.18 � Transformation of Predictors � The data frame SimDataXT
contains simulated data for the response, Y , and predictors, x1, x2, and x3. Apply
appropriate transformations to x1, x2, and x3 to linearize the relationships between the
response and predictors one at a time.

Solution: The answers, computed with R, are
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Transform x1: The top left graph in Figure 12.15 shows a non-linear relationship between
Y and x1. The second graph shows the residuals from regressing Y on x1,
both the first and second graphs suggest a simple transformation on x1. The
pattern suggests a square root transformation. The resulting scatterplot and
residual analysis for regressing Y on x0.5

1 =
√

x1 are illustrated in the bottom
row of graphs. The curvilinear relationship evident in both the scatterplot
and the residual plot using the untransformed x1 disappear once a square
root transformation is applied to x1.

> attach(SimDataXT)
> par(mfrow=c(2,3))
> plot(x1, Y)
> lines(x1, x1^.5) # function Y = x1^.5
> plot(lm(Y~x1), which=c(1,2)) # Residual and Q-Q normal plots
> plot(x1^.5, Y)
> mod1 <- lm(Y~I(x1^.5)) # Works in R for S-PLUS see *
> abline(mod1)
> plot(mod1, which=c(1,2)) # Q-Q plot in S-PLUS is 4 not 2
> par(mfrow=c(1,1))

The identity function, I(), is used to inhibit the interpretation of ^ as a
formula operator. Operators such as +, -, *, and ^ have different meanings
in formulas. In cases where the user wants to use arithmetical operators in
a formula, they should be protected with the identity function.

* There are negative values in x1, and taking their square root produces
NA values. R, by default, removes missing observations in its lm() function
with na.action=na.omit; however, S-PLUS does not. To remove the NA
observations while using the function lm() in S-PLUS, use the argument
na.action=na.exclude inside the lm() function.
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FIGURE 12.15: Scatterplot, residuals versus fitted values, and quantile-quantile plot of
standardized residuals for Y versus x1 and Y versus x0.5

1 models



622 Probability and Statistics with R

Transform x2: The concave up relationship depicted in the first two graphs of Figure 12.16
suggests a quadratic transformation on x2. The resulting scatterplot and
residual graphs for the transformed predictor are depicted in the bottom
row of graphs.

> par(mfrow=c(2,3))
> plot(x2, Y)
> lines(x2, x2^2) # function Y = x2^2
> plot(lm(Y~x2),which=c(1,2)) # Residuals and Q-Q normal plots
> plot(x2^2, Y)
> mod2 <- lm(Y~I(x2^2))
> abline(mod2)
> plot(mod2, which=c(1,2))
> par(mfrow=c(1,1))
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FIGURE 12.16: Scatterplot, residuals versus fitted values, and quantile-quantile plot of
standardized residuals for Y versus x2 and Y versus x2

2 models

Transform x3: The first two graphs of Figure 12.17 on the facing page suggest a reciprocal
transformation on x3. As before, the graphs in the second row of Figure
12.17 are for the transformed predictor (x3).

> par(mfrow=c(2,3))
> plot(x3, Y)
> lines(x3, x3^(-1)) # function Y = 1/x3
> plot(lm(Y~x3),which=c(1,2)) # Residuals and Q-Q normal plots
> plot(x3^(-1), Y)
> mod3 <- lm(Y~I(x3^(-1)))
> abline(mod3)
> plot(mod3, which=c(1,2))
> par(mfrow=c(1,1))
> detach(SimDataXT)
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FIGURE 12.17: Scatterplot, residuals versus fitted values, and quantile-quantile plot of
standardized residuals for Y versus x3 and Y versus x−1

3 models

12.11.3.1 Collinearity

Collinearity in regression occurs when some of the predictors are a linear combination of
other predictors. When X′X is singular, there is said to be exact collinearity and there
is no unique estimate of β. When X′X is near singular, the problem is often called
multicollinearity. Multicollinearity causes problems with the estimation of β and its
subsequent interpretation. Severe multicollinearity can cause the sign of the coefficients
to be opposite what is expected and typically inflates the standard errors of the estimates
to the point where variables appear no longer to be significant. Two techniques to detect
collinearity include computation of the condition number and computation of the variance
inflation factor.

The condition number κ is defined as the square root of the largest eigenvalue of
X′X divided by the smallest eigenvalue of X′X. κ values between 30 and 100 indicate that
there are moderate to strong dependencies among the predictors. κ values greater than
100 indicate serious multicollinearity problems. The S function kappa() can be used to
estimate the condition number of a matrix.

A related method of detecting multicollinearity is to regress xj on all of the other
predictors. When the coefficient of determination (R2

j ) from regressing xj on all of the
other predictors is near one, there is multicollinearity among the predictors. The variance
inflation factor is defined as

VIFj =
1

1 − R2
j

. (12.69)

When there are dependencies among the predictors, R2
j will be near one and VIFj will be

large. VIFj values greater than 10 suggest serious collinearity. The VIFj for a predictor xj

can be interpreted as the factor
(√

VIFj

)
by which the standard error of β̂j is increased

due to the presence of multicollinearity.

Example 12.19 �Multicollinearity� In Example 12.18 on page 620, using the data
frame SimDataXT, Y was regressed on the transformed variables x1, x2, and x3 one at a
time.

(a) Regress Y on x0.5
1 , x2

2, and x−1
3 and store the results in the object modC. Are there any

linear dependencies among the predictors?
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(b) Regress Y on x0.5
1 and x2

2 and store the results in the object modB. Compute the condition
number for modB and the VIF for x0.5

1 and x2
2. Verify that the standard error for β̂1

from a model where Y is regressed solely on x0.5
1 (mod1) and the standard error for β̂1

from modB increases by approximately
√

VIF1.

Solution: The answers are as follows:

(a) From the output it is seen that X′X is singular. In particular, x2 is a function of x3(
x2 ≡ 1√

x3

)
. The output shown is from R. S-PLUS will not compute coefficients for a

singular model.

> attach(SimDataXT)
> modC <- lm(Y~I(x1^.5)+I(x2^2)+I(x3^(-1)))
> summary(modC)

Call:
lm(formula = Y ~ I(x1^0.5) + I(x2^2) + I(x3^(-1)))

Residuals:
Min 1Q Median 3Q Max

-2.56394 -0.77548 -0.01170 0.75323 3.43862

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.4219 0.1724 -2.447 0.0153 *
I(x1^0.5) 0.4500 0.5412 0.831 0.4068
I(x2^2) 0.6244 0.5384 1.160 0.2475
I(x3^(-1)) NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.082 on 195 degrees of freedom
Multiple R-Squared: 0.8861, Adjusted R-squared: 0.8849
F-statistic: 758.2 on 2 and 195 DF, p-value: < 2.2e-16

> cbind(x2, x3^(-.5))[1:5,]
x2

[1,] 0.5177716 0.5177716
[2,] 0.4262969 0.4262969
[3,] 0.4405244 0.4405244
[4,] 0.5988884 0.5988884
[5,] 0.8465002 0.8465002

(b) The condition number for modB is 87.53672, suggesting strong dependencies exist be-
tween x0.5

1 and x2
2. The variance inflation factor for x0.5

1 and x2
2 is 382.7241. Finally, the

standard error for β̂1 based on mod1 is 0.0277 while the standard error for β̂1 based on
modB is 0.5412. The ratio of 0.5412 to 0.0277 is 19.54, which is approximately equal to
the square root of the VIF for modB (19.56). In this problem, the introduction of x2

2 to a
model that already contained x0.5

1 increased the standard error for β̂1 by 19.56. From the
summary of modB, neither of the estimated coefficients for β1 or β2 are significant, yet from
Example 12.18 on page 620, the coefficients for both x0.5

1 and x2
2, when taken alone, are

significant.
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Note that the output shown is from R. To remove the NA observations (produced from taking
the square root of a negative value) while using the function lm() in S-PLUS, use the option
na.action=na.exclude inside the function lm().

> modB <- lm(Y~I(x1^.5)+I(x2^2))
> X <- model.matrix(modB)
> eigen(t(X)%*%X, only.values=TRUE)$values # extracting eigenvalues
[1] 15394.239140 39.566738 2.008989
> lambda.max <- max(eigen(t(X)%*%X, only.values=TRUE)$values)
> lambda.min <- min(eigen(t(X)%*%X, only.values=TRUE)$values)
> condition.number <- (lambda.max/lambda.min)^.5
> condition.number
[1] 87.53672

Verify the results with the function kappa(). The argument exact=TRUE used with the
function kappa() only works with R.

> kappa(X, exact=TRUE)
[1] 87.53672

Compute the VIF with (12.69):

> 1/(1-summary(lm(I(x1^.5)~I(x2^2)))$r.square)
[1] 382.7241

Compute the variance inflation factors with the function vif() from the car package:

> library(car) # For function vif()
> vif(modB)
I(x1^0.5) I(x2^2)
382.7241 382.7241

Verify that the standard error for β̂1 from a model where Y is regressed solely on x0.5
1 to

modB increases by approximately
√

VIF1:

> mod1 <- lm(Y~I(x1^.5))
> summary(mod1)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4410092 0.17178289 -2.567247 1.099639e-02
I(x1^0.5) 1.0768822 0.02769023 38.890330 4.239490e-94
> se.x1.mod1 <- summary(mod1)$coefficients[2,2]
> se.x1.modB <- summary(modB)$coefficients[2,2]
> ratio <- se.x1.modB/se.x1.mod1
> ratio
[1] 19.54613
> vif(modB)^.5
I(x1^0.5) I(x2^2)
19.56334 19.56334
> detach(SimDataXT)
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12.11.3.2 Transformations for Non-Normality and Unequal Error Variances

With the normal distribution, the mean and variance are independent of one another.
This is not the case with many other distributions. One such example is the Poisson
distribution, where the mean is equal to the variance. Quite often, non-normality and
unequal error variances appear together. This “double” problem can often be remedied
by transforming the response variable Y. The “double” problem can be identified by an
increasing or decreasing band in a curvilinear residual plot. Transformations on the response
variable will frequently both linearize a curvilinear relationship and fix the problem of
unequal error variances. Other times, transformations on both the response and predictors
will be required to meet the assumptions of the normal linear model. One technique that
searches computationally for an appropriate transformation of the response variable that
directly addresses normality is the Box-Cox method. The Box-Cox method estimates the
parameter λ for the transformation Y ′ = Y λ, where

Y ′ =

⎧⎨⎩
Y λ − 1

λ
for λ �= 0,

ln Y for λ = 0,
(12.70)

by the method of maximum likelihood. The function boxcox() of the MASS package produces
a plot of the log-likelihood against the transformation parameter λ for a particular model.
By default, the range of λ is from −2 to 2. However, once the value of λ that maximizes the
log-likelihood is known, the range of the plot in boxcox() can be tightened to highlight the
area where the function is maximized with the argument lambda=. For more details, see
the boxcox() help file. The boxcox() function is generally used just to get an idea for an
appropriate transformation. The value of λ that maximizes the log-likelihood function may
turn out to be 0.53; but if there is a possible explanation for taking the square root of the
response, the transformation applied should be λ = 0.5 and not the value that maximizes
the log-likelihood function.

Example 12.20 �Box-Cox Transformation � Use the data frame SimDataST and
the boxcox() function to find the transformation on Y that maximizes the log-likelihood
of the model created by regressing Y1 on x1. Once the value of λ that maximizes the
log-likelihood is known, reduce the range of the plot produced with boxcox() to focus on
the area around the value of λ that maximizes the log-likelihood.

