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The Book

Probability and Statistics with R is a work born of the love of statistics and the
advancements that have been made in the field as more powerful computers can be used to
perform calculations and simulations that were only dreamed of by those who came before.
The S language and its derivative, R, have made the practice of statistics available to anyone
with the time and inclination to do so.

Teachers will enjoy the real-world examples and the thoroughly worked out derivations.
Those wanting to use this book as a reference work will appreciate the extensive treat-
ments on data analysis using appropriate techniques, both parametric and nonparametric.
Students who are visual learners will appreciate the detailed graphics and clear captions,
while the hands-on learners will be pleased with the abundant problems and solutions.
(A solutions manual should be available from Taylor & Francis.) It is our hope that
practitioners of statistics at every level will welcome the features of this book and that
it will become a valuable addition to their statistics libraries.

The Purpose

Our primary intention when we undertook this project was to introduce R as a teaching
statistical package, rather than just a program for researchers. As much as possible, we
have made a great effort to link the statistical contents with the procedures used by R to
show consistency to undergraduate students. The reader who uses S-PLUS will also find
this text useful, as S-PLUS commands are included with those for R in the vast majority of
the examples.

This book is intended to be practical, readable, and clear. It gives the reader real-world
examples of how S can be used to solve problems in every topic covered including, but
not limited to, general probability in both the univariate and multivariate cases, sampling
distributions and point estimation, confidence intervals, hypothesis testing, experimental
design, and regression. Most of the problems are taken from genuine data sets rather than
created out of thin air. Next, it is unusually thorough in its treatment of virtually every
topic, covering both the traditional methods to solve problems as well as many nonparamet-
ric techniques. Third, the figures used to explain difficult topics are exceptionally detailed.
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Finally, the derivations of difficult equations are worked out thoroughly rather than being
left as exercises. These features, and many others, will make this book beneficial to any
reader interested in applying the S language to the world of statistics.

The Program

The S language includes both R and S-PLUS. “R can be regarded as an implementation of
the S language which was developed at Bell Laboratories by Rick Becker, John Chambers,
and Allan Wilks, and also forms the basis of the S-PLUS systems.”

(http://cran.r-project.org/doc/manuals/R-intro.html#Preface)

The current R is the result of a collaborative effort with contributions from all over
the world. R was initially written by Robert Gentleman and Ross IThaka of the Statistics
Department of the University of Auckland. Since mid-1997 there has been a core group
with write access to the R source (http://www.r-project.org/—click “Contributors”on the
sidebar).

Not only is R an outstanding statistical package, but it is offered free of charge and can
be downloaded from http://www.r-project.org/. The authors are greatly indebted to the
giants of statistics and programming on whose shoulders we have stood to see what we will
show the readers of this text.

The Content

The core of the material covered in this text has been used in undergraduate courses at
the Public University of Navarre for the last ten years. It has been used to teach engineering
(agricultural, industrial, and telecommunications) and economics majors. Some of the
material in this book has also been used to teach graduate students studying agriculture,
biology, engineering, and medicine.

The book starts with a brief introduction to S that includes syntax, structures, and
functions. It is designed to provide an overview of how to use both R and S-PLUS so that
even a neophyte will be able to solve the problems by the end of the chapter.

Chapter 2, entitled “Exploring Data,” covers important graphical and numerical descrip-
tive methods. This chapter could be used to teach a first course in statistics.

The next three chapters deal with probability and random variables in a generally classical
presentation that includes many examples and an extensive collection of problems to practice
all that has been learned.

Chapter 6 presents some important statistics and their sampling distributions. Solving
the exercises will give any reader confidence that the difficult topics covered in this chapter
are understood.

The next four chapters encompass point estimation, confidence intervals, hypothesis test-
ing, and a wide range of nonparametric methods including goodness-of-fit tests, categorical
data analysis, nonparametric bootstrapping, and permutation tests.

Chapter 11 provides an introduction to experimental design using fixed and random
effects models as well as the randomized block design and the two-factor factorial design.

The book ends with a chapter on simple and multiple regression analysis. The procedures
from this chapter are used to solve three interesting case studies based on real data.

The Fonts

Knowing several typographical conventions will help the reader in understanding the
material presented in this text. R code is displayed in a monospaced font with the > symbol
in front of commands that are entered at the R prompt.
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> x<-0.28354
> round(x,2)
[1] 0.28

The same font is used for data sets and functions, though functions are followed by (.
For example, the PASWR package but the round() function would be shown. Throughout
the text, a M is found at the end of solutions to examples. In the index, page numbers
in BOLD are where the primary occurrences of topics are found, while those in ITALICS
indicate the pages where a problem about a topic or using a given data set can be located.

The Web

This text is supported at http://wwwl.appstate.edu/~ arnholta/PASWR on the Internet.
The website has up-to-date errata, chapter scripts, and a copy of the PASWR package (which
is also on CRAN) available for download.
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Chapter 1

A Brief Introduction to S

1.1 The Basics of S

S is a system for interactive data analysis that was developed at Bell Laboratories. Two
dialects of the S language exist: R, an open source implementation of S available from
http://www.r-project.org, and S-PLUS, a commercial implementation of S. This book will
refer to both R and S-PLUS as simply S. The S language was designed with interactive use
in mind. In recent years, the number of new statistical methods and applications that have
been developed with this language have caused its dialect R to be considered the “lingua
franca” for computational statistics.

R and S-PLUS both run on a number of operating systems. The current text focuses on
the use of S for Windows-based machines; however, users of other operating systems should
still find the vast majority of the commands valid. Because the Graphical User Interface
(GUI) evolves so quickly, the concentration of this text is the command language that has
remained fairly static in more recent versions of R and S-PLUS. For basic command-line
data analysis, most programs written in R can be translated into S-PLUS, and vice versa.
The examples in the text use R (Version 2.6) and S-PLUS (Version 8), the current versions at
the time of writing. Code referred to as S will generally work in both R and S-PLUS. If no
program is specified, R code is usually present in this text. Comments are often provided to
indicate what changes are needed to R code to allow similar commands to run in S-PLUS.

1.2 Using S

When S is launched, the prompt, >, is displayed in the commands window, indicating
that the software is ready to receive input. The convention used in this text is to show
what is typed after the command prompt (>) followed by the output generated from what
is typed. A single expression or assignment is carried out once the user presses the Enter
key. There is no punctuation required for single expressions and assignments. However,
if the user wants to issue multiple expressions and/or assignments on a single line, each
expression or assignment must be separated with a semicolon (;). To terminate an S session,
either type q() at the command-line in the commands window or choose Exit from the
File menu in a GUI environment. On-line help can be accessed by clicking HELP in a
GUI environment or by typing help(name of command) or ?(name of command) at the
command-line. Another way of learning about a function or data set in R is to use the
function example(). This runs the code in the examples section of the help page. For
instance, to execute the code for the function plot(), enter the following code at the R
prompt:
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> par (ask=TRUE)
> example(plot)

The par (ask=TRUE) prompts the user before moving to the next example. The default
is par (ask=FALSE); and with that setting, examples available are shown without a pause,
making reading code and output nearly impossible. S is a case sensitive language! Conse-
quently, X and x refer to different objects. If the user omits a comma or a parenthesis, or
any other type of typographical error occurs when typing at the command-line, a + sign
will appear to indicate that the command is incomplete.

1.3 Data Sets

When using S, one should think of data sets as objects. All of the data sets that are
created or imported during an S-PLUS session are stored as objects in the .Data folder
of the projects directory unless they are intentionally erased with the rm() command.
Data created or imported while using R is stored in memory. The user is prompted at
the end of the R session to save the workspace. Consequently, if the computer crashes
while R is running, the workspace will be lost. Functions, as well as data sets in S, are
considered objects. To obtain a list of objects in the current workspace, type objects()
or 1s() at the command-line prompt. The directories S searches when using the functions
objects() and 1s() can be displayed by typing search() at the command-line prompt.
To extract all objects following a particular pattern with R, say all objects starting with
E, enter objects(pattern=""E"). Likewise, to remove all objects beginning with E, type
remove (list=objects(pattern=""E")). To extract all objects following a particular pat-
tern with S-PLUS, say all objects starting with E, enter objects (pattern="E*"). Likewise,
to remove all objects beginning with E, type remove (objects(pattern="E*")). These last
commands are Windows specific. If one enters the same commands on a UNIX system, ALL
of the files will be deleted. If, at some point, the entire workspace needs to be cleared, key
in rm(list=1s()).

Numerous data sets and functions exist in an extensive collection of S packages. An S
package is a collection of S functions, data, help files, and other associated files (C, C++,
or FORTRAN code) that have been combined into a single entity that can be distributed
to other S users. R packages can be downloaded and installed within an R session with the
function install.packages (). (The Windows version of R has a menu interface to perform
this task.) Once a package is installed, it can be loaded with the library () function. Data
included in a package is immediately available in S by typing the data set name at the
command prompt. Contributed R packages can be downloaded and installed from the
Comprehensive R Archive Network (CRAN) at http://www.r-project.org. A similar type
of archive for S-PLUS packages, the Comprehensive S Archival Network (CSAN), is hosted
by Insightful at http://csan.insightful.com. Consequently, if one wants to use the data set
quine, which is in the MASS package, first key in

> library(MASS)

after which one would be able to use the data set quine. The data stored in quine can be
seen by typing quine at the command prompt after MASS is loaded. To see all the data sets
in a given package, type data(). If a more complete description of a particular data file,
say Cars93, is desired, enter 7Cars93 at the prompt.
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The functions and data sets used in this book are available in the PASWR package, which
can be downloaded from CRAN at http://www.r-project.org. Scripts for each chapter are
available from http://wwwl.appstate.edu/ ~ arnholta/PASWR which also contains func-
tions and data sets for using this book with S-PLUS as well as the R PASWR package.

The use of an editor is highly encouraged for viewing and executing the on-line scripts.
Tinn-R is a free, Windows-only editor the authors have used extensively that can be
found at http://www.sciviews.org/Tinn-R/. Using an editor will also help when one is
writing and debugging code. For more on editors for a variety of operating systems, see
http://www.sciviews.org/_rgui/projects/Editors.html.

1.4 Data Manipulation

1.4.1 S Structures

Before the examples, it will be useful to have a picture in mind of how S structures are
related to one another. Figure 1.1 graphically displays the fact that

Elements C Vectors C Matrices C Arrays

As the examples progress, it will become clear how S treats these different structures.
Broadly speaking, elements are generally numeric, character, or factor. Factors are categor-
ical data whose categories are called levels. For example, “the cities of North Carolina” is
a categorical variable. A factor with four levels could be cities with populations between 1
and 1000, 1001 and 10,000, and 10,001 and 100,000, and greater than 100,000 inhabitants.

An Array =
Matrices
W
<+ Elements ——
T
Vectors
-
+ |
-
|~

FIGURE 1.1: Structures in S



4 Probability and Statistics with R

1.4.2 Mathematical Operations

Arithmetic expressions in S are the usual +, —, *, /, and ". For instance, to calculate
(7 x 3) +12/2 — 72 + /4, enter

> (7*3)+12/2-7"2+sqrt (4)
and see
[1]1 -20

as the output.

Note that the answer to the previous computation is =20 printed to the right of [1],
which indicates the answer starts at the first element of a vector. From this point forward,
the command(s) and the output generated will be included in a single section, as both will
appear in the commands window, with the understanding that the entire section can be
duplicated by entering only what follows the command prompt(s) (>). Common functions
such as log(), logl0(Q), exp(), sin(), cos(), tan(), and sqrt() (square root) are all
recognized by S. For a quick reference to commonly used S functions, see Table A.1 on
page 659. When working with numeric data, one may want to reduce the number of decimals
appearing in the final answer. The function round(x,2) rounds the number of decimals to
two for the object x:

> x <- 0.28354
> round(x,2)
[1] 0.28

Assigning values to objects in S can be done in several ways. The standard way to assign
a value to an object is by using the symbol <-. The = sign can only be used with R versions
1.6 or later and S-PLUS versions 6 or later. The user should not assign values or objects
to reserved letters such as ¢, q, s, t, C, D, F, I, or T, nor should one write functions with
names equal to S functions such as cor, var, mean, or any others. The following commands
all assign the value 7 to the object x:

> x <=7
>x =17

If x had already been assigned a value, the previous value would be overwritten with the new
value. Consequently, it is always wise first to ascertain whether an object has an assigned
value. To see if an object, say x, has an assigned value, type x at the command prompt. If
the commands window returns

> x
Error: Object "x" not found

one can assign a value or function to x without fear of erasing a preexisting value or function.

1.4.3 Vectors

One special type of object is the vector. When working with univariate data, one will
often store information in vectors. The S command to create a vector is c(...). To store
the values 1.5, 2, and 3 in a vector named x, type

> x <- ¢(1.5,2,3)
> X
[1] 1.5 2.0 3.0
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To square each value in x, enter

> x72
[1] 2.25 4.00 9.00

To find the position of the entry whose value is 4, enter

> which(x~2==4)
[1] 2

The S command c(...) also works with character data:

> y <- c("A","table","book")
>y
[1] "AM "tapble" "book"

Some of the more useful commands that are used when working with numeric vectors are
included in Table A.1 on page 659.

Two or more vectors can be joined as columns of vectors or rows of vectors. To join two
or more column vectors, use the S command cbind(). To join two or more row vectors,
use the S command rbind(). For example, suppose = = (2,3,4,1) and y = (1,1,3,7). If
column vectors are desired, use cbind ():

> x <- ¢(2,3,4,1)
>y <= ¢(1,1,3,7)
> cbind(x, y)
Xy

[1,]
[2,]
[3,]
[4,]

=W N

1
1
3
7
If row vectors are desired, use rbind ():

> rbind(x, y)

[,11 [,21 [,31 [,4]
X 2 3 4 1
y 1 1 3 7

1.4.4 Sequences

The command seq() creates a sequence of numbers. Sequences of numbers are often
used when creating customized graphs. The three arguments that are typically used with
the command seq() are the starting value, the ending value, and the incremental value.
For example, if a sequence of numbers from 0 to 1 in increments of 0.2 is needed, type
seq(0,1,0.2):

> seq(0,1,0.2)
[1] 0.0 0.2 0.4 0.6 0.8 1.0

When the incremental value is 1, it suffices to use only the starting and ending values of
the sequence:

> seq(0,8)
[11 012345678
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An even shorter way to achieve the same result is 0:8:

> 0:8
[11 012345678

Decreasing sequences are also possible with commands such as 8:0:

> 8:0
[11 876543210

The command rep(a, n) is used to repeat the number or character a, n times. For
example,

> rep(1,5)
[11 11111

repeats the value 1 five times. S is extremely flexible and allows several commands to be
combined:

> rep(c(0,"x"), 3)

[1] m"o" n"x™ "o" "x" "QO" "x"

> rep(c(1,3,2), length=10)

[1] 1321321321

> c(rep(1,3), rep(2,3), rep(3,3))
[11 111222333

> rep(1:3, rep(3,3))

[1] 111222333

Specific values in a vector are referenced using square braces []. It is important to keep
in mind that S uses parentheses () with functions and square braces [] to reference values
in vectors, arrays, and lists. A list is an S object whose elements can be of different types
(character, numeric, factor, etc.). The following values, stored in typos, represent the
number of mistakes made per page in the first draft of a research article:

> typos <- c(2, 2, 2, 3, 3, 0, 3, 4, 6, 4)
> typos
[1] 2223303464

To select the number of mistakes made on the fourth page, type typos[4]:

> typos [4]
(11 3

To get the number of mistakes made on pages three through six, enter typos[3:6]:

> typos[3:6]
[11] 2330

To extract the number of mistakes made on non-continuous pages such as the third, sixth,
and tenth pages, key in typos[c(3,6,10)]:

> typos[c(3,6,10)]
[1] 2 0 4

To extract the number of mistakes on every page except the second and third, input
typos[-c(2,3)]:
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> typos[-c(2,3)]
[11 23303464

The function names () allows the assignment of names to vectors:

> x <= ¢(1,2,3)

> names(x) <- c("A","B","C")
> x

ABC

123

To suppress the names of a vector, type names (x) <-NULL:

> names(x) <- NULL
> X
[1] 1 2 3

1.4.5 Reading Data

S has the ability to read ASCII data stored in external files. S-PLUS can read data stored
in a number of other formats, such as MINITAB™ worksheets (*.mtw) and/or SPSS files
saved as *.sav, while R is slightly more limited with respect to reading other formats. For
all but the smallest of data sets, when working with data stored in a format not readable
by S, it will almost always prove easier first to save the original data as a text file, and then
to read the external file using read.table() or scan(), although read.table() is more
user-friendly. For reading data from the console, the function scan() may be used.

1.4.5.1 Using scan()

The function scan() works well to enter a small amount of data by either typing in the
console or using a combination of copying and pasting procedures when the data can be
highlighted and copied. To enter the ages for the subjects in Table 1.1 on page 10, one can
proceed in two fashions. One can enter all of the ages in one row, or one can enter one
age per row. Note that when the values are read into both agel and age2, the input is
terminated by an empty line:

> agel <- scan()

1: 23 23 27 27 39 41 45 49 50 53 53 54 56 57 58 58 60 61
19:

Read 18 items

> age2 <-scan()
1: 23
2: 23
3: 27

18: 61
19:
Read 18 items
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1.4.5.2 Using read.table()

The function read.table() reads a file in table format (a rectangular data set where
the column variables can be quantitative and/or qualitative) and creates a data frame
from the external file. When the file contains variable names in the first row, use the
argument header=TRUE. The default setting in read.table() is white space (one or more
blank spaces) for field separation. To use other delimiters (commas, periods, etc.) consult
the read table help file (?read.table). Suppose the data set Bodyfat in Table 1.1 on
page 10 is a tab delimited ASCII data set stored in a folder named DATA under the name
Bodyfat.txt. To read the data into S from the commands window, type

> FAT <- read.table("D:/data/Bodyfat.txt", header=TRUE, sep="\t")
> FAT
age fat sex
1 23 9.5 M
2 23 27.9 F

18 61 34.5 F
Note that forward slashes (/) are used to specify the path names. To see the gender for
subjects 3 through 6, type

> FAT$sex[3:6]
[1] MMFF
Levels: F M

For R only The file argument of the read.table() command may be a complete url,
allowing one to read data into R from the Internet. To read the file BR.txt stored on the
Internet at

http://wwwl.appstate.edu/~arnholta/PASWR/CD /data/Baberuth.txt,

type

> site <-"http://wwwl.appstate.edu/~arnholta/PASWR/CD/data/Baberuth.txt"
> Baberuth <- read.table(file=url(site), header=TRUE)

Baberuth([1:5,1:9] # First five rows and nine columns

Year Team G AB R H X2B X3B HR

A\

1 1914 Bos-A 5 10 1 2 1 0 O
2 1915 Bos-A 42 92 16 29 10 1 4
3 1916 Bos-A 67 136 18 37 &5 3 3
4 1917 Bos-A 52 123 14 40 6 3 2
5 1918 Bos-A 95 317 50 95 26 11 11

1.4.5.3 Using write()

The function write () allows the contents of an S data frame or matrix to be saved to an
external file in ASCII format. However, one should be aware that information must first be
transposed when using the write command. The S command to transpose a matrix or data
frame is t (x), where x is the matrix or data frame of interest. To save the data frame FAT
to a pen drive, type
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> write(t(FAT), file="D:/Bodyfat.txt", ncolumns=3)

One of the pitfalls to storing information using write () is that the file will no longer contain
column headings:

23 9.5 M
23 27.9 F
27 7.8 M

61 34.5 F

The R function write.table() avoids many of the inconveniences associated with the S
function write(). It may be used without transposing the data, it does not lose column
headings, and it generally stores the data as a data frame. To save the data frame FAT to

a pen drive, type write.table(FAT, file="D:/Bodyfat.txt") at the R prompt. To read
the data stored on the pen drive at a later time, use the function read.table().

1.4.5.4 Using dump() and source()

Instead of using write (), one might use dump() to save the contents of an S object, be
it a data frame, function, etc. The S function dump () takes a vector of names of S objects
and produces text representations of the objects in a file. Two of the advantages of using
dump () are that the dumped file may be read in either R or S-PLUS by using the command
source () and that the names of the objects are not lost in the writing. A brief example
follows that shows how the contents of a vector named Age are saved to an external file
using R and subsequently opened using the source () command in S-PLUS:

> dump("Age", file="E:/Age") # R object Age stored on pen drive.
> source("E:/Age") # File Age stored on pen drive,

# now available in S-PLUS or R

# using the same or different

# machine.

The R function save() writes an external representation of R objects to a specified file
that can be read on any platform using R. The objects can be read back from the file at a
later date by using the function load (). If using a point and click interface, the command
is labeled Save Workspace... and Load Workspace..., respectively, found under the file
drop down menu. S-PLUS allows the user to save data sets in a variety of formats using the
Export Data command found under the file drop down menu.

1.4.6 Logical Operators and Missing Values

The logical operators are <, >, <=, >= (less than, greater than, less than or equal to,
greater than or equal to), == for exact equality, != for exact inequality, & for intersection,
and | for union. The data in Table 1.1 on the following page that are stored in the data
frame Bodyfat come from a study reported in the American Journal of Clinical Nutrition
(Mazess et al., 1984) that investigated a new method for measuring body composition.

One way to access variables in a data frame is to use the function with(). The structure
of with() is with(data frame, expression, ...):
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Table 1.1: Body composition (Bodyfat)

n age % fat sex n age % fat sex
1 23 9.5 M 10 53 34.7 F
2 23 27.9 F 11 53 42.0 F
3 27 7.8 M 12 54 29.1 F
4 27 17.8 M 13 56 32.5 F
5 39 314 F 14 57 30.3 F
6 41 25.9 F 15 58 33.0 F
7 45 27.4 M 16 58 33.8 F
8 49 25.2 F 17 60 41.1 F
9 50 31.1 F 18 61 34.5 F

> with(Bodyfat, fat)
[1] 9.5 27.9 7.8 17.8 31.4 25.9 27.4 25.2 31.1 34.7 42.0 29.1
[13] 32.5 30.3 33.0 33.8 41.1 34.5

Suppose one is interested in locating subjects whose fat percentages are less than 25%. This
can be accomplished using the with() command in conjunction with fat<25:

> with(Bodyfat, fat < 25)
[1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

To find subjects whose body fat percentages are less than 25% or greater than 35%, enter

> with(Bodyfat, fat < 25 | fat > 35)
(1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[11] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

To see the fat percentages for subjects with less than 25% fat, type

> low.fat <- with(Bodyfat, fat[fat<25])
> low.fat
[1] 9.5 7.8 17.8

To remove the subject whose body fat is 7.8 from the previous output, the following may
be used:

> with(Bodyfat, fat[fat<25 & fat!=7.8])
[1] 9.5 17.8

R returns the word TRUE or FALSE for a logical condition while S-PLUS returns the letters
T or F, where T represents true and F represents false. From the R output it can be seen
that only the first, third, and fourth subjects have fat percentages less than 25%. To select
subjects whose fat percentage is less than 25% or greater than 35% without using the with()
command, attach the data set Bodyfat and input fat<25|fat>35:

> attach(Bodyfat)
> fat<25|fat>35

[1] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[11] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
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Once the data set has been attached, the data set being used remains on the search path
until it is detached. If one wants to extract the values from a given vector that satisfy a
certain condition, use square braces, [1. For example, to store the fat values for all subjects
whose fat measured less than 25% in low.fat, key in low.fat <- fat[fat<25]:

> low.fat <- fat[fat<25]
> low.fat
[1] 9.5 7.8 17.8

It is also possible to extract values satisfying more complicated logical conditions. For
example, to extract all fat percentages that are less than 25% and different from 7.8, enter
fat[fat<25 & fat !=7.8]:

> fat[fat<25 & fat !=7.8]
[1] 9.5 17.8
> detach(Bodyfat)

When working with real data, values are often unavailable (the experiment failed, the
subject did not show up, the value was lost, etc.). S uses NA to denote a missing value or to
denote the result of an operation performed on values that contain NA values. The function
is.na(x) returns a logical vector of the same size as x that takes on the value TRUE if and
only if the corresponding element in z is NA. If x is a vector with NA values, but only the
non-missing values are of interest, the function !is.na(x) can be used as shown next:

> x <- ¢(1,6,9,2, NA)

> is.na(x)

[1] FALSE FALSE FALSE FALSE TRUE

> y<-x[!is.na(x)]

>y

[11 1 6 9 2

The following example illustrates how to select the quantitative values of a variable that
fulfill a particular character condition (that of receiving treatment A):

> x <- ¢(19,14,15,17,20,23,19,19,21)

> treatment <- c(rep("A",3), rep("B",3), rep("C",3))
> x[treatment=="A"]

[11 19 14 15

To select the value for patients who received treatment=A or treatment=B, the appropriate
command is x[treatment=="A"|treatment=="B"]:

> x[treatment=="A" | treatment=="B"]
[1] 19 14 15 17 20 23

The function split() splits the values of a variable A according to the categories of a
variable B:

> split(x, treatment)
$A
[1] 19 14 15

$B
[1] 17 20 23

$C
[1] 19 19 21
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1.4.7 Matrices

Matrices are used to arrange values in rows and columns in a rectangular table. In the
following example, different types of barley are in the columns, and different provinces in
Spain are in the rows. The entries in the matrix represent the weight in thousands of metric
tons for each type of barley produced in a given province. The barley.data matrix will
be used to illustrate various functions and manipulations that can be applied to a matrix.
Given the matrix

190 822.0
191 4 1.7
22380 2.0

)

the values are written to a matrix (reading across the rows with the command byrow=TRUE)
with name barley.data as follows:

> Data <- ¢(190,8,22,191,4,1.7,223,80,2)
> barley.data <- matrix(Data, nrow=3, byrow=TRUE)
> barley.data
(.11 [,2] [,3]
(1,1 190 8 22.0
[2,] 191 4 1.7
[3,1 223 80 2.0

The matrix’s dimensions are computed by typing dim(barley.data):

> dim(barley.data)
[1] 33

The following code creates two objects where the names of the three provinces are assigned
to province, and the three types of barley to type:

> province <- c("Navarra", "Zaragoza", "Madrid")
> type <- C("typeA", "typeB", "typeC")

Assign the names stored in province to the rows of the matrix as follows:

> dimnames(barley.data) <- list(province, NULL)
> barley.data
[,11 [,21 [,3]
Navarra 190 8 22.0
Zaragoza 191 4 1.7
Madrid 223 80 2.0

Next, assign the names stored in type to the columns of the matrix:

> dimnames(barley.data) <- 1list(NULL, type)
> barley.data
typeA typeB typeC
(1,1 190 8 22.0
(2,1 191 4 1.7
[3,] 223 80 2.0

To assign row and column names simultaneously, the command that should be used is
dimnames (barley.data) <- list(province, type):
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> dimnames(barley.data) <- list(province, type)
> barley.data
typeA typeB typeC
Navarra 190 8 22.0
Zaragoza 191 4 1.7
Madrid 223 80 2.0

One can verify the assigned names with the function dimnames ():

> dimnames (barley.data)
(111

[1] "Navarra" "Zaragoza" "Madrid"

(211
[1] "typeA" "typeB" "typeC"

To delete the row and column name assignments, type
> dimnames(barley.data) <- NULL
If one is interested in only the second row of data, one can enter

> barley.datal2,]
typeA typeB typeC
191 4 1.7

or

> barley.data["Zaragoza", ]
typeA typeB typeC
191 4 1.7

To see the third column, key in

> barley.datal,"typeC"]
Navarra Zaragoza Madrid
22 1.7 2

To add an additional column for a fourth type of barley (typeD), use the cbind () command:

> typeD <- ¢(2,3.5,2.75)
> barley.data <- cbind(barley.data, typeD)
> rm("typeD")

> barley.data
typeA typeB typeC typeD
Navarra 190 8 22.0 2.00 (1.1)
Zaragoza 191 4 1.7 3.50
Madrid 223 80 2.0 2.75

The function apply () allows the user to apply a function to one or more of the dimensions
of an array. To calculate the mean of the columns for the matrix barley.data, type
apply(barley.data, 2, mean):

> apply(barley.data, 2, mean)
typeA typeB typeC typeD
201.333333 30.666667 8.566667  2.750000
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The second argument, a 2 in the previous example, tells the function apply () to work on
the columns. For the function to work on rows, the second argument should be a 1. For
example, to find the average barley weight for each province, type apply(barley.data,1,
mean):

> apply(barley.data, 1, mean)
Navarra Zaragoza  Madrid
55.5000 50.0500 76.9375

The function names () allows the assignment of names to vectors:

> x <- ¢(1,2,3)
> names (X) <- C(IIAII , ngn , "C")
> x
ABC
123
To suppress the names of a vector, type names (x) <-NULL:

> names(x) <- NULL
> X
[11 1 2 3

1.4.8 Vector and Matrix Operations

Consider the system of equations:

3z+2y+1z =10
20 —-3y+1z =—1
le+1y+12= 6

This system can be represented with matrices and vectors as

3 2 1 x 10
Ax=b,where A=|2-3 1|,x=|y|,andb=|-1
1 1 1 z 6

To solve this system of equations, enter A and b into S and type solve(A, b) at the
command prompt:

> A <- matrix(c(3,2,1,2,-3,1,1,1,1), byrow=TRUE, nrow=3)
> A
[,11 [,2]1 [,3]
[1,] 3 2 1
[2,] 2 -3 1
[3,] 1 1 1
> b <- matrix(c(10,-1,6), byrow=TRUE, nrow=3)

> b

[,1]
(1,1 10
(2,1 -1
(3,1] 6

> x <- solve(A, b)
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> X

[,1]
[1,] 1
[2,1] 2
(3,] 3

The operator %*7 is used for matrix multiplication. If x is an (n x 1) column vector, and A
is an (m x n) matrix, then the product of A and x is computed by typing A%*%x. To verify
S’s solution, multiply A X x, and note that this is equal to b:

> AY*%x

[,1]
(1,1 10
(2,1 -1
(3,1] 6

Other common functions used with vectors and matrices are included in Table A.2 on
page 660.

1.4.9 Arrays

An array generalizes a matrix by extending the number of dimensions to more than
two. Consequently, a two-dimensional array of numbers is simply a matrix. If one were
to place three (3 x 3) matrices each in back of the other, the resulting three-dimensional
array could be visualized as a cube. Consider a three-dimensional array consisting of 27
elements. Specifically, the elements will be the values 1 through 27. Using the indexing
principles illustrated earlier, one can reference an element in the three-dimensional array
by specifying the row, column, and depth. For example,

> cube <- 1:27
> dim(cube) <- ¢(3,3,3)

assigns the values 1 through 27 into a three-dimensional array. To reference the value in
the middle of the cube, one would specify cube[2,2,2]:

> cube[2,2,2]
[1] 14

If any of the indices are left blank, the entire range is reported for that dimension. For
example, to extract all the values in the second column with depth 2, type cube[ ,2,2]:

> cubel ,2,2]
[1] 13 14 15

Another way to create the array is to specify its elements and dimensions directly. The
following code also lists the values in the array so one can see how S processes the entries.
Note how a[, , 1] can be visualized as the facing matrix in Figure 1.1 on page 3, a[, ,
2] as the second matrix (slice) in Figure 1.1, and so on:

> a <- array(1:27, dim=(c(3,3,3)))
> al, , 1]
[,11 [,21 [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,1] 3 6 9
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> al, , 2]

[,11 [,21 [,3]
[1,1 10 13 16
2,1 11 14 17
[3,] 12 15 18
> al, , 3]

[,11 [,21 [,3]
[1,] 19 22 25
[2,] 20 23 26
[3,] 21 24 27

1.4.10 Lists

A list is an S object whose elements can be of different types (character, numeric, factor,
etc.). Lists are used to unite related data that have different structures. For example, a
student record might be created by

> student <- 1list(first.name="John", last.name="Smith", major="Biology",
+ semester.hours=15)

The object student is composed of four components. This can be verified by typing
length(student) in the commands window. Note that length() counts the number of
components in a list. Three of the components are character, while the fourth is numeric.
The individual components of any list can be extracted by using the [[ operator or by
specifying the name of the list and the name of the component, separated by a dollar sign
($). For example, to see the number of semester hours, one might type

> student[[4]]
[1] 15

or

> student$semester.hours
[1] 15

Suppose an additional component named schedule (a 3 x 1 array) is added to the
list student. The second entry in schedule can be referenced by typing one of either
student$schedule[2,1] or student[[5]] [2, 1] since the object schedule is at the fifth
position in the list student.

1.4.11 Data Frames

A data frame is the object most frequently used in S to store data sets. A data frame
can handle different types of variables (numeric, factor, logical, etc.) provided they are all
the same length. To create a list of variables where the variables are not all of the same
type, use the command data.frame(). The command data.frame() treats the column
values in a matrix as the variables and the rows as individual records for each subject in
the given variable. Suppose one wishes to code the weather found in the three provinces of
the matrix barley.data. Unless the user specifies the values in row.names (), sequential
numbers are assigned to row.names() by default. Specifically, one wants to distinguish
between provinces that have “continental” weather and those that do not. To add a variable
containing character information, use the command data.frame() as follows:



A Brief Introduction to S 17

> cont.weather<-c("no","no","yes")
> city <- data.frame(barley.data, cont.weather)
> rm("cont.weather")
> city

typeA typeB typeC typeD cont.weather
Navarra 190 8 22.0 2.00 no
Zaragoza 191 4 1.7 3.50 no
Madrid 223 80 2.0 2.75 yes

If only barley of typeA is desired, type city$typeA:

> city$typeh
[1] 190 191 223

To make the columns of a data frame available by name, use the command attach(). After
attaching the data frame city, one can view barley of typeA by simply typing typeA:

> attach(city)
> typeA
[1] 190 191 223

Note that when finished working with an attached object, one should detach the object
using the detach() command to avoid inadvertently masking a system object:

> detach(city)
> typeC
Error: object "typeC" not found

To sort a data frame according to another variable (typeC in this example), one can
use one of the following: cityl[sort.list(city[,3]),], citylorder(cityl[,3]),], or
city[order (typeC),], all of which produce the same result. Note that city will need to
be attached again to use the command as given:

> attach(city)
> citylsort.list(cityl[,3]1),]
typeA typeB typeC typeD cont.weather

Zaragoza 191 4 1.7 3.50 no
Madrid 223 80 2.0 2.75 yes
Navarra 190 8 22.0 2.00 no

> detach(city)

The function order () will accept more than one argument to break ties, making it generally
more useful than the function sort.1list().

1.4.12 Tables

A common use of table() is its application to cross-classifying factors to create a table
of the counts at each combination of factor levels. In S, factors are simply character vectors.
Consider the data set Cars93, which contains several numeric and factor variables and is
available in the MASS package for both R and S-PLUS. To construct a contingency table of
Origin by AirBags, use the following S commands:

> library(MASS)
> attach(Cars93)
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> table(Origin, AirBags)
Driver & Passenger Driver only None
USA 9 23 16
non-USA 7 20 18

When using three-way contingency tables, ftable () provides more compact output than
table():

> table(Origin, AirBags, DriveTrain)
, , DriveTrain = 4WD

AirBags
Origin Driver & Passenger Driver only None
USA 0 3 2
non-USA 0 2 3

, , DriveTrain = Front

AirBags
Origin Driver & Passenger Driver only None
USA 6 15 13
non-USA 5 13 15

, , DriveTrain = Rear

AirBags
Origin Driver & Passenger Driver only None
USA 3 5 1
non-USA 2 5 0

> ftable(Origin, AirBags, DriveTrain)
DriveTrain 4WD Front Rear
Origin AirBags

USA Driver & Passenger 0 6 3
Driver only 3 15 5
None 2 13 1
non-USA Driver & Passenger 0 5 2
Driver only 2 13 5
None 3 15 0

Also in R, margin.table() and prop.table() allow the calculation of totals and
proportions by rows or columns:

> CT <- table(Origin, AirBags)

> CT
AirBags
Origin Driver & Passenger Driver only None
USA 9 23 16
non-USA 7 20 18
> margin.table(CT) # add all entries in table

[1] 93
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> margin.table(CT,1) # add entries across rows

Origin
USA non-USA
48 45
> margin.table(CT,2) # add entries across columns
AirBags
Driver & Passenger Driver only None
16 43 34
> prop.table(CT) # divide each entry by table total
AirBags
Origin Driver & Passenger Driver only None
USA 0.09677419 0.24731183 0.17204301
non-USA 0.07526882 0.21505376 0.19354839
> prop.table(CT,1) # divide each entry by row total
AirBags
Origin Driver & Passenger Driver only None
USA 0.1875000 0.4791667 0.3333333
non-USA 0.1555556  0.4444444 0.4000000
> prop.table(CT,2) # divide each entry by column total
AirBags
Origin Driver & Passenger Driver only None
USA 0.5625000 0.5348837 0.4705882
non-USA 0.4375000 0.4651163 0.5294118

1.4.13 Functions Operating on Factors and Lists

In this section, the data set Cars93 from the MASS package is used to illustrate various
functions. To find the average Price for the vehicles in the Origin by AirBags table, one
might use the function tapply () or the function aggregate():

> tapply(Price, list(Origin, AirBags), mean)

Driver & Passenger Driver only None
USA 24 .57778 19.86957 13.33125
non-USA 33.24286 22.78000 13.03333

tapply(x, y, FUN) applies the function FUN to each value in x that corresponds to one
of the categories in y. In this example, FUN is the mean. However, in general, FUN
can be any S or user-defined function. The categories of y are the factors created from
list(Origin, AirBags), and the z is the vector of car prices, Price. The final output is
a matrix.

The function aggregate() is also used to compute the same quantities; however, the
output is a data frame:

> aggregate(Price, list(Origin, AirBags), mean)
Group.1 Group.2 X
USA Driver & Passenger 24.57778
non-USA Driver & Passenger 33.24286
USA Driver only 19.86957
non-USA Driver only 22.78000
USA None 13.33125
non-USA None 13.03333

DO WN -
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The function apply (A, MARGIN, FUN) is used to apply a function FUN to the rows or
columns of an array. For example, given a matrix A, the function FUN is applied to every
row if MARGIN = 1 and to every column if MARGIN = 2. The function apply () is used
to compute various statistics with the data frame Baberuth as follows:

> attach(Baberuth)
> apply(Baberuth[,3:14],2, mean)

G AB R H X2B

113.7727273 381.7727273 98.8181818 130.5909091 23.0000000

X3B HR RBI SB BB

6.1818182 32.4545455 100.5000000 5.5909091 93.7272727
BA SLG

0.3228636  0.6340000

A summary of the functions covered in this and the previous section can be found in
Table A.3 on page 661.

Example 1.1 Assign the values (19, 14, 15,17, 20, 23, 19, 19, 21, 18) to a vector x such that
the first five values of = are in treatment A and the next five values are in treatment B.
Compute the means for the two treatment groups using tapply Q).

Solution: First assign the values to a vector x, where the first five elements are in
treatment A and the next five are in treatment B in one of two ways:

> x <- ¢(19,14,15,17,20,23,19,19,21,18)
> treatment <- c(rep("A",5), rep("B",5))
> treatment
[1] IlAll IlAll IlAll IIAII IIAII IIBII IlBll IlBll IlBll llBll

or

> treatment <- rep(LETTERS[1:2], rep(5,2))
> treatment
[1] IlAll IlAll IlAll IIAII IIAII IIBII IlBll IlBll IlBll IIBII

Next, use tapply () to calculate the means for treatments A and B:

> tapply(x, treatment, mean)
A B
17 20 |

1.5 Probability Functions

S has four classes of functions that perform probability calculations on all of the dis-
tributions covered in this book. These four functions generate random numbers, calculate
cumulative probabilities, compute densities, and return quantiles for the specified distribu-
tions. Each of the functions has a name beginning with a one-letter code indicating the
type of function: rdist, pdist, ddist, and qdist, respectively, where dist is the S
distribution name. Some of the more important probability distributions that work with
the functions rdist, pdist, ddist, and qdist are listed in Table A.4 on page 662. For
example, given vectors ¢ and x containing quantiles (or percentiles), a vector p containing
probabilities, and the sample size n for a N(0,1) distribution,
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e pnorm(q, mean=0, sd=1) computes P(X < q)
e gnorm(p, mean=0, sd=1) computes x such that P(X < z)=p
e dnorm(x, mean=0, sd=1) computes f(z)

e rnorm(n, mean=0, sd=1) returns a random sample of size n from a N (0, 1) distribu-
tion.

When illustrating pedagogical concepts, the user will often want to generate the same
set of “random” numbers at a later date. To reproduce the same set of “random” numbers,
one uses the set.seed() function. The set.seed() function puts the random number
generator in a reproducible state. Verify for yourself that the following code produces
identical values stored in the vectors setl and set2:

set.seed(136)
setl <- rbinom(10,10,.3)
set.seed(136)
set2 <- rbinom(10,10,.3)

vV V V V

This class of functions will also accept a vector as well as a scalar for the function’s
arguments. For example, dpois(x=0:10, lambda=3).

1.6 Creating Functions

One of the more attractive features of the S language is the flexibility the user has to
modify existing functions and to create new functions. System functions in S are called by
typing the name of the function and specifying the arguments being passed to the function
inside parentheses. The same principle applies when constructing a new function. The basic
structure of a function is

> fname <- function(argumentl, argument2,...){expression}

The expression is a mathematical formula that computes its numerical value and/or
creates objects based on the user-specified arguments. The result of the expression is
computed and subsequently printed in the commands window. When one of the arguments
takes a default value in the function definition, there is no need to explicitly type that value
when the function is called. The default values for a function can be found in the function’s
help file.

Suppose a function to sum the first n natural numbers is needed. The formula to find
the sum of the first n natural numbers is n x (n + 1)/2. To create the S function SUM.N(),

type
> SUM.N <- function(n){(n)*(n+1)/2}
Using the function SUM(), one can see that the sum of the first 10 natural numbers is 55:

> SUM.N(10)
[1] 55

The function sum.sq() sums the squares of the values in a vector or matrix x:

> sum.sg<-function(x) {sum(x~2)}
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If one wanted to sum the squared values of each column in the matrix barley.data defined
in (1.1), one could use

> apply(barley.data, 2, sum.sq)
typeA typeB typeC typeD
122310.0000  6480.0000 490.8900 23.8125

1.7 Programming Statements

S, like most programming languages, has the ability to control the execution of code
with programming statements such as for(), while(), repeat(), and break(). As an
example, consider how for () is used in the following code to add the values 10, 20, and 30.

> sum.a <- 0

> for (i in ¢(10,20,30)){sum.a <- i + sum.a}
> sum.a

[1] 60

In the next section of code, approximate values for converting temperature values from
Farenheit (60 to 90 by 5 degree increments) to Celsius are given:

> for (farenheit in seq(60,90,5))

+ print(c(farenheit, (farenheit-32)*5/9))
[1] 60.00000 15.55556

[1] 65.00000 18.33333

[1] 70.00000 21.11111

[1] 75.00000 23.88889

[1] 80.00000 26.66667

[1] 85.00000 29.44444

[1] 90.00000 32.22222

Another way to compute the sum of the first n natural numbers (50 in the code) is to
use the function while () as follows:

> i <-0; a<-0; n<-50

> while (i<m) {i <- i+1; a <- i+a}
> a

[1] 1275

When one creates new functions, storing them in a single file can be convenient. By
storing all of the functions in a single file, one will be able to read all of them into the S
session by typing

> source("C:/Sfolder/functions.txt")

assuming the functions are all stored in a text file named functions.txt in the Sfolder
of the machine’s C drive.
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1.8 Graphs

One technique used to summarize numerical data is the proper use of graphs. The
S language provides a rich set of commands for creating graphs and altering the default
graphical parameters. Tables A.12 on page 667, A.13 on page 668, and A.14 on page 669
outline some of the basic commands used to create graphs and to customize the graphical
parameters. In addition to typing commands for graph creation, a large collection of two-
and three-dimensional graphs as well as Trellis graphs can be created in S-PLUS from the
menu bar by selecting Graph>2D plot... or 3D plot.... For further detail on any S
function or parameter, the user should seek help from the extensive system help files by
typing help (function.name), ?function.name, help(par), or ?par.

The S function plot() produces an appropriate graph whose form depends on the
type of data. The axes, labels, scales, and plotting symbols are all default values chosen
automatically, any or all of which may be changed by the user. Changing or adding
background color, line types, titles, text, and plotting symbols is all controlled by specifying
additional arguments inside S functions such as plot () or hist (), or by changing certain
values in the par settings. Table A.14 on page 669 provides a list of some of the more
commonly changed graphical parameters. For users who prefer a point and click approach
for modifying graphical output, S-PLUS has several buttons on the main menu bar such as
Annotation, GraphTools, and Auto Legend.

The following code illustrates the use of various parameters in the S function plot()
and can be used to recreate Figure 1.2 on the next page. At first the last graph in Figure
1.2 may seem worthless; however, it will often prove useful to create an empty plotting area
to which one can later add points, lines, text, and so on. Two of the more frequently used
arguments with par() are mfrow and mfcol, which subdivide the plotting region into an
array of figure regions. For example, par (mfrow=c(3,3)) divides the screen into nine figure
regions (3 columns by 3 rows). The command \n tells R to make a new line in the title.

par (mfrow=c(3,3), pty="m")
x <- -4:4
y <- x72

plot(x, y, main="Default values with limits \n for x and y axes altered",
xlim=c(-8,8), ylim=c(0,20) )

plot(x, y, pch="x", main="Default plotting character \n changed to x",
xlim=c(-8,8), ylim=c(0,20))

plot(x, y, type="1", main="Lines connecting the data", xlim=c(-8,8),
ylim=c(0,20))

plot(x, y, type="b", main="Both point and lines \n between data",
xlim=c(-8,8), ylim=c(0,20))

plot(x, y, type="h", main="Vertical bars", xlim=c(-8,8), ylim=c(0,20))
plot(x, y, type="o", main="Overlaid points \n and connected lines",
xlim=c(-8,8), ylim=c(0,20))

plot(x, y, type="s", main="Stairsteps", x1lim=c(-8,8), ylim=c(0,20))
plot(x, y, xlab="X Axis", ylab="Y Axis", main="Basic plot with axes
labeled", x1im=c(-8,8), ylim=c(0,20))

plot(x, y, type="n", main="Empty Graph", xlab="", ylab="", axes=FALSE)

vV +VV + VYV + YV +V 4+ YV +V VYVYV

The following R code illustrates the use of different plotting symbols, different colors,
and different character expansion (cex) values and can be used to create a graph similar
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Default values with limits Default plotting character Lines connecting the data
for x and y axes altered changed to x
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o

o

o
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Both point and lines Vertical bars Overlaid points
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FIGURE 1.2: Examples of the plot() function using different values for the parameters
main, pch, x1lim, ylim, type, xlab, ylab, and axes.

to Figure 1.3. Color names can be used with a col= specification in graphics functions.
Numbers or names of colors can be assigned to col= as vectors.

plot(1,1, xlim=c(1,16), ylim=c(-1.5,5), type="n", xlab="", ylab="")
points(seq(1,15,2), rep(4,8), cex=1:8, col=1:8, pch=0:7)
text(seq(1,15,2), rep(2,8), labels=paste(0:7), cex=1:8, col=1:8)
points(seq(1,15,2), rep(0,8), pch=(8:15), cex=2)
text(seq(1,15,2)+.7, rep(0,8), paste(8:15), cex=2)
points(seq(1,15,2), rep(-1,8), pch=(16:23), cex=2)
text(seq(1,15,2)+.7, rep(-1,8), paste(16:23), cex=2)

V V V V V V VvV

e o A+><QV
123456/

*8 ¢9 10 w11 B12 =13 Bn14 =m15
71016 A17 18 19 20 021 D22 023

T T T
5 10 15

2
1

0
1

1

FIGURE 1.3: The numbers in the second row correspond to the plotting symbol directly
above them in the first row. The different plotting symbols in the first row and their
corresponding numbers in the second row also reflect a character expansion of 1 through 8.
The plotting symbols in rows three and four have their corresponding numbers printed to
the right.
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1.9 Problems

1. Calculate the following numerical results to three decimal places with S:

(7—8)+5%—5+6+62

In3 + v/2sin(r) — e

2% (5+3) —v6+9?

In(5) — exp(2) + 23

(9 +2) x4 —+/10 4+ In(6) — exp(1)

a

(
(b

(c
(d
(e

2. Create a vector named countbyb that is a sequence of 5 to 100 in steps of 5.

— — o T

3. Create a vector named Treatment with the entries “Treatment One” appearing 20
times, “Treatment Two” appearing 18 times, and “Treatment Three” appearing 22
times.

4. Provide the missing values in rep(seq(—,— ,—),—) to create the sequence 20,
15, 15, 10, 10, 10, 5, 5, 5, 5.

5. Vectors, sequences, and logical operators

(a) Assign the names x and y to the values 5 and 7, respectively. Find x¥ and assign
the result to z. What is the valued stored in z?

(b) Create the vectors u = (1,2,5,4) and v = (2,2,1,1) using the c() and scan()
functions.

Provide S code to find which component of u is equal to 5.
Provide S code to give the components of v greater than or equal to 2.
Find the product u x v. How does S perform the operation?

Explain what S does when two vectors of unequal length are multiplied together.
Specifically, what is u x c(u, v)?

(g) Provide S code to define a sequence from 1 to 10 called G and subsequently to
select the first three components of G.

(h) Use S to define a sequence from 1 to 30 named J with an increment of 2 and
subsequently to choose the first, third, and eighth values of J.

Calculate the scalar product (dot product) of ¢ = (3,0,1,6) by r = (1,0,2,4).
Define the matrix X whose rows are the u and v vectors from part (b).

)
)
(k) Define the matrix Y whose columns are the u and v vectors from part (b).
) Find the matrix product of X by Y and name it W.

)

Provide S code that computes the inverse matrix of W and the transpose of that
inverse.

(m

6. Wheat harvested surface in Spain in 2004: Figure 1.4 on the next page, made
with R, depicts the autonomous communities in Spain. The Wheat Table that follows
gives the wheat harvested surfaces in 2004 by autonomous communities in Spain
measured in hectares. Provide S code to answer all the questions.
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FIGURE 1.4: Autonomous communities in Spain

Wheat Table
community wheat.surface community wheat.surface
Galicia 18817 Castilla y Ledn 619858
Asturias 65 Madrid 13118
Cantabria 440 | Castilla-La Mancha 263424
Pais Vasco 25143 C. Valenciana 6111
Navarra 66326 Regién de Murcia 9500
La Rioja 34214 Extremadura 143250
Aragén 311479 Andalucia 558292
Cataluna 74206 Islas Canarias 100

Islas Baleares 7203

Create the variables community and wheat . surface from the Wheat Table in this
problem. Store both variables in a data.frame named wheatspain.

Find the maximum, the minimum, and the range for the variable wheat .surface.
Which community has the largest harvested wheat surface?

Sort the autonomous communities by harvested surface in ascending order.

Sort the autonomous communities by harvested surfaces in descending order.
Create a new file called wheat.c where Asturias has been removed.

Add Asturias back to the file wheat.c.

Create in wheat.c a new variable called acre indicating the harvested surface in
acres (1 acre = 0.40468564224 hectares).

What is the total harvested surface in hectares and in acres in Spain in 20047

Define in wheat . c the row.names () using the names of the communities. Remove
the community variable from wheat.c.

What percent of the autonomous communities have a harvested wheat surface
greater than the mean wheat surface area?



A Brief Introduction to S 27

Sort wheat.c by autonomous communities’ names (row.names()).

Determine the communities with less than 40,000 acres of harvested surface and
find their total harvested surface in hectares and acres.

Create a new file called wheat . sum where the autonomous communities that have
less than 40,000 acres of harvested surface have their actual names replaced by
“less than 40,000.”

Use the function dump() on wheat.c, storing the results in a new file named
wheat.txt. Remove wheat.c from your path and check that you can recover it
from wheat.txt.

Create a text file called wheat.dat from the wheat.sum file using the command
write.table(). Explain the differences between wheat.txt and wheat.dat.

Use the command read.table() to read the file wheat.dat.

. The data frame wheatUSA2004 from the PASWR package has the USA wheat harvested
crop surfaces in 2004 by states. It has two variables, STATE for the state and ACRES
for thousands of acres.

(a)
(b)

—
2

(g)
. Use

Attach the data frame wheatUSA2004 and use the function row.names () to define
the states as the row names.

Define a new variable called ha for the surface area given in hectares where
1 acre = 0.40468564224 hectares.

Sort the file according to the harvested surface area in acres.
Which states fall in the top 10% of states for harvested surface area?

Save the contents of wheatUSA2004 in a new file called wheatUSA.txt in your
favorite directory. Then, remove wheatUSA2004 from your workspace, and check
that the contents of wheatUSA2004 can be recovered from wheatUSA.txt.

Use the command write.table() to store the contents of wheatUSA2004 in
a file with the name wheatUSA.dat. Explain the differences between storing
wheatUSA2004 using dump () and using write.table().

Find the total harvested surface area in acres for the bottom 10% of the states.

the data frame vit2005 in the PASWR package, which contains data on the 218 used

flats sold in Vitoria (Spain) in 2005 to answer the following questions. A description
of the variables can be obtained from the help file for this data frame.

(a)
(b)

(c

~

Create a table of the number of flats according to the number of garages.
Find the mean of totalprice according to the number of garages.

Create a frequency table of flats using the categories: number of garages and
number of elevators.

Find the mean flat price (total price) for each of the cells of the table created in
part (c).
What command will select only the flats having at least one garage?

Define a new file called data.c with the flats that have category=“3B” and have
an elevator.

Find the mean of totalprice and the mean of area using the information in
data.c.
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11.

12.
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Source: Departamento de Economia y Hacienda de la Diputacion Foral de Alava and
LKS Tasaciones, 2005.

Use the data frame EPIDURALT to answer the following questions:

(a) How many patients have been treated with the Hamstring Stretch?

(b) What proportion of the patients treated with Hamstring Stretch were classified
as each of Easy, Difficult, and Impossible?

c¢) What proportion of the patients classified as Easy to palpate were assigned to the
y
Traditional Sitting position?

(d) What is the mean weight for each cell in a contingency table created with the
variables Ease and Treatment?

(e) What proportion of the patients have a body mass index (BMI = kg/(cm/100)2)
less than 25 and are classified as Easy to palpate?

The millions of tourists visiting Spain in 2003, 2004, and 2005 according their nation-
alities are given in the following table:

Nationality 2003 2004 2005
Germany 9.303 9.536 9.918
France 7.959 7.736 8.875
Great Britain 15.224 15.629 16.090
USA 0.905 0.894 0.883
Rest of the world | 17.463 18.635 20.148

(a) Store the values in this table in a matrix with the name tourists.
(b) Calculate the totals of the rows.
(¢) Calculate the totals of the columns.

Use a for loop to convert a sequence of temperatures (18 to 28 by 2) from degrees
centigrade to degrees Fahrenheit.

If 1 km = 0.6214 miles, 1 hectare = 2.471 acres, and 1 L = 0.22 gallons, write a
function that converts kilometers, hectares, and liters into miles, acres, and gallons,
respectively. Use the function to convert 10.2 km, 22.4 hectares, and 13.5 L.



Chapter 2

Exploring Data

2.1 What Is Statistics?

You may be wondering “What is statistics?”, “Who uses it?”, and “Why do I need to
study this material?” Statistics is the process of finding out more about a topic by collecting
information and then trying to make sense out of that information. In essence, statistics is
concerned with methods for collecting, organizing, summarizing, presenting, and analyzing
data. Data laden information is present in virtually every sector of society, and the need to
make sense out of our surroundings is a basic human need. More to the point of why you,
the reader, might need to study this material can be answered in one of two ways. First, you
are required to study this material as part of your major because there are certain topics
that are deemed important by your teachers. Second, you desire to have some modicum
of control in decision making and want to learn more about how probability and statistics
help people, corporations, and governmental agencies make decisions/policies. Even if your
reason for reading this material is because it is required, it is a fervent hope that your ability
to make sound decisions is strengthened through the material in this book.

2.2 Data

Data, according to The American Heritage Dictionary, are “Information, especially
information organized for analysis or used as the basis for a decision.” A characteristic that
is being studied in a statistical problem is called a variable. A variable will be either
qualitative or quantitative. When a variable is qualitative, it is essentially defining
groups or categories. When the categories have no ordering the variable is called nominal.
For example, the variable gender can take on the values male and female or the variable
“music preference” could have values such as “classical,” “jazz,” “rock,” or “other.” When
the categories have a distinct ordering, the variable is called ordinal. Such a variable might
be educational level with values elementary school, high school, college graduate, graduate
or professional school. Values on a scale can be either interval or ratio. Interval data have
interpretable distances, while ratio data have a true zero. A variable that is quantitative
(numeric) may be either discrete or continuous. A discrete variable is a numerical variable
that can assume a finite number or at most a countably infinite number of values. Such
variables include the number of people arriving at a bank on Thursday, students in a class,
or dogs in the pound. A continuous variable is a numerical variable that can assume an
infinite number of values associated with the numbers on an interval of the real number
line, for example, the height of a tree, the life of a light bulb, the weight of an apple. An
important distinction between discrete and continuous variables is that discrete variables

20
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can take on the same value repeatedly while continuous variables have few or no repeated
values. It is important to be able to distinguish between different types of variables since
methods for viewing and summarizing data are dependent on variable type. More to the
point, it will be imperative to distinguish between qualitative (categorical) variables and
quantitative (numerical) variables.

When a data set consists of a single variable, it is called a univariate data set. When
there are two variables in the data set, the data is set is called a bivariate data set; and
when there are two or more variables, the data set is called a multivariate data set. In
the remainder of this section, the discussion will cover univariate variables. Recall that
a qualitative variable defines categories or groups. The membership in these categories is
summarized with tables and graphically illustrated with bar graphs.

2.3 Displaying Qualitative Data
2.3.1 Tables

A table that lists the different groups of categorical data and the corresponding fre-
quencies with which they occur is called a frequency table. Qualitative information is
typically presented in the form of a frequency table. The S function table() can be used
to create various types of tables.

Example 2.1 Suppose the letter grades of an English essay in a small class are A, D, C,
D, C, C, C, C, F, and B. Create both a frequency table showing the numbers and a relative
frequency table showing the proportions of the various grades.

Solution: First, the character data are read into a vector named Grades. Then, the S
function table () is applied to Grades:

> Grades <- c("A","D","C","D","C","C","C","C","F","B")
> Grades
(1] "A™ »p™ n"C" "p" "“C" "C" "C" "C" "F" "B"
> table(Grades)
Grades
ABCDF
11521
> table(Grades)/10 # Relative frequency table
Grades
A B C D
2

Clearly, there is no need for a computer with such a small data set; however, tables for
much larger data sets can be created with no more work than that required for this small
data set. |

Example 2.2 The quine data frame in the MASS package has information on children
from Walgett, New South Wales, Australia, that were classified by Culture, Age, Sex, and
Learner status including the number of Days absent from school in a particular school year.
Use the function table() to create a frequency table for the variable Age.

Solution: To gain access to information stored in MASS, first load the package and attach
the data frame quine:



Ezploring Data 31

> library(MASS)
> attach(quine)
> table(Age)
Age

FO F1 F2 F3

27 46 40 33

2.3.2 Barplots

One of the better graphical methods to summarize categorical data is with a barplot.
Barplots are also known as bar charts or bar graphs. The S function barplot() is used
to create barplots using a summarized version of the data, often the result of the table ()
function. This summarized form of the data can be either frequencies or percentages. Re-
gardless of whether one uses frequencies or percentages, the resulting shape looks identical,
but the scales on the y-axes are different.

Example 2.3 Construct barplots for the variables Grades used in Example 2.1 and Age
in the quine data set from the MASS package in Example 2.2 on the facing page using both
frequencies and proportions.

Solution: Before creating any barplots, the device region is split into four smaller regions
with the command par (mfrow=c(2,2)):

par (mfrow=c(2,2))

barplot(table(Grades), col=3, xlab="Grades", ylab="Frequency")
barplot(table(Grades)/length(Grades), col=3, xlab="Grades", ylab=
"Proportion")

barplot(table(Age), col=7, xlab="Age", ylab="Frequency")
barplot(table(Age)/length(Age), col=7, xlab="Age", ylab="Proportion")

V V. + V VvV V

0o 1 2 3 4 5
Proportion
00 01 02 03 04 05

°
g 8
e D D
g 8
°
Fo Fi F2 F3 Fo Fi F2 F3
Age Age

FIGURE 2.1: Graphical representation of the data in Grades and Age with the function
barplot () |

Proportion

F
000 010 020 030
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2.3.3 Dot Charts

An equally effective way to display qualitative data is by using a dot chart. Dot
charts are also called Cleveland dotplots. A dot chart shows the values of the variables of
interest (levels of the qualitative variable) as dots in a horizontal display over the range
of the data. The S command to create a dot chart is dotchart(data), where data is a
vector containing frequencies for all the different levels of a variable. When working with
un-summarized data, one way to prepare the data for a dotchart() is first to summarize
the data with the command table(). The optional arguments for dotchart() in R and
S-PLUS are different, and the user should consult the respective documentation for further
assistance.

Example 2.4 Construct dot charts for the variables Grades from Example 2.1 and Age
used in the quine data set from the MASS package in Example 2.2 on page 30.

Solution: Before creating any dot charts, the device region is split into two smaller regions
with the command par (mfrow=c(2,1)):

> par(mfrow=c(1,2))
> dotchart(table(Grades))
> dotchart (table(Age))

Fole F3 °
D o
F2 o
C o
F1 o
B o
A lo FO |o
T T T T T T T T T
1 2 3 4 5 30 35 40 45

FIGURE 2.2: Graphical representation of the data in Grades and Age with the function
dotchart () |

2.3.4 Pie Charts

Pie charts represent the relative frequencies or percentages of the levels of a categorical
variable with wedges of a pie (circle). While the media often use pie charts to display
qualitative data, the pie chart has fallen out of favor with most statisticians. Pie charts are
most useful when the emphasis is on each category in relation to the total. When such an
emphasis is not the primary point of the graphic, a bar chart or a dot chart should be used.

Example 2.5 Construct pie charts for the variables Grades in Example 2.1 and Age from
the quine data set in the MASS package used in Example 2.2 on page 30.

Solution: Before creating any pie charts, the device region is split into two regions with
the command par (mfrow=c(2,1)):
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par (mfrow=c(1,2))
pie(table(Grades))
title("Grades")
pie(table(Age))
title("Age")

V V V V V

The graph depicted in Figure 2.3 was produced in R with the additional arguments
radius=2.5 and col=gray(c(.1,.4,.7,.8,.95)).

Grades Age

FIGURE 2.3: Graphical representation of the data in Grades and Age with the function
pie() |

2.4 Displaying Quantitative Data

When presented with quantitative data, knowing three facts about the data, namely,
its shape, center, and spread, will be a great start in making some sense of the numbers.
Some of the more common distribution shapes are shown in Figure 2.4 on the following
page. Of the nine different shapes in Figure 2.4, all are symmetric with the exception
of the second and the eighth graphs, which are characterized as skewed to the right and
skewed to the left, respectively. Of the nine different shapes in Figure 2.4, all are unimodal
with the exception of the first, the fourth, and the ninth graphs, which are characterized
as bimodal, uniform, and multi-modal, respectively. One final highlight: When presented
with a symmetric unimodal data set, it will be important to classify the distribution as
either short-tailed, long-tailed, or normal. The fourth and the sixth graphs, in addition to
being symmetric, are also short-tailed. What follows are graphical tools that can help in
assessing the shape, center, and spread of a data set. As a general rule, the shape of the
data dictates the most appropriate measures of center and spread for that data set.

2.4.1 Stem-and-Leaf Plots

One way to get a quick impression of the data is to use a stem-and-leaf plot. When a
stem-and-leaf plot is constructed, each observation is split into a stem and a leaf. Regardless
of where the observation is split, the leaf in a stem-and-leaf plot is represented with a single
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1. Bimodal 2. Skew right 3. Short tailed

yAVA A . AN

4. Uniform 5. Normal 6. Triangular

1 N

7. Long tailed 8. Skew left 9. Multimodal

e N A TVAVAVAVAY

FIGURE 2.4: Nine different graphs labeled according to their shape

digit. Although it is possible to use a stem-and-leaf plot with a moderately sized data
set (more than 100 values), the plot becomes increasingly hard to read as the number of
values plotted increases. Consequently, it is recommended that stem-and-leaf plots be used
graphically to illustrate smallish data sets (less than 100 values). The S command to create
a stem-and-leaf plot is stem(x), where x is a numeric vector.

Example 2.6 Use the data frame Baberuth to construct a stem-and-leaf plot for the
number of home runs (HR) Babe Ruth hit while he played for the New York Yankees.

Solution: A quick glance at the data frame Baberuth shows that Babe Ruth played for
the New York Yankees for his seventh through twenty-first seasons. The information in HR
is for Babe Ruth’s entire (22 seasons) professional career. To extract the home runs he hit
while he was a New York Yankee, use HR[Team=="NY-A"] or HR[7:21] (seventh through
twenty-first season home runs):

> attach(Baberuth) # Assumes package PASWR is loaded
> NYYHR <- HR[Team=="NY-A"]
> NYYHR

[1] 54 59 35 41 46 25 47 60 54 46 49 46 41 34 22
> stem(NYYHR)

The decimal point is 1 digit(s) to the right of the |

2| 25

3 | 45

4 | 1166679
5 | 449
610

> detach(Baberuth)
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In this example, see how the stems 2-6 represent the values twenty through sixty and
the leaves represent the second digit of the numbers in HR. Reading the first row of the
stem-and-leaf plot notice the values 22 and 25. The stem-and-leaf plot reveals a fairly
symmetric distribution. |

2.4.2 Strip Charts (R Only)

An alternative to the stem-and-leaf plot is a strip chart (also referred to as a dotplot
by many authors). A strip chart plots values along a line. The R function stripchart ()
will stack the tied observations in a column at each value observed along a line that covers
the range of the data when given the argument method="stack". The function requires
the data to be a vector, a list of vectors, or a formula of the form x~g, where values are
in a vector x and groups are in a vector g. Strip charts are often useful for comparing the
distribution of a quantitative variable at different qualitative levels (groups).

Example 2.7 Use the data frame Baberuth to

(a) Construct a strip chart of the number of home runs Babe Ruth hit while playing for
the New York Yankees.

(b) Create a strip chart of the number of home runs Babe Ruth hit per season according to
the team for which he was playing. Based on the strip chart, when Babe Ruth played,
for which team did he generally hit more home runs per season?

Solution: (a) Figure 2.5 on the next page is a strip chart of the number of home runs
Babe Ruth hit while playing for the New York Yankees. The code to construct this graph
is
> attach(Baberuth)
> Baberuth[1:5,] # equivalently heads(Baberuth, n=5)

Year Team G AB R H X2B X3B HR RBI SB BB BA SLG

11914 Bos-A 5 10 1 2 1 0 O 0 O 0 0.200 0.300

2 1915 Bos-A 42 9216 29 10 1 4 21 0 9 0.315 0.576

3 1916 Bos-A 67 136 18 37 &5 3 3 16 0 10 0.272 0.419

4 1917 Bos-A 52 123 14 40 6 3 2 12 0 12 0.325 0.472

5 1918 Bos-A 95 317 50 95 26 11 11 66 6 58 0.300 0.555

> NYYHR <- HR[7:21] # Extracts the 7th through 21st season HR values.
> stripchart (NYYHR, xlab="Home runs per season", pch=1, method="stack",
+ main="Dotplot of home runs while a New York Yankee")

(b) Figure 2.6 on the following page is a strip chart of the number of home runs Babe Ruth
hit per season according to the team for which he was playing. The code to construct this
graph is

par (mfrow=c(1,2), pty="s")

stripchart (HR"Team, pch=1, method="stack",

main="Dotplot of home runs \n by team",

xlab="Home runs per season")

par(las=1) # Makes labels horizontal

stripchart (HR"Team, pch=19, col=c("red","green","blue"),
method="stack", main="Color dotplot of home runs \n by team",
xlab="Home runs per season")

par (mfrow=c(1,1), las=0, pty="m"

detach(Baberuth)

vV V + + VV + + VvV V
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Dotplot of home runs while a New York Yankee

o o oo 8 8o o 8 oo

T T T T
30 40 50 60

Home runs per season

FIGURE 2.5: Strip chart of the number of home runs Babe Ruth hit while playing for the
New York Yankees
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FIGURE 2.6: Strip chart of the number of home runs Babe Ruth hit per season according
to the team for which he was playing

2.4.3 Histograms

The histogram is a graphical means of illustrating quantitative (numerical) data. Although
the barplot and the histogram look similar, the barplot is used for qualitative data while
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the histogram is used for numerical data. Yet, the bins that either the user specifies or
those that S uses by default are in essence categories. Histograms created in S with the
function hist(x), where x is a numeric vector, are by default frequency histograms. To
create density histograms, use the optional argument prob=TRUE. A density histogram has
a total area of one.

Example 2.8 Construct a histogram that resembles the stem-and leaf plot from Example
2.6 using the Baberuth data.

Solution: The first histogram uses the default arguments for hist (). Since the bins S
uses are of the form (], the default histogram does not resemble the stem-and-leaf plot. To
change the bins to the form [) in R, use the argument right=FALSE:

attach(Baberuth)

par (mfrow=c(1,2))

bin <- seq(20,70,10) # Creating bins 20-70 by 10
hist(HR[7:21], breaks=bin, xlab="Home Runs")

hist(HR[7:21], breaks=bin, right=FALSE, xlab="Home Runs") # R
detach(Baberuth)

V V V V V V

The graph depicted in Figure 2.7 was produced in R with commands similar to those given.
One way to produce the second graph in S-PLUS is to use a slight fudge factor when creating
the bins, such as bin <- seq(20,70,10)-0.00001.

Histogram using bins of the form (] Histogram using bins of the form [)
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FIGURE 2.7: Histograms created using different bin definitions for the number of home
runs hit by Babe Ruth while playing for the New York Yankees |

One of the problems with using histograms to describe the shape of the data is the
arbitrary nature of the bin width. In Example 2.8, it was seen how simply including or
excluding an end point changed the histogram. Consider the differences among the shapes
of the histograms in Figure 2.8 on the next page produced by simply altering the bin width.
The data set used to produce Figure 2.8 on the following page is geyser, available in the
MASS package. A much better choice to get an idea of what the shape of a distribution
looks like is to use a density estimate. The S function density(x), where x is a numeric
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vector, can be used to create a density estimate. Basically, a density estimate uses shapes
with % area added up at each point in the data set to create a graph with area 1. The
resulting shape is a density estimate. The result of the density estimate can be viewed with
either the plot() or lines() function. Recall that plot () is a high-level function while
lines() is a low-level function. That is, plot () will create a graph while 1ines () will add
to an existing graph.

Histogram of duration Histogram of duration
o o
2> o 2> o
2 o g2 o
a o a o
ol 1 ] o I
o I T T T T T 1 o I T T T 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
duration duration
Histogram of duration Histogram of duration

Density
0.0 04 0.8

H

Density
00 04 0.8

I T T T T 1 I T T T T 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
duration duration

FIGURE 2.8: Histograms created using different bin definitions for the eruption duration
of Old Faithful

Example 2.9 Construct a density histogram of the waiting time until the next eruption
using the data frame geyser available in the MASS package. Superimpose a density estimate
over the density histogram. In the same graph, show the estimated density without showing
the histogram.

Solution: Note that to superimpose a density over a histogram, the histogram must be a
density histogram. Recall that density histograms are produced with the optional argument
prob=TRUE:

library (MASS)

par (mfrow=c(1,2)) # Make device region 1 by 2
attach(geyser)

hist(waiting, prob=TRUE)

lines(density(waiting)) # Add density to Histogram
plot(density(waiting)) # Create density by itself
detach(geyser)

V V V V V V VvV

Based on the density estimates, it appears there are two modes for waiting time until the
next eruption. It seems one will usually have to wait close to either 50 or 80 minutes until
the next eruption. [ ]
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FIGURE 2.9: Histogram of waiting time between Old Faithful eruptions with superimposed
density estimate as well as a density plot

2.5 Summary Measures of Location

One of the main objectives of statistics is to make inference to a population based
on information obtained from a sample. Since it can be overwhelming to work with the
entire population and/or sample, summary measures are introduced to help characterize
the data at hand. These summary measures may apply to either the population or to the
sample. Numerical summaries of the population are called parameters while numerical
summaries of the sample are called statistics. More formal definitions of both parameters
and statistics will be given later. Measures of central location are introduced first. The
measures covered are generally familiar to the reader from everyday usage. Specifically, the
mean, the trimmed mean, and the median are introduced. Other measures of location
addressed include quartiles, hinges, and quantiles.

2.5.1 The Mean

The most common measure of center is the average, which locates the balance point
of the distribution or data. The mean is an appropriate measure of center for symmetric
distributions; however, it is not appropriate for skewed distributions. In statistics, the
average of a sample is called the sample mean and is denoted by . Given some numeric
data x1,xs, ..., x,, the sample mean is defined as
$1+$2+...+xnziﬂ (21)

" i=1

T =

The S function mean (x) will compute the mean of a data vector x. Additional arguments
to mean(x) include na.rm=TRUE, for removal of missing values, and trim=, to compute a
trimmed mean. The trimmed mean is generally used to estimate the center when working
with long-tailed distributions. When a p% trimmed mean is computed, p% of the sorted data
is deleted from each end of the distribution, and a mean is computed from the remaining
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values. When p x n is not an integer, the integer portion, (|p x n]), should be deleted from
each end of the sorted values and the mean computed from the remaining values.

Example 2.10 Compute the mean number of home runs per season Babe Ruth hit while
playing for the New York Yankees. Compute a 5%, a 10%, a 15%, and a 50% trimmed
mean for the number of home runs per season Babe Ruth hit while playing for the New
York Yankees using the information stored in the data frame Baberuth.

Solution: In Example 2.6 on page 34, the variable NYYHR was created that contained the
number of home runs Babe Ruth made while playing for the New York Yankees. If NYYHR
is no longer available, recreate it with the command NYYHR <- HR[7:21] once the data
frame Baberuth has been attached. Since there are 15 values in NYYHR, to compute 5%,
10%, 15%, and 50% trimmed means, [0.05 x 15] = |0.75] = 0, [0.10 x 15] = |1.5] = 1,
[0.15 x 15| = |2.25] = 2, and [0.50 x 15| = |7.5] = 7 values, respectively, will need to be
deleted from the sorted values of NYYHR before computing means on the remaining values.
A second solution is also presented using the S function mean () using the trim= argument:

> attach(Baberuth)
> NYYHR <- HR[7:21]
> NYYHR

[1] 54 59 35 41 46 25 47 60 54 46 49 46 41 34 22
> SNYYHR <- sort(NYYHR)
> SNYYHR
[1] 22 25 34 35 41 41 46 46 46 47 49 54 54 59 60
p-05 <- floor(.05%15)

p-10 <= floor(.10%15)

p.156 <= floor(.15%15)

p-50 <= floor(.50%15)

num.to.delete <-c(p.05, p.10, p.15, p.50)
num.to.delete
[11 0127
m.05 <- mean(SNYYHR[(1+p.05):(15-p.05)1)
m.10 <- mean(SNYYHR[(1+p.10):(15-p.10)])
m.15 <- mean(SNYYHR[(1+p.15):(15-p.15)])
m.50 <- mean(SNYYHR[(1+p.50):(15-p.50)1)
t.m <- ¢(m.05, m.10, m.15, m.50)
names(t.m) <- c("5%tmean","10%tmean","15%tmean","50%tmean")
> t.m

5%tmean 10%tmean 15%tmean 50%tmean
43.93333 44.38462 44.81818 46.00000

tm.05 <- mean(NYYHR, trim=.05)

tm.10 <- mean(NYYHR, trim=.10)

tm.15 <- mean(NYYHR, trim=.15)

tm.50 <- mean(NYYHR, trim=.50)

tms <- c(tm.05, tm.10, tm.15, tm.50)

names (tms) <- c("5%tmean","10%tmean","15%tmean", "50%tmean")
tms
5%tmean 10%tmean 15%tmean 50%tmean
43.93333 44.38462 44.81818 46.00000
> detach(Baberuth)

V V V V V V

V V V V V V

V V.V V V V V
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The trimmed means are all fairly similar, confirming a rather symmetric distribution. Note
that the 50% trimmed mean is the value in the middle of the sorted observations. This
value is also known as the median. [ |

2.5.2 The Median

While the mean is the most commonly encountered measure of center, it is not always
the best measure of center. The sample median is the middle value of a distribution of
numbers, denoted by the letter m. Since the median ignores the information in surrounding
values, it is more resistant to extreme fluctuations in the data than is the mean. When
working with skewed distributions, the median is the most appropriate measure of center.
The sample median, m, of x1,zs,...,x, is the ("TH)St observation of the sorted values.
When n is odd, "TH is an integer, and finding the observation is straightforward. When n is
even, an average of the two middle observations is taken to find the median. When the values
x1,T2,. .., T, are sorted, they are called order statistics and denoted as z(1, T (2, - - -, T(n)-

A more concise definition of the sample median is then

(2.2)

T(kht1) n =2k+1 (odd),
m =
L@y + 2t1)) n =2k (even).

To find the sample median with S use the function median (x), where x is a numeric vector.

Example 2.11 [> Means and Medians <| The numerical grades achieved by three
students on four exams during the course of a semester are recorded in Table 2.1. Compute
means and medians for the students. Could the three students be characterized?

Table 2.1: Student test scores
Testl Test2 Testd Test4

Student1 73 75 74 74
Student2 | 95 94 12 95
Student3 | 66 67 63 100

Solution: First the students exam scores are read into individual vectors denoted Student1,
Student2, and Student3. The S function median() is used first to find the median test
score for each student. It is possible to compute the mean test score for each student in
a similar fashion to that used to find the median test score for each student. However,
another solution is provided by using the S functions rbind (), cbind (), and applyO):

> Studentl <- c(73,75,74,74)

> Student2 <- c(95,94,12,95)

> Student3 <- c(66,67,63,100)

> median(Studentl)

[1] 74

> median(Student2)

[1] 94.5

> median(Student3)

[1] 66.5

> SM <- rbind(Studentl, Student2, Student3) # combine rows
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> colnames(SM) <- c("Testl","Test2","Test3", "Test4")
> SM

Testl Test2 Test3 Test4
Student1 73 75 74 74
Student?2 95 94 12 95
Student3 66 67 63 100
> means <- apply(SM,1, mean) # mean of rows
> medians <- apply(SM,1, median) # median of rows
> TOT <- cbind(SM, means, medians) # combine columns
> TOT

Testl Test2 Test3 Test4 means medians
Student1l 73 75 74 74 74 74.0
Student?2 95 94 12 95 74 94.5
Student3 66 67 63 100 74 66.5

As seen in the S output, the mean test score for the three students is 74. One possible char-
acterization of the three students might be: Student 1: consistent; Student 2: overconfident;
Student 3: procrastinator. Would the mean or the median be the better representative in
assigning their final grades? There are good reasons one may want to consider using the
median instead of the mean. |

2.5.3 Quantiles

The p*® quantile, 0 < p < 1, of a distribution is the value x, such that P(X < z,) > p
and P(X > x,) > 1—p. For discrete data, there are often many values of x,, that satisfy the
definition of the p'* quantile. In this book, the definition used by S to compute quantiles
will be used. S defines the p™ quantile of a distribution to be the (p(n — 1) + 1)** order
statistic. When p(n — 1) + 1 is not an integer, linear interpolation is used between order
statistics to arrive at the p** quantile. Given values x1, s, ..., Z,, the p* quantile for the
kM order statistic, p(k), is

k=D oy (2.3)

p(k) = m7 =

By this definition, it is seen that the 50% quantile (50*" percentile) is the median since

k—1 n+1
050=—— = k=
n—1 2

which by definition is the location of the order statistic that is the median. Other definitions
for quantiles exist and are used in other texts and other statistical software packages.
However, the definition used here is consistent with S-PLUS and the default algorithm used
in R for computing quantiles. To read about alternative algorithms for computing quantiles
with R, type ?quantile at the R prompt. To compute the quantiles of a data set stored
in a vector x, use the S function quantile(x). By default, the S function quantile(x)
returns the 0%, 25%, 50%, 75%, and 100% quantiles of the data vector x. The p'" quantile
is the same thing as the (p x 100)*™® percentile. That is, percentiles and quantiles measure
the same thing; however, percentiles use a scale from 0 to 100 instead of the 0 to 1 scale
used by quantiles.

Just as the sample median is the value that divides the sample into equal halves, the
sample quartiles can be thought of as the values that divide the sample into quarters. The
first, second, and third sample quartiles are denoted as @1, ()2, and @3, respectively, and
are (by default) computed with the S function quantile(x). To compute other quantiles,
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use the argument probs= to specify either a single value or to pass a vector of values to the
quantile() function.

Example 2.12 Compute @1, Q2, and Q3 for the values z(1) = 1, ) = 4, x3) =7,
x(4) = 97 :E(5) = 10, CC((;) = 14, :E(7) = 15, CC(S) = 16, :E(g) = 20, and x(lo) =21.

Solution: First, the order statistics for the 0.25, 0.50, and 0.75 quantiles are computed
using (2.3):

k-1 k—1 k-1
P=10-1 =10 P10
k=3.25 k=5.50 k=775

Linear interpolation is then used on the order statistics to find the requested quan-
tiles/quartiles. Specifically, since @1, Q2, and Q3 occur at the 3.25, 5.50, and 7.75 order
statistics, 0.25 of the distance between the third and fourth order statistics is added to the
third order statistic to arrive at Q1. Likewise, 0.50 of the distance between the fifth and
sixth order statistics is added to the fifth order statistic to compute Q2. Finally, 0.75 of
the distance between the seventh and eighth order statistics is added to the seventh order
statistic to compute Q3:

Q1 =) + .25(:E(4) - x(g)) Q2 =5 + .50(CC(6) - :,C(5))
=7+.25(9-17) =10+ .5(14 — 10)
=7.50 =12.00

Q3 =(7) + .75(:E(8) — ZC(7))
=15+ .75(16 — 15)
=15.75

Code to compute the requested quartiles according to the quantile definition follows. Sub-
sequently, the S function quantile() is used to compute the same quantiles/quartiles.

> x <- ¢(1,4,7,9,10,14,15,16,20,21)
> p <= c¢(.25,.5,.75) # desired quantiles
> n <- length(x) # number of values, n
> order.stat <- px(n-1)+1 # computing order statistics
> order.stat # order statistics
[1] 3.25 5.50 7.75
> Q1 <- x[3]+.25%(x[4]-x[3]) # linear interpolation
> Q2 <- x[5]+.50*%(x[6]-x[5]) # linear interpolation
> Q3 <- x[7]+.75%(x[8]-x[7]) # linear interpolation
> QU <- c(Q1, Q2, Q3)
> names(QU) <- C("Ql","QQ","Q3")
> QU # quartiles

Q1 Q2 Q3

7.50 12.00 15.75

> quantile(x, probs=c(.25,.5,.75)) # the easy way!
256%  50% 75}

7.50 12.00 15.75
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2.5.4 Hinges and Five-Number Summary

An alternative method to calculating quartiles is to compute hinges. The idea behind
both quartiles and hinges is to split the data into fourths. When a computer is not available,
hinges are somewhat easier to compute by hand than are quartiles. The lower and upper
hinges are the x(;) and x(,_; 1) order statistics, where

=t (2.4)

In short, the lower hinge is the median of the lower half of the data and the upper hinge
is the median of the upper half of the data. Lower and upper hinges can be different from
quartiles. For example, consider Example 2.12 on the previous page where the locations
of the first, and third quartiles were found to be at the 3.25'" and 7.75'" order statistics.
However, since

e R il SR Y
-2ty

the locations for the lower and upper hinges are at the 3, T (3), and 8th, T(n-341) =
T(10—3+1) = T(g), order statistics.

Hinges are typically returned as part of the five-number summary. A five-number
summary for a data set consists of the smallest value, the lower hinge, the median, the
upper hinge, and the largest value, all of which are computed with R’s function fivenum().

Example 2.13 Compute the 0.25, 0.50, and 0.75 quantiles as well as a five-number
summary for the number of runs batted in (RBIs) by Babe Ruth while he played for the
New York Yankees. The variable RBI in the data frame Baberuth contains the RBIs per
season for Babe Ruth over his professional baseball career.

Solution: The quartiles and hinges are first computed by their definitions. Subsequently,
the S function quantile() and the R function fivenum() are used to obtain the same
results:

attach(Baberuth) # Assumes package PASWR is loaded
NYYRBI <- RBI[7:21] # Extract RBIs only while a NYY
SNYYRBI <- sort(NYYRBI)

p <- c(.25,.50,.75)

n <- length(NYYRBI)

>n

[1] 15

> order.stat <- px(n-1)+1

> order.stat

[1] 4.5 8.0 11.5

> Q1 <- SNYYRBI[4]+.5%(SNYYRBI[5]-SNYYRBI[4])

V V V V V

> Q2 <- SNYYRBI[8]
> Q3 <- SNYYRBI[11]+.5x(SNYYRBI[12]-SNYYRBI[11])
> QU <- c(Qt, Q2, Q3)
> names(QU) <- c("Q1","Q2","Q3")
> QU
Q1 Q2 Q3

112.0 137.0 153.5
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> quantile(NYYRBI, probs=c(.25,.50,.75))
25%  50% 75
112.0 137.0 153.5

> j <= (floor((n+1)/2)+1)/2 # Number to count in

> j

[1] 4.5

> lower.hinge <- SNYYRBI[4]+.5%(SNYYRBI[5]-SNYYRBI[4])

> upper.hinge <- SNYYRBI[11]+.5%(SNYYRBI[12]-SNYYRBI[11])

> small <- min(NYYRBI)

> large <- max(NYYRBI)

> five.numbers <- c(small, lower.hinge, Q2, upper.hinge, large)
> five.numbers

[11 66.0 112.0 137.0 153.5 171.0

> fivenum(NYYRBI) # Only works in R
[1] 66.0 112.0 137.0 153.5 171.0

> detach(Baberuth)

In this particular example, the first and third quartile are equal to the lower and upper
hinge, respectively. |

2.5.5 Boxplots

A popular method of representing the information in a five-number summary is the
boxplot. To show spread, a box is drawn from the lower hinge (H},) to the upper hinge
(Hy) with a vertical line drawn through the box to indicate the median or second quartile
(Q2). A “whisker” is drawn from Hy to the largest data value that does not exceed the
upper fence. This value is called the adjacent value. The upper fence is defined as
Fencey = Hy + 1.5 X Hgpread, where Hgpreqq = Hy — Hp,. A whisker is also drawn from Hp,
to the smallest value that is larger than the lower fence, where the lower fence is defined
as Fencep, = Hp — 1.5 X Hgpreaq. Any value smaller than the lower fence or larger than
the upper fence is considered an outlier and is generally depicted with a hollow circle.
Figure 2.10 on the following page illustrates a boxplot for the variable fat from the data
frame Bodyfat.

To create a boxplot with S, use the command boxplot(). By default, boxplots in R
have a vertical orientation. To create a horizontal boxplot with R, use the optional argu-
ment horizontal=TRUE. Currently, S-PLUS does not have an option to produce horizontal
boxplots with the boxplot () function. However, S-PLUS does have the function bwplot (),
which produces horizontal boxplots. Common arguments for boxplot () include col= to
set the box color and notch=TRUE to add a notch to the box to highlight the median.

Example 2.14 Use the data frame Cars93 in the MASS package to create a boxplot of the
variable Min.Price. Use the text () function to label the five-number summary values in
the boxplot.

Solution: Two solutions are presented: one for R and one for S-PLUS. The solution
for S-PLUS is slightly more involved because S-PLUS does not have a built-in function to
compute the five-number summary. The final boxplot from R is shown in Figure 2.11 on
page 47. Additionally, the labels in R contain mathematical notation. To learn more about
R’s ability to plot mathematical expressions, type 7mathplot at the R prompt.
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Min Fencey, Hy, Q2 Hypy Max Fencey
& o : o oé> @® 0 O aoé)@ 00 :
bo | SRR S
Outliers E 1-5Hspread E Hspread E 1~5Hspread E
T ' T ' T ' T ' T
10 20 30 40 50

FIGURE 2.10: Graph depicting the five-number summary in relationship to original data
and the boxplot

Solution for R:

library (MASS)

attach(Cars93)

boxplot(Min.Price, ylab="Minimum Price (in $1000) for basic
version", col="gray")

f <- fivenum(Min.Price)

text(rep(1.25,5), £, labels=c("Min", expression(H[L]),
expression(Q[2]) , expression(H[U]), "Max"), pos=4)
detach(Cars93) # Clean up

VvV + VV 4+ V VvV V

Solution for S-PLUS:

> library(MASS)

> attach(Cars93)

> n <- length(Min.Price)

> smp <- sort(Min.Price)

> count <- (floor((n+1)/2)+1)/2 # Using Equation 2.4

> count

[1] 24

> lower.hinge <- smp[count]

> upper.hinge <- smp[(n-count+1)]

> five.num <- c(min(smp), lower.hinge, median(smp), upper.hinge,
+ max (smp) )

> boxplot(Min.Price, ylab="Minimum Price (in $1000) for basic
+ version")

> text(rep(85,5), five.num, labels=c("Minimum", "Lower Hinge",
+ "Median", "Upper Hinge", "Maximum"))

> detach(Cars93) # Clean up
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FIGURE 2.11: Boxplot of car prices with five-number summaries labeled

Boxplots are useful for detecting skewness, finding outliers, and comparing two or more
variables that are all measured on the same scale. However, a boxplot will not detect
multi-modality. |

2.6 Summary Measures of Spread

Summary measures of center such as the mean and median are important because they
describe “typical” values in a data set. However, it is possible to have two data sets with the
same means (Example 2.11 on page 41) and/or medians while still having different spreads.
For this reason, it is important to measure not only typical values but also the spread of
the values in a distribution in order to describe the distribution fully. There are many ways
to measure spread, some of which include range, interquartile range, and variance.

2.6.1 Range

The easiest measure of spread to compute is the range. At times, the range refers to
the difference between the smallest value in a data set and the largest value in the data set.
Other times, the range refers to the smallest and largest values of a data set as a pair. The
S function range (x) returns the smallest and largest values in x. If the distance between
the largest and smallest value is desired, one can use diff (range(x)):

> range(1:10)

[1] 1 10

> diff (range(1:10))
[11 9

2.6.2 Interquartile Range

Instead of looking at the entire range of the data, looking at the middle 50% will
often prove to be a useful measure of spread, especially when the data are skewed. The
interquartile range (IQR) is defined as IQR = Q3 — @1 and can be found with the function
IQRQO):
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> quantile(1:10)

0% 25% 50%  75% 100%
1.00 3.25 5.50 7.75 10.00
> IQR(1:10)
[1] 4.5

2.6.3 Variance

The sample variance, s?, can be thought of as the average squared distance of the

sample values from the sample mean. It is not quite the average because the quantity is
divided by n — 1 instead of n in the formula

n

= (i —2)* (2.5)

; n—1
1=1

When the positive square root of the sample variance is taken, the sample standard
deviation, s, results. It is often preferable to report the sample standard deviation instead
of the variance since the units of measurement for the sample standard deviation are the
same as those of the individual data points in the sample. To compute the variance with S,
use the function var (x). One could compute the standard deviation by taking the square
root of the variance sqrt (var(x)) or use the built-in function to do so. However, be aware
that the function to compute the standard deviation in R is sd(x), while the function to
compute the standard deviation in S-PLUS is stdev(x). The standard deviation is an
appropriate measure of spread for normal distributions:

> x <- 1:5

> X

[11] 1 23 45

> n <- length(x)

> mean.x <- mean(x)

> mean.x

[11 3

> X-mean.Xx

[1] -2 -1 0 1 2

> (x-mean.x) "2

[11 41014

> NUM <- sum((x-mean.x)”2) # numerator of s”2 hard way
> NUM

[1] 10

> DEN <- n-1 # denominator of s72
> DEN

[1] 4

> VAR <- NUM/DEN # variance hard way
> VAR

[1] 2.5

> var(x) # variance easy way
[1] 2.5

> SD <- sqrt(VAR) # standard deviation hard way
> SD

[1] 1.581139
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> sd(x) # standard deviation with R
[1] 1.581139
> stdev(x) # standard deviation with S-PLUS

[1] 1.581139

An interesting function that will return different results depending on the class of the
object to which it is applied is the S function summary(). When the object is a numeric
vector, as is the case with x, six summary statistics are returned: the minimum, the first
quartile, the median, the mean, the third quartile, and the maximum:

> summary (x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1 2 3 3 4 5

2.7 Bivariate Data

Methods to summarize and display relationships between two variables (bivariate data)
will be the focus of the next few pages. In Section 2.3, two of the methods used to gain a
deeper understanding of categorical variables were tables and barplots. When two variables
are categorical, tables, called contingency tables, and barcharts will still prove useful. When
presented with quantitative bivariate data, relevant questions will deal with the relationships
between the two variables. For example, is there a relationship between a person’s height and
his weight? Is there a relationship between the amount of time a student spends studying
and her grades? Graphical techniques such as scatterplots can be used to explore bivariate
relationships. When relationships exist between variables, different correlation coefficients
are used to characterize the strengths of the relationships. Finally, a brief introduction to
the simple linear regression model is given before moving into multivariate data.

2.7.1 Two-Way Contingency Tables

The S command table(x) was used for creating frequency tables with univariate,
categorical variables. For bivariate, categorical data, the command table(x, y) is used to
create two-way contingency tables where x and y represent the two categorical variables.

Example 2.15 Consider the data frame EPIDURAL, which contains information from a
study to determine whether the traditional sitting position or the hamstring stretch position
is superior for administering epidural anesthesia to pregnant women in labor as measured
by the number of obstructive (needle to bone) contacts (OC). The variable Doctor specifies
which of the four physicians in the study administered the procedure. Ease is the physician’s
assessment prior to administering the epidural of how well bony landmarks for epidural
placement can be felt. Produce a two-way contingency table for the variables Doctor and
Ease.

Solution: The goal is to produce a two-way table such as the one in Table 2.2 on the next
page with S. The levels of categorical variables by default are alphabetical. Consequently,
the levels of Ease are Difficult, Easy, and Impossible. Pay particular attention to how the
levels of a variable can be rearranged in the code that follows.
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Table 2.2: Two-way table of Doctor by Ease

Easy Difficult Impossible

Dr. A 19 3 1
Dr. B 7 10 4
Dr. C 18 3 0
Dr. D 13 4 3

> head (EPIDURAL, n=5) # Shows first five rows of EPIDURAL

Doctor kg cm Ease Treatment 0C Complications
1 Dr. B 116 172 Difficult Traditional Sitting O None
2 Dr. C 86 176 Easy Hamstring Stretch O None
3 Dr. B 72 157 Difficult Traditional Sitting O None
4 Dr. B 63 169 Easy Hamstring Stretch 2 None
5 Dr. B 114 163 Impossible Traditional Sitting O None
> attach(EPIDURAL)
> table(Doctor, Ease) # Levels of Ease not in increasing order

Ease

Doctor Difficult Easy Impossible

Dr. A 3 19 1

Dr. B 10 7 4

Dr. C 3 18 0

Dr. D 4 13 3

> Teasy <- factor(Ease, levels=c("Easy","Difficult","Impossible"))
> table(Doctor, Teasy) # Levels of Ease in increasing order

Teasy
Doctor Easy Difficult Impossible
Dr. A 19 3 1
Dr. B 7 10 4
Dr. C 18 3 0
Dr. D 13 4 3

Although the command table(Doctor, Ease) produced a two way contingency table,
reordering the levels of Ease produces a more readable two-way contingency table. |

Extensions to muti-way contingency tables can be accomplished by specifying additional
factors to the table() function or by using the R flattened table function ftable(). A
flattened three-way contingency table of the factors Doctor, Treatment, and Teasy follows.
More options for both table and ftable can be found in their respective help files.

> ftable(Doctor, Treatment, Teasy)
Teasy Easy Difficult Impossible
Doctor Treatment

Dr. A Hamstring Stretch 7 1 0
Traditional Sitting 12 2 1
Dr. B Hamstring Stretch 3 3 0
Traditional Sitting 4 7 4
Dr. C Hamstring Stretch 8 3 0
Traditional Sitting 10 0 0
Dr. D Hamstring Stretch 7 1 2
Traditional Sitting 6 3 1

> detach(EPIDURAL)
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2.7.2 Graphical Representations of Two-Way Contingency Tables

Barplots can be used to depict graphically the information from two-way contingency
tables. This is accomplished by picking one of the variables to form the categories of the
barplot. Next, the second variable’s levels are graphed either in a single bar (stacked) or as
several bars (side-by-side).

Example 2.16 Produce stacked and side-by-side barplots of the information contained
in Table 2.2 on the facing page.

Solution: Barplots where the variable of interest is Ease then Doctor are created first.
Subsequently, side-by-side barplots where the variables of interest are Ease then Doctor
are created. The graphs in Figure 2.12 on the next page were created using R. Output
from S-PLUS will look slightly different. The user should consult the on-line documentation
using ?barplots for the differences between R and S-PLUS.

> attach(EPIDURAL)
> Teasy <- factor(Ease, levels=c("Easy","Difficult","Impossible"))
> X <- table(Doctor, Teasy)

> X
Teasy

Doctor Easy Difficult Impossible

Dr. A 19 3 1

Dr. B 7 10 4

Dr. C 18 3 0

Dr. D 13 4 3
> t(X) # Transpose X

Doctor

Teasy Dr. ADr. BDr. CDr. D

Easy 19 7 18 13

Difficult 3 10 3 4

Impossible 1 4 0 3
> par (mfrow=c(2,2))
> barplot(X, main="Barplot where Doctor is Stacked \n within Levels
+ of Palpitation")
> barplot(t(X), main="Barplot where Levels of Palpitation \n is
+ Stacked within Doctor")
> barplot (X, beside=TRUE, main="Barplot where Doctor is Grouped \n
+ within Levels of Palpitation")
> barplot(t(X), beside=TRUE, main="Barplot where Levels of Palpitation
+ \n is Grouped within Doctor")
> par (mfrow=c(1,1))
> detach (EPIDURAL)

From the example, it is seen that the categories for the barplot are the numeric columns in
a two-way contingency table. If the user wants the categories to be reversed, transpose the
table using the command t (table(x, y)), where table(x, y) is the two-way contingency
table. |
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Barplot where Doctor is Stacked Barplot where Levels of Palpitation
within Levels of Palpitation are Stacked within Doctor
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FIGURE 2.12: Stacked and side-by-side barplots for levels of palpitation (Teasy) and
physician (Doctor)

Relationships are often better represented with proportions than with counts. R has the
function prop.table(x), which can be used to compute proportions based on the number
of entries in either the entire table, x, which is the default, or by entering prop.table(x,
margin=1) for row totals or prop.table(x, margin=2) for column totals.

Example 2.17 Using the data frame EPIDURAL, create a side-by-side barplot of Treatment
versus 0C.

Solution: Since there have been 25 patients treated with the hamstring stretch position
and 49 patients treated with the traditional sitting position, it would not be rational to
compare the frequencies. Instead, one should compare the percentages within the categories
of OC by Treatment:

> attach(EPIDURAL)
> table(Treatment, 0C)

oc
Treatment 0 1 2 3 4 5 610
Hamstring Stretch 17 6 6 2 1 1 0 2
Traditional Sitting 23 16 3 1 2 2 2 0
> addmargins(table(Treatment, 0OC)) # addmargins is an R command
ocC
Treatment 0 123456 10 Sum
Hamstring Stretch 17 66 2110 2 35
Traditional Sitting 23 16 31 2 2 2 0 49
Sum 40 2293332 2 84
> X <-prop.table(table(Treatment, 0C),1) # Percents by rows
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> X
ocC
Treatment 0 1 2 3
Hamstring Stretch  0.48571429 0.17142857 0.17142857 0.05714286
Traditional Sitting 0.46938776 0.32653061 0.06122449 0.02040816
ocC
Treatment 4 5 6 10
Hamstring Stretch  0.02857143 0.02857143 0.00000000 0.05714286
Traditional Sitting 0.04081633 0.04081633 0.04081633 0.00000000

> par (mfrow=c(2,1))

> barplot (X, beside=TRUE, legend=TRUE)

> barplot(t(X), beside=TRUE, legend=TRUE)
> par (mfrow=c(1,1))

> detach(EPIDURAL)
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FIGURE 2.13: Side-by-side barplots showing percentages in obstructive contacts categories
by treatments

Note that the categories for the barplot in the upper graph of Figure 2.13 are the 0OC
categories in the two-way contingency table. Within each OC category, comparisons are
shown side-by-side based on the treatment. If the user wants the categories to be reversed,
transpose the table using the command t(table(x, y)), where table(x, y) is the two-
way contingency table. |

2.7.3 Comparing Samples

The need to compare two samples is quite common. Simple experiments will often
compare a control group to a treatment group in an effort to see if the treatment provides
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some added benefit. For example, the data in the EPIDURAL data frame are from an ongoing
experiment to see which of two positions results in fewer obstructive bone contacts (the times
the needle hits a bone). When comparing two samples, typically some type of inference to
the samples’ populations is desired. That is, are the centers the same? Are the spreads
similar? Are the shapes of the two distributions similar? Graphs such as histograms, density
plots, boxplots, and quantile-quantile plots can help answer these questions. Histograms
and density plots were introduced in Section 2.4, and boxplots were introduced in Section
2.5. A quantile-quantile (Q-Q) plot plots the quantiles of one distribution against the
quantiles of another distribution as (z,y) points. When the two distributions have similar
shapes, the points will fall along a straight line. The S function to make a quantile-quantile
plot is qgplot(x, y). Histograms can be used to compare two distributions. However, it
is rather challenging to put both histograms on the same graph. Example 2.18 shows the
user how histograms can be used to compare distributions. However, a better approach is
to use Trellis/lattice graphics, which are explained in Section 2.8.

Example 2.18 Use histograms to compare the body weight index (BWI) for the two
treatments (traditional sitting and hamstring stretch stored in Treatment) using the data
frame EPIDURAL.

Solution: First, BWI is typically defined as kg/m?. Since the data frame EPIDURAL does
not contain a BWI variable, one is created. Subsequently, the default options for the BWI
histograms of the control and treatment groups are shown in the first column of Figure 2.14
on the next page, while the BWI histograms of the control and treatment groups are shown
in the second column of Figure 2.14 after the axes limits for both the z- and y-axes have
been set to the same values for both histograms:

> attach (EPIDURAL)

> BWI <- kg/(cm/100) "2

> Control <- BWI[Treatment=="Traditional Sitting"]
> Treated <- BWI[Treatment=="Hamstring Stretch"]
> par (mfrow=c(2,2)) # 2*%2 plotting region

> hist(Control)

> hist(Control, x1lim=c(20,60), ylim=c(0,17))

> hist(Treated)

> hist(Treated, x1im=c(20,60), ylim=c(0,17))

> par(mfrow=c(1,1)) # 1x1 plotting region

> detach(EPIDURAL)

Note that it is misleading to compare histograms where the bin widths and/or units on the
axes of the two histograms are different. Note that both axes are different in the first column
of Figure 2.14 on the facing page. The bins of the two histograms are set with the argument
breaks=, and the z- and y-axes are set with the arguments x1im= and ylim=, respectively.
The general shape of the BWI for the patients administered epidurals in the hamstring
stretch position is unimodal skewed to the right. While the distribution of BWI for patients
administered epidurals in the traditional sitting position is also unimodal skewed to the
right, it is not quite as skewed as the distribution where patients are administered epidurals
from the hamstring stretch position. |

Example 2.19 Use side-by-side boxplots and superimposed density plots to compare the
BWI for the two treatments (traditional sitting and hamstring stretch stored in Treatment)
using the data frame EPIDURAL.
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FIGURE 2.14: Side-by-side barplots showing percentages in obstructive contacts’ categories
by treatments

Solution: The argument horizontal=TRUE used in the boxplot() function will only
work in R. One way to create horizontal boxplots with S-PLUS is to use the Trellis function
bwplot (). Specifically, one might enter bwplot(Treatment™BWI) to produce side-by-side
boxplots with S-PLUS. Trellis/lattice graphs will be discussed in more detail in Section 2.8.
Using boxplots, as seen in Figure 2.15 on the next page, one sees that the median for both
treatments is around 30 kg/m? and both distributions appear to be skewed to the right.

attach (EPIDURAL)

par(pty="s") # Make plotting region square

BWI <- kg/(cm/100)"2 # Define body weight index

Control <- BWI[Treatment=="Traditional Sitting"]

Treated <- BWI[Treatment=="Hamstring Stretch"]

boxplot(Control, Treated, horizontal=TRUE, col=c(13,4),
names=c("Traditional Sitting","Hamstring Stretch"), las=1)
plot(density(Control), xlim=c(20,60), col=13, lwd=2, main="", xlab="")
lines(density(Treated), 1ty=2, col=4, lwd=2)

detach (EPIDURAL)

V VV + V V V V VvV

The density plot in Figure 2.16 on the following page further indicates that the distributions
for the BWI for both the traditional sitting and the hamstring stretch position are skewed
to the right. [ ]

Example 2.20 Use a quantile-quantile plot to compare the BWI for the two treat-
ments (traditional sitting and hamstring stretch stored in Treatment) using the data frame
EPIDURAL.

Solution: Commands to recreate the quantile-quantile plot shown in Figure 2.17 on
page 57 follow. Note that both the z- and y-axes have the same limits.
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FIGURE 2.15: Side-by-side boxplots of BWI in the traditional sitting and hamstring stretch
positions
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FIGURE 2.16: Density plots of BWI in the traditional sitting (solid line) and hamstring
stretch positions (dashed line)

> attach(EPIDURAL)

> par(pty="s") # Make plotting region square
> qgplot(Control, Treated, xlim=c(20,60), ylim=c(20,60))
> abline(a=0, b=1) # Line y=0+1%x

> par(pty="m" # Maximize plotting region
> detach (EPIDURAL)

The quantile-quantile plot in Figure 2.17 suggests the distributions are fairly similar since
the points roughly follow the y = x line. |

2.7.4 Relationships between Two Numeric Variables

Relationships between two numeric variables can be viewed with scatterplots. A
scatterplot plots the values of one variable against the values of a second variable as points
(4,y;) in the Cartesian plane. Typical questions researchers seek to answer with numeric
variables include “Is there a relationship between the two variables?”, “How strong is the
relationship between the two variables?”, and “Is the relationship linear?” Questions such as
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FIGURE 2.17: Quantile-quantile plot of BWI in the traditional sitting and hamstring
stretch positions

“Is there a relationship between a person’s height and his weight?” or “Is there a relationship
between a student’s grades and the time spent studying?” are typical. Given two numeric
variables, say = and y, entering the S function plot(x, y) produces a scatterplot.

Example 2.21 Use the data frame Animals from the MASS package to investigate whether
the brain weights of animals are related to their body weights. In other words, is a bigger
brain required to govern a bigger body?

Solution: Because of the large range in body and brain weights, (0.023 kg to 87,000
kg) and (0.4 g to 5712 g), respectively, a scatterplot of the values in body and brain is
too distorted to reveal any clear pattern. Consequently, the data is transformed by taking
natural logarithms of both variables and plotting the resulting values as shown in Figure 2.18
on the following page.

> library(MASS)

> attach(Animals)

> range (body)

[1] 2.3e-02 8.7e+04

> range(brain)

[1] 0.4 5712.0

> range (log(body))

[1] -3.772261 11.373663

> range(log(brain))

[1] -0.9162907 8.6503245

> par(pty="s"

> plot(log(body), log(brain))
> identify(log(body), log(brain), labels=row.names(Animals))
> detach(Animals)

The function identify () was used to label several of the points in Figure 2.18 on the next
page. The function identify () labels the closest point in the scatterplot with each mouse
click (left click with windows) until instructed to stop. How the function is instructed to
stop varies by operating system. Right clicking with windows, middle clicking with Linux,
and using the escape key in Mac OS X will generally stop the identification process. Based
on Figure 2.18, there appears to be linear relationship between the logarithm of the body
weights and the logarithm of the brain weights. The dinosaurs can be classified as bivariate
outliers as they do not fit the overall pattern seen in the rest of the data. |
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FIGURE 2.18: Scatterplot of log(brain) versus log(body) for Example 2.21

2.7.5 Correlation

The correlation coefficient, denoted by r, measures the strength and direction of the
linear relationship between two numeric variables X and Y and is defined by

" ni ] i (ﬁs;x> (%) 20

i=1

The value for r will always be between —1 and +1. When r is close to +1, it indicates
a strong positive linear relationship. That is, when z increases so does y, and vice versa.
When the value of r is close to —1, it indicates a strong negative linear relationship. Values
of r close to zero indicate weak linear relationships. To compute the correlation between
two numeric vectors with S, one may use the function cor(x, y).

Example 2.22 Find the correlation coefficient, r, between the logarithms of the body
and brain weights in the data frame Animals from the MASS package using (2.6). Verify the
calculated answer using the S function cor ().

Solution: First, the variables logbody, logbrain, Zbody, and Zbrain are created. The
new variables are subsequently column binded to the Animals data frame and stored in a
new data frame named Anim. Note that the output uses the R function sd() to compute
the standard deviation. To compute the standard deviation with S-PLUS, use stdev().

attach(Animals)

options(digits=3) # Three digits for output
logbody <- log(body)

logbrain <- log(brain)

Zbody <- (logbody - mean(logbody))/sd(logbody)

Zbrain <- (logbrain - mean(logbrain))/sd(logbrain)

Anim <- cbind(Animals, logbody, logbrain, Zbody, Zbrain)
n <- length(logbody)

V V V V V V V VvV
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> r <= (1/(n-1))*sum(Zbody*Zbrain) # Definition of r
>r
[1] 0.78
> cor(logbody, logbrain)
[1] 0.78
> Anim[1:6,] # Show first 6 rows of Anim
body brain logbody logbrain Zbody Zbrain

Mountain beaver 1.35e+00 8.1 0.3001 2.092 -0.9206 -0.9726
Cow 4.65e+02 423.0 6.1420 6.047 0.6287 0.6760
Grey wolf 3.63e+01 119.5 3.5926 4.783 -0.0474 0.1492
Goat 2.77e+01 115.0 3.3200 4.745 -0.1197 0.1332
Guinea pig 1.04e+00 5.5 0.0392 1.705 -0.9898 -1.1340
Dipliodocus 1.17e+04 50.0 9.3673 3.912 1.4841 -0.2140

The correlation between logbrain and logbody is 0.78, which indicates a positive linear
relationship between the two variables. An alternative to computing the z-scores directly
is to use the function scale():

> ZB0O <- scale(logbody) # Z score of logbody

> ZBR <- scale(logbrain) # Z score of logbrain

> SAME <- cbind(Zbody, ZBO, Zbrain, ZBR)

> SAME[1:5,] # Show first five rows of data frame

Zbody Zbrain
[1,] -0.9206 -0.9206 -0.973 -0.973
[2,] 0.6287 0.6287 0.676 0.676
[3,] -0.0474 -0.0474 0.149 0.149
[4,] -0.1197 -0.1197 0.133 0.133
[5,] -0.9898 -0.9898 -1.134 -1.134
> detach(Animals) H

2.7.6 Sorting a Data Frame by One or More of Its Columns

The sort () function can be used to sort a single variable in either increasing or decreas-
ing order. However, if the user wants to sort a variable in a data frame and have the other
variables reflect the new ordering, sort () will not work. The function needed to rearrange
the values in a data frame to reflect the order of a particular variable or variables in the
event of ties is order (). Given three variables x, y, and z in a data frame DF, the command
order (x) returns the indices of the sorted values of x. Consequently, the data frame DF can
be sorted by x with the command DF [order (x),]. In the event of ties, further arguments
to order can be used to specify how the ties should be broken. Consider how ties are broken
with the following numbers. To conserve space, the transpose function t () is used on the
data frame DF.

> x <- ¢(1,1,1,3,3,3,2,2,2)
>y <- ¢(3,2,3,6,2,6,10,4,4)
> z <- ¢(7,4,2,9,6,4,5,3,1)
> DF <- data.frame(x, y, z)
> rm(x, y, z)

> attach(DF)



60 Probability and Statistics with R
> t(DF)

123456 789
x111333 222
y3236261044
z742964 531
> t(DF [order(x, y, z),])

23198 7564
x11122 2333
y2334410266
z42713 5649
> detach(DF)

Example 2.23 Find the correlation coefficient, 7, between the logarithms of the body
and brain weights in the data frame Animals from the MASS package with and without
dinosaurs.

Solution: To save space, only four rows of the data frames SA and NoDINO are shown in
the output. Note that there are a total of 28 animals in the data frame Animals.

> attach(Animals)

> cor(log(body), log(brain))

[1] 0.7794935

> SA <- Animals[order(body),] # Sorted by body weight

> detach(Animals)

> tail(SA, n=4) # Equivalently SA[25:28,], shows four heaviest animals

body brain
African elephant 6654 5712.0
Triceratops 9400 70.0
Dipliodocus 11700  50.0

Brachiosaurus 87000 154.5
> NoDINO <- SA[-(28:26),] # Remove rows 26-28 of SA

> attach(NoDINO) # NoDINO contains 25 rows

> NoDINO[22:25,] # Show four heaviest animals
body brain

Horse 521 655

Giraffe 529 680

Asian elephant 2547 4603

African elephant 6654 5712

> cor(log(body), log(brain)) # Correlation without dinosaurs
[1] 0.9600516

> detach(NoDINO)

The correlation between log(brain) and log(body) when dinosaurs are included is 0.78
and the correlation between log(brain) and log(body) is 0.96 when the dinosaurs are
removed from the computation. |

2.7.7 Fitting Lines to Bivariate Data

When a linear pattern is evident from a scatterplot, the relationship between the two
variables is often modeled with a straight line. When modeling a bivariate relationship, Y is
called the response or dependent variable, and z is called the predictor or independent
variable. There are relationships that are of interest that are not linear. However, before
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addressing more complicated models, this material attempts to provide a foundation for the
simpler models (simple linear regression) from which more complicated models can later be
built. Chapter 12 is devoted to standard regression techniques for both the simple and
multiple linear regression model. The simple linear regression model is written

Y = Bo + Brxi + &5 (2.7)

Model (2.7) is said to be simple, linear in the parameters (Gy and (1), and linear in the
predictor variable (x;). It is simple because there is only one predictor; linear in the
parameters because no parameter appears as an exponent nor is multiplied or divided
by another parameter; and linear in the predictor variable since the predictor variable is
raised only to the first power. When the predictor variable is raised to a power, this power
is called the order of the model. For now, only the simple linear model will be discussed.
The goal is to estimate the coefficients Gy and 31 in (2.7). The most well-known method of
estimating the coefficients By and ; is to use ordinary least squares (OLS). OLS provides
estimates of By and (81 by minimizing the sum of the squared deviations of the Y;s for all
possible lines. Specifically, the sum of the squared residuals (¢, = Y; — }A/l) is minimized
when the OLS estimators of Jy and 1 are

Bo=Y - piz (2.8)
)

9y (2.9)

respectively. Note that the estimated regression function is written as
Yi = fo + iz

A graphical representation of the residuals and a line fit to some data using OLS can be
seen in Figure 2.19 on the following page.

The OLS estimators of 3y and 3 are affected by outliers just as the mean and standard
deviation are subject to outliers. Recall that the median and IQR were suggested as
measures of center and spread, respectively, when working with skewed distributions. This
recommendation was made because the median and IQR provide more robust measures of
center and spread in the presence of outliers. In the presence of bivariate outliers, several
robust alternatives exist for computing estimates of Gy and ;. Two alternatives to OLS
implemented in the MASS package will be considered. Specifically, least-trimmed squares
using the function 1gs() and robust regression using an M estimator with the function
rlm() are discussed. Just as OLS sought to minimize the squared vertical distance between
all of the Y;s over all possible lines, least-trimmed squares minimizes the ¢ smallest residuals
over all possible lines where ¢ = |[(n 4+ p + 1)/2]. Fitting for the function rlm() is done
by iterated re-weighted least squares. Although 1gqs() and rlm() are computationally
intensive, the interfaces for 1m(), 1qs(), and rlm() are essentially identical. All three
functions require a model formula of the form y~=x. The ~ in this notation is read “is
modeled by.”

Example 2.24 In Exercise 2.23 on the preceding page, the correlation between the loga-
rithms of the body and brain weights in the data frame Animals from the MASS package with
and without dinosaurs was computed. Find the estimates for the least squares regression
lines with and without dinosaurs where the logarithm of brain is modeled by the logarithm
of body using Equations (2.8) and (2.9) as well as the S function 1m(). Superimpose both
lines on the scatterplot using the function abline() (see Table A.12 on page 667).
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FIGURE 2.19: Graph depicting residuals. The vertical distances shown with a dotted line
between the Y;s, depicted with a solid circle, and the Y;s, depicted with a clear square, are
the residuals.

Solution: Recall that there are a total of 28 animals in the data frame Animals and
25 animals in the NoDINO data frame. The scatterplot with superimposed regression lines
including the dinosaurs and omitting the dinosaurs is shown in Figure 2.20 on the next

page.

attach(Animals)

Y <- log(brain)

X <- log(body)

plot(X, Y, xlab="log(body)", ylab="log(brain)")
bl <- sum((X-mean(X))*(Y-mean(Y)))/sum((X-mean (X)) ~2)
b0 <- mean(Y) - blxmean(X)

estimates <- c(b0, bl)

estimates

[1] 2.5548981 0.4959947

> modDINO <- 1Im(Y~X)

> modDINO

V VV V V V V VvV

Call:
Im(formula = Y ~ X)

Coefficients:
(Intercept) X
2.555 0.496

> abline (modDINO, col="pink", lwd=2)
> SA <- Animals[order(body),] # Sorted by body weight
> NoDINO <- SA[-(28:26),] # Remove rows 26-28 (dinosuars)
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detach(Animals)

attach(NoDINO) # NoDINO contains 25 rows
Y <- log(brain)

X <- log(body)

bl <- sum((X-mean(X))*(Y-mean(Y)))/sum((X-mean(X))"2)
b0 <- mean(Y) - blxmean(X)

estimates <- c(b0O, bl)

estimates

[1] 2.1504121 0.7522607

> modNODINO <- 1m(Y~X)

> modNODINO

V V.V V V V V VvV

Call:
Im(formula =Y ~ X)

Coefficients:
(Intercept) X
2.1504 0.7523
> abline (modNODINO, col="blue", lwd=2, lty=2)
> leglabels <- c("OLS with Dinosaurs", "OLS without Dinosaurs")
> leglty <- c(1,2)
> legcol=c("pink","blue")
> legend("topleft", legend=leglabels, lty=leglty, col=legcol, lwd=2)
> detach(NoDINO)
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FIGURE 2.20: Scatterplot of log(brain) versus log(body) with superimposed regression
lines computed with (solid line) and without (dashed line) dinosaurs

The intercept and slope of the regression line with dinosaurs are 2.555 and 0.496, respec-
tively. Without the dinosaurs, the intercept and slope of the regression line are 2.1504 and
0.7523, respectively. |
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Example 2.25 From Figure 2.20 in Exercise 2.24 one notices three bivariate outliers
(dinosaurs). Fit regression lines to the same data used in Exercise 2.20 using ordinary least
squares, least-trimmed squares, and robust regression with an M estimator. Superimpose
the resulting regression lines on a scatterplot and label the lines accordingly.

Solution: The scatterplot with the three superimposed regression lines is shown in Fig-
ure 2.21 on the facing page.

attach(Animals)

plot(log(body), log(brain), col="blue")
f <- log(brain) “log(body)

modellM <- 1m(f)

modellLM

Call: 1m(formula = f)

V V V Vv V

Coefficients:
(Intercept) log(body)
2.5655 0.496

> abline(modelLM, col="pink", 1lwd=2)
> modelLQS <- 1gs(f)

> modelLQS

Call: lgs.formula(formula = f)

Coefficients:
(Intercept) log(body)
1.816 0.776

Scale estimates 0.4637 0.4633

> abline(modellLQS, 1lty=2, col="red", lwd=2)

> modelRLM <- rlm(f, method="MM")

> modelRLM

Call: rlm(formula = f, method = "MM") Converged in 5 iterations

Coefficients:
(Intercept)  log(body)
2.0486717 0.7512927

Degrees of freedom: 28 total; 26 residual
Scale estimate: 0.633

> abline(modelRLM, 1lty=3, col="black", lwd=2)

> leglabels <- c("Least Squares Line","Least-Trimmed Squares",
+ "Robust line: M-estimator ")

> leglty <- c(1,2,3)

> legend("topleft", legend=leglabels, lty=leglty,

+ col=c("pink","red","black"), lwd=2, cex=0.85)

> detach(Animals)

The least-trimmed squares (1gs () ) procedure and the robust line with M estimator (r1m())
method produce lines that put relatively little importance on outliers (dinosaurs). This is
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FIGURE 2.21: Scatterplot of log(brain) versus log(body) with three superimposed
regression lines. Solid is the OLS line; dashed is the least-trimmed squares line; and dotted
is the robust line.

further highlighted when one considers the estimates 3y and [; for the OLS estimates
without dinosaurs compared to the estimates of By and [3; for the least-trimmed squares
and robust procedures given in Table 2.3.

Table 2.3: Different values for by and b; with various regression methods

Method bo b1

OLS with dinosuars 2.555 0.496
OLS without dinosaurs 2.150  0.752
least-trimmed squares 1.816  0.776

robust line with M estimator 2.049 0.751

2.8 Multivariate Data (Lattice and Trellis Graphs)

This section examines tools that can be used to understand multivariate data. Specif-
ically, Trellis displays (used in S-PLUS), which were developed by Cleveland (1993), are
introduced. The R version of Cleveland’s Trellis displays is implemented with the package
lattice. Trellis displays are graphs that examine higher dimensional structure in data by
conditioning on one or more variables. Trellis graphs are implemented in a slightly different
fashion from traditional S graphs; however, some readers may find the layout, rendering,
and default coloring of Trellis graphs more appealing than traditional S graphs. Trellis
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graphs are created with a formula syntax. The formula expresses the dependencies between
the variables as follows:

response ~ predictor | conditioning.variable

The expression y ~ x | zis read “y is modeled as = given z.” Depending on the type
of graph, all three components may not need to be specified. Table A.11 on page 666 lists
the arguments for some of the more popular Trellis functions. If there is more than one
conditioning variable, they are all listed separated by the multiplication symbol (*).

Example 2.26 Use Trellis histograms to compare the body weight index (BWI) for the
two treatments (traditional sitting and hamstring stretch stored in Treatment) using the
data frame EPIDURAL.

Solution: Recall that BWI is typically defined as kg/m?. Since the data frame EPIDURAL
does not contain a BWI variable, one is created:

attach (EPIDURAL)

BWI <- kg/(cm/100)"2

library(lattice) # only for R
histogram(“BWI|Treatment, layout=c(1,2))

detach (EPIDURAL)
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FIGURE 2.22: Comparative histograms of BWI by treament

The histogram() function used the additional argument of layout=c(1,2). The first
value of layout determines the number of columns (1) in the Trellis graph and the second
value determines the number of rows (2) in the Trellis graph. This is in contrast to how
dimensions are specified in a matrix, which is number of rows by number of columns. The
basic shapes of the two histograms shown in Figure 2.22 are quite similar, just as was
observed in Example 2.18 on page 54 when the histograms were created using traditional S
graphs. |
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Example 2.27 In Example 2.19 on page 54 side-by-side boxplots were used to compare the
BWI for the two treatments. An additional concern is that not only should the distribution
of BWI be similar for treatments, but it should also be similar for each physician. Use
Trellis graphs to create side-by-side boxplots of BWI by treatments given Doctor using the
data frame EPIDURAL.

Solution: The argument as.table=TRUE used in the bwplot () function orders the graphs
the way one reads a book. The default arrangement of graphs is to start in the lower left
and move to the upper right. This is done so that the graphs appear with the smallest
values in the lower left, analogous to a scatterplot.

> attach(EPIDURAL)

> BWI <- kg/(cm/100)"2

> library(lattice)

> bwplot (Treatment™BWI|Doctor, as.table=TRUE) # Order: as one reads

1
Dr. A Dr.B
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Dr.C Dr.D

Traditional Sitting
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ohl ok
)

20 30 40 50 60
BWI

FIGURE 2.23: Trellis side-by-side boxplots of BWI in the traditional sitting and hamstring
stretch positions given Doctor

Since the number of observations for each of the treatments is relatively small (range is
from 6 to 15), it might be a better to look at the data with a stripplot. A stripplot of the
treatments conditioning on physician is illustrated in Figure 2.24 on the following page.

> stripplot(Treatment BWI|Doctor, jitter=TRUE, as.table=TRUE)
> detach (EPIDURAL)

The optional argument jitter=TRUE adds a small amount of noise to the values in the
stripplot so that overlapping values are easier to distinguish. Based on the stripplots shown
in Figure 2.24 on the next page, it seems that Dr. C’s patients have a consistently smaller
BWI for both treatment positions. Further investigation is needed to see why Dr. C’s
patients have consistently smaller BWI measurements versus the other physicians.

2.8.1 Arranging Several Graphs on a Single Page

The arrangement of Trellis graphs on a single page is again different from the arrange-
ment of traditional graphs on a single page. Two different approaches can be taken when



68 Probability and Statistics with R

20 30 40 50 60

I
Dr. A Dr. B
Traditional Sitting |~ % © &0 ° 858 80 o
Hamstring Stretch | © 0 © © 0o 0% © o °
Dr.C Dr.D
Traditional Sitting | © 0 @Oo ° ° o 88 8 o °
Hamstring Stretch | ©o 2 g© o® og o o
I I I I [
20 30 40 50 60
BWI

FIGURE 2.24: Trellis side-by-side stripplots of BWTI in the traditional sitting and hamstring
stretch positions given Doctor

arranging several graphs on a single page. The first approach discussed is to arrange the
graphs in equally sized rectangles based on the dimensions of a matrix. In other words, if
one wants to plot six graphs on a single page, it might be accomplished with a 3 by 2 or a
2 by 3 matrix where each position of the matrix represents a graph. To print each graph,
the following structure is used:

print(trellisgraph, split=c(column, row, number of columns,
number of rows), more=TRUE/FALSE)

A second approach to producing multiple graphs on a single page is to literally specify
the lower left and upper right coordinates for each graph. The lower left of the graph is
denoted by the coordinates (0, 0), and the upper right corner is denoted by the coordinates
(1, 1). The form for specifying each graph is (x.r,yrr, ZuR, yur). To print each graph,
the following structure is used:

print(trellisgraph, position=c(x_LL, y_LL, x_UR, y_UR), more=TRUE/FALSE)

Example 2.28 Use Trellis graphs to create boxplots of BWI given Doctor, a scatterplot
of cm versus kg given Doctor, a histogram of BWI, and a density plot of BWI given Treatment
using the data frame EPIDURAL. Show all four graphs on the same page.

Solution: The solution provided is for R. The commands that follow will work in S-PLUS
for graphs 2-4. However, the command bwplot ("BWI|Doctor) (graph 1) will not work in
S-PLUS. The argument as.table=TRUE used in the bwplot () and the xyplot() functions
are not requested in the problem. However, they are used since most people like to read
from left to right and top to bottom. The four graphs are created and stored in variables
named graphl, graph2, graph3, and graph4, respectively. By splitting the graph into a
2 by 2 matrix or by specifying the position for each of the four graphs one can reproduce
Figure 2.25 on the facing page using the commands that follow.

> attach(EPIDURAL)

> library(lattice)

> graphl <- bwplot("BWI|Doctor, as.table=TRUE)
> graph2 <- xyplot(cm~kg|Doctor, as.table=TRUE)



Ezploring Data 69

graph3 <- histogram(~BWI)

graph4 <- densityplot("BWI|Treatment)

print(graphl, split=c(1,2,2,2), more=TRUE) # Lower left
print(graph2, split=c(2,2,2,2), more=TRUE) # Lower right
print (graph3, split=c(1,1,2,2), more=TRUE) # Upper left
print (graph4, split=c(2,1,2,2), more=FALSE) # Upper right

V V. V V V V

Using the literal position of the graph

print(graphl, position=c(0,0,.5,.5), more=TRUE) # Lower left
print(graph2, position=c(.5,0,1,.5), more=TRUE) # Lower right
print(graph3, position=c(0,.5,.5,1), more=TRUE) # Upper left
print(graph4, position=c(.5,.5,1,1), more=FALSE) # Upper right
detach (EPIDURAL)
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FIGURE 2.25: Arrangement of four different Trellis graphs on the same page

2.8.2 Panel Functions

Panel functions can be used to add additional features to a Trellis graph. For example,
given a Trellis z-y plot, one can add a line using the panel function panel.abline(). For a
list of available panel functions in R, type 7panel.functions at the R prompt. For details
with S-PLUS, see the S-PLUS Programmer’s Guide.

Example 2.29 Create a Trellis z-y plot of cm versus kg given Doctor using the data
frame EPIDURAL. Use panel functions to superimpose the ordinary least squares line and a
least-trimmed squares line over the z-y plot.
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Solution: The commands that follow create Figure 2.26.

library(lattice)

library (MASS) # Needed for 1lgs
attach (EPIDURAL)

xyplot (cm“kg|Doctor, as.table=TRUE,

panel=function(x, y)

{

panel.xyplot(x, y) # x-y plot
panel.abline(1m(y~x)) # Least sq line
panel.abline(lgs(y~™x), col=3, lty=2, lwd=2) # Least trim sq line
}
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FIGURE 2.26: z-y plot of height (cm) versus weight (kg) given physician (Doctor) with
superimposed least squares and least-trimmed squares lines

Another approach is to create a panel function that will superimpose the least squares
and least-trimmed squares lines on an z-y plot and then to call that function within the
xyplot () as follows:

panel.scatreg <- function(x, y) # name function
{
panel.xyplot(x, y) # make x-y plot

H*

panel.abline(1lm(y~x), lwd=2) regression line
panel.abline(lgs(y~™x), col=3, lty=2, lwd=2) # least trim sq line
}

xyplot(cm™kgl|Doctor, as.table=TRUE, panel=panel.scatreg)

detach (EPIDURAL)

VV 4+ 4+ + + 4V

Both approaches produce identical output. The dashed lines (1ty=2) in Figure 2.26 are the
least-trimmed squares lines. [ |
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2.9

Problems

1. Load the MASS package.

(a) Enter the command help(package="MASS") and read about the functions and data

contained in this package.

(b) What does the description in the help file say about the function 1qs()?

Enter help(1lgs, package="MASS") to obtain information about the command 1gs.

(¢) What command shows the loaded packages?

2. Load Cars93 from the MASS package.

(a)

(b)
()

Create density histograms for the variables Min.Price, Max.Price, Weight, and
Length variables using a different color for each histogram.

Superimpose estimated density curves over the histograms.

Load the lattice package and do a box and whiskers plot of Price for every type of
vehicle according to the drive train. Do you observe any differences between prices?

3. Load the data frame WheatSpain from the PASWR package.

(a)

Find the quantiles, deciles, mean, maximum, minimum, interquartile range, variance,
and standard deviation of the variable hectares. Comment on the results. What
was Spain’s 2004 total harvested wheat area in hectares?

Create a function that calculates the quantiles, the mean, the variance, the standard
deviation, the total, and the range of any variable.

Which communities are below the 10" percentile in hectares? Which communities
are above the 90" percentile? In which percentile is Navarra?

Create and display in the same graphics device a frequency histogram of the variable
acres and a density histogram of the variable acres. Superimpose a density curve
over the second histogram.

Explain why using breaks of 0; 100,000; 250,000; 360,000; and 1,550,000 automati-
cally results in a density histogram.

Create and display in the same graphics device a barplot of acres and a density
histogram of acres using break points of 0; 100,000; 250,000; 360,000; and 1,550,000.

Add vertical lines to the density histogram of acres to indicate the locations of the
mean and the median, respectively.

Create a boxplot of hectares and label the communities that appear as outliers in
the boxplot. (Hint: Use identify().)

Determine the community with the largest harvested wheat surface area using either
acres or hectares. Remove this community from the data frame and compute the
mean, median, and standard deviation of hectares. How do these values compare
to the values for these statistics computed in (a)?

4. Load the wheatUSA2004 data frame from the PASWR package.
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(a)
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Find the quantiles, deciles, mean, maximum, minimum, interquantile range, vari-
ance, and standard deviation for the variable ACRES. Comment on what the most
appropriate measures of center and spread would be for this variable. What is the
USA’s 2004 total harvested wheat surface are?

Which states are below the 20*" percentile? Which states are above the 80"
percentile? In which quantile is WI (Wisconsin)?

Create a frequency and a density histogram in the same graphics device using square
plotting regions of the values in ACRES.

Add vertical lines to the density histogram from (c) to indicate the location of the
mean and the median.

Create a boxplot of the ACRES and locate the outliers’ communities and their values.

Determine the state with the largest harvested wheat surface in acres. Remove this
state from the data frame and compute the mean, median, and standard deviation
of ACRES. How do these values compare to the values for these statistics computed
in (a)?

5. The data frame vit2005 in the PASWR package contains descriptive information and the
appraised total price (in euros) for apartments in Vitoria, Spain.

(a)

—
o

Create a frequency table, a piechart, and a barplot showing the number of apartments
grouped by the variable out. For you, which method conveys the information best?

Characterize the distribution of the variable totalprice.

) Characterize the relationship between totalprice and area.

Create a Trellis plot of totalprice versus area conditioning on toilets. Are there
any outliers? Ignoring any outliers, between what two values of area do apartments
have both one and two bathrooms?

Use the area values reported in (d) to create a subset of apartments that have both
one and two bathrooms. By how much does an additional bathroom increase the
appraised value of an apartment? Would you be willing to pay for an additional
bathroom if you lived in Vitoria, Spain?

6. Access the data from url

and

http://www.stat.berkeley.edu/users/statlabs/data/babies.data

store the information in an object named BABIES using the function read.table().

A description of the variables can be found at

http://www.stat.berkeley.edu/users/statlabs/labs.html.

These data are a subset from a much larger study dealing with child health and devel-
opment.

(a)

Create a “clean” data set that removes subjects if any observations on the subject
are “unknown.” Note that bwt, gestation, parity, height, weight, and smoke use
values of 999, 999, 9, 99, 999, and 9, respectively, to denote “unknown.” Store the
modified data set in an object named CLEAN.

Use the information in CLEAN to create a density histogram of the birth weights of
babies whose mothers have never smoked (smoke=0) and another histogram placed
directly below the first in the same graphics device for the birth weights of babies
whose mothers currently smoke (smoke=1). Make the range of the z-axis 30 to 180
(ounces) for both histograms. Superimpose a density curve over each histogram.
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(¢) Based on the histograms in (b), characterize the distribution of baby birth weight
for both non-smoking and smoking mothers.

(d) What is the mean weight difference between babies of smokers and non-smokers?
Can you think of any reasons not to use the mean as a measure of center to compare
birth weights in this problem?

(e) Create side-by-side boxplots to compare the birth weights of babies whose mother’s
never smoked and those who currently smoke. Use traditional graphics (boxplot())
as well as Trellis/lattice graphs to create the boxplots (bwplot()).

(f) What is the median weight difference between babies who are firstborn and those
who are not?

(g) Create a single graph of the densities for pre-pregnancy weight for mothers who
have never smoked and for mothers who currently smoke. Make sure both densities
appear on the same graphics device and place a color coded legend in the top right
corner of the graph.

(h) Characterize the pre-pregnancy distribution of weight for mothers who have never
smoked and for mothers who currently smoke.

(i) What is the mean pre-pregnancy weight difference between mothers who do not
smoke and those who do? Can you think of any reasons not to use the mean as a
measure of center to compare pre-pregnancy weights in this problem?

(j) Compute the body weight index (BWI) for each mother in CLEAN. Recall that BWT
is defined as kg/m? (0.0254 m= 1 in., and 0.45359 kg= 1 1b.). Add the variables
weight in kg, height in m, and BWI to CLEAN and store the result in CLEANP.

(k) Characterize the distribution of BWI.

(1) Group pregnant mothers according to their BWI quartile. Find the mean and
standard deviation for baby birth weights in each quartile for mothers who have
never smoked and those who currently smoke. Find the median and IQR for baby
birth weights in each quartile for mothers who have never smoked and those who
currently smoke. Based on your answers, would you characterize birth weight in
each group as relatively symmetric or skewed? Create histograms and densities of
bwt conditioned on BWI quartiles and whether the mother smokes to verify your
previous assertions about the shape.

(m) Create side-by-side boxplots of bwt based on whether the mother smokes conditioned
on BWI quartiles. Does this graph verify your findings in (1)?

(n) Does it appear that BWI is related to the birth weight of a baby? Create a scatterplot
of birth weight (bwt) versus BWI while conditioning on BWI quartiles and whether
the mother smokes to help answer the question.

(o) Replace baby birth weight (bwt) with gestation length (gestation) and answer
questions (1), (m), and (n).

(p) Create a scatterplot of bwt versus gestation conditioned on BWI quartiles and
whether the mother smokes. Fit straight lines to the data using 1m(), 1gs(), and
rlm(); and display the lines in the scatterplots. What do you find interesting about
the resulting graphs?

(q) Create a table of smoke by parity. Display the numerical results in a graph. What
percent of mothers did not smoke during the pregnancy of their first child?

7. Some claim the final hours aboard the RMS Titanic were marked by class warfare; others
claim it was characterized by male chivalry. The data frame titanic3 from the PASWR
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package contains information pertaining to class status (pclass), survival of passengers
(survived), and gender (sex), to name but a few. Based on the information in titanic3:

(a)
(b)

(c)
(d)

(e)

(2)

Determine the fraction of survivors (survived) according to class (pclass).

Compute the fraction of survivors according to class and gender. Did men in first
class or women in third class have a higher survival rate?

How would you characterize the distribution of age?

Were the median and mean ages for females who survived higher or lower than
for females who did not survive? Report the median and mean ages as well as an
appropriate measure of spread for each statistic.

Were the median and mean ages for males who survived higher or lower than for males
who did not survive? Report the median and mean ages as well as an appropriate
measure of spread for each statistic.

What was the age of the youngest female in first class who survived?

Do the data suggest class warfare, male chivalry, or some combination of both char-
acterized the final hours aboard the Titanic? Feel free to explore other relationships
based on the numbers in titanic3 in answering this question.

Use the Cars2004EU data frame from the PASWR package which contains the numbers of
cars per 1000 inhabitants (cars), the total number of known mortal accidents (deaths),
and the country population/1000 (population) for the 25 member countries of the
European Union for the year 2004.

(a)

Compute the total number of cars per 1000 inhabitants in each country, and store
the result in an object named total.cars. Determine the total number of known
automobile fatalities in 2004 divided by the total number of cars for each country
and store the result in an object named death.rate.

Create a barplot showing the automobile death rate for each of the European Union
member countries. Make the bars increase in magnitude so that the countries with
the smallest automobile death rates appear first.

Which country has the lowest automobile death rate? Which country has the highest
automobile death rate?

Create a scatterplot of population versus total.cars. How would you characterize
the relationship?

Find the least squares estimates for regressing population on total.cars. Super-
impose the least squares line on the scatterplot from (d). What population does the
least squares model predict for a country with a total.cars value of 19224.6307
Find the difference between the population predicted from the least squares model
and the actual population for the country with a total.cars value of 19224.630.

Create a scatterplot of total.cars versus death.rate. How would you characterize
the relationship between the two variables?

Compute Spearman’s rank correlation coefficient of total.cars and death.rate.
(Hint: Use cor(x, y, method="spearman").) What is this coefficient measuring?
Plot the logarithm of total.cars versus the logarithm of death.rate. How would
you characterize the relationship?

What are the least squares estimates for the regression of log(death.rate) on
log(total.cars). Superimpose the least squares line on the scatterplot from
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(h). What death rate does the least squares model predict for a country with a
log(total.cars) value of 9.8639487 Make sure you express your answer in the
same units as those used for death.rate.

9. The data frame SurfaceSpain in the PASWR package contains the surface area (km?) for
seventeen autonomous Spanish communities.

(a)
(b)

Use the function merge () to combine the data frames WheatSpain (from problem 3)
and SurfaceSpain into a new data frame named DataSpain.

Create a variable named surface.h containing the surface area of each autonomous
community in hectares. (Note: 100 hectares = 1 km2.) Create a variable named
wheat.p containing the percent surface area in each autonomous community ded-
icated to growing wheat. Add the newly created variables to the data frame
DataSpain and store the result as a data frame with the name DataSpain.m.

Assign the names of the autonomous communities as row names for DataSpain.m
and remove the variable community from the data frame.

Create a barplot showing the percent surface area dedicated to growing wheat for
each of the seventeen Spanish autonomous communities. Arrange the communities
by decreasing percentages.

Display the percent surface area dedicated to growing wheat for each of the seventeen
Spanish autonomous communities using the function dotchart(). To read about
dotchart (), type ?dotchart at the command prompt. Do you prefer the barchart
or the dotchart? Explain your answer.

Describe the relationship between the surface area in an autonomous community
dedicated to growing wheat (hectares) and the total surface area of the autonomous
community (surface.h).

Describe the relationship between the surface area in an autonomous community
dedicated to growing wheat (hectares) and the percent of surface area dedicated to
growing wheat out of the communities’ total surface area (wheat.p).

Develop a model to predict the surface area in an autonomous community dedicated
to growing wheat (hectares) based on the total surface area of the autonomous
community (surface.h).






Chapter 3

General Probability and Random Variables

3.1 Introduction

One of the main objectives of statistics is to help make “good” decisions under conditions
of uncertainty. Probability is one way to quantify outcomes that cannot be predicted with
certainty. For example, when throwing two dice, the outcome of the experiment cannot
be known before the dice are thrown. Random variables, as well as counting techniques,
will facilitate the analysis of problems such as the example of throwing two dice. This
chapter provides a brief introduction to counting techniques, axiomatic probability, random
variables, and moment generating functions.

3.2 Counting Rules

One of the fundamental questions surrounding any experiment is how to know the
number of possible ways the experiment may have taken place.

DEFINITION 3.1: Basic principle of counting — Suppose k experiments are to be
performed such that the first can result in any one of n; outcomes; and if for each of these
n1 outcomes, there are no possible outcomes of the second experiment; and if for each of
the possible outcomes of the first two experiments, there are ns possible outcomes of the
third experiment; and if ..., then there are ny X ny X - -+ X ng possible outcomes for the k
experiments.

Example 3.1 A computer store sells three brands of laptops. Each laptop is sold with a
carrying case and four different options for upgrading RAM. Suppose the store only carries
two styles of carrying cases. How many different combinations of laptop, carrying case, and
RAM are possible?

Solution: According to the basic principle of counting, there are 3 - 2 - 4 = 24 different
combinations of laptop, carrying case, and RAM. |

3.2.1 Sampling With Replacement

When working with finite samples, it is critical to distinguish between sampling with
replacement and sampling without replacement. Sampling with replacement occurs
when an object is selected and subsequently replaced before the next object is selected.
Consequently, when sampling with replacement, the number of possible ordered samples of
size m taken from a set of n objects is n.

rrd
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Example 3.2 How many different license plates can be made from four digits?

Solution: First, note that there is no restriction forbidding repeated digits. That is,
0001, 0002,0003, ...,9999 are all permissible. In essence, this translates to sampling with
replacement. Since there are 10 choices for each of the four license plate digits, there are a
total of 10 x 10 x 10 x 10 = 10* = 10,000 possible license plates. |

3.2.2 Sampling Without Replacement

Sampling without replacement occurs when an object is not replaced after it has been
selected. When sampling without replacement, the number of possible ordered samples of
size m taken from a set of n objects is

n!
Any ordered sequence of m objects taken from n distinct objects is called a permutation
and is denoted P, .

Example 3.3 How many different ways can the first three places be decided in a race
with four runners?

Solution: The number of ways the first three places can be decided using the basic
principle of counting is by reasoning as follows:

Any one of the four runners might arrive in first place (four outcomes for the first
experiment). After the first runner crosses the finish line, there are three possible choices
for second place (three outcomes for the second experiment). Then, after second place is
decided, there are only two runners left (two outcomes for the third experiment). Conse-
quently, there are 4 -3 -2 = 24 possible ways to award the first three places. The problem
may also be solved by applying the permutation formula:

| |

P3,4=ﬁ:%=4-3-2:24. u
Example 3.4 How many ways can seven students form a line?
Solution: First, note that once a student is selected for a place in line, the number of
students for subsequent orderings is diminished by one. That is, this is a problem where
sampling is done without replacement. A useful strategy for this type of problem is actually
to think through assigning the students to positions before using a formula (permutation
in this case). If seven slots are drawn, then the reasoning is as follows:

There are seven ways a student can be assigned to the first slot. Once the first slot has
been assigned, there are six possible ways to pick a student for the next slot. Continue
with this logic until all of the students have been assigned a slot. Appealing to the basic
principle of counting, it is seen that there are 7 x 6 x 5 x 4 x 3 x 2 x 1 = 7! = 5040 possible
ways to form a line with seven students. This is the same number calculated by considering
a permutation of seven things taken seven at a time P77 = (7z!7)! = 5_; = 5040. Note that

ol =1. |

When a subset of the n objects is indistinguishable, clearly the number of permutations
is diminished. More to the point, when n objects have ny that are the same, no that are
the same, and so on until there are n, that are the same, there are a total of

n!
ny!-ng!--ony!

permutations of the n objects.
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Example 3.5 How many different letter arrangements can be formed using the letters
DATA?

Solution: Note that there are 4! permutations of the letters Dy A17T7 As when the two A’s
are distinguished from each other. However, since the A’s are indistinguishable, there are
only %:1, = 12 possible permutations of the letters DATA. |

3.2.3 Combinations

In many problems, selecting m objects from n total objects without regard to order is the
scenario of interest. For example, when selecting a committee, the order of the committee
is rarely important. That is, a committee consisting of John, Mary, and Paul is considered
the same committee if the members are listed Mary, Paul, and John. An arrangement of m
objects taken from n objects without regard to order is called a combination. The number
of combinations of n distinct objects taken m at a time is denoted as C,, ,, or (:1) and is
calculated as

o= (1) =

Example 3.6 A committee of three people is to be formed from a group of eight people.
How many different committees are possible?
Solution: There are C3g = (g) = ﬁ’_?’)! = 56 possible committees. [ |

Example 3.7 How many different three-letter sequences can be formed from the letters
A, B, C, and D if

(a) letter repetition is not permissible and order matters?
(b) letter repetition is permissible and order matters?

(c) letter repetition is not permissible and sequences containing the same letters are con-
sidered equal regardless of letter order?

Solution: The answers are as follows:

(a) There are P34 =4 -3 -2 = 24 possible sequences.

(b) Since letters may be used more than once, there are 43 = 64 possible sequences.
(¢) Since order does not matter, there are Cs 4 = (g) = 4 possible sequences.

Example 3.8 If nine people are to be assigned into three committees of sizes two, three,
and four, respectively, how many possible assignments are possible?

Solution: There are (g) ways to pick the first committee. Once that committee is selected,
there are seven members left from which a committee of size three is selected. So, there are
(g) ways to pick the second committee. Using the same logic, there are finally four members
left from which one committee of size four must be selected. There is only one way to select
the remaining committee, which is to select all of the remaining members to be on the
committee. Using the basic rule of multiplication, there are a total of (g) X (;) X (j) =
1260 ways to form the three committees. To compute the final answer, the S commands

choose(), prod (), or a combination of the two can be used.



80 Probability and Statistics with R

> choose(9,2)*choose(7,3)*choose(4,4)

[1] 1260

> prod(9:1)/(prod(2:1)*prod(3:1)*prod(4:1))

[1] 1260

> choose(9,2)*(prod(7:1)/(prod(3:1)*prod(4:1)))

[1] 1260 n

3.3 Probability
3.3.1 Sample Space and Events

An experiment is any action or process that generates observations. The sample
space of an experiment, denoted by €2, is the set of all of the possible outcomes of an
experiment. Although the outcome of an experiment cannot be known before it has taken
place, it is possible to define the sample space for a given experiment. The sample space
may be either finite or infinite. For example, the number of unoccupied seats in a train
corresponds to a finite sample space. The number of passengers arriving at an airport also
produces a finite sample space, assuming a one to one correspondence between arriving
passengers and the natural numbers. The sample space for the lifetime of light bulbs,
however, is infinite, since lifetime may be any positive value.

An event is any subset of the sample space, which is often denoted with the letter E.
Events are said to be simple when they contain only one outcome; otherwise, events are
considered to be compound. Consider an experiment where a single die is thrown. Since
the die might show any one of six numbers, the sample space is written Q = {1,2,3,4,5,6};
and any subset of €, such as E; = {even numbers}, Ey = {2}, F3 = {1,2,4}, B4 = Q, or
Es = 0, is considered an event. Specifically, Fs is considered a simple event while all of the
remaining events are considered to be compound events. Event Fs5 is known as the empty
set or the null set, the event that does not contain any outcomes. In many problems, the
events of interest will be formed through a combination of two or more events by taking
unions, intersections, and complements.

3.3.2 Set Theory

The following definitions review some basic notions from set theory and some basic rules
of probability that are not unlike the rules of algebra. For any two events E and F of a
sample space Q, define the new event £ U F' (read F union F') to consist of all outcomes
that are either in E or in F or in both E and F'. In other words, the event E U F will occur
if either F or F occurs. In a similar fashion, for any two events E' and F' of a sample space
), define the new event E N F (read E intersection F') to consist of all outcomes that are
both in F and in F. Finally, the complement of an event E (written E°) consists of all
outcomes in 2 that are not contained in F.

Given events F, F, GG, E1, Es, . . ., the commutative, associative, distributive, and DeMor-
gan’s laws work as follows with the union and intersection operators:

1. Commutative laws

e for the union FUF=FUEFE
e for the intersection ENF=FNE
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2. Associative laws

e for the union (FUF)UG=FEU(FUQG)
e for the intersection (ENF)NG=EN((FNG)

3. Distributive laws

e (ENF)UG=(EUG)N(FUG)
¢ (BUF)NG=(ENG)U(FNG)

4. DeMorgan’s laws

(98-

=1

i=1 i=1

3.3.3 Interpreting Probability

3.3.3.1 Relative Frequency Approach to Probability

Suppose an experiment can be performed n times under the same conditions with sample
space Q. Let n(FE) denote the number of times (in n experiments) that the event E occurs.
The relative frequency approach to probability defines the probability of the event E, written
P(E), as

P(E) = lim nte),

n—oo N

Although the preceding definition of probability is intuitively appealing, it has a serious

drawback. There is nothing in the definition to guarantee uE) converges to a single value.

n(E) "

Instead of assuming —~* converges, which is a very complex assumption, the simpler and

more self-evident axioms about probability commonly referred to as the three axioms of
probability are used.

3.3.3.2 Axiomatic Approach to Probability

The Three Axioms of Probability
Consider an experiment with sample space ). For each event E of the sample space
Q, assume that a number P(FE) is defined that satisfies the following three axioms:

1.0<PE)<1
2. P(Q) =1
3. For any sequence of mutually exclusive events Ei, Es,... (that is E; N E; =

0) for all i # j,
P (U E) =Y P(E;).
=1

i=1
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The following results are all easily derived using some combination of the three axioms
of probability:

1. P(E¢) = 1 — P(E)

Proof: Note that F and E°¢ are always mutually exclusive. Since £ U E° = , by
probability axioms 2 and 3, 1 =P(Q2) = P(E U E€) = P(E) + P(E°).

2. P(EUF) =P(E)+P(F)—P(ENF)

Proof: Note that E'U F' can be represented as the union of two mutually exclusive
events, ' and (E°NF). That is, EUF = EU(E°NF). Event F' can also be represented
as the union of two mutually exclusive events, (E'N F') and (E°N F'). By probability
axiom 3, P(EUF) =P(E) +P(E°NF) as well as P(F) = P(ENF)+P(E°NF).
By solving for P(E“N F') in the second equation and substituting the answer into the
first equation, the desired result of P(E U F) = P(E) + P(F) — P(E N F) is obtained.

3. P(0)=0

Proof: Consider two events, E; and Fs, where Ey = Q and E> = (. Note that
Q= Fy UE,; and F; N Ey = (. By probability axioms 2 and 3, 1 = P(Q) = P(F) +
P(Ey) =1+ P(0) = P(0) = 0.

4. If E C F, then P(E) < P(F)

Proof: Since E C F, it follows that FF = FU(E°NF). Note that E and (E°NF) are
mutually exclusive events. Consequently, appealing to probability axiom 3, P(F) =
P(E) 4+ P(E° N F). Since P(E° N F) > 0 by probability axiom 1, it follows that
P(F) > P(E).

Example 3.9 > Law of Complement: Birthday Problem < Suppose that a room
contains m students. What is the probability that at least two of them have the same
birthday? This is a famous problem with a counterintuitive answer. Assume that every
day of the year is equally likely to be a birthday, and disregard leap years. That is, assume
there are always n = 365 days to a year.

Solution: Let the event FE denote two or more students with the same birthday. In this
problem, it is easier to find E°, as there are a number of ways that F can take place. There
are a total of 365™ possible outcomes in the sample space. E° can occur in 365 x 364 X
-+ % (365 —m + 1) ways. Consequently,

365 x 364 x -+ x (365 —m + 1)

P(E?) = 365™

and 365 x 364 365 1
p(g) =1 - XX X BB m L)

The following S code can be used to create or modify a table such as Table 3.1 on the next
page, which gives P(F) for m = 10,15,...,50:

> for (m in seq(10,50,5))
print(c(m, 1 - prod(365:(365-m+1))/365™m))
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Another approach that can be used to solve the problem is to enter

> m <- seq(10,50,5)
> P.E <- function(m){c(m,1-prod(365: (365-m+1))/365 m)}
> t(sapply(m, P.E)) |

Table 3.1: Probability of two or more students having the same birthday

m P(E)

10 0.1169482
15 0.2529013
20 0.4114384
25 0.5686997
30 0.7063162
35 0.8143832
40 0.8912318
45 0.9409759
50 0.9703736

Example 3.10 Given two events E and F', suppose that P(E) = 0.3, P(F) = 0.5, and
P(EUF) = 0.6. Find P(E N F).

Solution: Since P(EUF)=P(E)+P(F)—-P(ENF), 06=03+05-—P(ENF). Thus,
P(ENF) =0.2. ]

3.3.4 Conditional Probability

In this section, conditional probability is introduced, which is one of the more important
concepts in probability theory. Quite often, one is interested in calculating probabilities
when only partial information obtained from an experiment is available. In such situations,
the desired probabilities are said to be conditional. Even when partial information is
unavailable, often the desired probabilities can be computed using conditional probabilities.
If £ and F are any two events in a sample space Q0 and P(E) # 0, the conditional
probability of F' given E is defined as

P(ENF)

P(F|E) = P(E)

(3.1)

It is left as an exercise for the reader to verify that P(F|E) satisfies the three axioms of
probability.

Example 3.11 Suppose two fair dice are tossed where each of the 36 possible outcomes
is equally likely to occur. Knowing that the first die shows a 4, what is the probability that
the sum of the two dice equals 87

Solution: The sample space for this experiment is given as Q = {(i,7),7 = 1,2,...,6,
j = 1,2,...,6}, where each pair (i,j) has a probability 1/36 of occurring. Define “the
sum of the dice equals 8” to be event F' and “a 4 on the first toss” to be event E. Since
E N F corresponds to the outcome (4,4) with probability P(E N F) = 1/36 and there are
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six outcomes with a 4 on the first toss, (4,1), (4,2),...,(4,6), the probability of event FE,

P(E) =6/36 = 1/6 and the answer is calculated as

P(ENF) 1/36 1 -
P(E)  1/6 6

P(FIE) =

Example 3.12 Suppose a box contains 50 defective light bulbs, 100 partially defective
light bulbs (last only 3 hours), and 250 good light bulbs. If one of the bulbs from the box is
used and it does not immediately go out, what is the probability the light bulb is actually
a good light bulb?

Solution: The conditional probability the light bulb is good given that the light bulb is
not defective is desired. Using (3.1), write
P(Good) _250/400 5

P(Good|Not Defective) = = T
( 00 | ot Defec 1ve) ]P(Not Defective) 350/400 7 |

3.3.5 The Law of Total Probability and Bayes’ Rule

An important tool for solving probability problems where the sample space can be
considered a union of mutually exclusive events is the Law of Total Probability.

Law of Total Probability — Let Fi, Fb,...,F, be such that |J!_, F; = Q and
F; N F; =0 for all i # j, with P(F;) > 0 for all 7. Then, for any event E,

n n

P(E) = > P(ENF;) =Y P(E[F;)P(F). (3.2)

i=1 i=1

At times, it is much easier to calculate the conditional probabilities P(E|F;) for an
appropriately selected F; than it is to compute P(E) directly. When this happens, Bayes’
Rule is used, which is derived using (3.1), to find the answer.

Bayes’ Rule — Let Fi, Fy, ..., F, be such that | J]_, F; = Q and F;NF; = 0 for all i #
j, with P(F;) > 0 for all 4. Then,

P(ENF)) P(E|F;)P(F;)

FEIE) = 5@ = S BER)RE) (3:3)

Example 3.13 > Conditional Probability: Car Batteries <| A car manufacturer
purchases car batteries from two different suppliers. Supplier A provides 55% of the batteries
and supplier B provides the rest. If 5% of all batteries from supplier A are defective and 4%
of the batteries from supplier B are defective, determine the probability that a randomly
selected battery is not defective. (See Figure 3.1 on the facing page.)

Solution: Let C correspond to the event “the battery does not work properly,” A to the
event “the battery was supplied by A,” and B to the event “the battery was supplied by
B.” The Venn diagram in Figure 3.1 on the next page provides a graphical illustration of
the sample space for this example. Since a working battery might come from either supplier
A or B, A and B are disjoint events. Consequently, P(C) = P(C N A) + P(C N B). Given
that

P(A) = 0.55, P(C|A) = 0.05, P(CNA)=P(C|A)P(A),

P(B) = 0.45, P(C|B) = 0.04, and P(C' N B) = P(C|B)P(B),

write P(C') = (0.05)(0.55) 4 (0.04)(0.45) = 0.0455. Then, the probability that the battery
works properly is 1 — P(C') = 0.9545. |
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A B

P(C N B) = 0.018

e
<
e
P(C N A) =0.0275

P(A) = 0.55 P(B) = 0.45

FIGURE 3.1: Sample space for Example 3.13

Example 3.14 Suppose a student answers all of the questions on a multiple-choice test.
Let p be the probability the student actually knows the answer and 1 — p be the probability
the student is guessing for a given question. Assume students that guess have a 1/a proba-
bility of getting the correct answer, where a represents the number of possible responses to
the question. What is the conditional probability a student knew the answer to a question
given that he answered correctly?

Solution: Let the events F, Fy, and F5 represent the events “question answered correctly,”
“student knew the correct answer,” and “student guessed,” respectively. Using (3.3), write
P(F1 N E) P(Fy) p

P(F|E) = P(E)  P(E|[F)P(F)+P(ER)PE) p+(l-p)a

As a special case, if a = 4 and p = 1/2, then the probability a student actually knew the
answer given their response was correct is 4/5. |

Example 3.15 > Bayes’ Rule: Choose a Door <l The television show Let’s Make a
Deal, hosted by Monty Hall, gave contestants the chance to choose, among three doors, the
one that concealed the grand prize. Behind the other two doors were much less valuable
prizes. After the contestant chose one of the doors, say Door 1, Monty opened one of the
other two doors, say Door 3, containing a much less valuable prize. The contestant was
then asked whether he or she wished to stay with the original choice (Door 1) or switch
to the other closed door (Door 2). What should the contestant do? Is it better to stay
with the original choice or to switch to the other closed door? Or does it really matter?
The answer, of course, depends on whether contestants improve their chances of winning by
switching doors. In particular, what is the probability of winning by switching doors when
given the opportunity; and what is the probability of winning by staying with the initial
door selection? First, simulate the problem with S to provide approximate probabilities for
the various strategies. Following the simulation, show how Bayes’ Rule can be used to solve
the problem exactly.

Solution: To simulate the problem, generate a random vector named actual of size 10,000
containing the numbers 1, 2, and 3. In the vector actual, the numbers 1, 2, and 3 represent
the door behind which the grand prize is contained. Then, generate another vector named
guess of size 10,000 containing the numbers 1, 2, and 3 to represent the contestant’s initial
guess. If the i*? values of the vectors actual and guess agree, the contestant wins the grand
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prize by staying with his initial guess. On the other hand, if the i*" values of the vectors
actual and guess disagree, the contestant wins the grand prize by switching. Consider the
following S code and the results that suggest the contestant is twice as likely to win the
grand prize by switching doors:

> actual <- sample(1:3, 10000, replace = TRUE)
> aguess <- sample(1:3, 10000, replace = TRUE)
> equals <- (actual == aguess)
> PNoSwitch <- sum(equals)/10000
> not.eq <- (actual !'= aguess)
> PSwitch <- sum(not.eq)/10000
> Probs <- c(PNoSwitch, PSwitch)
> names (Probs) <- c("P(Win no Switch)", "P(Win Switch)")
> Probs
P(Win no Switch) P(Win Switch)

0.3317 0.6683

Next use (3.3) after defining events D; and O; to find P(D;]|O3) and P(D2|O3). Start by
assuming the contestant initially guesses Door 1 and that Monty opens Door 3. Let the
event D; = Door ¢ conceals the prize and O; = Monty opens door j after the contestant
selects Door 1. When a contestant initially selects a door, P(D;) = P(D2) = P(D3) = 1/3.
Once Monty shows the grand prize is not behind Door 3, the probability of winning the
grand prize is now one of P(D1]|O3) or P(D2|O3). Note that P(D;|Os) corresponds to the
strategy of sticking with the initial guess and P(D3]|O3) corresponds to the strategy of
switching doors. Based on how the show is designed, the following are known:

e P(O3|D;) = 1/2 since Monty can open one of either Door 3 or Door 2.

e P(O3|D3) = 1 since the only door Monty can open without revealing the grand prize
is Door 3.

e P(O3|D3) = 0 since Monty will not open Door 3 if it contains the grand prize.

P(O3]|D1)P(Dy)
(O3|D1)P(D1) + P(O3]|D2)P(D2) + P(O3|D3)P(D3)
B 1/2 x 1/3 1
T 1/2x1/3+1x1/3+0x1/3 3

P(D1]03) = P

P(O3]|D2)P(D>)
(O3|D1)P(D1) + P(O3]|D2)P(D2) + P(O3|D3)P(D3)
B 1x1/3 2
T 1/2x1/3+1x1/3+0x1/3 3

P(D2|03) = P

Therefore, it is always to the contestant’s benefit to switch doors. |

3.3.6 Independent Events

Conditional probability allows for an alteration in the probability of an event when
additional information is present. That is, P(E|F) is sometimes different from P(E) when
some knowledge of the event F is available. Note that P(E|F) is sometimes different from
P(E), not that it is always different. When P(E|F) = P(FE), clearly knowledge of the
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event F' does not alter the probability of obtaining E. When this happens, event E is
independent of event F. More formally, two events F and F are independent if and only
if P(E|F) = P(E) or P(F|E) = P(F). An equivalent way to define independence between
two events is to use (3.1) and to show that P(E N F) = P(E)P(F). Independence between
two events is really a special case of independence among n events. Define events Fy, ..., E,
to be independent if, for every k where k = 2,...,n and every subset of indices i1, i2, . . . , g,
P(E;, NE;,N---NE;, ) =P(E;, )P(E;,)---P(E;,). It is important to point out that events in
any subset of the original independent events of size r, where r < k, are also independent.
Further, if events Ey, ..., I, are independent, then so are EY,..., ES.

Example 3.16 > Law of Probability: Components <| A system consists of three
components as illustrated in Figure 3.2. The entire system will work if either both com-
ponents 1 and 2 work or if component 3 works. Components 1 and 2 are connected in
series, while component 3 is connected in parallel with components 1 and 2. If all of the
components function independently, and the probability each component works is 0.9, what
is the probability the entire system functions?