Solution: Using the default range −2 < λ < 2, the boxcox() function shows that the
transformation λ = 0, that is, lnY , comes close to maximizing the log-likelihood and is
included in the 95% confidence band for λ, as seen in Figure 12.18 on the next page.
Consequently, the range of λ is reduced and plotted over the region −0.3 to 0.3 using the
argument lambda=seq(-.3,.3,.01):

> attach(SimDataST)
> library(MASS)
> par(mfrow=c(1,2)) # 1 row by 2 columns
> modx1 <- lm(Y1~x1)
> boxcox(modx1)
> boxcox(modx1, lambda=seq(-.3,.3,.01))
> par(mfrow=c(1,1))
> detach(SimDataST)
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FIGURE 12.18: Box-Cox graph of λ for Example 12.20 on the facing page

Example 12.21 � Transforming Y with ln � Use the data frame SimDataST to
create and display six graphs using a 2 by 3 layout. Start by producing a scatterplot of
Y1 versus x1. Plot the residuals versus fits for the model created by regressing Y1 on x1

(call this model modx1). Based on the first two graphs, does a logarithmic transformation
for the response variable make sense? Use and plot the results from the boxcox() function
applied to modx1. In the second row of graphs, create a scatterplot of lnY1 versus x1, a plot
of the residuals versus the fits for the model log(Y1)~x1, and a quantile-quantile normal
plot of the residuals from the model log(Y1)~x1. Based on the second row of graphs, do
the assumptions for the normal error model seem to be satisfied for the model log(Y1)~x1?
Note that the default understanding of log in both R and S-PLUS is loge = ln = log.

Solution: Based on the first two graphs of the first row of Figure 12.19 on the next page,
and the subsequent plot of λ, the transformation λ = 0, that is, ln(Y ), is justified. Once the
response is transformed, the problems of non-normality and unequal variance of the errors
apparently disappear.

> attach(SimDataST)
> library(MASS)
> par(mfrow=c(2,3))
> plot(x1, Y1)
> modx1 <- lm(Y1~x1)
> plot(modx1, which=1)
> boxcox(modx1, lambda=seq(-.3,.3,.01))
> plot(x1, log(Y1))
> plot(lm(log(Y1)~x1), which=c(1,2)) #Q-Q plot in S-PLUS is 4 not 2
> par(mfrow=c(1,1))
> detach(SimDataST)

Example 12.22 � Transforming Y with a Reciprocal � Use the data frame
SimDataST to create and display six graphs using a 2 by 3 layout. Start by producing
a scatterplot of Y2 versus x2. Plot the residuals versus fits for the model created by
regressing Y2 on x2 (call this model modx2). Based on the first two graphs, does a reciprocal
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FIGURE 12.19: Scatterplot and residual versus fitted plot of Y1 versus x1; Box-Cox plot of
λ; scatterplot, residual versus fitted plot, and quantile-quantile plot of ln(Y1) versus x1

transformation for the response variable make sense? Use and plot the results from the
boxcox() function applied to modx2. In the second row of graphs, create a scatterplot of
Y −1

2 versus x2, a plot of the residuals versus the fits for the model I(Y2^(-1))~x2, and
a quantile-quantile normal plot of the residuals from the model I(Y2^(-1))~x2. Based
on the second row of graphs, do the assumptions for the normal error model seem to be
satisfied for the model I(Y2^(-1))~x2?

Solution: Based on the first two graphs of the first row of Figure 12.20 on the facing page,
and the subsequent plot of λ, the transformation λ = −1, that is, Y −1

2 , is justified. Once
the response is transformed, the non-normality problem as well as the unequal variance of
the errors problem appear to vanish.

> attach(SimDataST)
> par(mfrow=c(2,3))
> plot(x2, Y2)
> modx2 <- lm(Y2~x2)
> plot(modx2, which=1)
> boxcox(modx2, lambda=seq(-1.4,-.6,.01))
> plot(x2, Y2^(-1))
> plot(lm(I(Y2^(-1))~x2), which=c(1,2)) #Q-Q plot in S-PLUS is 4 not 2
> par(mfrow=c(1,1))

As mentioned earlier, at times it will be necessary to transform the response and the
predictor. Consider the top left graph in Figure 12.21 on page 630 along with the bottom
left graph produced with boxcox() suggesting a lnY transformation. The middle column
of graphs depicts a scatterplot of loge Y versus x3 with a superimposed line from the least
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FIGURE 12.20: Scatterplot and residual versus fitted plot of Y2 versus x2; Box-Cox plot of
λ; scatterplot, residual versus fitted plot, and quantile-quantile plot of Y −1

2 versus x2

squares fit of the model log(Y1)~x3 as well as the residuals versus fits plot for the same
model. Close scrutiny reveals a slight curvilinear pattern in both of the graphs in the middle
column. This suggests some type of transformation for x3. The slight curvature is eliminated
in both the scatterplot and the residual plot by applying a square root transformation to
x3. The R code used to create Figure 12.21 is

> library(MASS)
> par(mfrow=c(2,3))
> plot(x3, Y1)
> plot(x3, log(Y1))
> mod <- lm(log(Y1)~x3)
> abline(mod)
> plot(x3^.5, log(Y1))
> mod2 <- lm(log(Y1)~I(x3^.5))
> abline(mod2)
> boxcox(lm(Y1~x3), lambda=seq(-.3,.3,.01))
> plot(mod, which=1)
> plot(mod2, which=1)
> par(mfrow=c(1,1))
> detach(SimDataST)
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FIGURE 12.21: Process of model building with transformations: (I) original scatterplot,
(II) boxcox() transformation suggestion, (III) scatterplot with Y transformed, (IV) residual
plot shows curvature, (V) x-variable transformed, (VI) residuals appear normalized

12.12 Interpreting a Logarithmically Transformed Model

Variables are often transformed to fix constant variance or normality assumptions;
however, transformations can complicate the interpretation of the model. Unlike many
other transformations, models that use logarithmic transformations have approximate ex-
planations without back transforming the variables.

When x has been transformed with a natural log transformation, the change in the
ln(x) is roughly equal to the change in x provided the changes in x are small. Consider
Figure 12.22 on the facing page, which graphically illustrates how changing the x values 3
and 6 by 10% corresponds to an approximate increase in ln(x) of about 10%.

An example from economics that has multiplicative error terms is the demand function
(Q = αP βε), where Q = quantity demanded, P = price, α and β are unknown parameters,
and ε is the error term. This function is often transformed by taking the natural logarithm
of both sides. That is,

ln(Q) = ln(α) + β ln(P ) + ln(ε) (12.71)

which is in the form of a simple linear model (Y = β0 + β1x + ε). Note that the errors in a
simple linear model are additive.

The parameter β in (12.71) can be interpreted as the percent change in Q over the
percent change in P , which is the definition of price elasticity. In other words, |β| =
price elasticity. When dealing with a simple linear model of the form

ln(Y ) = ln(β0) + β1 ln(x) + ε, (12.72)
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FIGURE 12.22: Small change in x gives a similar small change in ln(x)

β1 can be interpreted as

β1 =
%Δy

%Δx
. (12.73)

In Example 2.24 on page 61, the data frame Animals from the MASS package was used to
find the least squares line for regressing log(brain) on log(body) once the three dinosaurs
were removed from the data. (Note that log(x) in S is the natural logarithm function,
ln(x).) The resulting least squares estimates of β0 and β1 after the dinosaurs are removed
are

> library(MASS)
> attach(Animals)
> SA <- Animals[order(body),]
> NoDINO <- SA[-c(28:26),]
> detach(Animals)
> attach(NoDINO)
> Y <- log(brain)
> x <- log(body)
> simple.model <- lm(Y~x)
> (simple.model)$coef
(Intercept) x
2.1504121 0.7522607

> detach(NoDINO)

If the body weight of an animal increases by 1%, the approximate increase in brain weight
is (0.01×0.75 = 0.0075 = 0.75%) since β̂1 = 0.75. The predicted brain weight of the Jaguar
whose weight is listed as 100 kg. with the fitted model is 2.15 + 0.75 × ln(100) = 5.61.
However, this must be back transformed to get the units of original brain measurement
(grams). The brain weight predicted by the model is exp(5.61) = 274.431 g. If said
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Jaguar were to increase its weight by 10%, the expected increase in brain weight would
be approximately 7.5% for a new weight of 1.075 × 274.431 = 295.014 g. The actual brain
weight change predicted by the model for a body weight of 110 kg is 294.83 g and the change
in brain weight as predicted from the model is 7.43% (see Table 12.8). Note that for this
model, β̂1 = 0.0752 ≈ ΔY = 0.0743. In fact, when both the response and the predictors
have been transformed with a natural logarithm, one can use the percentage interpretation
of β1 as in (12.73) and be very close to the actual change given by the model for small
changes in the x-variables. The parameters of growth models of the form P (t) = ceβt are

Table 12.8: Actual change in Jaguar brain weight

x ln(x) ln(Y ) Y

100.0 4.605 5.615 274.43
110.0 4.700 5.686 294.83

Δ 0.1 0.0743

often estimated with ordinary least squares regression after taking the natural logarithms
of both sides since ln P (t) = ln(c)+βt is the form of a simple linear model. When the slope,
β, is estimated for such a model, it provides an estimate of the approximate growth rate in
units of t. More generally, for models of the form ln Y = β0 + β1x, for each unit of increase
in x, Y increases roughly by β1 × 100%.

12.13 Qualitative Predictors

Up to this point, only quantitative (continuous) predictor variables have been used in
regression models. Quantitative variables take on values on a well-defined scale. Examples
include height, weight, income, and age, to name a few; however, many predictor variables
are qualitative. For example, gender (male/female) or race (Caucasian, Hispanic, Asian,
etc.) are qualitative variables that appear in many regression models. Regression using
quantitative variables can be generalized to qualitative variables with the use of dummy
variables. A dummy variable is any variable in a regression model that takes on a
finite number of values so that different categories of a nominal variable can be identified.
Provided the regression model has an intercept, one must define k − 1 dummy variables to
define a qualitative variable with k categories. There are many ways to define the k − 1
dummy variables. R and S-PLUS (Version 8) use treatment contrasts by default to define
qualitative variables (factors). To see the values R or S-PLUS use to define a qualitative
variable with four levels, enter

> contr.treatment(4)
2 3 4

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
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The rows of this matrix (4 × 3) are the levels of the qualitative predictor and the columns
are the dummy variables. R assigns levels to a qualitative variable in alphabetical order by
default.

Example 12.23 � Ease Levels Dummy Variables � Consider the variable Ease
from the EPIDURAL data frame. Define appropriate dummy variables to specify the three
levels of this variable.

Solution: The three levels of Ease (Difficult, Easy, and Impossible) require two
dummy variables to be able to identify all three levels of Ease:

> attach(EPIDURAL)
> contrasts(Ease)

Easy Impossible
Difficult 0 0
Easy 1 0
Impossible 0 1

Note that the first level in alphabetical order is Difficult. To change the first level of
Ease to Easy, enter

> levels(Ease) <- c("Easy", "Difficult", "Impossible")
> levels(Ease)
[1] "Easy" "Difficult" "Impossible"
> contrasts(Ease)

Difficult Impossible
Easy 0 0
Difficult 1 0
Impossible 0 1
> detach(EPIDURAL)

The simplest situation where dummy variables might be used in a regression model
is when the qualitative predictor has only two levels. The regression model for a single
quantitative predictor (x1) and a dummy variable (D1) is written

Y = β0 + β1x1 + β2D1 + β3x1D1 + ε (12.74)

where

D1 =

{
0 for the first level
1 for the second level

The model in (12.74) when D1 has two levels will yield one of four possible scenarios, as
shown in Figure 12.23 on the next page. This type of model requires the user to answer
three basic questions:

(1) Are the lines the same?

(2) Are the slopes the same?

(3) Are the intercepts the same?

To address basic question (1), the null hypothesis H0 : β2 = β3 = 0 must be tested.
One way to perform the test is to use the general linear test statistic based on the full
model found in (12.74) and the reduced model Y = β0 + β1x1 + ε. If the null hypothesis
is not rejected, the interpretation is that there is one line present (the intercept and the
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FIGURE 12.23: Four possible results for a single dummy variable with two levels. Graph
I has the intercept and the slope the same for both levels of the dummy variable. Graph
II has the two lines with the same slope, but different intercepts. Graph III shows the two
fitted lines with the same intercept but different slopes. Graph IV shows the two lines with
different intercepts and different slopes.

slope are the same for both levels of the dummy variable). This is the case for graph I of
Figure 12.23. If the null hypothesis is rejected, either the slopes, the intercepts, or possibly
both the slope and the intercept are different for the different levels of the dummy variable,
as seen in graphs II, III, and IV of Figure 12.23, respectively.

To answer basic question (2), the null hypothesis H0 : β3 = 0 must be tested. If the
null hypothesis is not rejected, the two lines have the same slope, but different intercepts,
as show in graph II of Figure 12.23. The two parallel lines that result when β3 = 0 are

Y = β0 + β1x1 + ε for (D1 = 0) and Y = (β0 + β2) + β1x1 + ε for (D1 = 1)

When H0 : β3 = 0 is rejected, one concludes that the two fitted lines are not parallel as in
graphs III and IV of Figure 12.23.

To answer basic question (3), the null hypothesis H0 : β2 = 0 for model (12.74) must
be tested. The reduced model for this test is Y = β0 + β1x1 + β3x1D1 + ε. If the null
hypothesis is not rejected, the two fitted lines have the same intercept but different slopes:

Y = β0 + β1x1 + ε for (D1 = 0) and Y = β0 + (β1 + β3)x1 + ε for (D1 = 1)

Graph III of Figure 12.23 represents this situation. If the null hypothesis is rejected, one
concludes that the two lines have different intercepts, as in graphs II and IV of Figure 12.23.
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Example 12.24 �Elevators� Suppose a realtor wants to model the appraised price of
an apartment as a function of the predictors living area (in m2) and the presence or absence
of elevators. Consider the data frame vit2005, which contains data about apartments
in Vitoria, Spain, including totalprice, area, and elevator, which are the appraised
apartment value in Euros, living space in square meters, and the absence or presence of at
least one elevator in the building, respectively.

(a) The realtor first wants to know if there is any relationship between appraised price (Y )
and living area (x1).

(b) Next, the realtor wants to know how adding a dummy variable for whether or not an
elevator is present changes the relationship:

(i) Are the lines the same?

(ii) Are the slopes the same?

(iii) Are the intercepts the same?

Solution: (a) A linear regression model of the form

Y = β0 + β1x1 + ε (12.75)

is fit yielding
Ŷi = 40822.4 + 2704.8xi1

and a scatterplot of totalprice versus area with the fitted regression line superimposed
over the scatterplot is show in Figure 12.24 on the following page.

> attach(vit2005)
> Elevator <- as.factor(elevator)
> contrasts(Elevator)
1

0 0
1 1
> modSimpl <- lm(totalprice~area)
> summary(modSimpl)

Call:
lm(formula = totalprice ~ area)

Residuals:
Min 1Q Median 3Q Max

-156126 -21564 -2155 19493 120674

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40822.4 12170.1 3.354 0.00094 ***
area 2704.8 133.6 20.243 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 40810 on 216 degrees of freedom
Multiple R-Squared: 0.6548, Adjusted R-squared: 0.6532
F-statistic: 409.8 on 1 and 216 DF, p-value: < 2.2e-16
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FIGURE 12.24: Scatterplot of totalprice versus area with the fitted regression line
superimposed

Based on Figure 12.24, there appears to be a linear relationship between appraised price and
living area. Further, this relationship is statistically significant, as the ℘-value for testing
H0 : β1 = 0 versus H1 : β1 �= 0 is less than 2.2 × 10−16.

(b) The regression model including the dummy variable for Elevator is written

Y = β0 + β1x1 + β2D1 + β3x1D1 + ε (12.76)

where

D1 =

{
0 when a building has no elevators
1 when a building has at least one elevator

(i) To determine if the lines are the same (which means that the linear relationship between
appraised price and living area is the same for apartments with and without elevators), the
hypotheses are

H0 : β2 = β3 = 0 versus H1 : at least one βi �= 0 for i = 2, 3.

> modTotal <- lm(totalprice~area+Elevator+area:Elevator)
> modSimpl <- lm(totalprice~area)
> anova(modSimpl, modTotal)
Analysis of Variance Table

Model 1: totalprice ~ area
Model 2: totalprice ~ area + Elevator + area:Elevator
Res.Df RSS Df Sum of Sq F Pr(>F)

1 216 3.5970e+11
2 214 3.0267e+11 2 5.7040e+10 20.165 9.478e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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In this problem, one may conclude that at least one of β2 and β3 is not zero since the
℘-value = 9.478 × 10−9. In other words, the lines have either different intercepts, different
slopes, or different intercepts and slopes.

(ii) To see if the lines have the same slopes (which means that the presence of an elevator
adds constant value over all possible living areas), the hypotheses are

H0 : β3 = 0 versus H1 : β3 �= 0.

> anova(modTotal)
Analysis of Variance Table

Response: totalprice
Df Sum Sq Mean Sq F value Pr(>F)

area 1 6.8239e+11 6.8239e+11 482.4846 < 2.2e-16 ***
Elevator 1 4.5308e+10 4.5308e+10 32.0352 4.83e-08 ***
area:Elevator 1 1.1732e+10 1.1732e+10 8.2949 0.00438 **
Residuals 214 3.0267e+11 1.4143e+09
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Based on the ℘-value = 0.00438, it may be concluded that β3 �= 0, which implies that the
lines are not parallel.

(iii) To test for equal intercepts (which means that appraised price with and without
elevators starts at the same value), the hypotheses to be evaluated are

H0 : β2 = 0 versus H1 : β2 �= 0.

> modTotal <- lm(totalprice~area+Elevator+area:Elevator)
> modInter <- lm(totalprice~area+area:Elevator)
> anova(modInter, modTotal)
Analysis of Variance Table

Model 1: totalprice ~ area + area:Elevator
Model 2: totalprice ~ area + Elevator + area:Elevator
Res.Df RSS Df Sum of Sq F Pr(>F)

1 215 3.0624e+11
2 214 3.0267e+11 1 3.5765e+09 2.5288 0.1133

Since the ℘-value for testing the null hypothesis is 0.1133, one fails to reject H0 and should
conclude that the two lines have the same intercept but different slopes.

> summary(modInter)$coef
Estimate Std. Error t value Pr(>|t|)

(Intercept) 71352.0844 12309.1794 5.796656 2.389680e-08
area 1897.9368 180.5908 10.509596 4.082287e-21
area:Elevator1 553.9856 90.4240 6.126534 4.227047e-09
> detach(vit2005)

The fitted model is Ŷi = 7135 + 1898xi1 + 554xi1Di1, and the fitted regression lines for the
two values of D1 are shown in Figure 12.25 on the following page. The fitted model using
the same intercept with different slopes has an R2

a of 0.7034, a modest improvement over
the model without the variable Elevator, which had an R2

a value of 0.6532.
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FIGURE 12.25: Fitted regression lines for Elevators example

As the numbers of levels in the qualitative variables increases, the number of dummy
variables required to represent all of the possible combinations of variables (both dummy and
numerical) increases rapidly, and the comparison of regression equations becomes virtually
intractable. Further exploration on this topic could be carried out with a book dedicated
to regression.

12.14 Estimation of the Mean Response for New Values Xh

Not only is it desirable to create confidence intervals on the parameters of the regression
models, but it is also common to estimate the mean response

(
E(Yh)

)
for a particular set

of X values. The particular values where an estimate is desired will be denoted Xh =
[1, xh,1, xh,2, . . . , xh,p−1]. Since Ŷ = Xβ̂, it follows that Ŷh = Xhβ̂. For the normal error
model (ε ∼ N(0, σ2I)),

Ŷh ∼ N
(
Yh = Xhβ, σ2Xh(X′X)−1X′

h

)
. (12.77)

Recall (12.32) states that s2
β̂

= σ̂2(X′X)−1 = MSE(X′X)−1, while (12.77) gives σ2
Ŷh

=
σ2Xh(X′X)−1X′

h, from which it follows that

s2
Ŷh

= MSE ·Xh(X′X)−1X′
h = Xhs2

β̂
X′

h. (12.78)

Consequently, for a vector of given values (Xh), a (1−α) · 100% confidence interval for the
mean response E(Yh) is

CI 1−α[E(Yh)] =
[
Ŷh − t1−α/2;n−p · sŶh

, Ŷh + t1−α/2;n−p · sŶh

]
(12.79)
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The S function predict() applied to a linear model object will compute Ŷh and sŶh
for a

given Xh. S output has Ŷh labeled fit and sŶh
labeled se.fit. The function predict()

can be used for a wide range of applications where the statistician would like to predict
values of new data. One of predict()’s arguments is newdata=, where what follows the =
should be a data frame whose columns have identical names to those of the variables that
were used in constructing the original model.

12.15 Prediction and Sampling Distribution of New Observations
Yh(new)

In Section 12.14, a confidence interval was found for the mean response, E(Yh). In
contrast, it is not unusual to require a confidence interval on a single, new observation
instead. For example, suppose a linear model that describes course grade as a function
of time studied is calculated. As the user of this model, you might be interested in your
predicted grade given the amount of time you study rather than the average grade that is
received by all people who study the amount of time you do. Although the point estimates
for the average grade given time studied

(
E(Yh)

)
and your grade given time studied (Yh(new))

are identical, the confidence intervals for these two quantities are not the same because
s2

Ŷh(new)
accounts for an additional source of variability not present in s2

Ŷh
. Specifically,

s2
Ŷh(new)

estimates the variance of the distribution of Y at X = Xh, which has a value of σ2

with MSE as well as the variance of the sampling distribution of Ŷh with s2
Ŷh

.
For the normal error model,

Ŷh(new) ∼ N
(
Yh = Xhβ, σ2

(
1 + Xh(X′X)−1X′

h

) )
. (12.80)

It follows that s2
Ŷh(new)

= MSE
(
1 + Xh(X′X)−1X′

h

)
and the (1 − α) · 100% prediction

interval for new observation Yh(new) is written as

PI 1−α

[
Yh(new)

]
=

[
Ŷh − t1−α/2; n−p · sŶh(new)

, Ŷh + t1−α/2; n−p · sŶh(new)

]
. (12.81)

To compute prediction intervals, the S function predict()may be applied to a linear model
using the argument interval="pred" in R and pi.fit=T in S-PLUS.

Example 12.25 Use the Grades data set and model gpa as a function of sat assuming
that the requirements for model (12.4) are satisfied.

(a) Compute the expected GPA (gpa) for an SAT score (sat) of 1300.

(b) Construct a 90% confidence interval for the mean GPA for students scoring 1300 on the
SAT.

(c) Find the prediction limits on GPA for a future student who scores 1300 on the SAT.

Solution: The answers are as follows:

(a) The expected GPA for an SAT score of 1300 is Ŷh = Xh · β̂ = 2.830488, where Xh =
(1, 1300) and β̂ = [−1.192, 0.003]′
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> attach(Grades)
> Y <- gpa
> x <- sat
> simple.model <- lm(Y~x)
> betahat <- simple.model$coef
> betahat
(Intercept) x
-1.192063812 0.003094270
> Xh <- matrix(c(1,1300), nrow=1)
> Yhath <- Xh%*%betahat
> Yhath

[,1]
[1,] 2.830488

A method that requires less typing is

> predict(simple.model, newdata=data.frame(x=1300))
[1] 2.830488

(b) A 90% confidence interval for the mean gpa for students scoring 1300 on the SAT using
(12.79) is CI 0.90

(
E(Yh)

)
= [2.759760, 2.901216].