_@_@_

3

FIGURE 3.2: Circuit system diagram for Example 3.16

Solution: Let A; (i = 1,2,3) be the event the i*™ component works, and E the event the
entire system works. Consequently, event £ = (A;NA2)UAs, and P(E) = P[(A1NA2)UA3].

P(E) =P[(A; N A2) U As]

=P(A; NAg) + P(A3) — P(A; N A2 N As)

=P(A1)P(Az) + P(A3) — P(A1)P(A2)P(A3)

= (0.9)(0.9) + 0.9 — (0.9)(0.9)(0.9)

0.981 H

3.4 Random Variables

In many experiments, it is easier to study some function of the outcomes than it is to
study the original outcomes. For example, suppose 20 students are asked whether they
favor legislation to reduce ozone emissions. Note that there are 22° = 1,048, 576 possible
outcomes in the sample space. However, it would make more sense to study the number of
students who favor (equivalently, oppose) legislation out of 20 by defining a variable, say
X, that equals the number of students favoring (or opposing) the legislation. Note that the
sample space for X is the set of integers from 0 to 20, which is much easier to deal with
than the original sample space. In general, a random variable is a function from a sample
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space {2 into the real numbers. Random variables will always be denoted with uppercase
letters, for example, X or Y, and the realized values of the random variable will be denoted
with lowercase letters, for example, x or y. Here are some examples of random variables:

1. Toss two dice. X = the sum of the numbers on the dice.
2. A surgeon performs 20 heart transplants. X = the number of successful transplants.
3. Individual 40 kilometer cycling time trial. X = the time to complete the course.

Random variables may be either discrete or continuous. A random variable is said
to be discrete if its set of possible outcomes is finite or at most countable. If the random
variable can take on a continuum of values, it is continuous. Note that the random variables
in examples 1 and 2 are discrete, while the variable in example 3 is continuous. If a
random variable X has a distribution DIST with parameter(s) 6, write X ~ DIST(0). If
Y is a random variable that is distributed approximately DIST with parameter(s) 6, write
Y ~ DIST(6).

3.4.1 Discrete Random Variables

A discrete random variable assumes each of its values with a certain probability. When
two dice are tossed, the probability the sum of two dice is 7, written P(X = 7), equals
1/6. The function that assigns probability to the values of the random variable is called
the probability density function, pdf. Many authors also refer to the pdf as the probability
mass function (pmf) when working with discrete random variables. Denote the pdf as
p(x) =P(X = x) for each z. All pdfs must satisfy the following two conditions:

1. p(z) > 0 for all z.
2. > p(z) =1.
Vx
The cumulative distribution function, cdf, is defined as

Fla) =B(X <x)= Y p(k).

k<z
Discrete cdfs have the following properties:
1. 0< F(x) < 1.

2. If a < b, then F(a) < F(b) for any real numbers ¢ and b. In other words, F'(z) is a
non-decreasing function of z.

3. lim F(z)=1.

xr—00

4. lim F(z)=0.

5. F(x) is a step function, and the height of the step at x is equal to f(z) = P(X = x).

Example 3.17 Toss a fair coin three times and let the random variable X represent the
number of heads in the three tosses. Produce graphical representations of both the pdf and
cdf for the random variable X.
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Solution: The sample space for the experiment is

Q={HHH HHT,HTH,THH,TTH,THT, HTT,TTT}

The random variable X can take on the values 0, 1, 2, and 3 with probabilities %, %, %, and
%, respectively. Define the cdf for X, F(z) = P(X < ) as follows:

0 if z <0,
1/8 if0<az<1

Fz)=¢4/8 if1<z<2
7/8 if2<z<3
1 ifx>3

The code for producing a graph similar to Figure 3.3 on the next page with placement
of specific values along the axes for both the pdf and cdf using the function axis() is as
follows:

> x <= 0:3

> fx <- ¢(1/8,3/8,3/8,1/8)

> Fx <- ¢(1/8,4/8,7/8,1) # or Fx <- cumsum(fx)

> par(mfrow=c(1,2), pty="s")

> plot(x, fx, type="h", xlab="x", ylab="P(X=x)",

+ x1im=c(0,3), ylim=c(0,.4), xaxt="n", yaxt="n")

> axis(1, at=c(0,1,2,3), labels=c(0,1,2,3), las=1)

> axis(2, at=c(1/8,3/8), labels=c("1/8","3/8"), las=1)
> title("PDF")

> plot(x, Fx, type="n", xlab="x", ylab="F(x)",

+ xlim=c(-1,5), ylim=c(0,1), yaxt="n")

> axis(2, at=c(1/8,4/8,7/8,1), labels=c("1/8","4/8","7/8","1"), las=1)
> segments(-1,0,0,0)

> segments(0:4, c(Fx,1),1:5, c(Fx,1))

> lines(x, Fx, type="p", pch=16)

> segments(-1,1,5,1, 1ty=2)

> title("CDF")

3.4.2 Mode, Median, and Percentiles

The mode of a probability distribution is the z-value most likely to occur. If more than
one such x value exists, the distribution is multimodal. The median of a distribution is
the value m such that P(X < m) > 1/2 and P(X > m) > 1/2. The j™ percentlle of a
distribution is the value x; such that P(X < z;) > f5 and P(X > x;) > 1 — ¢45. The
m value that satisfies the definition for the median is not unique. If Example 3.17 on the
facing page is considered, the modes are 1 and 2; and any value m between 1 and 2, not
inclusive, satisfies the definition for the median. The 25 percentile of the distribution of

X is 1 because P(X < 1) = 2 S>> and P(X >1) = 7 >1- 2.
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PDF for X CDF for X
e
3/8
7/8 -
—~~ —
8 8
H \/I 4/8 ._
= = ;
B A :
1/8 IP(X = 1) = F(1) — F(0)
1/8 .—
i i i i T T T T T T T
0 1 2 3 1 0 1 2 3 4 5
€ x

FIGURE 3.3: The pdf and cdf for the random variable X, the number of heads in three
tosses of a fair coin

3.4.3 Expected Values of Discrete Random Variables

One of the more important ideas about summarizing the information provided in a pdf
is that of expected value. Given a discrete random variable X with pdf p(z), the expected
value of the random variable X, written F[X], is

EX] =Y - p(a) (3.4)

Also denote E[X] as ux, recognizing that E[X] is the mean of the random variable X. In
this definition, it is assumed the sum exists; otherwise, the expectation is undefined. It can
be helpful to think of E[X] as the fulcrum on a balance beam as illustrated in Figure 3.4.

lam
rlll

A

FIGURE 3.4: Fulcrum illustration of F[X]

Example 3.18 A particular game is played where the contestant spins a wheel that can
land on the numbers 1, 5, or 30 with probabilities of 0.50, 0.45, and 0.05, respectively. The
contestant pays $5 to play the game and is awarded the amount of money indicated by the
number where the spinner lands. Is this a fair game?

Solution: By fair, it is meant that the contestant should have an expected return equal
to the price she pays to play the game. To answer the question, the expected (average)
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winnings from playing the game need to be computed. Let the random variable X represent
the player’s winnings:

E[X] = a-p(z) = (1x0.50)+ (5x 0.45) + (30 x 0.05) = 4.25.

Therefore, this game is not fair, as the house makes an average of 75 cents each time the
game is played.

Another interpretation of the expected value of the random variable X is to view it as
a weighted mean. Code to compute the expected value using (3.4) and using the function
weighted.mean() is

> x <- ¢(1,5,30)

> px <- ¢(0.5,0.45,0.05)

> EX <- sum(x*px)

> WM <- weighted.mean(x, px)

> c(EX, WM)

[1] 4.25 4.25 m

Often, a random variable itself is not of interest, but rather some function of it is
important, say g(X), of the random variable X. The expected value of a function g(X) of
the random variable X with pdf p(x) is

E[g(X)] =) g(x) - p(x). (3:5)

Example 3.19 Consider Example 3.18, for which the random variable Y is defined to be
the player’s net return. That is, Y = X — 5 since the player spends $5 to play the game.
What is the expected value of Y7

Solution: The expected value of Y is

E[Y] =) (x—5) p(x) = (=4 x 0.50) + (0 x 0.45) + (25 x 0.05) = —0.75.

To compute the answer with S use

> x <- ¢(1,5,30)

> px <- ¢(0.5,0.45,0.05)

> EgX <- sum((x-5)*px)

> WgM <- weighted.mean((x-5), px)

> c(EgX, WgM)

[1] -0.75 -0.75 u

Rules of Expected Value The function g(X) is often a linear function a + bX, where a
and b are constants. When this occurs, E[g(X)] is easily computed from E[X]. In Example
3.19, a and b were -5 and 1, respectively, for the linear function ¢g(X). The following rules
for expected value, when working with a random variable X and constants a and b, are
true:

1. E[bX] = bE[X].
2. Ela+bX]|=a+bE[X].

Unfortunately, if g(X) is not a linear function of X, such as g(X) = X2, the E [X?] #
(E[X])?. In general, E[g(X)] # g(E[X]).
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3.4.4 Moments

Another way to define the expected value of a random variable is with moments.
However, knowing the mean (expected value) of a distribution does not tell the whole
story. Several distributions may have the same mean. In this case, additional information,
such as the spread of the distribution and the symmetry of the distribution, is helpful in
distinguishing among various distributions.

The r** moment about the origin of a random variable X, denoted «., is defined as
E[XT"]. Note that oy = F [Xl} is called the mean of the distribution of X, also denoted
wx or simply u. The special moments defined next are important in the field of statistics as
they help describe a random variable’s distributional shape. The r** moment about the
mean of a random variable X, denoted p,, is the expected value of (X — p)". However, all
moments do not exist. For the ™ moment about the origin of a discrete random variable
to be well-defined, .2 |27 |P(X = 2;) must be less than oc.

Moments about 0 and g
EX"] = a, (3.6)
E[(X = p)'] = pr

3.4.4.1 Variance

The second moment about the mean is called the variance of the distribution of X, or
simply the variance of X:

VarlX] = 0% = E [(X — p”] = E[X?] — 1 (3.7)

The positive square root of the variance is called the standard deviation and is denoted
ox. The units of measurement for standard deviation are always the same as those for the
random variable X. One way to avoid this unit dependency is to use the coefficient of
variation, a unitless measure of variability.

DEFINITION 3.2: Coefficient of variation — When F[X] # 0,

3.4.4.2 Rules of Variance

If X is a random variable with mean p and a and b are constants, then
1. Varb] = 0.

2. Var[aX] = a*Var[X].

3. Var[aX +b] = o Var[X].

Note that once Var[aX + b] = a® Var[X] is proved, Var[b] = 0 and Var[aX] = a® Var[X]
have been implicitly shown.

Proof:

Var[aX +b] = E[(aX +b— E[aX +0))?] = E[(aX +b— au — b)?]
= E[(aX — ap)’] = *E [(X — p)?] = a® Var[X].
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3.4.5 Continuous Random Variables

Recall that discrete random variables can only assume a countable number of outcomes.
When a random variable has a set of possible values that is an entire interval of numbers,
X is a continuous random variable. For example, if a 12 ounce can of beer is randomly
selected and its actual fluid contents X is measured, then X is a continuous random variable
because any value for X between 0 and the capacity of the beer can is possible.

Continuous Probability Density Functions’ Properties

The function f(x) is a pdf for the continuous random variable X,
defined over the set of real numbers R, if

1. f(x) >0, —o0 <z < o0,

2. / f(z)dz =1, and (3.9)

b

3. P(aSXSb)z/f(a:)dz.

a

Pla < X <b) P(X <) P(X <a)
f@ /(@) /@)
a b b a
fab f(z)dz ffoo f(z)dz ffoo f(z)dz

FIGURE 3.5: Illustration of P(a < X <b) =P(X <b) —P(X <a)

Condition 3 from (3.9) for the definition of a pdf for a continuous random variable is
illustrated in Figure 3.5.

DEFINITION 3.3: Cumulative Density Function — The cdf, F(z), of a continuous
random variable X with pdf f(z) is
Flz)=P(X <2x)= / f@)dt, —oco<ax<oo (3.10)

According to Definition 3.3, the cdf is derived from an existing pdf. Further, according
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to the fundamental theorem of calculus, the other direction is also true since F'(z) = f(x)
for all values of 2 for which the derivative F’(x) exists.

Continuous Cumulative Distribution Functions’ Properties

Continuous cdfs have the following properties:
1. 0< F(z) <1.

2. If a < b, then F(a) < F(b) for any real numbers a and b. In

other words, F(z) is a non-decreasing function of x. (3.11)

3. lim F(x) =1

r—00

4. lim F(z)=0.

r— —00

Example 3.20 > Calculations of pdf and cdf << Suppose X is a continuous random
variable with pdf f(z), where

O e
(a) Find the constant k so that f(z) is a pdf of the random variable X.
(b) Find the cdf for X.
(¢) Compute P(—0.5 < X <1).
(d) Graph the pdf and cdf of X with S.

Solution: The answers are as follows:
(a) Using property 2 from (3.9) for the pdf of a continuous random variable, write

(b) Using (3.3) it is known that

0 ifex<-—1

x

3 —x® 3z .
—1
1 ifx>1

1
2
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(¢) Using property 3 from (3.9) for the pdf of a continuous random variable, write

P(—0.5 < X <1) = F(1) — F(—0.5)
-1% 3.1 1 ()P 3-—3 1
—<T+T+5)‘(‘ i 71 T3
(1,8, 1) (1,31
4 42 32 8 2
5 27
=1 -5 =55 =0.84375
(d) Figure 3.6 depicts the pdf and cdf of X.
PDF for X CDF for X
O O
R o2
2 | 0 | 2 2 2 0 1' 2
X x

FIGURE 3.6: Hlustration of pdf and cdf for Example 3.20

The following S code is used to create Figure 3.6:

par (mfrow=c(1,2), pty="s")

x <- seq(-1,1,0.01)

y <= 3/4%(1-x"2)

plot(x, y, xlim=c(-2,2), ylim=c(0,1), type="1", xlab="x",
ylab="£f(x)")

segments(-2,0,-1,0)

segments(1,0,2,0)

title ("PDF for X")

y <= -x"3/4 +3xx/4+1/2

plot(x, y, xlim=c(-2,2), ylim=c(0,1), type="1", xlab="x",
ylab="F(x)")

segments(-2,0,-1,0)

segments(1,1,2,1)

title("CDF for X")

V VV 4+ V V V VYV + V V VYV

95
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3.4.5.1 Numerical Integration with S

The S function integrate () approximates the integral of functions of one variable over
a finite or infinite interval and estimates the absolute error in the approximation. To use
integrate (), the user must specify £ (), the function; lower, the lower limit of integration;
and upper, the upper limit of integration. The function f () must be a real-valued S function
of the form f(x), where z is the variable of integration. In addition to using property 3 from
(3.9) for the pdf of a continuous random variable to solve (c) of Example 3.20 on page 94, the
problem could be solved directly by integrating the original probability P(—0.5 < X < 1).
That is,

1
P(—05< X <1)= /
—0.5

1
(1-2%)de =" —"— = 0.84375.
4 —0.5

=~ w

The following code computes P(—0.5 < X < 1) using the function integrate() for R and
S-PLUS, respectively:

> fx <- function(x){3/4-3/4*x"2}

> integrate(fx, lower=-0.5, upper=1) # R
0.84375 with absolute error < 9.4e-15

> fx <- function(x){3/4-3/4*x"2}
> integrate(fx, lower=-0.5, upper=1)$integral # S-PLUS
[1] 0.84375

3.4.5.2 Mode, Median, and Percentiles

The mode of a continuous probability distribution, just like the mode of a discrete
probability distribution, is the z-value most likely to occur. If more than one such x value
exists, the distribution is multimodal. The median of a continuous distribution is the value

m such that
m oo

_/ f(x)dx:/f(x)dx:%.

The 5t percentile of a continuous distribution is the value x; such that

J
de = —=—.
Example 3.21 Given a random variable X with pdf

272 if x>0
f(x)_{o if 2 <0,

(a) Find the median of the distribution.
(b) Find the 25" percentile of the distribution.

(c) Find the 60" percentile of the distribution.
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Solution: The answers are as follows:

(a) The median is the value m such that [ 2e=2* dz = 0.5, which implies
0

—e_Qr}ron =0.5

—e 24 1=05
—e72m =05-1
In(e™*™) = In(0.5)
m = ln(_L;) = 0.3466.

25
(b) The 25" percentile is the value xo5 such that [ 2e~2 dz = 0.25, which implies

0

—e |0 =0.25

—e ¥ +1=10.25
—e 22 =0.25 -1
In(e=2*25) = In(0.75)
_ In(0.75)

T25 = 0.1438.

Z60
(c) The 60" percentile is the value xgo such that [ 2e~2* dz = 0.60, which implies
0

—e %1% = 0.60

—e % +1=10.60
—e 7200 = 0.60 — 1
In(e=2%60) = In(0.40)
_ 1n(0.40)

= (0.4581.
-2

Zeo

Example 3.22 Given a random variable X with pdf

2cos(2x) f0<zxz<m/4
flay = 4200 0 <@ </
0 otherwise,

(a) Find the mode of the distribution.

(b) Find the median of the distribution.

(¢) Draw the pdf and add vertical lines to indicate the values found in part (b).

Solution: The answers are as follows:

97

(a) The function 2 cos2x does not have a maximum in the open interval (0,7/4) since the

derivative f/(x) = —4sin2z does not equal 0 in the open interval (0, 7/4).



98 Probability and Statistics with R

(b) The median is the value m such that
/ 2cos2zxdr =0.5
0

4
sin 2x}70n =sin2m = 0.5
2m = arcsin(0.5)
T
"1

(¢) The R commands used to create Figure 3.7 are

> curve(2*cos(2+*x),0, pi/4)
> abline(v=pi/12, lty=2, lwd=2)

2% cos(2*x)
L

0.0 0.2 0.4 0.6 0.8

FIGURE 3.7: Graph of 2 cos(2z) from 0 to § with R

3.4.5.3 Expectation of Continuous Random Variables

For continuous random variables, the definitions associated with the expectation of a
random variable X or a function, say ¢g(X), of X are identical to those for discrete random
variables, except the summations are replaced with integrals and the probability density
functions are represented with f(z) instead of p(x). The expected value of a continuous

random variable X is
oo

EX]=pux = / x - f(x)de. (3.12)

When the integral in (3.12) does not exist, neither does the expectation of the random
variable X. The expected value of a function of X, say g(X), is

BloX)] = [ 9(@)- fla)da. (3.13)

— 00
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Using the definitions for moments about 0 and p given in (3.6), which relied strictly on
expectation in conjunction with (3.13), the variance of a continuous random variable X is

written as
o0

VarlX) = o% = B[(X = 0] = [ (2 = 0)*f(a) da.

Example 3.23 Given the function

of the random variable X,

(a) Find the value of k to make f(z) a pdf. Use this k for parts (b) and (c).

(b) Find the mean of the distribution using (3.12).

(¢) Find the variance of the distribution using (3.14).

Solution: The answers are as follows:
1

(3.14)

(a) Since [ f(z)dx must equal 1 for f(x) to be a pdf, set [ kdz equal to one and solve
—o00 —1

for k:

1

/kda::l

-1
kx|1_l =1

1
2k=1 = —.
k =k 5

(b) The mean of the distribution using (3.12) is

1
E[X]=pux = /lxdx
1

2
21
41
(c¢) The variance of the distribution using (3.14) is
VarlX) = o% = B[(X ~ ] = [ (2= 0f(e)da

I
—
8
|
o
~—

[\
|
QL
8
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3.4.6 Markov’s Theorem and Chebyshev’s Inequality

Theorem 3.1 Markov’s Theorem If X is a random variable and ¢g(X) is a function of
X such that g(X) > 0, then, for any positive K,

Elg(X)]

P(g(X) > K) < =

(3.15)
Proof:

Step 1. Let I(g(X)) be a function such that

1 ifg(X) > K,
I(g(X)) =
(9(2)) {O otherwise.
Step 2. Since g(X) > 0 and I(g(X)) < 1, when the first condition of I(g(X)) is divided by
K,
9(X)
< —.
I(9(X)) < =

Step 3. Taking the expected value,

FElg(X

Bl1(g(x)] < 2L

Step 4. Clearly

Step 5. Rewriting,

Elg(X)]
K )

which is the inequality from (3.15) to be proven.

P(9(X) > K) <

If g(X) = (X — p)? and K = k202 in (3.15), it follows that

E[(X —p?]  o? 1
k202 T k202 R (3.16)

Working inside the probability on the left side of the inequality in (3.16), note that
((X —p)? > k202) = (X -~ \/k202) or (X —u< —\/k202)
= (|X —pul > vk202)

= (|X—M| Zka).

P((X — p)? > k%0?) <
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Using this, rewrite (3.16) to obtain
1

(3.17)

which is known as Chebyshev’s Inequality.
DEFINITION 3.4: Chebyshev’s Inequality — Can be stated as any of

V)

(a) P(IX —p| > k) < ‘;—.

(b) P(IX—u|<k')21—%-
1

(¢) P(X —pl 2 ko) < 5.

(d) P(|X—M|<ka)z1—ﬁ

Version (d) of Chebyshev’s Inequality is the complement of (c), the version derived in
(3.17). Version (b) is the complement of (a) both of which can be obtained by setting
g(X) = (X — p)? and K = k? in (3.15). A verbal interpretation of version (c) is that the
probability any random variable X with finite variance, irrespective of the distribution of
X, is k or more standard deviations from its mean is less than or equal to 1/k%. Likewise,
version (d) states that the probability X is within k standard deviations from the mean is at
least 1— 5. Clearly, Chebyshev’s Inequality can be used as a bound for certain probabilities.
However in many instances, the bounds provided by the inequality are very conservative.
One reason for this is that there are no restrictions on the underlying distribution.

Example 3.24 Consider Example 3.17 on page 88, where X was defined to be the number
of heads in three tosses of a fair coin. Chebyshev’s Inequality guarantees at least what
fraction of the distribution of X is within £ = 2 standard deviations from its mean? What
is the actual fraction of the distribution of X that is within & = 2 standard deviations from
its mean?

Solution: Using version (d) of Chebyshev’s Inequality, P(|X — | < ko) > 1— 7%, compute
the first answer to be 1 — 2% = %. To answer the second question, first find the mean and
variance of X:

1 3 3 1 3
E )=0x-+1x-42x-+3x-=-=1.5
xp(x X + ><8+ ><8+ ><8 5
1 3 3 1
X7 =32’ =0 X - +12xS+22x -4+ x-=-=3
] x” p(x) ><8+ ><8+ ><8+ X

Var[X] = E [X?] - (E[X])* =3 - 1.5 = 0.75
For this example,
P(|X — | < ko) = P(|X — 1.5| < 2V/0.75)

=P(|X — 1.5 < 1.732)
=P(—0.232 < X < 3.232) =

Chebyshev’s Inequality guaranteed at least 75% of the distribution of X would be within
k = 2 standard deviations from its mean. However, the fact that all of the distribution of



102 Probability and Statistics with R

X is within k£ = 2 standard deviations from the mean illustrates the conservative nature of
Chebyshev’s Inequality.
To compute the needed quantities with S, use the following code:

> x <= 0:3

> px <- c(1/8,3/8,3/8,1/8)

> EX <- weighted.mean(x, px)

> EX2 <- weighted.mean(x"2, px)

> VX <- EX2 - EX"2

> sigmaX <- sqrt(VX)

> c(EX, EX2, VX, sigmaX)

[1] 1.5000000 3.0000000 0.7500000 0.8660254 ]

3.4.7 Weak Law of Large Numbers

An important application of Chebyshev’s Inequality is proving the Weak Law of
Large Numbers. The Weak Law of Large Numbers provides proof of the notion that
if n independent and identically distributed random variables, X, Xs,...,X,, from a
distribution with finite variance are observed, then the sample mean, X, should be very
close to p provided n is large. Mathematically, the Weak Law of Large Numbers states that

if n independent and identically distributed random variables, X1, X5, ..., X, are observed
from a distribution with finite variance, then, for all € > 0,
X;+ -+ X,
lim ]P’< L—ﬂ‘ ze> — 0. (3.18)
n—0o0 n
Proof: Consider the random variables X1, ..., X,, such that the mean of each one is p and

the variance of each one is 2. Since

e » X, 2
E [2—71] =u and Var [2—71} — 0_7
n n

use version (a) of Chebyshev’s Inequality with k = € to write

X e+ X, 2
P( L_”‘a) <7
n ne

which proves (3.18) since

X e+ X, 2
lim IE”( L—u‘>e) < lim 0—2:0.

n—o00 n T n—o0 NE

3.4.8 Skewness

Earlier it was discussed that the second moment about the mean of a random variable
X is the same thing as the variance of X. Now, the third moment about the mean of a
random variable X is used in the definition of the skewness of X. To facilitate the notation
used with skewness, first define a standardized random variable X* to be:
X—p

X*:U7
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where p is the mean of X and o is the standard deviation of X. Using the standardized
form of X, it is easily shown that E[X*] = 0 and Var[X*] = 1. Define the skewness of a
random variable X, denoted =y, to be the third moment about the origin of X™*:

E[(X —p)?]

= (3.19)

m=FE [(X*)S] =
Positive values for 1 indicate a distribution that is skewed to the right while negative values
for v; indicate a distribution that is skewed to the left. If the distribution of X is symmetric
with respect to its mean, then its skewness is zero. That is, 73 = 0 for distributions that
are symmetric about their mean. Examples of distributions with various =y; coefficients are
shown in Figure 3.8.

Negative Skew Symmetric Positive Skew

v = —0.47434 < 0 7 =0 v1 = 0.47434 > 0

FIGURE 3.8: Distributions with ~; (skewness) coefficients that are negative, zero, and
positive, respectively.

Example 3.25 Let the pdf of X be defined by p(z) = ©/15,2 = 1,2,3,4,5. Compute 7,
for the given distribution.

Solution: The value of v, is computed to be

El(X —p)’]

3 = —0.5879747

= Bl = =

which means the distribution has a negative skew. To compute the answer with S, the
following facts are used:

1. p = E[X].
2. 0 =/E[X? - E[X]%

3. X*=X=t,

o

4y =E[(X")?].

> x <- 1:5

> px <- x/15

> EX <- sum(x*px)

> sigmaX <- sqrt(sum(x"2*px) - EX"2)
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> X.star <- (x-EX)"3/sigmaX"3
> skew <- sum(X.star*px)

> skew

[1] -0.5879747

3.4.9 Moment Generating Functions

Finding the first, second, and higher moments about the origin using the definition
ar = E[X"] is not always an easy task. However, one may define a function of a real
variable t called the moment generating function, mgf, that can be used to find moments
with relative ease provided the mgf exists. Given a random variable X with pdf p(x), the
mgf of X, written Mx (t), is defined as

Mx(t) = EletX] = / e f(x)de, —h<t<h. (3.20)
provided there is a positive number h such that, for —h < t < h, the expectation of e!X
exists. If X is discrete, then EletX] = > ep(x). When the mgf exists, it is unique

and completely determines the distribution of the random variable. Consequently, if two
random variables have the same mgf, they have the same distribution.

Example 3.26 Given the function
flz)=Fk -l<z<1
of the random variable X, find the mgf of the distribution using (3.20).

Solution: The reader may verify that a value of k = % produces a valid pdf. The mgf of
the distribution will then be
Mx(t) = Ee"*] = / e f(x)dr, —h<t<h

— 0o

Note that if ¢ = 0, then Mx(t) = 1 since Mx(t) = E[e"*] = E [¢’] = 1. Therefore, the
mgf is written
ot — ot
—— ift#0
My()y={ 2 Ht7
1 ift=0.

Theorem 3.2 If X has mgf Mx(t), then the derivatives of Mx (t) of all orders exist at
t =0, and
d’r‘
E[X"] = —Mx(t)|t=0.
[X7] = 2 Mx (Bl
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A proof of the last theorem is beyond the scope of this text. However, assuming the
distribution is discrete and summation and differentiation may be interchanged, note that

E[X'] :ﬁM t)|t=0 = tl Zemp Mt=0 = Zdtl ) t=0
=er p(x |t:0=prx ) =a; = E[X"]

E[Xﬂ ()i=0 = dtzz e p(@)|i=o = ZdtQ 2)[t=0
_Zx2tx |tO—Z$p —OéQZE[X2]

r r 2 d"
E[X"] = %Mx( )i=0 = %Zet p()]t=0 = %e “p(x)]i=0

—Zxr op(x) 4= O—Zx p(x —ar:E[XT]

Example 3.27 Let X be a random variable with probability distribution

n!

P(X =z|n,7) = (1 —m)" % £=01,...,n

)

(n —x)lz!

Using the moment generating function, check that E[X]| = nm and Var[X] = nn(1 — 7).
(Hint: (a+b)" =" (2)b*a""".)

Solution: First, the moment generating function is calculated:

M(t) = E[e""] =

()erera -y
= (z) (me!)*(1 — )"

(1 =)+ me']"

>

The first and second derivatives of M(t) at t = 0 give E[X] and F[X?], respectively,
which are used to calculate the mean and variance of X:

M'(t) = n[(1 - 7) + me']"~ (xe")
and, using the product and chain rules

M"(t) =n(n —1)[(1 —7) + me]"2(re")? + n[(1 — 1) + me’ "~ (me?).
This yields

E[X]=M'(0) = nw and
Var[X] = BE[X?] — E[X]? = M"(0) — [M'(0)]> = n(n — 1)7* + nm — (n7)? = nmw(1 — 7)
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Theorem 3.3 If ¢ and b are real-valued constants, then
(1) Mx,q(t)=E [e(x+a)t} = e . Mx(t).
(2) be(t) =F (ebXt) = Mx(bt).

X+

(3) Mxsa(t) =E [e(Tﬂ = eft. My (4).

The proof of Theorem 3.3 is left as an exercise for the reader.
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3.5 Problems

1.

10.

11.

12.

Three dice are thrown. What fraction of the time does a a sum of 9 appear on the faces?
What percent of the time does a sum of 10 appear?

. How many different six-place license plates are possible if the first two places are letters

and the remaining places are numbers?

. How many different six-place license plates are possible (first two places letters, remaining

places numbers) if repetition among letters and numbers is not permissible?

. Susie has 25 books she would like to arrange on her desk. Of the 25 books, 7 are

statistics books, 6 are biology books, 5 are English books, 4 are history books, and 3
are psychology books. If Susie arranges her books by subject, how many ways can she
arrange her books?

. A hat contains 20 consecutive numbers (1 to 20). If four numbers are drawn at random,

how many ways are there for the largest number to be a 16 and the smallest number to
be a 57

. A university committee of size 10, consisting of 2 faculty from the college of fine and

applied arts, 2 faculty from the college of business, 3 faculty from the college of arts and
sciences, and 3 administrators, is to be selected from 6 fine and applied arts faculty, 7
college of business faculty, 10 college of arts and sciences faculty, and 5 administrators.
How many committees are possible?

. How many different letter arrangements can be made from the letters BIOLOGY, PROB-

ABILITY, and STATISTICS, respectively.

. A doll house must be painted and assembled before it can be given as a gift. If there

are 12 equal-sized rooms in the doll house and there is enough white paint for 4 rooms,
enough pink paint for 3 rooms, and enough blue paint for 5 rooms, in how many ways
can the 12 rooms be painted?

. A shipment of 50 laptops includes 3 that are defective. If an instructor purchases 4

laptops from the shipment to use in his class, how many ways are there for the instructor
to purchase at least 2 of the defective laptops?

A multiple-choice test consists of 10 questions. Each question has 5 answers (only one
is correct). How many different ways can a student fill out the test?

How many ways can five politicians stand in line? In how many ways can they stand in
line if two of the politicians refuse to stand next to each other?

There are five different colored jerseys worn throughout the Tour de France. The yellow
jersey is worn by the rider with the least accumulated time; the green jersey is worn by
the best sprinter; the red and white polka dot jersey is worn by the best climber. The
white jersey is worn by the best youngest rider, and the red jersey is worn by the rider
with the most accumulated time still in the race. If 150 riders finish the Tour, how many
different ways can the yellow, green, and red and white polka dot jerseys be awarded if
(a) a rider can receive any number of jerseys and (b) each rider can receive at most one
jersey.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A president, treasurer, and secretary, all different, are to be chosen from among the 10
active members of a university club. How many different choices are possible if

(a) There are no restrictions.
(b

)

) A will serve only if she is the treasurer.
¢) B and C will not serve together.
)

)

(
(d

(e) F must be an officer.

D and E will serve together or not at all.

On a multiple-choice exam with three possible answers for each of the five questions,
what is the probability that a student would get four or more correct answers just by
guessing?

Suppose four balls are chosen at random without replacement from an urn containing
six black balls and four red balls. What is the probability of selecting two balls of each
color?

What is the probability that a hand of five cards chosen randomly and without replace-
ment from a standard deck of 52 cards contains the ace of hearts, exactly one other ace,
and exactly two kings?

Verify that P(F|E) satisfies the three axioms of probability on page 81.
Prove Theorem 3.3 on page 106.

In the New York State lottery game, six of the numbers 1 through 54 are chosen by a
customer. Then, in a televised drawing, six of these numbers are selected. If all six of
a customer’s numbers are selected, then that customer wins a share of the first prize. If
five or four of the numbers are selected, the customer wins a share of the second or the
third prize. What is the probability that any customer will win a share of the first prize,
the second prize, and the third prize, respectively?

Assume that P(4) = 0.5, P(ANC) =0.2,P(C) =04, P(B) =04, P(ANBNC)=0.1,
P(BNC)=0.2, and P(AN B) = 0.2. Calculate the following probabilities:

(a) PFLAUBUC)

(b) P(A°N(BUC))

() P(BNC) U (AN B))
(d) P(A) =P(ANC)

Let the random variable X be the sum of the numbers on two fair dice. Find an upper
bound on P(|X — 7| > 4) using Chebyshev’s Inequality as well as the exact probability
for P(|X — 7] > 4).

A new drug test being considered by the International Olympic Committee can detect
the presence of a banned substance when it has been taken by the subject in the last
90 days 98% of the time. However, the test also registers a “false positive” in 2% of the
population that has never taken the banned substance. If 2% of the athletes in question
are taking the banned substance, what is the probability a person that has a positive
drug test is actually taking the banned substance?



23.

24.

25.

26.

27.

28.

29.

30.

31.
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The products of an agricultural firm are delivered by four different transportation com-
panies, A, B, C, and D. Company A transports 40% of the products; company B, 30%;
company C, 20%; and, finally, company D, 10%. During transportation, 5%, 4%, 2%,
and 1% of the products spoil with companies A, B, C, and D, respectively. If one product
is randomly selected,

(a) Obtain the probability that it is spoiled.

(b) If the chosen product is spoiled, derive the probability that it has been transported
by company A.

Two lots of large glass beads are available (A and B). Lot A has four beads, two of which
are chipped; and lot B has five beads, two of which are chipped. Two beads are chosen
at random from lot A and passed to lot B. Then, one bead is randomly selected from lot
B. Find:

(a) The probability that the selected bead is chipped.

(b) The probability that the two beads selected from lot A were not chipped if the bead
selected from lot B is not chipped.

A box contains 5 defective bulbs, 10 partially defective (they start to fail after 10 hours
of use), and 25 perfect bulbs. If a bulb is tested and it does not fail immediately, find
the probability that the bulb is perfect.

A salesman in a department store receives household appliances from three suppliers:
I, II, and III. From previous experience, the salesman knows that 2%, 1%, and 3% of
the appliances from supplier I, IT, and III, respectively, are defective. The salesman sells
35% of the appliances from supplier I, 25% from supplier II, and 40% from supplier III.
If an appliance randomly selected is defective, find the probability that it comes from
supplier III.

A garage has two machines, A and B, to balance the wheels of a car. Suppose that 95%
of the wheels are correctly balanced by machine A, while 85% of the wheels are correctly
balanced by machine B. A machine is randomly selected to balance 20 wheels, and 3
of them are not properly balanced. What is the probability that machine A was used?
What is the probability machine B was used?

An urn contains 14 balls; 6 of them are white, and the others are black. Another urn
contains 9 balls; 3 are white, and 6 are black. A ball is drawn at random from the first
urn and is placed in the second urn. Then, a ball is drawn at random from the second
urn. If this ball is white, find the probability that the ball drawn from the first urn was
black.

An office supply store is selling packages of 100 CDs at a very affordable price. However,
roughly 10% of all packages are defective. If a package of 100 CDs containing exactly 10
defective CDs is purchased, find the probability that exactly 2 of the first 5 CDs used
are defective.

A box contains six marbles, two of which are black. Three are drawn with replacement.
What is the probability two of the three are black?

The ASU triathlon club consists of 11 women and 7 men. What is the probability of
selecting a committee of size four with exactly three women?
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32.

33.

34.

35.

36.

37.

38.

Four golf balls are to be placed in six different containers. One ball is red; one, green;
one, blue; and one, yellow.

(a) In how many ways can the four golf balls be placed into six different containers?
Assume that any container can contain any number of golf balls (as long as there
are a total of four golf balls).

(b) In how many ways can the golf balls be placed if container one remains empty?

(¢) In how many ways can the golf balls be placed if no two golf balls can go into the
same container?

(d) What is the probability that no two golf balls are in the same container, assuming
that the balls are randomly tossed into the containers?

Previous to the launching of a new flavor of yogurt, a company has conducted taste
tests with four new flavors: lemon, strawberry, peach, and cherry. It obtained the
following probabilities of a successful launch: P(lemon) = 2/,,, P(strawberry) = 3/,
P(peach) = 4/,,, and P(cherry) = 5/;5. Let X be the random variable “number of
successful flavors launched.” Obtain its probability mass function.

A family has three cars, all with electric windows. Car A’s windows always work. Car
B’s windows work 30% of the time, and Car C’s windows work 75% of the time. The
family uses Car A 2/5 of the time; Car B, 2/4 of the time; and Car C, the remaining
fraction.

(a) On a particularly hot day, when the family wants to roll the windows down, compute
the probability the windows will work.

(b) If the electric windows work, find the probability the family is driving Car C.

John and Peter play a game with a coin such that P(head) = p. The game consists of
tossing a coin twice. John wins if the same result is obtained in the two tosses, and Peter
wins if the two results are different.

(a) At what value of p is neither of them favored by the game?

(b) If p is different from your answer in (a), who is favored?

A bank is going to place a security camera in the ceiling of a circular hall of radius 7.
What is the probability that the camera is placed nearer the center than the outside
circumference if the camera is placed at random?

Anthony and Mark make a bet at the beginning of the school year. If Anthony passes
one exam, Mark will pay him €10, but if Anthony fails the exam, he will give €10 to
Mark. If Anthony takes 10 exams and the probability of passing an exam is 0.5, find the
probability that

(a) Anthony wins €60.
(b) Anthony wins €30.

Louis and Joseph have decided to play a beach volleyball match. Each of them put €
50 into a pot, so the winner will get €100. The first one to reach 21 points wins. When
the score was 19 points for Louis and 18 for Joseph, the match was rained out, and
they decided to share the prize so that each one received winnings proportional to the
probability of winning the match given their current points. How much money did each
receive?



39.

40.

41.

42.

43.

44.

45.

46.
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Consider tossing three well-made coins. The eight possible outcomes are

HHH,HHT, HTH,HTT,THH, THT, TTH, TTT.

Define X as the random variable “number of heads showing when three coins are tossed.”
Obtain the mean and the variance of X. Simulate tossing three fair coins 10,000 times.
Compute the simulated mean and variance of X. Are the simulated values within 2% of
the theoretical answers?

Every month, a family must decide what to do on Sundays. If they stay at home, they
do one of two things with equal probability: have lunch in a restaurant, which costs €
100, or go to the park, which is free. Assuming four weeks in a month, compute the
probability distribution of expenditures.

In a lottery game, one can win €10,000 with probability 0.01 and €1000 with probability
0.05. How much should one pay for a lottery ticket to make the game fair?

To play a game, one must bet €100 every time, and the probability of winning €100 is
1/4. Every day, a person plays uninterruptedly until he loses once. Then, he leaves the
game.

(a) Find the probability that he plays more than four times in one day.

(b) Find the probability that one day he leaves the game having won €600.

(¢) Calculate the expected winnings per day.

Consider the random variable X, which takes the values 1, 2, 3, and 4 with probabilities

0.2, 0.3, 0.1, and 0.4, respectively. Calculate E[X], 1/E[X], E[1/X], E[X?], and E[X]?,
and check empirically that E[X]? # E[X?] and E[1/X] # 1/E[X].

Show that the following distribution is a probability mass function. Construct a plot of
the probability mass function and obtain the cumulative probability function.

P(X=-2)=02 P1l<X<3)=01 PX=4)=0.2,
Pb< X <55)=02, PX=6)=0.15 PT7T<X<8)=0.15
Two stockbrokers on the floor of the New York Stock Exchange, Alvin and Bob, are
interested in purchasing shares from a single company. In a given day, Alvin or Bob

buys shares with probability p. Assume that Alvin starts the buying process; when he
finishes, Bob is allowed to buy, and so on.

(a) Find the probability that Alvin buys shares on a given day.

(b) If two lots of shares are purchased, find the probability that they have been purchased
by the same stockbroker.

(Hint: Y ;2 r' = L is [r| < 1.)

Given the function
flx)=Fk -l<z<l

of the random variable X, find the coefficient of skewness for the distribution using
(3.19).
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47.

48.

49.

50.

ol.

Consider an experiment where two dice are rolled. Let the random variable X equal the
sum of the two dice and the random variable Y be the difference of the two dice.

(a) Find the mean of X.
(b) Find the variance of X.
(c¢) Find the skewness of X.
(d) Find the mean of Y.

(e) Find the variance of Y.

(f) Find the skewness of Y.

The number of hits on a faculty member’s homework solutions page has an average of
100 hits per day.

(a) Give an upper bound for the probability the faculty member’s homework solutions
page has more than 112 hits per day.

(b) Suppose the variance of the number of hits is known to be 36. Now, give an upper
bound for the probability the faculty member’s homework solutions page has more
than 112 hits per day.

(c¢) The probability that the number of hits is between 88 and 112 inclusive must be at
least what?

(d) How many days must visits to the site be recorded so that the average number of
hits is within 6 of 100 with a probability of at least 0.97

Find the values of k£ such that the following functions are probability density functions:
(a) f(z) =kat/5,0 <z <1.

() f(x)=kz*, 0<z <2,

(¢) f(z)=kvz/2,0 <z <.

Construct plots of the these functions and their corresponding cumulative density func-
tions.

Given the following cumulative density function,

0 <0
Fl) =% 0<a<2

1 2 <z,

derive the probability density function f(z). Calculate the median of the distribution.
Consider the following function:

2

flz)= %(x—5), 5 <z <10.

(a) Show that f(x) satisfies properties 1 and 2 on page 93 of a continuous probability
density function.

(b) Plot f(x).
(¢) Derive and plot f(z)’s cumulative probability function, F'(x).



52.

53.

o4.
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(d) Calculate P(X < 8), P(X > 6), and P(7 < X < 8) by hand.

(e) Calculate P(X < 8), P(X > 6), and P(7 < X < 8) using the function integrate().
The number of bottles of milk that a dairy farm fills per day is a random variable with
mean 5000 and standard deviation 100. Assume the farm always has a sufficient number
of glass bottles to be used to store the milk. However, for a bottle of milk to be sent to a
grocery store, it must be hermetically sealed with a metal cap that is produced on site.
Calculate the minimum number of metal caps that must be produced on a daily basis so

that all filled milk bottles can be shipped to grocery stores with a probability of at least
0.9.

Define X as the space occupied by certain device in a 1 m® container. The probability
density function of X is given by

flz)= %x‘l(l—f}), 0<x<l.

) Graph the probability density function.
) Calculate the mean of X by hand.
) Calculate the variance X by hand.
d) Calculate P(0.20 < X < 0.80) by hand.

) Calculate the mean of X using integrate().

) Calculate the variance of X using integrate().

)

Calculate P(0.20 < X < 0.80) using integrate().

Consider the probability density function

1
flz) = %xefﬂ”w, x> 0.

Derive the moment generating function, and calculate the mean and the variance.






Chapter 4

Univariate Probability Distributions

4.1 Introduction

This chapter examines univariate (single variable) probability distributions that are used
frequently to model random phenomena. Discrete probability distributions are introduced
first, followed by continuous probability distributions. Discrete distributions can be used
to model the number of failures until a successful rocket launch, the number of passing
students in a class, or the number of taxis that pass a street corner, as well as many other
phenomena with countable outcomes. Continuous distributions are used to model measure-
ment variables such as weight, height, and time. Joint distributions will be introduced in
Chapter 5.

4.2 Discrete Univariate Distributions

4.2.1 Discrete Uniform Distribution

The random variable X is said to follow a discrete uniform distribution with parameter
n (where n € N) if the probability X takes on the value z is the same for all z, where
T =T1,T2,...,Tp:

Discrete Uniform Distribution

1
P(X =x;n)=—, i=1,2,...,n.
n
EREEDY
= — aj‘,L-
ni4

Var[X] = % > (i — ELX)?

(4.1)

I &
Mx(t) = =3 e™
=1

2

When @; =i fori=1,...,n, it can be shown that E[X] = 2 and that Var[X] = 251,
respectively.

115
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Example 4.1 One light bulb is randomly selected from a box that contains a 40 watt
light bulb, a 60 watt light bulb, a 75 watt light bulb, a 100 watt light bulb, and a 120
watt light bulb. Write the probability function for the random variable that represents the
wattage of the randomly selected light bulb, and determine the mean and variance of that
random variable.

Solution: The random variable X can assume the set of values Q = {40, 60, 75, 100, 120}.
The probability density function for the random variable X is

P(X =x|5) =1/5 for = =40,60,75,100,120.

The expected value of X, E[X] = 79, and the variance of X, Var[X] = 804. S can be used
to alleviate the arithmetic:

> Watts <- c(40,60,75,100,120)

> meanWatts <- (1/5)*sum(Watts)

> varWatts<- (1/5)*sum((Watts-meanWatts) ~2)

> ans <- c(meanWatts, varWatts)

> ans

[1]1 79 804 [

4.2.2 Bernoulli and Binomial Distributions

When the same coin is tossed n times by the same person under the same experimental
conditions, it stands to reason that each toss of the coin will result in one of two outcomes
(heads or tails), that the outcome on any given trial will not influence the outcome of any
other trial, and that the probability of getting a head assuming a fair coin on any trial is
a constant % Tossing a coin a single time is an example of a Bernoulli trial. A Bernoulli
trial is a random experiment with only two possible outcomes. The outcomes are mutually
exclusive and exhaustive, for example, success or failure, true or false, alive or dead, male or
female, etc. A Bernoulli random variable, X, can take on two values, where X (success) = 1
and X (failure) = 0. The probability that X is a success is 7, and the probability that X is
a failure is p = 1 — 7. The pdf, mean, variance, and mgf of a Bernoulli random variable are
in (4.2).

Bernoulli Distribution
X ~ Bernoulli(m)

E[X] = r (4.2)
Var[X] =n(1 —7)
Mx(t) = me' + o

When a sequence of Bernoulli trials conforms to the following list of requirements it is
called a binomial experiment:

1. The experiment consists of a fixed number (n) of Bernoulli trials.

2. The probability of success for each trial, denoted by m, is constant from trial to trial.
The probability of failure is o = (1 — 7).
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3. The trials are independent.

4. The random variable of interest, X, is the number of observed successes during the n
trials.

The probability that X is equal to x can be found in the following fashion. Any particular
sequence of z successes occurs with probability 7% (1 — 7)) since there are z successes
and (n — x) failures. However, there are (Z) = #Lm), possible sequences of x successes.
Write X ~ Bin(n,n) to indicate the random variable X follows a binomial distribution
with parameters n and 7. The probability X is equal to x, the mean, the variance, and the

moment generating function of a binomial random variable are in (4.3).

Binomial Distribution
X ~ Bin(n,m)

P(X = z|n,m) = <n>7rw(1 —m)" T e =0,1,2,...,n.
x

It is left as an exercise for the student to verify that E[X] = nw, Var[X]=nn(1 — x), and
that the moment generating function of a binomial random variable is Mx (t) = (wet + o)™.
(See Problem 40 on page 167.)

Code to create graphs that represent the probability density function and the cumulative
distribution function for a Bin(8,0.3) random variable follows. The graphs that are created
are similar to those in Figure 4.1 on the next page.

par (mfrow=c(1,2), pty="s")

plot(0:8, dbinom(0:8,8,0.3), type="h", xlab="x", ylab="P(X=x)",
xlim=c(-1,9))

title("PDF for X"Bin(8, 0.3)")

plot(0:8, pbinom(0:8,8,0.3), type="n", xlab="x", ylab="F(x)",
xlim=c(-1,9), ylim=c(0,1))

segments(-1,0,0,0)

segments(0:8, pbinom(0:8,8,.3), 1:9, pbinom(0:8,8,.3))
lines(0:7, pbinom(0:7,8,.3), type="p", pch=16)
segments(-1,1,9,1, 1lty=2)

title("CDF for X"Bin(8, 0.3)")

V V V VYV 4+ VYV + VYV

Example 4.2 > Simulating Bernoulli << Write a function that will generate m
repeated samples of n Bernoulli trials each with probability of success w. Use the function
to generate 1000 samples of size n = 5 with 7 = 0.5 to simulate the binomial distribution.
Have the function create frequency tables for both the simulated and the theoretical random
variable so that comparisons can be made between the two. Finally, produce a histogram of
the simulated successes with the theoretical probability for the random variable X that has
a binomial distribution with n =5 and © = 0.5 superimposed over the simulated values.
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PDF of X ~ Bin(8,0.3) CDF of X ~ Bin(8,0.3)
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FIGURE 4.1: Left graph is the probability density function (pdf) of a binomial random
variable with n = 8 and m = 0.3. Right graph is the cumulative distribution function (cdf )
of a binomial random variable with n = 8 and = = 0.3.

Solution: The function bino.gen() is written to solve Example 4.2 in general:

bino.gen <- function(samples, n, pi) {

values <- sample(c(0,1), samples*n, replace=TRUE, prob=c(pi,1-pi))

value.mat <- matrix(values, ncol=n)

Successes <- apply(value.mat, 1, sum)

al <- round((table(Successes)/samples), 3)

bl <- round(dbinom(O:n, n, 1-pi), 3)

names(bl) <- O:n

hist(Successes, breaks=c((-.5+0):(n+.5)), probability=TRUE,
ylab="", main=" Theoretical Values Superimposed
Over Histogram of Simulated Values", col=13)

x <= O:n

fx <- dbinom(x, n, 1-pi)

lines(x, fx, type="h")

lines(x, fx, type="p", pch=16)

list(simulated.distribution=al, theoretical.distribution=b1)}

Then, the results from using the function to generate 1000 samples where n = 5 and 7 = 0.5
answer Example 4.2 in particular:

> bino.gen(1000, 5, 0.5)
$simulated.distribution
Successes

0 1 2 3 4 5
0.023 0.174 0.311 0.308 0.153 0.031

$theoretical .distribution
0 1 2 3 4 5
0.031 0.156 0.312 0.312 0.156 0.031
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FIGURE 4.2: Histogram of 1000 simulated samples where n = 5 and 7 = 0.5 superimposed
on the theoretical distribution for a random variable following a Bin(5,0.5) distribution.

Using the function rbinom(), one can generate 1000 samples of a Bin(n = 5,7 = 0.5)
distribution by entering

> x <- rbinom(1000, 5, .5)
> table(x) /1000 # Empirical distribution
X
0 1 2 3 4 5
0.042 0.145 0.302 0.313 0.163 0.035

If one wants to generate the same numbers at a later date, the command set.seed() can
be used. The graph in Figure 4.2 was created with set.seed(31). |

Example 4.3 > Binomial Calculation <¢ Consider the problem of calculating the
probability of obtaining 6 or more heads in 10 tosses of a weighted coin, where the probability
of obtaining a head in any given trial is 0.33.

Solution: Let the random variable X equal the number of trials that result in a head.
Consequently, X ~ Bin(10,0.33), and the sum of the individual probabilities of obtaining
6, 7, 8, 9, and 10 heads needs to be found. Mathematically, this is written P(X > 6) =
P(X =6)+P(X =7)+---+P(X = 10), where

10!
P(X =6) = S0 o) 0.33% x (1 —.0.33)(197%) = 0.0546515
10!
P(X =7) = 07 0.337 x (1 —.0.33)1077 = 0.0153817
10!
P(X =8) = 8'(T0—8)' x 0.33% x (1 —.0.33)19=%) = 0.0028410
10!
P(X =9) = G0 071 0.337 x (1 —.0.33)197%) = 0.0003110
10!
P(X =10) = 0 % 0.331% x (1 —.0.33)10710 = 0.0000153

101(10 — 10)!
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Thus,

P(X >6)=P(X =6)+P(X =7)+P(X =8) + P(X =9) + P(X = 10)
= 0.0546515 + 0.0153817 + 0.0028410 + 0.0003110 + 0.0000153
= 0.0732005

There are several approaches one might take to solve the problem with S. One should realize
that the following are all equivalent statements:

P(X > 6) = P(X = 6) + P(X = 7) + P(X = 8) + P(X = 9) + P(X = 10)
=1-P(X <5)
—1-[P(X =5)+P(X =4)+ -+ P(X = 0)].

To find P(X > 6) with S, compute the individual probabilities with dbinom(6:10,10, .33)
and then sum them with the command sum() by typing sum(dbinom(6:10,10,.33)).
Another solution is to find 1 —P(X < 5), which is accomplished with 1-pbinom (5,10, .33)
or 1-sum(dbinom(5:0,10,.33)). Note that dbinom() computes P(X = x), the pdf, while
pbinom() gives P(X < ), the cdf.

> sum(dbinom(6:10,10,0.33))

[1] 0.07320046

> 1 - pbinom(5,10,0.33)

[1] 0.07320046

> 1 sum(dbinom(5:0,10,0.33))

[1] 0.07320046 ]

4.2.3 Poisson Distribution

The Poisson distribution is very popular for modeling the number of times particular
events occur in given times or on defined spaces. For example, one might count the number
of phone calls to 911 between 1 A.M. and 2 A.M., the number of accidents at a busy street
corner during a 24 hour period, or the number of typographical errors on a single page of
this book. Unfortunately, the derivation of the Poisson distribution is not straightforward.
Instead of deriving the Poisson distribution directly, it is shown that the limiting distribution
of the binomial distribution is the Poisson distribution. Actual derivation of the Poisson
distribution function is beyond the scope of the current text.

When the number of outcomes in a given continuous interval are counted, an approxi-
mate Poisson process with parameter A > 0 results if the following conditions are satisfied:

(1) The number of outcomes in non-overlapping intervals are independent. In other words,
the number of outcomes in the interval of time (0, ] are independent from the number
of outcomes in the interval of time (¢,¢ + h] for any h > 0.

(2) The probability of two or more outcomes in a sufficiently short interval is virtually zero.
In other words, provided h is sufficiently small, the probability of obtaining two or more
outcomes in the interval (¢, ¢ + h] is negligible compared to the probability of obtaining
one or zero outcomes in the same interval of time.

(3) The probability of exactly one outcome in a sufficiently short interval or small region
is proportional to the length of the interval or region. In other words, the probability
of one outcome in an interval of length h is Ah.
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When an experiment satisfies the conditions for the Poisson process, the resulting
random variable, X, the number of outcomes, is called a Poisson random variable. The
probability distribution of the Poisson random variable X, representing the number of
outcomes in a given time interval or space region denoted by ¢, is

e MAt)®

P(X = z|\t) = o

r=0,1,..., A>0. (4.4)

Although the Poisson distribution is typically used for problems involving time or space,
it can be viewed as the limiting form of the binomial distribution. Suppose there is an
experiment that satisfies the three criteria for an approximate Poisson process. Let X
represent the number of outcomes in an interval of length 1 (¢ = 1). To find P(X = x),
divide the interval of length 1 into n subintervals of equal length. Provided n is much larger
than z, the probability of one outcome in any given interval of length 1/n is approximately
A/n by criterion (3) of the Poisson process on the preceding page. Substituting 7 = A\/n
into the binomial probability distribution gives

() (-2)"-mepren 2y ()"
-5l 2 ()

Now, if z is fixed and n — 400 and m — 0, so that A = n7 remains constant, the

expression between the braces goes to 1 and (1 — %)71 is also 1. Using the fact that
lim (1—A/n)" = e, obtain 272
binomial probabilities with A = n7 provided 7 < 0.1 and nm < 5. See Example 4.8

on page 126 for an example of how the Poisson distribution is used to approximate the
probabilities of a binomial distribution.

. The Poisson distribution can be used to approximate

e
!

Poisson Distribution
X ~ Pois(\)
2\Z -2
P(X =2\ =25 2=0,1,2,...
! (4.5)

E[X]=2A
Var[X] = A
Mx(t) _ e)\(et—l)

Note that the parameter ), referred to as the intensity parameter, represents the mean
number of outcomes in either a fixed time interval or a fixed spatial region. The Poisson
distribution is particularly appropriate for modeling “rare” phenomena or outcomes where
the probability of success is small. However, whether or not data can be viewed as
Poisson data depends on whether the proportions of 0’s, 1’s, 2’s, and so on, are similar
to those predicted by the Poisson pdf given in (4.5). Given n independent Poisson random
variables X1, Xo, ..., X,, with parameters A1, \a,..., A\, respectively, ¥ = Z?Zl X; ~
Pois (E?Zl A = /\).
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Example 4.4 > Poisson: World Cup Soccer < The World Cup is played once
every four years. National teams from all over the world compete. In 2002 and in 1998,
36 teams were invited; whereas, in 1994 and in 1990, only 24 teams participated. The
data frame Soccer contains three columns: CGT, Game, and Goals. All of the information
contained in Soccer is indirectly available from the FIFA World Cup website, located at
http://fifaworldcup.yahoo.com/. The numbers of goals scored in the regulation 90 minute
periods of World Cup soccer matches from 1990 to 2002 are listed in column Goals. There
were a total of 575 goals scored during regulation time. The game in which the goals were
scored is in column Game. There were 232 World Cup soccer games played from 1990 to
2002. There were 64 games played in each of 2002 and 1998 and 54 games played in each
of 1994 and 1990. The cumulative goal time is provided in column CGT. For example, the
first goal was scored at the 67" minute of the first game and the second goal was scored at
the 427! minute of the second game. Consequently, the times listed in CGT for the first two
goals are 67, and 132 = 90 + 42. For consistency, all goals scored during injury time are
recorded in either the 45 or 90*" minute, depending on the half when the injury occurred.
Analyze the number of goals scored during regulation play (90 minutes) of World Cup soccer
matches to verify that the scores follow an approximate Poisson distribution (Chu, 2003).

Solution: To investigate whether criterion (1) of the Poisson process on page 120 is
reasonable, examine the one, two, three, four, and five game lagged correlation coefficients:

> attach(Soccer)
> L1 <- Goals[1:228]
> L2 <- Goals[2:229]
> L3 <- Goals[3:230]
> L4 <- Goals[4:231]
> L5 <- Goals[5:232]
> LAG <- cbind(L1, L2, L3, L4, L5)
> # or more succinctly
> LAG <- sapply( 1:5, function(x){Goals[x:(x+227)]1} )
> round(cor (LAG),3)
[,1] [,2] [,3] [,4] [,5]
[1,] 1.000 -0.049 0.055 -0.138 -0.008
[2,] -0.049 1.000 -0.046 0.044 -0.138
[3,] 0.055 -0.046 1.000 -0.054 0.045
[4,] -0.138 0.044 -0.054 1.000 -0.057
[6,] -0.008 -0.138 0.045 -0.057 1.000

Independence seems reasonable due to the small correlation coefficients (near zero) but
should also be computed with time periods smaller than 90 minutes. Criterion (2) of the
Poisson process on page 120, appears satisfied since two goals are never registered during the
same one minute period. One way to investigate this is to create a table of the interarrival
goal times and note that 0 is not in the table. Whether criterion (3) of the Poisson process
on page 120 is satisfied is addressed in Problem 45 on page 169 at the end of the chapter.
Next, examine the data to see how well they conform to the Poisson distribution. To
calculate the observed number of goals scored during regulation time for the 232 World
Cup soccer matches, use table():

> table(Goals)
0 1 2 3 4 561738
19 49 60 47 32 18 3 3 1
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Since there are NA values in the Goals column, use the na.rm=TRUE and na.method="omit"
options for the S functions mean() and var (), respectively. To verify that the mean and
the variance of Goals are approximately equal, type

> mean(Goals, na.rm=TRUE)

[1] 2.478448

> var(Goals, na.rm=TRUE) # na.method="omit" for S-PLUS
[1] 2.458408

Because the mean and variance of Goals are approximately equal, it is reasonable to proceed
in analyzing the frequencies of Goals in comparison to those of a Poisson distribution
with A = 2.478448. Create a table to facilitate comparing the observed values (0BS) to
the expected values (EXP) as well as the empirical proportions (Empir) to the theoretical
proportions (TheoP) for a Poisson distribution with A = 2.478448, the mean number of
goals per game. The empirical proportions are merely the number of goals in each category
divided by the total number of goals.

> 0BS <- table(Goals)
> Empir <- round(0BS/sum(0BS), 3)
> TheoP <- round(dpois(0: (length(0BS)-1), mean(Goals, na.rm=TRUE)), 3)
> EXP <- round(TheoP*232, 0)
> ANS <- cbind(0BS, EXP, Empir, TheoP)
> ANS
0BS EXP Empir TheoP
0 19 19 0.082 0.084
1 49 48 0.211 0.208
2 60 60 0.259 0.258
3 47 49 0.203 0.213
4 32 31 0.138 0.132
5 18 15 0.078 0.065
6 3 6 0.013 0.027
7 3 2 0.013 0.010
8 1 1 0.004 0.003
> detach(Soccer)

Since the observed values are close to the expected values, the empirical proportions will
be close to the theoretical probabilities. This, in conjunction with the fact that the sample
mean (2.478448) is roughly equal to the sample variance (2.458408), implies that modeling
the number of goals scored during World Cup soccer games with a Poisson distribution is
reasonable. |

Code to represent a probability density function and cumulative distribution function
for a Pois(A = 1) random variable similar to the one shown in Figure 4.3 on the next page
is

par (mfrow=c(1,2), pty="s")

plot(0:8, dpois(0:8,1), type="h", xlab="x", ylab="P", xlim=c(-1,9),
main="PDF")

plot(0:8, ppois(0:8,1), type="n", xlab="x", ylab="F", xlim=c(-1,9),
ylim=c(0,1), main="CDF")

segments(-1,0,0,0)

segments(0:8, ppois(0:8,1), 1:9, ppois(0:8,1))

vV V. + V + VvV V
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> lines(0:7, ppois(0:7,1), type="p", pch=16)
> segments(-1,1,9,1, 1ty=2)

PDF of X ~ Pois(A=1) CDF of X ~ Pois(A=1)
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FIGURE 4.3: Left graph is the probability density function (pdf) of a Poisson random
variable with A = 1. Right graph is the cumulative distribution function (cdf) of a Poisson
random variable with A = 1.

Example 4.5 Given a random variable X that follows a Poisson distribution with pa-
rameter A, find the mean and variance of X. Use the fact that

A7 AN
A
e_§ SElHL o

21
r=0
Solution:
> r N > AT 1
=D rge =2y
r=0 r=1

Var[X] =Y (r )\)ZM -
r=0

Rearranging terms,

Var [ X]

T

A
141 2,0 _ )22
E + (_1)!4—/\6 e

— o A A )\2>\—2A2>\
e {T 1(7“ ] + e —|— e e

r=1

=e MNP HA+ N 202 et = u

e
= {ir + A%t —2)- )\i Ty_ll }
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Example 4.6 More accidents are registered in auto body repair shops during the months
of May and June than in the rest of the year. Suppose a particular auto body repair shop
has an average of four accidents per month. What is the probability there will be more than
seven accidents in this auto body shop during the month of May? What is the probability
no more than three accidents will occur during the months of May and June?

Solution: Assuming accidents in the auto body shop follow an approximate Poisson
process, the probability of x accidents in one month is

4re—4

z!

P(X =x) forz=0,1,2,...

The probability more than seven accidents occur during the month of May is

4ieg—4

- = 0.051.
7!

7
PX>T)=1-PX<7)=1-)_
i=0

Since the expected number of accidents during May and June is \' = 2-4 = 8, the probability
no more than three accidents occur for the two months in question is calculated as

2 gie—8
P(X <3)=)_ —— =0.042
i=0
The S command to find 1 -P(X < 7) is 1-ppois(7,4), while P(X < 3) is found by entering
ppois(3,8):

> 1 - ppois(7,4)

[1] 0.05113362

> ppois(3,8)

[1] 0.04238011 [ |

Example 4.7 Telephone calls to a local 911 number are known to follow a Poisson
distribution with an average of two calls per minute. Compute the probability that

(a) There will be zero calls during a one minute period.
(b) There will be less than five calls in a one minute period.
(¢) There will be less than six calls in one hour.

Solution: The answers are as foollowsz

(a) P(X =0;A=2)=25- =272 =0.135.

() P(X <452 =2) =S, 25> e (1424 5+ 5 + 31 ) = 0.947.

(¢) Note that the time period changes from one minute to one hour (60 minutes). Conse-
quently, the average number of calls in one hour is X = 2 x (60) = 120.

5
P(X <5;X =120) =
r=0

=e 120 <1 +120+

NN

r!

1202 1208 120%  120° 0
2!+3!+4!+5! o

The S commands to find P(X = 0; A = 2), P(X < 4; )\ = 2), and P(X < 5;\ = 120) are
dpois(0,2), ppois(4,2), and ppois(5,120), respectively:
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> dpois(0,2)

[1] 0.1353353

> ppois(4,2)

[1] 0.947347

> ppois(5,120)

[1] 1.658476e-44 [

Example 4.8 Numerically show the results from approximating a Bin(n = 100, 7 = 0.04)
distribution with a Pois(A = 4).

Solution: The probability distribution function for a Bin(100,0.04) random variable is
1
Ppin(X =2) = ( 00) (0.04)7(0.96)100~= r=0,1,2,...
x

Since 7 < 0.1 and A = nw = 100(0.04) = 4 < 5, the Poisson distribution can be used to

obtain reasonable approximations to the binomial distribution. The probability distribution

for a Pois(4) is

e 44"
x!

Ppois(X = x) = z=0,1,2,...

The first eight values of = for Pg;, (X = ) and Pp,;s (X = ) are given in Table 4.1.

Table 4.1: Comparison of binomial and Poisson probabilities
x 0 1 2 3 4 5 6 7 8
Ppin(X =) [0.017 0.070 0.145 0.197 0.199 0.160 0.105 0.059 0.029
Ppois (X =) |0.018 0.073 0.147 0.195 0.195 0.156 0.104 0.060 0.030

Note that the results between Ppg;, (X = x) and Pp,s (X = z) are virtually identical out to
two decimal places. The values in Table 4.1 were generated using S commands as follows:

> r <- seq(0,8,1)

> round(dbinom(r,100,0.04), 3)

[1] 0.017 0.070 0.145 0.197 0.199 0.160 0.105 0.059 0.029

> round(dpois(r,4), 3)

[1] 0.018 0.073 0.147 0.195 0.195 0.156 0.104 0.060 0.030 ]

4.2.4 Geometric Distribution

The geometric distribution, like the binomial distribution, is based on Bernoulli trials.
However, the geometric distribution does not fix the number of trials prior to the experiment.
The geometric distribution computes the probability the first success occurs after r failures
instead of computing the probability of observing x successes in n trials. A random variable
X that counts the number of Bernoulli trials that result in failure before the first success is
called a geometric random variable. Clearly, the probability of a success after r failures is
7 X (1 —m)", which leads to the geometric probability distribution function where p =1—7
is the probability of failure as it was for the Bernoulli and binomial distributions. The pdf,
mean, variance, and mgf for a geometric random variable are in (4.6).
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Geometric Distribution
X ~ Geo(m)
P(X =a;m) =m0", . =0,1,...
Ex]=2 (4.6)
T
0
Vi = =
ar[X] =
T
Mx(t) =
x(®) 1— pet

Example 4.9 [> Geometric Distribution: Hiring a CPA < It is known that 20%
of all applicants for an overseas position with an international accounting firm speak a
foreign language and have passed the CPA (certified public accountant) exam. If applicants
are selected at random and interviewed one at a time for the position,

(a) Compute the probability that the first applicant who speaks a foreign language and has
passed the CPA exam is the fourth applicant interviewed.

(b) Suppose the first applicant that speaks a foreign language who has passed the CPA
exam is offered the position and that the applicant accepts the offer. If the accounting
firm spends 200 dollars for each interview, what are the expected value and standard
deviation of the firm’s cost for filling the position.

Solution: The answers are as follows:

(a) Let the random variable X represent the number of applicants interviewed who neither
speak a foreign language nor have passed the CPA exam before the first applicant who
both speaks a foreign language and has passed the CPA exam is interviewed. The random
variable X ~ Geo(m = 0.2) and the P(X = 3) is computed using the pdf from (4.6) as

P(X =3) = m0® = 0.2(0.8) = 0.1024.

When X ~ Geo(r = 0.2), the P(X = 3) can be found with S using the command
dgeom(3,0.2):

> dgeom(3,0.2)
[1] 0.1024

(b) Be careful with this problem! The expected value and standard deviation of the cost
for filling the position are not the same as the expected value and standard deviation of the
random variable X as defined in the solution for part (a). Since the question asks for the
expected value and standard deviation of the cost for filling the position (r failures and one
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success),

E[200(X + 1)] = 200E[(X + 1)]
— 200(E[X] +

=200 (— + 1) 1000 dollars.

Var[200(X + 1)] = 40,000 Var[(X + 1)]

= 40,000 Var[X]
0.8 )
= 40,000 { 555 | = 800,000 dollans
= oa00(x +1) = v/ Var[200(X + 1)] = 894.43 dollars u

4.2.5 Negative Binomial Distribution

The geometric random variable counted the number of failures prior to the first success.
Quite often, the number of Bernoulli trials required to achieve some fixed number (r)
of successes is the problem of interest. When the random variable X is defined as the
number of failures prior to the rt" success, X has a negative binomial distribution written
X ~ NB(r,m). To find the P(X = z), first find the probability of » — 1 successes in the
first # +r — 1 trials, and then multiply by the probability of success on the (x + ) trial,
(I':fIl)wr_l(l — )% x . Combining like terms leads to the probability distribution for the
negative binomial given in (4.7). The mean, variance, and mgf are also in (4.7):

Negative Binomial Distribution

X ~ NB(r,m)
r4+r—1
P(X:x|r77r):( 1 )wrgw,x:O,l,Q,...
r—
(4.7)
B[X] =rZ
™
e
Var|X] = "3
Mx(t) =n"(1— 0e")™"
Useful Relationships
1. If n independent random variables Xj,...,X,, have a geometric distribution with

parameter 7, then the sum of the n independent random variables follows a negative
binomial distribution with parameters (n, 7).

2. If n independent random variables X1, ..., X,, have a negative binomial distribution
with parameters r; and 7, then the sum of the n random variables is NB (31", 7, 7).

3. When X ~ NB(r,m) and r = 1, a negative binomial random variable is the same as
a geometric random variable with parameter .

Example 4.10 In a particular lot of white wall tires, 10% are missing their white wall.
What is the probability one will have to examine six tires before finding four tires with
white walls?
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Solution: Let the random variable X represent the number of tires without white walls
examined before obtaining four tires with white walls. In other words, X ~ NB(4,0.90)
and it follows that

P(X =2[4,0.9) = (2 Zf; 1) (0.9)4(0.1)?
= 5—!(0 9)%(0.1)% = 0.066
3120 ' R

To compute the answer in S use the command dnbinom(x, r,m):

> dnbinom(2, 4, 0.9)
[1] 0.06561 B

4.2.6 Hypergeometric Distribution

When working with finite populations, the binomial model often becomes untenable.
Specifically, when sampling without replacement, the assumption of constant probability
from trial to trial is no longer satisfied. However, deriving the exact distribution for a finite
sample of dichotomous objects is not difficult. Given a dichotomous population of objects
such that m are good and n are bad, the probability of selecting exactly = good items and
k — z bad items from a sample of size k is (") (kfr)/(mz") Consequently, the random
variable X that represents the number of good items selected from a total of m good items

in a sample of size k is a hypergeometric random variable.

Hypergeometric Distribution
X ~ Hyper(m,n, k)

P(X = z|m,n, k) = M
() “8)

for x = max{0,k — n},...,min{m, k}, where N =m +n
m x k
E[X]= N
mxnxkx(N—k)
X =
Var[X] N2x (N —1)

One should note that when £ is small (< 0.10), the distribution of a hypergeometric
random variable does not differ greatly from the distribution of a binomial random variable

with parameters n = k and 7 = 3.

Example 4.11 A computer manufacturer decides to purchase monitors from a new start-
up company claiming strict quality control standards. The manufacturer orders 150 moni-
tors and decides to accept the lot provided a random sample of size 25 reveals no defective
monitors. If the lot of 150 monitors contains three defective monitors, what is the probability
the lot will be accepted?
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Solution: Let the random variable X represent the number of non-defective monitors
in the sample. Since X ~ Hyper(147,3,25), the P(X = 25|m = 147,n = 3,k = 25) is

computed as

(147) (
P(X = 25/m =147, n = 3,k = 25) = ~—Z2 >/
150
25

To compute the answer in S use the command dhyper(x, m, n, k):

> dhyper(25,147,3,25)
[1] 0.576365

25

) = 0.5764.

4.3 Continuous Univariate Distributions

4.3.1 Uniform Distribution (Continuous)

X is a uniform random variable defined on the interval [a, b] if its pdf is given by

a<xz<b.

f(x|a7b) =

b—a’

Some common uses of the uniform distribution include random number generation and
modeling waiting times. The pdf, mean, variance, and mgf for a uniform random variable

are found in (4.9).

Uniform Distribution
X ~ Unif(a,b)

1
f(a:|a,b):b_a, a<x<b
b+a

mpx) =
_ 2
Var[X] = b12a)
etb_eta
f
Mx(t) =4 to—a) 170
1 if t =

(4.9)

Figure 4.4 on the facing page displays both the pdf and cdf for a Unif (a,b) random variable.

Note that the area beneath the pdf is clearly one since the pdf forms a rectangle whose area

is height x length, (lea)

—a)=1.

Example 4.12 Given a continuous random variable X defined over [a,b] with pdf

f(z|a,b) = 71, a < x < b, find the expected value and the variance of X.
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PDF for X ~ Unif(a,b) CDF for X ~ Unif(a,b)
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FIGURE 4.4: The pdf and cdf for the random variable X ~ Unif(a, b)

Solution: Using the definition for a continuous random variable from (3.12), write

b b

b
T 1 22
/gc-f(:v)dx—/b_adac— b—a.Ea

a

E[X]

b»—a? (b+a)b—a) b+a
2(b—a)  2(b—a) 2 °

Next find E [X?] to use in computing the variance since Var[X] = E [(X — p)?| = E [X?] -
(BIX])™:

b
3 3 3
E[Xﬂ:/a?- Lo L o) _b-a

Var(X) = B [X?] - (BIX))* = 2 =2 _ 0+ )

3b—a) 4
(b—a)®*+ab+a?)  (b+a)® 4% +ab+a®)  3(b+a)
3(b—a) 4 12 12
4D + 4ab+ 4a® — (3b? + 6ab + 3a®)  b* — 2ab+ a?
B 12 N 12
(b a)?
12

Example 4.13 If aerosol particles produced over forested areas have uniformly distributed
diameters between 3 and 5 nanometers, compute the average volume of aerosol particles
found over forested areas.
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3

Solution: Recall that the volume of a sphere is %m" , or expressed in terms of the

diameter, %Wd3 . Consequently,

E [éde] = éwE [d°] (4.10)

needs to be found. Let d represent the diameter of aerosol particles produced over forested
areas. Since d ~ Unif(3,5),

5
1 1 2t
E[dﬂ:/—-x?’dx:—-—
J 5-3 2 4|,
G 6
== - L =68
8 8

Using the right side of (4.10), compute the average volume of aerosol particles to be

% .68 = 35.60472 nanometers®.

—

Estimate E [d®], denoted by E [d3], by cubing a large number of values drawn at random
from a Unif(3,5) distribution and subsequently computing the mean of the cubed values.

—

Then, the estimated mean volume of aerosol particles is computed by substituting FE [d?]
for E [d?] in the right-hand side of (4.10). The following S code estimates the mean volume
of aerosol particles by simulating a sample of size 1000 from a Unif(3,5) distribution:

> (pi/6)*mean(runif (1000,3,5)3)
[1] 35.61885

The simulated solution is within 0.02 of the theoretical solution. |

Generating Pseudo-Random Numbers The generation of pseudo-random numbers
is fundamental to any simulation study. The term “pseudo-random” is used because once
one value in such a simulation is known, the next values can be determined without fail,
since they are generated by an algorithm. Most major statistical software systems have
reputable pseudo-random number generators. When using R, the user can specify one
of several different random number generators, including a user-supplied random number
generator. For more details, type 7RNG at the R prompt. Generation of random values
from named distributions is accomplished with the S command rdist, where dist is
the distribution name; however, it is helpful to understand some of the basic ideas of
random number generation in the event a simulation does not involve a named distribution.
When the user wants to generate a sample from a continuous random variable X with cdf
F, one approach is to use the Inverse Transformation Method. This method simply sets
Fx(X)=U ~ Unif(0,1) and solves for X, assuming Fy'(U) actually exists.

Example 4.14 Generate a sample of 1000 random values from a continuous distribution
with pdf f(z) = 32(2 —2?), 0 <z < 1. Verify that the mean and variance of the 1000
random values are approximately equal to the mean and variance of the given pdf.

Solution: First, the cdf is found. Then, Fx(z) is set equal to u and solved.

4 4 x4 1
Fx(x):/o gt(Z—tz)dt:§($2—Z>=§m2(4—x2), 0<z<1
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Solving for z in terms of u by setting u = Fx (z):

u = %xz (4—x2)

4

3u=4x> -z multiply by 3 and distribute z?

—3u+4 =2* —42% + 4 multiply by — 1 and add 4 to complete the square

—3u+4 = (22 — 2)? factor
+/3Bu+4=2>-2 take the square root of both sides

24+ /-3u+4=2? add 2
+V/2+V-3u+4==x take the square root of both sides,

which gives four solutions for x. The only one that is viable is x = \/2 — /4 — 3u because
0 <z < 1. Provided U ~ Unif (0,1), Fx'(U) = /2 — V4 - 3U.

The theoretical mean and variance of X are calculated as

by ) 84
px = EB(X) = /0 v 2w(2 = 2%)de = o2 = 06222222

1
4 4
0

4 (84N> 116
2 2 2
=FX)-FEX) " ==—|-—) =—=——-=0.05728395
ox = B(XT) - B(X)" =3 <135> 2025
The mean and variance of the 1000 simulated random values using set.seed(33) are

0.6152578 and 0.05809062, respectively, which are both within 2% of their theoretical values.

> set.seed(33)

> U <- runif (1000)

> X <- sqrt((2-sqrt(4-3xU)))
> mean (X)

[1] 0.6152578

> var (X)

[1] 0.05809062

Using numerical integration:

> f <- function(x){(4/3)*x*x(2-x"2)}

> ex <- function(x){x*f(x)}

> ex2 <- function(x){x"2*f(x)}

> EX <- integrate(ex,0,1)

> EX2 <- integrate(ex2,0,1)

> VX <- EX2$value - EX$value~2

> c(EX$value, EX2$value, VX)

[1] 0.62222222 0.44444444 0.05728395 [ ]

4.3.2 Exponential Distribution

When observing a Poisson process such as that in Example 4.4 on page 122, where
the number of outcomes in a fixed interval such as the number of goals scored during 90
minutes of World Cup soccer is counted, the random variable X, which measures the number
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of outcomes (number of goals), is modeled with the Poisson distribution. However, not only
is X, the number of outcomes in a fixed interval, a random variable, but also is the waiting
time between successive outcomes. If W is the waiting time until the first outcome of a
Poisson process with mean A > 0, then the pdf for W is

flw) =

de ™ ifw >0
0 ifw<0

Proof:  Since waiting time is non-negative, F'(w) = 0 for w < 0. When w > 0,

Fw)=P(W <w)=1-P(W > w)
= 1 — P(no outcomes in [0, w])
(/\w)oewa

0!
Aw

=1—

=1—-e"

Consequently, when w > 0, the pdf of W is F'(w) = f(w) = e .

The exponential distribution is characterized by a lack of memory property and is
often used to model lifetimes of electronic components as well as waiting times for Poisson
processes. A random variable is said to be memoryless if

P(X > ta +t1]X > t1) =P(X > t9) for all t1,t2 > 0. (4.11)

The pdf, mean, variance, and mgf for an exponential random variable are in (4.12), while
the pdf and cdf for an exponential random variable are illustrated in Figure 4.5 on the facing
page. The cdf, F'(z), for the exponential distribution is written

Fz)=P(X <x)= / e Mdt = —e .= 1—e ™, >0
0

Exponential Distribution

X ~ Exp(\)
de ™ if x>0
J(@) = {0 if 2 <0
. (4.12)
Var[X] = 2

1
2
Mx(t)=(1—-X"1)"fort <\

Example 4.15 Show that the function f(z) in (4.12) satisfies condition 2 on page 93 from
the properties of all pdfs.
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PDF for X ~ Ezp(3/4) CDF for X ~ Ezp(3/4)
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FIGURE 4.5: The pdf and cdf for the random variable X ~ Exp(A = 0.75)

Solution: To satisfy condition 2 on page 93, it must be shown that the integral from —oo
to 400 of the function f(z) given in (4.12) is 1:

[eS) 0 [e%s)
//\e_)‘z dr = /Oda:—&—/)\e_m dx
— 0 —00 0
_ — Az _ A oo_ T _
—//\e de = —e 0—0 (-1)=1. m

0

Example 4.16 Given X ~ Ezp()), find the mean and variance of X.
Solution: Using (3.12), write

o0

EX]= /a:/\e_)‘z dx.
0

Integrating by parts where v = 2 and dv = A\e™** dx, obtain

o0

E[X] = —ze . —/—87)\1 dx
0
1 = 1
Aer oA

Before finding the variance of X, find E [X?] using (3.13) as follows:

E[X?] = /xQAe*M dx (4.13)
0
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oo

Note that E[X] = [ zAe ™ do = @ = [ ze ** dz and integrate (4.13) by parts where
0 0

u =22 and dv = e * dx:

Using the fact that Var[X] = E [X2] — (E[X])?, obtain Var[X] = & — ()’ = &. W

Based on the results from Example 4.16, note that the mean and standard deviation of
the exponential random variable are identical. Quite often, the pdf for the exponential is

expressed as

1
f(J?) = ge—r/e’ x 2z Oa 0> Oa

where § = 1. Of course, the mgf is then written as Mx (t) = (1 — 6t)~! and the reparam-
eterized mean and variance are 6 and 62, respectively. Note the relationship between the
Poisson mean and the exponential mean. Given a Poisson process with mean ), the waiting
time until the first outcome has an exponential distribution with mean % That is, if A
represents the number of outcomes in a unit interval, % is the mean waiting time for the
first change. If X denotes the lifetime of an electronic component following an exponential
distribution with mean %, (4.11) implies that the probability the component will work for
to + t1 hours given that it has worked for t; hours is the same as the probability that
the component will function for at least 5 hours. In other words, the component has no
memory of having functioned for ¢; hours. Note that (4.11) is equivalent to

P(X >to 411, X > tl)
]P(X >t1)

=P(X > tq),

which is equivalent to
P(X >to+1t1) =P(X > ta)P(X > t1). (4.14)

Since P(X >ty +t1) = e M2tt) = e=M2e=AM1 = P(X > ¢5)P(X > ;) for any exponential
random variable, exponential random variables are memoryless according to (4.14).