> MSE <- anova(simple.model)[2,3]
> MSE
[1] 0.1595551
> XTXI <- summary(simple.model)$cov.unscaled
> XTXI

(Intercept) x
(Intercept) 0.3101379642 -2.689270e-04
x -0.0002689270 2.370131e-07
> var.cov.b <- MSE*XTXI
> var.cov.b

(Intercept) x
(Intercept) 4.948408e-02 -4.290866e-05
x -4.290866e-05 3.781665e-08
> s2yhath <- Xh%*%var.cov.b%*%t(Xh)
> s2yhath

[,1]
[1,] 0.001831706
> syhath <- sqrt(s2yhath)
> syhath

[,1]
[1,] 0.04279843
> crit.t <- qt(.95,198)
> crit.t
[1] 1.652586
> CI.EYh <- c(Yhath - crit.t*syhath, Yhath + crit.t*syhath)
> CI.EYh
[1] 2.759760 2.901216
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Or, in R only,

> predict(lm(Y~x), data.frame(x=1300), interval="conf", level=.90)
fit lwr upr

[1,] 2.830488 2.759760 2.901216

Or, for S-PLUS only,

> predict(lm(Y~x), data.frame(x=1300), ci.fit=TRUE, conf.level=.90)$ci.fit
lower upper

1 2.75976 2.901216
attr(, "conf.level"):
[1] 0.9

(c) The prediction limits on GPA for a future student who scores 1300 on the SAT are
PI 0.90 = [2.166595, 3.494380] using (12.81).

> s2yhathnew <- MSE + s2yhath
> syhathnew <- sqrt(s2yhathnew)
> syhathnew

[,1]
[1,] 0.4017297
> PI <- c(Yhath - crit.t*syhathnew, Yhath + crit.t*syhathnew)
> PI
[1] 2.166595 3.494380

Or, in R only,

> predict(lm(Y~x), data.frame(x=1300), interval="pred", level=.90)
fit lwr upr

[1,] 2.830488 2.166595 3.494380
> detach(Grades)

Only in S-PLUS:

> predict(lm(Y~x), data.frame(x=1300), pi.fit=TRUE, conf.level=.90)$pi.fit
lower upper

1 2.166595 3.49438
attr(, "conf.level"):
[1] 0.9
> detach(Grades)
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12.16 Simultaneous Confidence Intervals

Now that a determination has been made of a correct (1−α) · 100% confidence interval
for a single βk, confidence intervals for multiple βks are desired such that the significance
level of all the intervals together will be only a specified α. For example, if α = 5% and two
independent confidence intervals were created for a β0 and a β1, the probability that both
would contain their parameters would be only (0.95)2 = 0.9025, giving a family α = 0.0975.
The goal is to create intervals such that the family α is a given value. This goal is more
difficult than the example because the same data are used to construct all the confidence
intervals, so they are not independent and the α calculation is not straightforward. A
family confidence coefficient is the proportion of confidence intervals that contain all
the βk parameters specified for the entire family of g ≤ p parameters for a given sample.

One approach to calculating these simultaneous confidence intervals is named the Bon-
ferroni method. In this method, the joint interval estimates for βk, k = 0, . . . , g parameters
are

CI 1−α(βk) =
[
β̂k − t1− α

2g
; n−p · sβ̂k

, β̂k + t1− α
2g

; n−p · sβ̂k

]
(12.82)

A second approach is to construct a simultaneous confidence region for the βk coefficients.
Any set of parameters β = (β0, β1, . . . , βg) that satisfy the inequality

(β̂ − β)′(X′X)(β̂ − β)
q · MSE

≤ f1−α; q, n−p (12.83)

fall inside a (1 − α) · 100% ellipsoidal confidence region for β where MSE is that of the
full model. Note that q is the rank of K for the hypothesis H0 : Kβ = m discussed
in Section 12.10. When the simultaneous confidence limits are for β = (β1, β2, . . . , βk),
excluding β0, q will be equal to p − 1, the number of predictors in the full model. This is
a rather computationally intensive method. The simultaneous Scheffé confidence limits for
the individual βks based on (12.83) are

CI 1−α(βk) =
[
β̂k −

√
q · f1−α; q, n−p · sβ̂k

, β̂k +
√

q · f1−α; q, n−p · sβ̂k

]
. (12.84)

For simple linear regression, the function confidence.ellipse() in the car package
will construct and display a simultaneous confidence region for β0 and β1 (q = 2). For
models with p > 2, confidence.ellipse() will draw a simultaneous confidence region for
any two βks, k = 1, . . . , p − 1, specified by the user. Note that in the p > 2 case, q will
equal p− 1. The R function confint() will compute individual confidence intervals for one
or more parameters in a fitted model. The Bonferroni intervals from (12.82) will be wider
than those from (12.84) whenever t1− α

2g ; n−p >
√

q · f1−α; q, n−p.

12.16.1 Simultaneous Confidence Intervals for Several Mean Responses
— Confidence Band

To construct several confidence intervals for the mean response, E(Yh), corresponding to
different Xh vectors such that the family confidence coefficient is 1 − α, use (12.85), where
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sŶh
=

√
Xhs2

β̂
X′

h:

CI 1−α

[
E(Yh)

]
=

[
Ŷh −

√
p · f1−α; p,n−p · sŶh

, Ŷh +
√

p · f1−α; p,n−p · sŶh

]
(12.85)

or

CI 1−α

[
E(Yh)

]
=

[
Ŷh − t1− α

2g ; n−p · sŶh
, Ŷh + t1− α

2g ; n−p · sŶh

]
(12.86)

whichever produces narrower intervals.

A confidence band is a region of confidence around the entire regression line con-
structed by plotting the upper and lower values of (12.85) over the range of Xh and
subsequently connecting all of the upper values with a curve and all of the lower values
with a curve. See Figure 12.26 on the next page for an example.

12.16.2 Predictions of g New Observations

To create simultaneous prediction intervals for g new observations, corresponding to g
Xh vectors with a family confidence coefficient of 1 − α, use

PI 1−α

[
Yh(new)

]
=[

Ŷh−
√

g · f1−α; g,n−p · sŶh(new)
, Ŷh +

√
g · f1−α; g,n−p · sŶh(new)

]
, (12.87)

or [
Ŷh− t1−α/2g;n−p · sŶh(new)

, Ŷh + t1−α/2g; n−p · sŶh(new)

]
(12.88)

whichever produces narrower intervals.

12.16.3 Distinguishing Pointwise Confidence Envelopes from Confi-
dence Bands

There is a distinction between connected intervals with (1−α) ·100% confidence at each
single point and an entire band with (1 − α) · 100% confidence of containing the regression
line. In this text, when each single interval has (1 − α) · 100% confidence of containing a
mean response

(
E(Yh)

)
, and the upper and lower endpoints of the intervals are connected

over the range of possible Xh values, a pointwise confidence envelope is created. If
the confidence for containing the entire regression line

(
E(Yh|Xh)

)
is (1 − α) · 100%, a

confidence band is being calculated. A confidence band is constructed by plotting the
upper and lower values of (12.85) over the range of Xh and subsequently connecting all
of the upper values with a curve and all of the lower values with a curve from (12.85). A
graphical representation of 90% pointwise confidence intervals, 90% confidence bands, and
90% pointwise prediction intervals for the regression of gpa on sat using the Grades data
frame from the PASWR package is shown in Figure 12.26 on the following page.

Example 12.26 Use the data HSwrestler and the linear model in (12.6) with HWFAT as
the response and AGE, ABS, and TRICEPS as the predictors, assuming the errors from this
model are normally distributed with mean zero and constant variance σ2.
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FIGURE 12.26: Representation of 90% pointwise confidence intervals, 90% prediction
intervals, and a 90% confidence band for the regression of gpa on sat using the data
in Grades

(a) Obtain joint interval estimates for β1, β2, and β3 using a 90% family confidence
coefficient with both the Bonferroni and Scheffé approaches.

(b) Use the function confidence.ellipse() from the package car to construct a 90% si-
multaneous confidence region for β2 and β3. Use the function abline() to verify visually
that the limits of the simultaneous confidence region drawn by confidence.ellipse()
agree with the values found in part (a).

(c) Find 90% joint interval estimates for the mean HWFAT of wrestlers with values of Xhi

given in Table 12.9.

Table 12.9: Values of Xhi for HSwrestler

AGE ABS TRICEPS

Xh1 16 10 9
Xh2 17 11 11
Xh3 18 8 8

(d) Find 90% joint prediction intervals for three new wrestlers with values of Xhi given in
Table 12.9.

Solution: The answers are as follows:

(a) The estimates of the β̂ks, sβ̂s, the Bonferroni critical value t1−α/2∗g, and the Scheffé
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critical value
√

pf1−α; q, n−p are computed with S and then used in (12.82) and (12.84) to
compute three simultaneous confidence intervals, respectively.

The Bonferroni simultaneous confidence intervals are

CI 0.90(β1) = [−1.098, 0.032]
CI 0.90(β2) = [0.219, 0.494]
CI 0.90(β3) = [0.251, 0.680]

The Scheffé simultaneous confidence intervals are

CI 0.90(β1) = [−1.197, 0.130]
CI 0.90(β2) = [0.195, 0.518]
CI 0.90(β3) = [0.214, 0.718]

> attach(HSwrestler)
> alpha <- 0.10
> mult.model <- lm(HWFAT~AGE+ABS+TRICEPS)
> summary(mult.model)$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.6160623 4.23272425 2.508092 1.433001e-02
AGE -0.5330948 0.26067474 -2.045057 4.440545e-02
ABS 0.3564311 0.06353588 5.609918 3.323075e-07
TRICEPS 0.4656071 0.09898493 4.703819 1.158514e-05
> b <- summary(mult.model)$coef[2:4,1]
> s.b <- summary(mult.model)$coef[2:4,2]
> g <- 3
> B <- qt((1-alpha/(2*g)),78-4)
> B
[1] 2.168523
> BonSimCI.b <- matrix(c(b-B*s.b, b+B*s.b), ncol=2)
> conf <- c("5%","95%")
> bnam <- c("AGE","ABS","TRICEPS")
> dimnames(BonSimCI.b) <- list(bnam, conf)
> BonSimCI.b

5% 95%
AGE -1.0983739 0.0321843
ABS 0.2186521 0.4942101
TRICEPS 0.2509561 0.6802582

> Q <- 3
> S <- sqrt(Q*qf(.9, Q,78-4))
> S
[1] 2.545185
> SchSimCI.b <- matrix(c(b-S*s.b, b+S*s.b), ncol=2)
> dimnames(SchSimCI.b) <- list(bnam, conf)
> SchSimCI.b

5% 95%
AGE -1.1965602 0.1303706
ABS 0.1947205 0.5181416
TRICEPS 0.2136722 0.7175421
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(b) The following code is used to create the left graph in Figure 12.27, which depicts a joint
confidence region for β2 and β3 enclosed by the Bonferroni confidence limits:

> confidence.ellipse(lm(HWFAT~AGE+ABS+TRICEPS), level=.90,
+ which.coef=c(3,4), Scheffe=FALSE, main="")
> title(main="Bonferroni Confidence Region")
> abline(v=BonSimCI.b[2,])
> abline(h=BonSimCI.b[3,])

In a similar fashion, the right graph of Figure 12.27 depicts a joint confidence region for β2

and β3 enclosed by the Scheffé confidence limits. The code to reproduce the right graph of
Figure 12.27 is

> confidence.ellipse(lm(HWFAT~AGE+ABS+TRICEPS), level=.90,
+ which.coef=c(3,4), Scheffe=TRUE, main="")
> title(main="Scheffe Confidence Region")
> abline(v=SchSimCI.b[2,])
> abline(h=SchSimCI.b[3,])
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FIGURE 12.27: Joint confidence region for β2 and β3 enclosed by the Bonferroni (left
graph) and Scheffé (right graph) confidence limits

(c) The 90% simultaneous confidence intervals for the mean HWFAT of wrestlers with val-
ues of Xhi given in Table 12.9 on page 644 using (12.86) since t1− α

2g
; n−p = 2.16 <√

g · f1−α; g, n−p = 2.55 are

CI 0.90[E(Yh1)] = [8.998, 10.685]
CI 0.90[E(Yh2)] = [9.448, 11.744]
CI 0.90[E(Yh3)] = [6.048, 9.145]

> g <- 3
> alpha <- 0.10
> SC <- sqrt(g*qf(1-alpha,3,74))
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> TC <- qt(1-alpha/(2*g),74)
> c(TC, SC)
[1] 2.168523 2.545185
> RES <- predict(mult.model, newdata=data.frame(AGE=c(16,17,18),
+ ABS=c(10,11,8), TRICEPS=c(9,11,8)), se.fit=TRUE)
> Yhath <- RES$fit
> Syhath <- RES$se.fit
> ll <- Yhath - TC*Syhath
> ul <- Yhath + TC*Syhath
> BCI <- cbind(Yhath, Syhath, ll, ul)
> BCI

Yhath Syhath ll ul
1 9.841321 0.3888869 8.998010 10.684631
2 10.595871 0.5294386 9.447771 11.743971
3 7.596662 0.7141915 6.047921 9.145402
> round(BCI,3)

Yhath Syhath ll ul
1 9.841 0.389 8.998 10.685
2 10.596 0.529 9.448 11.744
3 7.597 0.714 6.048 9.145

(d) The 90% joint prediction intervals for three new wrestlers with values of Xhi given in
Table 12.9 on page 644 using (12.81) since t1−α/2g ; n−p = 2.17 <

√
gf1−α; g, n−p = 2.55 are

PI 0.90[Yh1(new)] = [3.285, 16.397]
PI 0.90[Yh2(new)] = [3.994, 17.198]
PI 0.90[Yh3(new)] = [0.913, 14.280]

> g <- 3
> alpha <- 0.10
> SC <- sqrt(g*qf(1-alpha,3,74))
> TC <- qt(1-alpha/(2*g),74)
> c(SC, TC)
[1] 2.545185 2.168523
> # Use TC with equation 12.69
> MSE <- anova(mult.model)[4,3]
> MSE
[1] 8.989042
> s2yhathnew <- MSE + Syhath^2
> Syhathnew <- sqrt(s2yhathnew)
> ll <- Yhath - TC*Syhathnew
> ul <- Yhath + TC*Syhathnew
> SPI <- cbind(Yhath, Syhathnew, ll, ul)
> SPI

Yhath Syhathnew ll ul
1 9.841321 3.023289 3.2852500 16.39739
2 10.595871 3.044560 3.9936729 17.19807
3 7.596662 3.082063 0.9131382 14.28019
> detach(HSwrestler)



648 Probability and Statistics with R

12.17 Problems

1. The manager of a URL commercial address is interested in predicting the number of
megabytes downloaded, megasd, by clients according to the number of minutes they
are connected, mconnected. The manager randomly selects (megabyte, minute) pairs,
records the data, and stores the pairs (megasd,mconnected) in the file URLaddress.

(a) Create a scatterplot of the data. Is the relationship between megasd and mconnected
linear?

(b) Fit a regression line to the data, and superimpose the resulting line in the plot
created in part (a).

(c) Compute the covariance matrix of the β̂s.

(d) What is the standard error of β̂1?

(e) What is the covariance between β̂0 and β̂1?

(f) Construct a 95% confidence interval for the slope of the regression line.

(g) Compute R2, R2
a, and the residual variance for the fitted regression.

(h) Is the normality assumption satisfied?

(i) Are there any outlying observations?

(j) Are there any influential observations? Compute and graph Cook’s distances, DF-
FITS, and DFBETAS to answer this question.

(k) Estimate the mean value of megabytes downloaded by clients spending 10, 30, and
50 minutes on line. Construct the corresponding 95% confidence intervals.

(l) Predict the megabytes downloaded by a client spending 30 minutes on line. Con-
struct the corresponding 95% prediction interval.

2. A metallurgic company is investigating lost revenue due to worker illness. It is interested
in creating a table of lost revenue to be used for future budgets and company forecasting
plans. The data are stored in the data frame LostR.

(a) Create a scatterplot of lost revenue versus number of ill workers. Is the relationship
linear?

(b) Fit a regression line to the data, and superimpose the resulting line in the plot
created in part (a).

(c) Compute the covariance matrix of the β̂s.

(d) Create a 95% confidence interval for β1.

(e) Compute the coefficient of determination and the adjusted coefficient of determina-
tion. Provide contextual interpretations of both values.

(f) What assumptions need to be satisfied in order to use the model from part (b) for
inferential purposes?

(g) Create a table of expected lost revenues when 5, 15, and 20 workers are absent due
to illness.

(h) Compute a 95% prediction interval of lost revenues when 13 workers are absent due
to illness.
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3. To obtain a linear relationship between the employment (number of employed people
= dependent variable) and the GDP (gross domestic product = response variable), a
researcher has taken data from 12 regions. Use the following information to answer the
questions:

12∑
i=1

xi = 581
12∑

i=1

x2
i = 28507

12∑
i=1

xiYi = 2630
12∑

i=1

Yi = 53
12∑

i=1

Y 2
i = 267

Source df SS MS Fobs ℘-value
Regression * * * * *

Error * 22.08 * * *

(a) Complete the ANOVA table.

(b) Decide if the regression is statistically significant.

(c) Compute and interpret the coefficient of determination.

(d) Calculate the model’s residual variance.

(e) Write out the fitted regression line and construct a 90% confidence interval for the
slope.

4. The speed of a tennis ball after being struck with a tennis racket depends on the length
of the racket and the string tension. A multiple regression model is fit where Y is the
speed of the struck tennis ball, x1 is the length of the racket, and x2 is the string tension,
for 16 different tennis rackets. The following table displays the analysis of variance for
the fitted regression model:

Df Sum Sq Mean Sq F value Pr(>F)
x1 -- 3797.0 -- -- --
x2 -- 1331.3 -- -- --
Residuals -- 174.1 -- -- --

(a) Complete the table.

(b) Compute the regression sum of squares. Is the regression statistically significant?

(c) Estimate the model’s error variance.

(d) Compute both R2 and R2
a coefficients.

(e) Given β̂0 = −8.355, β̂1 = 3.243, β̂2 = −1.711, Var
[
β̂0

]
= 292.280, Var

[
β̂1

]
= 0.051

and Var
[
β̂2

]
= 0.029, conduct the following tests of hypotheses and comment on the

results:

H0 : β0 = 0
H1 : β0 �= 0,

H0 : β1 = 3
H1 : β1 > 3,

H0 : β2 = −1
H1 : β2 < −1.

5. Given a simple linear regression model, show

(a) σ̂2 =
∑

i ε̂2i
n−2 is an unbiased estimator of σ2.
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(b) The diagonal element of the hat matrix can be expressed as

hii = x′
i(X

′X)−1xi =
1
n

+
(xi − x̄)2∑
i(xi − x̄)2

,

where x′
i = (1, xi).

6. Show that (12.64) and (12.65) are algebraically equivalent:

Di =
(β̂(i) − β̂)′(X′X)(β̂(i) − β̂)

pσ̂2
=

r2
i

p

hii

1 − hii
.

7. Show that (12.66) and (12.67) are algebraically equivalent:

DFFITSi =
|Ŷi − Ŷi(i)|
σ(i)

√
hii

= r∗i

√
hii

1 − hii

8. Show that the SSE in a linear model expressed in summation notation is equivalent to
the SSE expressed in matrix notation:

SSE =
n∑

i=1

(Yi − Ŷi)2 = Y′Y − β̂X′Y

9. Show that the SSR in a linear model expressed in summation notation is equivalent to
the SSR expressed in matrix notation:

SSR =
n∑

i=1

(Ŷi − Ȳ )2 = β̂′X′Y − 1
n
Y′JY

10. Show that the trace of the hat matrix H is equal to p, the number of parameters (βs),
in a multiple linear regression model.

11. Suppose a realtor wants to model the appraised price of an apartment in Vitoria as a
function of the predictors living area and the status of the apartment’s conservation.
Consider the data frame vit2005, which contains data about apartments in Vitoria,
Spain, including total price, area, and conservation. The variable conservation has four
levels: 1A, 2A, 2B, and 3A.

(a) Define a new conservation variable called conservation1with three levels, A, B, and
C, where A = 1A, B = 2A, and C = 2B and 3A together. Define the corresponding
dummy variables considering A (the first category) as the reference category.

(b) Write and fit separate linear regression models (different intercepts and different
slopes) for each conservation1 category.

(c) Construct a single scatterplot of the data where the fitted models are superimposed
over the scatterplot.

Case Study: Biomass
Data for this case study come from Gobierno de Navarra and Gestión Ambiental de

Viveros y Repoblaciones de Navarra, 2006.
The data were obtained within the European Project FORSEE.
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12. To estimate the amount of carbon dioxide retained in a tree, its biomass needs to be
known and multiplied by an expansion factor (there are several alternatives in the liter-
ature). To calculate the biomass, specific regression equations by species are frequently
used. These regression equations, called allometric equations, estimate the biomass of
the tree by means of some known characteristics, typically diameter and/or height of the
stem and branches. The biomass file contains data of 42 beeches (Fagus Sylvatica) from
a forest of Navarra (Spain) in 2006, where

• Dn: diameter of the stem in centimeters

• H: height of the tree in meters

• PST: weight of the stem in kilograms

• PSA: aboveground weight in kilograms

(a) Create a scatterplot of PSA versus Dn. Is the relationship linear? Superimpose a
regression line over the plot just created.

(b) Create a scatterplot of log(PSA) versus log(Dn). Is the relationship linear? Superim-
pose a regression line over the plot just created.

(c) Fit the regression model log(PSA) = β0 + β1 log(Dn), and compute R2, R2
a, and the

variance of the residuals.

(d) Introduce H as an explanatory variable and fit the model log(PSA) = β0+β1 log(Dn)+
β2H. What is the effect of introducing H in the model?

(e) Complete the Analysis questions for the model in (d).

Analysis questions:

(1) Estimate the model’s parameters and their standard errors. Provide an inter-
pretation for the model’s parameters.

(2) Compute the variance-covariance matrix of the β̂s.
(3) Provide 95% confidence intervals for β̂1 and β̂2.
(4) Compute the R2, R2

a, and the residual variance.
(5) Construct a graph with the default diagnostics plots of R.
(6) Can homogeneity of variance be assumed?
(7) Do the residuals appear to follow a normal distribution?
(8) Are there any outliers in the data?
(9) Are there any influential observations in the data?

(f) Obtain predictions of the aboveground biomass of trees with diameters Dn =
seq(12.5,42.5,5) and heights H = seq(10,40,5). Note that the weight predictions
are obtained from back transforming the logarithm. The bias correction is obtained
by means of the lognormal distribution: If Ŷpred is the prediction, the corrected
(back-transformed) prediction Ỹpred is given by

Ỹpred = exp(Ŷpred + σ̂2/2)

where σ̂2 is the variance of the error term.

(g) Fit the following regression model for the weight of the stem. PST = β0 +β1Dn+β2H.

(h) Display the default diagnostics plots. What does the plot of the fitted values versus
the residuals suggest?
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(i) Propose a model to correct the problem from part (h).

(j) Does your new model correct the residuals problem detected in (h)?