Example 4.17 > Exponential Distribution: Light Bulbs <| If the life of a certain
type of light bulb has an exponential distribution with a mean of 8 months, find

(a) The probability that a randomly selected light bulb lasts between 3 and 12 months.
(b) The 95" percentile of the distribution.

(c) The probability that a light bulb that has lasted for 10 months will last more than 25
months.

Solution: The answers are as follows:
(a) Since X ~ Ezp (A = %), the probability that a randomly selected light bulb lasts between
3 and 12 months is

12
1 12
P3< X <12) = /ge—f/g de = —e™/8 , = 02231+ 0.6873 = 0.4642.
3
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The following code solves the problem with S:

> round(pexp(12,1/8) - pexp(3,1/8),4)
[1] 0.4642

The function integrate() can also be used to solve this problem using numerical integra-
tion:

> f1 <~ function(x){(1/8)*exp(-x/8)}
> integrate(£f1,3,12) # For R
0.4641591 with absolute error < 5.2e-15

> f1 <~ function(x){(1/8)*exp(-x/8)%}
> round(integrate(f1,3,12)$integral,4) # For S-PLUS
[1] 0.4642

(b) The 951 percentile is the value x5 such that

Z95

Z9s5
1 95
- Ze 8 gy = 22
/f(x)dx /86 dx 100
—00 0

_o—%/8 195: 1 e 8 ﬁ
e STy
6_% — i

" 100

x95 = —81n(0.05) = 23.96586
To find the answer with S, type

> qexp(0.95,1/8)
[1] 23.96586

(c) The probability that a light bulb that has lasted for 10 months will last more than 25
months mathematically is written P(X > 25|X > 10). Because an exponential distribution
is present, (4.11) can be used to say that this is equal to P(X > 15) = e~ %/8 = 0.153355.

Solve the problem with S as follows:

> 1-pexp(15,1/8)
[1] 0.1533550 [

Example 4.18 > Exponential Distribution: Intergoal Times <| FExample 4.4 on
page 122 illustrated how the number of goals scored during World Cup games could be

modeled with the Poisson distribution. Now, look at the distribution of 7', the time between
goals. In Example 4.4 on page 122, A was estimated to be % Since one soccer match lasts
90 minutes, the average time (in minutes) before a goal is scored is % = 36.31304 minutes
assuming A is % To find the intergoal times from the cumulative goal times stored in

column CGT of the Soccer data frame, compute CGT; 1 — CGT;.
(a) Compute the mean and standard deviation for the time between goals.
(b) Is it reasonable to model the time between goals with the exponential distribution?

(¢) In particular, is the lack of memory property evident in the data?
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Solution: The answers are as follows:
(a) First, attach Soccer so that columns can be referenced by their names. Then, use S to
calculate both the mean and standard deviation for the time between goals:

> attach(Soccer)

> inter.times <- CGT[2:575] - CGT[1:574]
> mean(inter.times)

[1] 36.24042

> sd(inter.times)

[1] 36.67138

Note that both the mean and standard deviation for time between goals are close to the

theoretical time of 36.31 minutes under the assumption that A is %

(b) To assess the fit of the data to an exponential distribution with a mean of 36.31 minutes,
first split the data into discrete categories. If the underlying distribution is exponential,
then a good bin width is approximately (%)1/3 - ux (Scott, 1992). In our case, the bin

width is (22" 36.31 ~ 10.

> rate <- 1/(90/(575/232))
> ntot <- length(inter.times)
> 0BS <- table(cut(inter.times, breaks=c(seq(0,130,10), 330)))
> EmpiP <- round(0BS/ntot,3)
> TheoP <- round(c((pexp(seq(10,130,10),rate) - pexp(seq(0,120,10),rate)),
+ (1 - pexp(130, rate))), 3)
> EXP <-round(TheoP*ntot, 0)
> ANS <-cbind(0BS, EXP, EmpiP, TheoP)
> ANS

0BS EXP EmpiP TheoP
(0,10] 144 138 0.251 0.241
(10,20] 106 105 0.185 0.183
(20,30] 86 80 0.150 0.139
(30,40] 53 60 0.092 0.105
(40,50] 45 46 0.078 0.080
(50,601 27 35 0.047 0.061
(60,701 35 26 0.061 0.046
(70,80] 16 20 0.028 0.035
(80,90] 22 15 0.038 0.027
(90,100] 12 11 0.021 0.020
(100,110] 3 9 0.005 0.015
(110,120] 3 7 0.005 0.012
(120,130] 6 5 0.010 0.009
(130,330] 16 16 0.028 0.028

The observed and expected values as well as the empirical and theoretical probabilities are
similar.

(¢) The lack of memory property is also evident from the data. Empirically, P(T" > 10) =
1-P(T <10) =1— 14 = 280 = 0749, and P(T > 20|T > 10) = 30144106 — 754,
which are both roughly the same and similar to the theoretical P(T" > 10), which is 0.759
under the assumption that the mean is 36.31 minutes. Since the observed data appear to
lack memory, the same probability statements could be used to justify independence among

the times between goals using (4.14). Finally, produce a histogram of the observed data
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similar to Figure 4.6, and superimpose over this the density for an exponential with a mean
of 36.31 minutes. Based on the analysis and Figure 4.6, it seems reasonable to model the
time between goals scored in World Cup competition for the years 1990 to 2002 with an
exponential distribution:

hist(inter.times, breaks=seq(0,310,10), col=13, xlim=c(0,125), prob=TRUE,
xlab="Time Between Goals")

xt <- seq(0,140,0.01)

ft <- dexp(xt, rate)

lines(xt, ft, type="1")

detach(Soccer) ]

V V.V V + V

Histogram of inter.times

. 0.025
|

Density
0.015 0.020
| |
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0.005
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FIGURE 4.6: Histogram of time between goals with superimposed exponential density
curve with mean of 36.31 minutes

4.3.3 Gamma Distribution

Some random variables are always non-negative and yield distributions of data that tend
to be skewed. The waiting time until a certain number of malfunctions in jet engines,
the waiting time until a certain number of accidents at a given intersection, and similar
scenarios where the random variable of interest is the waiting time until a certain number
of events takes place yield skewed distributions. The gamma distribution is often used to
model the waiting time until the a'® event in a Poisson process. Before defining the gamma
distribution, review the definition of the gamma function from mathematics. The gamma
function, I'(«), is defined by:

INa) = /x"‘_le_z dx, a>0 (4.15)
0
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Some of the more important properties of the gamma function include:
1. For a > 0, M+ 1) = al'(«).
2. For any positive integer, n, I'(n) = (n — 1)!
3. T(3) = V7

In Section 4.3.2 on page 133, it was proved that the waiting time until the first outcome in
a Poisson process follows an exponential distribution. Now, let W denote the waiting time
until the o™ outcome and derive the distribution of W in a similar fashion. Since waiting
time is non-negative, F(w) = 0 for w < 0. When w > 0,

Fw)=P(W <w)=1-PW > w)
= 1 — P(fewer than « outcomes in [0, w])
a-l k,—Aw
=1-> Qw)*e™™

k!
k=0

Consequently, when w > 0, the pdf of W is F'(w) = f(w) whenever this derivative exists.
It follows then that

fw) = F'(w) = - -
2 |

a—1
_ EAQAw)F=L — X Aw)F
Aw
oS DO
=0

—1 (w)ke M (= )) + e A k(Aw)F1A
2

)\e—Aw o e—)\w

k!
k=1
e e S AW Aw)*
=X e ;{(k—l)! I }

e o [AOW)? AWt M)t A(Aw)?
A e s T s T
A Aw)*—1

_W}
[y AQw)
= Xe A — € A A—W]

)\()\w)oz—le—)\w _ )\awa—le—)\w
(. —1)! N I'«)

From the previous derivation, note that the gamma is a generalization of the exponential
distribution. The pdf, mean, variance, and mgf for a gamma random variable are listed in
(4.16). The pdfs for A = 2 and A = 1 with a = 1, 2, and 3, respectively, are illustrated in
Figure 4.7 on the facing page. Notice that different shapes are produced in Figure 4.7 for
different values of .. For this reason, « is often called the shape parameter associated with
the gamma distribution. The parameter ) is referred to as the scale parameter. Varying A
changes the units of measurement (say, from seconds to minutes) and does not affect the
shape of the density.
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Gamma Distribution
X ~T(a, N
Y a—1_-Xz
f(a:):{r("‘)x e ifx>0
aO ifx <0 (4.16)
ElX]=—
X]=35
«
Var[X] = 2
Mx(t)=(1—-X"1)"“fort < A

X ~T(a,A=2) X ~T(a,A=1)
o o
a7 [
o _| 0 |
—~ <9 _] —~ < _]
G B -
= =
[Te) To)
o 7 o
o | o |
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FIGURE 4.7: Graphical illustration of the pdfs of a T'(«,2) and a I'(a, 1) random variable
for a = 1, 2, and 4, respectively.

Useful Relationships

1. Given X ~ I'(a, A). When o = 1, the resulting random variable is X ~ Exp(A). That
is, the exponential distribution is a special case of the gamma distribution.

2. Given X ~ I'(a, ). When a = 7/, and A = 1/,, the resulting random variable has a
chi-square distribution with n degrees of freedom. (The chi-square is discussed in Section
6.6.1.)

3. Given X ~ I'(a, \). Provided « is a positive integer, the resulting distribution is known
as the Erlang. In this case, the Erlang distribution gives the waiting time until the a'"
occurrence when the number of outcomes in an interval of length t follows a Poisson
distribution with parameter \t.
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Example 4.19 Given X ~ I'(a, ), find the mean and variance of X.

Solution: Using the mgf from (4.16), it is known that the first and second derivatives of
the mgf evaluated at zero, respectively, yield the E[X] and the E[X?]. Consequently,

E[X] = Mx(t)|,_,
— (o) (1=A"") 77 (=AY
E[X?] =Myt |,_,

«

‘t:O A

o 1
—ax (a1 (1- A7) A | = et D)
Var[X] = E [X?] — (E[X])*
_ala+1) (a)2 _a
YR GV Y
So the mean of X is § and the variance of X is 3. [ |

Example 4.20 Suppose that the average arrival rate at a local fast food drive-through
window is three cars per minute (A = 3). Find

(a) The probability that at least five cars arrive in 120 seconds.
(b) The probability that more than one minute elapses before the second car arrives.

(c) If one car has already gone through the drive-through, what is the average waiting time
before the third car arrives?

Solution: The answers are as follows:

(a) If the average number of car arrivals follows a Poisson distribution with a rate of three
cars per minute, then the average rate of arrival for 2 minutes is six cars. Given that
X ~ Pois(A = 6),

4
P(X>5)=1-PX<4)=1-)Y_
x=0

e~ %6
=1 - 0.2850565 = 0.7149435.

To solve the problem with S, use the command ppois():

> 1 - ppois(4,6)
[1] 0.7149435

(b) Let W represent the waiting time until the o' outcome. It follows that W ~ I'(a =
2, A = 3). Consequently,
1
32
PW>1)=1-PW <1)=1-P((2,3)<1)=1- / ﬁ:132*1@;*3”0 da
0
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Using integration by parts where u = 3z and dv = 3e~3%dx,
1 1

/395 e 323 dr = —3xe 3 ‘(1) +/3e*3$ dx

0

0
1

= -3¢ 3+ [—6733& |0} =-3e 3+ {—673 + 1]
=1—4e3 =0.8008517.

In other words, P(W > 1) =1 — 0.8008517 = 0.1991483. To solve the problem with S, use
the command pgamma () or integrate():

> 1 - pgamma(1,2,3)
[1] 0.1991483

> gam23<-function(x){9*x*exp(-3*x)}
integrate(gam23,1, Inf) # R
0.1991483 with absolute error < 2.5e-05

\4

> gam23<-function(x){9*x*exp(-3*x)}
> integrate(gam23,1, Inf)$integral # S-PLUS
[1] 0.1991483

(¢) This problem is really asking for the mean of a I'(ow = 2, A = 3) random variable. Note:
« = 2 since one car has already arrived and the problem requests the average waiting time

until the third car arrives. Therefore, E[X] = ¢ = 2. In other words, there is an average
wait of % of a minute before the arrival of the third vehicle given one vehicle has already
arrived. |

4.3.4 Hazard Function, Reliability Function, and Failure Rate

In addition to studying the pdf of continuous random variables, at times it is helpful to
study other functions related to the pdf such as the reliability function or the hazard
function which is also often called the failure rate or force of mortality, especially
when dealing with lifetime data. Suppose the random variable T represents the useful life
of some component with pdf and cdf given by f(¢) and F(t), respectively. The reliability
function R(t) is defined as

Rt)=P(T'>t)=1—F(t), t>0 (4.17)

and represents the probability that the lifetime of the component exceeds t. The hazard
function, h(t), is defined as
Q) f(®)
h(t) = ——~—="—%, t>0, F() <l 4.18
0= 125G = 5o 0 (118)
Note that the hazard function is often called the conditional failure rate.
The functions h(t), f(t), and F(t) provide mathematically equivalent specifications of
the distribution of T'. In fact, it can be shown that

F(t) = h(t)e Jo M) dw. (4.19)

To gain an intuitive understanding of what h(t) is measuring, let dt represent a small unit of
measurement. Then, the quantity h(t)dt can be thought of as the approximate probability
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that T takes on a value in (¢,¢ + dt). Keeping in mind that 1 — F(¢) = P(T > t), write

F(t)dt

M)t = 7

~P[T € (t,t+dt)|T > t].

In other words, h(t)dt represents the approximate probability of having a breakdown during
the interval (t,t + dt) given that a component has lasted up to time ¢. In mathematical
terms,
P <T <t+dt|T >1)
lim
dt—0 dt

(4.20)

may be written, which represents the instantaneous rate of death or failure at time ¢, given
the individual or component has survived to time ¢. It may then be noted that the hazard
function is a rate rather than a probability. The failure rate for an exponential random
variable is a constant A:

Az

A A =\
1—F(t) 1-[l—e ]

Not many components have a constant failure rate. As a matter of fact, it stands to
reason that the failure rate should increase as the life of a component ages. For most
manufactured items as well as human populations, this is the case after some initial time
period. However, there are some instances such as breakdowns when equipment is on a
preventative maintenance schedule where it is still reasonable to assume a constant failure
rate. A very flexible hazard function is h(t) = %;, for all « and 3 greater than 0, since
the function is monotone increasing for a > 1, monotone decreasing for aw < 1, and constant
for @« = 1, as illustrated in Figure 4.8. This hazard function corresponds to the Weibull
distribution that is discussed in Section 4.3.5

Hazard Function, § =1 Corresponding PDFs
N
2 | -
/ o
© — / -
/ ©
| &= 1.2 o
©
—~ — < |
= X °
=Y s
o
N N
o
o
o - . -
| T T T T T ° N T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
t t

FIGURE 4.8: Tllustration of the hazard function h(t) = O‘t;:l for « = 0.5, @ = 1.0, and
a = 1.2 with =1 and the corresponding pdfs
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Example 4.21 > Hazard Rate <| In an effort to attract more business, a local com-
puter outlet has agreed to replace its laser printers with a brand new laser printer in the
event any of its laser printers malfunction within one year of the date of their purchase.
According to the manufacturer of the printer, the useful life (in years) of the printer is a
random variable T with pdf f(¢) = K (2000 — 0.1e%) for 0 < t < 5.

(a) Find K so that f(¢) is a pdf.

(b) Compute the probability a randomly selected laser printer will have to be replaced due
to a malfunction.

(¢c) What are the mean and standard deviation for laser printer life?

(d) If a small business purchases five laser printers from the computer outlet, what is the
probability there are no malfunctions during the first year?

(e) What should the length of guarantee time be for a laser printer if the outlet store wants
to replace no more than 5% of the laser printers?

(f) Compute, graphically represent, and interpret the hazard function.
Solution: The answers are as follows:

(a) To find K such that f(t) is a pdf, the integral over all possible values of ¢ must be one:

5
/ K (2000 — 0.1e~ %) dt = 1
0
K [ (2000t +0.05¢~2) 7] = 1
K [10000 4 0.05¢"* — 0.05] =1
K = !
9999.95 + 0.05¢ 10

Let the denominator of K be equal to k1 = 9999.95 + 0.05¢~ ! for the remainder of the
problem. The solution given is for R. To obtain similar answers with S-PLUS, replace $value
with $integral throughout. To calculate the denominator of K numerically with R, enter

> g <- function(x){(2000 - 0.1*xexp(-2*x))}
> kla <- integrate(g,0,5)$value

> kla

[1] 9999.95

> # OR

> k1 <- (10000 +0.05%exp(-10) -0.05)
> ki

[1] 9999.95

> f <- function(x){1/k1*(2000 - 0.1*exp(-2*x))}
> integrate(f,0,5)
1 with absolute error < 1.1le-14
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(b) P(T < 1) = [, (2000 — 0.1¢~2") dt = 0.1999967

With S using the £ from part (a):

> integrate(£f,0,1)
0.1999967 with absolute error < 2.2e-15

(¢) B(T) =[5 5t(2000 — 0.1~ %) dt = 2.50001

> et <- function(x){x*f(x)}

> ET <- integrate(et,0,5)$value
> ET

[1] 2.50001

or = /0% = \/E(T?) — E(T)? = 1.443372

> et2 <- function(x){x"2*xf(x)}
> ET2 <- integrate(et2,0,5)$value
> VX <- ET2 - ET"2

> SX <- sqrt(VX)
> SX
[1] 1.443372

(d) Assuming the useful lives of laser printers are independent, the probability none of the
five printers have to be replaced is

P(Ty > 1) x P(Ty > 1) x - x P(Ts > 1) = (1 — 0.1999967) = 0.3276868

If the random variable X is defined to be the number of printers that need to be replaced
during the first year of operation, then X ~ Bin(n = 5,7 = 0.1999967) and the problem is
solved by computing P(X =0) = (g) (0.1999967)°(1 — 0.1999967)° = 0.3276868:

> dbinom(0,5,0.1999967)
[1] 0.3276868

(e) The length of guarantee time for a laser printer if the outlet store wants to replace no
more than 5% of the laser printers will be the roots of the equation

t

1

P(T <t) = / 77 (2000 —0.1¢ %) dr = 0.05.
0

t
1
/ — (2000 — 0.1~ ") dz = 0.05
o k1

(2000 + 0.05¢~27) || = 0.05k1
2000t + 0.05¢ =% — 0.05 = 0.05k1
Find roots of 2000t + 0.05¢~2* — 0.05 — 0.05k1 = 0

Use the function uniroot () to solve for ¢ numerically:

> fr <- function(x){2000*x+0.05%exp(-2*x)-0.05%xk1 -0.05}
> uniroot(fr, c(0,5))$root
[1] 0.25
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Since t is given in years, multiplying 0.25 x 365 = 91.25 days. In other words, the computer
outlet will have to replace less than 5% of their laser printers if they use a guarantee period
of 91 days.

(f) Note that the reliability (survival) function is

1
PT>t)=1-F(t)=1-+ (2000t + 0.05¢ %" — 0.05), 0<t<5.
1

Using the reliability function, the hazard function can be written as

h(t) = 0 £ (2000 — 0.1e72)

= = , 0<t<h.
1—F(t) 1— (2000t +0.05¢=2 —0.05)

This particular hazard function (Figure 4.9) represents the instantaneous rate of failure
given that a printer has lasted until time ¢t. The R commands used to create Figure 4.9
follow. Note that £() (used for £ (year)) was defined in part (a).

> year <- seq(0,5, length=500)
> CDF <- function(x){1/k1*(2000*x + 0.05*exp(-2*x)-0.05)}
> plot(year, f(year)/(1-CDF(year)), type="1", ylab="h(year)")

h(year)
60 80 100
| | |

40
1

20
1

year

FIGURE 4.9: Hazard function for printer failure

4.3.5 Weibull Distribution

The gamma distribution provides an adequate model for some systems’ lifetime distri-
butions. However, since the hazard function for the gamma does not have a closed form
expression, and its failure rate approaches A from both above (when o < 1) and below
(when o > 1) as t gets large, distributions with closed form expressions for the hazard
function such as the Weibull tend to be favored by practitioners who deal with lifetime
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distributions. In particular, the hazard function for the Weibull distribution has a failure

rate that varies with time. The hazard rate for the Weibull distribution is h(t) = %,
for all o and (3 greater than 0. Using (4.19), derive the pdf for the Weibull distribution as

follows:

a—1 b ape—1 a—1 o
b eeitde T (/)

— — fot h(z) dz _ _
f(t) h(t)e 604 604

The pdf, mean, variance, and hazard function for a Weibull random variable (o« > 0 and
8 > 0) are in (4.21), while the pdfs for Weib(a,1) and a Weib(a,2) random variable
for a = 1, 2, and 5, respectively, are illustrated in Figure 4.10. As with the gamma
distribution, the first parameter in the Weibull distribution, «, is the shape parameter;
and the second parameter, 3, is the scale parameter. If X ~ Weib(a, §) and o = 1, then
X ~ Exp(A=1/5).

‘Weibull Distribution
X ~ Weib(a, B)

afozo e~/ if x>0
flx) = .

EX]=pT(1+a™")
Var[X] = 3 {T (14+2a7") - [T (1 +a7)]*}

h(x) = aB %2> ! for 2 > 0

X ~ Weib(a, f = 2)

o | S ]
[aV] [aV]
o _| 0 |
—~ ©Q —~ ©Q
B - B2 -
= =
o _| |
o o
O_ O_
° 4 T T T T T ° N T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
x x

FIGURE 4.10: Tlustration of the pdfs of a Weib(a, 1) and a Weib(a,2) random variable
for a = 1, 2, and 5, respectively
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Example 4.22 The useful life (in thousands of hours) of a certain type of transistor
follows a Weibull distribution with o = 2 and § = 8. Find the probability that a randomly
selected transistor lasts more than 8000 hours. What is the average life for this type of
transistor?

Solution: First, find the cdf for X ~ Weib(«, 3):

x

F(z) = /ag—ata—le—u/a)‘*dt _ /B z: L /0"
0

Using the cdf for the Weibull, the probability a randomly selected transistor lasts more than
8000 hours is

P(X>8) =1-F(@8) =1- [1 - e*<8/8>2} = ¢! = 0.3678794.

The expected value of X (in thousands of hours) is

E[X] =0T (1+a™!) =8 (1 + %) = S%I‘ <%) = 4/ = 7.089815.

To solve the first question and to compute I' (%) with S, use the functions pweibull() and
gamma (), respectively:

> 1 - pweibull(s,2,8)
[1] 0.3678794

> 8*gamma (3/2)

[1] 7.089815

4.3.6 Beta Distribution

The continuous distributions discussed up to this point, with the exception of the
continuous uniform, have positive densities over unbounded intervals. To model phenomena
restricted to a finite interval, another type of distribution is needed, such as the beta ()
distribution, whose density function is positive only over the interval (A, B). The standard
beta distribution, (A = 0, B = 1), is often used to model proportions, especially in Bayesian
analysis, where parameters are treated as random variables. For example, m from the
binomial distribution can be modeled with the standard g distribution as it takes on only
non-zero values in the interval (0, 1). The distribution can take on a wide variety of shapes,
as depicted in Figure 4.11 on the following page. The pdf, mean, and variance for a general
beta random variable (o« > 0 and > 0) are in (4.22). When working with the standard
[ distribution, that is, A = 0 and B = 1, a § random variable X is denoted simply
X ~ B(a, 3). The g distribution available in S is the standard g8 distribution rather than
the general § distribution.
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Beta Distribution
X ~ B(a, B, A, B)

1 D(a+B) (x—A)"‘_l(ﬁ)B_l if A<z <B

f(z) = { B-AT(a)I() \ B-A B—A
0 otherwise (4.22)
a
EX]=A+(B—-A
X)= A+ (B-4) =
(B = 4)%ap

Var{X] = (@+B)2(a+h+1)

X ~ B, B)
o | S ] T
Q a :6(0.25,2) _ ((2,0.25)
: /7D
\
o _| 0 |
—~ o _| —~ < _]
G B -
= =
[Te) To)
o 7 o
o _| o |
° 4 T T T T T ° N T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x x

FIGURE 4.11: Illustration of standard §(A = 0, B = 1) pdfs for several combinations of «
and /3

Example 4.23 > Beta Distribution: Selling Computers <| A wholesale computer
distributor has a fixed amount of storage space in his warehouse. The warehouse is re-
stocked with computers every 15 days. The distributor would like more information on
the proportion of computers in the warehouse that are sold every 15 days. The warehouse
manager claims that the proportion of computers sold can be modeled with a standard beta
distribution where a« = 4 and g = 2. Compute the expected value for the proportion of
computers sold every 15 days. How likely is it that at least 80% of the computers in stock
will be sold during a 15 day period?

Solution: Let the random variable X represent the proportion of computers sold in a 15
day period. Since X ~ (3(4,2), the expected value from (4.22) yields




Univariate Probability Distributions

The probability that at least 80% of the computers in the warehouse are sold is

'T4+2) 4 !

P(X >0.8) = /'8 rre)” (1—z)dx = 20/ (23 — z*) dz = 0.26272.

0 0.8

To compute the last answer with S, use the command pbeta() or integrate():

> 1 - pbeta(0.8,4,2)
[1] 0.26272

> b42 <- function(x){(gamma(6)/(gamma(4)*gamma(2)))*x"3*(1-x)}
integrate(b42,0.8,1) # R
0.26272 with absolute error < 2.9e-15

\4

> b42 <- function(x){(gamma(6)/(gamma (4)*gamma (2)))*x"3*(1-x)}
> integrate(b42,0.8,1)$integral # S-PLUS
[1] 0.26272
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Example 4.24 > Beta Distribution: Roof My House <| Project managers often
use a Program Evaluation and Review Technique (PERT) to manage large scale projects.
PERT was actually developed by the consulting firm of Booz, Allen, & Hamilton in con-
junction with the United States Navy as a tool for coordinating the activities of several
thousands of contractors working on the Polaris missile project. A standard assumption
in PERT analysis is that the time to complete any given activity follows a general beta
distribution, where A is the optimistic time to complete an activity and B is the pessimistic
time to complete the activity. Suppose the time X (in hours) it takes a three man crew to
re-roof a single-family house has a beta distribution with A =8, B =16, a = 2, and 3 = 3.
The crew will complete the re-roofing in a single day provided the total time to complete
the job is no more than 10 hours. If this crew is contracted to re-roof a single-family house,

what is the chance that they will finish the job in the same day?

Solution: To answer the question, find P(X < 10):

1 T() [(z—8\[16—z\>
< — _.
Px<i0= [ rng (550) () @
8
I‘(5) 10
_ o o 2
BROYONE) /(oc 8)(16 — z)~ dx
8
10
- /(512x — 402% + 2 — 2048) dx
4096 -1 -2
8
3 40 zt 10
= —— (25622 — —a® + — — 204
1024 (561: 31: + 1 O8a:> .
3 268

=2 .22 —0.261
Toga 3 01
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To compute the last answer with S, use the command integrate():

> GB <- function(x)

{(1/8) *(gamma (5) / (gamma (2) *gamma (3) ) ) * ((x-8) /8) * ((16-x) /8) "2}
> integrate(GB, 8, 10) # R

0.2617188 with absolute error < 2.9e-15

> GB <- function(x)

{(1/8) * (gamma (5) / (gamma (2) *gamma (3) ) ) * ((x-8) /8) * ((16-x) /8) "2}
> integrate(GB, 8, 10)$integral # S-PLUS

[1] 0.2617188

To solve the problem with pbeta(), enter

> A <- 8

> B <- 16

> x <= 10

> pbeta((x-A)/(B-A),2,3)

[1] 0.2617188 u

4.3.7 Normal (Gaussian) Distribution

The normal or Gaussian distribution is more than likely the most important distri-
bution in statistical applications. This is due to the fact that many numerical populations
have distributions that can be approximated with the normal distribution. Examples of
distributions following an approximate normal distribution include physical characteristics
such as the height and weight of a particular species. Further, certain statistics, such as the
mean, follow an approximate normal distribution when certain conditions are satisfied. The
pdf, mean, variance, and mgf for a normal random variable X with mean p and variance
o2 are provided in (4.23). The pdf for a normal random variable has an infinite number of
centers and spreads, depending on both p and o, respectively. Although there are an infinite
number of possible normal distributions, all normal distributions have a bell shape that is
symmetric around the distribution’s mean. Figure 4.12 on the next page illustrates three
normal distributions with identical means, y, and increasing variances as the distributions
are viewed from left to right. The standard deviation in a normal distribution is the
horizontal distance from the center of the distribution to the point on the density curve
where the curve changes from concave down to concave up (point of inflection). Small
values of o produce distributions that are relatively close to the distribution’s mean. On
the other hand, values of ¢ that are large produce distributions that are quite spread out
around the distribution’s mean.

Normal Distribution

X ~ N(p,0)
1 _(w—p)?
f(x)=me 202, —00< < 00,
where —oo < < oo and 0 < o < o0. (4.23)
EX]=pn
Var[X] = o
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FIGURE 4.12: Three normal distributions, each with an increasing o value as read from
left to right

The cdf for a normal random variable, X, with mean, y, and standard deviation, o, is

-2

7 dt. (4.24)

F(x):P(XSx)z\/%/e

A normal random variable with ¢ = 0 and o = 1, often denoted Z, is called a standard
normal random variable. The cdf for the standard normal distribution, given in (4.26),
is computed by first standardizing the random variable X, where X ~ N(u, o), using the
change of variable formula,

~ N(0,1). (4.25)

(z—p)

F(@:P(Xg@:]}»(ng_“):\/%_ﬁ/o:efdz (4.26)

a

Neither the integral for (4.26) nor the integral for (4.24) can be computed with standard
techniques of integration. However, (4.26) has been numerically evaluated and tabled.
Further, any normal random variable can be converted to a standard normal random
variable using (4.25). The process of computing P(a < X < b), where X ~ N(u,0), is
graphically illustrated in Figure 4.13 on the following page.

Throughout the text, the convention z, is used to represent the value of the standard
normal random variable Z that has « of its area to the left of said value. In other words,
P(Z < z4) = a. Another notation that is also used in the text is ®(z,) = «. Basically,
the ®(value) is the same as P(Z < value). That is, ® is the cdf of the standard normal
distribution. Likewise, ® 1(a) = z,. The ® notation for the cdf and inverse cdf is used
more in Chapter 10.

To find the numerical value of X, where X ~ N(u, o) and « is the area (or probability)
to the left of the value X,, use the S command gnorm(p, mean=MValue, sd=SValue),
where p is the area or probability (this is equivalent to «) to the left of X, MValue is the
value of the mean, and SValue is the value of the standard deviation. Note that if one is
dealing with the standard normal distribution, the mean=MValue or sd=SValue arguments
are not needed.
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X~ N(,LL, U)
P(a < X < b) P(X < b) P(X < a)
@ _ I @)
a b b a
b b a
[ f(x)dz _f f(z)dx 7{(} f(z)dx

P(egt < Z < 22H) P(Z < )
) _ - @)
ks 4
f fz)dz b[if(z)dz Oo f(2)dz

FIGURE 4.13: Graphical representation for computing P(a < X < b)

Example 4.25 Scores on a particular standardized test follow a normal distribution with
a mean of 100 and standard deviation of 10.

a at 1s the probability that a randomly selected individual will score between an
What is th babili h doml 1 d individual will b 90 and
1157

(b) What score does one need to be in the top 10%?
(¢) Find the constant ¢ such that P(105 < X < ¢) = 0.10.

Solution: Historically, normal distributions had to be standardized and the values of
probabilities looked up in tables. Though this is no longer the case, this example shows
how to standardize X and to use the S command pnorm() with a standard normal random
variable to “look up” probabilities to the left of given values. Understanding the standard
normal, Z ~ N(0,1), and the probabilities associated with different values from this
distribution gives the student an intuition about other normal distributions whose mean
and standard deviation are something other than 0 and 1.

(a) To find P(90 < X < 115), first draw a picture representing the desired area such as the
one in Figure 4.14 on page 156. Note that finding the area between 90 and 115 is equivalent
to finding the area to the left of 115 and from that area, subtracting the area to the left of
90. In other words,

P(90 < X < 115) = P(X < 115) — P(X < 90).
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To find P(X < 115) and P(X < 90), one can standardize using (4.25). That is,

5 — 100

P(X <115) =P (Z < 1 10 ) =P(Z <15),

and
90 — 100

< = <
P(X < 90) ]P’(Z =

=P(Z < —1.0).
)

Using the S commands pnorm(1.5) and pnorm(-1), find the areas to the left of 1.5 and
—1.0 to be 0.9332 and 0.1586, respectively. Consequently,

P(90 < X <115) =P(—1.0 < Z < 1.5)
=P(Z <15)—P(Z < —1.0)
= 0.9332 — 0.1587 = 0.7745.

(b) Finding the value ¢ such that 90% of the area is to its left is equivalent to finding the
value ¢ such that 10% of its area is to the right. That is, finding the value ¢ that satisfies
P(X < ¢) = 0.90 is equivalent to finding the value ¢ such that P(X > ¢) = 0.10. Since the
gnorm() function refers to areas to the left of a given value by default, solve

X—100<c—100

< = =
P(X < ¢) IP’(Z T <

) = 0.90 for c.

Using gnorm(.9), find the Z value (1.2816) such that 90% of the area in the distribution
is to the left of that value. Consequently, to be in the top 10%, one needs to be more than
1.2816 standard deviations above the mean:

c— 100 set
= 1.2816
10

and solve for ¢ = ¢ = 112.816.

To be in the top 10%, one needs to score 112.816 or higher.

(¢) P(105 < X <¢) =0.10 is the same as

105 — 1
P(X <¢)=0.10+P(X < 105):0.10+IE”(Z< u).

10
Using pnorm(.5),

105 — 100
10

It follows then that P(X < ¢) = 0.7915. Using gqnorm(.7915) gives 0.8116:

P (Z < ) =P(Z < 0.5) = 0.6915.

X —100 _ c¢—100
<

P(X<c)=P(Z=
X< ( 10— 10

) = 0.7915

c— 100

is found by solving =0.8116 = ¢ = 108.116

Note that a Z value of 0.8116 has 79.15% of its area to the left of that value.
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The following S commands can be used to solve (a),(b), and (c), respectively:
(a) P(90 < X < 115)

> pnorm(115,100,10) - pnorm(90,100,10)
[1] 0.7745375

(b) P(X < ¢) =0.90

> gnorm(.90,100,10)
[1] 112.8155

(c) P(105 < X < ¢) = 0.10

> gnorm(.10 + pnorm(105,100,10),100,10)
[1] 108.1151 -

X ~ N(100,10)

P(90 < X < 115) P(X < 115) P(X < 90)
f(z) _ f(x) _ f(x)
90 115 115 90
;j(lf f(a)da ij f(@)da _Zi f(a)da
) ) )
P(07 < Z < 1) P(Z < HoG) P(Z < %55%)
f@) f@ f(2)
-1 1.5 1.5 -1
jff f(z)dz _Z F(z)dz _£ f(2)dz

FIGURE 4.14: Graphical representation for finding P(90 < X < 115) given X ~ N(100, 10)

Example 4.26 > Normal Distribution: Cell Phone Components <| Most mobile
appliances today allow the consumer to switch from the built-in speaker and microphone
to an external source. A manufacturer of cell phones wants to package an external speaker
and microphone for hands-free operation. A new company has patented a component that
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allows the on-resistance flatness for both the microphone and speaker to be lower than ever
before. The cell phone company requires that the on-resistance flatness be less than 0.7
ohms (). If it is known that 50% of the components from the new company have an ohm
rating of 0.5 Q or less, 10% have an ohm rating of 0.628 €2 or greater, and the distribution
of the ohm ratings is normal, then:

(a) Find the mean and standard deviation for the distribution of the ohm rating of the
components.

(b) If a component is selected at random, what is the probability that its on-resistance
flatness will be less than 0.7 7

(¢) If 20 components are selected at random, what is the probability that at least 19
components will have on-resistance flatness values less than 0.7 Q7

Solution: Let X = the ohm rating of the patented components.

(a) Because a normal distribution is symmetric, the mean equals the median. It is known
that 50% of the components have an ohm rating of 0.5 € or less, so ux = 0.5. To calculate
the standard deviation of the components’ ohm ratings, use the fact that “10% have an
ohm rating of 0.628 2 or greater.”

This means that P(X < 0.628) = 0.9,
X —-0.5 - .628 — .5) —009.

which implies P (Z =

o - o
628 — 0.
Because P(Z < 1.28) = 0.9, set 0.628 705 _ 1.28
o
628 — 0.
and solve for o. M =0
1.28

Therefore o = 0.1.

(b) Calculate that the probability a component has an on-resistance flatness less than 0.7
Q:

]P’(Xg().?)_]P’<Z_ X 05 _ 0.7—0.5>

1~ 01
=P(Z<2)
= 0.97725

The answer computed with S is

> p <= pnorm(0.7,0.5,0.1)
>p
[1] 0.9772499

(¢) Calculate the probability that at least 19 of the 20 components will have an on-resistance
flatness value less than 0.7 Q. Let Y ~ Bin(20,0.97725).

20

2 . _

P(Y >19) = Z ( Z,()) (0.97725)%(1 — 0.97725)%°~" = 0.9250
=19
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To compute the answer with S, type

> sum(dbinom(19:20,20, p))
[1] 0.9249673 |

Quantile-Quantile Plots for Normal Distributions Many of the techniques pre-
sented later in the book assume the underlying distribution is normal. One of the more
useful graphical procedures for assessing distributions is the quantile-quantile plot. (Recall
from Section 2.7.3 that this graph is also called a Q-Q plot.) To help determine whether
the underlying distribution is normal, use the S function qgnorm().

To understand the ggnorm() function, one needs to have some understanding of S’s
quantile() function. Recall that the cumulative distribution function (cdf) is F(z) =
P(X < z). The quantile() function is the inverse of the cdf, where this exists; that is,
Q(u) = F~'(u). The qgnorm() function works by first computing the quantiles of the
points (i — 1/2)/n for the standard normal distribution. The ordered sample values are
then plotted against the quantiles. When the resulting plot is linear, it indicates the sample
values have a normal distribution. To help assess the linearity of the qgnorm() plot, it is
often quite helpful to plot a straight line through the 25" and 75" percentiles, also referred
to as the first and third quartiles, using the S function qqline(), which connects the pair
of points (First Quartile Standard Normal, First Quartile Data), (Third Quartile Standard
Normal, Third Quartile Data).

For example, consider the values stored in the variable scores of the data frame Score
and reported in Table 4.2 which are the scores a random sample of 20 college freshmen
received on a standardized test. The points (i — 1/2)/n are calculated as

(1—1/2)/20 = 0.025, (2 — 1/2)/20 = 0.075, ..., (20 — 1/2) /20 = 0.975,

while the corresponding standard normal quantiles of {0.025,0.075, ...,0.975} are computed
with gnorm() to be {—1.96, —1.44, ..., 1.96}, respectively. The S function ggnorm() plots the
quantiles {—1.96, —1.44,...,1.96} versus the ordered values in the sample, {87,90,...,119}
as shown in Figure 4.15 on the next page. The pair of points (First Quartile Standard
Normal, First Quartile Data), (Third Quartile Standard Normal, Third Quartile Data) is
(-0.637, 96.75) and (0.637, 106.25), respectively. Note how the line in Figure 4.15 on the
facing page created using the S function qqline() goes through the points (-0.637, 96.75)
and (0.637, 106.25).

Table 4.2: Standardized scores (data frame Score)
119 | 107 | 96 | 107 | 97| 103 | 94 | 106 | 87 | 112
99 [ 99 (90106 | 110 | 99 | 105 | 100 | 100 | 94

To compute the pairs of values plotted in an S quantile-quantile plot, issue the following
commands:

attach(Score)
par(pty="s")

X <= (1:20-1/2)/20
Xs <- gnorm(X)

Ys <- sort(scores)

>
>
>
>
>
> plot(Xs, Ys)
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FIGURE 4.15: Quantile-quantile plot of the standardized test scores of 20 randomly selected
college freshmen

> quantile(Xs, c(0.25, 0.75))
25% 75%
-0.6371739 0.6371739
> quantile(Ys, c(0.25, 0.75))
25% 75%
96.75 106.25
> detach(Score)

Generally, the command gqgnorm() is used to generate the pairs of values that are plotted
for a normal quantile-quantile plot, while the command qqline() adds a line to a normal
quantile-quantile plot that passes through the first and third quartiles. The commands
qqnorm(scores) and qqline(scores) were used to create Figure 4.15.

It is possible to tell from a quantile-quantile plot whether the distribution has shorter
or longer tails than a normal distribution. In addition, the quantile-quantile plot will show
whether a distribution is skewed and in which direction the distribution is skewed. The
right quantile-quantile plots in Figure 4.16 on the following page illustrate how distributions
that have a positive skew will appear as upward opening U shapes in the quantile-quantile
plot, while distributions with a negative skew have downward facing U shapes. The left
quantile-quantile plots in Figure 4.16 on the next page illustrate how distributions that have
short tails relative to the normal distribution will have an S shape while distributions with
tails longer than the normal distribution will have an inverted S shape.

The graphs in Figure 4.16 can be slightly misleading in the sense that they were
constructed from large data sets (n = 500). When n is smaller, reading a quantile-quantile
plot is slightly more challenging. However, the plotted values still need to fall close to a
straight line. One way to train the eye with the quantile-quantile plot is to use simulation to
generate data from a normal distribution for various values of n and observe the resulting
quantile-quantile plots. When this is done, what one realizes is that for small values of
n, even when sampling from a normal distribution, the resulting quantile-quantile plot is
not always linear. The function ntester (), available in the PASWR package, demonstrates
how samples (n < 5000) from a normal distribution that have the same sample size as the
actual data can appear in quantile-quantile plots. One is strongly encouraged to run this
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FIGURE 4.16: Superimposed quantile-quantile plots for simulated data from a skew left,
skew right, and normal distribution (on the right) and from a short-tailed, long-tailed, and
normal distribution (on the left)

function before finalizing the assessment about the normality of a smaller sized sample. The
results from using ntester () on the standardized test scores from Table 4.2 on page 158
are shown in Figure 4.17 on the next page. Note that the actual data are the center normal
quantile-quantile plot and all of the surrounding quantile-quantile plots are for simulated
normal data having the same sample size as the center plot. One should pay close attention
to how variable the eight surrounding graphs can be even when the data are coming from a
normal distribution. If the data are no more variable than the surrounding plots, it should
be safe to assume they are normal.

It is often helpful to look at several graphs at once when assessing the general shape of a
distribution. The function EDA() in the PASWR package displays a histogram, a density
plot, a boxplot, and a normal quantile-quantile plot of a numeric variable as well as
computing various numerical summaries that are returned in the console. In order to allow
the user to focus strictly on the resulting shapes, no measurement scales are given in the
graphical output. Figure 4.18 on the facing page shows the graphical results from using
EDA(scores). All four graphs in Figure 4.18 confirm normality as a reasonable assumption
for the distribution of the variable scores.



Univariate Probability Distributions 161
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FIGURE 4.17: Resulting quantile-quantile plots using the function ntester() on the
standardized test scores from Table 4.2 on page 158

EXPLORATORY DATA ANALYSIS

Histogram of scores Density of scores

Boxplot of scores Q-Q Plot of scores

FIGURE 4.18: Graphical results from EDA(scores)
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4.4 Problems

1.

10.

Derive the mean and variance for the discrete uniform distribution.

1 1)(2 1
(Hints: >0 ;@ = @;E?ﬂ 2?2 = nin + )6( nt ), when x; = 1,2,...,n.)
Construct a plot for the probability mass function and the cumulative probability dis-
tribution of a binomial random variable Bin(n = 8,7 = 0.3). Find the smallest value
of k such that P(X < k) > 0.44 when X ~ Bin(n = 8,7 = 0.7). Calculate P(Y > 3) if
Y ~ Bin(20,0.2).

Let X be a Poisson random variable with mean equal to 2. Find P(X = 0), P(X > 3),
and P(X < k) > 0.70.

. Let X be an exponential random variable Ezp(A = 3). Find P(2 < X < 6).

. Fix the seed value at 500, and generate a random sample of size n = 10000 from a

Unif (0,1) distribution. Calculate the sample mean and the sample variance. Are your
answers within 2% of the theoretical values for the mean and variance of a Unif(0,1)
distribution?

Fix the seed value at 50, and generate a random sample of size n = 10000 from an
exponential distribution with A = 2. Create a density histogram and superimpose the
histogram with a theoretical Ezp(A = 2) distribution. Calculate the sample mean and
the sample variance of the randomly generated values. Are your answers within 2% of
the theoretical values for the mean and variance of an Ezp(\ = 2) distribution?

The Laplace distribution, also known as a double exponential, has a pdf given by

f(x):g-e_)‘“_“', where — oo < x < 00, —00 < u < 00, A > 0.

(a) Find the theoretical mean and variance of a Laplace distribution. (Hint: Integrals
of absolute values should be done as a positive and negative part, in this case, with
limits from —oco to p and from p to 0o.)

(b) Let X; and X5 be independent exponential random variables, each with parameter
A. The distribution of Y = X; — X5 is a Laplace distribution with a mean of zero
and a standard deviation of \/5/ A. Set the seed equal to 3, and generate 25,000
X3 values from an Exp(/\ = %) and 25,000 Xs values from another Exp(/\ = %)
distribution. Use these values to create the simulated distribution of ¥ = X; — Xo.

(i) Superimpose a Laplace distribution over a density histogram of the Y values.
(Hint: The R function curve () can be used to superimpose the Laplace distri-
bution over the density histogram.)

(ii) Is the mean of Y within 0.02 of the theoretical mean?

(iii) Is the variance of Y within 2% of the theoretical variance?

Let X be a normal random variable N(u = 7,0 = 3). Calculate P(X > 7.1). Find the
value of k such that P(X < k) =0.8.

Let X be a normal random variable N (1 = 3,0 = /0.5 ). Calculate P(X > 3.5).

Let X be a gamma random variable I'(oe = 2, A\ = 6). Find the value a such that
P(X < a) = 0.95.
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12.

13.

14.

15.

16.

17.

18.

19.
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If X is the number of 3’s that appear when 60 dice are tossed, what is the £ (X?)?

An importing company knows that 80% of its imported Chinese socks are suitable for
sale. If a sample of 60 pairs is drawn at random, find the probability that a percentage
between 70% and 90% (inclusive) of the sample is suitable for sale.

It is known that 3% of the seeds of a certain variety of tomato do not germinate. The
seeds are sold in individual boxes that contain 20 seeds per box with the guarantee that
at least 18 seeds will germinate. Find the probability that a randomly selected box does
not fulfill the aforementioned requirement.

Traffic volume is an important factor for determining the most cost effective method to
surface a road. Suppose that the average number of vehicles passing a certain point on
a road is 2 every 30 seconds.

(a) Find the probability that more than 3 cars will pass the point in 30 seconds.
(b) What is the probability that more than 10 cars pass the point in 3 minutes?

The retaining wall of a dam will break if it is subjected to the pressure of two floods. If
the average number of floods in a century is two, find the probability that the retaining
wall lasts more than 20 years.

A particular competition shooter hits his targets 70% of the time with any pistol. To
prepare for shooting competitions, this individual practices with a pistol that holds 5
bullets on Tuesday, Thursday, and Saturday, and a pistol that holds 7 bullets the other
days. If he fires at targets until the pistol is empty, find the probability that he hits only
one target out of the bullets shot in the first round of bullets in the pistol he is carrying
that day. In this case, what is the probability that he used the pistol with 7 bullets?

A binomial, Bin(n, ), distribution can be approximated by a normal distribution,
N (nm,\/nm(1 — 7)), when nm > 10 and n(l — 7) > 10. The Poisson distribution
can also be approximated by a normal distribution N()\7 \/X) if A > 10. Consider a
sequence from 7 to 25 of a variable X (binomial or Poisson) and show that for n = 80,
7 = 0.2, and A = 16 the aforementioned approximations are appropriate. The normal
approximation to a discrete distribution can be improved by adding 0.5 to the normal
random variable when finding the area to the left of said random variable. Specifically,
create a table showing P(X < z) for the range of X for the three distributions and a
graph showing the density of the normal distribution with vertical lines at X — .1 and
X + .1 showing P(X = z) for the binomial and Poisson distributions, respectively.

Verify that if ¥/ issmall (< 0.1) and N = m+n is large, a hypergeometric distribution,
Hyper(m,n, k), can be adequately approximated by a Bin(n = k, 7 = m/N) distribution.
Compute the probabilities for each distribution using the values n = 20, m = 300, k = 10.
Show the numerical results to three decimal places as well as a graph depicting the
probabilities of the hypergeometric distribution with a vertical line and the probabilities
of the binomial distribution in the same plot with an open circle.

In 1935, Fisher described the following experiment in his book, Design of Ezperiments:
A friend of Fisher’s said that when she drank tea with milk, she was able to determine
if the tea was poured first or if the milk was poured first. Find the probability that
Fisher’s colleague guesses 3 cups in which milk has been added before tea, given that in
4 out of 8 cups, milk has been added before tea.
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20.

21.

22.

23.

24.

25.

Consider the function g(z) = (z — a)?, where a is a constant and E [(X — a)?] is finite.
Find a so that E [(X — a)?] is minimized.

Suppose the percentage of drinks sold from a vending machine are 80% and 20% for soft
drinks and bottled water, respectively.

(a) What is the probability that on a randomly selected day, the first soft drink is the
fourth drink sold?

(b) Find the probability that exactly 1 out of 10 drinks sold is a soft drink.
Find the probability that the fifth soft drink is the seventh drink sold.

Verify empirically that P(Bin(n,7) < r —1) = 1 —P(NB(r,m) < (n —r)), with
n =10, 7 = 0.8, and r = 4.

—~ o~
Q. o
= 2

The hardness of a particular type of sheet metal sold by a local manufacturer has a
normal distribution with a mean of 60 micra and a standard deviation of 2 micra.

(a) This type of sheet metal is said to conform to specification provided its hardness
measure is between 57 and 65 micra. What percent of the manufacturer’s sheet
metal can be expected to fall within the specification?

(b) A building contractor agrees to purchase metal from the local metal manufacturer
at a premium price provided four out of four randomly selected pieces of metal
test between 57 and 65 micra. What is the probability the building contractor will
purchase metal from the local manufacturer and pay a premium price?

(c) If an acceptable sheet of metal is one whose hardness is not more than ¢ units away
from the mean, find ¢ such that 97% of the sheets are acceptable.

(d) Find the probability that at least 10 out of 20 sheets have a hardness greater than
60.

The weekly production of a banana plantation can be modeled with a normal random
variable that has a mean of 5 tons and a standard deviation of 2 tons.

(a) Calculate the mean number of weeks in which the production is greater than the
third quartile.

(b) Find the probability that, in at most 1 out of the 8 randomly chosen weeks, the
production has been less than 3 tons.

(¢) Find the probability that at least 3 weeks are needed to obtain a production greater
than 10 tons.

The lifetime of a certain engine follows a normal distribution with mean and standard
deviation of 10 and 3.5 years, respectively. The manufacturer replaces all catastrophic
engine failures within the guarantee period free of charge. If the manufacturer is willing
to replace no more than 4% of the defective engines, what is the largest guarantee period
the manufacturer should advertise?

A bank has 50 deposit accounts with €25,000 each. The probability of having to close
a deposit account and then refund the money in a given day is 0.01. If account closings
are independent events, how much money must the bank have available to guarantee it
can refund all closed accounts in a given day with probability greater than 0.957
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28.
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30.

31.
32.
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The vendor in charge of servicing coffee dispensers is adjusting the one located in the
department of statistics. To maximize profit, adjustments are made so that the average
quantity of liquid dispensed per serving is 200 milliliters per cup. Suppose the amount
of liquid per cup follows a normal distribution and 5.5% of the cups contain more than
224 milliliters.

(a) Find the probability that a given cup contains between 176 and 224 milliliters.

(b) If the machine can hold 20 liters of liquid, find the probability that the machine must
be replenished before dispensing 99 cups.

(c) If 6 random samples of 5 cups are drawn, what is the probability that the sample
mean is greater than 210 milliliters in at least 2 of them?

The mean number of calls a tow truck company receives during a day is 5 per hour. Find
the probability that a tow truck is requested more than 4 times per hour in a given hour.
What is the probability the company waits for less than 1 hour before the tow truck is
requested 3 times?

The pill weight for a particular type of vitamin follows a normal distribution with a mean
of 0.6 grams and a standard deviation of 0.015 grams. It is known that a particular
therapy consisting of a box of vitamins with 125 pills is not effective if more than 20%
of the pills are under 0.58 grams.

(a) Find the probability that the therapy with a box of vitamins is not effective.

(b) A supplement manufacturer sells vitamin bottles containing 125 vitamins per bottle
with 50 bottles per box with a guarantee that at least 47 bottles per box weigh more
than 74.7 grams. Find the probability that a randomly chosen box does does not
meet the guaranteed weight.

A canning industry uses tins with weight equal to 20 grams. The tin is placed on a scale
and filled with red peppers until the scale shows the weight p. Then, the tin contains Y
grams of peppers. If the scale is subject to a random error X ~ N (0,0 = 10),

(a) How is Y related to X and u?

(b) What is the probability distribution of the random variable Y'?

(¢) Calculate the value p such that 98% of the tins contain at least 400 grams of peppers.
(d) Repeat the exercise assuming the weight of the tins to be a normal random variable

W ~ N(20,0 = 5).

In the printing section of a plastics company, a machine receives on average 6 buckets
per minute to be painted. The machine has been out of service for 90 seconds due to a
power failure.

(a) Find the probability that more than 8 buckets remain unpainted.
(b) Find the probability that the first bucket, after the electricity is restored, arrives
before 10 seconds have passed.

Give a general expression to calculate the quantiles of a Weibull random variable.

A used-car salesman offers a guarantee period of one year for his cars. He knows that
the distribution of the elapsed time until the first breakdown occurs follows a Weibull
distribution, Weib(3,25). If the salesman expects to sell 50 cars per year, and the repair
cost per car is on average 800 dollars, what is the mean cost of the guarantee?
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33.

34.

35.

36.

Let X be a random variable with probability density function

f@) =3 (1)4, 2> 1.

T

(a) Fix the seed at 98 (set.seed(98)), and generate a random sample of size n = 10000
from X'’s distribution. Compute the mean, variance, and coefficient of skewness for
the random sample.

(b) Obtain the theoretical mean, variance, and coefficient of skewness of X.

(¢) How close are the estimates in (a) to the theoretical values in (b)?

Let X be a random variable with probability density function

0+1
f(:c)ze)(l) Ce>1,0>1.

T

(a) Verify that the area under f(zx) is 1.

(b) Fix the seed at 42 (set.seed(42)), and generate 10000 realizations of X with 6 = 2.
What are the mean and variance of the random sample?

¢) Calculate the theoretical mean and variance of X.

(
(d) How close are the estimates in (b) to the theoretical values in (c)?

e
f

Find the cumulative density function.
What is P(X < 3)7

—_ —

(
(
Let X be a random variable with probability density function

flz) = gx(2 —2?), 0<x<l.

(a) Verify that the area under f(x) is 1.

(b) Fix the seed at 13 (set.seed(13)), and generate 10000 realizations of X. What are
the mean and variance of the random sample?

¢) Calculate the theoretical mean and variance of X.

)
(d) How close are the estimates in (b) to the theoretical values in (c¢)?
(e) Find the cumulative density function.

(
(f) What is P(X > .75)7

Let X be a random variable with probability density function

f)=0+1)1-2)? 0<z<1,0>0.

(a) Verify that the area under f(x) is 1.

(b) Fix the seed at 80 (set.seed(80)), and generate 10000 realizations of X with 6 = 2.
What are the mean and variance of the random sample?

(c) Calculate the theoretical mean and variance of X.
(d) How close are the estimates in (b) to the theoretical values in (c)?

(e) Find the cumulative density function.
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(f) What is P(X < .25)7
Let X be a random variable with probability density function
fz) = 3m0z2e 7" 2> 0.

(a) Verify that the area under f(zx) is 1.

(b) Fix the seed at 201 (set.seed(201)), and generate 10000 realizations of X with
0 = 5. What are the mean and variance of the random sample?

¢) Calculate the theoretical mean and variance of X.

(c)

(d) How close are the estimates in (b) to the theoretical values in (c)?
)
)

e) Find the cumulative density function.

(
(
A copper wire manufacturer produces conductor cables. These cables are of practical
use if their resistance lies between 0.10 and 0.13 ohms per meter. The resistance of the

cables follows a normal distribution, where 50% of the cables have resistance under 0.11
ohms and 10% have resistance over 0.13 ohms.

f) What is P(X > 1)?

(a) Determine the mean and the standard deviation for cable resistance.
(b) Find the probability that a randomly chosen cable can be used.
(¢) Find the probability that at least 3 out of 5 randomly chosen cables can be used.

Consider the random variable X ~ Weib(a, ).

(a) Find the cdf for X.
(b) Use (4.18) and verify that for X ~ Weib(a, ), the hazard function is given by

atet
h(t) = T
If X ~ Bin(n, ), derive the moment generating function of X and use it to derive the
mean and variance of X. The binomial pdf can be found on page 117.

If X ~ Bin(n, ), use the binomial expansion to find the mean and variance of X. To
find the variance, use the second factorial moment E[X (X —1)] and note that & = ﬁ
when z > 1.

The speed of a randomly chosen gas molecule in a certain volume of gas is a random
variable, V', with probability density function

3
2
f(v):\ﬂ(_éé) UQe*g% forv >0
™

where R is the gas constant (= 8.31457/, 1.k ), M is the molecular weight of the gas,
and T is the absolute temperature measured in degrees Kelvin.

(Hints:

/OOO 2he ™ du = %F (%) F(@+1)=al(a) T (%) _J7)

(a) Derive a general expression for the average speed of a gas molecule.
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If 1 J = 1ke-m*/ > what are the units for the answer in part (a)?

. . . 2 . .
Kinetic energy for a molecule is Ep = XY, Derive a general expression for the

2
average kinetic energy of a molecule.

The weight of hydrogen is 1.008 &/,,,, . Note that there are 6.0221415 x 1023 molecules
in 1 mole. Find the average speed of a hydrogen molecule at 300°K using the result
from part (a).

Use numerical integration to verify the result from part (d).

Show the probability density functions for the speeds of hydrogen, helium, and
oxygen on a single graph. The molecular weights for these elements are 1.008 8/,
4.003 8/,,.1, and 16.00 /.., respectively.

Consider the equilateral triangle ABC with side [. Given a randomly chosen point R
in the triangle, calculate the cumulative and the probability density functions for the
distance from R to the side BC'. Construct a graph of the cumulative density function
for different values of 1. (Hint: The equation of the line C A is y = v/3z.)

ISR,

44. In Pamplona, Spain, a tombola organizes different raffles during the festivals. In each
raffle, only 2 tickets out of n win a prize. The tickets are sold consecutively, and the



45.
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prize is immediately announced when one person wins. Two friends have decided to take
part in one of the raffles in the following way: One of them buys the first ticket on sale,
and the other one buys the first ticket after the first prize has been announced. Derive
the probability that each of them wins a prize. If there are m raffles during the night in
which the two friends participate, what is the probability that each of them wins more
than one prize?

Example 4.4 on page 122 introduced the World Cup Soccer data stored in the data
frame Soccer. The observed and expected number of goals for a 90 minute game were
computed. To verify that the Poisson rate A is constant, compute the observed and
expected number of goals with the time intervals 45, 15, 10, 5, and 1 minute(s). Compute
the means and variances for both the observed and expected counts in each time interval.
Based on the results, is criterion (3) of the Poisson process on page 120 satisfied? (Note:
See the code at the end of the Chapter 4 script for ideas on how to do this.)






Chapter 5

Multivariate Probability Distributions

5.1 Joint Distribution of Two Random Variables

In Sections 3.4.1 and 3.4.5, respectively, both discrete and continuous random variables
were defined. However, it stands to reason that many random variables might be defined
over the same sample space. In random variable example 1 on page 88, the random variable
X was defined as the sum of the numbers from two dice. However, one might also wish to
consider “the product of the numbers rolled with the two dice” or “the absolute value of the
difference between the numbers rolled with the two dice” as additional random variables
that are defined on the same sample space. Another example might be the verbal (X)
and quantitative (V') scores for incoming freshmen at a private college. In this section, a
brief overview for both discrete and continuous pdfs and cdfs of jointly distributed random
variables is provided as well as some important properties associated with jointly distributed
random variables.

5.1.1 Joint pdf for Two Discrete Random Variables

If X and Y are discrete random variables, the function given by
pxy(zy) =PX =2,Y =y) (5.1)

for each pair of values (x,y) within the domain of X and Y is called the joint pdf of X and
Y. Any function px vy (z,y) can be used as a joint pdf provided the following properties are
satisfied:

(i) px,y(z,y) >0 for all x and y.

(i) > pxy(z,y) =1.

(iii) P(X,Y) € A] = (E )gpx,y(l‘,y)-

Property (iii) states that when A is composed of pairs of (z,y) values, the probability
P[(X,Y) € 4] is obtained by summing the joint pdf over pairs in A.

Example 5.1 > Joint Distribution: Mathematics Grades <| To graduate with
a bachelor of science (B.S.) degree in mathematics, all majors must pass Calculus III and
Linear Algebra with a grade of B or better. The population of B.S. graduates in mathematics
earned grades as given in Table 5.1 on the next page.

(a) What is the probability of getting a B or better in Linear Algebra?
(b) What is the probability of getting a B or better in Calculus ITI?

(c) What is the probability of getting a B or better in both Calculus ITT and Linear Algebra?

171
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Table 5.1: B.S. graduate grades in Linear Algebra and Calculus 111

Linear Algebra
A B C
A 2 13 6
Calculus I1I B 5 85 40
C 7 33 9

Solution: The answers are as follows:

(a) Let the random variables X and Y represent the grades in Calculus IIT and Linear
Algebra, respectively. If A represents the pairs of Calculus III and Linear Algebra values
such that the grade in Linear Algebra is a B or better, then the probability of getting a B
or better in Linear Algebra is written

2+5+7+13+85+33 145
PIX.Y)ed =D pxy(ny) = 200 = 200

(z,y)EA

(b) Let the random variables X and Y represent the grades in Calculus III and Linear
Algebra, respectively. If A represents the pairs of Calculus IIT and Linear Algebra values
such that the grade in Calculus III is a B or better, then the probability of getting a B or
better in Calculus III is written

24+13+6+5+85+40 151
PIX.Y)ed =D pxy(ry) = 200 = 200

(z,y)€EA

(c) Let the random variables X and Y represent the grades in Calculus IIT and Linear
Algebra, respectively. If A represents the pairs of Calculus IIT and Linear Algebra values
such that the grade in both Calculus III and Linear Algebra is a B or better, then the
probability of getting a B or better in both Calculus III and Linear Algebra is written

24+5+13+85 105
PlX,Y)€ Al =) ZpX7Y(x’y):2—()():2_()()' u
(z.9)€A

For any random variables X and Y, the joint cdf is defined in (5.2), while the marginal
pdfs of X and Y, denoted px(x) and py (y), respectively, are defined in Equations (5.3) and
(5.4):

Fxy(z,y) =P(X <z,Y <y), —oco<z<oo, —00<y<o0 (5.2)
px(x) =Y pxy(z,y) (5.3)
py(y) = ZPX,Y(%Z/) (5.4)

x

In (a) of Example 5.1 on the preceding page, the problem requests the probability of
getting a B or better in Linear Algebra. Another way to compute the answer is by adding

the two marginals py (A) + py (B) = 5o + 325 = 232 Likewise, (b) of Example 5.1 on the
previous page can also be solved with the marginal distribution for X: px(A) + px(B) =
206 + 200 = 200"
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5.1.2 Joint pdf for Two Continuous Random Variables

In Section 3.4.5 on page 93, property (3) for continuous pdfs states that the probability
the observed value for the random variable X falls in the interval (a,b) is the integral of
the pdf f(z) over the interval (a,b). In a similar fashion, the probability that the pair of
random variables (X, Y) falls in a two-dimensional region (say A) is obtained by integrating
the joint pdf over the region A. The joint pdf of two continuous random variables is any
integrable function fx y (x,y) with the following properties:

(1) fx,y(z,y) >0 for all x and y.
I [ fxy(zy)dedy = 1.

—00 —0o0

3) P[(X,Y) € 4] - f)fAfx,Y(%y) dz dy.

Property (3) implies that P[(X,Y) € A] is the volume of a solid over the region A bounded
by the surface fx vy (z,y).

For any random variables X and Y, the joint cdf is defined in (5.5), while the marginal
pdfs of X and Y, denoted fx(x) and fy (y), respectively, are defined in Equations (5.6) and
(5.7):

FX7y(a:,y)://fxyy(r,s)dsdr, —00 <z <00, —00<yY< oo (5.5)

— 00 — 00

fx(x /fxya:y)dy, —00 < T < 00 (5.6)

/fXYﬂCy —00 <y < 00 (5.7)

Example 5.2 Given the joint continuous pdf

1 if 0<az<1, 0<y<l
fxy(@y) = {O otherwise
(a) Find Fxy(z =0.6,y = 0.8).
(b) Find P(0.25 < X < 0.75,0.1 < Y < 0.9).
(¢) Find fx(z).
o

Solution: The answers are as follows:

(a)
0.60.8 0.60.8 0.6
Fxy(x=0.6,y =0.8) ://fxyrs dsdr—//ldsdrz/08dr—048
00 00 0
(b)
P(0.25 < 2 < 0.75,0.1 < y < 0.9)
0.750.9 0.750.9

//fXY?”S dsdr—//ldsdr—/OSdr—O4O

0.250.1 0.250.1
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1
fx(@) = /fx,y<a:,y>dy: I, 0<az<1 m
0

Example 5.3 > Joint PDF <1 Find the value ¢ to make fx y(x,y) = cz a valid joint
pdf for x >0,y >0,and 2 <z +y < 3.

Solution: The domain of interest is lightly shaded in Figure 5.1. To solve the problem,
first compute the volume bounded by x = 0, y = 0, and y = 3 — x beneath the surface
fx.v(z,y) = cx, which is denoted V1. Next, find the volume bounded by x =0, y = 0, and
y = 2 — x beneath the surface fx y(z,y) = cx, which is denoted V2. For fx y(x,y) to be
a valid pdf, ¢ must be found such that the difference between V1 and V2 is one.

3 3
2
vi- ]L
0

0

3—x 3

2 3
/cxdyda::c/(Bx—xQ)dx:clg%_%
0

0

2

2 2—x 2
312 8
V2=//ca:dydxzc/(?a:—xQ)dxzc 22| =2
30, 76
0 0 0
27c 8¢ set 6
1-p2=210 20ty o 2
Vi-V 5 5 =c 19

FIGURE 5.1: Graphical representation of the domain of interest for Example 5.3

5.2 Independent Random Variables

In Section 3.3.6 on page 86, it was shown that two events, £ and F', are independent if
P(ENF)=P(E)-P(F). In a similar fashion, two random variables are independent if for
every pair of x and y values, px y(z,y) = px(z) - py(y), when X and Y are discrete, or
fxv(z,y) = fx(x) - fy(y) when X and Y are continuous.
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Example 5.4 Use Table 5.1 on page 172 to decide if the random variables X, grade in
Calculus III, and Y, grade in Linear Algebra, are dependent.

Solution: The random variables X and Y are dependent if px y(x,y) # px(z) - py ()
for any (z,y). Consider the pair (z,y) =(A, A), that is, an A in both Calculus IIT and in
Linear Algebra.

px.y (A, A) = px(A)-py(A)
2 2 21 14

200~ 200 200

2 2 21 x 14
200 © 40,000

0.01 # 0.00735

Since 0.01 # 0.00735, the random variables X and Y, the grades in Calculus III and
Linear Algebra, respectively, are dependent. It is important to note that the definition
of independence requires all the joint probabilities to be equal to the product of the
corresponding row and column marginal probabilities. Consequently, if the joint probability
of a single entry is not equal to the product of the corresponding row and column marginal
probabilities, the random variables in question are said to be dependent. |

Example 5.5 Are the random variables X and Y in Example 5.2 on page 173 indepen-
dent? Recall that the pdf for Example 5.2 was defined as

1 if 0<z<1, 0<y<l1
0 otherwise

fX,Y(ffay) :{

Solution: Since the marginal pdf for X, fx(z) = 1, and the marginal pdf for Y, fy (y) =1,
it follows that X and Y are independent since fx y(z,y) = fx(z)-fy(y) forallz andy. W

5.3 Several Random Variables

This section examines the joint pdf of several random variables by extending the material
presented for the joint pdf of two discrete random variables and two continuous random
variables covered in Section 5.1.1. The joint pdf of X7, X5, ..., X, discrete random variables
is any function px, x,,..x, (T1,%2,...,2n) = P(X1 = 21, X9 = 29,..., X,, = x,,) provided
the following properties are satisfied:

(a) Pxy,Xo,... X, (@1, T2, ..., 2y) >0 for all 1, x9,...,z,.
(b) 2220 2oPxy Xayn X (T1, T2, - @) = 1
Tl T2 T,

(C) P[(XDX?""?XH) € A] = Z Z ZpX17X2,...7Xn(xlﬂx27"'7xn)'

(z1,22,....,xn)EA
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The joint pdf of X, Xs,..., X, continuous random variables is any integrable function
fx1,Xs,....x, (%1,%2,...,2y) such that following properties are satisfied:
(@) fX1.Xo, X0 (1, T2,y ) > 0 for all 21,22, ..., 2.

®) [ [ [ fxiXeox. (@1, 22, . 2n)dey dog - day, =1

— 00 —00

()

PIOG Ko Xa) €Al = [ [ fa, g )dey doa - da,

(z1,22,...,xn)EA

Independence for several random variables is simply a generalization of the notion for the
independence between two random variables. X7, X5, ..., X,, are independent if, for every
subset of the random variables, the joint pdf of the subset is equal to the product of the
marginal pdfs. Further, if X1, X5, ..., X, are independent random variables with respective
moment generating functions Mx, (t), Mx,(t),..., Mx, (t), then the moment generating
function of Y = Y7 | ¢; X; is

My(t) = ]\4}(1 (Clt) X MX2 (Czt) X oo X MXn (Cnt). (58)
In the case where X1, X, ..., X, are independent normal random variables, a theorem for
the distribution of Y = a1 Xy + - -+ + a,X,,, where ay,ao,...,a, are constants, is stated.
Theorem 5.1 If X, X5,..., X, are independent normal random variables, with means
u; and standard deviations o; for i = 1,2,...,n, the distribution of ¥ = a1 X7 + a2 Xs +
-+ ap, X, where aj,as,...,a, are constants, is normal with mean E[Y] = a1 + asps +

“o 4 Appin and variance Var[Y] = a0} + a%03 + -+ + a2o2. In other words,

Y~N iaiﬂia

i=1

022
Proof: Since X; ~ N(u;,0;), the mgf for X; is My, (t) = e*!T—2~ using the mgf from
(4.23). Further, since the X1, Xo,..., X, are independent,

My(t) = MXl(tal) X MXz(tag) X X MXn(tan)

n 2 & a2o?
t Z aipi+t Z it
= ¢ i=1 i=1 ,

n

which is the moment generating function for a normal random variable with mean Y a;;
i=1

" (3
and variance Y a?o?.
i=1
Example 5.6 Use moment generating functions to show that the sum of two independent
Poisson random variables is a Poisson random variable.

Solution: First recall that the mgf of a Poisson random variable is Mx (t) = e If
X is a Poisson random variable with mean A and Y is a Poisson random variable with mean
1, then Z = X +Y is also a Poisson random variable with mean A + p since

Mz(t) _ Mx(t) x My(t) _ ek(etfl) x eﬂ(etfl) _ e(>\+ﬂ)(et71). u
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5.4 Conditional Distributions

Suppose X and Y represent the respective lifetimes (in years) for the male and the
female in married couples. If X = 72, what is the probability that Y > 757 In other words,
if the male partner of a marriage dies at age 72, how likely is it that the surviving female
will live to an age of 75 or more? Questions of this type are answered with conditional
distributions. Given two discrete random variables, X and Y, define the conditional pdf of
X given that Y = y provided that py (y) > 0 as

PXY( y)

py (y) (5:9)

pxjy (zly) =P(X =2[Y =y) =

If the random variables are continuous, the conditional pdf of X given that Y = y provided
that fy(y) > 0 is defined as

_ fxy(z,y)
fxpy(zly) = ) (5.10)

In addition, if X and Y are jointly continuous over an interval A,

P(X € AlY =y) = /fx\y(wa) dx
A

Example 5.7 Let the random variables X and Y have a joint pdf:

12

Zx(2—z— forO0<z<l,0<y<l1
fxy(zy) =147 ( 2 . Y

0 otherwise

Find the pdf of X given Y =y, for 0 <y < 1.

Solution: Using the definition for the conditional pdf of X given Y = y from (5.10), write

Ixy(zly) = fxy(z, fXY x y) 22—z —y)
fY(y) x 1$ - )

x(2—xz—y) 33(2

)
2/3—-y/2  4-3y

for 0<zx<l1l, O<y<l.

Example 5.8 [> Joint Distribution: Radiators <| A local radiator manufacturer
subjects his radiators to two tests. The function that describes the percentage of radiators
that pass the two tests is

fxy(@y)=8zy, 0<y<az<l1 (5.11)

The random variable X represents the percentage of radiators that pass test A, and Y
represents the percentage of radiators that pass test B.
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(a) Is the function given in (5.11) a pdf?
(b) Determine the marginal and conditional pdfs for X and Y.
(¢) Are X and Y independent?

(d) Compute the probability that less than % of the radiators will pass test B given that %
have passed test A.

(e) Compute the quantities: E[X], E [X?], Var(X), E[Y], E [Y?], and Var(Y).
(f) Use S to represent graphically (5.11).

Solution: The answers are as follows:
(a) The function (5.11) is a pdf since fx y(z,y) is non-negative and

1 z 1 T 1
23
//8a:ydyda:=8/ a:/ydy dsz/;dle
0

0 0 0 0

(b) The marginal and conditional pdfs are

fx(z) = f(ﬂmy)dy:/ Brydy =42, 0<z<1
0

1
Fry) = f@ww=/8wmz@ﬂ—ﬁ,0éwﬂ
y

fxy(@y) 0 8zy 2z
Ixy(aly) = == = gy =T YSesl
fxy(z, 8 2
Prixtule) = 22080 S B o<y <

(¢) The random variables X and Y are dependent since fx v (z,y) = 8zy # fx(v)- fy (y) =
1623y — 1623y3.

(d) The probability that P(Y < /g | X =1/4) is computed as

[
I

8 8
2y 1 1
PO < s | X =1/2) = [ fxr )y = [ 3 dy =175 =
4
0 0
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(e) The quantities E[X], E [X?], Var(X), E[Y], E [Y?], and Var(Y) are

— ™
Il
>
=
— 5
0 —
> — 72
" I
1/0 N
< |
Il — |
< [
—~ [a\}
q —
= >
_ [US——
— N,
=
> |
4 —
: QW
S
I I
5 o
>~ %
3
3] N

(f) The following code can be used to create a graph similar to Figure 5.2:

=1, n=30){

> function.draw <- function(f, low=-1, hi

r <- seq(low, hi, length=n)

z <- outer (r, r, f)

+
+
+

persp(r, r, z, xlab="X", ylab="Y", zlab="Z")}

> £3 <- function(x, y) {ifelse(x >= y, 8*xxy, 0)}

> function.draw(£3,0,1,25)

<z<1 N

FIGURE 5.2: Graphical representation of fx y(z,y) = 8zy, 0 <y
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Be careful not to assume the variance of the sum of two random variables is the sum
of the variances of each random variable. Only if X and Y are independent is it true that
Var[X +Y] = Var[X] + Var[Y]. A simple example to show why this is not true in general
is computing Var[X + X] # Var[X] + Var[X] since Var[X + X| = Var[2X]| = 4Var[X].
However, if X1, Xs,...X,, are n independent random variables with means g1, 2, ..., tin,

and variances of,03,...,02, respectively, then the mean and variance of Y = Y7 | ¢;X;

3 n?
where the ¢;s are real-valued constants are puy = Y. c;u; and o3 = > cio?. The
proofs of the last two statements are left as exercises for the reader. (See problem 36 on

page 196.)

Example 5.9 Let X, Xs,..., X, be a random sample from a distribution with mean u
and standard deviation o. Find the mean and variance of Y = M

Xi+Xo+-+ X,
n

Solution: In the expression Y = , the ¢; values are all % Consequently,
2

2
NY:Z?:li-lu:‘uanda')z,:Z?:l(%)_0.2:%. .

5.5 Expected Values, Covariance, and Correlation
5.5.1 Expected Values

In Sections 3.4.3 on page 90 and 3.4.5.3 on page 98, the expected value for a single
random variable for the discrete and continuous cases, respectively, was discussed. Also
discussed was the expected value of a function of a random variable. In this section, the
expected value of a function of two random variables is examined. When X and Y are jointly
distributed random variables with pdfs px v (z,y) or fx y(z,y), depending on whether the
random variables are discrete or continuous, respectively, the expected value of g(X,Y) is

o> gz, y) - pxy(z,y) if X and Y are discrete
Efg(X,Y)] =14 % " ’ . (5.12)
| [ 9(z,y) fxy(z,y)dedy if X and Y are continuous
The conditional expectation of X given a value y of Y is written
> pxy (zly) if X and Y are discrete
E[X|Y]={ % (5.13)
J - fxyy(zly)dz if X and Y are continuous

Example 5.10 Let the random variables X and Y have a joint pdf:
e V/re®

fx,y(x,y):ix >0, y>0

Compute E[Y|X = z].

Solution: First, compute the conditional pdf fy| x (y|z):

—y/w ,—w —y/x
* [Tedy [ dy
0 0
oY/

= , >0, y>0
x
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Using (5.13) for continuous random variables, write

¥ e~ Y/T
BYIX =al = [y~ ady
0

Integrating by parts with v =y and dv = & , obtain
o0
o0 o0
EY|X =a] = —ye ¥/*| + /efy/mdy =0+ —ze V® =z, x>0
0 0
0 |

When two random variables, say X and Y, are independent, recall that f(z,y) = fx(x)-
fy (y) for the continuous case and px v (z,y) = px(z) - py (y) for the discrete case. Further,
E[XY] = E[X] - E[Y]. The last statement is true for both continuous and discrete X and
Y. A proof for the discrete case is provided. Note that the proof in the continuous case
would simply consist of exchanging the summation signs for integral signs.

Proof:

E[XY] = Znypxya:y ZnypX (y)

=Zypy y) Y wpx(z) = E[Y|E[X]

Example 5.11 Use the joint pdf provided in Example 5.8 on page 177 and compute
E[XY].

Solution:

1 =z 1 T 1
4
E[XY]://xy Sxydyd;v—S/ x/y dy| dz =8 /% v=3
0 0 0 0

Since the random variables X and Y were found to be dependent in part (c) of Example 5.8
on page 177, note that
32

E[XY]:%#E[X]-E[Y]:%-%:% |

5.5.2 Covariance

When two variables, X and Y, are not independent or when it is noted that E[XY] #
E[X]-E[Y], one is naturally interested in some measure of their dependency. The covariance
of X and Y, written Cov[X, Y], provides one measure of the degree to which X and Y tend
to move linearly in either the same or opposite directions. The covariance of two random
variables X and Y is defined as

Cov[X,Y] = E[(X — ux)(Y — py)]
Yo (= px)(y — py)pxy(2,y) X, Y discrete

— oo o0

| [ (x—px)y—py)f(z,y)dedy X,Y continuous

—00 —00

(5.14)
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A Cov[X,Y] > 0 indicates that, generally, as X increases, so does Y (that is, X and YV’
move in the same direction); whereas, a Cov[X,Y] < 0 indicates that, generally, as X
increases Y decreases (that is, X and Y move in opposite directions). To gain an intuitive
understanding of covariance, see Figure 5.3, which has both horizontal and vertical dotted
lines to indicate px, and py; in each of the three plots. The first plot in Figure 5.3 exhibits
a strong positive relationship. By this it is meant that large values of X tend to occur with
large values of Y and small values of X tend to occur with small values of Y. Consequently,
(z — px ) will tend to have the same sign as (y — vy ), so their product will be positive. In
the center plot of Figure 5.3, the relationship between the two variables is negative, and
note that (x — px,) and (y — py,) tend to have opposite signs, which makes most of their
products negative.