Case Study: Fruit Trees
Data and ideas for this case study come from Militino et al. (2006).

13. To estimate the total surface occupied by fruit trees in three small areas (R63, R67,
and R68) of Navarra in 2001, a sample of 47 square segments has been taken. The
experimental units are square segments or quadrats of 4 hectares, obtained by random
sampling after overlaying a square grid on the study domain. The focus of this case
study is to illustrate two different techniques used to obtain estimates: direct estimation
and small area estimation. The direct technique estimates the total surface area by
multiplying the mean of the occupied surface in the sampled segments by the total
number of segments in every small area. The small area technique consists of estimating
a regression model where the dependent variable is the observed surface area occupied
by fruit trees in every segment and the explanatory variables are the classified cultivars
by satellite in the same segment and the small areas where they belong to. The final
surface area totals are obtained by multiplying the total classified surface area of every
small area by the β’s parameter estimates obtained from the regression model (observed
surface area ∼ classified surface area + small areas).

The surface variables in the data frame satfruit are given in m2:

• QUADRAT is the number of sampled segment or quadrat

• SArea are the small areas’ labels

• WH is the classified surface of wheat in the sampled segment

• BA is the classified surface of barley in the sampled segment

• NAR is the classified surface of fallow or non-arable land in the sampled segment

• COR is the classified surface of corn in the sampled segment

• SF is the classified surface of sunflower in the sampled segment

• VI is the classified surface of vineyard in the sampled segment

• PS is the classified surface of grass in the sampled segment

• ES is the classified surface of asparagus in the sampled segment

• AF is the classified surface of lucerne in the sampled segment

• CO is the classified surface of rape Brassica napus in the sampled segment

• AR is the classified surface of rice in the sampled segment

• AL is the classified surface of almonds in the sampled segment

• OL is the classified surface of olives in the sampled segment

• FR is the classified surface of fruit trees in the sampled segment

• OBS is the observed surface of fruit trees in the sampled segment

(a) Characterize the shape, center, and spread for the variable FR.

(b) What is the maximum number of m2 of classified fruits by segment?

(c) How many observations are there by small area?

(d) Use pairs() to explore the linear relationships between OBS and the remainder of
the numerical variables. Comment on the results.
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(e) Create histograms of the observed fruits surface area (OBS) by small areas (SArea).

(f) Use boxplots and barplots with standard errors to compare the observed surface
area (OBS) and the classified surface area (FR) by small areas (SArea).

(g) Compute the correlation between OBS and all other numerical variables. List the
three variables in order along with their correlation coefficients that have the highest
correlation with OBS.

Model (A) Fit the linear regression model, called Model (A), of OBS versus the rest
of the numerical variables in the same order as they are recorded in the
file.

i. Do an ANOVA and decide which variables are statistically significant. Use
α = 0.05.

ii. Compute the coefficient of determination R2, R2
a, the AIC, and the BIC statis-

tic. What is the proportion of total variability explained by Model (A)?

Model (B) Find the best regression model using leaps() with the R2
a method,

from the package leaps. Call this Model (B).
Model (C) Find the best regression model using step() to determine the best

subset regression. Call this Model (C).

i. Check that the coefficient of determination R2, the adjusted R2
a, the AIC, and

the BIC of Models (A), (B), and (C) are the following:
Model R2 R2

a AIC BIC
Model (A) 0.78 0.69 880 909
Model (B) 0.78 0.72 871 891
Model (C) 0.75 0.72 867 878

What is the best model using both AIC and BIC statistics? Why?
ii. Check that leaps() chooses the variables SF, PS, ES, AF, CO, AR, AL, OL, and

FR and step() chooses PS, AL, OL, and FR.
iii. Graph the default diagnostic regression plots of Model (C). Plot the standard-

ized residuals, the student residuals, the Cook distances, the diagonal elements
of the hat matrix, the DFFITS, and DFBETAS of Model (C).

iv. Are there any leverage points?
v. Are there any outliers?
vi. Test the normality hypothesis with shapiro.test. Check graphically the

absence of heteroscedasticity in Model (C).

Model (D) Introduce SArea in Model (A). Choose the best model using step and
call it Model (D).

i. Do an ANOVA for Model (D). What variables are statistically significant?
Calculate 95% confidence intervals for the βs of the explanatory variables.

ii. Check that the coefficient of determinations R2, R2
a, the AIC, and the BIC

statistic of Model (D) are the following:
Model R2 R2

a AIC BIC
Model (D) 0.81 0.79 855 868

iii. Use the function drop1() to test the statistically significant presence of PS and
AL.

iv. Use the confidence.ellipse() function from the package car to test that PS
and AL are jointly equal to zero.
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Model (E) Drop out the variables PS and AL of Model (D). The new model is called
Model (E).

i. Do the default diagnostic regression plots of Model (E).
ii. Plot the standardized residuals, the student residuals, the Cook distances, the

diagonal elements of the hat matrix, the DFFITS, and DFBETAS of Model
(E).

iii. Are there any leverage points? Justify the answer given.
iv. Are there any outliers? Justify the answer given.
v. Check normality and homoscedasticity for Model (E) using graphics and hy-

potheses tests.

Model (F) Drop out the 46 record of Model (E). Fit the new model and call it
Model (F).

i. Do the default diagnostic regression plots of Model (F).
ii. Plot the standardized residuals, the student residuals, the Cook distances, the

diagonal elements of the hat matrix, the DFFITS, and DFBETAS of Model
(F).

iii. Are there any leverage points?
iv. Are there any outliers?
v. Check the adequacy of the normality and homoscedasticity assumptions of

Model (F).
vi. Compute 95% confidence intervals for the parameters of the explanatory vari-

ables in Model (F) and comment on the results.

(h) How many hectares of observed fruits are expected to be incremented if the classified
hectares of fruit trees by the satellite are increased by 10000 m2 (1 ha)?

(i) Suppose the total classified fruits by the satellite in area R63 is 97044.28 m2, in
area R67 is 4878603.43 m2, and in area R68 is 2883488.24 m2. Calculate the total
prediction of fruit trees by small areas.

(j) Plot in the same graphical page FR versus OBS separately by the three areas.
Superimpose the corresponding regression lines.

(k) Plot the individual predictions versus the observed data. Add a diagonal line to the
plot.

(l) Do a barplot to graph simultaneously the predicted totals and the direct estimates
by areas knowing that the total number of classified segments in areas R63, R67,
and R68, are 119, 703, and 564, respectively..

Case Study: Real Estate
Data from Departamento de Economı́a y Hacienda de la Diputación Foral de Álava,

and LKS Tasaciones

14. The goal of this case study is to walk the user trough the creation of a parsimonious
multiple linear regression model that can be used to predict the total price (totalprice)
of apartments by their hedonic (structural) characteristics. The data frame vit2005
contains several variables, and further description of the data can be found in the help
file.

(a) Plot totalprice versus the numerical explanatory variables area, age, floor,
rooms, toilets, garage, elevator, and tras to see if these variables have a linear
relationship with totalprice.
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Model (A) Create a linear regression model, called Model (A), between totalprice
as the response variable and the rest of the variables as explanatory
variables in the same order as they appear in the file.

(i) Do an analysis of variance of Model (A). Decide which variables are statistically
significant using α = 0.05.

(ii) Verify that if age and floor are specified last in the model, then age is not
statistically significant.

Model (B) Load the leaps package. Using leaps() with the R2
a method, determine

the best regression subset, and call this subset Model (B).

(i) The function leaps() excludes conservation but not the age variable. This
happens because both variables are correlated. Create a boxplot of age for each
level of conservation.

(ii) Does the boxplot help to explain the correlation between age and conservation?

Model (C) Use the step() command and determine the best regression subset. Call
this Model (C).

(i) Comment on the results of Model (C)
(ii) Compare the results with those obtained from Model (B). In other words, do

the procedures step() and leaps() select the same variables?

Model (D) Define a new model using the name Model (D) with the intersection of
the variables from models (B) and (C).

(i) Find R2, R2
a, AIC, and BIC for Model (D).

(ii) Compare R2, R2
a, AIC, and BIC for Model (D) with those values as obtained

from Models (A), (B), and (C).

(b) Graph the default diagnostic regression plots of Models (A), (B), (C), and (D), and
test for the models’ assumptions.

(c) Load the MASS package. Choose a transformation of the Box-Cox family to reduce
the heteroskedasticity in Model (D).

(d) Compute the correlations between log(totalprice) and the rest of the quantitative
variables in vit2005. Compare the results with those obtained with totalprice.

(e) Plot log(totalprice) versus the numerical explanatory variables area, age, floor,
rooms, toilets, garage, elevator, and tras one at a time. Is the relationship
between log(totalprice) and the chosen explanatory variables linear?

Model (E) Find the linear regression model between log(totalprice) and the rest
of the variables in data frame vit2005.

(i) Do the analysis of variance for Model (E).
(ii) What variables are statistically significant?
(iii) Is it possible to select an appropriate model using the analysis of variance?

Model (F) Let Model (F) be the model that results when the R2
a criterion and the

function leaps() are used to select a model.
Model (G) Let Model (G) be the model that results from using the function step()

to select a model.

(i) Find R2, R2, R2
a, AIC, and BIC for Models (E), (F), and (G), and interpret

the results.
(ii) Compute the model’s parameters of Model (G) and their standard errors.
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(iii) Find the variance inflation factors for Model (G). Is multicollinearity a prob-
lem?

(iv) Graph the diagnostic regression plots of Model (G). Check if the model as-
sumptions are valid.

(v) Construct and interpret 95% confidence intervals for the parameters in Model
(G).

(vi) Check graphically the linearity of the explanatory variables area and age in
Model (G). Create a graph of the standardized residuals versus the explanatory
variables.

(vii) Plot the standardized residuals, the studentized residuals, the Cook distances,
the diagonal elements of the hat matrix, the DFFITS, and the DFBETAS
(variables area and age ) of Model (G).

(viii) Are there any leverage points?
(ix) Are there any outliers?

(f) Drop separately and jointly both observations 3 and 93 and refit Model (G).

Model (H) Drop observation 3 to obtain Model (H).
Model (I) Drop observation 93 to obtain Model (I).
Model (J) Drop both observations 3 and 93 to obtain Model (J).

(i) Find R2, R2
a, AIC, and BIC for Models (H), (I), and (J). Comment on the

results.
(ii) Graph the model regression diagnostics of Models (H), (I), and (J). Check if

the models’ assumptions are satisfied.

(g) Use drop1() to check whether or not every explanatory variable in Model (J) is
statistically significant.

Model (K) Define a new Model (K) without the streetcategory variable.

(i) Find R2, R2
a, AIC, and BIC of Model (K). Compare them with those obtained

for Model (J).
(ii) Graph the default diagnostic regression plots of Model (K), and test the model’s

assumptions.
(iii) Calculate the influence measures for Model (K).
(iv) Are there any leverage points? Justify.
(v) Are there any outliers? Justify.
(vi) Find the parameter estimates, and compute 95% confidence intervals for the

parameters of Model (K).
(vii) Find the relative contribution of the explanatory variables to explaining the

variability of the prices in Model (K).
(viii) What is the variable that explains the most variability?
(ix) What variables jointly explain 80% of the total variability of log(totalprice)?
(x) Find the predictions of Model (K) (a) with bias correction and (b) without bias

correction. The bias correction is obtained by means of the lognormal distribu-
tion: If Ŷpred is the prediction of Model (K), the corrected (backtransformed)
prediction Ỹpred of Model (K) is given by

Ỹpred = exp(Ŷpred + σ̂2/2)

where σ̂2 is the variance of the error term, and the confidence interval is given
by
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linf = exp(Ŷpred + σ̂2/2 − z1−α/2

√
V̂ar(Ŷpred) + V̂ar(σ̂2)/4)

lsup = exp(Ŷpred + σ̂2/2 + z1−α/2

√
V̂ar(Ŷpred) + V̂ar(σ̂2)/4)

and V̂ar(σ̂2) = 2σ̂4

dfresidual

(xi) For Model (K), plot the predicted values (with and without bias correction)
versus observed values. Comment on the results.