Cov[X1,Y1] =280 Cov[Xs, Ys] = —2800 Cov[X3,Y3] =0

120
L]
LJ
1200
L
L]
L]
34
L]

110
L]
L]

1100
L
L]
L]
32

0
000
L

1

920
L]
L]

900
L
L]
L]
28

26

80
L]
L]

800
L
L]
LJ
L]

60 80 100 120 60 80 100 120 26 28 30 32 34

FIGURE 5.3: Scatterplots showing positive, negative, and zero covariance between two
random variables where px y (z,y) = % for each of the ten pairs of plotted points.

Example 5.12 Compute the covariance between X; and Y7 for the values provided in
Table 5.2 given that px v (z,y) =1/, for each (z,y) pair.

Table 5.2: Values used to compute covariance for Figure 5.3

X | v X Y X3| Y
58 | 80 58 | 1200 25.5 | 30.0
72 | 80 72 | 1200 27.0 | 33.0
72| 90 72 | 1100 30.0 | 34.5
86 | 90 86 | 1100 33.0 | 33.0
86 | 100 86 | 1000 34.5 | 30.0

100 | 100 100 | 1000 33.0 | 27.0

100 | 110 100 | 900 30.0 | 25.5

114 | 110 114 | 900 27.0 | 27.0

114 | 120 114 | 800 28.8 | 30.0

128 | 120 128 | 800 31.2 | 30.0
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Solution:
px, (@ prl,yl (z,y)
_ 58+ 724+ 128
Z z-px, (z 0 =93
Zy v (y 80—|—80 —il—o -+ 120 100

CO’U Xl, Yl Z Z f - NX1 y MY1)pX17Y1 ($ y)

1
= (58— 93) - (80 = 100) - 7 + (72— 93) - (80 — 100) - 7 + -
+ (128 — 120) - (120 — 100) 1i

= 280
To reduce the arithmetic drudgery, one can solve the problem with S:

> X1 <- ¢(58,72,72,86,86,100,100,114,114,128)

> Y1 <- ¢(80,80,90,90,100,100,110,110,120,120)

> covar <- function(x, y, f){sum((x-mean(x))*(y-mean(y))*£f)}
> covar (X1, Y1,1/10)

[1] 280

There is a covariance function in R, however, it uses an unbiased estimator (n — 1) in
the denominator instead of n. The covariance can be obtained directly with S-PLUS using
the command var (X, Y, unbiased=F). The S-PLUS command var(X, Y, unbiased=T)
returns the same value as the R command cov(X, Y). [ |

At times, it will be easier to work with the shortcut formula Cov[X,Y] = E[XY]—pux-py
instead of using the definition in (5.14).

Example 5.13 Compute the covariance between X and Y for Exampl 5.8 on page 177.
In part (e) of Example 5.8, E[X] and E[Y] were computed to be 2 and £, respectively,
and in Example 5.11 on page 181, it was found that E[XY] = £

Solution: Using the shortcut formula,

4 4 4
COU[X’Y]:E[XY]—MXMY:———-Ez_. -

When one examines the first two plots in Figure 5.3 on the preceding page, the de-
pendency in the left plot seems to be about as strong as the dependency in the center
plot, just in the opposite direction. However, the Cov[X,Y] = 280 in the left plot and
Cov[X,Y] = —2800 in the center plot. It turns out that the dependencies are the same
(just in opposite directions), but the units of measurement for the Y variable in the center
plot are a factor of 10 times larger than those in the left plot. So, it turns out that covariance
is unit dependent. To eliminate this unit dependency, scale the covariance.

5.5.3 Correlation

The correlation coefficient between X and Y, denoted px y, or simply p, is a scale in-
dependent measure of linear dependency between two random variables. The independence
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in scale is achieved by dividing the covariance by oxoy. Specifically, define the correlation
between X and Y as

pxyy = (515)

0X0y

The correlation coefficient measures the degree of linear dependency between two random
variables and is bounded by —1 and +1. The values p = —1 and p = +1 indicate perfect
negative and positive relationships between two random variables. When p = 0, there is an
absence of linear dependency between X and Y. If X and Y are independent, it is also true
that p = 0; however, p = 0 does not imply independence. A similar statement is true for the
Cov[X,Y]. That is, if X and Y are independent, Cov[X,Y] = 0; however, Cov[X,Y] =0
does not imply independence.

Example 5.14 Compute px,y for Example 5.8 on page 177. Recall that Cov[X,Y] = %
was computed in Example 5.13 on the previous page, and Var[X] = % and Var[Y] = %

in part (e) of Example 5.8 on page 177.

Solution:

Cov[X,Y 59z
pxy = SOV s 90
OX0y 2 11
75 225 .

Example 5.15 Given the random variables X and Y with their joint probability distri-
bution provided in Table 5.3, verify that although Cov[X,Y] =0, X and Y are dependent.

Table 5.3: Joint probability distribution for X and Y

Y

1101
M EE
X 0]z|0]%
Lls|s|s

Solution: Start by computing the quantities E[XY], E[X], and E[Y] to use in the
shortcut formula for the covariance:

E[X]:(—1)§+(0)%+(1)§:o
BY]=(-1)-2+(0)- 2+ (1)-3 =0
E[XY]:(—1-—1)é+---+(1-1)é:o

Cov[X,Y] = E[XY]| - E[X]-E[Y]=0
The covariance for this problem is 0. However, the random variables are dependent since
_3.3_29
8 8 64
This example reinforces the idea that a covariance or correlation coefficient of 0 does not
imply independence. |

P(X =—1,Y =—1)= é £P(X =—1)-PY =—1)
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Example 5.16 Compute px, y; for Example 5.12 on page 182. Recall that ux, = 93,
ty, = 100, and Cov[X7, Y] = 280.

Solution: Start by computing the quantities £ [Xf], E [Yﬂ, 0x,, and ox,:
E[X{] =) 2’ px,(2)
1 1 1
—582. 22, 4 ...419282. _ —
B8 5 + 720 g e 1287 5 = 9090
E[Y?] =Y v’ pny)
)
— 807 - 807 - 41202 & = 10200
N 10 10 10
Var[X,] = E [X?] — (E[X1])* = 9090 — 93% = 441
ox, =V Var[Xl] =441 =21
VarlYi] = E [Y?] - (E[vi])” = 10200 — 100% = 200
V Var[Y1] = V200 = 14.14214
COU[Xl,Yl] 280

_ _ = 0.9428087
P = — 21 x 14.14214

O'Y1

It is also possible to get the answer directly from S by entering

> cor(X1, Y1)
[1] 0.942809 B

It is worthwhile to note that px, y; = 0.9428087 and px, y, = —0.9428087 for the left
and center plots, respectively, in Figure 5.3 on page 182. In other words, the correlations
have the same absolute magnitude for both plots, even though the absolute values of the
covariances differ by a factor of ten.

5.6 Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution. Recall
that each trial in a binomial experiment results in only one of two mutually exclusive
outcomes.  Experiments where each trial can result in any one of k possible mutually
exclusive outcomes Ay, ..., Ay with probabilities P(4;) = m;, 0 < m; < 1, fori =1,...,k
such that Zle m; = 1 can be modeled with the multinomial distribution. Specifically,
the multinomial distribution computes the probability that A; occurs z; times, A occurs
o times, ..., Ap occurs xy times in n independent trials, where x1 + o + -+ + x5 = n.
To derive the probability distribution function, reason in a fashion similar to that done
with the binomial. Since the trials are independent, any specified ordering yielding x;
outcomes for Ay, x9 outcomes for A,, . .., and x outcomes for Ay will occur with probability
i my? - k. The total number of orderings yielding x; outcomes for Ay, x2 outcomes for
As, ..., and x outcomes for Ay, is W'r, With these two facts in mind, the probability
distribution, mean, variance, and mgf of a multinomial distribution can be derived. All are
found in (5.16).
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Multinomial Distribution
X ~ MN(n,m,...,Tk)

P(X = (xl,...,$k)|n,7rl,,.,,7rk) =

EX/] = nm (5.16)

Var [Xz] = nm(l — 71'1‘)
given that each X; ~ Bin(n, ;)

Mx(t) = (7T16t1 + 7T26t2 + -+ kaletk_l + Wketk)n

Example 5.17 The probability a particular type of light bulb lasts less than 500 hours
is 0.5 and the probability the same type of light bulb lasts more than 800 hours is 0.2. In
a random sample of ten light bulbs, what is the probability of obtaining exactly four light
bulbs that last less than 500 hours and two light bulbs that last more than 800 hours?

Solution: Let the random variables X7, X5, and X3 denote the number of light bulbs that
last less than 500 hours, the number of light bulbs that last between 500 and 800 hours, and
the number of light bulbs that last more than 800 hours, respectively. Since m = 0.5, o =
0.3, and 73 = 0.2, use the first equation in (5.16) and compute P(X; =4, Xy = 4, X3 = 2)
as

10!

P(X; =4, Xy = 4, X3 = 2[10,0.5,0.3,0.2) = m(0.5)4(0.3)4(0.2)2 =0.0638. W

5.7 Bivariate Normal Distribution

The joint distribution of the random variables X and Y is said to have a bivariate
normal distribution when its joint density takes the form

Py (@) e — ()
9 = X -
iy 2roxoyy/1— p? P 2(1 - p?) ox

—2p(x;fx) (y;YW) + (y;:w)? } (5.17)

for —oo < &,y < 400, where ux = E[X], uy = E[Y], 0% = Var[X], 03 = Var[Y], and
p is the correlation coefficient between X and Y. An equivalent representation of (5.17) is
given in (5.18), where X = (X, Y)7 is a vector of random variables where T represents the
transpose, pu = (ux,py)7?, is a vector of constants, and ¥ is a 2 x 2 non-singular matrix
such that its inverse X! exists and the determinant || # 0, where

Var[X] Cov[X,Y]
> =
CovlY,X]| Var[Y]
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_ 1 ~1/2 L 1y _
o) = s 13 exp {5 (X - W B X - ). (5.18)

The shorthand notation used to denote a multivariate (bivariate being a subset) normal
distribution is X ~ N(u, X). In general, 3 represents what is called the variance covariance
matrix. When X = (X1, Xo,..., X,,)T and p = (p1, p2, .., pin) 7 it is defined as

X1 —m
SoBX-mX - =F [ | X — )
Xn — Hn
a§1 ... Cov(Xy, X,)
Cov(X,, Xq) ... ag(n

Different representations of four bivariate normal distributions, all with parameters pux =
uwy =0, 0x =0y =1, and p values of 0, 0.30, 0.60, and 0.95, respectively, are provided in
Figure 5.4 on the following page. The following code produces a perspective plot, contour
plot, and image plot of a bivariate normal density with parameters pux = py =0, ox =
oy =1, and p = 0.5 similar to those in Figure 5.4 on the next page:

functionl.draw <- function(f, low = -1, hi = 1, n = 50){
r <- seq(low, hi, length = n)
z <- outer(r, r, f)
persp(r, r, z, axes=FALSE, box=TRUE)}

par (mfrow=c(1,3), pty="s")

f1 <- function(x, y){
exp( (x72-2%0.5*x*y+y~2) / (-2%(1-0.572)) )/
(2*%pi*sqrt(1-0.572))}

x <- seq(-3,3, length=100)

y <- X

functionl.draw(£f1,-3,3,20)

contour(x, y, outer(x, y, f1), nlevels=10)

image(x, y, outer(x, y, f1), zlim=range(outer(x, y, f1)), add = FALSE)

V VVVYV + 4+ VYV + + 4+ V

The following facts about the bivariate normal distribution are listed without proof:
(a) The marginal distribution of X is N(ux,ox).
(b) The marginal distribution of Y is N(uy,oy).

(¢) If X and Y have a bivariate normal distribution, the conditional density of ¥ given
X = z is a normal distribution with mean py |, = E(Y|r) = py + po—y(a: — pux) and
ox

- 2 _ 2 2
variance oy, = oy (1 — p%).

(d) Given any two constants a and b, the distribution of aX + bY is

N (aux + buy, \/azcrg( +b20% + 2abpoxoy )
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FIGURE 5.4: The first row uses the function perspective to represent bivariate normal
densities with parameters ux = py = 0, ox = oy = 1, and p values of 0, 0.30, 0.60,
and 0.95, respectively. The second row represents the same bivariate densities with contour
plots, while the third row represents the densities with image plots.

Example 5.18 [> Bivariate Normal Grades <| Let us assume that the distribution
of grades for a particular group of students where X and Y represent the grade point
averages in high school and the first year of college, respectively, follow a bivariate normal
distribution with parameters ux = 3.2, uy = 2.4, ox = 0.4, oy = 0.6, and p = 0.6. Find
the following:

(a) P(Y < 1.8)

(b) P(Y <18|X =25)

(¢) P(Y > 3.0)

(d) P(Y >3.0] X =2.5)

Solution: The answers are computed first manually, and then with S.
(a) Using the parameters given in the problem,

Y —-24 - 1.8-24
0.6 0.6

P(Y < 1.8)=}P’( ):]P’(Z< —1) = 0.1586
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> pnorm(1.8,2.4,.6)
[1] 0.1586553

(b) First, find the quantities py|y—95 and oy |y—2.5:

o 0.6
fyla—zs = BE(Y|z = 2.5) = py + pé(aj —px) =244+06- 57 (25 -32) = 177

0% |pmns = 0y (1 = p?) = 0.6 (1 = 0.6°) = 0.2304 = 0y |,—25 = 0.48

P(Y < 1.8/X =25) =P (Y537 < 18=L77) = P(Z < 0.0625) = 0.5249.

> pnorm(1.8,1.77,.48)
[1] 0.5249177

(c) Using the parameters given in the problem,

Y —24 30-24
0)=1— <30)=1-— <
P(Y >3.0)=1-P(Y <3.0)=1 IE”( Y )

=1-P(Z<1)=0.158

> 1-pnorm(3,2.4,.6)
[1] 0.1586553

(d) Using the quantities py |, and oy, from (b),

P(Y >3.0/X =25)=1-P(Y <3.0|X =25)
L _p(Y LT 30—
0.48 0.48

) =1-P(Z < 2.5625)
= 0.0052.

> 1-pnorm(3,1.77,.48)
[1] 0.005196079 [ |
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5.8 Problems

1.

Let X and Y have the following joint distribution:

Joint Probability Distribution of X and Y

Y
~1]o| 1
—1]1/6]0]1/6

X ol13]of 0
1/6 [0]1/6

(a) Find the covariance between X and Y.
(b) Show that X and Y are dependent.

. Given the random variables X and Y and their joint probability px y (X,Y):

Y
1 2 3
0.05]0.05| 0.1
X 21005]| 0.1 |0.35
31 0 0.2 ] 0.1

(a) Show that px y(X,Y") satisfies properties (i) and (ii) given on page 171 for the joint
pdf of two discrete random variables.

(b) Find the mean of X and the mean of Y.
(¢) Are X and Y independent?

(d) Find the variances of X and of Y.

)

(e) Find the covariance of X and Y.

A particular unfair coin is constructed so that the probability of obtaining a head is 1/.
The unfair coin is flipped twice. Define two random variables: Z = the number of heads
in the first flip and W = the number of heads in two flips.

(a) Construct a table showing the joint probability distribution of both random variables
Z and W including the marginal probabilities.
(b) Find the covariance between Z and W. Are they independent?

(c) Suppose the covariance between Z and W were 0. Would this imply that Z and W
are independent?

. An international travel agency translates its promotional fliers each season. Translators

are hired to translate the fliers into several languages. The translators are paid either €
60 or €90 per page, depending on word density. The fliers are all either 5, 7, or 10 pages
in length. The joint density function for X and Y, where X = number of pages and Y =
price per page, is
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Y
60 90
51005 04
X 71005 0.1
101 0.35 | 0.05

(a) Find the mean and variance of X and Y.

(b)

(¢) Find the probability function of Z (the total translation cost).
)

(d) Find the mean of Z.

Find Cov(X,Y), and explain its meaning.

. A student uses a free dialup service to access the Internet. Depending on the server to
which the Internet service provider connects the student, there are three transmission
rates: 1800, 2700, and 3600 bytes per second. Let X be the number of transmitted bytes
and Y the transmission rate in bytes per second. The joint probability for X and Y is
given by the following table:

Y
1800 2700 3600
64800 0.3 0.05 0.025
X 324000 | 0.025 0.15 0.15
972000 0 02 0.1

(a) Let Z be the random variable indicating the time necessary for transmission. Write
down the probability function of Z.

(b) Find the expected time spent in transmission.

(¢) Find the mean and variance of X and Y and Cov(X,Y).

. At the local movie theater, drinks and popcorn come in three sizes: small, medium, and
large. The prices for both drinks and popcorn are $1.50, $2.50, and $3.50 for the small,
medium, and large sizes, respectively. For a given customer, define the random variables
X = amount spent for popcorn and Y = amount spent for drinks. Suppose the joint
distribution for X and Y is

X
1.5 | 25 | 35
1.510.03 | 0.07 | 0.05
Y 25|0.08]0.08|0.30
3.5 0.00 | 0.30 | 0.09

(a) Find the probability a given customer spends no more than $2.50 on popcorn. What
is the probability a given customer spends at least $2.50 on popcorn?

(b) What is the average amount of money spent at the movies for a customer buying
both popcorn and a drink, if the cost of the movie ticket is $5.207

. The interior diameter of a particular type of test tube is a random variable with a mean
of 5 cm and a standard deviation of 0.03 cm. If the test tube thickness is a random
variable with a mean of 0.5 cm and a standard deviation of 0.001 c¢cm and both variables
are independent, find the mean and standard deviation of the exterior diameter.
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8.

10.

11.

12.

13.

14.

15.

16.

The flow of water arriving at an irrigation canal is measured in cubic meters and follows
a N(100,20) distribution. The canal has a flow capacity that follows a N(120,30)
distribution. The sluice gate is opened when the water flow exceeds the canal’s capacity.
What is the probability that the flood gate will be opened?

Given the joint density function

flz,y) =62, 0<z<y<l,
find the E[Y | X] that is the regression line resulting from regressing ¥ on X.

The time, in minutes, that a car is parked in a mall has the following density function:

1 ,—2/50
=€ x>0

0 z <0.

flz) =

Using S,

(a) Find the probability that a car stays more than 1 hour.

(b) Let Y = 0.5+ 0.03X be the cost in dollars that the mall has to pay a security service
per parked car. Find the mean parking cost for 1000 cars.

(c¢) Find the variance and skewness coefficient of Y.

A poker hand (5 cards) is dealt from a single deck of well shuffled cards. If the random
variables X and Y represent the number of aces and the number of kings in a hand,
respectively,

(a) Write the joint distribution fx y (x,y).
(b) What is the marginal distribution of X, fx(z)?
(¢) What is the marginal distribution of Y, fy (y)?

(mm: 3000 = <“:b>-)

If fxy(z,y) =5z — y? in the region bounded by y = 0, z = 0, and y = 2 — 2z, find the
density function for the marginal distribution of X, for 0 < z < 1.

If f(z,y) =e @) 2> 0,and y > 0, find P (X +3 > Y | X > 3).
If fl,y) =1,0<z<1,0<y<l,whatisP(Y - X > |X+Y > 1)?

If f(z,y) = k(y — 2z) is a joint density function over 0 < < 1,0 <y < 1, and y > 22,
then what is the value of the constant k7

Let X and Y have the joint density function

f(a:,y) =

%x—l—%y for0<z<landO<y<1
0

otherwise

Find P2X <1|X+Y <1).
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Let X and Y have the joint density function

6(z—y)? for0<z<land0<y<1

flz,y) = (e=9) ,
0 otherwise

(a) Find P(X < 1|Y < 7).

(b) Find P (X < 3 |Y =1).

Let X and Y denote the weight (in kilograms) and height (in centimeters), respectively, of

20-year-old American males. Assume that X and Y have a bivariate normal distribution
with parameters ux =82, ox =9, uy = 190, oy = 10, and p = 0.8. Find

(a) B[Y|X =75],
(b) E[Y[X =90],

(¢) Var[Y | X =75],

(d) Var[Y | X =90],

(e) P(Y >190|X =75), and

(f)y P(185 <Y < 195| X =90).

Let X and Y denote the heart rate (in beats per minute) and average power output (in
watts) for a 10 minute cycling time trial performed by a professional cyclist. Assume
that X and Y have a bivariate normal distribution with parameters ux = 180, ox = 10,
wy = 400, oy = 50, and p = 0.9. Find

(a) E[Y|X =170],

(b) E[Y | X =200],

(¢) Var[Y|X =170],

(d) Var[Y |X =200],

(e) P(Y <380|X =170), and

(f) P(Y > 450| X = 200).

A certain group of college students takes both the Scholastic Aptitude Test (SAT) and
an intelligence quotient (IQ) test. Let X and Y denote the students’ scores on the SAT

and 1Q tests, respectively. Assume that X and Y have a bivariate normal distribution
with parameters px = 980, ox = 126, uy = 117, oy = 7.2, and p = 0.58. Find

A pepper canning company uses tins weighing 20 grams. The full tin of peppers is placed
on a balance. Customer good will is maximized when the balance shows a quantity p
and the peppers weight is Y grams. If the balance has a random error X ~ N (0,0 = 10),
(a) Find the relationship between Y, X, and pu.

(b) What is the distribution of Y'?



194 Probability and Statistics with R

22.

23.

24.

25.

26.

(¢) Find p so that 98% of the tins have at least 400 grams of peppers.

(d) Repeat the exercise assuming that the tin weight is a random variable W ~
N(20,0 = 5).

Given the joint density function fxy(z,y) =z +y, x > 0,y < 1,

(a) Show that properties (1) and (2) on page 173 for the joint pdf of two continuous
random variables are satisfied.

(b) Find the cumulative distribution function.

(¢) Find the marginal means of X and Y.

(d) Find the marginal variances of X and Y.

The lifetime of two electronic components are two random variables, X and Y. Their
joint density function is given by

l+x+y+cxy

c+3) exp(—(z +v)) x>0andy >0

fXY(may) =

(a) Verify that ffooo ffooo Fxv(x,y)dedy = 1.
(b) Find fx(z).
(¢) What value of ¢ makes X and Y independent?

A high technology company manufactures circular mirrors used in certain satellites. The
radius of any mirror in inches is a random variable R with density function

2 (9, 2 3
fr) = T@2r—7r?) 1<r<3

0 otherwise.

To place the mirrors in the satellites without any problems, the mirror area, given by
mR2, cannot be greater than 6.5 inches. Using S,

(a) Verify that [*_ f(r)dr = 1.
(b) Find the mean area of the mirrors.

(¢) Find the probability that a mirror’s diameter does not surpass 6.5 inches.
Use the package adapt from R to solve Example 5.2 on page 173.

Let X and Y have the joint density function

Kry 2<z<4and4<y<6

fxy(z,y) = .
0 otherwise

(a) Find K so that the given function is a valid pdf.
(b) Find the marginal densities of X and Y.
(¢) Are X and Y independent? Justify.
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Given the joint density function of X and Y

/2 2+y<2, 220, y=0
fxy(z,y) = / .
0 otherwise
(a) Find the marginal densities of X and Y.
(b) Find E[X], E[Y], Cov[X,Y], and px,y.
(c) Find P(X +Y <1]|X > 3).

Let X and Y have the joint density function

Ky —2<x<2 1§y§a:2
fXY (CE, y) = .
0 otherwise.
(a) Find K so that fxy(x,y) is a valid pdf.
(b) Find the marginal densities of X and Y.
(c) Find P(Y > 3| X < 3).
An engineer has designed a new diesel motor that is used in a prototype vehicle. The

prototype’s diesel consumption in gallons per mile C follows the equation C' = 3+ 2X +

%Y, where X is a speed coefficient and Y is the quality diesel coefficient. Suppose the

joint density for X and Y is fxy(z,y) =ky,0<z <2, 0<y <.
(a) Find k so that fxy(z,y) is a valid density function.
(b) Are X and Y independent?

(c¢) Find the mean and variance for the prototype vehicle’s diesel consumption.

To make porcelain, kaolin X and feldspar Y are needed to create a soft mixture that

later becomes hard. The proportion of these components for every tone of porcelain has

the density function fxy(r,y) = K2?y,0 <o <y <1, x+y<1.

(a) Find the value of K so that fxy (z,y) is a valid pdf.

(b)

(¢) Find the kaolin mean and the feldspar mean by tone.
)

(d) Find the probability that the proportion of feldspar will be higher than 1/5, if the
kaolin is more than half of the porcelain.

Find the marginal densities of X and Y.

A device can fail in four different ways with probabilities 7 = 0.2, mo = 0.1, w3 = 0.4,
and my = 0.3. Suppose there are 12 devices that fail independently of one another. What
is the probability of 3 failures of the first kind, 4 of the second, 3 of the third, and 2 of
the fourth?

The wait time in minutes a shopper spends in a local supermarket’s checkout line has
distribution f(z) = exp(=2/2)/, = > 0. On weekends, however, the wait is longer, and
the distribution then is given by g(z) = exp(=2/3) /5, 2 > 0. Find

(a) The probability that the waiting time for a customer will be less than 1 minute.

(b) The probability that, given a waiting time of 2 minutes, it will be a weekend.
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33.

34.

35.

36.

(¢) The probability that the customer waits less than 2 minutes.

An engineering team has designed a lamp with two light bulbs. Let X be the lifetime
for bulb 1 and Y the lifetime for bulb 2, both in thousands of hours. Suppose that X
and Y are independent and they follow an exp(\ = 1) distribution.

(a) Find the joint density function of X and Y. What is the probability neither bulb
lasts longer than 1000 hours?

(b) If the lamp works when at least one bulb is lit, what is the probability that the lamp
works no more than 2000 hours?

(¢c) What is the probability that the lamp works between 1000 and 2000 hours?

The national weather service has issued a severe weather advisory for a particular county
that indicates that severe thunderstorms will occur between 9 p.m. and 10 p.m. When
the rain starts, the county places a call to the maintenance supervisor who opens the
sluice gate to avoid flooding. Assuming the rain’s start time is uniformly distributed
between 9 p.m. and 10 p.m.

(a) At what time, on the average, will the county maintenance supervisor open the sluice
gate?

(b) What is the probability that the sluice gate will be opened before 9:30 p.m.?
Note: Solve this problem both by hand and using S.

Example 5.18 on page 188 assumes the distribution of grades for a particular group of
students, where X and Y represent the grade point averages in high school and the first
year of college, respectively, and have a bivariate normal distribution with parameters
wx =32, uy =24, 0x =04, oy =0.6, and p = 0.6.

(a) Set the seed equal to 194 (set.seet(194)), and use the function mvrnorm() from
the MASS package to simulate the population, assuming the population of interest
consists of 200 students. (Hint: Use empirical=TRUE.)

(b) Compute the means of X and Y. Are they equal to 3.2 and 2.4, respectively?

(¢) Compute the variance of X and Y as well as the covariance between X and Y. Are
the values 0.16, 0.36, and 0.144, respectively?

(d) Create a scatterplot of Y versus X. If a different seed value is used, how do the
simulated numbers differ?

Show that if X, Xo, ..., X, are independent random variables with means p1, fi2, . .., fin,

and variances o, 03,...,02, respectively, then the mean and variance of Y = Y7 | ¢,

y Y mo
n

where the ¢;s are real-valued constants, are uy = > . c;u; and o3 = > | c?o? as
stated on page 180 of the text. (Hint: Use moment generating functions.)



Chapter 6

Sampling and Sampling Distributions

6.1 Sampling

The objective of statistical analysis is to gain knowledge about certain properties in a
population that are of interest to the researcher. When the population is small, the best
way to study the population of interest is to study all of the elements in the population
one by one. This process of collecting information on the entire population of interest is
called a census. However, it is usually quite challenging to collect information on an entire
population of interest. Not only do monetary and time constraints prevent a census from
being taken easily, but also the challenges of finding all the members of a population can
make gathering an accurate census all but impossible. Under certain conditions, a random
selection of certain elements actually returns more reliable information than can be obtained
by using a census. Standard methods used to learn about the characteristics of a population
of interest include simulation, designed experiments, and sampling.

Simulation studies typically generate numbers according to a researcher-specified
model. For a simulation study to be successful, the chosen simulation model must closely
follow the real life process the researcher is attempting to simulate. For example, the effects
of natural disasters, such as earthquakes, on buildings and highways are often modeled with
simulation.

When the researcher has the ability to control the research environment, or at least
certain variables of interest in the study, designed experiments are typically employed.
The objective of designed experiments is to gain an understanding about the influence that
various levels of a factor have on the response of a given experiment. For example, an
agricultural researcher may be interested in determining the optimal level of nitrogen when
his company’s fertilizer is used to grow wheat in a particular type of soil. The designed
experiment might consist of applying the company’s fertilizer to similar plots using three
different concentrations of nitrogen in the fertilizer.

Sampling is the most frequently used form of collecting information about a population
of interest. Many forms of sampling exist, such as random sampling, simple random
sampling, systematic sampling, and cluster sampling. It will be assumed that the population
from which one is sampling has size N and that the sample is of size n < N.

Random sampling is the process of selecting n elements from a population where each
of the n elements has the same probability of being selected, namely, % More precisely,
the random variables X7, Xs,...,X,, form a random sample of size n from a population
with a pdf f(x) if Xy, Xo,..., X, are mutually independent random variables such that
the marginal pdf of each X; is f(x). The statement “X;, Xo, ..., X,, are independent and
identically distributed, i.i.d., random variables with pdf f(x)” is often used to denote a
random sample. The objective of random sampling is to obtain a representative sample of
the population that can be used to make generalizations about the population.

This process of making generalizations about the population from sampled information

197
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is called inferential statistics. For the generalizations to be valid, the sample must meet
certain requirements. The key requirement for a random sample is that it be representative
of the parent population from which it was taken.

The typical method of obtaining a random sample starts with using either a calculator or
a computer random number generator to decide which elements of a population to sample.
The numbers returned from random number generating functions are not, in the strictest
sense, random. That is, because an algorithm is used to generate the numbers, they are
not completely random. Depending on the quality or lack thereof for a given random
number generator, the same numbers may begin to cycle after a number of iterations. This
problem is encountered much less with the random number generating functions written
for computers than it is with those for calculators. In general, random number generators
return pseudo-random numbers from a Unif (0,1) distribution. Since people tend to favor
certain numbers, it is best not to allow humans to pick random numbers unless the process
is one of selecting numbers from an urn or another similar process. To avoid possible biases,
it is best to let a function written to generate random numbers pick a sample.

When the population is finite, it is possible to list all of the possible combinations
of samples of size n using the S command expand.grid(). For example, suppose all
of the combinations of size n = 3 from a population consisting of N = 4 items are to
be listed. Clearly, there are 4 x 4 x 4 = 64 possible combinations. To enumerate the
possible combinations with S, type expand.grid(1:4,1:4,1:4). In a similar fashion, if
all of the possible combinations from rolling two fair dice or all possible combinations of
size n = 2 from the population X; = 2, X5 = 5, and X3 = 8 are to be enumerated, type
expand.grid(1:6,1:6) or expand.grid(c(2,5,8), c(2,5,8)), respectively.

6.1.1 Simple Random Sampling

Simple random sampling is the most elementary form of sampling. In a simple
random sample, each particular sample of size n has the same probability of occurring.
In finite populations, each of the (JX ) samples of size n is taken without replacement and
has the same probability of occurring. If the population being sampled is infinite, the
distinction between sampling with replacement and sampling without replacement becomes
moot. That is, in an infinite population, the probability of selecting a given element is the
same whether sampling is done with or without replacement. Conceptually, the population
can be thought of as balls in an urn, a fixed number of which are randomly selected without
replacement for the sample. Most sampling is done without replacement due to its ease and
increased efficiency in terms of variability compared to sampling with replacement.

To list all of the possible combinations of size n when sampling without replacement from
a finite population of size N, that is, the (JZ) combinations, the function Combinations ()
written by Tim Hesterberg at Insightful can be used. Make sure the PASWR package is
loaded, as it contains the function Combinations().

Example 6.1 Given a population of size N = 5, use S to list all of the possible samples
of size n = 3. That is, list the (g) = 10 possible combinations.

Solution: Use the command Combinations() as follows:

> Combinations(5,3)
(,11 [,2] [,3] [,4]1 [,8] [,6]1 [,71 [,8] [,9] [,10]
1 1 1 2 1 1 2 1 2 3
N 2 2 3 3 2 3 3 4 4 4
N 3 4 4 4 5 5 5 5 5 5
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The 10 possible combinations are (1,2,3), (1,2,4), ..., (3,4,5), listed vertically in the out-
put. |

Example 6.1 on the facing page assumed all of the values in the population of interest are
sequential starting with the number one. It is not unusual to have non-sequential values for
the population where the user desires to enumerate all possible combinations when sampling
without replacement. To that end, code is provided (SRS()) that works in conjunction with
Combinations () to list all of the possible combinations when using simple random sampling
from a finite population:

> SRS <- function(POPvalues, n)
{ # SRS generates all possible SRS’s of size n
# from the population in vector POPvalues
# by calling the function Combinations.
N <- length(POPvalues)
store <- t(Combinations(N, n))
matrix (POPvalues[t(store)], nrow = nrow(store), byrow = TRUE) }

Example 6.2 Given a population of size N = 5, where X7 =2, Xo =5, X3 =8, Xy =12,
and X5 = 13, use S to list all of the possible samples of size n = 3. That is, list the (}) = 10
possible combinations.

Solution: First, make sure both the functions Combinations () and SRS() are stored on
your computer by loading the PASWR package. Then, use the command SRS() as follows:

> t(SRS(c(2,5,8,12,13), 3))

(.11 [,21 (,3] [,4] [, C,e] C,71 [,8] [,9] [,10]
[1,] 2 2 2 5 2 2 5 2 5 8
[2,] 5 5 8 8 5 8 8 12 12 12
[3,] g 12 12 12 13 13 13 13 13 13

The 10 possible combinations are (2,5,8), (2,5,12),...,(8,12,13), listed vertically in the
output. The S command t() was used to transpose the data to conserve space. It is not
obligatory to transpose the output; it is just as valid to type SRS(c(2,5,8,12,13),3) so
that the samples are listed across the rows instead of down the columns. |

Example 6.3 A teacher wants an algorithm that will randomly select 5 students from a
large lecture section of 180 students to present their work at the board.

Solution: Assume the students in the class are numbered from 1 to 180 according to
the class roll and that the students know their numbers. Then, an unbiased procedure for
selecting 5 students starts with using the following S code to determine which students
should be in the sample:

> sample(1:180, 5, replace=FALSE)
[1] 138 52 135 58 160 [ |

Example 6.4 Randomly select 5 people from a group of 20 where the individuals are
labeled from 1 to 20 and the individuals labeled 19 and 20 are four times more likely to be
selected than the individuals labeled 1 through 18.

Solution: An unbiased procedure to select 5 people starts with using the following S code
to determine which people will be in the sample:
> sample(x=(1:20), size=5, prob=c(rep(1/26,18), rep(4/26,2)), replace=FALSE)

[1] 20 19 1 17 16 [ |
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6.1.2 Stratified Sampling

Simple random sampling gives samples that closely follow the population of interest
provided the individual elements of the population of interest are relatively homogeneous
with respect to the characteristics of interest in the study. When the population of interest
is not homogeneous with respect to the characteristics under study, a possible solution
might be to use stratified sampling.

Stratified sampling is most commonly used when the population of interest can be easily
partitioned into subpopulations or strata. The strata are chosen to divide the population
into non-overlapping, homogeneous regions. Then, the researcher takes simple random
samples from each region or group. When using stratified sampling, it is crucial to select
strata that are as homogeneous as possible within strata and as heterogeneous as possible
between strata. For example, when agricultural researchers study crop yields, they tend to
classify regions as arid and watered. It stands to reason that crop yields within arid regions
will be poor and quite different from the yields from watered regions. Additional examples
where stratified sampling can be used include:

1. In a study of the eating habits of a certain species, geographical areas often form
natural strata.

2. In a study of political affiliation, gender often forms natural strata.

3. The Internal Revenue Service (IRS) might audit tax returns based on the reported
taxable income by creating three groups: returns with reported taxable income less
than $ 50,000; returns with reported income less than $75,000 but more than $ 50,000;
and returns with reported taxable income of more than $ 75,000.

In addition to taking random samples within the strata, stratified samples are typically
proportional to the size of their strata or proportional to the variability of the strata.

Example 6.5 A botanist wants to study the characteristics of a common weed and its
adaptation to various geographical regions on a remote island. The island has well-defined
strata that can be classified as dessert, forest, mountains, and swamp. If 5000 acres of the
island are desert, 1000 acres are forest, 500 acres are mountains, and 3500 acres are swamp,
and the botanist wants to sample 5% of the population using a stratified sampling scheme
that is proportional to the strata, how many acres of each of the four regions will he have
to sample?

Solution: Since the size of the island is 10,000 acres, the botanist will need to sample a
total of 10000 0.05 = 500 acres. The breakdown of the 500 acres is as follows: 500 x 2900, —

10000

250 desert acres; 500 x % = 50 forest acres; 500 X % = 25 mountain acres; and
3500 _

500 X ;5555 = 175 swamp acres. |

6.1.3 Systematic Sampling

Systematic sampling is used when the researcher is in possession of a list that contains
all N members of a given population and desires to select every k' value in the master list.
This type of sampling is often used to reduce costs since one only needs to select the initial
starting point at random. That is, after the starting point is selected, the remaining values
to be sampled are automatically specified.

To obtain a systematic sample, choose a sample size n and let k be the closest integer
to % Next, find a random integer 7 between 1 and k to be the starting point for sampling.
Then, the sample is composed of the units numbered ,¢ + k,i + 2k, ..., i+ (n — 1)k. For



Sampling and Sampling Distributions 201

example, suppose a systematic sample is desired where 1 in k& = 100 members is chosen from
a list containing 1000 members. That is, every 100*" member of the list is to be sampled.
To pick the initial starting point, select a number at random between 1 and 100. If the
random number generated is 53, then the researcher simply samples the values numbered
53,153,253, ...,953 from the master list. The following S code generates the locations to
be sampled using a 1 in 100 systematic sampling strategy:

> seq(sample(1:100,1), 1000, 100)
[1] 53 153 253 353 453 553 653 753 853 953

Example 6.6 Produce a list of locations to sample for a systematic sample if N = 1000
and n = 20.

Solution: To take a systematic sample, every k = % = 50" item will be observed.

To start the process, select a random number between 1 and 50 using a random number
generator. The following S code can be used to select a 1 in 50 systematic sample when
N = 1000 and k = 50:

> seq(sample(1:50,1), 1000, 50)
[11 27 77 127 ... 977 ]

6.1.4 Cluster Sampling

Cluster sampling does not require a list of all of the units in the population like
systematic sampling does. Rather, it takes units and groups them together to form clusters
of several units. In contrast to stratified sampling, clusters should be as heterogeneous
as possible within clusters and as homogeneous as possible between clusters. The main
difference between cluster sampling and stratified sampling is that in cluster sampling, the
cluster is treated as the sampling unit and analysis is done on a population of clusters.
In one-step cluster sampling, all elements are selected in the chosen clusters. In stratified
sampling, the analysis is done on elements within each strata. The main objective of cluster
sampling is to reduce costs by increasing sampling efficiency. Examples of cluster sampling
include:

1. Houses on a block
2. Students in school

3. Farmers in counties

6.2 Parameters

Once a sample is taken, the primary objective becomes to extract the maximum and
most precise information as possible about the population from the sample. Specifically, the
researcher is interested in learning as much as possible about the population’s parameters.
A parameter, 6, is a function of the probability distribution, F'. That is, 0 = ¢(F’), where
t(-) denotes the function applied to F. Each 6 is obtained by applying some numerical
procedure t(-) to the probability distribution function F. Although F has been used to
denote the cdf exclusively until now, a more general definition of F' is any description of
X’s probabilities. Note that the cdf, P(X < z), is included in this more general definition.
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Parameters are what characterize probability distributions. More to the point, parameters
are inherent in all probability models, and it is impossible to compute a probability without
prior knowledge of the distribution’s parameters. Parameters are treated as constants in
classical statistics and as random variables in Bayesian statistics. In everything that follows,
parameters are treated as constants.

Example 6.7 Suppose F' is the exponential distribution, F = Ezp()\), and #(F) =
Erp(X) = 6. Express 6 in terms of A.

Solution: Here, () is the expected value of X, so § =1/,. |

6.2.1 Infinite Populations’ Parameters

The most commonly estimated parameters are the mean (u), the variance (02), and the
proportion (7). What follows is a brief review of their definitions.

Population mean — The mean is defined as the expected value of the random variable
X.

e If X is a discrete random variable,
ux = E[X] = ZwiP(X = x2;), where P(X = x;) is the pdf of X.
i=1

e If X is a continuous random variable,

o0

ux = E[X] = / xf(z)dz, where f(x) is the pdf of X.
Population variance — The population variance is defined as Var[X] = E [(X — p)?] .

e For the discrete case,

o0

0% = Var[X] = Z(;zcZ —u)? P(X =2;) = Zx% P(X = ;) — p?.
i=1 i=1

e For the continuous case,

0% = Var[X] = /(x—u)zf(x)dac:/ 22 f(x) do — p.
Population proportion — The population proportion 7 is the ratio
Ny
T=—
N )

where N is the number of values that fulfill a particular condition and N is the size
of the population.

6.2.2 Finite Populations’ Parameters

Suppose a finite population that consists of N elements, Xi,..., Xy, is defined. The
most commonly defined parameters are in Table 6.1 on the next page.
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Table 6.1: Finite populations’ parameters

Population
Parameter Formula Explanation
N
- X
Mean pf = 217\71 !
N
Total T=>.,Xi=Npuy
v Where Y is the number of elements
Proportion =N of the population that fulfill a certain
characteristic.
The Y;s take on a value of 1 if they
Proportion > Y represent a certain characteristic
(alternate) Y and 0 if they do not possess the
characteristic
2 i1 (Xi — )
OfN = N
Variance(N) LN
- V" x2_ 2
N ; i — (ug)
N (X — up)?
Variance (N —1) o}y, = Zl—lj(v — : Hr)
my represents the proportion of
Va%riance a; = m;(1— ) elements in the p.op.ulation with a
(dichotomous) common characteristic
Standard Zf\]:l (X5 — py )2
Deviation 9f = N

6.3 Estimators

Population parameters are generally unknown. Consequently, one of the first tasks is to
estimate the unknown parameters using sample data. Estimates of the unknown parameters
are computed with estimators or statistics. An estimator is a function of the sample,
while an estimate (a number) is the realized value of an estimator that is obtained when a
sample is actually taken. Given a random sample, { X1, Xo,..., X} = X, from a probability
distribution F', a statistic, any function of the sample is denoted as T' = ¢(X). Note that
the estimator T of # will at times also be denoted 6. Since a statistic is a function of the
random variables X, it follows that statistics are also random variables. The specific value
of a statistic can only be known after a sample has been taken. The resulting number,
computed from a statistic, is called an estimate. For example, the arithmetic mean of a
sample

T:t(X):X:#, (6.1)

is a statistic (estimator) constructed from a random sample { X7, ..., X, }.
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Until a sample is taken, the value of the statistic (the estimate) is unknown. Suppose a
random sample has been taken that contains the following values: x = {3,5,6,1,2,7}. Tt
follows that the value of the statistic T = ¢(X), where ¢(X) is defined in (6.1) as t = t(x) =
SEOH6HIF2ET — 4 The quantity ¢(X) = £1%%2 is also a statistic; however, it does not have
the same properties as the arithmetic mean defined in (6.1).

The essential distinction between parameters and estimators is that a parameter is
a constant in classical statistics while an estimator is a random variable, since its value
changes from sample to sample. Parameters are typically designated with lowercase Greek
letters, while estimators are typically denoted with lowercase Latin letters. However, when
working with finite populations, it is standard notation to use different capital Latin letters
to denote both parameters and estimators. At times, it is also common to denote an
estimator by placing a hat over a parameter such as Bl. Some common parameters and
their corresponding estimators are provided in Table 6.2.

Table 6.2: Parameters and their corresponding estimators

Estimator Estimator
Parameter Name (Latin notation) | (Hat notation)
1 population mean X sample mean 7
o? population variance | S? sample variance 52

Some of the statistics used to estimate parameters when sampling from a finite popu-
lation are given in Table 6.3 while the more common statistics used when working with a
random sample of size n are given in Table 6.4 on the facing page.

Table 6.3: Finite population parameter estimators and their standard errors

Parameter Estimator Oestimator

> X
- = —n
Population M X, == | Al
opulation Mean ¥ - N
. = N
Population Total Ty =NX;y

Y
Population Proportion| P = — \/
n n — 1

%\

)

6.3.1 Empirical Probability Distribution Function

The empirical probability distribution function, epdf = 13, is defined as the discrete
distribution that puts probability % on each value in x, where x is a sample of size n
extracted from F'. The empirical cumulative distribution function, ecdf, is defined as

Here, I{x; <t} is the indicator function that returns a value of 1 when x; <t and 0 when
x; > t.
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Table 6.4: Statistics for samples of size n

Statistic Formula Explanation
_ "X,
Mean X = E;l
n
Total T =nX
p . Y Where Y is the number of elements
roportion P=— . . _
n with a certain characteristic
n =12
. 52_21—1 (Xi_X)
Variance u = o
(uncorrected) _ S X2 T
n
Variance 52, =P(1-P) Uncorrected and dichotomous
n =12
52 _ Zz—l (Xl — X)
Variance n—1
n
= 52
n—1"
Variance o2 _ nP(l1 — P) If n > 20, S? can be approximated
(dichotomous) a7 np_1 with the quantity P(1 — P).
Standard g T (X=X )
Deviation - n—1

Example 6.8 Simulate rolling a die 100 times and compute the epdf. Graph the ecdf.

Solution: The R code to solve the problem is

> rolls <- sample(1:6,100, replace=TRUE)
> table(rolls)
rolls
1 2 3 4 5 6
22 18 12 16 15 17

> table(rolls)/100 # epdf
rolls

1 2 3 4 5 6
0.22 0.18 0.12 0.16 0.15 0.17
> plot(ecdf (rolls))

where the output following table(rolls) /100 is the empirical distribution function. The
graph of the realized ecdf is found in Figure 6.1 on the next page.
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ecdf(rolls)

1.0

Fn(x)
0.6 0.8

0.4

0.2
1

0.0
L

FIGURE 6.1: Empirical cumulative distribution function of rolling a die 100 times H

6.3.2 Plug-In Principle

The plug-in principle is an intuitive method of estimating parameters from samples.
The plug-in estimator of a parameter 6 = ¢(F') is defined to be 6§ = ¢(F). Simply put, the
estimate is the result of applying the function ¢(-) to the empirical probability distribution
F.

Example 6.9 What are the plug-in estimators of (a) the expected value and (b) the
variance of a discrete distribution F'?

Solution: The answers are as follows:
(a) When the expected value is § = Fr(X), the plug-in estimator of the expected value is
0=Fp(X)=>",X;-1=X.

(b) When the variance is § = Varg(X) = Er(X —pu)?, the plug-in estimator of the variance
of Xis=Ep(X-X)?2=%" (X;—X)? L. [ |

S|=

6.4 Sampling Distribution of X

Suppose 10 college students are randomly selected from the population of college stu-
dents in the state of Colorado and compute the mean age of the sampled students. If this
process were repeated three times, it is unlikely any of the computed sample means would
be identical. Likewise, it is not likely that any of the three computed sample means would
be exactly equal to the population mean. However, these sample means are typically used
to estimate the unknown population mean. So, how can the accuracy of the sampled value
be assessed?

To assess the accuracy of a value (estimate) returned from a statistic, the probability
distribution of the statistic of interest is used to place probabilistic bounds on the sampling
error. The probability distribution associated with all of the possible values a statistic can
assume is called the sampling distribution of the statistic. This section presents the
sampling distribution of the sample mean. Before discussing the sampling distribution of
X, the mean and variance of X for any random variable X are highlighted.
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If X is a random variable with mean p and variance o2, and if a random sample

X1,..., X, is taken, the expected value and variance of X are ertten
E[X] = nx = (63)
— 0‘2
Var [X] = 0% = —. (6.4)
n

The computations of the answers for (6.3) and (6.4) are the same as those for Example 5.9
on page 180, which are reproduced for the reader’s benefit:

"\ E[X "1
:Zl Zﬁz

Var [)_( } = Var

" X; 1 — no o
? [e— . e
Z;] = nQZVM[XZ]_ =
=1 i=1

Clearly, as the sample size increases, the variance of the sampling distribution of X de-
creases.

Example 6.10 > Sampling: Balls in an Urn < Consider an experiment where two
balls are randomly selected from an urn containing six numbered balls. First, the sampling
is done with replacement (Case 1), and then the sampling is done without replacement
(Case 2). List the exact sampling distributions of X and S? for both cases. Finally, create
graphs that compare these four distributions.

Solution: Case 1 When the sampling is performed with replacement, the outcomes can
be viewed as a random sample of size 2 drawn from a discrete uniform distribution. The
mean and variance of the uniform distribution are

142446

=35
6

and
124224 ... 467

6

Note that these values could also be computed using the formulas p = (N 4 1)/2 and
0% = (N? —1)/12 given in (4.9).

o> =E(X?) -y’ = — (3.5)% = 2.9166.

There are 36 possible samples of size 2 from this distribution listed in Table 6.5 on the
next page. Using the fact that each of samples listed in Table 6.5 is equally likely (1/36),
construct both the sampling distribution of X given in Table 6.6 on the following page and
the sampling distribution of S? given in Table 6.7 on the next page.

The mean of the sampling distribution, pug = E [)_( ], and the variance of the sampling
distribution, 0% = E[X — ux|?, are

- 1 2 1
u)—(:E[X]_lx%+15x%+ H6x =35

1 2
0% =E[(X —px)’] =(1-35)"x 5 T (15— 3.5)% x %t

1
6 —3.5)% x — = 1.4583.
*+ ) X 35
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Table 6.5: Possible samples of size 2 with Z and s2 for each sample — random sampling

(x1,22) | T 2| (x1,22) | % 52
(1,1)]1.0] 00| (4,1)|25]| 45
(1,2)15] 05| (4,2)|30] 20
(1,3)]20] 20| (4,3)[35] 05
(1,4) 25| 45| (4,4)|40] 00
(1,5)]3.0| 80| (4,5)|45]| 05
(1,6) 35125 (4,6)|50]| 20
(2,1)[15] 05| (5,1)|30] 80
(2,2)]20] 00| (5,2)|35]| 45
(2,3)]25] 05| (5,3)40]| 20
(2,4)]30] 20| (5,4)[45]| 05
(2,5)(35| 45| (5,5)]5.0| 0.0
(2,6) 40| 80| (5,6)[55]| 05
(3,1) 20| 20| (6,1)|35]125
(3,2)]25| 05)(6,2)|4.0| 80
(3,3)]30] 00| (6,3)[45]| 45
(3,4) 35| 05| (6,4)|50]| 20
(3,5)]140| 20| (6,5)|55]| 0.5
(3,6) 45| 45| (6,6)|60]| 0.0
Table 6.6: Sampling distribution of X — random sampling
z 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
F(x)|1/36|2/36|3/36|4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36

Table 6.7: Sampling distribution of S? — random sampling
52 0 0.5 2 4.5 8 125
f(s?) | 6/36|10/36|8/36|6/36|4/36|2/36

Note that the computed values of E [X | and o% are in agreement with the formulas

E[X]=pand ok = %2 given in (6.3) and (6.4). Also note that E [S?] = 0. Specifically,

6 10 2
E[S?]=0x —4+05x — +---4+12.5 x — = 2.9166.
(ST = 0 gg 05 x g+ 125 g

Case 2 When the sampling is performed without replacement, the outcomes can be viewed
as a simple random sample of size 2 drawn from a discrete uniform distribution. Note
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that fewer samples exist when sampling without replacement (() = 15), but that each
sample is equally likely to be drawn. The 15 possible samples of size 2 from this distribution
are listed in Table 6.8. Using the fact that each of the samples listed in Table 6.8 is equally
likely (1/15), construct the sampling distribution of X given in Table 6.9, and the sampling

distribution of S? given in Table 6.10 both on on the current page.

Table 6.8: Possible samples of size 2 with Z and s — simple random sampling

(x1,22) | T 52
(1,2) 15| 05
(1,3)] 2| 20
(1,4) 25| 45
(1,5)] 3] 80
(1,6)|35]125
(2,3)]25] 05
(2,4)| 3] 20
(2,5) 35| 45
(2,6)| 4] 80
(3,4) 35| 05
(3,5)| 4] 20
(3,6) 45| 45
(4,5)]45] 05
(4.6)] 5| 20
(5,6) 55| 0.5

Table 6.9: Sampling distribution of X — simple random sampling
T 1.5 2 2.5 3 3.5 4 4.5 5 5.5
f(x)|1/15|1/15|2/15|2/15|3/15|2/15|2/15|1/15|1/15

Table 6.10: Sampling distribution of S? — simple random sampling
52 0.5 2 4.5 8 | 125
f(s?) |5/15|4/15|3/15(2/15 | 1/15
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The mean of the sampling distribution, yx = E [)? ], the variance of the sampling distri-
bution, 0% = E[X — ux]?, and the expected value of 52, E [S?], are

— 1 1 1
-=FE[X]=1. ST I T . —_ =3.
Ux (X ] 5><15+ x5+ 4—55><15 3.5,

1 1
0% =E[(X —px)?] = (1.5-3.5)% x - 3.5)% x =

1
S+ (5.5—-3.5)? x T 1.16666,

5 4 1
E[S?] =05%x —4+2x —+---4+ 125 x — = 3.5.
and E [S?] 0.5% Tz +2xX 7=+ 125 x 7= =35

Remarkably, the sample mean is identical when sampling with and without replacement.
In fact, the expected value of the sample mean is pu whether sampling with or without
replacement. The variance of the sample mean and the expected value of the sample
variance have changed, however. These changes are due to the fact that sampling is from a
finite population without replacement. A summary of the formulas used to compute these
results is found in Table 6.11.

Table 6.11: Summary results for sampling without replacement (finite population)

= pg
2_0’_2']\]—71
U)_{_n N -1
N
21 Vo
E[S’] N1 o
N n—1
271 _ ) )
Bl =y =

Note that the computed values of E [)_(] = py = 3.5, U?—( = %2 : %:’f = @-% = 1.1666,
N_ 2

and B [S?] = 0% = 2(2.9166) = 3.5 for this example are in agreement with the formulas
for sampling without replacement given in Table 6.11. A comparison of the results from
Case 1 and Case 2 can be found in Table 6.12.

Table 6.12: Computed values for random sampling (Case 1) and simple random sampling
(Case 2)

uw | E [)_(] o2 |E [52] 0%

|

Case 1|3.5| 3.5 |2.9166 | 2.9166 | 1.4583

Case2|3.5| 3.5 [29166| 3.5 |[1.1666




Sampling and Sampling Distributions 211

Graphical comparisons for the sampling distributions of X and S? when sampling with
replacement (random sampling) and when sampling without replacement (simple random
sampling) are depicted in Figure 6.2 on the next page. The following S code can be used
to verify all the results in this solution:

>N <-6

>n <- 2

> pop <- 1:N

> rs <- expand.grid(Drawl=pop, Draw2=pop) # Possible random samples
> xbarN <- apply(rs, 1, mean) # Means of all rs values

> s2N <- apply(rs, 1, var) # Variance of all rs values

> TOT1<- cbind(rs, xbarN=xbarN, s2N=s2N)

> TOT1 # Numerical values for Table 6.5

> table(xbarN) # Numerators for Table 6.6

> table(s2N) # Numerators for Table 6.7

> MU <- mean(pop) # Population mean

> VAR <- sum((pop-mean(pop))~2)*(1/N) # Population variance

> MU.xbarN <- mean(xbarN) # Expected value of xbarN
> E.s2N <- mean(s2N) # Expected value of s2N

> VAR.xbarN <- sum((xbarN-mean(xbarN)) ~2)*(1/(N*N))

> reN <- c(MU, MU.xbarN, VAR, E.s2N, VAR.xbarN)

> names (reN)<-c("MU", "MU.xbarN", "VAR", "E.s2N", "V.xbarN")

> reN # Numerical values for Case 1 in Table 6.12

> srs <- SRS(1:N, n) # Possible simple random samples

> xbari <- apply(srs, 1, mean) # Means of simple random samples

> s2i <- apply(srs, 1, var) # Variances of simple random samples
> TOT <- cbind(srs, xbari, s2i)

> dimnames (TOT) [[2]] <-c("Drawl", "Draw2", "xbari", "s2i")

> TOT # Numerical values for Table 6.8
> table(xbari) # Numerators for Table 6.9

> table(s2i) # Numerators for Table 6.10

MU <- mean(pop) # Population mean

VAR <- sum((pop-mean(pop))~2)*(1/N) # Population variance
MU.xbar <- mean(xbari) # Expected value of xbari
E.s2 <- mean(s2i) # Expected value of s2i

VAR.xbar <- sum((xbari-mean(xbari)) ~2)*(1/choose(N, n))
results <- c¢(MU, MU.xbar, VAR, E.s2, VAR.xbar)
names (results)<-c("MU", "MU.xbari", "VAR", "E.s2i", "V.xbari")

V V V V V V V

> print(results) # Numerical values for Case 2 in Table 6.12
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FIGURE 6.2: Sampling distributions of X and S? under random sampling (RS) and simple
random sampling (SRS) for Example 6.10 on page 207 are given. Note that the dispersion
for the sampling distribution of X is smaller under Case 2 than it is with Case 1. |

6.5 Sampling Distribution for a Statistic from an Infinite Popula-
tion

Consider a population from which & random samples, each of size n, are taken. In
general, if given k samples, k different values for the sample mean will result. If k is very
large, theoretically infinite, the values of the means from each of the samples, denoted X;
for each sample ¢, will be random variables with a resulting distribution referred to as the
sampling distribution of the sample mean. The sampling distribution of a statistic, ¢(X),
is the resulting probability distribution for ¢(X) calculated by taking an infinite number of
random samples of size n. The resulting sampling distribution will typically not coincide
with the distribution of the parent population.

6.5.1 Sampling Distribution for the Sample Mean

6.5.1.1 First Case: Sampling Distribution of X when Sampling from a Normal
Distribution

When sampling from a normal distribution, the resulting sampling distribution for the
sample mean is also a normal distribution. This is an immediate result of Theorem 5.1 on
page 176. That is, X is a linear combination of the X;s where a; = % As observed earlier,
the mean and the variance of the sampling distribution of X are y and o2 /n regardless of
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the underlying population. So, the mean and variance of the sampling distribution of X
are always known. However, it is not always true that the resulting sampling distribution

of X is known. If X ~ N(p,0), then X ~ N(u, %)

Example 6.11 If X ~ N(u,12), find the required sample size to guarantee | X — u| < 3
with a probability of 0.95.

Solution: Changing the prose into a mathematical statement,
P(|X—p|<3)=0.95

needs to be solved.
Since X ~ N(u,o = 12), it follows that

— o 12
Ko (pox= 7= 1)

p (= 1 06) 095
e <1 95.

Multiplying both sides by % and substituting 12 for o gives

Consequently,

= 12
Pl|X —p| <(1.96)— | = 0.95.
<| p| < (1.96) \/ﬁ>
Multiplying both sides by \/n, dividing both sides by 3, and finally squaring both sides, gives
n = 61.47. Consequently, a sample size of at least 62 is needed to guarantee |X — ,u| <3
with a probability of 0.95.

Example 6.12 A small town in the Pyrenean mountains wants to reduce the bear pop-
ulation because several sheep have recently been killed by bears. Three autonomous com-
munities (Cataluna, Aragén, and Navarra) have made bids to remove 10 bears. The three
autonomous communities indicated in their bids that they are willing to spend 5, 7.5, and
10 thousand dollars per bear to capture the bears. Decide which autonomous communities
can capture 10 bears with a probability of at least 0.999 knowing that the cost to capture
a bear follows a normal distribution with a mean of 5 thousand dollars and a standard
deviation of 0.6 thousand dollars.

Solution: Assuming that the costs to capture the bears act as independent random
variables, such that if X; is the cost to capture one bear, the total cost to capture 10 bears
is also a random variable, given by Y = X7 + --- 4+ Xj0. Since X; ~ N(5,0.6), it follows
using Theorem 5.1 on page 176 that the mean of Y will be 5-10 = 50 and the standard
deviation of Y will be 4/10 - (0.6)2 = 1.897367. Mathematically, write Y ~ N (50, 1.897367).
Cataluna will be able to capture 10 bears provided Y < 50, Aragén will be able to capture
10 bears provided Y < 75, and Navarra will be able to capture 10 bears provided Y < 100.
The probabilities of these events are

50 — 50
< g <7 = < — .
P(Y < 50) P(Z_1.897367> P(Z < 0) = 0.5,
75 — 50
PY<75)=P(Z< -2 ) =P(Z < 13.17616) = 1
¥'<75) ( _1.897367> (Z < 13.17616) = 1,

=P(Z < 26.35231) = 1.

100 — 50
P(Y <100)=P (2 <~
and P(Y” < 100) ( _1.897367>
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The following S code computes the answers directly:

> pnorm(50,50,1.897367)

[1] 0.5

> pnorm(75,50,1.897367)
[1] 1

> pnorm(100,50,1.897367)
[11 1

There is only a 50% chance that the Catalan bid would provide sufficient funds to catch
10 bears. On the other hand, the bids from Navarra and Aragén would both have a 100%
chance of catching all 10 bears. |

Example 6.13 It is well-known that the measurement errors committed by employees
when they measure the length of a zipper in a particular assembly process follow a normal
distribution with a mean of 0 and standard deviation of 2 millimeters. Find

(a) The maximum error for measuring a zipper a single time with 0.95 probability.

(b) The maximum error of the mean measurement of the zipper with 0.95 probability if it
is measured 10 times.

(¢) The number of times one needs to measure a zipper to ensure the maximum measure-
ment error of the mean is less than 1 millimeter with 0.95 probability.

Solution: The solutions are as follows:
(a) Let the random variable X represent the measurement error committed by employees
when measuring zippers. Since X ~ N(0,2), Z = £ ~ N(0,1). Since

P(—1.96 < Z < 1.96) = 0.95,

and since Z = %,

X
P(~1.96 < 5 < 1.96) = 0.95.

Basic algebra then gives
|X| < 2(1.96) = 3.92.

(b) In this question, the distribution of X is no longer the focus, but rather the distribution
of X is. Since X ~ N (0,2/ \/10)7 it follows that the maximum error committed when
measuring a zipper 10 times is

2

X| = —=(1.96) = 1.24.
[X] = 51.96)

(c) Since X ~ N(0,2/y/n), it follows that

|j?‘:::;;(L96)f§1

must be solved for n. The solution is n > (3.92)? = 15.36. In other words, at least 16
zippers must be measured to ensure the maximum measurement error of the mean is no
more than 1 millimeter with 0.95 probability. |
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6.5.1.2 Second Case: Sampling Distribution of X when X Is not a Normal
Random Variable

When the underlying population of X is not normal, provided the sample size is suffi-
ciently large, the sampling distribution of X is still normal. Specifically, the Central Limit
Theorem states that if X ~ (u, o), then the limiting distribution of

vn

as n — oo is the standard normal distribution. Expressed in lay terms, the sampling
distribution of X, regardless of the underlying population, is approximately N (u,o//n)
provided n is sufficiently large. Populations that are asymmetric require larger values of n
compared to symmetric populations before the sampling distribution of X appears normal.

Consider the left graph of Figure 6.3, which depicts a Unif (0, 10) population, while the
center graph of Figure 6.3 depicts the theoretical sampling distribution of X for samples
of size n = 2 when sampling is from a Unif(0,10) population. Finally, the far right graph
of Figure 6.3 superimposes the theoretical sampling distribution of X for samples of size
n = 2 when sampling is from a Unif (0, 10) population over a normal distribution with a
mean and standard deviation corresponding to the mean and standard deviation of the
sampling distribution of X for samples of size n = 2 when sampling from the Unif(0,10)
population. It is interesting to note in the far right graph in Figure 6.3, how closely the
triangular distribution resembles the normal distribution.

The sampling distributions of X associated with infinite populations are obviously
impossible to enumerate. However, simulation can be used to gain insight into the sampling
distribution of X when sampling from known populations. That is, a large number of
samples from a known population can be drawn and the distribution of X can be studied.

Distribution Overlay of X,—s
Unif (0, 10) for X,,—o over N(5,2.0412)
3 3 3
S = S
o o o
-2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12 -2 0 2 4 6 8 10 12

FIGURE 6.3: The far left graph depicts a Unif(0,10) distribution. The middle graph
depicts the theoretical sampling distribution of X for samples of size n = 2 when the
samples are drawn from a Unif (0, 10) distribution. The far left graph depicts a N (5,2.0412)
distribution overlayed with the theoretical distribution of X for samples of size n = 2 when
the samples are drawn from a Unif (0, 10) distribution.

In what follows, the various graphs depicted in Figure 6.4 on the next page and Figure 6.5
on page 217 are examined to gain insight into how large the sample size, n, needs to be when
working with both symmetric distributions and skewed distributions such as the uniform
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distribution and the exponential distribution, respectively. S is used to simulate m = 50,000
samples of sizes n = 2, 16, 36, and 100 from a Unif(—3.66025, 13.66025) distribution and
an Ezp(5) distribution. Note that both the means and standard deviations are 5 and 5 for
these distributions.

Figure 6.4 depicts the simulated sampling distribution of X for samples of sizes n = 2 and
16 when one samples from a Unif (—3.66025, 13.66025) distribution and an Ezp(5) distribu-
tion, respectively. Figure 6.5 on the facing page depicts the simulated sampling distribution
of X for samples of sizes n = 36 and 100 when sampling from a Unif (—3.66025, 13.66025)
distribution and an Ezp(5) distribution, respectively. What should become evident from
looking at Figures 6.4 and 6.5 is that the sampling distribution of X when sampling from a
uniform distribution becomes approximately normal much sooner than does the sampling
distribution of X when sampling from an exponential distribution.

In addition to assessing the simulated sampling distributions of X graphically by su-
perimposing a normal density with mean and standard deviation equal to the mean and
standard deviation of the sampling distribution of X as shown in Figures 6.4 and 6.5,
Table 6.13 on the next page is provided which contains the percent of the simulated sampling
distribution of X that falls within (—oo, ux — 20%], (ux — 20%, iz — oxl, (U — 0%, i),
(ux,px + ox), (px + ox,ux + 20%], and (ux + 20%, 00| for sample sizes n = 2, 16,
36, and 100 when sampling from a Unif (—3.66025,13.66025) distribution and an Exp(5)
distribution. By studying the percentages from the simulations in Table 6.13 on the facing
page, one can see that the simulated sampling distribution of X when sampling from an
exponential distribution is still slightly skewed even for sample sizes as large as n = 100.
To verify the numbers presented in Table 6.13 on the next page and to create graphs
similar to those in Figures 6.4 and 6.5, the user can use the code n2UNIFsim provided at
http://wwwl.appstate.edu/~ arnholta/PASWR in the Chapter 6 script.

Simulation 1 Simulation 2

Density

0.00 0.10
[

Density

0.00 0.10
[

Density
0.0 02 04
L1

Density
0.0 02 04
L1

FIGURE 6.4: Simulation 1 depicts the simulated sampling distribution of X for samples
of size n = 2 that are selected from a Unif(—3.66025,13.66025) distribution. Simulation 2
depicts the simulated sampling distribution of X for samples of size n = 2 that are selected
from an Ezp(5) distribution. Simulation 3 depicts the simulated sampling distribution of X
for samples of size n = 16 that are selected from a Unif (—3.66025,13.66025) distribution.
Simulation 4 depicts the simulated sampling distribution of X for samples of size n = 16
that are selected from an Ezp(5).
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Simulation 5 Simulation 6

Density
0.0 03 06
LLliietg

Density
0.0 03 06
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[ |
Density
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[ |

FIGURE 6.5: Simulation 5 depicts the simulated sampling distribution of X for samples of
size n = 36 that are selected from a Unif(—3.66025,13.66025) distribution. Simulation 6
depicts the simulated sampling distribution of X for samples of size n = 36 that are selected
from an Ezp(5) distribution. Simulation 7 depicts the simulated sampling distribution of X
for samples of size n = 100 that are selected from a Unif (—3.66025, 13.66025) distribution.
Simulation 8 depicts the simulated sampling distribution of X for samples of size n = 100
that are selected from an Ezp(5).

Table 6.13: Comparison of simulated uniform and exponential distributions to the normal
distribution, Intl = (—oo, ux — 20%), Int2 = (ux — 20%, ux — 0x), Int3 = (ux — 0%, X,
Intd = (px, px + U)—(], Ints = (ux + ox, ux + 2(7)—(], Int6 = (ux + 20%, OO]

Intl Int2 Int3 Intd Intb Int6

N(0,1) 0.0228 0.1359 0.3413 0.3413 0.1359 0.0228

Unif 0.01648  0.15822  0.32610  0.32558  0.15716  0.01646

n=2 Ezxp 0.00000  0.11656  0.47684  0.26162  0.09878  0.04620
Unif 0.02340  0.13678  0.34134 0.33680  0.13926  0.02242
n=16 Ezxp 0.00808  0.14872  0.37438  0.31216  0.12328  0.03338
Unif 0.02322  0.13578  0.34104  0.34108  0.13584  0.02304
=36 Ezxp 0.01348  0.14330  0.36422  0.32142  0.12668  0.03090
Unif 0.02194  0.13686  0.34072  0.34068  0.13694  0.02286
n = 100

Exp 0.01696  0.14242  0.35276  0.32958  0.13036  0.02792
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Example 6.14 Suppose that the shelf life, the number of days a product is on a store’s
shelf, for 1-gallon cartons of milk is a random variable with a Unif[1, 7] distribution. If a
store puts out 100 cartons of 1-gallon of milk for sale, find the probability that the average
number of days the cartons remain on the shelf exceeds 4.5 days.

Solution: Let the random variable X represent the number of days a 1 gallon carton of
milk is on a store’s shelf. Since X ~ Unif[1,7], using the equations from (4.9), the pdf of
X can be written as

f@) =g it weln)

and the mean and variance of X as

a+b 147 (b—a)?* (7T-1)2
[X] 5 5 , and Var[X] B 2 3
Let X;, 1 =1,...,100, represent the actual times cartons of milk remain on the store’s shelf.

Since

EX;]=4 and Var[X;]=3,
the average time is computed as

- 1
X=—(X;+ -+ X100).
100( 1+ + X100)

Consequently, the mean and variance of this sample mean are

E[X] =4, Var[X]=Z =3 o0
’ n 100
Appealing to the Central Limit Theorem, write
X-E[X] X-4
X N(0,1),

Jvar[x] V003

which is equivalent to writing X ~ N(4,+/0.03). Consequently,

4.5—-4
v0.03

The following code computes the answer with S:

P(X>45)=P <Z > ) =P(Z > 2.89) = 0.002.

> round(1 - pnorm(4.5,4, sqrt(.03)), 3)
[1] 0.002 |

Example 6.15 A building contractor provides a detailed estimate of his charges by listing
the price of all of his material and labor charges to the nearest dollar. Suppose the rounding
charge errors can be treated as independent random variables following Unif [—10,10]
distributions. If a recent estimate from the building contractor listed 100 charges, find
the maximum error for the contractor’s estimate with probability of 0.95.

Solution: Using the equations from (4.9), if e;,7 = 1,...,100 are the estimate errors, then
2 400
Ele;] = 252 = 0 and Varle;] = (bzg) = 409 It follows then that pz = 0 and 02 = & = 1.

Because of the relatively large (n = 100) sample size, the Central Limit Theorem tells us

that the distribution of € is approximately normal with mean 0 and standard deviation \/g .
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Since the absolute error of the sum of the 100 charges is the sum of each one of the rounded
errors, e = e1 + - -+ + €100, € = € - n. Written mathematically,

P -1.96< q <1.96 | = 0.95.

Vh

Multiplying by n = 100 and \/g gives a probability expression for e:

P (\/g 100 - (—1.96) < e < \/g 100 - (1.96)) =0.95

From the last expression, note that the maximum error for the estimate epax, is \/g -100 -

(1.96) = 113.1607. In other words, the final job will not deviate more than 113 dollars from
the original estimate with 95% confidence. |

6.5.2 Sampling Distribution for X — Y when Sampling from Two Inde-
pendent Normal Populations

The sampling distribution for X —Y is normal with mean px —jy and standard deviation
2 2
v/ Z—f{ + %, where nx and ny are the respective sample sizes. That is,

2 2
X =Y ~N| px — py, U—X—i—a—y
nx ny

provided X and Y are independent random variables where X ~ N(ux,o0x) and Y ~
N(py,oy). Since X and Y are independent normal random variables, the distributions of
their means are known. Specifically,

— ox = gy
X~N — d Y~N — .
() (%)

Proof: Using the results from Theorem 5.1 on page 176 and letting X; = X, Xo = Y
a1 =1, and ay = —1, obtain

3

¢ v %, o
X-Y~N|px—py, X+, (6.5)
nx ny

Example 6.16 > Simulating X —Y < Use simulation to verify empirically that
if X ~ N(ux,ox) and Y ~ N(uy,oy), the resulting sampling distribution of X —
Y is as given in (6.5). Specifically, generate and store in a vector named meansX the
means of 1000 samples of size ny = 100 from a normal distribution with px = 100 and
ox = 10. Generate and store in a vector named meansY the means of 1000 samples
of size ny = 81 from a normal distribution with puy = 50 and oy = 9. Produce a
probability histogram of the differences between meansX and meansY, and superimpose the
probability histogram with a normal density having mean and standard deviation equal
to the theoretical mean and standard deviation for ()_( — 7) in this problem. Compute
the mean and standard deviation for the difference between meansX and meansY. Finally,
compute the empirical probability P ()7 -Y< 52) based on the simulated data as well as
the theoretical probability P ()_( -Y < 52).
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Solution: In the S code that follows, m represents the number of samples, and nx, mux,
sigx, ny, muy, sigy, muxy, meansX, meansY, and XY represent nx, px, ox, Ny, 4y, Oy,
pux — py, X, Y, and X — Y, respectively. The set.seed() command is used so the same
values can be generated at a later date. Before running the simulation, note that the
theoretical distribution (X —Y) ~ N(100 — 50 = 50, 1/102/100 + 92/81 = /2). The
probability histogram for the empirical distribution of ()_( — }_/) is shown in Figure 6.6 on
the next page. Note that the empirical mean and standard deviation for ()_( — }_/) are 50.01
and 1.44, respectively, which are very close to the theoretical values of 50 and /2 ~ 1.41.
The empirical probability P ()7 -Y < 52) is computed by determining the proportion of
(X —Y) values that are less than 52. Note that the empirical answer for P (X —Y < 52)
is 0.918, which is in agreement with the theoretical answer to two decimal places.

> set.seed(4)

> m <- 1000

> nx <- 100

> ny <- 81

> mux <- 100

> sigx <- 10

> muy <- 50

> sigy <- 9

> muxy <- mux - muy

> sigxy <- sqrt((sigx~2/nx) + (sigy~2/ny))

> meansX <- array(0, m) # Array of m zeros

> meansY <- array(0, m) # Array of m zeros

> for(i in 1:m) {meansX[i] <- mean(rnorm(nx, mux, sigx))}
> for(i in 1:m) {meansY[i] <- mean(rnorm(ny, muy, sigy))}
> XY <- meansX - meansY

> 11 <- muxy - 3.4 * sigxy

> ul <- muxy + 3.4 * sigxy

> hist (XY, prob = TRUE, xlab = "xbar-ybar", nclass = "scott", col = 13,
+ xlim = c¢(11, ul), ylim = c(0, 0.3), main="", ylab="")

> lines(seq(11l, ul, 0.05), dnorm(seq(ll, ul, 0.05), muxy, sigxy), lwd = 3)
> print(round(c(mean(XY), sqrt(var(XY))), 2))

[1] 50.01 1.44

> sum(XY < 52)/1000

[1] 0.918

> round(pnorm(52, 50, sqrt(2)), 2)
[1] 0.92

6.5.3 Sampling Distribution for the Sample Proportion

When Y is a binomial random variable, Y ~ Bin(n, ), that represents the number of
successes obtained in n trials where the probability of success is 7, the sample proportion

of successes is typically computed as

p- % (6.6)

The mean and variance, respectively, of the sample proportion of successes are

EP]=pp=m (6.7)
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~
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FIGURE 6.6: Probability histogram for simulated distribution of ()_( — 7) with
superimposed normal density with = 50 and o = /2.

and
m(l—m)

Var[P] = 0% = -

(6.8)

Equations (6.7) and (6.8) are easily derivable using the mean and variance of Y. Since

ElY]=nr and Var[Y]=nn(l-m7),
it follows that

B[P = E g} - %E[Y] .
and
0% = Var|P] = Var E} = % VarlY] = @

The Central Limit Theorem tells us that the proportion of successes is asymptotically
normal for sufficiently large values of n. So that the distribution of P is not overly skewed,
both nm and n(1 — 7) must be greater than or equal to 5. The larger nm and n(1 — ) are,
the closer the distribution of P comes to resembling a normal distribution. The rationale
for applying the Central Limit Theorem to the proportion of successes rests on the fact that
the sample proportion can also be thought of as a sample mean. Specifically,

o }/14_...4_)/717
n
where each Y; value takes on a value of 1 if the element possesses the particular attribute
being studied and a 0 if it does not. That is, P is the sample mean for the Bernoulli random
variable Y;. Viewed in this fashion, write

Z=——o" U N(0,1). (6.9)

It is also fairly common to approximate the sampling distribution of Y with a normal
distribution using the relationship
Y —nn

Z=——"T7"___,y N(0,1). 6.10
e (0,1) (6.10)
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Example 6.17 In plain variety M&M candies, the percentage of green candies is 10%.
Suppose a large bag of M&M candies contains 500 candies. What is the probability there
will be

(a) at least 11% green M&Ms?

(b) no more than 12% green M&Ms?
Solution: First, note that the population proportion of green M&Ms is 7 = 0.10. Since

neither n x 7 =400 x 0.10 = 40 nor n x (1 — ) = 400 x 0.90 = 360 is less than 5, it seems
reasonable to appeal to the Central Limit Theorem for the approximate distribution of P.

Consequently,
P N(ﬂ', M) ’
n

which, when using the numbers from the problem, becomes

0.10)(0.90)

. (
P~ N{0.10 =0.01341641 | .
(0 ’ 500

If the random variable Y is equal to the number of green M&Ms, then the distribution of
Y can be approximated by

Y&N<mr,\/m),

which, when using the numbers from the problem, becomes

Y N(50, V/500-0.10 - (1 — 0.10) = 6.708204) .

It is also possible to give the exact distribution of Y, which is Y ~ Bin(n = 500, 7 = 0.10).

(a) The probabilities that at least 11% of the candies will be green M&Ms using the
approximate distribution of P, the approximate distribution of Y, and finally using the
exact distribution of Y are as follows:

P—rm _ 011— 0.11 — 0.10
]P(PzO.ll):]P’( 7> W) zP<Z>7)

op —  op = 0.01341641
=P(Z > 0.745356) = 0.2280283
Y - - _
P(Y >55) =P nm_, %o nm z]P’(ZZ M)
Vnr(l—m) "~ /nr(1l—) 6.708204

=P(Z > 0.745356) = 0.2280283

500
By = 55— 3 (500

=55

)(0.10)i(0.90)500i = 0.2476933

(b) The probability that no more than 12% of the candies will be green M&Ms is



Sampling and Sampling Distributions 223

P(P < 0.12) =

- 012 ~P Z§0.12—0.10
op 0.01341641
490712) = 0.9319814

P(Z <
P(Y < 60) ( — 60 — nx )zP(Z< 60—50)
P(Z <

m(l —m7) \/mr 1—m) ~ 6.708204
1.490712) = 0.9319814

5 7500 .
P(Y < 60) = ( ) )(0 10)¢(0.90)590~% = 0.9381745.
1=0

The following S commands compute the answers for (a) and (b):

> 1 - pnorm(0.11,0.10, sqrt(0.1%0.9/500))
[1] 0.2280283

> 1 - pnorm(55,500%0.1, sqrt(500%0.1%0.9))
[1] 0.2280283

> 1 - pbinom(54,500,0.10)

[1] 0.2476933

> pnorm(0.12,0.10, sqrt(0.1%0.9/500))
[1] 0.9319814

> pnorm(60,500%.10, sqrt(500%0.1%0.9))
[1] 0.9319814

> pbinom(60,500,0.1)

[1] 0.9381745

The astute observer will notice that the approximations are not equal to the exact answers.
This is due to the fact that a continuous distribution has been used to approximate a
discrete distribution. The accuracy of the answers can be improved by applying what is
called a continuity correction. Using the continuity correction, (6.9) and (6.10) become

P+05_
Z="""n"" < N(,1) (6.11)
m(l—m)
and
Y £05—
7= YEOS 70T o N0, (6.12)
nm(l —7)

When solving less than or equal type inequalities, add the continuity correction; and
when solving greater than or equal type inequalities, subtract the continuity correction.
Notice how much closer the approximations are to the exact answers when the appropriate
continuity corrections are applied:
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op op

< 011 — g5 —0.10
= 0.01341641

(Z > 0.6708204) = 0.2511675
Y -05—nn 55—0.5—n7r>

nmw(l — ) nm(l —7)

0.5
]P’(PEO.H):]P’(P_W_W Oll_m_w)

Z> 55—0.5—50)

6.708204

P
=P(Z > 0.6708204) = 0.2511675
500

o~

P(Y > 55) = (5(30 (0.10)7(0.90)°°°~% = 0.2476933

0.5
+—500—7T 012+500 s
op op

P
P(P < 0.12) :]P’(
(Z _ 0124 & - 0.10)
(z <

Q

0.01341641
1.565248) = 0.9412376

<Y+05—n7r - 60—|—05—n7r>

2] =

P(Y < 60)

nr(l —7 nm(l —7)

Q

|
@'ﬁ =

6.708204
1.565248) = 0.9412376

60+O5—50>

P(Y < 60) = (530) (0.10)%(0.90)°%°~% = 0.9381745
1=0

Example 6.18 The 1999 North Carolina Department of Public Instruction, NC Youth
Tobacco Use Survey, reported that 38.3% of all North Carolina high school students used
tobacco products. If a random sample of 250 North Carolina high school students is taken,
find the probability that the sample proportion that use tobacco products will be between
0.36 and 0.40 inclusive.

Solution:

Since neither nx7 = 250x0.383 = 95.75 nor nx (1—7m) = 250x0.617 = 154.25 is

less than 5, it seems reasonable to appeal to the Central Limit Theorem for the approximate
distribution of P. Consequently,

PR N<7T, 7#(17:77) ) ,

which, when using the numbers from the problem, becomes

(0.383)(0.617)

P~ N{O.
(0 383, 550

= 0.03074482> .
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Due to the discrete nature of the problem, appropriate continuity corrections should be

used:

0.5 0.5
P(.36— -2 <P < .40+ — | =P(.358 < P < .402) = 0.523641
<36 55g S P < 0+250> (.358 < P < .402) = 0.5236417

To calculate P(0.358 < P < 0.402) with S, use pnorm():
> sig <- sqrt((0.383%0.617)/250)

> pnorm(0.402,0.383, sig) - pnorm(0.358,0.383, sig)
[1] 0.5236417

The exact answer to the problem can be solved using the binomial distribution as follows:

> pbinom(100,250,.383) - pbinom(89,250, .383)
[1] 0.5241166 [ |

6.5.4 Expected Value and Variance of the Uncorrected Sample Vari-
ance and the Sample Variance

Given a random sample Xi, Xs,...,X,, taken from a population with mean g and
variance o2, the expected value of the uncorrected variance, S2, is

E[S2] :%anE[(Xi—)_()?]. (6.13)

Expanding the right-hand side of (6.13) gives
(X = X) =Y [ =)+ (0= X))

1 =1

K2

I
=
!
=
e
+
DO
=
!
>
-
=
!
=
_|_
3
=
!
<
e

(6.14)

I
e
|
=
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NV}
—
=
|
>
S~—
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S
>
|
S
=
S~—
_|_
S
—
=
|
>
~—
[ V)

|
a
I
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N
I
S
—
=
I
|
S~—

Substituting the expression Y1 | (X;—p)?—n (u — )_()2 for >0, (X — )_()2 in (6.13) gives

B[5%] - 1[S00 - 7 - - TV
2] = l ’rLO'2 — TLU—Z
Bls] =3 ( n) (6.15)
2
B[S} =0~
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As (6.15) shows, the expected value of S2, 0% (1), is less than o?. However, as n increases,

this difference diminishes. The variance for the uncorrected variance S2, is given by

2 2 _22 _32
Var [52] = Ha—#2 _ (pa —215) | pa = 35

1
- = 5 (6.16)

where pp = E [(X — u)k] is the k" central moment. Using the definition for the sample
variance from (6.4), the expected value of S? is readily verified to be o2.

The probability distributions for S? and S? are typically skewed to the right. The
skewness diminishes as n increases. Of course, the Central Limit Theorem indicates that
the distributions of both are asymptotically normal. However, the convergence to a normal
distribution is very slow and requires a very large n. The distributions of S? and S? are
extremely important in statistical inference. Two special cases, examined next, are the
sampling distributions of $2 and S? when sampling from normal populations.

6.6 Sampling Distributions Associated with the Normal Distribu-
tion

6.6.1 Chi-Square Distribution (x?)

The chi-square distribution is a special case of the gamma distribution covered in
Section 4.3.3 on page 139. In a paper published in 1900, Karl Pearson popularized the
use of the chi-square distribution to measure goodness-of-fit. The pdf, E(X), Var(X), and
the mgf for a chi-square random variable are given in (6.17), where I' (%) is defined in (4.15).

Chi-Square Distribution

X~x2
1 ﬁ71 - .
T2 e 2 ifx>0
flo)={ T(5)2%
0 if 2 <0 (6.17)
EX]=n
Var[X] = 2n

Mx(t) = (1—2t)"% for t < %

The chi-square distribution is strictly dependent on the parameter n, called the degrees
of freedom. In general, the chi-square distribution is unimodal and skewed to the right.
Three different chi-square distributions are represented in Figure 6.7 on the next page. The
notation used with the chi-square distribution to indicate « of the distribution is in the left
tail when the distribution has n degrees of freedom is x2.,. For example, x§ 95,19 denotes
the value such that 95% of the area is to the left of said value in a x3, distribution.

To find the value corresponding to X3 gs.10, use the S command qchisq(p, df), where
p is the area to the left (probability) and df is the degrees of freedom. The command gives
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> qchisq(.95, 10)
[1] 18.30704

which says that P(x?, < 18.31) = 0.95.

FIGURE 6.7: Illustrations of the pdfs of x%, 2, and x%; random variables

Asymptotic properties. For large values of n (n > 100), the distribution of \/2x2
has an approximate normal distribution with a mean of v/2n — 1 and a standard deviation

of 1. In other words, because 1/2x2 ~ N(v2n—1,1), Y = /2x2 —v2n—1 ~ N(0,1).

For very large values of n, the approximation

may also be used.

Example 6.19 Compute the indicated quantities:

Solution: The answers are computed first by hand using the approximation 1/2x2 ~
N(v2n —1,1). Then, the exact probabilities are calculated with S.

(a) P(x350 > 126) = P(1/2x350 — V299 > /2(126) — v299) ~ P(Z > —1.42) = 0.922.

> 1 - pchisq(126,150)
[1] 0.923393
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P(40 < x2; < 50) = P(\/2(40) < {/2x2; < /2(50))

= P(v80 — V129 < 1/2x% — V129 < V100 — v129)
~P(—2.41 < Z < —1.36) = 0.079.

> pchisq(50,65) - pchisq(40,65)
[1] 0.07861696

(c)
P(x320 > 260) = P(y/ 2X320 > V2 - 260)
(1/2x300 — V/2(220) — 1 > v/2- 260 — 1/2(220) — 1)

=P
~P(Z > 1.85) = 0.032.

> 1 - pchisq(260,220)
[1] 0.03335803

(d)
P(xfoo < a) = 0.6
P (,/2;@00 —1/2(100) — 1 < v2a — /2(100) — 1) =06

P(Zg\/z——\/m)zo.ﬁ

0.2533 = V2a — V199
= a = 103.106.

> gchisq(.6,100)
[1] 102.9459

Note that the approximations are close to the answers from S, but they are not exactly
equal. |

6.6.1.1 The Relationship between the y? Distribution and the Normal Distri-
bution

In addition to describing the x? distribution as a special case of the gamma distribution,
the x? distribution can be defined as the sum of independent, squared, standard normal
random variables. If n is the number of summed independent, squared, standard normal
random variables, then the resulting distribution is a x? distribution with n degrees of
freedom, written x2. That is,

1=1
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To complete the proof of Theorem 6.1, recall that the derivative inside the integral when
certain characteristics are satisfied is
b(0) b(0)
d d d of(x,0)
— 0)dx = f(b(6),0)—b(0) — 0),0)—a(f ———~dx.
G | @01z = 5(606).6) 550060) - £(0(6).0) Ga®) + [ Do
a(9) a(9)

For the proof, the integral needed is

4 b(0) 4 VY
il . -2 —z?/2
pT /f(;v,&)d;v dy/e dx
a(0) 0
d d Y gea12
671
—f(\/17)d—y(\/z7)—f(0)d—y(0)+ 3y dx
0
:e*y/2i.
2\y

Theorem 6.1 If Z ~ N(0,1), then the random variable Y = Z2? ~ x2.

Proof: In this proof, it is shown that the distribution of Y is a x3:
Fy(y) =P(Z2? <y) =P(—y < Z < \/y)

2 (VY e
0

Taking the derivative of Fy (y) yields

dF; 2 1 1
() = ) A L P

= (& =
dy V21 2/ \/§F(1/2)y
which is the pdf for a x2.
Corollary 6.1 If X ~ N(p,0), then Z = 24 ~ N(0,1), and Z2 ~ x3.

Theorem 6.2 If X;,..., X, are independent random variables with chi-square distribu-
tions X%I, e 7X%w respectively, then

T s
Y=ZX1-~X§, where S:Zni.
i=1 i=1
Proof:

My () = Ele) = T Blet) = [ M. (0

™M+

n;
1

=[Ja- 2)"7 = (1—2t) :

=1

which is the mgf for a y2 distribution.
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One of the properties of x? distributions is that of reproducibility. In other words, the
sum of independent x? random variables is also a x? distribution with degrees of freedom
equal to the sum of the degrees of freedom of each of the independent x? random variables.

Corollaries 6.2 and 6.3 are direct consequences of Theorem 6.2 on the preceding page.

Corollary 6.2 If Xi,..., X, are independent random variables following a N(0,1) dis-
tribution, then

Y= in ~ X
i=1

Corollary 6.3 If X;,...,X,, are independent random variables with N (u;,0;) distribu-

tions, respectively, then
n

(X — pi)? 2
Yy = Z T~ X
i1 i

Example 6.20 Given 10 independent and identically distributed (i.i.d.) random variables
Y;, where Y; ~ N(0,0 =5) for : = 1,...,10, compute

10
(a) P (Z VP < 600)

i=1

10
1§ 2
J— L > .7

(¢) The number a such that P

1 10
— Y Y2>a| =05
10;1*" 0

Solution: The answers are computed using S. Be sure to note that 7 = Yi=0 = %

5 5

(a)

10 10 2

Y 600

P Y7 <600) =P =) <=
=P(x3, < 24) > 0.99.

Using the S command pchisq(24,10) gives P (X%o < 24) = 0.9923996:

> pchisq(24,10)
[1] 0.9923996

(b)
10 10 2
P <11_0 ;Yg > 12.175) P (Z (%) > %55’(10)>

i=1

=P(x3, > 4.87) = 0.90.

> 1 - pchisq(4.87,10)
[1] 0.8996911
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10 10 2 9
1 Y; 10a
P - YQ > 2 :]P) _t >
<1OZi_1 Z—a> <Zi_1<5) = 25)
10a2
=P(+%2, > 1] =05
<X10 = 95 )

Using the S command qchisq(), the value X%O)Oﬁo = 9.34 is calculated:

> qchisq(0.50,10)
[1] 9.341818

Consequently, 10“ = 9.34, which yields a = 4.83. |

6.6.1.2 Sampling Distribution for S? and S? when Sampling from Normal
Populations

In this section, the resulting sampling distributions for S2 and S? given in Table 6.4 on
page 205 when sampling from a normal distribution are considered. Note that » ;" | (X; —

X)? =nS2 = (n—1)S? and that dividing this by o2 yields

n -\ 2
Z(Xi;zx) _nS?_ (n—1)s? 6.19)

2 2
g g
i=1

The first term in (6.19) appears to be some type of standardized normal random variable.
However, it is not, since the sample mean of a random variable is itself a random variable
and not a constant. So, what is the distribution then of nS2?/0?? Theorem 6.3 tells us that
the distribution of n.S2/0? is x2_;.

Theorem 6.3 Let Xi,..., X, be a random sample from a N(u,o) distribution. Then,

(1) X and S? are independent random variables. Likewise, X and S? are independent
random variables.

(2) The random variable

n
nS: (n—1)5% 1 9
_— = ~ X
2 E n—1
g
i=1

Proof: A detailed proof of part (1) in Theorem 6.3 is beyond the scope of the text, and
the statement will simply be assumed to be true. The independence between X and S? is
a result of normal distributions. Almost without exception, the estimators X and S? are
dependent in all other distributions.

To prove part (2) of Theorem 6.3, use Corollary 6.3 to say that Y ., ()(0;2“)2 ~ X2

X, —X
Then, rearrange the terms to find an expression for >, Q for which the distribution

is recognizable. Start by rearranging the numerator of the x2 distribution:

n

Z(Xi —p)? =

1=1 3

(X~ %) + (X - )’

I

1

I

s
Il
-

X - XY (K ) 2 (K- X) (T )
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Since . .
> (%= X) (T-0) = (T-) 3 (4= %) =0,
i=1 i=1

it follows that

n n

S - =Y (X - X) + (X - w) (6.20)

i=1 i=1
Dividing (6.20) by o2 gives

S (X - Sk (% -X)* n(X-p)’

which is the same as

S (X — p)? _(n— 1)82 n n(X — p)?
o2 N o2 o2 ’

(6.21)

Since X ~ N(u, %)7 it follows that M ~ x?7 by Corollary 6.1 on page 229. To

simplify notation, let Y, Y7, and Y5 represent L (X —1)° , (”;12)52, and %2”)2 in (6.21),

respectively. By part (1 ) of Theorem 6.3 on the precedlng page, Y7 and Y5 are independent.
Therefore,

E [et Y1+Y2)} E [etYl} E [etyﬂ
E[e™M]-(1-20)72
E[e™M] = My,(t) = Y1 ~ xb_;.

E[e™] =
(1—2t)"%
(1-2t)~"7" =

n 2 _
_ Note that V1 = 2:1(0# ~ Xx2_, is based on the n quantities X; — X, Xy —
X, ..., X,, — X, which sum to zero. Consequently, specifying the values of any n — 1 of

the quantities determines the remaining value. That is, only n — 1 of the quantities are free

n )2
to vary. In contrast, Y = 21:1(0_7)5”) ~ X2 has n degrees of freedom since there are no
restrictions on the quantities Xy — p, Xo — p,..., X,, — p. In general, when statistics are
used to estimate parameters, one degree of freedom is lost for each estimated parameter.

Example 6.21 Show that E(S2), E(S?), Var(S?), and Var(S?) are equal to M, o2,

2(717171)0 and =25, respectively, when sampling from a normal distribution.
Solution: It is known that % = (”_0712)52 ~ x2_; according to Theorem 6.3 on the
previous page. Therefore,
(a)
nS?
E{UQ} E[Xn 1]—n—1
n 9 9 (n—1)o?
;EBA—n—lew] -
(b)
n—1)S?
| B B =n -
o
(n—1)
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(c)
Var ["{iﬂ = Var [\*_,] =2(n—1)
" Var[$2] = 2(n - 1) = Var [52] = 2017
(d)
Var {("_0721)52} = Var [x;_,] =2(n—1)
(=D i [57] = 20— 1) = Var [$7] = 2
o (n—1) m

Example 6.22 A random sample of size 11 is taken from a N(u, o) distribution where

both the mean and the standard deviation are unknown and the sample variance S2 is
2

computed. Compute the P(0.487 < % < 1.599).

1 (n=1s? 1052

) o2 o2

Solution: According to Theorem 6.3 on page 23 ~ x2_,, which implies 195~ ~

2 .
X1o0*

2 2

P (0.487 < 5

o2

1
< 1.599) =P <0.487(10) < Of
ag

< 1.599(10))
=P(4.87 < x3, < 15.99)
=P(x%, < 15.99) — P(x%, < 4.87)

=0.90-0.10=0.80
To find P(x3, < 15.99) and P(x3, < 4.87), one can use the S command pchisq():

> pchisq(15.99,10) - pchisq(4.87,10)
[1] 0.7997721 m

Example 6.23 A custom door manufacturer knows that the measurement error in the
height of his final products (the door height minus the order height) follows a normal
distribution with a variance of 02 = 225 mm?2. A local contractor building custom bungalows
orders 31 doors. What is the P(S > 18.12 mm) for the 31 doors, and what is the expected
value of S2?

Solution:

_ n—1_,_ 30 2) 9 -
P(S>1812)=P ( = Se > 595 18.12 ) =P(x3, > 43.78) ~ 0.05

The following computes P(x3, > 43.78) with S:

> 1 - pchisq(43.78,30)
[1] 0.04992715

Since the expected value of 52 is the population variance, E [S?] = 225. [ |
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Example 6.24 [> Probability Distribution of (n — 1)S?/o? <@ Use simulation to
generate m = 1000 samples of size n = 15 from both a N(0,1) distribution and an Exp(1)
distribution. Compute the statistic (n — 1)5%/0? for both the normally and exponen-
tially generated values, labeling the first NC14 and the second EC14. Produce probability
histograms for NC14 and EC14 and superimpose the theoretical distribution for a x%, dis-
tribution on both. Repeat the entire process with samples of size n = 100. That is, use
simulation to generate m = 1000 samples of size n = 100 from both a N(0, 1) distribution
and an Ezp(1) distribution. Compute the statistic (n — 1)5%/0? for both the normally
and exponentially generated values, labeling the first NC99 and the later EC99. Produce
probability histograms for NC99 and EC99, and superimpose the theoretical distribution
for a x3y distribution on both. What can be concluded about the probability distribution
of (n — 1)S?/0? when sampling from a normal distribution and when sampling from an
exponential distribution based on the probability histograms?

Solution: The S code that follows generates the required values. To obtain reproducible
values, use set.seed (). In this solution, set.seed(302) is used.

set.seed(302)

par (mfrow=c(2,2))

m <- 1000; n <- 15

varNC14 <- array(0, m) # Array with m zeros

for (i in 1:m) {varNC14[i] <- var(rnorm(n))}

NC14 <- (n-1)*varNC14/1

hist(NC14, prob=TRUE, ylim=c(0,0.09), xlab="NC14", col=2, xlim=c(0,60),
nclass="scott", main="", ylab="")

lines(seq(0,60,.1), dchisq(seq(0,60,.1), n-1), lwd=3)

varEC14 <- array(0, m)

for (i in 1:m) {varEC14[i] <- var(rexp(n))}

EC14 <- (n-1)*varEC14/1

hist (EC14, prob=TRUE, ylim=c(0,0.09), xlab="EC14", col=4, x1lim=c(0,60),

nclass="scott", main="", ylab="")
lines(seq(0,60,.1), dchisq(seq(0,60,.1), n-1), lwd=3)
n <- 100

varNC99 <- array(0, m)

for (i in 1:m) {varNC99[i] <- var(rnorm(n))}

NC99 <- (n-1)*varNC99/1

hist(NC99, prob=TRUE, ylim=c(0,0.03), xlab="NC99", col=2, xlim=c(0,210),
nclass="scott", main="", ylab="")

lines(seq(0,210,.1), dchisq(seq(0,210,.1), n-1), 1lwd=3)

varEC99 <- array(0, m)

for (i in 1:m) {varEC99[i] <- var(rexp(n))}

EC99 <- (n-1)*varEC99/1

hist (EC99, prob=TRUE, ylim=c(0,0.03), xlab="EC99", col=4, xlim=c(0,210),
nclass="scott", main="", ylab="")

lines(seq(0,210,.1), dchisq(seq(0,210,.1), n-1), 1lwd=3)

NC14 <- c(mean(varNC14), var(varNC14), mean(NC14), var(NC14))

EC14 <- c(mean(varEC14), var(varEC14), mean(EC14), var(EC14))

NC99 <- c(mean(varNC99), var(varNC99), mean(NC99), var(NC99))

EC99 <-c (mean(varEC99), var(varEC99), mean(EC99), var(EC99))

MAT <- round(rbind(NC14, EC14, NC99, EC99), 4)

colNAM <- c("E(8"2)", "Var(S~2)", "E(X"2)", "Var(X"2)")

rowNAM <- c("NC14", "EC14" ,"NC99", "EC99")

VVVVVVVYV +VVVVYV +VVVVVYV +VVVVYV +VVVVYVVYV
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> dimnames (MAT) <- list(rowNAM , colNAM)
> print(MAT)  # Numerical values for Table 6.14

Table 6.14: Output for Example 6.24

Bls?) varls?) B [0] v [0

NC14 | 1.0003 0.1458 14.0039 28.5763
EC14 | 1.0119 0.5470 14.1666 107.2084
NC99 | 0.9995 0.0193 98.9491 189.1410
EC99 | 1.0092 0.0879 99.9125 861.1833

Examine Table 6.14, and note that the means for the simulated S? values (E(S?)) for
NC14, EC14, NC99, and EC99 are all close to the theoretical variance (¢2 = 1). However,
only when sampling from a normal distribution does the variance of S? equal 20*/(n — 1).
That is, the simulated Var(S?) values for NC14 and NC99 are 0.1458 and 0.0193, which are
close to the theoretical values of 2/,, = 0.1428571 and 2/49 = 0.02020202. The means and
variances for the simulated (n — 1)S?/0? values are approximately (n — 1) and 2(n — 1),
respectively, for NC14 and NC99. However, the variances of (n — 1)5%/0? when sampling
from an exponential are not close to the values returned with NC14 and NC99, nor is the
simulated sampling distribution for (n — 1)5%/0? approximated very well with a x2_,
distribution when sampling from an exponential distribution, as evidenced by the graphs
on the right-hand side of Figure 6.8 on the following page. In other words, the sampling
distribution for (n — 1)S?/0? can only be guaranteed to follow a x2_; distribution when
sampling is from a normal distribution.

|
6.6.2 t-Distribution
Given a random sample Xi,...,X,, that is drawn from a N(u,o) distribution, X ~
N(p, 0/+/n), which implies B
X—p
~ N(0,1). 6.22
Sk~ N0 (6.22)

The quantity (6.22) is used primarily for inference regarding pu. However, this inference
assumes o is known. The assumption of a known o is generally not reasonable. That is,
if ¢ is unknown, it almost certainly follows that ¢ will be unknown as well. Fortunately,
inference regarding p can still be performed if ¢ is replaced by S in (6.22). Specifically, the
quantity
X—p
S/vn

follows a well-known distribution, described next.

(6.23)

DEFINITION 6.1:  Given two independent random variables Z and U, where Z ~ N(0,1)
and U ~ x2, we define the t-distribution with v degrees of freedom as the ratio of Z divided
by the square root of U divided by its degrees of freedom. That is,

~ty. (6.24)
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FIGURE 6.8: Probability histograms for simulated distributions of (";712)5 when sampling
from normal and exponential distributions. NC14 designates the simulated sampling

2
distributions of (";712)5 when taking samples of sizes n = 15 from a normal distribution. In

a similar fashion, NC99 denotes the simulated sampling distribution when taking samples
of size n = 100 from a normal distribution. EC14 and EC99 are analogous to NC14 and
NC99 with the exception that the sampling is done from an exponential distribution. The
superimposed density on all curves is a x2_;.

Using definition 6.1, one can readily see why (6.23) follows a ¢-distribution with n — 1
degrees of freedom since

_ _ Xy
S/vn o [(n-1)s? \/Xi_l \/Un—l o
vn (n—1)o2 n—1 n—1

The t-distribution, also called Student’s t-distribution, was first described in a paper pub-
lished by William Sealy Gosset under the pseudonym “Student.” Gosset was employed by
Guiness Breweries when his research relating to the ¢-distribution was published. Since Gui-
ness Breweries had a policy preventing research publications by its staff, Gosset published
his findings under the pseudonym “Student.” Consequently, the t-distribution is often called
Student’s t-distribution in his honor. The pdf, expectation, and variance of a ¢-distribution
with v degrees of freedom are given in (6.25).

t-Distribution
X ~t,
I () 22\
f(f)zizz/(l'i__) for —oo < < o0 6.25
VT (5) v o
E[X]=0
Var[X] = i2 fOI' v > 2
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The shape of the t-distribution is similar to that of the normal distribution; but for small
sample sizes, it has heavier tails than the N(0,1). Figure 6.9 illustrates the densities for
t-distributions with 1,3, and oo degrees of freedom, respectively. Note that t4;0c = 2. To
find the quantity t,,,, the S command pt(a, ) can be used. In particular, suppose %g.s0.1,
depicted in Figure 6.9, is desired. Using the S command pt (0.80,1) gives 1.376382 for the
answer.

FIGURE 6.9: Illustrations of the pdfs of ¢; (dashed line), ¢35 (dotted line), and ¢ (solid
line) random variables.

Example 6.25 The tensile strength for a type of wire is normally distributed with an
unknown mean £ and an unknown variance o2. Five pieces of wire are randomly selected
from a large roll, and the strength of each segment of wire is measured. Find the probability
that Y will be within \2/—% of the true population mean, p.

Solution: The solution is

P(“_T

*<|

| |
/—\

/\
7;

\_/
||

/—\
‘/\ IA 3‘
I/\
IA

%\ &

N————

2)

) 0.8838835.

Note that if o were known, P (-2 < Z < 2) = 0.9544. [ |
The Sampling Distribution for X — Y when ox and oy Are Unknown but
Assumed Equal

Theorem 6.4 Given two random samples Xi,..., X, and Yi,...,Y,, that are taken
from independent normal populations where X ~ N(ux,0x), Y ~ N(uy,oy), and ox =
oy, the random variable

[(X-Y) — (px — py)]

(nx—1)S3 +(ny—1)S3 (1 L
nx+ny —2 nx ny

~ by gty —2- (6.26)
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o2

Proof: Since X —Y ~ N (,ux —py, /X %), according to Theorem 5.1 on page 176,

TF) - (ux -
71 ) —lx =) o, ).
0'2 0'2
X Y
nx ny

By Theorem 6.3 on page 231, Zx-D5% X5, 1 and (71}/0—721)5% ~ X%, _1- Since X and Y
X Y

are independent, it follows that

(nx —1)S% G DSy

~Y
2 2 an+ny—2
Ox 0y

W =

from Theorem 6.2 on page 229. Using the definition of the t¢-distribution, given in defi-
nition 6.1 on page 235, \/Lﬁ ~ t,. In this particular case, v = nx + ny — 2 and, since

ox = oy = 0 is assumed,

o2 2
X 4 oy

zZ nx Ny

K (TLX — 1)S§( (ny — 1)5

nx—l—ny—Z

ﬂx—uy _

RN (nx — 1)S% + (ny — 1)S2
nx ny nX—ny—2

(X-Y) - (#X—MY

= NtnXJrnny'
(nx — I)ng + (ny — 1)532/ n 1
nx +ny —2 nx Ny

6.6.3 The F Distribution

In Section 6.6.2, it was seen how the ¢-distribution can be used to make statements about
an unknown mean g when o is also unknown. Another common problem statisticians face is
that of comparing unknown variances, for example, in manufacturing processes, in mixtures,
or in quality from different suppliers of goods. The distribution that allows us to make these
comparisons is the F' distribution.

DEFINITION 6.2: If U and V are independent random variables, each with a y? distribution
with 11 and v, degrees of freedom, respectively, then

NFl/hvz'

NENE

The pdf, expected value, and variance of an F distribution are given in (6.27).
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F Distribution
X~Fy
T (ate =2 . 5 (v1+v2)
o= ryr () 71 ()
= 1% Vo
2 (6.27)
EX|=—"—
[X] -
203 (v + g — 2) .
Var[X] = —2 ded 4
ar[X| B T S— provided vy >

The F' distribution depends on its degrees of freedom and is characterized by a positive
skew. Figure 6.10 illustrates three different F' density curves

Fig19
Fyg

Fy 4

. \ -
; C~_

0 fo.025;19,19

......... r=s

fo.975:19,19 6

FIGURE 6.10: Tllustrations of the pdfs of F5 4 (solid line), Fy o (dotted line), and Fig 19
(dashed line) random variables

Theorem 6.5 If there are two random samples Xi,..., X, and Y7,...,Y,, that are
taken from independent normal populations where X ~ N(ux,ox) and Y ~ N(uy,oy),
then the random variable

52 ~Iny—1ny—1-

(6.28)
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2 2
. 52 Xy — 52 Xny — .
Proof:  Since 2% ~ nfoll and = ~ ny”if, by Theorem 6.3 on page 231, it follows that
X Y

5%
2

X

— ~

S%, nx—1ny—1-

o5

To find the value fo. v, vy, Where P(Fy, v, < fasin, 1) = @, with S, use the command qf (p,
df1, df2), where p is the area to the left (probability) in an F' distribution with vy =df1
and %] =2.

Example 6.26 Find the constants ¢ and d such that P(F5 10 < ¢) = 0.95 and P(F5 19 <
d) = 0.05.

Solution: Using the S commands qf (0.95,5,10) and qf (0.05,5,10) returns the values
3.325835 and 0.2111904, respectively. |

Example 6.27 Use S to find the values associated with the points fg.025,19,19 and
fo.975:19,19 depicted in Figure 6.10 on the previous page.

Solution: The answers using S are

> qf(.975,19,19)

[1] 2.526451

> qf(.025,19,19)

[1] 0.3958122 ]

Note that a relationship exists between the ¢- and F' distributions. Namely, t2 = F ,,
and the relationship between the values in both distributions is

t%,a/g;y - fl—a;l,l/- (629)

For example, t%‘975;5 = 25712 =6.61 = F0.95; 1,5-
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6.7 Problems

1.

How many ways can a host randomly choose 8 people out of 90 in the audience to
participate in a TV game show?

Let X be a t5.
(a) Find P(X < 3).

(b) Calculate P(2 < X < 3).

(¢) Find a so that P(X < a) = 0.05.

If (1 —2¢)7°, ¢ < &, is the mgf of a random variable X, find P(X < 15.99).

If X ~ x%p, find the constants a and b so that P(a < X < b) = 0.90 and P(X < a) = 0.05.

Let X be a x%,. Calculate P(X < 8) and P(X > 6). Calculate a so that P(X < a) = .05.
What are the population mean and population variance of X?

Let X be distributed as an Fy 5. Calculate P(X < 1) and the median of X. Calculate a
so that P(X < a) = 0.10. What are the population mean and population variance of X?

Assume a population with 5 elements:

X1=0, Xo=1, X3=2, X;=3, Xs;=4.

(a) Calculate X and o2.

(b) Calculate the sampling distribution of the mean for random samples of size 3 taken
without replacement. Verify that the mean of X is 2 and that the variance of X is

e
(c) Calculate the sampling distribution of X for random samples of size 3 taken with
replacement. Verify that the mean of X is 2 and that the variance of X is @°/,, .

A population has the following elements: 2,5,8,12,13.

(a) Enumerate all the samples of size 2 that can be drawn with and without replacement.
(b)
(c)
(d)

(e) Calculate the mean of the sample mean, F[X |.

Calculate the mean of the population.

o

Calculate the variance of the population.

Calculate the standard deviation of the population.

(f) Calculate the variance of the sampled mean, Var (X ).
(g) Calculate the standard deviation of the sample mean.
(h) Calculate the mean of the sample variance, F [S?].

(i) Is the variance of X larger when sampling with or without replacement? Explain
your answer.

Determine whether the following expressions are statistics or not:

(a) 2oy Xi
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10.

11.

12.

13.

14.

15.

16.

17.

Use the data frame wheatUSA2004 from the PASWR package; draw all samples of sizes 2, 3,
and 4; and calculate the mean of the means. What size provides the best approximation
to the population mean? What is the variance of these means?

Given a random sample of size 6 from N(0,0), calculate
(a) P (% > 2) and
) P(|£]<4).

Constant velocity joints (CV joints) allow a rotating shaft to transmit power through a
variable angle, at constant rotational speed, without an appreciable increase in friction
or play. An after-market company produces CV joints. To optimize energy transfer, the
drive shaft must be very precise. The company has two different branches that produce
CV joints where the variability of the drive shaft is known to be 2 mm. A sample of
ny = 10 is drawn from the first branch, and a sample of no = 15 is drawn from the
second branch. Suppose that the diameter follows a normal distribution. What is the
probability that the drive shafts coming from the first branch will have greater variability
than those of the second branch?

Given a population N(u,o) with unknown mean and variance, a sample of size 11 is
drawn and the sample variance S? is calculated. Calculate the probability P(0.5 <
5%/, < 1.2)

- 2).

Simulate 20,000 random samples of sizes 30, 100, 300, and 500 from an exponential
distribution with a mean of 1/5. Estimate the density of the sampling distribution with
the function density(). Superimpose a theoretical normal density with appropriate
mean and standard deviation. What sample size is needed to get an estimated density
close to a normal density?

The plastic tubes produced by company X for the irrigation system used in golf courses
have a length of 1.5 meters and a standard deviation of 0.1 meter. The plastic tubes
produced by company Y have a length of 1 meter and a standard deviation of 0.09 meter.
Suppose that both tube lengths follow normal distributions.

(a) Calculate the probability that a random sample of 15 tubes from company X has a
mean length at least 0.45 meter greater than the mean length of a random sample
of size 20 from company Y.

(b) Suppose that the population variances are unknown but equal, S, = 0.1, and
Sy = 0.09. Calculate the probability that a random sample of 15 plastic tubes from
company X has a mean length at least 0.45 meter greater than the mean length of
a random sample of 20 plastic tubes from company Y.

Plot the density function of an Fj ¢ random variable. Find the area to the left of x = 3
and shade this region in the original plot.

Let X1, X5, X3, X4 be a random sample from a N(0,0). Calculate the distribution of
(X1—X5)?
(X3+X4)2"



18.

19.

20.

21.

22.

23.

24.

25.

26.
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Let X1, X2, X3, X4, X5, X6 be a random sample drawn from a N (0, o?) population. Find

the values of ¢ so that the statistic ~-<2EX24Xs  f5]lows a ¢5-distribution.

Consider a random sample of size n from an exponential distribution with parameter
A. Use moment generating functions to show that the sample mean follows a I'(n, An).
Graph the theoretical sampling distribution of X when sampling from an Ezp(\ = 1) for
n = 30, 100, 300, and 500. Superimpose an appropriate normal density for each I'(n, An).
At what sample size do the sampling distribution and superimposed density virtually
coincide?

Set the seed equal to 10, and simulate 20,000 random samples of size n, = 65 from a
N(4,0, =/2), 20,000 random samples of size n, = 90 from a N (5,0, = /3 ) and verify

2 2
that the simulated statistic Sg/ —
Sy/gy

follows an Fg4 g9 distribution.

Set the seed equal to 95, and simulate m = 20,000 random samples of size n = 1000
from a Bernoulli(m = 0.4). Verify that the sample proportion follows an approximate
normal distribution with a mean approximately equal to 0.4 and a standard deviation
approximately equal to 0.01549.

A communication system consists of n components, where the probability that each
component works is m. The system will work if at least half of its components work. For
what values of 7 will a system consisting of 5 components have a greater probability of
working than a system consisting of 3 components? Plot the probability each system
(n =5 and n = 3) works for values of 7 from 0 to 1 in increments of 0.01.

Given X ~ N(0,0=1),Y ~ N(2,0 =2),and Z ~ N (4,0 = 3), what is the distribution
of W = X +Y + Z7 Set the seed equal to 368 and simulate 1000 samples, each of
size 1 for X, Y, and Z. Add the values in the three vectors to obtain W’s empirical
distribution. Create a density histogram of the simulated values of W and superimpose
the theoretical density of W.

Set the seed equal to 48, and simulate a x3 distribution by summing the squares of
three simulated standard normal random variables, each having length 20,000. Create a
density histogram of the simulated y% random variable. Superimpose the theoretical x3
density over the histogram.

Verify empirically that
N(0,1)

1

(5x3)°
by setting the seed equal to 36 and generating a sample of size 1000 from a N(0,1)
distribution. Generate another sample of size 1000 from a yZ distribution. Perform the

appropriate arithmetic to arrive at the simulated sampling distribution. Create a density
histogram of the results and superimpose a theoretical ¢5 density.

~ U5

A farmer is interested in knowing the mean weight of his chickens when they leave the
farm. Suppose that the standard deviation of the chickens’ weight is 500 grams.

(a) What is the minimum number of chickens needed to ensure the a standard deviation
of the mean is no more than 100 grams with a confidence level of 0.957

(b) If the farm has three coops and the mean chicken weight in each coop is 1.8, 1.9,
and 2 kg, respectively, calculate the probability that a random sample of 50 chickens
with an average weight larger than 1.975 kg comes from the first coop. Assume the
weight of the chickens follows a normal distribution.
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27.

28.

29.

30.

Find the required sample size (n) to estimate the proportion of students spending more
than €10 a week on entertainment with a 95% confidence interval so that the margin of
error is no more than 0.02.

15.3% of the Spanish Internet domain names are “.org.” If a sample of 2000 Spanish
domain names is taken,

“ 7

(a) Calculate the exact probability that at least 200 domain names will be “.org.”.

(b) Compute an approximate answer that at least 200 domain names will be “.org.” with
a normal approximation.

Set the seed equal to 86, and simulate m; = 20,000 samples of size n; = 1000 from a
Bin(ny,m™ = 0.3) and mo = 20,000 samples of size no = 1100 from a Bin(ng, ™ = 0.7).
Verify that the difference of sampling proportions follows a normal distribution.

Given a random sample of size n from an exponential distribution with parameter A,
prove that the sample mean follows a I'(n, An). Set the seed equal to 679, and simulate
m = 1000 random samples of size n = 100 from an Ezp(A = 1), and check that the
normal approximation of the mean is appropriate. Repeat this exercise with random
samples of size n = 3, and verify that, in this case, I'(3,3) is more appropriate to use
than the normal distribution.



Chapter 7

Point Estimation

7.1 Introduction

Throughout this chapter, random samples drawn from a known distribution where
the parameters that characterize the distribution are unknown will be of interest. To
specify completely a probability distribution, whether it be discrete or continuous, the
distribution’s parameters must be specified. For example, a random variable may follow a
normal distribution; however, if both the mean and the standard deviation of the normal
distribution are not known, the distribution at hand cannot be completely specified. In a
similar fashion, a Poisson random variable requires knowledge of the parameter A to specify
completely that distribution. In general, the pdf of a random variable X is f(x |6 ), where
is the vector of parameters that characterize the pdf. The vector of parameters 0 is defined
in a parameter space denoted ©. For each value of @ € ©, there is a different pdf. To
obtain possible values for the vector of parameters, a random sample from the population
of interest is taken and statistics called estimators are constructed. The values of the
estimators are called point estimates. For example, X may be used as a point estimator
for u, in which case T is a point estimate of .

Since estimators are statistics or functions of random variables, they themselves are
random variables. Studying the sampling distributions of estimators as well as their sta-
tistical properties such as mean square error, bias or unbiasedness, efficiency, consistency,
and robustness, all of which will be defined in this chapter, will give guidelines about which
estimators to employ.

7.2 Properties of Point Estimators
7.2.1 Mean Square Error

The goodness of an estimator is related to how close its estimates are to the true
parameter. The difference between an estimator T for an unknown parameter 6 and the
parameter 6 itself is called the error. Since this quantity can be either positive or negative, it
is common to square the error so that various estimators 71, Th, ..., can be compared using
a non-negative measure of error. To that end, the mean square error of an estimator,
denoted MSE[T], is defined as MSE[T] = E [(T —#6)?]. Estimators with small MSEs
will have a distribution such that the values in the distribution will be close to the true
parameter. In fact, the MSE consists of two non-negative components, the variance of the

245
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estimator T and the squared bias of the estimator T', where bias is defined as E[T'] —  since

MSE[T) = E [(T — E[T) + E[T] — 6)*]
— E[T - E[T])* + E[(E[T] - 6)*] + 2E[(T — E[T])(E[T] - 0)]
= Var[T) + (E[T] - 6)* + 2(B[T] - E[T))(E[T] - §)
= Var[T] + (E[T] - 6)*
= Var[T)| + (Bias[T])*. (7.1)

The concepts of variance and bias are illustrated in Figure 7.1, which depicts the shot
patterns for four marksmen on their respective targets. When the marksman’s weapon is
properly sighted, the center of the target represents 6.

Low Variance, Low Bias Low Variance, High Bias

High Variance, Low Bias High Variance, High Bias

FIGURE 7.1: Visual representations of variance and bias

It seems logical to think that the most desirable estimators are those that minimize the
MSE. However, estimators that minimize the MSFE for all possible values of € do not always
exist. In other words, an estimator may have the minimum MSFE for some values of € and
not others.
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7.2.2 TUnbiased Estimators

Since estimators are random variables, the point estimates they return will vary from
sample to sample. However, one would like some assurance that the chosen estimator is
returning a value close to the unknown parameter. Estimators whose expected values are
equal to the parameters they are estimating are unbiased. That is, when E[T] =6, T is an
unbiased estimator of . When an estimator is unbiased, its MSE is equal to its variance,
that is, MSE[T] = Var[T]. On the other hand, when E[T] # 6, the estimator is biased.

Example 7.1 Show that the sample mean and the sample variance are unbiased estima-
tors of the population mean and the population variance, respectively.

Solution: To show that S? is an unbiased estimator of o2, use the fact that

n n

' (X - X)"=>"(X; —w)? —n(n—X)*

i=1 i=1

from (6.14) on page 225:

BIX]-E|S %1 o
=1
E[SQ]:E Z?_IT(L)?;XY - Z?ﬂ@ﬁ‘?i;”(ﬂ—f(f]
1 " ) )
— Y B - P B [(X ) H
— 1 2 2 2
_Tl—l no —n; =0 .

Example 7.2 Suppose X ~ Pois()\), where A is unknown. Show
(a) X is an unbiased estimator of \.

(b) 2X is an unbiased estimator of 2.

(c) X is a biased estimator of A2.

Solution: To solve the problems, keep in mind that if X ~ Pois()\), E[X] = X\ and
Var[X] = A.

(a) Since E [X| =E [y, &) =31, E[fi] =22 = ) it follows that X is an unbiased
estimator of A.

(b) Since E [2X | = 2F [X ] = 2), it follows that 2X is an unbiased estimator of 2.

(c) Since E[)_(Q] = Var [)_(} + u%—( = % + A2, it follows that X2 is a biased estimator of A2,

However, X % is an asymptotically unbiased estimator of A\2. That is, as n tends to infinity,
the estimator becomes unbiased. |

Example 7.3 Suppose { X1, Xs,..., X, } is a random sample from a N(u, o) distribution.
Show that S is a biased estimator of o.
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Solution: Recall that (”;712)52

the expected value of both sides:

2
~x2_ ;. Let X = % and take the square root and

Since X ~ x2_;, the expected value of VX is [ \/zf(z)dz, where f(x) is the pdf of a

— 00

chi-square random variable:

£[VX]

e 1 no1 e
Vi———————x % leTidr
| e
= 71 1 / g T MreT iy
F() 2
1 <, e
= ﬁ/ $§_1€_§d$ (72)
L(x7) 27 Jo
Next, use the change of variable x/2 = ¢ where doz = 2dt in an attempt to force the

right-hand side of (7.2) to look like a gamma function. Specifically, recall that T'(a) =

oo
J o te *dx for >0 :
0

Since

it follows that

E[S] = 7.3
Sl=0 = (= 77 (7.3)
Therefore, S is a biased estimator of o. |
. . Var(z) o
Example 7.4 Numerically evaluate and graph the coefficient ———2~+ that multiplies
Vn=1r(251)

o on the right-hand side of (7.3) for values of n from 2 to 50.

Solution: The following S code creates a graph similar to the one depicted to the left of

ent ()
the code. Note that the coefficient m

is a reasonable, though biased, estimator of ¢ for n > 20. Note that in the following code,
no true coeff value is assigned to coeff[1] because n — 1 would then be zero. Therefore,
when coeff is plotted, coeff[1] is removed with coeff[-1].

is virtually 1 for values of n > 20, so that S
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1.00
|

m <- 50

coeff <- array(0, m)

for (n in 2:m)

{ coeff[n] <- (sqrt(2/(n-1))
*gamma (n/2) ) /gamma ((n-1)/2)}
plot(coeff[-1], type="1",
xlab="n", ylab="coef", lwd=2)
abline(h=1, lty=2)

coeff [20]

1] 0.9869343

0.95
|

2,

BRI

var(
nglF(
0.90

0.85
|

2
—, VvV V + V + + V V V

0.80
|

A more compact solution using R is

> curve(sqrt(2/(x-1))*gamma (x/2) /gamma ( (x-1)/2),2,50)
> abline(h=1, 1lty=2) |

7.2.3 Efficiency

A desirable property of a good estimator is not only to be unbiased, but also to have
a small variance, which translates into a small MSFE for estimators, regardless of whether
they are biased or unbiased. One way to compare the MSEs of two estimators is by using
relative efficiency. Given two estimators 77 and 75, the efficiency of T3 relative to Tb,
written eff (Th,T5), is
MSE [T5]
eff(T1,Ts) = ————. 7.4
(0. T0) = Sy (7.4)
When the estimators in (7.4) are unbiased, the efficiency of T3 relative to 7% is simply the
ratio of estimators variances, written

Var [Ts]
(T T) = G

The estimator T} is more efficient than the estimator T5 if, for any sample size, MSE [T}] <
MSE [T], which then implies that eff(T1,72) > 1. When the estimators are unbiased,
the estimator T} is more efficient than the estimator T if, for any sample size, Var[T}] <
Var [Ts], which also implies that eff(7h1,72) > 1. If a choice is to be made among a
small number of unbiased estimators, simply compute the variance of all of the estimators
and select the estimator with minimum variance. However, if the estimator that has the
smallest variance among all possible unbiased estimators must be chosen, an infinite number
of variances would need to be calculated. Clearly, this is not a viable solution.

Thankfully, it can be shown that if T' = 0 is an unbiased estimator of 6 and a random
sample of size n, X1, Xo, ..., X, has pdf f(z|0), then the variance of the unbiased estimator,
0, must satisfy the inequality

1

_— [(amggxe))?

where f(X10) is the density function of the distribution of interest evaluated at the random
variable X. In the discrete case, p(X|0) is used instead of f(X0). In general, the probability

Var [é] > ; (7.5)
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distributions of both discrete and continuous distributions are referred to using the notation
f(x). The inequality in (7.5) is known as the Cramér-Rao inequality, and the quantity
on the right-hand side of the equation is known as the Cramér-Rao lower bound (CRLB).

DEFINITION 7.1: If  is an unbiased estimator of  and

Var [é} = ! (7.6)

n_E[(alng(eXG))2:|

then 6 is a minimum variance unbiased estimator of 6.

Not all parameters have unbiased estimators whose variance equals the CRLB. However,
when the variance of an unbiased estimator equals the CRLB, the estimator is efficient or
minimum variance. The quantity in the denominator of (7.6) is known as the Fisher
information about 6 that is supplied by the sample. That is, the smaller the variance of
the estimator, the greater the information.

Example 7.5 Show that X is a minimum variance unbiased estimator of the mean \ of
a Poisson population.

Solution: If X ~ Pois()\), then, according to (4.5), F[X] = A, Var[X]| = ), and the pdf
of X is

2\ -\
P(X = z|\) = ; . (7.7)
Since E[X] = Y0, 2 — 22 — )it follows that X is an unbiased estimator of A,
with variance % because the Var [X| = Var [Y1, n} = L3 Var[Xy] = 2—3 = %

Consequently, if the CRLB equals %, X is a minimum variance unblased estimator of A
according to Definition 7.1. By taking the natural logarithm of (7.7),

InP(z|\) = zIn(A) — A — In(2!). (7.8)

Taking the derivative of (7.8) with respect to A gives

OlnP(z|A) _x 1%~ A
o\ D) N
Hence
5| (OmPX]N) 2 _pl(X | E(X N VarlX]
oA N A N A2 X
Therefore,
5| (2mPX]N) I verx] X1
o\ A2 Az )
and the CRLB is
1 P
; .
dln f(X|X
0 E {( o) }
Consequently, since X is unbiased and Var [)_( } = %, it follows that X is a minimum
variance unbiased estimator of \. |

Example 7.6 Show that X is a minimum variance unbiased estimator of the mean 6 of
an exponential population.
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Solution: If X ~ Ezp (%), then, according to (4.12), when using the substitution 6 = %,
E[X] =0, Var[X] = 6%, and the pdf of X is

1
gefg”/e ifoO.

fz) = (7.9)

0 if x <0
Since E[X] = Yr, 2 — 29 — g it follows that X is an unbiased estimator of
6, with variance & since Var [X| = Var [Y0, X] = L7 Var[X,] = 24 = £,

Consequently, if the CRLB equals (31—2, X is a minimum variance unbiased estimator of 6
according to Definition 7.1 on the facing page. By taking the natural logarithm of (7.9),

In f(z]0) = — In(6) — % (7.10)
Taking the derivative of (7.10) with respect to 0 gives

olnf@p) 1 = _z-6

90 062 6
Hence
5| (2 (X]6) 2 _pl(X=f | El(X -0  Var[X]
a0 B 02 Iz T
Therefore,
5| (2 f (XN | varx] _e* 1
a0 I TR

and the CRLB is
1 02

n-E R_alngexw))z]

Consequently, since X is unbiased and Var [X] = £ it follows that X is a minimum
variance unbiased estimator of 6. [ |

02
n

Example 7.7 > Comparing Estimators: Blue Jean Length <| Suppose the true
manufactured length of new 32L blue jeans follows a normal distribution with unknown p
and ¢ = 0.5 inch. It is known that 32L blue jeans sold in stores have a length of at least
31 inches. If a random sample of size n = 3 of 32L blue jeans is taken to estimate p, which
of the estimators fi; or fis is better in terms of bias, variance, and relative efficiency where
i1 =0.33- (X1 + X2+ X3) and 12 = 0.50 - (X7 + X2)?

Solution: Since

E[in] =033 E[X) + X5 + X3] = 0.33 - (E[X1] + E [Xo] + E [X3))
=0.33(u+ p+ p) = 0.99,

it follows that fi; is a biased estimator of p with bias 0.99u — p = —0.01. On the other
hand,

Eljis] = 050 - B [X1 + Xa] = 050 - (E[X1] + E[X5]) = 0.50 - (114 1) = ps,
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which makes [i2 an unbiased estimator of . The variances of iy and fiz are

Var [0.33 - (X1 + Xz + X3)]
= 0.33% - (Var[Xi1] + Var[Xs] + Var[X3])
= 0.33% - (0.25 + 0.25 + 0.25) = 0.081675, and

Var [fio] = Var [0.50 - (X1 + X5)] = 0.50% - (Var [X1] 4+ Var [X2])
=0.25-(0.25 4 0.25) = 0.125, respectively.

Var [ju]

Before looking at the relative efficiency of ji; to fi2, compute the MSE for each estimator
using the fact that MSE = Variance + Bias?:

MSE[ji1] = 0.081675 + (0.01p) = 0.081675 + 0.0001 >
MSE|[fi2] = 0.125 4+ 0% = 0.125

Since
MSE (ji2) 0.125

(1. f19) = = 1 for all 20.82

el o) = Jrep iy = 0081675 + 0.00012 < L or all lul > 2082,
conclude that fi2 is both more efficient and has a smaller MSE than does /i1, since it is known
that g > 31 inches according to the problem. See Figure 7.2 for a graphical representation

of the distributions of fi; and fis.

Distribution of [y

Distribution of fio

Bias

0.9

FIGURE 7.2: Graphical representations for the sampling distributions of i1 and jie

7.2.4 Consistent Estimators

The next property of estimators that is considered is consistency. Consistency is a
property of a sequence of estimators rather than a single estimator. However, it is rather
common to refer to an estimator as being consistent. A sequence of estimators means that
the same estimation procedure is carried out for each sample of size n. If T" is an estimator
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of 6 and X1, Xo, ... are observed according to a distribution f(z|), a sequence of estimators
Ty,Ts,...,T, can be constructed by performing the same estimation procedure for samples
of sizes 1,2,...,n, respectively. In other words, the sequence is

T =t(X1), T =t(X1,X2),..., T, = (X1, Xo,..., Xp).

A sequence of estimators T;, (defined for all n) is a consistent estimator of the parameter
0 for every 0 € O if
lim P(|T,, — 0| > ¢€) =0, for all e > 0. (7.11)

An equivalent statement of (7.11) is that a sequence of estimators 7;, (defined for all n) is
a consistent estimator of the parameter 6 for every 6 € O if
lim P(|T,, — 0| <¢) =1, for all € > 0. (7.12)
n—oo
Both definitions (7.11) and (7.12) state that a consistent sequence of estimators converges
in probability to the parameter 6, where 6 is the parameter the consistent sequence of
estimators is estimating. In practical terms, this implies that the variance of a consistent
estimator decreases as n increases and that the expected value of T}, tends to 6 as n increases.

Further, given a consistent sequence of estimators, say T}, Chebyshev’s inequality (3.17)
guarantees that

BT — 0)°]

P(T0 — 0] > €) = P(T0 — 0 > ¢2) < =12~ 010,

€

for every € ©. Since Ey [(T,, — 0)?] can be expressed as
Ey [(Tn — 0)2] = Var[T,] + (Bias [Tn])2 ,

if
lim Var[T,] =0 and lim (Bias[T,])* =0, (7.13)

n—oo n—oo

then T, is a consistent sequence of estimators of §. Whenever the conditions in (7.13) are
true, T, converges in MSE to the true value of . The conditions in (7.13) are sufficient
but not necessary conditions for a sequence of estimators to be consistent.

Example 7.8 Let {Xi,Xs,...,X,} be a random sample of size n from a distribution
with mean p and variance o2. Show that X, is a consistent estimator of j.

Solution: For X, to be a consistent estimator of y, it must be shown that

lim P(|X,, — p| >¢€) =0 for all € > 0.

n—oo

Using version (c) of Chebyshev’s inequality and the fact that F [)_(n} = and Var [)_(n} =
a?/n,

_ 1
P(X, — > ho/ Vi) < o
By setting € = ko /\/n, k = \/ne/o, so that
1 _o
k2 ne?’
from which it follows that )

(7.14)
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Given that 02 < oo (finite), taking the limit as n — oo on both sides of the < sign of (7.14)
gives _
lim P(|X,, —u| >¢€) =0 for all e.

Consequently, X,, is a consistent estimator of y. This is essentially the weak law of large
numbers given in (3.18) of Section 3.4.7. |

7.2.5 Robust Estimators

The idea of statistical robustness has received considerable attention in recent years.
However, there is not a consensus on what defines a robust estimator. The essence of a
robust estimator is an estimator whose sampling distribution is not seriously affected by
violations of underlying assumptions. For example, when estimating the average useful life
of an electronic component, one may think that an exponential distribution is being sampled
when in fact a gamma or Weibull distribution is being sampled. If the estimation of the
unknown parameter is not seriously affected by the fact that an incorrect distribution is
being assumed, the estimator is robust. The concept of robustness has also been used to
refer to the ability of a particular estimator to provide reasonable estimates when atypical
observations are encountered in the sample. For example, if the largest value in a sample is
made 1000 times larger, the sample median remains the same in both the sample with the
original value and in the sample where the value is 1000 times larger than the largest value
in the original sample. In this sense, the median is a robust estimator.

In particular, the median provides a robust measure of center whenever the underlying
distribution is skewed. In a similar fashion, a robust measure of variability is the median
absolute deviation (MAD). The MAD is defined as

MAD = median|x; — sample median|. (7.15)

When working with normal distributions, a robust estimator of o is MAD1, where MAD1 =
O.o}WMAD' The value 0.6745 corresponds to the 75" percentile of a N (0, 1) distribution
(z0.75 = 0.6745). When working with S, the default value returned when working with the
function mad () corresponds to the definition of MAD1. To compute the MAD as defined

in (7.15), use the S option constant=1 inside the mad () function.

Example 7.9 A botanist interested in studying the effects of a new herbicide on trifolium
repens (white clover) measures and records the stem lengths in centimeters of ten specimens
as 5.3, 2.8, 3.4, 7.2, 8.3, 1.7, 6.2, 9.3, 3.2, and 5.9. Compute the mean, median, standard
deviation, and MAD. Suppose the botanist makes a field error and records an 83 instead
of an 8.3. What effect will the recording error have on the computed quantities?

Solution: The stem measurements are entered without the recording error in the vector
steml (in increasing order) and the stem measurements with the recording error in the
vector stem2. That is, stem2 has an 83 rather than an 8.3.

> steml <- ¢(1.7, 2.8, 3.2, 3.4, 5.3,
> stem2 <- ¢(1.7, 2.8, 3.2, 3.4, 5.3,
> c(mean(steml), sqrt(var(steml)))
[1] 5.330000 2.516634

> c(mean(stem2), sqrt(var(stem2)))
[1] 12.80000 24.77185

> c(median(steml), mad(steml, constant = 1))
[1] 5.6 2.3

5.9, 6.2, 7.2, 8.3, 9.3)
5.9, 6.2, 7.2, 83, 9.3)

>
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> c(median(stem2), mad(stem2, constant = 1))

[1] 5.6 2.3

> median(abs(steml - median(steml)))
[1] 2.3

> median(abs(stem2 - median(stem2)))
[1] 2.3

Note that the mean and standard deviation of stem1 (5.33, 2.52) are dramatically different
from the mean and standard deviation of stem2 (12.8, 24.77). However, the median and
MAD (5.6, 2.3) are the same for the values in both steml and stem2. What has been
demonstrated is the robustness of the median and the MAD to outliers. |

7.3 Point Estimation Techniques

Section 7.2 discussed several ways to measure the “goodness” of an estimator. In what
follows, the framework for deriving estimators is provided. In general, these topics are
intertwined. Specifically two methods are considered: the method of moments and the
method of maximum likelihood. Before proceeding further, some notation is emphasized.
Recall that capital letters are used to denote random variables. Specifically, the information
in a random sample X7, X5,..., X,, is used to make inferences about the unknown 6. The
observed values of the random sample are denoted x1, xs, . .., x,. Further, a random sample
X1, Xs,..., X, is referred to with the boldface X and the observed values in a random
sample z1, 9, ..., z, with the boldface x. The joint pdf of X, X5,..., X, is given by

f(x]0) = f(x1,29,...,2,]0)
" (7.16)

= f(21]0) x f(@2]0) x - x f(x3]0) = [ [ £(x:l6).

i=1

7.3.1 Method of Moments Estimators

The idea behind the method of moments is to equate population moments about the
origin to their corresponding sample moments, where the r*? sample moment about the
origin, denoted m,., is defined as

177.
=N X7 7.17
me 3K (1.7

and subsequently to solve for estimators of the unknown parameters. Recall that the "
population moment about the origin of a random variable X, denoted «.., was defined in
(3.6) as E[X"]. Tt follows that a, = E[X"] =Y 2, aP(X = x;) for discrete X, and that
ar = E[X"] = ffooo 2" f(z) dx for continuous X. Specifically, given a random sample
X1,Xs,..., X, from a population with pdf f(x|61,6a,...,60k), the method of moments
estimators, denoted 6; for i = 1, ..., k, are found by equating the first k population moments
about the origin to their corresponding sample moments and solving the resulting system
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of simultaneous equations:

a1(91,...,6;€) = 1mi
042(015' 7016) = ma

(7.18)
ak(al,...,ek) = Mg

The method of moments is an appealing technique for deriving estimators due to its
simplicity and to the fact that method of moments estimators are consistent. In fact, the
theoretical justification for equating the sample moments to the population moments is that,
under certain conditions, it can be shown that the sample moments converge in probability
to the population moments and that the sample moments about the origin are unbiased
estimators of their corresponding population moments.

Example 7.10 Given a random sample of size n from a Bin(1, ) population, find the
method of moments estimator of .

Solution: The first sample moment m; is X, and the first population moment about zero
for the binomial random variable is oy = E [X!] = 1 7. By equating the first population
moment to the first sample moment,

011(7'() :WSgX:ml,
which implies that the method of moments estimator for 7 is 7 = X. |

Example 7.11 Given a random sample of size m from a Bin(n, ) population, find the
method of moments estimator of .

Solution: The first sample moment m; is X, and the first population moment about zero
for the binomial random variable is a1 = E [X'] = n - 7. By equating the first population
moment to the first sample moment,

ay(m) = nr =X = mi,

3'|><I

which implies that the method of moments estimator for 7 is 7 =

Example 7.12 Given a random sample of size n from a Pois(\) population, find the
method of moments estimator of .

Solution: The first sample moment m; is X, and the first population moment about
zero for a Poisson random variable is a; = F [X 1] = \. By equating the first population
moment to the first sample moment,

set =

a1(7r) =)A= X:ml,
which implies that the method of moments estimator for \ is A= X. |

Example 7.13 Given a random sample of size n from a N(u,o) population, find the
method of moments estimators of y and o2.
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Solution: The first and second sample moments m; and msy are X and %Z?:l Xf,
respectively. The first and second population moments about zero for a normal random
variable are a3 = F [Xl] =pand ag = F [XZ} = 02 + p?. By equating the first two
population moments to the first two sample moments,

041(%02) =p=X=m

(7.19)

2 2 ZSCtl - 2
, = + _—E X7 = ms.
ag(ua) o 1% Tli—,l ' "

Solving the system of equations in (7.19) yields i = X and o2 = % S X2 — X’ = S2? as
the method of moments estimators for 4 and o2, respectively. |

Example 7.14 Given a random sample of size n from a Gamma(a, A) population, find

the method of moments estimators of a and .

Solution: According to (4.16), £ [X] = ¢, and Var[X] = {3 for a random variable X
that follows a gamma distribution. The first and second sample moments m; and my are
X and %2?21 X2, respectively. The first and second population moments for a gamma

random variable are o
o =FE[X'] = T

and
a o afl+a)
et T e o

respectively. By equating the first two population moments to the first two sample moments,

as = E[X*] =0+ E[X]

a(a, A) = Sét)_(zml

>|Q

(7.20)

a(l+a) set 1 w—
ozz(a,)\):% :t;ZXEZmQ
i=1

When it is recalled that S2 = M, the system of equations in (7.20) can be solved to

— T
obtain a = % and A\ = S—X; as the method of moments estimators for « and A, respectively.

7.3.2 Likelihood and Maximum Likelihood Estimators

When sampling from a population described by a pdf f(z]0), knowledge of 6 provides
knowledge of the entire population. The idea behind maximum likelihood is to select the
value for # that makes the observed data most likely under the assumed probability model.
When z1, x2, ..., x, are the observed values of a random variable X from a population with
parameter 6, the notation L(f|x) = f(x|6) will be used to indicate that the distribution
depends on the parameter 6, and x to indicate the distribution is dependent on the observed
values from the sample. Once the sample values are observed, L(f|x) can still be evaluated
in a formal sense, although it no longer has a probability interpretation (in the discrete
case) as does (7.16). L(f|x) is the likelihood function of # for x and is denoted by

n

L(Ox) = f(x10) = [ f(@il0) = f(2110) x f(2]0) x --- x f(2n]6). (7.21)

i=1
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The key difference between (7.16) and (7.21) is that the joint pdf given in (7.16) is a function
of x for a given 0 and the likelihood function given in (7.21) is a function of € for given x.

The value of 6 that maximizes L(0|x) is called the maximum likelihood estimate
(mle) of #. Another way to think of the mle is the mode of the likelihood function. The
maximum likelihood estimate is denoted as é(x)7 and the maximum likelihood estimator
(MLE), a statistic, as 6 (X). In general, the likelihood function may be difficult to manipu-
late, and it is usually more convenient to work with the natural logarithm of L(f|x), called
the log-likelihood function, since it converts products into sums. Finding the value 6
that maximizes the log-likelihood function (In L(f]x)) is equivalent to finding the value of 6
that maximizes L(0|x) since the natural logarithm is a monotonically increasing function.
If L(0|x) is differentiable with respect to 0, a possible mle is the solution to

d(In L(0]x))

00
Note that a possible mle is the solution to (7.22). A possible solution is used since a solution
to (7.22) is a necessary but not sufficient condition for the solution to be a maximum, since

the solution to (7.22) could be a local or global minimum, a local or global maximum, or a
point of inflection. Recall that stationary points where,

9*(In L(6]x))
062 ‘9:é(x)

= 0. (7.22)

<0, (7.23)

indicate some type of maximum, either local or global. Further, the solution to (7.22) does
not include points on the boundaries of the parameter space. Consequently, when evaluating
the maximum of L(f|x), the boundaries of the parameter space © as well as solutions to
(7.22) must be evaluated.

Example 7.15 Given a random sample of size n taken from a Bernoulli(m) distribu-
tion, compute the maximum likelihood estimate and maximum likelihood estimator of the
parameter .

Solution: According to (4.2), the pdf for X ~ Bernoulli(r) is

P(X =z|r) =n°(1 — m)'™=,

where x takes on the value 1 with probability 7 and 0 with probability 1 — 7. The likelihood
function for the n observed values is

L(n|x) = H (1 — )t

Taking the natural logarithm of the likelihood function gives

In L(7|x) = In lHﬂ' ) Il] Zln (1 —m)t

i [ziln7 + (1 — ;) In(1 — 7)]. (7.24)

=1

To find the value that maximizes (7.24), take the first-order partial derivative of In L(m|x)
with respect to m and set the answer equal to zero:

Oln L(m|x) Srix o m—y set

on T 1—-m

(7.25)



Point Estimation 259

The solution to (7.25) is m = # = z. For m = T to be a maximum, the second-order
partial derivative of the log-likelihood function must be negative at m# = Z. The second-order

partial derivative is
PInL(nlx) -3l w n—3

on? 2 (1 —m)2

Evaluating the second-order partial derivative at m = Z yields

9*InL(n|x) —nZ _(h—nxz) N
om? 22 (1-2?

n

11—z’

which is less than zero since 0 < < 1 and n > 0. Finally, since the values of the likelihood
function at the boundaries of the parameter space, # = 0 and # = 1, are 0, it follows
that @ = & is the value that maximizes the likelihood function. Tlie maximum likelihood
estimate 7(x) = Z and the maximum likelihood estimator #(X) = X. |

Example 7.16 [> MLEs with S: Oriental Cockroaches<] A laboratory is interested
in testing a new child-friendly pesticide on Blatta orientalis (oriental cockroaches). The
scientists from the lab apply the new pesticide to 81 randomly selected Blatta orientalis
oothecae (eggs). The results from the experiment are stored in the data frame Roacheggs
in the variable eggs. A zero in the variable eggs indicates that nothing hatched from the
egg while a 1 indicates the birth of a cockroach. Assuming the selected Blatta orientalis
eggs are representative of the population of Blatta orientalis eggs, estimate the proportion
of Blatta orientalis eggs that result in a birth after being sprayed with the child-friendly
pesticide. Use either n1m() in R or nlmin() in S-PLUS to solve the problem iteratively and
to produce a graph of the log-likelihood function.

Solution: Note that whether or not a Blatta orientalis egg hatches is a Bernoulli trial
with unknown parameter 7. Using the maximum likelihood estimate from Example 7.15 on
the facing page, 77(x) = z = 0.21.

> attach(Roacheggs)

> str(Roacheggs) # Note: str(object) only works in R
‘data.frame’: 81 obs. of 1 variable:

$ eggs:num 0010000001 ...

> mean(eggs)

[1] 0.2098765

Both R and S-PLUS have iterative procedures that will minimize a given function. The
minimization function in R is n1m (), while the minimization function in S-PLUS is n1lmin ().
The required arguments for both functions are £ () and p, where £ () is the function to
be minimized and p is a vector of initial values for the parameter(s). Since both nlm()
and nlmin() are minimization procedures and finding a maximum likelihood estimate is
a maximization procedure, the functions nlm() and nlmin() on the negative of the log-
likelihood function are used.

> p <- seq(0.1, 0.9, 0.001)

> negloglike <- function(p){-(sum(eggs)*log(p) + sum(l-eggs)*log(1i-p))}
> nlm(negloglike, 0.2)

$minimum

[1] 41.61724

$estimate
[1] 0.2098760
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$gradient
[1] 1.421085e-08

$code
[1] 1

$iterations
[1] 4

Warning messages:
1: In log(l - p) : NaNs produced
2: In nlm(negloglike, 0.2) : NA/Inf replaced by maximum positive value

The following generic S code can be used to represent graphically the log-likelihood function
in a fashion similar to Figure 7.3:

par(pty = "s")

p <- seq(0.1, 0.9, 0.001)

plot(p, - negloglike(p), type = "n", ylab = "L")
abline(v = mean(eggs), col = 13, 1lwd = 3)
lines(p, - negloglike(p), col = 6, lwd = 3)

V V. V Vv V

0.2 0.4 0.6 0.8

FIGURE 7.3: Illustration of the In L(7|x) function for Example 7.16 W

The function optimize (), available in both R and S-PLUS, approximates a local opti-
mum of a continuous univariate function (£) within a given interval. The function searches
the user-provided interval for either a minimum (default) or maximum of the function f.
To solve Example 7.16 with optimize (), enter

> loglike <- function(p){(sum(eggs)*log(p) + sum(l-eggs) * log(1l-p))}
> optimize(f=loglike, interval=c(0,1), maximum=TRUE)

$maximum

[1] 0.2098906

$objective
[1] -41.61724
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Example 7.17 Let X;,Xo,...,X,, be a random sample from a Bin(n, ) population.
Compute the maximum likelihood estimator and the maximum likelihood estimate for the
parameter 7. Verify your answer with simulation by generating 1000 random values from a
Bin(n = 3,7 = 0.5) population.

Solution: The likelihood function is

Cr(n
L — X; 1 _ n—r;
b =TT (1)1
= (n>ﬂ'zl(1 — )T X X (xn )71'””’“(1 — )T, (7.26)
and the log-likelihood function is

In L(xlx) = In [ﬁ (1)~ w)”%i] - ém () -mr=]

i=1
~ i [m (;) +ailnm 4 (n— 2;)In(1 - w)] . (7.27)

Next, look for the value that maximizes the log-likelihood function by taking the first-order
partial derivative of (7.27) and setting the answer to zero:

OlnL(rm|x) St omn—Y sot

or ™ 1—7 (7.28)

The solution to (7.28) is 7 = Z%—;r = £. For m = £ to be a maximum, the second-order
partial derivative of the log-likelihood function must be negative at 7 = . The second-order
partial derivative is

02 In L(7|x) B —Z?il T; mn—zﬁlxi

on? 2 (1 —m)2
Evaluating the second-order partial derivative at = = % and using the substitution
S @ = mz yields
*mnL(n|x)  m& mn—mi
2 T N2 z
br (2 (=%
2 = 2 2
mn m(n — mn mn
=—— - (,2):—7— — < 0.
T (n—2) T n—=zm
n2

Finally, since the values of the likelihood function at the boundaries of the parameter

space, 7 = 0 and m = 1, are 0, it follows that 7 = % is the value that maximizes

the likelihood function. The maximum likelihood estimate 7(x) = £ and the maximum

likelihood estimator 7#(X) = <.

To simulate m = Z%—;I = %, generate 1000 random values from a Bin(n = 3,7 = 0.5)
population. Pay particular attention to the fact that n = 3 and m = 1000.
Calculation of m = Z;;—;I

> set.seed(23)
> sum(rbinom (1000, 3, 0.5))/(1000 * 3)
[1] 0.5063333
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Calculation of m =

3|8

> set.seed(23)
> mean(rbinom (1000, 3, 0.5))/3
[1] 0.5063333 |

Example 7.18 Let X;,Xs,...,X,, be a random sample from a Pois(\) population.
Compute the maximum likelihood estimator and the maximum likelihood estimate for the
parameter A. Verify your answer with simulation by generating 1000 random values from a
Pois(\ = 5) population.

Solution: The likelihood function is

n

e—)\ x; T
L) =] AT - I1 A - (7.29)

and the log-likelihood function is

In L(\|x) = In [e—m I1 %l =—nA+ ) znd—> In(z)). (7.30)
i=1 i=1 i—1

Next, look for the value that maximizes the log-likelihood function by taking the first-order
partial derivative of (7.30) and setting the answer to zero:

dln L(A|x) Doiy T set

OA
The solution to (7.31) is A = Z?:le = Z. For A\ = Z to be a maximum, the second-order

partial derivative of the log-likelihood function must be negative at A = Z. The second-order
partial derivative is

= —n+ 0. (7.31)

0% 1In L(\x) o Z?:l T;

ON? N A2
Evaluating the second-order partial derivative at A = Z yields

0?2 In L(A\|x) nr _ n
oz z

Finally, since the values of the likelihood function at the boundaries of the parameter
space, A = 0 and A = oo, are 0, it follows that A = Z is the value that maximizes
the likelihood function. The maximum likelihood estimate S\(X) = Z and the maximum
likelihood estimator A(X) = X.

To simulate A(x) = Z, generate 1000 random values from a Pois(\ = 5) population:

> set.seed(99)
> mean(rpois (1000, 5))
[1] 4.986 |

Example 7.19 A box contains five pieces of candy. Some of the candies are alcoholic,
and some are not. In an attempt to estimate the proportion of alcoholic candies, a sample
of size n = 3 is taken with replacement that results in (a, a, n) (two alcoholic candies and
one non-alcoholic candy). Write out the maximum likelihood function and use it to select
the maximum likelihood estimate of 7, the true proportion of alcoholic candies.
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Solution: The possible values for 7 are g, %, %, %, %, and % Since there is at least one
alcoholic candy and there is at least one non-alcoholic candy, the values 7 = 0 and 7 = 1
must be ruled out. In this case, the observed sample values are x=(a, a, n). The likelihood
function is

L(r|x) = f(x|m)
= f(alm) x f(alm) x f(n|m).

Box |7 | L(rla, a, n)
aaaan | 4| 4.4.1=.8
agann | 2| 2.2.2 =18
aannn % %%%:11_225
annnn | (.14 = 4

Since the value 7 = 2 maximizes the likelihood function, consider #(x) = 2 to be the

maximum likelihood estimate for the proportion of candies that are alcoholic.

Example 7.20 > General MLE < The random variable X can take on the values 0,
1, 2, and 3 with probabilities P(X = 0) = p3, P(X = 1) = (1 — p)p?, P(X = 2) = (1 — p)?,
and P(X = 3) = 2p(1 — p), where 0 < p < 1.

(a) Do the given probabilities for the random variable X satisfy the conditions for a
probability distribution of X7

(b) Find the maximum likelihood estimate for p if a random sample of size n = 150 resulted
in a 0 twenty-four times, a 1 fifty-four times, a 2 thirty-two times, and a 3 forty times.

(¢) Graph the log-likelihood function and determine its maximum using either the function
nlm() or the function nlmin().

Solution: The answers are as follows:

(a) For the distribution of X to be a valid pdf, it must satisfy the following two conditions:
(1) p(x) >0 for all x.

(2) ¥, p(@) = 1.

Condition (1) is satisfied since 0 < p < 1. Condition (2) is also satisfied since

> plz)=p°+ 1 —pp°+ (1 —p)°+2p(1—p)
=p*+p? —p*+1+p* —2p+2p—2p° = 1.
(b) The likelihood function is
24 54 32
Liplx) = ()] [ =p)p*] " [(1 = p)*]” [2p(1 = p)]*
_ 910,220(1 _ 158
and the log-likelihood function is

In[L(p|x)] =401n2 + 220Inp + 158 In(1 — p). (7.32)
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Next, look for the value that maximizes the log-likelihood function by taking the first-order
partial derivative of (7.32) with respect to p and setting the answer equal to zero:

Oln[L(p[x)] _ 220 158 et

- 7.33
Jp p 1-p (7.33)

The solution to (7.33) is p = 0.58. In order for p = 0.58 to be a maximum, the second-order
partial derivative of (7.32) with respect to p must be negative. Since

92 In [L(7|x)] 220 158
—_— = - for all
op> P> (1-p)? < Uforallp,
this value is a global maximum. Therefore, the maximum likelihood estimate of p, p(x) =
0.58.

(¢) Generic S code to graph the log-likelihood function depicted in Figure 7.4 is

par(pty = "s")
p <- seq(0.01, 0.99, 0.001)
loglike <- function(p)

{40 * log(2) - 220 * log(p) - 158 * log(l - p)}
plot(p, - loglike(p), type = "n")
lines(p, - loglike(p), col = 6, lwd = 3)
abline(v = 0.58, col = 13, 1lwd = 3)

V V V + V V V

In L(p|x)
-6?0 -4?0

-800
1

-1000

FIGURE 7.4: Tllustration of the In L(p|x) function for Example 7.20
To compute the maximum of the log-likelihood function, use the command nlm(loglike,
0.001) with R and the command nlmin(loglike, 0.001) with S-PLUS:

> nlm(loglike, 0.001)$estimate #R
[1] 0.58201
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Warning messages:

In log(l - p) : NaNs produced

In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value

In log(l - p) : NaNs produced

In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value

In log(l - p) : NaNs produced

In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value

In log(l - p) : NaNs produced

In nlm(loglike, 0.001) : NA/Inf replaced by maximum positive value [

0 ~NO O WN -

Example 7.21 A farmer cans and sells mild and hot peppers at the local market. The
farmer recently hired an assistant to label his products. The assistant is new to working
with peppers and has mislabeled some of the hot peppers as mild peppers. The farmer
performs a random check of 100 of the mild pepper cans labeled by the assistant to assess
his work. Out of the 100 cans labeled mild peppers, it turns out that 8 are actually hot

peppers.

(a) Which of the following proportions, 0.05, 0.08, or 0.10, maximizes the likelihood func-
tion?

(b) What is the maximum likelihood estimate for the proportion of cans the assistant has
mislabeled?

Solution: The answers are as follows:

(a) First define the random variable X as the number of mislabeled cans. In this definition
of the random variable X, it follows that n = 100 and m = 1 since X ~ Bin(100,0).
The likelihood function for a random sample of size m from a Bin(n,w) population was

computed in (7.26) as
L(xx) =[] (x)w (1 —m)ne

i=1

Since m = 1 here, it follows that the likelihood function is

Ln|x) = (;‘) (1 — 7).

Consequently, the value for 7 that maximizes

P(X = 8|r) = (120) (1)

is the solution to the problem. The likelihoods for the three values of 7 are
100 8 92
P(X = 8/0.05) = 3 0.05% - (1 — 0.05)” = 0.0648709,

100

P(X = 8/0.08) = < X

>0.088 (1 —0.08)% = 0.1455185,

and 100
P(X = 8/0.10) = ( < )0.108 (1 —0.10)%? = 0.1148230.

Conclude that the value w = 0.08 is the value that maximizes the likelihood function among
the three values of w provided.
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(b) Recall that the maximum likelihood estimator for a binomial distribution was computed

in Example 7.17 on page 261 as 7(X) = Z%—}f Therefore, the maximum likelihood

estimate for the proportion of mislabeled cans is 7 (x) = =55 = 0.08. |

Example 7.22 > I.I.D. Uniform Random Variables<l Suppose {Xi,Xs,...,X,}
is a random sample from a Unif (0, 8) distribution. Find the maximum likelihood estimator

of #. Find the maximum likelihood estimate for a randomly generated sample of 1000
Unif (0,3) random variables.

Solution: According to (4.9), the pdf of a random variable X ~ Unif (0, 6) is
1
f(z|0) = 7 0<z<o.
The likelihood function is

L(0]x) = 7 for0<az <0,0<2,<0,...,0<z, <0

0 otherwise.

In this problem, the standard calculus approach fails since the maximum of the likelihood
function occurs at a point of discontinuity. Consider the graph in Figure 7.5. Clearly 9%
is maximized for small values of #. However, the likelihood function is only defined for
6 > max(x;). Specifically, if § < max(x;), L(0|x) = 0. It follows then that the maximum
likelihood estimator is 6(X) = max(X;). The following code finds the maximum likelihood
estimate of 1000 randomly generated Unif (0, 3) random variables:

> set.seed(2)
> max (runif (1000, 0, 3))
[1] 2.99781

Thus, even though a standard calculus approach could not be used, the mle 2.998667 is
quite good for 6 = 3.

L(0]x)

max(x;) 0

FIGURE 7.5: Tllustration of the likelihood function in Example 7.22
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Example 7.23 Suppose {X1, Xs,...,X,} is a random sample from a N(u, o) distribu-
tion, where ¢ is assumed known. Find the maximum likelihood estimator of .

Solution: According to (4.23), the pdf of a random variable X ~ N(u,0) is

1 (@—w?
fz) = e T, —oo< 1< 0.

V2mo?

The likelihood function is

1 (ZL w2

EERI 7.34
1V 271'02 ( )

Liplx) =[] F(as) =
=1 =

and the log-likelihood function is

3

In L(plx) = - In(27) — n In(o?) — M—lu) (7.35)
2 2 202
To find the value of p that maximizes In L(u|x), take the first-order partial derivative of
(7.35) with respect to u, set the answer equal to zero, and solve. The first-order partial
derivative of In L(u|x) with respect to p is

Oln L(p, 0?|x) _ >y (i — ) set
G _ e et () (7.36)

The solution to (7.36) is u = # = z. For p = z to be a maximum, the second-order
partial derivative of the log-likelihood function with respect to ;1 must be negative at p = Z.
The second-order partial derivative of (7.35) is

0% In L(p|x) n

Since (7.34) goes to zero at Foo, the boundary values, it follows that p = 7 is a global
maximum. Consequently, the maximum likelihood estimator of p is fi(X) = X, and the
maximum likelihood estimate of p is ji(x) = 7. |

Example 7.24 Suppose {X1, Xs,..., X, } is a random sample from a N(u, o) distribu-
tion, where y is assumed known. Find the maximum likelihood estimator of o2.

Solution: According to (4.23), the pdf of a random variable X ~ N(u,0) is

1 (z—p)?
f(z) = e 37, —00<x< 00

V2mo?

The likelihood function is

L(02|x):Hf(a:i)=H ! e‘%, (7.38)

and the log-likelihood function is

In L(0?|x) = —g In(27) — gln(az) _ X ) (7.39)
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To find the value of 0% that maximizes In L(0?|x), take the first-order partial derivative of
(7.39) with respect to o2, set the answer equal to zero, and solve. The first-order partial
derivative of In L(0?|x) with respect to o is

OmLino®x) om0 (@ ) e
= _ i= = 0. 7.40
do? 202 + 204 (7.40)
The solution to (7.40) is 02 = M For ¢% = Z?l(+“) to be a max1mum the

second-order partlal derivative of the log- hkehhood function with respect to o must be
negative at 02 = s2. For notational ease, let = o2 in (7.39) so that

In L(r|x) = In L(0?|x) = —g In(27) — gln(r) - w (7.41)

The second-order partial derivative of (7.41) is

0%In L(r|x n _ n L7
% =3 2 _ Z(ml —p)?r—3 <0. (7.42)

gr - Z(;zcZ —u)? <0. (7.43)

By substituting the value for the mle, r =
since

n N2
W, the ? above the < can be removed

n )2
Since (7.38) goes to zero at 4oo, the boundary values, it follows that o2 = Zzl(+“)
is a global maximum. Consequently, the maximum likelihood estimator of o2 is 02(X) =

B (Xem? S @imw? -

, and the maximum likelihood estimate of o2 is o2(x) = =

Example 7.25 Use random.seed(33) to generate 1000 N(4,1) random variables. Write
log-likelihood functions for the simulated random variables and verify that the simulated
maximum likelihood estimates for p and o2 are reasonably close to the true parameters.
Produce side-by-side graphs of In L(u|x) and In L(0?|x) indicating where the simulated
maximum occurs in each graph.

Solution: The code provided is for R. For the given code to function in S-PLUS, replace
the function nlm() with nlmin().