(xii) Show that in Model (K) an increment of 10 m2 in the area of a flat implies an
increment of 4% in the predicted total price. To verify this, find the predicted
price of three apartments with areas 80, 90, and 100 m2, respectively, and
keep the rest of the explanatory variables fixed. For example, assign them the
following values: category=2A, age=10, toilets=1, garage=1, elevator=1,
out=50, rooms=3, zone=41, and tras=1. Compute the corresponding 95%
prediction intervals.

(xiii) What is the percentage change in the total price of an apartment when the
number of garages changes from one to two?

(xiv) What is the percentage change in the total price of an apartment when the
heating type changes from “1A” to “3B”?





Appendix A

S Commands

Table A.1: Useful Commands When Working with Numeric Vectors

Function Description

cbind(x,y) Joins vectors x and y as columns of vectors

cor(x,y) Computes the correlation coefficient

cos(x) Returns the cosine for all values in x

exp(x) Computes ex for all values in x

fivenum(x) Computes the smallest value, the lower hinge, the median,
the upper hinge, and the largest value of a vector x in R

floor(x) Returns a numeric vector containing the largest integers
not greater than the corresponding elements of x

IQR(x) Returns the interquartile range of x

length(x) The number of values in x

log(x) Computes the natural logarithm for all values in x

log10(x) Computes the base 10 logarithm for all values in x

mad(x,constant=1) Returns the median absolute deviation of x

max(x) The largest value of x

mean(x) Computes the sample mean of x

median(x) Returns the sample median of x

min(x) The smallest value of x

prod(x) The product of all the values in x

quantile(x) Computes the quantiles of a data set stored in a vector x

range(x) Returns the smallest and largest values in x

rbind(x,y) Joins vectors x and y as rows of vectors

rep(x,n) Repeats vector x n times

round(x,n) Rounds the number of decimals to n for object x

scale(x) Computes the z-score of x

sd(x) Computes the sample standard deviation of x in R

seq(x,y,n) Creates a sequence of numbers from x to y with incremental
value n

sin(x) Returns the sine for all values in x

659
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Table A.1: Useful Commands When Working with Numeric Vectors (continued)

Function Description

sqrt(x) Computes the square root for all values in x

stdev(x) Computes the sample standard deviation of x in S-PLUS

sum(x) The sum of all the values in x

summary(x) Returns the minimum, the first quartile, the median, the
mean, the third quartile, and the maximum of x

tan(x) Returns the tangent for all values in x

var(x) Computes the sample variance of x

which(x==n) Give the index of number n in vector x

Table A.2: S Vector and Matrix Functions
Function Description

A%*%B Matrix multiplication of A and B

diag(matrix) Extracts the diagonal elements of the
matrix

diag(vector) Produces a diagonal matrix with the
elements from the vector

dim(matrix) Obtains the matrix dimensions

dimnames(matrix) Verifies if rows and columns names have
been assigned

eigen(matrix) Used to compute eigenvalues and eigenvec-
tors

matrix(vector, nrow=r, byrow=TRUE) Creates a matrix by rows with n rows

names(vector) Allows the assignment of names to a vector

order(vector, matrix, data frames) Orders by more than one variable

set.seed(number) Reproduces the same set of pseudo-random
numbers

solve(A) Used to find the inverse of a matrix A

solve(A,b) Used to solve systems of equations Ax = b

sort(vector) Produces an ordered vector

svd(matrix) Used to find the singular value decomposi-
tion of a matrix

t(A) Used to find the transpose of a matrix A
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Table A.3: S Functions Used with Arrays, Factors, and Lists
Function Description

aggregate(x, y, FUN, ...) Applies function FUN to each element of x based on
the categories stored in y and gives the results in a
data frame

apply(X, MARGIN, FUN, ...) Applies function FUN to each MARGIN of X , where
X is an array. MARGIN is a vector giving the
subscripts over which the function will be applied.
1 indicates rows, 2 indicates columns, ‘c(1,2)’
indicates rows and columns, etc.

attach(object) Makes the columns of an object (e.g. data frame)
available by names

detach(object) Detaches an object when finished working with it
dump() Saves the contents of an S object
ftable() Creates a compact three-way contingency table
head() Shows the first six rows of a data frame
lapply(X,FUN) Applies function FUN to each element of X , where

X is a list and the answer is given in the form of a
list

load() Reads a file created with save() in R

margin.table() Adds margins to a contingency table
prop.table() Calculates proportions in a contingency table
read.table() Reads a file in table format
row.names() Can be used to assign character names to rows of a

data frame
sapply(X,FUN) Calls the function lapply, which applies function

FUN to each element of X , where X is either a list or
vector. Note that even if X is a list, sapply(X,FUN)
returns either a vector or matrix, not a list, as does
lapply(X,FUN)

save() Writes an external representation of R objects
scan() Reads data into a vector or list from the console or

file
source() Reads a dumped file
split(x,f) Returns a list of vectors containing the values for

the resulting groups when the vector x is split by
the factor f

table() Creates a contingency table based on the supplied
factors

tail() Shows the last six rows of a data frame
tapply(x,y,FUN) Applies function FUN to each element of x based on

the categories stored in y.
write.table() Allows the contents of an S data frame or matrix to

be saved to an external file in ASCII format
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Table A.4: Important Probability Distributions That Work with rdist , pdist , ddist ,
and qdist

Distribution S name Parameters
beta beta shape1, shape2
binomial binom n, p
chi-square chisq df = ν
exponential exp λ
F f ν1, ν2

Gamma gamma shape, rate
geometric geom p
hypergeometric hyper m, n, k, where

m = number of black balls in urn
n = number of white balls in urn
k = number of balls drawn from the urn

negative binomial nbinom n, p
normal norm μ, σ
Poisson pois λ
Student’s t t df = ν
uniform unif a, b
Weibull weibull shape, scale
Wilcoxon rank sum wilcox n,m (number of observations on the first

and second sample, respectively)
Wilcoxon signed rank signrank n

Table A.5: Useful Functions in S for Parametric Inference
Function Description

fisher.test(x,y=NULL, ...) Performs Fisher’s exact test for testing the
null hypothesis of independence between rows
and columns in a contingency table (x) with
fixed marginals.

prop.test(x,n,p,
alternative="two.sided",
conf.level=0.95, correct=TRUE)

Compares proportions against hypothesized
values, where x is a vector of successes, n is
vector containing the number of trials, and p is
a vector of probabilities of success specified by
the null hypothesis. A continuity correction
(correct=TRUE) is used by default.

t.test(x,y=NULL,
alternative="two.sided", mu=0,
paired=FALSE, var.equal=TRUE,
conf.level=.95)

Performs a one-sample, two-sample, or paired
t-test, or a Welch modified two-sample t-test.
In S-PLUS the default value for var.equal is
TRUE.

var.test(x,y,
ratio=1,alternative="two.sided",
conf.level=0.95)

Performs an F -test to compare the variances
of two samples from normal populations.
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Table A.6: Useful Functions in S for Nonparametric Inference
Function Description

binom.test(x,n,p=0.5,
alternative="two.sided")

Performs an exact test of a simple null hypothesis
about the probability of success in a Bernoulli
experiment.

chisq.gof(x, n.classes,
mean=mean(x),
cut.points=NULL, distribution
="normal", n.param.est=0)

Not directly available in R. Performs a chi-
square goodness-of-fit test, where x is numeric
vector of observations, n.classes specifies the
number of cells into which the observations
are to be allocated, cut.points is a vector of
cutpoints that define the cells, distribution is
a character string that specifies the hypothesized
distribution, and n.param.est is the number of
parameters estimated from the data.

chisq.test(x,y=NULL,
correct=TRUE)

Performs a Pearson’s chi-square test on a two-
dimensional contingency table, where x is either
a matrix or a contingency table.

friedman.test(y, groups,
blocks)

Performs a Friedman rank-sum test with unrepli-
cated blocked data, where y is numeric vector,
groups is a category object specifying group
membership, and blocks is a category object
specifying the block membership.

kruskal.test(y, groups) Performs a Kruskal-Wallis rank-sum test on data,
where y is a numeric vector and groups denotes a
category object of the same length as y, specifying
the group for each corresponding element of y.

ks.gof(x, y=NULL,
distribution = "normal",
alternative="two.sided")

(Not directly available in R; however, ks.test in
R provides similar results to ks.gof.) Performs
a one- or two-sample Kolmogorov-Smirnov test,
which tests the relationship between two distri-
butions.

wilcox.test(x,y,
alternative="two.sided",
mu=0, paired=FALSE,
exact=FALSE, correct=TRUE)

Computes Wilcoxon signed-rank test for paired
or one-sample data and Wilcoxon rank-sum test
(Mann-Whitney test) for two-sample data.
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Table A.7: Useful Functions in S for Linear Regression and Analysis of Variance
Function Description

aov(formula,data) Fits an analysis of variance model according to
the specified formula using the specified data.

coefficients(lm object) Returns the coefficients from a fitted linear
regression model. A shorter command with
identical results is coef(lm object).

data.matrix(proj(aov.object)) Returns columns containing estimates for
both factors and residuals of aov-type objects.

formula(lm object) Returns the formula used to fit the linear
model.

lm(formula,data) Fits a linear model to the data according to
the user-specified formula.

ls.diag(lm object) A command used on a ls- or lm-type of object
that returns a list containing several quantities
for assessing the fit of a least squares regres-
sion model including the standard deviation
of the residuals, studentized residuals, and the
standard errors of the parameter estimates.

lsfit(explanatory variables,
response variable(s))

Fits a model using least squares multivariate
regression. A list of the estimated coefficients
and residuals as well as the QR decomposition
of the matrix of explanatory variables is
returned. Although the fitted model from
lsfit() is identical to lm(), the manner in
which the model is specified and the output
for the two functions are different.

model.matrix(lm object) Creates a design matrix.

multicomp(aov object) (Not directly available in R; however,
TukeyHSD() provides similar results to
multicomp() when the default argument
for method, "best.fast," is changed
to method="tukey".) S-PLUS function
multicomp() computes simultaneous or
non-simultaneous confidence intervals or
bounds for the specified estimatable linear
combinations of the parameters in a fixed
effects model (stored in aov).

shapiro.test(x) Computes the Shapiro-Wilk W -statistic, a
well-known goodness-of-fit test for the normal
distribution.
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Table A.8: Useful Contrast Functions in S for Linear Regression and Analysis of Variance
Function Description

contr.helmert() Returns a matrix of orthogonal contrasts for different
combinations of the factor levels. Contrast i is the
difference between level i + 1 and the average of levels 1
through i.

contr.poly() Returns a matrix of orthogonal contrasts for different
combinations of the factor levels. Creates orthogonal
polynomials of degree 1, 2, etc., either on equally spaced
points if n was a single number, or on the points specified
by x. Columns are scaled to have norm 1.

contr.sum() Returns a matrix of non-orthogonal contrasts.

contr.treatment() Returns the coding that is not technically a set of contrasts
at all.

Table A.9: Useful Model Building Functions in S for Linear Regression and Analysis of
Variance

Function Description

add1(lm object, ∼.+
explanatory.variables)

Returns information on models that have one
more term than the given object. Tilde, ∼, is
the symbol used by S to separate the response
variable from the explanatory variables.

drop1(lm object) Returns total sum of squares, residual sum of
squares, and AIC each time a variable is dropped
from a regression model. S-PLUS also reports
the CP each time a variable is dropped from the
model.

leaps(explanatory variables,
response variable)

Returns CP , R2
adj , and R2 so user can select

the best regressions using a subset of the given
explanatory variables.

step(lm object, scope, ... ) Performs stepwise model selection. The starting
model is specified in the first argument (lm
object) and the range of models is specified in
the scope argument.

update(lm object, ∼.±
explanatory.variables)

Allows a linear model object to be updated by
including, eliminating, or modifying the variables.
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Table A.10: Useful Diagnostic Functions in S for Linear Regression and Analysis of Variance
Function Description

fitted(lm object) Returns the fitted values from the fitted linear model.

plot(lm object) S-PLUS creates six graphs (four in R) showing
various residuals graphs and a graph of Cook’s
distance values for the fitted linear model.

predict(lm object) Returns a vector or an array of predictions using the
model specified in the lm object.

residuals(lm object) Returns the residuals for the fitted linear model. A
shorter command with identical results is resid(lm
object).

summary(lm object) Returns a complete statistical summary for the fitted
linear model.

Table A.11: Trellis Functions
Function Description

barchart(f∼x|z) Bar chart, categorized according to f

bwplot(f∼x | z) Boxplots for the levels of f (a factor) conditioning
on z (another factor)

densityplot(∼x|z) Density estimate graph

dotplot(f∼x|z) Dotplot with data categorized by f

histogram(∼x|z) Histogram

qq(f∼x|z) Quantile-quantile plot, f having two levels

qqmath(∼x|z) Quantile-quantile graph of a data set versus a
distribution’s quantiles

stripplot(f∼x | z) Strip plots for the levels of f (a factor) conditioning
on z (another factor)

xyplot(y∼x|z) x-y scatterplot

Note: x, y, and z represent any numeric variable and f any factor or
character variable.
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Table A.12: Basic Plotting Functions
Function Description

abline(a, b) Adds a straight line with intercept a and slope b.

abline(h=c,. . .) Draws a horizontal line at y = c.

abline(v=c,. . .) Draws a vertical line at x = c.

identify(x, y, labels) Reads the position of the graphics pointer when
the left mouse button is clicked. x and y are
the coordinates of points in a scatterplot and are
required arguments. labels is an optional vector,
the same length as x and y, giving labels for the
points.

legend(x, y, legend, . . .) Adds a legend to the current plot, where x
and y determine the legend coordinates, and
legend is a vector of text values to appear in
the legend. To determine the coordinates where
we want to place our legend, use the function
locator(). It is possible to combine the functions
legend() and locator() into one step by using
legend(locator(), legend,. . .).

lines(x,y,. . .) Adds points or lines to the current plot.

locator() Reads the position of the graphics cursor when the
left mouse button is pressed.

points(x, y,. . .) Adds points or lines to the current plot at the
coordinates specified in the vectors x and y.

segments(x1, y1, x2, y2) Adds the line segment AB with coordinates A =
(x1, y1) and B = (x2, y2) to an existing graph.

text(x, y, labels) Draws the strings given in the vector labels at the
coordinates given by x and y. Note: labels is one or
more character strings or expressions specifying the
text to be written.

title("Title") Adds titles to the current plot. To create a multi-line
title, type \n at each place we want the text to start
another line.
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Table A.13: Graphs Frequently Used with Descriptive Statistics
Function Description

barplot(height, . . .) Creates a bar plot with vertical or horizontal bars
where height is a matrix or vector giving the heights
(positive or negative) of the bars.

boxplot(x) Produces a boxplot of the values stored in x.
boxplot(split(x, f)) Produces side-by-side boxplots of the values in x

based on the factor f.
bwplot() Produces horizontal boxplots in S-PLUS.
dotchart(formula, . . .) Creates a multi-way dotplot. Note: Arguments

for dotchart in R and S-PLUS are different. See
respective help systems for details.

hist(x, . . .) Creates a histogram of the values in x.
interaction.plot(x.factor,
trace.factor, response,
. . .)

Plots the mean (or other summary) of the response
for two-way combinations of factors where x.factor
contains the levels for the x axis, trace.factor
is another factor whose levels form the traces,
and response is a numeric variable containing the
responses at the various factor combinations.

lines(density()) Adds a density to an existing plot (for example, a
histogram).

pairs(x,. . .) Creates a scatterplot for each pair of variables in x.
persp(x, y, z,. . .) Three-dimensional perspective plots. See system

help for more details.
pie(x,. . .) Produces a pie chart where the values in x are

displayed as the areas of the pie slices.
plot(x,. . .) Generic function for plotting S objects.
plot(x,y) Produces a scatterplot
plot.design(x,y, fun= ) Plots univariate effects of one or more factors,

typically for a designed experiment. A function such
as mean or median must be typed after fun=, which
is then applied to each subset.

qqnorm(x) Produces a quantile-quantile plot that is used to
assess how close the values in x follow the normal
distribution.

qqline(x) Plots a line through the first and third quartiles
of the data, and the corresponding quantiles of the
standard normal distribution.

qqplot(x,y) Creates a quantile-quantile plot
stem(x) Creates a stem-and-leaf plot
stripchart(x∼g) Creates a dotplot or strip chart in R that permits

one to compare the distribution of x over g groups
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Table A.14: Commonly Used Graphical Parameters
Parameter Description

adj=0 String justification: 0 means left justify, 1 means
right justify, .5 means center the text. Other
numbers are a corresponding distance between the
extremes.

axes=TRUE/axes=FALSE axes=TRUE draws a box around the graph, which
is the default value. axes=FALSE removes the box
surrounding the graph.

cex=1 Character expansion. For example, when cex=2,
characters are twice as big as normal.

col=1 Color used for drawing lines, points, etc.
las=0 The style of axis labels (0=always parallel to the

axis—the default, 1=always horizontal, 2=always
perpendicular to the axis, 3=always vertical)

lty=1 Line type (1=solid, 2=small breaks, etc.)
lwd=1 Line width (1=default, 2= twice as thick, etc.)
main="title" Title for graph
par() Used to set or query graphical parameters. See R or

S-PLUS help files for more detail.
pch=19 Plotting symbol to use. For instance, 19 is a solid

circle and 22 is a square
pty="m" Type of plotting region: The default value for pty

is m, which generates a maximal size plotting region.
pty="s" generates a square plotting region.

sub="subtitle" Subtitle for graph
type="b" Both points and lines between points are used to

represent data values.
type="h" Height bars (vertical) represent data values.
type="l" Lines are used to connect data values.
type="p" Points are used to represent data values, the default

argument.
xlab="label" Label for x-axis
xlim=c(xmin,xmax) Range for x-axis
ylab="label" Label for y-axis
ylim=c(ymin,ymax) Range for y-axis





Appendix B

Quadratic Forms and Random Vectors and
Matrices

B.1 Quadratic Forms

Definition B.1: Assume that the scalar W can be expressed as a function of the n
variables Y1, Y2, . . . , Yn. That is,

W = f(Y1, Y2, . . . , Yn) = f(Y) and
δW

δY
=

⎡⎢⎣
δW
δY1
...

δW
δYn

⎤⎥⎦ .

Definition B.2: Let A be an n × n matrix and Y =

⎡⎢⎣ Y1

...
Yn

⎤⎥⎦ be an n × 1 column vector

of real variables. Then q = Y ′AY is called a quadratic form in Y, and A is called the
matrix of the quadratic form.

Rules for Differentiation

1. Let W = A′Y , where A is a vector of scalars. Then δW
δY = A.

2. Let W = Y ′Y . Then, δW
δY = 2Y.

3. Let W = Y ′AY , where A is an n × n matrix. Then δW
δY = AY + A′Y.

Example B.1 Let A =

⎡⎣ 5 2 1
2 3 −6
1 −6 4

⎤⎦ and Y =

⎡⎣ Y1

Y2

Y3

⎤⎦.

Then, W = Y′AY = 5Y 2
1 + 3Y 2

2 + 4Y 2
3 + 4Y1Y2 + 2Y1Y3 − 12Y2Y3, and the partial

derivatives of W are

δW
δY1

= 10Y1 + 4Y2 + 2Y3

δW
δY2

= 6Y2 + 4Y1 − 12Y3

δW
δY3

= 8Y3 + 2Y1 − 12Y2
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or by Rule for Differentiation 3

δW
δY

= AY + A′Y =

⎡⎣ 10Y1 + 4Y2 + 2Y3

4Y1 + 6Y2 − 12Y3

2Y1 − 12Y2 + 8Y3

⎤⎦

B.2 Random Vectors and Matrices

A random vector or a random matrix contains elements that are themselves random
variables rather than real variables or scalar values.

Definition B.3: Given a p × 1 random vector Y =

⎡⎢⎢⎢⎣
Y1

Y2

...
Yp

⎤⎥⎥⎥⎦, the expected value of Y,

denoted by E(Y), is defined as E(Y) =

⎡⎢⎢⎢⎣
E(Y1)
E(Y2)

...
E(Yp)

⎤⎥⎥⎥⎦.

Basically, the expected value of a random vector is the vector of the expected values of
the elements in the random vector. This concept extends to the expected value of a random
matrix as well. That is, given a random n×p matrix Y, E(Y) = [E(Yij)] for all i = 1, . . . , n
and j = 1, . . . , p pairs.

B.3 Variance of Random Vectors

Recall that the variance of a random variable Y defined in (3.7) on page 92 measures
the variability of Y about its mean μ. Specifically,

σ2
Y = Var(Y ) = E

[(
Y − E(Y )

)2
]

= E
[
(Y − μ)2

]
The notion of variability is slightly more challenging to extend to vectors and matrices.
The difficulty arises because of the covariance between random variables. Recall that the
covariance between random variables X and Y was defined as

Cov [X, Y ] = E
[
(X − μX)(Y − μY )

]
in (5.14) on page 181. To compute both the variances and covariances of random variables in

the p×1 random vector Y =

⎡⎢⎣ Y1

...
Yp

⎤⎥⎦, we construct a p×p matrix where the diagonal entries
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are the variances of Y1 to Yp, while the off diagonal entries are the covariances between Yi

and Yj , where i �= j.

Definition B.4: The variance-covariance matrix of Y, denoted σ2
Y, is defined as

σ2
Y = E

[
(Y − μY)(Y − μY)′

]
(B.1)

The calculations of the expanded form of σ2
Y are

σ2
Y = E

[
(Y − μY)(Y − μY)′

]

= E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
Y1 − μ1

Y2 − μ2

...
Yp − μp

⎤⎥⎥⎥⎥⎦ [Y1 − μ1, Y2 − μ2, . . . , Yp − μp]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎣
E
[
(Y1 − μ1)

2
]

E
[
(Y1 − μ1)(Y2 − μ2)

] · · · E
[
(Y1 − μ1)(Yp − μp)

]
E
[
(Y2 − μ2)(Y1 − μ1)

]
E
[
(Y2 − μ2)

2
] · · · E

[
(Y2 − μ2)(Yp − μp)

]
...

...
...

E
[
(Yp − μp)(Y1 − μ1)

]
E
[
(Yp − μp)(Y2 − μ2)

] · · · E
[
(Yp − μp)2

]

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
σ2

Y1
σY1Y2 · · · σY1Yp

σY2Y1 σ2
Y2

· · · σY2Yp

...
...

...
σYpY1 σYpY2 · · · σ2

Yp

⎤⎥⎥⎥⎥⎦
The following rules will help simplify complex expressions so that their variances can be

determined more easily. It is frequently the case that a random vector, Z, is obtained by
premultiplying the random vector Y by a constant matrix A. That is, Z = AY .

1. E[A] = A

2. E[Z] = E[AY] = AE[Y]

3. σ2
Z = σ2

AY = Aσ2
YA′

where σ2
Y is the variance-covariance matrix of Y.
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