> par(pty = "s")

> par(mfrow = c(1, 2))

> n <- 1000

> sigma <- 1

> set.seed(33)

> x <- rnorm(n, 4, sigma)

> mu <- seq(2, 6, length = n)

> negloglikemu <- function(mu)

+ { n/2 * log(2 * pi) + n/2 * log(sigma~2) + (sum(x~2)
+ - 2 % mu * sum(x) + n * mu"2)/(2 * sigma”2)}
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> EM <- nlm(negloglikemu, 2)$estimate

> EM

[1] 4.019708

> mul <- 4

> negloglike <- function(sigma2)

+ {n/2 * log(2 * pi) + n/2 * log(sigma2) +
+ (sum((x - mul)~2))/(2 * sigma2)}

> ES <- nlm(negloglike, 0.5)$estimate

Warning messages:

1: In log(sigma2) : NaNs produced

2: In nlm(negloglike, 0.5) : NA/Inf replaced by maximum positive value
> ES

[1] 1.000426

Note that the maximum likelihood estimates for y and o2 from the simulation are 4.019708
and 1.000426, respectively, which are reasonably close to the parameters ju = 4 and o2 = 1.

Code for the graph of In L(u|x) versus pu is

> plot(mu, -negloglikemu(mu), type="n")
> lines(mu, -negloglikemu(mu), lwd=2)
> abline(v = EM, 1ty = 2)

Code for the graph of In L(0?|x) versus o? is

> sigma2 <- seq(0.5, 1.5, length = 1000)
> plot(sigma2, -negloglike(sigma2), type="n")

> lines(sigma2, -negloglike(sigma2), lwd=2)
> abline(v = ES, 1lty=2)
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FIGURE 7.6: lustration of In L(x|x) and In L(0?|x)
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7.3.2.1 Fisher Information

Now that proficiency has been gained at calculating point estimates and estimators with
maximum likelihood procedures, some measure of the variance of these estimators is desired.
Investigating a quantity known as the Fisher information or simply the information
number will give this measure. The Fisher information is the amount of information that
an observable random variable X carries about an unknown parameter ¢, upon which the
likelihood function of X, L(6|x), depends. This is the quantity

(%@XM ) 21 . (7.44)

This expression was briefly mentioned as the denominator of (7.6), the CRLB. However,

the denominator of (7.6) used the form
dln £(X10)\>
(o)) .

which is equivalent to (7.44) for random samples. Assume that X is a continuous random
variable with pdf f(z|0) (discrete random variables are handled in a similar fashion by
exchanging integration for summation), where the following regularity conditions for f(x|6)
are satisfied:

E

n-E

1. The limits of support of f(x|f) do not depend on .
2. The first two derivatives of f(z|f) exist.
3. The order of integration and differentiation can be exchanged.

The inverse of the information number provides a bound for the variance of the best unbiased
estimator of #. Consequently, it makes sense to say the information number for a random
sample of size n denoted I,,(0) is the variance of the first-order partial derivative of the
log-likelihood function. That is,

10 = v [ (2150 a0

When a random sample X1, Xo,..., X, is taken from a pdf f(z|f), recall that f(x|6) =
[T, f(;0) so that In f(x|f) = >_""_, In f(z;]#). When the random sample is of size n = 1,
the Fisher information is denoted as simply I(6), which is defined as

1(6) = Var K%&XWH . (7.47)

Since the random variables are independent, it should be clear that I,,(0) = nI(0). The two
common forms of expressing the information number for a random sample of size n are

(alnf(xw)ﬂ — nl(6) = nE (alngéxw)ﬂ | (7.48)

06
1o = |22 gy [(PIIID)]

The form of the problem will often dictate which expression is easier to compute, as will

be seen in the examples. The astute reader will have noticed that the equivalence of (7.48)
and (7.49) was not shown, nor was the equivalence of (7.46) to (7.48) and (7.49).

I,(0) =FE

and
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Example 7.26 Given the pdf of a normal distribution with unknown mean p and known
variance o2, find the Fisher information for y using both (7.48) and (7.49) given a random
sample of size n from said normal distribution.

Solution: According to (4.23), the pdf of a random variable X ~ N(u,0) is

1 (z—p)?
flx) = e 37, —0o<a< 00

V2mo?

The likelihood function is

L) = [[ 0 =] m% ,

i=1 i=1
and the log-likelihood function is

__n n 2 i (@i — 1)
In L(px) = —3 In(27) — B In(c”) — ==y
Note that
Oln f(zlp) _ (x—p)
o o2
and
Olnflely) 1

ou? o2

Using (7.48), write
Ol f(X|u)
L,(p) =nE || —————=
) =np | (222
=nE (X;“>2 0 GOl | [(XZ“)Q] :’L‘f -
o o o o
Using (7.49), write
0% 1n f(X|0)
In(p) = —nE || —F55—
0 ==e (=)
1 n
Consequently, the smaller the variance o2, the more information there is in a random
sample of size n about p. |

7.3.2.2 Fisher Information for Several Parameters

Given a random variable X with pdf f(x|@), where 8 = (61,02, ..., 0}) is a k-dimensional
vector of parameters, denote the information matrix of @ as I(8). The (i,;)*® element of
the information matrix is is defined as

1,(0) = B Kalnégﬂe)) <8lngéj(|0))} B K%{%I@)]’ (7.50)

which is a generalization of (7.47). Likewise, when working with random samples,

I,(0)=E Kamggqe)) <8m£5('9)ﬂ = nl;;(0), (7.51)
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and
9% In f(X]0)

06;00;
are the generalizations of (7.48) and (7.49), respectively.

I,(0) = -E [ } =nl; ;(6), (7.52)

Example 7.27 Given a random sample of size n from a N(u, o) population, where 6 =
(u,02), find I,,(0).

Solution: According to (4.23), the pdf of a random variable X ~ N(u,0) is

1 _(@—w?
\/2—26 202 —o0 < x < 00.
o

fz) =

It follows then that

- 1 _@i=m?
f(x]0) = Hf (2:]0) = Hme 20,
=1

and that

In f(x]6) = ~ 5 In(2r) — 5 In(0?) - 2"=+2—“)2

Taking partial derivatives of In f(x|@) with respect to 01 = p, and 0y = o2 gives
Oln f(x|0) 30 (x—p)

86‘1 N 02 ’
P?Inf(x|6) n
90,00, o2
Ol f(x10) _  n  BLi(x— )’
00, 202 2(02)?
Pixe)  _n SLiow?
90200, 2(02)2 (02)3
Phnf(x0)  Phnf(x0)  >iLi(zi—p)
90100 00200, (@)

Using (7.52) gives

_E [82 1nf(x|9)} _E [82 lnf(X\G):|

52 In £(X|6) 80,00, 90,005
L(0)=—E | =500, | = :
Rt 8% In f(X]0) 8% In f(X|0)
_E[ 90200, ] _E{ 802005 }
or

n i1 (Xi—p)
B [_F} —-E {_GTQN}

In(o) - )

g [ p[oan  BL

(XFH)2}
)2

1
(02)®
which, upon taking expected values, becomes

0
In(e) =
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7.3.2.3 Properties of Maximum Likelihood Estimators

Now that the Fisher information has been examined and several problems have been
worked with maximum likelihood estimation, the properties of maximum likelihood estima-
tors are formally enumerated:

1. MLEs are not necessarily unbiased. For example, when sampling from a N(u, o)

population, the MLE of o2 is 02(X) = Py %, which is a biased estimator of 0.
However, although some MLEs may be biased, all MLEs are consistent, which makes
them asymptotically unbiased. Symbolically, MLEs 7 unbiased estimators; however,

MLEs = asymptotically unbiased estimators since MLEs = consistent estimators.

2. If T is a MLE of 6 and g is any function, then g(T) is the MLE of ¢g(#). This is known

as the invariance property of MLEs. For example, if X is the MLE of 6, then X % is
the MLE of 62.

3. When certain regularity conditions on f(z|6) are satisfied, and an efficient estimator
exists for the estimated parameter, the efficient estimator is the MLE of the estimated
parameter. Be careful, not all MLEs are efficient! However, if an efficient estimator
exists, the efficient estimator is also the MLE. That is, efficiency = MLE, but MLE -
efficiency necessarily.

4. Under certain regularity conditions on f(z|), the MLE 6(X) of 6 based on a sample
of size n from f(x|@) is asymptotically normally distributed with mean 6 and variance
I,,(6)~1. That is, as n — oo,

0(X) ~ N (97 \/W) . (7.53)

The statement in (7.53) is the basis for large sample hypothesis tests (covered in
Chapter 9) and confidence intervals (covered in Chapter 8).

Note that the asymptotic variance of MLEs equals the Cramér-Rao lower bound
since they are asymptotically efficient. That is;, MLEs = asymptotic efficiency.
Consequently, a reasonable approximation to the distribution of é(X) for large sample
sizes can be obtained. However, a normal distribution for é(X) cannot be guaranteed
when the sample size is small.

Example 7.28 In Example 7.17 on page 261, it was found that the sample proportion of
successes for a random sample of size m from a Bin(n, ) distribution had & = Zlﬂj—;x for

its mle. That is, the MLE for the binomial proportion 7 is #(X) = Lo X \What is the

mn
MLE for the variance of the sample proportion of successes where the random variable 7 is

DD X'i’)
defined as "

Solution: Given that X ~ Bin(n, ), the variance of X is nw(1 — 7). Therefore,
Sty Var(X;]  mnmr(l—-m) w(l—m)

~ Zﬁl Xi
Var 7] = Var{ i = - = e =

Since Var [#] is a function of the MLE #(X), it follows using the invariance property of

MLESs that the MLE of the variance of 7 is
— (1l —7)
Vi X)| = —=.
ar [ﬂ'( )] -

Note: Many texts will list the MLE of the variance of the sample proportion of successes
in a binomial distribution as @ because they use m = 1 in their definition of 7. |
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Example 7.29 > MOM and MLE for a Gamma < Given a random sample of size
n from a population with pdf

f(z|0) = —26_%, x>0, 0>0,

(a) Find an estimator of € using the method of moments.
(
(¢) Are the method of moments and maximum likelihood estimators of § unbiased?

)
b) Find an estimator of 6 using the method of maximum likelihood.
)
(d) Compute the variance of the MLE of 6.

(e) Is the MLE of 0 efficient?

Solution: Since X ~ Gamma (o =2, = %), according to (4.16), E[X] = ¢ = 26 and
Var [X] = & = 20%

(a) Equating the first population moment about the origin to the first sample moment about

the origin gives
set

011(9)—29—)( my,

which implies that the method of moments estimator for 6 is § = %
(b) The likelihood equation is given as
- H;L: T, —Xi—i®i
L(ox) = [[ flai) = 5= e 7 (7.54)
i=1
and the log-likelihood function is
Zn ) xz
In L(0|x) = —2nIn( In (z;) — ==— 7.55
n L(0]x) nIn(f —I—Z n(x;) 7 (7.55)

To find the value of 6 that maximizes In L(#|x), take the first-order partial derivative of
(7.55) with respect to 6, set the answer equal to zero, and solve. The first-order partial
derivative of In L(0|x) with respect to 6 is

OlnL(Ox)  2n | 3 @i set
— — g + T (7.56)

The solution to (7.56) is 0 = %, which agrees with the method of moments estimator.

However, to ensure that 6 = % is a maximum, the second-order partial derivative with
respect to € must be negative. The second-order partial derivative of (7.55) is

2InL 2 25" i ?
0°InL(f]x) 2n YT Zo

00> 2 63 (7:57)
By using 0 = % in (7.57), arrive at the expression
12n 2
- )_{—2” <. (7.58)

The ? above the < in (7.58) can be removed since foo f(z)dz = 0 = X > 0. Finally,

since (7.54) goes to zero as § — oo, it can be concluded that 6 = %_{ is a global maximum.
Consequently, the maximum likelihood estimator of  is 6 (X) = 2.
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(c) Since both the method of moments and the method of maximum likelihood returned
the same estimator for 6, that is, 6 (X) =60 = %, the question is

E[6(X)] = E[6] £ .
Both § and 6 (X) are therefore unbiased estimators since

N 2n - 2n

E[0(X)=E[0]=E [—]

(d) The variance of the MLE of 6 is

Var [0 (X)) = Var g] Y [2?—1 ) vorlx) o

2n 4n? dn2  2n

(e) For 6 (X) = %_( to be considered an efficient or minimum variance estimator of 6, the
variance of % must equal the CRLB. That is, does

_ & !
=5 =

n-E [(_alnggxe))z}

Since f(x]0) = ge~ 4 for x >0, and 6 > 0, it follows that In f(z|0) = Inz — 2In6 — £, and
that %émm = 15—229. Consequently,

?

Var [é (X)]

1 _ 1 B 1 B 1 B 92
21 - - m’
O1n f(X|6) X—20)\2 n- Var[X] n.262
”E[( a0 )] ”E[( 02 )} o o
and conclude that %_( is an efficient estimator of 6. |

Example 7.30 [> MLEs for Exponentials <| Given a random sample of size n from
an exponential distribution with pdf

e x>0, 6>0, (7.59)

(a) Find the MLE of 62.
(b) Show that the MLE of 62 is a biased estimator of §2.

Provide an unbiased estimator of 62.

(c
(

d) Find the variance of your MLE of 2.

)
)
)
)
(e) Find the variance of your unbiased estimator of §2.
(f)

f) Show that the variance for the MLE of 6 converges to I,,(#)~! as n — oo according to
property 4 of the Properties of MLEs on page 273.

Solution: To find the MLE of #2, there are two possibilities. First, the MLE of @ could
be found and the invariance property could be used to say that this estimate squared is the
MLE of 2. (See problem 37 of this chapter.) Second, and this is the current approach, the
MLE of 6% can be found directly.
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(a) For notational ease, use the change of variable > = p and § = /p in (7.59). The
resulting pdf using the change of variable is

1 _
—€
/P

Sk

fz) =

z>0, p>0.

The likelihood function is

Lipbo) = [ rw) = [T —=e 7% = ( ﬁ)ne*T' g (7.60)

i=1 =1

and the log-likelihood function is
(7.61)

To find the value of p that maximizes In L(p|x), take the first-order partial derivative of
(7.61) with respect to p, set the answer equal to zero, and solve. The first-order partial
derivative of In L(p|x) with respect to p is

dlnL T se
nLplx) _ o i Biset (7.62)
Op 2p 2p3

The solution to (7.62) is p = Z2. For p = Z% to be a maximum, the second-order partial
derivative of the log-likelihood function with respect to p must be negative at p = z2. The
second-order partial derivative of (7.61) is

0% In L(p|x) no 330 a7
SV LA S L ) 7.63
op? 2p? 4p% ( )

By substituting p = Z* in the right-hand side of (7.63), the ? above the < can be removed
since Z < 3Z because Z > 0 for any sample due to the fact that P(X = 0) = 0 for any

continuous distribution. Finally, since as p — oo, L(p|x) — 0, it can be concluded that the

MLE of p = 62 is p(X) = 02(X) = X .

(b) Next, show that X” is a biased estimator of #2. The casiest way to determine the
mean and variance of X_ is with moment generating functions. It is known that the
moment generating function of an exponential random variable, X, is Mx(t) = (1 — 6¢t)~L.

Furthermore, if Y = > | ¢;X; and each X; has a moment generating function My, (t),

then the moment generating function of Y is My () = [[\—, Mx,(c;it). In the case where
Y = X = Zl:Tlx, each ¢; = % For the special case of the exponential, the moment

generating function for X is

My(ﬂzMy(f)zH(l—G-%)l - <1—%>n.

n
i=1

Thus, to calculate the mean and variance of X 2, take the first through fourth derivatives
of Mx(t) and evaluate them when ¢ = 0 to find E[)_(Z} for i = 1, 2, 3, and 4. The first,
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second, third, and fourth derivatives of Mx(t), respectively, are

Mg(t) = —n (1 - %t) s %)

ey

I
~—  —

Evaluating these derivatives at ¢ = 0 gives the expected values of X to the first, second,
third, and fourth powers:

X
" 92 1
Mx(0) = (nn+ ) = E[X’]
2z 93(n+ 1)(n+2) =3
Mg (0) = ——5——= = E[X’]
4 1 2 —
M)(—?)(O): 0*(n + )(n;— )(n+3) :E[X4]
n
2
_ 1 _
Since E[XQ] = w £ 62, X7 is a biased estimator of 62.

nX>
n+1-°

(c) An unbiased estimator of % would be to use the quantity

(d) The variance of X? can be computed as E[)_(4] — (E[)_(2D2:

Var|%2] 94(n+1)(7:l: 2)(n+3) <92(nn+ 1)>2

20%(2n? + 5n + 3)
3
20*((2n +3)(n + 1))

- = (7.64)

(e) The variance of the unbiased estimator of 62 is

2

n =2
= CESIE Var[X }

. on? 260*((2n+3)(n+ 1))
~ (n+1)2 n3
~20*(2n +3)

 nn+1)

nXx’
n+1

Var
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(f) The Fisher information is computed as
9% 1n f(X|p) n 30 @
Lip)=-EB || ——2 )| = —p | — — &=l
0= |(Z5) = w55

4dp2

n  3nyp n 3 n
= — _— 5 = — —1 + - = —=.
2p? 4p3 2p? 2 4p?

Since p = 62, it follows that I,(p) = I,(0%) = 3, and that I,(6?)"! = %. Note that
the variance of the MLE estimator X~ given in (7.64) converges to I,(62)~! = 4%4
n — oo.

as

7.3.2.4 Finding Maximum Likelihood Estimators for Multiple Parameters

When the pdf contains more than one parameter, the procedure for finding the MLEs for
several parameters proceeds in a fashion analogous to the one-parameter case. Given a
vector @ = {601,0s,...,0}, the likelihood function is represented as

L(O|x)=1L(61,...,0k|x1,...,20)

= f($1|01,...,9k) X oo X f($n|91,...,9k). (765)

The value of 8 that maximizes L (6|x) is the mle of 8. In the multiple parameter case, denote
the mle of @ as 8(x) and the MLE of 8 as 8(X). As with the univariate case, typically work
with the log-likelihood function (In L(6]x)) instead of the likelihood function. If L (6]x) is
differentiable with respect to 8, a possible mle for @ are the ;s, i = 1,..., k, that solve

OIL(0]x) = 0lnf(2]0) set
891 n ; 801 -0
dIn L (0]x) set ) .
= L AN : : (7.66)
olnL(0]x) " 9ln f(x,]0) set
aﬁk N Z aek -0

=1

Just as with the univariate case, possible mles for 8 are the solutions to (7.66). Solutions to
the k equations in (7.66) are a necessary but not sufficient condition for the solutions to be
maximums. However, a sufficient condition to guarantee the solutions to (7.66) are maxima
is for the Hessian matrix (matrix whose elements are the second-order partial derivatives
with respect to the parameters being estimated) to be negative definite when evaluated at
the maximum likelihood estimators. Any symmetric p X p matrix is negative definite pro-
vided the leading principal minors (the determinants of the upper left square submatrices)
have alternating signs where the top left element in the matrix is negative. These principal
minors are denoted by D; for ¢ = 1,...,p and satisfy the following conditions: D; < 0,
Dy > 0,..., ending with D, > 0 if p is even and D, < 0 if p is odd (Casella and Berger,
1990). Furthermore, the solutions to (7.66) will yield minima when the determinants of the
leading principal minors are all positive.

Example 7.31 Given a random sample of size n from a normal distribution with unknown
mean j and variance o2, find the MLEs for u and o2.
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Solution: The pdf for a random variable X ~ N(u, o) according to (4.23) is

1 (z—m)?
2 —_ 7
T\, 0" ) = e 202
The likelihood function is
. 1 1 n Ti— 2
L, x) = [ [ £(wi) = HCG i
i=1
and the log-likelihood function is
1 n
In Ly, 0%[x) = —g In(27) — ganQ 53 2@ = ) (7.67)
i=1

To find the 8 that maximizes (7.67), take the first-order partial derivatives with respect to
0 = (11, 0?), set those first-order partial derivatives equal to zero, and solve the simultaneous
equations:

O L (p,0?x) Y0 (25 — ) set

=0
O L (0|x) set on i
8’7
Ol (po’lx) __ n  Fi(@i— ) s,
D02 T 952 204 -

The solution to the system of equations is

2 Z?:l (zi — 55)2.

u=2 and o° =
n

A sufficient condition for the values in @ to be maximums is for the Hessian matrix to be
negative definite. In this case, the Hessian matrix is

9% In L(u,02|x) 9% 1n L(um’z \x)

op? Opdo?
H =
9% In L(p,,a2|x) 9% 1n L(um’z \x)
90205 (o?)?
Specifically, the second-order partial derivatives are
9*In L (p,0%|x) _on
o2 oY
9*In L (p, 0%|x) n 1 & 9
T aer e i w) and
O?InL (pu,0?x 1 &
(—2) i Z(ﬁci — )
opdo ot~

Z?:ﬂfi_f)z —

o . 2 _
By substituting the values p = & and 0° = pm

derivatives, the Hessian matrix is expressed as

s2 in the second-order partial
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Note that H is negative definite since D1 = —% < 0 and Dy = % > 0, implying that

s%
n =2
the solutions, 4 = z and o2 = Zzl(+w)

and 0% = M can be considered global maximums since the likelihood function
goes to zero for both y = +oo and 0:2 = oo. Consequently, the MLE of 8 is written as
6(X) = (X,52), and the mle of 8 as 6(x) = (z,s2).

, are maximums. Finally, the solutions p = x

Example 7.32 Use set.seed(11) to generate 500 values from a N(2, 1) population, and
treat the generated values as a random sample of size n = 500 from a normal distribution
with unknown parameters. Find the maximum likelihood estimates for 1 and o2 based on
the generated sample.

Solution: According to the results of Example 7.31 on page 278, the MLE of 6 when
sampling from a normal distribution with unknown mean and variance is 8(X) = (X, 52).
The following S code performs the simulation:

> set.seed(11)

> n <- 500
> x <- rnorm(n, 2, 1)
> mean (x)

[1] 1.997360

> S2u <- sum((x - mean(x))~2/n)
> S2u

[1] 0.9764792

From this simulation, (x) = (1.997360,0.9764792). Another approach is to allow S to
find the values that maximize the log-likelihood function analytically using either nlm() or
nlmin(). The code that follows is for R. To compute the answer with S-PLUS, replace the
command nlm(negloglike, c(3,2))$estimate with nlmin(negloglike, c(3,2)).

> negloglike <- function(p)

+ { (n/2)*1log(2*pi) + (n/2)*log(2+p[2]) + (1/(2*p[2]))*sum((x - p[1]1)~2) }
> nlm(negloglike, c(3, 2))$estimate

[1] 1.9973587 0.9764787

Warning messages:

1: In log(2 * p[2]) : NaNs produced

2: In nlm(negloglike, c(3, 2)) : NA/Inf replaced by maximum positive value

7.3.2.5 Multi-Parameter Properties of MLEs

The four properties for a MLE 6(X) of 6 given in Section 7.3.2.3 on page 273 also apply
to a k-dimensional vector @ = (01,04, ..., 0;) of parameters. Of particular importance is the
generalization of property 4 on page 273. Specifically, property 4 on page 273 states that,
under certain regularity conditions on f(2|0), the MLE of 6(X) of 6 based on a sample of
size n is asymptotically normally distributed with mean € and variance-covariance matrix
I,(0)"!. That is,

6~ N(,I,0)"),

and the variance-covariance MLEs are

— —1
I.(6) = In(0)71|9:é(x)'



Point Estimation 281

Example 7.33 Given a random sample of size n from a N (4, o) population, find the MLE
of the variance of X and the variance of S2.

Solution: In Example 7.31 on page 278, the MLE of 8 was é(X) = ()_(, Sﬁ), and in
Example 7.27 on page 272, the Fisher information matrix was

= 0
I, (9) =
0 557
Consequently,
-1
= 0
I.(6) = In(9)71|0:é(x) =
0 5ot 0=0(X)
—1
sz 0 57—; 0
0 557 0 2
from which it can be concluded that
— 1 — 92
I:(0 =Var(X)=-2%
11(0) ar (X)) o
and 051
— =1 —

I2(0) = Var(S2) = -
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7.4 Problems

1.

Use the data from the data frame WheatSpain to answer the questions.

(a) Find the mean, median, standard deviation, and MAD of the wheat.surface.

(b) Remove the Castilla-Leon community and find again the mean, median, standard
deviation, and MAD of the same variable. Which statistics are preferred as measures
for these data? Comment on the results.

Given the estimators of the mean Ty = (X7 +2X5 4+ X3)/4 and Ty = (X7 + Xo + X3)/3,
where X1, X5, X3 is a random sample from a N(u, o) distribution, prove that 75 is more
efficient than 7.

Given a random sample of size n + 1 from a N(u, o) distribution, show that the median,
m, is roughly 64% less efficient than the sample mean for estimating the population
mean. (Hint: In large samples Var(m) = wo?/4n.)

Let X be a Bin(n, ) random variable.

(a) Find the mean squared error of the m parameter estimators 77 = X/n and Th =
(X +1)/(n+2).

(b) When n = 100 and 7 = 0.4, which estimator, T} or T5, has the smaller MSE?

(c) Plot the efficiency of T relative to T% versus m values in (0, 1) for n values from 1 to

10.

Given a random sample of size n from a I'(2, \) distribution, consider the following
X

estimators for 1/A:
27‘1—1 Xi
Ty = d Ty ===

L= M 2T on

(a) Graph the relative efficiency of T5 with regard to T for values of A from 0.01 to 100
with a sample size of 50.

(b) Interpret the graph in (a).
(
(d

)
c¢) Plot the relative efficiency of both estimators versus sample sizes from 1 to 100.
) Interpret the graph in (c).

)

e) Generalize your findings.

(
(Hint: X ~ (o, A), B[X] = a/), Var[X] = a/)2)

Consider a random variable X ~ FEzp(\) and two estimators of 1/, the expected value
of X:

_ ToX+1
=X and Tp—2z=tXitl
n+2
(a) Derive an expression for the relative efficiency of T with respect to T7.
(b) Plot eff(T»,Ty) versus n values of 1, 2, 3, 4, 20, 25, 30.

(¢) Generalize your findings.

. A baseball pitching machine launches fast balls whose speed follows a N (u, 0 = 5 km/h)

distribution. Given the independent random samples X and Y, where nx = ny = 6,



10.

11.

12.

13.

14.
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— 6 ]
(a) Show that the estimators 77 = X and T = % are unbiased estimators of p.

(b) Given the estimator T3 = 0T + (1 — 0)T5, find the value of 6 so that the MSE is a
minimum.

2
Verify that Var {%&XW} =F {(%(GXG)) } (Hint: show that FE {(7811”(;2)(‘9))} =
0.)

2
Verify that E {(%&SXW) ] =-F [(%)] (Hint: differentiate with respect to

6 the equation [ %Wf(xﬁ)dw =0.)

The probability of obtaining a tail when flipping a coin can be 7 = /5, # = 1/4, or
m =2/5. To estimate 7, the coin is flipped three times and one head is obtained on the
first flip and tails on the second and third flips. Find the maximum likelihood estimator
of 7.

A manufacturer produces needles for a sewing machine in 5 units per parcel. The parcels
are in boxes of 120 units. The manufacturer guarantees that only one out of 100 parcels
is defective; however, the owner of a store thinks that at least 4 parcels out of 100 are
defective. To solve the controversy, the manufacturer randomly chooses 18 boxes and
checks the number of defective parcels. The results follow:

Number of defective parcels: 3,1,1,2,4,2,0,1,4,1,6,2,2,3,1,4,4,2
Who is more likely to be right, the manufacturer or the store owner?
Given a random sample of size n from a geometric distribution,

(a) Find the method of moments estimator of 7.
(b) Find the maximum likelihood estimator of .

(c) Use the results from (a) and (b) to compute the method of moments and maximum
likelihood estimates from the sample {8,1,2,0,0,0,2,1,3,3}, which represents the
number of Bernoulli trials that resulted in failure before the first success in 10
experiments.

The following random samples X=(z1,...,27) and Y=(y1,...,y10) are drawn from
Pois(\) and Pois(2)), respectively:

X~Pois(\) 4 2 5 7 3 4 3
Y ~Pois2\) 6 10 1 6 3 5 5 4 7 5

(a) Derive the maximum likelihood estimator of A and calculate its variance.

(b) Compute the maximum likelihood estimate of A and its variance using the two
random samples given.

Find the maximum likelihood estimator for p if samples of size n are taken from a
N(p,0 = /) distribution.
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15.

16.

17.

18.

19.

(a) Use the maximum likelihood estimator to calculate the maximum likelihood estimate
that results from the sample

4.37, 9.30, 1.67, 1.25, 4.30, 6.97, 2.68, 5.49, 4.36, 4.46.

(b) Plot the log-likelihood function versus u for values between 4 and 5.

Given a random sample of size n from a distribution with a density function given by

1 0+1
f(rf:)=9<—> S es1,051,

T

(a) Find the method of moments and the maximum likelihood estimators of 6.

(b) Find the method of moments and maximum likelihood estimates of 6 for the sample
{3,4,2,1.5,4,2,3,2,4,2}.

(c) Set the seed equal to 42, and generate 1000 values from f(x) using = 3. Compute
the method of moments and maximum likelihood estimates of 6 using the generated
values.

Given the density function
fl@)=0+1)1-2)° 0<2<1,0>0,

(a) Find the maximum likelihood estimator of  for a random sample of size n.

(b) Set the seed equal to 88, and generate 1000 values from f(z) when 6 = 2. Calculate
the maximum likelihood estimate of 6 from the generated values.

(c) How close is the maximum likelihood estimate in (b) to § = 27?

Given the density function

3
flx) = sze_zg/k, x>0, A>0,

(a) Find the maximum likelihood estimator of A for a random sample of size n.
(b) Verify that the maximum likelihood estimator is unbiased, consistent, and efficient.

(c¢) Find the method of moments estimator of A for a random sample of size n.

Given an exponential distribution with mean 6 and the following estimators of :

s X1+ Xo

0= X1, 0y= 5 s =X, 6,=min{X;, Xa, X3},

(a) Find the mean and variance of each estimator.

(b) Are any of the estimators efficient?

(¢) Which estimator is the MLE?

(d) Let X be an exponential random variable with mean 6 + 2. Which estimator is an
unbiased estimator of 67

Given a random sample of size n from a population of size N, where the items in the
population are sequentially numbered from 1 to IV,

(a) Derive the method of moments estimator of N.



20.

21.

22.
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(b) Derive the maximum likelihood estimator of N.

(¢) What are the method of moments and maximum likelihood estimates of N for this
sample of size 7: {2,5,13,6,15,9,21}7

The lifetime of a particular resistor follows an exponential distribution with parameter
A. The manufacturer claims the mean life of the resistor is 6 years. A distributor of the
resistor is suing the manufacturer for excess warranty claims, saying that the mean life
of the resistor is a mere 4 years. To resolve the issue, an accelerated test of the predicted
lifetimes of 20 resistors is undertaken, yielding the following values:

3.70 1.76 3.63 15.73 5.85 0.20 987 14.55 0.43 2.46
0.45 5.09 10.53 12.41 3.19 341 3.80 1.66 0.40 1.10

(a) The judge calls you as an expert witness to determine the validity of the suit. What
do you tell the judge?

(b) What value of A\ maximizes the probability for values reported from the experiment.

(¢) Graph the log-likelihood function versus A values ranging from 0 to 0.5.

Data frame birthwt from the MASS package has 10 variables recorded for each of 189
babies born at a U.S. hospital. The variable low takes the value 1 when the baby weighs
less than 2.5 kg and 0 otherwise.

(a) What distribution would be appropriate to model the values in low?
(b) How many babies had birth weights less than 2.5 kg?

(¢) Find the maximum likelihood estimate for the parameter of the distribution selected
in (a).

(d) Interpret the MLE found in part (c).

In 1876, Charles Darwin had his book The Effect of Cross- and Self-Fertilization in
the Vegetable Kingdom published. Darwin planted two seeds, one obtained by cross-
fertilization and the other by auto-fertilization, in two opposite but separate locations of
a pot. Self-fertilization, also called autogamy or selfing, is the fertilization of a plant with
its own pollen. Cross-fertilization, or allogamy, is the fertilization with pollen of another
plant, usually of the same species. Darwin recorded the plants’ heights in inches. The
data frame Fertilize from the PASWR package contains the data from this experiment.

Cross-fert 23.5 12.0 21.0 22.0 19.1 21.5 22.1 20.4
18.3 21.6 233 21.0 22.1 23.0 12.0

Self-fert 17.4 20.4 20.0 20.0 184 18.6 18.6 15.3
16.5 18.0 16.3 18.0 12.8 15.5 18.0

(a) Create a variable DD defined as the difference between the variables Cross-fert and
Self-fert.

(b) Perform an exploratory analysis of DD to see if DD might follow a normal distribution.

(c¢) Use the function fitdistr() found in the MASS package to obtain the maximum
likelihood estimates of 1 and o if DD did follow a normal distribution.

(d) Verify that the results from (c) are the sample mean and the uncorrected sample
standard deviation of DD.
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23.

24.

25.

26.

The lognormal distribution has the following density function:

g(w) = ———=—e 202 , w>0, —co<pu<oo, >0

where In(w) ~ N(u,0). The mean and variance of W are, respectively,

2

o2
EW]=¢el"2  and  Var[W] = e2nta’ (e —1).
Find the maximum likelihood estimators for E[W] and Var[W].
Consider the variable brain from the Animals data frame in the MASS package.

(a) Estimate with maximum likelihood techniques the mean and variance of brain.
Specifically, use the R function fitdistr () with a lognormal distribution.

(b) Suppose that brain is a lognormal variable; then the log of this variable is normal.
To check this assertion, plot the cumulative distribution function of brain versus
a lognormal cumulative distribution function. In another plot, represent the cumu-
lative distribution function of log-brain versus a normal cumulative distribution
function. Is it reasonable to assume that brain follows a lognormal distribution?

(¢) Find the mean and standard deviation of brain assuming a lognormal distribution.

(d) Repeat this exercise without the dinosaurs. Comment on the changes in the mean
and variance estimates.

The data in GD available in the PASWR package are the times until failure in hours for a
particular electronic component subjected to an accelerated stress test.

(a) Find the method of moments estimates of & and X if the data come from a I'(a, A)
distribution.

(b) Create a density histogram of times until failure. Superimpose a gamma distribution
using the estimates from part (a) over the density histogram.

(¢) Find the maximum likelihood estimates of o and A if the data come from a I'(c, \)
distribution by using the function fitdistr () from the MASS package.

(d) Create a density histogram of times until failure. Superimpose a gamma distribution
using the estimates from part (c) over the density histogram.

(e) Plot the cumulative distribution for time until failure using the ecdf () function.
Superimpose the theoretical cumulative gamma distribution using both the method
of moments and the maximum likelihood estimates of a and A\. Which estimates
appear to model the data better?

The time a client waits to be served by the mortgage specialist at a bank has density
function

1
flx) = 2—93x26_r/0 x>0,0>0.

(a) Derive the maximum likelihood estimator of @ for a random sample of size n.
(b) Show that the estimator derived in (a) is unbiased and efficient.

(¢) Derive the method of moments estimator of 6.
)

(d) If the waiting times of 15 clients are 6, 12, 15, 14, 12, 10, 8, 9, 10, 9, 8, 7, 10, 7, and
3 minutes, compute the maximum likelihood estimate of 6.
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27. If the function .
f(2;0) = kae 9" 2>0,0>0
is a density function,

Find k.

Derive the maximum likelihood estimator of € for a random sample of size n.

(a)
(b)
()

)

(d) Show that the estimators from parts (b) and (c) are both unbiased and efficient.

Derive the method of moments estimator of 6 for a random sample of size n.

28. Given the function

(a) Verify that it is a density function.

(b) Find the maximum likelihood estimators of # and 1/, for random samples of size n.
(¢) Is the maximum likelihood estimator of 6 unbiased?

(d) Find the method of moments estimators of § and 1/,.

29. The lifetime (in days) of a new 100 watt fluorescent light bulb follows an exponential
distribution with mean A. The following data are the lifetimes of 109 light bulbs:

Time bubbles

[0,50) 25
50, 100) 19
[100,150) 11
150, 200)

200, 250)
250, 300)
300,450) 22

[450,1050) 8

(a) Find the maximum likelihood estimator of \.
(b) Graph the logarithm of the likelihood function versus the parameter A and indicate
the value of A where the lifetime is maximized.

30. Given the density function

1 1—6

f(x):gx 7T, O<z<l, 0<6<o

(a) Derive the maximum likelihood estimator of € for a random sample of size n.
(b) Derive the method of moments estimator of 6 for a random sample of size n.

(¢) Show that the maximum likelihood estimator is unbiased.

31. Given the density function

f(z)zﬁxe_l 0<z<l1, 6>0
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32.

33.

34.

35.

(a) What distribution has this density function? Be sure to specify the parameter.
(b

)

) Find the maximum likelihood estimator of # for random samples of size n.
¢) Find the asymptotic variance of the maximum likelihood estimator.
)
)

(
d

(e) Calculate the maximum likelihood and method of moments estimates of ¢ for the
sample {0.1,0.7,0.5,0.85,0.9}.

Find the method of moments estimator of 6 for a random sample of size n.

Given the density function

0+1
f(x)zo(l) Ce>1,0>1

T

(a) Find the maximum likelihood estimator of 8 for a random sample of size n.
(b) Find the method of moments estimator of # for a random sample of size n.

(¢) Calculate the maximum likelihood and method of moments estimates of 6 using the
sample values {2,3,2,2.5,1,2,2,3,1,4,6,3,4.4}.

(d) Find the mean of the distribution.

(e) Estimate the mean of the distribution using the maximum likelihood estimate of 6.

Given the density function

1—6 for —1
f(x) = 2
1+60 forO<ax<

<z<0

(a) Find the maximum likelihood estimator of  for a random sample of size n.

(b) Show that the maximum likelihood estimator is unbiased and efficient.
(Hint: Denote the number of observations as ny in the sample so that 0 < z; < 1/2.)

Given the density function
f(z) = 3r0x%e " x> 0.

(a) Set the seed equal to 201, and generate a random sample of size n = 500 with § = 5.

(b) Find the sample mean and the sample variance of the random values generated in
(a).

(c¢) Graph the density function.

(d) Find the maximum likelihood estimate of 6.

(e) Plot the logarithm of the likelihood function versus 6.

Given the density function

f@)y=e @9 _co<a<u.

(a) Find the maximum likelihood and method of moments estimators of a.

(b) Are both estimators found in (a) asymptotically unbiased?



Point Estimation 289

36. Set the seed equal to 384, and generate 100 values from a (e« =3,3=2, A=0, B =
1) distribution. Assume that these values are a random sample of size 100 from a [
distribution with unknown parameters. Use maximum likelihood techniques to obtain
estimates of @ and 3 from this sample.

37. Given a random sample of size n from an exponential distribution with pdf
1 x
flx) = ge’? x>0, 6>0, (7.68)

(a) Find the MLE of 6.
(b) Given the answer in part (a), what is the MLE of 62.






Chapter 8

Confidence Intervals

8.1 Introduction

In Chapter 7, techniques to find point estimators, such as the method of moments and
maximum likelihood, were introduced as well as were criteria to evaluate the “goodness” of
an estimator. However, even the most efficient unbiased estimator is not likely to estimate
the population parameter exactly. Further, a point estimate provides no information about
the precision or reliability of the estimate. Consequently, the construction of an interval
estimate or confidence interval (CT), where the user can control the precision (width)
of the interval as well as the reliability (confidence) that the true parameter will be found
in the confidence interval, is desirable.

A (1 — «a) confidence interval for a parameter 6, denoted CI;_,(f), is constructed by
first selecting a confidence level, denoted by (1 —«) and typically expressed as a percentage,
(1 — @) -100%. The confidence level is simply a measure of the degree of reliability in the
procedure used to construct the confidence interval. Typical confidence levels are 90%, 95%,
or 99%. A confidence level of 99% implies that 99% of all samples would provide confidence
intervals that would contain 6. Clearly, it is desirable to have a high degree of reliability.
However, with increased reliability, the width of the confidence interval increases. So, the
goal is to construct a confidence interval with a width the practitioner finds useful while
maintaining a degree of reliability that is as high as possible. The relationship between the
width and confidence level in a confidence interval will become clearer once some actual
confidence interval formulas are examined. The confidence interval has two limits, a lower
limit denoted by L(X) and an upper limit denoted by U(X). The confidence level is
defined as P (¢ € [L(X),U(X)]) . That is, an interval should be constructed such that

P(LX)<0<UX))=1-a. (8.1)

It is important to note that the interval [L(X),U(X)] is a random interval since it de-
pends on the random variables of X. However, after a sample is obtained and values for
[L(X),U(X)] are calculated, the probability that the parameter  will be included in the
interval [L(x), U (x)] is either 0 or 1, depending, of course, on whether 6 is between the
lower limit L(x) and the upper limit U(x). Note that X changes to an x once there are
values, x;, for the random variables, X;. The probability the parameter 6 is contained in
the random interval [L(X),U(X)] from (8.1) is (1 — a). However, once the values for the
random variables are observed, (8.1) is written as

Clh—o(0) = [L(X)7U(X)]’ (8.2)

which is called a (1 — ) confidence interval. Consequently, it makes no sense to talk about
a (1 — «) probability interval. Frequently, the confidence level is expressed as a percentage,
and the interval is often called a (1 — «) - 100% confidence interval. A (1 — «) - 100%
confidence interval is typically interpreted as “One is (1 —a) - 100% confident 6 is contained

201



292 Probability and Statistics with R

in the interval [L(x),U(x)].” However, the word confidence in such statements applies to
the procedure used to construct the interval, not the interval itself. That is, if there were
an infinite number of samples, (1 — «) - 100% of them would contain 6.

Confidence intervals of the form [L(x),U(x)]| are referred to as two-sided confidence
intervals. However, some applications will only require a single bound. For example, only
a lower confidence bound on the mean shear strength of an aluminum tube is required to
ensure the minimum design specification for a top tube of a bicycle is met. Likewise, only
an upper confidence bound on the mean level of NOg3 in potable water is required to ensure
the maximum allowable limit is not exceeded. One-sided confidence intervals take the form

P(L(X)<0)=1-a o POH<UX))=1-aq,

depending on whether the confidence interval is a lower confidence interval, [L(x), c0), or an
upper confidence interval, (—oo, L(x)], respectively. Unless otherwise specified, a confidence
interval will refer to a two-sided confidence interval.

There are several techniques used to obtain both one-sided and two-sided confidence
intervals. One of the more popular methods for constructing confidence intervals uses pivotal
quantities. A random variable Q(X;6) is a pivotal quantity or pivot if the distribution of
@ is independent of the parameter #. A method of constructing confidence intervals using
pivots is introduced in Section 8.2.1 and is used to derived most of the confidence interval
formulas in this chapter.

8.2 Confidence Intervals for Population Means

8.2.1 Confidence Interval for the Population Mean when Sampling from
a Normal Distribution with Known Population Variance

A random sample of size n is taken from a normal distribution with mean p and variance
% To obtain a confidence interval for , recall that the sampling distribution for the sample
mean is X ~ N (u, a/n ) Using the sampling distribution of X, create the pivotal quantity

f/_g ~ N(0,1). (8.3)

Q(X;pu) =

To obtain a confidence interval with a (1 — «) confidence level, construct a region such
that the area between 2,/ and z;_4/2 is (1 — «), as shown in Figure 8.1 on the next page.
In other words,

X —
P (s < S <o1or) =10 &

Multiply both sides of (8.4) by o/+/n, to obtain

- o
P (%/2% <X-—p< Zla/Z%) =1l-a

Subtract X from both sides, multiply both sides by —1, and rearrange the inequalities, to
get

— g == g
]P)<X_Z1a/2% S,MSX—ZOM%) =1-oa.
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Za/2 Zl—a/2

FIGURE 8.1: Standard normal distribution with an area of «/2 in each tail

Consequently, the (1—«) confidence interval for 1, when sampling from a normal distribution
with known variance, is given by

_ o _ o
[$— Zlfa/Z%a T — Za/Z%] )

or, equivalently, by recognizing that z,/2 = —21_4/2, write the standard form as
o o
Cl,_ =T —2_ap—, T+ Z_ap—]| - 8.5
1 Oz(,u) |: 1 a/2 \/ﬁ 1 a/2 \/’f_l:| ( )

Note that X in the probability statement changes to Z in the confidence interval formula.
To obtain a one-sided (either upper or lower) confidence interval in a symmetric distri-
bution, proceed in a similar fashion. That is, write

Xy Xy
Pz o<2—H)—1_ ) (e N
(21 Wﬁ> . (Wﬁ“> “

and rearrange the quantities inside the probability statements to obtain

P(lug)?—kzl_a%):l—a or P(Y—zl_a%§u>:1—a

Thus,

_ o _ o
UCL_o(p) = (—oo, x—l—zlaﬁ} or LCIi_, = {x — zl,aﬁ, oo)

Note that a one-sided confidence interval can be obtained from a two-sided confidence
interval by simply changing the 2;_, /3 value to a 21—, value and replacing the lower or
upper limit with —oo or oo, respectively, depending on whether an upper or lower confidence
interval is desired.

Example 8.1 Generate 100 samples, each of size 500, from a N(0, 1) distribution. For
each of the 100 samples of size 500, calculate a 95% confidence interval for the population
mean. Finally, determine how many of the 100 intervals contain the population mean,
1 = 0. This number is the simulated confidence level.
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Solution: The function interval.plot() graphically depicts the confidence intervals
that are simulated:

> interval.plot<- function(1ll, ul){
+ y1 <= 11 ; y2<-ul; n <- length(y1l)

SUM<-sum(condition)
abline (h=0)
cat ("Number of intervals that contain O =", SUM,"\n" )}

+ plot(yl, type = "n", ylim=c(-.3,.3), xlab =" ", ylab =" ")
+ condition <~ (11 <= 0 & ul >= 0)

+  segments((1:n) [y1<0&y2>0], y1[y1<0&y2>0], (1:n) [y1<0&y2>0],

+  y2[y1<0&y2>0])

+  segments((1:n) [y1>0], y1[y1>0],(1:n) [y1>0], y2[y1>0], col=17,
+  1lwd=8)

+  segments((1:n) [y2<0], y1[y2<0], (1:n) [y2<0], y2[y2<0], col=17,
+ 1wd=8)

+

+

+

Next, write a script that calculates the lower and upper limits of the confidence intervals.
The lower limit is indicated by 11 and the upper limit is indicated by ul in the following
script:

set.seed (402)

m<-100 # Number of samples

n<-500 # Sample size

a<-array (0, m)

11<-array (0, m)

ul<-array (0, m)

i<-0

while (i<m) {i<-i+1

al[i] <-mean(rnorm(n))

11[i] <-al[il+gnorm(0.025)*sqrt(1/n)
ul[i] <-a[i]l+qnorm(0.975)*sqrt(1/n)}
interval.plot(1l, ul)

Number of intervals that contain 0 = 95

vV + + + V V V V V V VYV

Note that this is a random simulation and consequently the number of confidence intervals
that contain zero will vary and will not always equal the expected 95. A graphical represen-
tation of confidence intervals using a different seed value with the function interval.plot ()
is found in Figure 8.2 on the facing page. A more general function that can be used
to generate random data and subsequently to create confidence intervals is the function
CIsim() from the PASWR package.

|

Example 8.2 A random sample of size 30 is taken from a normal distribution with
unknown mean p and standard deviation ¢ = 2.5. Given that 23’21 x; = 77, calculate

a 95% confidence interval for the population mean.

Solution: First, determine 7 :

Lim® Ty qy
n 30

Since the sample was taken from a normal distribution with known variance, it is permissible
to write

xr =

— g — g
P (X - 20.975% <pu< X+ Z0.975ﬁ) = 0.95.
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FIGURE 8.2: Simulated confidence intervals for the population mean when sampling from
a normal distribution with known variance

A 95% confidence interval for the mean using (8.5) is written as

2.5 2.5
S 257+ (1.96)——| .
V30 ( )\/30

In other words, one can be 95% confident that the mean, u, will be found in the interval
Cly.95(p) = [1.68,3.46]. It is important to note that the sample mean (T = 2.57) is the center
point of this interval; however, this will only be the case in symmetric distributions. |

010_95(/,6) = |2.57 — (196)

Example 8.3 [> Confidence Interval for u: Grocery Spending <| The consumer
expenditure survey, created by the U.S. Department of Labor, was administered to 30
households in Watauga County, North Carolina, to see how the cost of living in Watauga
County with respect to total dollars spent on groceries compares with other counties. The
amount of money each household spent per week on groceries is given in Table 8.1 and
stored in the data frame Grocery.

(a) Construct a 97% confidence interval for the true mean weekly grocery expenditure for
Watauga County households. Historical records indicate that the variance for grocery
expenditure per household in Watauga County is 900 dollars?.

(b) A grocery chain is considering building a new grocery story in Watauga County. How-
ever, it will only do so if it is 99% confident the average amount spent on groceries each
week is at least $105. Does a LCI.g9(yt) include $1057 I f so, what does that imply?

Table 8.1: Weekly spending in dollars (Grocery)
90.74 | 104.02 | 85.64 | 134.71 | 108.85 | 142.19 | 162.87 | 138.2 | 98.73 | 98.18
139.84 | 159.69 | 147.03 | 151.16 | 105.68 | 116.93 | 97.46 | 146.64 | 90.92 | 134.54
110.82 | 109.90 | 106.74 | 122.10 | 152.28 | 136.01 | 126.00 | 108.69 | 135.06 | 57.38
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Solution: The answers are as follows:

(a) Before using (8.5), the confidence interval formula for p with known o on page 293, it
is necessary to verify that the assumption of normality is satisfied. To do this, create a
normal quantile-quantile plot using the qgnorm() function as follows:

> attach(Grocery)
> qgnorm(groceries)
> qgqline(groceries)

Normal Q-Q Plot
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Theoretical Quantiles

FIGURE 8.3: Quantile-quantile (normal distribution) plot of weekly monies spent on
groceries for 30 randomly selected Watauga households

The resulting normal quantile-quantile plot is shown in Figure 8.3. Note that the plotted
values fall relatively close to the plotted line, indicating the assumption of normality is
reasonable. Consequently, one decides the assumption for using (8.5) on page 293 is satisfied
and continues by finding the sample mean:

S x 3619

= —— =120.63
n 30

Using the historical value of 900 for o2, the 97% confidence interval is given by

T =

_ o _ o
Clo.o7(p) = [33 - 20.985ﬁa T + 20.985 %}

= [120.63 — 211 Y2 190,63 + (2.17)—”’001 .

V30 V30

In other words, one can be 97% confident that the mean grocery spending will be found in
the interval [108.75, 132.52] dollars.
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To do this calculation with S, enter

> mean(groceries)
[1] 120.6333
> gnorm(0.03/2)

[1] -2.17009
> round(c(mean(groceries)-qnorm(1-0.03/2)*sqrt (900/30),
+ mean(groceries)+gqnorm(1-0.03/2)*sqrt (900/30)) ,2)

[1] 108.75 132.52 #97% CI

(b) Part (a) already verified that the data follow a normal distribution, so one calculates
the one-sided 99% confidence interval as

g
LCI.99(p) = [$ - ZO.QQ%? 00)

= {120.63— 23350 oo)
V30

= [107.87, )

This interval does not include $105; however, its lower limit is above $105, so the grocery
chain can be more than 99% confident the mean grocery spending is greater than $105. W

8.2.1.1 Determining Required Sample Size

Larger sample sizes generally result in narrower confidence intervals. Researchers will
often desire a confidence interval not to exceed a specific width at some predetermined level
of significance (one that usually has some practical significance to their research). The
problem addressed in this section is how to determine the minimum required sample size to
be within a given distance of ;1 when estimating the population mean with known variance,
o?. To start, recall the probability statement about j for normal distributions with known
variance in (8.6). Use this equation when working with normal populations (N (1, 0))7 as
well as with various other distributions, provided the sample size is sufficiently large:

— g —= (2
P(X—Zl_a/2%<M<X+Zl_a/2%> :1—a7 (86)

which implies

P(P?—M‘Szlam 2 =1l-a,

ﬁ)
where })? — u} is the error of estimation. In general, the error of estimation is a measure
of the goodness of the estimate. Many texts refer to the error of estimation as the margin
of error or the bound on the error. Denote this quantity by B. If one assumes the
maximum error is
_ o
B=|t—pl= Rl—a/2 =

N

one can solve for n as shown in (8.7):

n =

(21-as2)’0% _ (Zl—a/20)2 (8.7)

(T —p)? B

Consequently, any time a confidence level is specified and the value of o is known, one
can determine the required sample size, n, to be within the maximum error, B, that is
acceptable.
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Example 8.4 Determine the required sample size to estimate the true value of p within
+0.02 with a confidence level of 95% when sampling from a normal distribution with o = 0.1.

Solution: To determine the required sample size, use (8.7) as follows:

2 2 2 2
—a 1. 1
p= Froap)o” (L9601 _ oo
@— P (0.02)°
In order to have a confidence of at least 1 — «, one always takes the ceiling of n. Therefore,
the required sample size n to estimate the population mean with a 0.95 confidence level so

that the margin of error is no more than 0.02 is n = 97. |

Example 8.5 Suppose a random sample of size n from a normal distribution with un-
known mean p and standard deviation o = 5 is taken. Calculate the minimum sample size
so that one can be 95% confident the interval [Z — 1, Z 4 1] contains the true value of pu.

Solution: Given that the sample was taken from a normal distribution with known
variance, one can write
P(X—(1.96)-Z < <X+ (1.96)-= ) =0.95
) < n< 90 = 0.95.
Since one needs to be 95% confident the interval [z — 1, Z + 1] contains pu, write
P(X—-1<p<X+1)=0.95,

a

N

set 1.96 1, and solve for n given that o = 5:

n = (1.96)%(5)? = 96.04

Since a sample of 96.04 is impossible, take the ceiling of n to make sure the confidence is
at or above the specified level. Consequently, the minimum sample size to be at least 95%
confident the interval [z — 1, T + 1] contains p is n = 97 when o = 5. |

Example 8.6 > Sample Size: Defective Containers<| Ina company that produces
glass containers, the probability of producing a defective container is 7 = 0.03, and the
probability of obtaining a functional container is (1 — 7) = 0.97. Determine how many
containers need to be manufactured to guarantee that at least 100 containers are defective
with a probability of at least 0.95.

Solution: Three solutions are presented for this problem. The first is the exact answer
based on a negative binomial distribution and requires the use of a computer. The second
is an approximation that can be used in the absence of a computer. The third is the exact
answer from a (Bin(n,0.03)), the distribution approximated in (b).

(a) Let X be the number of failures prior to the r = 100*" success (defective container).
The distribution of X is NB(100,0.03). The problem requests P(X = x]100,0.03) >
0.95. That is, one must find the number x of non-defective containers to guarantee the
probability is at least 0.95 upon obtaining the 100*" defective container. The following
S code indicates the total number of containers that must be manufactured to guarantee
100 are defective with a probability over 0.95 is 3891:

> f <=0 # f= number of failures
>p<-0 # p = probability
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> s <- 100 # s = number of successes

> while(p < 0.95){

+ f<-f+1

+ p <- pnbinom(f, s, 0.03)}

> ans <- c(f + s, p) # f+s= Containers

> names(ans) <- c("Containers", "Probability")
> ans

Containers Probability
3891  0.9500444

Let the random variable X represent the number of defective containers. The distribu-
tion of X is Bin(n,0.03). Consequently,

E[X]=n7=0.03n and Var[X]=nn(l—-m)=0.0291n.

If it is assumed n is sufficiently large and the production of each container is indepen-
dent, one can approximate the distribution of X using a normal distribution where

P(X > 100) = 0.95.

Equivalently,
p X-—nr - 100 — n7 :P<Z> 100—0.03n)20.95'
Vnr(l—m) — /nr(l—7) v/0.0291n

Note that P(Z > —z1_4) = 0.95 = —z1_4 = —20.95 = —1.64, and solve the equation
100 — 0.03n

= 1.64, 8.8
v/0.0291n (8.8)

which is equivalent to solving
0.000972 — 6.07826n + 100? = 0. (8.9)

The solutions to (8.9) are n =~ 3924 or 2832. However, the value 2832 is not acceptable
since it does not satisfy (8.8). Consequently, the number of containers the factory needs
to manufacture to be 95% confident of getting at least 100 defective containers is 3924.

Let the random variable X again represent the number of defective containers. The
distribution of X is Bin(n,0.03). To solve P(X > 100) > 0.95 with S, use code similar
to what follows and keep in mind that P(X > 100) = 1 — P(X < 99). The following S
code indicates the total number of containers that must be manufactured to guarantee
100 are defective with a probability over 0.95 is 3891 when using the binomial random
variable. This agrees with the answer that was found when modeling the number of
defective containers obtained with a negative binomial random variable.

>n <-0 # Number of containers

>p<-0 # Probability

> while(p < 0.95) {

+ n<-n+1

+ p <-1 - pbinom(99, n, 0.03)}

> ans <- c(n, p)

> names(ans) <- c("Containers", "Probability")
> ans

Containers Probability
3891  0.9500444 |
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The confidence intervals discussed in the remainder of this chapter are commonly used
confidence intervals based, for the most part, on the normal distribution. When constructing
confidence intervals, if historical evidence does not support normality or the text narrative
does not explicitly specify the sample information was collected from a normal distribution,
one should not blindly use techniques that require the normality assumption! Checking
normality assumptions graphically with normal quantile-quantile plots as discussed in Sec-
tion 4.3.7 on page 158 should become a habit.

8.2.2 Confidence Interval for the Population Mean when Sampling from
a Normal Distribution with Unknown Population Variance

Suppose a random sample of size n is taken from a normal distribution with unknown
mean 4 and unknown variance o2. To construct a confidence interval for u, use the pivotal
quantity

Qi = Y1)

Operating in a similar fashion to the derivation of the confidence interval for p, using (8.3)
from Section 8.2.1, one obtains the interval

~tp_1.

_ s 5
Cli_o(p) = [95 - 751—04/2;71—1%, TH+t_a/2n-1 ﬁ} . (8.10)

Example 8.7 A random sample of size 12 is taken from a population that follows a
N (u, o) distribution where the value for o is unknown. Given:

12 12
> =619, and Y af =450,
=1 =1

determine a 90% confidence interval for the population mean.

Solution: First find the sample mean and the sample variance.

" @ 6L
jzzzzilx:ﬁ:am, and
" 12
@ o Zima % —nat 450 - (12)(516)° _ ) oo
p— 12-1

The sample standard deviation is s = 3.44 and t.95;11 = 1.8. Using (8.10),

3.44 3.44
cI = |5.16 — (1.8) ==, 5.16 + (1.8) =—| = [3.37, 6.95].

One is 90% confident the population mean lies in [3.37, 6.95]. The value tg.95,11 can be
found by using the S command qt (0.95,11).

Example 8.8 > Confidence Interval for : House Prices <| Estimate the mean
house price for three-bedroom/two-bath houses in Watauga County, North Carolina. A
random sample of 14 three-bedroom/two-bath houses was taken from the Watauga County
Multiple Listing Service real estate listings (2003), and the results are reported in Table 8.2
on the next page and stored in the data frame House. Calculate a 95% confidence interval
for the average price of a three bedroom/two bath house in this county.
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Table 8.2: House prices (in thousands of dollars) for three-bedroom/two-bath houses in
Watauga County, NC (House)

Neighborhood  Price Neighborhood  Price
Valley Crucis 184.9 Blowing Rock 279.5
Valley Crucis 160.0 Valley Crucis 294.9
Valley Crucis 298.0 Blowing Rock  324.5
Blowing Rock 269.9 Blowing Rock 226.0

Parkway 189.9 Valley Crucis 329.9
Blowing Rock  229.9 Green Valley 199.9
Cove Creek 175.0 Park Valley 133.9

Solution: Before using the confidence interval formula in (8.10), one needs to verify the
assumption of normality is satisfied. Consequently, a normal quantile-quantile plot for the
values reported in Table 8.2 was constructed with the S functions qqnorm() and qqline ()
and is shown in Figure 8.4 on the next page. Since the points in Figure 8.4 fall relatively
close to the straight line, it is decided that the normality assumption for using (8.10) is
satisfied. Thus, continue by calculating the sample mean as

S @ 3296.2

= 235.44
n 14

j =
and the sample variance as

n _ 14
2o Zim @m0 P (@ - 28547 )
n—1 13

The sample standard deviation is s = 63.91, and a 95% confidence interval using (8.10) is
calculated as

s s
CI = |Z —toorsm_1——=, T+ t0 975m_1——
0.95(1) {x 0.975; 1\/5 Z + 1o.975; 1\/5]

63.91 63.91
= {235.44— (2.16)ﬁ, 235.44 + (2.16)ﬁ} = [198.54, 272.34].

Thus, one is 95% confident the mean house price falls in [198.54, 272.34] thousands of
dollars.

To construct a confidence interval for the mean with S, type

> attach(House)

> MEAN<-mean(Price)

> CT<-qt(.975,13)

> ST<-sd(price)  #stdev(Price) in S-PLUS

> round (c (MEAN-CT*ST/sqrt (14) , MEAN+CT*ST/sqrt(14)),2)
[1] 198.54 272.34

Direct construction of the confidence interval is also possible using the internal function
t.test () as shown next.
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FIGURE 8.4: Quantile-quantile plot of the asking price for 14 randomly selected three-
bedroom/two-bath houses in Watauga County, North Carolina

> t.test(Price)$conf
[1] 198.5424 272.3433
attr(,"conf.level")
[1] 0.95

Note that the function sd(object) finds the standard deviation in R but will not work
with S-PLUS. The function to find the standard deviation with S-PLUS is stdev(object).
The default confidence level is 95% for both R and S-PLUS. To change the confidence level,
say to 90%, the argument conf.level=.90 is specified inside the t.test() command as
t.test(object, conf.level=.90)$conf. [ |

8.2.3 Confidence Interval for the Difference in Population Means when
Sampling from Independent Normal Distributions with Known
Equal Variances

Consider two normal and independent populations N(ux,ox) and N(uy,oy), where
ox = oy = o is known. If one takes random samples of sizes nx and ny, respectively, a
confidence interval for px — py is easily derived using the sampling distribution of

— 1 1
X—YwN(uX—uy,a <—+—>>,
nx ny

which provides a pivotal quantity,

(X —-Y) — (ux — py)

()

o/ —+—

nx ny

which has a standard normal distribution independent of the value of pux — py. The

(1 —«)-100% confidence interval for the difference in population means, px — py, is given
by

QX,Y;ux —py) =
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Cli_o(px — pylox = oy is known)

/7 /7 (8.11)
( y) — 21— a/20 — (E — + Z1— a/20 .
nX ny TlX nY

Example 8.9 Suppose independent random samples are taken from two normal distri-
butions N(ux,0 = 3) and N(uy,o = 3), respectively, such that ny = 15, > "% z; = 60,
ny = 22, and >, y; = 97. Calculate a 95% confidence interval for the difference in
population means (ux — py).

Solution: Since

w60 oy 97
T = 721_1 il = — =4 and g = 721_1 Y = — = 4.41,

nx 15 ny 22
the 95% confidence interval for the difference in population means (ux — py ) is calculated

using (8.11) as

Cloos (x — iy ) = | (4 — 4.41) — (1.96)(3) 115 + L (4 441) + (196)(3) L i

=[—2.38,1.56].
To calculate the confidence interval with S, key in

> round(gnorm(0.975), 2)
[1] 1.96
> round(c((4-4.41) + gnorm(0.025)*3*sqrt(1/15 + 1/22),
+ (4-4.41) + gnorm(0.975)*3*sqrt(1/15 + 1/22)), 2)
[1] -2.38 1.56

So, one is 95% confident px — uy lies in [—2.38, 1.56]. |

Example 8.10 The hardness of a piece of fruit is a good indicator of the fruit’s ripeness.
An experiment was undertaken where 17 recently picked (fresh) apples were randomly
selected and measured for hardness. Seventeen apples were also randomly selected from
a warehouse where the apples had been stored for one week. Construct a 95% confidence
interval for the mean difference between the hardness of fresh apples and the hardness
for apples that were picked one week ago. Assume the distributions for both recently
picked apples and for apples picked one week ago have known and equal variances of 2.25
(kg/ meter” )2. The data are provided in Table 8.3 on the following page and can be found
in the data frame Apple.

Solution: Before the confidence interval formula in (8.11) can be used, one needs to make
sure the assumption of normality is satisfied. Consequently, a normal quantile-quantile plot
for the values reported in Table 8.3 on the next page was constructed and is shown in Figure
8.5.

(Note that title and axis labels in Figure 8.5 are the R defaults and that a “Q-Q Normal
Plot” is equivalent to a normal quantile-quantile plot as discussed earlier.) Since the points
in Figure 8.5 fall relatively close to the straight lines, it is decided that the normality
assumptions for using (8.11) are satisfied.
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Table 8.3: Apple hardness measurements (Apple)

Fresh Warehouse
7.27 1 8.38 | 9.20 || 7.79 | 9.17 | 10.05
6.65 | 5.83 | 7.89 |[ 7.11 | 6.31 8.58
5.76 | 7.70 | 7.77 || 6.27 | 8.39 | 8.42
6.53 | 5.86 | 6.48 || 7.22 | 6.19 | 7.07
8.09 | 5.53 | 8.28 || 8.83 | 6.31 | 8.83
9.56 | 6.54 10.5 | 7.17
Q-Q Normal Plots
Fresh
o - | Warehouse
3
>
(¢}
o
o
[
©
[
© -
I T T T I
-2 -1 0 1 2

Theoretical Quantiles

FIGURE 8.5: Superimposed normal quantile-quantile plots of the hardness values for fresh

and warehoused apples

The R code used to produce Figure 8.5 is

attach(Apple)

par(pty = "s")

Altblue <- "#AQE2FF"
Adkblue <- "#008OFF"
fresh <- qqnorm(Fresh)
0old <- qgnorm(Warehouse)
plot(fresh,type="n"
gqqline(Fresh, col = Altblue)
gqline(Warehouse, col = Adkblue)
points(fresh, col = Altblue, pch = 16, cex
points(old, col = Adkblue, pch = 17)

V + VV V V V V V V VYV VYV

title("Q-Q Normal Plots")

,ylab="Sample Quantiles",xlab="Theoretical Quantiles")

=1.2)

legend(-1.75, 9.45, c("Fresh", "Warehouse"), col = c(Altblue, Adkblue),
text.col=c("black","black") ,pch=c(16,17),1ty=c(1,1) ,bg="gray95",cex=0.75)
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Thus, continue solving the problem by calculating the sample mean hardness for both the
fresh and warehoused apples as

"X ox;  123.25 oy 134.13
o 2=t _ _ 795 and = =LY _ — 7.89.
nx 17 ny 17
Using (8.11), the 95% confidence interval for px — uy is
1 1
010‘95 (/LX - /J,y) = (725 - 789) - (196)(15) 1—7 + ﬁ,
1 1
(7.25—7.89) + (1.96)(1.5)4/ — + — | = [-1.65,0.37].
17 17
To calculate the confidence interval with S, enter
> attach(Apple)
> str(Apple) # Only works in R
‘data.frame’: 17 obs. of 2 variables:
$ Fresh :num 7.27 6.65 5.76 6.53 8.09 9.56 8.38

$ Warehouse: num 7.79 7.11 6.27 7.22 8.83 10.5 9.17

> mean.fresh <- mean(Fresh)

> mean.fresh

[1] 7.254118

> mean.old <- mean(Warehouse)

> mean.old

[1] 7.894706

> round(c(mean.fresh - mean.old - gqnorm(0.975)*1.5*sqrt(2/17),

+ mean.fresh - mean.old + gnorm(0.975)*1.5xsqrt(2/17)),2)
(1] -1.65 0.37

Thus, one is 95% confident that the difference in mean hardness for fresh and warehoused
apples falls in the interval [—1.65, 0.37] kg/ meter?. Since this interval contains zero, one can
say that there is essentially no difference between the hardnesses for fresh and warehoused
apples. |

Note that no internal S functions such as t.test that assume unknown variances to construct
the confidence interval reported in Example 8.10 were used.

8.2.4 Confidence Interval for the Difference in Population Means when
Sampling from Independent Normal Distributions with Known
but Unequal Variances

Consider two independent normal populations, N (ux,ox) and N(uy, oy ), with known
but unequal variances 0% and o3, respectively. If one takes random samples of size nx and
ny, respectively, the confidence interval for ux — py can be constructed from knowledge of
the sampling distribution of the statistic X — Y. Since

_ o2 o2
X -Y~N | px—py, XX
nx ny

the (1 — ) - 100% confidence interval for (ux — uy) is
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Cli_o(px — pylox # oy but known)

0% o? o2 o3 (8.12)
(Z—-9)—2- a/2\[ - X+—Y (Z—9)+2- a/2\| X+ X 1.

Example 8.11 Suppose random samples of sizes nx = 50 and ny = 46 are drawn from
normal populations with standard deviations of 4.5 and 6, respectively, such that

nx ny

> ;=420 and Y y; = 405.

i=1 i=1
Construct a 97% confidence interval for px — py.

Solution: Given that

0w 420 Yy 405
T = 00— T0 =84 and y= 6~ 16 = 8.8,

the 97% confidence interval for ux — py is constructed using (8.12) as

4. 2 2
Cloor(px — py) = |(8.4—8.8) —2.17}/ ( 52) + 2—6, (8.4—8.8) +2.17

[~2.76, 1.96].

T 16

Note that since zero is contained in the interval, one concludes px is not significantly
different from py. To construct the confidence interval with S, key in

> round(qnorm(0.985), 2)
[1] 2.17
> round(c((8.4 - 8.8) - qnorm(0.985)*sqrt((4.5)°2/50 + (6)°2/46),
+ (8.4 - 8.8) + gqnorm(0.985)*sqrt((4.5)°2/50 + (6)°2/46)),2)
[1] -2.76 1.96

So, one is 97% confident that ux — py lies in [—2.76, 1.96]. |

Example 8.12 [> Confidence Interval for px — py: Calculus << Table 8.4 on
the next page and data frame Calculus provide the mathematical assessment scores for
36 students enrolled in a biostatistics course according to whether or not the students
had successfully completed a calculus course prior to enrolling in the biostatistics course.
Construct a 95% confidence interval for the difference in the means of the mathematical
assessment scores for students who had successfully completed a calculus course (X) and
of those who had not (V). Assume the distributions for X and Y have variances of 25
and 144, respectively. Determine if it is advantageous to take calculus prior to taking the
biostatistics course.

Solution: Before using the confidence interval formula in (8.12), one needs to make sure
the assumption of normality is satisfied. Consequently, a normal quantile-quantile plot
for the values reported in Table 8.4 on the facing page was constructed and is shown in
Figure 8.6 on the next page.
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Table 8.4: Mathematical assessment scores for students enrolled in a biostatistics course
(Calculus)

Y X
No Calculus Calculus
73 39 55 72 88 6482 90 8 87 86 79
57 58 75 44 76 68| 8 92 89 82 92 82
64 55 62 61 76 40| 8 87 92 85 95 90

Q-Q Normal Plots

Sample Quantiles

] A Yes Calculus
—4— No Calculus

30 40 50 60 70 80 90 100

Theoretical Quantiles

FIGURE 8.6: Superimposed normal quantile-quantile plots of the mathematical assessment
scores for students enrolled in a biostatistics course who had successfully completed calculus
and the mathematical assessment scores for students who had not successfully completed
calculus

Since the points in Figure 8.6 fall relatively close to the straight lines, one decides the
normality assumptions for using (8.12) are satisfied and continues by calculating the sam-
ple means for students who successfully completed calculus and those who have not yet
successfully completed calculus as

S @ 1565 Sy 1121

2 5604 = — 20 6261
18 15 0694 and g 13 15 020

The 95% confidence interval for (ux — py) is constructed using (8.12) as

T =

Clo.os(ppx — py) =

25 144 25 144
(86.94 — 62.61) —(1.96)/ T + T (86.94 = 62.61) + (1.96)y | o + =

= [18.33, 30.34].
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To construct the confidence interval with S, type

> attach(Calculus)

> str(Calculus) # str ONLY works in R

‘data.frame’: 18 obs. of 2 variables:

$ Yes.Calculus: num 82 90 85 87 86 79 85 92 89 82 ...
$ No.Calculus : num 73 39 55 72 88 64 57 58 75 44 ...

> mean(Yes.Calculus)

[1] 86.94444

> mean(No.Calculus)

[1] 62.61111

> round(c(mean(Yes.Calculus) - mean(No.Calculus)

+ - qnorm(0.975) *sqrt (25/18+144/18) ,
+ mean(Yes.Calculus) - mean(No.Calculus)
+ + qnorm(0.975) *sqrt (25/18+144/18)),2)

[1] 18.33 30.34

Therefore, one is 95% confident that the difference in mean assessment scores for students
who have successfully completed calculus prior to enrolling in biostatistics and those stu-
dents who have not successfully completed calculus prior to enrolling in biostatistics lies in
[18.33, 30.34]. It is advantageous to take calculus prior to taking biostatistics.

Note, once again, that the internal S function t.test was not used to construct the confidence
interval since t.test assumes one is working with unknown variances; and in Example 8.12,
the variances are known. If ¢ is unknown, use (8.16) on page 310. |

8.2.5 Confidence Interval for the Difference in Means when Sampling
from Independent Normal Distributions with Variances That Are
Unknown but Assumed Equal

Suppose random samples of size nx and ny, respectively, are taken from two normal
distributions N (ux,0) and N(uy, o), where o is unknown. To obtain a confidence interval
for ux — py, take advantage of Theorem 6.4 on page 237, which allows the use of the pivot

[(X-Y) — (ux — pv)]

1 1
(L)
nx ny

The denominator of the pivotal quantity in (8.13) is an estimator for the variance of X —Y,
where

QX,Y;ux —py) =

~ tnX‘H’LY*Q' (813)

nx — 1)S§( + (ny — 1)532/

52:(
p nx +ny — 2

(8.14)
Note that 5’2 is a pooled estimator of the variance that weights the contributions of S%
and SZ in proportlon to the respective sample sizes nx and ny. The degrees of freedom
nx +ny — 2 are denoted v, in the (1 — a) - 100% confidence interval for px — py given in
(8.15).

Cli_o(ux — py|Assuming ox = oy but unknown)

- 11 (8.15)
(T — ) — ti—a/2:,5p E—’__ (T —Y) +ti—a/2.,5p
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Example 8.13 A random sample from a N (ux, o) population is taken where

15 15
nx =15, > x;=53, and Y a7 =222
=1

i=1

Another random sample is taken from a N(uy, o) population independent of the first sample

such that
11

11
ny =11, Zyl =77, and ny = 560.
i=1 i=1

Obtain a 95% confidence interval for px — py by assuming the true but unknown variances
are equal.

Solution: The sample means and sample variances are calculated as

Y w53 5 X a? —nxa? 222 — (15)(3.53)2

. nx 15 15X nx — 1 151 :

Y™y T s S 2 — oy 560 — (11)(7)2
—e=19" _ _ — e 1= 2 = = 21.

V= Ty 7~ andsy ny —1 11-1

The pooled variance is given by

(15— DES)F(UL-DEY .,
= 24 o

where s, = 1.53. Keeping in mind that to 975,204 = 2.06, the 95% confidence interval for
wx — py is constructed using (8.15) as

1 1
Clo.os(px — py) =|(3.53 = 7) — (2.06)(1.53)/ IFRRTE

1 1

(3.53 —7) + (2.06)(1.53) 5 + 1= [—4.72, —2.22].
To construct this confidence interval with S, type
> round(qt(0.975,24), 2)
[1] 2.06
> sp <- round(sqrt((14%2.51+10%2.1)/24),2)
> sp
(1] 1.53
> round(c((3.53 - 7) - qt(0.975,24)*sp*sqrt(1/15 + 1/11),
+ (3.53 = 7) + qt(0.975,24) *sp*sqrt (1/15 + 1/11)),2)
[1] -4.72 -2.22
That is, one is 95% confident that the difference of means lies in [—4.72, —2.22]. |

Example 8.14 Given the information from Example 8.10 on page 303, construct a 95%
confidence interval for the difference in hardness between fresh and warehoused apples.
Assume the samples come from normal and independent distributions with unknown but
equal variances.
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Solution: According to the solution for Example 8.10, the sample means for fresh and

warehoused apples are & = 7.25 and y = 7.89, respectively. Next, calculate the respective
sample variances as

Z?:Xl (Tz - 53)2 leil(fl'z — 7.25)2

2
= = =1.51 d
5x ny — 1 16 an
n _ 17
2 Ezzyl(yz - y)z o 2121(% - 7~89)2 —1.79
Sy = = = 1. .
ny — 1 16

Note that the t-distribution has nx +ny —2 = 17+ 17 — 2 = 32 degrees of freedom and s,
is calculated as

=1.28.

16(1.51) + 16(1.79)
= 32

Finally, the 95% confidence interval for pux — py is calculated as

Clo.gs (px — py) = [(7.25 — 7.89) — (2.04)(1.28)4/ % + %

11
(725~ 7.89) + (2.04)(128)y | 7= + 7= | = [-1.54,0.26].

Assuming the data frame Apple is attached, this confidence interval can be constructed
with S by keying in

> t.test(Fresh, Warehouse, var.equal=TRUE)$conf
[1] -1.5382253 0.2570488

attr(, "conf.level"):

[1] 0.95

So, one is 95% confident the difference in means for fresh and warehoused apple hardness
falls in [—1.54,0.26] kg/meter”. |

8.2.6 Confidence Interval for a Difference in Means when Sampling
from Independent Normal Distributions with Variances That Are
Unknown and Unequal

If random samples of size nx and ny are drawn from two independent normal distri-
butions, say N (ux,ox) and N (uy,oy), where ox and oy are unknown and unequal, a
(1 — ) - 100% confidence interval for px — py is given by

Cli_o(px — py |[Unknown ox # oy ) =

. _ 52 52 (8.16)
(LC - y) - tl—a/Q;l/ (LC - y) + tl—a/Q;l/ X + —

The degrees of freedom, v, for (8.16) are determined by (8.17). When v does not give an
integer value, it is truncated to give a conservative approximation. “Conservative” means
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that the resulting confidence interval will have a confidence level of at least 1 — «a.

()
o nx ny
V= xS (8.17)

nyx — 1 ny — 1

The standardized test statistic in (8.18) is used to construct a confidence interval for px —
wy . The sampling distribution of (8.18) is very complicated, but Welch’s approximation of
a t,~distribution provides adequate results and will be used in this text:

TF) - (ux -
( ) — (x — py) Y (8.18)
Sk 5%

nx ny

Example 8.15 Suppose a random sample is taken from a N (ux,ox) population where

nx = 15, inzﬁ?), and 2%22338.

A second random sample is taken from a N(uy,oy) population independent from the first
sample such that

ny =11, Y y; =664, and Y y?=486.

Construct a 95% confidence interval for ux — py assuming the variances for the two
populations are unknown and unequal.

Solution: Start by calculating the sample means and sample variances for the respective
samples as well as v, the value for the degrees of freedom:

S a? —nxz® 338 — (15)(4.2)°

T=— =42 X = = =5.24
T 15 X nx — 1 15— 1
_ 66.4 S y2 —nyy? 486 — (11)(6.04)2
=—— =6.04 § = &=l = =8.47
T Sy ny — 1 111 8

Next, (8.17) is used with the sample variances and respective sample sizes to determine v:
5.24 847 ?
B 15 11
~(5.24/15)? . (8.47/11)?

14 10
The 95% confidence interval for pux — uy is constructed using (8.16) as

= 1843~ 18

5.24 8 47
Clo.os (ux — py) = [(4 2 —6.04) —to.975;,18 - T
8.47
(4.2 — 6.04) + t0.975:18 ETE ]
—[~1.84 — (2.01)(1.06), —1.84 + (2.01)(L.06)]

—[~4.06, 0.38].
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To find this confidence interval with S, enter

> round(qt(0.975,18), 2)

[1] 2.01
> round(c((4.2 - 6.04) + qt(0.025,18)*sqrt(5.24/15 + 8.47/11),
+ (4.2 - 6.04) + qt(0.975,18)*sqrt(5.24/15 + 8.47/11)), 2)

[1] -4.06 0.38
One is 95% confident the difference of means lies in [—4.06, 0.38]. |

Example 8.16 Using the information from Example 8.12, which provided the mathemat-
ical assessment scores for students enrolled in a biostatistics course according to whether
they had completed a calculus course prior to enrolling in the biostatistics course, construct
a 95% confidence interval for px — py assuming the samples are taken from distributions
where the variances are unknown and unequal (0% # 0%).

Solution: Recall from Example 8.12 that z = 86.94 and § = 62.61. Also recall that
the assumption of normality for these data seemed plausible based on the normal quantile-
quantile plot provided in Figure 8.6 on page 307. The respective sample variances are

S (i —2)2 R (4 — 86.94)2

5% = p— = T =18.64 and
n —\2 18 2
: i — -~ (y; —62.61
S% _ 21:1(9 ¥) _ szl(y ) — 174.84.
n—1 17

Next, (8.17) on the previous page is used with the sample variances and respective sample
sizes to determine v:

(18.64 N 174.84)2

18 18

_ = 20.58 ~ 20
YT (18.64/18) (7484187

17 17

The 95% confidence interval for pux — uy is constructed using (8.16) as

18.64  174.84
Clo.gs (x — py) = [(86.94 —62.61) — t0.975;20 5 + 5

18.64 174.84
.94 — 62.61 t . _—
(869 62.6 )—|— 0.975;20 13 + 18 ]
2[24.33 —(2.09)(3.28), 24.33 + (2.09)(3.28)]
2[17.48, 31.19].

Assuming the data frame Calculus is attached, the confidence interval can be constructed
directly with

> t.test(Yes.Calculus, No.Calculus, var.equal=FALSE)S$conf
[1] 17.50677 31.15990

attr(,"conf.level")

[1] 0.95

One is 95% confident that the difference of means lies in [17.48, 31.19]. Note that S can
compute quantiles in the ¢-distribution with non- integer degrees of freedom. In particular,
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S uses the exact value for v from (8.17) to find the critical value t;_, /9, in its confidence
interval computation rather than truncating the value of v. Consequently, the confidence
interval computed with 20 degrees of freedom is slightly wider than the confidence interval
S computes. |

When working with normal distributions that have unknown variances, not pooling
the variances and using (8.16) is generally the better method when the sample sizes are
the same. It is also better when the sample sizes are unequal and the larger variance is
associated with the larger sample size. Pooling the variances and using (8.15) should only
be done if one is relatively confident that the variances are equal or if the larger variance is
associated with the smaller sample size. For a summary of these methods, see Table 8.5.

Table 8.5: Methods for analyzing normal data

Condition Method Equation
Same Sample Sizes Do Not Pool Variances (8.16)
Larger Variance with Larger Sample Do Not Pool Variances (8.16)
Variances Equal Pool Variances (8.15)
Larger Variance with Smaller Sample = Pool Variances (8.15)

8.2.7 Confidence Interval for the Mean Difference when the Differences
Have a Normal Distribution

Information from two dependent distributions is often called paired or dependent
data. Paired samples have some common intrinsic features such as members of the same
family, animals from the same litter, etc. Data are also considered to be paired when
the same sample is observed at different times. For example, suppose one is interested in
evaluating the time undergraduate economic majors spend studying the first month of the
semester and how much time they spend studying the last month of the semester. To help
in the analysis, record the total time students spend studying the first and last months of
the semester. This information is considered paired data since there are two measurements
on each student. Scores recorded from a pre-test and post-test on the same group of people
are also considered to be a paired or a dependent sample. In general, when the researcher is
presented with paired samples, the standard approach is to analyze the differences between
the paired data. In other words, if the population of pairs is ((X1 Y1), (X2, Y2), .. .), analyze
the paired differences D = (X7 —Y7, Xo—Y5,...). When there is a paired sample of size np,
denote the sample differences as d = (x1 — Y1, ..., ZTnp — Ynp ). Provided the distribution of
population differences is

D ~ N (up = px — py,0opn), (8.19)

a confidence interval formula for pp when op is unknown can be constructed using the
pivotal quantity

D — H“D
Q(X; = ———— ~tp_1, 8.20
(X 10) = G~y (3.20)
where np represents the number of pairs in the sample and Sp is the standard deviation of
the differences. Using (8.20) as a pivot, a (1 —«)-100% confidence interval for the difference
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in two dependent population means, pux — py, is given as

Cli—o(px — py) = Cli—o(pup) =
_ sp - sp (8.21)
d—t1_n/omn1—, d+ti_n/2m,_1—

1—a/2np 1\/%7 +ti-a/2mp 1\/@

Example 8.17 To compare the speed differences between two different brands of work-
stations (Sun and Digital), the times each brand took to complete complex simulations
were recorded. Five complex simulations were selected, and the five selected simulations
were run on both workstations. The resulting times in minutes for the five simulations are
given in Table 8.6 and stored in data frame Sundig. Construct a 95% confidence interval
for pp, the average time difference between SUN and DIGITAL workstations. Is one of the
workstations faster than the other?

Table 8.6: Time to complete a complex simulation in minutes (Sundig)

Simulation SUN DIGITAL Difference
1 110 102 8
2 125 120 5
3 141 135 6
4 113 114 -1
5 182 175 7

Solution: Since each one of the five selected complex simulations was run on both work-
stations, these samples are dependent. The differences between the dependent samples are
d = (8,5,6,—1,7), d = 5 minutes, and sp = 3.53 minutes. Before using (8.21), one needs
to verify the distribution of differences is normal. To check the normality assumption, use
the functions qgnorm() and gqqline() on the sample differences, d. The resulting normal
quantile-quantile plot is shown in Figure 8.7 on the next page. Based on Figure 8.7, it is
not immediately clear that the distribution of differences is normal due to the outlier in the
lower left of the plot. At this point, one should look at several normal quantile-quantile
plots for samples of size five using the ntester () function. The results of using the function
ntester () on the sample differences are shown in Figure 8.8 on the facing page. After using
the ntester () function on the differences and viewing the output in Figure 8.8, one can
conclude that it is not unreasonable to assume the distribution of differences between Sun
and Digital workstations follow a normal distribution and can use (8.21) to construct the
95% confidence interval for up = psyn — ppig as follows:

_ SD - SD
CIy.95(psun — pn1c) = {d —10.975:np—1——> d + t0.975:np—1 —}

N N

_ {5 - (2.78)3'—\/5;, 5+ (2.78)3'—\/5;} — (061, 9.39].

One is 95% confident pp lies in [0.61, 9.39] minutes. Since the confidence interval does not
contain zero, one can be 95% confident that up = pusun — gpie > 0. This implies that
USUN > ppig, which means that the Digital workstation is faster than the Sun workstation.
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FIGURE 8.7: Normal quantile-quantile plot of the time differences between Sun and Digital
workstations to complete complex simulations
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FIGURE 8.8: Quantile-quantile plot of the time differences between Sun and Digital
workstations to complete complex simulations shown in the middle with normal
quantile-quantile plots of random normal data depicted on the outside plots

To verify the value tg.975.4 and to calculate a 95% confidence interval for pup with S, enter

> round(qt(0.025,4), 2)

[1] -2.78

> attach(Sundig)

> t.test (SUN, DIGITAL, paired=TRUE)$conf
[1] 0.6100548 9.3899452
attr(,"conf.level")

(1] 0.95 ]
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8.3 Confidence Intervals for Population Variances

8.3.1 Confidence Interval for the Population Variance of a Normal
Population

This section considers a normal population N (u, o) from which a random sample of size
n is taken. The confidence interval for o2 is based on the pivot

Qxi0?) = MDD e (8.22)

g

2 2
Xa/2:6 X1-a/2:6

FIGURE 8.9: Chi-square distribution with six degrees of freedom depicting the points Xi /2:6

2
and Xl—a/Q;G

The pivotal quantity (8.22) is not very robust with respect to the normality assumption.
Consequently, before constructing a confidence interval for o2, one should always check the
sample for normality using a graphical procedure such as a normal quantile-quantile plot
(qgnorm() ). Although Pearson’s x? distribution is not symmetric (see Figure 8.9), one can
use the sampling distribution of the statistic (n — 1)S2/0? and the definition of percentiles
to obtain

n—1)S2
P <Xi/2;n1 < % < X%a/?;nl) =1l-a (823)

To arrive at the standard confidence interval form for the variance, first take the recipro-
cal inside the probability statement of (8.23) as shown in (8.24). Then, multiply everything
inside the probability statement of (8.24) by (n — 1)S? to obtain the probability statement
shown in (8.25):

1 o? 1
P > > =l-a, (8.24)
(Xz/Q;nl (n B 1)82 X%a/?;nl)

P( (n-1)5* _ 5 (n—1>52> —1-a (8.25)

2 2
Xi—a/2:n—1 Xa/2:n—1
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Using the probability statement (8.25) at a fixed confidence level of (1 — «), the standard
form for the confidence interval for o2 is illustrated in (8.26). Note that the confidence
interval for the variance is not centered around the point estimate (the sample variance,

s2).

(n—1)s* (n—1)s?

2 ’ 2
Xl—a/Q;n—l on/Q;n—l

Cli_o (%) = (8.26)

Example 8.18 Construct an 80% confidence interval for 0% using the information from

Example 8.15.

Solution: Recall that the underlying distribution in Example 8.15 was assumed to be
N (ux,o0x) and the sample information provided revealed that nx = 15, = 4.2, and
s3 = 5.24. Using (8.26), the 80% confidence interval for 0% is calculated as

Clos(0%) = [(nx — sk (nx — 1)53(] _ [14(5.24) 14(5.24)]

X(2J.9;n71 ’ X(2J.1;n71 X(2J.9;14 ’ X(2J.1;14
73.36 73.36
= | ——, ——| =[3.48, 9.42].
[21.06’ 7.79 } [ ’ )

To construct this confidence interval with S, type

> round(qchisq(0.1,14), 2)

(11 7.79

> qchisq(0.9,14)

[1] 21.06

> round(c(14*5.24/qchisq(0.9,14), 14%5.24/qchisq(0.1,14)), 2)
[1] 3.48 9.42

Therefore, one is 80% confident the variance falls in [3.48, 9.42]. |

Example 8.19 The data frame barley is in the lattice package and contains yield,
variety, year, and site, giving barley yields (bushels/acre) in 1931 and 1932 for 10 varieties
of barley grown at six sites. The S-PLUS data frame barley is identical.

(a) Construct a 95% confidence interval for p, the mean barley yield in 1932.
(b) Construct a 95% confidence interval for o2, the variance of barley yield in 1932.

Solution: Start by looking at the distribution of 1932 barley yield using the functions
qgnorm() and gqqline() to create the normal quantile-quantile plot shown in Figure 8.10
on the following page. Since the values in Figure 8.10 on the next page are fairly linear, it
is decided the assumptions to use both (8.10) and (8.26) are satisfied.

(a) To construct a 95% confidence interval for u, use (8.10) as follows:

_ s _ s
Cli0.05(p) = |T — 751—0.05/2;11—1%7 T+ t1—0.05/2;n—1%

_ {31, 76— (2.00)9\’/'—2_3, 31.76 + (2.00)9'—\/%]

= [29.34, 34.19] (8.27)
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Normal Q-Q Plot
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FIGURE 8.10: Quantile-quantile plot of 1932 barley yield in bushels/acre

> library(lattice) # Not needed for S-PLUS
> attach(barley)

> n <- length(yield[year==1932])

>n

[1] 60

> mean(yield[year==1932])

[1] 31.76333

> var(yield[year==1932])

[1] 88.06803

> sd(yield[year==1932]) #S-PLUS: stdev(yield[year==1932]
[1] 9.384457

> qt(.975, n-1)

[1] 2.000995

To construct the confidence interval directly with S, key in

> t.test(yield[year==1932])$conf
[1] 29.33907 34.18759

attr(, "conf.level"):

(1] 0.95

So, one is 95% confident that the mean barley yield (bushels/acre) lies in [29.34, 34.19].

(b) To construct a 95% confidence interval for o2, use (8.26):

Clo.g5(c%) = = [63.28, 131.01].

(n—1)s> (n—1)s>| [59(88.07) 59(88.07)
B [ 82.12 ' 39.66

2 » 32
X0.975:n—1  X0.025;n—1
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To verify the previous values and construct this confidence interval with S, enter

> s2<- var(yield[year==1932])

> s2

[1] 88.06803

> Chil <- qchisq(.025,59)

> ChiL

[1] 39.66186

> ChiU <- qchisq(.975,59)

> ChilU

[1] 82.1174

> n <- length(yield[year==1932])
>n

[1] 60

> round(c((n-1)*s2/ChiU, (n-1)*s2/Chil),2)
[1] 63.28 131.01

One is 95% confident that the variance of barley yield lies in [63.28, 131.01] (bushels/acre)?.
|

8.3.2 Confidence Interval for the Ratio of Population Variances when
Sampling from Independent Normal Distributions

Now consider the construction of confidence intervals for 0% /o3 when there are two
normal and independent populations, N(ux,ox) and N(uy,oy), from which one takes
random samples of sizes nx and ny, respectively. The goal is to construct a confidence
interval for the ratio of the variances, 0% /o%. Generally, one is looking for 1 to be in
the interval, indicating that the variances are equal. To construct a confidence interval for
0% /0%, use Theorem 6.5 on page 239, which states that if one has two random samples

Xi,..., X, and Y1,...,Y,, that are taken from independent normal populations where
X ~ N(ux,ox) and Y ~ N(uy,oy), then the random variable
52 /02

By using (8.28), construct the (1 — ) probability statement shown in (8.29) and graphically
illustrated in Figure 8.11 on the next page for an F distribution with 10 and 10 degrees of
freedom:

52/ 2
<.fo¢/2ny 1lnx— 1 = 52/ _fl a/2ny —1,nx — 1) =1l-«a (829)
After multiplying everything inside the probability statement given in (8.29) by 52 , (8.30)
is used to derive the final confidence interval statement given in (8.31):
SQ 2 SQ
<.fo¢/2 ny—1lnx—1g9 52 < _2( < fla/Z;ny17nX15_§) =1—-« (830)
Oy Y
o3 5% 53
CIl—a <U_§) |:foz/2ny lnx—1"95" 2 3 fl a/2iny —1nx—1 X:| (831)
Y Sy Sy
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11—«

fa/2;10,10 flfoz/2;10,10

FIGURE 8.11: F distribution with ten and ten degrees of freedom depicting the points
fa/2;10710 and flfa/2;10710

For sheer convenience, denote the larger sample variance as s% when constructing a
confidence interval for the ratio of two population variances. Consequently, the numerator
for the ratio of the sample variances will always contain the larger of the two sample
variances. Many tables involving the F' distribution only provide values for percentiles
in the right tail. However, this does not present a problem provided one remembers that
values in the left tail of the F' distribution can be found from the values in the right tail of
an F distribution by using (8.32). Note that the order of the degrees of freedom changes in
the reciprocal.

1

flfa/Q;nfonyfl

(8.32)

foz/Z;ny—l,nX—l =

Example 8.20 Using the information from Example 8.13 on page 309, construct a 90%
confidence interval for the ratio of variances.

Solution: In Example 8.13, the larger sample variance, sg(, was 2.51, nx = 15, and
the smaller sample variance, s3-, was 2.1, ny = 11. Consequently, the 90% confidence
interval for the ratio of variances is constructed using (8.31) as shown in the following
where f0.05;10,14 =0.35 and f0.95;10,14 = 2.60:

o3 52 52 2.51 2.51
Cloo | =X ) = 1014 -2 1014 | = [(0.35)=—, (2.60)=—| = [0.42, 3.11
0.9 (0)2/> {f0.05,10,14 2 Jfo.95:10,14 2 (0.35) 57 (2:60) 7 0.42, 3.11]
(8.33)

2
To find f0.05;10,14, f0_95;10)14 and a 95% confidence interval for Z—é( with S, type
Y

> round(qf(0.05,10,14), 2)

[1] 0.35

> round(qf(0.95,10,14), 2)

[1] 2.60

> round(c(qf(0.05,10,14)*(2.51/2.1), qf(0.95,10,14)*(2.51/2.1)),2)
[1] 0.42 3.11

So, one is 90% confident the ratio of the variance lies in [0.42, 3.11]. Note that this interval
includes 1, which indicates there is not evidence to suggest the variances are different. Wl
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Example 8.21 Given the information in Table 8.3 on page 304, construct a 95% confi-
dence interval for the ratio of the variances.

Solution: According to Example 8.14, s3 = 1.51 and s = 1.79. Also recall that in
the solution to Example 8.10, a normal quantile-quantile plot was created and illustrated in
Figure 8.5 on page 304 that justified the assumptions that both fresh and warehoused apples
follow a normal distribution. Consequently, the appropriate confidence interval formula for
the ratio of the variances is given in (8.31). However, since s3. = 1.79 and s% = 1.51,
reverse s% for s? in the confidence interval formula provided in (8.31) to construct a 95%
confidence interval for the ratio of population variances:

o3 53 53

CI Y o f Y f Y

0.95 | =5~ | = [J0.025;16,16 5 f0.975;16,16 5~
Ix Sx SX (8.34)

= [(0.36)(1.19), (2.76)(1.19)] = [0.43, 3.27].

To verify the previous values and to construct a 95% confidence interval for the ratio of
variances with S, attach Apple and key in

> var (Warehouse)

[1] 1.790951

> var (Fresh)

[1] 1.510438

> round(var (Warehouse) /var (Fresh),2)

[1] 1.19
> round(qf (0.025,16,16), 2)
[1] 0.36
> round(qf(0.975,16,16), 2)
[1] 2.76

> var.test(Warehouse, Fresh)$conf
[1] 0.429396 3.274189

attr(, "conf.level"):

[1] 0.95

One is 95% confident that the ratio of variances falls in [0.43, 3.27], which indicates that a
pooled variance could be justified for confidence interval calculations regarding the means.

8.4 Confidence Intervals Based on Large Samples

Provided the sample size, n, is sufficiently large, one can take advantage of the asymp-
totic properties of maximum likelihood estimators to construct confidence intervals since,
as n — 0o,

(X)~ N (9, \/W) . (8.35)

Using (8.35), one can construct asymptotic confidence intervals of the type given in (8.36).
Note that o ) is the standard deviation of the estimator ¢ (X). Specifically, in the multi-
parameter case, 04 x) is the square root of the corresponding diagonal element of the inverse
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of the information matrix. When oy, is unknown, the estimate Er(;(x) is used in place of
Th(x)" Be sure to see that 6é(x) is calculated from the data x.

Cli-(0) = {é(x) — 21 a2 Th(x) 0) + 21 aja - U(;(X)} (8.36)

Example 8.22 Given a random sample of size 200 from an exponential distribution, find
a 90% confidence interval for 6 if it is true that

200

> @i = 400.
=1

As a reminder, the exponential distribution is

1
f(z,0) = 567517 x>0, >0 (8.37)
Solution: The reader should verify that the maximum likelihood estimator of 6 is 6(X) =
X and the variance of X is 97—12. (Hint: See Example 7.6 on page 250.) Because X is the
maximum likelihood estimator of 6, it follows that the maximum likelihood estimator of 21—2
is X{ due to the invariance property of MLEs (property 2 on page 273). From the sample

information, calculate

f(x)=z=2 and &7, =

>
no
3|8,

= 0.02.

Given that the confidence level is 0.9, 21_q/2 = 20.95 = 1.64, the 90% confidence interval
for 0 is constructed using (8.36):

Clooo(6) = |2 — 1.641/0.02, 2+ 1.641/0.02 | = [1.77, 2.23]. (8.38)
So, one is 90% confident the exponential parameter ¢ falls in [1.77, 2.23]. |

8.4.1 Confidence Interval for the Population Proportion

The maximum likelihood estimator of the population proportion 7w is P, the sample
proportion. See Example 7.15 on page 258 for the derivation of the maximum likelihood
estimator of w. To calculate the Fisher information I,,(7), use (7.49) on page 270. Since

PImL(nX) —=>" x n—>r"

on? - 72 (1 —m)? (8:39)

from Example 7.15 on page 258, by multiplying (8.39) by —1 and taking the expected value
of the result, gives

PL(xX)] L [Xr @ n— 3T
_E[ on? }_E[ 2 ]+E[ (1—m)? ]
- E n—nm
o2 (1-m)?

n n n

:;+1—7T:7T(1—7T) (8.40)
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Consequently, the Fisher information, I,,(7) !, is given in (8.41).

I(m)' = @ (8.41)

Taking advantage of the asymptotic properties of MLE estimators allows one to write

1—
ﬁ(X):PwN(W, u) as m — 00;
n
and using (8.36), one can construct a (1 — «) - 100% asymptotic confidence interval for =

as shown in (8.42) where 64 (x) = @. The confidence interval in (8.42) can also be

derived using the approximate sampling distribution of P from Section 6.5.3:

Ip(1— Ip(1—
CIlfa(Tr) = |P— Zl—a/2 2%7 p + Zl—a/Q w (842)

A more accurate confidence interval for 7w can be obtained by solving for the values that
satisfy (8.43) instead of replacing oz x) with its MLE 64 (x). Solving for the values that
satisfy (8.43) is slightly more involved but produces the confidence interval given in (8.44).
Recent research (Agresti and Coull, 1998) shows that the confidence interval in (8.44) can
be used for a wide range of parameters and sample sizes. Therefore, when working with
smaller sample sizes, the confidence interval formula in (8.44) is preferred over the confidence
interval formula (8.42) as it returns confidence intervals whose nominal confidence level is
closer to the user specified 1 — a level. If the sample size is large, le,a /2 /2n is negligible

compared to p, zf_a/2/4n2 under the square root is negligible compared to p(1 —p)/n, and
Zf,a /2 /n is negligible compared to 1. If the negligible terms are ignored, the confidence
interval formula in (8.42) emerges.

[mil—m) m(1—) [m(1—m)
( — 21— a/2 S _Z1+a/2 )—1—0& (843)

2 2
Zl_a/2 p(1—p) Fl-a/2
p+ on  Fl—a)2 n + 4n?
Clh () =

2 )
(e 5)
(8.44)

Z2
e b e o v
(1+ 1— a/2)

When S uses (8.44) to construct confidence intervals, under certain conditions, it also

applies a Yates’ continuity correction to p so that the p used in the lower limit is p;, = p— ==

2n
and the p used in the upper limit is py = p +

277,



324 Probability and Statistics with R

Example 8.23 A professor is interested in what percent of students pass an introductory
statistics class. He takes a random sample of 40 introductory statistics students and finds
that 26 passed. Help the professor construct 95% confidence intervals for the true percent
of students who pass using

(a) The asymptotic confidence interval for 7 based on the MLE of G5 (x) given in (8.42).
(b) The preferred confidence interval for smaller sample sizes given in (8.44).

(¢) The preferred confidence interval for smaller sample sizes with continuity corrections
applied to the ps (use p;, and py).

Solution: Because all of the confidence intervals are to have 95% confidence, z;_, /2 =
21-0.05/2 = 20.975 = 1.96. The sample proportion is p = 26 — 0.65.

0 ~
(a) The asymptotic confidence interval for 7 is

1-— 1-—
Clo.os(m) = |p — 20,9751/ 1%; P+ 20.9751/ y

= 10.65—1.96 (0.65)(1 — 0.65) , 0.65 + 1.96 (0.65)(1 — 0.65) 1_065

[0 502, 0.798]

To compute this interval with S, enter

> p <- 26/40

> z <- qnorm(.975)

> n <- 40

> round(z,2) # z_(0.975)

[1] 1.96

> round(c(p - z*sqrt(p*(1 - p)/n), p + z*sqrt(p*(1 - p)/n)),3)
[1] 0.502 0.798

(b) The preferred confidence interval for smaller sample sizes is

2
+ Ploa/2 21w (1 p) + 27 Fl-a/2
010.95(77) _ p 2n 1—a/2 Tan?

(1+ 1— a/2> ’

p+zl a/2+21, /2 p(1— P)_|_ i Fl_a/2

“4n2
<1 + 1 a/2)

1.962 0.65( 1 O 65) 1.962
0.65 + %jaoy 196\/ >+ e
(1+ 149062) ’
1. 96 0. 65(1 0.65) 1.962
0.65 + H2 +1.96,/ o
1.962
(1 + 40 )

= [0.495, 0.779]
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To compute this interval with S, key in

> round(prop.test (26,40, correct=FALSE)$conf,3)
[1] 0.495 0.779
attr(,"conf.level")

[1] 0.95
(c) Using the values p, = p— 5, = 0.65— 5557 = 0.6375 and py = p+ 5, = 0.65+ 35057 =
0.6625, the confidence interval is
pr(=pp) | Zi-ay2
+
010.95 (ﬂ') _ brL n < 2\/ )n 4n? ’
—a/2

pU+ 1 D</2 +Zl /2\/;DU(1—PU) + zf—ﬂ/2

n 4n?2

==

0.6375(1—0.6375) .962
0.6375 + %% — 1.96\/ - + @00

(1++45°) ’

0.6625 + H207 +1. 96\/ Q00250 _0.8025) | Lot
2
(1+25)

= [0.483, 0.789)

The interval with continuity correction is computed with S by typing

> round(prop.test (26,40, correct=TRUE)$conf,3)
[1] 0.483 0.789

attr(,"conf.level")

[1] 0.95

So, depending on which confidence interval the professor prefers, he can be 95% con-
fident that the proportion of students who pass lies in [0.502, 0.798], [0.495, 0.779], or
[0.483, 0.789].

Example 8.24 A computer firm would like to construct three confidence intervals for
the proportion of supermarkets that use a computerized database to manage their ware-
houses. Suppose 200 supermarkets are surveyed and 157 of the 200 supermarkets have
computerized inventories. Construct 90%, 95%, and 99% confidence intervals for the true
proportion of supermarkets that use a computerized database to manage the inventory of
their warehouses.

Solution: Since p = 3 = 0.785, a (1 — a) - 100% confidence interval for 7 can be

constructed using (8.42) as follows:

CIl_a(ﬂ') =

(0.785)(0.215) (0.785)(0.215)
0.785 — 21021/ So0 0785+ 210 500
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Making appropriate substitutions for z;_, /o in (8.45) yields

Clo.00() = [0.785 — 1.645(0.03), 0.785 + 1.645(0.03)] = [0.74, 0.83]
Clo.05(m) = [0.785 — 1.960(0.03), 0.785 + 1.960(0.03)] = [0.73,0.84]
Clo.90(m) = [0.785 — 2.576(0.03), 0.785 + 2.576(0.03)] = [0.71,0.86]

The computer firm is 90% confident the population proportion of supermarkets that use a
computerized database to manage their warehouses lies in [0.74,0.83], 95% confident this
population proportion lies in [0.73,0.84], and 99% confident this population proportion lies
in [0.71,0.86]. Take special note that the widths of the confidence intervals increase as the
confidence level increases. To find these confidence intervals using the confidence interval
formula in (8.44) with S, enter

> round(prop.test (157, 200, conf.level=0.90, correct=FALSE)$conf,2)

[1] 0.73 0.83

> round(prop.test (157, 200, conf.level=0.95, correct=FALSE)$conf,2)

[1] 0.72 0.84

> round(prop.test (157, 200, conf.level=0.99, correct=FALSE)$conf,2)

[1] 0.70 0.85 m

Example 8.25 > Confidence Interval and Sample Size for m < The Department
of Agriculture wants to estimate the proportion of rural farm owners that are under 40 years
of age. They take a random sample of 2000 farms and find that 400 of the 2000 owners are
under the age of 40.

(a) Construct a 95% confidence interval for 7 using the asymptotic confidence interval for
7 based on the MLE of 64 (k) given in (8.42).

(b) Determine the required sample size so that the maximum margin of error is within 0.015
of the true value of 7 for a 95% confidence level.

Solution: Note that p = 240% = 0.20.
(a) A 95% confidence interval for 7 using (8.42) is

]_ _
Clo.95(m) = — 21-0.05/2 \/ s D+ 21-0.05/2 \/ y
/0 —-0.2)
= 2— (1. 2+ (1.
0 96) 2000 » 02+ (1.96) 2000

— [0.182, 0.218].

To verify the confidence interval with S, type

> p <- 400/2000

> n <- 2000

> z <- qnorm(.975)

> round(z,2)

[1] 1.96

> round(c(p-z*sqrt(p*(1-p)/n), p+z*sqrt(p*(1-p)/n)),3)
[1] 0.182 0.218
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(b) In order to construct a confidence interval such that the maximum margin of error does
not exceed 0.015, one needs to ensure that

p(1—p)

(1.96) -

< 0.015. (8.46)

To maximize the margin of error, use p = % regardless of any prior information concerning
p. Using a value for p of % will ensure the margin of error is maximized at a given confidence
level. To see why this is true, consider plotting p x (1 — p) versus p. This can be done by

typing

> p <- seq(0, 1, 0.001)
> plot(p, p*x(1-p), type="1")

Consequently, solving (8.46) for n yields 4268.4. To guarantee the maximum margin of
error is within 0.015 at a 95% confidence level, always take the ceiling of n (use the next
largest integer). In this case, a sample of size 4269 will guarantee the maximum margin of
error will be less than 0.015 at a 95% confidence level. That is,

(3) (3)

4269

(1.96) = 0.01499902 < 0.015. -

8.4.2 Confidence Interval for a Difference in Population Proportions

In this section, the focus is on two populations, X and Y, from which random samples
of sizes nx and ny, respectively, are taken. If mx and my are the population proportions
of successes and Px and Py are the respective sample proportions of successes, then the
resulting sampling distributions of Px and Py, provided nx and ny are sufficiently large,
are approximately normal. That is,

1-— 1-—
Px ~ N | 7y, M and Py ~ N | 7y, M

nx ny

Since the sampling distributions of both Px and Py are approximately normal, the sampling
distribution for the difference between Px and Py will also be approximately normal.
Specifically,

1—7rx) + 7Ty(1 —7Ty)
nx ny

Py — Py A N [ 7x — 7y, \/”X( (8.47)

according to Theorem 5.1 on page 176.

Using a similar approach to the one presented for the construction of a confidence interval
for the difference between two means, construct a (1 — a) - 100% asymptotic confidence
interval for mx — my as shown in (8.48). The rationale for replacing mx and my with

rx(l-—mx) + 7ry(1llf7ry)

px and py in \/ oy
estimators (property 2 on page 273), where 7y = Px and &y = Py.

is the invariance property of maximum likelihood
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1-— 1—
Cli_o(mx —7my) = |(px —py) — Zla/?\/pX( Px) + py(1=py) ,
nx ny

(8.48)

1-— 1-—
(px —py) + Zl—a/Q\/pX( Px) + py{1—py)
nx ny

It is generally advisable to use the continuity correction %(% %) with (8.48)
anytime
1/1 1
lpx —py| > 5 <— + —) : (8.49)
nx ny
The continuity correction is subtracted and added to the lower and upper confidence
limits of (8.48), respectively. The S function prop.test() automatically applies the con-
tinuity correction when (8.49) is satisfied provided the user does not issue the argument

correct=FALSE.

Example 8.26 A company wants to see if a certain change in the process for manufac-
turing component parts is beneficial. Samples are taken using both the existing and the
new procedure to determine if the new process results in an improvement. The first sample
is taken before the change has been implemented, and the second sample is taken once the
change has been implemented. If 70 of 1400 elements are found to be defective in the first
sample and 90 of 2000 elements are found to be defective from the second sample, find a
95% confidence interval for the true difference in the proportion of defective components
between the existing and the new processes.

Solution: The sample proportions of successes are px = 11% = 0.05 and py = % =
0.045. Using (8.48), the 95% confidence interval for the true difference in the proportion
of defective components between the existing and the new processes is given in (8.50).
Since the confidence interval contains 0, there is no reason to suspect the new procedure
significantly reduces the proportion of defective items.

Clogs(mx —my) =

(0.05)(1—0.05)  (0.045)(1 — 0.045)
1400 2000 ’

(0.05 — 0.045) — 1.96\/

(0.05)(1 —0.05)  (0.045)(1 — 0.045)
1400 2000

(0.05 — 0.045) + 1.96\/

= [-0.0096,0.0196] (8.50)

To construct a 95% confidence interval for Tx — 7wy using (8.48), key in

> round(prop.test(c(70,90), c(1400,2000), correct=FALSE)$conf,4)
[1] -0.0096 0.0196

attr(,"conf.level")

[1] 0.95
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Since [px — py| = [0.05 — 0.045] = 0.005 > 3 (55 + 5055) = 0.0006, 0.0006 should be
subtracted from and added to the smaller and larger values reported in (8.50), respectively.
Consequently, a continuity corrected 95% confidence interval for the true difference in the
proportion of defective components between the existing and the new process is

Cly.95(mx — my) = [—0.0096 — 0.0006,0.0196 + 0.0006] = [—0.0102, 0.0202].
To produce the continuity corrected interval with S, enter

> round(prop.test(c(70,90), c(1400,2000), correct=TRUE)$conf,b4)
[1] -0.0102 0.0202
attr(,"conf.level")

[1] 0.95 N

8.4.3 Confidence Interval for the Mean of a Poisson Random Variable

Recall that a Poisson random variable counts the number of occurrences over some
period of time or region of space where the occurrences are relatively rare. When collecting
occurrences from a Poisson distribution, it follows that the sample values will have a positive
skew, since the Poisson distribution itself is skewed to the right. This will often rule out
confidence interval formulas that require normality assumptions. However, for sufficiently
large samples, one can use (8.36) on page 322 to construct confidence limits for the mean
of a Poisson distribution. When using (8.36) for confidence interval construction for the
mean of a Poisson random variable, first find the maximum likelihood estimator of A. In
Example 7.18 on page 262, the maximum likelihood estimator of A for a Poisson distribution
was found to be X. That is, A(X) = X. To calculate the Fisher information I,,(\) using
(7.49) on page 270 requires knowledge of the second-order partial derivative of the log-
likelihood function with respect to A\. This second-order partial derivative was computed in
Example 7.18 and is reproduced here for the reader’s benefit:

2ILAX) -7 @
R (8.51)

Taking the expected value of (8.51) yields the following, from which the Fisher information,
I,(\)~! = 2 is obtained:

257

nAx n

. [32 lnalj\(;\|X)}

Taking advantage of the asymptotic properties of MLE estimators allows one to write

X(X):)_(NN</\,\/§> as n — oo.

One may then use (8.36), the confidence interval formula for MLEs, to construct a (1 — «) -

100% asymptotic confidence interval for A as shown here where &;\(x) = \/% :

(8.53)

Cli_o(N\) = lw — Z1-a/2 Ea T+ 21-a/2

K
T
| I
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One could obtain a similar confidence interval by recognizing that X has a normal
distribution with parameters p and \/LTZ for large sample sizes according to the Central

Limit Theorem. Since the mean for a Poisson is A and the standard deviation of a Poisson
random variable is V), it follows that

XPois ~ N <)\7 %) .
Example 8.27 Example 4.4 on page 122 provided evidence to suggest the number of
goals scored in the regulation 90 minute periods of World Cup soccer matches from 1990
to 2002 have a Poisson distribution. Use the information in column Goals of the data set
Soccer to construct a 90% confidence interval for the mean number of goals scored during
a 90 minute regulation period.

Solution: The 90% confidence interval for A is constructed using (8.53):

_ T
, T+ 21—0.10/2\/j
n
r (8.54)
12.48 12.48
= [2.48 —1.645 232 2.48 +1.645 232

= [2.31, 2.65]

Clo.90(N) = | T — z1-0.10/2

&‘

T
n

To compute the values in (8.54) with S, attach Soccer and key in

> M<-mean(Goals, na.rm=TRUE)

> M

[1] 2.478448

> z<-gnorm(.95)

>z

[1] 1.644854

> round (c(M-z*sqrt(M/232), M+z*sqrt(M/232)),2)
[1] 2.31 2.65

So, one is 90% confident the mean number of goals scored in a World Cup soccer match lies
in [2.31, 2.65]. |
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8.5 Problems

1. Is [ — 3, T + 3] a confidence interval for the population mean of a normal distribution?
Why or why not?

2. Explain how to construct a confidence interval for the population mean of a normal
distribution with a 95% confidence level.

3. Given a random sample { X1, Xo, ..., X,,} from a normal population N(u, o), where o is
known:

(a) What is the confidence level for the interval T + 1.881\% ?

(b) What is the confidence level for the interval T 4+ 1.175\% ?

(c) What is the value of the percentile z, /5 for a 92% confidence interval?

4. Given a random sample { X1, X5, ..., X,,} from a normal population N (u, o), where o is
known, consider the confidence interval Z 4 z;_,, /2% for p.

(a) Given a fixed sample size n, explain the relationship between the confidence level
and the precision of the confidence interval.

(b) Given a confidence level (1 —a)%, explain how the precision of the confidence interval
changes with the sample size.

5. Given a normal population with known variance o2, by what factor must the sample size
be increased to reduce the length of a confidence interval for the mean by a factor of k?

6. A historic data set studied by R.A. Fisher is the measurements in centimeters of four
flower parts (sepal length, sepal width, petal length, and petal width) on 50 specimens
for each of three species of irises (Setosa, Versicolor, and Virginica). The data are named
iris in S-PLUS, and the same data can be found in R under the name iris3 (Fisher, 1936).

(a) Analyze the sepal lengths for Setosa, Versicolor, and Virginica irises, and comment
on the characteristics of their distributions. (Hint: Since the data in iris and iris3
are stored as arrays, type iris3[,1,1] if using R or iris[,1,1] if using S-PLUS to
isolate the sepal lengths for the Setosa irises.)

(b) Based on the analysis from part (a), construct an appropriate 95% confidence interval
for the mean sepal length of Setosa irises.

7. Surface-water salinity measurements were taken in a bottom-sampling project in White-
water Bay, Florida. These data are stored in the data frame Salinity in the PASWR
package. Geographic considerations lead geologists to believe that the salinity variation
should be normally distributed. If this is true, it means there is free mixing and
interchange between open marine water and fresh water entering the bay (Davis, 1986).

(a) Construct a quantile-quantile plot of the data. Does this plot rule out normality?

(b) Construct a 90% confidence interval for the mean salinity variation.
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8.

10.

11.

The survival times in weeks for 20 male rats that were exposed to a high level of radiation
are

152 152 115 109 137 88 94 77 160 165
125 40 128 123 136 101 62 153 83 69

Data are from Lawless (1982) and are stored in the data frame Rat.

(a) Construct a quantile-quantile plot of the survival times. Based on the quantile-
quantile plot, can normality be ruled out?

(b) Construct a 97% confidence interval for the average survival time for male rats
exposed to high levels of radiation.

A school psychologist administered the Stanford-Binet intelligence quotient (IQ) test in
two counties. Forty randomly selected gifted and talented students were selected from
each county. The Stanford-Binet IQ test is said to follow a normal distribution with a
mean of 100 and standard deviation of 16. The data collected are stored in the data
frame SBIQ.

Countyl County?2
130 | 126 | 139 | 126 | 124 | 149 | 124 || 127 | 125 | 127 | 132 | 139 | 132 | 125
138 | 138 | 140 | 127 | 140 | 124 | 124 || 130 | 131 | 140 | 130 | 132 | 134 | 128
121 | 125 | 134 | 121 | 125 | 126 | 122 || 137 | 121 | 121 | 141 | 141 | 137 | 126
137 | 146 | 127 | 124 | 142 | 122 | 126 || 124 | 124 | 128 | 145 | 123 | 126 | 132
124 1 126 | 121 | 138 | 124 | 126 | 137 || 135 | 126 | 128 | 144 | 121 | 135 | 125
122 | 131 | 128 | 122 | 144 125 | 136 | 122 | 130 | 130

(a) Although the standard deviation for the Stanford-Binet IQ test is known, should it
be used? Justify.

(b) Be careful, the confidence interval formula that should be used in this situation has
not been explicitly covered yet. Construct a 90% confidence interval for the true
average 1Q difference for gifted and talented students between the two counties.

A large company wants to estimate the proportion of its accounts that are paid on time.

(a) How large a sample is needed to estimate the true proportion within 2% with a 95%
confidence level?

(b) Suppose 650 out of 800 accounts are paid on time. Construct a 99% confidence
interval for the true proportion of accounts that paid on time.

In a study conducted at Appalachian State University, students used digital oral ther-
mometers to record their temperatures each day they came to class. A randomly selected
day of student temperatures is provided in the following table and in the data frame
StatTemps. Information is also provided with regard to subject gender and the hour of
the day when the students’ temperatures were measured.
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8 a.m. Class 9 a.m. Class

Males 92.7194.1 | 96.5 || 94.1 | 96.0 | 98.2
93.2197.1]93.7| 96.5| 944
Females | 96.9 | 94.0 | 93.7 || 96.5 | 94.3 | 93.9
93.9 193.5|97.0 | 96.5| 95.6 | 98.2
97.2192.0 | 96.6 | 96.4 | 96.3 | 95.1
94.9 1 92.1 97.1 1 96.6 | 96.8

(a) Construct a 95% confidence interval for the true average temperature difference
between males and females. Does the interval contain the value zero? What does
this suggest about gender temperature differences?

(b) Construct a 95% confidence interval for the true average temperature difference
between students taking their temperatures at 8 a.m. and students taking their
temperatures at 9 a.m. Give a reason why one group appears to have a higher
temperature reading.

The Cosmed K4b? is a portable metabolic system. A study at Appalachian State
University compared the metabolic values obtained from the Cosmed K4b? to those
of a reference unit (Amatek) over a range of workloads from easy to maximal to test
the validity and reliability of the Cosmed K4b2?. A small portion of the results for
VO2 (ml/kg/min) measurements taken at a 150 watt workload are stored in data frame
CosAma and in the following table:

Subject | Cosmed | Amatek || Subject | Cosmed | Amatek
1 31.71 31.20 8 30.33 27.95
2 33.96 29.15 9 30.78 29.08
3 30.03 27.88 10 30.78 28.74
4 24.42 22.79 11 31.84 28.75
5 29.07 27.00 12 22.80 20.20
6 28.42 28.09 13 28.99 29.25
7 31.90 32.66 14 30.80 29.13

(a) Construct a quantile-quantile plot for the between system differences.
(b) Are the VO2 values reported for Cosmed and Amatek independent?
(¢) Construct a 95% confidence interval for the average VO2 system difference.

Let {X1,...,X9} and {Y1,...,Y15} be two random samples from a N(ux,o) and a

N(py, o), respectively. Suppose that Z = 57.3, s3 = 8.3, § = 65.6, and s3- = 9.7. Find
a 96% confidence interval for pux, py, and pux — fy .

The water consumption in liters per family per day in a given city is a normally dis-
tributed random variable with unknown variance. Consider the following confidence
intervals for the population mean obtained from a random sample of size n:

[374.209, 545.791], [340.926, 579.074], [389.548, 530.452].
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15.

16.

17.

(a) Find the value of the sample mean.

(b) If the intervals are obtained from the same random sample, match the confidence
levels 90%, 95% and 99% with the corresponding confidence intervals.

The best-paid 20 tennis players in the world have earned millions of dollars during their
careers and are famous for having won some of the four “Grand Slam” tournaments.
Somewhat less famous players who are in positions 20 through 100 in the earnings’
rankings have also garnered large sums. The following data (in millions of dollars)
correspond to the earnings of 15 randomly selected players classified somewhere in
positions 20 through 100. They are also stored in the data frame Top20.

10.10 8.80 8.64 7.67 6.34 6.03 5.90 5.68
5.51 5.38 5.31 4.92 454 4.02 3.86

Compute a 94% confidence interval for the average earnings of players classified between
positions 20 and 100 of the ranking. (Source: http://www.atptennis.com/en/)

The following data is the amount of nuclear energy (in TOE, tons of oil equivalent)
produced in 12 randomly selected European countries during 2003. The values are also
stored in the data frame TOE.

12222 6674 15961 3994 2841 1036
1343 4608 5864 17390 22877 4457

Compute a 95% confidence interval for the 2003 mean European TOE assuming the
amount of nuclear energy is normally distributed.

A group of engineers working with physicians in a research hospital is developing a new
device to measure blood glucose levels. Based on measurements taken from patients in
a previous study, the physicians assert that the new device provides blood glucose levels
slightly higher than those provided by the old device. To corroborate their suspicion, 15
diabetic patients were randomly selected, and their blood glucose levels were measured
with both the new and the old devices. The measurements, in mg/100 ml, appear in the
following table and are stored in the data frame glucose:

Blood glucose levels

Patient Old | New Patient Old | New
Patient 1 | 182.47 | 195.64 | Patient 9 | 179.04 | 195.25
Patient 2 | 175.53 | 196.31 | Patient 10 | 180.50 | 194.48
Patient 3 | 181.71 | 190.33 | Patient 11 | 182.15 | 197.33
Patient 4 | 179.03 | 192.90 | Patient 12 | 183.55 | 193.81
Patient 5 | 177.28 | 193.24 | Patient 13 | 180.86 | 198.03
Patient 6 | 177.49 | 193.05 | Patient 14 | 180.82 | 193.31
Patient 7 | 179.54 | 193.87 | Patient 15 | 178.88 | 198.43
Patient 8 | 185.12 | 196.39

(a) Are the samples independent? Why or why not?
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(b) If the blood glucose level is a normally distributed random variable, compute a 95%
confidence interval for the difference of the population means.

(c) Use the results in (b) to decide whether or not the two devices give the same results.

The European Union is developing new policies to promote research and development
investment. A random sample of 15 countries’ investments for the years 2002 and 2003 is
taken and the results (in millions of euros) are stored in the data frame EURD and shown
in the following table:

Country 2002 2003

Belgium 5200.737 | 5177.444
Czech Republic 959.362 | 1012.579
Estonia 55.699 66.864
France 34527.000 | 34569.095
Cyprus 33.791 40.969
Latvia 41.532 37.724
Lithuania 99.642 110.580
Hungary 705.754 693.057
Malta 11.861 11.453
Portugal 1029.010 | 1019.580
Slovenia 360.419 377.435
Slovakia 148.335 169.105
Bulgaria 81.228 88.769
Croatia 270.606 291.856
Romania 183.686 202.941

(a) Compute a 95% confidence interval for the difference between 2002 and 2003 invest-
ment means.

(b) Use (a) to decide if the new policies are increasing investments.

The “Wisconsin Card Sorting Test” is widely used by psychiatrists, neurologists, and
neuropsychologists with patients who have a brain injury, neurodegenerative disease,
or a mental illness such as schizophrenia. Patients with any sort of frontal lobe lesion
generally do poorly on the test. The data frame WCST and the following table contain the
test scores from a group of 50 patients from the Virgen del Camino Hospital (Pamplona,
Spain).

23 12 31 8 19 11 36 94 6 10 22 7 18 26 35 78 11
7 28 25 17 8 20 47 5 13 28 19 7 19 38 8 15 40
19 42 17 6 8 6 11 10 19 65 13 17 5 26 15 4

(a) Use the function EDA() from the PASWR package to explore the data and decide if
normality can be assumed.
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20.

21.

22.

23.

24.

(b) What assumption(s) must be made to compute a 95% confidence interval for the
population mean?

(c) Compute the confidence interval from (b).

The following data were taken to measure the unknown pH values p of a solution in a
chemical experiment:

8.01, 8.05, 7.96, 8.04, 8.03, 8.03, 8.02, 7.98, 8.05, 8.03.

If the pH meter has a systematic error, A, and a normally distributed random error,
£ ~ N(0,0?), then it can be assumed that the observations come from a normal random
variable, X ~ N(u+ A, 0?).

(a) Compute a 95% confidence interval for 4 when A = 0 and ¢ = 0.05. Compute the
interval assuming that the variance is unknown.

(b) Repeat part (a) with A = 0.2.

When sampling from a normal distribution, what sample size will ensure that the interval
7 + s attains at least a 95% confidence level?

Let {X1,...,X,} be a simple random sample from a normal distribution N(u, o), and
consider the following random variables:

X = 1r§nl_1£1n{xi}, Y = 11;1?<Xn{a:i}.

(a) Set the seed value at 69, and generate m = 100 samples of size n = 5 from a normal
population N(u = 5,0 = 2). Compute the number of intervals of the types [X,Y]
containing the real value p = 5. If the theoretical coverage of these intervals is
94% for a sample of size n = 5, do the empirical results agree with the theoretical
coverage?

(b) Set the seed value at 18, and generate m = 100 samples of size n = 5 from a normal
population N(pu = 5,0 = 2). Compute the confidence intervals of the type [X,Y]
and [)_( + 20,03%, X+ 20,97\%}. Construct a plot with the length of both types of
intervals. Repeat the exercise with samples of size n = 50. Which type of confidence
interval is preferred? Why?

Given the following data

25.3 238 275 232 245 253 246 26.8 259 29.2

(a) State the assumption(s) needed to construct a confidence interval for the population
variance.

(b) Assuming your assumption(s) in (a) are satisfied, construct a 95% confidence interval
for o.

(c) Assuming that p = 25, construct a 95% confidence interval for o.

Schizophrenia is believed to cause changes in dopamine levels. Twenty-five patients with
schizophrenia were classified as psychotic or non-psychotic after being treated with an
antipsychotic drug. Samples of cerebral fluid were taken from each patient and assayed
for dopamine b-hydroxylase (DBH) activity. The dopamine measurements for the two
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groups are in nmol/(ml)(h)/(mg) of protein and are stored in the data frame Schizo as
well as in the following table (Sternberg et al., 1982).

Judged Non-Psychotic Judged Psychotic
0.0104 0.0105 0.0112 || 0.0150 0.0204
0.0116 0.0130 0.0145 || 0.0208 0.0222
0.0154 0.0156 0.0170 || 0.0226 0.0245
0.0180 0.0200 0.0200 || 0.0270 0.0275
0.0210 0.0230 0.0252 || 0.0306 0.0320

(a) Construct side-by-side boxplots of the two groups. Based on the boxplots, comment
on the relative shapes of the two distributions.

(b) Construct quantile-quantile plots for the two groups, and comment on whether or
not the plots support the analysis in part (a).

(¢) Construct a 95% confidence interval for the true ratio of psychotic to non-psychotic
variances.

(d) Based on the confidence interval for the ratio of variances, should the variances be
pooled to construct a 95% confidence interval for the true dopamine level difference
between psychotic and non-psychotic patients?

(e) Construct a 95% confidence interval for the true dopamine level difference between
psychotic and non-psychotic patients.

(f) Does the confidence interval contain zero? What does this say about the effectiveness
of the antipsychotic drug?

Assuming two independent random samples of sizes 22 and 45 with variance estimates
of s7 = 38.7 and s3 = 45.6, respectively, have been taken, construct a 95% confidence
interval for o.

Those teams who win Formula 1 championships have pit crews who change tires as fast
as possible. The data frame Formulal and the following table contain the times (in
seconds) that the pit crews of two different teams spent changing tires in 10 randomly
selected races.

Race 1 2 3 4 ) 6 7 8 9 10
Team 1 | 5.613 6.130 5.422 5.947 5.514 5.322 5.690 5.243 5.920 5.859
Team 2 | 5.934 5.335 5.826 4.821 5.664 5.292 5.257 6.245 5.981 5.197

(a) Assuming that the times are normally distributed, compute a 95% confidence interval
for the variance ratio 0% /03. Are the population variances equal?

(b) Use the results in part (a) to compute a 95% confidence interval for the difference of
the population means s — 1. What does the result mean?

Let {X1, Xo,...,X,} be a random sample from a normal population N(u, o), where p
and o are unknown. Find the value of the sample size n if (0.59s2,2s%) is to be at least
a 94% confidence interval for o2.
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28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Use a seed equal to 55, and simulate m = 100 samples of size n = 800 from a N (15,0 =
\/6) Calculate the confidence intervals for 2 at the 1 — @ = 0.96 confidence level.
Plot the confidence intervals, and calculate the number of times the parameter is not
contained in the simulated confidence intervals.

Use a seed equal to 224, and simulate m, = 100 samples of size n, = 1500 from a
N(3,0 = +/5) and m,, = 100 samples of size n,, = 1500 from a N (6,0 = /7). Calculate
the confidence intervals for 02 /o7 with a 1—« = 0.94 confidence level. Plot the intervals
and calculate the number of times the parameter ratio is not in the simulated confidence
interval.

The drug Sulfinpyrazone was studied for its efficacy in preventing death after myocardial
infarction. Construct a 90% confidence interval for the true proportion of deaths between
patients who have suffered a myocardial infarction who were administered Sulphinpyra-
zole and patients who were administered a placebo after myocardial infarctions. Based on
the confidence interval, does Sulphinpyrazole appear to reduce the proportion of deaths
among patients who have suffered a myocardial infarction?

Death (all causes) | Survivors

Sulphinpyrazole 41 692
Placebo 60 682

From a random sample of 2000 Internet domains registered in a country during the
last few years, 300 were “.org” domains. Compute a 98% confidence interval for the
proportion of “.org” domains registered in that country during the last few years.

Use a seed equal to 10, and simulate 300 samples of size n, = 65 from a N (4,0, = /2)
52/0%

distribution and 300 samples of size n, = 90 from a N (5,0, = v/3). Check that 252
8yl %y

follows an Fpg4 g9 distribution.

Use a seed equal to 95, and simulate m = 500 samples of size n = 1000 from a B(1,7 =
0.4) distribution. Show that the sampling proportion is normally distributed.

How large a sample is needed to ensure the bound on the error of estimation for the
population proportion is no more than 2 percentage points for a 95% confidence interval?

A large company wants to estimate the proportion of its accounts that are paid on time.

(a) How large a sample is needed to estimate the true proportion within 5% with a 90%
confidence interval?

(b) Suppose 650 out of 800 accounts are paid on time. Construct a 99% confidence
interval for the true proportion of accounts that are paid on time.

A sociology research center conducts a survey to discern whether the proportion of
vegetarians is larger in urban or rural areas. Of the 180 people from urban areas, 32
were vegetarians. Of the 75 from rural areas, 17 were vegetarians. Construct a 98%
confidence interval for the difference between urban and rural vegetarian proportions.

Schizophrenia and other psychoses are complex and debilitating diseases, which affect
about 2% of the population. Two of the approaches used, as well as in other medical
diseases, to reduce clinical heterogeneity among psychoses are categorical and dimen-
sional. The first one assumes that there exist different subgroups within psychosis and
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the second one assumes that schizophrenia dimensions fall on a dimensional continuum
within psychosis. A sample of 660 consecutively admitted patients in Hospital Virgen del
Camino (Pamplona, Spain) is available with the following diagnoses: 358 schizophrenic
patients, 61 with schizophreniform disorder, 37 with schizoaffective disorder, 64 with
bipolar disorder, 24 with delusional disorder, 54 with brief psychotic disorder, and 32
with atypical psychosis. Compute a 95% confidence interval for the proportion of the
different types of patients (Cuesta et al., 2007).






Chapter 9

Hypothesis Testing

9.1 Introduction

A hypothesis test in the Neyman-Pearson paradigm is a decision criterion that allows
practitioners of statistics to select between two complementary hypotheses. Before conduct-
ing the hypothesis test, define the null hypothesis, Hj, which is assumed to be true prior
to conducting the hypothesis test. The null hypothesis is compared to another hypothesis,
called the alternative hypothesis, and denoted H;. The alternative hypothesis is often
called the research hypothesis since the theory or what is believed to be true about the
parameter is specified in the alternative hypothesis. Both hypotheses define complementary
subsets of the parameter space © where the parameter 6 is defined. The null hypothesis
defines the region [ € O] and the alternative hypothesis defines the region [0 € ©1]. The
subsets O and O are mutually exclusive by definition, and they are complementary since
OpUB; = 0. When a hypothesis uniquely specifies the distribution of the population from
which the sample is taken, the hypothesis is said to be simple. For a simple hypothesis,
Op is composed of a single element.  Any hypothesis that is not a simple hypothesis is
called a composite hypothesis. A composite hypothesis does not completely specify the
population distribution. Of the various combinations of hypotheses that could be examined,
the case where the null hypothesis is simple and the alternative hypothesis is composite will
be the focus of this text. Hypothesis tests will generally take a form similar to those in
Table 9.1, where 6y is a single numerical value. For alternative hypotheses (A) and (B),
which are lower one-sided and upper one-sided, respectively, the hypothesis test is called
a one-tailed test. For the alternative hypothesis in (C), a two-sided alternative, the
hypothesis test is called a two-tailed test.

Table 9.1: Form of hypothesis tests
Null Hypothesis ~ Alternative Hypothesis =~ Type of Alternative

(A) Hi:0 <6 lower one-sided
Ho : 6 =09 (B) Hy : 6> 6y upper one-sided
(C) Hy:0# 6 two-sided

Example 9.1 If Hy: 7 = 0.4 in a Bernoulli(w) distribution, the null hypothesis is simple
since the hypothesis Hy : 7 = 0.4 uniquely specifies the distribution as Bernoulli(0.4). If
H, : 7 < 0.4, the hypothesis is composite since 7 can take any value in the interval [0,0.4).

The goal in hypothesis testing is to decide which one of the two hypotheses (null and
alternative) is true. To this end, split the sample space into two mutually exclusive subsets
R and R°. R is the rejection region and R¢ is referred to as the acceptance region. The

241
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critical value is the number that splits © into R and R°. To help decide between the two
hypotheses, calculate a test statistic based on the sample information from the experiment.
If the test statistic falls in the acceptance region, accept the null hypothesis. If the value
of the test statistic falls in the rejection region, reject the null hypothesis and accept the
alternative hypothesis.

There are two basic ways to think of a hypothesis test. First, one can think of it
as a two-decision problem where the researcher will choose one of two hypotheses to be
true. This is the historical approach due to Jerzy Neyman and Egon Pearson. The second
method, due to Ronald Fisher, determines how much evidence exists in the data against
the null hypothesis. The null hypothesis is never accepted but is merely a hypothesis of
“no difference.” The test will determine if the data that have been collected could be due
to chance alone if the null hypothesis were true; and if this is not likely, the researcher has
statistically significant evidence that the alternative hypothesis is true. A hypothesis test
where the null hypothesis is never accepted but merely “not rejected” is called a significance
test.

Example 9.2 The weight of a ball-bearing fluctuates between 1.5 g and 4.5 g. One wants
to test whether the distribution of the weight for the ball-bearing has a mean of either 2 g
(Ho:p=2)or25¢g (Hy:p=25). A random sample of size one is taken. If the weight
of the ball-bearing is greater than 2.3 g, the null hypothesis that the mean weight of the
ball-bearings is 2 g is rejected, and the alternative hypothesis that the mean weight of the
ball-bearings is 2.5 g is accepted. Specify the sample space, the rejection region, and the
acceptance region for this experiment.

Solution: The sample space is given by the interval [1.5,4.5]. The rejection region is the
subinterval R = (2.3,4.5], and the acceptance region is the subinterval R® = [1.5,2.3]. Note
that R°U R = [1.5,2.3] U (2.3,4.5] = [1.5,4.5].

9.2 Type I and Type II Errors

The decision one reaches using a hypothesis test is always subject to error. That is, when
a decision is reached to reject the null hypothesis and accept the alternative hypothesis,
this may be the correct decision or a mistake (error). Likewise, if the null hypothesis is not
rejected but rather accepted, an error could also be made. Simply put, one can never be
sure of the truth since the decision in a hypothesis test to reject or not to reject a hypothesis
is based on sample information. To get a better grasp on the errors one might make with
a hypothesis test, consider the following hypothetical legal situation.

An individual is on trial for a capital offense. In the United States’ judicial system,
an individual is considered innocent until proven guilty of an offense. Consequently, the
null hypothesis in this case is that the individual is innocent and the alternative hypothesis
is that the person is guilty. After the prosecuting and defending attorneys present their
evidence, the jury makes a decision either to convict or not to convict the individual of
the capital offense. If the prosecuting attorney presents a strong case, the jury is likely
to convict the defendant. However, just because the jury convicts the defendant, it does
not mean that the defendant is actually guilty of the capital offense. Likewise, if the jury
does not convict the defendant of the capital offense, this does not imply the individual
is innocent. To better see the possible consequences of the decisions the jury may reach,
consider Table 9.2 on the facing page.
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Table 9.2: Possible outcomes and their consequences for a trial by jury

True State of the Defendant

(Reality)
Hy True Hy False
Jury’s Decision (innocent) (guilty)

Accept Hp (not guilty) | A. correct B. error

Reject Hy (guilty) C. error D. correct

A. TIf the null hypothesis is true and the null hypothesis is accepted, the decision is correct.
In the legal example, if the defendant is innocent and the jury decides the defendant is
not guilty of the charge, the jury’s decision is correct.

B. If the null hypothesis is false and it is not rejected, the decision is incorrect. By failing
to reject a false null hypothesis, an error has been made. In statistics, this error is
called a type II error. The probability of committing a type II error is 5. In the
legal scenario, a type II error is made when a guilty person is not convicted.

C. If the null hypothesis is true and it is rejected, the decision is incorrect. In other words,
by rejecting a true null hypothesis, an error has been made. In statistics, this type of
error is called a type I error. The probability of committing a type I error is . In
the legal example, a type I error would be to convict an innocent defendant.

D. If the null hypothesis is false and it is rejected, the decision is correct. In the legal arena,
this translates into a jury convicting a guilty defendant.

The probability of committing a type I error (rejecting Hp when it is true) is called the
level of significance for a hypothesis test. The level of significance is also known as the
size of the test and is denoted by «, where

a = P(type I error) = P(reject Ho|Hy is true) = P(accept Hy|Hy is true).
The probability of committing a type II error is 3, where

B = P(type II error) = P(fail to reject Ho|Hp is false)
= P(accept Ho|H; is true).

The relationship between type I and type II errors is shown in Table 9.3 on the next page.
If the researcher fails to reject the null hypothesis when the null hypothesis is true, note
that no error is committed. Specifically, the correct decision should be reached in roughly
(1 —a)x100% of all trials. Using the same logic, approximately (1 — ) x 100% of the times
sample data are evaluated in a test of hypothesis, a false null hypothesis will be rejected.
Since a type I error is frequently considered to be more serious than a type II error and
the probability of a type I error is easier to control than the probability of a type II error, it
is common practice for researchers to specify a priori the largest probability of a type I error
they are willing to accept and subsequently to use this value as their level of significance to
make a decision when they conduct their hypothesis testing. The North American judicial
system certainly considers convicting an innocent person to be a worse error than allowing
a guilty person to walk free. However, a type I error is not always more critical than a
type II error. Suppose one is going to go sky diving. In this scenario, the null hypothesis
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Table 9.3: Relationship between type I and type II errors

Decision
Reject Hy Fail To Reject Hy
Type I Error Correct Decision
True | P(Type I Error) = « P(Accept Hyo|Hp)=1— «
Null (Level of Significance)
Hypothesis Correct Decision Type II Error
False | P(Accept H1|H1)=1— (3 | P(Type II Error) =
(Power of the Test)

is that the parachute will open and the alternative hypothesis is that the parachute will
not open. Certainly a type II error (concluding the parachute will open when it will not) is
more critical than a type I error (concluding the parachute will not open when it will).

Example 9.3 Given a normal distribution with unknown mean p and known standard
deviation o = 2, one wishes to test the null hypothesis Hy : u = 1 versus the alternative
hypothesis H; : u = 4. A sample of size one is taken where the rejection region is considered
to be the interval (2,00). In other words, if the sample value is greater than 2, the null
hypothesis is rejected. On the other hand, if the sample value is less than or equal to two,
one fails to reject the null hypothesis. Determine o and 3 for this experiment.

Solution: Although there is no way to know if the decision made with regard to the null
hypothesis is correct, there is a reasonable criterion that allows the determination of the
probability of making type I and type II errors.

Determine o« — The probability of committing a type I error, the level of significance, is
the probability that the sample value falls in the rejection region (2,00) when Hy : p =1
is true. To find «, it is necessary to find ]P’(Xl > 2|N(1, 2)) See Figure 9.1 for a graphical
representation of the type I error. Note that

X;—1_ 2-1
12 > T) =P(Z > 0.5) = 0.31.

a=P(X; >2[N(1,2)) =P (

To find o with S, key in

> ALPHA <- round(1 - pnorm(2, 1, 2), 2)
> ALPHA
[1] 0.31

Note: S-PLUS returns the area to the left of a given value when using the function pnorm.
By default, R also returns the area to the left of a given value when using the function pnorm.
However, R also allows the user to find the area to the right of a given value by using the
argument lower.tail=FALSE. Consequently, one might have used the lower.tail=FALSE
argument with R’s pnorm function to find the answer.

> ALPHA <- round(pnorm(2, 1, 2, lower.tail=FALSE), 2) # Only with R
> ALPHA
[1] 0.31
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Determine 3 — The probability of making a type II error is the probability of failing
to reject Hy : p = 1 when in actuality H; : p = 4. In other words, although p = 4, the
null hypothesis is not rejected because the test statistic does not fall in the rejection region
but does lie in the region (—o0,2]. For a graphical representation of the type II error, see
Figure 9.1. Mathematically this is written

B=P(X; <2|N4,2)) =P(Z <-1)=0.16.
To find § with S, enter

> BETA <- round(pnorm(2,4,2), 2)
> BETA
[1] 0.16

P(Type II error) = 0.16 P(Type I error) = 0.31

FIGURE 9.1: Graphical representation of type I and type II errors when Hy : 4 = 1 versus
Hy:p=4.
|

Since the probabilities of committing type I and type II errors for a fixed sample size
are dependent, it is usually impossible to make both type I and type II errors arbitrarily
small. However, out of convenience, the tests considered are restricted to only those tests
that control the type I error at a given significance level and subsequently select from these
tests the test with the most power. Researchers typically fix the probability of committing
a type I error at the 0.01, 0.05, or 0.1 significance level; however, these are merely values
that were tabled early in the history of statistics and have been used mainly for convenience
rather than through any actual merit. Since there are as many tests as there are partitions
of the sample space, the number of tests one may have to evaluate to decide between two
competing hypotheses might be huge. For this very reason, certain partitions will produce
results that are more appealing in the sense of supporting a specific hypothesis.

9.3 Power Function

Given a composite alternative hypothesis H; : 6 € ©1, the power of the test, Power(6),
is
Power(0) = P(reject Ho|Hp is false) = P(accept Hy|Hy)
=1-05(0),

where 3(0) is the probability of a type II error at a given 6. Loosely speaking, the power
of a test is the probability the test detects differences when differences exist. Note that

(9.1)
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Power(6) is a function of the parameter 6, which has for each value of 6 in the alternative
hypothesis, § € ©1, the power that a simple alternative hypothesis would have for that
value of . When the null hypothesis is simple, 8 = 6y, the power of the test at 8y is the
same as the significance level, that is, Power(fy) = a.

Example 9.4 Given the density function
f(z:0) =6e7%, x>0, >0,

(a) Consider a test of hypothesis where Hy : 8 = 2 versus Hy : § > 2. Using a random
sample of size one, find k such that the test is conducted at the o = 0.05 level.

(b) Further, determine the power function of this test.

Solution: The solutions are as follows:
(a) First, set up the integral to find the value of k that yields a significance level of 0.05:

k
a=P(X; < k|Hy) = /26—2I1dx1 =1-¢e2*=0.05
0

The solution for k is k = 0.02564665.

> qexp(0.05, 2)
[1] 0.02564665

(b) The power of the test is

Power () =1 — §(0) = P(accept Hy when it is true) = P(X; < 0.0256|H)
0.0256

— / 067911d$1 — 1 _ 670‘02560.
0

Note that the answer clearly illustrates that it is not possible to obtain a single value for
the power of a composite alternative hypothesis since the answer itself is a function of 6. In
other words, for each value of the parameter # compatible with the alternative hypothesis
(in this case § > 2), a value for the power function is obtained that corresponds to that
simple hypothesis. As the parameter 6 takes on values greater than two, the power function
approaches one. |

Example 9.5 [> Achievement Test <| Test the null hypothesis that for a certain age
group the mean score on an achievement test (scores follow a normal distribution with
o = 6) is equal to 40 against the alternative that it is not equal to 40.

(a) Find the probability of type I error for n = 9 if the null hypothesis is rejected when the
sample mean is less than 36 or greater than 44.

(b) Find the probability of type I error for n = 36 if the null hypothesis is rejected when
the sample mean is less than 38 or greater than 42.

(¢) Plot the power functions for n =9 and n = 36 for values of 1 between 30 and 50.
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Solution: The solutions are as follows:

(a) The probability of a type I error for n = 9 if the null hypothesis is rejected when the
sample mean is less than 36 or greater than 44 is

_ 6 _ 6
P(Type I error) = P X<36‘N 40, — ) )| +P X>44‘N(40,—)
(Typ ) < < \/§)> ( V9
:]P’<Z<36;40)+IP’(Z>44;40>

=P(Z < —2)+P(Z > 2) = 0.02275 + 0.02275 = 0.04550.

To compute the answer with S, key in

> pnorm(36,40,6/sqrt(9)) + 1 - pnorm(44,40,6/sqrt(9))
[1] 0.04550026

(b) The probability of type I error for n = 36 if the null hypothesis is rejected when the
sample mean is less than 38 or greater than 42 is

P(Type I error) = ]P’()_( < 38‘N<40, %)) + ]P’()_( > 42}N<40, %))

—14 42 —4
“p(2<B50) p (75 220)

1
=P(Z < —2)+P(Z > 2) = 0.02275 + 0.02275 = 0.04550.

To compute the answer with S, enter

> pnorm(38,40,6/sqrt(36)) + 1 - pnorm(42,40,6/sqrt(36))
[1] 0.04550026

(¢) The power function for n =9 is

Power(p) = IP’<)_( < 36‘N(u, %)) +P<)? > 44‘N(M7 %))

The power function for n = 36 is

Power (1) :]P’<)_(< 38’N<u, %)) +IE”<)_(> 42‘]\7(#,\/%))

To produce a plot similar to the one in Figure 9.2 on the next page with R, use the following
code:

mu <- seq(30,50,.01)

power9 <- 1-pnorm(44, mu,6/sqrt(9)) + pnorm(36, mu,6/sqrt(9))
power36 <- 1-pnorm(42, mu,6/sqrt(36)) + pnorm(38, mu,6/sqrt(36))
plot (mu,power9,type="1", ylab=expression(Power (mu)), xlab=expression(mu),
ylim=c(0,1))

lines(mu, power36, type="1")

arrows(32, 0.6 , 34.2, .78, lwd=2, length=0.05)

arrows(32, 0.35 , 37, .78, 1lwd=2, length=0.05)

arrows (40, 0.4 , 40, 0.06, 1lwd=2, length=0.05)

text(32,0.58, expression(n==9))

text(32.3,0.33, expression(n==36))

text (40,0.45, expression(alpha==0.045))

V VVVV VYV + V V VYV
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1.0

Power(u)
00 02 04 06 038

30 35 40 45 50
I

FIGURE 9.2: Graphical representation of the power function, Power(u), for both scenarios
in Example 9.5 on page 346.

Note that Power(uy) = « for both power functions depicted in Figure 9.2. In general,
as the true p is farther from the hypothesized p in Hy, the power of a test will increase.
Additionally, the power function approaches 1 faster for larger n as the true p moves farther
from the hypothesized p in Hy. |

9.4 Uniformly Most Powerful Test

First, note that tests with identical o values do not necessarily have identical power for
a fixed sample size as in Example 9.6.

Example 9.6 Given a N(u, 1) population from which one takes a simple random sample
of size 1, test the null hypothesis Hy : i = 1 versus the alternative hypothesis Hy : p = 2.
Determine the significance level and the power of the test for the following rejection regions:

(a) (2.036,00)

(b) (1.100,1.300) U (2.461,00).

Solution: The answers are as follows:

(a) Since R = (2.036, 00),

X -1 < 2.036 — 1
1 1

B=P(X <2036|N(2,1)) =P (X1_ 2 _ 2.03$ _9

a=P(X >2.036|N(1,1)) = P ( ) =P(Z > 1.036) = 0.150,

) =P(Z < 0.036) = 0.514,

and the power of the test is 1 — 8 = 1 — 0.514 = 0.486. See Figure 9.3 on the facing page
for a graphical representation of the type I and type II errors.
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P(Type II error) = 0.514 P(Type I error) = 0.150

-2 -1 0 1 2.036 3 4 5

FIGURE 9.3: Graphical representation of type I and type II errors when Hy : 4 = 1 versus
H; : ;= 2 with rejection region (2.036, 00).

(b) Since the rejection region is (1.100,1.300) U (2.461, c0), the probability of committing
a type I error is

o =P(1.100 < X < 1.300|N(1,1)) + P(X > 2.461|N(1,1))
1.100 — 1 1.300 — 1 X -1 _ 2461-1
=P(———<Z<—— | +P >
1 1 1 1
= P(0.100 < Z < 0.300) + P(Z > 1.461)
=P(Z < 0.300) — P(Z < 0.100) + P(Z > 1.461) = 0.618 — 0.540 + 0.072 = 0.150,

and the probability of committing a type II error is

4 =P(X < 1.100|N(2,1)) + P(1.300 < X < 2.461|N(2,1))
:P(X—2 _ 1.100—2) +P<1.300—2 _X-2 2.461—2)

1 1 1 -1 -1
=P(Z < —0.900) + P(—0.700 < Z < 0.461)

=P(Z < —0.900) + P(Z < 0.461) — P(Z < —0.700)

= 0.184 + 0.678 — 0.242 = 0.620.

It follows that the power of the test is 1 — 3 = 1—0.620 = 0.380. A graphical representation
of the type I and type II errors is provided in Figure 9.4 on the next page. To find o and
[ with S, type

> ALPHA <- pnorm(1.300,1,1) - pnorm(1.100,1,1) + (1-pnorm(2.461,1,1))
> round (ALPHA, 3)

[1] 0.15

> BETA <- pnorm(1.100,2,1) + pnorm(2.461,2,1) - pnorm(1.300,2,1)

> round (BETA, 3)

[1] 0.62

It is clear to see from the previous example that, with the same level of significance
(0.150), the power obtained for the test with a rejection region of (1.100, 1.300) U (2.461, c0)
has less power than the test that uses a rejection region of (2.036,00). The probabilities of
committing type I and type II errors for the rejection regions (2.036, o) and (1.100, 1.300) U
(2.461, 00) are shown in Figures 9.3 and 9.4, respectively. In general, it is possible to have a
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P(Type II error) = 0.62 P(Type I error) = 0.15

FIGURE 9.4: Graphical representation of type I and type II errors when Hy : 4 = 1 versus
H, : ;= 2 with rejection region (1.100,1.300) U (2.461, 00)

test that is “better” in the sense of having more power than another test even though both
tests have the same significance level. So, the researcher wants to find a uniformly most
powerful test that has more power than all other tests that have the correct significance
level, «, if such a test exists. To be complete, it is important to note that uniformly most
powerful tests do not always exist. A generalization that can be made from Example 9.6
is that one-sided tests with the same sample size as two-sided tests will always have more
power for the same « level.

9.5 ¢-Value or Critical Level

Fisher’s advocates object to establishing a priori the level of significance when testing
a hypothesis. Instead, they prefer to make their decisions to reject or fail to reject the null
hypothesis based on p-values. The critical level or g-value is defined as the probability of
observing a difference as extreme or more extreme than the difference observed under the
assumption that the null hypothesis is true. Virtually all statistical software packages will
return a p-value when testing a hypothesis. The values of the statistic ¢(x) observed from
the sample and p-value calculations are summarized in Table 9.4.

Table 9.4: Calculation of p-values for continuous distributions

p-Value
Hy:60 <6 P(T < tobs|H0)
Hy:0> 90 P(T > tobs|HO)

Hy 070 2min{P(T < tows|Ho), P(T > tous| Ho) |

It is important to note that the g-value is not fixed a priori, but rather is determined
after the sample is taken. A small p-value indicates that observing differences as large or
larger than the one found in the sample is rare, and thus do not occur by chance alone. A
small p-value lends support to Hy; so, given a fixed significance level «, reject Hy whenever
the p-value < «. In Fisher’s paradigm, hypothesis tests are tests of significance, where
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a p-value is calculated without regard to a fixed rejection region. The Neyman-Pearson
paradigm uses a specified « level to calculate a rejection region that is used in conjunction
with a standardized test statistic to reach a statistical conclusion.

9.6 Tests of Significance

Using the following steps incorporates ideas from both Fisher and Neyman and Pearson
for solving test of hypothesis-type problems. The steps allow others to follow the
reasoning one uses to reach a statistical decision.

Step 1:

Step 2:

Step 3:

Step 4:

Hypotheses — State the null and alternative hypotheses.

First, establish the null hypothesis, Hy : 8 = 6y. Next, determine the form of
the alternative hypothesis, H;. The forms H; can take are found in Table 9.1 on
page 341, where evidence is to be found that 6 is less than, greater than, or not
equal to the 0y specified in Hy. If one wishes to specify a value for which H; is
true, that value is denoted with either 67 or 6, (X,Y,...).

Test Statistic — Select an appropriate test statistic and determine the sampling
distribution of the test statistic or the standardized test statistic under the assump-
tion that the null hypothesis is true.

Choose a test statistic, 0, generally one such that the expected value of the test
statistic is equal to the parameter in Hy. For example, if testing p, 6 = X or, if
testing T, 6=P.

A common standardized test statistic will take the form

H(X) — 0,

T=tX)= .
Var [H(X)}

Other test statistics will present themselves when testing hypotheses regarding
variances.

Rejection Region Calculations — If the computations are to be done by hand,
use the specified « level to compute the critical value and to determine the rejection
region for the standardized test statistic. If the computations are to be done by a
computer, do not do this.

Then, calculate the value of ¢(X), assuming Hy is true. The value of the statistic
t(X) observed from the sample is denoted t(x) = tops.

Statistical Conclusion — If a rejection region was not computed in step 3, calcu-
late the gp-value. The procedure for calculating the g-value is found in Section 9.5
on the facing page.

Use the rejection region or the gp-value to determine if the evidence warrants
rejecting the null hypothesis. If ¢,ps falls into the rejection region, reject Hy; if
not, fail to reject Hy. If the p-value is less than «, reject Hy; if not, fail to reject
Hy.
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Step 5: English Conclusion — State in plain English what the conclusion reached in
step 4 means. This statement will always be about the alternative hypothesis.
That is, the evidence will either warrant concluding the alternative hypothesis or
the evidence will not be sufficient to conclude the alternative hypothesis is true.

There are two distributions that occur frequently in hypothesis testing involving means:
a standard normal distribution and a t-distribution. When the standardized test statistic
follows a standard normal distribution, the hypothesis test will typically be called a one-
sample z-test or a two-sample z-test, depending on whether there are one or two
samples. Likewise, if the standardized test statistic follows a t-distribution, the test will be
a one-sample t-test, a two-sample t-test, or a paired t-test. The general form for a

z-test statistic is Lo
statistic — Ustatistic

(9.2)
Ostatistic
while the general form of a t-test statistic is
statistic — Mstatistic (9 3)

Ostatistic

Duality of Confidence Intervals and Tests of Significance When confidence in-
tervals were constructed in Chapter 8, there was often a statistic §(X) that had a known
distribution, where 6 was the mean of #(X) and Th(x) Was the square root of the variance of
6(X). From this statistic’s distribution, a pivot was constructed that took the form QSC(L)Q

(X
with a known distribution (denoted, in general, as T'). One would use this pivot to construct
a (1 —«)-100% confidence interval:

Cl1-a(8) = [0(%) + taj2 - 750) 0%) + tiayp 7| -

In testing hypotheses, when the standardized test statistic has the same form as the pivot

. H(x)—6 .
used to construct a confidence interval, namely o, = %, and the confidence intervals
6(X)

and the acceptance region for the null hypothesis are based on the same distribution, there
exists a duality between (1—«)-100% confidence intervals and a-level hypothesis tests. That
is, when 6 is in the confidence interval, Hy : € = 6 is not rejected. This is summarized in
general in Table 9.5.

Table 9.5: Duality of (1 — «) - 100% confidence intervals and a-level tests of significance

Alternative Fail to Reject (1-a)-100%
Hypothesis Hjy Region Confidence Interval
H]_ 10 < 90 tobs = ta (_007 é(X) —tla- Ué(x)]
Hi: 60> 6, tobs < ti—a [é(x) —ta Thx); oo)
Hl 0 7é 90 toz/Q S tobs S tl—oz/2 |:é(X) + toz/Q . Ué(x)a

é(X) + tlfa/Z . Ué(X):|
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9.7 Hypothesis Tests for Population Means

9.7.1 Test for the Population Mean when Sampling from a Normal
Distribution with Known Population Variance

The null hypothesis for testing the mean when sampling from a normal distribution with
known variance is Hy : u = po, where pg is a particular value. It is important to emphasize
that a normal distribution as well as a known variance are being assumed. Seldom, if ever,
will the distribution and its variance be known with certainty. However, a firm foundation
in how significance tests are conducted with these assumptions will provide a foundation
on which more hypothesis testing procedures can be built.

The basic idea behind a test of significance for the mean when working with a random
sample of size n is to determine how likely the values observed in the sample are to occur.
Typically, the sampling distribution of X, which is N(ug,o/\/n), is used to construct
a standardized test statistic since one is sampling from a normal distribution under the
assumption that the null hypothesis is true. Further, the Central Limit Theorem states
that the sampling distribution of X approaches a normal distribution even if the original
population is not normal, provided the sample size n is sufficiently large. The standardized
test statistic under the assumption that Hy is true is

_ X — o
a/vn

The formula to calculate its observed value as well as the three possible alternative hy-
potheses and their rejection regions are described in Table 9.6.

~ N(0,1).

Table 9.6: Summary for testing the mean when sampling from a normal distribution with
known variance (one-sample z-test)

Standardized B
Null Hypothesis — Ho : 1 = po Test Statistic’s  — Zobs = 5752
Value
Alternative Hypothesis Hy:p < po Hy:p>po Hy :p# po
Rejection Region Zobs < Za Zobs > Z1—a |Zobs| > 21—q/2
Graphical
Representation of
Rejection Region o I Tl P ol

Example 9.7 A random sample of size n = 30 is taken from a distribution known to be
N(p,o =2). If the 320 2, = 56,

(a) Test the null hypothesis Hy : ;1 = 1.8 versus the alternative hypothesis Hy : > 1.8 at
the a = 0.05 significance level.
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(b) Find 3(3) and Power(3).

Solution: The answers are as follows:

(a) Use the five-step procedure.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Hypotheses — Hy : = 1.8 versus Hy : u > 1.8.

Test Statistic — The test statistic chosen is X because F [)_( ] = p. The value of
LT 20 —1.867. The standardized test statistic and

n p—
its distribution under the assumption Hy is true are Z = f/*\;%o ~ N(0,1).

this test statistic is & =

Rejection Region Calculations — Because the standardized test statistic is
distributed N(0,1), and H; is an upper one-sided hypothesis, the rejection region
IS Zobs > Z1—a = Z0.95 = 1.64. The value of the standardized test statistic is

_ 1.867—1.8 __
Zobs = 2/—\/% = 0.183.

Statistical Conclusion — The p-value is P(Z > 0.183) = 0.427.

I. From the rejection region, fail to reject Hy because 0.183 is not greater than
1.64.

II. From the p-value, fail to reject Hy because the p-value = 0.427 is greater than
0.05.

Fail to reject Hyp.

English Conclusion — There is not evidence to suggest that the mean is greater
than 1.8.

To use S to find zgg5, the p-value for a z.s value of 0.183 for a right tail alternative
hypothesis, key in

> gnorm(0.95) # Critical Value
[1] 1.644854
> 1 - pnorm(.183) # P-value

[1] 0.427399
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(b) B(3) and Power(3) are

B(3) = P(Type II error) = P(Fail to reject HO‘N (3, —))

V(s 7))

_ 2
= ]P’(X < 20,95% + M‘N(?), \/ﬁ))
_ (L645)2) | 15 _ 3

2
ES

=P(Z < —1.645) = 0.05

Power(3) =1—-((3) =1—-0.05=0.95

To use S to find 5(3) and Power(3), enter

> beta3 <- round(pnorm(qnorm(.95,1.8,2/sqrt(30)),3,2/sqrt(30)), 2)
> power3 <- 1 - beta3

> beta3

[1] 0.05

> power3

[1] 0.95 ]

9.7.2 Test for the Popula